
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

2015

Energy Agile Cluster Communication
Muhammad Zain Mustafa
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

Part of the Data Storage Systems Commons, Hardware Systems Commons, Power and Energy
Commons, and the Systems and Communications Commons

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been
accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Mustafa, Muhammad Zain, "Energy Agile Cluster Communication" (2015). Masters Theses. 164.
https://scholarworks.umass.edu/masters_theses_2/164

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/164?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ENERGY AGILE
CLUSTER COMMUNICATION

A Thesis Presented

by

M. Z. MUSTAFA

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

February 2015

Electrical and Computer Engineering

ENERGY AGILE
CLUSTER COMMUNICATION

A Thesis Presented

by

M. Z. MUSTAFA

Approved as to style and content by:

David E. Irwin, Chair

Tilman Wolf, Member

Michael Zink, Member

C.V. Hollot, Department Chair
Electrical and Computer Engineering

ABSTRACT

ENERGY AGILE
CLUSTER COMMUNICATION

FEBRUARY 2015

M. Z. MUSTAFA

B.Sc., NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

(PAKISTAN)

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David E. Irwin

Computing researchers have long focused on improving energy-efficiency?the

amount of computation per joule? under the implicit assumption that all energy

is created equal. Energy however is not created equal: its cost and carbon footprint

fluctuates over time due to a variety of factors. These fluctuations are expected to in-

tensify as renewable penetration increases. Thus in my work I introduce energy-agility

a design concept for a platform?s ability to rapidly and efficiently adapt to such power

fluctuations. I then introduce a representative application to assess energy-agility for

the type of long-running, parallel, data-intensive tasks that are both common in data

centers and most amenable to delays from variations in available power. Multiple

variants of the application are implemented to illustrate the fundamental tradeoffs

in designing energy-agile parallel applications. I find that with inactive power state

transition latencies of up to 15 seconds, a design that regularly ”blinks” servers out-

performs one that minimizes transitions by only changing power states when power

iii

varies. While the latter approach has much lower transition overhead, it requires

additional I/O, since servers are not always concurrently active. Unfortunately, I find

that most server-class platforms today are not energy-agile: they have transition la-

tencies beyond one minute, forcing them to minimize transition and incur additional

I/O.

iv

TABLE OF CONTENTS

Page

ABSTRACT . iii

LIST OF TABLES . vii

LIST OF FIGURES .viii

CHAPTER

1. INTRODUCTION . 1

1.1 Energy-Agility . 3
1.2 Background . 5
1.3 Problem . 7
1.4 Solution . 9
1.5 Hypothesis . 10
1.6 Contributions . 11

2. RELATED WORK . 14

2.1 Scheduling Policy Design . 15
2.2 Energy Proportional Design . 19
2.3 Higher Renewable Energy Penetration . 21

3. ENERGY AGILE COMMUNICATION . 29

3.1 Emerging Scenarios . 31
3.2 All to All Communication . 32
3.3 Application Design . 34

3.3.1 Distributed Environment . 36
3.3.2 Policies . 39
3.3.3 Design Concepts . 40

3.4 Energy Agile Policies . 42

v

3.4.1 Active Power Cap . 42
3.4.2 Burst . 43
3.4.3 Blink . 45
3.4.4 Battery Burst . 47

3.5 Power Input . 48

4. IMPLEMENTATION . 50

4.1 Theoretical Verification Through Controlled Simulation 50

4.1.1 Policy Development Testbed . 51
4.1.2 Policy Evaluation Tool . 52
4.1.3 Simulator Design . 52
4.1.4 Simulator Output . 53

4.2 Application Development And Deployment . 58
4.3 Hardware Power States Profiling . 60

4.3.1 C States . 60
4.3.2 P States . 62
4.3.3 Controlling CPU Cores . 63
4.3.4 Throttling Disk IO and Network Bandwidth 65

5. EVALUATION . 67

5.1 Sequential Write With Rapid S3 Transitions . 67
5.2 Energy Agile Performance . 68
5.3 Effect Of Transition Time . 72
5.4 Effect Of Energy Buffer Size . 75
5.5 Impact of power variation . 77
5.6 Effect of Job Size . 78
5.7 Experiment Results . 80

6. CONCLUSION . 82

BIBLIOGRAPHY . 84

vi

LIST OF TABLES

Table Page

3.1 C State Details . 38

vii

LIST OF FIGURES

Figure Page

1.1 Computational Ability Growth . 2

1.2 Operational Costs for Generators . 4

1.3 Renewable Energy Variation . 5

3.1 All to All Internode Communication . 34

3.2 Simplified Cluster Diagram . 36

3.3 Balanced vs Unbalanced Links . 41

3.4 Sudden full throttle power . 42

3.5 Burst Transitions . 44

3.6 Blink Interval . 46

3.7 Battery Burst . 47

3.8 Wind Power Signal . 48

3.9 Solar Power Signal . 49

4.1 Simulations with different power budgets . 55

4.2 Simulations with different transition times . 56

4.3 Simulations with different buffer size . 57

4.4 Massachusetts Green High Performance Computing Center 59

4.5 C States Energy Consumption . 61

4.6 C States Latency . 62

viii

4.7 P States Energy Consumption . 63

4.8 Effect of CPU Cores on Power . 65

4.9 Effect of Power on Network and Disk IO throttle . 66

5.1 Effect of S3 transitions on Write a Sequential File . 68

5.2 Power Budget Performance . 70

5.3 Power Budget Performance . 72

5.4 Transition Time Analysis . 73

5.5 Transition Time Wind Analysis . 73

5.6 Transition Energy Analysis . 74

5.7 Transition Energy Wind Analysis . 75

5.8 Energy Buffer Size Variation . 76

5.9 Impact of varying power on policy performance . 77

5.10 Impact of varying power on policy energy . 78

5.11 Impact of job size on policy performance . 79

5.12 Impact of job size on policy energy . 80

ix

CHAPTER 1

INTRODUCTION

Data centers today represent a significant chunk of computing power. They are

responsible for entire online infrastructures of companies, for carrying out experiments

and scientific research among other things. They also form the foundation of the

internet by providing services such as cloud computing, hosting websites etc. They

are typically large facilities used to house computing systems and supporting devices.

Depending on their size, they can house anywhere between hundreds to hundreds

of thousands of networked computer servers along with massive data storage. As

each server draws a significant amount of power, the total energy demands at data

centers can be massive. Additional power must also be used to power the cooling

systems and other devices housed in the data center. Depending on the size of the

the facility, a data center can have energy demands similar to that of a small town.

Hence many data centers are equipped with their own back up power supplies and

may also house flywheels or other form of energy storage. It is estimated that for

high density data centers, the Total Cost of Ownership (TCO) for energy consumption

can be as high as 30% [18]. Such high levels of energy consumption can also have

significant impacts on environmental emissions. Data centers therefore aim to reduce

their energy consumption and it’s consequent environmental impact.

However data centers deal with a highly competitive industry and must be able

to deliver performance of the order of state of the art technology. While reducing

environmental emissions and dealing with high level of energy consumption, it is

important for data centers to also aim at performance growth. This increasing per-

1

formance growth (figure 1.1) implies a similar increase in energy consumption used

by the servers. Energy consumption for High Performance Computing (HPC) servers

has increased to the extent that power considerations are now amongst the major de-

sign constraints for the next class of HPC platform exa-scale supercomputers. Hence

data centers look towards more cost effective energy sources.

Figure 1.1. Computational Ability Growth

For these reasons and more explained below, data centers have begun to shift

towards using renewable power sources and participate in demand response programs

initiated by the power utilities. Both these factors encourage the data centers to adapt

to highly fluctuating input power. Renewable power has an inherent unpredictability

in almost every renewable power source. Although solar power can be predicted to

some level of accuracy, it is better for energy agile designs to assume all sources

are unpredictable so that system can respond to any kind of stochastic power signal,

being ”power signal agnostic”. On the other hand, data centers participating in utility

2

initiated Demand Response programs have to respond to signals from the utilities to

increase or decrease their power demands as the power supply varies. The participants

are typically compensated based on their response time and the capacity by which

they can ramp up their power demands.

In this work, we term this ability to carry out typical data center tasks under fluc-

tuating input power as Energy Agility. Interestingly, although data centers typically

possess the capabilities to respond to fluctuating power in their individual servers

such as power capping, using Dynamic Voltage Frequency Scaling (DVFS) states (P-

States), inactive cpu power states (C-States), inactive ACPI power states (S3,S4), etc;

they lack the ability at the cluster level to leverage these individual server capabilities

to control the overall cluster power demand. In this work, we introduce the concept

of energy agility for clusters and show how cluster wide policies for server operations

can be used to enable data centers to carry on their work even when input power is

not stable. Energy agility is defined as follows.

1.1 Energy-Agility

Energy Agility is a similar concept to energy efficiency. With respect to comput-

ing, energy-efficiency is defined as the amount of work, e.g. computation, I/O, etc.,

done per unit of energy. For sorting, energy-efficiency translates to the number of

records sorted per joule (or watt-second) of energy consumed by a platform. Energy

agility however can be more easily understood in the same context by the amount

of work done given a power budget which may vary over time. Thus similarly for

sorting, energy-agility translates to the number of records sorted per joule of energy

given to a platform independent of how much energy the platform consumes. This

definition can be extended to data shuffling as well where energy-agility would become

the number of records shuffled per joule of energy given to a platform.

3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6

S
p

o
t

P
ri
c
e

 (
$

)

Time (days)

Figure 1.2. Operational Costs for Generators

Energy agility although similar in concept to energy efficiency, is agnostic to how

efficient a platform is. It encourages applications to use all available energy whenever

possible, applying a ”use it or loose it” property. Of course the applications are

also independently motivated to use the available energy as efficiently as possible.

Unused energy can be stored assuming there is some form of energy storage mechanism

available and later used for work. I consider the impact of energy storage capacity on

energy agility in my work in later sections. Power budgets however must be scaled

to better suit the working platform. For example, a power budget that periodically

provides more energy than the platforms maximum consumption forces it to waste

the excess energy if there is no energy storage available for that time period.

Although the cost of producing energy and it’s carbon footprint is highly depen-

dent on the power source, energy consumption is ignorant of these costs. Energy

efficiency optimizations aim for doing more work using less energy regardless of the

power source. In contrast however, energy agility reflects the fact that all energy is

not created equal [30]. Its cost can instead be driven from a heterogenous mix of

generators with different fuel costs, carbon emissions and operational characteristics.

As an example, solar and wind energy are created without any fuel costs or carbon

emission. However the generation in this case is dependent not the environment con-

4

Figure 1.3. Renewable Energy Variation

ditions. On the flip side however, ”peaking” generators are utilized by utilities to

satisfy excess power demand on the grid. These generators are capable of produc-

ing energy at demand but with a high fuel cost (¿10x) and environmental emissions

[9, 33]. Figure 1.2 shows the different marginal cost of energy produced from various

sources. The figure illustrates the disparity in the high cost of producing energy us-

ing any form of generator and the unstable fluctuations possible in renewable energy

which together contribute to energy price fluctuations over time. As we look towards

more renewable penetration, power fluctuations may become a permanent feature of

power supply [20] causing more intense energy price fluctuations. Figure 1.3 on the

other hand shows the variations in renewable energy produced every month over the

years since 1973. The figure shows a seasonal trend in the amount of total renewable

energy produced over the years.

1.2 Background

Data centers have experienced improvements in efficiency in the operational use of

energy over the recent years. As of 2010, the average Power Usage Effectiveness(PUE)

5

index in the U.S data centers was 2.0 with the best PUE around the scale of 1.2 by

Google data centers [2]. However despite these improvements, the cumulative energy

consumption of data centers around the world have increased over the same time pe-

riod. Worldwide data center energy demands have been estimated to have increased

by 56% between 2005 and 2010. In the U.S alone data centers account for 1.7-2.2%

of the total electricity usage nationwide [17]. These increasing energy demands have

prompted leading data centers to cut down the energy carbon footprint and cost.

Current state of the art data centers such as the Massachusetts Green High Perfor-

mance Computing Center (MGHPCC) are now experimenting with local renewable

power sources as an alternate source of energy [1, 10, 24]. Commercial companies such

as Google and Apple have also joined the charge with Apple now claiming that it’s

data centers are run on 100% renewable energy. Besides using renewable energy, data

centers have also started participating in utility demand response (DR) programs. As

mentioned, both renewables and DR introduce the potential for variations in a data

center’s available power.

Data centers are well equipped to respond to such power variations as has been

noted before [16, 34]. High end servers used by data centers already include sophisti-

cated power management functions, which are capable of varying their power usage

over a wide dynamic power range. They also often execute non-interactive batch

applications that are tolerant to some delays due to power shortages.

However, although there has been research focused on improving the energy-

efficiency, i.e. the amount of computation per joule of hardware and software, there

has been much less research on energy-agility : the ability to adapt applications to

dynamic variations in available power. Where energy efficiency seeks to minimize the

amount of energy used to do some work, energy-agile systems focus on maximizing

the amount of work done subject to available power. More specifically, energy agility

in a cluster would mean that the performance of an application running on the cluster

6

can change with and respond to changes in input power to the cluster without ac-

tually disrupting the work being done by the application. The application may slow

down or speed up with power changes, but it would continue operation.

Data centers commonly deal with long-running, massively parallel and data inten-

sive batch applications that are amenable to delays from variations in input power.

Unlike shorter batch job, such ”big data” applications are not suitable for simply

deferring their execution until enough power is available [13, 14]. Since they take a

long time to run and complete, they must adapt to power fluctuations during exe-

cution rather than wait for an ideal uninterrupted time period with sufficient power

which may never arrive. As with energy efficiency, an application’s software design

and its hardware capabilities contribute to its energy agility. In my thesis, I analyze

the effect of both by introducing an energy agile internode data shuffling application.

1.3 Problem

To reduce costs and environmental emissions, data centers are now finding them-

selves more deeply integrated with renewable energy sources and involved in greater

participation in demand response programs initiated by power utilities. Data cen-

ter applications therefore are faced with the challenger of running on volatile power

sources which can vary with environmental conditions (Renewable Energy) or power

demand on the grid (Demand Response). Data center applications are typically long

running massively parallel ”big data” applications which can not be simply deferred

until stable sufficient power is available to run them. They therefore need mechanisms

embedded in their software design which leverage hardware capabilities of the servers

in data centers to adapt to changing input power. Without the assumption of an

extreme large energy storage mechanism which can support the servers running the

application uninterrupted until it completes, running such applications is a challenge

with the typical setup and design of current data center applications. However such

7

large energy buffers are not very cost effective and can be unpractical if an application

runs for several days before completion.

