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ABSTRACT

FUNCTION VERIFICATION OF
COMBINATIONAL ARITHMETIC CIRCUIT 

MAY 2015

DUO LIU

B.S., JIANGNAN UNIVERSITY, WUXI, JIANGSU, CHINA

M.S.E.C.E.,  UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Maciej Ciesielski

Hardware design verification is the most challenging part in overall hardware design

process.  It  is  because  design  size  and  complexity  are  growing  very  fast  while  the

requirement for performance is ever higher. Conventional simulation-based verification

method cannot keep up with the rapid increase in the design size, since it is impossible to

exhaustively test all input vectors of a complex design. An important part of hardware

verification is combinational arithmetic circuit  verification.  It  draws a lot  of attention

because flattening the design into bit-level, known as the bit-blasting problem, hinders

the efficiency of many current formal techniques. The goal of this thesis is to introduce a

robust  and  efficient  formal  verification  method  for  combinational  integer  arithmetic

circuit based on an in-depth analysis of recent advances in computer algebra. The method

proposed here solves the verification problem at bit  level,  while avoiding bit-blasting

problem. It also avoids the expensive Groebner basis computation, typically employed by

v



symbolic computer algebra methods. 

The  proposed  method  verifies  the  gate-level  implementation  of  the  design  by

representing the design components (logic gates and arithmetic modules) by polynomials

in  ℤ2n.  It  then transforms the polynomial representing the output bits  (called “output

signature”) into a unique polynomial in input signals (called “input signature”)  using

gate-level information of the design. The computed input signature is then compared with

the reference input signature (golden model) to determine whether the circuit behaves as

anticipated.  If  the  reference  input  signature is  not  given,  our  method can  be used to

compute  (or  extract)  the  arithmetic  function  of  the  design  by  computing  its  input

signature. Additional tools, based on canonical word-level design representations (such as

TED or BMD) can be used to determine the function of the computed input signature

represents. We demonstrate the applicability of the proposed method to arithmetic circuit

verification on a large number  of designs.
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CHAPTER 1

INTRODUCTION

1.1  Verification and Its Importance

Digital hardware verification is  becoming more and more challenging. It is because

design  scale  and  functionality  are  growing  very  fast  while  the  requirement  for

performance is even higher. It is painful and costly to redesign the circuit if bugs are

found very late in the design process. Verification is the one technology for designers to

assure the reliance, accuracy and functionality of designs at early stage of work flow. 

 Validation and verification are two basic techniques to demonstrate that a design is

correct.  Validation checks if  the design's  specification meets the market's  needs,  it  is

typically done using simulation. Verification checks if the design meets its specifications.

We only focus on verification in this thesis. 

Verification  process  tries  to  make  sure  a  design  works  exactly  as  the  designer

anticipated.  It  is  a  process that  penetrates modern circuit  design.  Figure 1.1 shows a

complete VLSI design flow. This figure shows that most of the total design time, from

Register  Transfer  Level  (RTL)  to  logic  level,  is  consumed  by  verification.  More

specifically,  more  than  70  percent  of  the  design  time  and  resources  are  spent  on

functional verification on average [1]. Despite all these efforts, functional bugs still force

companies  to  redesign  their  products.  An  important  reason  for  this  situation  is  the
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limitations  in  current  verification  methods which  will  be  introduced in the following

sections.

Figure 1.1: VLSI Design Flow [1].
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Figure 1.2: Simulation-Based Verification [2].

1.2  Simulation-Based Verification

The traditional way to test design functionality is to simulate the designed circuits

function before tape out. To perform simulation of a design, one loads the design into a

simulator, assigns a sequence of input vectors and criterion to the simulator and then runs

the  simulator  to  check  if  the  circuit  behaves  as  expected  the  under  the  given  input

stimulus. This process is shown in Figure 1.2. In this figure, the scoreboard checks design

behavior and the monitors sample interface activity. Through a simulation process, one

can design and debug a dynamic model of an actual system either for the purpose of

understanding the system behavior or evaluating various strategies (like constraints or

optimizations) for the operation of the system [3].

However,  with  the  ever-increasing  size  and  complexity  of  integrated  circuits  and

systems on chip (SoC) [4], it is becoming harder and harder to simulate the Design Under

Test  (DUT).  The number of  problem cases  to  be examined increase  dramatically  for
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larger and more complex designs. Designers try to put all these cases into a test vector

file.  Typically  this  step  cannot  be  done  satisfactorily  because  there  are  cases  that

designers may never think of. Without exhausting all possible cases, it is very likely that

some corner cases in disguise will  be omitted during simulation.  Even if  all  possible

cases  are  considered by designer, it  is  still  impossible  to  run through all  these cases

within a reasonable length of time because of the huge quantity of possible test cases. In

other words, just as Edsgar W. Dijkstra said, “Program testing can be a very effective way

to show the presence of bugs, but is hopelessly inadequate for showing their absence [5]”.

1.3  Formal Verification

Taking the above factors into consideration, formal verification can be seen as a good

complement  for  simulation-based  verification  considering  that  completeness  is  the

greatest  advantage  of  formal  verification.  It  has  already  been  proved  that  formal

verification methods can be successfully applied to combinational arithmetic circuits [6],

[7],  [8].  In this section, a series of methods which aim at implementing and improving

formal verification methodologies are presented. These works display many important

attempts which are pervasively used in formal verification solutions nowadays.

Functional  formal  verification  discussed  here  is  called  “formal”  because  formal

methods of mathematics are used to prove that a design implements the correct function.

It  is  a  precise  technique  in  the  sense  of  its  completeness.  Formal  verification  can

guarantee  the  functional  correctness  of  the  design  [9] with  high  confidence,  if  used

correctly, and avoids tremendous cost of fixing bugs that come to surface late in the

4



whole design chain. Formal verification uses mathematical techniques to ensure that a

design conforms to some precisely expressed notion of functional correctness [10]. In the

process of implementing formal verification for a design, mathematical models of the

system implementation and of the specification must be built first as a formal description

of  the function of  the  design.  Specification in  formal  verification  defines  the  desired

behavior or properties of the system, while implementation represents how the circuit is

constructed in detail. Then, based on the established mathematical implementation model

and specification description,  engineers use mathematical reasoning to verify whether

design intent (specification) is preserved in the implementation [11]. The current popular

formal verification methods include equivalence checking, symbolic simulation, model

checking, theorem proving, ATPG (Automatic Test Pattern Generation), and others.

1.3.1  Equivalence Checking

Generally speaking, equivalence checking investigates whether two given expressions

are functionally identical. In the hardware verification area, equivalence checking plays

the role of proving or disproving that a pair of circuit designs behave exactly the same.

Typically, the circuit which is known to be correct is called reference while the other one

is the implementation of the DUT. Equivalence checking allows the user to find, analyze

and eliminate all the errors introduced during the transfer from one level of abstraction to

another  [12].  It  is  often  used  when  engineering  changes  are  made  before  final

manufacturing. Engineering changes are manual corrections made in the implementation

process  if  design  errors  are  found.  However,  these  changes  themselves  are  likely  to

introduce  new  errors.  Equivalence  checking  ensures  the  function  of  a  design  after
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correction is as intended. Besides, appending optimization and testing circuitry, such as

self-scan  logic  and  power-control  circuitry,  to  original  designs  also  may  change  the

design function without being noticed. In this case, the change will require fixing the

bugs.

There are many ways to do equivalence checking. Instead of using simulation, which

has  shortcomings  discussed  before,  people  are  more  inclined  to  identify  similarities

between the structures of the designs. Identifying structural similarities means to find

functionally  equivalent  internal  nodes  in  the  pair  of  designs  to  be  compared.

Mathematical methods are used frequently to accomplish this identification task. Most of

them are based on canonical data structures, such as Binary Decision Diagrams (BDDs)

[6], Binary Moment Diagrams (BMDs) [7], Taylor Expansion Diagrams (TEDs) [13] and

their  extensions  [14].  Concrete  methods that implement equivalence checking will  be

illustrated in the following chapter.

1.3.2  Model Checking

Model checking, or property checking, has been proposed as a hardware verification

method over 30 years ago [15]. It can be a good complement to equivalence checking,

specifically for finite state concurrent systems. For example, it can be used to ascertain

whether  two  circuits  which  are  judged  to  have  different  functions  after  equivalence

checking are really different. This is useful in practice because in equivalence checking,

all  too  often,  designs  of  different  levels  need  to  be  compared.  Examples  include

comparing an RTL design with a gate-level design to check their equivalence. In such

cases, the lower level design might contain structural details that the higher level design
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does not. Due to this, equivalence checking might report a false negative.

In  basic  model  checking,  there  are  mainly  three  integral  parts:  implementation,

specification and model checker. The implementation (or system model) is represented as

a  state-transition  graph  that  shows  transition  relations  between  different  states.  The

specification represents the property that must be satisfied.  Specifications are expressed

in prepositional temporal logic form, a form for time-dependent Boolean functions. The

model checker is a module that exhaustively searches the implementation's state space to

find as many states that satisfy the specification as possible. Figure 1.3 shows the work

flow of a general model checking system.

Figure 1.3: Model checking example [16].

An alternative way to implement model checking is to model both the implementation

and  the  specification  as  automata.  Then,  two  automata  can  be  compared  to  test

equivalence.

An  advantage  of  model  checking  is  that  if  the  model  checker  fails  to  prove  the

equivalence between implementation and specification, it will generate counterexamples

which give clues why the model checking fails and where the errors might be. 

The  success  of  the  model  checker  depends  on  the  correct  formulation  of  the
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specification  and  the  power  of  the  model  checker.  The  Hardware  Model  Checking

Competition  (HWMCC) is  held  every  year  to  test  the  efficiency of  model  checkers.

Although  model  checking  is  faster  than  theorem proving  (see  Section  1.3.4)  and  is

completely automatic, it faces state explosion problem when dealing with larger designs.

The  difficulty  of  automata  comparison  is  another  factor  that  limit  the  pervasive

application of model checking. 

1.3.3  Symbolic Simulation

  
                                (a)                            (b)                              (c)

Figure 1.4: An example of conventional simulation and symbolic simulations.

Symbolic  simulation  “involves  introducing  an  expanded  set  of  signal  values  and

redefining the basic simulation functions to operate over this expanded set”, according to

[17]. In symbolic simulation, each signal is represented by a symbolic value which can

take any value in  the symbolic  value domain.  For  example,  in  Boolean domain,  one

symbolic  value  can  be  regarded  as  wither  binary  0  or  binary  1.  During  symbolic

simulation,  the  symbols  are  propagated  through  the  design  from  primary  inputs  to

primary outputs. This content is illustrated in Figure 1.4. The sign “∧” in Figure 1.4

means logical AND. Figure 1.4 (a) represents conventional simulation which guarantees

the  correctness  of  only  one  case  in  each  run.  Figure  1.4  (b)  represents  a  complete

symbolic simulation. Since a0,  a1 and a2 are symbolic binary values, the output of one

run actually contains the information provided by 8 conventional simulation runs. Figure
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1.4 (c) represents partial symbolic simulation. By assigning symbolic value to one of the

inputs and performing constant propagation, the number of total simulation runs can also

be reduced. The significant reduction in simulation cases renders symbolic simulation

ideal  for  handling  complex  and  large  circuits  that  otherwise  need  huge  amount  of

conventional simulation runs. Figure 1.5 shows a more complex example.

Figure 1.5: Another example of symbolic simulation

In Figure 1.5, symbols a, b and c are primary inputs, symbol d is intermediate signal

and symbol e is primary output. Signal d can be expressed as d = a ∧ b. Then e can be

represented  as  e = (a ∧ b)∨ c.  All  primary  input  symbols  propagate  to  the  primary

output  in  one  simulation  run.  The  primary  output  bit  is  represented  by  a  symbolic

expression with respect to primary inputs, according to specific circuit. 

While performing symbolic simulation, one needs to make sure that the initial state

and input variables cover all valid test cases within circuit constraints  [18]. BDDs are

popular in  digital  circuit  symbolic  simulation  [17] because they can represent  sets  of

values that signals in circuit may take with reasonable complexity. However,  BDDs are

not feasible for large designs because certain internal structures, such as XOR, can make

BDDs too large to build.

Based  on  basic  symbolic  simulation  theory,  a  set  of  improved  works  have  been

proposed  for  hardware  verification,  such  as ternary  simulation  [19],  quaternary

simulation, and symbolic trajectory simulation [20]. 

9
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1.3.4  Theorem Proving

Theorem proving is another important technique used for hardware verification. It is

of great importance because of the need for more general-purpose mathematic theorems

and tools that can be applied to verification. Designers need more general mathematics

because as hardware design improves, the mathematical models for integer and binary

areas are not sufficient for solving all verification problems. Some verification problems

for certain designs, such as floating-point arithmetic circuits, need mathematical models

for more complex fields, such as infinite sets and real numbers.

The first step in theorem proving is to build a collection of formulas derived from the

circuit under the proper field. The overall formulation process includes sub-tasks, such as

defining semantics and syntax and formulating specification (or conjecture).  Then the

satisfiability between derived formulas and formulated specification is checked using the

selected  theory.  Some  typical  formalisms  that  are  common  in  theorem  proving  are

propositional logic, temporal logic, first-order logic and higher-order logic. The critical

factors that determine the selection of formalism type are the formula expressiveness and

the difficulty of solving corresponding decision problem. More expressive formalisms

will  be  harder  to  automate.  In  practice,  it  has  been found that  propositional  logic  is

suitable for modeling a wide range of problems, such as combinational logic equivalence

checking problems and finite-state transition problems. First-order logic is also powerful

enough for modeling current problems. 

After selecting feasible fields, proper theorem proving techniques, such as resolution,

tableaux, and others, are applied to check whether the specification theoretically follows
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from inferences derived from the circuitry. 

