
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

2017

VIRTUALIZATION OF CLOSED-LOOP
SENSOR NETWORKS
Priyanka Dattatri Kedalagudde
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

Part of the Other Computer Engineering Commons

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been
accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Kedalagudde, Priyanka Dattatri, "VIRTUALIZATION OF CLOSED-LOOP SENSOR NETWORKS" (2017). Masters Theses. 511.
https://scholarworks.umass.edu/masters_theses_2/511

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/511?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

VIRTUALIZATION OF CLOSED-LOOP SENSOR
NETWORKS

A Thesis Presented

by

PRIYANKA DATTATRI KEDALAGUDDE

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

May 2017

Electrical and Computer Engineering

VIRTUALIZATION OF CLOSED-LOOP SENSOR
NETWORKS

A Thesis Presented

by

PRIYANKA DATTATRI KEDALAGUDDE

Approved as to style and content by:

Michael Zink, Chair

David Irwin, Member

Lixin Gao, Member

C.V.Hollot, Department Head
Electrical and Computer Engineering

ACKNOWLEDGEMENT

I would like to express the deepest appreciation to my advisor, Professor Michael

Zink, who has the attitude and the substance of a genius and who inspired my interest

in my work. Without his guidance and persistent help this thesis would not have been

possible. He always encourages me and inspires me with lots of valuable insights and

ideas. I thank Eric Lyons for providing support to understand the CASA’s radar

system and its functionalities,test beds and helping with generating traces from these

systems. I am heartily thankful to Professor David Irwin and Professor Lixin Gao

for their constructive advice and invaluable help on both of my research and future

career.

Finally, I appreciate all of the sincere support from my family and my friends, this

thesis pales in comparison to what I gained from them.

iii

ABSTRACT

VIRTUALIZATION OF CLOSED-LOOP SENSOR
NETWORKS

MAY 2017

PRIYANKA DATTATRI KEDALAGUDDE

B.E, NITTE MEENAKSHI INSTITUTE OF TECHNOLOGY,

BANGALORE,INDIA

M.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Michael Zink

The existing closed-loop sensor networks are based on architectures that are

designed and implemented for one specific application and require dedicated sensing

and computational resources. This prevents the sharing of these networks. In this

work, we propose an architecture of virtualization to allow sharing of closed-loop

sensor networks. We also propose a scheduling approach that will manage requests

from competing applications and evaluate their impact on system utilization against

utilization achieved by more traditional, dedicated sensor networks. These algorithms

are evaluated through trace-driven simulations, where the trace data is taken from

CASA’s closed-loop weather radar sensor network. Results from this evaluation show

that the proposed scheduling algorithms applied in a shared network result in cost

savings, that are the result of being able to multiplex applications onto a single

network as opposed to running each application on an dedicated sensor network.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT . iii

ABSTRACT . iv

LIST OF TABLES . vii

LIST OF FIGURES .viii

CHAPTER

1. INTRODUCTION . 1

2. BACKGROUND AND RELATED WORK . 3

3. SYSTEM ARCHITECTURE . 5

3.1 Sensor Virtualization Layer . 6

3.1.0.1 Utility Functions . 7

3.2 Scheduling Approaches . 7

3.2.1 TDMA Scheduling Approaches . 8
3.2.2 TDMA1 - Dynamic TDMA with scan angle dependent slot

sharing . 9
3.2.3 TDMA2 - Dynamic TDMA with decreasing request ratio

dependent slot sharing . 10
3.2.4 TDMA3 - Dynamic TDMA with increasing hit ratio

dependent slot sharing . 11
3.2.5 Token based approach . 12
3.2.6 Data-Sharing Enabled Scheduling (DSES) . 14

3.2.6.1 The DSES Algorithm . 14
3.2.6.2 Construction of Overlapping and Non-overlapping

Sets . 17

v

3.2.6.3 Case of Non-Overlapping Requests 17
3.2.6.4 Case of Overlapping Requests . 17

3.2.7 Calculation the Percentage of Potential Data Overlap 20
3.2.8 Calculation of Total Utility . 20
3.2.9 Utility of Delayed Tasks . 22
3.2.10 Augmented Data Sharing Enabled Scheduling (A-DSES) 23

3.2.10.1 Batch Processing . 24
3.2.10.2 Request Reordering . 24
3.2.10.3 Construction of overlapping and non-overlapping

sets . 25
3.2.10.4 Scheduling Decisions . 25
3.2.10.5 A-DSES Algorithm . 29

3.2.11 Cost Modeling . 29

4. EVALUATION . 31

4.1 Experimental Data Set . 31
4.2 TDMA approaches . 33
4.3 DSES approach . 36
4.4 Synthetic data sets . 37

4.4.1 DSES . 38
4.4.2 A-DSES . 39

4.5 Real Data-sets . 39

4.5.1 DSES . 40
4.5.2 A-DSES . 42

4.6 Impact on utility of other applications on the shared network 43

4.6.1 DSES . 44
4.6.2 A-DSES . 45

4.7 Comparisons and Concluding Observations . 47

5. CONCLUSION . 50

BIBLIOGRAPHY . 51

vi

LIST OF TABLES

Table Page

3.1 Sample data set for TDMA approaches . 9

3.2 Token distribution every six slots for TDMA4 . 12

3.3 Sample data set for TDMA4 . 13

3.4 Scheduling Algorithm Conventions . 15

3.5 Dataoverlap for Overlapping and Non-Overlapping requests 21

3.6 Request Reordering . 25

3.7 Weight for each overlap type . 25

3.8 Weight per sensor request . 25

3.9 TotalWeight per request . 26

4.1 Applications in data set and their naming convention used in the
document . 32

vii

LIST OF FIGURES

Figure Page

3.1 Virtualization Framework . 7

3.2 Dynamic TDMA with scan angle dependent slot sharing 10

3.3 Dynamic TDMA with decreasing request ratio dependent slot
sharing . 11

3.4 Dynamic TDMA with increasing hit ratio dependent slot sharing 12

3.5 No overlap . 17

3.6 Complete Overlap . 18

3.7 Partial Overlap Scenario 1 . 19

3.8 Partial Overlap Scenario 2 . 19

3.9 Partial Overlap Scenario 3 . 20

3.10 Delayed Request - texec less than tremain . 27

3.11 Delayed Request - texec greater than tremain . 27

3.12 Postponed Request . 27

4.1 Percentage of utility reduction for all TDMA approaches 34

4.2 Utility vs applications in the increasing order of their scan angles 34

4.3 TDMA2 results . 35

4.4 Average uility of applications for different token generation rates 35

4.5 Hit rates of applications for TDMA approaches, DSES approach and
dedicated network . 35

viii

4.6 DSES results with eight applications . 38

4.7 DSES results with five applications . 39

4.8 DSES results with eight applications . 40

4.9 Utility of ’T1’ on synthetic work loads for different utility
threshold . 41

4.10 Utility of ’T1’ on real work loads for DSES . 41

4.11 DSES on Real work loads . 42

4.12 Utility of ’T1’ on real work loads for A-DSES . 43

4.13 A-DSES on Real workloads . 44

4.14 DSES results of all applications sharing a network 45

4.15 Average utility of all the applications in Real data-set 2 - A-DSES 46

4.16 A-DSES results of all applications sharing a network 47

4.17 Average utility of all the applicaions in DSES and A-DSES 48

4.18 Total utility of all applications in A-DSES . 48

4.19 Average cost/application in A-DSES . 49

4.20 Average time/heartbeat to run the overlap algorithm in A-DSES 49

ix

CHAPTER 1

INTRODUCTION

Closed-loop sensor networks represent a sub-class of Cyber-Physical Systems (CPS) [28].

They have the potential to save lives and property from natural disasters and increase

national security through new critical infrastructure. In closed-loop sensor networks,

the sensing nodes can be actuated remotely and often provide substantial computa-

tional and storage capabilities. The data generated by these sensors are subsequently

analyzed and then used to determine future actuation of the sensors. Such Dynamic

Data-Driven Application Systems (DDDAS) [1, 6] are distinct from regular sensor

networks not only by using actuation to perform the sensing but also by the need for

a control unit that determines future sensor actuation.

Cost projections for the deployment and operation of such infrastructures are

significant (to the order of several billion dollars). Existing closed-loop sensor deploy-

ments are based on architectures which are dedicated for only one type of application

where sensing resources cannot be shared. A solution to allow the sharing of these

sensor networks is of great value since it would allow other applications to use exist-

ing infrastructure without redundancy. The sharing of closed-loop sensor networks

will thus result in significant reduction of both capital and operational expenditure.

