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ABSTRACT

ENERGY EFFICIENT LOOP UNROLLING FOR
LOW-COST FPGAS

SEPTEMBER 2017

NAVEEN KUMAR DUMPALA

B.E., GITAM COLLEGE OF ENGINEERING, ANDHRA UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell Tessier

Many embedded applications implement block ciphers and sorting and searching

algorithms which use multiple loop iterations for computation. These applications

often demand low power operation. The power consumption of designs varies with

the implementation choices made by designers. The sequential implementation of

loop operations consumes minimal area, but latency and clock power are high. Alter-

natively, loop unrolling causes high glitch power. In this work, we propose a low area

overhead approach for unrolling loop iterations that exhibits reduced glitch power. A

latch based glitch filter is introduced that reduces the propagation of glitches from

one iteration to next. We explore the optimal number of filters to be inserted for

different applications that give a good balance between area and power. We also im-

plement partial unrolling with glitch filters. This approach consumes less area while

still giving energy savings comparable to the fully unrolled implementation.

Our approach is targeted to Xilinx and Altera FPGAs. We simulate different

implementation choices and compare energy results to evaluate the savings. We

v



demonstrate our approach on SIMON-128 and AES-256 block ciphers and a sorting

algorithm. We prototype our design on Xilinx Artix-7 and Altera Cyclone-IV-GX

FPGA development boards and measure the actual power savings. Results show

up-to 90% dynamic energy reduction in Xilinx designs, and 97% reduction in Altera

designs with our glitch filtering approach due to glitch power reduction.
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CHAPTER 1

INTRODUCTION

The growth of battery operated devices has increased demand for embedded sys-

tem implementations that use low power semiconductor devices. Application specific

integrated circuits (ASICs) are good for low power design, but changing industry

standards and time to market pressures for the products limit their use for many

products. Field programmable gate arrays (FPGAs) are well suited for embedded

applications with shorter design cycles as they are reprogrammable.

Embedded systems that make use of FPGAs implement cryptographic algorithms

like block ciphers for security applications [22] and sorting and search algorithms

for signal processing [24] and data analysis applications [23]. These algorithms use

multiple iterations for computing output values. If these functions are implemented

sequentially, i.e. the output of one iteration is fed to next, it can be hard to meet

latency requirements and energy consumption will be high. The latency issue can

be addressed by implementing multiple iterations in a single cycle, a process known

as loop unrolling [16]. There are two kinds of loop unrolling. In a fully unrolled

implementation all the iterations are replicated in hardware and executed in a single

clock cycle. In the partially unrolled implementation, only a few of the iterations are

unrolled and multiple clock cycles are required.

Unrolling a design reduces latency but increases glitch power. Glitches are un-

wanted transitions caused by unbalanced delays in the signals at the input of com-

binational logic. In an unrolled design, glitches generated in one iteration propagate

through successive iterations causing more glitches and increasing dynamic power

1



consumption [4]. This effect is particularly visible in designs requiring a high number

of iterations. For example, SIMON-128 [6] needs 68 rounds for computation. The

increase in power consumption in a Xilinx Artix-7 device due to glitch propagation

as unrolling increases is shown in Figure 1.1.
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Figure 1.1: Power consumption trends for SIMON-128 block cipher for increasing
round counts in Xilinx Artix 7 FPGA, using simulation based estimation

We propose an approach to efficiently unroll designs to reduce dynamic energy

consumption. Our approach inserts filters between the unrolled iterations such that

glitches generated in the current iteration do not propagate to the next. We use

FPGA latches as glitch filters. These latches are enabled only when the current

iteration is complete and its output is stable. The latch enable signals are generated

using triggers with predictable delays created from the FPGA logic resources.

The specific contributions of this thesis are

• The design of a latch based glitch filter that reduces glitch energy in unrolled

loop implementations in FPGAs is presented in Chapter 3.

2



• The generation of signals with predictable delays in the FPGA using FPGA

logic resources is presented in Chapter 3. A range of delay values is supported.

• The deployment of prototype applications of unrolled loops on Artix-7 and

Cyclone-IV-GX based boards, found in Sectons 3.4.3 and 3.4.4.

• The determination of the optimal placement of glitch filters in unrolled FPGA

loop iterations is presented in Secton 4.2. The unrolling that gives the best

trade-off between energy and area is considered.

• An evaluation of partial design unrolling to compare the area and energy num-

bers of loop-based designs with fully unrolled and serialized implementations is

presented in Section 4.4.

• An assessment of our glitch filtering scheme integrated in a real application is

presented in Secton 5.

1.1 Thesis Outline

The remainder of this thesis document is organized as follows. Section 2 presents

prior work on reducing glitches in FPGAs. Section 3 describes the implementation

details and our experimental methodology. Results and analysis are presented in Sec-

tion 4. An embedded application which uses our glitch filtering approach is detailed

in Section 5. Section 6 summarizes the results and presents our conclusions.

3



CHAPTER 2

BACKGROUND

Block ciphers and sorting and searching algorithms are often implemented in low

cost embedded applications [22] [23] [24]. These algorithms use the same function

iteratively for computation. For example, the AES 256 [21] block cipher implements

14 rounds (iterations) for the computation of cipher text. Each round takes two

inputs, a data value and a key. The round input data is obtained from the previ-

ous round output or from the module input port. The key is derived from another

iterative function that generates a different key for each round. The round func-

tion can be implemented by reusing combinational logic (rounding hardware) or by

instantiating multiple copies of a round function and connecting them in sequence.

The sequential approach [11] [12] [26] (Figure 2.1) uses less hardware but has high

latency and slow clock frequencies. Using multiple copies of the round function [11]

[12] [19] i.e. unrolling the design (Figure 2.2) increases the hardware but minimizes

the latency to compute the output in terms of clock cycles. For AES-256, a sequential

implementation takes fourteen cycles while a fully-unrolled design takes one cycle for

computation.