There are important differences between model checking and theorem proving. Model

checking converts system and specification into certain models (usually state transition

graphs)  and  then  check  their  equivalence.  Theorem  proving  models  specification  as

conjecture and system as axioms, then tries to prove the conjecture using known axioms

and theories in the assumed field. 

Other  works  propose  a  combination  of  simulation  and  formal  verification.  These

methods are typically based on Brand's work [21] where a divide and conquer paradigm

is introduced. Firstly a small number of simulations are run on both designs to ferret out

possible  equivalent  points.  Then  techniques,  such  as  comparing  ROBDDs  or  SAT

sweeping  can  be  used  to  prove  that  these  points  are  indeed  equivalent,  [22],  [23].

Subsequently, the proved true equivalences between subset areas in the designs are used

to  deduct  further  equivalences  of  the  circuits  until  the  whole  designs  are  explored.

However, approaches that follow such framework also have some problems. The biggest

one is the possibility of false negatives [24], and for this reason they can't always claim

that two designs which are proved different using this method are indeed different.

1.3.5  BDD-Based Techniques

Many of  the formal  verification methods make use  of  Binary Decision  Diagrams

(BDDs) [25], [26]. Being an effective data structure to present Boolean functions, BDDs

are popular in formal verification area, where circuit functional verification problems can

be described in a Boolean fashion and efficiently solved using BDD-based techniques. 
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To construct BDDs for boolean functions correctly, some rules must be followed.

Firstly, a fixed ordering of variables which appear in the given function specification

must be specified. Then the initial decision tree is built from root to leaves according to

the predefined ordering. The Boolean-Shannon decomposition rule used while building

the decision tree is:

                                          F = xF x + x ' F x '                                           (1.1)

The decomposition is performed on each node in BDDs with respect to the predefined

variable. Finally, all duplicate nodes in the preliminary decision tree are merged and all

redundant nodes deleted from the tree, resulting in a general graph. 

[24] presents the basic strategy of utilizing BDDs to perform equivalence checking.

BDD for each primary output bit of compared circuits needs to be built with respect to

the corresponding primary inputs.  Such established BDDs are then used to check the

function equivalence. 

However,  as  already  mentioned  in  [24],  the  application  of  traditional  BDD

representations is  limited by large in BDD size.  In the worst  case,  the complexity of

building corresponding BDD increases exponentially with the increase of function size.

[24] also shows that BDDs can be used in sequential equivalence checking. 

When  applied  to  sequential  equivalence  checking,  BDDs  represent  sets  of  states

instead of representing internal nodes in circuits. After image computation and reachable

state  computation,  one  can  decide  whether  two  sequential  circuits  are  functionally

equivalent or check if given properties are satisfied. Sequential equivalence checking is

beyond  the  scope  of  this  work  and  will  not  be  elaborated  on  in  this  document.

12



Nevertheless it is known that the application of BDDs in these areas also suffers from

size explosion caused by function size and variable order. An example of representing a

2-bit unsigned multiplier with specification (2a1+a0)(2 b1+b0) in BDD is given in Figure

1.5. In this figure p0, p1, p2, p3 represent primary output bits of the multiplier.

   

                                  (a)                                                                  (b)
 

                                    (c)                                                                       (d)

Figure 1.5: An example of BDD for 2-bit unsigned multiplier.

In  [27],  Burch  used  BDDs  to  verify  multipliers  by  representing  the  multiplier
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specification in a different way (called as fanout splitting) so as to avoid constructing

BDDs of exponential size. Although the BDD size can be reduced to O(n3), where n is

the number of bits of operands in an n × n multiplier, this method requires construction

of specifications that are equivalent to the circuit outputs after fanout splitting. Just as

evaluated by [28], requirement of Burch's method is hard to apply to synthesized circuits

because the logic may be restructured dramatically. [29] proposed a depth-first algorithm

to construct BDDs in order to reduce memory overhead, but with poor spatial locality of

reference which degrades the overall performance. [30] focused on building large BDDs

in a breadth-first way aiming at improving the efficiency by optimizing memory locality.

However, the CPU time overhead increases dramatically with the increase of the size of

inputs.  Currently  the  best  publicly  available  BDD manipulation  tool  is  CU Decision

Diagram  Package  (CUDD)  developed  and  maintained  by  University  of  Colorado  at

Boulder [31]. 

1.3.6  *BMD: An Efficient Representation for Word-Level Functions

Multiplicative  Binary  Moment  Diagrams (*BMDs)  [7] enables  modeling  datapath

circuits  in  word-level  data.  *BMDs  realize  efficient  representation  for  important

functions  that  cannot  be  efficiently  represented  by  BDDs.  In  *BMDs,  edges  are

associated  with  weights  which  can  be  combined  multiplicatively.  The  differences

between  BDDs  and  *BMDs  lie  in  two  factors.  Firstly,  unlike  BDDs,  *BMDs  don't

implement point-wise decomposition. In BDDs, each node has two children representing

positive  factor  and  negative  cofactor  of  the  expression  derived  by  Shannon

decomposition  respectively.  In  contrast,  *BMDs  are  based  on  a  rearrangement  of
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Shannon decomposition, called positive Davio decomposition:

                                           F = F x ' + x (F x−F x ' )                                            (1.2)

In Equation (1.2) the term (F x−F x ') is called the linear moment of  f with respect to x.

The second difference is that each edge in *BMDs has a specific weight assigned which

indicates a multiplicative factor of corresponding node. In BDDs edges just represent the

polarity of the decomposing variable (showing if parent node points to a positive cofactor

or  to  a  negative  cofactor).  An  example  of  *BMD  representation  of  function  “8-

20z+2y+4yz+12x+24xz+15xy”  is shown in Figure 1.6.

Figure 1.6: An example of *BMD representation of function “8-
20z+2y+4yz+12x+24xz+15xy”[7].

*BMD shows great advantages in representing designs at the word level. The basic

algorithms of applying *BMDs to formal verification area is illustrated are discussed in

[7]. The fundamental algorithm uses word-level encoder to encode the bit-level outputs of

the circuit while the given specification is also encoded into word level. The *BMD of

world-level  output  expression is  compared with *BMD of word-level specification to

check whether they are equivalent or not. An improved algorithm, which applies *BMDs
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to  practical  design,  is  called  hierarchical  verification.  In  hierarchical  verification,  the

initial design is first partitioned into subcomponents according to its internal word-level

structure.  Next,  the  correctness  of  subcomponents  is  verified  with  respect  to  the

corresponding  specification.  Finally, based  on  the  correctness  of  subcomponents,  the

whole design is verified against its specification.

Although  *BMDs  are  found  to  be  much  more  efficient  than  BDDs  in  solving

verification  problems  for  large  and  complex  circuits,  the  applicability  of  *BMDs  is

limited  by the  compulsory requirement  of  word  level  representations  for  the  internal

structures. This is especially difficult for synthesized or optimized circuits, which often

have many irregular structures. Another issue is that, although the *BMD representation

can  be  linear  for  circuits  which  have  good  word  level  structure,  “a  mistake  in  the

implementation of integer multiplication logic can cause an exponential explosion of the

resulting  graph”  [32].  *BMDs  can  represent  Boolean  expressions  with  complexity

comparable  to  BDDs.  An  example  of  representing  2-bit  unsigned  multiplier  with

specification (2a1+a0)(2 b1+b0) using *BMD is given in Figure 1.7.

Figure 1.7: An example of BMD for 2-bit unsigned multiplier.
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Kronecker multiplicative Binary Moment Diagrams (K*BMDs) [33] as a complement

to *BMDs make the representation of Boolean functions easier. K*BMDs incorporate the

characteristics of ROBDDs and Edge-Values Binary Decision Diagrams (EVBDDs) [34],

and allow dynamic switching between the two. In this way, it is possible to represent both

word-level  and Boolean-level  information  in   circuits  in  a  single  flow. However  the

deficiency of K*BMDS is that in order to make the diagrams canonical and to make the

edges in the diagrams both additive and multiplicative, a set of complex restrictions have

to be satisfied.

1.3.7  TED: World-Level Compact Canonical Representation  

In  [13], a canonical graph-based representation, called Taylor Expansion Diagrams

(TEDs), has been proposed that provides efficient verification of designs specified on

algorithmic  and  behavioral  levels.  The  authors  of  TED  noticed  that  BDD-based

verification techniques cannot address the verification problem of larger circuits with a

hybrid  structure  of  word-level  and  bit-level  representations  satisfactorily  (including

K*BMDDs mentioned in Section 1.3.6). To address this problem, an entirely different

decomposition principle, based on a Taylor series expansion, has been used to decompose

the expressions. The circuit is represented as a multi-variate polynomial function. The

decomposition is performed on word-level, algebraic variables in the specification, one at

a time. For a fixed variable ordering, the resulting TED is canonical. 

Given  a  real,  differentiable  function  f (x , y , ...),  the  result  of  decomposing

f (x , y , ...) with respect to variable x at an initial point x0 = 0 is:
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             f (x )= f (0) + xf ' (0) +
1
2 !

x
2
f ' ' (0) +

1
3 !

x
3
f ' ' ' (0) + ...                (1.3)

The k-th derivative f (k)
( x=0) in equation 1.3 is a k-children of variable x. Each term in

the decomposed equation represents a product of the child-node function and the weight

of the  edge. Figure 1.8 shows an example of TED result of decomposing expression

(5 A+B)(A+2C). In Figure 1.8, symbols  A,  B and C indicate the word-level variables.

Each term in the decomposed function is assigned to one of its child node. For example, a

dotted line connects the  0-child with its parent, a single solid line connects the  1-child

with its parent, a solid line labeled “^i” connects the i-child with its parent, etc. The edges

can  also  be  labeled  with  integers  that  represents  the  multiplicative  coefficient.  For

instance,  the  right  most  edge  in  Figure  1.8  has  label  (^2  5), where ^2 denotes  the

quadratic child (2-child) and constant  5 is the weight of this edge.  The reduced TED

representation is canonical under fixed variable order.

Figure 1.8: An example of TED for (5A + B)(A + 2C).
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Moreover, by constraining the integer range to {0, 1} to support Boolean logic in an

algebraic  way, TED can be modified to  represent  Boolean functions.  TED of  a  2-bit

unsigned  multiplier  with  specification  (2a1+a0)(2 b1+b0) in  which  all  variables  are

binary is given in Figure 1.9.

Figure 1.9: TED for a 2-bit unsigned multiplier

The known deficiency of TED is that it cannot represent the function of individual

bits in output word with respect to word-level input. Similar to *BMDs, the efficiency of

TEDs is affected by the number of variables in the circuit.

1.4  Inspiration for Current Work

The different methods and techniques reviewed above cannot address the verification

problem of combinational integer arithmetic circuits efficiently. The proposed work aims

at solving this problem efficiently at an algebraic level, treating the function specification
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(if known) and its implementation as a properly constructed symbolic algebraic system in

ℤ2n.  It  derives  arithmetic  function  computed  by  the  circuit  from  its  gate-level

implementation, which can be compared with a reference signature to determine whether

the  circuit  is  correct.  It  can  also  be used  as  a  reverse  engineering  tool,  to  learn  the

function performed by the given circuit. Chapter 2 reviews some advanced methods that

try  to  solve  the  combinational  arithmetic  circuit  verification  problem using  symbolic

computer algebra. Chapter 3 explains the proposed work, how it differs from previous

works and shows the preliminary experiment results.
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CHAPTER 2

RELATED WORK

The method proposed in this thesis aims at solving the functional verification problem

for combinational arithmetic circuits specified on an arithmetic bit level. In this chapter,

several formal verification methods that address the similar application are analyzed. 

2.1  Theoretical Background

The underlying mathematical models of formal verification method discussed here

are based mainly on symbolic computer algebra [35]. Symbolic computation manipulates

expressions with symbolic variables, which are not given any numerical values. In this

way,  symbolic  computer  algebra  preserves  the  advantages  of  formal  verification.

Conventional  formal  verification  methods,  discussed  in  Chapter  1,  typically  try  to

represent  primary outputs with respect  to  primary inputs using certain data  structure.

However,  formal  verification  methods  that  will  be  investigated  here  generally  utilize

another interpretation of symbolic computer algebra. The formal verification problem is

modeled in this work as a membership testing problem between the circuit specification

and its implementation as polynomials, based on a computer algebra model. The final

goal  is  to  prove  that  implementation  represented  by  circuit  equations  satisfies  the

specification polynomial. This is accomplished by performing a series of divisions of the
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specification  polynomial F  by  the  implementation  polynomials B  =  {f1,  ...,  fs}.  For

example, the specification of a multiplier circuit with word-level inputs X, Y and output Z

is  F = Z − X ·  Y.  The implementation polynomials are derived from gate equations,

similar to those shown later in Equations 3.1.

To  systematically  manipulate  polynomials,  a  term  ordering  “>”  is  imposed  on

monomials. The leading term of polynomial g under such ordering is denoted lt ( g). Term

ordering plays an important role in polynomial reduction used in circuit verification.

Let f, g be polynomials. If a non-zero term t of fi is divisible by the leading term of g,

we say that f reduces to r modulo g denoted:

 f →
g
r, where  r = f −

lt ( f )
lt ( g)

· g.

Similarly,  f can be reduced with respect to (divided by) a set of polynomials B = {f1, ...,

fs}. This is known as polynomial division modulo  B, denoted symbolically as  f →
B

+ r

where r is a remainder, with the property that no term in r  is divisible by the leading term

of  any  polynomial  in  B.  The  sign  + refers  to  the  fact  that  the  division  process  is

sequential, using polynomials in B one by one.

Let B = {f1, ..., fs} be a set of polynomials representing circuit elements (logic gates,

adders, arithmetic modules, etc.) and let R be a polynomial ring, R = F{x1, ..., xn}. In fact,

in  our  case  R should  be  defined over  integers,  ℤ2n,  rather  than  a  field  F.  Then,  J =

⟨ f 1 , ... , f s⟩ with f i ∈ ℤ[ X ], called an ideal, is a set of all polynomials generated by {fi}. 

