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ABSTRACT

IMPLEMENTATION OF DATA PATH CREDENTIALS FOR

HIGH-PERFORMANCE CAPABILITIES-BASED NETWORKS

SEPTEMBER 2009

KAMLESH T VASUDEVAN, B.E., ANNA UNIVERSITY, INDIA

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Tilman Wolf

Capabilities-based networks present a fundamental shift in the security design of net-

work architectures. Instead of permitting the transmission of packets from any source

to any destination, routers deny forwarding by default. For a successful transmission,

packets need to positively identify themselves and their permissions to the router.

A major challenge for a high performance implementation of such a network is an

efficient design of the credentials that are carried in the packet and the verification

procedure on the router. A network protocol that implements data path credentials

based on Bloom filters is presented in this thesis. Our prototype implementation

shows that there is some connection setup cost associated with this type of secure

communication. However, once a connection is established, the throughput perfor-

mance of a capabilities-based connection is similar to that of conventional TCP.
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CHAPTER 1

INTRODUCTION

The exponential growth of the current Internet has been extraordinary. The ubiq-

uitous nature of the Internet makes it more successful in attaining worldwide con-

nectivity between millions of computing devices, variety of networks and users. One

of the main reason for such a success is due its nature of an open architecture and

allowing each host to communicate with any other host or end system on the network.

A major fault in such an open architecture is its failure to provide inherent security.

Security services like authentication, confidentiality, integrity and availability are pro-

vided through number of add-ons or patches. These patches range from conventional

cryptographic operations such as SSL, TLS and VPN tunnels to traffic monitoring

tools like firewalls and Intrusion Detection Systems (IDS) to defense against denial

of service (DoS) attacks through anomaly detection and rate limiting. These patches

or add-ons are not considered efficient when we think about a network with inherent

security features, since they are just defense against specific attacks and does not give

a concrete security solution at an architectural level.

Certain communication areas that involve military communications, financial trans-

actions, remote medical procedures, etc. requires superior level of inherent security

that in-turn puts us in a position where we require total control over the entire

network and the protocol stack. Using dedicated networks for such communication

scenarios separates them from other existing networks that helps them to avoid de-

nial of service attacks and intrusion. The idea of network virtualization [5] and the

possibility of its deployment in the next-generation Internet testbed provides us an
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opportunity to consider the clean-slate design of high-performance networks that can

provide superior levels of security that operates on the same physical infrastructure.

Certain important questions can be raised on how to design such a network archi-

tecture that is physically or logically isolated from the current network with inherent

security features and how to protect them against insider attacks.

The design philosophy of current Internet works by the principle of “on-by-default.”

But recent proposals for capabilities-based networks suggested the concept of “off-by-

default” in which each and every connection needs to specifically authorized to reach

the end-host that is exactly opposite to the way current Internet works in which the

host reaches the end-system by default. The system is authorized based on the capa-

bilities that it provides that are similar to tokens for that particular operation. The

capabilities are validated during the initial connection set up. They are also validated

along the entire connection path during the data transfer. The existing designs of

capabilities-based networks differ in the aspects of how they distribute, implement

and verify their capabilities.

The following section explains how capabilities-based networks work with some of

its key features and weakness:

1. Only Legitimate Traffic

The capability-based communications occurs in two stages: capability setup and

data transmission. Both of these stages involve the sender, the receiver and a

set of verification points or nodes (e.g., routers) located on the path between

the two. The capability setup stage involves the following:

• The sender transmits a capability request to the receiver.

• All the verification nodes (routers) along the path, marks or stamps the

forwarded request with a specific mark; all of these marks finally constitute

the capabilities.
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• The receiver returns the capability to the sender.

In the data transmission stage, the sender includes the capabilities in all of its

packets that it sends to the receiver. Each router along the path validates the

packet for those special “capabilities” that has been previously issued. If the

packet carries the valid capabilities, the packet will be forwarded, else it will

be dropped. Capabilities are nothing but essentially tickets with an expiration

date. A well-known legitimate client can get a life-long ticket, whereas a new

unknown client may be given a ticket that expires in one minute. The receiver

decides all these issues based on some of its own custom policies. Suppose, if the

client sends unwanted malicious traffic, it will be classified as an attack source

and no more new tickets will be issued. A malicious node cannot send authorized

traffic, but it might attempt to flood a receiver with several capability requests.

Such an attack can be prevented from interfering with authorized traffic by

partitioning the receiver’s downstream bandwidth. Most of the share is given

to the established connections and a small share for capability requests.

The main objective of the thesis is to implement and prototype such a capabilities-

based network architecture that uses a new design of capabilities called as “data

path credentials.” These credentials are validated along the data path of routers.

They are verified at every hop along the path, which gives us overall protection

against a huge variety of attacks.

2. No Per-Connection State

The main advantage of capabilities is that they do not add per-connection state

to the network. In simple words, the network can filter attack traffic without

keeping any end-to-end filtering state. Stateless filtering removes the need for

traditional packet filters. It also removes the need for inter-ISP relations like

bi-lateral filtering agreements, since no filtering state is explicitly exchanged
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between any ISPs. An ISP needs to just upgrade a subset of its routers to

perform marking and verification. Thus, capabilities are inexpensive and easy

to deploy and they protect legitimate communications against DoS.

3. Denial of Capability

According to Argyraki et al.,[7] there is a simplest possible attack on Capabilities-

Based network. It is nothing but the attack on the capability granting mecha-

nism itself. Such an attack is called as ”Denial-of Capability” (DoC), i.e., denial

of service attack on the capability granting system. An attacker can flood the

receiver with a millions of capability requests and exhaust the link. Legitimate

clients that had already obtained a capability before the attack has no prob-

lem connecting to the receiver. But, a new legitimate client has only a little

chance of getting a capability. They also suggested a solution for DoC through

datagram approach. One approach is to perform Internet-wide fair queuing of

capability requests, i.e., to configure a set of routers to fair queue capability re-

quests per incoming network interface. As a result, no interface gets to forward

more than its fair share of requests. Similarly, Anderson et al.,[6] stated that if

widely deployed throughout the Internet and, in particular, close to the edges,

this form of policing can automatically rate-limit floods of capability requests.

