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ABSTRACT 

A HARDWARE FRAMEWORK FOR YIELD AND RELIABILITY 

ENHANCEMENT IN CHIP MULTIPROCESSORS 

 

 SEPTEMBER 2009 

 

ABHISEK PAN, B.E.E., JADAVPUR UNIVERSITY 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Sandip Kundu 

 

 

Device reliability and manufacturability have emerged as dominant concerns in 

end-of-road CMOS devices. Today an increasing number of hardware failures are 

attributed to device reliability problems that cause partial system failure or shutdown. 

Also maintaining an acceptable manufacturing yield is seen as challenge because of 

smaller feature sizes, process variation, and reduced headroom for burn-in tests. In this 

project we investigate a hardware-based scheme for improving yield and reliability of a 

homogeneous chip multiprocessor (CMP). The proposed solution involves a hardware 

framework that enables us to utilize the redundancies inherent in a multi-core system to 

keep the system operational in face of partial failures due to hard faults (faults due to 

manufacturing defects or permanent faults developed during system lifetime). A micro-

architectural modification allows a faulty core in a multiprocessor system to use another 

core as a coprocessor to service any instruction that the former cannot execute correctly 

by itself. This service is accessed to improve yield and reliability, but at the cost of some 

loss of performance. In order to quantify this loss we have used a cycle-accurate 

architectural simulator to simulate the performance of dual-core and quad-core systems 

with one or more cores sustaining partial failure. Simulation studies indicate that when a 
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large and sparingly-used unit such as a floating point unit fails in a core, even for a 

floating point intensive benchmark, we can continue to run the faulty core with as little as 

10% performance impact and minimal area overhead. Incorporating this recovery 

mechanism entails some modifications in the microprocessor micro-architecture. The 

modifications are also described here through a simplified model of a superscalar 

processor. 
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CHAPTER 1 

I�TRODUCTIO� 

Ensuring reliable operation during the entire service-period is essential for 

computing systems, especially for those deployed in safety-critical applications and in 

remote and otherwise hazardous locations. However today’s deep submicron systems are 

becoming increasingly vulnerable to premature system failures due to unreliable 

hardware substrate and environmental stress. Also increased manifestation of random, 

systematic, and parametric yield loss mechanisms are making it difficult for the chip 

manufacturers to maintain an acceptable manufacturing yield rate. Hence designing 

adaptive systems, which can be fit for deployment and can continue to function reliably 

even with faulty components, can go a long way in sustaining the present growth-rate of 

device-count and clock-frequency in face of critical yield and reliability problems.  

In this project, we propose and investigate a low-overhead hardware framework 

for a multi-core system that serves to improve the yield and reliability of the system. The 

framework enables the system to remain in operation, albeit in a degraded performance 

mode, even when one or more of the cores sustain partial failure, by exploiting the 

inherent redundancy already in the system. The proposed scheme involves hardware-

assisted communication between the cores to share functional units across them. This 

sharing is exposed at an instruction-level granularity. The hardware and power overhead 

for the proposed scheme is minimal. Besides improving long-term reliability through 

graceful degradation, the scheme can also achieve reasonable yield enhancement at quite 

acceptable performance degradation, if we consider the fact that most systems contain 

sparsely used functional units with large on-chip area. 
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CHAPTER 2 

BACKGROU�D: YIELD A�D RELIABILITY CHALLE�GES 

Relentless advancement in process technology during the last four decades has led 

to processor designs with progressively higher transistor count and increased clock 

frequency. Introduced in 1971, Intel’s first microprocessor built with silicon-gate MOS 

technology, the Intel 4004, had about 2300 transistors and ran at 108 KHz. Today the 

45nm Penryn family of processors can pack in 400 to 800 million transistors and reach 

clock speeds up to 3GHz [1]. It is widely believed that CMP architectures will allow a 

clear path to ITRS technology scaling projections of 100 billion transistors per chip by 

year 2020 [7]. However, sustaining this explosive device-count growth on a chip is going 

to be difficult due to critical yield and reliability problems [2].  

Yield 

The factors that contribute towards the loss of manufacturing yield in integrated 

circuits are broadly referred to as yield loss mechanisms (YLM). Traditionally yield loss 

mechanisms are classified as follows [2]: 

Random YLM: This constitutes of random particulate and contaminant induced 

defects that may result in open and short circuits, and these faults are studied through 

statistical models. 

Systematic YLM: These effects are primarily functions of specific layout patterns 

and manifest in faults that show strong spatial or temporal correlation, eg. Mask 

misalignments, optical proximity effects like line-end shortening and line-width 

differences, via /via stack failure as function of interconnect length and so on. 
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Parametric YLM: These are caused when otherwise functional chips fail to meet 

the acceptable performance specifications, and are the results of intra and inter-die 

variations in device electrical characteristics. 

Random yield is usually modeled through Poisson distribution considering the 

defects to be independent, where the yield is given by: 

Y ∝ e−D0×A×KR          (1) 

where D0 is defect density in defect/area, A is area of chip and KR (kill ratio) is 

the fraction of total area that can be affected by the defects [3]. Although random defects 

are being controlled through use of clean-room facilities, shrinking feature size means 

increase in kill ratio and packing multiple cores in a die means increase in area, thus 

potentially leading to a reduction in yield. Also shrinking feature sizes and magnified 

process variation effects are exposing the limitations of traditional resolution 

enhancement techniques (RET) and restrictive design rules (RDR) in reducing systematic 

and parametric yield loss [4]. The traditional accelerated life tests (burn-ins) used to filter 

out defective chips at their infancy are also losing their effectiveness due to reduced 

headroom for stress testing [5]. Consequently, users of semiconductor chips may 

experience higher infant mortality problems. Infant mortality problems are aggravated 

further due to new aging defect mechanisms such as NBTI [6]. Yield recovery in field 

has been proposed as a potential solution to these problems [7]. This has been described 

in ITRS as: “Relaxing the requirement of 100% correctness for devices and interconnects 

may dramatically reduce costs of manufacturing, verification, and test. Such a paradigm 

shift is likely forced in any case by technology scaling, which leads to more transient and 

permanent failures of signals, logic values, devices, and interconnects.” [7] 
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Reliability 

