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ABSTRACT

PHONON TRANSPORT AT BOUNDARIES AND
INTERFACES IN TWO-DIMENSIONAL MATERIALS

SEPTEMBER 2018

CAMERON J. FOSS

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Zlatan Aksamija

A typical electronic or photonic device may consist of several materials each

one potentially meeting at an interface or terminating with a free-surface bound-

ary. As modern device dimensions reach deeper into the nanoscale regime, interfaces

and boundaries become increasingly influential to both electrical and thermal energy

transport. While a large majority of the device community focuses on the former, we

focus here on the latter issue of thermal transport which is of great importance in im-

plementing nanoscale devices as well as developing solutions for on-chip heat removal

and waste heat scavenging. In this document we will discuss how modern perfor-

mance enhancing techniques (strain, nanostructuring, alloying, etc.) affect thermal

transport at boundaries and across interfaces through the avenue of three case studies.

We use first-principles Density Functional Perturbation Theory to obtain the phonon

spectrum of the materials of interest and then use the dispersion data as input to

a phonon Boltzmann Transport model. First, we investigate the combined effects
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of strain and boundary scattering on the in-plane and cross-plane thermal conduc-

tivity of thin-film silicon and germanium. Second, we review a recently developed

model for cross-dimensional (2D-3D) phonon transport and apply it to 3D-2D-3D

stacked interfaces involving graphene and molybdenum disulfide 2D-layers. Third,

we combine relevant models from earlier Chapters to study extrinsic effects, such

as line edge roughness and substrate effects, on in-plane and through-plane thermal

transport in 1H-phase transition metal dichalcogenide (TMD) alloys. Through these

investigations we show that: (1) biaxial strain in Si and Ge thin-films can modulate

cross-plane conductivity due to strong boundary scattering, (2) the thermal boundary

conductance between 2D-3D materials can be enhanced in the presence of an encap-

sulating layer, and (3) the thermal conductivity of 1H-phase TMDs can be reduced

by an order of magnitude through the combination of nanostructuring, alloying, and

substrate effects.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The field of nanotechnology comes with equal parts excitement and fundamen-

tal challenges. Nanomaterials exhibit the potential to enable a plethora of novel or

improved devices with new or enhanced functionalities that can be exploited to in-

novate next-generation technologies. However, one prominent issue that has plagued

the progression of electronic devices and hinders the implementation of nanostruc-

tures is heat dissipation [85]. Poor management of thermal waste heat can interfere

with a devices intended application and accelerate degradation, shortening device life-

time [71]. At the nanoscale, phonon collisions with rough boundaries and interfaces

between dissimilar materials of varying morphologies become additional sources of

resistance perpetuating thermal transport problems [13, 15, 85]. For these reasons,

there has been a revived interest in the study and characterization of the thermal

conductivity (κ) of semiconductor crystals, their nanostructured counterparts, and

their interfaces.

While there has been tremendous advancements in the growth and fabrication

of nanostructured materials, the ability to reliably grow high-quality single-crystal

nanostructures in large quantities remains a topic of intense research [32, 64, 24].

As a consequence, the variability of sample preparation and/or quality can often be

reflected in experimental measurements giving rise to issues of reproducibility and

definitive trends [91, 114]. Moreover, experimental measurements of nanostructures

present new challenges due to the sensitivity of nanomaterials to their environment,
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the resolution of measurement equipment, and the difficulties in determining the de-

tails of transport near boundaries and across interfaces. Thus it is important to

develop and implement theoretical models in parallel with experiments to help de-

convolve physical measurements, provide fundamental insight, and to find qualitative

trends.

In this work, we focus on phonon transport near the boundaries and interfaces

of two-dimensional nanostructures within the scope of modern engineering design

tactics such as strain, dimension downscaling, and alloying. For most materials, we

obtain the full phonon spectrum from first-principles Density Functional Perturbation

Theory (DFPT) simulations from which we can calculate phonon group velocities and

vibrational density of states. With the full phonon spectrum, we can then calculate

thermal transport within a material using the phonon Boltzmann Transport Equation,

or we can calculate transport across an interface using a typical Landauer formalism.