A proposed solution to DoC is discussed in the related work section.

Implementing such a network architecture poses several technical challenges.

Some of them are listed below:

• Where to place the credentials in a packet?

• Designing the credentials such that the size of the packet does not increase

with the number of the hops.

• How to test and implement such an architecture?

• How to filter the packets based on the credentials that they carry ?
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• What are the metrics used to compare it with the existing internet security

architecture?

• How to design the credentials?

• Comparison between the existing Internet architecture and data path cre-

dentials architecture with respect to attack mitigation.

5



CHAPTER 2

RELATED WORK

Implementing such a new security architecture might sound impossible in the

existing best-effort Internet, but the idea of router virtualization [5] made it

possible to implement such a domain-specific architecture in parallel to the

existing Internet.Various new systems like GENI and VINI are being developed

that can support the data path credentials architecture that is proposed here

[10, 26].

Several capabilities-based networks have been proposed focusing on security

related issues. Anderson et al. [6] proposed a defense against DoS using ca-

pabilities and yang et al. [29] proposed a system design that mitigates DoS

using capabilities to identify legitimate traffic. Ballani et al. [9] came up with

a capabilities-based networks that provides defense against more attacks.The

validation of capabilities are done at one or a small number of nodes in all of

these capabilities-based networks. The design used in Data Path Credentials

validates all packets at all nodes along the data path to restrict malicious traf-

fic. An edge-to-edge filtering architecture against DoS was proposed by Felipe

Huici et al. [20] that uses IP encapsulation to tunnel traffic between the edge

networks. Thus, the DoS floods are identified and mitigated at a point that

is located close to the traffic destination. In this design, we can identify and

mitigate unwanted traffic within small number of hops from the source, which

reduces the consumption of the overall network resources.The main idea of data

path credentials for assurable global network was proposed by Wolf [28].

6



Ethane system proposed for enterprise by Casado et al. [15] is similar to the

capabilities-based network that is proposed here. Ethane defines a single wide

fine-grain policy and then enforces it directly. It couples simple flow-based

ethernet switches with a centralized controller that manages the admittance and

routing of flows. Ethane works efficiently for enterprise scenario where access

is controlled by flow entries in the forwarding table of an edge switch, but fails

when access permissions are issued by a node that does not have control over the

forwarding table of the switch. Data path credentials architecture proposed here

provides a separation between the nodes that issue the credentials and those

that enforce them. A policy controller can also be assumed that basically takes

care of enforcing access control in the data path. Argyraki et al. [7] identified

that the capabilities-based networks are susceptible to denial of capabilities

(DoC) attacks on the capability-granting system. A solution to such a DoC

attack “Portcullis” was proposed by Parno et al. [21] by using proof-of-work to

reduce the malicious node’s capability requests.

Even though the architecture proposed here is similar to previously proposed

off-by-default architectures, several new ideas are introduced by considering

computationally efficient credentials and by implementing them in different

network scenarios. The defense against the DoC attacks are inherently part

of the design and therefore no proof-of-work scheme is required. We also show

that DoC attacks are isolated to affect only a small number of routers that are

close to the attack source, which reduces the effect on the overall network. It

is always hard to determine the source of a DoS attack because of IP address

spoofing. Packet marking was proposed as an alternative of defense against

DoS attacks by tracing back the path of malicious traffic even if an attacker

spoofs IP addresses. This process can be probabilistic [24] or deterministic [11].

Another idea for defense against DoS was proposed by Snoeren et al. [25] using

7



“Hash-based IP traceback.” It can be achieved by extending routers to main-

tain database of packets that have been forwarded. These audit trails eventually

gives the source of a packet when analyzed. Thus, once the evil nodes are iden-

tified, they can be filtered actively by the concept of “Active Internet Traffic

Filtering: real-time response to DoS attacks” proposed by Argyraki [8]. The

above mentioned concepts of packet marking, traffic analysis and filtering are

reactive in nature rather than proactive.

The design of data path credentials are based on Bloom filters. It was intro-

duced by Burton Bloom [13] and has several applications in network systems

[14]. Some of them are IP prefix matching [16], regular expression matching for

intrusion detections [17] and packet traceback [25]. We use Bloom filters for the

design of credentials that are derived from hash functions such as MD5 [23] and

SHA-1 [18]. The credentials data structure are further expanded to consider

the density of set bits, which is called as the fill level. The fill level problem is

addressed through scalable [4] Bloom filters. It is not applicable in our design

since we use fixed-length credentials to limit the packet header sizes.
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CHAPTER 3

DATA PATH CREDENTIALS

This section begins with a discussion about the security requirements and the

capabilities of an attacker. Next, we will discuss about the overall network

architecture and router architecture for data path credentials with the system

design and the operation in detail.

3.1 Security Model

The security requirements discussed here is based upon a domain-specific net-

works such as networks used for financial transactions, military communications,

etc. These networks are expected to be deployed in parallel to the existing In-

ternet through virtualization or through use of a dedicated infrastructure. Thus

this design for security requirements would be inefficient in the best-effort In-

ternet that is extensively available right now.

3.1.1 Security Requirements

The following are the security requirements:

• Network Access: Prevention of unauthorized network access by permitting

only authorized users to establish a connection in the network.

• Packet spoofing: Packet spoofing by unauthorized users should not be

possible.
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• Traffic Injection:An unauthorized user or an attacker should not be able

to inject junk traffic into the network.

• Detecting denial-of-service attacks: The sources responsible for the denial-

of-service attacks must be identified and quarantined from rest of the net-

work.

• Prevention of Intrusion: Intrusion into the network must be prevented by

allowing the connections from the outside world to the network only in

specified ports to avoid attacks like port scans.

