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ABSTRACT  

 

RANDOMNESS IN INTEGRATED CIRCUITS WITH APPLICATIONS IN DEVICE 

IDENTIFICATION AND RANDOM NUMBER GENERATION 

 

SEPTEMBER 2007  

DANIEL E. HOLCOMB 

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST  

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST  

Directed by: Professor Wayne P. Burleson 

 

 

RFID applications create a need for low-cost security and privacy in potentially hostile environments. To 

accomplish these goals of security and privacy, static identifiers and random numbers are required. 

Motivated by cost constraints, this thesis explores generating both identifiers and random numbers from 

existing CMOS circuitry, using a system of Fingerprint Extraction and Random Numbers in SRAM 

(FERNS). The identity results from the impact of manufacture-time physically random device threshold 

mismatch on the initial state of SRAM, and the randomness results from the impact of run-time physically 

random noise. FERNS is supported by an analytical model of the relative impacts of process variation and 

noise, and by experimental data from virtual tags, microcontroller memory, and the WISP UHF passive 

RFID tag. It is shown that virtual tags can be uniquely identified amongst a population of 160 using less 

than 50 bits of SRAM with an efficient matching algorithm. It is shown that a 128 bit true random number 

capable of passing statistical tests can be extracted from 256 bytes of SRAM. Based on these results and the 

observation that FERNS is well suited to passive applications, we conclude that FERNS is a viable 

approach to both identification and true random number generation in RFID tags. 
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CHAPTER 1  

INTRODUCTION 

1.1 Randomness in Integrated Circuits 

Randomness due to process variation and noise exists in all integrated circuits. This randomness 

causes discrepancies across circuits and across time, and can impact computation. In large scale digital 

circuits, design steps are taken to isolate the computation from this randomness by using noise margins and 

timing margins. Small scale integrated circuits such as radio frequency identification (RFID) tags and 

smartcards are quite different from VLSI circuits. These circuits are extremely cost-constrained and operate 

in potentially hostile environments. In order to attain an acceptable level of security and privacy, low-cost 

implementations of true random number generation (TRNG) and chip identification (ID) circuits are 

needed.  

While TRNG and ID are typically accomplished independently, this thesis explores the possibility 

of accomplishing both TRNG and ID using shared circuitry. Further, it is shown that this shared circuitry 

need not be dedicated, but can be common CMOS Static Random Access Memory (SRAM). The reuse of 

SRAM allows overhead to be minimized. This thesis makes several contributions to the field of secure 

hardware: 

1 – Demonstrating that SRAM initialization generates usable identifying characteristics 

2 – Demonstrating that SRAM initialization generates true randomness  

1.2 RFID Technology 

RFID tags come in a variety of specifications. Low frequency (LF) tags operate at 125-134 kHz 

and 140-148.5 kHz, high-frequency (HF) tags operate at 13.56 MHz, and ultra-high-frequency (UHF) tags 

operate at 902-928 MHz in the United States.  

LF tags are covered by the ISO 11784, 11785 and 18000-2 standards. LF tags require larger 

antennas due to their long wavelength, and are typically not found in disposable transponders, but instead 

in reusable applications such as automobile immobilizers and the Exxon Mobil SpeedPassTM system. LF 
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tags can penetrate most materials, including water and body tissue, allowing applications in animal 

tracking.  

HF tags are covered by ISO 14443, 15693, and 18000-3 standards.  Using smaller antennas than 

LF tags, typically uses for HF tags include RFID credit cards [1], NXP Semiconductors’ MIFARE cards 

[2], and E-Passports [3].  Compared to LF tags, HF tags are lower cost, and offer better throughput. With 

higher throughput, multiple tags can be read at once, giving rise to a need for anti-collision protocols. Read 

ranges for LF tags are typically limited to around 1m. Typical cost for an HF tag is around $1. 

UHF tags are a more recent development, described by EPC global class 1 gen 2 protocol which 

was later ratified as ISO 18000-6C [4]. UHF tags communicate using backscatter instead of the inductive 

coupling employed in LF and HF tags. Backscatter provides a greater read range, on the order of 3-6m. 

UHF tags do not work well in the presence or liquids of metals. A typical UHF tag has only a 96 bit serial 

number and no memory. This minimal functionality allows manufacture at low cost, currently below 15 

cents and predicted to go below 10 cents per tag by 2008 [5]. Because of the low-cost and significant read-

range, UHF tags have great potential in supply chain management, and are already in use by Wal-Mart and 

Gillette among others.  

Across all specifications, passive RFID applications present circuit designers with a unique set of 

challenges. With no on-board power source on tags, power consumption must be minimized. Because little 

performance is needed, and to meet pricing pressures, area and complexity must also be minimized.  

1.2.1 Power Constraints 

In passive tags, all power used by the tag is harvested via coupling to the reader allowing only 

minute power consumption. The coupling can either be near field or far field. Near field systems use 

inductive coupling between the tag and reader, where the tag harvests reactive energy that is circulating 

around the reader antenna. The name “near field” indicates that the energy drops off according to the cube 

of the distance between the tag and reader. Far field systems couple to real power in free-space-propagating 

electromagnetic plane waves, and drops off according to the square of the distance between tag and reader. 

This accounts for the difference in read ranges between the different specifications; LF and HF tags 

typically use near field, while the longer range of UHF is enabled by its use of far field [6]. 
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Regardless of the coupling mechanism employed by the tag, the lack of an onboard energy source 

creates a limited power budget. This is a different scenario from battery powered devices, which are 

constrained by energy storage. A typical tag consumes only microamperes of current at under a volt, or a 

few microwatts of power. One such example is an 8.9�W baseband processor using 0.35�m Chartered 

technology [7]. A second example is the 8�W Zuma RFIDTM chip in 0.25�m subthreshold CMOS 

technology, with complexity equivalent to an Intel 8086 [8]. Another example is a UHF core designed to 

run on 0.3 �W using a high Vth, subthreshold 0.18� standard cell CMOS, and using multiple clock domains 

to allow slow energy-optimized computation where possible [9]. For an overview of several subthreshold 

logic styles, see [10]. 

1.2.2 Area and Cost Constraints 

RFID circuits also face extreme cost constraints. Desirable pricing points are 5 cents for simple 

EPC type tags [11], and approximately 50 cents for a security enabled HF tag. With such low costs desired, 

both amortized non-recurring engineering (NRE) cost and incremental silicon costs must be minimized. 

NRE refers to the fixed cost of creating a circuit that is irrespective of the quantity produced, 

including the cost of research, design, and fixed costs associated with manufacturing. Amortized NRE 

refers to the share of NRE that can be assigned to each chip produced, and directly influences the per-unit 

price of the product. Amortized NRE is minimized in two ways. First, and most obvious, is to maximize the 

number of chips sold, in order to minimize the share that is assigned to each chip. The second strategy is to 

minimize the NRE itself by avoiding cutting edge technology, and instead using technology that lags the 

leading edge by several generations. The advantages of this strategy are less expensive and mature process 

flows, lower mask costs (table 1.1), and stable commodity processes with multiple suppliers [8].  

Table 1.1 Mask costs increase with technology scaling. Source ITRS design 2006 [12] 

Year of Production 2005 2006 2007 2008 2009 2010 2011 2012

DRAM 1/2 Pitch (nm) 80 70 65 57 50 45 40 36

% Mask cost ($m)

     from publicly available data
1.5 2.2 3.0 4.5 6.0 9.0 12.0 18.0
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To minimize overall costs, incremental costs must also be kept to a minimum. Incremental costs 

are the per unit costs that are paid for producing a chip, including the costs of raw materials and operating 

fabrication machinery. In general terms, incremental costs are directly correlated to the silicon area 

required to implement the tag, and are less correlated to the technology node used. The combination of 

amortized NRE and incremental costs create a “sweet spot” for RFID (figure 1.1). 

 

Figure 1.1: The RFID “sweet spot” is a compromise between minimizing amortized NRE and 

minimizing incremental costs. 

Given that leading edge technologies are not economically feasible for RFID, silicon area must be 

minimized via low complexity. A rough estimate is that a passive RFID tag should be no bigger than 

0.5mm2 [1] which is roughly the size of 22,000 minimum sized inverters or 3,800 asynchronous reset D flip 

flops in 0.18� CMOS [8]. However, only a small fraction of the silicon area is available for digital logic. 

