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ABSTRACT

APPLICATIONS OF LDPC CODES FOR HYBRID
WIRELESS OPTICAL AND MAGNETIC RECORDING

SYSTEMS

SEPTEMBER 2007

SARMA VANGALA

B.Tech., JNT UNIVERSITY COLLEGE OF ENGINEERING

M.S.C.S., UNIVERSITY OF SOUTH FLORIDA

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Hossein Pishro-Nik

This thesis comprises of two parts. In the first, we improve the performance of ex-

isting hybrid FSO/RF communication systems. Conventional hybrid RF and optical

wireless communication systems make use of independent and parallel Free Space Op-

tical (FSO) and RF channels to achieve higher reliability than individual channels.

This thesis is based on the idea that true hybridization can be accomplished only

when both channels collaboratively compensate the shortcomings of each other and

thereby, improve the performance of the system as a whole. We believe that optimiza-

tion on the combined channel capacities instead of the individual channel capacities

of the FSO and RF channels can increase the system availability by a large amount.

Using analysis and simulation, we show that, by using Hybrid Channel Codes, we

can obtain more than two orders of magnitude improvement in bit error rates and

many-fold increase in system availability over the currently existing best systems.
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Simulations also show that the average throughput obtained using the new system is

over 35% better when compared to the present systems. The goodput is much higher

because of the elimination of data repetition. Also by avoiding data duplication, we

preserve to a great extent the crucial security benefits of FSO communications.

The second half of the thesis deals with magnetic recording systems. Due to

the insatiable and ever-increasing needs of data storage, novel techniques have to be

developed to improve the capacity of magnetic recording channels. These capacity re-

quirements translate to improving storage densities and using higher recording rates.

For these channels, improvements even in the order of a tenths of a dB have a big

impact on the storage densities of the recording device. Recently, LDPC codes have

been constructed to achieve the independent and uniformly distributed (i.u.d.) ca-

pacity of partial response (PR) channels. The “guess algorithm” has been proposed

for memoryless channels, to improve the performance of iterative belief propagation

decoding to that of Maximum Likelihood (ML) decoding. In the second part of this

thesis, the “guess algorithm” is extended to channels with memory. It is shown using

asymptotic density evolution analysis that the gains obtained using this algorithm on

these channels are more than those obtained over memoryless channels. The “guess

algorithm” is further extended to magnetic recording channels which are character-

ized by ISI and additive white gaussian noise (AWGN). Simulations show that gains

of upto a dB are possible on magnetic recording channels.
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CHAPTER 1

INTRODUCTION

1.1 Error Control Coding and LDPC Codes

In today’s “networked” world, reliable transmission of a message is of utmost

importance. With his pioneering paper [45], Shannon laid the foundations for infor-

mation and coding theory in the late 1940s. Since then, the world of information

theory and digital communications has grown tremendously; with applications in

nearly every walk of life. Using error correcting codes, transmission errors can be

corrected using clever mathematical techniques. This is called channel coding. Codes

can also be used to reduce the number of bits needed to represent the original data,

called source coding. In this thesis, we deal with channel coding techniques for two

important communication systems. We show that using efficient applications of chan-

nel coding techniques in these systems, we can improve their performance in many

ways and make them practical for application in the real world.

Many coding techniques have been proposed in the last 60 years. Of these, linear

block codes with their simplicity of design and ease for analysis, have occupied a

major role in communication and information theory. Though invented in 1960s,

Low Density Parity Check Codes (LDPC) [15] were not utilized until the recent

past due to the enormous computational complexities involved. However, due to the

recent advances in technology, LDPC codes have been found to exhibit extremely

useful applications in most channels of practical interest [31, 30, 29]. These codes

are now being used to improve the performance of many communication systems. In

particular, LDPC codes use sparse generator matrices that can make encoding easier
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[6]. Also, LDPC codes use iterative decoding algorithms that are linear in complexity

unlike previous decoding techniques [31]. In this thesis, we apply LDPC codes to two

important systems: the hybrid FSO/RF communication system and the magnetic

recording system. We believe that significant gains, in terms of bandwidth utilization

and system availability, in case of hybrid FSO/RF networks and, storage densities, in

case of magnetic recording systems can be obtained using the improvements suggested

in this work.

1.2 Contributions of Thesis

The thesis contributes to the areas of hybrid FSO/RF communication systems

and magnetic recording systems. It both these areas, the contributions provided by

this thesis help improve the performance of the respective communication system in

terms of utilization of the channel resources and improved performance over existing

systems.

1.2.1 Hybrid FSO/RF Communication Systems

To the area of hybrid FSO/RF communication systems, this work contributes the

following.

• A novel look at the hybrid FSO/RF systems based on the combined channel

capacities of the FSO and RF channels. A theoretical analysis on how this new

technique can improve the performance of the system in terms of bandwidth

utilization and system availability is presented.

• Introduction of Hybrid Channel Codes that can achieve the capacity of the

hybrid FSO/RF channels. Hybrid Channel Codes provide more than two orders

of improvement in terms of bit error rate and many orders of improvement in

channel availability. The throughput obtained using Hybrid Channel Codes is

also 35% better than the currently existing best systems.
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• Hybrid Channel Codes provide a viable solution to many of the long stand-

ing problems on “last mile connectivity”, “broadband access to rural areas”

and “disaster recovery”. As a broader application, these codes can be used

in communication systems where there are two parallel channels with varied

transmission and error rates.

1.2.2 Improved Decoding Algorithm on Channels with Memory

This thesis provides the following contributions in the areas of channels with

memory.

• The thesis extends the improved decoding algorithm proposed earlier for mem-

oryless channels to channels with memory.

• A density evolution analysis for the improved decoding algorithm on channels

with memory is proposed.

• The improved decoding algorithm for channels with memory is further extended

to ISI channels with AWGN noise (magnetic recording systems). It is found

that the improved decoding technique can lead to over one dB gain for these

channels which can lead to huge advantages in terms of storage densities for

storage systems.

1.3 Outline of Thesis

This thesis is organized as follows. In chapter 2, hybrid FSO/RF communication

systems is discussed. We discuss the potential applications of these systems and the

problems faced in making their implementation a reality. A new mechanism that will

considerably improve the performance of current communication systems is proposed.

Novel error correction codes called “Hybrid Channel Codes” are then introduced

which can be used to utilize both the FSO and the RF channels effectively. Results

3



that characterize the performance of the novel system and compare its usefulness to

existing best systems are then presented.

Chapter 3 introduces the “guess algorithm” that has been proposed earlier for

memoryless channels. This algorithm is then extended to channels with memory. It

is then shown that the gains provided by the “guess algorithm” on channels with

memory are greater than those obtained in memoryless channels. This is done using

asymptotic analysis called density evolution. The improved decoding algorithm is

then applied to magnetic recording systems (partial response channels) which are

characterized by ISI and AWGN noise. Simulations results which show the benefits

of this decoding method for storage systems are also presented.

Chapter 4 concludes the thesis and presents potential future work in the areas of

hybrid communications and magnetic recording systems.
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CHAPTER 2

HYBRID RF OPTICAL WIRELESS NETWORKS

2.1 Introduction

Free Space Optical (FSO) communication systems, also known as wireless op-

tical communications, provide tremendous potential for low-cost time-constrained

high-bandwidth connectivity in a variety of network scenarios. Several long-standing

problems such as “last mile connectivity”, “broadband internet access to rural ar-

eas”, “disaster recovery” and many others can be solved using FSO communication

systems. This is because, point-to-point line-of sight (LOS) FSO communication

systems can achieve data rates comparable to fiber optics without incurring exor-

bitant costs and requiring significant amount of time for installation. However, the

widespread deployment of FSO communication systems has been hampered by the

reliability or availability issues related to atmospheric variations [33, 9]. FSO com-

munication undergoes significant deterioration whenever the visibility in the medium

is effected especially in cases smoke and fog. Another system that faces similar prob-

lems due to atmospheric conditions of precipitation such as rain and snow is the

millimeter wave (MMW) system operating at 60 GHz. Consequently, both FSO and

MMW communication systems fall short of the desired carrier-grade availabilities of

99.999%. Recently, several researchers and companies have suggested the idea of hy-

brid FSO/RF communication as a solution to the availability problem (see [22] and

references therein). A low data-rate RF channel acts as a backup link to ensure mini-

mum data communication when the main FSO link is down. Alternately, a high-data

rate MMW channel duplicates the FSO link to create redundancy. These approaches

5



to hybridization provide viable solutions to the availability problem. However, the

solutions are not efficient in terms of bandwidth utilization and usage of resources on

both the channels. The objective of this thesis is to make hybrid FSO/RF communi-

cation systems achieve carrier class level (“five-nines”) reliabilities and still avoid the

reduction in effective data rate due to data duplication. The truly hybridized system

we propose can work when the effective SNR of the combined FSO/RF channel is

higher than a threshold as opposed to earlier systems which work when the effective

SNR of each of the individual channels is over a threshold. We propose a novel coding

paradigm called “Hybrid Channel Coding” to achieve this goal. By avoiding data du-

plication, we preserve the crucial security benefit of the FSO communication system.