In the next section, we will introduce relevant background for our case studies.

1.2 Relevant Background

In most solids and some liquids, atoms bonded by strong or weak forces vibrate

amongst themselves leading to collective excitations often referred to as phonons.

In relevant electronic materials, thermal currents are driven by both electrons and

phonons. For metals, thermal currents are typically dominated by the high concen-

tration of electrons which tend to dominate the total thermal conductivity taken as

the sum of the phonon and electron parts – κtot = κph + κel. In semiconductors at

moderate doping concentrations, the thermal conductivity is typically dominated by

the phonon contribution, often termed the lattice thermal conductivity. In this body

of work, we will restrict our scope to phonon transport alone.

Lattice thermal conductivity κL in bulk semiconductors is governed by three-

phonon Normal (non-resistive) and Umklapp (resistive) processes [34]. When sample
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dimensions are reduced to the nanoscale (a few to 100s of nm) phonon collisions

with boundaries give rise to boundary scattering which can often reduce the thermal

conductivity by an order of magnitude or more [3, 70]. In very small samples (<10s

of nm) the surface (or edge) patterning and roughness height can further influence

thermal transport – boundaries/edges that have very rough features scatter phonons

more diffusely (reducing κL) while smooth features scatter phonons more specularly,

having little to no effect on κL [68, 7].

In the case of alloyed materials, mass-difference scattering arises and typically

becomes the new dominant scattering mechanism [35]. Phonons can also collide with

isotopes, impurities and lattice defects or disorder. In general, the concentration

of isotopes and impurities strongly determines their influence – however, very large

concentrations are often needed in order for isotope or impurity scattering to overcome

other scattering mechanisms, such as boundary and mass-difference scattering [101,

73, 70]. Concentration also plays an important role with defect scattering, although

the topology of defects can largely affect its influence on κL and is also a subject of

intense research [25, 47, 55, 115].

To this point, the scattering mechanisms mentioned generally occur within a sin-

gle grain of a material, where a grain is defined as a region having a single-crystalline

structure. However, practical devices are often composed of several materials, each

having different electrical (metal, semiconductor, insulator) and thermal (low to high

κL) properties, and the interface formed at the meeting point between any two mate-

rial domains introduces an additional component of resistance to thermal transport

[13, 15, 46]. The influence of material interfaces on overall device thermal resistance

varies depending on grain size, the topology of the interface (rough and disordered

or smooth and well-structured), the type of atomic bonding at the interface (strong

covalent or weak van der Waals bonding), the acoustic impedance of each grain, and

the distribution of available phonon states between the two domains [45, 46].
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In modeling phonon transmission across the interface of two material domains,

there are two long-standing models – the Diffuse Mismatch Model [96, 97] (DMM)

and the Acoustic Mismatch Model [62] (AMM). In the DMM, it is assumed that

all phonons scatter at the interface, which best represents interfacical transport at

high temperatures or across interfaces with significant roughness and defects. In the

AMM, it is assumed that there is no scattering of phonons crossing the interface,

which has been shown to best fit experimental measurements at low temperatures

or involving interfaces with smooth, coherent interfaces. Either model seldom fits

experimental measurements perfectly across all temperatures, but instead act as two

extremes giving lower (DMM) and upper (AMM) bounds for the thermal boundary

conductance. We introduce the topics of these scattering mechanisms here as they

forshadow relevant discussions in the following chapters.