One estimate of available logic functionality is that a typical EPC class 1 tag has 1,000-4,000 gates, with 

class 2 tags having several thousand more [14]. The Zuma RFIDTM chip fits 41,798 transistors (10,450 gate 

equivalents) within .58mm2 [8], but inspection of the breakdown of functionality shows that only around 

3,000 transistors are available for implementing logic; the remainder of silicon area is used for power 

rectification, storage capacitors, signal modulation and non-volatile memory, as is typical in passive RFID 

tags. Among the relatively few transistors available for digital logic, only 200-2,000 are typically available 

for security [15]. Traditional cryptographic ciphers do not fit within these constraints, leading to a wealth of 

research in developing secure low-cost ciphers (table 1.2).  
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Table 1.2: Gate counts of small footprint ciphers. 

key size gate equivalents

Present-80 [16] 80 1570

AES-128 [17] 128 3400

HIGHT [18] 128 3048

mCrypton [19] 96 2681

DES [20] 56 2309

DESXL [20] 184 2168

Trivium [21] 80 2599

Grain [21] 80 1294  

 

1.3 Approaches to Random Number Generation 

Random numbers play an important role in cryptography; for example, they find use as 

cryptographic keys and one-time pads. Any predictability in random numbers will compromise the security 

of the scheme in which they are used. The approaches to creating random numbers can be broadly 

classified into two main categories, True Random Number Generation (TRNG) and Pseudo Random 

Number Generation (PRNG). TRNGs rely on a physically random process as a source of entropy, whereas 

PRNGs produce outputs that have statistical properties of random numbers, yet are fully deterministic. 

Because PRNGs use simple logic, they sometimes find use in RFID tags. TRNGs are desirable for security 

applications. The random process and how it is harvested both vary across TRNG designs. One physically 

random process in integrated circuits is thermal noise, which describes voltage variations that exist when a 

conductor is in equilibrium [22,23]. A related physically random process is shot noise, which describes the 

randomness in a current as it begins to flow through a conductor [24]. To create a random number from 

such a physically random process, a harvesting method is required. A well-known method for harvesting 

noise is through its manifestation in the jitter of free-running oscillators [25] and in subthreshold chaotic 

oscillators [26]. A second way to extract thermal or shot noise is by amplifying the noise to a measurable 

level, by use of direct amplification or through the large gain that is inherent in metastable CMOS devices 

[27,28].  
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1.4 Approaches to Circuit Identification 

In the most general terms, RFID circuits can be identified either through the use of non-volatile 

memories or the use of some identifying physical characteristic, which is referred to here as fingerprinting. 

The non-volatile approach involves programming an identity into a tag at the time of manufacture using 

EPROM, EEPROM, flash, fuse, or more exotic strategies such as the electron beam programming 

demonstrated by the Hitachi Mu Chip in 90nm SOI [29]. While non-volatile identities are static and fully 

reliable, they have drawbacks. The use of non-volatile memories adds about 30 process steps in 

manufacturing [8]; Even if only a small amount of non-volatile storage is used, the process cost must be 

paid across the entire chip area. Additionally, supporting circuitry such as charge pumps for tunneling 

oxide devices, and programming transistors for fuse devices, are needed. Finally, non-volatile memories 

can reveal state to invasive attacks. 

The fingerprint approach to identification uses the process variation that is inherent in the 

manufacture of integrated circuits for differentiation between chips. Process variation comes in many 

forms, including lithographic variations in effective feature size and random threshold voltages. In terms of 

producing identifying characteristics, it is generally not the absolute variation that matters, but instead the 

variation mismatch between the nearby devices that are implementing the identifying function. 

Lithographic variations are correlated among local devices and devices occupying the same within-field 

position on different chips [30]. Variations in threshold voltages are due to random fluctuations in the 

concentration of dopant atoms and are not spatially correlated, making an ideal identifying characteristic. 

With the scaling trends of integrated circuits, device threshold variability is expected to increase, implying 

that threshold based identification will continue to be a viable approach in the coming years (table 1.3). 

Table 1.3: Variability in device threshold voltages is predicted to increase, and is due primarily to 

dopant concentrations. Source ITRS 2006-design[12]. 

Yearh of Production 2005 2006 2007 2008 2009 2010 2011 2012

DRAM 
1
/2 Pitch (nm) 80 70 65 57 50 45 40 36

% Vth variability

     Doping Variability impact on Vth
24% 29% 31% 35% 40% 40% 40% 58%

% Vth variability

     Includes all sources
26% 29% 33% 37% 42% 42% 42% 58%
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Simple physical fingerprints can be used as identifying signatures. One such circuit was 

demonstrated using MOS device random threshold assignment as the identifying characteristic and 

supporting circuitry to indirectly measure these threshold voltages [31]. A similar approach using 

metastability for identifying RFID tags is demonstrated by Su, Holleman and Otis [32]. The physical 

uncloneable function (PUF) uses a physical race condition where the racing paths are selected by the 

applied input [33]. The identifying output is determined by the relative delays of the two paths, enabling the 

PUF to work like a hash function. The advantages to using physical fingerprints are their use of ordinary 

CMOS process and the fact that no programming step is required. The most significant drawback to 

physical fingerprint identification is that the identities are impacted by noise. The PUF circuit uses noise to 

accomplish random number generation along with authentication [34]. The randomness is obtained by 

finding and then persistently applying inputs that cause races between well-matched paths, leading to each 

binary outcome with equal probability. 

1.5 The Observed Relation between Physical ID and TRNG 

Physical ID circuits use small manufacturing variations to differentiate chips. Because the 

manufacturing variations are small, the circuits must magnify them up to useable levels. TRNG circuits 

harvest a physically random process for creating random bits; because the physically random processes are 

small, the circuits must magnify these small variations up to a level that can be captured. This leads to the 

observation that both physical ID circuits and TRNG circuits are designed to be sensitive to slight 

variations in conditions. All physical ID circuits show some effects of noise. As was previously mentioned, 

PUFs have been shown to constructively use this randomness for TRNG, and the chip ID circuit of Su, 

Holleman and Otis also shows the effects of randomness in having 3% unstable bits [32]. 

Based on this observed relationship between physical ID and TRNG, the remainder of this thesis 

explores the fact that the initial state of static random access memory (SRAM) has the property of being a 

slightly random, massively parallel, physical ID. A system called fingerprint extraction and random 

numbers in SRAM (FERNS) outlines the usage of SRAM state as a source of both identity and 

randomness, targeting application in RFID circuits. Chapter 2 presents FERNS and gives its physical 

principles. Chapter 3 outlines how FERNS can provide identification. Chapter 4 outlines how FERNS can 
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provide randomness. Chapter 5 compares FERNS to existing methods of random number generation and 

identification, and concludes the thesis. 
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CHAPTER 2  

FINGERPRINT EXTRACTION AND RANDOM NUMBERS IN SRAM (FERNS) 

2.1 Introduction 

FERNS is built upon the idea that the stabilization of each SRAM cell at power-up reveals a 

physical fingerprint. Uninitialized SRAM is normally considered to be in a logically unknown state. By 

descending below the logical level of abstraction, and considering SRAM state to be a physical fingerprint, 

a wealth of information is found. We propose FERNS as a means of using initial SRAM state as a source of 

both identifying fingerprints and true random number generation. To avoid revealing randomness and 

destroying its utility, bits that are used for randomness cannot be plainly transmitted as part of an ID. With 

an SRAM cell being the required circuitry for merely storing a bit, each SRAM cell is perhaps the smallest 

possible physical fingerprint capable of producing a digital output. In the remainder of this chapter we build 

up the FERNS system by first identifying why SRAM initialization yields a useful physical fingerprint, and 

then giving our methodologies for experimentally verifying the existence of physical fingerprints. The 

discussion of applications for the fingerprints is discussed in chapters 3 and 4. 

2.2 Physical Principles of Fingerprints 

The fingerprint produced by an instance of an SRAM consists of the initial values produced by all 

of the bits of that SRAM. The initial state of each bit is a function of both process variation and of random 

noise. The initial state of some bits is almost entirely dependent on process variation, while the initial states 

of other bits are highly dependent on noise. Many bits of SRAM depend on both variation and noise to 

some degree. The time-invariance of process variation gives consistency to the fingerprint, allowing it to be 

used for identification. Because noise conditions are different each time an SRAM is powered up, the 

fingerprint also captures randomness, allowing it to be used as an entropy source in TRNG. 