Another area of concern in foreseeable future is system reliability. Current design 

practice for processors (except high-end mainframes and some safety-critical systems) is 

to assume that the underlying fabric of transistors and interconnects will always operate 

correctly during the product lifetime. However continuous push for smaller devices and 

interconnects has moved the technology closer to a point of unreliability where such 

design paradigm is not valid [9]-[11]. For example, at 90nm technology Negative Bias 

Temperature Instability (NBTI), where a PMOS device degrades continuously with 

voltage and temperature stress, had become a major reliability concern, [12]-[13]. At 

45nm, the problem has exacerbated due to lower threshold voltage, and Positive Bias 

Temperature Instability (PBTI) for NMOS devices has been added to the list [12]. Impact 

of other device-failure mechanisms like time dependent dielectric breakdown (TDDB) 

are also increasing because of extremely high on-chip temperatures, high current 

densities and thinner gate oxides [14]-[16]. Copper electro-migration, stress voiding, and 

electrical breakdown of low-k ILD have compromised the reliability of interconnects [7]. 

Erratic bit errors in SRAM and SEU (single event upset) based soft errors are on the rise. 

These problems, cumulatively referred to as PVT issues (process corner, voltage and 

temperature), are expected to worsen in future nano-CMOS technology [17].  

Along with device imperfections, designs aimed at maximizing performance and 

area efficiency will contribute towards loss of reliability. High packing density will allow 

the fabrication of complex heterogeneous monolithic processing engines, but the 

potential of undetected design errors will increase proportionally [9]. Aggressive adaptive 
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voltage and frequency management of modern processors are expected to compound such 

errors as well [8][18]. 

These reliability defects cannot be pre-screened during manufacture. The majority 

of these defects will appear under specific voltage, temperature, frequency and workload 

conditions. Hence, design paradigm of the future need to concentrate on building systems 

with imperfect transistors and interconnects; systems that will continue to function in 

spite of deteriorating components and multiple field failures [19]-[20]. A well-known 

approach towards building such systems involves the use of redundancy inherent in 

modern processors [21]-[33]. 
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CHAPTER 3 

RELATED WORK 

Processor systems today have multiple units with same functionality in order to 

exploit instruction and thread-level parallelism, and actually require only a critical subset 

of their hardware in working condition to remain functional. In addition, higher device 

density and lower cost-per-transistor allow us to include power-gated redundant 

structures in processors which can be swapped in for units which fail in operation. 

Because of the redundancies, manufacturers can avoid throwing away chips unless they 

have critical functionality-disrupting defects, thereby improving yield. The spare 

structures are also used to extend the lifetime of a processor beyond that of the baseline 

architecture by keeping it functional, possibly in a degraded mode, even in presence of 

failed sub-units. The existing solutions consider redundancies at granularities from 

system to intra-processor levels. However sharing of hardware across multiple cores on a 

chip has remained a relatively less explored area. 

The idea of incorporating redundancy in microprocessors for yield and defect 

tolerance is well entrenched. The 16-bit HYETI microprocessor is an early example of 

such a system, which had circuits for most of its functional units replicated 16 times in a 

bit-sliced design for optimal redundancy [33]. Redundancy for fault-tolerance can be 

incorporated in different levels of granularity. Commercial high-availability multi-

processor systems like the IBM p690 have been designed to exploit redundancy at chip 

and module level [25]. These systems can map detected failures to individual CPUs and 

achieve system recovery by de-configuring the faulty processor during runtime or boot-

up. The HP �onStop© Advanced Architecture uses a massively parallel cluster of dual or 
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triple modular redundant processors connected through system area networks to provide 

very high levels of fault-tolerance and availability for customer applications [26]. 

Aggarwal et al proposed a CMP architecture supporting isolation and de-configuration of 

groups of cores in order to provide fault-containment and availability [27]. More recently, 

researchers have proposed ideas to use redundancy at finer granularities in order to 

achieve more efficient use of redundant hardware [23]-[24].  

Within a processor chip, we can identify three broad areas each of which need to 

be provided with different fault-tolerance methods: 

• Large memory structures (Caches, TLB, Register files) 

• Small memory structures (Reorder buffer, Issue queue, Load-Store buffer) 

• The data-path and control logic 

Large storage components and logic arrays are provided with error-correcting 

codes, redundant rows, columns and sub-arrays for effective yield and reliability 

improvement [32], [35]. The overhead of such mechanisms can sometimes be prohibitive 

for small-area arrays and queues. However Shivakumar et al [23] and Powell et al [28] 

have shown through experiments that there is minimal performance impact if the decode 

queues, reservation stations and reorder buffers lose several entries due to hard faults. 

The defective entries can be identified and de-configured by using a valid bit for each 

entry and appropriately modifying the decoder and counter logic [23] [35]. Hence smaller 

storage structures can be effectively protected through some adding some redundant 

entries and de-configuring the defective entries.  