Several prior works have implemented unrolling for reducing the latency in the

cryptographic and other iterative designs. In [3], unrolling was adapted to imple-

ment CORDIC algorithm on FPGAs. CORDIC algorithm is handy in implementing

trigonometric, hyperbolic, linear and logarithmic functions. The works [11] [12] ex-

plored multiple architecture options for implementing AES candidate final algorithms

and compared area and performance results. Sequential, full and partial loop unrolling

4
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Figure 2.1: Sequential block cipher implementation

schemes are evaluated in terms of latency and throughput. Although these papers

analyzed the area and frequency, they lacked the power analysis. We do comprehen-

sive analysis on area, frequency and power with different architectural options for

iterative functions.

A sequential loop implementation spends energy storing round function output

state in registers. Unrolling saves this energy as the round output directly drives the

next round and intermediate state is not stored. Although unrolling saves register

energy, it increases glitch energy [5]. Glitches occur due to the difference in input

signal arrival times of combinational logic. The input arriving first at combinational

encryption round logic can create an output transition and the input arriving next can

cause an additional transition. These transitions pass through multiple round func-

tions causing even more transitions at succeeding round outputs [4]. These unwanted

transitions unnecessarily increase the design dynamic power consumption.

Several techniques have been developed to address glitch filtering in FPGA de-

signs. The Glitchless approach [17] adds programmable delay elements to FPGA

logic blocks. Delay elements are added at the inputs and/or outputs of the basic

logic elements and are programmed to align the delays at look-up table (LUT) in-

5
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Figure 2.2: Unrolled block cipher implementation

puts. Computer-aided design (CAD) algorithms determine the configuration of these

programmable delay elements. Architectural changes are needed in this approach as

current FPGA architectures don’t have programmable delay elements in logic ele-

ments. The modified delay element is shown in Figure 2.3b. The narrow rectangles

are the filters. The unmodified design appears in (a).

A recent paper [14] proposes adding adjustable delay circuitry at the output buffers

of the basic logic element. Any pulse shorter than a threshold is suppressed by this

circuitry. The architecture of the logic element after adding the extra circuitry is

shown in Figure 2.4. This approach also requires CAD modifications to set the pulse

width threshold for the glitch filter circuits.

Don’t care conditions [25] of input signals can be used to reduce output signal

transitions. This technique simulates glitch behavior and sets don’t care values to

either zero or one based on signal activity. This technique is used after the placement

and routing stage of the FPGA CAD flow. Although the above approaches reduce

glitches, they need significant architectural improvements to the FPGA devices or

changes to the FPGA CAD tools.
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(a) (b)

Figure 2.3: Glitch elimination using Glitchless a) Original logic block b) Delay
insertion at LUT inputs and outputs [17]

Figure 2.4: Glitch reduction using additional circuitry in a LUT [14]
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Another FPGA glitch filtering approach [9] uses negative triggered flip-flops in-

serted between data path logic to filter glitches. This approach needs extra clock,

phase shifted by 180-degrees generated from the FPGA phase locked loop. Although

this technique doesn’t change the system behavior, it is ineffective for the unrolled

designs which have high glitching activity.

The technique proposed in [18] uses phase shifted clocks timed according to LUT

delays to drive flip-flops inserted within combinational logic. Multiple phase shifted

clocks are generated using the Digital Clock Manager (DCM) and routed using the

clock buffers. As the number of dedicated clock lines in the FPGA is limited, only

few phase shifted clocks can be generated. Flip-flop and clock assignment is done

using an optimization algorithm which maximizes the glitch power savings.

The limitations of this approach are: a) constraint on the number of clock lines

in FPGA devices; b) resolution of phase shifted clocks; c) number of DCMs/PLLs on

the FPGA and the output clocks per PLL are limited; d) PLL blocks increase power,

which works against our goal of power reduction;

Combinational checkpointing proposed in [10] uses latch based glitch filters to

reduce glitch propagation in unrolled block ciphers. This technique is targeted to

application specific integrated circuits (ASICs) and cannot be directly applied to FP-

GAs. The use of latches and precise delays available in ASICs is not straightforward

in FPGAs as the FPGA routing network is fixed. Our approach is similar to check-

pointing. We address the challenges of latch and delay implementation in FPGAs.
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CHAPTER 3

IMPLEMENTATION AND APPROACH

3.1 Glitch Filter Operation

We implemented glitch filtering on AES-256 and SIMON-128 block ciphers and a

bitonic sort algorithm. Figure 3.1 [10] shows glitch filter approach for unrolled block

ciphers.

Encryption 
Round

Encryption 
Round

Glitch 
filter

D

G

Glitch 
filter 

D

G

Register

Key 1

delay

Delay chain Delay chain

Clk

Encryption 
Round

Delay chain

Key 2 Key N

Tr
Tc

LUT

Ri-1 Di-1

Eni-1

Ri Di

Eni

Figure 3.1: Unrolled block cipher with latch-based glitch filtering [10]

The block cipher input is provided from a launch register from where it goes

through one or more encryption rounds. The round output is latched using a delayed

enable (G) signal. The enable pulse to the glitch filter is generated by ANDing an

inverted, delayed version of the input clock with itself. This pulse propagates through

carry chain or LUT based delay elements and connects to the enable inputs of glitch

filters. To effectively filter glitches, the propagation delay of carry chains or LUTs
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(Tc) should be greater than the round delay (Tr). This delay ensures that latches are

enabled only after glitches at the input of the latch have settled.

A timing waveform that illustrates the glitch filtering approach for one round of

computation is shown in Figure 3.2. The input to the first latch Ri−1 is sampled

using enable Eni−1 and produces Di−1 at the output with 69 transitions. Round

computation (Ri) introduces glitches and increases the number of transitions to 302.

A latch enabled by Eni filters glitches and reduces the number of transitions to 63.

