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CHAPTER 1 

INTRODUCTION 

 

In recent years companies and researchers have taken great strides towards getting 

to the point where we can deploy cheap, reliable and energy efficient sensor networks.  

One of the enablers of this progress was the advent of TinyOS [1] which presents a small 

yet powerful platform for developers to build sensor applications.  TinyOS has been 

largely accepted by both the academic and corporate communities and continues to be 

worked on to this day as an open source project which has just finished a milestone 

version 2.0 release.  While there exist other operating systems that have been tested on 

mote hardware none of them seem to have caught on quite like TinyOS. 

We have proposed to create a set of middleware tools to assist developers in 

building applications for TinyOS, the flow of this process is shown in Figure 1.  

Developers will supply an input file specifying which middleware services they would 

like and provide values for parameters that certain services will need along with their  

Service 

Needs
Application

Middleware 

Library

TinyOS 

Libraries

Compiler
Wiring 

File

 

Figure 1: A flowchart of the application compiling process. 
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application source code files.  Based on the application service needs certain middleware 

modules will be wired to the application in the module wiring file which connects all of 

the software components.  This package of middleware plus application is then sent to the 

compiler and programmed onto the mote. 

 One example of a service that we have worked on is an RC5 based encryption 

solution that can modify the encryption strength and the key being used on the fly.  This 

is a step forward from past work [20] that focused around similar but static encryption 

mechanisms.  Work was done on a message parser that reduces energy by saving on 

header overhead and finally the most time has been spent on a fault tolerant scheme to 

increase the probability of successful radio transmissions in multi-hop wireless sensor 

networks.  This fault tolerant scheme and its many different flavors and settings is the 

focus of this thesis. 

 We begin by presenting the algorithm for fault tolerant message re-routing based 

on work with the TinyOS environment.  The TinyOS distribution comes packaged with a 

multi-hop router “Route” that establishes a tree-based network and informs each node 

where it stands in this network depth wise.  While the router does a good job of forming a 

network routing structure it does not support retransmission of messages in the case of 

failures.  This creates an issue as the TinyOS MAC layer depends on the higher layers to 

retransmit for it and will not do this on its own.  This leads to a situation where 

developers must handle all of the retransmissions within every application that they write.  

Our algorithm, which has been written as TinyOS nesC [2] modules and tested in small 

mote deployments, sits on top of the TinyOS radio stack in the routing layer and builds 

upon this existing structure to provide retransmissions and increase the reliability of the 
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network.   We chose to work on top of the existing routing layer based on our 

middleware-centric approach.  By implementing just above the routing layer we are not 

modifying any existing TinyOS modules and are able to have simple interaction with the 

developers’ application.  The algorithm was designed to work in an entirely distributed 

fashion, each node makes its decisions based solely on information it gathers by passively 

monitoring radio traffic around it, no feedback or direct communication with other nodes 

is involved. This allows configurations where some nodes run the algorithm with 

different parameters without interfering with other nodes.  

 Once the groundwork for the routing layer algorithm is complete we discuss a 

number of more interesting extensions to the core algorithm behavior.  This includes 

adding learning, i.e. the ability for nodes to remember past behavior of their neighbors.  

We also look at the affects of correlated events in a network.  Correlated events are 

important because in a real world scenario events are very likely to be tightly coupled and 

all of the traffic in one area of the network can cause degraded performance due to many 

packet collisions and queues filling up.  We discuss a number of different mechanisms 

for dealing with such a scenario.  We also look into other interesting scenarios such as 

what happens when we switch the routing layer to another TinyOS compatible routing 

layer, the effects of duty cycling on the algorithm as well as what happens at different 

depths of the network as the number of nodes expands further and further. 
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CHAPTER 2 

RELATED RESEARCH 

 

The issues that become prevalent when trying to use small and low-powered 

radios to form multi-hop sensor networks are well known.  Not only do we have to deal 

with limited hardware and energy resources, but in many cases harsh outdoor 

environments as shown in Figure 2 from [21].  Many proposed deployments of sensor 

networks [4, 5] exhibit additional problems due to the nodes being outdoors with varying 

weather conditions, ground effects to nodes being close to the earth or floor and even 

animals destroying nodes. 

A number of suggested protocols to try and deal with some of these problems 

exist in the literature.  Some protocols have been designed initially for usage in sensor 

networks while others where originally proposed for general mobile ad-hoc networks and 

later suggested for use in sensor networks.  There are two basic groups that all of the  

proposed routing algorithms fall into, proactive and reactive.    We now summarize some 

of the more popular routing algorithms.  

 

Figure 2: Examples of outdoor sensor network distributions depicting the difficult 

environments in which nodes need to work.  On the left nodes in trees and on the 

forest floor monitor the habitat, on the right a node is hung from a wire fifty feet 

above ground. 
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Proactive algorithms are those which find all of the paths to other nodes ahead of 

time and store them in a routing table in memory.  The protocols aim to update the 

routing table in a reasonable amount of time when there is a change in the network 

topology (new nodes starting up or old nodes failing).  The most popular example of this 

is the Destination Sequenced Distance Vector (DSDV) protocol [13].  DSDV works by 

trying to find the shortest route (in hops) from every node to every other node while of 

course avoiding loops.  In DSDV each node periodically broadcasts its view of the 

network so that its neighbors can see it and modify (or not) their view accordingly.  In 

Figure 3 taken from [8] we see how DSDV works.  On the left hand side we see the 

source node, s, sends a broadcast packets (depicted by a dashed circle) to see who its 

neighbors are.  Each neighbor will do the same and responds with their distance from the 

source (shown as a solid arrow).  Eventually the destination, d, will hear a broadcast 

packet and the process is complete.  The forward path as shown on the right hand side is 

chosen based on whichever is the shortest number of hops; in this case there is only one 

possible path which is shown in dashed lines.  The two packets that timeout do so 

because they have no path to the destination. 

Another proactive algorithm is the Optimized Link State Routing (OLSR) 

protocol [14].  Like DSDV nodes in OLSR will occasionally send out messages updating 

their view of the network topology.  This technique is known as “light” flooding because 

nodes periodically flood the network with their information but are not constantly 

flooding.  The major difference between DSDV and OLSR is that in OLSR the primary 

information is based on the cost of transmitting on links rather than solely on who the 

neighbors are.  The cost of the links are used to find a lowest cost path between every two 
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Figure 3: The general behavior of the DSDV algorithm.  [8] 

nodes in the network and stored in the routing tables.  Source Tree Routing (STAR) in 

[16] is a similar but more energy efficient approach to routing-table based protocols.  It 

uses link information like OLSR but attempts to save energy by not requiring every node 

to know as much information about the overarching network topology.  In STAR, nodes 

send out information about their preferred links, and nodes form a “source tree” which is 

constructed from this information. 

Reactive algorithms are those which only find the path that they will take to the 

node at the point where they need that path.  Some of these algorithms start the route 

discovery procedure from the beginning of the path while others do it from the end of the 

path.  Once a path has been discovered it is usually kept up as long as it is used 

occasionally and does not have node failures.  One reactive algorithm called Ad-Hoc On-

Demand Distance Vector Routing (AODV) [8] is based on the same ideas as the 
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proactive DSDV algorithm except that in this case it is reactive.  AODV will discover 

paths starting at the source node.  The discovery process works as follows: the source 

node broadcasts a route discovery packet which continues to be broadcast by neighbor 

nodes until the request finds its way to the destination or one intermediate node that hears 

the request already has a path to the destination.  Once the path is established the packet 

is sent down this path to the destination.  Maintenance will take place occasionally if the 

path is still seen as useful. 

Directed Diffusion (DD) [5, 19] is another reactive protocol which was originally 

designed with sensor networks in mind and sets itself apart from other protocols because 

it is data-centric and application aware.  In directed diffusion all data generated by sensor 

nodes comes in an attribute-value pair.  When one node has interest in a certain type of 

data it will send out the request through the network.  If the request reaches a node that 

has relevant information it will send that information to the node that sent the request.  In 

this way DD starts the path discovery at the node which is the destination of the data.  

DD also has the feature of combining two packets into one packet if they are both 

carrying the same type of information.  Other reactive protocols include Dynamic Source 

Routing (DSR) [7] , Temporally-Ordered Routing Algorithm (TORA) [15] and Energy 

Aware Routing [10].  DSR is similar to AODV except that in DSR all of the nodes 

eventual routing information (rather than just the information for this hop) has to be 

provided by the source node before the packet is sent to the destination.  TORA is based 

on what is called a “temporal clock” which places an order on any topographical change 

that takes place in the network. When these changes happen, TORA runs its distributed 

algorithm in order to replace the paths that were lost.  In energy aware routing nodes  
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Figure 4: An example of braided multipaths.  The sold lines represent the primary 

path and the dashed lines represent alternative paths [9]. 

 

sometimes use sub-optimal paths so as to better distribute the load throughout the 

network and increase the lifetime of the entire network.  