Each bit of SRAM is a 6 transistor storage cell, consisting of cross coupled inverters and access 

transistors. Each of the inverters drives one of the two state nodes, labeled A and B. In the digital realm, 

this circuit has 4 possible states; states 01 and 10 are stable, while states 00 and 11 are unstable (figure 2.1). 
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Figure 2.1: Schematic of a basic 6T SRAM cell and state diagram showing all possible states and 

transitions. 

Consider the behavior of a bit of SRAM when power is applied to the chip. Initially, the circuit is 

in an unpowered state with both nodes are low (AB=00). As the supply rail is powered up both P1 and P2 

conduct, and state nodes A and B begin to ramp up. As the circuit approaches its metastable point, the 

natural feedback causes the cell to transition to a stable state. If the cells are perfectly matched, the circuit 

can persist at this metastable point for hundreds of picoseconds before transitioning. In this example case, 

node A charges higher, and node B gets discharged through N2, allowing node A to be pulled fully high 

through P1, causing the cell to transition to the stable state of AB=10. When the power is removed, the 

charge on high node will gradually leak off, leaving the cell fully discharged until the next initialization. 

Note that discharge of the node A is a far slower process that the initialization. In the following sections, an 

explanation is given for why this initialization procedure is a function of process variation and of noise. 

 

Figure 2.2: Waveforms showing power-up and power-down of state nodes of a 6T SRAM cell 

2.2.1 Principles of Identity 

In this section, the question of why an SRAM cell will tend to favor one state over another is 

addressed. Assuming that the RAM cell has symmetric design and layout, any differences between the cells 
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is attributable to process variation. While there are many sources of process variation, only local mismatch 

will have a different effect on each of the cross coupled devices, and local mismatch is primarily due to 

fluctuations in the concentrations of dopant atoms [35]. Prior work shows that across devices separated by 

only 2�m, threshold mismatch can have a standard deviation on the order of tens of millivolts [36]. The 

greatest threshold mismatch in MOSFETs is achieved using minimum sized devices [37], as would 

typically be used in SRAM. 

In FERNS, threshold mismatch impacts the power up state of the cell by causing one node to 

begin to discharge before the other as the supply and state nodes ramp up. Even if a node begins to 

discharge only slightly before the opposing node, the natural gain of metastable cross coupled inverters will 

serve to magnify that small difference. HSPICE experiments in PTM 180nm bulk CMOS [38] using a 2:1 

P:N sizing ratio are performed in order to roughly determine the sensitivity of the initial state of an SRAM 

cell to the threshold voltages of the devices in the cross coupled inverters. To skew the cell, node A is 

precharged to 1mV at the start of the simulation; in the absence of variation, this will lead to the cell 

initializing to the AB=10 state. To determine sensitivity to various threshold deviations, the amount of 

threshold voltage change on each device required to neutralize this 1mV precharge and make the cell 

metastable is determined (table 2.1). The finding is that the initial state of the RAM cell is approximately 

twice as sensitive to variation in the threshold of the NMOS devices as it is to variation in the PMOS 

devices. This implies that it is not merely threshold variation that is the primary source of identity in 

FERNS, but specifically NMOS device threshold variation. As would be expected, equivalent skew is 

caused by changing opposing devices of the same type in opposing directions; for example, decreasing the 

threshold of P1 by 2.5mV has the same impact as increasing the threshold of P2 by the same 2.5mV.  

Table 2.1: A 1mV precharge on a state node is equated to a threshold voltage variation on each of the 

4 relevant devices. 

Nominal Var1 Var2 Var3 Var4

P1 Vth -0.4200 -0.0025 0 0 0

P2 Vth -0.4200 0 +0.0025 0 0

N1 Vth 0.3999 0 0 -0.0013 0

N2 Vth 0.3999 0 0 0 +0.0013

Precharge A (V) 0 0.001 0.001 0.001 0.001

Equivalent skews
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2.2.2 Principles of Randomness 

In SRAM cells that are not significantly skewed due to process variation, the power-up state can 

be determined by noise. The thermal noise model of Sarpeshkar, Delbruck and Mead is used [24] (eq 2.1). 

Their derivation notices that an increase in resistance will increase the magnitude of the power spectral 

density of noise, but will also decrease the bandwidth of the captured noise, leading to a model of thermal 

noise that is independent of resistance with the root-mean-squared voltage fluctuation of a single-capacitor 

circuit node being determined from only Boltzmann’s constant, temperature, and capacitance.  

C

TK
V B

n =                    
K

J
K B

2310*38.1 −=         (2.1) 

 

The existence of thermal noise in semiconductors causes SRAM to capture true physical 

randomness. In an unpowered SRAM cell, each of the two state nodes will have noise, but the noise on 

each node will generally not have sufficient magnitude to turn on any transistors and the nodes will remain 

isolated from one another. Depending upon the state of noise conditions when the power to the cell is 

applied, the initial state of the cell is influenced slightly towards one state. However, this influence is 

generally weak, and is only sufficient to influence the initial state of a cell if that cell is constructed from 

well matched devices. For cells that are highly skewed towards one state or another, the noise will have no 

observable impact (figure 2.3) 

 

Figure 2.3: Each curve represents a single SRAM cell. The variance of each curve represents the 

influence of noise, while the mean represents the influence of process variation. 

This ability of FERNS to capture true randomness using SRAM is very similar to the random 

number generator designed by Tokunaga, Blaauw and Mudge [27]. Their design uses a metastable cell that 

is very similar to an SRAM cell, with control circuitry used to force the cell to a highly metastable state by 
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precharging the circuit as needed to neutralize any skew. Once the cell is metastable, control is released and 

the cell stabilizes to a random state. Quality control is accomplished using a timer; if the metastability takes 

a long time to resolve, then some assurance is provided regarding the randomness of the output. In this 

design, it was found through experiment that controlling the state nodes with a resolution of 120�V was 

sufficient for obtaining qualified random outputs. The major difference between FERNS and this design is 

that we are not controlling the SRAM cells to metastability. Instead, the law of large numbers is allowed to 

ensure that some SRAM cells will inherently be metastable. Additionally, FERNS is not seeking to collect 

randomness only from cells that are perfectly metastable, but to instead collect useful randomness even 

from cells that are significantly skewed towards one state, but capable of initializing to the other state under 

strong noise conditions.   

2.3 Experimental methodologies 

Three platforms are used to validate the FERNS system. Virtual tags are used to allow for 

convenient collection of large amounts of questionably representative data. TI MSP430 chips are used to 

allow for collection of a moderate amount of data from a more representative low-power SRAM. Finally, a 

small population of WISPs is used to collect a smaller amount of data on a highly representative 

technology. Demonstrating FERNS across all three platforms adds confidence that FERNS can function 

across a spectrum of technologies. 

Table 2.2: Differences between experimental platforms. 

Supply (V)

Data retention 

current (pA/bit) Power source

Virtual tags 3.3 1220 external regulator

TI MSP430 3.0 49 JTAG debugger

WISP 3.0 49 Passive  

 

2.3.1 Virtual Tags 

A population of 160 virtual tags are created across eight 512kbyte ISSI 61LV25616AL [39] chips. 

Each virtual tag is a 256 byte segment of memory; 20 virtual tags are created on each chip, using the same 

addresses across all chips. Each SRAM chip is powered and read out via an Altera DE2 board [40]. 
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Software to collect and format the data from the SRAM is written in the C language, and executed on the 

NIOS2 core on the DE2 board. Whilst the technology node of the ISSI SRAM chip is not known, it is 

specified as a high-performance chip, operating at a 3.3v supply, and has a RAM retention standby current 

of 5mA. The virtual tags are not intended to be a precise technology match for RFID technology, but are 

used as a means of collecting a large data set. 

2.3.2 TI MSP430 

A population of 10 TI MSP430F1232 Ultra-low-power microcontrollers [41] is also used to 

validate the FERNS principle. The MSP430 has an 8MHz 16-bit RISC core, 256 bytes of SRAM, 256 bytes 

of Flash main memory, and 8kbytes of Flash ROM. Each microcontroller is soldered onto a development 

board that includes a JTAG header. The size of the sample population is limited by the fact that the MSP is 

only available in surface mount packaging, thus requiring a development board for each microcontroller, 

prevent swapping multiple chips in and out from a single socket board. Communication and power is 

accomplished using the TI MSP-FET430 debugger [42] via IAR Embedded Workbench IDE V3.42A. The 

MSP430 is capable of operating on a supply ranging from 1.8 to 3.6V (a 3.0V supply was used), and has an 

SRAM data retention current of 0.1�A. Being an ultra-low-power design, the MSP430 SRAM is thought to 

be a good technology match for RFID circuits. The fact that the SRAM is embedded into a microcontroller 

also allows for examination of the possible impact of neighboring logic. 