• Prevention of Extrusion: Extrusion to the outside network must be pre-

vented by controlling the connections from the end systems to the outside

network.

From the above security requirements, we can see that emphasis is put on basic

security needs, i.e., authorization and availability by making sure that packets

that are positively identified are forwarded in the network. The rest of the basic

security requirements such as access control, confidentiality, and integrity are

addressed by the existing key management and cryptographic solutions in the

later sections.

3.1.2 Capabilities of an Attacker

An attacker can :

• Read any packet traversing an attacked router.

• Modify any packet traversing an attacked router.

• Send any packet from the attacked router.

The following are the restrictions on the capabilities of the attacker. An attacker

cannot:
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• Spoof the identity of another entity in the network.

• Drop all or a subset of the network traffic on a router.

• Access all the nodes and links. It is limited to a subset of all network

nodes.

By, constraining the capabilities of an attacker we can keep the attack scenarios

and security requirements within the scope.

3.2 Network Architecture

The network architecture that is proposed here is shown in Figure 3.1(c) that

is compared to the traditional internet architecture shown in Figure 3.1(a) and

the existing capabilities-based networks in Figure 3.1(b). The main concept is

to append network traffic with credentials that can be validated in the data

path on every hop. All the routers on the data path performs check for cre-

dentials and thus forwards only those packets with valid credentials. All other

traffic with invalid credentials are discarded. As, we can see that all the routers

along the data path participate in validating the traffic, which contrasts to the

traditional Internet architecture where security protocols are constrained to the

end-systems (e.g., cryptographic protocols) or isolated routers (e.g., firewalls

or intrusion detection systems). In addition to credential check along the data

path, end-system protocols can provide orthogonal security features of integrity

and confidentiality. When comparing credential-based data path architecture

to the existing capabilities-based networks, we can see that packet validation is

not limited to just a few nodes along the path such as“verification points” in

[6], edge routers in [20], or LAN switches in [15], instead performed at all nodes

along the path. Thus, the responsiveness of the network to various attacks is

also increased.
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(a) Security in Existing Internet

 
(b) Capabilities-Based Network Architectures

 
(c) Credential-Based Data Path Architecture

Figure 3.1. Connection Setup to Establish Credentials
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Figure 3.2. Router Architecture

3.3 Router Architecture

The architecture of a router that implements data path credentials is depicted in

Figure 3.2. Connections are managed and credentials are created in the control

path. An end-system can request credentials from a router for a particular

flow. The credentials are then created based on the flow characteristics and

router’s cryptographic key. The process of generating credentials are discussed

in chapter4. These credentials are then sent back to the end-system and also

stored in the local credentials cache for future use. The credentials are the

augmented to all the packet headers that traverse the network. When a router

receives a packet for forwarding, first it classifies the packet according to the flow

it belongs. Then, the router performs the credentials validation by comparing

the credentials in the packet with those that it retrieves from the credentials

cache. If the credentials matches , then the packet is considered to be valid

and forwarded. If the credentials in the packet does not match the credentials

from the cache, then the packet is considered to be invalid and discarded. If

the credentials cannot be found in the credentials cache, it might be due to
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the limited size of the cache or due to an invalid packet. A re-computation

of credentials can be initiated before discarding the packet that is shown in

Figure 3.2 as dashed lines. Re-computation of credentials might increase the

system’s vulnerability to denial of service (DoS) attacks since the cryptographic

computation of credentials is a computationally expensive operation. Thus , it

is important to maintain a credentials cache that is large and the requests for

new credentials always gets the priority over credentials re-computations.

More specific decisions can also be taken on a packet rather than simply for-

warding or rejecting them. If quality of service (QoS) is considered, then the

QoS parameters and flow state can be stored in conjunction with the credentials

information. During the validation of credentials, the packet can be scheduled

according to the QoS properties, so that the desired QoS can be provided.

3.4 Connection Management Scenarios

Connection management is an important aspect of data path credentials archi-

tecture since it addresses one of the key problems that appeared in prior designs

networks using capabilities[9]. The potential target for denial of service attacks

are the control path of such networks [7]. Our architecture implements connec-

tion setup as an incremental process as shown in Figure ??. The basic idea is

that an end-system cannot send a credentials request to a router unless it has

the valid credentials for the entire path upto that router. The main advantage

of such a set-up is that any DoS attack on the control infrastructure can only

target the router close to the attacker’s source. Unwanted traffic cannot prop-

agate unless the source can identify itself as an authorized source. In case, if

an attacker poses an authorized end-system, the DoS attack can be traced back

and mitigated by the security measures. To explain the connection manage-

ment, three different communication models are considered to demonstrate the
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generality of the data path credentials concept. The three scenarios explained

are:

• Unicast: Communication between a single sender and a single receiver over

a network.

• Multicast: Communication between a single sender and multiple receivers

on a network.

• Network Coding: Packets traverse multiple paths to the destination and

may be coded together with other transmissions (explained in section

4.4.2).
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Figure 3.3. Connection Setup to Establish Credentials

3.4.1 Unicast

Figure 3.3 shows the connection establishment process involving multiple routers.

For the end-system to obtain credentials from all the routers, first it needs to

obtain the credentials from router1. At this point, router 1 can challenge the

end-system to authenticate itself and negotiate access policies. If the router

determines that the end-system is eligible to transmit data across the router, it

provides the credentials C1. The credentials C1 must be included in all future

transmissions through router 1 including the credentials request to router 2.

This process is repeated until the end-system receives the credentials from the

all the routers along the data path and finally the data transmission starts. The

set of all credentials (C1, C2, and C3 shown in Figure 3.3) is then carried in

each data packet. Each and every packet is validated on every router. If the

packet carries the valid credentials, the packet is forwarded, else it is dropped.