What these protocols have in common is that they try to form a network structure 

in which they determine a path from a source node to the base station before sending the 

message but do not always have a fall back, fault tolerant, plan.  Multiple paths as in [9] 

are often constructed for use in case of a failure on the primary path, an example of one 

multipath scheme from [9] is shown in Figure 4.  The idea of braided multipaths is to 

have alternate paths that allow a message to leave the primary path in the event of a path 

failure.  On the right the perfect braid is shown, this is the best case scenario in which 

there is a path to skip any node on the primary path without increasing hop length.  On 

the left is the localized braid which is formed using a more practical algorithm.  What we 

propose is an algorithm to run on top of and in conjunction with these protocols in the 

routing layer to help increase the percentage of data that makes it from source to base 

station.  In our algorithm we take as given that some protocol has chosen a path it wants 

to use to the base station and in the case of successful routing we do not interfere with 

this process.  However, if we notice that the next hop along the ideal path is not 

forwarding on the message because of either radio link or hardware issues, our algorithm 
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will attempt to find a new way to the base station from the point of failure.  If we succeed 

we not only increase the success rate of data reaching the base station but also in many 

cases save energy as opposed to a multipath solution because we prevent the source node 

from having to try one of its pre-determined secondary paths.  In this thesis we 

demonstrate our algorithm predominately running on top of the TinyOS “Route” multi-

hop router but also show an example of how it can work with any routing layer that 

implements the standard TinyOS routing interfaces without modifying a single line of 

source code. 

Another important aspect that should be discussed is the MAC layer and how it 

interacts with the routing layer.  The two most popular MAC layers that have been 

proposed and implemented for TinyOS are S-MAC [17] and B-MAC [12].  While they 

have similar goals and are both based on trying to avoid packet collisions their 

implementations are quite different.  B-MAC saves power by having eight different low-

power listening modes which adjust the preamble to a lower value in order to save more 

power.  B-MAC allows every node to overhear every packet in its radio range and pass 

them to higher layer protocols.  B-MAC has the option of enabling ACK packets but if 

this is done B-MAC assumes that the retransmissions will be carried out by some higher 

(routing) layer.  In [11] the authors discuss how to appropriately set the listening-level in 

B-MAC for use in existing TinyOS routing layer protocols.  S-MAC does not use low 

power listening but instead turns the radio off periodically.  Nearby neighbors are kept on 

the same schedule of when to be awake and when to be asleep so that packets can be 

heard between them.   The problem as discussed in [18] is that B-MAC and S-MAC both 

provide different information and have different expectations from the routing layer.  B-
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MAC has parameters which can be modified by upper layers and provides them with all 

overheard traffic while S-MAC can not be modified by higher level layers and does not 

provide them with overheard traffic; in fact it tries to avoid hearing as much traffic as 

possible.  This means that when developers are writing applications they can not pick a 

MAC layer and routing layer independently as protocols for one will not work with the 

other.  For our purposes we prefer B-MAC because it allows the routing protocol to 

choose whom to retransmit to in the face of failure and allows nodes to snoop on radio 

traffic. 
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CHAPTER 3 

BASIC ALGORITHM 

3.1 Approach and Description 

 

The re-routing algorithm has been written such that any mote hardware platform 

that is supported by TinyOS is able to add the fault tolerance scheme to their TinyOS 

applications with very little modification to the existing application code.  It was 

designed specifically for motes and hence as light-weight as possible.  We also attempted 

to make the algorithm flexible and tunable to different application needs.  While at this 

time we discuss TinyOS because it is the system we have implemented the algorithm for, 

it could certainly be easily ported to future systems.  

The TinyOS multi-hop router broadcasts some query packets to other nodes to 

form a directed tree graph of nodes with the root at the base station.  This tree is formed 

using a simple shortest-path-first methodology.  Whoever a given node’s parent is in the 

tree will forward its data on, in the network, until it reaches the base station.  An example  

of this can be seen by comparing Figure 5 to Figure 6.  Figure 5 shows an  

 

Figure 5: The geographical layout of a network. 
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Figure 6: The routing tree formed by the TinyOS multi-hop router. 

 

example node geographic layout that was run in the simulator while Figure 6 shows the 

directed tree graph that is formed from this layout by the TinyOS multi-hop router.  It is 

clear that this is not an optimal scheme in terms of energy as certain nodes have many 

more children (and grand-children) then others.  As mentioned in the related research 

section a good deal of work is being spent on different algorithms to approach this 

problem.   

Problems can arise in the TinyOS (or any alternative) routing scheme when for 

some reason the pre-determined parent node is unable to forward the message.  It could 

be that the parent node experiences a transient or even permanent failure.  It could also be 

that another radio broadcast in the network collides with the message or just occasional 

data loss on a generally good radio link.  In any of these cases the base station will never 

receive what the node had been sending its way due to the lack of retransmissions 

occurring in the existing routing layer.  A simple example of what we would like to 

achieve with re-routing is shown in Figure 7.  In this figure we see that when a node 

(number 7) receives a new packet to send, it will always initially ask its router-

determined parent (node 8) to forward the message along (labeled A).  This is to 
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                   Figure 7: An example of fault tolerant re-routing. 

 

preserve our goal of only interfering when it is necessary and otherwise allowing the 

router’s decisions to run their course.  In the next hop (labeled B) the situation arises 

where the router-determined parent (node 4) fails to forward along the message, only then 

does the fault tolerant software step in and make a decision about what to do next in order 

to get the message to the base station.  In the case of this example that decision was to ask 

another node, number 5, to forward the data along (labeled C).  The message then 

continues along the router determines path until reaching the base station (labeled D). 

In building a fault tolerant scheme on top of this basic router we are given two 

very important pieces of information; who the node’s parent is and what the depth 

(number of hops to the base station) of the node is within the network.  By paying 

attention to the radio transmissions that a node can hear going on around it we can also 

determine who the neighbors (nodes within radio range) of the node are.  Although this 

may seem like a limited amount of information we will see that it can provide the basic 

information required for re-routing decisions. 
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Throughout this thesis we will be using the concept of an implicit ACK.  The 

main idea is that if node A sends a message to an intermediate node B which is within 

close radio range, node A should be able to hear when node B sends the message to the 

next node C on route to the final destination (the base station).  Up until the point when 

node A hears node B forward its message node A would continue to hold the message in 

a queue. If enough time goes by without node A hearing a rebroadcast it will assume that 

there is a problem with node B and will broadcast again asking a different neighbor to 

forward its message along.  In this example we are using node B’s rebroadcast as an 

implicit ACK.   

While there is no dedicated ACK packet which would affect battery life we are 

able to get functionality close to this by listening to the rebroadcast message that would 

have been sent anyways and hence add no further energy usage to the system on 

successful transmissions.  The exception to this rule is when the messages gets one hop 

away from the base station; since the base station does not need to rebroadcast the 

message there will be no packet to use as a pseudo-ACK.  In order to prevent messages 

that have made it all the way through the network from failing on their last hop we have 

the base station and only the base station send explicit ACK packets for data that it 

receives.  We do not believe this should be an issue for energy-efficiency as the base 

station is often a less energy limited node than the other nodes in the network.    It is 

important to note that our scheme could easily be used with explicit (separate) ACK 

packets but as our radio models will use generally symmetrical radios and our MAC layer 

allows us to overhear neighbor’s messages we believe that it is appropriate to try and 

save energy by skipping these explicit ACK packets.   
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Figure 8: A flowchart of the important steps in the fault tolerant algorithm. 

 

In Figure 8 a full view of the algorithm is presented.  Notice that when a node has 

something to send, it adds the message to a message queue (step 1).  The length of this 

queue is the first parameter that can be changed for different applications.  If the 

application happens to cause a lot of traffic it might need a larger queue length.  

Developers may also wish to give a larger queue to nodes that are more likely to have 

high traffic such as those closer to the base station.  A node will be able to confirm 

rebroadcasts of every message so long as the queue is not overrun.  In the event of a 

queue overrun, messages that are sent while the queue is full will still be sent but will not 

be monitored by the fault tolerant software.  

In step 2 the node sends the message to its parent node (determined by the 
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underlying TinyOS multi-hop router) and starts a timer that sets the length of time that 

the node will wait to hear the message rebroadcast.  The value of this timer is another 

parameter that can be set by developers and has a number of implications.  If the timer 

length is set very high it will delay messages that require re-routing during their trip to 

the base station more than is necessary.  A high timer value also means it takes longer for 

messages to leave the queue increasing the chance of the queue becoming full. There is 

also a danger in setting the timer value too small and causing retransmissions that are 

unnecessary.  This could happen if the next-hop node is fault-free and was going to 

retransmit the message but was busy for the timer duration.  Reasons for a node 

remaining busy could be blocks of code that disable interrupts or a long radio queue 

causing the message to wait for awhile in the queue. 

After the timer is started, the fault tolerant software will be idle until the timer 

expires.  During the time that the timer is running, radio messages that are heard are 

checked against any of those in the queue to see if there is a match, if there is a match a 

flag is set on the queue slot saying that the message was heard.  When the timer expires 

the node checks (step 3) if a match for the message has been heard to signify that the 

parent received the message and is attempting to send it to the next node, if this is the 

case the node needs to take no further action for this message which is then removed 

from the queue (step 7). 