As mentioned, data centers typically deal with massively parallel distributed ap-

plications such as Dryad, PIG, Map Reduce, Distributed Sort, etc. All these appli-

cations generally involve large amounts of data movements across the nodes in the

clusters and data centers. Interestingly such cluster based applications are not usu-

ally bottlenecked by the CPU, but by disk speeds since they involve a large amount

of data transfers. A large amount of nodes are typically involved in such large scale

parallel applications with each node having to communicate with other nodes to send

or receive data resulting in a data shuffle across all the nodes. For most distributed

parallel applications, some form of data shuffle is an integral part of the application

itself. Data shuffling or other forms of inter node communication in the cluster make

a distributed parallel application different from other sequential jobs. It is interest-

ing to note however, that the individual workloads of the nodes which are running

a distributed parallel application can be independent relative to other nodes except

for inter node data transfers and communications. The problem for data shuffling

however arises when there is insufficient power to support all node which have to

shuffle data amongst themselves. If a subset of nodes is powered with other nodes

in some form of inactive state consuming negligible power, the powered nodes might

transfer data amongst themselves but will not be able to share their data with the

nodes which are inactive.

While data shuffle is admittedly a narrow problem just as sorting is, previous

benchmarks based on similar problems have influenced a broad range of systems.

For instance, the notion of balance in JouleSort [28] influenced the design of energy-

efficient key-value stores [4], MapReduce platforms [27] and databases [32]. Data

shuffling is also a common subtask for parallel applications often; often forming the

8

bottleneck for such application. Hence it captures the bottleneck for most data centric

applications which are data intensive and parallel in nature.

Data centers therefore are faced with the challenge of running distributed ap-

plications involving data shuffling amongst nodes with varying input power. Such

applications must have energy agile software designs to enable the data center to

productively use varying energy. Without a large enough energy buffer to support

all nodes until the application completes execution, this energy would otherwise be

wasted.

1.4 Solution

In order to deal with variable power input, data center software must be designed

to be energy agile. There has been previous work which uses sorting as a basis for

benchmarks to highlight various aspects of system design such as I/O performance,

energy efficiency and cost to motivate researchers to improve upon them. My work

however adapts data shuffling as the core application as it is a subtask of almost every

distributed application including sorting. Data shuffling also captures the basic prin-

ciple of distributed applications i.e communication between nodes. Since it requires

all the nodes involved in the shuffle to be up and running in order to complete work,

it makes for a good problem to solve under variable power where all nodes may or

may not be able to run together. I use data shuffling to highlight important software

designs which can prove useful in designing energy agile applications for researchers

in the future.

I design my application with energy agility requirements such that it is able to run

and complete on a cluster with variable power by utilizing the hardware capabilities of

nodes such as inactive power states (ACPI S3). As power fluctuates, some nodes in the

cluster can be shifted to inactive hardware states where they consume negligible power

to satisfy the current power budget. These active and inactive hardware power states

9

can be exploited through hardware management policy designs to allow energy agile

operation in the data shuffling application. However such policies add a new dynamic

to the data shuffling problem. In addition to minimizing the completion time of data

shuffling, these designs must consider the effect of inactive power state transitions,

which are time consuming and may periodically render some data unavailable. As

with prior work involving sorting benchmarks, part of my work is aimed to distill a set

of design principles capable of influencing a broader range of energy-agile applications.

For my work, these design principles are a byproduct of the inactive power state

management policies that I have designed.

To evaluate the software designs for my distributed shuffle application before im-

plementation, I have developed a simulator where I can test my designs. The simu-

lator works as a testbed for evaluating algorithms under different conditions. Since

the simulated environment is completely controllable, it can also be a valuable tool to

determine which of the policies would perform best under a certain set of conditions.

Designs and simulations however can only be verified through actual implementations.

Hence each hardware state management policy is implemented within the framework

of my data shuffle application and has been deployed and tested on the MGHPCC

cluster.

1.5 Hypothesis

I have designed four different hardware state management policies which allow

my data shuffling application to operate with energy agility. Each of these policies

makes it possible for my application to continue running even with fluctuating input

power. However each policy is designed to work well for a mix of conditions and

assumptions such as inactive hardware state transition time, how much power is

available on average, the extent of input power fluctuation and the amount of energy

storage available in the cluster.

10

Performance of the application with different hardware management policies can

be measured by the completion time of the data shuffling application for a given

set of conditions. Since we want the applications to complete as fast as possible,

a smaller execution time indicates better performance. Policy performance under

certain conditions can therefore be measured by running the data shuffling application

with all the policies. The least completion time in this case would indicate the best

performance for those conditions.

Since each policy is designed to work well for different conditions such as the

amount of energy storage available and the transition time for going in and out of the

inactive hardware states for nodes, I expect each policy to perform better under their

ideal conditions. The four policies I have designed are : Active power cap, Burst,

Burst with battery and Blink. The latter two need energy storage mechanisms in

order to work. These policies can therefore be categorized into storage aware and non

storage aware policies. I expect that for practical conditions of large transition times

between hardware inactive states, the Burst with battery policy which combines a

non storage aware policy with an energy storage mechanism should perform the best.

For other conditions where we assume we can invest in a large enough energy storage

buffer and the transition times are not very large, Blink which is a storage aware

policy should perform better.

1.6 Contributions

An important goal in developing an energy-agile data shuffling application is to

identify design principles as important lessons for a larger host of distributed ap-

plications which can benefit from energy-agility. In addition to software developers

considering energy agility as a design criteria for applications, another goal to mo-

tivate hardware vendors to incorporate functionality which facilitates energy agility

such as faster transitions into ACPI S3 states. As scenarios which value energy

11

agility are only now emerging, largely due to both the decreasing cost of enable en-

ergy sources advances in smart grids, energy-agility has not been previously thought

of as an important design metric. As a result, current hardware/software platforms

are not particularly energy-agile, especially for I/O bound workloads that cannot fully

utilize the active power states available on CPUs. Contributions of my work, through

my thesis are:

Energy Agility Policies. Having established energy agility as a performance

metric for distributed applications distinct from energy efficiency, I go on to define

energy-agile software designs in the form of hardware state management policies.

Although these policies are designed within the framework of my data shuffling ap-

plication, they can be implemented in other distributed systems such as sort, map

reduce, dryad, etc with ease. Since the policies have more to do with hardware man-

agement than with the software itself, they are easy to incorporate for any data center

application.

Simulator. Another contribution that I make in my thesis is the development a

simulator capable of simulating all my hardware management policies in a controlled

virtual environment. This can serve as a test bed for developing more policies for

energy agility and for identifying which policy would work better under a certain set

of conditions.

Implementation and Evaluation. Finally to verify my simulator outputs and

evaluate the actual performance of my policies, I have developed a framework data

shuffling application which can run on an actual cluster with fluctuating input power.

This framework can work with my hardware state management policies for an energy

agile software design. All of my policies have been implemented and evaluated on

the MGHPCC server under various conditions of hardware state transition time,

energy storage availability and power fluctuations. This implementation has also

12

been evaluated against realistic power fluctuations adapted from real wind speed and

solar emission traces.

13

CHAPTER 2

RELATED WORK

Energy Agility in the context of the amount of work done, given a power budget

which may vary over time is not a very deeply explored research area. As mentioned

in the introduction, we take on energy agility as a distinct but similar concept to

energy efficiency where we try to use as much energy as possible whenever possible,

leaving the energy efficiency details to be platform dependent. There has been a lot

of previous and ongoing research work dealing with energy efficiency as researchers

deal with the perils of high energy costs and rising environmental emissions from data

centers. Fluctuating input power to data centers with higher renewable penetration

and participating in demand response programs are recent developments for data

centers and possible scenarios where energy agility would be useful however are only

now emerging. Hence energy agility has only been an indirectly and briefly broached

research area in previous research work.

Previous related work focuses on a range of related topics and concepts without

clearly defining energy agility. Researchers have worked on making systems more

energy proportional with a higher integration of renewable energy. There has been

work on server and cpu power states, energy agile networks, designing a representa-

tive problem such as sort, leveraging energy storage, designing energy proportional

networks, etc which are all very relevant to different aspects of my own work. In this

chapter I will discuss such resources and comment on their usefulness and shortcom-

ings. In order to highlight relevance to my own work, I have categorized previous

14

related work into three categories: Scheduling Policy Design, Energy Proportional

Design and Higher Renewable Energy Penetration.

2.1 Scheduling Policy Design

Variable energy is being introduced into the national electric grid at scale. Data

centers are also looking to reduce their operational costs and environmental impact

by participation in demand response programs. Hence data centers have to deal with

possibly fluctuating input power. Realizing this paradigm with backup generators to

fill energy demand gaps or grid scale energy storage to smooth the power fluctuations

is impractical because of costs, therefore we need to look at alternate mechanisms

to deal with such fluctuating power. Data centers typically come equipped with

mechanisms which allow for dynamic energy consumption adjustment and deal with

deferrable workloads. This allows for developing work scheduling policies where a

deferrable work load can be scheduled at a time when ample energy is available.

Andrew Krioukov’s work ”Design and Evaluation of an Energy Agile Com-

puting Cluster” is such an example. Although this work uses the term Energy

Agility, it does not clearly lay down any boundaries of what it means. The work con-

tinues to acknowledge energy agility as a distributed systems problem but applies the

term to work loads rather than the cluster itself, terming them Energy Agile Loads

without actually laying down a definition for energy agility. It is interesting to note

that the ability to defer a workload or slack as the paper terms it is not necessarily

present in all kinds of work loads. Where batch jobs may have some slack, even that

is exploitable only to a certain extent which does not make a data center completely

energy agile.

This paper goes on to emphasize power proportionality amongst the individual

nodes of the clusters and the importance of choosing efficient and agile hardware

building blocks. However it also accepts that even in the cluster built by the re-

15

searchers themselves, the servers with intel atom dual core boards at 30% utilization

consume 75% of their peak power. Interestingly however the researchers do not go

on to point out the power states in the different components of the servers which do

not allow for energy proportional design such as the network interface card and disk.

This could have been used to motivate component designers to make more energy

proportional designs which can allow the servers a greater range of dynamic energy

consumption as the workload varies across the components. The paper however rec-

ognizes that servers can not be truly power proportional which is why it is important

to leverage other power states of the server which consume negligible power and can

be switched into with minimum delay. This is why the ACPI S3 state can serve as an

important mechanism for a cluster wide energy agile operation. Although this con-

curs with my work, we also recognize the importance of the time it takes to transition

into the ACPI S3 state unlike this paper.

Finally this work also focuses on a very narrow possibility of workloads. Although

the workloads used in the simulation and prototype are based on interactive workloads

from Wikipedia and batch loads from two large scientific computers including the

National Energy Research Scientific Computing Center (NERSC), they ignore a very

important aspect of the typical massively parallel distributed applications run on

data centers i.e. inter node communication. The scheduling policies developed in

this work, although very relevant in the context they are used, would be ineffective

when used with workloads which need to communicate with other nodes. Such nodes

would be interdependent and need to be up and running together so that they can

talk. This paper assumes that communication would only be required amongst a few

nodes so that only a small subset of the nodes need to run together. For a massively

parallel application such as Map Reduce or Sort, this assumption does not hold. Such

applications require all the nodes involved in the work to be up an running together,

a problem not resolved through scheduling.

16

Similar scheduling work in the paper Scheduling for Reduced CPU Energy

by Mark Weiser also focuses on reducing energy usage in portable computer systems

by utilizing the cpu frequency power states and lowering the clock cycles wherever

possible. Although this work focuses only on reduced CPU energy through scheduling

algorithms, they provide a valuable insight into the possibilities of saving energy or

shaping the energy demands of computing systems by simple scheduling algorithms.

Todays modern servers come equipped with many such power saving states and fea-

tures which can be exploited to save energy. A good example are the CPU idle states

(C states) and Dynamic Voltage Frequency States (DVFS, P States). This paper

exploits P states to gather energy savings for portable computers.

The work however focuses on developing algorithms by optimizing load traces

recorded from Unix machines and simulating scheduling algorithms to determine en-

ergy changes. As recognized in the paper itself, this work is limited to simulations

which of course are not as good as actual implementations. The paper goes on to

claim power savings of up to 70% with it’s scheduling algorithms. Since these claims

are only backed by simulations based on certain assumptions and only limited work-

load traces are simulated, it is far from any kind of practical application. Nonetheless

the paper does illustrate it’s point that exploiting cpu frequency power states through

scheduling policies can be very helpful in saving energy and shaping energy demands

for computers using it’s graph and scheduling policies.

Implementing scheduling policies for energy agility or energy efficiency can be

magnitudes of times more effective if there is an accurate predictive algorithm avail-

able. Such an algorithm can be useful in predicting work arrival or input energy

fluctuations and make scheduling decision accordingly. Fortunately, there has been

plenty of work regarding predicting energy and work arrivals in data centers which

can be used for better renewable energy penetration and reduce costs due to brown

energy usage.

17

One such paper, Utilizing Green Energy Prediction to Schedule Mixed

Batch and Service Jobs in Data Centers by Baris Aksanli focuses on such

prediction models. He correctly recognizes that data centers have longer running

batch jobs whose performance is measured in throughput and job completion times

such as Map Reduce, Dryad, etc. The paper emphasizes the importance of using

green energy and explains how it could be done so with the prediction mechanisms

developed in this work. It goes on to claim increases of renewable energy usage by

3 times with a 1.6 times increase in the amount of work performed by green energy

over brown energy.

By developing and implementing its energy prediction models and leveraging them

through scheduling policies, the paper shows that renewable energy efficiency can be

improved by up to 3 times when compared to instantaneous renewable energy usage.

Since one of the base algorithms used in this work is Map Reduce which can be

divided into subtasks and simply rescheduled in case there is not enough energy,

scheduling with instantaneous power requires a lot of subtasks to be rescheduled.