To date, no instances of such isolated but fully shared closed-loop sensor networks

have been created. One of the major reasons is the general fear that resource sharing

might lead to interference between application request, potentially resulting in loss of

critical information.

1

This work makes the following contributions in the area of sensor network vitual-

ization:

• Architecture: We propose a virtualization layer as part of this architecture.

While this architecture also includes the virtualization of networking and com-

putation components of sensor networks, this work focusses exclusively on the

virtualization layer for sensor networks.

• Scheduling: As part of the virtualization layer, we propose different scheduling

approaches that uses sensor network characteristics like utility of the execution

of a sensing task and potential task overlap.

• Trace-based Evaluation: We analyze the performance of this architecture

based on traces obtained from an CASA’s weather sensing sensor network. We

use a utility metric that has been specifically developed for this sensor network

in our evaluations.

The remainder of this document consists of following chapters. Chapter 2 consists

of the related work done in this area. Chapter 3 presents the architecture for the

virtualization layer followed by a discussion of the proposed scheduling approaches

in the virtualization layer. The experiments and results are explained in Chapter 4,

Chapter 5 concludes this work with a discussion about the possible advantages of

virtualizating sensor networks.

2

CHAPTER 2

BACKGROUND AND RELATED WORK

Short-wavelength weather radars networks [18] has the potential to replace the

existing radar infrastructures (NEXRAD [19]). CASA has built one such closed-loop

sensor network [29]. This system is an example of dedicated non-shared sensor

network. However, recent work [12] has shown that the such a system which scans

the weather data could also be used to track low lying aircraft. This can be done

with the introduction of vitualization layer in the sensor networks. Until now, the

focus of the research in sensor network virtualization has been either on the creation

of virtual operating systems for sensor nodes ([8, 13, 14]) or the virtualization of the

networks that connect the sensor nodes ([3, 16, 15]). Existing approaches for the

first case have the aim to use virtualization to abstract from the sensor hardware to

simplify application development, but do not address the sharing of resources, and

are developed for small sensor nodes (e.g., Atmel or Mica). Bose et al. ([5, 4]) were

the first ones to propose a service-oriented sensor network architecture that is based

on sensor virtualization. In their approach, sensor virtualization is limited to the

fact that a virtual sensor abstracts a set of passive, physical sensors. This concept

has been extended by Pumpichet and Pissinou [25] for the case of mobile sensors.

Under a similar concept proposed by Pajic and Mangharam, an Embedded Virtual

Machine (EVM) programming abstraction [20] has been developed, that allows the

composition of a virtual machine across physical nodes. This is different to the

approach presented in this paper. First, in our approach, VMs do not span physical

nodes but in combination build a virtual slice (as shown in Figure 1). Second, in [20]

3

a physical node can only be part of a single VM making isolated sharing of the sensor

between users impossible. This sharing between users (or applications) is one (if not

the most prominent) goal of our work. Similar to our approach the SATWARE [17]

project provides a middleware for sensor networks. But SATWARE does not allow

the isolated sharing of sensors, nor has it been applied for actuation. I.e., the sensors

cannot be steered as it is the case for radars or other actuators.

Our approach is different in the way that it will allow the simultaneous sharing of

actuable sensor nodes among several users with an emphasis on sensor networks that

operate in closed-loop mode. In addition, our approach can combine sensor virtualiza-

tion with computational virtualization to build end-to-end architectures that enable

Sensing as a Service. Existing approaches that focus on network virtualization can

be integrated into our virtualization architectures, if necessary. Initially, the existing

technologies like TDMA(time division multiple access) can be integrated in virual-

ization of actuable sensors. Work in [27] shows that even slight reordering of user

requests for sensing resources can improve the overall efficiency of a virtualized sensor

netwrok. So in our approach to integrating TDMA technologies, we also reorder the

requests and evaluate the performance of the virtualized sensor networks.

We looked at the existing Disk scheduling algorithms in [10] which try to minimize

the latency of seeking disk requests. The FCFS performs operations in order requested

without any reordering. This does not provide fastest seek but does not starve the

requests. The Shortest Seek Time First (SSTF) reduces the seek time by selecting

the disk I/O request that requires the least movement of the disk access arm from its

current position. Our scheduling approach is different from the existing ones since we

make use of sensor specific properties to make scheduling decisions that will maximize

overlap and data sharing between requests.

4

CHAPTER 3

SYSTEM ARCHITECTURE

The closed-loop architectures built by CASA like the DCAS (Distributed Collab-

orative Adaptive Sensing) systems [21, 7] have the potential to replace the existing

sit-and-spin architecture (NEXRAD). For example, NEXRAD is a sit-and-spin scan

system that performs 360 sweeps of the lowest 2 elevations with every heartbeat to

sense the their entire sorrounding volume. But the DCAS systems performs targeted

sector scanning using optimization algorithms that determine the best sectors to scan

that would result in sensing their sorrounding area having only high volume of in-

terested weather data. However, these architectures do not allow different islolated

applications to share a network. For example, recent work [12] has shown that the

DCAS systems which scans the weather data could also be used to track low lying

aircraft. With the present architecture, a sensor network is dedicated only to one

application at a given point of time. Also, each of these radar sensor nodes have

very high infrastructural and operational costs. The goal of this work is to create

a virtualization layer which will enable two isolated applications to be shared on a

single sensor network, while reducing replicated infrastructure costs of the network.

The chapter is broadly divided into two sections. The first section deals with

the architecture of a sensor virtualization layer and the second section explains the

various scheduling approaches.

5

3.1 Sensor Virtualization Layer

Virtualization in information technology is a software that enables isolated appli-

cations to share the use of computer hardware through virtual machines [26, 2, 9].

The existing technologies like TDMA(time division multiple access) are integrated

in virualization of actuable sensors. Virtualizing sensor networks can be challenging

when two different users might want to actuate their virtualized radar to a different

position at the same instant in time. The work presented in this chapter investigates

various approaches that offers users to share the sensor networks.

We propose the architecture as illustrated in Figure 3.1 for the virtualization layer.

It consists of three major components:

• Request Manager: This component creates a request block with a request

id for the incoming application’s request and submits the request block to the

request queue that can be accessed by scheduler component as well. The request

block consists of request id, application name, sensors requested, scan angles

requested, deadline of the task and utility threshold.

• Scheduler: It consists of a class of utility-driven scheduling algorithms that

admit or deny tasks from different applications. The goal is to ensure maximum

sharing between user requests with maximum utility and minimum usage of

sensor resources.

• Data Manager: This has two sub components, a sensor registry module that

maintains a set of sensors that is up and operational. It periodically checks

for the liveness of the sensor. The other sub component maintains the list of

merged/shared data and their corresponding request id. When the data is trans-

mitted to the respective application, this component transfers the appropriate

data according to the mapping.

6

Figure 3.1: Virtualization Framework

3.1.0.1 Utility Functions

Utility functions are a measure of the quality and quantity of data that is of

value for a specific user. In [24, 22, 23], the development and implementation of

such utility functions in the radar network is illustrated. We have created a simple

utility function based on the angle of sectors requested for the scan. We feed the

input commands consisting of scan angle along with the other radar parameters to

the utility function. The obtained utility value is called the expected utility. We have

developed a scheduling algorithm that will determine the amount of data overlap

and the actual scan performed. The new utility is calculated based on the actual

scans performed. This is called actual utility. With the expected and actual utility

values, we can evaluate the performance of different scheduling approaches. The

utility function is described in Section 3.2

3.2 Scheduling Approaches

In this section, we introduce a set of scheduling approaches. We use the data set

from CASA Integrative Project 1 (IP1) radar sensor network for our evaluation. IP1

7

is the first test bed deployed by CASA demonstrating the capabilities of a DCAS

system. It is a network consisting of four nodes that can be mechanically steered.

The four radars are located in Chickasha, Rush Springs, Lawton, and Cyril. Each

radar is separated by about 25 km and have a range of about 30 km. In IP1, a set

of commands is sent to each radar for steering once with every 60 seconds system

heartbeat. For the first 20 seconds of each 60 seconds heartbeat, each radar does a

single 360 degree surveillance sweep at the lowest elevation angle to provide a general

sense of the weather in the network. The remaining 40 seconds is used to execute

scans from the issued commands.

We first investigate if the TDMA access control method can be applied to vir-

tualized sensors/actuators. To investigate the feasibility of this approach, we start

by testing different scheduling approaches for multiplexing applications. The advan-

tage of TDMA approaches is the fact that it is easy to implement and allows for a

straightforward implementation in existing sensor networks.

3.2.1 TDMA Scheduling Approaches

In this section, we propose a set of dynamic TDMA scheduling approaches in

which the time period T is fixed but the slot length can be dynamic. Slot length

is defined as the duration for whcih request is executing within a given time period.