If when the timer expires there has been no match, we check to see if there are 

any retry attempts left (step 4).  The number of retry attempts that a node will make is the 

third and final tunable parameter of the algorithm.  Increasing the number of retry 

attempts will increase the chance of messages getting through but it will also increase the 
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overall energy usage of the network.  We leave this as a parameter because some 

applications will care more about every event than others will.  Similar to the queue 

length parameter it could be that nodes in certain parts of the network would be 

programmed with a different value for retry attempts.  If all of the retry attempts have 

been used up, the node gives up on the message, removes it from the queue and goes 

back to waiting for its next message (step 7).  However, if there are still retry attempts 

available, the node will run a “next best neighbor” selection algorithm (step 5) in order to 

determine which neighbor it should ask to forward the message for it.  Once this scheme 

has chosen a node to re-route through it will broadcast the message to the selected 

neighbor and again start a timer (step 6).  If the node that is asked to re-route hears the 

request, it takes over the responsibility for the message and attempts to send it along its 

own pre-determined (by the TinyOS multi-hop router) best path to the base station. Just 

as before, the original node will monitor messages heard while the timer is running to 

look for a match.  If a match is heard then we are done, if a match is not heard the cycle 

(step 4, step 5 and step 6) of checking the retry attempts, running the next best neighbor 

decision scheme and sending to that neighbor is repeated until a rebroadcast is finally 

heard or all of the retry attempts are used up. 

3.2. Next Best Neighbor Selection Scheme 

 

The next best neighbor selection scheme is a simple, independent algorithm 

within the fault tolerant algorithm.  Changing this scheme will not affect the rest of the 

software’s operation.  This is convenient because it allows us to easily test certain 

methods against others and also allows us to use different algorithms in different 

applications.  In this section we examine two static next best neighbor selection schemes.   
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Figure 9: The next best neighbor selection algorithms.  The circled node is the one 

which is running the algorithm and each dashed line represents a depth increase in 

the routing tree.  The rankings of nodes of a given depth with each selection 

algorithm is shown  

 

We term them static because they do not take into account any of their past successes or 

failures when making a decision.  It is important to note that they both use the fact that 

nodes know the depth of their neighbors in the network through a four bit field that we 

have added to the header of any outgoing messages that uses our fault tolerance software.  

The field is loaded with the node’s current depth in the network at the time of 

transmission.  When others nodes hear the message, even if they are not the parent, they 

can see which node sent it and its current network depth and update it in their local table 

of neighbors. 

3.2.1 Choose the Neighbor that is Closest to the Base Station 

 

The simplest way to pick the next best neighbor is to look at the list of known 

neighbors and rank them based on their distance from the base station.  This means that if 

node A has three neighbors, two of depth two and one of depth one then it will choose to 

send to the neighbor of depth one.  If it happens that there are multiple neighbors that 
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have the same depth a random number is generated to choose among these neighbors.  To 

make sure that we are not wasting all of our attempts on a node that has failed entirely, 

we never send to the same node on two consecutive retries unless the sending node has 

exactly one neighbor.  An example of this ranking behavior is shown on the left side of 

Figure 9 and Figure 10. 

3.2.2 Choose the Neighbor that is Closest to the Node 

 

A safer way to pick the next best neighbor is to choose a node that is close by in 

the network.  Since we would like whenever possible to move closer to the base station 

with each hop, the node looks for neighbors that are one step closer to the base station 

than it is.  If there is no node one step closer to the base then it looks for a node that is 

two steps closer to the base, continuing this until finding a node.  Similar to the previous 

algorithm we never send to the same node on consecutive tries and break ties using a 

random number.  An example of this ranking approach is shown on the right side of 

Figure 9 and Figure 10.  

 The idea behind the two different schemes is that while we think that being 

conservative and using the neighbor closest to the node should almost always give 

equivalent or better transmission success rates we believe that in more benign 

environments the neighbor closest to the base method could provide similar success rates 

for less energy.  This is because we are able to reduce the number of hops that a message 

has to take on its path from source to base station.  The closest to base method may also 

benefit from the fact that it is reducing the number of points of failure as opposed to the 

closest to node method.  
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Figure 10: The two different approaches to choosing the next best neighbor.  The 

circled node attempts to send a message (A) to its parent node but the transmission 

fails.  It then runs the next best neighbor selection scheme and re-routes the message 

through another node (B). 

 

3.3 Results 

As previously mentioned we have done small scale hardware experiments to test 

the validity of the algorithm.  These experiments involved deploying motes with light 

sensors throughout a building with a base station mote attached to a laptop in one corner 

of the building.  While we only used twelve motes this was enough to have a few nodes 

at depths of one, two, three and four.  When a light in a motes area was toggled on or off 

it would send a message to the base station laptop which had a java program listening on 

the serial port and would report which area of the building the light had toggled.  Using 

this setup we could inject faults by physically disabling motes right before toggling a 

light.  When we ran the tests without the fault tolerance software it would often take two 

or three light toggles before we would actually see it at the base station, even with no 

faults injected into the network.  With the fault tolerant software enabled we would see it 

at the laptop on the first light toggle the vast majority of the time.  In most cases we were 
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Figure 11: An approximate layout of the hardware experiment performed to verify 

software functionality.  The test actually took places on two floors with this same 

room layout.  The nodes that were on the second floor are depicted with circles. 

 

also able to turn off the node’s parent and see it successfully re-route the message.  An 

approximate layout for this hardware experiment is shown in Figure 11. 

In order to test our design more thoroughly we needed to employ a test bed that 

would allow us to produce results at a reasonable pace while still providing accuracy 

towards our goal of a solution that works on real mote hardware.  The problem with 

actual hardware tests is the time it takes to deploy even a small mote network and test 

that the radio links are working.  This is exacerbated by placing the nodes in the same 

location each time and attempting to run the experiment before realizing there is a minor 

code bug and all the nodes must be collected, reprogrammed and redeployed.  As a 

solution to this we decided to gather our results using the TinyOS simulator TOSSIM [3]  
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and its accompanying Graphical User Interface (GUI) TinyViz.  This simulator gives us a 

good approximation of real world TinyOS applications and allows us the flexibility we 

need to run many different types of tests.   

While there are a number of more advanced general-purpose network simulators, 

TOSSIM is a good choice because it allows us to run the simulations using the same 

TinyOS code modules that we would then use on the real hardware.  In order to build a 

TOSSIM input you take the same code that you have been compiling for the hardware 

and compile it with a different flag.  This means that if the code works in TOSSIM you 

have moderate assurance that it will work in your real motes.  While there may be some 

small timing issues that crop up due to idealizations in the simulator, the core 

functionality is exactly the same.  This is important for our work as we want to have a 

system which would be implemented in TinyOS software as opposed to some other more 

popular language with the claim that it could be implemented for TinyOS.  Writing 

TinyOS modules also allowed us to be well aware of exactly what functionality is 

provided by the operating system and what the limitations were with both it and the mote 

hardware. 

The simulation runs that were performed usually consisted of a set number of fifty 

nodes.  We chose the number fifty because it produced results very close to those from 

runs with hundreds of nodes but allowed the simulator to run much faster.  The time it 

takes to run a simulation increases at a superlinear rate meaning for example that running 

a one hundred node simulation would take four or five times as long as a fifty node 

simulation.  In all of the simulations we will have a certain probability of nodes 

experiencing a transient failure preventing them from sending or receiving messages 
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from other nodes for a varying period of time.  On top of this we use a lossy radio model 

built into TOSSIM to simulate radio collisions and bit level errors in packet 

transmissions.   

In our tests there are a number of different parameters that we commonly set.  The 

first two parameters are for the algorithm which was discussed previously; the number of 

times to retry and the way that we choose who the next best neighbor to send to is.  The 

simulator also allows us to have a simulation parameter of the network layout.  The final 

parameter in our simulation runs is what is known as the Distance Scaling Factor (DSF).  

The empirical radio model used in TOSSIM is a lossy radio model that provides bit level 

error rates on transmitted packets. The error rates that it uses come from data acquired 

through real mote radio tests.  The model works by taking the distance between two 

motes and computing a bit-level error rate for a transmission between the two based on 

the hardware tests [3]. What this means is that by increasing the DSF we are able to keep 

our layout exactly the same but increase or decrease the error rate of radio transmission 
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Figure 12: The percentage of data that reaches the base station as the DSF changes. 



24 

between nodes. Therefore, the DSF is essentially an environment factor, if we keep the 

layout the same and increase the DSF we increase the success rate of transmissions 

between every pair of nodes in the network.  

The first set of tests that we present involves increasing the DSF and the radio 

error rate while keeping the layout and number of retries the same.  For these tests we use 

four maximum retries and a “grid random” layout which distributes the nodes randomly 

about a set area.  From these tests we calculate both the percentage of data that 

successfully arrives at the base station and the average number of radio transmissions for 

each message generated by a node as a measure for the energy.  The results of these runs 

can be seen in Figures 12 and 13.  We can see from these graphs that while the basic 

multi-hop router gives a 62.5% success rate at the lowest DSF it goes down as low as 

43.5% at higher error rates.  We can also see that the fault tolerant scheme provides a 

substantial benefit even at low error rates and becomes even more advantageous at higher 

Energy Vs. Transmission Error Rate

5.34
6.02 6.22

6.64

7.26 7.31

6.39

5.50

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.75 1.00 1.25 1.50

Distance Scaling Factor

Closest to Node

Closest to Base Station

A
v

e
ra

g
e

 N
u

m
b

e
r 

o
f 

T
ra

n
s

m
is

s
io

n
s

 p
e

r 
D

a
ta

 

M
e

s
s

a
g

e

 

Figure 13: The average number of radio transmissions sent per data message 

generated as a measure of energy usage. 
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error rates.  The fault tolerant scheme will eventually break down when the DSF exceeds 

2.0; we do not show this on the graphs as at this point the success rate without fault 

tolerance is close to zero.  It would appear that the Closest to Node method of choosing 

neighbors is better than the Closest to base station method until we look at the energy 

graph (Figure 13).  This reveals that the Closest to base station method generally uses 

slightly less energy.  Looking at the DSF of 0.75 case we see that the energy used, much 

like the success rate shown in Figure 12 is almost identical.  However, when we look at a 

higher DSF such as 1.25 we can see that the closest to base scheme is only sending 6.22 

messages per piece of data while the closest to node is sending 7.26 which is a 14.4% 

increase. 