Using a prediction model for renewable energy availability however, such rescheduling

tasks can be reduced by up to 7.7 times according to this work. This work focuses

on wind and solar energy prediction models which are the most widely used variable

forms of renewable energy. The work concludes that its prediction models for variable

energy sources with volatile weather conditions can be accurate with up to an 8%

mean square error. However as with last paper discussed in this section, this work

does not deal with applications which may require communication amongst all the

nodes in the system to complete the task such as a distributed Sort.

Scheduling policies and prediction models can be useful tools for developing energy

agile and energy efficient systems. Despite their shortcomings, all the works discussed

in this section illustrate the potential of using the rights policies at the right time.

My work involves similar scheduling policies which are focused towards enabling inter

18

node communication in parallel tasks under variable power conditions. The policies

I have designed are a slightly different flavor as they manage hardware power states

rather than schedule the work itself.

2.2 Energy Proportional Design

The principle behind energy agility i.e. use as much energy as possible whenever

possible can be satisfied by theoretically purely energy proportional systems. However

servers are far from being purely energy proportional. Although certain components

such as cpu and memory can exhibit energy proportionality, the vast majority of

computing subsystems are not energy proportional. As explained in the next section,

many mechanisms exploit the ACPI S3 state which provides near zero power con-

sumption for an inactive server which can be quickly activated. This power state can

be used to provide energy proportionality for the cluster as a whole by developing

policies to put certain servers of the cluster to S3 when possible.

An interesting paper which makes a good case for Energy Proportional computer

system design is The Case for Energy-Proportional Computing by Luiz Angre

Barroso. This paper motivates the design of more energy proportional computer

systems by providing some valuable insights. This paper notes that servers are much

more inefficient at lower utilization rates, notably energy efficiency drop below 50%

when the utilization level decreases under 20%. Consequently, as servers in data

centers mostly spend their time between the utilization rates of 10% and 50%, they

are not as efficient as they could possibly be. Hence this makes a case for more energy

proportional machines.

The paper goes on to say that inactive power states are not very useful for pro-

viding energy proportionality at a cluster scale as computer servers may possess data

which might be required by other applications even if the server itself is idle, requiring

it to stay active. The paper also mentions that clusters typically face small windows

19

of idle times, and given the high activation and deactivation times of inactive power

states, they simply cannot be used. However as seen by other work in the next sec-

tion, these conclusions are not necessarily true. Intelligent policies can make data

available for servers and exploit the slack in tasks to gain the energy savings provided

by inactive power states. Furthermore, works such as PowerNap show that extremely

fast times for going in and out of inactive power states could be achieved with some

modifications to the OS.

This paper goes on to point out that servers already have a very dynamic power

range, changes of up to 70% of peak power can be expected depending on the utiliza-

tion rates of the servers. Further increases in the dynamic range of the power range,

of up to 90% that of peak power, could cut the energy used in data centers by one

half. This might be true, but achieving this milestone is still far. The components

in computer systems that consume more power and are not power proportional are

memory and disk storage. Although memory is about 50% energy proportional, disk

drives are only 15%. My work in later sections shows that for certain disk types,

the energy proportionality is even lower. Even with advances such as SSD in disk

storage, energy proportionality still has not improved. The same stands for many

other components such as network interfaces and cooling equipment. Therefore we

have to look at inactive power states in our work to provide energy proportionality

at a larger, more abstract cluster level of operation.

Continuing the discussion of energy proportional components of a computer clus-

ter, Dennis Abts introduces his interesting work in the paper Energy Proportional

Datacenter Networks. As data center servers become more energy proportional,

the proportion of energy consumed by the network will rise according to the study,

and may take as much as 50% of the total data center energy. The paper proposes

an interesting network topology called the flattened butterfly topology to connect

the servers and uses low power state links to design a network which consumes a

20

simulated 85% less power. The author argues that since data center servers are never

fully utilized, using links in their slower, lower power states is justified. The paper

then goes on to claim a fantastic cost savings of 2.4 million dollars over a period of

4 years for a reference data center. However considering all the work is based on

simulations, it is difficult to take this claim seriously. Nevertheless this work does

provide a mechanism to make energy data centers more energy proportional and can

be implemented for better power savings.

2.3 Higher Renewable Energy Penetration

One of the basic purpose of my work is to allow deeper renewable energy pen-

etration by allowing data center applications to be more tolerant to input power

fluctuations. As such it is important to examine previous work which can help de-

sign mechanisms and tools allowing greater tolerance to input power. Previous such

work although oblivious of the principle of energy agility i.e. to use as much energy

as possible, whenever possible nevertheless provide interesting examples of enabling

data center applications to work with renewable energy and input power fluctuations.

One such good example is the work GreenHadoop: Leveraging Green En-

ergy in Data-Processing Frameworks by Inigo Goiri. This paper introduces a

wrapper built around Hadoop to enable it to allow better renewable penetration;

called GreenHadoop for the purpose of the paper. GreenHadoop leverages the ability

to schedule Map Reduce jobs within Hadoop to leverage greater use of renewable

energy, specifically solar energy. In addition, this paper also introduces solar energy

prediction mechanisms based on weather forecasts and cost aware job scheduling to

minimize the cost impact of brown energy usage.

The paper starts with the interesting concept of net-metering in the context of

renewable energy. Net-metering in essence means that renewable energy users and

producers can feed the electric grid with the excess green energy for money. However

21

inefficient voltage transmission, the unavailability of net-metering everywhere as well

as the possibility that retail price for energy may not be offered for net-metered

energy make it impractical to use for data centers. Data centers must therefore look

towards utilizing green energy whenever it is produced. Storing green energy at large

scale in batteries for later use is also not practical as batteries incur energy losses

due to internal resistance and self-discharge, battery costs can dominate renewable

energy powered systems and because batteries use chemicals which are harmful for

the environment.

The paper for this reason introduces GreenHadoop along with Map reduce job

scheduling and data management techniques based on the solar energy prediction

model developed in this work. GreenHadoop claims increased renewable energy usage

by up to 31% and decreased brown energy usage of up to 39%. The exclusion of

batteries in the design however limit the work from working on truly fluctuating

input power as when input power is not available, GreenHadoop shifts to brown

energy which is assumed to be readily available all the time. This means that energy

not immediately used, is wasted in this work. Despite this shortcoming, the paper

does exploit the possibility of scheduling Map Reduce jobs to better suit cost aware

or energy aware needs of the application depending on the underlying scheduling

algorithm used.

The energy prediction model developed in this work is not the most accurate. For

times of the year where there is less sunlight, the energy prediction errors can average

as much as 23.8%. Nevertheless the application GreenHadoop is designed to work

despite such prediction errors. The paper provide other contributions as interesting

insights on the effect of renewable energy on data centers. As an example, it shows

that with higher data center utilization, the environmental benefits of GreenHadoop

tend to decrease. Similarly, with a larger fraction of higher priority jobs, it becomes

more difficult to leverage the advantages of green energy as the application is forced

22

to use brown energy to complete it’s work. Also since GreenHadoop saves energy by

putting its server into the ACPI S3 sleep state, some data is temporarily rendered

unavailable. This could be a high price to pay for high priority jobs. This motivates

the use of a limited energy storage capability for data centers which can be leveraged

to avoid using small amounts of brown energy at a high price and to avoid putting

high priority data into unavailable states.

A similar work by the same author i.e. Inigo Goiri in GreenSlot: Scheduling

Energy Consumption in Green Datacenters also deals with scheduling algo-

rithms in light of the availability and preference of using green energy over brown

energy in datacenters. However Greenslot only deals with scheduling batch jobs in

parallel whenever renewable energy is available. A similar solar energy prediction

module is also used with the scheduling algorithm for better results. The prediction

module is designed so that it can just as easily be replaced by a wind prediction model

if the datacenter was using wind renewable energy. Greenslot is designed after the

widely used SLURM scheduler in Linux and based on scientific workloads in medium

to small data centers as opposed to large supercomputers.

Greenslot claims greater renewable energy usage, with an estimated increase of

117% and reduction in the usage of brown energy of up to 39%. The findings in

this paper mostly concur with those of GreenHadoop, however Greenslot lacks the

ability to deal with typical parallel jobs such as Map Reduce that do not come in

batches. As with GreenHadoop, renewable energy usage decreases in Greenslot with

higher datacenter utilization. It is also worth mentioning that with the absence of

any kind of energy storage mechanism, Greenslot wastes any excess renewable energy

that cannot be immediately used.

Another good example of researchers indirectly tackling the challenges related

to energy agility in the past is the paper Parasol and GreenSwitch: Managing

Datacenters Powered by Renewable Energy by the same author i.e. Inigo Goiri.

23

Goiri once again motivates the need for the work in the paper by mentioning data

centers are shifting to renewable energy and the use of intermittent power sources

is increasing which leads to a need for data centers to intelligently manage their

workloads along with the sources of energy at their disposal. This work proposes a

datacenter comprising of a small container, solar panels, a battery bank and a grid tie.

It also proposes GreenSwitch, a model-based approach for dynamically scheduling the

workload and selecting the source of energy to use. The author addresses the lack of

using a battery bank in his previous work through this paper.

Through the use of energy stores such as net-metering and batteries, Parasol can

efficiently manage multiple energy sources (renewable energy, battery energy, grid) to

provide reduced overall electricity costs to the data centers. Interestingly, the author

of this work argues that using batteries to store energy may not be the most efficient

way when net-metering is available. This might be true in where the authors work

is located (North Carolina), but for many parts of the world, net-metering is simply

not an available solution for energy stores or is not as effective. The paper discusses

many interesting factors in setting up data centers with renewable energy such as

collocating with an existing data center or generating it’s own power. It also touches

on how increasing efficiencies of solar cells will encourage smaller sized solar farms

and reduce the time taken to amortize the capital costs associated with renewables.

Hence it concludes that the future seems promising for data centers to invest in their

own renewable energy production facilities.

However despite providing valuable insights into how data centers may benefit

from a closer integration with renewable energy, this work does not work towards

enabling non deferrable workloads to run without the absence of the alternate brown

energy. Instead for non deferrable workloads it simply uses its GreenSwitch module

to select a suitable energy sources to reduce costs where for deferrable workloads it

simply defers the work until a more suitable power source is available. Although this

24

paper makes for an effective study with claims of electricity cost reduction up to 96%

using deferrable loads, it falls short of enabling data centers to be independent of

brown energy. It does however help in decreasing dependence on the energy coming

from the grid by leveraging it’s own solar energy.

The wide range of experiments documented in this paper depict different scenarios

of using data centers without any energy stores, using data centers with only battery

energy storage and finally using both batteries and net-metering (where the utility

pays the wholesale price for energy). Goiri then concludes that by removing the

capital costs of batteries associated with data centers and only using net-metering,

data centers can amortize their costs much more quickly. This conclusion however

is subject to many assumptions including the availability of net-metering. It is also

worth mentioning here that many medium to large scale data centers come equipped

with energy storage mechanisms such as flywheels to be able to safely power down the

hosted servers in cases of emergency outages. These energy storage mechanisms can

always be leveraged to provide more renewable energy storage. Nevertheless Parasol

is an exemplary green data center for it’s time for sizes typical to those found in

universities and small enterprises. GreenSwitch is also a good work scheduler when

coupled with an energy prediction mechanism, reducing energy footprints to up to

100% in certain cases.

A very important mechanism used in my work is also adapted from a similar work

to enable data centers to work on intermittent power sources; namely Blink: Manag-

ing Server Clusters on Intermittent Power. Blink designs a hardware-software

platform with application level modifications allowing servers to be active and in-

active periodically for given time periods. This works starts by categorizing work

load driven or power driven techniques used in previous literature for data centers

working with renewable energy. Work load driven techniques focus on reconfiguring

applications as their workload demands vary to use the least amount of energy to

25

satisfy demand. Power driven techniques on the other hand reconfigure applications

as their power supply varies to achieve the best performance possible given power

conditions. Blink uses policies to determine a balanced technique taking into account

both the workload characteristics and the energy constraints. The goal of this work

is to minimize performance degradation as power varies.

Interestingly, without clearly defining energy agility, Blink does satisfy the prin-

ciple of using as much energy as possible whenever possible to complete a running

application. It provides an application independent mechanism to enable data centers

to run on intermittent renewable energy. However the mechanism does not exactly

provide an energy proportional performance from the data center especially when the

time taken to go into the S3 ACPI states used in blink is a large proportion of the

blink interval.

Blink is a unique innovative mechanism which can be useful in a number of scenar-

ios for data centers. However the paper does have certain questionable assumptions.

It builds its work on the fast S3 transition times mentioned in the PowerNap work.

PowerNap claims unreasonable fast S3 transition times based on simulations and dis-

abling of certain important modules which are needed for normal application work

e.g. the Network Interface Card. Blink then goes on to implement it’s mechanism

with a low performance cluster based on atom processors with real renewable energy

sources of solar and wind power. Although it’s real implementations are very insight-

ful and show it’s practicality in real world situations, it does assume the presence of

a very large battery storage. Such a battery storage buffer which is capable of pow-

ering a normal sized buffer for up to 14 hours is a significant investment which is not

present in every data center. Furthermore, large energy storage banks also increase

the time it takes to amortize capital costs for data centers, hence departing from the

whole principle of the work i.e. reduce costs through higher renewable penetration or

increased demand response program participation.

26

Other than introducing the mechanisms behind blink, the paper further derives

blinking policies which can be useful for different scenarios depending on the type

of application being used in the data centers. Four policies of Active, Synchronous,

Asynchronous and Asymmetric blinking are derived from this work. It might be

worthwhile to note though, that the paper only experiments with the memcached ap-

plication. Although this is a popular application, it does not cover the complexities in

other interactive applications such Map Reduce and Distributed Sort which deal with

internode dependence. Application performance is also measured as a function of hit

rate and fairness rather than throughput and completion time as is more common

for interactive applications. Blink does recognize that the policy used is dependent

on the type of application, however I find that for most interactive application where

internode dependencies are plentiful only the synchronous policy performs well. Nev-

ertheless Blink is an important mechanism for my work. I have implemented the

synchronous policy for my application as explained in detail in later sections.

