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ABSTRACT

WAVELET-BASED NON-HOMOGENEOUS HIDDEN
MARKOV CHAIN MODEL FOR HYPERSPECTRAL

SIGNATURE CLASSIFICATION

FEBRUARY 2015

SIWEI FENG

B.Sc., SOOCHOW UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Marco F. Duarte

Hyperspectral signature classification is an approach for which performs classifi-

cation of the constituent materials at pixel level in a hyperspectral image. The clas-

sification procedure can be operated directly on hyperspectral data or performed by

using some features extracted from corresponding hyperspectral signatures containing

information like signature energe or shape. In this thesis, we describe a technique that

applies non-homogeneous hidden Markov chain (NHMC) models to hyperspectral sig-

nature classification. The basic idea is to use statistical models (NHMC models) to

characterize wavelet coefficients which capture the spectrum structural information

at multiple levels. Experimental results show that the approach based on NHMC

models outperforms existing approaches relevant in classification tasks.
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CHAPTER 1

INTRODUCTION

Hyperspectral remote sensors collect reflected image data simultaneously in hun-

dreds of narrow, adjacent spectral bands which make it possible to derive a continuous

spectrum curve for each image cell. Such hyperspectral reflectance curves can provide

insight into the on-ground (or near ground) constituent materials in a single remotely

sensed pixel.

The identification of ground materials from hyperspectral images often requires

comparing the reflectance spectra of the image pixels, extracted endmembers, or

ground cover exemplars to a training library of spectra obtained in the laboratory from

well characterized samples. There is a rich literature on hyperspectral classification

methods [1]. On one hand, many methods rely on nearest neighbor classification

schemes based on one of many possible spectral similarity measures to match the

observed test spectra with training library spectra. On the other hand, practitioners

have designed feature extraction schemes that capture information relevant to be

applied to the training and testing spectra, in conjunction with appropriate similarity

metrics, in order to discriminate between different materials.

Classification methods based on spectral similarity measures can provide researchers

with simple implementation and relatively small computational requirements; how-

ever, there is a tradeoff with the amount of storage required for the training spectra

as well as with the uneven performance of nearest neighbor methods. For example,

in some cases considering the original spectral allows for a large amount of redundant

information to be considered while the role of relevant structural features is weakened.
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Practitioners recognize several structural features in the spectral curves of each

material as “diagnostic” or characteristic of its chemical makeup, such as the position

and shape of absorption bands. Several approaches like the Tetracorder [3] have

been proposed to encode such characteristics. However, such techniques require the

construction of ad-hoc rules to characterize instances of each material while new rules

must be created when spectral species which were not previously analyzed are added.

Parente et al. [16] proposed an approach using parametric models to represent the

absorption features. However, it still requires the construction of specific rules to

match observations to a training library.

We focus on the facilitation of the information extraction process via the use of

mathematical models for hyperspectral signals. Our goal is to encode the features

that capture scientifically meaningful cues to discriminate between the spectral of

different minerals into numerical features, which are referred to as semantic features.

Furthermore, no new rules need to be constructed when mineral species which were

not previously analyzed before are added.

Mathematical signal models have been used to represent reflectance spectra. More

specifically, models leveraging wavelet decompositions are of particular interest be-

cause they enable the representation of structural features at different scale. The

wavelet transform is a popular tool in many signal processing applications due to

the capability of wavelet coefficients to characterize signal discontinuities at differ-

ent scales and offsets. As mentioned above, the semantic information utilized by

researchers is heavily related to the shape of reflectance spectra, which is succinctly

represented in the magnitudes of its wavelet coefficients. A coefficient with large

magnitude generally indicates a rapid change in its support while a small wavelet co-

efficient generally implies a smooth region. Existing wavelet approaches are limited

to filtering techniques but do not extract features [18].
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In this thesis, we apply hidden Markov models (HMMs) to the wavelet coeffi-

cients derived from the observed hyperspectral signals so that the correlations be-

tween wavelet coefficients in overlapping spectral ranges and at adjacent scales can

be captured by the models. This idea is inspired by the hidden markov tree (HMT)

model proposed in [4]. As for the wavelet transform, we use an undecimated wavelet

transform (UWT) in order to obtain maximum flexibility on the set of scales and

offsets (spectral bands or wavelengths1) considered.

Our model for a spectrum encompassing N spectral bands takes the form of a

collection of N non-homogeneous hidden Markov chains (NHMCs), each correspond-

ing to a particular spectral band. Such a model provides a map from each signal

spectrum to a binary space that encodes the structural features at different scales

and wavelengths, effectively representing the semantic features that allow for the

discrimination of spectra.

This thesis is organized as follows. Section 2 introduces the mathematical back-

ground behind our hyperspectral signature classification system and reviews relevant

existing approaches for the hyperspectral classification task. Section 4 provides an

overview of the proposed hyperspectral signature classification system as well as the

details about the choice of mother wavelet, model training and label computing. Sec-

tion 6 describes our experimental validation setup as well as the corresponding results.

Final conclusions are provided in Section 8.

1We use these three equivalent terms interchangeably in the sequel
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CHAPTER 2

BACKGROUND

In this section, we first introduce some backgrounds about hyperspectral imaging.

Then we discuss several existing spectral matching approaches. Next we review the

theoretical background for our proposed hyperspectral signature classification system,

including wavelet analysis, hidden Markov chain models, and the Viterbi algorithm.

2.1 An Introduction of Hyperspectral Imaging

In many of the past decade, hyperspectral imaging has been a field of active

research and development, and hyperspectral images have been available only to

scientifical practitioners. With the appearance of commercial airborne hyperspectral

imaging systems in recent years, hyperspectral imaging has been gradually entering

the mainstream of remote sensing. Hyperspectral images have found many and will

find more applications in resource management, agriculture, mineral exploration, and

environmental monitoring. But effective employment of hyperspectral images requires

an understanding of the essence and limitations of the data and of various schemes

for processing and interpreting it.

Multispectral remote sensors like the Landsat Thematic Mapper and SPOT XS

generate images with a few relatively broad wavelength bands. Hyperspectral remote

sensors, on the other hand, collect image data simultaneously in dozens or hundreds

of narrow, adjacent spectral bands. These measurements make it possible to derive a

continuous spectrum for each image pixell. After adjustments for sensor, atmospheric,

and terrain effects are applied, these image spectra can be compared with field or

4



laboratory reflectance spectra in order to recognize and map surface materials such

as particular types of vegetation or diagnostic minerals associated with ore deposits.

Hyperspectral images contain a wealth of data, but interpreting them requires an

understanding of the exact properties of ground materials we are trying to measure,

and how they relate to the measurements actually made by the hyperspectral sensor.

2.2 The Imaging Spectrometer

Hyperspectral images are generated by instruments called imaging spectrometers.

The development of these sensors has converged the two related but distinct tech-

nologies: spectroscopy and the remote imaging of Earth and planetary surfaces.