In this system, the FSO and RF links dynamically interact with each other in order

to achieve maximum reliability along with optimum utilization of channel resources

leading to big improvements in performance in terms of system availability, bit error

rates and effective channel throughput.

The rest of this chapter is organized as follows. Section 2.2 summarizes the previ-

ous work done in this direction. In Section 2.3, we provide an analytical comparison

of existing systems with our proposed system in terms of system availability and av-

erage throughput obtained and show that the proposed scheme can lead to significant

performance improvements. Section 2.4 provides the design of efficient error correc-

tion codes that can achieve the capacity of the hybrid FSO/RF channel irrespective

of the underlying channel conditions. Simulation results that support our claims are

present in Section 2.5.

2.2 Related Work

Recently, there has been growing interest in FSO for terrestrial communications

and several companies [27, 13] are now offering commercial FSO communication prod-

ucts. An important issue with FSO communication systems is scintillation effect,

6



which leads to the loss of large amounts of data during transient bursts [34, 10].

Error control codes have been considered as a means for reducing the resulting bit

errors [7, 58, 26, 37, 60]. Atmospheric fading in FSO channels can be modeled using

a variety of distributions [59, 36, 56, 11]. The burst length in the atmospheric chan-

nel is found to be ranging from a few milliseconds to hours [56] making the channel

highly unreliable. In order to reduce the coding redundancy during low and moder-

ate scintillation, a rate adaptive coding scheme using variable length turbo codes has

been proposed [25]. Interleaving along with error control coding can improve the code

performance in case of small scale channel fluctuations [58]. However, system outages

due to extreme conditions can make the link completely useless or reduce the range

of transmission. In such situations, along with error control codes, range reduction

using multiple hops can be used to increase channel availability [1]. However, this can

lead to an increase in the expenditure on equipment and inefficient utilization of the

system whenever the channel conditions become normal again. Diversity techniques

can be used to improve channel utilization without any of the negative effects of in-

terleaving or range reduction. Multiple copies of the same data can be transmitted

using temporal [50, 23], spatial [23], coding [61, 46] or media [22] diversity. In tem-

poral diversity, a delayed copy of the coded sequence is sent over the channel. Using

multiple transmitters and/or receivers will lead to a spatially diverse system. With

coding diversity, multiple copies of the same data are transmitted over the channel

using space-time codes [46]. However, these diversity mechanisms can only help in

case of short-term channel fluctuations. During extreme weather conditions, such

as snow or fog, these mechanisms suffer from the same disadvantages as those using

non-diversity schemes. One diversity scheme suitable for extreme climate conditions

is media or channel diversity, which is the basis for hybrid FSO/RF communications.

In this diversity scheme, a copy of the original message is sent over two heterogeneous

parallel channels [57, 5]. In [22], the authors propose the use of a low-capacity RF

7



channel as a backup for the FSO link. The RF link is used only when the optical

wireless channel is down. Another system makes use of a 60GHz MMW channel in

conjunction with the FSO channel [22]. There are two reasons for such a combina-

tion. First, using MMW data transmission allows the RF link to achieve data rates

comparable to that of the FSO link, i.e., over 1 Gbps. In this manner, the RF link

does not merely act as a backup. Second, the two channels provide an optimum com-

bination for high availability since MMW communication is mostly affected by rain

while FSO communication suffers most in fog [22, 57, 5]. Redundancy in transmission

over independent channels probabilistically improves the chances of message recovery

at the receiver. Error control coding schemes can be used in these scenarios as well

where media diversity helps mitigate the long term bursts and the error control cod-

ing helps reduce the bit error rates. However, we believe that the current approach to

hybrid FSO/RF communication is highly inefficient and suffers from certain inherent

problems. The duplication of data on the RF and FSO channels leads to the wastage

of bandwidth and under-utilization of RF link whenever the FSO link is working nor-

mally. FSO communication is inherently secure because disruption of the link needs

a direct obstruction of the point-to-point link. However, retransmission of the mes-

sage over the insecure RF channel leads to an insecure communication system. Also,

frequent switching between the FSO and RF links, called flapping [12], can lead to a

collapse of the communication system. This undesirable behavior arises if the FSO

and RF links become alternately unavailable for short periods of time. Moreover,

the need for multiple encoders and decoders results in increased costs and synchro-

nization issues. In this chapter, we introduce a new coding paradigm called “Hybrid

Channel Coding” that utilizes both channels to the fullest to tackle the mentioned

problems. “Hybrid Channel Codes” use the combination of non-uniform codes and

rate-adaptive codes using only a single encoder and decoder to vary the code-rate

based on the channel conditions. Media diversity in combination with non-uniform
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codes is used to overcome long channel outages and rate-adaptivity is used to com-

bat short term channel fluctuations. Additionally, the non-uniform codes used are of

long block lengths that allow utilization of LDPC codes to their fullest potential. We

show that true hybridization can be accomplished when both channels collaboratively

compensate the shortcomings of each other and thereby, improve the performance of

the system as a whole.

2.3 A Novel Hybrid FSO/RF System

In this part of the chapter, we present the channel model that is used for hybrid

FSO/RF communication systems and present a novel hybrid FSO/RF mechanism

developed in order to increase the system reliability.

2.3.1 Channel Model

The FSO channel is a highly unstable channel. Attenuation in FSO channel in

caused due to absorption and scattering by the particles in the atmosphere [57]. At-

tenuation due to absorption is caused by atmospheric conditions and is dependent

on the frequency of the transmitted wave. This includes attenuation due to visibility

conditions such as fog, snow and rain. The transmitted light beam is also scattered in

all directions due to the variations in particle size along the transmitted path. Apart

from the attenuation and scattering losses due to the visibility conditions, the atmo-

sphere also exhibits high amount of turbulence due to the variation of temperature

and pressure. These variations in temperature and pressure create changes in the

refractive index along the transmitted path leading to random intensity fluctuations.

These random intensity fluctuations are termed as scintillation and are the major

cause of outage in FSO channels. Scintillations in the optical channel are modeled

using Kolmogorov theory [19]. It is important to note that severe scintillation and

attenuation due to visibility conditions occur independently of each other. Severe
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scintillation cannot occur during extreme visibility conditions (such as snow and fog)

and vice versa.

The channel model defined here is similar to the one used in [2]. The FSO and

RF channels can be modeled using (2.1) in which X denotes the transmitted binary

signal, I denotes the instantaneous channel intensity gain, η the efficiency of the

receiver aperture and N ∼ N(0, N0

2
).

Y = ηIX +N, I > 0. (2.1)

The intensity I, is a random variable that varies as a gamma-gamma distribution

((2.2)) when the signal is passing through the FSO channel [51] and as a log-normal

distribution ((2.3)) when passing through the RF channel (in case a backup RF

channel exists).

fI(z) = 2(αβ)
α+β

2

Γ(α)Γ(β)
z

(α+β)
2

−1Kα−β(2
√
αβz),

α = (exp [
0.49σ2

FSO

(1+1.11σ
12
5

FSO
)
7
6

] − 1)
−1
,

β = (exp [
0.51σ2

FSO

(1+0.69σ
12
5

FSO
)
5
6

] − 1)
−1
.