While these results are promising the fault tolerant scheme is providing much 

more than the higher global success rate shown in Figure 12.  Another, probably more 

important, benefit it provides is that its success rate holds fairly constant throughout the 
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Figure 14:  The success rates as a function of the nodes depth in the network.  The 

dashed columns represent the percentage of the overall network energy that a node 

at this depth uses. 
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network.  For example, the total message success rate in Figure 12 at a DSF of 0.75 

without fault tolerance is 62.5%.  However, this is not a constant success rate for all 

nodes in the network.  In Figure 14 we show the success rate for each of the different 

node depths (hops to the base station) in the network.  We see that at a depth of one 70% 

of messages succeed while at depth four it drops to as low as 20%.  This clearly shows 

that while the total success rate is not so bad, the base station actually barely knows 

anything about the parts of the network that are further from it.  We can see that with 

fault tolerance this problem is avoided and we have a fairly constant success rate for all 

depths.  The benefit of this goes beyond just the base station having a good view of the 

network at four hops because there will be applications where far more than fifty nodes 

are required.  Without re-routing there is almost no point to trying to expand the network 

as the success rate will be close to zero on any nodes further out than four hops.  With re-

routing however, we see only a slow gradual decay of the success rate as the network 

expands.  Figure 14 also confirms that the further out from the base station the less 

energy a node requires.  We can see that nodes of depth one use twice as much energy as 

nodes of depth three.  In order to deal with this the density of nodes in a mote deployment 

should increase as they get closer to the base station, or alternatively the nodes closer to 

the base station could be outfitted with a larger energy supply. 

 The next parameter that we examine is what happens when we change the 

maximum retry threshold.  In order to do this we again keep the layout constant 

throughout the tests using a random distribution within a specified area.  This time we 

also hold the DSF (and hence the transmission error rate) constant at 1.50 and test only 

using the Closest to Node neighbor selection algorithm.  Here we are interested in both 
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Figure 15: The effect of the retry threshold (left axis, solid line) on the data success 

rate and the percentage of energy used by the system re-routing algorithm (right 

axis, dashed line). 

 

the effect on the success rate of data reaching the base station and the energy used by the 

algorithm.  The results are shown in Figure 15.  Examining the graph we see that while 

there is a notable 12% difference between one and two retry attempts, adding more retries 

gives diminishing returns of 4.4 % from 2 to 4 retries and 1.6%  from 4 to 6 retries.  Most 

applications would likely decide to go with the two retry attempts but if each and every 

packet of data was of the utmost importance they might go as far as to use four or even 

six for the maximum number of retries.  Another possibility would be a system that uses 

a different number of retries for messages that are more important. 

 In Figure 15 we present the percentage of the total network energy that is spent 

sending re-routing packets.  This is interesting for two reasons.  First, it shows that as the 

retry attempts go up past two, more of the energy is being spent on re-routing messages 

but the overall success rate is not improving by much.  Second, this shows that even in a 

harsh environment, using two retries, the re-routing packets only constitute 47% of the 
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energy in an environment where each message has a 60% chance of at least one error.  

This may sound like a large number until we look at a simple approximation for the 

energy overhead of a multi-path alternative.  Assume that messages fail on their way to 

the base station with the same rate of 60% and that they do so half way from the source 

node to the base station such that a node of depth h has a 60% chance of causing a resend 

of h/2 messages.  On successful messages we need 2h messages to get the data to the base 

station and the ACK packet back to the source.  This means that even if every message is 

successful the energy contribution from the ACK packets is 50%.  This number is already 

higher than our overhead with a 60% failure rate and when compared to our algorithms 

zero overhead on successful messages looks even worse.    In the case of failures 2.6h (2h 

for a successful message plus .6h caused by the 60% failure rate) messages are needed.  

So, on average each message requires 2.3h messages and the power overhead is 57%.  

This number would be much higher if we had taken into account failures on ACK 

packets, multiple failures for the same message, failures that occur closer to the base 

station requiring more overhead and the fact that nodes with larger h have a higher 

chance of failing.   
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CHAPTER 4 

NEIGHBOR SELECTION SCHEMES WITH LEARNING 

4.1 Motivation 

 The neighbor selection schemes that we have examined so far are all relatively 

static in nature.  It is possible that the multi-hop router decides to change the assigned 

parent of a node (and conversely its depth in the network) but this is a rare event which 

becomes even rarer as the network routing tree settles into a steady state.  While these 

algorithms are able to increase the reliability of the network substantially, the fact that 

they are static remains a serious flaw.  The main conceptual reason for this is that if two 

nodes have the same depth, this does not mean they are necessarily geographically close.   

Consider the example, illustrated in Figure 16, where some node A wishes to send 

a message and has two neighbors, B and C, which have the same depth.  The static 

algorithms would treat these nodes the same.  However, it could be that node B is 

geographically close to node A and a good choice to route through while node C is far 

away, just barely in radio range, and hence has likely a less reliable radio link than node 

B.    While it might be that node C is far enough away that node A almost never hears it  

 

Figure 16: An example of a problem that can occur when nodes make decisions 

simply based on depth in the routing tree. The circles represent the radio range of 

node B and node C. 
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and hence does not have it on the neighbor list very often, problems can arise if node A 

only hears one out of every ten messages from node C  but has not removed it from the 

neighbor list.  We can not solve this problem by simply removing nodes from the 

neighbor list if we do not hear a lot of traffic from them because the node may be a very 

reliable link and just not have dad any data to send due to a lack of events in its sensor 

range.  This means that even though node A does not hear from C very often, A does not 

know if this is because C is on a poor radio link or just does not have much to say.  We 

wish to try and lessen the negative effect that this has on our network despite the lack of 

geographical information from the nodes.  In order to do this we will make the nodes 

learn and modify their behavior based on their past successes and failures with each 

neighboring node. 

4.2 Approach 

The general process of the learning scheme will be the same as was shown in 

Figure 8 and discussed previously.  The only difference will come in the step when we 

run the next best neighbor selection scheme, this step 5 in Figure 8.  The new scheme will 

create a total score for each of the neighbors based on two factors.  The first factor which 

we call the “static” factor is generated using one of the previous algorithms, for example, 

closest to neighbor.  Each node depth is given a point value under this scheme, for 

example a node may choose to give 10 points to nodes one hop closer to the base station, 

5 points to nodes two hops closer to the base station and 2 points to nodes three hops 

closer to the base station.   

The second factor that contributes to the total score is the “learned” factor.  The 

learned factor is kept track of independently for each of the nodes neighbors.  The learned 
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factor starts at some initial value and then is modified whenever a node asks another node 

to forward a data packet for it.  If the neighbor does successfully forward the packet its 

score will grow larger by some value and if it fails to forward its score will decrease by 

some value.  These two values do not necessarily have to be the same; nodes could add 

one point to a neighbor that properly forwards a packet but subtract two points whenever 

a neighbor fails to forward the packet.   

Another important aspect is to balance the maximum possible score from each of 

the two factors as well as their respective starting points.  We would like the numbers to 

work out such that for the first few packets sent by a node it places most of its emphasis 

on the base score and only once it has learned a bit about its neighbors will it start to 

favor the learned score.  Once the node has sent a substantial number of packets the base 

score should have little affect on the neighbor selection process. 

 Once the node has calculated the total score for each neighbor it has to decide 

which neighbor to send to.  There are two different ways to do this.  The simplest way is 

to examine all of the scores and find the neighbor with the highest possible score.  This 

neighbor is then picked and asked to forward the message.  We call this method 

deterministic because given a certain set of node scores it will always select the same 

node.  A slightly more complicated method is to use the scores as weights in a random 

selection process, we call this method non-deterministic because the node with the 

highest score is not necessarily selected during a given transmission, it simply has the 

highest probability of being selected for a given transmission. 

  An example of these two behaviors is a node with three neighbors, two with 

score 15 and one with score 20.  In the deterministic version of the algorithm the 
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neighbor with score 20 will be chosen as the next best neighbor until it fails to the point 

that its score drops below 15.  In the non-deterministic case for this same example the 

sending node will add up the scores, in this case 50, and generate a random number from 

zero to this sum.  The sender then will select the node that the number corresponds to.  In 

our example if the random number is between zero and 15 the first neighbor will be 

selected, if it is between 15 and 30 the second neighbor will be selected and if it is 

between 30 and 50 the third neighbor would be selected.  This method is non-

deterministic because it will not always ask the same node to forward when presented 

with a certain set of scores.   