Figure 3.2: Timing waveform after the insertion of glitch filters

3.2 Glitch Filter Implementation

Glitch filters stop the propagation of glitches between iterations by sampling the

stabilized data. These filters can be either flip-flop based or latch based. The signifi-

cant difference between above mentioned implementations is latch based filters have

a longer time window to capture the incoming data than flip-flop based filters. If the

glitching activity is not stable before the arrival of the active edge of an enable pulse,

flip-flop based filters propagate incorrect data to next iterations or enter a metastable

state (Figure 3.3 shows incorrect data propagation). But with latch based filters, all

the changes in data before the enable level transitions to zero get captured (Figure

3.4).
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Figure 3.3: Flip-flop based glitch filter timing waveform

Figure 3.4: Latch based glitch filter timing waveform

In most of our experiments, glitch filter are implemented using the transparent

D-latch primitive available in Xilinx Artix-7 and Altera Cyclone IV FPGAs. Since

a latch structures are not available in the Altera devices, the latch-based glitch filter

can be implemented using a LUT connected as a combinational loop.

3.3 FPGA hardware

The key issues to consider for FPGA glitch filter implementation include deter-

mining how long enable signals should be delayed and generating the circuits to create

accurate delays. Round delay can be computed by synthesizing the design for the

target FPGA device and measuring the associated propagation delays using a timing

analysis tool. For generation of accurate delays, we use logic resources available in

the FPGA. By cascading the carry chain multiplexers of slices in Xilinx devices or

11



cascading LUTs in Altera devices, we can generate multiple tap delays. The delay

generation circuit is parameterized to generate the precise delays required for an ap-

plication. Our approach for delay chain implementation is described in Sections 3.3.1

and 3.3.3.

3.3.1 Delay chain implementation in Xilinx FPGAs

In Xilinx devices, carry chains [20] are provided to perform fast arithmetic op-

erations. As block ciphers do not use arithmetic circuitry, the carry chains can be

repurposed for delay generation. The organization of a carry-chain-based delay chain

is shown in Figure 3.5.

Each slice is equipped with four carry multiplexers (MUXCY) which can be cas-

caded into the carry chain of next vertical slice. An enable pulse is given to the first

MUXCY and an output is taken from the third MUXCY. The MUXCY select lines

are connected to logic high to allow the propagation of the enable pulse through the

carry chains. The carry chains generate fine grain propagation delay. Multiple slices

are connected to generate delays greater than the encryption round. The output from

the previous slice is connected to the glitch filter latch and the next delay element.

Delay through a single slice carry chain (CYCINIT to CO[2]) is a nearly constant

780 ps (in Xilinx Artix 7 xc7a35ticsg324-1L) but routing delay varies depending on

the placement of slices. To achieve uniform delays in routing, the propagation delay

from the input to the output of the carry chain is tightly constrained. This approach

results in predictable routing between slices.

3.3.2 Latch implementation in Xilinx FPGAs

A glitch filter is implemented using the latches available in the Artix 7 FPGA.

Each slice has eight storage elements of which four can be configured as a latch. The

latches are level sensitive and are transparent only when their enable inputs are high.

The Xilinx Vivado synthesis tool automatically infers LDCE latch modules during

12
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Figure 3.5: Delay chain implementation in a Xilinx Artix-7 FPGA [20]

synthesis. An Artix 7 flip flop configured as a latch is shown in Figure 3.6. The

placement of carry chains and latches in a Xilinx Artix 7 chip is shown in Figure 3.7.

We can observe that the fanout from carry chain drives 128 glitch filtering latches

and next carry logic.

DFF

Logic 0

Logic 1

EN

Data in
Data out

SR

D

CK

CE

Q

Figure 3.6: Latch implementation in a Xilinx Artix-7 FPGA [20]

3.3.3 Delay chain implementation in Altera FPGAs

In Altera Cyclone IV devices, delays are implemented using LUTs present in a

logic array block (LAB). Each LAB [8] contains 16 logic elements (LE) and each LE

consists of a LUT and a flip-flop. Adjacent LEs in a LAB can be connected input-
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Figure 3.7: Latch and carry chain placement in an Artix 7 (xc7a35ticsg324-1L)
FPGA

to-output to generate a delay greater than round delay. Flip-flops in the LE can be

used for user logic. The organization of the Altera delay element is shown in Figure

3.8. The delay through a single LUT was determined via simulation to be 155 ps

and the average routing delay between LUTs with in a LAB is 200 ps for Cyclone IV

EP4CGX150DF21-C7 FPGA.

3.3.4 Latch implementation in Altera FPGAs

As level-sensitive latches are not directly available in flip flop structures in most

Altera devices including the Cyclone IV, latches for our work were implemented using

LUTs configured in a combinational loop. Logic element LUTs were used (Figure 3.9).

The placement of LUTs and latches in an Altera Cyclone IV chip is shown in Figure

3.10. We can observe that a LUT based delay chain drives a CLKCTRL block (global

routing) which in turn drives 128 glitch filtering latches.
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Figure 3.8: Delay chain implementation in an Altera Cyclone IV FPGA [8]
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Figure 3.9: Latch implementation in an Altera Cyclone IV FPGA [8]
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Figure 3.10: Latch and Delay chain placement in a Cyclone IV FPGA

3.4 Experimental Methodology

We implemented our unrolling approach for AES-256 and SIMON-128 block ci-

phers and bitonic sort algorithm on Xilinx and Altera devices. AES-256 uses 128 bit

data, a 256 bit key and 14 rounds (iterations). SIMON-128 uses 128 bit data and a

key with 68 encryption rounds. We obtained AES-256 RTL from Opencores.org [13].

A Verilog version of SIMON-128 RTL was written from scratch. Testbenches were

created for both designs and the generated outputs were compared to known correct

values generated from software. We got the unrolled and sequential versions of the

bitonic sort algorithm from Spiral.net [28]. The algorithm has 15 stages of swapping

logic and is capable of sorting 32 numbers of 16 bit width. In Xilinx Artix 7 devices,

we used seven slice delays per round for AES-256 , three slice delays per round for

SIMON-128 and seven slice delays per stage for a bitonic sort. In Altera Cyclone IV
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Figure 3.11: CAD flow in Xilinx devices for simulation

devices, we used 36 LUT delays per round for AES-256, 18 LUT delays per round for

SIMON-128 and 36 LUT delays per stage for a bitonic sort.