For the sake of simplicity, we use a sample data set to explain each of the TDMA

scheduling approach in this section. However, in the actual experiments we use the

data set generated from CASA’s test bed, IP1 described in Section 3.2. This test bed

has the following system configurations. It takes 60 seconds to perform a scan (one

heartbeat).The IP1 radar sensor network is required to always perform a low level

surveillance scan in the first 20 seconds of the 60 second heartbeat. In the remaining

40 seconds, targetted scans can be executed. So we consider the time period to be

T = 40s. The general approach is to group requests based on certain criteria and

8

schedule tasks that can be executed within the available slot period, T . Then the

total utility for an application ai for a particular scheduling approach is represented

by the following equation:

u(ak) =
n∑

i=1

ui(akhit)−
n∑

j=1

uj(akmiss
), i 6= j,∀ak ∈ A

where n represents the number of slots,

ui(akhit) is the utility of the application in slots it was granted permission to use, and

uj(akmiss
) is the utility of the application in slots that it was denied use of.

Slot Number Application Angle of scan Utility Request ratio

9 B 180 1.3 1

10 B 180 1.7 1

10 C 60 1.8 0.33

11 A 120 1.3 0.25

11 B 180 1.7 0.6

11 C 60 1.8 0.33

12 A 120 1.3 0.28

13 C 60 1.8 0.375

Table 3.1: Sample data set for TDMA approaches

3.2.2 TDMA1 - Dynamic TDMA with scan angle dependent slot sharing

The time taken to execute a slot is directly dependent on the scan angle being

requested. For the purposes of this paper, we work on the assumption that it takes

60 seconds to perform a 360◦ scan. This can vary with each sensor installation, but

it is possible to incorporate the change into our approach.

This approach is useful where we want to first schedule all requests that takes

shorter time to execute and prevent them from waiting for long executing requests

to complete. We can illustrate this scheduling behavior with the example shown

in Table 3.1 where three application issue requests for slot 11. First, we group the

9

ACB CAB C

0 3T2TT 4T 5T

A

60% 40%40%10%

Figure 3.2: Dynamic TDMA with scan angle dependent slot sharing

requested tasks in the increasing order of their scan angle. Lower the sweep angle, the

lesser time it takes to execute the scan. Task C’s scan angle translates to (1/4) ∗T of

the slot length and task A’s to (1/2) ∗ T of the total slot length, respectively, which

results in B not getting a share of the slot. Subsequently, in Figure 3.2, slot 2T-3T

is shared by A (utilizing 50%) and C (utilizing 25%). The corresponding utility for

each application is calculated as follows:

uATDMA1
=u3(A) + u4(A)

uBTDMA1
=u1(B) + u2(B)− u3(B)

uCTDMA1
=u2(C) + u3(C) + u5(C)

3.2.3 TDMA2 - Dynamic TDMA with decreasing request ratio depen-

dent slot sharing

In this approach, the requesting tasks in a slot are grouped based on the request

ratio of an application. The request ratio is defined as number of requests the ap-

plication has made to the total number of request raised by all applications till that

instant in time. The priority of the applications to be scheduled dynamically changes

with changing request ratio every slot. This approach is useful in scenarios where

applications monitoring a storm need to be serviced first since they continually re-

quire the data. In this case, we need to assign higher priority to the applications that

makes more requests. In slot 11 of Table 3.1, the tasks A, B, and C are requested at

the same time and are grouped in the decreasing order of the request ratio (not shown

in the table and calculated from the traces). We schedule B and C since they have

10

higher request ratios than A (see Figure 3.3). The overall utility for each application

in this case is:

ACB CCB B

0 3T2TT 4T 5T

A

40% 10%40%10%

Figure 3.3: Dynamic TDMA with decreasing request ratio dependent slot sharing

uATDMA3−1
= u4(A)− u3(A)

uBTDMA3−1
= u1(B) + u2(B) + u3(B)

uCTDMA3−1
= u2(C) + u3(C) + u5(C)

3.2.4 TDMA3 - Dynamic TDMA with increasing hit ratio dependent slot

sharing

In this approach, the requesting tasks in a slot are grouped based on the hit ratio

of an application. The hit ratio is defined as number of requests for an application

that is executed to the total number of request raised by that applications till that

instant in time. It is based on giving a higher priority to requests with low hit ratio in

the aim of providing fairness to all applications in a balanced manner. Illustrating this

with the same example as the previous section, the tasks are grouped in the increasing

order of the hit ratio. A, B, and C from slot 11 have hit ratios that amount to 0, 1,

and 1, respectively. A and C are scheduled and executed within the given slot length

with this scheduling approach (see Figure 3.4).

uATDMA3−2
= u4(A) + u3(A)

uBTDMA3−2
= u1(B) + u2(B)− u3(B)

uCTDMA3−2
= u2(C) + u3(C) + u5(C)

This approach tries to ensures that no application is indefinitely starved of ex-

ecution by prioritizing applications based on their instantaneous hit ratios. Two

11

Figure 3.4: Dynamic TDMA with increasing hit ratio dependent slot sharing

applications for example, one to track aircraft and other to detect tornadoes, perform

important functions, that need to be executed at fairly regular intervals with strict

deadlines. The priority based dynamic approach strives to ensure that application

starvation does not occur in the presence of multiple, high priority applications.

Applications Token count

A 3

B 2

C 1

Table 3.2: Token distribution every six slots for TDMA4

3.2.5 Token based approach

A token bucket based approach can also be adopted to perform admission control.

In this static priority based approach, tokens are periodically assigned to certain

applications. For example, Table 3.2 illustrates the case where a batch of six tokens

is created every six time slots. The distribution of tokens to individual applications

is determined based on the overall number of requests for that application. In the

aforementioned table, application A is assigned the highest number of tokens since it

has the highest ratio of requests and conversely C is assigned the smallest number of

tokens. Based on the data shown in Table 3.3, the first three requests from A will

be scheduled but only two requests from B. Requests from C are not scheduled for

execution since no requests are made in slots 14 and 15 and, thus, the last slot is

unused.

12

Slot Number Application Utility Remaining tokens

10 A 1.4 2

10 B 1.7 2

11 C 1.2 1

11 A 1.4 1

12 A 1.4 0

13 C 1.4 1

13 B 1.7 1

14 A 1.4 0

14 B 1.7 0

15 B 1.7 0

16 A 1.4 0

Table 3.3: Sample data set for TDMA4

While there is no request from application C in this specific case, this approach

has the advantage that applications that rarely generate requests do not starve, since

the distribution of tokens will determine their priority.

The downside of this token bucket approach is that slots might not be used,

as just shown for the case of application C, and this slot could have been used by

application B. At the end of the period (six slots in this specific example), all left

over tokens are discarded and a new set of tokens are regenerated. We would like

to point out that the decision to assign priorities based on overall request rates of

the individual applications is experimental and that our approach allows any kind of

prioritization. Such prioritization could either be determined by the sensor network

operator or negotiated amongst the users of the network. The results for these TDMA

approaches are presented in the Chapter 4.

13

3.2.6 Data-Sharing Enabled Scheduling (DSES)

For a more flexible approach, we propose and develop a scheduling algorithm

that enables sharing of sensor data across isolated application requests. In the case

of TDMA approaches, two requests from different tasks could actually be identical,

or overlap, or could be executed with a slight delay, resulting in redundant sensing

activity in consecutive time slots. This scheduling approach without data sharing was

inefficient since it did not consider partially overlapping requests.

In sensor networks, the data generated from one application’s sensing activity can

prove to be of value to other applications. For example, consider one application

that measures precise rainfall application and another that tracks severe thunder-

storms. Since the thunderstorm also measures rainfall, the measurement data from

thunderstorm application can be utilized by both applications.

The sensing requests from different applications may not match perfectly or may

not have the same deadlines. In this eventuality, we still want to optimize the utiliza-

tion of the network by maximizing the data sharing between overlapping requests. In

the above example, the thunderstorm sensing application might scan the atmosphere

at several elevations, while the rainfall measurement application might require scans

only at the lowest elevation. Even though these requests do not align perfectly, the

data from the thunderstorm scanner’s lowest elevation scan is still useful for the other

application. We try and extract this value provision for the application and express

it through utility functions described in Section 3.1.

3.2.6.1 The DSES Algorithm

From the data sharing phenomenon discussed in the above section, we illustrate

the operation of scheduling algorithm 1. As part of building a tunable framework, we

provide the user with two parameters, a utility threshold and an execution deadline.