Spectroscopy is a discipline about light that is emitted by or reflected from ma-

terials and its variation in energy with wavelength. As applied to the area of optical

remote sensing, spectroscopy deals with the spectrum of sunlight that is diffusely re-

flected (or scattered) by materials at the Earths surface. Instruments called spectrom-

eters (or spectroradiometers) are used to make measurements of the light reflected

from a test material. An optical dispersing element such as a grating or prism in

the spectrometer splits this light into many narrow, adjacent wavelength bands and

the energy in each band is measured by a separate detector. By using hundreds or

even thousands of detectors, spectrometers can make spectral measurements of bands

as narrow as 10nm over a wide wavelength range, typically at least 400 to 2400nm

(visible through middle infrared wavelength ranges).

Remote imagers are designed to focus and measure the light reflected from many

adjacent areas on the surface of the earth. In many digital imagers, sequential mea-

surements of small areas are made in a consistent geometric pattern as the sensor

platform moves and subsequent processing is required to assemble them into an im-

age. Until recently, imagers were restricted to one or a few relatively broad wavelength

bands by limitations of detector designs and the requirements of data storage, trans-
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mission, and processing. Recent advances in these areas have allowed the design of

imagers that have spectral ranges and resolutions comparable to ground-based spec-

trometers.

2.3 Spectral Reflectance

In reflected-light spectroscopy the fundamental property that we want to obtain

is spectral reflectance: the ratio of reflected energy to incident energy as a function of

wavelength. Reflectance varies with wavelength for most materials because energy at

certain wavelengths is scattered or absorbed to different degrees. These reflectance

variations are obvious when we compare spectral reflectance curves for different mate-

rials. The overall shape of a spectral curve and the position and strength of absorption

bands in many cases can be used to identify and discriminate different material types.

For example, vegetation has higher reflectance in the near infrared range and lower

reflectance of red light than soils.

2.4 Mineral Spectra

This is the main object in our research. In inorganic materials such as minerals,

chemical composition and crystalline structure control the shape of the spectral curve

and the presence and positions of specific absorption bands. Wavelength-specific

absorption may be caused by the presence of particular chemical elements or ions,

the ionic charge of certain elements, and the geometry of chemical bonds between

elements, which is partially governed by the crystal structure.

In the spectrum of hematite (an iron-oxide mineral), the strong absorption in the

visible light range is caused by ferric iron (Fe+3). In calcite, the major component of

limestone, the carbonate ion (CO−23 ) is responsible for the series of absorption bands

between 1800 and 2400nm. Kaolinite and montmorillonite are clay minerals that are

common in soils. The strong absorption band near 1400nm in both spectra, along
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with the weak 1900nm band in kaolinite, are due to hydroxide ions (OH−1), while

the stronger 1900nm band in montmorillonite is caused by bound water molecules

in this hydrous clay. In contrast to these examples, orthoclase feldspar, a dominant

mineral in granite, shows almost no significant absorption features in the visible to

middle infrared spectral range.

2.5 Illumination Factors

2.5.1 Source Illumination

The incoming solar energy varies greatly with wavelength, peaking in the range

of visible light. The spectrum of incoming solar energy at the time an image was

acquired must be known, assumed, or derived indirectly from other measurements in

order to convert image radiance values to reflectance.

2.5.2 Illumination Geometry

The amount of energy reflected by an area on the ground depends on the amount

of solar energy illuminating the area, which in turn depends on the angle of incidence:

the angle between the path of the incoming energy and a line perpendicular to the

ground surface. Specifically, the energy received at each wavelength (Eg) varies as

the cosine of the angle of incidence (θ): Eg = Eox cos θ, where Eo is the amount of

incoming energy. The energy received by any ground area therefore varies as the suns

height changes with time. If the surface is not flat, the energy received also varies

instantaneously across a scene because of differences in slope angle and direction.

2.5.3 Shadowing

The amount of illumination received by an area can also be reduced by shadows.

Shadows cast by topographic features or clouds can affect areas including many con-

tiguous image pixels. Trees, crop rows, rock outcrops, or other small objects can also

cast shadows that are confined to an individual image pixel. Both types of shadows
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have the effect of lowering the measured brightness across all wavelengths for the

affected pixels.

2.6 Match Each Image Spectrum

One approach to analyzing a hyperspectral image is to match each image spec-

trum individually to one of the reference reflectance spectra in a spectral library. It

works best if the scene includes extensive areas of essentially pure materials that have

corresponding reflectance spectra in the reference library. An observed spectrum will

generally show varying degrees of match to a number of similar reference spectra.

Spectral matching is complicated by the fact that most hyperspectral scenes in-

clude many image pixels that represent spatial mixtures of different materials. The

resulting composite image spectra may match a variety of pure reference spectra to

varying degrees, perhaps including some spectra of materials that are not actually

present. If the best-matching reference spectrum has a sufficient fit to the image

spectrum, then this material is probably the dominant one in the mixture and the

pixel is assigned to this material.
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CHAPTER 3

RELATED WORK AND MATHEMATICAL
BACKGROUNDS

The shape of a reflectance spectrum can usually be separated into two components:

broad, smoothly changing regions that define the general shape of the spectrum and

narrow, trough-like absorption features. This distinction leads to two different ap-

proaches to matching image spectra with reference spectra.

Many pure materials, such as minerals, can be recognized by their absorption

features. One common matching strategy attempts to match only the absorption

features in each candidate reference spectrum and ignores other parts. A unique set

of wavelength regions is therefore examined for each reference candidate, determined

by the locations of its absorption features. The local position and slope of the spec-

trum can affect the strength and shape of an absorption feature, so these parameters

are usually determined relative to the continuum: the upper limit of the spectrums

general shape. The continuum is computed for each wavelength subset and removed

by dividing the reflectance at each spectral channel by its corresponding continuum

value. Absorption features can then be matched using a set of derived values (includ-

ing depth and the width at half-depth), or by using the complete shape of the feature.

These types of procedures have been organized into an expert system by researchers

at the U.S. Geological Survey Spectroscopy Lab.

Many other materials, such as rocks and soils, may lack distinctive absorption

features. These spectra must be characterized by their overall shape. Matching pro-

cedures utilize full spectra or a uniform wavelength subset for all candidate materials.
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One approach to matching seeks the spectrum with the minimum difference in re-

flectance (band per band) from the image spectrum (quantified by the square root of

the sum of the squared errors). Another approach treats each spectrum as a vector in

spectral space and finds the reference spectrum making the smallest angle with the

observed image spectrum.

3.1 Spectral Matching Methods

A direct comparison of spectral similarity measures taken on the observed hyper-

spectral signals is the easiest and most direct way to do spectral matching. Generally

speaking, spectral similarity measures can be combined with nearest neighbor clas-

sifiers. In this thesis we introduce four commonly used spectral similarity measures.

In the sequel, we use ri = (ri1, ri2, ..., riN)T and rj = (rj1, rj2, ..., rjN)T to denote the

reflectance or radiance signatures of two hyperspectral image pixel vectors

3.1.1 Spectral Angle Measure

The spectral angle measure (SAM) [9] between two reflectance spectra is defined

as

SAM(ri, rj) = cos−1

(
〈ri, rj〉√
||ri||22||rj||22

)
.