1.3 Outline of Thesis

The remainder of this document is organized as follows: Chapter 2 discusses how

strain affects cross-plane thermal transport in thin-films of group IV semiconduct-

ing Silicon and Germanium. Chapter 3 briefly reviews a recently developed cross-

dimensional (2D-3D) interface transport model and implements it to study metal-

monolayer-substrate stacked systems. We then investigate the role of extrinsic scat-

tering mechanisms on phonon transport in transition metal dichalcogenide 2D alloys

in Chapter 4.
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CHAPTER 2

STRAIN EFFECTS ON IN-PLANE AND CROSS-PLANE
THERMAL TRANSPORT IN SI AND GE THIN FILMS

We begin our study by investigating thermal transport in thin-films of strained

silicon and germanium where boundary scattering is the dominant scattering mech-

anism. We augment previous studies on various strained silicon systems with our

calculations of both in-plane (IP) and cross-plane (CP) thermal conductivity, per-

formed with the pBTE, focusing on Si and Ge thin films under both compressive and

tensile biaxial strain and with film thickness varying across six orders of magnitude.

The full phonon dispersion of Si and Ge under ± 4% (tensile/compressive) biaxial

strain is calculated from first-principles Density Functional Perturbation Theory [12].

While our results confirm weak strain dependence in silicon and germanium thin films

for IP thermal transport, we uncover a much stronger strain dependence in the CP

direction. We provide an explanation on where this strain-dependence discrepancy

between IP and CP transport originates through our momentum-dependent bound-

ary scattering model. In 20 nm films at room temperature, we show that 4% strain

results in a large ∼20% variation in the CP conductivity, with tensile strain decreas-

ing and compressive strain increasing the conductivity. Since IP conductivity remains

relatively unaffected, we also observe an increase (decrease) with tensile (compres-

sive) strain in the anisotropy between IP and CP transport. Our results indicate that

strain may be an effective tool for modulating the cross-plane thermal conductivity

in thin-films for efficient heat removal from strained Si/SOI and Ge/GOI devices.
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2.1 Overview of strain in Si-based nanostructures

Thermal conductivity of strained silicon-based nanostructures has been studied

theoretically [110, 60, 78, 119] and experimentally [73]. Xu and Li [110] studied cross-

plane thermal transport in uniaxially and hydrostatically strained two-dimensional

nanocomposites consisting of Si nanowires (NWs) embedded in Ge. They performed

lattice dynamics calculations including strain, coupled to a phonon Boltzmann trans-

port equation (pBTE) solver with diffuse NW boundaries, and found a large strain

dependence in the cross-plane (along the embedded NWs) in Si0.2Ge0.8 nanocompos-

ites under hydrostatic strain. Yang et al. [60] studied the strain effects on thermal

conductivity in silicon NWs and thin films as well as single-walled carbon nanotubes

and two-dimensional graphene. They performed Equilibrium Molecular Dynamics

(EMD) simulations to calculate the thermal conductivity (κ) which employs a numer-

ical surface reconstruction method to account for surface interactions. Their results

show κ decreases monotonically from compressive to tensile strain in Si and diamond

thin films and NWs.

Paul and Klimeck [78] studied the ballistic thermal transport in NWs under hy-

drostatic and uniaxial strains using a modified Valence Force Field (VFF) approach

to calculate the phonon dispersion. For hydrostatic compressive/tensile strains, they

found that thermal conductivity was unaffected. However, for uniaxial strain, a mono-

tonic trend similar to Yang et al. was observed. Zhang and Wu performed MD studies

of strained Si thin films [119] and also found a modest monotonic strain dependence

for transport along the thin film. Murphy et al. [73] performed an experimental

investigation into uniaxial strain in silicon NWs using a novel piezoelectric Raman

Spectroscopy approach. Their findings support a weak strain dependence on heat

transport in the direction along the NWs. Despite these studies, comparatively less

attention has been devoted to the effect of biaxial strain on thermal transport in

thin Si and Ge films, which may impact applications in strain-engineered silicon-on-
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insulator (sSOI) [1, 29, 54] and strained germanium-on-insulator (sGOI) nanomem-

brane devices [94, 49], as well as strained Si [43] and Si/Ge superlattice thermoelectrics

[19, 56, 48]. Even less attention has been devoted to transport in the direction nor-

mal to the thin film/membrane (cross-plane direction), and the anisotropy between

transport along and across the film/membrane.