                  J = ⟨ f 1 , ... , f s ⟩ = h1 f 1+ ... + hs f s: hi ∈R                             (2.1)

The polynomials f1, ..., fs  are called the bases, or generators, of the ideal J. In our case,
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each generator is a polynomial model of a circuit module, and the set of generators can be

viewed as the implementation of the circuit.

We also need a notion of variety. For a given ideal J, variety V ( J ) defines a set of all

simultaneous solutions to a system of equations  f 1(x1 , ... , xn)= 0;  ...,  f s(x1 , ... , xn) = 0.

From the circuit perspective, variety contains all the signal values of the circuit produced

by any set of primary inputs, over all possible input combinations.

We  define  a  circuit  specification  as  polynomial  F ∈ ℤ2 n[X ].  For  example,  the

specification of a multiplier circuit, P = A · B, where A, B are word-level variables, is F =

P − A · B. 

We can now formulate the arithmetic circuit  verification problem as follows  [36],

[37].  Given  a  circuit  represented  by  the  set  of  generators, B  = {f1,  ...,  fs},  and  the

specification F, the goal is to prove that the implementation (modeled by B) satisfies the

specification F. Mathematically, this can be stated that the solution to F = 0 agrees with

V ( J ), or, equivalently, that that  F vanishes on  V ( J ) [37]. We say that  F vanishes on

V ( J ) if  F evaluates to 0 for all values of V ( J ) (which also means the remainder r = 0).

In computer algebra this problem is known as ideal membership testing.

However, if  r ≠ 0 ,  such a conclusion cannot be made;  B may not be sufficient to

reduce F to 0, and yet the circuit may be correct. To check if F is reducible to zero one

must use a canonical set  of generators,  G = {g1 , ... , g t}, called Groebner basis,  which

generates the same ideal as the one based on B, i.e., J = ⟨ g1 , ... , g t ⟩ = ⟨ f 1 , ... , f s⟩. Without

Groebner basis one cannot answer the question whether F  J∈ . A number of algorithms

have been developed for computing Groebner basis over the field, such as Buchberger
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[38], F4 [39], etc., but their computational complexity is prohibitively large for nonlinear

arithmetic  circuits.  Furthermore,  these  algorithm do  not  apply  directly  to  rings  over

integers, ℤ2n, which is considered in this work.

2.2  Previous Work

Work  in  arithmetic  circuit  verification  based  on  computer  algebra  and  algebraic

geometry was pioneered by [40] and [41].

In [41] an arithmetic circuit is modeled as a network of arithmetic operators, such as

half-adders, comparators, product generators, etc.,  which in principle can be extracted

from the gate-level implementation. These operators are modeled using arithmetic bit-

level (ABL) equations, {G j}. Authors of [41] (and also [36]) show that for an arbitrary

combinational circuit, if the terms of the gate equations {G j} are ordered in the reverse

topological order, {outputs} > {inputs}, then all leading monomials of the polynomials in

B are relatively prime. As a result, the corresponding set  G constitutes a Grobner basis,

obviating the expensive Grobner  basis  computation.  The verification problem is  then

formulated as a variety subset problem and solved by reducing the specification modulo

G to a normal form and testing if it vanishes over ℤ2n. Furthermore, in [42], the solution

is restricted to binary variables by imposing Boolean constraints,  ⟨ x2
− x ⟩, and solving

the  problem  directly  over  quotient  ring  Z 2n[X ] /⟨ x2
− x ⟩ : x ∈X .  An  important

simplification comes from the fact that (Lemma 1, [42]): “If some polynomial f vanishes

on V ( J ) then f must be a zero polynomial” and not just a zero function. That is, only the
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zero  polynomial  in  Q = Z 2n[ X ] /⟨ x2 − x ⟩ : x ∈X  defines  the  zero  function  on  Q|x|,

rendering  the  zero  function  test  superfluous.  This  makes  it  possible  to  replace  the

expensive zero function test (r = 0?) by checking if r is a zero polynomial. The problem

based on  this  approach  was  solved  using  a  computer  algebra  system,  Singular  [43].

However,  this  approach  is  limited  to  arithmetic  bit-level  networks  composed  of  half

adders and full adders, which need to be extracted from the gate-level implementation.

Experimental results show that this is the most expensive part of the process, and such an

extraction is not always possible, especially in highly bit-optimized implementations.

In  [36],  the  verification  problem is  also  formulated  as  ideal  membership  test  but

applied to Galois field arithmetic circuits. They have shown that for a special case of

Galois  Field  (GF  or  F 2q),  when  the  specification  F and  the  ideal  J of  the  circuit

constraints (implementation) are in F 2q, then the problem of testing if F ∈ I (V (J )) can

be greatly simplified. Specifically, it can be reduced to the ideal membership testing over

a larger ideal, F ∈ ( J + J 0), where J 0 = ⟨ x2
− x ⟩ is an ideal of vanishing polynomials in

F 2. Adding J 0 basically restricts variety V ( J ) to solutions in F 2, i.e., to V ( J )∩V ( J 0). It

is  known from the  theory  of  algebraic  geometry  [35] that  intersection of  varieties  is

equivalent to a union (sum) of ideals. 

Similarly to  [41], Lv, Kalla, et. al  [36] derives term ordering from the topological

structure of the circuit,  which renders the set of polynomials B  (circuit  constraints)  a

Groebner  basis,  thus  obviating  the  need  to  perform expensive  GB computation.  The

method uses a customized, F4-style polynomial reduction which is based on a modified

Gaussian elimination algorithm  [39]. An important feature of this approach is that, by
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construction,  if  the remainder  r≠0 then it  contains  only the primary input  variables.

Consequently, it can be used to provide a counterexample, or a bug trace, to locate the

source of the bug.

However, this method also suffers from some problems that limit its application. For

example, this approach applies only to Galois Field networks, and it is not clear if the

simplification of  the  general  ideal  membership  problem to testing for  F  (J  +  ∈ J 0)

applies to polynomial rings of integers, ℤ2n. 

In effect, the two approaches,  [42] and  [36], managed to reduce the problem to an

ideal membership problem,  F ∈ J , instead of solving a more complicated problem of

checking if  F ∈ I (V (J )).  Each approach places  some limitations  on the problem to

make it solvable.

Alternative approaches to arithmetic circuit verification were also proposed in  [44],

[45] and  [46].  In  [44] an arithmetic  bit-level  circuit  is  modeled as a  network of half

adders, but, in contrast to [42], admits also logic gates. Logic gates are modeled with, or

directly derived from, half adders, possibly leaving some of the outputs unused (referred

to as floating signals). This model makes it possible to describe an entire network as a

system of  linear  equations.  Such a  system then represents  the  implementation of  the

circuit.  The  specification  is  composed  of  two  parts,  an  input  signature,  Sigin,  a

polynomial  in  primary  inputs  (PI);  and  an  output  signature,  Sigout ,  a  polynomial

representing the circuit result in terms of the primary outputs (PO). The specification is

then defined as the difference between the two signatures,  F spec =  Sigout  −  Sigin.  For

example,  for  a  2-bit  adder  with  inputs  a0,  a1,  b0,  b1 and  outputs  S2,  S1,  S0,  the
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specification is defined as F spec = 4S 2 + 2 S1 + S0 − (a0 + 2a1 + b0 + 2 b1).

The system of linear equations (implementation) is then reduced to a single algebraic

expression,  called  the  circuit  signature,  and  is  compared  to  F spec.  If  the  signature

polynomial  is  identical  to  F spec,  then  the  circuit  operates  correctly  according  to  that

specification.  If  not,  the  difference  between  the  two,  called  residual  expression,  RE,

determines a possible mismatch between the implementation and the specification.  In

[44], a Gaussian-like elimination and standard linear algebra techniques were used to

compute the signature, and a canonical polynomial representation TED [47] was used to

compare the results.

The  shortcoming  of  this  method  is  that  it  can  only  handle  linear  portion  of  the

network, with linear input signature. Extension to nonlinear circuits is also possible, but it

requires additional step to translate the input signature of the linear block into a nonlinear

signature in terms of the primary inputs. TDS system [48] based on TED can be used for

this  purpose.  It  should  be  noted  that  such  defined  F spec is  in  fact  the  same  as  the

specification polynomial F in the works of [36] and [42], and the set of linear equations

(or, equivalently, polynomials)  forms the basis B  of circuit  elements (half-adders and

logic  gates).  The  resulting  RE is  then  the  same as  the  remainder  of  the  polynomial

reduction of  F spec modulo set  B. The significant difference between these approaches is

that in [44] it was not possible to capture the Boolean nature of the signals, i.e., to impose

the quotient ring Z 2n[X ] /⟨ x2
− x ⟩ : x ∈X  for variables x i  X. The authors suggested∈

that Boolean reasoning combined with topological analysis of the circuit can be used to

reduce  RE to zero, but in the worst case this task could be as difficult as the original
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problem itself.

In  [45],  a  different  model  was  used,  whereby  the  computation  performed  by the

circuit is viewed as a flow of binary data. For the circuit to be correct, the flow must

satisfy a suitably modified Flow Conservation Law. Verification problem was solved by

transforming the known input signature into a polynomial in primary outputs only, and

checking if  the resulting expression matches the output signature (binary encoding at

primary outputs). The issue of testing if RE = 0 was eliminated by checking the relation

between the fanouts and floating signals, that correctly captured the Boolean nature of

signal variables. Specifically, the following condition has to be satisfied by the circuit,

∆ fn −  Σ fl = 0, where  ∆ fn and  Σ fl are polynomials representing fanout variables and the

floating (unused) signals, respectively. This condition basically states that any additional

flow introduced into the network by fanouts, must be compensated by the flow consumed

by the floating signals that do not reach primary outputs. In practice, the method is still

applicable only to networks with linear input signatures. 

In conclusion, the problem of formally verifying integer arithmetic circuits, over ℤ2n

remains open. This thesis addresses some stated problems and proposes a robust solution

in this domain.
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CHAPTER 3

PROPOSED WORK

3.1  Motivation

Original  works,  [41],  [36],  in  computer-algebra  based  methods  showed  that,  for

combinational circuits with proper (reverse topological) ordering of terms in basis B, the

constructed basis over the respective ring (in our case ℤ2n) constitutes a Groebner basis.

This is true for combinational circuits, which are direct acyclic graphs (DAG). In such

circutis the leading monomials are single variables and the leading terms are relatively

prime. Whether this fact can help solve the problem of proving equivalence of F over ℤ2n

subject to implementation B over ℤ2 remains to be proved. In the meantime, we propose

to solve the problem bypassing this theoretical issue, and act as follows.

In our case, the specification polynomial  F spec = Sig out − Sig in is a ring in  ℤ[X ] with

coefficients in ℤ2n and variables in ℤ2. In contrast to [45], and work of Kalla et. al, [36]

for Galois Fields networks, polynomial F  can be nonlinear. This regards the nonlinear

circuits, such as multipliers, multiply-accumulator, etc., and any circuit containing logic

gates.  In  this  case  the  input  signature  and  polynomials  in B  may  be nonlinear  (see

Equations 3.1).

Notice  that  for  polynomials  whose  terms  contain  single  variables,  polynomial

division  which  results  in  cancellation  of  terms  is  equivalent  to  substitution  by  the
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expression corresponding to the substituted variable. This is true in the case of the HA

network (ABL model) and in the case of GF networks, composed entirely of XOR and

INV  gates.  Addition  of  the  OR  gates  complicates  the  issue,  since  the  polynomial

representation of the OR gates  (a + b− a · b) contains a nonlinear term, and the same

variable appears in more than one term. The same is true for XOR in ℤ2, where XOR is

represented as  (a + b − 2 · a · b) while  it  does not cause the problem in  GF 2,  where

polynomial for XOR gates are just represented as a + b.

All  these  investigations  can  be  summarized  as  follows:  polynomial  division  is

equivalent to variable substitution and should be done in a reversed topological order,

from the gates outputs to the gates inputs. Examples of polynomials used in polynomial

division are Equations 3.1 and Equations 3.2. This applies to both linear and nonlinear

case. Because of the potential exponential explosion, the division or substitution should

be done in the most efficient manner, the topic which will be explored in the remainder of

this  thesis.  The method proposed here  extends  our  work  described in  [4] from ABL

network to gate-level (or hybrid-level) circuit implementation of arbitrary granularity. It

offers a  robust  solution to  integer  arithmetic  verification by computing (extracting)  a

unique arithmetic function implemented by the circuit, directly from its low-level circuit

implementation.  From here on, the terms  rewriting,  substitution and  unrolling will be

used equivalently.

3.2  Implementation

Our method attempts to solve the functional verification problem of combinational
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arithmetic circuits at an algebraic level by formulating it as a function abstraction model,

i.e., by deriving a unique bit-level polynomial function computed by the circuit directly

from its  low-level  implementation.  It  uses  an  efficient,  guided  elimination  technique

while  trying  to  avoid  the  conventional  and  expensive  process  of  Groebner  basis

computation and implementing polynomial division. 

In our method, the circuit under study is composed of arbitrary elements, such as

logic gates and multiple-output arithmetic components. It will be modeled as a network

of interconnected bit-level components (modules), each with a finite set of binary inputs

and  one  or  more  binary  outputs.  Specifically,  a  module  represents  a  single-output

Boolean logic gate (AND , OR , XOR, INV) or a bit-level arithmetic circuit (half adder,

HA , or a full adder, FA) with two binary outputs, carry C and sum S. In this sense, the

proposed model admits a hybrid network, composed of an arbitrary collection of logic

gates and bit-level arithmetic components. At one extreme, it can be a purely gate-level

circuit; at the other, a network composed of arithmetic components only.