3.4.1 CAD flow for Xilinx Artix 7 devices for simulation-based power

estimation

We first performed simulation-based experiments using a Xilinx Artix 7

(xc7a35ticsg324-1L) device model. Artix 7 FPGAs are of low cost and consume the

least power among Xilinx 7 series FPGA family devices. The CAD flow for power

measurement using our approach is shown in Figure 3.11. As a first step, an unrolled

version of the RTL design with glitch filters inserted is synthesized using Vivado.
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The synthesized netlist is constrained during synthesis, place and route by timing

constraints. Gate level simulation is performed on the routed netlist, which captures

the glitching behavior of the design. Signal switching activity is recorded in a signal

activity interchange format (SAIF) file. The Xilinx Vivado power analyzer is provided

with the gate level netlist, SAIF file, constraints and operating conditions to generate

power consumption report. Power values are integrated over time to generate the

energy per bit of encryption.

3.4.2 CAD flow for Altera Cyclone IV devices for simulation-based ex-

perimentation

For Altera devices, we performed experiments using a model of an Altera Cyclone-

IV-GX (EP4CGX150DF21C7) device. Cyclone IV-GX FPGAs are of low cost and

suitable for low power applications. The CAD flow for power and energy measurement

using our approach is shown in Figure 3.12. The unrolled RTL code with glitch

filters inserted is synthesized using Altera Quartus Prime. The synthesized netlist

is constrained during Analysis and Fitter stages by timing constraints (.sdc). Signal

switching activity is recorded in a value change dump (VCD) file by performing gate

level simulations using ModelSim Altera simulator. The Altera PowerPlay power

analyzer is provided with the gate level netlist, VCD file, constraints and operating

conditions to generate power consumption report.

3.4.3 Power measurement on the Xilinx Artix 7 ARTY board

An Artix-7 development board (ARTY) [27] was used to measure power consumed

by the Xilinx FPGA in a series of benchtop experiments. The Arty board includes an

Artix 7 FPGA (xc7a35ticsg324-1L) which contains 5200 slices. Artix-7 devices A35T

and A50T uses the same silicon die, which allows us to use all the available slices

in a 50T device (8150 slices). This board includes circuitry for monitoring current

consumed by the FPGA core and for monitoring the 5V board level supply voltage
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Figure 3.12: CAD flow for Altera devices under simulation

and associated current. Xilinx Arty 7 development board is shown in Figure 3.13.

The supply voltages we consider for dynamic power measurement experiments are

listed in Table 3.1.

The Xilinx Artix-7 FPGA is equipped with an XADC [7] which has 12-bit, 1 Mega

sample per second (MSPS) analog-to-digital converter (ADC) and on-chip sensors.

The ADC can be connected to 17 analog channels and the converted data is stored in

status registers. On-chip sensors monitor supply voltage and die temperature. The

XADC interface allows monitoring supply current to the FPGA core. The circuitry

for measuring power in an Artix 7 device on the ARTY development board is shown
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Figure 3.13: Xilinx Artix 7 ARTY Board [27]

Table 3.1: ARTY board supply voltages

Supply Voltage (V) Description
VCCINT 0.95 FPGA Core power
VCCAUX 1.8 PLL and JTAG power
VCCADC 1.8 XADC power

in Figure 3.14. The voltage across a 10 mΩ resistor is amplified using a current sense

amplifier to produce an output voltage of 500 millivolts per Ampere of current. The

output voltage of the current sense amplifier is fed in to the XADC auxiliary channel

to receive a digital value of the current that corresponds to the amplified voltage.

The product of core supply current and the FPGA core voltage (0.95V) will give

the power consumption of the design. Similarly, a 5 mΩ resistor and the associated

circuitry allows measuring total current drawn from the 5V supply. The CAD flow

for power measurement on xilinx ARTY board is shown in Figure 3.15.
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Figure 3.14: Current measurement circuitry on ARTY Board

Figure 3.15: CAD flow in Xilinx devices for board level power measurement

The experimental setup for measuring power in an Artix 7 device on the ARTY

development board is shown in Figure 3.16. An initialized ROM controlled by a free

running cycle counter sends new data to the design every cycle. The module input

ports (e.g. the key and the round constant in block ciphers) are stored in internal
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registers. XADC and JTAG circuitry facilitates measurement of the current drawn

by the FPGA core.

The XADC auxiliary channel-10 monitors the FPGA core current. The binary

value of the current is obtained using an AXI-stream interface with a JTAG connection

using the Vivado Tcl console. Channel-10 data is stored in a register with offset 0x268

that can be read using this Tcl command

run_hw_axi [create_hw_axi_txn rd [get_hw_axis hw_axi_1]

-address (BASE+0268) -len 1 -type read -f]

The value returned is the voltage across the 10 mΩ resistor represented in binary.

The equivalent current for the returned binary value X is X
4096

× 2 A. The product of

core voltage (0.95V) and the measured current is the power consumed by the design.

SIMON/AES/
Design

AXI_
Stream

128

DATA

XADC IPJTAG IP

ROM

Cycle 
Counter

ILA
CIPHER

128

Key reg

JTAG RD/WR
 XADC Registers

through TCL

ARTIX-7

Voltage /Current 
measurement 

circuitry 

Figure 3.16: Experimental setup for physical power measurement in Xilinx Artix 7
device using ARTY development board

The FPGA core supply (VCCINT) powers internal logic elements such as slices

and block RAMs (BRAMs). The auxiliary supply (V CCAUX = 1.8V) drives phase
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locked loops (PLL), JTAG, and other circuitry. In our experiments, only sequential

designs without any unrolling use PLLs. Although the ARTY board does not include

circuitry for measuring auxiliary power, PLL power can be measured indirectly as the

difference of the power consumed by design with and without the PLL.