(2.2)

fĪ(z) =
1

2zσRF

√
2π

exp−(lnz)2

8σ2
RF

. (2.3)

Γ denotes the gamma function and Kα−β is a modified Bessel function of the

second kind of order α − β. σFSO and σRF are the parameters that indicate the

scintillation strength in each of the channels respectively. The larger the value of σ
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the more severe the scintillation. Other channel models such as the log-normal model

also exist for modeling weak scintillations [24] in the FSO channel. However, the

gamma-gamma model is a more accepted model for the entire range of scintillations

(weak, moderate and strong). Typical values of scintillation index for σFSO are 0.5,

1.0 and 3.0 respectively for weak, moderate and strong scintillations. In this analysis,

we do not include the attenuation due to the channel conditions and provide an

analysis only on scintillation which is the main reason for channel unavailability in

optical wireless communication systems.

2.3.2 Definitions and Notations

In this section, we specify some notations and definitions that are used in the rest

of the analysis to follow. System availability is usually defined as the percentage of

time the intensity of the received signal is above a threshold. Equivalently, we define

the system availability as the percentage of time the capacity of the system is above a

specified threshold. The capacity thresholds for the existing and the newly proposed

systems are denoted as cTh and cTh respectively. Our definition of availability allows

for a fair comparison of the earlier systems with the proposed system.

For the rest of the analysis, we assume that perfect channel state information is

available both at the transmitter and the receiver as in [24], i.e. if the channel system

states are s = ηI, then the pdf of the channel states is fS(s) = 1
η
fI(

s
η
), where fI(i) is

the probability density function of the intensity gain of the underlying channel (FSO

or RF). With this assumption, the capacity of the optical wireless channel (CFSO(s)) is

the average capacity of an Additive White Gaussian Noise (AWGN) channel [60, 24].

We denote the capacity of the AWGN channel, dependent on the channel states (s)

and the noise variance (N0

2
) as CAWGN(s,N0). Similarly, we denote the capacity of

the RF channel as CRF (s̄, N̄0) where s̄ denotes the channel states and N̄0

2
denotes the

noise variance of the RF channel. Let sTh and sTh denote the channel states at which
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the capacities of the existing and the new systems are cTh and cTh respectively. Also,

for a random variable X, the CDF (cumulative distribution function) is denoted by

FX(x) and is equal to Prob(X ≤ x). The system availability is denoted by PA.

2.3.3 Case 1: Fixed Rate Code on a Single FSO Link

This case can be considered as the base for the rest of the analysis to follow.

A system with only the FSO channel and using a fixed rate code has the worst

performance (in terms of throughput and channel availability) of all the systems

considered. This is due to the lack of any mechanism to compensate for the losses

incurred due to the channel variations. The burden of recovering from the channel

losses falls completely on the coding mechanism used. Using a high rate code can

be detrimental when the coding mechanism is unable to correct all errors. A low

rate code would lead to a higher redundancy and bandwidth wastage. Using the

definition stated earlier, the system availability is given by (2.4) and is analogous

to that mentioned in [24]. The average throughput of the channel is given by the

fixed rate of the code utilized and is given by (2.5). The code rate that will ensure

minimum communication to be possible is therefore CFSO(sTh).

PA = 1 − Prob(CFSO ≤ cTh) = 1 −
∫ sThFSO

0
fS(sFSO)dsFSO, (2.4)

Avg. Throughput = PA(FSO) × CFSO(sThFSO
). (2.5)

2.3.4 Case 2: Adaptive Rate Codes on a Single FSO Link

Using a code that adjusts its rate based on the channel conditions will enable

the system to adaptively achieve a better performance by effectively improving the

average throughput. The system availability, however, will remain the same as in
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the case of having a fixed rate code (given by (2.4)). The average throughput is now

given by (2.6).

Avg. Throughput = PA(FSO)E[CFSO|Available]

= PA(FSO)
∫ +∞

sThFSO

CFSO(sFSO)fS(sFSO)
1−FS(sThFSO

)
dsFSO.

(2.6)

2.3.5 Case 3: RF Backup Channel with a Fixed Rate Code

The RF channel can be used as backup in case the FSO link fails. The system

availability in this case is given by (2.7) and the average throughput by (2.8). The

states in the FSO and RF channels are denoted as sFSO and sRF respectively. sThFSO

and sThRF
denote the states at which the FSO and RF channels attain their respective

threshold capacities.

PA = (1 − Prob(CFSO ≤ CThFSO
)) + Prob(CFSO ≤ CThFSO

)

×((1 − Prob(CRF ≤ CThRF
))

= (1 −
∫ sThFSO

0
fSFSO

(sFSO)dsFSO) +
∫ sThFSO

0
fSFSO

(sFSO)dsFSO

×(1 −
∫ sThRF

0
fSRF

(sRF )dsRF ),

(2.7)

Avg. Throughput = [PA(FSO)] × CFSO(sThFSO
)

+[1 − PA(FSO)] × [PA(RF )] × CRF (sThRF
).

(2.8)

2.3.6 Case 4: RF Backup Channel with Adaptive Codes

The situation can be further improved with an adaptive code which helps increase

the channel throughput while the backup RF channel helps increase the system avail-

ability. The availability is again given by (2.7) as in Case 3. The average throughput,

though, is higher than that obtained in the previous case and is denoted by (2.9).

Avg. Throughput = [PA(FSO)]E[CFSO|Available]

+[1 − PA(FSO)][PA(RF )]E[CRF |Available]

= [PA(FSO)]
∫ ∞

sThFSO

CFSO(sFSO)fSFSO
(sFSO)

1−FSFSO
(sThFSO

)
dsFSO

+[1 − PA(FSO)][PA(RF )]
∫ ∞

sThRF

CRF (sThRF
)f(sRF )

1−FSRF
(sThRF

)
dsRF .

(2.9)
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2.3.7 Case 5: Independent Parallel FSO/RF Channels with Adaptive

Codes

In a system using independent parallel FSO/RF channels, data is transmitted

over both the FSO and RF channels. However, this data transmission can occur in

two different ways. In the currently existing systems, the parallel RF channel is used

to repeat the data that is transmitted on the FSO channel. In such a system, there

is no channel flapping. However, due to data repetition, the goodput obtained using

this system is half the maximum possible.

The goodput can be increased considerably if the RF channel is also used for

transmitting actual information and not repeat the data transmitted over the FSO

channel. This, in itself, is a novel hybrid FSO/RF system. No mechanism currently

exists that transmits information over both the channels without using the RF channel

for repetition or as a backup. In this system, the two channels use separate rate-

adaptive codes for each of the FSO and RF links, thus, requiring additional encoder

decoder equipment expenditure.

The system availability for both the systems is the same and is equal to that in

Case 3. However, the average throughput increases considerably over the system using

the RF channel as a backup and is as shown in (2.10). The goodputs, as mentioned

earlier, are however different.

Avg. Throughput = [PA(FSO)]
∫ +∞

sThFSO

CFSO(sFSO)fSFSO
(sFSO)dsFSO

1−FSFSO
(sThFSO

)

+[PA(RF )]
∫ +∞

sThRF

CRF (sRF )fSRF
(sRF )dsRF

1−FSRF
(sThRF

)
.

(2.10)

2.3.8 Case 6: Hybrid Channel Codes for Combined FSO/RF Channels

In this system, a single encoder decoder combination, using Hybrid Channel

Codes, is used for the transmission of data. Hybrid Channel codes have two important

properties compared to the coding and diversity mechanisms described earlier. First,

the system is optimized on the sum of the capacities of both the channels combined
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together (i.e. CFSO + CRF ) instead of individual channel capacities CFSO and CRF .

Hybrid Channel Codes try to achieve this combined channel capacity. Second, this

method utilizes the properties of two important coding mechanisms: rate-adaptive

and non-uniform. Rate-adaptive codes allow for the efficient usage of each of the

FSO and RF channels. Non-uniform codes come with various advantages [42]. They

enable the implementation of more efficient architectures for multiple channels using

a single encoder and a single decoder. Moreover, they allow the usage of long block

lengths which result in better error correction properties when used with LDPC codes.

Also they provide better error floor performance. These properties lead to a further

improvement in the availability which is shown in (2.11). cTh here is the threshold for

combined channel capacity. The average throughput obtained using Hybrid Chan-

nel Codes is also better than the previously mentioned schemes due to the effects

of non-uniform codes. This, however, is not reflected in the (2.12) as the average

throughput shown here is a theoretical limit. Nevertheless, simulations show that

the Hybrid Channel Coding system yields the highest system availability and highest

throughput of all the FSO/RF systems described. For (2.11) and (2.12), we define

Ccombined = CRF + CFSO and sTh as the state at which the capacity is cTh.