They are discussed below:

14

• The utility threshold is the minimum quantity of data (utility) that needs to be

present between two overlapping requests to share the network. For example,

if a user specifies a utility threshold of 0.5 for a request, any potential overlap

with another request (executing or otherwise) has to demonstrate a potential

utility of atleast 0.5 for this to be considered a viable overlap.

• The execution deadline is the maximum time before which a request has to

finish executing.

These two parameters are used to evaluate the feasibility of data sharing between

requests by the scheduling algorithm.

Variables Definition
s1 Sensor 1
R1 Executing request requesting for s1 at time t1
R2 Incoming request requesting for s1 at time t2
θs1,1 Initial scan angle of the executing request R1
θs1,2 Final scan angle of the executing request R1
φs1,1 Initial scan angle of the incoming request R2
φs1,2 Final scan angle of the incoming request R2
tdeadline Deadline of the incoming task R2
texectime Execution time of the executing task R1
R2overlap Percentage of R2 constituting the overlapping set
R2nonoverlap Percentage of R2 constituting the non-overlapping set
Dataoverlap Amount of data overlap between the incoming R2 and executing request R1
Datanonoverlap Unsharable data from the incoming request R2

Table 3.4: Scheduling Algorithm Conventions

15

Algorithm 1: DSES Algorithm

When a request r arrives at sensor si;
if no requests executing on si then

Execute r;

else
for every scheduled request j in s i’s queue do

if j has data overlap with r then
U ← ((R2overlap ∗Dataoverlap) + (R2nonoverlap ∗Datanonoverlap));
if tjexectime ≤ trdeadline then

if U ≥ U threshold then
r ← data from j;

else
Delay task execution(r);

else
Delay task execution(r);

else
Delay task execution(r);

Algorithm 2: Delay function

Function Delay task execution(r)

if trdelayed execution ≥ trdeadline then

if Udelayed task ≥ Uthreshold then

Execute r;

else

Cannot execute task r;

else

Cannot execute task r;

The conventions used in our illustration of the scheduling approach are cited in

Table 3.4.

16

Figure 3.5: No overlap

3.2.6.2 Construction of Overlapping and Non-overlapping Sets

Before contructing the overlapping and non-overlapping sets, the incoming request

should satisfy the following criteria.

φs1,2 >= φs1,1 ∧ θs1,2 >= θs1,2

If the above condition is not satisfied, then 360◦ is added to the lesser scan angle.

If φs1,2 < φs1,1, then φs1,2 = φs1,2 + 360◦

If θs1,2 < θs1,1, then θs1,2 = θs1,2 + 360◦

The overlapping and non-overlapping sets are constructed as explained below.

3.2.6.3 Case of Non-Overlapping Requests

If there is no scan angle overlap between the two requests R1 and R2, the execution

of R2 is delayed, provided the scheduler can guarantee that R2 can finish executing

before its execution deadline runs out.

φs1,2 <= θs1,1 ∨ φs1,1 <= θs1,2

3.2.6.4 Case of Overlapping Requests

If R1 and R2 are two overlapping requests, then the angle of scan can be di-

vided into an overlapping and non-overlapping set. The construction of these sets for

different cases is described below.

17

• Case 1: Complete Overlaps - When the scan angle of the incoming request is

a complete subset of an already executing request for a given sensor, the data

can shared by both the requests. Since R1 is already under execution, this goes

with the caveat that scan angle of request R2 should be a complete subset of

R1’s remaining scan. This is shown in Figure 3.6.

This can be represented by the logical condition as below:

φs1,1 ≥ θs1,1 ∧ φs1,2 ≤ θs1,2

Figure 3.6: Complete Overlap

• Case 2: Partial Overlaps - This section deals with the case of partial overlaps.

If the incoming request is not a complete subset of an executing request, we can

evaluate the viability of data sharing (and also simplify scheduling, if viable),

by evaluating the size of the overlapping subset and the utility it provides to

the application.

Once this has been accomplished, data from the overlapping set can be be

shared between the two requests and the non-overlapping set can be scheduled

for execution later.

– Partial Overlap Scenario 1: We can construct an overlapping set as shown

in Figure 3.7. For example, if (θs1,1, θs1,2) = (45◦, 90◦) is the scan range

of R1 and (φs1,1, φs1,2) = (0◦, 90◦) is the scan range of R2, then (45◦,90◦)

18

represents the overlapping set common to both requests and (0◦,45◦) rep-

resents the non-overlapping set specific to R2.

φs1,1 < θs1,1 ∧ φs1,2 ≤ θs1,2 ∧ φs1,2 > θs1,1

Figure 3.7: Partial Overlap Scenario 1

– Partial Overlap Scenario 2: This scenario is shown in Figure 3.8. For ex-

ample, if (θs1,1, θs1,2) = (0◦, 90◦) is the scan range of R1 and (φs1,1, φs1,2) =

(45◦, 135◦) is the scan range of R2, then (45◦, 90◦) represents the over-

lapping set common to both requests and (90◦, 135◦) represents the non

overlapping set specific to R2.

φs1,1 ≥ θs1,1 ∧ φs1,2 > θs1,2 ∧ φs1,1 < θs1,2

Figure 3.8: Partial Overlap Scenario 2

– Partial Overlap Scenario 3: This scenario is shown in Figure 3.9. For ex-

ample, if (θs1,1, θs1,2) = (45◦, 90◦) is the scan range of R1 and (φs1,1, φs1,2) =

19

(0◦,135◦) is the scan range of R2, then (0◦,45◦) and (90◦,135◦) of the scan

set represents the non overlapping set specific to R2 and (45◦,90◦) repre-

sents the overlapping common to both requests.

φs1,1 < θs1,1 ∧ φs1,2 > θs1,2

Figure 3.9: Partial Overlap Scenario 3

3.2.7 Calculation the Percentage of Potential Data Overlap

In this section, we calculate the probable quantity of the overlapping dataDataoverlap.

For example, if it takes 60 seconds to scan 360 degrees then it takes one sixth of a

second to scan a degree. If R1 arrives at time t1 and R2 arrives at time t2, then the

portion of R1′s scan that would have completed in t2 − t1 seconds is, (6 ∗ (t2 − t1))

degrees. When R2 is submitted, R1 would have completed

φ′s1,1 = θs1,1 + (6 ∗ (t2 − t1))◦ (3.1)

where, θs1,1 is the initial scan angle of the executing request

The Dataoverlap equations for different cases of overlaps and non-overlaps is shown

in Table 3.5.

3.2.8 Calculation of Total Utility

Total utility for the R2 is given by,

U = ((R2overlap ∗Dataoverlap) + (R2nonoverlap ∗Datanonoverlap))) ∗ (1−miss) (3.2)

20

Type of Overlap Dataoverlap
No Overlap 0

Complete Overlap ((φs1,2 − φ′s1,1)/(φs1,2 − φs1,1))
Partial Overlap scenario 1 ((φs1,2 − φ′s1,1)/(φs1,2 − θs1,1))
Partial Overlap Scenario 2 ((θs1,2 − φ′s1,1)/(θs1,2 − φs1,1))
Partial Overlap Scenario 3 ((θs1,2 − φ′s1,1)/(θs1,2 − θs1,1))

Table 3.5: Dataoverlap for Overlapping and Non-Overlapping requests

where,

Datanonoverlap =

utilitynonoverlap, if t deadline ≥ t exectime

0, otherwise

utility nonoverlap is calculated by finding the utility of delayed non-overlapping set

which is described in Section 3.2.9.

miss =

0, if taskhit

1, otherwise

task hit is a parameter representing that the task has been scheduled.

R2overlap∗Data overlap is the percentage of quantity of data from the overlapping

set.

R2nonoverlap∗Datanonoverlap is the percentage of quantity of data from the non-overlapping

set

The utility for different cases of overlap and non-overlap is as follows:

• No overlap

R2overlap = 0

R2nonoverlap = 1

U = (R2nonoverlap ∗Datanonoverlap) ∗ (1−miss)

21

• Complete overlap

R2overlap = 1

R2nonoverlap = 0

U = (R2overlap ∗Dataoverlap) ∗ (1−miss)

• Partial overlap In the case of partial overlap, the utility equation becomes,

R2overlap = x%of(R2overlap +R2nonoverlap)

R2nonoverlap = y%of(R2overlap +R2nonoverlap)

U = ((R2overlap ∗Dataoverlap) + (R2nonoverlap ∗Datanonoverlap)) ∗ (1−miss)

If utility is greater than or equal to the utility threshold, the overlapping set of

R2 is shared with R1. If utility is lesser than the utility threshold, the execution of

R2 is delayed as shown in Algorithm 2, if R2 can finish execution before its deadline.