2.2 Methodology

2.2.1 First-principles Simulations

In order to fully capture the effects of strain, we have calculated the phonon dis-

persion of Si and Ge under compressive and tensile biaxial strains using first-principles

Density Functional Perturbation Theory (DFPT). All simulations are performed with

the open-source software Quantum-ESPRESSO [37]. Fundamental changes in the me-

chanical properties of a material can be deduced from observing the phonon dispersion

relations. Biaxial strain is applied by fixing the lattice constant in the xy-plane and

allowing the out-of-plane (z-plane) lattice constant to relax energetically. Naturally,

biaxial strain breaks the cubic symmetry of the face-center cubic lattice.

After the system energy has been minimized a final self-consistent field calculation

is performed. We use a norm conserving pseudopotential that uses a direct-fit Von

Barth-Car method with a Perdew-Zunger (LDA) exchange correlation for Si, and

a norm conserving pseudopotential that uses a Goedecker-Hartwigsen-Hutter-Teter

method also with a Perdew-Zunger (LDA) exchange correlation for Ge. A 4×4×4

Monkhorst-Pack grid size with a 1×1×1 offset was used with an energy cutoff for

plane waves of 16 Ry for Si and 24 Ry for Ge. Conventional lattice constants were

used for unstrained cases, 5.431 Å for Si and 5.658 Å for Ge with a convergence

threshold of 10−9. After the self-consistent calculation, a phonon calculation is done

to obtain dynamical matrices in Fourier space on a 4×4×4 grid and a convergence
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threshold of 10−15. The dynamical matrices are then inverse Fourier transformed from

which phonon frequencies are sampled on a dense grid of 33,200 (232,400) k-points.

In Fig. 2.1 we show the dispersions for silicon and germanium plotted along

high-symmetry paths Γ-K-X-Γ-L-X-W-L. A clear increase in optical branch frequen-

cies with compressive strain is seen, with the exception of -2% strain in germanium.

For tensile strains, there is a clear decrease in optical phonon frequencies in either

material. Similar trends can be seen in previous works on strain effects on phonon

dispersions of materials [89, 95, 27]. Branch-wise phonon group velocities are calcu-

lated as the gradient of the dispersion, vj(q) = ∂ωj(q)/∂q, using a central difference

method. Hence the slope of the dispersion curves represents the group velocity of

phonons. Optical phonons have low velocities and are high in energy, thus they act

as energy storage and do not contribute greatly to heat flow. Conversely, acous-

tic phonons are high in velocity and are present at much lower temperatures, thus

acoustic phonons are the main contributors to thermal transport.

Figure 2.1. The phonon dispersions of unstrained (solid black) and strained (dashed
red) silicon (top) and germanium (bottom). The amount of strain increases from -
4% to +4% from left to right. The six phonons branches from bottom to top are
labeled TA1, TA2, LA, LO, TO1, and TO2 and represent transverse/longitudinal
acoustic/optical phonons.
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2.2.2 Phonon BTE and intrinsic scattering mechanisms

The thermal properties of silicon nanostructures [4], Si1−xGex/Si1−yGey super-

lattices [7], and other SiGe nanostructures [102] have been studied using a phonon

Boltzmann transport model with a relaxation time approximation that incorporates

intrinsic and extrinsic scattering mechanisms. We extend the use of this model and

apply it to strained Si and Ge thin films. The temperature dependent thermal con-

ductivity tensor can be obtained from a summation over all q-vectors q and phonon

branches j as

Kαβ(T ) = kB
∑
j

∑
q

Cj(q, T )τj(q)vαj (q)vβj (q) . (2.1)

Cj(q, T ) is the heat capacity per mode, kB is the Boltzmann constant, τj(q) is the

total relaxation time, and vαj (q) is the phonon velocity in the α Cartesian direction.

The modal heat capacity can be represented as function of temperature and q-vector

Cj(q, T ) =

[
~ωj(q)

kT

]2
e~ωj(q)/kT

[e~ωj(q)/kT − 1]2
. (2.2)

The conductivity tensor is diagonal and isotropic in bulk Si and Ge (Kxx = Kyy =

Kzz) due to cubic symmetry, but in nanostructures such as thin films, boundary

scattering and strain can break this symmetry and cause anisotropy [69]. For this

reason, the conductivity tensor in thin Si films has been shown to have different

components in the IP and CP directions [3].