PA = 1 − Prob(Ccombined ≤ cTh)

= 1 −
∫ +∞

0

∫ +∞

s
Th

−sFSO
fsFSO

(sFSO)fsRF
(sRF )dsRFdsFSO

(2.11)

A = PA × E[Ccombined|Available]

= PA

∫ +∞

0

∫ +∞

s
Th

−sFSO
Ccombined(sFSO, sRF ) × fsFSO

(sFSO)

×fsRF
(sRF )dsRFdsFSO

(2.12)

The availability analysis in this section can be represented using Figure 2.1. In

the figure, the vertically shaded region represents the system availability for Cases 1

and 2 where there is only a single FSO channel. The system is available whenever

the capacity is above the prescribed threshold of the FSO channel. It is clear from
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Figure 2.1. System availability for different optical wireless systems.

the figure that the system availability is increased considerably by using a backup

RF channel. This is shown by the horizontally shaded area in the figure. This was

discussed earlier in Cases 3, 4 and 5. The availability is further increased by using

the Hybrid Channel Coding mechanism. This is the cross shaded area in the figure

which represents Case 6. Notice that the advantages of Hybrid Channel Codes are

not shown by the figure though it is still the best of all the systems presented. The

figure only shows a theoretical overview of the advantages of the proposed system.

The practical implications of using non-uniform codes which allow large block lengths

and can provide advantages beyond those shown in the figure are not reflected and

will become evident in the results section.

2.4 A Novel Coding Mechanism

The hybrid FSO/RF channel consists of two communication channels both of

which are highly time-variant, as it was discussed in earlier sections. In order to
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achieve efficient and reliable communication on the hybrid FSO/RF link we propose

a novel coding paradigm, called Hybrid Channel Codes. This coding scheme is based

on two important concepts: non-uniform (multi-channel) coding, and rate-compatible

coding. Non-uniform codes were recently proposed in [43]. They provide a highly effi-

cient and reliable communication scheme over several parallel channels using modern

codes such as low-density parity-check (LDPC) codes. However, these codes are

designed for the scenarios in which the channels are fixed, i.e., time-invariant. Rate-

compatible LDPC codes have been shown to achieve close-to-capacity performance

for highly time-variant channels using only one encoder and decoder [42, 41]. The

main idea behind Hybrid Channel Codes is to combine non-uniform coding and rate-

adaptive coding. These codes are introduced and analyzed, and we will design and

optimize these codes for hybrid FSO/RF systems. Our results confirm that signifi-

cant improvements in reliability and efficiency are obtained by using Hybrid Channel

Codes.

2.4.1 Hybrid Channel Codes

Hybrid Channel Codes combine the advantages of non-uniform coding and rate-

adaptive coding. Given the already established advantages of both techniques, this

is a very promising scheme. The non-uniformity of the code is very effective in

dealing with the bursty nature of the channels, while rate-adaptivity provides efficient

utilization of the channels that are time-varying. Figure 2.2 depicts the structures

of Hybrid Channel Codes. We use a very common graphical representation called

Tanner Graph [48]. The Tanner Graph of a Hybrid Channel Code consists of five

types of nodes as shown in Figure 2.2. Check nodes, RF variable nodes, FSO variable

nodes, RF punctured nodes, and FSO punctured nodes. The number of RF and FSO

variable nodes are nRF and nFSO, respectively. The block length of the code is equal

to n = nRF + nFSO. The number of RF punctured nodes is given by npRF , where
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pRF is the fraction of RF nodes that are punctured. Similarly, the number of FSO

punctured nodes is given by npFSO. Define, φ = npRF

nRF
and ψ = npFSO

nFSO
.

…

c1
c2

Check Nodes

RF
Punctured Bits

FSO Punctured
Bits

…

RF Variable
Nodes

FSO Variable
Nodes

Figure 2.2. Graphical representation of Hybrid Channel Codes.

The punctured bits (bits corresponding to the punctured nodes) will not be trans-

mitted. During decoding, the initial LLRs of the punctured nodes are set to zero. The

percentage of punctured bits determines the code rate. It is assumed that the channel

state information is available at the transmitter so that the percentage of punctured

nodes can be adjusted accordingly. In the following sections, we provide analysis and

design of these codes for efficient and reliable communication. In particular, we first

show that Hybrid Channel Codes are capacity-achieving under maximum likelihood

decoding. We then provide density evolution analysis to show their performance un-

der iterative decoding and then provide the design of optimal Hybrid Channel Codes.

We obtain the achievable rate regions for iterative decoding. Using the simulation

results, we confirm that these codes provide efficient and reliable communication over

hybrid FSO/RF channels. It should be mentioned that in our analytic results, we

have assumed the two channels to be memoryless to keep the math manageable.
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Figure 2.3. Hybrid Channel Coding architecture.

2.4.2 Optimality of Hybrid Channel Codes for Hybrid FSO/RF Channels

Here we state a fundamental result asserting that Hybrid Channel Codes are es-

sentially optimal for hybrid FSO/RF systems. This result serves as a theoretical basis

for our work. Consider two independent channels C1 and C2 that are used in parallel

as shown in Figure 2.3. Suppose c1 and c2 are the capacities of the two channels

respectively. Since the channels are independent, from an information theoretic point

of view, the maximum achievable data rate using this system is rmax = c1 + c2. In

our specific case of time-variant FSO/RF channels, c1 and c2 change over time and

so does rmax. The main idea behind Hybrid Channel Coding is to achieve the data

rate rmax = c1 + c2, independent of the channel conditions. That is, we want to

achieve the highest possible data rate at any time. Clearly, no scheme can achieve

higher rates than the mentioned scheme, since, this limit is imposed by information

theory. We now state a result saying that Hybrid Channel Codes can achieve rmax

at all times. This important result implies that only one encoder and decoder can be

used to achieve the capacity of a highly time-variant hybrid channel. Note that, we

have proved the result for maximum likelihood decoding. In practice, we use simple

iterative decoding which has been shown, by simulation, to perform very close to

maximum likelihood decoding for optimal codes.

Theorem 1. Let C1 and C2 be two binary-input output-symmetric memory-less (BIOSM)

channels, that are used in parallel as shown in Figure 2.3. Let α and β be two fixed

real numbers in (0,1). Assume the capacities of C1 and C2 at any time t is given by
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Figure 2.4. Proof of Theorem 1.

c1 and c2 , where α < c1, c2 < β. There exists a Hybrid Channel Code that achieves

the rate rmax(t) = c1(t) + c2(t) at all times. This is done by proper puncturing and

using maximum likelihood decoding at the receiver.

Proof. The theorem can be proved using conventional information theoretic proofs,

however, we find the following proof interesting and short. Consider the case where the

channel capacities are the minimum in the range we are studying. That is assume c1 =

cmin
1 ≥ α, and c2 = cmin

2 ≥ α. Let R0 =
cmin
1 +cmin

2

2
(1 − ǫ). Note that here we assume

the code rates and channel capacities are always between 0 and 1. Thus, capacity

achieving codes have rates close to
cmin
1 +cmin

2

2
. We construct an ensemble of LDPC

codes suggested by MacKay [31], in which columns are constructed independently

and randomly and they have weight t. The code rate is chosen to be R0. This code

will be our parent code. As it is proved in [35], the ensemble can achieve the capacity

of BIOSM channels. Thus for sufficiently large t, the error probability for any BIOSM

channel with capacity smaller than R0 can be made arbitrarily small.

Now assume that the channel conditions improve, and the capacities become c1

and c2 respectively. Let the puncturing fraction, p, be chosen as

p = 1 − cmin
1 + cmin

2

c1 + c2
. (2.13)

The punctured bits are chosen randomly from the codeword bits. The interesting

point is that this system can be modeled as the system shown in Figure 2.4. In this
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figure, the puncturing effect is modeled by two binary erasure channels with erasure

probabilities p. As it is shown in [35], the error rate is vanishing as long as the code

rate is smaller than the capacity of the channel. The equivalent channel has the

capacity:

ceq =
1

2
[c1(1 − p) + c2(1 − p)] = cmin

1 + cmin
2 . (2.14)

Thus the error probability goes to zero as t goes to infinity. But the code rate of the

punctured code is given by

R =
R0

1 − p
=
c1 + c2

2
(1 − ǫ). (2.15)

Thus we conclude all rates smaller than c1+c2
2

are achievable. Therefore, we can

achieve the channel capacity at all times. It should be mentioned that we can also

prove this theorem using a similar method to [17].