A smaller spectral angle indicates larger similarity between two reflectance spectra.

3.1.2 Euclidean Distance Measure

The Euclidean distance measure (ED) [19] between two reflectance spectra is

defined as

ED(ri, rj) = ||ri − rj||2.

As with SAM, smaller ED implies larger similarity between two vectors. The ED

measure takes the intensity of two reflectance spectra into account, while the former

is invariant with intensity.
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3.1.3 Spectral Correlation Measure

The spectral correlation measure (SCM) [20] between two reflectance spectra is

defined as

SCM(ri, rj) =

∑N
k=1(rik − r̄i)(rjk − r̄j)√∑N

k=1(rik − r̄i)2
∑N

k=1(rjk − r̄j)2
.

where r̄i is the mean of the values of all the elements in a reflectance spectrum vector

ri. The SCM can take both positive or negative values; larger positive values are

indicative of similarity between spectra.

3.1.4 Spectral Information Divergence Measure

The spectral information divergence measure (SID) [2] between two reflectance

spectra is defined as

SID(ri, rj) = D(ri||rj) +D(rj||ri),

where D(ri||rj) is regarded as the relative entropy (or Kullback-Leibler divergence)

of rj with respect to ri, which is defined as

D(ri||rj) = −
N∑
k=1

pik(log pjk − log pik).

Here pik = rik/
∑N

k=1 rik corresponds to a normalized version of the spectrum ri at

the kth spectral band, which is interpreted in the relative entropy formulation as a

probability distribution.

3.2 Wavelet Analysis

The wavelet transform of a signal provides a multiscale analysis of a signal’s con-

tent which effectively encodes the locations and scales at which the signal structure

is present in a compact fashion [10]. To date, several hyperspectral classification
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methods based on wavelet transform have been proposed. Most of these classification

approaches (e.g. [22, 13, 21] ) employ a dyadic/decimated wavelet transform (DWT)

as the preprocessing step. Compared with UWT, the DWT provides a smaller repre-

sentation because it minimizes the amount of redundancy in the coefficients. However,

the tradeoff for such redundancy is that UWT provides maximum flexibility on the

choice of scales and offsets used in the multiscale analysis, which is desired because

it allows for a simple characterization of the spectrum structure at each individual

spectral band.

A one-dimensional real-valued UWT of an N -sample signal x ∈ RN is composed

of wavelet coefficients ws, each labeled by a scale l ∈ 1, ..., L and offset n ∈ 1, ..., N ,

where S 6 N . The coefficients are defined using inner products as wl,n = 〈x, φl,n〉,

where φl,n ∈ RN denotes a sampled version of the mother wavelet function φ dilated

to scale l and translated to offset n:

φl,n(λ) =
1√
l
φ

(
λ− n
l

)
.

To improve the interpretability of the notation, we will change our notation for scales

in the sequel from l = 1, 2, . . . , L to s = L,L− 1, . . . , 1 (i.e., we reverse the ordering

of the scales). With this change, small values of s correspond to coarse scales while

large values of s correspond to fine scales. All the coefficients can be organized into

a two-dimensional matrix W of size L×N , where rows represent scales and columns

represent samples. In this case, each coefficient ws,n, where s < L, has a child

coefficient ws+1,n at scale s+ 1. Similarly, each coefficient ws,n at scale s > 1 has one

parent ws−1,n at scale s− 1. Such a chain structure of wavelet coefficients enables the

representation of fluctuations in a spectral signature by chains of large coefficients

appearing within the columns of the wavelet coefficient matrix W .
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3.3 Advantages of Haar Wavelet

The Haar wavelet is the simplest possible compact wavelet which has the proper-

ties of square-like shape and discontinuity. These properties makes the Haar wavelet

sensitive to a larger range of fluctuations than other mother wavelets and provides

it with a lower discriminative power. Thus, the Haar wavelet enables the detection

of both slow-varying fluctuations and sudden changes in a signal [10], while it is not

particularly sensitive to small continuities (i.e., noise) on a signal, in effect averaging

them out over the wavelet support.

Consider the example in Fig. 3.1, where the figure at the top represents an ex-

ample hyperspectral signature, while the figures in the middle and at the bottom

show the undecimated wavelet coefficient matrix of the spectrum under the Haar and

Daubechies-4 wavelets, respectively. The middle figure of Fig. 3.1 shows the capa-

bility of Haar wavelet transform to capture both rapid changes and gently sloping

fluctuations in the sample reflectance spectrum. The Daubechies-4 wavelet transform

of a signal is sensitive to compact and drastic discontinuities (i.e., higher order fluc-

tuations). From the bottom figure we can find a high density of large-magnituded

wavelet coefficients in the spectral band range from 500nm to 900nm, which corre-

sponds to the rapid increasing slopes of the sample spectrum. Apart from that, the

small discontinuities around 800nm are particularly clearly recorded and those from

1200nm to the end are also detected. However, the Daubechies-4 wavelet tends to

show little response to relatively flat regions (i.e., lower order fluctuations). For exam-

ple, the strong decreasing slope in the range 900nm− 1200nm is not reflected in the

Daubechies-4 wavelet coefficients, and those gentling sloping fluctuations starting at

1200nm do not have an appearance as significant as those between 500nm− 900nm.

The coefficients in those regions mostly focus on small-scale, high-order fluctuations,

and do not successfully capture the semantic information in the spectral signature.

Thus, it appears that the Daubechies-4 wavelet does not provide a good match to
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Figure 3.1. Top: an example of normalized mineral reflectance (Garnet). Middle:
corresponding UWT coefficient matrix (9-level wavelet decomposition) using a Haar
wavelet. Bottom: corresponding UWT coefficient matrix 9-level wavelet decomposi-
tion) using a Daubechies-4 wavelet

semantic information extraction for this example reflectance spectrum. Intuitively,

these problems will be shared with other higher-order wavelets, which provide good

analytical matches to functions with fast, high-order fluctuations.

3.4 Statistical Modeling of Wavelet Coefficients

Crouse et al. [4] proposed the use of hidden Markov models (HMM) to capture the

statistics of DWT coefficients. In that paper, the dyadic nature of DWT coefficients

gives rise to a hidden Markov tree (HMT) model that characterizes the clustering and

persistence properties of wavelet coefficients.

The statistical model is motivated by the compression property of the DWT, which

states that the wavelet transform of a piecewise smooth signal generally features a

small number of large coefficients and a large number of small coefficients. This
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property motivates the use of a zero-mean Gaussian mixture model (GMM) with

two Gaussian components to capture the compression property, where one Gaussian

component with a high-variance characterizes the small number of “large” coefficients

(labeled with a state L), while a second Gaussian component with a low-variance

characterizes the large number of “small” wavelet coefficients (labeled with a state

S). The state Ss ∈ {S,L} of a wavelet coefficient1 is said to be hidden because its

value is not explicitly observed. The likelihoods of the two Gaussian components

pSs(L) = p(Ss = L) and pSs(S) = p(Ss = S) should meet the condition that pSs(L) +

pSs(S) = 1. The conditional probability of a particular wavelet coefficient ws given

the value of the state Ss can be written as p(ws|Ss = i) = N (0, σ2
i,s), where i =

{S,L}, and the distribution of the same wavelet coefficient can be written as p(ws) =

pSs(L)N (0, σ2
L,s) + pSs(S)N (0, σ2

S,s).