Our model accounts for isotope (I), internal three-phonon normal (N) and umk-

lapp (U) intrinsic scattering mechanisms. The relation between individual scattering

mechanisms and the total intrinsic relaxation time τj,int.(q) follows

1

τj,int.(q)
=

1

τj,N(q)
+

1

τj,U(q)
+

1

τj,I(q)
. (2.3)
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The temperature driven transition between normal and umklapp scattering processes

in bulk Si and Ge is modeled using a general method described by Slack et al. [72]

and can be written in the following forms,

τ−1
j,N(q) =

γ2
j

Mv̄3
j

ω2
j (q)Te−Θj/3T (2.4)

and

τ−1
j,U(q) =

~γ2
j

MΘj v̄2
j

ω4
j (q)Te−Θj/3T . (2.5)

M is the atomic mass, γj is the Grüneisen parameter, v̄j is the average phonon group

velocity of branch j, and Θj is the Debye temperature per branch. While these

rates are based on an empirical model rather than calculated from first principles,

they do not have any adjustable parameters: γj, vj, and Θj are all calculated from

the phonon dispersion [102] and are not adjustable. Their accuracy is sufficient for

the purposes of this work because our focus is on trends in strain dependence in

nanostructures such as thin films where boundary scattering, described further in the

next section, is dominant. First principles calculations of anharmonic phonon-phonon

scattering in Si found the same quadratic dependence of the normal rate [28], but a

stronger quartic dependence of the umklapp rate [108], which is matched by our rates.

When tensile (compressive) strain is applied, normal and umklapp scattering between

acoustic branches, which are the primary contributors to heat flow, have been found

to increase (decrease) with the amount of strain.

Scattering with isotopes is elastic; hence, it is related to the vibrational density

of states, as described by the following equation [100, 67],

τ−1
j,I (q) =

πV0

6
ΓSiω

2D(ω) , (2.6)
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where V0 is the volume per atom, D(ω) is the vibrational density of states, and

ΓSi =
∑

i fi(1 − mi/m̄)2, where fi is the natural abundance of isotope i with mass

mi, and the average mass is m̄ =
∑

i fimi. The energy-dependent vibrational density

of states

D(ω) =
∑
i

∫
dq

(2π)3
δ[ω − ωj(q)] (2.7)

is calculated using the Brillouin zone integration method described by Gilat and

Raubenheimer [38].

2.2.3 Boundary roughness scattering in thin films

We use a boundary scattering model that determines the specularity of boundary

collisions from the surface roughness and angle of phonon wave incidence. This factor

describes the probability of a wave phonon reflecting at the boundary; otherwise, the

phonon is scattered diffusely, provided it does not scatter internally before reaching

the boundary by the intrinsic mechanisms described in the previous section. The

specularity of a given collision is determined from the phonon momentum by p(q) =

exp(−4∆2q2cos2ΘB) where ∆ is the root-mean-square (rms) surface roughness and

ΘB is the angle of incidence.

The relaxation time for boundary events can be written in the following way,

τ−1
j,B(q) =

v⊥j (q)

H

Fp(q, H)

1− τj,int(q)v⊥j (q)

H
Fp(q, H)

. (2.8)

The first term gives a rate determined by the velocity of each phonon and the thickness

of the film and the second term determines the specularity of the wave and typically

takes values between 0 (purely diffuse) and 1 (purely specular). The relaxation time
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Figure 2.2. An illustration of a phonon colliding with a rough surface of a silicon
thin-film. Here H is the film thickness, ~r is the two dimensional position vector along
the surface plane, z(~r) is the local surface roughness height, and ΘB is the angle
between the incident phonon momentum q and the ideally flat boundary surface
normal. Note, z(~r) is employed as a normal random variable having 〈z〉 = 0 and
〈z2〉 = ∆2, where ∆ is the rms surface roughness defined at the beginning of Section
2.2.3. Illustration reused here with permission from Ref. [3].

for boundary scattering depends on intrinsic scattering via a differential equation

which gives rise to a scaling factor,

Fp(q, H) =
[1− p(q)]

(
1− exp

[
−H

τj,int(q)vj,⊥(q)

])
1− p(q)exp

[
−H

τj,int(q)vj,⊥(q)

] . (2.9)

Here τj,int(q)−1 is the total scattering rate due to intrinsic mechanisms given in Eq.