Benchmarks are an important way of establishing baselines to compare different

systems. A good example is the Benchmark established by Suzanne Rivoire in the

paper JouleSort: A Balanced Energy-Efficiency Benchmark. This work first

defines it’s own sorting system based on commodity hardware and then goes on to set

a benchmark to compare the efficiency of different sorting systems. The work notes

that to drive improvements in any research area, benchmarks are necessary tools to

assess the effectiveness of various solutions. It further defines distributed sorting as a

good base application for developing benchmarks as it tests all the basic components

of the system such as cpu, memory, I/O, persistent storage, etc. Three categories of

sort are defined for fixed input data size and the sorting systems are evaluated based

on the minimum joules per record achieved for each category.

This work has been phenomenal in driving energy efficiency work with respect to

sorting applications. Such work can then be easily expanded on to other applications

27

to derive more benefits. It is interesting to note that the authors consider a variety

of metrics for measuring energy including setting up a fixed energy budget, a fixed

time budget but finally decide on using the fixed input size metric as it provides

for an easy measure of the energy spent in trying to sort the input data of three

different sizes. This energy per record measured for the benchmark is done at a fixed

temperature range of 20-25 degrees celsius including all the devices used to support

the sort such as cooling equipment etc. Not surprisingly, the paper shows that using

balanced systems for sorting where one or few hardware form a large bottleneck over

others e.g. I/O, network do not perform as well as balanced hardware. According to

the paper, cpu bound processes are generally more efficient. The paper then defines

in detail it’s own sorting system called joule sort which performs better according to

the defined benchmark then previous existing sort systems.

28

CHAPTER 3

ENERGY AGILE COMMUNICATION

Energy agility is a relatively new concept but as explained in the previous sections,

it has a rising importance. As modern data centers deal with intermittent power

sources and participate in demand response programs, they have to address energy

agility either directly or indirectly. The alternative to energy agile design for data

centers is to wait for an ideal period of stable power or low energy demand to schedule

work as explained in some of the previous works. This may mean loosing a lot of

power, especially when power fluctuations or changes in power demands over the

grid are very high. Previous related work shows that some researchers have tackled

this problem indirectly by proposing solutions which schedule the available work at

suitable periods of power availability, making or motivating more energy proportional

computing systems designs which can respond to power fluctuations with a higher

dynamic power range (GreenSlot [12], GreenHadoop [14]) or by introducing novel

techniques such as Blink [29] which allow data centers to deal with power fluctuations.

Contrary to previous approaches, I use this opportunity to lay down a clear picture

of what energy agility is, why it is needed and then build a foundation problem

which tackles the issues faced by typical data center applications when running under

variable input power. JouleSort [28] is an exemplary work in this regard; having

defined the problem of energy efficiency, the researchers from that piece of work

continue to build a framework for their benchmark. This framework was later used

by a myriad of applications to develop energy efficient systems and help spur on

further research in that area.

29

Datacenter workloads can be categorized into two categories; batch workloads and

interactive workloads. Batch workloads are typically scientific or data centric jobs

which may have loose timelines and typically do not communicate much with other

nodes in the datacenter. As a result they possess a certain slack, meaning they can be

rescheduled to better suit the power available to the servers. Interactive workloads for

data centers on the other hand work with tight timelines or being massively parallel

deal with heavy communications with other data center nodes. Common data center

applications such as Dryad [?], Distributed Sort, Map Reduce [7], Cassandra [19],

H-Base [5], PIG [?], etc tend to be massively parallel requiring communication or a

lot of data transfer amongst nodes.

Interestingly, internode communication or data transfer can be a model problem

for energy agile systems. As previous work shows, servers can be easily put into ac-

tive and inactive power states with a small penalty of a time delay when the server

performs the necessary tasks to put itself in inactive states. This delay of going into

and out of inactive states is called transition time for the purpose of my work. The

server can possess many inactive power states, but for my work it suits to work with

the ACPI S3 inactive power. S3 consumes negligible power when inactive, but since it

preserves memory it allows for a fast transition back into active state where the appli-

cation can just continue with it’s work. Internode communication and data transfers

create a dependency amongst nodes where the nodes involved in the task have to be

simultaneously active to finish their work. For a task involving a large number of

nodes, potentially the whole cluster, this would present a problem when there is not

enough power to simultaneously keep all the servers active. Contrary to internode

communication, tasks without any internode dependencies can simply be rescheduled

to suit power needs for the server. Keeping in mind the ample work on reschedul-

ing task policies in the previous chapter, we can use existing work for this rather

than reinvent the wheel. Internode communication therefore is a good representative

30

problem for an energy agile data center application as it is a parallel data intensive

application which forms a subtask of many common data center applications such as

PIG,

3.1 Emerging Scenarios

Energy agility can be useful in a number of possible scenarios. Previous work

shows that optimizing for power variations in data centers assumes soft power caps, so

that when using power at a given time becomes undesirable, because it is expensive,

”dirty”, etc, it is still always available as an alternate option if necessary [13, 14,

35]. Energy agility on the other hand defines a hard power cap where there is no

alternate option for power. By completely removing dependence on any alternate

power sources, hard power cap yields significant cost and carbon reductions.

As an example, data centers can increase their reliance on local intermittent re-

newable without the use of any expensive storage devices or by relying on the grid for

backup power. An increasing number of data centers are now operating off local or

nearby large-scale solar and wind farms[10, 25], with the prominent example of Ap-

ple’s new iCloud data center co-located with a 20MW solar farm [1]. As such facilities

look to maximize the benefits from renewable sources and reduce their dependency

on energy from the grid and stored energy, they need to look at varying power usage.

As an alternate, there are arguments which emphasize that data centers should

not be co-located with renewable sources, leaving renewable integration to the utili-

ties that operate the grid [15]. In such a situation, data centers can still acts as Load

Resources (LRs) for the grids ancillary service markets [34]. LRs can be thought of

as ”reverse generators” where the grid controls such LRs to manage power demand to

better suit the power supply. This involves signaling the LRs to increase or decrease

their power consumption over time according to the market conditions. LRs are then

compensated based on their ramp time i.e required time to effect a power change and

31

capacity i.e. the power range they can control. With increasing renewable penetra-

tion, the grid requires more LR capacity, balancing off a volatile demand in power.

Since data centers have short ramp times and very high capacities, they make good

candidates for LRs.

3.2 All to All Communication

Continuing the discussion from this chapter regarding the need for a good rep-

resentative problem which addresses challenges applications have to deal with while

being energy agile, I introduce All to All Internode Data Shuffling; a simple data

intensive application with an emphasis on internode cluster communication. The in-

sight behind this application is the observation that almost all computer applications

are built using simple tasks as building blocks. One such elementary task is Sorting.

JouleSort [28] defines the importance of sorting in day to day computer applications,

in particular the importance of a distributed sort in a multi node data center ap-

plications and then goes on to define a benchmark based on a distributed sort with

varying input sizes. A distributed consists of several phases which can be completed

in different orders depending on the flavor of the sort application being implemented.

To explain simply, a distributed sort works on a large chunk of data which has been

randomly placed on all the nodes involved in the sort. The data consists of a large

file, composed of smaller tuples of 100 bytes each. Each tuple consists of a 10 Byte

key and a 90 Byte value. For sorting purposes, the 10 Byte key is equally divided

amongst all the participating nodes where at the end of the sort, each node must

have all the data which falls within its allotted key range, sorted by the key.

During sort, a copy of the application runs on each node, going through the

unsorted data on the node tuple by tuple and identifying which node each tuple

belongs to. The application may then create a buffer of a certain size for each node

where it stores all the tuples which fall in the key range for that node. Once the

32

buffer fills up, the application may sort it locally and then send to the destination

node where it is stored. Once all the nodes have gone through their unsorted data

and sent the buffers to the destination nodes, they must then sort all the chunks of

sorted data they received from the other nodes, completing the distributed sort.

Interestingly the phases of sort can be divided into tasks which are being processed

locally without internode dependence and tasks which require internode communica-

tion (data transfer). As noted before, in case of intermittent power, tasks which can

be processed locally may be easily rescheduled based on power availability for the

nodes using the rescheduling policies developed in related work. However, dealing

with internode data transfers, which require all the nodes to be active for the com-

munication to complete is a different story. With intermitted power, there may not

at times be enough power to keep all the nodes concurrently active, making for an

interesting problem for energy agile applications. All to All Internode Data Transfer

is an application which consists of all of the tasks of a Distributed Sort minus the

two sorting operations of sorting the intermediate buffers and sorting the data chunks

received at the destination nodes.

Hence all to all data transfer simply means sending the data tuples falling in a

specified key range to the node which hosts that key range. A particular insight of

this application is that each node has to transfer data or ”communicate” to every

other node participating in the application (figure 3.1). Since each communication

involves two nodes sending data to each other, the total number of communications

that must take place for the application to complete is 2*NC2 where N is the total

number of nodes. As as example, figure 3.1 shows that for an application involving

four nodes, there will be a total of 2*4C2 or 12 communications to be completed

before the application runs to completion. Each communication involves two nodes

sending and receiving data to each other. If we term these two send and receive

33

communications as a single link, the total number of links required to be completed

for the application becomes NC2.

Figure 3.1. All to All Internode Communication

3.3 Application Design

Having defined a problem representation for energy agility in the form of All to

All Internode Cluster Communication with intermittent power as explained in the

previous section, I go ahead to define a solution in the form of an application to

perform this task. This designed solution is implemented in a simulator with the

designed environment and in an actual cluster as explained later.

34

Such an application must complete all links between the nodes to complete all the

data transfers. For N nodes, this means completing all NC2 links with an intermittent

power input. Power may fluctuate as the application runs so that at any given time

there may or may not be enough power for the nodes to complete their links. If there

is not enough power, only a subset of the nodes may be powered up. Hence as the

power varies, the subset of nodes selected so that they may complete their links must

be intelligently managed in order to complete the work as fast as possible. Application

performance, as is the case for most distributed applications can be measured in how

quickly it completes. i.e. lower runtime means better performance.

The nodes involved in the application are categorized as manager nodes and worker

nodes. Each worker node is given an unsorted chunk of data in the form of a large

file. The application is designed similar to a distributed sort, where a copy of the

worker application runs on each worker node, going tuple by tuple through the raw

unsorted input file and filling up outbound data buffers for each destination node. As

the buffers fill up, they are sent to the destination node and the buffer emptied so it

could be filled up with more data from the unsorted input file.

At the heart of the application is the manager node which instead of being involved

in the data distribution itself, directs and manages the worker nodes involved in the

actual data distribution. The manager node is aware of the input power level, the

energy storage capabilities available, the current state of each worker node and the

number of nodes that can be activated based on the input power. It can also control

the worker nodes by putting them to inactive state or waking them into an active

state. It is therefore responsible for making the decisions to utilize the available

resources i.e. input power, battery storage and worker node states to best complete

the All to All Internode Communication.

The design of the application creates an interesting environment which is common

to energy agile designs. It is explained in detail below.

35

3.3.1 Distributed Environment

The aim of this work is to analyze energy agility solutions for data centers. For

design, simulation and implementation purposes therefore the target environment is

cluster consisting of multiple server nodes connected together through a high speed

network. For simplicity and generalization, the application is designed to be agnostic

of cluster design details such as network topology, cluster size, power storage mecha-

nisms (flywheels, batteries, etc). As shown in the figure 3.2, we can simply treat the

data center as a network of interconnected server nodes (whose capabilities are ex-

plained below) with a tie to the power source and an energy buffer which has limited

storage capacity. Power source in this setup may be modeled as desired (solar, wind,

stable, pulse width modulated, etc) to better evaluate the application design.

Figure 3.2. Simplified Cluster Diagram

As is commonly found in most servers, our distributed environment assumes nodes

to be capable of ACPI power states, specifically ACPI S3. S3 provides fast transi-

36

tions into an active state where the server consumes negligible power while keeping

memory persistent to quickly power back up as explained in previous sections. S3 is

a commonly used power state to manage the nodes of data centers as shown in previ-

ous research work such as Blink, GreenSlot, GreenHadoop and PowerNap [31, 3, 29].

However, despite our usage of S3, an equivalent power state which allows near zero

power consumption in idle state and provides a fast power down and transition up

can just as well be used in my work.

High performance servers such as those found in the MGHPCC possess many

other ”active” power states as well besides ACPI such as the idle C states or the

active P states [6, 11, 21]. Alternatively, there are power capping mechanisms using

the acpipad driver to enforce a maximum utilization rate in the CPUs by injecting

idle states to maintain the average power consumption of the server at a specific

level. Similarly CPU cores can simply be disabled, especially in linux where they

are hot plugged. These power states help the server to maintain its dynamic power

consumption which can also be useful for energy agility, when the variations in input

power are manageable by the servers’ power usage range. Typically such ”active”

power capping mechanisms are not useful over a large range of dynamic power range

for the servers .

C States: C States are CPU bound mechanisms carried out when the CPU is idle

to save power. Various components of the CPU are powered down in different ways to

save power. The deeper C state you go into, the more power you save while incurring

a higher time penalty of going into the state. Table 3.1 lists various C states, their

names, the processors they are available on and the inherent power saving mechanisms

carried while going into that state. As of this writing, the highest CPU idle C state

being used in modern servers is the C7. According to intel documentation, C7 is

similar to C6 with the exception of flushing out L3 memory if all the processors are

in C7.

37

k

State Name Processors Meaning
C0 Operating All CPU 100% turned on
C1 Halt 486DX4 and up CPU main internal clocks off

via software, IC/Bus on
C1E Advanced Halt Socket 775 CPUs CPU main internal clocks off

via software, IC/Bus on
C1E Advanced Halt Turion 64, 65-nm

Athlon X2, Phenom
All CPU internal clocks off

C2 Stop Grant 486DX4 and up CPU main internal clocks off
via software, IC/Bus on

C2 Stop Clock Pentium, K5, K6... CPU internal/external
clocks off via hardware

C2E Extended Stop Grant Core2Duo and up CPU main internal clocks off
via hardware, less voltage,
IC/Bus on

C3 Sleep Pentium II, Athlon
and up ex. Core2Duo
E4000, E6000

All CPU internal clocks off

C3 Deep Sleep Pentium II and up
ex. Core 2 Duo
E4000, E6000; Tu-
rion 64

All CPU internal and exter-
nal clocks off

C3 AltVID Turion 64 All CPU internal clocks off,
reduced voltage

C4 Deeper Sleep Pentium II and up
ex. Core 2 Duo
E4000, E6000; Tu-
rion 64

CPU voltage reduced

C5 Enchanced Deeper Sleep Core Solo, Core Duo,
45-nm mobile Core 2
Duo

Voltage reduced like crazy,
memory cache turned off

C6 Deep Power Down Core Solo, Core Duo,
45-nm mobile Core 2
Duo

CPU internal Voltage re-
duced to anything

Table 3.1. C State Details

P States: Unlike C states, P states are active states which invoke Dynamic Volt-

age Frequency Scaling (DVFS) to save power while lowering the operating frequency

of the processors. The number of P states available in any server or the number of

38

clock speeds the CPU is capable of operating depends on the processor being used.