If not, R2 will not be executed. The total utility is calculated as follows,

U = utility ∗ (1−miss) (3.3)

where,

miss =

0, if taskhit

1, otherwise

3.2.9 Utility of Delayed Tasks

The execution of a request is delayed for a non-overlapping set, or if there is no

scan overlap or if the utility of overlapping data is below the utility threshold.

In either of these cases, if the execution of R2 is delayed by n seconds, the new

initial scan of R2 is:

φ′s1,1 = (φs1,1 + (6 ∗ (n− t− 2))

The probable quantity of R2′s data when executed with a delay of n seconds is

calculated as follows:

22

utilitydelayed = (φs1,2 − φ′s1,1)/(φs1,2 − φs1,1)

If utilitydelayed is greater than or equal to the utility threshold, R2 is executed

after nseconds.

If utilitydelayed is lesser than the utility threshold, R2 cannot be scheduled for

execution.

The total utility is calculated as follows,

U = utilitydelayed ∗ (1−miss) (3.4)

where,
miss =

0, if task hit

1, otherwise

taskhit is a parameter representing that the task has been scheduled.

3.2.10 Augmented Data Sharing Enabled Scheduling (A-DSES)

In the interest of further optimization, we implement a windowing mechanism on

top of the base DSES. This mechanism is is heartbeat based, wherein multiple requests

arriving in a single heartbeat are batched and processed together for optimization.

This also emulates the behaviour of a real time system.

To measure the data sharing in this approach, we have the following two param-

eters,

• Utility threshold - As discussed in Sectio 3.2.6.1

• Delay threshold - The maximum number of heartbeats for which a request can

be postponed.

In experiments, we use the utility threshold as a tunable parameter and keep the delay

threshold fixed to one heartbeat. This delay threshold is to ensure that a request is

23

executed within two heartbeats. if the request is postponed by two heartbeat or more,

they cannot be executed.

The A-DSES approach involves the following steps (the algorithm itself is pre-

sented in Section 3.2.10.5):

3.2.10.1 Batch Processing

The DSES algorithm executes incoming requests as they arrive and does not batch

the requests per heartbeat. Thus, an incoming request that completely overlap, with

the executing request will not result in 100% utility since the executing request has

already started execution. To emulate the behaviour of a real system, we batch the

requests from each heartbeat and then schedule the requests for execution.

3.2.10.2 Request Reordering

In the DSES algorithm, we reordered requests according to the priority of their

requesting applications. In this approach, we reorder the batched requests in such a

way that the number of overlaps between all the requests are maximized. Consider

three requests R1,R2 and R3 consisting of sub-requests requesting for sensors s1,s2,s3

as shown in Table 3.6.

1. Each type of overlap is assigned a weight value based on the degree of overlap

between requests as shown in Table 3.7. The weight values range from 0 to 1.

A complete overlap with the highest degree of overlap will have the maximum

weight of 1 and no overlap with a zero degree of overlap will have the minimum

weight of 0. The partial overlap weight value will range from 0 to 1 depending

on the degree of overlap.

2. A sub-request’s corresponding weights are calculated after comparing it with

each of the other sub-requests requesting access to the same sensors in a heart-

beat. This is shown in Table 3.8.

24

3. The total weight for each of the request is calculated as shown in Table 3.9.

Requests Sub-request (s1) Sub-request (s2) Sub-request (s3)
R1 r1,1 r1,2 r1,3
R2 r2,1 r2,2 r2,3
R3 r3,1 r3,2 r3,3

Table 3.6: Request Reordering

Overlap type Weight - o(rn,i, rm,i)
Complete overlap 1

Partial overlap f(degree of overlap)
No overlap 0

Table 3.7: Weight for each overlap type

Weight of sub-request Iteration
wr1,1 o(r1,1, r2,1) + o(r1,1, r3,1)
wr1,2 o(r1,2, r2,2) + o(r1,2, r3,2)
wr1,3 o(r1,3, r2,3) + o(r1,3, r3,3)
wr2,1 o(r2,1, r1,1) + o(r2,1, r3,1)
wr2,2 o(r2,2, r1,2) + o(r2,2, r3,2)
wr2,3 o(r2,3, r1,3) + o(r2,3, r3,3)
wr3,1 o(r3,1, r1,1) + o(r3,1, r2,1)
wr3,2 o(r3,2, r1,2) + o(r3,2, r2,2)
wr3,3 o(r3,3, r1,3) + o(r3,3, r2,3)

Table 3.8: Weight per sensor request

3.2.10.3 Construction of overlapping and non-overlapping sets

This step is same as in 3.2.6.2

3.2.10.4 Scheduling Decisions

The scheduling decisions can be one of the following cases and are explained below:

25

Total Weight Equation
WR1 wr1,1 + wr1,2 + wr1,3

WR2 wr2,1 + wr2,2 + wr2,3

WR3 wr3,1 + wr3,2 + wr3,3

Table 3.9: TotalWeight per request

• No Execution - If any of sub-request of a nth request Rn (rn,1,rn,2,rn,3...rn,i)

cannot be executed, then none of the sub-requests are executed. This method

ensures that an application is not left with a partially serviced request in the

end.

• Merged Requests - If all of the sub-requests of nth request Rn (rn,1, rn,2,

rn,3...rn,i) completely overlap, then all the requests are scheduled for execution

with 100% utility.

• Delayed Requests - When all the sub-requests of a request Rn (rn,1,rn,2,rn,3...rn,i)

partially overlap or do not overlap at all, then the request is delayed. If the non-

overlapping set’s execution time texec is lesser than the remaining time tremain

in the heartbeat as shown in Figure 3.10, the utility for the delayed request is

calculated using a delay function such as the one in section 3.2.9.

Udelayed = Utility of the delayed request executing for texec

If the non-overlapping set’s execution time texec is greater than the tremain, R

is scheduled only for tremain along with the delay from above case. This case is

illustrated in Figure 3.11.

Udelayed = Utility of the delayed request executing for tremain

If the Udelayed is greater than Uthreshold for all the sub-requests, request R is

scheduled to be executed in the same heartbeat with a utilty Udelayed, else

26

it is postponed to be executed in the next heartbeat with utility Upostponed as

shown in Figure 3.12.

Figure 3.10: Delayed Request - texec less than tremain

Figure 3.11: Delayed Request - texec greater than tremain

Figure 3.12: Postponed Request

• Deferred/Postponed Requests - In the eventuality of a request R being desired

immediate execution (as per the above decision), the possibility of deferring

it to the next heartbeat is evaluated. That evaluation follows the selfsame

decision process. A request, when postponed, is added to the start of the queue

of batched requests in the next heartbeat. This ensures that the postponed

requests are considered first for execution. The overlap algorithm is not run

on the postponed requests since they need to be prioritized over others and

executed irrespective of other conditions. Since the delay threshold is fixed

27

to one heartbeat for these experiments, if the request is postponed by two

heartbeat or more, they cannot be executed. The utility of the postponed

requests is a direct measure of the utility threshold.

Upostpone = Uthreshold

Algorithm 3: Postpone function

Function Postpone request(rn,1,rn,2, rn,i)
Increment potspone numberr by 1;
Add rn to postpone queue;

Algorithm 4: Weight function

Function Calculate weight(overlap type, si)
if overlap type is complete overlap then

weightrsi = 1

if overlap type is partial overlap then
weightrsi = f(degree of overlap)

if overlap type is no overlap then
weightrsi = 0

Algorithm 5: Reorder requests

Function Reorder requests(req per hb)
for req in postpone queue do

if potspone numberr < delaythreshold then
reordered request queue← req;

for rn in req per hb queue do
Iterate each of the req in re per hb queue and find the type of overlap
rn,i makes with the other request;

Calulate weight(overlap type,si);
total weightRn = wrn,1 + wrn,2 + wrn,3wrn,i

;

Reorder requests in req per hb in decreasing order of their total weight;
Reordered requests appended into reordered request queue;

28

3.2.10.5 A-DSES Algorithm

The A-DSES Algorithm 6 comprises of the steps discussed in Section 3.2.10.1 to

Section 3.2.10.4

3.2.11 Cost Modeling

We propose a utility based cost model to prevent users from overloading the system

by constantly requesting for sensor/actuator resources to maximize utility. This will

provide incentives to users to accept sensor access of slightly lower utility with reduced

costs and in return, generates opportunities to merge user requests. Users are charged

based on the utility factor and the cost for each user is based on the resource usage

cu(Xsi(t)), where Xsi(t) represents the resource usage of a sensor si at time interval

t. The cost for using the sensor/actuator for two overlapping requests A and B can

be expressed as cA(Xsi(t)
A), cB(Xsi(t)

B).