We expect that the non-deterministic method will perform better than the 

deterministic method in situations where long transient (losing radio contact for as long 

as a few minutes) and permanent failures occur more often than errors caused by the 

wireless environment.  Consider the case of a neighbor that has been performing well and 

forwarding all messages until it suddenly undergoes a transient failure, the deterministic 

method will continue to try sending through this node, failing each time, until its learned 

score finally decrements past some other node.  In this same situation the non-

deterministic approach may select a different node and succeed on each attempt.  

Conversely we expect the deterministic method to work better if errors are predominantly 

caused by radio transmission problems.  This is because if a node sends to a neighbor 

with the highest score and the error is caused by a packet collision or corrupted data bit 

the next transmission has a high probability of being successful, the deterministic method 

will likely try this node again while the non-deterministic method could end up trying a 

lower probability neighbor. 
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4.3 Results 

 

We first compare the success rate and energy that is used with and without 

learning.  We would hope that with the learning algorithm added we would have an 

improvement in both success rate and energy usage.  This stems from the fact that if 

nodes know who the better choices are to forward to, they should save energy because 

less retries are required and likewise the success rate should go up as we are only trying 

the “better” nodes.  This comparison is shown in Figure 17.  Here we see both the energy 

and success numbers for the cases of with and without learning.  We can see that with 

learning we have either equal (at very low environment error rates) or better throughput 

to the base station with a 5% difference when the DSF is 1.50, this can be attributed to 

nodes on the outskirts of radio range receiving low scores and hence not being tried.  

Additionally, the energy used with learning is either equal (again at very low 

environmental error rates) or better in all cases due to having a higher probability of 

succeeding on the first guess.  

We next examine the differences between the deterministic and non-deterministic 

approaches.  As mentioned we expect that which one performs better would depend on 

how prevalent transient node failures are.  To this end, we examine the effect of 

increasing the rate of transient failures while holding the radio environment constant.  

Transient failures are important because they model a different failure mode than a bit 

level transmission failure.  When a message fails due to a bit error or a message collision 

the node that was the intended recipient will still be available to receive the 

retransmission whereas if the node is in a transient failure state it will not be able to. 
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Figure 17: Comparing the success rate and energy between using learning and not 

using learning.  The solid lines represent success rates and align with the left hand 

axis, the dashed lines represent energy and align with the right axis. 

 

In Figure 18 we see compare the learning algorithms with the two different 

methodologies.  The simulation runs involved fifty nodes and used the DSF of 1.50 in 

modeling the radio transmission error rate.  We see an interesting behavior that when 

errors due to transients are low (on average 6 nodes with transient faults at any given 

time) and the radio errors dominate, the deterministic algorithm works better with a 

success rate of 75% as opposed to 70% in the non-deterministic case.  At as the rate of 

transient failures increases to about 12 nodes with transient faults, we now have a 5% 

advantage in favor of the nondeterministic algorithm.  As we expected, the deterministic 

method is better at figuring out what nodes have good quality radio links and sticking 

with those nodes whereas the non-deterministic method is more robust in the face of 

nodes undergoing longer errors that will affect subsequent message transmissions. 



35 

Learning Algorithms with Transients

65

75

42

53

70
65

58

51

30

50

70

90

6 9 12 15

Expected Number of Nodes in Tranisent at Once

Non-Deterministic

Deterministic

D
a

ta
 R

e
c

e
iv

e
d

 (
%

) 

a
t 

B
a

s
e

 S
ta

ti
o

n

 

Figure 18: The success rates of the two different learning schemes as the rate of 

transient failures in the network varies. 

 

Due to the nature of the learning algorithm there are some small tweaks we can 

try.  Consider that there are a number of different rates which we can control.  The results 

shown in Figure 18 used a linear increase and decrease (one positive point on a success 

and one negative point on a failure) for the learned score.  One of the problems with this 

is that the nodes learn very slowly.  In analyzing the simulation output it was clear that 

there were a number of instances where the learning was so slow that by the time it 

learned that a node was undergoing a failure, that node was already recovering from the 

failure.  This would sometimes lead to a case where the algorithm would actually be 

performing worse than with no learning at all. 

In order to avoid these types of problems we want the algorithm to learn faster.  In 

Figure 19 we show that just one small tweak to the learning can increase the success rate 

by about five percent.  Instead of using a linear increase and decrease we reward 

consecutive failures and successes, i.e., the first time a node fails to forward it loses one 
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point, if it then fails again it loses 2 points, then 3,4,5, etc.  The gain in success rate 

would be even larger in a higher throughput network.  This is because even with the 

faster learning if a node only tries to send to a failed node 2 or 3 times while it is in a 

failed state there is not enough time to truly react to the situation.  Most of the benefit in 

our experiments came in the nodes that receive a lot of intermediate routing traffic, and 

hence in a busier network more nodes would be seeing these benefits.   

Learning Speed Comparison

51

58
65

70

74
67

61

53

30

50

70

90

6 9 12 15

Expected Number of Nodes in Tranisent at Once

Double

Linear

D
a

ta
 R

e
c

e
iv

e
d

 (
%

) 

a
t 

B
a

s
e

 S
ta

ti
o

n

 
Figure 19: The benefit that a small change in the learning mechanics can provide.  

The solid line represents a linear increase or decrease in score whereas the dashed 

line rewards nodes by doubling the score increase or decrease whenever consecutive 

successes or failures occur. 
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CHAPTER 5 

COORELATED EVENTS 

5.1 Motivation 

 

 In all of the experiments that have been discussed so far events occurred at a 

single node independently of other nodes, so long as the node was not in a transient error 

state.  This was done primarily because the simulator does not have any built in support 

for correlated events.  However, in a real world situation it is likely that events will be 

tightly correlated as opposed to independent.  Most sensor network applications involve 

nodes with a sensor looking for some type of physical event, be it sensing lightning 

strikes or a battlefield situation where nodes are detecting movement through a field.  

Most of these types of events are likely going to be large enough that multiple nodes in 

the same general area will see it at the same time.  We would like to be able to model 

these types of events into our simulations to see what sort of effects it has on our system 

and what changes it might imply. 

 The biggest problem that arises when correlated events exist is that a certain area 

of the network will be flooded with many different messages which will cause 

forwarding queues to fill up on nodes and also increase the probability of radio collisions 

in the area of the event.  This may have a negative impact on both the success rate of 

messages reaching the base station as well as the energy being used.  This means that 

fault tolerance will likely play an even bigger role than it did in previous results in getting 

information to the base station.  We expect that once the data makes it through the first 

“burst” of many nodes reporting at once that the throughput should remain fairly close to 

what it was when we had events appearing independently from different areas of the 

network.  The question is how good we can do during this initial burst. 
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5.2 Approach 

 

Figure 20: The process for simulating correlated events.  The starred node is the 

node that generates the event, the nodes with exclamation points check to see if they 

will generate a correlated event. 

 

 TOSSIM does not have any built in support for correlated events so we will 

simulate them in the software that runs on our nodes.  We create correlated events by still 

be generating events at random at each node as they were before but simply at a lower 

rate.  Once an event is generated at a node that node sends out a special packet with a 

particular flag bit set high, we call this the beacon frame.  When the neighbors of this 

node see the message with the flag bit set high they know that the packet is an original 

(just generated) event and that they should perform a probabilistic calculation to see if 

they will generate a correlated event.  We call this probability the correlation factor as 

increasing it will result in more nodes participating in each event.  It is important to note 

that only this first message immediately following the event generation will have the flag 

bit set high.  This restricts the possible correlated nodes to those within radio distance of 
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the generator and in practical terms creates a correlated event which has the original 

generating node at the center of all the nodes that report the event.  This process is shown 

in Figure 20.   

5.3 Results 

 

 To test whether having correlates messages has a large impact on the throughput 

of the network we performed a number of experiments using the same fifty node layout, 

held the number of retries constant at four and did not alter the decision making process 

or leaning behavior in any way.  There are two variables here, the first is the distance 

scaling factor and the second is the amount of correlation between nodes.  

 We performed tests using the usual DSF values of 0.75, 1.00, 1.25 and 1.50 with 

different correlation factors.  By correlation factor we refer to the probability that a node 

generates a correlated event along with the neighbor that originally generated the event.  

If the correlation factor is 10% then we can expect 10% of a node’s neighbors to also 

generate a message.  The three correlation factors that we examine here are 15%, 30% 

and 60%, these we chosen because they show the break point where correlated messages 

really start to influence success.  To give a better idea of what these percentages 

represent, in the case of a CF of 15% we saw on average of 3.28 nodes seeing each event.  

With a CF of 30% we see 5.19 nodes seeing each event and with a CF of 60% we see 

8.33 nodes for each event.  Note that the number of nodes reporting an event does not 

quite double when the correlation factor is doubled; this is due to the original node 

always reporting the event.  In the case of CF being 15% we actually have 2.18 
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Figure 21: The effects of the correlation factor and the distance scaling factor on 

message success rates. 

 

 “correlated” nodes which also see the event, doubling this and adding the original node 

we get a value of 5.36, very close to what we see with the CF being doubled to 30%. 