2.3.3 WISP 

A population of 3 wirelessly-powered platforms for sensing and computation, or WISPs [43,44], is 

used a final experimental platform for FERNS. The WISP, produced by Intel Research Seattle, is passively 

powered at 915MHz in the UHF band, and transmits data in 64 bit packets according to the EPC Gen 1 

specification, allowing communication with commercially available RFID readers. The WISP is built 

around the same MSP430F1232 microcontroller that is used on the 10 development boards. Experimenting 

on the WISP allows for exploration of the possible impact of passive power.  
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CHAPTER 3 

FERNS FOR IDENTIFICATION 

3.1 Introduction 

FERNS extracts a usable fingerprint from the initial state of SRAM. This chapter provides 

experimental evidence that SRAM contains a useable identifying fingerprint, and presents algorithms for 

identifying tags based on their fingerprints. When considering fingerprint matching, the following 

terminology is adopted from human fingerprinting. 

 Latent Fingerprint - A fingerprint generated in RAM at initialization. A latent print represents a 

single data point and can be impacted by noise. 

Known Fingerprint - An intentional fingerprint that is cataloged for matching against latent prints. 

Known prints are obtained by averaging many latent prints, to eliminate the effects of noise. 

 
Figure 3.1: The difference between latent and known prints. 

In order to reliably identify tags amongst a population, two conditions must be satisfied. A strong 

similarity must exist between a latent fingerprint and known fingerprint when both are generated by the 

same device. A lack of similarity must exist between a latent fingerprint and known fingerprints generated 

by all other tags. 

3.2 Randomized Identification 

Identification via the slightly randomized fingerprint of FERNS offers some potential security 

advantages. The set of possible latent prints that identify a given device can be thought of as a large ID 

space for the device; When the latent print contains many bits and has a realistic bit error rate (eq 3.1,3.2), 



16 

 

 

 

the probability of a latent print producing the same latent print on sequential sessions becomes vanishingly 

small. The expected number of latent prints produced before repeating the first latent print (eq 3.3), and 

expected number of latent prints produced before repeating any previous latent print (eq 3.4) are large 

enough to make repeated prints unlikely for both virtual tags and the MSP430. This is supported by 

experimental evidence; no virtual tag or MSP430 was found to produce the exact same latent print twice. In 

the WISP, using only a 64 bit identifier, both prediction and experiment show that exact duplication of 

latent prints is an infrequent but realistic occurrence (figure 3.2). 

In light of the relative uniqueness of each latent print, a reader might prevent replay attacks by 

cataloging a history of the latent prints generated by a device. The condition for authenticating a tag would 

then be to force the tag to produce a new latent print that closely matches the known print without 

duplicating a previously seen latent print. Note that this would only prevent replay attacks, as an intelligent 

adversary could still easily generate randomized prints himself using an algorithm instead of a physical 

SRAM array. This is analogous to human fingerprinting, where it is not impossible for an adversary to 

reproduce a fingerprint; it is only impossible for him to reproduce a fingerprint using another human finger. 

Note that the infrequency of collisions in FERND ID is only meant to imply that replays could be detected, 

and is not meant to imply security in the same manner in which a collision-resistant hash function or PUF 

circuit might. 

 

Figure 3.2: With the randomized identifier of FERNS, a particular SRAM is expected to produce 

many latent prints before any repetitions occur. 
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3.3 Hamming Distance Matching 

The first matching algorithm considered is a straightforward Hamming Distance based matching 

between a latent print of unknown origin and all known prints. Keep in mind that a known print is 

determined by finding the bit-wise median across many latent prints of the same tag, eliminating the impact 

of any normally distributed noise (eq 3.5). The Hamming Distance between a latent print and each known 

print is simply the number of bit positions in which the prints differ (eq 3.6). The known print that most 

closely matches the unknown latent print is determined to be the identity of the latent print. The term 

“correct match” is used to describe a latent and known print originating from the same device. 
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3.3.1. Virtual Tag Identification 

Virtual tags are questionably representative of typical RFID circuit technology, but present a 

potentially challenging scenario for fingerprint identification due to the large population size and the fact 

that virtual tags allow for testing of process corner cases. Virtual tags that occupy the same positions on 

different SRAM chips have correlated within-field positions, while tags from nearby locations on the same 

SRAM chip have correlated wafer positions (figure 3.3). If fingerprints are being caused by mask-

imperfections, tags from the same within field position could show correlation. If fingerprints are being 

caused by wafer-scale processing, virtual tags from the same SRAM, coming from similar wafer positions, 
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could show a correlation. Without virtual tags or custom silicon, there would be no way determine the 

relative wafer positions of the circuits being compared. The observation that neither of these corner cases 

showed a strong correlation supports the claim that primary source of the differentiation is threshold 

mismatch due to random dopant concentrations. It should be noted that a majority of bits across virtual tags 

have a known value of 1, indicating a systematic skew in layout or design. 

 
Figure 3.3: Virtual tags allow for the comparison of SRAM with correlated within-field and wafer 

positions. 

Hamming Distance matching is applied to 5 sequentially generated latent prints from each of the 

160 virtual tags. This yields 800 latent prints, each is compared to 160 known prints, for a total of 128,000 

matchings between known and latent prints. All 127,200 incorrect matchings differ by at least 685 of the 

2,048 bits; all 800 correct matchings differ by less than 109 bits. Given that a majority of bits tends towards 

the 1 state, full independent SRAM instances would show a hamming distance of 860 bits. The Hamming 

Distance matching results for virtual tags indicates that the tags are not significantly correlated (figure 3.4).  

 
Figure 3.4: Hamming Distance matching results for virtual tags. The gray line represents the 

expected Hamming Distance matching that would be expected for fully independent tags. 
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3.3.2 MSP430 Identification 

Hamming Distance based FERNS identification is also tested on the population of MSP430 

microcontrollers, with communication and 3v power accomplished via the JTAG debugger. Among the 

population of 10 MSP430s, 30 sequential 2,048 bit latent prints are generated by each. This yields 300 

latent fingerprints for comparison against 10 known fingerprints each, for a total of 3,000 possible matches. 

Among the 2,700 incorrect matchings, less than 10 came within 600 bits of each other. Among the 300 

correct matches, only 4 differed by more than 425 bits (figure 3.5). While the overlap between incorrect 

matching and correct matchings indicates that identification could not be made fully reliable, this 

unreliability is believed to be due to an artificial correlation that is being introduced by the experiment 

setup, and not the circuit itself. Please see appendix A for further details on this. If the tags were completely 

independent, the expected Hamming distance between mismatched tags would be 992 bits. This distance is 

less than 1,024 bits due to the fact that 8 bytes cannot be left uninitialized, and will always agree between 

all tags. 

 

Figure 3.5: Hamming Distance based matching of MSP430. The gray line represent the expected 

hamming distance for mismatched uncorrelated tags. 

3.3.3 WISP Identification 

FERNS identification is also explored on the small population of WISPs. Because the WISP 

transmits 64 bit packets, comparisons are performed using 64 bit fingerprints instead of the 2,048 bit 

fingerprints used for the other two platforms. 5 distinct blocks of SRAM were used on each of 3 WISPs, 

producing 15 known fingerprints. Each segment of SRAM produced 16 sequential latent fingerprints, to 
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provide 3600 total possible matches. Among the 3,360 incorrect matchings, none came within 18 bits of 

matching. Among the 240 correct matches, one had a Hamming distance of 20 bits, and one had a distance 

of 16 bits (figure 3.6). This indicates that, even with an appropriate matching threshold, a small error rate is 

inevitable for this dataset. Note that this is using only a 64 bit print, making identification far more difficult 

than with the 2,048 bit prints of the other platforms. This result implies that passive power does not 

influence the fingerprints. In fact, as shown in appendix A, the same devices yielded more reliable 

fingerprints when passively powered than when actively powered through the JTAG due to a correlation 

seemingly induced by the  JTAG itself. 

 

 

Figure 3.6: Hamming Distance based matching of WISPs. 