The resulting revenue for the sensor/actuator resource provider is:

R = cA(Xsi(t)
A) + cB(Xsi(t)

B)

The goals may differ based on the sensor operator policy. A public provider

might have the goal to maximize the overall system utility max(
∑

u uu(Xsi(t)
u) −

cu(Xsi(t)
u)), while private sensor resource providers might place greater emphasis on

maximizing their overall revenue. This can be achieved for the sensor providers by

minimizing the system resource usage and hence minimizing the cost of using the

resources for a given user min(
∑

u cu(Xsi(t)
u)). For example, if B is a subset of A,

the resulting revenue for the sensor/actuator resource provider is R = cA(Xsi(t)
A) +

cB(Xsi(t)
B), the cost of system resources used is cA(Xsi(t)

A), while the utility for

each user is uA(Xsi(t)
A), uB(Xsi(t)

B), respectively.

29

Algorithm 6: WDSES Algorithm

Reorder requests(req per hb);
for rn in reordered request queue requesting for sensor sensor s1 to si do

if rn,1 and rn,2 and rn,i is a postponed request then
Upostponed is the minimum acceptable utility, Uthreshold;
URn ← Upostponed;

if rn,1 and rn,2 and rn,i is a complete overlap then
schedule Rn;
URn ← Ucomplete;
rtime ← tschedexec ;

if rn,1 and rn,2 and rn,i is partial or no overlap then
tremain = theartbeat − tschedexec ;
if tremain ≥ texec then

Delayed Utility Udelayed = Delay task execution(non overlap data
for texec) + Dataoverlap;
if (U(rn,1) ∧ U(rn,2) ∧U(rn,i)) ≥ Uthreshold then

schedule Rn in the same heartbeat;
URn ← Udelayed;

else
if postpone numberr ≤ Delaythreshold then

Postpone requestrn,1,rn,2, rn,i to next heartbeat;

else
Cannot execute rn,1,rn,2, rn,i;

else
Actual Utility Udelayed = Delay task executionnon overlap data for
tremain + Dataoverlap;
if (U(rn,1) ∧ U(rn,2) ∧U(rn,i)) ≥ Uthreshold then

Schedule Rn in the same heartbeat;
URn ← Udelayed;

else
if postpone numberr ≤ Delaythreshold then

Postpone requestrn,1,rn,2, rn,i to next heartbeat;

else
Cannot execute rn,1,rn,2, rn,i;

30

CHAPTER 4

EVALUATION

In this chapter, we present the results from simulations conducted to evaluate the

TDMA and DSES approaches presented in Section 3.2. The simulations use actual

traces taken from a four node radar sensor network [11]. This network has different

user groups (generally described as applications in this paper) that schedule individual

tasks based on application preferences and the past information generated by the

radars. The current implementation of the system does not support virtualization

and only the task generating the highest utility per heartbeat is executed.

We use these actual traces from the radar sensor network as input to the scheduler,

virtually schedule requests according to the approaches presented in Section 3.2, and

calculate the utility generated by executing these tasks. We use this resulting utility

to compare the performance of the different scheduling approaches.

4.1 Experimental Data Set

Before we present the results of experiments performed with different scheduling

approaches, we introduce the dataset used for our trace-based simulations and the

notations that go along with it.

This dataset is generated as an output from the CASA system’s main control

loop called Meteorological Command and Control (MC&C) [21, 7]. The first test

bed of CASA that deployed DCAS system is called Integrated Project 1(IP1). The

saved features from a past event(in this case meteorological feature like reflectivity

and storm cell) are fed into the simulator. The end users used in this data set

31

include Res,NWS,NWP,EM and Storm. NWS, National Weather Service issues severe

weather warnings. EM is Emergency Managers that alerts the public about weather

hazards. Res is a group of research users(CASA researchers) collecting wide variety

of data to improve thier forecast models. NWP are group of users collecting data

for their nowcasting algorithm. Storm user detects scans severe storms. The sensing

needs of these IP1 users were encoded by CASA into a set of rules called task rule

that tells the system what, when and how to scan. As a result, there are eight

different applications that generate requests for scanning based on the task rules

at locations determined by the sector commands. The naming convention for the

eight applications are shown in Table 4.1 The simulator is run individually for each

application generating a set of scan tasks, that would be issued by an application when

it runs on a dedicated sensor network. The combined set of tasks from all applications

is then used as input to the scheduling algorithms presented in Section 3.2.

Name Application name
P1 P1 NWP reflectivity
N1 N1 NWS reflectivity
R1 R1 Storm reflectivity
S1 S1 Storm stormcell
T2 T2 Res stormcell
T1 T1 Res reflectivity

RHI RHI Res stormcell
E1 E1 EM reflectivity

Table 4.1: Applications in data set and their naming convention used in the document

The generated data set has the following information:

• Slot number or heartbeat

• Application name requesting for network access in the corresponding heartbeat

• Scanning angle of the radar(s) for the respective task

• Radar configuration parameters

32

4.2 TDMA approaches

The reduction in utility of an application when compared to its utility on a dedi-

cated network is one of the key performance indicators of efficiency. Any scheduling

mechanism that we consider will attempt to minimize this utility reduction. Fig-

ure 4.1 plots the utility reduction in percentage against the application request ratio

for the various scheduling mechanisms. Using the request ratio as a metric eliminates

outliers in the sample space that produce a high reduction in utility due to a low

request ratio. The plot in Figure 4.2 for TDMA1 shows a decrease in utility with

increase in scan angles of the requests. However since they are prioritized according

to the increasing scan angles, they do not decrease with increase in the request ratios.

Hence we see a increasing and decreasing values in the barplot 4.1 for TDMA1. This

approach is only useful in cases where we do not want to starve the requests that take

shorter time to execute. In Figure 4.1, the results show that TDMA3 is more con-

sistent in the small sample space of applications in maintaining an average reduction

in utility. Also, TDMA2 looks to perform in accordance with the application request

ratio, displaying no reduction for high request applications and a high reduction rate

for rarely requested ones. However, for TDMA2 in Figure 4.1 we see that the average

utility reduces for ’R1’ even though it has a higher request rate. This is because,

’R1’ is mostly requested along with other applications that have higher request ratio

and longer execution time. So ’R1’ cannot be executed within the time period. From

Figure 4.3(a) and Figure 4.3(b),we see that even though the request ratio is high,

the hit ratio might not be the same due to the fact that they are requetsed along

with higher request ratios and longer execution time. This approach is only useful

where we need to execute high priority like applications to measure wind speed in

tornadoes requests often within small intervals of time. We conclude that TDMA3

is a better approach among the two since it provides a fair distribution of resources

to all its applications and a tolerable reduction in utility. The token approach was

33

simulated to observe the impact of different token generation rates on various appli-

cation utilities. These simulations were run with different token creation periods of

30T, 20T, and 10T respectively. Figure 4.4 illustrates the effect of token generation

rates on different applications. The effect of utility appears to degrade with a drop in

request rate (the applications are arranged in decreasing order of their request rates

from left to right). For lower request rate applications like ’T2’,’S1’,’R1’ the effect of

utility increases with lower token generation rates. We evaluated the impact of utility

for the ’T1’ application on sharing multiple applications on a sensor network. The

average utility for this application decreased by 30% when five applications and 66%

when eight applications shared a sensor network in the case of TDMA3 approach.

We see from Figure 4.5, TDMA approaches do not have a high hit rate for appli-

cations due to inefficient usage of slots and no sharing of data. We present the results

for DSES approach with higher hit rates in the next setion.

Figure 4.1: Percentage of utility reduction for all TDMA approaches

Figure 4.2: Utility vs applications in the increasing order of their scan angles

34

(a) Hit ratio for applications in TDMA2

(b) Request ratio for applications in TDMA2

Figure 4.3: TDMA2 results

Figure 4.4: Average uility of applications for different token generation rates

Figure 4.5: Hit rates of applications for TDMA approaches, DSES approach and
dedicated network

35

4.3 DSES approach

In this experiment, our goal is to analyze the impact of average utility of appli-

cation ’Res’ on sharing the network with different applications, using the approach

presented in Section 3.2.6.

We first run the traces to allow only application ’T1’ to be executed to mimic

its performance on a dedicated sensor network. Then the number of applications

requesting for network access are gradually increased to mimic a shared network.

In our current design, the tasks are either shared (if they overlap) or are scheduled

for execution at a later time if the scheduler can guarantee execution within the

request’s deadline.

From a service provider’s perspective, two requests that overlap completely mean

optimal use of system resources. The request that began executing first obtains

maximum utility. The second request that was piggybacked onto an executing one

receives a portion of the utility from the already executing request.