Each module mi in the network is modeled as a polynomial with variables X = {x1, ...,

xn}  ∈ ℤ2 (binary) and coefficients in  ℤ2n (integers modulo  2n). More precisely, f i is a

polynomial quotient ring over  Z 2n[X ] /⟨ x2
− x ⟩ : x ∈X . The restriction to  ⟨ x2 − x ⟩ is

dictated by the binary nature of the circuit  signals.  Sometimes,  such a polynomial  is

referred to as a  pseudo-Boolean expression, since it represents an algebraic expression,

with usual algebraic multiplication and addition operators over Boolean variables. For

example,  an  AND gate  (a ∧ b),  is  expressed  by an  algebraic  equation  p = a  ·  b,  or

equivalently by a polynomial p − a · b, etc. The following equations summarize algebraic
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representation of Boolean operators:

¬ a = 1 − a

a  b = a · b∧

a  b = a + b − a · b∨

a  b = a + b − 2a · b⊕

Multiple output modules, such as single-bit adders, with binary inputs can be expressed

similarly.  For  example,  a  half-adder  HA and  a  full-adder  FA,  can  be  expressed  by

polynomials:

HA : 2C + S = a + b

FA : 2C + S = a + b + c in

where a, b, c in are binary inputs and C, S are binary outputs.

 We define the verification problem by setting F spec = Sig out. We devise a procedure

(based on Gaussian elimination combined with term substitution) to rewrite  Sigout  into

Sigin using polynomial representation (shown in Equations 3.1 and 3.2) of the internal

circuit  elements  (gates,  adders,  etc.).  If  the  resulting  Sigin contains  only  the  primary

inputs (PI) then it uniquely determines the arithmetic function computed by the circuit.

The designer can then determine if the obtained input signature correctly describes the

expected  function  of  the  circuit  by  comparing  the  computed  Sigin with  given

specification. In this procedure, the basic requirement is to perform the substitution in a

reversed  topological  order.  The  reason  for  this  can  be  clarified  using  the  following
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example.  In  addition,  some  interesting  observations  are  also  found  to  make  the

substitution process more efficient.

Figure 3.1:  An example of gate-level implementation of a 2-bit signed multiplier. 

Figure 3.1 shows the gate-level  implementation of  a  2-bit  signed multiplier. This

circuit has a hybrid-level structure because because it contains both logic gates and a half

adder  shown  in  the  dotted  box.  This  circuit  is  non-linear  since  its  input  signature

Sigin = (−2 a1 + a0)(−2b1 + b0) = 4 a1b1 − 2 a1b0 − 2a0 b1 + a0b0 has non-linear terms.

The first step is to construct the equation set for each component in the circuit. The

resulting equation set is as follows:

                                               z 3 = 1 − x8                                                       Equation 3.3

                                          z 2 = 1 − x9                                                       Equation 3.4

z1 = x5 + x6 − 2 x5 x6                                                       Equation 3.5
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z0 = a0b0                                                       Equation 3.6

x8 = x1 + x7 − x1 x7                                                       Equation 3.7

x9 = x1 + x7 − 2 x1 x7                                                       Equation 3.8

x7 = x5 x6                                                       Equation 3.9

x5 = 1 − x2                                                     Equation 3.10

x6 = 1 − x3                                                     Equation 3.11

x1 = a1b1                                                     Equation 3.12

x2 = a0b1                                                     Equation 3.13

x3 = a1b0                                                     Equation 3.14

By definition, the output signature, Sigout, of the circuit is a linear polynomial of the

primary output signals. It is uniquely determined by the  n-bit encoding of the output,

provided by the designer. In this example, Sigout=−8 z3 + 4 z 2 + 2 z1 + z0. For more general

cases, an output signature of any arithmetic circuit with n output bits zi is represented as

follows:

 Sigout=∑
i=0

n−1

2 i zi

By substituting variables in Sigout  with their respective expressions, Equation 3.3 to

(3.14, we obtain the following sequence of intermediate expressions:

1) By substituting variable z 3 in Sigout  using Equation 3.3, Sigout  is converted to

F 1 = 4 z2 + 2 z 1 + z0 + 8 x8− 8 

2) By substituting variable z 2 in F 1 using Equation 3.4, F 1is converted to

F 2 = 2 z 1 + z0 + 8 x8 − 4 x9 − 4 
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3) By substituting variable x8 in F 2 using Equation 3.7, F 2 is converted to

F 3 = 2 z1 + z0 + 8 x1 + 8 x7 −8 x1 x7− 4 x9 − 4 

4) By substituting variable x9 in F 3 using Equation 3.8, F 3 is converted to

F 4 = 2 z 1 + z0 + 4 x1 + 4 x7− 4

5) By substituting variable z1 in F 4 using Equation 3.5, F 4 is converted to

F 5 = 2 x5 + 2 x6 − 4 x5 x6+ z0 + 4 x1 + 4 x7− 4

6) By substituting variable x7 in F 5 using Equation 3.9, F 5 is converted to

F 6 = 2 x5 + 2 x6+ z0 + 4 x1 − 4

7) By substituting variable z0 in F 6 using Equation 3.6, F 6 is converted to

F 7 = 2 x5 + 2 x6+ a0b0 + 4 x1 − 4

8) By substituting variable x1 in F 7 using Equation 3.12, F 7 is converted to

F 8 = 2 x5 + 2 x6+ a0b0 + 4 a1b1 − 4

9) By substituting variable x5 in F 8 using Equation 3.10, F 8 is converted to

F 9 =−2 x 2 + 2 x6+ a0b0 + 4 a1b1 − 2

10) By substituting variable x6 in F 9 using Equation 3.11, F 9 is converted to

F 10 =−2 x2 − 2 x3+ a0 b0 + 4a1b1

11) By substituting variable x2 in F 10 using Equation 3.13, F 10 is converted to

F 11 =−2a0b1 − 2 x3+ a0b0 + 4 a1b1

12) By substituting variable x3 in F 11 using Equation 3.14, F 11 is converted to

F 12 =−2a0b1 − 2a1b0+ a0b0 + 4 a1b1

After these12 steps, all equations derived from the circuit have been used. As a result

the  Sigout  has  been converted to  F 12 =−2a0b1 − 2a1b0+ a0b0 + 4 a1b1 which  matches  the
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given  input  signature.  Furthermore,  by  analyzing  the  factored  form  of  Sigin,

Sigin = (−2 a1 + a0)(−2b1 + b0), we conclude that this circuit is a 2-bit signed multiplier.

Such a factorized form can be obtained using TDS [47] system based on canonical TED

representation.

In  the  substitution  procedure  shown above,  the  equation  for  Fi is  in Disjunctive

Normal Form (DNF). It can be shown that each term in the DNF equation appears only

once, and hence Sigout expression is canonical (This will be formally proved in Chapter 5).

Essential of this approach is to improve the efficiency of the substitution process.

First, we must determine which variable to substitute in each step in order to make the

cancellation between terms happen as early as possible. This is of great importance for

keeping the expression  Fi of the transformed Sigout expression in each step as simple as

possible in terms of the number of its terms. For example, we will identify variables that

depend on common fanouts, as this will increase the number of similar expressions and

will increase a chance for simplification and elimination of common subexpressions. For

instance,  variables  in  subexpression  of  F 2,  8 x8 − 4 x9,  depend  on  common  fanout

variables x1 ,  x7. As a result,  8 x8 − 4 x9 = 4 (2 x8 − x9) after substitution in Equation (3.7)

and (3.8) is  reduced to  4 (x1 + x7),  without introducing a nonlinear term  8 x1 x7.  Hence,

expression F 2 can be directly transformed into F 4. If the substitution steps are modified,

for example by moving step 4 after step 6, then the Sigout expression after substituting x9

will be

 2 x5 + 2 x6+ z0 + 4 x1 + 4 x5 x6 − 8 x1 x5 x6 − 4 x7 + 8 x1 x7 − 4  

instead of
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 2 x5 + 2 x6+ z0 + 4 x1 − 4. 

In this hypothetical case, we can see that in order to get rid of x7, Equation (3.9) has to be

called again. Hence the size of expression,  in terms of product terms, in each step is

larger and the number of equations used for substitution is also larger. This is obviously

more expensive than the order shown in the original procedure.

Second, we try to simultaneously eliminate all outputs of higher level modules such

as adders (if present in the design). Consider, for instance, the dotted box in Figure 3.1,

which represents a half adder. As shown by Equation (3.2), the weighted sum of the half

adder  outputs,  2 x7 + z1,  can  be  replaced  directly  by  its  inputs,  x5 + x6,  thus  avoiding

unnecessary introduction and elimination of the nonlinear term 4 x5 x6. As a result, cut F 4

can be directly transformed into F 6 . Such nonlinear terms are particularly harmful if their

variables  continue  to  be  substituted  by  other  variables,  potentially  leading  to  an

exponential explosion.

Another important heuristic, which is not shown in example of Figure 3.1 explicitly,

is to keep all variables Boolean. We will do this by replacing the expensive division by

⟨ x2
− x ⟩ (employed by  [41] and other symbolic algebra methods)  by lowering  x k to  x

every time variable x is raised to higher degree during substitution. This may happen in

cases such as the one shown below.

Figure 3.2:  An example of keeping variable Boolean. 
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In Figure 3.2, variable f is the output, and variables a, b and c are the binary inputs. If

substitutions  are  performed  using  strictly  algebraic  manipulation  (multiplication),  the

expression for f will be ab + abc − a2b2c. However, by maintaining the Boolean value of

variables a, b,  f will be represented as

 ab + abc − abc = ab.

Other  heuristics,  noticeably  the  levelization  algorithm,  that  make  the  substitution

process  more  efficient  are  examined  in  the  following  chapters.  Specifically,  these

heuristics include:

• Dependency and levelization:

a) Substitution must follow the reverse-topological order; once a given variable

(output of a gate) is substituted by an algebraic expression of the gate inputs, it

will be eliminated from the current cut expression and will never be considered

again. That is, a variable is substituted for only after substituting all signals in its

logical  cone.  Since  the  circuit  is  acyclic,  there  always  exists  an  ordering  of

substitutions that satisfies this condition. We refer to this topological constraint

informally as “vertical”, since it orders variables upwards from primary outputs to

primary inputs.

b)  To  further  increase  the  efficiency  of  substitution,  another  (“horizontal”)

constraint  is  imposed  on  the  ordering  of  the  candidate  variables  at  a  given

transformation step.  Specifically, the variables that are  at  the same logic level

(from primary inputs) and have transitive fan-in to common variables should be

eliminated together, as this will maximize a chance of the reduction of common
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terms. It is these variables that define the best cut at each step of the procedure.

• Complex gates: 

Our signature transformation algorithm works on a fabric of basic Boolean gates;

this  offers  high  logic  granularity  and  the  greatest  choice  of  signals  for  the

selection of the smallest cut. For the design with complex gates (standard cells

AOIxx, OAIxx, etc.), algebraic equations are written for each internal signal of

the gate, rather than only for its output. As confirmed by our experiments, this

offers a richer set of cuts to choose from and increases a chance of an earlier

simplification of the cut expression.

• Binary signals: 

During elimination, the expensive division by the ideal x2 − x , employed by [42],

is replaced by lowering  xk to  x every time variable  x is raised to higher degree

during  the  substitution  process.  For  example,  if  at  any  point  an  expression

contains a term xyx, it will be replaced by  xy. With this, an expression, such as

xyx−yxy, will immediately reduce to 0.

• Efficient data structure: 

Our algorithm uses an efficient data structure to support these simplifications and

efficiently implement an iterative substitution and elimination process.
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CHAPTER 4

IMPLEMENTATIONS AND IMPROVEMENTS OF VARIABLE SUBSTITUTION
METHODS

4.1  Preliminary Experiments and Result Analysis

To test  the basic variable substitution method presented in Chapter 3, we wrote a

prototype program in Python that performs such variable elimination. The basic heuristic

applied here is to replace each variable only once and to keep each variable binary. The

input  file  to  this  prototype  program is  an  equation  file  which  is  converted  from the

Verilog description of the circuit. The format of the equation file is predefined as follows

the  first  line  in  it  must  be  the  given output  signature,  the  subsequent  lines  are  gate

equations. This format will be the standard input format for all the following algorithms.

The order  of gate  equations  in  the equation files is  the reverse of the order of logic

expressions in the Verilog file.  The equations are obtained by translating the original

Verilog netlist into a netlist of 2-input OR, XOR, AND and INV gate equations. The output

signature provided by user is the linear combination of primary output bits defined by the

output encoding. An example of the conversion between the Verilog file and the equation

file is shown in Figure 4.1. For example, the first equation on line 19 of the Verilog file is

converted to the last equation at line 17 of the equation file. Note that the first line in the

equation file is the output signature of the multiplier. For each equation in the equation

file, the variable on the left side of the equality sign “=” is the variable that needs to be
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substituted  for  in  the  signature.  We  refer  to  this  variable  as  target  variable.  The

polynomial on the right side of the equality sign is the substitution for the target variable.

We refer to this polynomial as substitution polynomial.

Figure 4.1: Source Verilog file and converted equation file of a 2-bit signed multiplier

After the equation file is read in, substitutions start from Sigout. The substitution and

elimination  approach  implemented  in  the  prototype  program  is  straightforward.  The

program repeatedly calls the  clean_substitute function. This function takes the current

intermediate signature and one gate equation encountered as input parameters. After a

target  variable is  completely substituted,  it  will  return a  new simplified intermediate
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signature to the next call. After all gate equations in the equation file are exhausted, the

returned signature will be the computed input signature for the given output signature and

gate equations. The pseudo code for the clean_substitute function is shown below.

Algorithm 1: clean_substitute pseudo code.