This important result assures us that from a theoretical point of view, Hybrid

Channel Codes are suitable for the hybrid FSO/RF systems. Note that the theorem

assumes both channels to be memory-less. This assumption is used to simplify the

analysis, though it is not always true. Nevertheless, the result is still good enough to

encourage the use of Hybrid Channel Codes for our system. Interestingly, the Hybrid

Channel Codes achieve optimal rates without any need for changing the encoder and

the decoder. For example, even if one of the channels completely fails, i.e., the signal-

to-noise ratio drops drastically; we still have reliable communication as long as the

other channel has a good signal-to-noise ratio. In this case, we can simply shut off

the corresponding transmitter without manipulating the encoder and the decoder. In

fact, the decoder assumes that the unused channel has zero capacity. This versatility

of the coding scheme is a significant advantage over existing FSO/RF systems, since,

it avoids any problematic issues of switching between the two channels [12].
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2.4.3 Density Evolution

Here, we provide density evolution formulas to analyze the performance of Hybrid

Channel Codes under iterative decoding. Assume that the RF and the FSO channels

are memory-less binary-input output-symmetric (MBIOS) channels. Let γRF and

γFSO be the the signal to noise ratios (SNR) of the RF and FSO channels respectively.

The SNRs show the channel conditions and depend on the signal intensity and the

noise level. We assume that γRF and γFSO are real numbers in [0,+∞]. Thus γ =

+∞ refers to the perfect channel conditions and γ = 0 refers to the case where

the channel capacity is zero. For the RF channel, assuming the all-one code word

has been sent, we define the random variable ZγRF
as the log likelihood ratio of the

transmitted bits, given that the SNR is γRF . Let FRF (z, γRF ) and fRF (z, γRF ) be the

cumulative distribution function (CDF) and the probability density function (PDF)

of ZγRF
respectively. Similarly, define ZγFSO

, FFSO(z, γFSO) and fFSO(z, γFSO).

Consider Figure 2.3 where we transmit data over two independent binary-input

output-symmetric channels, the RF and the FSO channels. Suppose, we use a Hybrid

Channel Code of length n. We transmit any codeword over the two channels such

that nRF bits in any codeword are transmitted over the RF channel and nFSO bits

are transmitted over the FSO channel, so n = nRF +nFSO. Let E be the set of edges

in the graph and let ERF and EFSO be the set of edges that are incident with variable

nodes corresponding to the RF and FSO channels respectively. Also let ERF
i be the

set of the edges that are adjacent to the RF variable nodes of degree i. We define

λRF (x) =
∑

λRF
i xi−1 (2.16)

where

λRF
i =

|ERF
i |

|ERF | . (2.17)

Also, define λFSO(x) accordingly. Let ρ(x) =
∑

ρix
i−1, where ρi is the fraction

of edges connected to a check node of degree i [18]. Similar to [18], we can find the
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density evolution formulas for the Hybrid Channel Codes ensemble. Let us define

qRF = |ERF |
|E|

and qFSO = |EFSO|
|E|

. Let PRF
l denote the probability density function

of the messages that are sent from RF variable nodes in the lth iteration of the

message passing decoding. Define P FSO
l accordingly. Then, the formulas for the

density evolution can be written as

PRF
0 (x) = φδ(x) + (1 − φ)fRF (x, γRF ),

P FSO
0 (x) = ψδ(x) + (1 − ψ)fFSO(x, γFSO),

PRF
l = PRF

0 ⊗ λRF

(

Γ−1
[

ρ(Γ(
∑

qRFPRF
l−1 ))

]

)

, (2.18)

P FSO
l = P FSO

0 ⊗ λFSO

(

Γ−1
[

ρ(Γ(
∑

qFSOP FSO
l−1 ))

]

)

. (2.19)

where ⊗ denotes convolution and Γ is as defined in [18]. These results are obtained

by applying the density evolution analysis of non-uniform codes [43], and punctured

codes [42] to the Hybrid Channel Code ensemble. We can use these formulas to

optimally design Hybrid Channel Codes. The simulation result will confirm the ef-

fectiveness of the design methodology.

2.4.4 Achievable Rate Region for Iterative Decoding

Here we provide achievable regions for Hybrid Channel Codes. In other words, we

provide an exact characterization of the achievable puncturing patterns for a given

Hybrid Channel Code ensemble. This is very useful because we can determine the

achievable rates and these can be used in the design of efficient codes. We say that a

puncturing pair [pRF , pFSO] is achievable for an ensemble of Hybrid Channel Codes if

there exists a γRF < +∞ and γFSO < +∞ such that a randomly chosen code from the

ensemble can be used to achieve arbitrarily small error rate over the hybrid FSO/RF

channel with SNRs γRF and γFSO. Otherwise, the pair [pRF , pFSO] is not achievable.
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Figure 2.5. The achievable region for the puncturing pair [pRF , pFSO].

Theorem 2. For an ensemble of Hybrid Channel Codes, define

x0(ζ) = 1, xl(ζ) = λ
(

1 − ρ(1 − ζxl−1)), for l = 1, 2, .... (2.20)

Let ζ∗ be the maximum value for which lim
l→∞

xl(ζ
∗) = 0. The puncturing pair [pRF , pFSO]

is achievable if and only if pRF + pFSO < ζ∗.

Proof. Assume pRF + pFSO > ζ∗. Define

y0(ζ) = 1, yl(ζ) = λ
(

1 − ρ(1 − (pRF + pFSO)yl−1)). (2.21)

then yl(ζ) is the fraction of erasure messages in the lth iteration from the punctured

variable nodes, assuming the noise level of the channels are zero. Then, we have

lim
l→∞

yl > 0. This means, even if the noise levels of the RF and FSO channels are zero,

the punctured bits are not recovered at the decoder. Thus, the pair [pRF , pFSO] is not

achievable.
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Now assume pRF +pFSO < ζ∗. Thus, there exists an ǫ > 0 such that pRF +pFSO +

2ǫ < ζ∗.The assumption lim
l→∞

xl(ζ
∗) = 0 means that if the noise levels of the RF

and FSO channels are zero and pRF + pFSO = ζ∗, then all the punctured bits will be

recovered during decoding. Thus, by increasing the noise level by a small amount and

decreasing the puncturing fractions by ǫ (thus obtaining the pair [pRF + ǫ, pFSO + ǫ])

the error rate will still tend to zero. Thus, [pRF , pFSO] is achievable.

The achievable region for Hybrid Channel Codes is shown in Figure 2.5.

2.5 Performance Results

In this section, we present results confirming our claims presented earlier in the

thesis. Simulations are performed to observe the effects of Hybrid Channel Codes on

channel utilization, bit error rates and channel availabilities.

2.5.1 Simulation Setup

To optimally compare the performance of various coding mechanisms in the vary-

ing channel conditions, we use the topology shown in Figure 2.6. We assume the

existence of separate FSO and RF channels in a parallel topology. The FSO channel

is assumed to have a bandwidth of 1 Gbps and the RF channel is assumed to have a

bandwidth of 100 Mbps, giving a total channel capacity of 1.1 Gbps. A channel is as-

sumed to be unavailable whenever its capacity falls below 10% of the initial value. In

all the simulations performed, we assume the lack of any retransmission mechanism.

This is done in order to compare the efficiencies of the coding schemes used. We also

assume that a synchronization mechanism exists at the receiver to combine the data

received from both the channels.
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Figure 2.6. Simulation setup.

2.5.2 Results

2.5.2.1 Comparison of Channel Utilization for Various Coding Schemes

For this set of simulations, we assume that the FSO and RF channels are in one

of three possible conditions: good (low noise variance), medium and bad (high noise

variance). The simulation duration can be assumed as different days of a week when

the atmospheric channel conditions are varying randomly. Good channel conditions

indicate low scintillation index whereas bad channel conditions are simulated using a

large scintillation index.

The three channel conditions allow nine different fading levels for the combined

FSO and RF channels. As mentioned earlier, a log-normal fading model for the RF

channel and the gamma-gamma fading model for the FSO channel is assumed. The

channel conditions can be varied by varying the channel parameter (σRF and σFSO

respectively). Table 2.1 shows the various parameters used. Note that the channel

conditions here indicate the effects of scintillation during an extended period of time.