However structural irregularity and testability issues in logic and control units 

render them unsuitable for such partial and cost-effective redundancy [21]. Hence several 
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micro-architectural techniques have been proposed to handle this issue. In multi-core 

processors the simplest way is shut down a faulty core entirely. A more efficient 

alternative is to replicate entire functional units in order to achieve better yield or fault-

tolerance. In this regard Shivakumar et al explored the possibility of using multiple 

execution units already present within a processor to improve manufacturing yield at the 

cost of performance degradation [23]. In [24] somewhat similar ideas of exploiting 

existing redundancies or building idle ‘spare’ units within a processor to improve lifetime 

reliability were introduced. However the use of in-core redundant execution unit is 

limited to units that have small area and power requirements. Powell et al considers the 

effectiveness of execution unit redundancy for a typical x86 core [28]. They classify 

instructions into three classes based on whether they could be executed on redundant 

resources: 

• Class A: instructions that cannot be executed with redundant units 

(example -branch; integer and fp load-stores, fp add, mult, and divide; 

integer mult and divide) 

• Class B and C: instructions that can be executed by more than one 

structures (example- int ALU; shift; int shuffle; simd shift and shuffle) 

The non-redundant execution structures are found to occupy almost three fourth 

of the total execution area. Hence a core containing a faulty non-redundant functional 

unit would lose its ISA compliance and could not be salvaged through existing in-core 

redundancy or cold spares unless we are prepared to incur considerable power and 

hardware overhead. On the other hand, in multi-core systems, one or more of the other 

healthy cores already possess copies of the same functional units. Hence it is only natural 
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that we employ the units in other cores to execute the instructions that the damaged core 

is unable to serve. Such resource sharing across cores can be achieved through hardware 

or software. 

Software-based approach  

 Reference [22] analyzes the benefits of sharing resources across partially 

damaged cores for yield enhancement. It proposes software-controlled thread swapping 

across cores to avoid faulty units. Along with the inherent performance degradation due 

to presence of faulty units, this scheme suffers from additional performance penalties due 

to repeated core hopping and context switching overheads (saving process state, 

cache/TLB misses, and branch mis 

predictions).  

Hardware-based approach  

Reference [28] introduces the idea of thread migration or swapping through 

hardware. The scheme involves hardware-controlled migration of the process state 

between cores through an on-die SRAM. This scheme can be applied with minimal 

hardware modifications in the processors that already provide this capability of storing 

process states in an on-die SRAM for power savings [29]. This scheme also suffers from 

the same performance drawbacks as the previous software controlled thread-swapping 

scheme. The authors also investigate a hybrid approach comprising of micro-architectural 

intra-core redundancy and thread migration. Romanescu et al proposed the core 

cannibalization architecture (CCA) for multi-core processors where inter-core resource 

sharing is done at the granularity of pipeline stages [30]. The scheme adds considerable 

complexity to processor design and verification and the authors applied the scheme for 
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simple in-order cores only. Sharing pipeline stages form a neighboring core increases the 

cycle time for the defective core as well. The CASH (CMP And SMT Hybrid) 

architecture also advocates sharing of sparsely used functional units across several cores 

as a way to save area and reduce hardware complexity of individual SMT superscalar 

cores [34]. 

In this project, we consider hardware-controlled resource sharing across cores. A 

core containing a faulty functional unit is unable to serve instructions that require the use 

of that unit. In order to remain operational the faulty core uses the appropriate functional 

unit of its neighboring core. To this end we propose the use of a centralized Inter-Core 

Queue (ICQ) as an interface between cores in order to enable resource sharing among 

them [Figure 1]. The idea is developed in detail in the next section. 
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CHAPTER 4 

PROPOSED APPROACH 

A simplified version of the homogeneous dual-core CMP described in [31] is 

presented to illustrate the proposed scheme. The idea can be easily extended for a quad-

core or many-core system since we are looking at the interaction of two cores (one faulty 

and one helper) at a time. Each core is assumed to be a superscalar out-of-order execution 

machine with private L1 data and instruction caches, and shared L2 cache. We assume a 

Symmetric Multiprocessor (SMP) paradigm for this proposed scheme. Basic modification 

involves incorporation of an Inter-Core queue (ICQ). The architecture of the ICQ and the 

structural and behavioral modifications required in the cores are described below. 

 

Inter-Core Queue 

Inter-Core Queue forms the interface for data-flow between a faulty and helper 

core in this proposed scheme [Figure 1]. It acts as a temporary storage for instructions 

Figure 1: Inter-Core Queue: A Logical View 
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that are to be transferred across cores. The ICQ maintains ordering of instructions using 

FIFO order. Each entry in the ICQ has data fields for the instruction including the 

opcode, source and destination operand values, as well as some control bits to manage the 

control flow. We define the following control bits for proper communication between the 

ICQ and the cores accessing the queue. The details of the faulty and helper core are 

described in the later sections. 

• Valid: Identifies whether the entry is suitable for use or faulty 

• Emergency: When set, identifies that the instruction has been in the queue 

long enough and needs to be served as early as possible 

• Executed: When set, it indicates that instruction has completed execution 

at the helper core and the result is available in the ICQ 

• Exception Info: These bits contain the exception information specific to 

the instruction. The helper core is responsible for exception detection, but 

the faulty core handles in during the retirement stage. 

In addition, in order to unambiguously identify the source of each instruction, 

each entry needs to have bits identifying the source core, in which the instruction was 

originally issued. Also if multiple choices are available for the helper core, there has to be 

destination core identification. 