In cases where a UWT is used, the persistence property of wavelet coefficients

[11, 12] (which implies the high probability of a chain of wavelet coefficients to be

consistently small or large across adjacent scales) can be accurately modeled by a

non-homogeneous Markov chain (NHMC) that links the states of wavelet coefficients

in the same offset. This means the state Ss of a coefficient ws is only affected by

the state Ss−1 of its parent (if it exists) and by the value of its coefficient ws. The

Markov chain is completely determined by the likelihoods for the first state and the

set of state transition matrices for the different parent-child label pairs (Ss−1, Ss) for

s > 1:

As =

pS→S,s pL→S,s

pS→L,s pL→L,s

 , (3.1)

where pi→j,s := P (Ss = j|Ss−1 = i) for i, j ∈ {L, S}. The training process of an

HMM is based on the expectation maximization (EM) algorithm which generates a

1Since the same model is used for each chain of coefficients {S1,n, . . . , SL,n}, n = 1, . . . , N , we
remove the index n from the subscript for simplicity in this sequel whenever possible.
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set of HMM parameters θ = {pS1(S), pS1(L), {As}Ls=2, {σS,s, σL,s}Ls=1} including the

probabilities for the first hidden states, the state transition matrices, and Gaussian

variances for each of the states. We define the L×N matrix S the collection of state

values for all scales and spectral bands. The iterative parts of the algorithm can be

briefly described as follows:

1. E step: Perform maximum likelihood estimation of the state labels using a

forward-backward algorithm [17]:

Sl = arg max
S

p(S|W,θl);

this joint conditional probability mass function (PMF) will be used in the M

step.

2. M step: Update model parameters to maximize the expected value of the joint

likelihood of the wavelet coefficients and state estimates [4]:

θl+1 = arg min
θ
ES[ln f(W,S|θl)|W,θl].

3. Set l = l + 1. If converged, then stop; otherwise, repeat.

3.5 Wavelet-based Spectral Matching

Many hyperspectral signature classification approaches have been proposed in the

literature, with a subset of them involving wavelet analysis. In this thesis, we review

three approaches that are particularly close in scope to our proposed method, which

will be used for comparison in our numerical experiments.

First, Rivard et al. [18] propose a method based on the wavelet decomposition

of the spectral data. The obtained wavelet coefficients are separated into two cat-

egories: low-scale components of power (LCP) capturing mineral spectral features
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(corresponding to the first fine scales), and high-scale components of power (HCP)

containing the overall continuum (corresponding to later coarser scales). The coeffi-

cients for the LCP spectrum, which capture detailed structural features, are summed

across scales at each spectral band. This process can conceptually be described as a

filtering approach, since the division into LCP and HCP effectively acts as a high-

pass filter that preserves only the fine-scale detailed portion of the spectrum. The

proposed method then implements classification using a nearest neighbors approach

with a SAM metric.

The next two wavelet-based classification approaches use the DWT to perform

wavelet analysis. West et al. [21] propose a method based on a DWT decomposition

of each spectrum. The set of wavelet detail coefficients for each separate scale is con-

sidered as a separate feature vector. Linear discriminate analysis (LDA) is performed

on each one of these vectors for dimensionality reduction purposes; each output vector

is then fed into a maximum likelihood classifier, and a majority vote is taken among

the classification results corresponding to vectors from different scales. While this

method provides a simple pipeline for processing the wavelet coefficients on a scale

by scale basis, it ignores the fact that the coefficients across scales exhibit correlations

that are not considered by the classifiers and majority vote fusion steps.

As an alternative, Zhang et al. [22] aim to capture the statistics of the DWT coeffi-

cients. Their approach trains a HMT (that is, an HMM model for DWT coefficients)

on the coefficients of the spectra from each of the classes. A maximum likelihood

classifier then evaluates the likelihood of the wavelet coefficients being observed un-

der the HMT trained for each of the classes, and selects the class that provides the

maximum value of the probability. It is implicitly expected by this method that the

number of training samples for each one of the classes is sufficiently large so that the

class-specific HMTs can be accurately trained.
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CHAPTER 4

NHMC-BASED SIGNATURE CLASSIFICATION

In this section we introduce a hyperspectral signature classification system that

exploits a Markov model for the wavelet coefficients for purposes of feature extraction.

The Haar wavelet is used in a UWT to capture information on the fluctuations of

the spectra. The state labels extracted from the Markov model are collected as

classification features for each of the spectra. The features capture the semantic

information that is used by practitioners to distinguish spectra from different minerals.

4.1 System Overview

We provide an overview of the hyperspectral classification system in Fig. 4.1. The

system consists of two modules: an NHMC model training module and a perfor-

mance testing module. While the figure assumes a binary-state Gaussian mixture

model (GMM) in the NHMC, as described in Section 3.4, we explore the performance

of the system for k-ary states extensions, k = 2, 3, . . .. The training stage uses a

training library of spectra containing samples from the classes of interest and runs

them through the UWT. The wavelet representations are then used to train a single

NHMC model, which is then used to compute state estimates for each of the training

spectra using a Viterbi Algorithm. The state arrays will then be used as classifica-

tion features coupled with a nearest-neighbor approach. The testing module considers

a spectrum under test and computes the state estimates under the trained NHMC

model using the parameters obtained during training. The module then searches for
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Figure 4.1. System overview. Top: The NHMC Training Module collects a set of
training spectra, computes UWT coefficients for each, and feeds then to a NHMC
training unit that outputs Markov model parameters and state labels for each of the
training spectra, to be used as classification features. Bottom: The Performance
Testing Module considers a test spectrum, obtains its UWT coefficients, and extracts
a state array from the NHMC obtained during training. A nearest-neighbors classifier
searches for the most similar state array among the training data, and returns the
class label for the corresponding spectrum.

the most similar state array among the training dataset, returning the class label of

the selected training spectrum.

4.2 Multi-State Hidden Markov Chain Model

In our system, we choose to use the NHMC model described in Section 3.4 applied

to the UWT via the Haar wavelet. We select the Haar wavelet due to its special

shape, which allows for the magnitude of the wavelet coefficients to be proportional

to the slope of the spectra across the wavelet’s support. Furthermore, the signs of

these coefficients are indicative of the slope orientation (increasing or decreasing for

positive and negative, respectively).

In contrast to the prior work of [4], we design our NHMC to feature k-state GMMs

for the wavelet coefficients. We increase the number of states from 2 to k > 2 because

a two-state zero-mean GMM provides an overly coarse distinction between sharper

absorption bands (fluctuations) and flatter regions in a hyperspectral signature, which
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are usually assigned large and small state labels, respectively. In our cases of interest,

spectrum classification requires a labeling granularity for the signature fluctuations

that is finer than that achieved by binary labels.