P states are generally controlled by the operating system through various governors

which make decisions based not he server workload. Ubuntu kernel 3.16 uses the

governors:Performance Governor, PowerSave Governor, On-demand Governor and

the Conservative Governor for managing its P States. Additionally the P states can

be manually controlled using userspace programs.

Hot Plug CPUs and ACPIPAD: Modern servers support Hot Plugs for several

of their components, including CPUs. CPUs can simply be disabled while the server

is carrying out its normal workloads. The operating systems deals with the various

complexities of carrying on the applications without any disruptions with the other

operating processors. Another power save mechanism, present in some of the modern

servers using intel processors is the ACPIPAD driver. This driver force injects idle

states into the CPU to maintain a certain average power consumption level specified

by the user. This is part of Intel’s PowerClamp mechanism to achieve forced and

controllable C state residency to control a system’s power consumption.

3.3.2 Policies

Following up the simplistic environment design explained in the last few sections,

a manager node is designed to be able to control worker node power states, putting

them to active or inactive depending on the available input power and energy storage.

The manager decisions follow an algorithmic approach based on different policies. It

pools the energy sources and decides which nodes are the best candidates to keep

activated, deactivating the rest. To complete the work, it must manage the nodes the

most efficient way so that all NC2 links of data are completely transferred. Given the

possibility however that only a subset of the nodes may be active at any given time

i.e k, only KC2 links are being worked on for that subset of nodes. At the end of the

application, the summation of all the completed subsets i.e. KC2 must be equal to

39

NC2 for all the links to complete. The four policies designed to achieve this in this

work are named: Active PowerCap, Blink, Burst and Battery Burst. All of them are

explained in the coming sections.

Interestingly, the ”policies” mentioned in this work are starkly contrasting with the

”policies” developed in previous related work. Where previous work used policies to

schedule the tasks at the best possible time, my work instead uses policies to manage

the worker node states while leaving the details of how the tasks are managed to the

worker nodes themselves.

3.3.3 Design Concepts

The All to All Internode Communication, although a simple application, is de-

signed to be a significant challenge for energy agile systems because it is communi-

cation intensive. It consists of some concepts which may be useful in designing a

more optimal solution, however are not apparent at first sight. The discussion in this

section is in the context of the All to All Internode Communication problem only. In

particular, the concept of balance can be important for understanding the full breadth

of the problem.

Balance When All to All Internode Communication is carried out without hard

power power caps, every node simply sends the data to every other node as explained

in Application Design. For every node taking part in the application, it possesses

a certain amount of data that it must send out to every other node. It must also

similarly receive a certain amount of data from all the other nodes in the application.

These communications amongst the nodes have been previously termed as ”links” in

this chapter. A way to imagine the problem is that each node must establish a link

with every other node and complete those links (NC2) to complete the application.

While running without power constraints, each worker node (all nodes are assumed

to be homogenous) is active and sending/receiving data at a speed determined by

40

the bottleneck of either the network or the I/O. Hence each node is completing their

links at the same rate.

With intermittent power on the other hand. The worker nodes will complete their

links as directed by the policies deployed at the manager node. These policies may

or may not allow all worker nodes to complete their links at the same rate, leading

to an unbalanced communication state i.e. some nodes have completed more of their

links than other nodes. The downside of having an unbalanced communication is

wasted power towards the end of the application. As the nodes are completing their

links at different rates, towards the end some nodes will have completed some of their

links with the other active nodes but not all. As a result, some nodes will be active

together but not communicating, and hence wasting some power. The figure below

shows two situations where the application maintains balance in the nodes on the left.

The right side of the same figure shows a contrasting situation where the application

does not maintain balance.

Figure 3.3. Balanced vs Unbalanced Links

Unbalanced communication can also form bottlenecks for application completion

in case power suddenly goes full throttle. The application runtime will always be

limited by the least completed link since all the links will work in parallel. Such a

situation is shown in the figure below.

41

 0

 1000

 2000

 3000

 4000

 5000

 0 20000 40000 60000 80000 100000

P
o

w
e

r
(w

a
tt

s)

Time (seconds)

Sudden Full Throttle

Figure 3.4. Sudden full throttle power

3.4 Energy Agile Policies

This section explains the policies developed and used in my work for energy agility.

The algorithm behind each policy is explained followed by the practical conditions

where it is expected to perform the best. Available power is assumed to vary every

short interval, e.g. 2 minutes.

3.4.1 Active Power Cap

Active Power Capping is simply managing individual worker nodes power caps to

match the current power average. Modern data center servers have mechanisms of

controlling server power caps through DVFS, C State throttling, etc. Protocols such

as IPMI expose interfaces which can be used to manage server power caps easily. The

active power cap policy divides the input power to the data center equally amongst

all the worker nodes. The sum of each individual worker node equal the total input

42

power. Active power cap can work without energy storage and maintains balanced

internode communication by making sure each node has the same input power.

Active power capping can only be used if the power variations can be dealt with

within the dynamic operating power range of the worker nodes. It is more suitable

for applications with a lower CPU utilization. Servers may have large dynamic power

ranges, however capping them below the power average they use while running the

application under normal conditions severely affects the application. Since CPU usu-

ally contributes to the dynamic power range with I/O and network not being very

energy proportional, the CPU takes a hit when the power is lowered even a little

below the application average. This performance degradation can reflect severely in

the application performance.

As an example the servers at MGHPCC operate at 215W when fully utilized

and 90W when inactive. They also use a network interface and storage which is

not energy proportional and consumes 30W each when utilized even a little. Hence

with negligible CPU utilization and moderate NIC and I/O usage, the MGHPCC

servers operate at 150W. Since my application consumes a little CPU as well, worker

nodes when in full swing consume around 165W. Lowering the power cap below this

value, severely degrades All to All communication with respect to completion time.

In general, we show that active power capping has very little potential for energy

agile applications.

3.4.2 Burst

A straightforward approach to inactive power capping is to activate and deactivate

a subset of servers based on the available power. The available power is used to

activate servers such that ”wasted power” is minimized. Power is considered wasted

if it is either below a server’s minimum active power or above its maximum power

necessary to run an uncapped worker. In the former case, the server has only enough

43

power to turn on and can do no useful work, while, in the latter case, the server

cannot make use of any power above some maximum value.

After determining how many servers to activate, the policy must then determines

which servers to activate. The servers are selected such that once a server has been

activated, it should be kept active until it completes all it’s links with the current

subset of nodes activate. Whenever there the available power increases to that more

servers can be selected, new servers must be selected and activated. The server

selection is prioritized based on the amount of work they have completed with the

other currently active servers. In case every server has completed equal work, the

servers can be prioritized from 1....N, such that the highest priority server not yet

completed is selected next. Similarly in case power decreases so that less servers

can now be supported on the available power, the servers with the least amount of

completed links are deactivated.

Figure 3.5. Burst Transitions

The burst policy minimizes overhead to transition servers to the inactive power

state, since it only transitions a a server to an inactive power state if i) power increases

or decreases, ii) a server finishes the first phase and has no more work to do. In fact,

44

assuming only constant power to activate k servers, the number of transitions is

determined by a closed form formula as determined by figure 3.5.

The figure shows an example situation where the total number of nodes n is 8

and the number of servers that can be supported on the current stable power is

3. It shows how the combinations of the servers are cycled through to complete

the communication. This pattern of communication is generic for any value of n

and k. The first n-1 nodes are kept fixed, changing the last node such that all the

combinations possible for the n-1 nodes are exhausted. All combinations of the n-1

nodes are cycled in this, exhausting all possible node pair links while completing the

communication. As shown in figure 3.5, while cycling through the number of possible

combinations, the number of transitions the nodes go through in the first column is

n, the second column is n-(k-1), the third column is n-2*(k-1) and so on until the

number of rows in each column is less than equal to 0. The number of rows in the

column are determined by the total number of nodes divided by the number of fixed

nodes in each column or n/(k-1). The number of transitions are then summed up

across the columns to find the number of transitions to complete the application.

This summation is shown by the formula shown in figure 3.5.

For variable power however where the variations in power can be stochastic.

Whenever power varies, we are forced to incur a transition. Therefore the closed

form formula for stable power does not hold for variable power. Instead the number

of transitions in variable power is a function of the total number of power variations

and the number of nodes in the application.

3.4.3 Blink

The blinking policy is derived from the previous work i.e Blink: Managing

Server Clusters on Intermittent Power. Over a given time interval, depending

on the amount of energy storage available, blinking divides the interval into active and

45

inactive periods. As an example, if a the average power cap per server is 100W and

the average power consumption of the application on the server is 200W, the inactive

and active periods will be 1 minute each i.e. 50% (duty cycle) given the total interval

is 2 minutes. Server latency of waking up and going into the inactive state is part of

the active period (overhead). Blinking maintains balanced communication amongst

the nodes. The node transitions every interval are controlled by the manager.

Figure 3.6. Blink Interval

The figure 3.6 shows that the length of a blink interval depends on the size of

the battery available. If a large battery is available, all the nodes can be supported

on the battery for a longer time until it expires and vice versa. However part of the

time of the blink interval is consumed by the transition time in which the nodes are

woken up from their inactive state and put back in it. This time is an overhead as

no productive work is done here.

Blinking is not affected by the power signals variability as the energy buffer is used

to smooth the power supply to the nodes every interval. Rather blinking depends

more on the average power delivered despite the power variations. However blinking

does incur the overhead of transition time every interval when the nodes go from

active to inactive power state and vice versa. If the transition time (dependent on

the platform) is very high, then blinking can be an expensive policy.

46

3.4.4 Battery Burst

The battery burst policy is derived from burst with an additional use of energy

storage to minimize the ”wasted” power as defined above. This policy stores the excess

power which cannot be used to productively turn a server on (”wasted power”) into

energy storage. When the energy storage is completely filled, the active server nodes

are kept running on available power, while the inactive nodes are activated using the

energy storage so that all nodes are tuned on similar to blink until the all the available

energy stored is used up. Hence this policy is a hybrid between blink and burst.

Interestingly since battery burst is a hybrid between burst and blink, it will per-

form more like burst when there is not a lot of wasted energy and a very large battery.

On the other hand the policy will perform more like blink when the battery is small

and there is ample wasted energy such that the battery gets charged more quickly

and the algorithm cycles through blink more frequently.

Figure 3.7. Battery Burst

Similar to burst, this policy reduces the transition time overhead by prioritizing

the servers. However by using energy storage to activate all nodes when possible, it

performs slightly better than burst. It should be noted however that since this policy

exploits wasted power, it’s benefits over burst are dependent on how much power is

wasted.

47

3.5 Power Input

As energy agility is independent of power signals and their fluctuations, we try

to deal with realistic power signals which applications are exposed to today. For

this particular experiment, power input is controlled by the manager node which also

controls all worker nodes based on the policy being implemented and the current

available power. The manager node in my application reads a power file which spec-

ifies the power available for each interval. Since energy agility is designed to allow

applications to work with renewable power sources and demand response programs,

many different power signals adapted from real traces of wind, solar, etc are designed

for the application to run on. A few examples are shown in the figure below. These

power graphs were generated using real weather data.

 0

 1000

 2000

 3000

 4000

 5000

 0 20000 40000 60000 80000 100000

P
o

w
e

r
(w

a
tt

s
)

Time (seconds)

Wind Power

Figure 3.8. Wind Power Signal

48

 0

 1000

 2000

 3000

 4000

 5000

 0 20000 40000 60000 80000 100000

P
o

w
e

r
(w

a
tt

s
)

Time (seconds)

Solar Power

Figure 3.9. Solar Power Signal

49

CHAPTER 4

IMPLEMENTATION

Following the design and implementation of the model problem, the designs are

now realized with a formal implementation. An implementation is of course necessary

to validate all the theoretical work and show an energy agile application at work.

In this chapter we first talk about a simulator which was used to create a virtual

environment where the policies could be developed and the longer experiments carried

out much more quickly. Following the discussion on the simulator, the application

development and deployment is then introduced and discussed. This is followed by the

hardware power state profiling which supports the simplification decisions made while

modeling this problem. Many of these graphs provide insight into how clusters can

support energy agility. This chapter talks about the various design space constraints

and decisions which can impact application development and performance.

The simulator was our first step towards developing the energy agile policies.

Implementing the simulations gave an insight into the actual environment and helped

with the actual implementations in many ways.

4.1 Theoretical Verification Through Controlled Simulation

A simulator is an imitation of the real world process, in this case an application

deployed on a data center. As with every other simulation, it requires that a model

be first developed which captures the key characteristics and behaviors of the process

and it’s components. Previous related work shows that simulators can serve to pro-

vide valuable insights to the problem by providing a controlled environment for the

50

problem. It can be particularly useful if the actual implementations of the experi-

ment are expensive, either with respect to time or cost. In the case of a simulation

involving data centric massively parallel ”big” data applications, this is very true.

A single experiment involving 1TB of data may take up to a few days to complete

depending on the input power signal and deployed policy. It will also fully employ a

large number of data center nodes which can otherwise be used for other productive

work. Hence a simulator for energy agile All to All internode communication can save

a lot of time and cost in our development and testing. The actual evaluation is then

carried out with an implementation on the MGHPCC cluster.

The envisioned use of a simulator in this case is as a Policy Development Testbed

and a Policy Evaluation Tool. The need of both these tools is highlighted below.

4.1.1 Policy Development Testbed

Policies are developed following an idea which may or may not be practically

feasible to be deployed on an actual implementation. To implement the theory behind

the idea and realize its shortcomings and developmental challenges, it is necessary to

have a testbed where the policy can be deployed, tested and debugged before being

released. This is especially true if the actual implementations can be costly and time

consuming, as in the case of data centric applications.