The reset valid bit signifies that the slot is ready to be used. When a faulty core 

schedules an instruction to the tail of the ICQ, the source and destination core fields, and 

the execution bits are updated. We propose a push-pull scheme for scheduling the head of 

the ICQ to a helper core. When an instruction is ready in the ICQ to be serviced by the 

helper core, a bit in the decode unit of the helper core is set to convey the information. 
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Subsequently, at each cycle, after its native instructions are scheduled, the decode unit 

looks for an empty issue slot to schedule this instruction. If the decode unit finds a slot it 

pulls the instruction from the ICQ to its pipeline. On the other hand, if the helper core 

does not pull the ICQ, the emergency bit is set after a specified maximum wait period 

called idling interval. A hardware counter is used to count the number of cycles the 

instruction spends in the ICQ, and the emergency bit is set after the idling threshold is 

crossed. Once the emergency bit for this instruction is flagged in the ICQ, the instruction 

is given higher priority than the native instructions, and is pushed into the helper core 

pipeline before any additional native instructions are processed. Once the helper core is 

ready to retire this instruction, the ICQ is updated with the result and the Executed bit is 

set. Any exception detected during the execution of this instruction by the helper core is 

also updated in the ICQ. In our study we insert a maximum of one instruction per cycle. 

Two important design parameters involving the ICQ are the depth per core and 

the idling interval. The depth per core refers to the number of instructions from each core 

that simultaneously resides in the queue. Increasing the depth is expected to improve 

performance of the faulty core for workloads that have clusters of instructions requiring 

the use of the faulty resource. However the area overhead will also increase. The idling 

interval, on the other hand, is expected to have a bearing on the performance of the helper 

core. Higher values for the interval would mean less frequent force-through from the 

ICQ, possibly leading to lower performance degradation for the helper core. The 

advantage is expected to be more pronounced if the helper core also faces a strong 

demand for the shared functional units from its native instructions. 
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The ICQ forms a critical component of the scheme. Hence it has to be protected 

by redundancies. Fortunately the regular structure of buffers means they can be provided 

effective protection with low hardware overhead [35].  

Implementation-wise, the ICQ can be implemented through a SRAM array with 

pointers for head and tail of the queue. For a dual-core system, in order to allow each of 

the cores to read from and write into the queue every cycle, we need to have two physical 

queues - queue 1 for instruction migration from core 1 to core 2 and queue 2 for 

migration in the reverse direction [Figure 2]. For a quad-core system we need four 

physical buffers, one for each core to send instructions to. Also a selector logic block is 

required which can map instructions in the faulty core to available helper cores and 

dispatch them to the helper cores in every cycle. 
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Figure 2: Inter-Core Queue for Dual-core System 
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Faulty Core 

The path of an instruction requiring a faulty unit is illustrated in Figure 3. We 

consider a simplified Tomasulo data-flow model for a speculative out-of-order pipeline. 

Functional unit 1 is considered to be faulty. During the decode stage of the pipeline, a 

parallel lookup of the hardware fault table identifies whether an instruction requires the 

use of a faulty unit or not. When an instruction requires the use of a faulty unit, a flag, 

called the migration bit, is set in the in the control store entry for that instruction to ensure 

proper control flow in the subsequent pipeline stages. Then the faulty instruction is 

allowed to flow through the pipeline. The schedule unit dispatches the instruction to the 

reservation station (RS) from the fetch queue when it finds an empty reservation station 

and an empty slot in the Reorder Buffer (ROB). The capability of the faulty functional 

unit to write back to the Common Data Bus (CDB) is disabled in order to prevent data-

corruption on the CDB. When the instruction reaches the head of the ROB, all 

dependencies are resolved and operands are available. Usually, the instruction is now 

executed and ready to be retired. However, if the migration bit is set, the instruction is 

scheduled to the IC queue if an empty slot is available. Otherwise, the instruction waits in 

the ROB for an IC queue slot. After the instruction is sent to the IC queue, the IC queue 

is polled for results and exception information. When the instruction is marked executed 

in the IC queue it is de-allocated from the IC queue and updated in the ROB. Now the 

result would be broadcasted into the CDB from the ROB head, following the normal 

mode of operation. Any instruction waiting for the result of this instruction would not get 

the value from the functional unit output but from the ROB head. Also the commit unit 

handles the instruction commit to the architectural state. Exceptions are handled during 



 

16 

 

this stage, depending upon the exception information received from the IC queue. The 

use of the migration bit in the control-store information and the exception bit in the IC 

queue preserves the speculative and precise interrupt behavior of the processor. An 

alternative mode of execution would be to send the instruction to the IC queue as soon as 

all the source operands are available.  However such a scheme would cause speculative 

instructions to be sent to the IC queue and executed in the helper core. Sending 

instructions from the head of ROB prevents the use of the helper core for speculative and 

potentially futile instructions.  

Helper Core 

An instruction is either pushed or pulled by the helper core as described before. In 

either case a control store entry is created for proper control flow for this instruction in 

the subsequent stages of the pipeline. After empty reservation stations and ROB entry is 

Figure 3: Modifications in the Faulty Core 
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found, the instruction is dispatched by the issue unit, and the operands are pulled from the 

ICQ. We note that the operands can also be pulled by the execution units, wherever the 

critical path is mitigated. Once the instruction completes execution, the results and any 

exception detected during the instruction execution in the helper core are written back to 

the ICQ. The executed-bit in the ICQ for this instruction is also set. The reservation 

station and ROB entries are freed. The flow is illustrated in Figure 3. An important 

consideration here is that the result once computed by the functional unit will be 

broadcasted to the CDB. So any other instruction waiting in any reservation station 

should not interpret this result as a native result. Assuming that results are tagged with 

ROB entry number, we need to add an additional bit to the tag in order to identify the 

result as native or foreign. This composite tag would avoid any data corruption in the 

helper core.  

Figure 4: Modifications in the Helper Core 
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The data flow of the instructions through the faulty core and the helper core is 

shown in Figure 5. A single ICQ can be used for transferring instructions from each of 

the two cores to the other one as required. The change in the data-flow is constrained 

within the pipeline, and introduces no data consistency problems in the architectural state 

of the system.  