We associate each wavelet coefficient ws with an unobserved hidden state Ss ∈

{0, 1, ..., k − 1}, where the states have prior probabilities pi,s := p(Ss = i) for

i = 0, 1, ..., k−1. Here the state i = 0 represents smooth regions of the spectral signa-

ture, in a fashion similar to the small (S) state for binary GMMs, while i = 1, . . . , k−1

represent a more finely grained set of states for spectral signature fluctuations, simi-

larly to the large (L) state in binary GMMs. All the weights should meet the condition∑k−1
i=0 pi,s = 1. Each state is characterized by a zero-mean Gaussian distribution for

the wavelet coefficient with variance σi,s. The value of Ss determines which of the

k components of the mixture model is used to generate the probability distribution

for the wavelet coefficient ws: p(ws|Ss = i) = N (0, σ2
i,s). We can then infer that

p(ws) =
∑k−1

i=0 pi,sp(ws|Ss = i). In analogy with the binary GMM case, we can also

define a k × k transition probability matrix

As =



p0→0,s p1→0,s · · · pk−1→0,s

p0→1,s p1→1,s · · · pk−1→1,s

...
...

. . .
...

p0→k−1,s p1→k−1,s · · · pk−1→k−1,s


,

where pi→j,s = p(Ss = j|Ss−1 = i). Note that the probabilities in the diagonal of As

are expected to be larger than those in the off-diagonal elements due to the persistence

property of wavelet transforms. Note also that all state probabilities pi,s for s > 1

can be derived from the matrices {As}Ls=2 and {pi,1}k−1i=0 .

The training of the k-GMM NHMC is also performed via an EM algorithm. Be-

cause of the overlap between wavelet functions at a fixed scale and neighboring offsets,

adjacent coefficients may have correlations in relative magnitudes [14]. However, for
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computational reasons, in this thesis we only consider the parent-child relationship

of the wavelet coefficients in the same offset. Namely, we train an NHMC separately

on each of the N wavelengths sampled by the hyperspectral acquisition device. The

set of NHMC parameters θn of a certain spectral band n include the probabilities

for the first hidden states {pi,1,n}k−1i=0 , the state transition matrices {As,n}Ls=2, and the

Gaussian variances {σ2
0,s,n, σ

2
1,s,n, . . . , σ

2
k−1,s,n}Ls=1.

4.3 Label Computation

Given the model parameters θ, the state label values {Ss}Ls=1 for a given observa-

tion are obtained using a Viterbi algorithm [17, 4]. For a particular wavelet coefficient

ws, a k-dimensional conditional probability vector is defined with elements being the

conditional PMF of the wavelet coefficient

p(ws|Ss = i) =
1√

2πσ2
s

exp

(
−ws

2

2σ2
s

)

under each possible state value i = 0, . . . , k− 1. A variable δi,s is defined as the “best

score” that ends in a particular state i at scale s from its previous state, while the

variable ψi,s is the most likely state at a particular scale s− 1 to have children s with

state i. The definitions of the two variables are

ψi,1 = 0, (4.1)

δi,1 = pi,1 · p(w1|S1 = i), (4.2)

ψi,s = arg max
j=0,...,k−1

(δj,s−1pj→i,s), (4.3)

δi,s = δψi,s,s−1pψi,s→i,s · p(ws|Ss = i), (4.4)

for i = 1, . . . , k − 1 and s = 2, . . . , L. The algorithm also returns the likelihood

p(W |θ) of a wavelet coefficient matrix W under the model θ as a byproduct. We
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propose the use of the state label array S as classification features for the original

hyperspectral signal x. It is easy to identify the presence of such features simply by

inspecting the labels obtained from the NHMC.
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CHAPTER 5

PROPOSED MODIFICATIONS

5.1 Denoising

As mentioned earlier, in order to eliminate the differences between spectra caused

by illumination conditions [5], we perform normalization on the whole database by

dividing each reflectance spectrum by its maximum value. As a result of the nor-

malization of the spectra in the database before applying the wavelet transform, the

impact caused by small discontinuities (i.e., noise) might be enlarged, especially for

some relatively flat spectra like galena. Such effect can be reduced by performing

denoising on the normalized spectra. We use soft thresholding denoising [6], a tech-

nique that applies a threshold on the maximum value of the signal coefficients and

that is commonly applied to wavelet representations.

5.2 Comparison of Haar Wavelet with Daubechies-4 Wavelet

We expand on the original classification experiments in [7, 15] by increasing the

spectral complexity of the classification. We sample reflectance spectra from the

USGS remote sensing database at AVIRIS wavelengths, totaling 244 samples with

26 spectral classes, including reflectance spectra of minerals, vegetation, and other

materials. Each category contains at least 5 samples.

We compare NHMC models with a numbers of GMM mixtures/states varying

from one to seven. We first randomly separate the database into a training set

(including 197 samples with each category containing no less than 4 samples) and a

test set (including 47 samples with each category containing no less than 1 sample).
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In order to evaluate the performance of different NHMC models, we implement a

4-fold cross validation (CV) on the training set. We use three folds at a time to

generate the parameters of the NHMC model. Then we use the Viterbi algorithm

to obtain the corresponding state labels for both the training and test set and use

nearest neighbor classification (via Hamming distance on the state labels) on the

remaining fold to evaluate which of the models obtained by varying the number of

states and by considering or not the wavelet signs achieves the highest (average) CV

classification accuracy. Finally, we select the best performing model (in terms of the

CV performance) and train it on the entire training set. We then use nearest neighbor

classification (via Hamming distance on the state labels) on the test set to evaluate

the models’ generalization performance. For denoising, we performed a line search

for the threshold value that provided best performance in our spectral matching task,

finding it to be τ = 0.05.

Our experimental results are shown in Figure 5.1. Overall, the classification ac-

curacy for NHMC models using the Daubechies-1 wavelet are higher than that of

Daubechies-4. The model achieving the highest classification rate (94.9%) uses the

Daubechies-1 wavelet with denoising.

5.3 Spectral Fluctuation Orientation Characterization

As mentioned above, because of the shape of the Haar wavelet function, the signs

of Haar wavelet coefficients of a reflectance spectrum capture whether the slopes

increases or decreases as a function of wavelength. This characteristic of Haar wavelet

coefficients can be utilized to design state labels that capture the slope orientations

of the corresponding reflectance spectra. Thus, we make a simple modification by

adding the sign of a Haar wavelet coefficient to its counterpart in the corresponding

state label matrix. Figure 5.2 shows the effect of adding signs to state label matrices.

The top two figures represent the reflectance spectrum of a sample material and
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Figure 5.1. CV classification rates of different NHMC modeling approaches. Daubechies-
1 wavelets with denoising consistently provides the best performance, with 4 GMM states
providing best overall success rate.

the corresponding Haar wavelet coefficient matrix, while the bottom two show the

corresponding state label matrices with and without being added wavelet coefficient

signs, respectively. The figure shows that the fluctuations in the region 600nm −

800nm are predominantly not detected by state labels. Furthermore, one can see

many narrow chains of “large” state labels starting at 1700nm. Increasing the number

of GMM state enables a finer-scale quantization of spectral signature fluctuations,

which is somewhat analogous to increasing the quantization resolution for our wavelet

analysis. This is quite important when the Haar wavelet is used due to its sensitivity

to a large range of fluctuation orders, which implies a relatively low discriminative

power when compared with higher-order wavelet transforms.