FPGA static power is the power consumed by the core in the absence of design

switching activity. It was measured using the JTAG and XADC circuitry to be 30.0

mW in the xc7a35ticsg324-1L. This static power is subtracted from the total core

power to determine the dynamic power. Only dynamic power values are reported in

the following sections of this thesis document.

We verified our results by replicating the design and observed the power scaling

with the number of instances. The block design as it appears in Xilinx Vivado with

the IP integrator flow is shown in Figure 3.17. A user design can be included and

subjected to power consumption measurement.

Figure 3.17: Xilinx Vivado Block design with IP integrator flow. A SIMON-128 is
integrated into the middle of the figure.

23



3.4.4 Power measurement on the Altera Cyclone-IV-GX development

board

A Cyclone IV-GX development board [1] was used for monitoring the power con-

sumed by an Altera EP4CGX150DF21 (speed grade C7) FPGA. which contains 9360

Logic array blocks (LABs). The board also includes a MAX II EPM2210GF256

CPLD and on-Board power measurement circuitry. A picture of the board is shown

in Figure 3.18.

Figure 3.18: Altera Cyclone IV GX development Board [1]

The EP4CGX150DF21C7 is powered by 8 supply rails. The board has an 8-

channel differential input 24-bit ADC which measures current drawn from these rails

with the help of low-value sense resistors. The circuitry for measuring power on the

Cyclone IV-GX development board is shown in Figure 3.19. An SPI bus connects

the ADC device to the MAX II CPLD system controller. The experimental setup for

measuring power in the FPGA on the Cyclone IV GX development board is shown in

Figure 3.20. The CAD flow for power measurement on Altera Cyclone IV GX board

is shown in Figure 3.21
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Figure 3.19: Current measurement circuitry on Cyclone IV Board [1]
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Figure 3.20: Experimental setup for power measurement in Altera Cyclone IV GX
devices using the development board

Cyclone IV board is powered by 16V DC input and is connected to PC using

USB type-B connector. To measure the power consumed by a design, the FPGA is

programmed with an .sof file and the power is monitored in a GUI running on a PC.

Figure 3.22 shows the power monitor GUI associated with the Altera Cyclone IV GX

development board. It monitors the current drawn from all board supply voltages.

The supply rails we consider for dynamic power measurement experiments are listed

in Table 3.2.

The product of VCC current measured and the 1.2V supply voltage is the core

power. For designs which use a PLL, the total power is the sum of the power con-
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Table 3.2: Rail voltages in Altera power monitor GUI

Rail Voltage (V) Description
VCCA 2.5 PLL analog power

VCCD PLL 1.2 PLL digital power
VCC 1.2 FPGA core power

Figure 3.21: CAD flow in Altera devices for board level power measurement

tributed by VCCD PLL, VCCA, and VCC. We measured the static power by pro-

gramming the FPGA with a blank design and then monitoring the supply current.

This value is measured to be 141.4 mW in an EP4CGX150DF21C7 FPGA. The dy-

namic power is the difference of the power measured with the user design and the

measured static power. Only dynamic power values are used in Section 4.
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Figure 3.22: Altera board power GUI which monitors current drawn from different
voltage rails
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CHAPTER 4

RESULTS AND ANALYSIS

4.1 Latch-based and Flip flop-based Glitch Filters

The impact of implementing glitch filters using flip-flops instead of latches was

discussed in Section 3.2. We compare the energy and area of latch-based and flip-flop

based glitch filter implementations in this subsection. Glitch filters are inserted after

optimal number of rounds (detailed in Section 4.2). Table 4.1 shows the energy and

area comparison for the different glitch filter implementations in the Artix 7 device.

The energy consumed per bit is similar in both implementations since a latch and a

flip-flop uses the same circuitry in an Artix 7 FPGA. The difference in area results

occurs because only four out of eight flip flop blocks in an Artix 7 FPGA slice can be

configured as a latch.

Table 4.2 shows the energy and area comparison for the different glitch filter

implementations in the Cyclone IV device. We observe that the designs with LUT-

based and flip-flop based glitch filter implementations consume comparable energy.

The number of LUTs required with the latch-based implementations is higher as

latches are mapped to LUTs in Cyclone IV device. The number of LABs (LUTs and

registers) utilized is similar in both the implementations.

4.2 Optimal Glitch Filter Placement

The main idea of our filtering approach is to reduce glitching in an unrolled design

while minimizing area overhead. Glitch filters introduced into the design are capable

of reducing glitches but they consume area and energy. In our experiments, we
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Table 4.1: Energy and area comparison for SIMON-128, AES-256 and bitonic sort
with Xilinx Artix 7 latch based and flip-flop based implementations

Filtering Approach Xilinx Latch Xilinx Flip-Flop

SIMON
Energy Measured(pJ/bit) 34.3 32.1

Area(slices) 1436 1412

AES
Energy Measured(pJ/bit) 57.0 51.0

Area(slices) 4628 4371

bitonic sort
Energy Measured(pJ/bit) 9.5 8.0

Area(slices) 3792 3431

Table 4.2: Energy and area comparison for SIMON-128, AES-256 and bitonic sort
with Altera Cyclone IV latch based and flip-flop based implementations

Filtering Approach Altera Latch (LUT) Altera Flip-Flop

SIMON
Energy Measured (pJ/bit) 90.0 90.0

Area (LUTs/LABs) 24219/1962 19968/2020

AES
Energy Measured(pJ/bit) 168.8 168.8

Area (LUTs/LABs) 67067/4714 65403/4510

bitonic sort
Energy Measured(pJ/bit) 24.7 21.1

Area (LUTs/LABs) 30584/3084 23416/3034

analyzed the area and energy tradeoffs of inserting glitch filters. To find the optimal

placement of the glitch filters, We unrolled the AES, SIMON and bitonic sort designs

and inserted filters after a variable number of rounds. We compare the dynamic

energy consumption and area overhead at different points and choose the best filter

placement in terms of reduced energy consumption1.