A request that has to be split into overlapping and non-overlapping portions still

results in lower resource utilization because of the overlapping portion that was shared

with another request. The dedicated resource usage needs to be taken into account

only for the non-overlapping portion.

Figure 4.6(a) illustrates a plot of average utility/request for application ’T1’ with

an increase in number of applications. From the plot, we see that the average utility

for ’T1’ decreases with an increase in number of applications. Interestingly, the

addition of the fourth application causes the average utility of ’T1’ to increase slightly.

This may be due to the increase in number of complete overlap requests with the

addition of the fourth application in comparison to lesser number of complete overlap

requests with the addition of the third application. This characteristic is illustrated

in Figure 4.6(b).

36

In general, the average utility of ’T1’ decreases with an increase in number of

applications. This is obviously impacted by the overlap between tasks from different

applications. If there is a larger number of non-shared or complete overlapping re-

quests, and lesser number of non executing tasks, the higher will be the corresponding

task’s utility.

We observed that the average utility for ’T1’ decreased by 20% with five appli-

cations in Figure 4.7 and 40% with eight applications in Figure 4.6 compared to the

dedicated sensor networks. From the results, we see that there was an improvement

in the utility of application ’T1’ in DSES compared to TDMA approach where the

average utility for ’T1’ application decreased by 30% with five applications and 66%

with eight applications sharing a sensor network.

Figure 4.8(a) shows the total utility of all the applications sharing the sensor

network. As the number of applications increases, the total utility of all applications in

the system also increases. This shows that the data sharing results in executing more

number of requests by merging multiple requests. Fig 4.8(b) shows the average cost

per application that represents the cost of using system resources by each application.

It can be seen that the the cost of using the resources decreases as more applications

share a netwrok. This is because many of the requests is a subset of other executing

requests which results in merging of requests. Even though the revenue for sensor

providers will be the cost of using system resources for both requests individually(two

scans),the actual cost of using the system resources is of one merged requests(one

scan).

4.4 Synthetic data sets

In order to evaluate the variation in utility for different types of overlaps, we run

the DSES and A-DSES on synthetic data-sets. We utilize a complete-overlap data-

set, partial-overlap data-set and no-overlap data-set. The complete-overlap data-set

37

(a) Average utility/request for ’T1’

(b) Percentage of non-shared and shared tasks for ’T1’

Figure 4.6: DSES results with eight applications

is an ideal representation of the utility’s upper bound, wherein all the requests overlap

and thus a 100% utility can be acheived. Conversely, no-overlap data-set represents

a worst case scenario (with the assumption that all the non-overlapping postponed

requests are executed). Typical data-sets should fall between these bounds.

4.4.1 DSES

Figure 4.10 repesents the utility of ’T1’ run on synthetic data set with the DSES

approach. If the requests are non-overlapping, they are delayed to be executed at a

later, if Udelayed < Uthreshold. Otherwise, the request is not executed. Hence, we see a

decrease in utility in the non-overlap set as the utility threshold increases.

38

(a) Average Utility for ’Res’ application

(b) Percentage of non-shared and shared tasks for ’Res’ appli-
cation

Figure 4.7: DSES results with five applications

4.4.2 A-DSES

Figure 4.12 repesents the utility of synthetic data-sets with the augmented DSES

approach. The non overlapping requests are postponed to the next heartbeat if they

cannot be delayed within the same heartbeat due to lower utility constraints. The

utility of the postponed request is a direct measure of the utility threshold. Therefore

we see an increase in utility for the non-overlap set with increase in utility threshold.

4.5 Real Data-sets

With the upper and lower bound utility obtained from the synthetic data set, we

run the base-DSES and augmented-DSES on multiple real workloads. Figure 4.10

39

(a) Total utility of all applications in the system

(b) Average cost/application vs number of applications sharing the
network

Figure 4.8: DSES results with eight applications

and Figure 4.12 show that the utility on any real workload lie between the upper and

lower limits depending on the utility threshold.

4.5.1 DSES

The utility of ’T1’ in the real data-set decreses with increase in utility threshold.

For higher utility threshold, there are fewer number of partial overlaps since the

criteria to execute partial requests is that the overlap should be greater than utility

threshold. We see from Figure 4.11(a) and Figure 4.11(b) that the number of partial

overlapping requests decreases as utility increases.

40

(a) DSES

(b) A-DSES

Figure 4.9: Utility of ’T1’ on synthetic work loads for different utility threshold

Figure 4.10: Utility of ’T1’ on real work loads for DSES

41

(a) Percentage of number of requests for ’T1’ in Real data set 1

(b) Percentage of number of requests for ’T1’ in Real data set 2

Figure 4.11: DSES on Real work loads

4.5.2 A-DSES

For the sake of brevity in the Graph 4.13(a) we use the following abbreviations:

• Co(not postponed) - Requests that are complete overlap.

• Po(not postponed) - Requests that are delayed within the same heartbeat due

to partial overlap.

• No(not postponed) - Requests that are delayed within the same heartbeat due

to no overlap.

42

• Co(postponed) - One of the sub-request is a complete overlap but postponed

due to postponing of one or other sub-requests.

• Po(postponed) - One of the sub-request is a partial overlap but postponed due

to postponing of one or other sub-requests.

• No(postponed) - One of the sub-request is a no overlap but postponed due to

postponing of one or other sub-requests.

As the number of Co(postponed) requests increase and number of Co(not post-

poned) requests decrease, the utility decreases. Since the postponed utility of a

request is a direct measure of the utility threhsold, the postponed task’s utility is

higher for a higher utility threshold.

Figure 4.12: Utility of ’T1’ on real work loads for A-DSES

4.6 Impact on utility of other applications on the shared net-

work

To ensure that no applicaition is starved, we plot the utility of all the applications

in DSES and augmented-DSES approach.

43

(a) Percentage of number of requests for ’T1’ in Real data set 1

(b) Percentage of number of requests for ’T1’ in Real data set 2

Figure 4.13: A-DSES on Real workloads

4.6.1 DSES

In the base-DSES approach, the requests are first grouped in increasing order of

their priority (N1, P1, E1, S1, R1, RHI, T2, T1) and then scheduled. However, their

utilities might not increase in the order of their priority since the utility depends on

the type of overlap.

44

(a) Average utility of all the applications in real data set 2

(b) Percentage of number of requests in Real data-set 2

Figure 4.14: DSES results of all applications sharing a network

4.6.2 A-DSES

In this approach, the requests are reordered to maximize the number of overlaps.

We can see from Figure 4.15 that there is a more uniform distribution of average

utilty among all the applications compared to the DSES approach.

45

Figure 4.15: Average utility of all the applications in Real data-set 2 - A-DSES

Among all the applications that share the sensor network, RHI and S1 have com-

paitively lower utilities. From Figure 4.16(a) we observe that the utility of a request

reduces in any of the following cases:

• If Co(postpone) requests increase,

• If Co(not postpone) requests decrease,

• If non-executing requests increase.

The number of non-executing requests increases if:

• The request does not occur first in the queue of postponed tasks. Figure 4.16(b)

shows multiple occurances of RHI and S1 in second or later positions in the

queue of postponed tasks.

• One of the sensors fail to execute a sub-request, thus disqualifying the entire

request from being executed in that heartbeat.

46

(a) Percentage of number of requests in real set 2

(b) Occurances of requests in the postponed queue

Figure 4.16: A-DSES results of all applications sharing a network

4.7 Comparisons and Concluding Observations

A-DSES performs better than base-DSES for the following reasons,

• A-DSES uses the windowing and batching to maximize the number of complete

overlaps in a heartbeat. This ensures merging of more requests and thereby

improve the corresponding utility. The average run time to the algorithm is

shown in Figure 4.20.

• Since the augmented-DSES requests are batched and processed, instead of ex-

ecuting serially like in DSES, requests with complete overlaps result in 100%

utility and do not incur any delay.

47

• All sub-requests from different sensors for a given request is collaborated and

executed together. In this way, augmented approach is more aligned with the

way sensor networks work in real time.

• The total utility and the average cost/application in A-DSES is almost the same

as DSES. This is seen in Figure 4.18 and Figure 4.19. But we see in Figure 4.17

that the average utility of across most of the applications sharing a network is

higher in A-DSES compared to DSES.