 In Figure 21 we have plotted for the three different correlation factors the 

percentage of data received at the base station.  The different data plots represent the four 

different values used for the distance scaling factor.  This graph shows us some very 

interesting things about the affects of correlation.  We first examine what happens when 

we move from a 15% CF to one of 30%.  In this case it is clear that the correlation factor 

affects the throughput to the base station but it is not the dominant factor.  This can be 

seen by looking at the success rate at 15% CF and DSF of 0.75.  At this point we see a 

93% success rate.  From this point, if the DSF is increased to the worst possible scenario 

of 1.50 the success rate is reduced to 87%.  Likewise, if we keep the DSF at 0.75 and 

instead increase the CF to 30% we also end up at an 87% success rate.  This means that 

even a small increase in the CF is equivalent to a large increase in the radio error rate.   
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Figure 22: The effect of the correlation factor and the distance scaling factor on the 

number of messages required for each event. 
  

Next we look at what happens if the CF is again doubled from 30% to 60%.  If we 

look at the point where CF is 30% and the DSF is 0.75 we are at the 87% success rate 

mentioned previously.  If we now increase the DSF to 1.50 the success rate sees a drop 

similar to in the previous case, down to 83%.  However, if we keep the DSF at 0.75 and 

instead increase the CF to 60% the success rate drops to 74%.  At this point the 

correlation factor has reached the point where it influences the simulation results even 

more than the radio environment in terms of throughput. 

 We now examine Figure 22 which looks at the energy consequences of correlated 

messages.  While the increase in collisions is a strong force in the success rate of 

messages it is an even larger factor in the number of messages that nodes have to send 

and hence in their energy usage.  If we look at the point where CF is 15% and the DSF if 

0.75 we are seeing approximately 9.04 messages per event over its lifetime in the system.  

Increasing the DSF all the way to 1.50 only increases this to 9.78, however if we increase 
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the CF to 30% the number of messages per event shoots up to 10.67, more than double 

the increase from doubling the DSF.  This point is shown further by the general behavior 

of the curves as we increase the correlation factor.  We can see that at CF of 15% the 

curves are still distinct but as we move up towards a CF of 60% the number of messages 

is almost identical regardless of the DSF. 

5.4 Combining Correlated Messages 

 

 In section 5.2 we saw results showing that the more nodes which report an event 

the harder it is for each individual message to make it through successfully.  It was 

stressed that the main motivating factor is that the area of the network which contains the 

event will have a large burst of traffic that can increase collisions and hence the failure 

rate of data making its way through the system.  One interesting extension of this is to 

look into ways to decrease the number of messages that we are sending by combining 

similar messages into a single message.  We have implemented a basic system in order to 

try and quantify the difference in both success rate and energy usage when there is a 

smaller number of messages. 

 The main idea of the combination approach was based around assigning different 

weights to messages that are now going to represent multiple other messages.  When a 

node receives a message that it is supposed to forward along through the network it will 

no longer immediately send the message along but instead hold it for a short period of 

time.  During this frame other messages that come in are checked to see whether they 

have a similar payload and if they do, they will be combined into one message with a 

“weight” field set to the sum of the individual weights.   
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Figure 23: An example of how messages are combined in order to lower the number 

of transmitted messages. 

 

 This time frame is a parameter which when set to be too short could cause 

potential combinations to be missed but when set to be too long could have a detrimental 

affect on the latency of the network.  This parameter would have to be adjusted based on 

latency requirements of a particular application.  It is also important to make sure that this 

timer is not set longer than the time at which the fault tolerant software assumes that a 

message failed,  otherwise the fault tolerant software would always think that its message 

was not received when it actuality it was received but it being held to check for 

combinations.  This would quickly escalate into a situation were nodes were not only 

failing to have their messages heard at the base station but were also quickly draining 

their energy supply. 

Another interesting point is how do we make the decision that two messages are 

“similar” and can safely be combined.  We assume that there is some byte(s) that specify 

the sensed value which represents the event.  Since we can not expect the sensed vaules 
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by two nodes to be identical we also select a precision factor.  For example if the 

precision factor was set to 25 and the first message received had a value 850 then any 

message received (during the waiting period) with a value between 825 and 875 would be 

combined into a new message with the value corresponding to the average of the values 

before the messages were combined. 

While this system is fairly simple it still goes a long way in accomplishing the 

goal of reducing the number of messages generated by the event.  Since all of the nodes 

who sensed the correlated event are in the same geographic area there is a high 

probability that they forward through the same intermediate nodes.  If instead of having 

to copy four different messages with the same event through five hops to the base station 

we only have to move four copies through one or two hops and then have one message 

with a higher weight for the last three or four hops we can clearly save a great deal of 

energy and possibly increase the success rate.  An example of message combining is 

shown in Figure 23 where there are four nodes that initially see some event and send a 

message with weight one.  The two nodes that route these four messages each combine 

two messages with weight one into a single message with weight two and send this 

message on to their parent node.  This parent node receives two messages of weight two 

and combines them into a new message of weight four, this message is then forwarded 

through the network until it reaches the base station.  One potential problem is that if we  

combine four messages from the same event into one new message and then that one new 

message is lost on its way to the base station, the penalty is much higher than if we had 

lost one or even three of the original four messages. 



45 

 
5.4.1 Results 

 

 We performed simulations to examine the effects of message combination on the 

energy usage of nodes as well as the percentage of original messages that successfully 

make it to the base station.  In these experiments we held the layout constant and used 

fifty nodes.  We also set the number of retries to four and did not vary the selection or 

learning protocols.  The two parameters that are varied are the distance scaling factor and 

the correlation factor, similar to the results shown in section 5.3. 

In Figure 24 we look at the affect of message combinations on the success rate of 

messages in the system.  As in previous experiments we use all four distance scaling  

factors though we will only look at two different correlation factors, that of 30% and 

60%.  We will look at each of these correlation factors without combing similar messages 

and then with combining enabled so that we can see the comparison, this makes up the 
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Figure 24: The effects of the combining correlated messages on the success rate of 

messages in the network.  The dashed lines represent the case of not combining and 

the solid lines represent what happens when we start combining. 
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four different plots.  Looking at the graph we see that the fear of lowering the systems  

success rate is indeed a real issue.  The difference does not greatly depend on the DSF or 

the CF as the difference between the two stays relatively close.  At the two extremes we 

see a 5% drop (from 87.12% to 82.14%) with a CF of 30% at DSF of 0.75 and a drop of 

7.5% (from 68.82% to 59.64%) with a CF of 60% and DSF of 1.50.  The reason behind 

this drop is that we are combining messages into a new one that now carries more 

importance.  This means that if we lose a message of weight four we pay the penalty as if 

we had lost four messages of weight one. 

One important note is that these numbers represent the probability of a single 

message reaching the base station.  This means that while we are slightly decreasing the  

probability of a message reaching the base station, the probability of each event being 

heard at least once is still greater than 99% in all cases (due to the fact that all of the, on 
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Figure 25: The effects of combining correlated messages on the number of 

transmissions required for each original message.  The dashed lines represent no 

combinations and the solid represents the case of combining similar messages. 
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average, 5+ messages would have to fail for the event to get unnoticed).  This means that  

we are not in any danger of missing an event entirely, but only in danger of 

underestimating the magnitude of the event. 

 While the loss of messages is certainly a concern we hope that it can be justified 

with a savings in the number of transmissions required.  In Figure 25 we see that this 

should be the case for all but the most stringent applications.  We plot the same four data 

sets as in Figure 24.  Consider the data point with a DSF of 0.75 and CF 60%; in Figure 

24 we saw that combining messages lowered the success rate by 5.5%, however we see in 

Figure 25 that the number of transmissions drops from 11.39 to 7.75, a 32% decrease!  

When we look at another point with a higher DSF of 1.50 and CF of 30% we still see an 

improvement from 10.95 to 7.84 or 29% savings as opposed to the 7% difference that we 

saw in success rates.  This shows that our energy savings far outweigh the loss in 

message success rate, especially when we consider the previously mentioned fact that we 

are not missing events, just possibly underestimating their magnitude. 

5.5 Weighted Retries 

 

 We have previously discussed the reason that correlated events are important and 

how to implement them in our simulations.  We saw that when more nodes see the event, 

not only the amount of energy increases but the probability of a particular message 

making it to the base station goes down.  We attempted to resolve some of these issues 

using the combination scheme discussed in 5.4 and saw great success in reducing the 

amount of energy used.  As discussed in 5.4.1 however, the success rate of messages 

from their original source to the base station actually went down. 

 When first considering this result it seems counterintuitive.  If we lower the 
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amount of traffic flowing through the system, why should we see less of our messages at 

the base station?  Shouldn’t the lack of traffic lower the possibility of collisions and 

interference and increase the success rate?  The problem here is that our fault tolerant 

scheme was built assuming that all of the messages deserved the same treatment.  If the 

number of retries for a particular application was set to 2 then every message will receive 

2 forwarding attempts from nodes along its route in the case of failure.  However 

consider a message that has a weight of 5.  This means that 5 different nodes reported the 

event and all of that information has been combined into one message.  If we treat this 

message the same as a message with a weight of 1 then we are not appropriately scaling 

the level of protection with the importance of the message.  