The simulator developed in this work provides the useful functionality of a testbed.

Having developed the model environment described in chapter 3, the environment can

also be controlled to test and deploy the policy under different conditions. Addition-

ally, the simulator is designed so that policies can be easily plugged in and deployed

on the manager. Since the actual implementation is based on the same language i.e.

Java, the policies developed for the simulator can also be simply imported in and

plugged into the actual implementation without much more work. Hence the simula-

tor makes an effective testbed because of the ease of exporting the developed policies

51

into the actual implementation and the realistic environment model created for the

policies to be deployed on.

4.1.2 Policy Evaluation Tool

Different policies are designed to work well for different conditions. As an example,

blink performs well with a highly fluctuating input power but with low transition

times. On the other hand, burst performs well when there is not significant power

fluctuations but the transition times are higher. Similarly burst battery capitalizes

on wasted power and uses that power to productively so work by leveraging a small

energy storage availability. Other than the policies developed in this work, there

could be policies from future work which may be designed for other conditions. Actual

implementations to compare these policies under various conditions can be expensive,

so the simulator can be a valuable alternative.

The simulator can be specially useful for decision making. An application can use

the simulator to evaluate the which policy would perform optimally in the context

of current environmental conditions such as power variations, transition time, energy

storage availability etc. A simulator however is not aware of many real world con-

straints and conditions, so a simulation follows a more ideal scenario than an actual

implementation and may need tuning to match the results of an actual implementa-

tion.

4.1.3 Simulator Design

The simulator is designed to model the environment and the problem described

in chapter 3. The simulator itself is developed in Java, but is scripted using Python

via the py4j library. It can churn out simulation results for varying conditions and

plotting out the results using GNU plot.

The simulator simplifies the environment by making generalizations about the

object. For example, the servers are treated as nodes with only two power states

52

i.e. active and inactive. They do productive work when active and consume 165

W power (average power of application running on MGHPCC servers), but are not

working or consuming any power in the inactive state. A time latency is associated

with each transition into and out of the states, when the nodes consume power but do

not productive work. As in the real environment, the nodes are connected through a

network, work with some data allotted to them and have an energy storage available.

Network speed, amount of data, amount of energy storage amongst other things are

all controllable properties of the environment for the simulator.

The manager node owns various policies for energy agility and controls the hard-

ware state of the other nodes. Depending on the policy chosen at runtime, it will

make activation, deactivation decision as specified by the policy. It is also made to

be aware of the power available to the system. This is done by an input file, contain-

ing the power values for fixed intervals. The manager reads the file line by line to

determine the power available for each interval. As mentioned in the section Power

Input, Chapter 3, the power files can be a wide array of possibilities, ranging from

power derived from real traces of wind and solar data to randomly fluctuating traces

designed to test the applications energy agility.

The simulator makes many simplifying assumptions and is designed to run for

more idealistic conditions. Simulated results therefore show much faster runtimes for

experiments than actual implementations. However both the results should follow

the similar patterns.

4.1.4 Simulator Output

The simulator was used in my work to generate expected results of experiments

before conducting them with the real implementation. The experiments, as explained

below, included variations in the environment conditions to analyze their effect on the

outcome. As expected, the outputs of the simulator are not accurate reflections of the

53

real implementations. Nevertheless, the simulator is successful in somewhat correctly

reflecting the effects of changes in environment conditions on the experiment outputs.

The patterns shown in the simulator are also shown in the actual implementation

experiments in chapter 5.

Since my work revolves around energy agile designs, the first simulated experiment

was designed to investigate the performance of the various energy policies designed

on different energy budgets. Recalling energy agility as the amount of computations

done per joule available, a varying energy budget can give us insights into the relative

performance of each policy design. The policies implemented in the simulator are

burst, batteryburst and blink. Active Power Capping was not implemented as it is

dependent on the servers own mechanisms of capping individual server power. Figure

4.1 shows the results generated by the simulator. The experiment was simulated for

500GB data distributed amongst 5 nodes. The x axis of the graph shows the power

budget as it is increased from 330W to 825W while the y axis shows the completion

time of the experiment. Power budget shows the average power available for to the

cluster throughout the experiment. The transition time for the nodes is kept constant

at 5 seconds and an energy buffer of 200 KJ is available for the cluster to use.

54

 0

 2000

 4000

 6000

 8000

 10000

 12000

 300 350 400 450 500 550 600 650 700 750 800 850R
u

n
n

in
g

 T
im

e
 (

se
co

n
d

s)

Buffer Size (Joules)

Blink
Burst

BurstBattery

Figure 4.1. Simulations with different power budgets

The simulation shows that as the power budget decreases, the performance of all

the policies gets degraded. However the degradation effects are more pronounced in

the two variants of burst than in blink. Towards the lower power budgets, blink is

shown to perform the best. Burst and batteryburst’s performance also decreases as

the power budget is decreased. However since batteryburst capitalized on wasted

power, it’s performance is better than burst, when there is ample wasted power to

charge the buffer and use it productively for the experiment. Therefore between

points where the power budget can be fully used to power a certain number of nodes

without wastage, batteryburst performs better than burst. When compared with the

actual implementation however, the simulation shows that blink does not perform as

well when the power budget is near full power, which is not true. The simulations

also show a more pronounced advantage of using an energy buffer than was shown by

the actual experiments.

55

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30R
u

n
n

in
g

 T
im

e
 (

se
co

n
d

s)

Buffer Size (Joules)

Blink
Burst

BurstBattery

Figure 4.2. Simulations with different transition times

Although energy budget is the most direct measure of energy agile performance,

several other factors impact the performance of the various policies. In particular,

since burst tries to minimize the total number of transition to complete the experi-

ment, transition time plays an important part in determining the relative performance

of the policies. If transition time is expensive, burst and battery burst should per-

form better whereas for lower transition times blink would be able to do more work

in each blink cycle and perform better. Figure 4.2 shows the results of simulations

with again the same conditions as mentioned in the start of the section, but with

varying transition times of the nodes. Transition time is varied from 0 to 30 seconds

as shown on the x axis while the completion time is analyzed for application perfor-

mance on the y axis. The graph shows that burst and battery burst are not affected

a lot by transition time variation in the nodes, however blink performance shows an

exponential increase in completion time. These patterns are again confirmed in the

implementations shown in chapter 5.

56

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20000 40000 60000 80000 100000R
u

n
n

in
g

 T
im

e
 (

se
co

n
d

s)

Buffer Size (Joules)

Blink
Burst

BurstBattery

Figure 4.3. Simulations with different buffer size

The major difference between the burst and battery burst is just the use of a

battery to capitalize on wasted power. However blink also employs a battery to blink

its nodes. It makes sense therefore to compare the relative performance of blink and

battery burst for a varying energy buffer size as these are the only two policies which

employ energy storage. Similarly, 4.3 shows the experiment simulation for the same

environment conditions as before, but for a changing energy buffer capacity. Power

is fixed at 595W for this this experiment and the energy buffer increased from 5KJ

to 100KJ. The simulations show that burst is not affected by the buffer size, as it

works without using any energy buffer. However blink’s performance improves up

to a certain limit as the buffer capacity increases while batteryburst shows a not so

deterministic pattern. The reason for this is, as the battery capacity increases, it

takes a longer time to charge it, especially if the wasted power is less. Therefore at

times the application completes before the buffer is charged and can be used, reducing

the application time. While at other times, the buffer cycles are just enough to end

57

just as the application completes, leading to the non deterministic graph shown. This

trend is also confirmed by the actual implementation in section 5.

4.2 Application Development And Deployment

The simulator although works with a virtual environment, it has the same envi-

ronment and virtual mechanisms as those in the real implementation. Hence both the

simulator and the actual application have the basics in common amongst them. In

particular, they both work with the All to All Internode communication application,

which includes one worker process per server and a centralized power manager, both

written in java. The workers co-ordinate to distribute the input data while the power

manager implements the power management policies from the previous chapter. The

details of the worker and manager application along with the platform are discussed

below.

Workers. A worker will typically go through the random data file provided

to the application serially and build memory data buffers where it stores the data

outbound to each node. If that node is active, the buffer when completed is sent to it

otherwise the buffer is stored locally on the disk. This continues until the whole data

file has been read. The implementation model is adapted from that of Triton Sort.

Since the workers are focused to be more energy agile than energy efficient, they are

not optimized for the highest possible energy efficiency on our platform. They are

implemented with functionality allowing them to pause and resume their work and to

report progress with respect to the other workers. The workers are also additionally

furnished with necessary functions such as saving a filled buffer into storage instead

of sending it if the target node for that particular buffer is inactive.

Manager. The power manager monitors both the servers and the available power

available every interval. It then caps the average server power by either capping

the power of the individual servers or by activating/deactivating them. In order to

58

deactivate servers, the power manager first informs all the servers that it is going to

deactivate certain servers. The remaining active workers continue to cleanly finish

sending any outstanding buffers to the deactivating servers, while the soon to be

inactive servers cleanly finish sending the outstanding buffers to all the other workers.

Having finished their work, the workers send a notification informing the manager at

which point the server deactivates the server. A similar two step process is involved

in activating the servers.

Platform. My experimental platform is based on a set of isolated servers in

the MGHPCC. MGHPCC is data center dedicated to research computing located at

Mount Holyoke, MA. My isolated servers are a set of Dell PowerEdge R720 servers,

each with 32 2Ghz cores, 64 GB memory and a 4TB disk. As a result of combining 32

cores with a single local disk, the platform is not very energy efficient for data intensive

applications. Because of these inefficiencies, my evaluation primarily focuses on the

relative performance of the various policies rather than the absolute energy agility of

my platform.

Massachusetts Green High Performance Computing Center

Figure 4.4. Massachusetts Green High Performance Computing Center

59

4.3 Hardware Power States Profiling

Working with energy agile designs with the worker, manager application we deal

with fluctuating input power, exercising the hardware platforms dynamic power range.

Hence, it makes sense to explore our platform’s (Dell PowerEdge R720) power capping

features which allow it to respond to fluctuating input power. The major components

of the servers which consume significant power are the CPU, disk storage and the NIC.

As such their power states are explored in this section. Working with these states

I conclude that the ACPI S3 power state provides a greater dynamic power range

which is more useful for a more variable power signal. Active power states are good

for handling a smaller variation in dynamic power consumption, however since we deal

with stochastic variations in input power it makes sense to have mechanism which

can deal with a greater range of power fluctuations.

4.3.1 C States

As explained in chapter 3, hardware capabilities section, C states are CPU idle

states. The details of what each C state does and what processor supports it are

documented in table 3.1. This section evaluates the C states found in my platform

of implementation i.e. Dell PowerEdge R720 servers and the energy consumed by

each C state. C states are also important for controlling the processors power cap

using the intel power clamp driver. Powerclamp force injects C idle states into the

CPU for energy savings, while maintaining the specified average power consumption.

Figure 4.5 shows the energy consumed by each C state on the y axis when the CPU

is forced to sit idle in it (x axis). All other components are assumed to be idle. It is

interesting to note that the CPUs do not possess all C states listed in table 3.1, but

they nevertheless have the more advanced C States to invoke higher power savings

when needed. The figure shows that for deeper C states, there are higher power

savings

60

 80

 85

 90

 95

 100

 105

 110

 115

 120

 125

 130

POLL C1-SNB C1E-SNB C3-SNB C6-SNB C7-SNB

P
o
w

e
r

W
a

tt
s

C States

C State Power Consumption

Figure 4.5. C States Energy Consumption

From a system point of view, it is important to note that a processor cannot be

forced into a particular C state. A particular C state is achieved by disabling all the

C states in the system and forcing the system to sit idle for a while.

The power consumption shown in figure 4.5 is of the whole server, while all it’s

processors sit in that particular C State rather than just the power of the CPU.

Figure 4.6 similarly shows the latency in micro seconds (y-axis) of going into that a

particular C state (x-axis) while the necessary tasks of going into that C state are

performed. The figure shows that despite the higher power savings in the deeper C

states, there is an additional cost of higher latency.

61

 0

 20

 40

 60

 80

 100

 120

POLL C1-SNB C1E-SNB C3-SNB C6-SNB C7-SNB

L
a
te

n
cy

 (
m

ic
ro

se
co

n
d

s)

C States

C State Latency

Figure 4.6. C States Latency

When C states are invoked, the CPU sits idle without doing any active work. For

applications where the CPU is not completely utilized, C states can be invoked when

the CPU is idle to get power savings. The dynamic power consumption of servers

can also be controlled by force injecting idle C states to the CPU. The CPU can also

control its power states by lowering its frequency and voltage using P states.

4.3.2 P States

P States are active states of the CPU. They employ DVFS to lower the voltage

and frequency while saving cubic power at the cost of a lower clock speed. Given

that data centric applications are more data intensive with a lower focus on CPU,

the lowest P state (in this case 1.2 GHz) can be used for more efficient operation.

However despite using the lowest frequency, the CPU for data center applications

may still be utilized less than 100%, as is the case in my application, allowing for the

use of C states in conjecture with the P states for even more power savings.

Figure 4.7 shows 5 of the 10 P states available in a Dell PowerEdge R720 server.

The figure shows CPU utilization against the power consumed by the server in dif-

62

ferent P states. A P state can be invoked by the userspace governor. The different

P states show significant power differences at higher CPU utilization rates. The sig-

nificant difference between in the power of the highest and second highest P state is

due to over clocking (Highest P state is Turbo mode). P state latency is a fixed 10

nano seconds for any P state.

 80

 100

 120

 140

 160

 180

 200

 220

 0 10 20 30 40 50 60 70 80 90 100

P
ow

er
 (

w
at

ts
)

CPU Utilization %

1.2 Ghz
1.5 Ghz
1.7 Ghz
1.9 Ghz

2.01 Ghz

Figure 4.7. P States Energy Consumption

P states are useful in saving power without putting the CPU in idle state. They

are specially useful when the CPU utilization is low. There are several governors

available in the linux 3.15 kernel which manage CPU P states according to various

policies. However for manually setting a P state to control the dynamic power range

of servers I use the User Space governor.

4.3.3 Controlling CPU Cores

Another possible mechanism for active power capping is disabling CPU cores

altogether to save power. I explore the possible power savings from this mechanism

in this section.