We can see that several messages are exchanged with every router along the
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Figure 3.4. Connection Setup using Group Credentials

path to establish a single connection. To avoid this overhead, two approaches

can be followed:

• Credentials Reuse: When multiple connections are established between

two end-systems in parallel or within a given time window, credentials

could be reused.

• Group Credentials: Routers that belong to the same autonomous system

can be grouped together to create group credentials. In this case, any

router can issue credentials that are valid to traverse any set of routers

in that group. Thus, the number of credential requests per connection is

reduced to larger extent as explained in Figure 3.4

3.4.2 Multicast and Network Coding

To explain the capabilities of the credentials-based data path design, more chal-

lenging scenarios other than unicast like multicast (and multipath) and network
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Figure 3.5. Connection Setup to Establish Credentials

coding can be considered. All these communication modes are shown in Figure

3.5. In unicast, (Figure 3.5(a)), the set of credentials includes only those along

the path from source to destination. In multicast and multipath, packets get

duplicated inside the network (see Figure3.5(b)). When the packets get du-

plicated, its credentials get duplicated, too. Thus , the end-system needs to

include credentials for all routers that the packets will traverse along the mul-

ticast/multipath graph. As we can see from the Figure 3.5(b), an end-system

sends the packets through all the routers in the network to reach the desti-

nations. Thus, it needs to include the credentials for all the routers that the

packet will traverse.

The third scenario is the Network coding [3]. It was recently proposed to im-

prove ene-to-end data transmission in wireless networks. Packets traverse mul-

tiple paths to reach the destination and may be coded with other transmissions.
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These operations can be reversed to obtain the original packets at the receiver.

In such a communication scenario, data path credentials from both the sources

need to be combined as shown as dashed lines in Figure 3.5(c). As we can see,

some routers may overlap in the coded packets’ paths. Since, the flow identi-

fiers are different, the credentials are also different. Therefore, all the credentials

from both sources need to be added into the set of credentials carried by the

packet.

As we can see from the network coding scenario, there may be situations where

a large number of data path credentials are necessary to guarantee successful

forwarding of packets by all routers involved along the data path. In the later

sections, it will be shown that the design of credentials only requires constant

space for most practical communication scenarios. Specifically, we do not re-

quire space that increases linearly with the number of credentials that need to

be provided and thus the above scenarios can be implemented successfully. The

security analysis in the later sections provides quantitative performance and

security tradeoffs for each of the above mentioned scenarios.

3.5 Authentication, Authorization and Access Control

There are more important processes that needs to be considered before issuing

credentials such as how identities are managed, how authentication is performed,

and how access control is used to authorize the network access. These issues are

very important when it comes to realistic deployment of such a new architecture.

For the credential-based data path architecture, we can use the existing security

concepts and protocols to solve the above mentioned issues.

Identities can be provided to the end-systems or users in the network through a

Public Key Infrastructure (PKI) [22] or a more complex federated trust model

19



[12]. These identities can be provided to end-systems or to individual users. In

this architecture, the term “end-system” and “user” are used interchangeably to

identify an entity that is the source or sink of a network connection. The system

could also be extended to distinguish between individual users who request

network access from possibly shared end-system devices. Once the end-systems

and the users are identified, we can use conventional access control system like

role-based access control [19] to determine the privileges of each and every user

or end-system in the network.

The decisions for the security services like authentication, authorization, and

access control are made by the routers during the initial connection setup. As

we can see in Figure 3.3, there is only single exchange of packets for this process,

it is also possible that a more comprehensive exchange takes place to establish

access privileges. Once these steps are completed, data path credentials are

used to enforce these network access policies by validating each packet at every

hop along the data path.
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CHAPTER 4

CREDENTIALS DESIGN

In this section, we will move forward and discuss how these credentials can be

designed efficiently and the requirements for such credentials.

4.1 Requirements

The design of the credentials depends on several factors. Let us see the basic

requirements of the credentials for the data path security concept:

(a) Security Requirement: The whole network infrastructure depends on the

security of the credentials. It is always very important that the credentials

are available only to authorized traffic in the network. Thus, the credentials

must be difficult to duplicate.

(b) Performance Requirement: The credentials need to be validated for ev-

ery packet on every router. So, it is necessary that the credentials must

be validated with low computational requirements without too much of

overhead.

(c) Size Requirement: According to the proposed here , credentials for every

router along the data path of a connection need to be carried in each

packet’s header, it is very important that the total size of the credentials

is limited to a fixed size.
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The first requirement can be satisfied by the use of traditional cryptographic

solutions. The second and the third requirements pose a new set of challenges.

Power constraints becomes one of the major issue as the networks connect an

increasing number of embedded devices as end-systems and as intermediate

hops. Cryptographic operations require a several orders of magnitude more

operations than the conventional packet processing and thus it should be limited

to the initial connection setup process. In order to satisfy the third requirement,

it is not practical to simply chain all the credentials in the header of the packet.

A limit on the header size would constrain the maximum hop count along the

path or the size of the multicast tree. Thus, we need a solution where all the

credentials can be represented by a single fixed-length data structure.

4.2 Bloom Filter Based Credentials

With the above requirements for the credentials in place, we now turn to the

design of the credentials data structure that is based on Bloom filters. The basic

attribute of the Bloom filter structure is that, it can maintain multiple creden-

tials at the same time. Thus, when the packet is transmitted, each router checks

for its own credentials in the data structure and thus validate the packet. Bloom

filter data structure is a very efficient way for the design of the credentials.