Tables 4.3 and 4.4 show the energy per bit and area overhead with filter placement

at different numbers of rounds for AES-256, SIMON-128 and bitonic sort. We observe

that placing a filter after every round for AES-256, every two rounds for SIMON-128,

1Optimal glitch placement results in this section were generated by Mr. Shivukumar Patil.
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Table 4.3: Dynamic energy per bit (pJ/bit) and overall area a Xilinx Artix-7 device
if glitch filter insertion is performed every n rounds where n is 1 to 7. Max indicates
no glitch filtering was used. Both block ciphers and the sorting algorithm were fully
unrolled to generate these results.

Filter Spacing 1 2 3 5 7 MAX

SIMON

Energy
Estimated
(pJ/bit)

196.8 133.7 131.2 151.4 194.3 1304.6

Energy
Measured
(pJ/bit)

43.8 34.3 41.2 54.5 64.3 240.4

Area(slices) 2344 1436 1378 1374 1363 1133

AES

Energy
Estimated
(pJ/bit)

16.7 54.5 145.5 1580.6 983.2 3549.7

Energy
Measured
(pJ/bit)

57.0 118.1 194.2 256.4 347.6 584.5

Area(slices) 4628 4338 4335 4356 4288 4258

bitonic sort

Energy
Estimated
(pJ/bit)

9.5 29.8 39.5 48.1 54.5 78.3

Energy
Measured
(pJ/bit)

10.6 9.5 10.9 13.3 17.1 30.9

Area(slices) 5481 3792 3744 3841 3439 3074

and every two stages for bitonic sorting is optimal in terms of energy consumption

and appropriate in terms of area.

We observe that Xilinx and Altera power estimation tools make relatively accurate

estimates for circuits with low glitching activity and overestimate power for glitchy

circuits [15]. We notice the deviation of estimated energy values from the measured

values as we increase the filter spacing indicating the presence of additional glitching.
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Table 4.4: Dynamic energy per bit (pJ/bit) and overall area in an Altera Cyclone IV
device

Filter Spacing 1 2 3 5 7 MAX

SIMON

Energy
Estimated
(pJ/bit)

200.1 180.8 188.8 344.3 459.7 23163.7

Energy
Measured
(pJ/bit)

101.3 90.0 101.3 118.1 146.3 3420.0

Area(LABs) 2198 1962 1838 1835 1808 1111

AES

Energy
Estimated
(pJ/bit)

209.5 887.1 2120.6 5360.5 7531.9 20804.0

Energy
Measured
(pJ/bit)

168.8 337.5 554.1 1046.3 1333.1 3515.6

Area(LABs) 4714 4514 4395 4331 4342 4338

bitonic sort

Energy
Estimated
(pJ/bit)

36.7 29.4 36.1 49.7 80.1 368.2

Energy
Measured
(pJ/bit)

31.9 24.7 28.4 34.1 43.8 100.5

Area(LABs) 3233 2299 2054 1861 1785 1559

In all the following results energy values were generated on the Arty or Cyclone

IV board using latch-based glitch filters and area numbers are taken from the place

and route report.

4.3 Fully Unrolled Energy and Area Results

To show the energy savings of our approach, we implement the block cipher designs

in three different modes.
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• Fully unrolled implementation with no glitch filtering - This implementation

has high energy due to glitch propagation.

• Fully unrolled implementation with latch based glitch filters placed after the

best number of rounds - This implementation suppresses glitches.

• Sequential implementation, which uses the outputs of each round as feedback -

To maintain the same encryption latency as the fully-unrolled with glitch filter

case, a PLL is needed to generate a fast clock that can be used for registering

values after every round.

The fully unrolled implementations require a lower clock frequency compared to

the sequential implementations to achieve the same encryption latency. Measured

encryption latencies for the unrolled versions with glitch filters are 175 ns for AES,

340 ns for SIMON-128 and 120 ns for bitonic sort in Xilinx devices and 300 ns for

AES, 600 ns for SIMON-128 and 220 ns for bitonic sort in Altera devices. Tables 4.5

and 4.7 show the energy comparison for the different implementations of SIMON-128,

AES-256 and bitonic sort. Our filtering approach consumes the least energy among

all implementations.

Compared to the fully unrolled implementation without filters, the energy savings

are about 86% for SIMON, 90% for AES and 69% for bitonic sort in Artix 7 devices.

The energy savings are about 97% for SIMON, 95% for AES and 76% for bitonic

sort in Cyclone IV devices. Tables 4.6 and 4.8 shows an area comparison for the

implementations in Xilinx Artix-7 and Altera Cyclone IV devices. The glitch filters

lead to an area overhead of 26.7% in SIMON, 8.6% in AES and 23.3% in bitonic sort

in Artix 7 devices and 76.5% in SIMON, 8.6% in AES and 47.4% in bitonic sort in

Cyclone IV devices.

Sequential implementation reduces data energy as it needs minimal hardware. But

these savings are offset by the energy needed to generate the high frequency local clock
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Table 4.5: Energy comparison for SIMON-128, AES-256 and bitonic sort in Artix 7
devices for three different versions which generate an output every 175 ns, 340 ns and
120 ns respectively.

Energy (pJ/bit)
Design Unrolled Glitch Filtered Sequential (with PLL)
SIMON-128 240.4 34.3 381.4
AES-256 584.5 57.0 246.8
Bitonic sort 30.9 9.5 107.1

Table 4.6: Area comparison for SIMON-128, AES-256 and bitonic sort for the three
different versions in an Artix 7 FPGA

Area (Slices)
Design Unrolled Glitch Filtered Sequential (with PLL)
SIMON-128 1133 1436 84
AES-256 4258 4628 370
Bitonic sort 3074 3792 4049

from the system clock. The PLLs are power hungry and they increase the dynamic

power consumption of the sequential implementations. The energy breakdowns for

SIMON-128 in Artix 7 and Cyclone IV implementations are shown in Figures 4.1 and

4.2. These energy breakdown values are estimated from simulation.

In the Xilinx Artix 7 FPGA, the clock energy is negligible compared to data energy

in unrolled and glitch filtered scenarios, whereas it contributes the most to energy

consumption in the sequential implementations. In the Altera Cyclone IV FPGA,

PLL power is contributed by two components, analog 2.5V, and digital 1.2V. Both

supplies have to be powered [2] even if PLLs are not used in the design which leads

to PLL static power being much higher than PLL dynamic power. This issue makes

sequential implementation energy efficient in dynamic power for Cyclone IV devices.