63

Following kernel 2.4 (January 2001), hot plugging has been a standard feature

of linux systems for a while. It now includes hot plugging CPUs as well such that

they can be plugged in and immediately used, using the configuration details to the

OS itself. Consequently processors can be just easily removed or hot plugged back

into the system to enable power savings. Figure 4.8 shows the number of CPUs on

the x-axis and their power usage on the y-axis at different levels of utilization. All

the CPUs are individually utilized at the specified levels. The figure shows linear

increases in power usage as the number of hot plugged processors increase from 1 to

32. Interestingly however, no matter how many processors are hot plugged at zero

utilization, the power consumed is always at the minimum power level for the server

i.e 85W.

This graph serves to show two points. The first being that C states are effective

at power savings as at zero utilization, even when all the 32 processors are active the

server consumes the same power as when there was a single unutilized processor in

the system. When inactive for a long period of time, the servers are put into deep

sleep C7 state where the power consumed by the processors is almost zero. Secondly,

because the C states are so effective in power savings, it does not make sense to use

hot plug mechanisms for power savings in the servers, either for energy agility or

energy efficiency.

64

 80

 100

 120

 140

 160

 180

 200

 220

 0 10 20 30

P
o

w
e

r
(w

a
tt

s
)

Enabled CPUs

0% Utilization
50% Utilization

100% Utilization

Figure 4.8. Effect of CPU Cores on Power

4.3.4 Throttling Disk IO and Network Bandwidth

The previous section shows the various power states for processors and how they

contribute to the dynamic power range of a server. I explain the power states of the

other two major power consuming components of a server i.e. I/O and Network here

and motivate the energy proportional designs for more computer components. In the

absence of a larger operating dynamic power range of servers, it makes sense to work

with ACPI S3 states to provide energy agility for largely fluctuating power signals.

As shown in later figure 5.3, active power cap takes a large hit when the power usage

of server is made to fall below the application average.

Figure 4.9 shows the power usage (y-axis) of the network card and the storage disk

as they are throttled at different utilization rates (x-axis). The network bandwidth

was throttled between two servers by sharing a file using IPERF, while the I/O disk

bandwidth was throttled by transferring a large file from one place on the disk to

another at different utilization rates using Rsync.

65

 0

 20

 40

 0 10 20 30 40 50 60 70 80 90 100

P
ow

er
 (

w
at

ts
)

Device Utilization %

IO Power
Network Power

Figure 4.9. Effect of Power on Network and Disk IO throttle

The figure shows that while the network card used by the server shows a marginal

energy proportionality of approximately 20%, the disk shows no energy proportion-

ality whatsoever. It consumes 37W power when active and 0 when inactive. As the

Dell PowerEdge R720 is amongst the high end modern server found at the time of

writing, this experiment shows the deficiency of an energy proportional hardware de-

sign for many computing components. Interestingly the new disk technology of Solid

State Drives (SSD) are not energy proportional either. The power consumption here

is shown for the individual devices and not the server.

66

CHAPTER 5

EVALUATION

This chapter evaluates the effect of various design metrics on the performance of

our application with the different policy variants. The various experiments performed

below test the validity of our assumptions regarding how each design space constraint

affects application runtime (performance). Each section explains what experiment

was performed followed by results in the form of graphs comparing experiment com-

pletion time and energy consumed.

5.1 Sequential Write With Rapid S3 Transitions

Before diving into my experiments regarding energy agile designs, it is important

to validate our assumptions as mentioned before regarding the usefulness of the ACPI

S3 states compared to the active power capping mechanisms. Since my energy policies

use the ACPI S3 state in all the policies to manage server power states, a worker node

may become active and inactive several times during the span of an application while

dealing with large amounts of data. It is important therefore to explore the effects of

such rapid transitioning on data intensive applications.

Therefore to show the effects of S3 transitions on data intensive applications, an

experiment was designed to disrupt disk writes by periodic suspensions into S3. A

simple application was designed to sequentially write 32GB of random data to a single

file on a SuperMicro server with 1TB disk and a dual core atom processor. While the

application wrote data, the node was periodically put to the inactive S3 state and the

total time of writing the file noted down. The same experiment was conducted first

67

with no suspension to S3, and then with decreasingly smaller periods (more rapid

transitions) and the time for the experiment and each S3 transition noted down.

Figure 5.1 shows the total write time of for the file and the write time excluding

the time taken to put the servers into the S3 transitions. As the figure shows, the

time taken to write the 32GB file (y-axis) excluding the time taken to transition into

and out of the state remains largely the same despite more S3 transitions due to a

reducing period (x-axis). As the y-axis is in minutes, it does not show the negligible

difference in the write times of the experiments. Nevertheless, this shows that S3 is

an effective power state to manage servers as it does not interfere with data intensive

applications.

 0

 10

 20

 30

 40

 50

 60

 70

 80

No Suspend 10 minutes 5 minutes 2 minutes 1 minute

C
o

m
p
le

tio
n
 T

im
e
 (

M
in

u
te

s)

Suspend Interval

Total time
Write time

Figure 5.1. Effect of S3 transitions on Write a Sequential File

5.2 Energy Agile Performance

As the aim of my work is to design policies for energy agile applications, my work

should be validated for energy agility. Reflecting back to the introduction of energy

agility, it is the amount of computations done per energy available. Therefore the

energy agile policies should be able to deal with a varying amount of available energy,

68

seeking to maximize application performance each time. This section shows such an

experiment with a stable but varying energy budget available for each policy variant.

This section shows the performance of the various energy agile policies developed

in my work. This experiment is also important as it shows applications can be enabled

to be energy agile and work with varying or below peak requirement power signal

by implementing hardware management policies and tweaking the application itself.

The experiment shows different runs of the All to All Internode Communication

application described in chapter 3. The experiment is run with a total of 50GB data

distributed amongst 5 isolated Dell PowerEdge R720 worker nodes in the MGHPCC

cluster (figure 4.4). This being a data intensive application, the network speed or

CPU is never the bottleneck. The application speed is instead dictated by the disk

speed.

Figure 5.3 shows the completion time of the application on the y-axis and the

power budget available to the application on the x-axis. The performance of the

application can be judged by it’s completion time i.e the lower the better. All policies

therefore exhibit a decreasing power performance as the application power budget

decreases. Power budget as shown on the x-axis shows the average power delivered to

the application platform throughout the course of the experiment. In this case, this

was done by a flat input power curve at the specified power budget level as shown

on the axis. Each policy behaves uniquely according to the graph and for the given

conditions of transition time 10 seconds and not a lot of power fluctuations, blink

outperforms the policies for the most part. The behavior of each policy is explained

below.

69

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800 900R
u

n
n

in
g

 T
im

e
 (

se
co

n
d

s)

Power (watts)

ActiveCap
Blink
Burst

BurstBattery

Figure 5.2. Power Budget Performance

Active Power Cap. Active power capping simply maintains the power budget

by dividing the available power budget equally amongst all the nodes and power cap-

ping those nodes. As explained in previous sections, the cpu performance degrades

massively with active power capping as it is the largest contributor to the servers

dynamic power range. Hence as the cpu performance degrades quickly with a reduc-

ing power cap, it becomes the bottle neck and the application performance degrades

severely. As shown in the graph, active power capping performs perhaps the best,

alongside blink when the power budget is high, but degrades very quickly as it de-

creases, becoming the worst around the power budget 600W as its completion time

approaches infinity.

Blink. Blink performs the best for these experiment conditions. The reason

being that since blink keeps all the servers activated together, it does not need to

save outbound buffers to disk incase a server is inactive. Hence less random access

to the disk allows for a faster execution time. Same is true for active power capping

as well. Blink here is run for an interval of 2 minutes with the duty cycle (chapter 3,

subsection blink) being dictated by the power budget. Interesting to note here that

70

below the power budget of 330W, no other policy except blink allows the application

to continue work as less than two active servers can be be kept active which does

not allow communication. Blink performs the best because the application transition

time is assumed to be 10 seconds, which although realistic for some servers (Low

performance super micro nodes), is not true for all.

Burst. The burst policy shows middle ground performance for these experiment

conditions. As the power budget decreases such that fewer worker nodes can be

concurrently kept active, burst performance decreases as the nodes have to go through

more transitions in order to complete their NC2 links. The noticeably low difference

in performance for power budget 445W (three active nodes) and 560W (four active

nodes) is because there is not a big difference in the number of transition steps the

nodes go through for both these power budgets.

Burst Battery. Burst battery is the same as burst, but with a battery to cap-

italize the wasted (overhead) power and use it productively for burst. Hence its

performance is the same as that of burst, but with improvements where burst wasted

power i.e in between power budget points where burst can use the whole budget to

support a certain number of nodes (2,3,4 or 5). Hence the performance of burst

battery is better than burst between these points as shown by the graph.

Similar to the graph above, the graph below shows the performance of each policy

variant in terms of energy consumed to complete the available work. Interestingly it

shows that the energy consumed varies a lot for different policy variant. Particularly

for active power capping, energy consumed approaches infinity after a certain energy

budget threshold (595W). Blink sticks to an average energy consumption level with

not a lot of variation. Burst and Battery Burst largely follow the same pattern with a

higher variation. The reason behind this is that although the nodes are using a smaller

energy budget, they take more time to complete resulting in a larger completion time

while using around the same energy. This does not hold for active power capping

71

because too much energy is wasted as base energy for some components which are

not energy proportional as discussed in Chapter 3.

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600 700 800 900

E
n

e
rg

y
C

o
n

su
m

e
d

 (
K

J)

Power (watts)

ActiveCap
Blink
Burst

BurstBattery

Figure 5.3. Power Budget Performance

5.3 Effect Of Transition Time

The main difference between my energy policies is the number of times the nodes

are made to go through the ACPI S3 states. Since burst seeks to minimize the

total number of transitions, it performs well if the transition time cost is very high.

For blink however, the higher the transition time, the more blink cycles it takes to

complete the work since each cycles does lesser work.

Typically the transition time is not symmetric i.e servers take more time going

into S3 than coming out of it, but for the sake of simplicity I assume symmetry for my

work. Burst is designed to keep the servers with the highest priority running, while

transitioning only the lower priority servers to S3 when power changes. It results in

fewer transitions than blink where every node is transitioned to S3, every duty cycle.

Hence burst pays a lower penalty of transition time than blink. While transitioning

between states, the servers consume power equivalent to when they were active, while

72

doing no productive work. Hence if the transition time is large, the servers could incur

a significant increase in completion time, especially for blink.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20 25 30 35R
u

n
n

in
g

 T
im

e
 (

se
co

n
d

s)

Transition Time (seconds)

Blink
Burst

BatteryBurst

Figure 5.4. Transition Time Analysis

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30R
u

n
n

in
g

 T
im

e
 (

se
co

n
d

s)

Transition Time (Seconds)

Blink
Burst

BurstBattery

Figure 5.5. Transition Time Wind Analysis

The graph 5.4 shows the performance of the three policy variants as transition

time is varied. The X-axis shows the transition time in seconds, the Y-Axis shows the

completion time for the experiments in minutes. The figure 5.4 shows stable power

73

while figure 5.5 shows wind power. The average power delivered to the application in

both cases is 5 minutes and the blink interval is kept at 75 seconds. As the transition

time increases, the performance of burst more or less remains the same, with a very

small increase. Since we assume a little wasted energy, batteryburst performs a little

better than burst. The performance of blink on the other hand degrades very fast as

the transition time increases because the productive work done in each blink interval

reduces. Variations in the wind power impact application performance more for burst

than for blink as the cross over transition time increases from 10 seconds to 18 seconds.

The figures below show the same experiments with energy consumed per exper-

iment on the y-axis rather than the runtime per experiment. Both pairs of graphs

show the same relationships with different metrics.

 0

 1000

 2000

 3000

 4000

 0 5 10 15 20 25 30 35

E
n

e
rg

y
C

o
n

su
m

e
d

 (
K

J)

Transition Time (seconds)

Blink
Burst

BatteryBurst

Figure 5.6. Transition Energy Analysis

74

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

E
n

e
rg

y
C

o
n

su
m

e
d

 (
K

J)

Transition Time (Seconds)

Blink
Burst

BurstBattery

Figure 5.7. Transition Energy Wind Analysis

5.4 Effect Of Energy Buffer Size

Energy budget can determine the energy agility of a system, however things change

a little when you have an energy storage available where you can store part of the

energy budget for later use. Of the policies we have developed, only blink and battery

burst use an energy buffer. Since the amount of energy storage can impact how each

of these policies perform relative to each other, we examine this effect in this section.

To analyze this effect, experiments were again conducted with 50GB data spread

across 5 nodes with a power budget of 600W and transition time 10 seconds. The

energy storage capacity was then varied and the completion time recorded.

75

 900

 1200

 1500

 1800

 2100

 2400

 30000 45000 60000 75000R
u

n
n

in
g

 T
im

e
 (

se
co

n
d

s)

Energy Storage (Joules)

Blink
Burst Battery

Figure 5.8. Energy Buffer Size Variation

Figure 5.8 the running time for the application on the y-axis against different

energy storage capacities on the x-axis. It shows that for a very small buffer capacity,

battery burst outperforms blink. However there is an exponential relationship be-

tween blink and buffer capacity with blink running time approaching infinity as the

buffer approaches zero. Hence as the buffer capacity increases, blink’s performance

improves and it performs better than battery burst. Battery burst’s performance

remains more or less the same as the energy buffer capacity varies. This can be ex-

plained by the fact that battery burst does not use it’s stored energy until the buffer

is completely full. For a larger buffer capacity, filling up the buffer with wasted power,

which may be negligible takes a longer time, and may not fill up at all. Hence for

the run time of the application, a larger buffer may be used fewer time because of

the longer charge time, resulting in less benefits. A way around this might be by

employing a similar duty cycle as in blink for battery burst as well.

76

5.5 Impact of power variation

Energy agility requires maximizing performance despite power signal variations.

Although this does apply in the context of insufficient but stable power for the data

centers, energy agility is more meaningful for practical varying power signals such

as wind power. Experiments up till now have looked at stable power signals below

the peak average of the application. Although this does show agility and the ability

of the application to work with insufficient power, it does not reflect widely varying

input power to show energy agility. Hence to analyze the effect of a realistic power

signal on the experiments a wind power signal (Figure 3.8), generated from real wind

data from around Amherst, MA was used as input power for the application. The

application was then run for different transition times using the policies developed.