3.4 Progressive Matching 

While the Hamming distance based matching is shown to be effective, it is not scalable. A 

progressive matching algorithm is designed here for scalability, and adaptability. The intuition for this 

algorithm stems from the large hamming distance seen between mismatched pairings of latent and known 

prints. This large distance implies that it is inefficient to compare each bit of the latent print to the 

corresponding bit of each known print, since a correct match could be found using fewer bits. Note that in 

this progressive matching algorithm, the number of matching bits is considered instead of the differing bits; 

thus a high matching score represents a good match. Because the matching strength of a correct match will 

grow with the number of bits considered, the correct match can be identified once its match strength is 
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significantly higher than the match strength of any other known prints. In the case of virtual tags, it was 

shown in the previous section that 2,048 bits was quite sufficient to identify the matching known print 

corresponding to a given latent print. In fact, it is found that considering all 2,048 bits of the latent print is 

unnecessary, and that the tag could be identified with reasonable confidence using only 48 bits (figure 3.7).  

 
Figure 3.7: Match strength grows stronger for correct known print as more bits are considered. The 

plot at right shows that the correct known print can be identified without needing to consider all by 

pruning matches falling below a threshold. 

An algorithm using progressive matching and list pruning to try to determine the correct match for 

a latent print is given here. In this algorithm, whenever the strongest match exceeds all other match 

strengths by a specified threshold it is determined to be the correct match. Any known prints which are not 

within this threshold are discarded from future consideration as possible matches. Thus, as more bits are 

considered, fewer known prints remain as possible matches, reducing the number of bit comparisons that 

need to be performed for future bits (figure 3.8). 

  

Progressive Matching algorithm: 

Initialize a list where each item represents one known print that is a possible match 

While length of list > 1 

 Foreach known print K in list 

  match strengthK += (current bitK) XNOR (current latent bit)   

 If (maximum match strength  – match strengthK)  > thresh   

  Remove K from list 

Update maximum match strength   

Advance to next bit of latent print   
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Figure 3.8: The pruning of incorrect matches in progressive matching algorithm. 

The threshold for the progressive matching needs to be carefully chosen according to a tradeoff in 

accuracy versus performance. A small threshold will aggressively prune the list of possible matches, but 

may prune out the correct known print. As an example, note that the correct match was not the strongest 

match through the first 24 bits in figure 3.7; a small threshold could have thus resulted in an incorrect 

match. On the other hand, a large threshold will be more likely to produce the correct match but will not 

prune known prints as aggressively and thus requires more bitwise comparisons before choosing a match 

(table 3.1). 

Table 3.1 Comparison of efficiency and accuracy of thresholds in progressive matching algorithm. 

threshold

used

bits of latent 

print 

considered

total bits of 

known prints 

considered

success 

rate

1 8.65 438.1 63.50%

2 9.85 504.8 73.75%

3 15.38 957.3 95.63%

4 16.26 1,030.0 97.13%

5 20.02 1,486.0 99.63%

6 20.56 1,577.1 99.75%

7 24.33 2,047.4 99.88%

8 24.78 2,151.3 99.88%

9 28.28 2,623.7 100.00%

10 28.79 2,728.7 100.00%

15 39.30 4,303.5 100.00%

20 47.03 5,490.4 100.00%

Hamming 2048.00 327,680.00 100.00%  
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The progressive matching algorithm and Hamming Distance matching represent opposing 

approaches. In the Hamming Distance matching algorithm the number of bit comparisons is maximum, but 

the overhead of comparing matching strengths is low as the Hamming Distance needs only to be considered 

once per known print, at the end of the algorithm. The progressive matching algorithm is designed to 

minimize the total number of bits that are considered, but has an increased overhead in terms of comparing 

matching strengths; after each single bit comparison, the matching strength of the relevant known print 

must be checked against the threshold and the maximum matching strength must be updated. It is likely 

that this overhead would make the progressive matching algorithm prohibitively expensive. An optimal 

matching solution depends on the costs assigned to the various operations, but would likely be a 

compromise between the two approaches. An example of such a compromise is a progressive matching 

algorithm that only does the pruning after each byte of latent print, instead of each bit. This would retain 

the adaptive nature of the progressive matching, but would reduce the overhead. 
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CHAPTER 4 

FERNS FOR RANDOM NUMBER GENERATION 

4.1 Introduction 

FERNS captures physically random noise in the initial state of SRAM cells that are constructed 

from well matched devices. In essence, the well matched cells of SRAM are tiny 6 transistor random bit 

generators. These random bits are inherently stored in SRAM, and a universal hash function is used to 

extract a smaller number of highly random bits from the fingerprint. While most random bit generators seek 

to create bits that are highly random, FERNS takes a different approach by gathering randomness from all 

bits that are not fully deterministic. In this chapter, only virtual tags are used as an experiment platform; 

this is done because the virtual tags are the least random of the three platforms, and thus present the most 

challenging case for random number generation. 

 

Figure 4.1: FERNS relies on law of large numbers to collect scattered entropy from well matched 

cells. 

4.2 Potential security features of using FERNS for TRNG 

FERNS is an unusual TRNG with interesting security implications, and is potentially resistant to 

attack for several reasons. Because the well matched devices are randomly scattered according to dopant 

concentrations, the entropy generation is unpredictably scattered throughout the SRAM state. If the 

application for FERNS could ensure that the initial SRAM state could be kept secret, then even an attacker 

who had designed the circuit herself would not know the location of the random bits. If an attacker did 

identify the random bits, the densely packed cells might make it difficult for her to actively control some 

bits without also influencing others. Further, the distributed parallelism of RAM provides a natural 
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resiliency against attacks. FERNS TRNG also has some potential security weaknesses that must be 

addressed, including the possibility of an attacker reducing entropy by physically cooling down a chip to 

reduce the magnitude of thermal noise; this is discussed later in the chapter. 

4.3 Metrics for Quantifying Randomness of initial RAM State 

The Shannon information content of an outcome of a random variable is the amount of 

information that is learned from the output. If a fair coin is flipped, the outcome of the flip can take two 

states with equal probability, thus the outcome reveals a bit of information. When rolling a fair 6 sided die, 

the outcome can take 6 states, and thus the outcome reveals more information (2.585 bits). If the outcomes 

are not weighted evenly a less common outcome yields more information; intuitively, this is analogous to 

the fact that learning that a person of unknown identity is 7ft tall yields more information about their 

identity than does learning that are 6ft tall. This notion of information content of an outcome is formalized 

below (eq 4.1) from [45] 
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xh =                                      (4.1) 

The entropy, or uncertainty, of the random variable itself is typically more useful than the 

information content of a particular outcome. The entropy of an ensemble of outcomes is the expected value 

of the Shannon information content of an outcome from that ensemble. The entropy of a fair coin flip is a 

bit. However, if the coin was weighted to produce heads 90% of the time, the entropy of the coin flip would 

decrease to 0.47 bits. The intuition for the decrease in entropy is that the outcome of the flip can be 

predicted with some certainty even before the coin is flipped. Entropy is formalized below (eq 4.2) from 

[45] 

�=
i i

i
xP

xPXH
)(

1
log)()( 2          (4.2) 

In this work, a more useful definition is that of min entropy. Min entropy refers to the guessing 

probability associated with a random variable. The guessing probability is the likelihood that a random 

variable will produce its most probable outcome (eq 4.3). Min entropy is a measure of the entropy 

contained in that most probable outcome (eq 4.4). The usefulness of min entropy can be understood by 

considering the following two systems. The first contains 8 independent bits where each can be guessed 
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with probability 0.8, and the second contains 4 bits where each can be guessed with probability 0.64. For 

each system, an adversary would clearly have the same chance of guessing the outcome of the system. This 

is properly reflected in the fact that each system would have the same min-entropy of 2.575 bits (equivalent 

to 2.575 perfectly random bits). However, the 8 bit system has greater information entropy than the 4 bit 

system (5.775 vs. 3.771 bits). This example of why information entropy does not accurately describe the 

difficulty of guessing an outcome serves to indicate why it is min entropy and not information entropy that 

is appropriate in random number generation. Informally, the goal in random number generation is to obtain 

state that cannot be guessed by an adversary. 
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4.3.1 Entropy of Initial SRAM State 