5.4 Mixture of Gaussian

Unfortunately, a large number of GMM states might also have negative influence

on classification results. The GMM state of a particular wavelet coefficient ws,n is

determined by the coefficient’s magnitude with respect to those for the rest of the
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NHMC training spectra, the state label of its parent Ss−1,n, and the transition prob-

ability matrix As,n. In practice, this dependence translates to the establishment of

different ranges for the values of the coefficients in each GMM state across scales and

offsets (s, n). This variance often makes it difficult to assess the semantic information

in the label array of a spectral signature due to the variability in the value-to-state

mappings among adjacent scales and bands. Furthermore, as the granularity of the

GMM labeling keeps increasing, one runs the risk of characterizing the spectral vari-

ability of a given mineral using a multitude of GMM state labels. Thus, we may desire

a model that both characterizes the presence of spectral fluctuations (high discrim-

inability for low wavelet coefficient magnitudes) while being invariant to the presence

of spectral variability in a given element (low discriminability for large wavelet coef-

ficient magnitudes).

We propose a solution that combines the advantages of a binary-state GMM and a

k-state GMM. Our modified wavelet coefficient statistical model consists of a binary-

state NHMC with a “small” state (0) modeled by a standard nonzero-mean Gaussian

distribution and a “large” state (1) modeled by a mixture of k-1 Gaussian distri-

butions. Note that we use numbers here instead of letters for the state labels to

distinguish between the 2-state GMM NHMC and the 2-state MOG NHMC. We de-

note this modified model mixture of Gaussians (MOG) NHMC in the sequel. As

desired, this modified model maintains the discriminability between smooth regions

and absorption bands in spectral signatures, while providing classification features

(binary labels, in this case) that are invariant to the presence of spectral variability

among the signatures for a given class in the training and testing sets.

Next, we describe several connections between the k-state GMM NHMC and the

MOG NHMC that allow for a simple transition in the development of our classifier.

Consider the transition from the GMM NHMC model that yields state labels Ss ∈

{0, . . . , k−1} to a MOG NHMC that yields state labels Zs ∈ {0, 1} with probabilities
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qi,s = P (Zs = i), i = 1, 2. One can show that the change of models lead to the

following mapping for labels:

Z(S) =

 0 if S = 0,

1 if S 6= 0.
(5.1)

Similarly to (3.1), we can define a transition probability matrix

Bs =

q0→0,s q1→0,s

q0→1,s q1→1,s


for the MOG NHMC, where qi→j,s := P (Zs = j|Zs−1 = i) for i, j ∈ {0, 1} and

s = 1, . . . , L. We have the following intuitive result.

Lemma 1 Denote the vector of state probabilities for a wavelet coefficient ws under

the k-state GMM NHMC as Ps = (p0,s, p1,s, ..., pk−1,s)
T . The corresponding vector of

probabilities for the MOG NHMC states Qs can be written as follows:

Qs = (q0,s, q1,s)
T =

(
p0,s,

k−1∑
i=1

pi,s

)T

= (p0,s, 1− p0,s)T .

We also have the following lemma, proven in Appendix A.

Lemma 2 The elements of the MOG NHMC transition matrix Bs can be written in

terms of the elements of the GMM NHMC transition matrix As as follows:

q0→0,s = p0→0,s, (5.2)

q1→0,s =

∑k−1
i=1 pi→0,spi,s−1∑k−1

i=1 pi,s−1
, (5.3)

q0→1,s =
k−1∑
j=1

p0→j,s, (5.4)

q1→1,s =

∑k−1
i=1 pi,s−1

∑k−1
j=1 pi→j,s∑k−1

i=1 pi,s−1
. (5.5)
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Here i and j represent state labels ranging from 1 to k − 1.

Below is an example of the transform of a state probability vector and transition

probability matrix, respectively, where the original number of state is 4:

(0.422, 0.3696, 0.1042, 0.1042)T → (0.422, 0.578)T ,



1 0.0001 0 0

0 0.9999 0 0

0 0 0.5 0.4999

0 0 0.5 0.5001


→

1 0

0 1

 .

Correspondingly, we also make small modifications to the label computation scheme

from Section 4.3. For the MOG NHMC, equations (4.1–4.4) become

ψi,1 = 0,

δi,1 = qi,1 · p(w1|Z1 = i),

ψi,s = arg max
j=0,1

(δj,s−1qj→i,s),

δi,s = δψi,s,s−1qψi,s→i,s · p(ws|Zs = i),

respectively, for i = 0, 1 and s = 2, . . . , L. The required conditional probabilities

involving Zs can be written as given in the following lemma.

Lemma 3 The state-conditional probabilities for the MOG NHMC can be given in

terms of the state-conditional probabilities for the GMM NHMC as follows:

p(ws|Zs = 0) = p(ws|Ss = 0),

p(ws|Zs = 1) =

∑k−1
i=1 pi,sp(ws|Ss = i)∑k−1

i=1 pi,s
,

where i denotes a state label ranging from 1 to k − 1.
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We provide an example comparison between labels obtained from the GMM NHMC

and the MOG NHMC in Fig. 5.3.
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Figure 5.2. Examples of signed state labels as classification features. Top: Example
normalized reflectance spectrum (Ilmenite). Second: Corresponding 9-label UWT
coefficient matrix using a Haar wavelet. Third: Corresponding state label matrix
from an NHMC model using a zero-mean two-state GMM. Blue represents smooth
regions, while red represents fluctuations. Bottom: Corresponding features consisting
of the state labels with added signs from the Haar wavelet coefficients. Green repre-
sents smooth regions, while red represents decreasing fluctuations and blue represents
increasing fluctuations.
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Figure 5.3. Comparison of classification features obtained from several statistical
models for wavelet coefficients. Top: example normalized reflectance, same as in
Fig. 5.2. Second: Corresponding state label matrix from a 2-state GMM NHMC
model. Third: Corresponding state label matrix from a 6-state GMM NHMC model.
Bottom: Corresponding state label matrix from a MOG NHMC with k = 6.
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CHAPTER 6

SECOND STAGE EXPERIMENT

6.1 Study Data and Performance Evaluation

The dataset used in this thesis is a part of the RELAB spectral database with

26 mineral reflectance spectrum classes. Since the spectra in the original database

have different wavelength ranges, we only use the spectral region from 350nm to

2600nm (if applicable) which contains almost all of the visible and near-infrared

region of the electromagnetic spectrum. We also resample the spectra to 5nm to

eliminate the differences in spectral resolution in different spectra. However, the

number of samples in each mineral category is different. In order to ensure the same

prior probability of each category in the training process. Otherwise different mineral

types will have different contributions to the model obtained and it may have influence

on the final classification accuracy, we use the Hapke mixing model [8] to generate

enough mixtures of existing spectra in a given class until the number of samples

in each class is the same. The final dataset contains 1690 reflectance spectra with

each category including 65 reflectance spectra. Additionally, in order to eliminate

the influences caused by illumination conditions [5], we perform normalization on the

whole database by dividing each reflectance spectrum by its maximum value.