 In order to try and fix this we looked into scaling the number of retries with the 

importance of a message.  To do this we use a simple multiplier on the base number of 

retries that is provided for the application.  Now, if the message has a weight of k the 

actual number of retries that are used for a message is retries*k.  We expect that this 

would allow us to increase the success rate back up to (or perhaps higher than) where it 

was before we started combining messages.  Additionally while scaling the number of 

retries will increase the energy usage somewhat it should still remain well below the 

energy that was used before we were combining messages. 

5.5.1 Results 

  

 After implementing the weighted retries scheme the key points of interest were 

twofold.  First, we hope that using weighted retries we can at least achieve the same 

success rate as before, and secondly, while we may sacrifice some energy we still would 

like to have energy savings over the initial case of not combining messages at all.  In 
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other words, we would like to see that by combining messages and scaling the number of 

retries appropriately we create a solution which is better on all accounts over just doing 

nothing.  For these tests we again use a constant fifty node layout and do not modify the 

number of retries or the selection algorithm. 

 In Figure 26 we see results for all three of the scenarios that we have discussed; 

simply having correlated messages, combining the correlated messages when possible 

and finally combining correlated messages and scaling the number of retries based on the 

weight of the message.  The first trend that we see is that the correlation factor’s effect on  

the system is greater than anything else, this can be seen by the fact that even the smallest 

value with a 30% correlation factor is better than the best case with a 60% correlation 

factor.  Additionally we can see that we have accomplished our first goal, when adding 

weighted retries we have achieved an equal or better success rate than we had before we 
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Figure 26: The effects of scaling the number of retries, based on the weight of a 

message, on the success of messages reaching the base station. 
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started combining messages.  If we look at the case where the distance scaling factor is 

1.50 and the CF is 30% we see that without doing anything the success rate was 83%.  

When we started to combine messages we saw a drop down to 76% but now that we have 

taken into account that some messages are more important than others our success rate is 

up to 87%.  This same trend holds for every scenario that we tested. 

 We also need to see if we have met our second goal of maintaining much of the 

energy savings that we achieved when we started to combine messages.  In Figure 27 

which plots the number of transmissions necessary to receive the results in Figure 26 we 

see that using weighted retries uses more energy than when we did not use them but still 

saves a good deal of energy over the case without combinations.  In order to quantify 

these savings consider again the point where the DSF is 1.50 and the CF is 30%.  In the 

case of doing nothing the average number of transmissions is 10.95.  When we combined 

messages this dropped to 7.84 and now that we assign weight to the number of retries, the 
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Figure 27: The effects of scaling the number of retries based on the weight of a 

message on the number of transmissions required for each original message. 
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number is 8.96.  8.96 is a 19% energy improvement over not combining and also has a 

4% higher success rate.  When we use combinations and weighted retries we improve 

both the energy and the success rate of the network.   

One interesting point is that in some situations it may be considered worthwhile to 

not weight the retries and simply combine messages.  This would make sense if energy 

was of the utmost importance and the success rates that remained after combining 

messages were considered to be good enough for that application.  As mentioned 

previously even with the lower success rate from combining the messages but not scaling 

the retries more than 99% of all events are heard at least once, there is just a chance of 

not knowing exactly how many nodes heard the event.  
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CHAPTER 6 

ADVANCED TOPICS 

6.1 Duty Cycling 

 

 All of the previously discussed results had all of the nodes in the simulation run 

available at all times with the exception of nodes undergoing transient failures.  No where 

did we have a way to turn nodes off to save energy in a controlled fashion (as opposed to  

transient failures which occur at random for indeterminate lengths of time) for a specified 

period of time.  Duty cycling is an important technique in sensor networks because nodes 

are very sensitive to energy depletion.  If nodes in the network start to fail at key 

locations then at best the throughput of the network drops and at worst the entire network 

can become disconnected. 

 In the sensor network literature duty cycling is generally handled at the MAC 

layer.  When nodes are going to be in a low power mode most of the time, the biggest 

issue is making sure that the correct nodes are awake at the right time so that data can still 

be moved throughout the network.  Duty cycling is useless if nodes are all randomly 

awake for 5% of the time resulting in a network throughput of almost zero.  It makes 

sense then that the MAC layer is responsible for duty cycling as it is already tasked with 

keeping the nodes fairly well synchronized such that its specific MAC protocol can run 

properly. 

 The TinyOS default MAC layer, B-MAC, has a duty cycling mechanism built in 

that allows saving energy.  The B-MAC implementation for the Mica2 motes in TinyOS 

is a part of what is called the CC1000 radio stack.  The TinyOS distribution [1] includes a 

document discussing the radio stack and providing the table shown in Figure 28 

describing the seven available duty cycles.  It is evident from this table that duty cycling  
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Figure 28: The different duty cycling modes of the CC1000 radio stack for the 

Mica2 mote [1]. 
 

is essentially a bandwidth problem.  When the nodes are turned on at all times in mode 0 

they are able to send almost 43 packets per second but in mode 6 this number drops to 

less than one packet per second.  We would like to see how these different modes affect 

the behavior of our fault tolerant software.  Since all of the functionality has been 

implemented at the routing layer, we expect that it should not interfere with duty cycling 

until the data rate reaches the maximum that the mote can handle. 

 When performing simulation experiments using these low power modes however 

we ran into an issue with the TOSSIM simulator.  While TOSSIM will allow the use of 

the CC1000 radio stack in simulations and allow function calls that modify the power 

mode, it will not actually emulate the changes in the MAC layer timing due to the change 

in power mode.  This means that a work around is needed in order to test this duty 

cycling behavior in TOSSIM.   

To do this we added another module just above where we send and receive all our 

radio transmissions to and from the radio stack.  We then emulate the duty cycling 

behavior using timers such that when it is determined that the node would be in the 

“sleep” state it will not pass any data between the radio stack and the higher layers.  We 

also provide a function that allows the higher layers to check if the node is currently in 

Mode Duty Cycle (%) Max Packet Rate (pkts/sec) Effective Data Rate (kbps) 

0 100 42.93 12.364 

1 35.5 19.69 5.671 

2 11.5 8.64 2.488 

3 7.53 6.03 1.737 

4 5.61 4.64 1.336 

5 2.22 1.94 0.559 

6 1.00 0.89 0.258 



54 

the sleep state or not.  During the time that the radio stack is in the low power sleep mode 

the nodes can still detect new events and add them to the queue to be sent out when the 

radio stack wakes up.  The bandwidth limitations that were discussed and shown in 

Figure 28 start to appear when the queues begin to overflow.  This work around is an 

idealization in that the nodes are expected to be almost perfectly synchronized whereas in 

real world practice the MAC layer would certainly be imperfect.  Additionally, in order to 

keep the simulation running at a reasonable rate, the size of the duty cycling period is 

larger here than it would be when implemented at the MAC layer, though the percentage 

of time of being asleep and awake remains the same.  

The first set of tests which were performed involved a fairly low data rate.  Events 

were generated at a rate of about 1.53 events per second in the fifty node network.  This 

rate is slow enough so that it would likely never impose a problem if correlated events are 

not used.  However, due to the correlated events, this equates to about 3.32 nodes that see 

each event in a small area, as these nodes try to send the messages through their 
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Figure 29: The effects of duty cycling on the throughput of the network. 
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respective parents, there could be anywhere from one to possibly ten messages in a small 

area of the network.  We see in Figure 29 that this leads to the type of behavior that we 

were expecting, the throughput remains fairly constant until we reach the point where too 

much data needs to be sent for the current duty cycling rate, the queues begin to overflow 

in the node and the majority of messages are lost.  This drop off occurred around the 95% 

to 98% duty cyle range corresponding to around mode 4 and 5 in Figure 28 which specify 

a rate of 2 and 6 packets per second for the two modes.  This is right around the point 

where we expected our data rate to be too high for nodes around the correlated event.  We 

then increase the rate at which events are generated by 50% and saw that the same 

general behavior occurred except this time the “knee” or failure point of the system 

occurred with the duty cycle 5% lower, this makes sense because with more messages to 

send the queues would start to overflow sooner. 

In Figure 30 we see an interesting behavior that is caused by these throughputs.  
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Figure 30: The effects of duty cycling on the number of messages being transmitted 

in the network. 
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As the duty cycle decreases, the average number of messages needed for each 

transmission goes up but when we reach the failure point it suddenly drops rapidly.  This 

sudden drop is caused by the fact that most messages are not making it past their 

originating nodes and since no one has to forward the message through the network, the 

number of messages being sent drops suddenly. 

 In previous experiments we used the number of transmissions as a measure of 

energy as they were the only real variant between different sets of data.  Now that duty 

cycling is employed, the energy equation becomes a bit more complicated.  In order to 

estimate how much energy is being saved by duty cycling we need a rough 

approximation of how energy is used in a node.  Using numbers for B-MAC on a Mica 2 

mote [12] we make the following approximation.  To transmit a packet we must send 36 

bytes of information.  It is given that each byte takes 416E-6s and draws 20mA, since the 

Mica 2 motes have a 3V power supply we get the estimate of 898uJ to transmit a packet.  

Similarly, the energy to receive a packet is estimated to be 673uJ; less current is drawn 

while receiving data resulting in less energy spent when for receiving a packet.  It is also 

mentioned that to sample the radio it takes 17.3uJ and the default sampling rate is 10 

times per second for a total of 173uJ. 