In Algorithm 1, the simplify method is used to perform the term cancellation task by

combining terms that have the same monomial. It is very efficiently implemented in the

following  fashion.  In  the  simplify method,  each  term in  the  signature  is  stored  in  a

dictionary with a monomial string as the key and its integer coefficient as corresponding

containment. If the monomial of a term already exists in the dictionary, the coefficients

are  combined.  For  cases  when monomial  keys  are  not  stored  yet,  a  new monomial-

coefficient pair will be added into the existing dictionary.
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Figure 4.2: CPU times for verifying signed multipliers using clean_substitute.

Figure 4.3:  Memory usage for verifying signed multipliers using clean_substitute.

43



We  performed  initial  experiments  on  gate-level  arithmetic  circuits,  such  as

multipliers. The multipliers were generated by a program Genmult [49]. The tests were

run on a PC with an Intel® Core™ i5-3470 CPU @ 3.20GHz × 4 processor, 15.6 GB of

memory and a 229.2 GB disk. Our preliminary experiment results  are shown in Figure

4.3 and Figure 4.4.

The  CPU time  results  for  verifying  the  signed  multipliers,  shown in  Figure  4.3,

demonstrate  quadratic  dependency  on  the  number  of  gates.  The  rudimentary

implementation is able to verify signed multipliers up to 64 bits in a reasonable time.

Note that the memory usages for our method is very small, less than 15MB for verifying

64-bit signed multiplier, as shown in Figure 4.4, and the main limitation is the CPU time.

Analyzing  the  preliminary  implementation,  it  is  obvious  that  the  clean_substitute

function consumes most of the CPU time, because it will be called as many times as the

number of gates in the circuit.  Also it is the most complex function in the program. Since

the simplify method in the clean_substitute function is hard to be further optimized, the

chance of improving the efficiency lies in modifying the overall substitution process. As

shown in  Algorithm 1,  the  substitution  is  achieved  by comparing  each  literal  in  the

signature with the target variable. If a match is found, the literal will be replaced by the

polynomial that algebraically matches the target variable. Once all matches are found,

the resulting signature will be simplified and returned to next step.

4.2  Experiments on Improved Algorithm and Result Analysis

One of the heuristics (and the only heuristic implemented up to now) described in
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Section 3.2 is  to  keep variables binary. This means that after  simplification,  it  is  not

possible to have a term like “a · a · b”, given that a and b are both binary variables. The

term ak of a binary variable a evaluates always to a itself, so each literal in a term appears

exactly once. That is, for each term in the simplified DNF expressions, it is enough to

check whether the  target variable is in the expression or not, instead of checking what

every single literal is. Algorithm 2 shows the  new_clean_substitute  procedure obtained

by modifying the substitution process in clean_substitute function is as follows.

Algorithm 2: new_clean_substitute pseudo code.

Algorithm  2  differs  from  Algorithm  1  in  the  substitution  steps.  In  the

new_clean_substitute function, each signature is initially split into terms instead of being

searched  from  the  first  character  to  the  last  and  each  unique  term  is  queried.  The

substitution is now performed on each minterm instead of on the whole signature. The
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irredundancy  and  uniqueness  of  each  minterm  brings another  opportunity  for

improvement for it allows a much faster substitution method implemented within this

algorithm (not shown in Algorithm 2). The  new_clean_substitue method offers a CPU

time  complexity  that  is  proportional  to  the  number  of  terms  in  the  signature.  It  is

significantly  better  than  the  performance  of  the  preliminary  clean_substitute  method

whose complexity was proportional  to  the number of characters in  the signature.  We

performed  the  experiments  on  the  new_clean_substitute  function  using  the  same

benchmark circuits (multipliers generated by Genmult program) and a computer with the

same memory and disk spaces.

Figure 4.4 shows the CPU time used for verifying signed multipliers of gate-level

implementation. Compared to the data shown in Figure 4.3, the CPU time is only on

average one tenth of that in the previous experiments. Comparing Figure 4.5 with Figure

4.4, the improved new_clean_substitute function consumes about 1.3 times extra memory

space than that  consumed by clean_substitute function on average. However, considering

that the maximum resident memory size used by the new_clean_substitute algorithm for

verifying a 64-bit signed multiplier is less than 22 Mbyets, such a negligible memory

increase is not a issue for today's computers.
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Figure 4.4: CPU times for verifying signed multipliers using new_clean_substitute.

Figure 4.5:  Memory usage for verifying signed multipliers using new_clean_substitute.
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4.3  Experiments on Further Improved Algorithm and Result Analysis

Through investigating Algorithm 1 and Algorithm 2, we know that each time a new

logic gate is encountered, the substitution and cancellation method (clean_substitute  in

Algorithm 1 or new_clean_substitute in Algorithm 2) will be called.

At  the  beginning  of  the  new_clean_substitute  method,  the  intermediate  signature

needs  to  be  split  into  different  terms  to  facilitate  variable  match.  At  the  end  of  the

new_clean_substitute  method, to return a new signature in canonical DNF format, the

substituted  signature  (newSig)  needs  to  be  simplified  by  combining  like  terms.  As

mentioned in Section 4.1, the final simplification method also requires splitting the terms

in the intermediate signature and storing them in a dictionary. If the signature needs to be

split  both  at  the  beginning  and  the  end  of  the  algorithm,  why  not  keep  storing  the

signature in a split way? In this way, one splitting step and one recombination step can be

saved every time the new_clean_substitute is called. This should improves the CPU time

performance.

One thing which needs to be noted is that since we desire to store the signature in a

split way, the initial input to the substitution method should assume the same structure. In

our case, the dictionary data structure is chosen. The reason of choosing a dictionary data

structure is that in Python the findElement(), removeElement() and setElement() methods

can all be finished in constant time (which means all operations have time complexity

O(1)  [50]). Remember that the first line of each input equation file is the given output

signature; the initial dictionary can be built  based on this given output signature. For

example, if the circuit is a 2-bit signed multiplier, the dictionary for the output signature
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 -8 · p3 + 4 · p2 + 2 · p1 + 1 · p0

is as follows:

Figure 4.6:  An example of initial dictionary for a 2-bit signed multiplier.

Figure 4.6 shows the the formation of the dictionary structure used in the further

improved algorithm. In this method, the dictionary is an unordered list of (key (string) :

element (list)) pairs. For each pair, the key is the monomial of a term and the element is a

list contains integer coefficient and variable strings in the monomial. For convenience,

the integer coefficient is always placed at the first position of the list. For instance, a term

“-3 · a1 · b1 · a12” will be stored in the dictionary in the following way “{ … , a1 · b1 · a12 :

[-3, a1, b1, a12], … }”.

When the method begins, in each step, it first checks inside the dictionary if there is

any  term which  contains  the  target  variable.  If  no  such  term is  found,  the  method

continues to the next substitution step. If terms containing the target variable are found,

substitution will be performed on the terms. During the substitutions new terms will be

introduced into the existing dictionary while old terms are removed. For example, assume

the target variable is “a1”, the substitution polynomial is “b1 + c1 - b1 · c1” (which means

the encountered equation is “a1 = b1 + c1 - b1 · c1”, an OR gate) and there is a term “-2 · a1

· b1” contains the target variable, “a1”. Term “-2 · a1 · b1” will be transformed to “-2 · b1 -

2 · c1 + 2 · b1 · c1”. The substitution process will add new terms “-2 · b1”, “-2 · c1” and “- 2 ·

b1 · c1” into the current dictionary while removing term “-2 · a1 · b1” from the dictionary.
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Algorithm 3: better_clean_substitute pseudo code.

Algorithm 3  shows the  pseudo code of  the  new algorithm.  We refer  to  it  as  the

better_clean_substitute  algorithm.  The  better_clean_substitute  algorithm  treats  the

changing signature as a term dictionary modified on the fly. Compared with the previous

versions, the main advantage of the  better_clean_substitute  algorithm comes from the

uniform dictionary data structure all throughout the process. After all the equations are

exhausted in the substitution step, a final dictionary will be returned. The last task, which

is trivial, is to concatenate all the pairs in the final dictionary into a signature polynomial.

That is the computed input signature which will be compared with the expected input

signature. The computed input signature basically determines the function of the circuit

and is unique for a given output signature (see Chapter 5).
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Figure 4.7: CPU times for verifying signed multipliers using better_clean_substitute.

Figure 4.8: Memory usage for verifying signed multipliers using better_clean_substitute.
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The set of experiments were performed using the better_clean_substitute method on

the same benchmark circuits, a set of standard array based signed non-booth multipliers

ranging from 2 bit  to 64 bits. The hardware configuration is the same, a PC with an

Intel® Core™ i5-3470 CPU @ 3.20GHz × 4 processor, 15.6 GB memory and a 229.2 GB

disk. The experimental results are shown in Figure 4.7 and Figure. 4.11. Figure 4.7 shows

dramatic improvement in CPU time performance. Comparing it with the result shown in

Figure 4.4,  the  better_clean_substitute  method on average displays nearly a  20  times

improvement over the  new_clean_substitute  method explained in Section 4.2. The time

complexity of the better_clean_substitute method remains at O(n), while n is the number

of gates in circuit, but with a much gentler slope. The memory usage shown in Figure 4.8

is nearly 50 percent lower than that of the  new_clean_substitute  method (~13,000 KB

versus ~21,000 KB memory used for verifying a 64-bit multiplier).

Overall,  the  modification  of  the  data  storing  structure  (from string  to  dictionary)

greatly improves the efficiency with respect to both CPU time and memory usage. But

the  searching  algorithm  itself  has  not  been  optimized  that  much.  In  both  the

new_clean_substitute method and the better_clean_substitute method, to locate a target

variable, the target variable has to be compared with every single literal in every term of

the  intermediate  signature  (Even  though  in  better_clean_substitution  we  check  the

existence of the target variable using Python's “in” operator instead of comparing it with

each  literal  in  one  term,  the  basic  thought  is  the  same).  Another  performance

improvement chance lies in optimizing the searching algorithm for target variable. The

following section explains the concrete optimization and performance improvements.

52



4.4  Experiments with Improved Algorithm and Result Analysis

  It is well known that the outstanding advantage of using the dictionary data structure

is the constant referring time. In previous algorithms, we enjoyed the dictionary's power

in implementing the simplification method. The  simplify method is used directly as a

function,  or indirectly as part of a function, in the first three algorithms. This can be

illustrated with the following example in the  better_clean_substitution method. Assume

there is a term “2a1a2” in the intermediate signature. After substitution using the equation

“a1  = b1  + c1”, we got two new terms “2a2b1” and “2a2c1”. In order to update the term

dictionary (termDict in Algorithm 3), we first check if the key “a2b1” exists in the current

dictionary. If the key “a2b1” is in the dictionary, then the list element indexed by the key

will be returned. Suppose the term key has a paired list element such as “[-4, a2 , b1]”, the

first element “-4” in the list is an integer which represents the coefficient of monomial

“a2b1” before the substitution. Then the coefficient will be updated to, 2 because -4 + 2 =

2, and the list indexed by key “a2b1” is updated to “[-2, a2 , b1]”. If “a2b1” is not one of the

keys of the dictionary, then a new element “a2b1  : [2, a2  , b1]” will be inserted into the

dictionary. The other term “2a2c1” can be added to the dictionary similarly. This method

outperforms  the  common  character  by  character  string  search  method  in  that  it  can

immediately find the term needs to be updated in the dictionary. We noticed that the same

method  can  be  applied  to  locate  all  terms  that  contain  the  target  variable  in  a

intermediate signature in constant time. The detailed method is as follows.
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Algorithm 4: dict_substitute pseudo code.

As both the substitution step and the simplify method rely heavily on dictionary data

structure,  we refer  to  the  algorithm proposed in  this  section  as  dict_substitute.  Each

substitution process can be divided into three subsections. In the first subsection, terms

that are going to be substituted are deleted from the main dictionary (termDict  in this

case) and stored in a temporary dictionary. In the second subsection, the terms deleted in

the last step are substituted with respect to the target variable. The final step updates the

main  dictionary  based  on  the  substitution  result  in  step  2.  The  advantage  of  the

dict_substitution method is that it can locate all the terms that are going to be substituted

in each step in constant time O(1), while previously the terms were found by checking the
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availability of the target variable in each term in the main dictionary. This advantage is

achieved  by  using  a  subtler  dictionary  structure,  compared  with  the  one  in  the

better_clean_substitute  algorithm.  The  following  example  gives  a  more  intuitive

impression of the advantage of the dict_substitution method.

Example: Assume that the initial signature that starts off the substitution process is

“2a1a2  + 2a1b2  + 2b2c1”  which  comprises  three  different  terms  “2a1a2”,  “2a1b2”  and

“2b2c1”. In contrast to the dictionary structure in the  better_clean_substitute  algorithm,

which stores “monomial : list” pairs, the dict_substitute stores “variable : sub-dictionay”

pairs into the main dictionary. For instance, the three terms in this example are stored as:

{a1 : {a1a2 : 2, a1b2 : 2},  a2 : {a1a2 : 2},  b2 : {b2c1 : 2, a1b2 : 2},  c1 : {b2c1 : 2}}

In this dictionary, keys are distinct variables that appeared in the current signature.

The sub-dictionary indexed by one variable key stores all the terms that contains the key

variable. In the sub-dictionary, each related term is stored as a “monomial : coefficient”

pair. Also it is worth noticing that some terms are stored more than once in the main

dictionary. For example, the terms “2a1a2”, “2a1b2” and “2b2c1” are stored twice each.

Basically, one term has as many copies in the main dictionary as the number of variables

in the term, because the main dictionary is a variable-indexed dictionary.

Assume that one equation encountered during the substitution process is “c1 = a1 +

a2” (it  is  not  necessarily  the gate  model  that  we have used,  but is  simple enough to

explain the idea).  Given the equation,  the  target variable in this  case is “c1” and the

polynomial used to substitute “c1” is “(a1 + a2)”.  In the first step,  we use the  target

variable to locate all terms that are going to be substituted, put them into a temporary
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dictionary (targDict in Figure. 4.11) and delete them from the main dictionary, termDict.