4.2.1 Bloom Filters

Let us briefly review the concept of Bloom filters that is used here to design the

credentials.The Bloom filter, proposed by Burton H. Bloom in 1970, is a space-

efficient probabilistic data structure that is used to test whether an element is

a member of a set [13]. Since the test is of a probabilistic nature, false positives

are possible (i.e., elements that are not members of the set may be reported

to be members), but false negatives are not possible (i.e., elements that are
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Figure 4.1. Empty Bloom Filter

members of the set will never be reported as not being members). One of the

key property of a Bloom filter is that it is not possible to perform a reverse

operation where the list of members is extracted from the Bloom filter data

structure. A Bloom filter is a bit array that can store m bits. Using k different

hash functions h1(x)...h2(x), an element x is mapped to k bit position in the

array. An empty Bloom filter data structure starts with all array values set to

0 as shown in Figure 4.1

To add an element x , the bits corresponding to the hash function values for

element x is set to 1. As multiple elements are added, it is possible and intended

that set bits overlap, which are combined with a logical OR function.To query

for an element (i.e.,test whether it is in the set), feed it to each of the k hash

functions to get k array positions. If any of the bits at these positions are 0, the

element is not in the set. Only if all of these bits are set to 1, then the element is

a member of the set. Since the data structure allows that set bits from different

elements can collide in the array, an element that is not a member os the set

may be reported as being a member. This occurs when the hash functions of

this element map to bits that have been set by other members in the array, i.e.,

k collisions. This probability increases as more members are added to the set,

i.e., n increases and thus more bits are set. This probability can be decreased

by using larger array, i.e., larger m.
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Figure 4.2. Credentials Data Structure

4.2.2 Credentials Aggregation

The Bloom filter data structure is used as data path credentials for packets

that traverse the network by storing each credentials from each router along

the data path. As we saw in section 4, the source node negotiates permission

to transmit across a router during connection setup. If router j, 1 ≤ j ≤ n

permits transmission, it provides the end-system with its credentials rj. The

router credentials are nothing but the set of indices rj [i ], 1 ≤ i ≤ k of bits that

are set in the Bloom filter array. The credentials from all the routers along the

path are then superimposed using logical OR operation in the Bloom filter data

structure. This gives us the aggregate credentials c that consists of a single

bit array of size m that are augmented with each data packet. The process of

generating the credentials is shown in Figure 4.2. Here three credentials are

aggregated to a set of 1’s in the Bloom filter data structure.

If router j receives a packet with aggregate credentials c, it checks the value of

all bits that were provided in the router credentials rj. If the credentials are
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valid, then ∏
i

c[rj[i]] = 1, (4.1)

where the product is the equivalent of a logical AND operation. If the aggregate

credentials do not contain the router credentials for the particular router, it is

likely that one of the bits in the credentials c does not contain a 1 at one of

the router credentials’ bit positions. Thus, the validation of credentials fails.

This is probabilistic in nature. A router may accept a packet with the same

probability as a false positive appears in the Bloom filter. But, all packets are

successfully delivered only if all the routers let them pass. Thus, a packet with

invalid credentials would need to encounter a false positive on every router along

the path. This probability decreases geometrically with the number of hops in

the path and thus is practically very small. It will be explained later in Section

6.

4.3 Credentials Security

The security of the entire network architecture depends on the security of the

credentials. It should not be practically feasible to generate duplicate credentials

for malicious traffic. Thus, in the case of the Bloom filter credentials data

structure, it should be difficult to guess the bits that are set by any given

router. This can be achieved using cryptographically strong hash functions like

MD5 [23] or SHA-1 [18] where router j uses k secret keys sj[i], 1 ≤ i ≤ k. The

cryptographic hash function hi(sj[i], f ) uses router j ’s key for bit index k to

determine which bits are set in the aggregate credentials. It is also important

that this hash function uses flow identifier f as an input. The flow identifier

(e.g., based on a 5-tuple hash) helps in avoiding attacks where credentials from

an authenticated connection are used by a different connection. Suppose, if
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the router credentials are used by a different connection, the validation step

(Equation 4.1) fails.

The concept of generating credentials based on the cryptographic hash functions

and flow identifiers ensures the following properties:

• The data path credentials are different for different flows even though they

traverse the same set of routers because of the use of flow identifier f as a

parameter in the hash function.

• The data path credentials for flows that traverse different routers are dif-

ferent, because a different set of router credentials are superimposed in the

data path credentials. The data path credentials differ because each router

has a different set of secret keys sj.

• The data path credentials are difficult to fake because the result of the

cryptographic hash function hi cannot be guessed without availability of

secret keys sj.

• Even though the generation of credentials is computationally expensive

that involves n x k cryptographic hash operations, the process of credential

check are very simple. The credentials can be checked by performing k

lookups in the credentials c and verifying that the Equation 4.1 holds.

This requires that each router remembers the router credentials rj for a

particular flow. It can be done by maintaining the credentials cache as

shown in Figure 3.2. If the credentials for a flow cannot be found in

the cache, the router credentials can be recalculated using sj at a higher

computational cost.

• The data path credentials are of small and constant size since all router

credentials rj can be superimposed (logical OR operation) into a single

Bloom filter data structure.
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• One of the important property of Bloom filter is that the credentials cannot

be reversed to obtain the hash keys used by any of the routers. This is due

to the reason that the cryptographic hash functions cannot be reversed.

Thus, it is not possible to use valid credentials to create fake or duplicate

credentials for a different flow.

From all these important properties of data path credentials, it is possible to

provide security features at network architectural level as discussed in Section

4.1. A more detailed discussion on how security requirements are satisfied will

be provided in later sections.

4.4 Density Limit

After the discussion of the credentials and their security properties, one im-

portant observation regarding the credentials must be mentioned here. There

exists a very simple attack to circumvent the credentials check. An attacker

could set all the bits in the credential data structure to 1. Such credentials

would always satisfy Equation 4.1, no matter what secret keys sj or flow identi-

fiers f are used. This is clearly an undesirable property. To make the data path

credentials to such an attack, an additional concept is introduced to the Bloom

filter. A “density” metric d(c) that reflects the number of 1’s in the credentials

c as a fraction of the total size:

d(c) =
1

m

∑
i

c[i]. (4.2)

To consider the credentials valid, we require that the density is equal or below

a certain threshold: d(c) ≤ dmax. If the density is higher, we can assume the

credentials to be invalid and thus reject the packet. If the threshold is chosen
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to be too low, even the valid credentials will be rejected.In the later section, an

equation will be derived that will be helpful to estimate the expected number

of set bits in the credentials data structure based on the number of routers

involved along the data path.