Table 2.1. Simulation parameters used for various channel conditions.

Channel Good Medium Bad
σRF 0.25 0.5 1
σFSO 0.5 1 3
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Figure 2.7. Code rate variation for different FSO/RF systems.

Figure 2.7 provides a “snapshot” of the variation of code rates, based on the chan-

nel conditions, for the different systems. The figure, thus, displays the effectiveness of

the coding mechanism in utilizing the channel resources and achieving the combined

channel capacity.

For a single FSO link with a fixed rate code, a fair throughput is obtained in

good channel conditions provided the code used is of high rate. However, with a low

rate code, the channel utilization is low. This system is unavailable for other channel

conditions. The fixed rate code is generated using the irregular LDPC code shown in

(2.22) [16]. The block length was set to 11390. The code used is found to produce

good rate-adaptive codes with rates between 0.5 and 0.9. [16]. We choose the fixed

code rate to be 0.7.
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λ(x) = 0.25105x+ 0.30938x2 + 0.00104x3 + 0.43853x9, (2.22)

ρ(x) = 0.63676x6 + 0.36324x7.

Using an adaptive code with the single FSO link leads to a more efficient channel

usage in terms of throughput. In the figure, the same code as in (2.22) is used to

generate rate-adaptive codes (using puncturing). A backup RF channel will aid in

the increase of system availability. The RF channel, in this case, is used whenever

the FSO channel is out. The system is unavailable whenever both the channels

are unavailable. However, as is evident from the Figure 2.7, the system availability

increases considerably over one using only a single FSO link. The channel utilization,

in terms of throughput, improves when rate-adaptive codes are used on both the FSO

and RF channels.

Using Hybrid Channel Codes results in the best performance. The usage of non-

uniform codes enables longer effective block lengths. As shown in Figure 2.7, the rate

of the codes obtained using Hybrid Channel codes closely follows the capacity curves.

The average throughput, therefore, obtained using this technique is the highest among

all the other existing schemes.

For the set of simulations shown in Figure 2.7, we found that the average through-

put of the Hybrid Channel Coding system increases by five times over a system using

a single FSO link and a fixed code rate. The average throughput is increased by more

than 35% when compared to the system which uses independent parallel FSO/RF

channels with rate-adaptivity and data duplication which is the currently existing

best system. It needs to be stressed here that the goodput values obtained by using

Hybrid Channel codes are much higher because of the elimination of data repetition.

The goodput values that are obtained for various systems are shown in Table 2.2.

These values are averaged for 100 runs of the simulation.

28



Table 2.2. Comparison of goodputs (in Gbps)obtained for various FSO systems.

Single FSO Link Single FSO Link Parallel RF Hybrid Channel Codes
(Fixed Rate) (Adaptive Rate) (Independent)

0.1975 0.2103 0.7224 1.0032

2.5.2.2 Comparison of System Availability

In this section, we compare the system availability probabilities of following three

systems: one using a single FSO link with a fixed rate code, the second system using

independent parallel FSO and RF channels and the third system using Hybrid Chan-

nel Codes. As mentioned in Section III, the system availability increases considerably

when using our new coding mechanism as shown in Table 2.3. From the table, it is

also clear that having the parallel RF channel increases the availability considerably

for various capacity thresholds. However, the availability is further reduced when

Hybrid Channel Codes are used. The normalized capacity threshold used in the sim-

ulations for both the channels is set to the same value. For example, in the Table

2.3, normalized capacity threshold of 0.1 means cTh = 0.1 and cTh = 0.1. For this set

of simulations, moderate scintillation indices in both the FSO and RF channels were

assumed. In particular, σFSO = 1.0 and σRF = 0.5.

Table 2.3. Comparison of channel availability for combined and independent
FSO/RF systems.

Normalized % Availability % Availablity % Availablity
Threshold (single FSO link) (independent) (Hybrid Channel)

(Fixed Rate) (Parallel FSO and RF) (Codes)
0.05 76.4631 99.8056 99.9999
0.1 68.5543 98.4285 99.9999
0.15 63.2153 95.7741 99.9993
0.2 59.1518 92.2846 99.9955

2.5.2.3 Comparison of Bit Error Rates for various Coding Schemes

In this section, we compare the bit error rates (BER) of the currently existing

coding mechanism using independent parallel channels with our mechanism using
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Figure 2.8. BER performance of different optical wireless systems.

Hybrid Channel Codes. The results are shown in Figure 2.8. The energy per bit for

each of the coding mechanisms is calculated as the weighted average of the energy per

bit in the two channels. The weights used for averaging are the channel bandwidths.

We can see that, Hybrid Channel Codes result in over two orders of improvement in

BER. This is due to media diversity and longer effective block lengths that are possible

by the use of non-uniform codes. A system using independent parallel channels with

rate-adaptive coding cannot take advantage of the longer effective block lengths.

A block length of 11390 is chosen for the FSO channel. For the RF channel the

block length was chosen to be 1139 when using independent parallel channels with rate

adaptive codes. The block length in case of using Hybrid Channel Codes is the sum

of the block lengths on the FSO and RF channels i.e. 12529. This is because, we wish

to keep the same latency constraints (assuming that both channels are transmitting

at the same bit rate) for both the systems being compared. For the comparison,

we choose three values of σFSO to denote three different scintillation conditions as

mentioned in Table 2.1. For each of the three conditions, the capacity curves are also
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shown. It can be seen from the figure that the Hybrid Channel Coding mechanism

gets to within a dB of the capacity curve even at bit error rates of 10−8.

We also observe that the penalty of keeping the second link always available is not

too high when using Hybrid Channel Codes and proves to be an advantage along with

the other benefits mentioned earlier. For a σFSO and σRF of 1.0 and 0.5 respectively,

we obtain better bit error performance when using both the channels as opposed to

using only a single link as can be seen in Figure 2.8.

2.6 Broader Impacts

The currently proposed novel system using Hybrid Channel Codes is not restricted

in usage to only hybrid FSO/RF communication systems. It can also be extended

to any systems that have parallel non-uniform channels. As the Internet is growing

towards the Global Information Grid where multiple networks are combined to form a

single “big” network, we can always apply such a scheme to improve the performance

of communication systems using non-uniform parallel links. However, identifying such

scenarios is important and will be a part of future work.
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CHAPTER 3

IMPROVED DECODING ALGORITHM ON CHANNELS
WITH MEMORY

3.1 Introduction

The capacity of many channels of interest has been achieved practically using

LDPC codes [44]. An important advantage of using LDPC codes is the ease of their

decoding. LDPC codes use an iterative message exchange based decoding algorithm

called belief propagation (BP) decoder [49]. However, the iterative decoding is not

always successful and its performance is inferior to Maximum Likelihood (ML) decod-

ing, especially for short and moderate length codes. Improvements to the standard

iterative decoder have been suggested independently in [40] and [52].

Recently, LDPC codes have been constructed to achieve the independent and

uniformly distributed (i.u.d.) capacity of partial response (PR) channels [21, 20].

These channels are characterized by intersymbol interference (ISI) and additive white

Gaussian noise (AWGN). A recent work by Kavcic et al. derives the performance

bounds for an ensemble of LDPC codes using density evolution [20]. An important

type of PR channel is the magnetic recording channel.

Due to the insatiable and ever-increasing needs of data storage, novel techniques

have to be developed to improve the capacity of magnetic recording channels. These

capacity requirements translate to improving storage densities and using higher record-

ing rates. Coding and signal processing has been recognized as an important way to

increase the storage densities [54]. Due to the high complexities involved in gaining

additional storage density advantages, it needs to be emphasized that gains of even
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a tenth of a dB translate into a highly effective system. Therefore, codes with a high

rate that provide very low bit error rates (BERs) are necessary. In this thesis, we

first extend the improved decoding mechanism proposed in [40] to ISI channels with

AWGN. We then show through analysis and simulations that the improved decod-

ing algorithm is much more effective when applied to these channels and can yield

gains of over a dB. These gains translate to an advantage in storage density and have

applications in improving the capacity of magnetic recording systems. The newly

proposed system has slightly higher decoding complexity than the standard iterative

belief propagation decoder.

The rest of the chapter is organized as follows. In Section 3.2, we briefly review

the improved decoding algorithm and much of the past work done in this direction.