Figure 4.17: Average utility of all the applicaions in DSES and A-DSES

Figure 4.18: Total utility of all applications in A-DSES

48

Figure 4.19: Average cost/application in A-DSES

Figure 4.20: Average time/heartbeat to run the overlap algorithm in A-DSES

49

CHAPTER 5

CONCLUSION

We introduce our architecture for closed-loop sensor network virtualization and

our work show that such architecture can lead to the isolated sharing of closed-loop

sensor networks. Such shared closed-loop sensor networks will significantly reduce

the cost for creating and operating sensing infrastructure, while providing access to a

broad set of applications that will run on top of these systems. After introducing the

architectures and the virtualization layer for closed-loop sensor networks we present

several scheduling approaches for sensor/actuator virtualization, based on TDMA and

potential data overlap between requests. We evaluate the approaches through trace

based simulations and show how they can support sensor virtualization. Our results

show that the Enhanced scheduling approaches with data sharing feature allow the

sharing of closed-loop sensor networks with the potential downside that the overall

utility is reduced if compared to individual, dedicated networks. The results show

that there is a clear trade-off between full utility and cost where applications can share

a network. To further optimze the DSES approach, we introduced batch processing

and reordering of requests to maximize the number of complete overlaps. Though the

total utility and average cost/applications is almost the same in DSES and ADSES,

the utility is uniformly distributed across all the applications in ADSES compared to

DSES. Also, ADSES design and implementation is better aligned with the working

of a real sensor network system.

50

BIBLIOGRAPHY

[1] G. Allen, J. Nabrzyski, E. Seidel, G. D. van Albada, J. J. Dongarra, and P. M. A.

Sloot, editors. Computational Science – ICCS 2009. Springer-Verlag, May 2009.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebaue,

I. Pratt, and A. Warfield. Xen and the art of virtualization. In Proceedings of the

19th ACM Symposium on Operating Systems Principles, Bolton Landing, NY,

USA, October 2003.

[3] T. Baumgartner, I. Chatzigiannakis, M. Danckwardt, C. Koninis, A. Kröller,

G. Mylonas, D. Pfisterer, and B. Porter. Virtualising testbeds to support large-

scale reconfigurable experimental facilities. In EWSN, pages 210–223, 2010.

[4] R. Bose and A. Helal. Distributed mechanisms for enabling virtual sensors in

service oriented intelligent environments. In Intelligent Environments, 2008 IET

4th International Conference on, pages 1 –8, july 2008.

[5] R. Bose, A. Helal, V. Sivakumar, and S. Lim. Virtual sensors for service

oriented intelligent environments. In Proceedings of the third conference on

IASTED International Conference: Advances in Computer Science and Tech-

nology, ACST’07, pages 165–170, Anaheim, CA, USA, 2007. ACTA Press.

[6] J. Brotzge, V. Chandrasekar, K. Droegemeier, J. Kurose, D. McLaughlin,

B. Philips, M. Preston, and S. Sekelsky. Distributed collaborative adaptive sens-

ing for hazardous weather detection, tracking, and predicting. In Proceeding of

Computational Science - ICCS 2004, Krakow, Poland, May 2004.

51

[7] J. Brotzge, D. Westbrook, K. Brewster, K. Hondl, and M. Zink. The meteorologi-

cal command and control structure of a dynamic, collaborative, automated radar

network. In 21st International Conference on Interactive Information Processing

Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Jan. 2005.

[8] N. Brouwers, K. Langendoen, and P. Corke. Darjeeling, a feature-rich vm for

the resource poor. In Proceedings of the 7th ACM Conference on Embedded

Networked Sensor Systems, SenSys ’09, pages 169–182, New York, NY, USA,

2009. ACM.

[9] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running commodity operating

systems on scalable multiprocessors. ACM Transactions on Computer Systems,

15(4):143–156, November 1997.

[10] J. R. Celis, D. Gonzales, E. Lagda, and L. Rutaquio. A comprehensive review

for disk scheduling algorithms. In IJCSI 2014, 2012.

[11] B. P. E. L. M. Z. D. Pepyne, D. Westbrook and J. Kurose. Distributed collab-

orative adaptive sensor networks for remote sensing applications. In American

Control Conference, 2008, August 2008.

[12] P. Drake, D. McLaughlin, and M. Nolan. Collaborative and adaptive sensing

of the atmosphere (casa) and multi-function sensor services network (mssn).

In Integrated Communications Navigation and Surveillance Conference (ICNS),

pages 1–33, July 2010.

[13] P. Evensen and H. Meling. Sensor virtualization with self-configuration and

flexible interactions. In Proceedings of the 3rd ACM International Workshop on

Context-Awareness for Self-Managing Systems, Casemans ’09, pages 31–38, New

York, NY, USA, 2009. ACM.

52

[14] K. Hong, J. Park, T. Kim, S. Kim, H. Kim, Y. Ko, J. Park, B. Burgstaller,

and B. Scholz. Tinyvm, an efficient virtual machine infrastructure for sensor

networks. In Proceedings of the 7th ACM Conference on Embedded Networked

Sensor Systems, SenSys ’09, pages 399–400, New York, NY, USA, 2009. ACM.

[15] A. Jayasumana, Q. Han, and T. Illangasekare. Virtual sensor networks - a re-

source efficient approach for concurrent applications. In Proceedings of the 4th

International Conference on Information Technology: New Generations (ITNG),

Las Vegas, NV, USA, 2007.

[16] H. B. Lim, M. Iqbal, and T. J. Ng. A virtualization framework for heterogeneous

sensor network platforms. In Proceedings of the 7th ACM Conference on Em-

bedded Networked Sensor Systems, SenSys ’09, pages 319–320, New York, NY,

USA, 2009. ACM.

[17] D. Massaguer, S. Mehrotra, and N. Venkatasubramanian. A semantic approach

for building pervasive spaces. In Proceedings of the 6th Middleware Doctoral

Symposium, MDS ’09, pages 2:1–2:6, New York, NY, USA, 2009. ACM.

[18] D. J. McLaughlin and V. Chandrasekar. Short wavelength technology and the

potential for distributed networks of small radar systems. In Radar Conference,

2009 IEEE, May 2009.

[19] http://www.roc.noaa.gov, 2007.

[20] M. Pajic and R. Mangharam. Embedded virtual machines for robust wireless

control and actuation. In Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2010 16th IEEE, pages 79–88, 2010.

[21] D. Pepyne, D. Westbrook, B. Philips, E. Lyons, and M. Z. J. Kurose. Distributed

Collaborative Adaptive Sensor Networks for Remote Sensing. In Proceedings of

2008 American Control Conference, Seattle, WA, USA, June 2008.

53

[22] B. Philips, D. Pepyne, D. Westbrook, E. Bass, J. Brotzge, W. Diaz, K. Kloesel,

J. Kurose, D. McLaughlin, H. Rodriguez, and M. Zink. Integrating End User

Needs into System Design and Operation: The Center for Collaborative Adap-

tive Sensing of the Atmosphere (CASA). In Proceedings of 16th Conf. Applied

Climatol., American Meteorological Society Annual Meeting, San Antonio, TX,

USA, Jan. 2007.

[23] B. Philips, D. Westbrook, D. Pepyne, E. J. Bass, and D. Rude. Evaluation of the

casa system in the noaa hazardous weather test bed. In 24th International Conf.

on Interactive Information Processing Systems (IIPS) for Meteor., Ocean., and

Hydrology, 88th American Meteorology Society Annual Meeting, New Orleans,

LA, USA, January 2008.

[24] B. Philips, D. Westbrook, D. Pepyne, J. Brotzge, E. Bass, and D. Rude. User

evaluations of adaptive scanning patterns in the casa spring experiment 2007. In

Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE Inter-

national, volume 5, pages V –156 –V –159, July 2008.

[25] S. Pumpichet and N. Pissinou. Virtual sensor for mobile sensor data cleaning. In

GLOBECOM 2010, 2010 IEEE Global Telecommunications Conference, pages 1

–5, dec. 2010.

[26] L. Seawright and R. MacKinnon. Vm/370 - a study of multiplicity and usefulness.

IBM Systems Journal, pages 4–17, 1979.

[27] N. Sharma, D. Irwin, M. Zink, and P. Shenoy. Multisense: proportional-share

for mechanically steerable sensor networks. Multimedia Systems, 18(5):425–444,

2012.

[28] J. Sztipanovits and R. Rajkumar, editors. International Conference on Cyber-

Physical Systems. ACM Press, April 2010.

54

[29] M. Zink, E. Lyons, D. Westbrook, J. Kurose, and D. Pepyne. Closed-loop archi-

tecture for distributed collaborative adaptive sensing: Meteorogolical command

& control. International Journal for Sensor Networks (IJSNET), 7(1/2), 2010.

55

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2017

	VIRTUALIZATION OF CLOSED-LOOP SENSOR NETWORKS
	Priyanka Dattatri Kedalagudde
	Recommended Citation

	tmp.1496648859.pdf.3l06h