4.5 Group Credentials

The group credentials was explained in Figure 3.4 and providing credentials for

a groups of routers can reduce the connection setup overhead. Group credentials

can be implemented by simply making those routers to share the same secret

keys. Thus, router credentials issued by any router in the group sets the correct

bits in the aggregate credentials c to make sure that all routers in the group

let the packet pass. If the end-system is not aware of the grouping of routers,

it negotiates router credentials with each router individually. Since the router

credentials from all routers in the group are the same, the resulting aggregate

credentials c will have the same bits set to 1.
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CHAPTER 5

PROTOCOL IMPLEMENTATION

To implement the functionality of data path credentials as discussed above , we

designed and prototyped a new protocol. We call this new protocol as Data

Path Credentials Protocol (DPCP), which is located between the network layer

and the transport layer of the Internet Protocol stack. Let us see how the header

for DPCP is designed.

5.1 Credentials Header

The DPCP header is shown in Figure5.1. The overall size of the header is 28

bytes with the Bloom filter configuration as m = 128 bits and k = 4. The fields

in the header are used as follows:

• Port numbers: This field is identical to the source and destination port

numbers in the TCP and UDP headers. This field includes the source and

destination port numbers (16 bits each) that are mere copies of the values

carried in the transport layer of the packet. The transport layer protocol

is assumed to either TCP or UDP to allow for packet classification. These

port numbers are useful in the calculation of the five tuple hash (source

IP, destination IP, source port, destination port, next protocol).

• Next protocol: This 8-bit field indicates the transport layer protocol header

in the packet. It is similar to the next protocol field in the IP header. In
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Figure 5.1. Data Path Credentials Protocol Header

this implementation, the IP header next protocol header has a value of 253

for DPCP, which is reserved for experimental protocols.

• Flags: There are four different flags used in the DPCP implementation

to indicate packet types used during the connection setup. The different

types are the following:

– Setup flag(S): This flag indicates a packet containing a setup request.

– Challenge flag(C): This flag indicates a packet containing a challenge

to the end-system that requests credentials.

– Response flag(R): This flag indicates a packet containing a response

to the challenge posed by the router to the end-system.

– Credentials flag(I): This flag indicated a packet containing the Indices

generated that needs to be mapped to the Bloom filter array.
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• Setup field:This field is used in multiple ways during the connection setup

process. The use of this field is identified by the flags.

– Challenge nonce(32 bits): The nonce is sent by the router to challenge

the end-system.

– Response (32 bits): The end-system sends the encrypted nonce as a

response to the router’s challenge.

– Bloom filter indices(28 bits): These are the four indices generated

by the router according its keys and the flow identifier(each with a

size of logm = log128 = 7 bits). The indices are generated only if

the end-system proves its authentication. If the authentication fails,

the packet will be dropped. The indices are also stored in the local

credential cache, for future validation process. The end-system uses

these indices to set the bits in the Bloom filter.

• Data path credentials: This 128-bit field is the Bloom filter that carries all

the router credentials.

The Bloom filter indices are separate from the Bloom filter itself. The credential

indices are the values that the end-system uses to set the bits in the Bloom filter

array.

5.2 Router Processing

The decision diagram for DPCP processing on a router is shown in Figure5.2.

When DPCP packets arrive on a router, it should distinguish if they belong

to the connection setup request to this router or if they should be forwarded.

A router also needs to forward connection setup requests directed to the other

routers along the path. Thus, when the router gets a DPCP packet, it checks

the carried by the packet with the credentials retrieved from the local creden-
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Figure 5.2. Decision Diagram for DPCP Processing on Router

tial cache. If the credentials are valid , the packet is simply forwarded to the

destination. If the credentials are invalid, then the router checks whether the

setup flag(S) is set in the received packet. If the condition matches, the router

generates a nonce and sends it with a challenge flag(C) to the end-system . If

the Response flag(R) is set, the router checks if the response received from the

end-system is valid. If the response is valid, the router generates the creden-

tial indices using its secret keys and the flow identifier and send it back to the

end-system with the credentials flag(I). In all the other cases, the packet will

be dropped.

5.3 Testing

The implementation has been tested for various scenarios such as invalid nonce,

invalid credentials, etc. For example, during the connection setup process, an

end-system can send back an invalid encrypted nonce or a packet that may
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contain invalid credentials. From Figure5.2, we can see that a packet might be

dropped on several conditions. These essential conditions are tested and the

results are shown below.

• Invalid Nonce: When an end-system sends a setup request to a router, the

router replies with a random nonce. The end-system encrypts the nonce

with the public key and sends it back to the router. We created a scenario

where the end-system encrypts an invalid nonce and sends it to the router.

The router drops the packet, since it has invalid nonce.

• Invalid Credentials: An end-system can send packets with invalid creden-

tials with invalid bits set to 1. This condition was also tested and as ex-

pected, the router drops the packet, since the Bloom filter contains invalid

credentials.

• All bits set to ’1’: We also created a scenario where an end-system sets all

bits to ’1’ in the Bloom filter array. In such condition, the router must just

forward the packet. But, this simple attack is defended by setting a limit

on the total number of bits set in the Bloom filter. Thus, if the number of

bits sets exceeds the density limit, the packets are dropped.

The tested conditions and their results are shown in the table below.