Since active power capping has limited usage when the power drops significantly below

the application average, it is not included in this experiment.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Static Full Power Blink Burst Battery Burst

R
u
n
n
in

g
 T

im
e
 (

se
co

n
d

s)

Policy Variant

Stable Power
Wind Power

Figure 5.9. Impact of varying power on policy performance]

Figure ?? shows the relative performance of each policy variant on stable and

wind power, showing how well each policy adapts to variations in the power signal.

The x-axis shows the policy variants and the y-axis shows the completion time for

77

each policy on stable and wind power which both deliver an average power of 530W

to the application. The blink interval was kept at 75 seconds and the transition time

25 seconds. This graph shows two things. First the performance degradation of blink

vs burst and battery burst is very little due to power signal transitions. Second, for

realistic transition times of 25 seconds or greater in today?s servers, blink does not

perform very well. Burst and battery burst have a much lower completion time in

comparison. The graph below once again shows the same relations

 0

 500

 1000

 1500

 2000

 2500

Static Full Power Blink Burst Battery Burst

E
n
e
rg

y
C

o
n
su

m
e

d
 (

K
J)

Policy Variant

Stable Power
Wind Power

Figure 5.10. Impact of varying power on policy energy

Once again, we show the same experiment in terms of energy consumed to com-

plete the application with each policy variant under the same conditions explained

above. The energy graph is shown below.

5.6 Effect of Job Size

Transition time plays an important role in determining the performance of the

policy variants. The previous section saw the direct effect of transition time on the

application performance. Applications can also indirectly be impacted by the effect

of transition time through job size. A larger job size would mean that blink has to go

78

through more cycles to complete the same work leading to lower performance.Hence

one of the important metric which we found to significantly affect relative policy

performance is the size of the job at hand. To show the effect, we carried out the

experiment as shown below.

 0
 400
 800

 1200
 1600
 2000
 2400
 2800
 3200

25 50 100

R
u

n
n

in
g

 T
im

e
 (

se
c)

Input data size (in GB)

Blink
Burst

Battery Burst

Figure 5.11. Impact of job size on policy performance

The figure 5.11 shows the performance of each policy variant for different job size.

The x axis shows the size of the date distributed amongst the nodes and the y axis

shows the completion time in seconds. Each colored bar represents a different policy

variant. The graph shows that as the job size is increased, blink has to go through

more cycles to complete the job, leading to a greater transition time overhead and

decreasing its relative performance when compared to burst. Battery burst on the

other hand makes use of more wasted energy and slightly improves performance.

79

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

25 50 100E
n

e
rg

y
C

o
n

su
m

e
d

 (
K

J)

Input data size (in GB)

Blink
Burst

Battery Burst

Figure 5.12. Impact of job size on policy energy

5.7 Experiment Results

The experiments conducted in this chapter show the impact of different design

space metrics on the application performance in terms of energy consumption and

time taken to complete. Each experiment illustrates a distinct point on how energy

agile design can be affected by certain conditions. In this section we make general-

izations on how each design metric may impact a general energy agile design. In all

the experiments we see that battery burst will perform slightly better than burst if

wasted energy is available. As such the generalizations for burst can be extended to

battery burst.

Figure 5.3 shows that active power capping is only useful up to a certain threshold

of a stable power signal. Below that threshold, too much energy is used as base

power to power the other components of the server which may be being used by

the application but are not power proportional such as disk, network, etc ??. As a

result, too much base power is used for such devices and the CPU being the major

contributor in active power cap management takes too much of a performance hit.

80

Hence the application becomes too slow, approaching a completion time of infinity as

the energy budget approaches a certain threshold, 595W in this case. This threshold

depends on the number of nodes and the power they consume when not doing any

work.

Secondly, our comparison of the performance of the energy policies blink and burst

for different transition times showed that for shorter transition times blink typically

performs better than burst. However for larger transition times, burst can perform up

to 4X faster than blink. The point where blink becomes better than burst typically

depends on the variability of the power signal, the platform being used and the energy

budget being delivered by the power signal. The comparison of transition times of

the policies of blink and burst for wind and stable power signals further shows that

blink relatively performs better than burst, using 18% less energy to complete in our

particular case.

Third, the size of the job can play an important role in the relative performance of

energy agile policies. As shown by figure 5.11, when shuffling 100GB of data blink is

4% faster than burst while when shuffling a smaller 25GB dataset blink is 45% faster

than burst.

We see that for practical transition times of around a few minutes as seen in

real high end servers deployed in data centers, the energy policy burst will typically

perform better than blink. As explained above, the performance of blink decreases

dramatically as the transition time increases, leading to a smaller portion of the blink

interval being spent in doing actual work.

81

CHAPTER 6

CONCLUSION

The application I have worked with captures the bottleneck of typical data centric

applications. As such the lessons learnt from my experience in designing and develop-

ing a solution to the All to All Internode Communication application are applicable

to a broader set of data intensive batch applications, such as Sort or MapReduce.

The lessons are summarized below:

Inactive power capping is useful, despite it’s overhead. Previous work has

largely focussed on active power capping [8, 22, 23, 26], since inactive power capping

is not suitable for all workloads. One example would be online data-intensive (OLDI)

workloads, which may require immediate access to some data which may lie in any

of the server at any given time and cannot afford the overhead involved with inactive

power capping [22, 23]. On the other hand, my work shows that for data intensive

parallel batch applications, which may include internode communication as a subtask,

inactive power capping is much more efficient than using active power capping as it

uses more power to do useful work, offsetting the transition overheads which come

with inactive power capping mechanisms. Additionally, where applications can use

active power caps to satisfy caps as low as 50% peak power, they slow down the

server progress such that it is not beneficial due to high server idle powers.

Blinking performs better when Coordination is necessary. As my exper-

iments show, blinking does incur a high transition time penalties at short intervals,

however it does not affect the application’s pattern of I/O as all the servers are al-

ways concurrently active and inactive. Other policies which deactivate subsets of the

82

servers potentially alter the application’s I/O patterns degrading their performance

by changing sequential I/O to random I/O as all the servers are not concurrently

active.For example MapReduce, Sorting and other ”big data” tasks have frequent

periods of large scale coordinated data movements. Burst however performs better

where the parallel subtasks of an application do not require coordination, reducing

the transition overheads.

As job size increases, relative performance of blink decreases. The exper-

iments in this chapter show that the performance of blinking is dependent on job size

among other factors. As job sizes increases, more blink cycles are required to com-

plete the same amount of work, leading to a higher amount of time spent to complete

work. For burst on the other hand the same number of transitions are required to

complete a longer job size, leading to a lower proportion of time spent in transitioning

the nodes, increasing its relative performance.

For more practical transition times, burst performs better. As shown

in the experiments a larger transition time decreases the amount of productive work

done in each coordinated blink cycle, leading to relatively lower blink performance.

83

BIBLIOGRAPHY

[1] Apple and the environment. http://www:apple:com/environment/renewable-
energy/.

[2] Report to congress on server and data center energy efficiency: Public law 109-
431. Tech. rep., U.S. Environmental Protection Agency, August 2nd 2007.

[3] Agarwal, Y., Hodges, S., Chandra, R., Scott, J., Bahl, P., and Bahl, P. Somnilo-
quy: Augmenting network interfaces to reduce pc energy usage. In Proceedings of
the 6th USENIX Symposium on Networked System Design and Implementation
(Boston, Massachusetts, April 2009), pp. 365–380.

[4] Andersen, D., Franklin, J., Kaminsky, M., Phanishayee, A., Tan, L., and Va-
sudevan, V. FAWN: A Fast Array of Wimpy Nodes. In SOSP (October 2009).

[5] Chang, Fay, Dean, Jeffrey, Ghemawat, Sanjay, Hsieh, Wilson C., Wallach, Debo-
rah A., Burrows, Mike, Chandra, Tushar, Fikes, Andrew, and Gruber, Robert E.
Bigtable: A distributed storage system for structured data. In Proceedings of
the 7th USENIX Symposium on Operating Systems Design and Implementation
- Volume 7 (Berkeley, CA, USA, 2006), OSDI ’06, USENIX Association, pp. 15–
15.

[6] Cochran, R., Hankendi, C., Coskun, A., and Reda, S. Pack & Cap: Adaptive
DVFS and Thread Packing Under Power Caps. In MICRO (December 2011).

[7] Dean, J., and Ghemawat, S. MapReduce: Simplified Data Processing on Large
Clusters. In OSDI (December 2004).

[8] Fan, X., Weber, W., and Barroso, L. Power provisioning for a warehouse-sized
computer. In Proceedings of the 34th Annual International Symposium on Com-
puter Architecture (ISCA) (San Diego, California, June 2007), pp. 13–23.

[9] Faruqui, A., Hledik, R., and Tsoukalis, J. The power of dynamic pricing. In
Electricity Journal, 22(3) (February 2009), pp. 42–56.

[10] Finley, K. Facebook Says its New Data Center Will Run Entirely on Wind. In
Wired (November 13th 2013).

[11] Gandhi, A., Harchol-Balter, M., Das, R., Kephart, J., and Lefurgy, C. Power
Capping via Forced Idleness. In Weed (June 2009).

84

[12] Goiri, I., Le, K., Haque, M., Beauchea, R., Nguyen, T., Guitart, J., Torres,
J., and Bianchini, R. GreenSlot: Scheduling Energy Consumption in Green
Datacenters. In SC (April 2011).

[13] Goiri, I., Le, K., Haque, M., Beauchea, R., Nguyen, T., Guitart, J., Torres,
J., and Bianchini, R. Greenslot: Scheduling energy consumption in green dat-
acenters. In Proceedings of the International Conference for High Performance
Computing (Seattle, Washington, April 2011), Networking, Storage and Analysis
(SC).

[14] Goiri, I., Le, K., Nguyen, T., Guitart, J., Torres, J., and Bianchini, R. Green-
Hadoop: Leveraging Green Energy in Data-Processing Frameworks. In EuroSys
(April 2012).

[15] Hamilton, J. I Love Solar Power But... http://perspectives.mvdirona.com/,
March 17th, 2012.

[16] Irwin, D., Sharma, N., and Shenoy, P. Towards continuous policy-driven demand
response in data centers. In Proceedings of the 2nd ACM SIGCOMM Workshop
on Green Networking (GreenNets) (Toronto, Canada, August 2011), pp. 19–24.

[17] J.Koomey. Data center electricity use 2005 to 2010. Tech. rep., Analytics Press,,
August 1st 2011.

[18] Koomey, Jonathan G., Belady, Christian, Patterson, Michael, Santos, Anthony,
and Lange, Klaus-Dieter. Assessing trends over time in performance, costs, and
energy use for servers. Tech. rep., Lawrence Berkeley National Laboratory and
Stanford University, August 17, 2009.

[19] Lakshman, Avinash, and Malik, Prashant. Cassandra: A decentralized struc-
tured storage system. SIGOPS Oper. Syst. Rev. 44, 2 (Apr. 2010), 35–40.

[20] Lean, Hooi Hooi, and Smyth, Russel. Are fluctuations in us production of re-
newable energy permanent or transitory? In Applied Energy (January 2013),
vol. 101, pp. 483–488.

[21] Lefurgy, C., Wang, X., and Ware, M. Server-level Power Control. In ICAC
(February 2007).

[22] Lo, D., Cheng, L., Govindaraju, R., Barroso, L., and Kozyrakis, C. Towards
energy proportionality for large-scale latency-critical workloads. In International
Symposium of Computer Architecture (ISCA), p. June 2014.

[23] Meisner, D., Sadler, C., Barroso, L., Weber, W.-D., and Wenisch, T. Power
management of online data intensive services. In Proceedings of the 38th Annual
International Symposium on Computer Architecture (ISCA) (San Jose, Califor-
nia, June 2011), pp. 319–330.

85

[24] Miller, R. Data Centers Scale Up Their Solar Power. In Data Center Knowledge
(May 14th 2012).

[25] Miller., R. Data centers scale up their solar power. In Data Center Knowledge
(May 14th 2012).

[26] Ranganathan, P., P. Leech, D. Irwin, and Chase, J. Ensemble-level power man-
agement for dense blade servers. In Proceedings of the Thirty-third Annual Inter-
national Symposium on Computer Architecture (ISCA) (Boston, Massachusetts,
June 2006), pp. 66–77.

[27] Rasmussen, A., Conley, M., Kapoor, R., Lam, V.T., Porter, G., and Vahdat, A.
Themis: An I/O-Efficient MapReduce. In SoCC (October 2012).

[28] Rivoire, S., Shah, M., and Ranganathan, P. JouleSort: A Balanced Energy-
Efficient Benchmark. In SIGMOD (June 2007).

[29] Sharma, N., Barker, S., Irwin, D., and Shenoy, P. Blink: Managing Server
Clusters on Intermittent Power. In ASPLOS (March 2011).

[30] Stewart, C., and Shen, K. . some joules are more precious than others: Managing
renewable energy in datacenter. In HotPower (October 2009).

[31] Tolia, N., Wang, Z., Marwah, M., Bash, C., Ranganathan, P., and Zhu, X. Deliv-
ering energy proportionality with non-energy-proportional systems: Optimizing
the ensemble. In Proceedings of the Workshop on Power-aware Computing and
Systems (HotPower) (San Diego, California, December 2008).

[32] Tsirogiannis, Dimitris, Harizopoulos, Stavros, and Shah, Mehul A. Analyzing
the Energy Efficiency of a Database Server. In SIGMOD (June 2010).

[33] von Meier, A. Electrical Power Systems: A Conceptual Introduction. John Wiley
and Sons, Inc., 2006.

[34] Wierman, A., Z. Liu, I. Liu, and Mohsenian-Rad, H. Opportunities and chal-
lenges for data center demand response. In IGCC (June 2014).

[35] Z.Liu, Wierman, A., Chen, Y., Razon, B., and Chen, N. Data center demand
response: Avoiding the coincident peak via workload shifting and local genera-
tion.

86

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2015

	Energy Agile Cluster Communication
	Muhammad Zain Mustafa
	Recommended Citation

	tmp.1419463064.pdf.yHay2