We compare different NHMC models (GMM/MOG, different number of mixed

Gaussian components, with/without assigning Daubechies-1 wavelet coefficient signs

to state labels). We first randomly separate the dataset into a training library (in-

cluding 1352 samples with each category containing 52 reflectrance spectra) and a

validation set (including 338 samples with each category containing 13 reflectance
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spectra). In order to evaluate the performance of different NHMC-based features, we

implement a 5-fold cross validation (CV) on the training library. We use four folds

at a time to generate the parameters of the NHMC model. Then we use the Viterbi

algorithm to obtain the corresponding state labels for both the folds for training and

the one for testing and use several classifiers (nearest neighbor (NN) classifier, support

vector machine (SVM) classifier) on the testing fold to evaluate which of the model

achieves the highest CV classification accuracy. Finally, we select the best performing

model (in terms of the CV performance) and train it on the entire training library. We

then perform classification on the validation set to evaluate the models generalization

performance.

Unfortunately, the resulting dataset features a significant separation between the

different classes, and so the performance of all proposed methods is equal and very

high. We tried to introduce some mixing into the database with the attempt to

enlarge the differences between reflectance spectra in the same class. In this thesis, our

solution is to imitate the image blurring process using Gaussian smoothing operator.

We first randomly set the order of reflectance spectra in the database to get a new

database in the form of a 2-D matrix with the first dimension being wavelengths and

the second being spectra. Then we generate a hyperspectral volumn by reshaping the

obtained 2-D reflectance spectra matrix. The first dimension is still wavelengths while

the other two are spectra. This amounts to mimicking a hyperspectral image. In this

volumn, each pixel corresponds to a spectrum from a library. And each intersecting

surface contains the reflectance value of spectra at a certain wavelength. We perform

a spatial blurring on each wavelength using the same Gaussian smoothing operator.

Finally, we build a new library from the blurred pixels. The Gaussing smoothing

operater we employ has the size of 3-by-3 and Gaussian variance of 0.6. Note that

here we use the Gaussian smoothing operator with a constant variance. We adjust

the mixing level, which refers to the degree to which a pure reflectance spectrum in
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the database will be mixed with other spectra, by randomly interpolating different

numbers of vectors with constant values (0 or 1) into the hyperspectral volumn. By

doing that, every spectrum has a certain probability to be mixed with constant vectors

which changes all its reflectance values to the same degree and thus has no influence

on the overall shape of it.

For this study, classification performance is evaluated by using NN and SVM

classification accuracies. For NN classifier, three distance metrics are employed: `1

distance, Euclidean distance, and cosine similarity. For SVM classifier, we use radial

basis function (RBF) as the kernel and perform a grid search for the corresponding

parameter values that provided best performance in each NHMC model. Figure 6.1

and Figure ?? exhibit the CV classification rates for different NHMC models us-

ing NN classifier and SVM classifier, respectively. It is easy to find that the model

configuration of MOG in conjunction with Daubechies-1 wavelet coefficient signs be-

ing added to corresponding state labels could consistently provide us with a better

performance than all three other model configurations. In terms of classification per-

formance stability, it seems that the two model configurations using MOG are the

two extremes: by adding wavelet coefficient signs we could get the most stable clas-

sification performance while without the signs we could get the opposite thing. As

I mentioned earlier, MOG combines the simplicity of a binary-state GMM and the

spectral fluctuation characterization capability of a multi-state GMM. However, if we

do not consider the wavelet coefficient, the fact that state labels only reflect spectral

fluctuation magnitudes could cause several similar state label matrices which actu-

ally correspond to reflectance spectra with different shape. The reason is that the

use of a binary-state GMM form could make several fluctuations of different level

have the same state labels and the possibility of two different spectra have similar

state label matrices could increase. However, if we add the Daubechies-1 wavelet

coefficient signs to the corresponding state labels, the state labels could reflect more
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Table 6.1. Details on Best-performing Features from Cross Validation Experiments
with Several Classifiers

Classifier NN SVM

Similarity Metric `1 Distance Euclidean Distance Cosine Similarity

CV Accuracy 0.983 0.987 0.983 0.990

GMM or MOG MOG MOG MOG MOG

Gaussian State # 3 4 4 and 5 5

Sign Added Yes Yes Yes Yes

information (the spectral fluctuation orientation information) in the corresponding

reflectance spectrum. In this case, the appearance of similar state label matrices

with actually different spectra could decrease. Furthermore, in this case the form of

a binary-state GMM could help maintain the stability of classification performance

because no matter how many Gaussian components are mixed, the state labels al-

ways have only three possible values (0,1,-1). Thus the state label matrix of a certain

reflectance spectrum will be similar by using different numbers of mixed Gaussian

components. Table 6.1 lists the models achieving highest CV classification rates for

each classifiers.

Finally, we select those best performing models and train it on the entire train-

ing library. We then use NN (via the aforementioned three similarity metrics) and

SVM classification on the validation set to evaluate the models’ generalization per-

formance. The final test results are listed in Table 6.2 and the classification rates are

corresponding to the NHMC models of the same order as those in Table 6.1. Note

that in Table 6.1 two models achieve the same highest classification accuracy value

in the case of cosine similarity. However, in the final test, the model with 4 Gaussian

components performs better than the one with 5 Gaussian components. Thus, Table

6.2 only contains the classification rate of the former model under cosine similarity.
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Figure 6.1. CV classification rates of different NHMC modeling approaches. Top
left: NN classifiers with `1 distance; top right: NN classifier with Euclidean distance;
bottom left: NN classifier with cosine similarity; bottom right: SVM classifier.

Table 6.2. Final Classification Rates on Models with Best CV Classification Accu-
racy by Using Nearest Neighbor Classifier and Support Vector Machine Classifier

Classifier NN SVM

Similarity Metric `1 Distance Euclidean Distance Cosine Similarity

Accuracy 0.967 0.967 0.959 0.967

6.2 Results for Comparison Approaches

In our final test, we compare the generalization performance of the best NHMC

models, which are listed in Table 6.1, with the four hyperspectral classification ap-
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Table 6.3. Experimental Results of Comparison Approach which Performs Classifi-
cation on the Whole Spectrum

Classifier NN SVM

Similarity Metric SAM ED SCM SID

Accuracy 0.959 0.950 0.953 0.959 0.964

Table 6.4. Experimental Results of Approach Introduced in [18]

Classifier NN SVM

Similarity Metric `1 Distance Euclidean Distance Cosine Similarity

Accuracy 0.964 0.956 0.941 0.967

proaches mentioned in Section II. For all the comparison experiments we use the

same dataset as in the experiments above and separate it into training library and

validation set with the same scheme.