Table 5.1. Different Scenarios and Verdict on the Packets

Case Verdict on the Packet
Invalid nonce Packet Dropped
Invalid Credentials Packet Dropped
Bloom filter with all bits set to ’1’ Packet Dropped

5.4 Bidirectional Verification

Most of the communication in the Internet is bidirectional. Thus, it is neces-

sary to validate the packets on the return path. During the connection setup
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process in DPCP, the challenge(C) and credential packets(I) must reach the

sender through number of routers. Thus, the routers need to setup and store

the credentials for the return path. To avoid this process, the implementation is

done in such a way that the routers use the same data path credentials for both

directions of traffic. It is also assumed that the routes are symmetric. Thus,

the challenge(C) and the credential packets(I) simply carry the same data path

credentials that were carried in the original packet. In our implementation,

the credentials are validated by matching the credentials carried by the packet

with the credentials that are retrieved from the local credential cache for that

particular flow. Thus,to implement this type of bidirectional verification, it is

necessary to modify the flow identification process. In our system, the classi-

fication result of the 5-tuple of a connection in direction should match that of

the connection in the opposite direction. This is achieved by sorting the IP

addresses and the port numbers before providing them to the classifier. This

sorting ensures that the classification result remains the same, since the IP

addresses and the port numbers are swapped on the return path.

5.5 Implementation in Emulab

The DPCP is prototyped and implemented in Emulab[2] with a very simple

topology of a chain of nodes with each hop incurring 10 ms of propagation

delay. The main idea of “Deny by default” is implemented using Libipq[1].

Libipq is a development library for iptables userspace packet queuing. Netfilter

provides a mechanism for passing the packets out of the stack for queuing to the

userspace, then receiving the packets back into the kernel with a verdict such as

ACCEPT or DROP. These packets can also be modified in the userspace before

the reinjection back to the kernel. The packets are queued to the userspace using

the iptable QUEUE target. Thus, all the packets are queued to the userspace
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using ip queue and the decisions are taken at the usespace. If the packet carries

the valid credentials, it is simply forwarded by giving the ACCEPT verdict.
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CHAPTER 6

SECURITY ANALYSIS

In the previous section, we saw the general concept of the data path credentials

and the specific design of credentials based on the Bloom filters. Let us evaluate

the qualitative security properties of this data path credentials architecture.

It is also important to quantify these security properties to evaluate specific

system configurations. In this section, we analyze the probabilistic guarantees

that Bloom filters provide and present the results for specific usage scenarios.

We will also discuss the data path credential architecture’s inherent resistance

against the denial of service attacks and how the security requirements are met.

6.1 Probability of Successful Attack

The primary goal of the data path credentials architecture is to identify valid

traffic and thus not allow the transmission of attack traffic. Since the Bloom

filter can yield false positives, the traffic with fake credentials may pass through

the network. This false positive can be exploited by an attacker. Thus, it

is very important to obtain a quantitative understanding on how likely this

attack is for different system configurations. This problem can be related to the

Generalized Birthday Problem (GBP) [27], but differs in that the GBP only

considers a single false positive. In the case of data path credentials, we require

false positives on every hop of the path for a successful end-to-end attack. The

best attack from an attacker ’s point of view is to send credentials with as
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many bits set as possible. The more bits are set, the more likely the validation

step described in Equation 4.1 satisfies. The limit to the number of bits set in

credentials is given by the maximum density dmax. The attacker needs to decide

which bits to set, since it is not possible to set all the bits in the credentials data

structure. The attacker also cannot exploit any structure, since the credentials

system uses cryptographic hash functions, which yield pseudo random outputs.

Thus, choosing a random set of bits for the attack credentials is as good a choice

as any other combination. Let us discuss the probability of successful attack

for different scenarios.

6.1.1 Unicast

The attack traffic in the unicast scenario needs to traverse n hops from source to

destination and encounter a false positive credentials check on each hop. When

validating credentials, a router checks if all k bits determined by the router

credentials indices are set. The density limit indicates that the probability of

a particular bit being set in attack or fake credentials ca is P [bit set in any c]

≤ dmax. The attacker always wants to set as many bits as possible, so we can

assume the probability of a particular bit being set in attack credentials P [bit

set in ca] = dmax. There is a possibility of that the hash computations yield the

same index more than once due to the structure of the Bloom filter as shown

in Figure 4.2. Thus, it is required to determine how many distinct bits are

tested by a router or a set of routers along the path. This is nothing but the

determining the number of bits set, b(m,k,n), in a Bloom filter of size m with

size k hash function and n stored items:

b(m, k, n) = m ·

(
1 −

(
1 − 1

m

)kn
)
. (6.1)
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The derivation of the expected value of b(m,k,n) is provided in the Appendix.

In unicast, the number of router credentials in the aggregated credentials (i.e.,

h=n). The probability of a false transmission, f(m,k,h), is

funicast(m, k, h) = (dmax)b(m,k,h). (6.2)

The expected number of bits set in the credentials data structure also gives an

estimate on the longest path that can be supported by a particular configura-

tion. If the expected number of bits set exceeds the density threshold, then even

valid credentials may be rejected, which is nothing but a false positive. Let us

consider a safety margin o with o ≥ 1, and thus the valid configurations of m,

k, and n must satisfy

o · b(m, k, h) ≤ dmax. (6.3)

6.1.2 Multicast/Multipath

In a multicast/multipath scenario, the source needs to aggregate credentials

from all the routers along the paths to all the destinations. In this case, to

estimate the performance of the Bloom filter credentials, it is assumed that

multicast is performed along a binary tree where each node corresponds to a

router that duplicates the packet and send it to two more nodes. The height of

the tree h assuming a balanced tree, relates to the number of leaf nodes l that

are nothing but the multicast destinations as follows:

2h−1 < l ≤ 2h or h = [log2l]. (6.4)

Let us make it simple by assuming a complete binary tree with l = 2h destina-

tions. The number of internal nodes in such a tree corresponds to the number
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of routers n that are encountered when multicasting:

n = 2h − 1 or n = 2log2l − 1 = l − 1. (6.5)

Thus, 2h - 1 router credentials have to be aggregated in the Bloom filter and

the resulting number of bits set in the credentials is b(m, k, 2h - 1). This limits

the set of valid configurations to

o · b(m, k, 2h − 1) ≤ dmax. (6.6)