In this step, it is important to thoroughly delete all the copies of the terms that we want to

get rid of from the main dictionary. In this example, the main dictionary termDict  after

deletion is:

{a1 : {a1a2 : 2, a1b2 : 2},  a2 : {a1a2 : 2},  b2 : {a1b2 : 2}}

Two copies of term “2b2c1” are both deleted from sub-dictionaries indexed by “c1”

and “b2” respectively. In the meantime, the dictionary targDict which stores target terms

that are going to be substituted has the following format:

{c1 : {c1b2 : 2}}

In the second step, the substitution is performed on term “c1b2” using polynomial “a1

+ a2”.  After  substitution,  we  have  two  new  terms,  “a1b2”  and  “a2b2”  each  with  the

coefficient “2”. In this step, new terms achieved by substituting some old terms in the

main dictionary will be combined if they have the same monomial. In this example, as

the monomials of the new terms are different, they will be directly put into a temporary

dictionary, tempDict, as follows.

{a2b2 : 2, a1b2 : 2}

Notice that the structure of tempDict is different from termDict. In tempDict we use

“monomial : coefficient” pairs because they are easier to manipulate.

In the last step, we insert the new terms achieved in the second step into  termDict.

One thing we need to be aware of is that a new term shall be added into multiple sub-

dictionaries which are indexed by variables in that new term, respectively. For example,

in this case, monomial “a1b2  ” is already in the  termDict, so we just need to update its
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coefficient to  4, which equals its original coefficient,  2, plus the coefficient,  2, of the

newly added term. Another monomial “a2b2 ” is not in the termDict, so we need to insert

it into two sub-dictionaries which are indexed by “a2” and “b2” separately. The updated

termDict looks like this:

{a1 : {a1a2 : 2, a1b2 : 4},  a2 : {a1a2 : 2, a2b2 : 2},  b2 : {a1b2 : 4, a2b2 : 2}}

The above three steps explain the basic idea in the dict_substitute algorithm. Besides

this there are many other internal function improvements, like a function to recognize

primary  output  variables,  a  function  to  implement  fast  substitution,  a  function  to

determine coefficient and monomial of a term, etc.  These functions are not discussed

here. Readers can check them in the Appendix if interested.

The experiments performed on the  dict_substitute  algorithm utilize the same set of

hardware configurations and benchmark circuits as the previous tests use. The results are

shown in Figure 4.9 and Figure 4.10. Figure 4.9 shows the linear complexity of CPU time

with respect to the numbers of gates in the circuits. This should be compared with the

results  with  Figure  4.7,  dict_substitute  method  offers  a  CPU  time  complexity

improvement of 8x over  better_clean_substitute method at an extra memory cost (less

than 25%). 

Figure 4.11 and Figure 4.12 show the comparisons of CPU time performance and

memory usage of four different substitution algorithms. After applying the  optimizations

of data structure and algorithm, our current best algorithm dict_substitute has achieved a

3000x improvement  in  CPU time and even better  memory usage  compared with  the

preliminary clean_substitute algorithm.
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Figure 4.9: CPU times for verifying signed multipliers using dict_substitute method.

Figure 4.10:  Mem usage for verifying signed multipliers using dict_substitute method.
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Figure 4.11:  CPU time comparison of four substitution algorithms.

Figure 4.12:  Memory usage comparison of four substitution algorithms.
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In  Figure  4.12,  the  better_clean_substitute  method  has  the  best  memory  usage

performance because it  neither  needs to store intermediately computed signatures nor

needs  it  to  store  redundant  copies  of  terms  that  dict_substitute  algorithm  does.  The

clean_substitute algorithm and the new_clean_substitute algorithm have similar memory

usage characteristics, because in both algorithms an intermediate signature needs to be

built after each substitution step. Although they consume the largest memory space, the

idea is still useful. If we consider the scenario that there is a bug in the circuit, we may

need to know what intermediate signatures look like to determine the location and cause

of the bug. In this situation, it  is necessary to spend much more time and memory to

monitor the verification process in order to analyze circuits. Actually, in the final version

of the verification software, this function is also included as an alternative option to show

the elaborated intermediate verification information.  
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CHAPTER 5

THEOREM

In this chapter we prove that the variable substitution method is theoretically correct.

Essential part of the described approach is the following theoretical result about the

correctness and uniqueness of the computed input signature. Here, “correct” means that

the result is the same as if it were computed with Boolean methods. This result applies to

combinational circuits,  but it can be readily extended to sequential circuits by unrolling

the circuit over a fixed number of time frames into a combinational circuit (bounded

model).

Theorem: Given a combinational circuit composed of basic logic gates, described by

polynomial Equations (3.1), input signature Sigin computed by the proposed procedure is

unique and correctly represents the arithmetic function implemented by the circuit.

Proof:  The  proof  of  correctness  hinges  on  the  fact  that  each  internal  signal  is

correctly represented by an algebraic expression, i.e., such an expression evaluates to a

correct Boolean value. Specifically, it can be easily verified that Equations (3.1) are the

correct algebraic representations of basic Boolean functions. Hence, any logic function

that is expressed recursively by Equations (3.1) must evaluate to a correct Boolean value;

once  the  polynomial  is  reduced  by  removing  redundant  terms,  the  algebraic
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representation is unique. Example: XOR function, f = a  b = a′ b + ab′⊕  , can be written

as an algebraic function f = (1 − a)b + a(1 − b) − ((1 − a)b)(a(1 − b)), which reduces to

a unique form, a + b − 2ab. Hence, a PO signal is correctly represented by variables in

its logic cone, up to the primary inputs. Therefore,  Sigout, which is the weighted sum of

the output signals, is eventually replaced by Sigin. For this reason such computed Sigin is a

correct algebraic representation of the circuit.

The proof of uniqueness is based on induction on i, the step when polynomial  Fi is

transformed into Fi+1. Base phase: polynomial F0 = Sigout, a linear combination of primary

outputs, is unique. Also, as discussed above, algebraic representation of each logic gate is

unique. Induction step: Assuming that  Fi is unique, we must prove that  Fi+1 is unique.

Recall  that  each  variable  in  Fi represents  output  of  some  logic  gate;  during  the

transformation process it is substituted by a unique polynomial of that gate. Since the

circuit  is  combinational  (it  has  no  loops)  and  the  substitution  is  done  in  reversed

topological order, at each step i a variable in Fi is replaced by a unique polynomial in new

variables. Hence, polynomial Fi+1 derived from Fi by such substitution is also unique.
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CHAPTER 6

LEVELIZATION ALGORITHMS

The  heuristics  proposed  here  attempt  to  accelerate  the  verification  method  by

exploring the circuit structure. The method is based on the variable substitution method

described in Chapter 4 and will utilize the heuristics mentioned in Chapter 3. The goal is

to make the cancellation between terms happen as early as possible by selecting the most

proper target variable to be substituted in each step. The proposed levelization algorithm

is  the  base  algorithm,  and additional  heuristics  progressively  enhance  the  algorithm's

performance.

Initial  approach  considered  building  an  equation  pool  with  the  gate  equations  in

arbitrary order. The equation pool will be passed through the variable substitution process

iteratively until the signature is comprised of only primary inputs. In this process, one

gate  equation  in  the  pool  may  need to  be  used  multiple  times.  This  method  is  time

consuming if the order of processing equations is not strictly topologically reversed. As a

result, gates that are topologically far away in the circuit may be substituted in the same

iteration.  This  behavior  decreases  the  opportunity  for  cancellation  and  increases  the

number of substitution rounds.  Taking these factors into consideration,  we try to first

specify the order of the equations derived from the circuit prior to passing  them to the

substitution step as the inputs. As mentioned in Chapter 3, we expect to derive a well-
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defined order of the gate equations to utilize each gate equation just once in the entire

substitution process.

6.1  Breadth-First Search (BFS) Levelization Algorithm

The first method that we implemented tries to levelize the gate equations in a BFS

fashion. The algorithm is shown in Algorithm 5.  

Algorithm 5: BFS_Levelization pseudo code.

Initially, in the  BFS levelization  Algorithm, the variable list  targets just stores one

primary output bit. That is the current levelization process will start from this primary

output bit. The process levelizes all gates that belong to the logic cone of the primary

output  bit.  We repeat  the  levelization  process  on  all  of  the  primary  output  bits  to
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completely levelize all gates in the circuit.

Figure 6.1: BFS_Levelization methodology.

Figure 6.1 illustrates the levelization process for a 4-bit multiplier circuit. The eight

primary output bits are p0 to p7. The levelization algorithm runs eight times in total. Note

that, in general, there is an overlap between any two logic cones in the figure. These areas

represent  gates  that  participate  in  generating  multiple  primary  output  bits.  A simple

example which illustrates such logic cones specifically is shown in Figure 6.2.

Assume that first levelization iteration starts at p0. The INV gate g0, which generates

p0, is levelized into level 0. The AND gate g1, which generates the  input signal for g0, is

assigned to level 1. The parents of gate g1 are AND gate g2 and OR gate g3, so they are

put in level 2. This method is referred to as a BFS algorithm, because all parents of gates

in the current level will be found and put in the next higher level.
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Figure 6.2: Level number relaxation example.

The  second  iteration  starts  from  primary  output  bit  p1. The  OR  gate  g4, which

generates p1, is assigned to level 0. As the figure shows, gates g0, g1, g2 and g3 are in the

overlapping area of logic cones, because all of them participate in generating both p0 and

p1. For gates in such cones, a relaxation method is used to update their level numbers.

Specifically, if a gate to be levelized is already in the dictionary (level_dict  in Algorithm

5), the relaxation method chooses the larger one between its old level number and the

new number intended to assign. For example, in Figure 5.2, the INV gate g0 was assigned

to level 0 in the first levelization iteration. However, it will be reassigned to level 1 after

the next levelization process starts from p1, because g0 generates one of the parents of g4,

and  g4 is in level  0. The same applies to other gates in the overlapping area. The final

levelization result is

Level 0 : g4; Level 1 : g0, g5; Level 2 : g2; Level 3 : g2, g3;

After completely levelizing all gates in the circuit, the equations in the levelized order

are used in the substitution method as inputs. The substitution then starts from the gates

in the  lowest level to the gates in the highest level.
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We performed a set of experiments on the signed multipliers used in the previous

experiments. We first use the BFS levelization algorithm to levelize these circuits. After

that  we  use  the  variable  substitution  program discussed  in  Section  4.4  to  verify  the

levelized circuits. Table 6.1 shows the CPU time performance comparison of verifying

circuits before and after levelization. It stops comparison on a 40-bit multiplier because

the levelization for the 40-bit multiplier is too time consuming (over one hour).

Signed
multipliers

Number of
gates

Levelization
time (s)

Verification
time before
levelization

(s)

Verification
time after

levelization
(s)

Verification
mem after

levelization
(KB)

4-bit 80 0.01 0.02 0.01 8220

8-bit 352 0.08 0.03 0.04 8288

12-bit 816 0.81 0.07 0.08 8428

16-bit 1472 5.93 0.12 0.12 8572

20-bit 2320 28.67 0.17 0.19 8848

24-bit 3360 106.07 0.25 0.28 9212

28-bit 4592 319.96 0.34 0.37 9516

32-bit 6016 826.38 0.44 0.48 9812

36-bit 7632 1926.31 0.56 0.62 10232

40-bit 9441 4082.60 0.69 0.76 11032

Table 6.1:  CPU time comparison of circuits before and after levelization.

Seemingly, the  table  shows that  the  BFS levelization  algorithm does  not  work as

expected. Firstly the levelization process itself is time consuming, secondly the levelized

circuits  need more time to be verified relative to circuits before levelization.

The first problem is caused by the implementation of the BFS algorithm. Through

profiling  the  execution  process  of  the  algorithm,  we  discovered  that  most  of  the
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levelization time is spent in simply adding and removing elements into and out of lists,

whereas, updating the level dictionary does not consume much time. The second problem

occurs  because  levelization  breaks  the  circuit  structure  of  multipliers  generated  by

Genmult. The internal structure of those multipliers is based on Wallace tree. The well-

designed  original  circuits  generated  by  Genmult have  very  organized  structure,  a

connected netlist  of half  adders.  The substitution process runs in units of half  adders

when verifying the original circuits. This provides cancellations in consecutive equation

substitutions which make the process very efficient. However, the levelization process

often breaks this regularity in circuits, thus increasing the verification time.

Nonetheless, the levelization algorithm is very useful to verify synthesized circuits. In

the following experiments, we tried to verify circuits synthesized by ABC [51].

1) We first  use  ABC to  synthesize  the  unsigned  CSA  multiplier  generated  by

BenGen [52]. The resulting circuit is referred to as the synthesized circuit.

2) As ABC “strashes” the circuit to AIG structure during synthesis, we need to map

the  synthesized circuit into other kinds of gates. In our experiments, we do the

mapping using a standard library, derived from the mcmc.genlib. The derived 

library contains 2-input  AND, OR,  XOR,  NOT,  NOR,  XNOR  gates and 3-input

OAI, AOI gates. The library that we used is shown in Figure 6.3. We refer to this

circuit as mapped circuit. 

Strash: Structural hash, an optimization procedure used by ABC to detect and combine nodes of the same functionality.     
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Figure 6.3 Modified technology mapping library.

3) Subsequently, we break the complex gates like NOR, XNOR, AOI and OAI gates

into simple gates to gain access to intermediate signals. In the context of our case,

the simple gates are 2-input AND, OR, XOR gates and INV gate. We refer to the

resulting circuit as rewritten circuit.

4) Once  the  rewritten  circuit  is obtained,  we  use  BFS  levelization algorithm  to

levelize it. The achieved circuit is referred to as levelized circuit.

5) Lastly, we use  the  substitution  method  to  verify  whether  the  levelized  circuit

keeps the original functionality.