Overhead 

This scheme certainly entails some overhead in terms of area and complexity. The 

additional hardware for incorporating this scheme involves the following:  

• ICQ and the buses connecting the ICQ to each core,  

• Hardware Counters for calculating the idling interval 

• A FSM controller to control data flow through the IC cores 

Figure 5: Data-flow with Remote Execution 
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• Extra complexity in the control and synchronization logic of the cores to 

control the migration of instructions,  

• A couple of bits in the control-store entry for an instruction, and  

• Hardware fault-map and associated wires to read and write the map.  

Compared to the area of a dual-core multi-processor, the area overhead is quite 

low. The ICQ needs to be placed symmetrically between two cores to ensure equal in-

flight time for instructions between the queue and the cores. This places an additional 

constraint on the layout of the chip. The controller design complexity is also increased, 

which will require some extra design and test effort. 
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CHAPTER 5 

ARCHITECTURAL PRE-REQUISITES 

Any fault-tolerance scheme comprises of two parts: fault detection and isolation, 

and recovery. This project deals with fault recovery, and is independent of the underlying 

detection or isolation technique. However in order to make use of the proposed micro-

architectural modification for yield and reliability enhancement, the processors must be 

able to execute the following functions correctly: 

• Detection of hard faults,  

• Diagnosis of the faulty unit, and 

• De-configuration of the faulty unit. 

Incorporating such fault awareness requires non-trivial modifications to the 

system hardware. An existing scheme that can be used for this purpose is the hard-fault 

detection and diagnosis framework described in [36], involving a low-cost hardware 

checker [38] and saturating counters. This section provides a brief outline of the 

methodology in [36] for the sake of completeness. The work here has no contributions 

towards this end.  

Manufacturing-time Detection and Diagnosis 

In order to use the scheme for yield enhancement, faults need to be detected and 

diagnosed to individual functional units. Well-known testing and design for testability 

(DFT) techniques are employed in detect the presence of faults in manufactured 

processors [39]. However these techniques usually isolate the faults to core-level 

granularity. Schuchman and Vijaykumar outline a detection and isolation methodology 

using common testing techniques which can be used to isolate faults to micro-
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architectural blocks [40]. The authors define intra-cycle logic independence (ICI) as the 

condition necessary to enable conventional ATPG based scan-testing methods to isolate 

faults to micro-architectural blocks. ICI condition means that if a piece of combinational 

circuit bounded by latches can be decomposed into blocks such that there is no 

communication between the blocks within one cycle, any scan-detectable fault can be 

unambiguously mapped into any one of those blocks. Considering figure 6, we see that 

nodes A, B, M, and N are all observable in scan-based testing. Since there is no 

communication between combinational block 1(CB 1) and the combinational block 2 

(made up of CB 2A and CB 2B), ICI is satisfied. Accordingly any fault detected at M can 

be uniquely mapped to CB 1 and any fault detected at N can be mapped to CB 2. 

However since blocks 2A and 2B communicate within one cycle, ICI is violated and we 

cannot unambiguously determine whether the fault observed at N developed in CB 2A or 

in CB 2B.  The authors also propose DFT techniques to make combinational circuits ICI 

compliant. 

Online Detection and Diagnosis 

Online de-configuration of faulty units for reliability enhancement requires 

detection and diagnosis of faults. Such detections of hard faults can be performed through 

chip-level redundant multi-threading [37], online detection frameworks such as Dynamic 

Figure 6: Intra-cycle Logic Independence  
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Implementation Verification Architecture (DIVA) [38], or through periodic health check 

involving built-in self-test (BIST).  

In chip-level redundant multi-threading, identical threads are executed on separate 

processor cores, with the trailing thread receiving load values and line prediction 

outcomes from the leading thread. A store comparator is used alongside the store queue 

to compare store outcomes from the leading and trailing threads before writing them to 

the data cache. 

The DIVA dynamic verification technique uses low-cost checkers at the commit 

stage of the pipeline to re-execute and verify the instructions coming out of the main 

superscalar pipeline in program order. The checkers are simplified in-order approximate 

computation units, with low overheads and higher fault-resilience. A mismatch in the 

results indicates hardware failure in the main pipeline, but no information regarding the 

nature and diagnosis of the fault is available. 

Once a hard fault is detected, the location of the fault needs to be identified. In 

order to identify and diagnose faults, sub-structures in the cores that we wish to isolate 

and de-configure are classified as field de-configurable units (FDUs). Additional bits in 

the instructions are used to track FDU usage by an instruction from decode to commit 

stage. If an instruction result is found to be erroneous, the faulty FDU in use is recorded 

by incrementing a saturating counter corresponding to each and every FDU used by the 

instruction. If the fault-count for an FDU rises beyond a threshold within a pre-specified 

time interval, the fault in that unit is considered to be permanent [36]. Experimental 

results indicate that most hard faults can be suitably detected and diagnosed within a few 

thousand instructions after the faults develop. 
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Another alternative method proposed by Shyam et al involves the use of online 

distributed BIST checks performed periodically during idle intervals for processor 

components [5]. Each component is tested with high quality test vectors stored in an on-

chip ROM, and the results are checked through simplified on-chip checkers.  

We note that although low-cost checkers are devised for most of the components, 

effective online detection mechanisms for floating point units are still very difficult to 

design. References [41] and [42] provide instances of low-overhead reliable floating 

point units. 