Sequential versions consume almost the same energy as the filtered implementations

and need the least area across all implementations.

Figures 4.3 and 4.4 show the energy versus area tradeoffs for SIMON-128, AES-

256 and bitonic sort using the three implementation choices. These results suggest
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Table 4.7: Energy comparison for SIMON-128, AES-256 and bitonic sort in Cyclone
IV devices for three different versions which generate an output every 600 ns, 300 ns
and 220 ns respectively.

Energy (pJ/bit)
Design Unrolled Glitch Filtered Sequential (with PLL)
SIMON-128 3420.0 90.0 221.7
AES-256 3515.6 168.8 178.1
Bitonic sort 100.5 24.7 194.5

Table 4.8: Area comparison for SIMON-128, AES-256 and bitonic sort for the three
different versions in a Cyclone IV FPGA

Area (LABs)
Design Unrolled Glitch Filtered Sequential (with PLL)
SIMON-128 1111 1962 40
AES-256 4338 4714 121
Bitonic sort 1559 2299 1507

that the fully unrolled implementation is not suitable for low power applications.

Glitch filters must be inserted if we unroll the design as it gives huge power savings

with minimal area penalty. The sequential implementation with a PLL is both energy

and area efficient in Cyclone IV devices. In Artix-7 devices, the sequential version is

suitable only for applications which demand low area.

4.4 Effect of Partial Unrolling

In Section 4.3, we assessed the energy and area of fully unrolled designs that op-

erate at low frequency (e.g. 5 MHz). For most FPGA applications, clock frequencies

are much higher and these frequencies can be achieved via partial unrolling. Partial

unrolling attains higher frequencies as the critical path traverses a small number of

rounds. For example, in SIMON-128, by rolling four rather than 68 rounds, a 50 MHz

clock can be used. Area is also saved as hardware is reused for multiple clock cycles.

Energy savings with partial unrolling is reduced from full unrolling since registers
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Figure 4.1: SIMON-128 energy breakdown for the three implementations in a Xilinx
Artix-7 FPGA

store the intermediate state between the iterations. Energy savings are also limited

by the repeated key computation logic with partial unrolling which is not required in

fully unrolled implementations.

4.4.1 Energy Consumption with Partial Unrolling

We repeated the experiments from Section 4.3 to evaluate the area and energy

required at different degrees of unrolling. We again use a constant latency for AES-

256 (340 ns) and SIMON-128 (175 ns). Tables 4.9 and 4.10 list the energy per bit of

encryption and the maximum clock frequency achieved by the designs with different

degrees of unrolling for SIMON and AES in the Artix-7 device. Tables 4.11 and 4.12

list the energy details with the degree of unrolling for SIMON and AES in the Cyclone

IV device.

The energy consumed by partial unrolling increases with the degree of unrolling.

This effect is due to the increase in the glitches at the higher number rounds. It is

beneficial to insert glitch filters even for partially unrolled designs as it offers good
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Figure 4.2: SIMON-128 energy breakdown for the three implementations in an
Altera Cyclone IV FPGA

Table 4.9: Energy consumption with different degrees of unrolling for SIMON-128 in
a Xilinx Artix-7 FPGA

Energy (pJ/bit)
Degree of Unrolling Frequency (MHz) Unrolled Glitch filtered Sequential

2 100.0 83.7 78.4

381.4

4 50.0 100.9 76.8
5 41.0 115.5 83.7
7 29.5 142.1 83.7
10 20.5 189.9 86.3
17 11.7 293.5 81.0
68 2.9 240.4 34.3

energy savings. Glitch filtered energy is lower than the partially unrolled version

without filtering and the percentage of savings increases with a higher degree of

unrolling.

Figures 4.5 and 4.6 show the energy per bit for SIMON and AES at different de-

grees of unrolling implemented in the three alternative design choices on an Artix-7

device. PLL energy refers to the energy consumed by the phase locked loop used
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Figure 4.3: Energy versus area for AES and SIMON implemented using the three
design choices in an Artix 7 device

Table 4.10: Energy consumption with different degrees of unrolling for AES-256 in a
Xilinx Artix 7 FPGA

Energy (pJ/bit)
Degree of Unrolling Frequency (MHz) Unrolled Glitch filtered Sequential

2 40.0 216.7 97.8

246.8
4 23.0 486.0 118.3
6 17.0 878.4 111.4
8 11.0 1131.3 126.5
14 5.7 584.5 57.0

in generating the high frequency clock required for the sequential implementation.

As expected, the PLL is the biggest contributor to sequential energy rendering it

infeasible for low power applications. The unrolled implementation using glitch fil-
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Table 4.11: Energy consumption with different degrees of unrolling for SIMON-128
in an Altera Cyclone IV FPGA

Energy (pJ/bit)
Degree of Unrolling Frequency (MHz) Unrolled Glitch filtered Sequential

2 57.0 135.0 478.1

221.7

4 28.5 225.0 247.5
5 23.5 225.0 230.6
7 16.7 326.3 202.5
10 11.6 438.8 202.5
17 6.6 984.4 208.1
68 1.67 3420.0 90.0

ters remains the most energy efficient across all frequencies but the approach has a

significant area penalty.
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Table 4.12: Energy consumption with different degree of unrolling for AES-256 in an
Altera Cyclone IV FPGA

Energy (pJ/bit)
Degree of Unrolling Frequency (MHz) Unrolled Glitch filtered Sequential