In order to use FERNS for random number generation, the min entropy of the SRAM must be 

quantified. This requires a larger dataset than for verifying the ID properties of FERNS; the dataset used for 

quantifying min-entropy is 100 samples of 524,288 bits (256 blocks of 2048 bits each) from a single virtual 

tag SRAM chip. Recall that quantifying min entropy of a random variable requires finding the most likely 

outcome of that random variable. This leads to a tradeoff in how the random variable is defined. If the size 

of the random variable is a single bit, correlations between neighboring bits can be missed, as is 

demonstrated here using the example of table 4.1a. Considering each bit to be a single random variable 

would indicate that this dataset contains around 3 bits of min-entropy. Using a larger random variable size 

would correctly determine that this dataset contains closer to 1 bit of min-entropy by noting the correlation 

between neighboring bits. At the other end of the spectrum, using a random variable size that is too large 

for the number of samples in the dataset can also lead to an erroneous quantification of entropy, as in table 

4.1b. In this case, considering the size of each random variable to be a single bit would lead to a correct 

entropy determination. However, if the size of each random variable was defined to be 5 bits wide, the most 

likely outcome would occur once in 5 trials, while a truly random outcome should occur only once in 32 

samples. In this case, the min entropy would be artificially governed by the size of the random variable. 
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Table 4.1: Examples referred to in discussion of min-entropy. 

a: sample 0: 0 0 0 b: sample 0: 0 0 1 1 0

sample 1: 1 1 1 sample 1: 1 1 0 0 1

sample 2: 0 0 0 sample 2: 0 1 1 0 1

sample 3: 0 0 0 sample 3: 1 0 0 1 1

sample 4: 1 1 1 sample 4: 1 0 0 1 0  

Due to the concerns about how to quantify the min entropy of the dataset, random variables of 

differing sizes are considered, and the results are discussed here (figure 4.2). As the size of the random 

variable is increased from 1 bit to 16 bits, no significant drop in average entropy per bit is seen, indicating 

that neighboring bits are not highly correlated. As the size of random variable reaches 32 and 64 bits, the 

min entropy per bit is shown to drop. This is an artifact of the size of the random variable. 100 samples are 

only enough to accurately measure around 4 or 5 bits of entropy per random variable. With each random 

variable encompassing 64 bits, the random variables can each contain more than 4 bits of entropy, and the 

entropy measurement is thereafter artificially limited by the number of samples. When the size of the 

random variable is increased to 256 bits, this trend becomes very clear; the min entropy per bit drops off, 

and the min entropy per random variable saturates at log2(100). This saturation indicates that the most 

likely outcome for each random variable occurs with probability 0.01. But even a perfectly random variable 

of an infinite number of bits would show a most likely outcome probability of 0.01 if only sampled 100 

times. The observation that the calculated entropy per bit only begins to drop off when approaching this 

saturation point gives confidence to a determination of 0.05 bits of min entropy per bit of SRAM at room 

temperature. For further information regarding min-entropy, see [46]. 

 
Figure 4.2: Points A and B correspond to the tradeoff described above. Point A considers each bit to 

be a random variable, Point B considered each 2048 outcome to be a random variable. 
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4.3.2 Analytical Model of Impact of Noise versus Process Variation 

A model of the relative impacts of process variation and noise is fit to a dataset consisting of 100 

initializations of 524,288 bits of virtual tag at room temperature. There are too many degrees of freedom to 

create a fully deterministic model, but an analytical model of the relative impacts of process variation and 

noise on the initial state of an SRAM cell is demonstrated. The influence of both process variation and 

noise are quantified in terms of “skew”. A negative skew represents a cell initializing to the 0 state, and 

positive skews represent the 1 state. While both process variation and noise are modeled as random 

variables, each has a different scope; Process variation is assumed to be random at manufacture time and 

then fixed over the life of the circuit, whereas noise is random each time the circuit is powered up, and 

depends on temperature.  

The first step in creating an analytical model is to determine the skew caused by noise. The root-

mean-squared magnitude of thermal noise, introduced in chapter 2, is equivalent to standard deviation of 

thermal noise. The variance is thus simply the square of the root-mean-squared noise (eq 4.5). In 

determining the influence of noise on the outcome of the cell, it is assumed that the relevant quantity is not 

the absolute noise magnitude, but instead the noise differential between the two state nodes (eq 4.6). 

Temperature is set to 295 K to model the ambient environment where the experimental dataset was 

collected. Node capacitance is rather arbitrarily set at 0.1fF as an estimate of what might be seen in a 

minimum size SRAM cell.  

C

TK B

NOISE =
2σ         (4.5) 

),0(~ 2

NOISENOISE NX σ         )2,0(~ 2

NOISELDIFFERENIA NX σ    (4.6) 

 

Next, the impact of process variation is considered. Like noise, process variation is also described 

as a normally distributed random variable. The first pass at approximating the influence of process 

variation comes from the observation that the dataset consists of 25.4% bits that are more likely to initialize 

to 0, and 74.6% bits that are more likely to initialize to 1. This indicates that the normally distributed 

process variation model should have 25.4% of its skew distribution be negative, and 74.6% be positive. 

While this information is not sufficient to determine both the mean and standard deviation of process 
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variation, it is sufficient to determine that the ratio of mean to standard deviation should be 0.661; any 

normal distribution adhering to this ratio will produce the desired distribution between positive and 

negative skew (figure 4.3).  

 
Figure 4.3 Family of process variation distributions that would meet the requirement of producing 

74.6% bits skewed towards 1. 

))(,(~ 2
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    (4.7) 

 

The scaling factor “s” is determined according to the distribution of bitwise outcome probabilities 

observed in the dataset. If this scaling factor “s” is set too large relative to noise, then too few bits will be 

predicted to be random by the model (process variation will dominate noise); if the scale “s” is set to be too 

small relative to noise, then too many bits will be predicted to be random by the model. Based on this 

principle, “s” is determined iteratively; each time a guess for “s” is made, the distribution of outcome 

probabilities is calculated, and the error between the prediction and observation is determined. The proper 

value for “s” is determined to be that which minimizes the error between model and experiment, according 

to the following 3 step process. 

(1) Convert “s” into a histogram of representative skews. 

This step transforms the continuous probability distribution function representing process 

variation into a discrete histogram of discrete skews. To avoid undesirable integer effects, the histogram is 
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created using a small bin size of 0.00025, allowing the process variation skews to be grouped into 2000 

bins. The fraction of cells expected to have skew “I” is denoted by F(I). Figure 4.4 demonstrates this 

process, but using many fewer bins, for clarity. 
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Figure 4.4 Histogram created from a process variation mode with s = 0.048. 

(2) Find expected distribution of outcomes for “s.” 

Now that the fraction of bits represented by each skew is known, each skew “I” can be considered 

individually. The possible skews of a bit with process skew “I” can be described as normally distributed 

with a mean of I and a standard deviation caused by noise (eq 4.8). Recalling that a positive skew 

represents an outcome of 1, the likelihood of a bit initializing to 1 on a given trial is determined by 

integrating the distribution of skews over all positive values (eq 4.9). Based on this probability, the fraction 

of 100 sample trials in which this bit would produce “x” 1-outcomes (ie, the bit initializes to 1 “x” out of 

100 trials) is determined (eq 4.10). The total share of bits that are expected to produce “x” 1-outcomes out 

of 100 trials according to this process variation model is determined by considering the likelihood of each 

skew occurring and the conditional probability that a bit with this skew would produce “x” 1-outcomes (eq 

4.11). This expected distribution of bit probabilities can be compared against the observed dataset in order 

to determine the quality of this process variation model. 
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(3) Evaluating the error associated with choice of “s.” 

The accuracy of the process variation scale “s” is determined by comparing its predicted 

distribution of outcomes against the observed distribution of outcomes. For each possible number of 1-

outcomes that could be produced, the fraction of bits predicted to produce this outcome is compared against 

the fraction of bits that are observed to produce this outcome (eq 4.12). The error is the accumulated square 

of the differences between observed and predicted values.  

( )
2100

0

)()()( �
=

−=
x

xObsxEsErr        (4.12) 

After many scale factors were tried, the value of “s” that produced the least error was found to s = 

.048, which is reflected in the constants of equation 4.13. Figure 4.5 shows this modeled distribution 

plotted over experiment data, with a log scale being used to allow both small and large probabilities to be 

seen.  