De-configuration 

There are several ways to de-configure a faulty unit [36]; the one suitable for our 

scheme involves maintaining a hardware fault-table of the FDUs. There has to be one 

entry for each FDU, containing its operational health information. For many-core 

systems, the table can be extended to a fault-map, mapping the helper cores to be 

accessed for each FDU. This table will be updated online depending upon the entries in 

the saturating counters. For yield enhancement purposes, the fault-table can be initialized 

offline during pre-shipment testing to de-configure any faulty FDU. 
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CHAPTER 6 

SIMULATIO� FRAMEWORK 

For simulation studies, we used the SESC architectural microprocessor simulator. 

It is an event-driven cycle-level simulator built on MINT, a MIPS processor emulator 

[43]. The simulator was suitably modified to model dual-core and quad-core chip 

multiprocessors running multi-programming workloads. The SESC framework supports 

chip multiprocessing. This made it possible for me to implement process scheduling for 

multi-programmed workloads on the CMP models.  

Processor Configuration 

Table 1: CMP Configuration 
Individual Cores 

Fetch Width 4 

Issue Width 4 

Retire Width 4 

FP FU Latency ALU:1, Mult:6, Div:12 

Integer FU Latency ALU:1, Mult:4, Div:12 

# Ld St Units 2 

# FP Units 1 each (ALU, Mult, Div) 

# Integer Units 2 each (ALU, Mult, Div) 

ICQ Access Latency 2 cycles 

Memory Configuration 

L1 I Cache (private) 64 Kb, 4-way, WB 

L1 D Cache (private) 64 Kb, 4-way, WB 

L2 (shared) 8 Mb, 8-way, WB 

Technology Parameters 

Technology 90 nm 

Vdd 1.2 volts 

Frequency 3 GHz 

 

In this project we model 90-nm 32-bit symmetric dual-core and quad-core 

processors.  Each core is a four-way speculative out-of- order superscalar running at 

3GHz frequency. Relevant system parameters for each core are summarized in Table 1.  
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Dual-Core Modeling 

For experiments on a dual-core system, we model one or both cores as being 

damaged permanently. Since we are concentrating on high-area, high-latency and low-

utilization units in this study, we model one of the floating-point ALU, multiplier, and 

divider units as the faulty unit in each damaged core. Identical units in both cores are not 

treated as faulty simultaneously. The recovery scheme fails for such a pathological case. 

Quad-Core Modeling 

In quad-core simulation, we model one, two, or three cores as being damaged 

simultaneously. Target damaged units are floating-point ALU and/or divider units. For 

simulation we model a centralized queue. 

Workloads 

Dual-Core Workload Mix 

For any simulation run, we combine two benchmarks to form a multi-

programmed workload, and then spawn the threads separately on two cores. The 

benchmarks used are classified according to the proportion of floating point instructions 

contained in them. SPEC2000 benchmarks equake and gcc are picked with low floating-

point instruction count, and flops and fbench with high floating-point instruction count. 

We combine these to form an appropriate mix that is interesting for the analysis, as 

shown in Table 2. These combinations form a representative set of the workloads that the 

cores can face with respect to floating point intensity. For each workload, we set each of 

the FP ALU, multiplier and divider units as faulty and measure the performance loss in 

the degraded system compared to a fault-free system. 
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Quad-Core Workload Mix 

Here we combine eight different benchmarks programs to form three four-

threaded multi-programmed workloads, and then spawn the threads separately on four 

cores. SPEC2000 benchmarks equake, gcc, mcf, and ammp are picked with low floating-

point instruction count, art is picked with moderate floating-point intensity, and flops and 

fbench with high floating point instruction count. Combinations of these benchmarks 

form a representative set of workloads for this study (Table 3). For each workload, we set 

each of the FP ALU and divider units as faulty and measure the performance loss in the 

degraded system compared to a fault-free system. The helper cores are chosen in a round-

robin fashion.  

We vary the two design parameters, the ICQ depth and the maximum idling 

interval and analyze their impact on the performance loss. We also record the percentage 

of instructions that go through the ICQ and exceed the maximum idling interval. We run 

one billion instructions across the cores after fast-forwarding the initial two billion 

instructions in each core. The performance of each core is measured based on number of 

instructions issued per cycle (issued IPC). Hence an instruction issued in a faulty core 

and served by a helper core will be counted in the IPC of faulty core. The IPC for the 

helper core reflects its performance in executing its native thread only.  

 

Table 2: Workloads for Dual-Core System 
Workload FP instruction intensity 

Faulty Core Helper Core Faulty Core Helper Core 

equake gcc Low (0.3%) Low (0.0%) 

flops gcc High (27.5%) Low (0.0%) 

flops fbench High (27.5%) High (18.5%) 
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CHAPTER 7 

RESULTS A�D A�ALYSIS 

When a module in a core becomes faulty, a functional neighboring core helps 

with the execution. This may lead to performance degradation for both the cores involved 

in such interaction. We report this performance degradation in the faulty and helper cores 

with respect to the fault-free IPC of the individual cores. In the figures that follow, 

simulation results for selected workloads are shown, illustrating the performance 

degradation.  

Dual Core Results 

Figure 7 and 8 are used to illustrate the performance degradation when any one of 

the cores is faulty. The Y-axis shows the relative performance of each core compared to 

fault-free situation when no neighborly help is sought. The performance varies with depth 

of ICQ, type of the faulty unit considered, and nature of the workload. For example, if 

floating-point unit is defective, it is more likely to impact performance of a floating-point 

intensive program. The X-axis in Figure 7 represents the faulty unit type and the depth of 

ICQ. The depth of the ICQ was varied from 2 to 20 entries per core, keeping the idling 

interval constant at 5 cycles. The X-axis in Figure 8 represents the idling interval after 

which an instruction forces its way through. The idling interval was varied from 2 to 10 

cycles for constant ICQ depth of 10. In both cases, the results were more-or-less 

consistent for the static parameter (idling interval or ICQ depth), so we only show results 

for a single constant variable. The performance of an infinite depth ICQ was also studied. 