The exponential increase in the number of aggregated credentials require a much

larger Bloom filter data structure. However, the size for this data structure

grows less than exponential due to overlapping hash indices. To determine the

probability of false positive transmission of attack traffic, we need to consider

all l = 2h multicast paths. The false positive probability is given by:

fmulticast(m, k, h) = 1 − (1 − funicast(m, k, h))2
h

. (6.7)

6.1.3 Network Coding

The analysis for network coding is similar to that of multicast. Each connection

starts sending aggregate credentials 2h - 1 router credentials and the routers in

the network aggregate credentials from multiple connections when generating

a network coded packet. Thus, by the time a packet reaches its destination,

it may have gained credentials on every but the last hop along the path. For

simplicity, let us assume that coding is done only across two packets at any node.
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Therefore, there may be a total of n = (h - 1) · 2h - 1 credentials combined in

the packet. Therefor, m and k need to be chosen properly such that

o · b(m, k, (h− 1) · 2h − 1) ≤ dmax. (6.8)

To determine the false positive probability, we need to consider how many pack-

ets have to be received by a node such that the network coding can be reversed.

If we code packets on each of h - 1 hops, then 2h - 1 packets need to be received

by the receiver for successful decoding. This corresponds to successfully achiev-

ing h - 1 false positive (h - 1)-hop multicast transmissions and a 1-hop unicast

transmission. One hop cannot be multicast due to the structure of network

coding. The probability of false positive is given by:

fnetworkcoding(m, k, h) = (fmulticast(m, k, h− 1) · funicast(m, k, 1))2(h−1)(6.9)
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CHAPTER 7

PERFORMANCE RESULTS

With the DPCP prototype implementation in Emulab, various performance re-

sults have been collected. The main functionality of the DPCP protocol was

successfully implemented in which the packets are successfully forwarded when

they carry the valid credentials and dropped when they do not. The perfor-

mance evaluation is done with 12 nodes in Emulab. Each hop has a propagation

delay of 10 ms.

7.1 Connection Setup

The connection setup of the DPCP is one of the critical and complex process

that requires more time when compared to the conventional TCP setup. It is due

to several complex cryptographic operations that takes place during the setup

process. The measurement results for a single hop connection setup is shown

in Figure7.1. We can see that, the amount of time required for sending out

the response and credentials packets is more. This is due to the cryptographic

operations involved in these steps. The router takes 3.9 ms to generate a nonce

and send out the challenge packet to the end-system. Due to the RSA public key

encryption taking place at the end-system, it takes around 40 ms to send out the

response packet. The most computationally expensive is however, determining

the Bloom filter indices that takes more than 1 s. This step involves RSA
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end-system challenge 
credentials authentication 1 hop connection setup(1193 ms)

router1Setup Encrypts nonce and sends response(39.6 ms) Verifies response, creates indices and sends credentials (1109ms)
Generates nonce and sends challenge(3.9ms)

Figure 7.1. Connection Setup time for Single Hop
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Figure 7.2. Connection Setup Time for Different Number of Hops
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decryption process that verifies the end-system’s response and generation of

credential indices using SHA-1 cryptographic hash functions.

The growth in connection setup time for 10 hops is shown in Figure7.2. The

increase in the setup time is slightly steeper than linear due to the increase in

propagation time to reach the nodes that are farther away. These cryptographic

operations can be performed faster with better software implementation or with

high performance cryptographic co-processors. The Emulab network testbed

does not provide cryptographic co-processors that can efficiently speed up these

steps.

7.2 Delay Measurement and Throughput Calculation

The main objective of DPCP is to design efficient credentials that can be en-

forced on every hop and computationally simple for validation. Since, the cre-

dential validation process is very simple, which checks for bits that are set using

the credential indices retrieved from the credentials cache, we can achieve high

forwarding performance. The time delay in processing packets of different sizes

are collected at a router. The data is collected at the incoming and the out-

going interface of the router for three different systems starting from the first

data packet. Since, the DPCP system uses iptables to get user-space access

to the packets that traverse the network, the throughput performance of the

DPCP is compared with both conventional TCP and also with “TCP with ipt-

ables.” The TCP with iptables is implemented to have a fair comparison for

throughput as the conventional TCP runs entirely in the kernel. In the TCP

with iptables implementation, the packets are moved to the user-space before

performing normal forwarding.
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Figure 7.3. Processing Delay for Various Packet Size
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The delay measurements for the three different systems are shown in Figure7.3.

The processing delay for conventional TCP is very less when compared to that of

TCP with iptables and DPCP as expected. The processing delays for the TCP

with iptables and DPCP are nearly the same. The throughput performance can

be calculated for these three systems using the RTT and MSS. We can see that

the throughput of the TCP with iptables and DPCP are almost the same.

The throughput for each of the system is shown in Figure7.2. The ratio of

throughput between DPCP and TCP with iptables is also calculated and plot-

ted. See Figure7.4.
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CHAPTER 8

CONCLUSION

The Data Path Credentials Protocol prototype has been implemented success-

fully. We have shown that the credentials based on Bloom filter data structures can

be efficiently implemented on all the routers along the path that permits only valid

traffic to traverse the network. Thus, some of the main security problems are tack-

led by the capabilities-based networks that enforces traffic control on every hop. A

malicious node cannot send traffic to the end-system unless and otherwise, it has the

valid credentials for the entire path. Forging credentials is also not possible because

the credentials are generated using strong cryptographic hash functions. The eval-

uation results shows that the cryptographic operations during the connection setup

process are computationally expensive. However, once the connection setup is estab-

lished, the throughput performance of DPCP is nearly equal to that of conventional

TCP. The setup time can be improved by performing the cryptographic operations

with better software implementation or with cryptographic co-processors. Since, the

router system can be easily extended to generate and validate credentials in the data

path, the Data Path Credentials Protocol provides a practical solution to provide

architectural level security solution for the next-generation security architecture.
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