 From these numbers we calculate the energy used per node per minute by looking 

at the total number of messages that were sent and received through the lifetime of the 

simulation.  These are multiplied by their respective energy numbers and then added  the 

total energy that is used just by being on and sampling the radio.  This value is calculated 

by taking the 173uJ per second and multiplying it by the number of seconds that the 

simulation ran for and then multiplying by the percentage of time that the node was 
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awake.  For example, in a one hour simulation with an 80% duty cycle, the energy from 

being awake is calculated as .2*3600*173uJ.  In order to put this in units per node per 

minute we divide by the number of nodes and the number of minutes that the simulation 

ran for. 

 In Figure 31 the energy estimation is shown for the same experiments that were 

used to generate Figures 29 and 30.  At a 90% duty cycle and a low data rate a node is 

using 2702uJ per minute as opposed to 13392uJ per minute at a 0% duty cycle.  This is 

approximately one fifth of the energy and at this point the success rate of messages in 

Figure 29 is still stable.  With the high data rate we are able to see that just before the 

point where data stops reaching the base station the energy actually spiked upward.  This 

is because at this point the fault tolerant software is sending a lot of messages to try and 

get messages through.  Just past this point the energy drops back off as most messages 

are not making it past their first hop in the routing tree   
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Figure 31: The effects of duty cycling on the amount of energy used per node per 

minute. 
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6.2 Other Routers 

 

 When designing this fault tolerant middleware one of the goals was for it to work 

on top of the routing layer.  The reason for this is so that if a certain routing layer is 

considered better for a certain application or environment then that routing layer could 

also be used with the fault tolerant scheme.  If the routing layer chosen provides the 

default TinyOS routing interfaces then the scheme should work with no modifcation 

whatsoever.  If, for some reason, the routing layer chose to use its own interface then it 

would be necessary to change the fault tolerant modules a bit so that they can interface 

properly.  In practice, most current routing layers which have been developed for TinyOS 

do use the proper default interfaces. 

 In order to test whether it would work with a different router we acquired another 

popular TinyOS router which is called MINTRoute which is included in the TinyOS 

distribution [1].  Recall that the original router we used was a distance vector based router 

which simply tried to find the shortest number of hops to the base station without paying 

much attention to the quality of the links.  MINTRoute is a link state router which 

calculates a quality rating for different links and will sometimes take a longer path if it 

has a higher probability of success.  In general, we expect that MINTRoute will have a 

slightly higher success rate than the previous router without fault tolerance but would still 

benefit a great deal from fault tolerance/  

In Figure 32 we show results of experiments done using MINTRoute and compare 

them to the results using the previous router.  We can see that the routers act pretty much 

the same but there is a bit of a difference stemming from MINTRoute taking link state 

into account.  While both /Route/ and MINTRoute perform well when the DSF is equal to 
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MintRoute / Route Comparison
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Figure 32: Comparing between MINTRoute and Route.  On the left hand y-axis we 

see the percentage of data that is received at the base station.  The two plots which 

have solid lines align with this axis.  On the right hand side is a measure for energy, 

the two plots with dashed lines align with this axis. 

 

0.75 achieving success rates above 90%, MINTRoute is able to maintain this better as the 

environment gets harsher and the DSF increases.  At a DSF of 1.50 there is close to a 7% 

different in the performance of the two.  This difference can be attributed to the approach 

that each router takes.  While Route attempts to find a shortest path, MINTRoute 

considers the quality of links and will take a longer path if it means staying on good links.  

It is clear that there is some benefit to this approach.  We see the opposite situation when 

we examine the energy used.  While they are again very similar when the DSF is equal to 

0.75 once the DSF reaches 1.50 they become more distinct.  In the case of energy it is 

/Route/ that actually performs better, this makes sense because we know that MINTRoute 

is sometimes taking longer paths in order to achieve its higher success rate.  /Route/ saves 

on transmissions by taking its shorter paths, even though it costs up to 7% on the success 

rate.   



60 

While it is interesting to see the comparison between the shortest path first 

approach and the link state approach the really important outcome for our purposes is that 

we have verified that our fault tolerant layer can be easily transported between different 

routing mechanisms so long as they properly implement the TinyOS routing interfaces.  

In this case not a single line of code was changed in the fault tolerant layer in order to 

achieve the different results between /Route/ and MINTRoute. 

6.3 A Larger Network 

 

 Throughout this research we have used a constant number of fifty nodes.  This 

number was justified previously because it allowed us to capture all of the important 

behavior without taking too long for the simulator to run.  With fifty nodes we were able 

to get node depths up to five in many cases and this was usually sufficient for our needs.  

The problem with increasing the number of nodes is that the time to run the simulation 

does not increase linearly but goes up exponentially.   

 Despite the fact that fifty nodes allow us to see most of the interesting behavior, 

we wanted to run a few experiments with a larger numbers of nodes in order to see what 

happens as the network depth continues to expand.  We observed previously that without 

fault tolerance the reliability of the network falls off very quickly as the depth increases.   

 In Figure 33 we see the success rate of nodes in the network at different depths in 

a one hundred node test.  It is apparent that the success rates in Figure 33 drop off much 

faster than they did in the earlier result shown in Figure 14.  There are a number of 

reasons for this discrepancy.  First, while the number of nodes was doubled, the total area 

only increased by approximately sixty percent.  This means that with the nodes arranged 

more densely there will be more crosstalk and collision affects.  Additionally, in Figure 
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14 we had used four retries while in this case the retry parameter was set to two.  We also 

have small transient failure effects in this experiment that were not present in Figure 14.  

Finally, we ran this test with a DSF of 1.50 as opposed to 0.75 as in Figure 14. 

 While the success rates drop faster in Figure 33 than they did in Figure 14 we are 

still able to see the important trend.  Fault tolerance helps even at a depth of one where 

without fault tolerance 55% of the messages are successful whereas with fault tolerance 

we receive 92% of the messages.  The benefit gets even larger as the depth continues to 

increase and when we look at, for example, nodes that are of a depth of five we have less 

than 10% of the messages being heard without fault tolerance but over 50% heard with 

fault tolerance.  This really brings home the point that even with weak parameters (only 

two retries) and a difficult environment (DSF of 1.50 and high node density) fault 

tolerance allows us to vastly extend both the number of nodes in the network and the size 

of the area which they can span. 
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Figure 33: The benefits of fault tolerance in a larger network of one hundred nodes.   

This data was generated using only two retries and with a DSF of 1.50. 
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CHAPTER 7 

CONCLUSIONS 

 

 We have described a series of algorithms that help to provide fault tolerance in 

sensor network applications that are written in TinyOS.  We took the approach of adding 

fault tolerance in the form of retransmitting and rerouting messages at the routing layer.  

By implementing at the routing layer we are able to take advantage of information that is 

available at this layer which may not have been available if we had implemented at a 

lower layer.  This also allows the user to use different TinyOS routing layers and still be 

able to use the same fault tolerant modules to provide resilience.  It also removes the need 

of each application developer to write their own retransmission and fault tolerance code. 

 We demonstrated that our technique allowed a vast increase the percentage of 

data that eventually reaches the base station without adding needlessly to the amount of 

energy that is being used by each node.  Further, we saw that with fault tolerance we are 

able to expand the size of our networks far beyond what we could use without fault 

tolerance.  We also discussed how in more difficult situations the number of retries that 

are used can be increased and what affect this has on energy usage. 

 After these basic findings we looked into making the algorithms learn and 

remember their past successes and failures.  This makes nodes capable of learning which 

nodes are good routing partners regardless of what the routing layer may have decided 

when it assigned a depth to each node and without any geographical information.  We 

added transient failures to our experiments and saw which different learning 

methodologies were better with different rates of transient failures or radio failures. 
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 While in our first experiments events were independent among the nodes, we then 

looked into what happens when events are correlated amongst nodes that are 

geographically close by.  We saw that this had a detrimental affect on both the success 

rate of messages and especially the energy used by nodes.  This was attributed to a burst 

of data that happens around the events when they are correlated.  We saw that by 

combining similar messages into one message and scaling the number of retries 

accordingly, we could better deal with correlated events both in terms of energy usage 

and success rate of data reaching the base station. 

 Duty cycling and its affect on success rates and energy were examined by 

simulating the B-MAC behavior in our experiments.  We saw that as the percentage of 

time that nodes are asleep increases, the energy is reduced and the success rate holds 

relatively constant until a point is reached where there is not enough time awake to 

transmit all the data and the success rate rapidly drops off.  We also demonstrated the use 

of the fault tolerance software with another TinyOS routing layer with no changes made 

to the fault tolerance modules. 
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CHAPTER 8 

FUTURE WORK 

 

 While we were able to view many important trends using our simulated 

experiments the most important future work is to run more comprehensive tests using 

hardware.  Hardware experiments would be very useful in looking at certain behaviors 

that were difficult to test accurately in the simulator, such as duty cycling.  Another area 

of future work would include a message priority system.  This system would scale the 

number of retries (and consequently, the energy) that are used in trying to retransmit a 

message based on how important it was to the application.  Most mote hardware allows a 

number of different transmission power modes so that nodes can send weaker 

transmissions using less energy.  There may be interesting fault tolerant and energy 

saving techniques that could be found by varying the strength of these transmission 

broadcasts.  Finally, experiments that use implicit ACK packets would be useful to 

validate claims that this would have little impact on the fault tolerance implementation. 
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