However, it was found that the performance improvement obtained from increasing the 

depth tends to saturate at a value around 20. Hence we report result up to depth 20 only.  
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Figure 9 on the other hand, shows results when both cores have different faulty 

units, so that both the cores have to utilize the other core simultaneously and the flow of 

instructions through the ICQ occurs both ways. Here the performance improvement with 

ICQ depth saturated at a depth of 40 instructions in the worst case. The X-axis represents 

the depth of ICQ for the various combinations of faulty units in both cores, and the Y-

axis denotes the relative performance of the cores. Table 4 contains the various 

combinations of faulty units used in simulation.  

Table 3: Workloads for Quad-Core System 
Workload FP instruction intensity 

eaff equake (3.5) art (5) flops (27.5) fbench (18.5) 

mgff mcf (0.0) gcc (0.3) flops (27.5) fbench (18.5) 

mgaa mcf (0.0) gcc (0.3) art (5) ammp (0.0) 

 

Table 4: Faulty Units for 2 Simultaneous Faulty Cores 
Core 1 Core 2 

FP-ALU FP-Multiplier 

FP-Multiplier FP-ALU 

FP-ALU FP-Divider 

FP-Divider FP-ALU 

 

Workload equake-gcc 

For this workload, for a faulty FP-ALU, less than 1% of the fetched instructions 

are switched from the faulty core to the helper core, while the helper core has no floating-

point instructions of its own. The idling interval has consistently shown to have no 

impact on performance. This is of particular interest when the helper core is running a 

critical thread region and would incur a wait period to service remote instructions. As 

expected for this workload, system performance is similar in presence of a single faulty 

core or two simultaneous faulty cores. 
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Workload flops-gcc 

Here the ICQ Depth is found to be quite dominant in terms of performance 

impact. For faulty FP-ALU unit, the faulty core used a helper for about 14% of the issued 

instructions. Varying the ICQ depth from 2 to 20, the faulty core performance loss 

improved from 75 to 12%. Similar results are seen for a faulty FP-Multiplier unit that has 

approximately 12% of the issued instructions sent to helper core for execution (67 to 

11%). In case when the FP-Divider is not working, about 2% of the instructions are sent 

to the helper core. The worst and best case degradations are 30% and 10% respectively. 

There is no impact of idling interval on the faulty-core performance. The monotonic 

improvement in performance of the faulty core with increase in ICQ depth can be seen in 

Figure 3. 

In this workload, the helper core had no native floating-point instructions. Hence 

there was no contention for the floating-point execution units. The base-case IPC for the 

4-way helper core is only around 0.95, which means the schedule and issue units are also 

utilized only partially, primarily due to the lack of instruction-level parallelism in its 

native thread. Hence these units have enough free resources available to serve any foreign 

instruction that is injected. Almost all switched instructions were served within the idling 

interval and very few had to be forced through the helper core. Instead the helper core 

actually observes 2-5% performance improvement. This apparent oddity is due to the 

nature of the simulator. The simulator actually stops execution when the sum of fetched 

instructions in both cores equals the specified number. Hence while the faulty core 

incurred more dead cycles due to extra latency of executing faulty instructions and 
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executed lesser instructions, the helper core fetched and executed more instructions, thus 

changing its native workload profile slightly. 

When both the cores have faulty units (Figure 9), core 1 running the floating point 

intensive benchmark flops sees marked performance improvement with increase of the 

ICQ depth, and the improvement saturates at a depth of 30. The recovery is better for a 

faulty fp-divider than for an fp-ALU because of lower demand on the divider unit. Core 

2, which executes the low-intensity benchmark gcc recovers the performance loss almost 

entirely at a depth of around 10.  

Workload flops-fbench 

This mix of floating-point intensive applications represents the worst-case 

combination that the system can face since both faulty and helper cores have significant 

floating-point load. Although the percentage of instructions switched remains same as the 

previous case, the best-case degradation achieved goes down to from 12 to 16% for faulty 

FP-ALU unit and from 11 to 15% for FP-Multiplier unit. Results for the FP-Divider were 

similar to the previous case (see Figure 7). When both the cores have faulty units, there 

can be a permanent performance degradation of around 10% in both the cores in the 

worst case, and the improvement saturates at a higher ICQ depth of 40. Since there was 

no significant performance improvement with variations in the maximum idling interval, 

the results for varying the idling interval for two simultaneous faulty cores were not 

shown here. 
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Quad-Core Results 

Single Faulty Core 

For this configuration, we show the results for faults in cores 1 and 3 in figures 10 

and 11 respectively. Across the workloads, core 1 faces the least floating-point intensity 

and core 3 sees the most.  

In Figure 10, we see that for mgaa and mgff workloads, there is no performance 

degradation in the system at all, since the IC queue is not pressed into service. For eaff, 

there is moderate floating-point activity in core 1, hence for a faulty FP-ALU, there is a 

loss of 3% in the faulty core for a queue depth of 4. However a depth of 8 is sufficient to 

recover the loss. About 2% of the fetched instructions are switched from core 1 to the 

other cores, while the helper cores show no performance loss in executing their native 

threads. Very few instructions survive in the IC queue up to the maximum idling interval, 

indicating that the helper cores had enough space to accommodate the foreign 

instructions without sacrificing their native IPC. For a faulty FP-Divider unit, less than 

1% of instructions are switched and there is no appreciable loss in the system even for a 

queue depth of 4. 