First, we compare our method with the four spectral similarity measures: spectral

angle measure (SAM), Euclidean distance measure (ED), spectral correlation measure

(SCM) and the spectral information divergence (SID). We evaluate the method by

finding the nearest neighbor in the training library for each testing spectrum. To

have an all-around comparison with our approach, we also perform SVM classification

on spectra themselves in the database. The classification rates of the four spectral

similarity measures are listed in Table 6.3.

We also tried the approach introduced in [18]. In that paper the author only

employs SAM, which is the same as cosine distance, as the similarity metric. Here we

expand on their experiment by using the aforementioned three similarities performed

on our NHMC models when using NN classifier: `1 distance, euclidean distance and

cosine similarity. Still, in order to conduct an overall comparison with our NHMC

model, we perform SVM classification on the same signature proposed in [18]. The

results are shown in Table 6.4.
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CHAPTER 7

THIRD STAGE EXPERIMENT

In last chapter, we perform our experiment with a Gaussian smoothing operator

with a fixed variance. And we use constant vectors to control the mixing level.

However, by doing that we can not get an quantitative relationship between the

classification of a certain model configuration and the mixing level. In this stage

of experiment, we control the mixing level by adjusting the Gaussian variance of

Gaussian smoothing operator. By doing that, the dominant material percentage (the

percentage of an original pure spectrum in the mixed spectrum) will be equivalent to

the weight of the element in the central place of the Gaussian smoothing operator. The

example below shows the mask of a Gaussian smoothing operator with the Gaussian

variance of 0.7. If we using this mask to perform image blurring, then the dominant

material percentage in any mixed spectrum should be 33.77%.


0.0439 0.1027 0.0439

0.1217 0.3377 0.1217

0.0439 0.1217 0.0439


In this experiment, we will control the pure spectrum percentage from 50% to 100%

with the step of 5%. And for the convenience of comparison, here we use a competitor

which performs classification on the wavelet coefficients rather than the one performs

classification on the whole spectra. Figure 7.1 exhibits the classification rates for

different NHMC models using NN classifier. Here we directly perform finally classi-

fication on the test set without any model selection process. So all the classification
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rates in the figures below are final classification rates. Under all the three similar-

ity measures, in any certain dominant material percentage value our models seem

to have similar results. However, cosine similarity seems to have influences on the

two competitors which decreases the classification rates. Under another two spectral

similarity measures, we can find that higher mixing level could have larger negative

influence on our models than the two competitors. In the case of using `1 distance,

our models start to catch up with the two competitors from the dominant material

percentage of 70%. And under Euclidean distance it is 80%. And when the dominant

material percentage is higher than 90%, all the six approaches in the figures could

achieve excellent classification performance. So the results in this dominant mate-

rial percentage period is not informative to us. These results show that our model,

especially the case of using MOG with sign being added to corresponding state la-

bels, could outperform the two competitors with relatively pure spectra. However,

we could not ignore the fact that mixing could have larger influence on our models.

The reason behind this could lie in the classification features we use. In this study, we

quantize the spectral fluctuation magnitudes into several different integers depending

on the number of Gaussian components we use. In some cases, such a quantization

could enlarge the difference between spectra. Because of the randomness of mix-

ing, the differences between spectra after mixing are larger than those before mixing.

Thus, the disadvantages of our models will be amplified. Now let’s look at the two

competitors. Wavelet coefficients could be regarded as variables which could almost

continuously reflect the change in spectral fluctuations. And the approach proposed

in [18] removes the continuum in a spectrum which could even decrease the differences

between spectra. So the impact from mixing on these two approaches will not be so

large as on our models.
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Figure 7.1. Classification rates of different NHMC modeling approaches as func-
tions of diminant material percentage using NN classifier with `1 distance, Euclidean
distance and cosine similarity (from top to bottom), respectively. Here “gmm” means
Gaussian mixture model (GMM), “MOG” means mixture of Gaussian (MOG). The
suffix “sign” means the case of adding Daubechies-1 wavelet coefficient signs to the
corresponding state labels. “rivard” means the approach proposed in [18]. “wvlt”
corresponds to the approach which performs classification on wavelet coefficients.
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CHAPTER 8

CONCLUSION

We developed a wavelet-based non-homogeneous Markov chain model for hyper-

spectral signature classification. We used an undecimated wavelet transform to get

multiresolution information on the shape of hyperspectral signatures. The Haar

wavelet function was chosen for its ability of detecting both slow-varying fluctua-

tions and rapid changes in spectral curves, as well as characterizing slope orientations

via wavelet coefficient signs. An NHMC model was trained at each wavelength via

EM algorithm and then a set of NHMC parameters were generated. The Viterbi algo-

rithm was employed to transform wavelet coefficient into discrete state label matrices

which captured the semantic information of corresponding hyperspectral signatures.

Finally, the hyperspectral classification system was tested by using different classifiers

and spectral similarity measures. Two modifications were also proposed. The modi-

facation of the addition of wavelet coefficient signs to the corresponding state labels

enabled the state label matrices to contain slope orientation information, while the

combination of several GMM states into two reduced the complexity of state label

matrices and increased classification accuracies on the whole. In general, spectral

matching using cosine similarity as distance metric performed the best.

We also compared our method with two other classification approaches. One

performed spectral matching directly on spectra. One performed spectral match-

ing on the sum of wavelet coefficients of certain scales. Furthermore, the small size

of training data also limited the performance of the two DWT-based approaches.

Thus we recommend further work that expands the size of database and investigate
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more mother wavelets for both UWT and DWT-based hyperspectral classification re-

searches. Additionally, NHMC based on nonzero-mean GMM might be advantageous

in the future because in some cases the histogram of wavelet coefficients cannot be

accurately modeled by zero-mean Gaussian mixture models.
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APPENDIX

PROOF OF LEMMA

The relationship between the original state labels Ss−1, Ss and the combined state

labels Zs−1, Zs can be characterized by a directed graphical model which is shown in

Fig. A.1. By considering all possible transitions from Zs−1 to Zs through the state

transitions Ss−1 to Ss and the map above, and denoting

ps,S→Za→b = p(Zs = b|Ss = a),

ps,Z→Sa→b = p(Ss = b|Zs = a),

we can write

qb→a,s =
k−1∑
x=0

k−1∑
y=0

ps,S→Zx→a py→x,sp
s−1,Z→S
b→y . (A.1)

From the Z(S) map in equation (5.1), we can infer that

ps,S→Z0→0 = 1,

ps,S→Z0→1 = 0,

ps,S→Zi→0 = 0,

ps,S→Zi→1 = 1,

ps−1,Z→S0→0 = 1,

ps−1,Z→S0→i = 0,

ps−1,Z→S1→0 = 0,

ps−1,Z→S1→i =
p(Ss−1 = i)∑k−1
j=1 p(Ss−1 = j)

,
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Figure A.1. Directed graphic model for state labels

where i = 1, ..., k − 1. After combining the 8 equalities above with (A.1) for a, b ∈

{0, 1}, we can get the four elements in new matrices expressed in (5.2− 5.5), proving

the lemma.
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