Sections 3.3 and 3.4 extend the improved decoding algorithm to ISI channels and

provide density evolution for the improved decoding method. In section 3.5, we

apply the proposed “improved decoding algorithm” to magnetic recording channels

and provide simulation results.

3.2 Related Work

LDPC codes work with sparse parity check matrices [14, 32]. The dependen-

cies between the nodes in the LDPC codes are represented using bipartite Tanner

graphs [49]. The fraction of edges originating from the variable and check nodes

are represented using polynomials λ(x) and ρ(x) as shown in (3.1) and (3.2). dv

and dc are the maximum degrees of variable and check nodes and λk and ρk denote

the percentage of nodes that are connected to degree k variable and check nodes re-

spectively. LDPC codes exhibit a threshold effect which is calculated using “density

evolution” [28]. This helps in designing optimum codes which use simple linear time

belief propagation decoding.
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λ(x) =
k=dv
∑

k=1

λkx
k−1 (3.1)

ρ(x) =
k=dc
∑

k=1

ρkx
k−1 (3.2)

However, belief propagation decoding is inferior to ML decoding. To improve

the performance of the belief propagation decoding to ML decoding, we introduced

the “guess algorithm” [40] for memoryless channels. A similar work was introduced

independently by Varnica et al [52]. Both these algorithms work once the belief

propagation decoder fails. For the rest of the chapter, the names “guess algorithm”

and “improved decoder” are used alternatively and refer to algorithm in [40]. The

improved decoder is based on the assumption that a subset of the undecoded bits

when guessed correctly can complete the decoding process successfully. Guessing the

undecoded bits implies guessing the log-likelihood ratios (LLRs) of variable nodes

that lead to decoding failure. These nodes can be chosen randomly from the set of

all variable nodes. However, it has been shown in [40] that a more careful choice

of variable nodes will drastically reduce the number of additional iterations required

for successful decoding. [40] shows that by guessing 5 or 6 variable nodes that are

connected to the maximum number of unsatisfied check nodes, the bit error rates can

be reduced by a couple of orders of magnitude for memoryless channels while keeping

the decoding complexity within reasonable limits.

Considerable research has been done to find the capacity of an ISI channel and

design suitable LDPC codes for them [3, 55]. In particular, it has been shown that the

capacity of a binary ISI channel is lower bounded by the capacity of binary channel

with identically and uniformly distributed (i.u.d) input. LDPC code constructions

using a new density evolution technique have been suggested in [47], [20] and refer-
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ences therein. A partial response (PR) channel is a binary input continuous output

AWGN channel characterized by ISI.

The magnetic recording channel is represented as a PR channel [54] and can

be represented mathematically using (3.3), where Yt is the received output, Xt is

the encoded input modulated using BPSK and Nt is AWG noise, all at time t. hk

represents the coefficients of the ISI channel of length I.

Yt =
k=I
∑

k=0

hkXt−k +Nt (3.3)

One important PR channel is the dicode channel (h(D) = (1−D)/
√

2). The joint

code-channel graph of the LDPC code on ISI channel is shown in Figure 3.1(b) [20].

The iterative decoding over the PR channel is as shown in figure 3.1(a). The decoding

process consists of two steps. The BCJR decoder [4] performs turbo equalization

and passes the LLRs to the LDPC decoder. The LDPC decoder then performs the

regular iterative decoding on the received LLRs. For additional BCJR iterations,

extrinsic information is passed back by the LDPC decoder. In this thesis, we apply

the improved decoding to the ISI channels and analyze its performance. We use

simulations to prove the correctness of our analysis.

An improved decoding algorithm for channels with memory has been proposed in

[53]. However, we need to stress here that we take a different approach than the one

in [53]. In this thesis we provide density evolution analysis for the improved decoder

over ISI channels and extend it to various applications for magnetic recording systems.

3.3 Improved Decoding Algorithm for ISI Channels

The BCJR equalization algorithm is generally used for decoding over ISI channels.

Since the BCJR process is computationally expensive, methods have been suggested
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to reduce the decoding complexity [20] by using other iterative decoders in conjunction

with the equalization step. The BCJR step is therefore, sometimes, performed only

once for a number of iterations of the LDPC belief propagation decoding. Since

the belief propagation decoding is not always as effective as ML decoding, we can

use the “guess algorithm”, in this case also, to improve performance on ISI channels.

Intuitively, the “guess algorithm” performs better on ISI channels than on memoryless

channels because of dependencies of the guessed bits (due to channel memory). Once

a bit is guessed correctly, the correct value propagates to the subsequent steps of the

decoding process. We use density evolution analysis to support our intuition. We

first explain how the improved decoding works on ISI channels.

Once the belief propagation decoder fails, variable nodes connected to the maxi-

mum number of unsatisfied check nodes are identified. The values of the top g of these

variable nodes are set to saturation values (+∞ or −∞) and the decoding process

is restarted. If decoding is successful, the bit error rates are reduced. However, if

decoding fails, the values of the guessed bits are changed (guessed as another value)

and the decoding process is restarted. Though these additional steps lead to increased

number of iterations (constant× 2g), we obtain much better performance than using

standard belief propagation decoding without guessing.
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3.4 Density Evolution on ISI Channels

In this section, we provide density evolution analysis for the improved decod-

ing algorithm on ISI channels. We need to stress here that density evolution is an

asymptotic analysis where “guessed nodes” are chosen randomly. However, in practi-

cal implementations the “guessed nodes” are chosen more carefully leading to better

gains than those obtained using density evolution. The density evolution steps for

the standard iterative decoding process over the ISI channel are provided in [20] and

are summarized as follows.

Suppose mcv and mvc denote the messages exchanged between the check nodes

and variable nodes and vice versa. Suppose the probability density function (pdf) of

the exchanged messages in the lth round of the message passing decoder be denoted

as f l
check and f l

var respectively. Also let the pdf of the apriori messages that are input

to the channel trellis be denoted as f l
apriori. Then the density evolution steps for the

ISI channel are as shown in the (3.4). Similar to [20], a Monte-Carlo simulation was

peformed to obtain the pdf of the messages coming out of the channel trellis denoted

by the operation T . λ̄ denotes the averaging done with respect to the nodes rather

than the edges.

f l
check = ρ(f l

var) (3.4)

f l
apriori = λ̄(f l

check)

f l
trellis = T (f l

apriori, fN)

f l+1
var = f l

trellis ⊗ λ(f l
check)

The density evolution steps for the improved decoding algorithm on memoryless

non-uniform channels was proposed in [39] and are shown in (3.5).
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fkl
check = ρ(f1l

var) (3.5)

f1l
var = Σqkfkl

var

fk(l+1)
var = fk0

var ⊗ λ(fkl
check)

In (3.5), k denotes the channel through which the messages are received in the

lth round of the message passing decoding. qk denotes the fraction of edges in the

Tanner graph that are incident through channel of type k. f1 denotes the sum of

the pdf of the messages coming from each channel. fk0
var denotes the initial LLR of

the received messages on channel k. In order to use density evolution analysis for

improved decoding on ISI channels, we assume that the channel can be split into two

independent channels: on one channel which is assumed to be perfect, the guessed

bits are transmitted. The second is an ISI channel with AWGN through which the

remaining bits are transmitted. This is shown in Figure 3.2. This assumption of non-

uniform channels allows us to apply density evolution analysis on a set of parallel

channels with different capacities. When the assumption of non-uniform channels as

shown in Figure 3.2 is applied to ISI channels, the initial LLR of the messages will

change. With improved decoding, the pdf of the received LLRs is no longer Gaussian

as in the case of standard iterative decoding and has a peak at one end of the density

function based on the guessed value (+∞ or −∞). The magnitude of the peak(δ(x))

is equal to the percentage of guessed nodes. Using this modification and the steps

in (3.5), noise thresholds for various LDPC codes using the improved decoder can be

obtained.
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3.5 Simulation Results

Using analysis from previous sections, we implement density evolution for a set

of (3, X) regular LDPC codes whose variable node degree is 3 and the regular degree

of check nodes is X. We use discretized density evolution algorithm for memoryless

AWGN channels as mentioned by Chung et. al. [8]. In order to implement density

evolution for the guess algorithm, we assume that 1% and 2% of the variable nodes

are available for guessing. For a code of length 1000, 1% and 2% of nodes constitute

10 and 20 nodes respectively. We limit our “guesses” to 2% in the density evolution

analysis because the maximum number of bits guessed in practical implementations

is always much smaller.