In figure 11, for mgaa and a faulty FP-ALU unit, there is about 5% drop in 

performance in core 3 for a depth of 4, which improves to 1% for a depth of eight. All 

other cores are unaffected. For mgff and eaff, the faulty core suffers about 60% 

degradation at depth of 4, but recovers sufficiently with increase in the depth reaching 

almost full performance at a depth of 32. Also, a small drop of 1-2% can be seen in the 

helper cores that have native floating-point instructions to run, representing mild 

contention for resources. Varying the idling interval has no effect on reducing this drop. 
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Hence for a workload of low FP intensity, which is the case for a significant 

proportion of programs running in commercial and personal space, the scheme enables us 

to salvage a faulty chip without much performance degradation. The idling interval is 

again consistently shown to have no impact on performance. 

Two faulty cores 

Here we investigate three different configurations as shown in Table 5. Case 1 

represents the worst case possible, when both the fp-intensive cores are faulty (Figure 

12). For mgaa, the performance is similar to the case with only the 3rd core faulty, 

because the 4th core does not have any appreciable fp-intensity anyway. For the rest, IC 

queue depth is found to be quite dominant in terms of performance impact on the faulty 

cores. For faulty FP-ALU unit, core 3 used helper cores for about 18% of the instructions, 

and core 4 did the same for about 7%. In mgff, by varying the IC queue depth from 8 to 

48, the performance loss for core 3 improved from 40 to less than 1%. Performance loss 

of core4 improved from 90 to 4%. For eaff, the corresponding numbers were 50 to 1% 

and 60 to 3% respectively. Only mild to negligible drop was observed in the helper cores’ 

performance (1 and 2) because of lack of native floating-point intensity. For cases 2 

(Figure 13) and 3, the results show a similar trend. More the floating- point intensity in a 

faulty-core, larger is the impact of increasing the queue depth. The performance loss 

generally saturates within 5% for deep-enough queues. The helper cores do not show any 

significant degradation in these configurations. 
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Three Faulty Cores 

We report the results of two configurations in figures 14 - faulty FP-ALU units in 

cores 1, 2, 3 and cores 2, 3, 4 respectively. In the first configuration, for mgff, core 3 

suffers the most significant degradation, but the loss saturates to 1% at a depth of 32. 

Table 5: Failure Configurations for Two Faulty Cores 
Configuration Cores �ature of the Mix of Faulty Cores 

# 1 # 2 # 3 # 4 

1   X X 2 high fp-intensive cores  

2 X  X  1 high and 1 low fp-intensity  

3 X X   2 low fp-intensity cores  

 

There is a 3-5% loss in the only helper core (core 4) due to the bottleneck – the 

only floating-point unit in the system– and cannot be avoided by varying any design 

parameter. For eaff, the trend is similar with core 3 saturating at 5% loss at depth 32, and 

core 4 suffering a steady 3% loss. In Figure 13, for mgff workload, core 4 saturates at a 

loss of 5% and core 3 recovers completely. There is no appreciable loss in the helper core 

(core 1) since it has no native floating-point instructions. For eaff, faulty cores 2 and 4 

suffer a loss of 2-3% whereas for faulty core 3 the loss is negligible. The helper core 

(core 1) does not see any degradation. Hence we see that the loss in the faulty cores is 

generally bounded within 5% for a queue size not exceeding 50. The helper cores also do 

not show degradation exceeding 10%. The Variations in idling interval have minimal 

impact, as the cores are wide enough to accept instruction from a faulty core without 

much interference to their native instructions. 
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Figure 12: Performance variation with IC queue depth: Core 3 and Core 4 

Faulty 



 

36 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

ALU DIV ALU DIV ALU DIV ALU DIV ALU DIV ALU DIV ALU DIV ALU DIV ALU DIV ALU DIV ALU DIV ALU DIV

8 16 32 8 16 32 8 16 32 8 16 32

Core 1 Core 2 Core 3 Core 4

IC Queue Depth

R
e
la
ti
v
e
 P
e
rf
o
rm

a
n
ce

mgaa

mgff

eaff

Figure 13: Performance variation with IC queue depth: Core 1 and Core 3 Faulty 
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Figure 14: Performance variation with IC queue depth: Core 1,2,3 and Core 2,3,4 
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CHAPTER 8 

LIMITATIO�S 

The scheme investigated here is particularly suitable for large sparingly-used units 

inside a core. In order to cover the entire processor area, the structures used to execute 

frequently occurring instructions like integer ALU operations, load-store, and branch 

instructions should be protected through redundancy. In hardware-based approach, this 

can be done through in-core spare functional units and redundant entries in the storage 

buffers. The software controlled thread swapping provides a viable alternative to utilize 

the inter-core redundancy. However the overheads for thread swapping would be 

amortized when the swapping occurs only infrequently, which means the program profile 

would be such that the offending instructions occur infrequently and in clusters. However 

when the instructions requiring the use of faulty units occur more regularly, the hardware 

controlled instruction migration would be more efficient.   
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CHAPTER 9 

CO�CLUSIO� 

 

Multi-core processors have inherent redundancy in them. In this work, a micro-

architectural technique was proposed to exploit such redundancy for salvaging yield and 

improving reliability. The central idea was to implement an inter-core queue to seek 

execution help from functioning neighboring cores. The resulting design changes are 

minimal and impose insignificant cost in terms of area and power. Simulation shows that 

significant yield recovery is possible with only 10-15% performance degradation in the 

worst case. The proposed scheme is useful for high-area high-latency instructions that are 

executed sparingly. The proposed scheme by itself is not sufficient to provide fault-

tolerance to the entire processor area. However along with memory protection techniques 

and in-core redundant units this scheme can be effective in improving yield and 

reliability for chip multi-processors. For many-core processors, we can provide effective 

coverage through a modular framework of clusters of four cores connected through the 

IC queue.  
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