)009011,.0(~ NX LDIFFERENIA      )072576.0,048.0(~ 2
NX PV    (4.13) 
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Figure 4.5 Comparison between predicted outcome distributions and experimental results 

 

4.3.3 Demonstrating True Randomness 

In chapter two, the claim is made that the primary source of randomness in FERNS is truly 

random thermal noise, and this was the only noise source included in our model. It was suggested that other 

forms of noise are likely to be common mode, and thus would not have significant impact. This distinction 

is important, because any noise that is not truly random could potentially be controlled by a clever 

adversary. Here, the claim of true randomness is explored through the use of both the analytical model 

developed in the previous section, and testing at varied temperatures. Testing was performed at 125F 

elevated over a stove and tested at 35F in a refrigerator. The standard deviation of thermal noise in the 

model of section 4.2.2 is recalculated for each temperature (table 4.2), and used to make predictions for the 

average min-entropy per bit at each temperature (figure 4.6). 

Table 4.2 Predicted RMS noise voltages at each temperature used in experiment. 

Temperature RMS Voltage

35F 0.00616

70F 0.00637

125F 0.00670  
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Figure 4.6: Increase in temperature increases the relative skew contribution of noise slightly, while 

not changing the model of process variation. 

 

The model and prediction show moderate agreement (figure 4.7). As only 10 samples at each 

temperature were made, bitwise probabilities can show strong integer effects, but it is yet unclear exactly 

how this would impact the data. To show a more informative relation between model and experiment, more 

temperature points and more precise temperature control should be used. This would allow for refinement 

of the model based on experiment, and will likely be a topic of future work.  
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Figure 4.7: Increase in min-entropy with temperature, experiment and model. 

4.4 Entropy Extraction 

Now that entropy is quantified, entropy extraction is considered. Approaches to entropy extraction 

are the subject of much research. The most common type of randomness extraction is to simply run the 

weakly random source through a universal hash function [47,48], or a block cipher in feedback mode [49]. 
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In this work, entropy extraction is performed by running the SRAM state through a universal hash function. 

The chosen hashing function is the PH hashing function of Yuksel, Kaps, and Sunar [50], which is stated to 

be 2-w almost universal. PH is designed for low gate count and power, using 15.5 �W at 500kHz in 0.13� 

TSMC CMOS and requiring only 557 gates. With the operations being performed over GF(2), the low gate 

count is due to the fact that addition and multiplication reduces to a series of shifts and XORs. In the 

definition of PH given below (eq 4-14), Pw is defined as the set of polynomials over GF(2) of degree less 

than w.  

( )nmmM ,...,1=  ( )nkkK ,...,1=   wii Pkm ∈,  

( ) ( )( )�
=

−− ++=
2

1

221212

n

i

iiiiK kmkmMPH       (4-14) 

Although PH was chosen for low hardware cost, it is implemented in software for demonstration 

purposes in this work. Both the key and the message come directly from the 2048 bits of initial SRAM 

state, with 1024 bits serving as each (eq 4-15). With PH being  2-w almost universal, the probability of 

collision is expected to be less than 2-64.   
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The approximate entropy test from the NIST suite is used to evaluate the quality of the random 

numbers produced by the extractor [51]. For the sake of comparison, both the raw SRAM state that is input 

to the universal hashing function and the extracted random output are tested. Based on testing 800 blocks of 

128 bits each, the raw bits show a non-uniform distribution of p-values, indicating that they can be 

statistically distinguished from random bits. The random bits coming out of the hash function pass the 

NIST approximate entropy test, indicating that random numbers capable of passing basic statistical tests 

can be extracted from the initial state of SRAM by use of an entropy extracting code (table 4.3). 

Table 4.3 Output from NIST approximate entropy test.  

dataset C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 PVAL PROP

Raw 24523 244 76 75 34 19 10 14 4 1 0.0000 .0706

Extracted 2661 2614 2557 2590 2499 2526 2589 2570 2407 2487 0.0282 .9889  
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CHAPTER 5  

CONCLUSIONS 

5.1 Introduction 

In the preceding chapters, FERNS has been demonstrated as a method for both ID and RNG. In 

this chapter, the viability of FERNS is considered through comparisons to existing similar works, 

consideration of potential weaknesses, and suggested future improvements in both design and analysis.  

5.2 Comparison to RNG of Tokunaga, Blaauw, and Mudge 

The TRNG aspect of FERNS is compared to the very similar design of Tokunaga, Blaauw and 

Mudge [27]. Recall that this design uses a metastable cell much like an SRAM cell. In their design, the 

cells are forced to metastability, and the stable state is determined by noise. The quality of the random 

numbers is judged by monitoring the amount of time that is required for the metastability to be resolved. 

FERNS takes the slightly different approach of not creating any specific metastability, but ensuring that 

some noise is captured by extracting over the entire SRAM state.   

A comparison of the areas required for each approach is given. The control circuitry to generate 

the metastability and judge the quality of the randomness dominate the total area of Tokunaga’s circuit. The 

area of FERNS is estimated according to the following methodologies. The size of the PH universal 

hashing function is estimated based on the stated cell count of 557[50] and the size of XOR standard cell 

from a library [52]. Because the library is 0.25� and the design of  Tokunaga uses 0.13�, a fair comparison 

is created by scaling down the cell area down according to the square of the technology node. The 

comparison shows that area required to implement the RNG functionality of FERNS is comparable to the 

area required by the existing design (table 5.1).  

Table 5.1: Comparison of implementation area for RNG designs. 

Area (�m2) Area (�m2)

Metastable Module 6,000 256B SRAM 18,800

Control 29,900 PH hashing function 7,400

Total 35,900 Total 26,200

Tokunaga, Blaauw, Mudge FERNS
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A comparison of the power required for each is given. To attempt a fair comparison, the two 

designs are compared under the constraint of generating 128 bits per second. Tokunaga’s TRNG produces 

200kb/s on 1mW power. The assumption is made that this can be scaled down to 128 b/s by simply 

generating 128 bits and then turning off the RNG so that no further power is needed; under this assumption, 

128 b/s could be generated using only 0.640�W of average power. The PH hashing function used in 

FERNS is stated to use 15.5uW at 500 kHz using 0.13� in TSMC CMOS. Although the amount of 

computation being performed per cycle is not entirely clear in the literature, it is believed that 2,048 cycles 

of the universal hashing algorithm would be required to hash the 2,048 bit SRAM state to the 128 bit 

random output. This computation would require only 4ms, so the assumption is made that the hashing 

circuit is turned off 99.6% of the time, for an average power consumption of only 0.06�W. The SRAM 

itself requires only .3�W of power for data retention; assuming that 10 times as much power is required for 

reading SRAM and that SRAM is only kept alive for the required 4ms and turned off for the other 99.6% of 

the time, an average power of 0.012�W is required for the SRAM. Thus, FERNS would require only 

0.072�W of power, compared with 0.64�W for the reference design. This rough estimate shows that 

FERNS requires an order of magnitude less power while also being comparable in size. While this 

comparison is fairly rough, one suspected reason for the lower power consumption is that the design of 

Tokunaga must necessarily switch with 50ps period in order to accurately count the metastability time. In 

FERNS, all of the computation can be slowed down without loss of functionality, allowing aggressive min 

energy operating points to be used. Note that this comparison is in the special case where only 128 bits of 

randomness are needed, as FERNS is unable to produce larger numbers of random bits from a 2,048 bit 

SRAM. 

5.3 Comparison to Chip ID Circuit of Su, Holleman and Otis 

FERNS is next compared to the two layouts of the chip ID circuit of Su, Holleman, and Otis [32].  

While an SRAM cell requires only 6 transistors, the cross-coupled NOR design of Su, Holleman and Otis 

requires 10 transistors for the symmetric layout, and 20 transistors for the common centroid layout. 

Additionally, it should be noted that great effort is put into minimizing SRAM cell size, while less efficient 

analog layout techniques are required by Su, Holleman and Otis in order to optimize the ID functionality. 

Thus, one can reasonably assume that ID generating SRAM cells used in FERNS are 50% as large as the 
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symmetric layout and 25% as large as the common centroid layout. Despite the much smaller and easily 

reusable SRAM ID cells of FERNS, the bits are only a few times less reliable. One caveat regarding the bit 

error rates stated below is that the work of Su, Holleman and Otis does not give a bit error rate, but instead 

gives a percentage of unstable bits; the bit error rate is estimated here to be half of the percentage of 

unstable bits, as unstable bits must produce some correct value at least half of the time. A key difference 

between these two works is the usage model. In FERNS, the ID can only be generated when power is first 

applied; in this prior work the ID can be generated at any time. 