The reason that we break complex gates into simple gates (Step 3) is that the variable

substitution method is very inefficient when complex gates are used. As Table 6.2 shows,

the levelization step significantly increases the applicability of substitution verification

method. Before levelization, it is difficult to verify even an 8-bit multiplier (It took over

2,000s of CPU time and consuming over 15GB memory on our server) using the variable

substitution  method.  In  contrast,  it  is  much  easier  to  verify  larger  multipliers  after

levelizing the synthesized and mapped circuits (See the CPU times shown in Table 6.2).
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The last column of the table shows that the memory consumption to verify such circuits

is still negligible.  

It is imperative to include the levelization time into the total verification time because

it is necessary to levelize the circuits prior to verification. That is, the total verification

time  is  the  sum  of  levelization  time  and  variable  substitution  time.  The  remaining

problem here is that the levelization times are much longer than running the substitution

method itself. The efficiency of the proposed verification system will improve when the

efficiency of levelization algorithm improves.

Unsigned
multipliers

Number of
gates

Levelization
time (s)

Levelization
mem (KB)

Verification
time after

levelization
(s)

Verification
mem after

levelization
(KB)

4-bit 128 0.01 7040 0.02 8240

8-bit 655 0.09 7292 0.05 8344

12-bit 1588 0.92 8136 0.11 8528

16-bit 2952 5.63 8684 0.20 8760

20-bit 4764 25.27 9376 0.31 9204

24-bit 6978 84.55 12116 0.46 9400

28-bit 9617 241.18 13172 0.62 10000

32-bit 16040 583.69 14440 0.84 10332

36-bit 16254 1272.36 15792 1.13 11212

40-bit 25240 2473.04 17376 2.45 17896

Table 6.2:  CPU time comparison of circuits before and after levelization.

We should stress the need to map the synthesized circuit to a modified library (As

mentioned in step 2). Such a mapping is needed since currently we cannot deal with
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circuits  composed  of  arbitrary  gates  or  higher  level  components.  For  example,  the

inclusion of NAND3 gate into the library noticeably slows down our method. This applies

to the inclusion of any other gate eliminated from the standard cell library. We have yet to

figure out a concrete reason for this. It is one of our goal to allow the mapping of the

synthesized circuits to arbitrary components.

6.2  Modified Levelization Algorithm based on Dijkstra's Algorithm

To improve the efficiency of levelization algorithm, we applied a modified Dijkstra's

algorithm. The reason to use the Dijkstra's algorithm [53] is dictated by the similarities

between  levelization  and  shortesr-path  problems.  In  the  original  Dijkstra's  algorithm,

beginning from the starting vertex, nodes with the smallest edge distance to a visited

node cloud will be added to that cloud. The distances of previously added nodes will be

updated using edge relaxation rule each time a new node is added to the cloud. In our

case, we use the following assumptions.

• In a levelization iteration, a primary output bit will be selected as a starting point.

• Each edge (wire) in the graph has a constant weight of 1.

• Each simple gate in the circuit represents a node in the graph and each node has

an associated value that represents its distance to the current starting point.

In the following we refer  to  the modified algorithm as  Dijk_levelization.  Another

reason of using the modified Dijkstra's algorithm is that it is much faster than the BFS

implementation.  The  speed  advantage  of  Dijk_levelization  over  the  BFS  levelization

comes from the fact that each edge and node in the graph will be visited only once in
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each levelization step. The whole process keeps updating the distance dictionary rather

than  repeatedly  adding  and  removing  parent  gates  into  and  out  of  lists  (which  is  a

dominant part in BFS levelization algorithm). Based on these assumptions, the modified

levelization algorithm is as follows.

Algorithm 6: Dijk_levelization algorithm.

The Dijk_levelization algorithm implements the BFS levelization of internal gates by

postponing the substitution of a given variable as late as possible. It mimics the original

Dijkstra's algorithm with the exceptions that all the edges have unit weights and the goal

is finding the longest path from the starting point to each node. To clearly illustrate this

process, we use the example circuit in Figure 6.3 which is comprised of six gates. We

assume that the output of the  XOR gate  g0 is the primary output bit. The levelization
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process starts from g0. Table 6.3 shows the updates of dictionaries used in the process.

The dictionary disGrpDict is the final returned result.

Figure 6.4: Dijk_levelization example.

visiting
node

candiDict
{level : gates}

disGrpDict
{level : gates}

nodeDisDict
{gate : level}

g3 3 : g4, g5, g6
0 : g0, 1 : g2, 2 : g1, g3,

3 : g4, g5, g6
g0 : 0, g1 : 2, g2 : 1, g3 : 2,

g4 : 3, g5 : 3, g6 : 3

g1
2 : g3,

3 : g4, g5
0 : g0, 1 : g2, 2 : g1, g3,

3 : g4, g5, -inf : g6
g0 : 0, g1 : 2, g2 : 1, g3 : 2,

g4 : 3, g5 : 3, g6 : -inf

g2 2 : g1, g3
0 : g0, 1 : g2, 2 : g1, g3,

-inf : g4, g5, g6
g0 : 0, g1 : 2, g2 : 1, g3 : 2,
g4 : -inf, g5 : -inf, g6 : -inf

g0
1 : g2,
2 : g1

0 : g0,  1 : g2, 2 : g1,
-inf : g3, g4, g5, g6

g0 : 0, g1 : 2, g2 : 1, g3 : -inf,
g4 : -inf, g5 : -inf, g6 : -inf

0 : g0
0 : g0

-inf : g1, g2, g3, g4, g5, g6

g0 : 0, g1 : -inf, g2 : -inf,
g3 : -inf, g4 : -inf, g5 : -inf,

g6 : -inf

Table 6.3: Example of Dijk_levelization procedure.

We performed experiments on  Dijk_levelization  algorithm using the same hardware

configuration  and  the  same  unsigned  multiplier  circuits  (as  used  in  testing
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BFS_levelization algorithm). The results are shown in Table 6.4.

Unsigned
multipliers

Number of
gates

Levelization
time (s)

Levelization
mem (KB)

Verification
time after

levelization
(s)

Verification
mem after

levelization
(KB)

4-bit 128 0.03 7344 0.03 8228

8-bit 655 0.07 7848 0.07 8348

12-bit 1588 0.16 9196 0.12 8552

16-bit 2952 0.40 10344 0.20 8772

20-bit 4764 0.90 11532 0.32 9236

24-bit 6978 1.84 15328 0.47 9388

28-bit 9617 3.43 17404 0.63 10008

32-bit 16040 6.17 19956 0.84 10592

36-bit 16254 10.74 22864 1.11 11324

40-bit 25240 17.11 26484 2.34 18424

Table 6.4:  CPU time comparison of circuits before and after Dijk_levelization.

As shown in Table 6.4, the CPU time performance of Dijk_levelization algorithm is

more than  100x times faster than that of  BFS_levelization algorithm on average.  The

verification time of the levelized circuits are even better than those shown in Table 5.2.

In  summary,  by  combining  the  proposed  variable  substitution  method  with  the

Dijk_levelization algorithm, we are able to verify large arithmetic circuits synthesized

and  mapped  using  ABC and  the  modified  library.  The  CPU  time  performance  and

memory usage are both very good in our experiments.  

74



6.3  More Experiments and Comparisons with Other Tools

6.3.1 Experiments on non-synthesized circuits

In this section, we present additional experiments which are performed on the same

platform. 

Signed
Multipliers

Number of 
Gates

CPU Time (s)
Unroll method (dict_sub)

Max Mem (KB)
Unroll method (dict_sub)

2-bit 17 0.02 8216

3-bit 42 0.02 8220

4-bit 80 0.02 8220

5-bit 130 0.03 8232

6-bit 192 0.03 8252

8-bit 352 0.03 8296

10-bit 560 0.06 8384

12-bit 816 0.07 8460

16-bit 1472 0.12 8624

18-bit 1872 0.15 8772

20-bit 2320 0.17 8992

22-bit 2816 0.21 9180

24-bit 3360 0.25 9372

26-bit 3952 0.29 9560

28-bit 4592 0.34 9552

30-bit 5280 0.37 9872

32-bit 6016 0.44 10112

36-bit 7632 0.56 10480

40-bit 9441 0.69 11432

44-bit 11468 0.83 12164

48-bit 13633 1.00 13132

52-bit 16017 1.18 13756

56-bit 18593 1.36 14708

58-bit 19953 1.51 15136

60-bit 21361 1.6 15592

62-bit 22817 1.73 15988

64-bit 24319 1.82 16532

80-bit 37920 4.31 19228

96-bit 54720 6.43 26324

128-bit 97536 12.41 39648

Table 6.5: Verification time for signed multipliers.
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The experiments on CAS adders are not provided in the table because the verification

time is negligible (less than 1 second to verify a 128-bit adder).  Table 7.1 shows the

verification  time  for  original  singed  multipliers  generated  by  Genmult without  any

synthesis. It is an extension of experiments shown in Figure 4.9 and 4,10 in Section 4.4

from 64-bit to 128-bit operands. As an example, the CPU time for verifying a 128-bit

multiplier  is  12.41s  with  39648KB  maximum  resident  memory  space  used.  The

complexity of CPU time and memory usage are both linear.

Unsigned
multipliers

Number of 
Gates

CPU Time (s)
Unroll method

 dict_sub

Max Mem (KB)
Unroll method

dict_sub

4-bit 82 0.03 8224

8-bit 418 0.05 8340

12-bit 1010 0.10 8552

16-bit 1858 0.14 8936

20-bit 2962 0.23 9344

24-bit 4322 0.30 9704

28-bit 5938 0.41 10172

32-bit 7810 0.53 10512

36-bit 9938 0.68 11464

40-bit 12322 0.84 12224

44-bit 14962 1.02 13336

48-bit 17858 1.26 13968

52-bit 21012 1.45 15004

56-bit 24418 1.70 15972

60-bit 28082 1.97 17172

64-bit 32002 2.26 18292

80-bit 50242 3.68 25580

96-bit 72578 5.60 34644

128-bit 129538 10.99 39648

Table 6.6: Verification time for unsigned multipliers.

Table  7.2  shows  the  experimental  results  for  unsigned  multipliers,  which  are

generated  by  BenGen.  Comparing  multipliers  in  Table  7.2  with  the  corresponding

multipliers in Table 7.1, we find that the unsigned multipliers have larger number of gates
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but require less verification time. This is because the unsigned multipliers use the CSA

structure while signed multipliers use the Wallace tree structure. The variable substitution

method works faster on the CSA structure, possibly because that the signed multipliers

need extra logic gates to implement 2's complement operations.

We compare our method with SMT tools,  Z3 and  CVC4; SAT tool of  ABC;  the

symbolic algebra tool, Singular; and with Synopsys’ Formality system.

Unsigned
 multipliers

Our method
(s)

Z3 
(s)

CVC4
(s)

ABC(SAT)
(s)

Singular
(s)

Formality
(s)

4-bit 0.03 0.03 0.09 0.04 0.05 0.81

8-bit 0.05 16.55 42.63 11.66 TO 3.19

10-bit 0.08 1080.97 TO 127.37 TO 6.67

12-bit 0.10 TO TO UD TO 108.1

14-bit 0.13 TO TO UD TO 109.4

16-bit 0.14 TO TO UD TO 111.2

64-bit 2.26 TO TO UD TO 675.4

128-bit 10.99 TO TO UD TO TO

Table 6.7: Unsigned multipliers verification CPU time comparison with SMT,
SAT/ABC, Singular and Formality.

(TO = timeout after 3600 sec, UD = UNDECIDED)

 Figure 7.3 shows that our technique surpasses those tools in CPU time by several

orders of magnitude. Other circuits could not be handled by these tools beyond just a

small  number  of  bits.  Memory  usage  of  these  tools  for  the  successful  cases  was

comparable with ours.

6.3.2 Experiments on synthesized circuits

The following experiments are implemented to verify synthesized circuits. First we

use ABC to synthesize the multipliers, and map the synthesized multipliers to our library

(shown in Figure 6.3). The commands used to synthesize and map the circuits are: 
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abc 01> read research.genlib
abc 02> read multiplier.v
abc 03> resyn
abc 04> map
abc 05> write multiplier-syn-map.v

The  command  “resyn”  is  a  combination  of  several  synthesis  commands  include

rewriting  and  structural  hashing.  It  performs  technology-independent  rewriting  and

balances the circuit network. The synthesized and mapped multipliers are then levelized

using  Dijk_levelization  algorithm described in  Chapter  6.  Finally, such pre-processed

circuits are verified using the variable substitution method proposed in the thesis. 

Firstly, we performed experiments on unsigned multipliers generated by BenGen.

Unsigned
 multipliers

Number
 of gates

Levelization
 time (s)

Levelization
 mem (KB)

Substitution time
 after levelization

 (s)

Substitution mem
after levelization

(KB)

4-bit 128 0.03 7344 0.03 8228

8-bit 655 0.07 7848 0.07 8348

12-bit 1588 0.16 9196 0.12 8552

16-bit 2952 0.40 10344 0.20 8772

20-bit 4764 0.67 14064 0.32 9236

24-bit 6978 1.12 20140 0.47 9388

28-bit 9617 1.76 22904 0.63 10008

32-bit 16040 2.62 25616 0.84 10592

36-bit 16254 3.74 29604 1.11 11324

40-bit 25240 5.15 33676 2.34 18424

64-bit 53990 21.12 83836 16.91 46840

80-bit 85090 41.74 116648 43.74 95316

96-bit 123444 71.63 176360 75.07 92888

128-bit 221112 167.85 318652 107.78 157604

Table 6.8: Levelization and verification of synthesized unsigned multipliers.

Table 7.4 shows the CPU times and memory usage of levelization and verification

processes.  The  verification time after  levelization  is  the CPU time used for verifying

circuits that are synthesized, mapped and levelized. In the above table, levelization time
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and substitution time are comparable in the overall process.

Then  we  performed  experiments  on  signed  multipliers  generated  by  Genmult.