We implemented density evolution for the dicode channel as described in [20] and

extended it to include the improved decoding. The results are as shown in Tables

3.1 and 3.2. The tables show the noise thresholds obtained in the density evolution

for different percentages of guessed bits as compared to the noise thresholds when

not using the improved decoding algorithm. A higher noise threshold indicates better
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performance in noise of the decoding algorithm. From the tables, it is clear that

the improved decoding algorithm over channels with memory provides higher noise

thresholds than those obtained over memoryless channels. This better performance is

represented as gain in dB in the tables. The improved decoding algorithm performs

better due to the dependencies introduced by the channel. Once a bit is guessed

correctly, the decoder propagates the correct value as the iterations progress. This

channel dependency cannot be used for advantage in memoryless channels. However,

we need to emphasize that the gains obtained in actual implementations are always

much higher even when the number of guessed bits is smaller. The improved decoding

algorithm can be used to increase capacity of storage devices by using these channel

dependencies. We need to stress here that characterizing this gain in terms of the

code rate has not yet been done and is a problem of future research. For example, the

gains obtained using a (3,15) regular code using density evolution are more than the

gains obtained using a (3,60) regular LDPC code but smaller than a (3,150) regular

LDPC code. However, this does not represent a repeated pattern and is different for

different codes of the same rates.

Encouraged by the theoretical results for ISI channels, we implement the improved

decoding algorithm over the magnetic recording channels. We use a regular (3,6)

LDPC code and an irregular code with degree distribution as shown in (3.6) for this

set of simulations. The irregular code has been optimized for a block length of 1000.

The guessed nodes are selected using the constraints mentioned in [38].

λ(x) = 0.1212x+ .6364x2 + 0.2424x5 (3.6)

ρ(x) = 0.3818x5 + 0.5939x6 + 0.0243x7

For this implementation, we use only 6 guesses. The additional number of itera-

tions needed to complete the decoding successfully then reduces to 64. The results are

as shown in Figure 3.3. It is clear from the figure that the “guess algorithm” provides

better bit error rate performance than standard belief propagation. This translates
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Figure 3.3. Improved performance using the guess algorithm for block length 1000
on a dicode channel.

to an SNR gain of about 0.4dB at a bit error rate of 10−6 for the (3,6) regular code

and over a dB with the optimized irregular code respectively. This code has been

optimized for a memoryless AWGN channel. It is also clear that the improvements

obtained are better in the practical implementation than when using density evolution

due to the reasons mentioned earlier. For the current scenario of magnetic recording

channels, the maximum block length is limited by the sector length and is < 4100 un-

like in density evolution analysis where asymptotic block lengths are assumed. Also,

as expected, the results are better when irregular LDPC codes are used. The results

in Tables 3.1 and 3.2 also confirm that the SNR gains increase as the degree of the

check nodes is increased. In both density evolution analysis and in simulations, the

(3,150) regular LDPC code provides gains of over a dB with the improved decoding

algorithm. This is especially important in magnetic recording applications using high

rate codes (rates ≥ 0.7). We also find that the performance of the improved decoding

algorithm is better as the number of guessed nodes increases. But this increase in
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number of guessed bits can lead to a prohibitive increase in the number of additional

iterations to complete the decoding. The most important fact to be stressed here is

that the gains obtained by the improved decoder on channels with memory are much

higher than that obtained when it is used over memoryless channels. Simulations in

[40] show that the improved decoding provides only about 0.5 dB gain in the best

case with an optimized irregular LDPC code.

Table 3.1. Density evolution analysis of improved decoding over AWGN channels.

Code σ 1% 2%
σ in dB σ in dB

(3,3) 2.118576 2.118576 0 2.118576 0
(3,5) 1.009141 1.022026 0.1102 1.022281 0.1123
(3,6) 0.880639 0.902235 0.2108 0.902673 0.2150
(3,15) 0.563018 0.583574 0.3114 0.589541 0.3992
(3,60) 0.429864 0.446747 0.3345 0.451896 0.4341
(3,150) 0.374273 0.392164 0.4054 0.401665 0.6135

Table 3.2. Density evolution analysis of improved decoding over ISI channels with
AWGN.

Code σ 1% 2%
σ in dB σ in dB

(3,3) 2.039851 2.039851 0 2.03986 0
(3,5) 0.945102 0.975346 0.2805 0.976155 0.2807
(3,6) 0.821685 0.861328 0.4093 0.869644 0.4927
(3,15) 0.547171 0.587646 0.6198 0.593414 0.7046
(3,60) 0.404344 0.427979 0.4934 0.430881 0.5521
(3,150) 0.354872 0.399985 1.04 0.402144 1.08

We find that the improved decoding algorithm performs better for codes of longer

lengths also. In particular, a (3,6) code of length 4096 provides a gain of 0.5dB over

the standard iterative decoder. The irregular LDPC code chosen in (3.6), however,

does not show marked improvement over the regular code because it is not optimized

for the longer length (4096). The results are shown in Figure 3.4.

We extended our algorithm to EPR4 channel and find that the improvements are

significant in these channels also as shown in Figure 3.5. From the figure, it is evident
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that the improved decoding provides a gain of 1dB when using the regular (3,6) code

for the EPR4 channel at a bit error rate of 10−6. From our results, it is evident

that the improved decoding algorithm is better on channels with memory and gains

provided by this algorithm on the magnetic recording channels are also significant.

The EPR4 channel is represented as shown in 3.7.

hEPR4(D) = (1/2) ∗ (1 −D +D2 +D3) (3.7)

3.6 Summary and Future Work

In this chapter, it has been proved that an application of the “guess algorithm”

to channels with memory yields better gains than those obtained on memoryless

channels. These gains can be efficiently utilized to applications for magnetic recording

systems. In particular, we can obtain gains of one dB on these PR systems. We used

asymptotic density evolution analysis to prove our theory. However, the block lengths

of magnetic recording systems are bounded by the sector length and finite length

analysis will be more appropriate for these systems. In this case, pseudo-codeword

analysis is needed and can be a good starting point for continuation of this thesis.
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CHAPTER 4

CONCLUSIONS

In this thesis, important improvements have been suggested for two important

communication systems: the hybrid FSO/RF system and the magnetic recording

system. To both these systems, improvements have been suggested by the usage of

efficient error correcting codes that can improve the system performance in terms of

availability, bit error performance and throughput.

One of the biggest problems with the hybrid FSO/RF communication systems

that hamper their practical use is their inability to provide 99.999% reliability. In

this thesis, we suggest a novel hybrid FSO/RF technique that, unlike previous sys-

tems, utilizes both the FSO and RF channels effectively and increases system avail-

ability. The proposed novel system is a combination of media diversity mechanism

proposed earlier that utilizes novel codes that can achieve the combined channel ca-

pacity of the FSO and the RF channels. We then design optimal codes, termed

Hybrid Channel Codes, to achieve this combined channel capacity. These codes use

non-uniform, rate-adaptive LDPC codes that in conjunction with the media diversity

scheme can provide excellent performance improvements over the currently existing

best systems. Simulation results are provided to show that the new system proposed

is better in terms of system availability, bit error rate performance and channel uti-

lization (throughput and goodput). This thesis provides an excellent starting point

for the implementation of a system that can solve many of the long standing issues

of last-mile connectivity and disaster recovery. Future work can include the imple-
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mentation of Hybrid Channel Codes using efficient VLSI architectures and a testbed

to compare the performance of the proposed system to that of existing systems.

In the second part of the thesis, an improved decoding algorithm, called the “guess

algorithm” proposed earlier for memoryless channels has been extended to channels

with memory. Asymptotic density evolution analysis is then provided to show that the

improved decoding algorithm provides bigger gains over these channels with memory.

These codes are then applied to magnetic recording systems that are characterized

by intersymbol interference (ISI) with AWGN noise. Using simulations, the new

decoding algorithm is found to produce over a dB gain for magnetic recoding systems

which are translated to an huge advantages in terms of the area of the storage device.

An important restriction on the implementation of LDPC codes in this devices is the

block length which is restricted by the sector size of the storage device being used.

Typical block lengths of these devices do not exceed 5000 bits. A good extension for

this work will be finite length analysis of this improved decoding algorithm. Pseudo-

codeword analysis will be a good starting point.
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