Table 5.2: Comparing FERNS ID to custom chip ID 

Symmetric

layout

Common centroid 

layout Virtual tags MSP WISP

bit error rate 0.015 0.019 0.028 0.080 0.048

bitwise hamming distance 0.505 0.501 0.417 0.414 0.469

FERNSSu, Holleman, Otis

 

5.4 Comparison to FPGA Intrinsic PUF 

Philip’s Research Laboratories has designed a system for FPGA intrinsic PUFs that is similar to 

the work of this thesis [53]. This work will be published in the September 2007, but an advanced copy was 

obtained from the authors; it was developed simultaneously to, and independently of, this thesis. To create 

an FPGA intrinsic PUF, error correcting codes are used to extract a reliable secret from the initial state of 

an SRAM block. This secret is then used with a hashing function to produce PUF-like functionality. Like 

FERNS, this work on FPGA intrinsic PUFs recognizes that initial SRAM state has identifying properties. 

Unlike FERNS, no constructive use is made of the thermal noise-induced randomness. The FPGA intrinsic 

PUF is an expensive design, and is unsuitable for RFID tags as it requires 512 kbits of SRAM to generate 

110 challenge response pairs. 

5.5 Open Questions 

This thesis is meant to be an initial study on the feasibility of a FERNS system. With FERNS 

being novel, many questions can be raised about possible weaknesses or potential oversights. In this 

section, some such doubts are presented and addressed. Best guesses and unsubstantiated predictions are 

made where possible, such that the substantiation or refutation of the predictions can provide a good 

starting point for future research. 
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5.5.1 Threshold Shift due to NBTI 

One topic that must be explored further is the shift of threshold voltages that can occur over time. 

A primary cause of this in PMOS devices is Negative Bias Temperature Instability (NBTI), which 

describes interface trapped charges and holes trapped in gate oxide [54]. Several aspects of the RFID usage 

model suggest that NBTI might not be a great concern. The shifts caused by NBTI are known to recover 

when stress conditions are removed [55]; passive RFID circuits are typically unpowered before use 

meaning that they could have adequate time to recover from any shifts. Secondly, NBTI has cumulative 

effects based on the total time that the stress conditions are applied [56]; as RFID circuits are typically 

unpowered most of the time, cumulative effects may not be a great concern. Thirdly, NBTI has an 

increasing impact at smaller feature sizes in advanced technology [57], while RFID circuits use older larger 

technologies.  

It is well know that the effects of NBTI result in delay degradation in logic circuits [58], but the 

impact on FERNS is less clear. It is believed that NBTI will actually act to destroy identity. Consider the 

following situation, extending the example of chapter 2.1. If A cell stabilizes to the state A=1 B=0, PMOS 

device P1 will be under stress, and will have its threshold voltage increased. This will make it more 

difficult for P1 to turn on next time, favoring initialization in the A=0 B=1 state, opposite the state that was 

“burned in”. It is thus predicted that NBTI burn in will not reinforce identity, but will work against identity, 

increasing randomness. This is supported by two runs of a preliminary experiment where a state of all 0s 

was burned into SRAM over the course of a few days. Afterwards, the power was turned off for twenty 

seconds, believed to be long enough to lose state but not recover from NBTI, and then turned back on. In 

both cases the initial state was found to contain significantly more ones than usual, opposite the 0s that 

were burned in, and in accordance with the predictions made above. Two runs cannot be taken proof, and 

more experimentation is needed to confirm this finding.  

5.5.2 Side Channel Attacks 

Side channel attacks to either the ID or the RNG functionality of FERNS must also be considered. 

One potential side channel attack would be for an adversary to reduce the temperature of the device and 



39 

 

 

 

thus decrease the magnitude of thermal noise and reduce its entropy; as was demonstrated in chapter 4.3 of 

this thesis. 

A second class of potential side channel attacks are related to data remanence, or the ability of 

SRAM to hold its value after power is removed. Such an attack could be carried out by either using data 

remanence to influence the initial state of an SRAM, using data remanence to predict the state, or using 

data remanence to reinforce the most likely outcome of each bit in attempt to destroy randomness. Kuhn 

and Anderson showed that data stored persistently in an SRAM from the late 1980s had “burned in” to the 

memory, and could be read out intact later, after the chip had been powered off, with only 5-10% error rate 

[59].  This is also noted by Gutman, who indicates that this occurrence is specific to older technologies 

[60]. Our research shows no indications of long term data remanence, except for the aforementioned NBTI 

effects which appear to cause SRAM to tend to initialize to the inverse of its last state. Our finding on the 

lack of long term remanence is supported by the findings of Skorobogatov, who tested 8 SRAM chips from 

the 1990s and showed that none retained state for longer than a few seconds [61]. It is predicted that when 

both data remanence and NBTI are considered, remanence should cause a correlation if the power down 

time is not long. However, if the chip has been powered on for a long time before power down, NBTI 

should cause an anti-correlation once data remanence has faded (figure 5.1).  A third type of potential side 

channel attack which has not yet been explored is influence by exposition to an electromagnetic field. 

 

Figure 5.1: Predicted trend in correlation when both data remanence and NBTI are considered.  
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5.5.3 System Level Design 

In FERNS, it is crucial that the same bits used for identification are not also used for randomness; 

once the bits are transmitted as an identity, their values are known and they have no utility in random 

number generation. This gives rise to questions about how to best partition the RAM between ID and RNG. 

One suggestion is given here, based on a work in the field of biometrics in which a mask is used to reduce 

bitwise error rates to a degree that can be corrected by use of error correcting codes [62]. Consider a 

bitmask of the same size as the SRAM and stored in non-volatile memory, where each bit of the bitmask 

corresponds to a bit of SRAM, and contains a 1 if that bit of SRAM is highly reliable, and a 0 otherwise. 

This bitmask could then be ANDed together with the latent print, producing an ID that is likely imperfect 

but far more reliable than the initial latent print. If an error correcting code were applied to this more 

reliable print, the reduced number of errors could be corrected. Additionally, it would ensure that the 

random bits are excluded from the ID preventing any entropy from being given away. 

 

Figure 5.2: A proposed method for partitioning ID and RNG bits from SRAM in FERNS 

5.6 Delivered Results 

Through experiments and analysis using virtual tags, MSP430 microcontrollers and WISP passive 

UHF RFID devices, FERNS is shown to be an interesting and viable candidate for accomplishing ID and 

TRNG in integrated circuits. A paper on FERNS is appearing in the proceedings of the 2007 Conference on 

RFID security [63]. At this conference, Dan presented the work on July 11, 2007 in Málaga, Spain to an 

audience of approximately 30 attendees. A patent application for FERNS has been submitted to the UMass 
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Commercial Ventures and Intellectual Property office. There are plans to submit a comprehensive version 

of this work to a journal. 
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APPENDIX 

DEBUGGER INDUCED CORELLATION IN MSP430 ID 

When observing the MSP430 SRAM state through use of the JTAG debugger, an unexplained 

correlation between latent prints can be seen. While not offering a potential cause, this appendix offers 

experimental evidence of this phenomenon. The observed strange behavior was that some latent prints 

across all chips tended towards a particular pattern. This pattern consists of the memory being split into 4 

quadrants, with the first and third quadrants holding 0 and the second and fourth quadrants initializing to 1. 

According to the addressing scheme of the MSP430, it is addresses 0x0200-0x023F and 0x0280-0x02BF 

which initialize to 0, while 0x0240-0x027F and 0x02C0-0x02FF initialize to 1.  

 

Figure A.1: Latent prints are observed to sporadically favor an identity caused by the JTAG 

debugger. 

Thus, many latent prints are not an accurate representation of the device which generates them; 

when averaging many latent prints to get a known print, the discovered known print is a combination of the 

true identity of the device and this common print which all devices occasionally tend towards.  Many latent 

print are thus not very good matches to the known print of the same device.  

Two pieces of evidence are offered to support the notion that this is due to the JTAG debugger and 

not some underlying flaw in analysis. Firstly, the Hamming distance matching between MSP430 known 

prints and latent prints generated by the same device does not show a Gaussian distribution as would be 

expected if the discrepancy was caused by noise. An experiment was performed using the WISP hardware, 
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with the same devices being powered via the debugger and via passive power. When passive power is used, 

the normal Gaussian shape is observed. When the same addresses on the same locations are powered via 

the debugger, the outlying points are seen where the latent prints are not reflecting the identity of the device 

but instead are reflecting the debugger induced identity. This supports the conclusion that the alternate 

identity is not inherent in the chip, but is instead somehow being caused by the debugger. 

 

Figure A.2 The same bits of the same device show the debugger induced correlation when actively 

powered via JTAG, but not when passively powered.
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