2 23.3 720.0 317.8

178.1
4 13.3 1929.4 345.9
6 10.0 3287.8 390.9
8 6.6 3990.9 323.4
14 3.3 3515.6 168.8
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Figure 4.5: Energy comparison with partial unrolling for SIMON-128 on Xilinx
Artix-7 devices

Figures 4.7 and 4.8 show the energy per bit for SIMON and AES at different

degrees of unrolling implemented in the three alternative design choices on Altera

Cyclone IV devices. For SIMON-128, inserting glitch filters with partial unrolling

of degree two, four and five does not give any energy savings. Filters should not

used for the above cases. We observed that for both SIMON-128 and AES-256,

unrolled version with filters and sequential version consumes similar energy across all

frequencies.
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Figure 4.6: Energy comparison with partial unrolling for AES-256 on Xilinx Artix-7
devices

4.4.2 Area Utilization with Partial Unrolling

Figures 4.9 and 4.10 show an area comparison for SIMON and AES at different

degrees of unrolling implemented in the three alternative design styles on Artix-

7 devices. Of all the implementations, the sequential implementation requires the

least area. The area with partial unrolling increases with the degree of unrolling as

more rounds are implemented. The filtered implementation has higher area than the

unrolled implementation without filtering due to latch and delay circuitry.

Figures 4.11 and 4.12 show an area comparison for SIMON and AES at different

degrees of unrolling implemented in the three alternative design styles on Cyclone

IV devices. Again, sequential implementation utilizes the least area and the filtered

implementation has minimal area overhead compared to the unrolled implementation.
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Figure 4.7: Energy comparison with partial unrolling for SIMON-128 on Altera
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Figure 4.8: Energy comparison with partial unrolling for AES-256 on Altera
Cyclone IV devices
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Figure 4.10: Area comparison with partial unrolling for AES-256 on Xilinx Artix-7
devices
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Cyclone IV devices

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Ar
ea
	(n

um
be

r	o
f	L
AB

s)

Clock	period	(ns)

Unrolled

Glitch	filtering

Sequential

Figure 4.12: Area comparison with partial unrolling for AES-256 on Altera Cyclone
IV devices

43



CHAPTER 5

RESULTS WITH AN EMBEDDED APPLICATION

Embedded applications often implement fast Fourier transform (FFT) operations

to perform frequency analysis of incoming signals. To evaluate our glitch filtering

approach in the presence of other FPGA design components, we integrated the block

ciphers with an FFT application. We obtained FFT RTL from Spiral.net [28] and

chosen transform size and sample width is 16. We replicated FFT core to ensure that

the entire chip was utilized for experimentation.

SIMON/AES

AXI_
Stream

512

DATA

XADCJTAG

ROM

Cycle Counter

ILA

CIPHER

128

Key Reg

FFT
128

DATA

Figure 5.1: Experimental setup to measure power for FFT design integrated with a
block cipher

The experimental setup to measure the power consumed by the FFT circuit on

the Arty board is shown in Figure 5.1. A ROM with initialized contents drives new

data to FFT core every clock cycle. The output from FFT block is given as an input

to the block cipher. The block cipher (AES/SIMON) is implemented as fully unrolled

or partially unrolled with filters or sequentially for each experiment. A key is stored
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Table 5.1: Energy comparison for FFT integrated with SIMON-128 and AES-256 in
an Artix 7 FPGA

Energy (pJ/bit)
Design Unrolled Glitch Filtered Sequential (with PLL)
FFT + SIMON-128 314.7 88.9 427.7
FFT + AES-256 592.6 73.1 252.2

Table 5.2: Area comparison for FFT integrated with SIMON-128 and AES-256 in an
Artix 7 FPGA

Area (Slices)
Design Unrolled Glitch Filtered Sequential (with PLL)
FFT + SIMON-128 6490 6872 5114
FFT + AES-256 5797 5916 2121

as an initialized constant register inside the block cipher design. The output of the

encryption core is connected to a debug port. About 98% of the LUTs in the chip

are occupied for both SIMON and AES integrated designs.

Table 5.1 shows the energy comparison for FFT integrated with the different

implementations of SIMON-128 and AES-256. Compared to the fully unrolled im-

plementation, the energy savings are about 72% for SIMON and 87% for AES. The

sequential version consumes higher energy than the filtered version due to PLL cir-

cuitry. Table 5.2 shows the area comparison for FFT integrated with the different

implementations of SIMON-128 and AES-256. The glitch filters lead to an area over-

head of 5.8% in SIMON and 2.0% in AES.

Figure 5.2 shows relative placement of the FFT design, SIMON block cipher,

glitch filter and debug circuitry in a 98% occupied Artix 7 FPGA. We observe that

carry chain and latch circuitry is packed close to each other and shares slices with

other SIMON round circuitry.
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Figure 5.2: Relative placement of FFT, SIMON-128 and glitch filtering circuitry in
a Xilinx Artix 7 FPGA. Red rectangles indicate LUTs, Yellow rectangles indicate

registers configured as latches and green rectangles indicate carry chains
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CHAPTER 6

CONCLUSION

In this thesis document we presented a new mechanism to implement loops in low-

cost FPGA in an energy-efficient manner. We demonstrated our approach on Xilinx

Artix-7 and Altera Cyclone IV FPGAs using loop-based functions SIMON and AES

block ciphers and a bitonic sort algorithm. Compared to an unrolled implementation,

we showed savings up to 90% dynamic energy in Artix-7 and 97% in Cyclone IV de-

signs with our approach. We also showed the optimal placement of glitch filters which

gives the best tradeoff between energy consumption and area. We partially unrolled

the designs and showed that different degrees of unrolling and filter insertion lead

to different energy-saving benefits. We also implemented an embedded FFT on an

Artix-7 FPGA and evaluated our filtering approach for dynamic energy consumption

in a highly utilized chip.

Future work could consider implementing glitch filtering in additional benchmarks

and migrating the glitch filtering circuitry to other family devices and speed grades.
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