Initially,  we  performed  the  experiments  exactly  in  the  same  steps  as  with  unsigned

multipliers. However, the experimental results were not good. It required more than one

hour to verify a 16-bit signed multiplier. To solve this problem, we map the synthesized

signed multipliers directly into a simple gate library that only contains 2-input AND, OR,

XOR gates and INV, BUF gates (Previously, we mapped the synthesized circuits to library

shown in Figure 6.3 then expended them to simple gates).  The levelization time and

variable substitution time used for the mapped circuits are shown in Table 7.5.

Signed
 multipliers

Number 
of gates

Levelization
 time (s)

Levelization
 mem (KB)

Substitution time
 after levelization

 (s)

Substitution mem
 after levelization

 (KB)

4-bit 76 0.03 7328 0.03 8304

8-bit 421 0.04 8044 0.11 8528

12-bit 1002 0.13 8716 0.22 8752

16-bit 1817 0.29 10688 0.18 8772

20-bit 2870 0.59 11788 0.29 8940

24-bit 4155 1.10 13288 0.43 9276

28-bit 5720 1.86 19486 0.61 9648

32-bit 7471 2.99 22108 0.82 9828

36-bit 9461 4.64 24720 1.05 10264

40-bit 11688 6.70 28260 1.30 11120

64-bit 30006 40.03 79136 3.47 15312

80-bit 46957 94.20 115600 5.66 21108

96-bit 67682 192.78 171816 8.29 27472

128-bit 120461 593.95 365488 13.91 40776

Table 6.9: Levelization and verification of synthesized signed multipliers.

The  verification time after substitution  in Table 7.5 is  very good. It  requires only

13.91s to verify a 128-bit singed multiplier. However, the levelization time increases in a

quadratic  manor. The conclusion  drawn from the experiments  are  that  by mapping a
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synthesized circuit to the simple gate library, we will obtain a circuit, which is harder to

be levelized (compared with circuits  achieved by being mapped to  the complex gate

library).  However,  once  the  levelized  netlist  is  obtained,  we  can  use  the  variable

substitution method to verify the netlist easily. 

We  compare  our  method  with  winners  of  recent  SMT  competitions,  including

Boolector,  Z3 and  CVC4; SAT tool of  ABC;  the symbolic algebra tool, Singular; and

with Synopsys’ Formality system.

Unsigned
 multipliers

Our method
(level+subst)

(s)

Lingeling
(s)

Minisat_blbd
(s)

ABC
(s)

Boolector
(s)

Z3
(s)

CVC4
(s)

Formality
(s)

4-bit 0.06 0 0 0.01 0 0.03 0.09 0.75

8-bit 0.14 4.4 62.75 11.66 7.18 16.55 42.63 2.9

12-bit 0.28 TO 1615.47 UD 2030.19 TO TO 102.33

16-bit 0.6 TO TO UD TO TO TO TO

64-bit 175.54 TO TO UD TO TO TO TO

128-bit 4746.63 TO TO UD TO TO TO TO

Table 6.10:  Unsigned multipliers verification CPU time comparison with SMT,
SAT/ABC, Singular and Formality.

(TO = timeout after 3600 sec, UD = UNDECIDED)

Table 6.10 shows that our technique surpasses those tools in CPU time by several

orders of magnitude. Our method consumes reasonable memory space when levelizing

and verifying larger circuits.
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CHAPTER 7

    CONCLUSOINS AND FUTURE WORK

The methods proposed in this thesis work efficiently on circuits, which may contain

fanout signals. The fanout signals that reconverge some levels later in the circuits may be

useful as they create chance of algebraic cancellations. Considering the circuit signals as

Boolean variables works together with algebraic cancellations to simplify the signature of

the circuit.  Circuits,  which have very few fanout  signals,  are  more diffcult  to  verify.

When verifying such a circuit, the signature size, measured in the number polynomial

terms,  continues  increasing  until  the  last  gate  equations  at  the  primary  inputs  are

substituted. This is because each variable is used only once in the circuit; substituting

such a  variable  cannot  reduce the signature size at  all.  We plan to work around this

problem  by  introducing  redundant  gates  into  circuits,  creating  so  called  “vanishing

polynomials”.  These intentionally inserted gates should increase the term cancellation

opportunity, while keeping the original functionality of the circuit intact. 

Another issue is that currently we can not verify circuits  synthesized with Design

Complier (DC). It seems that Design Compiler has reduced the number of fanout signals,

the  number  of  reconvergent  signals  and  minimizes  redundancy.  Even  a  circuit  with

hundreds of gates synthesized with DC makes our program crush due to the memory

explosion. This may due to the reason stated here.
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The future work that are undertaken by other group members in our lab including:

• Work  on  circuits  synthesized  with  delay  constraints.  By  applying  delay

constraints, the synthesized circuits may have structural redundancy that is useful

for the proposed variable substitution method.

• Work on circuits mapped to complex gate library to better understand the effect of

technology library on our method.

• Modify our method to extend it to sequential circuits by unrolling the circuit over

a fixed number of time frames into a combinational circuit (bounded model).

• Work on how to use the proposed method to implement circuit debugging.
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CHAPTER 8

CONTRIBUTIONS

This work described in this thesis has been done in collaboration with other members,

Cunxi Yu and Walter Brown, of Professor Maciej Ciesielski's research team. During the

research, I accomplished the following tasks:

• Wrote parsers for file format conversions.

• Studied symbolic computer algebraic theories and helped develop the theory.

• Developed the  variable  substitution algorithm. Some functions  were  borrowed

with permission from a library written by Walter Brown.

• Tested  the  efficiency  of  the  algorithm  by  running  it  on  selected  benchmark

circuits.

• Studied how to efficiently use Singular to verify generated circuits, and compare

the performance of Singular with our method.

• Used Formality (Synopsys) to verify the benchmark circuits, and compared the

performance of Singular with our method.

• Used  multi-process  programming  to  improve  the  efficiency  of  variable

substitution.

• Developed  levelization  method  which  helps  apply  our  method  to  synthesized

circuits.

• Developed Generate Parse Unroll (GPU) tool which integrates our algorithms into
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one software.

• Contributed to the following papers:

1) M. Ciesielski, W. Brown, C. Yu, D. Liu, Verification of Gate-level Arithmetic

Circuits by Function Extraction, DAC-2015, submitted.

2) C. Yu, M. Ciesielski, D. Liu, W. Brown, Verification of Sequential Arithmetic

Circuits, DAC-2015, submitted.

3) S.  Ghandali,  M.  Ciesielski,  C.  Yu,  D.  Liu,  Fault  Diagnosis  and  Logic

Debugging of Arithmetic Circuits, DAC-2015, submitted.

4) M.  Ciesielski,  W.  Brown,  D.  Liu,  A.  Rossi,  Function  Extraction  using

Network  Flow  Model,  interactive  presentation/poster,  Design  Automation

Conference, DAC-2014, June 2014.

5) M.  Ciesielski,  W.  Brown,  D.  Liu,  A.  Rossi,  Function  Extraction  from

Arithmetic Bit-level Circuits, IEEE Computer Society Annual Symposium on

VLSI (ISVLSI), 356 - 361, July 2014.
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APPENDIX

KEY FUNCTION INPLEMENTATIONS AND SOFTWARE INTERFACE

Function determines term coefficient and monomial:

def determCoef(Term, outerCoef): 
# determine coef: 
numbers = '-123456789' 
comb = Term.split('*',1) 
if len(comb) == 1: # if is a single variable term or int 
  try: 
    coef = int(Term)*outerCoef 
    Term = "1" 
  except: 
    if '-' in Term: 
      coef = -1*outerCoef 
      Term = comb[0].replace('-','') 
    else: 
      coef = outerCoef 
else: 
    tempCoef = comb[0] 
    #determine coefficients: 
    if not tempCoef[0] in numbers: #case a 
      coef = outerCoef  
    elif tempCoef[0] == '-' and not tempCoef[1] in numbers: #case -a 
      coef = -1*outerCoef 
      Term = Term.replace('-','') 
    else: 
      coef = int(tempCoef)*outerCoef 
      Term = comb[1] 
return (Term, coef)

Function implements fast substitution:

def and_term_substitute(and_term, var2sub, eqn_right): 
'''substitute the var2sub variable in  and_term, and_term shall have no coefficient and
sign '-' ''' 
  dict_substitute = {} 
  var_list1 = and_term.split('*') 
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  var_list1.remove(var2sub) 
  if var_list1 == []:
    newExpr=eqn_right 
  else: 
    mult1 = '*'.join(var_list1) 
    var_list2 = splitDNF2terms(eqn_right) 
    for term in var_list2: 
      tempTup = determCoef(term, 1) 
      mult2 = tempTup[0] 
      tempCoef = tempTup[1] 
      tempTerm = BoolMult(mult2, mult1) 
      if tempTerm in dict_substitute: 
        coef = tempCoef+dict_substitute[tempTerm] 
        if coef == 0 : del dict_substitute[tempTerm] 
        else: dict_substitute[tempTerm] = coef  
      else: dict_substitute[tempTerm] = tempCoef 
    newExpr = '' 
    for term in dict_substitute: 
      if dict_substitute[term] < 0: 
        if dict_substitute[term] == -1:
          newExpr += '-'+term 
        else: 
          newExpr += str(dict_substitute[term])+'*'+term 
      elif dict_substitute[term] ==1:
        newExpr += '+'+term 
      else:
        newExpr += '+'+str(dict_substitute[term])+'*'+term 
  newExpr=newExpr.strip('+') 
  return newExpr

Function recognizes primary output bits:

def initialDict(sigout): 
  initialDict = {} 
  initialDict['1'] = {'1':0} 
  poList = splitDNF2terms(sigout) 
  for po in poList: 
    poComb = determCoef(po,1) 
    coef = poComb[1] 
    mono = poComb[0] 
    subVars = mono.split('*') 
    for var in subVars:  
      if not var in initialDict: initialDict[var] = {} 
      if mono in initialDict[var]: 
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        initialDict[var][mono] = initialDict[var][mono]+coef 
      else: 
        initialDict[var][mono] = coef 
  return initialDict

The Generate Parse Unroll (GPU) software

Chapter  3  and Chapter  4 introduced the variable  substitution verification method.

Chapter  5  introduced  the  levelization  algorithm  that  extends  the  application  of  the

proposed  verification  method  to  synthesized  circuits.  In  this  chapter,  we  present  the

softeware  GENERATE PARSE UNROLL,  GPU, that integrates the two basic methods

plus  some  other  useful  parsers  and  functions  together.   Figure  7.1  shows  the  main

Graphic User Interface (GUI) of the software. It has five  functions that are integrated.

Figure A.1: GPU main user interface.
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• Call Genmult Module

The  Call  Genmult module calls  the  Genmult program to generate multipliers and

adders. Some bugs in the files generated by Genmult are also corrected. Currently it is the

only module that generates benchmark circuits in the software. Other benchmark circuits

used in this thesis are generated by BenGen.. The graphical view of this module is shown

in Figure 7.2.

Figure A.2: Call_Genmult interface.

By setting the configurations, such as circuit structure and the number of input bits,

user can use this module to generate benchmark multipliers.

• Parsers Module

The  Parsers module  converts  file  formats  from  one  to  another.  Currently,  the

supported file formats include: equation files, structural verilog files, technology-mapped

verilog  files  and  files  with  format  required  by  Singular.  The  graphical  view of  this
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module is shown in Figure 7.3.

Figure A.3: Parsers interface.

In this module, user needs to specify one input file and one output file. By clicking

the intended conversion, the software generates the required file. The Verilog file can be

written in  variant  styles,  currently the conversion from Verilog to  other  formats  only

supports the Verilog files generated by Genmult or BenGen.

The last conversion, “abc-syn-map-v to simple eqn” is used to expand complex gates

synthesized by ABC. It maps the Verilog files into equation files containing only simple
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gates.

• Levelization Module

The  levelization module accepts an equation file as input.  This equation file must

have output  signature on the top,  with gate  equations following it.  By clicking  Start

Levelizing, the module tries to recognize primary output bits in the first line, and assigns

gate equations to proper level. The levelization time and memory usage will be reported

on the terminal when levelization is done.

Figure A.4: Levelization interface.

• Multiprocess Unroll Module

This module takes the output of Levelization module as input, and computes the input

signature with respect to the given equation file using the proposed variable substitution

method.  This  module  is  called  Multiprocess  Unroll,  because  it  can  do  variable

substitution for two circuits simultaneously, one on each processor core. The graphical

view of this module is shown in Figure 7.5.
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Figure A.5: Multiprocess Unroll interface.

There are three kinds of usage of this module. If one just wants to check whether the

circuit implements the expected function, one needs to provide both the equation file and

the expected input signature correspondingly. Specifically, Input1 is related to Expected

Sig_in1,  and Input2  is  related  to  Expected  Sig_in2.  The  module  will  automatically

compute the difference between the computed input  signature and the expected input

signature. If the expected input signature is set to “0”, the result will be the extracted

function of the circuit. 

The module can also be used to do the equivalence checking between two designs. In

this case, the user should provide Input1 and Input2, but leave the Expected Sig_in1and

Expected Sig_in2 blank. In this case, the module will compute the input signatures of

both designs simultaneously. After that,  the computed signatures will  be compared to

check the equivalence between two designs. The two check boxes allow user to access

the intermediate information of the whole substitution process.
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• Equation Visulization Module

This  module  also  takes  the  output  of  Levelization step  as  input  and  generates  a

schematic  diagram for  the  circuit.  Currently, this  module  can  only  recognize  2-input

AND, OR, XOR gates and INV, BUF gates. The graphical view of this module is shown in

Figure 7.6.

Figure A.6: Equation Visualization interface.

A diagram generated for a 3-bit signed multiplier is shown in Figure 7.7.
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Figure A.7: Equation Visualization example.
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