(2.3). The total scattering rate in the presence of both intrinsic and boundary in-

teractions is the combination τj(q)−1 = τj,int(q)−1 + τj,B(q)−1. For a more complete

derivation of the momentum-dependent specularity parameter, boundary scattering

terms, and components to the steady-state pBTE in thin Si films and Si-Ge super-

lattices, we refer to earlier works by Aksamija and Knezevic [3, 7].

We can see in Eq. (2.8) that in thin films where the thickness H is less than the

perpendicular component of the phonon mean free path (mfp) given by the product of

the relaxation time due to intrinsic mechanisms τj,int(q) and the perpendicular com-
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ponent of the phonon group velocity vector v⊥j (q), boundary roughness becomes the

dominant scattering mechanism. The rate of boundary scattering depends strongly on

the velocity perpendicular to the boundary. We can further analyze this dependence in

the limiting case of completely diffuse boundaries (where specularity p =0) and weak

intrinsic scattering. Then Eq. (2.8) reduces to a simpler form τ−1
j,B(q) = 2v⊥j (q)/H,

which is interpreted as saying that, in this limit where boundary scattering is dom-

inant, phonon lifetime simply equals the average time it takes to reach a boundary.

Then the rate of scattering due to boundary roughness is directly proportional to

the component of the phonon group velocity in the direction perpendicular to the

boundary. Consequently, decreases (increases) in velocity due to strain result in an

increasing (decreasing) relaxation time, less (more) boundary scattering, and larger

(smaller) thermal conductivity, respectively.

We anticipate the thermal conductivity in thin films to be more dependent on

strain for this reason, especially the component of the thermal conductivity tensor

(Eq. 2.1) in the CP direction perpendicular to the boundaries of the thin film. In this

limit where boundary scattering is dominant over intrinsic, the diagonal components

of the thermal conductivity tensor further simplify to

K‖(T ) = kB
H

2

∑
j

∑
q

Cj(q, T )
[
v
‖
j (q)

]2

/v⊥j (q) (2.10)

for the IP (parallel to the film) direction and

K⊥(T ) = kB
H

2

∑
j

∑
q

Cj(q, T )v⊥j (q) (2.11)

for the CP (perpendicular to the film) direction. In this limit, we can see that the

thermal conductivity is directly proportional to both the heat capacity and the corre-

sponding component of the group velocity. Hence, we expect CP thermal conductivity

to be highly sensitive to changes in phonon velocity caused by strain. The anisotropy
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between the IP and CP components of the tensor also increases in this limit approx-

imately in proportion to the square of the ratio between the corresponding velocity

components

K‖/K⊥ ≈
∑
j

∑
q

[
v
‖
j (q)/v⊥j (q)

]2

, (2.12)

leading to a large potential anisotropy in thin films under biaxial strain.

In Fig. 2.3, we plot the energy-resolved longitudinal acoustic phonon velocity

for the applied strains. In either Si or Ge, high-velocity LA phonons increase with

compressive strain and decrease with tensile strain. Since biaxial strain produces

asymmetry between the xy-plane and z-plane, we want to distinguish between trans-

port in the direction of strain (in the xy-plane) and perpendicular to the direction of

strain (the cross-plane or z direction). The inset in Fig. 2.3 represents the norm of the

branch-wise velocity vectors for the three acoustic branches (one LA and two trans-

verse TA1 and TA2). The solid lines represent the IP (parallel) direction, whereas

the dotted lines represent the CP (perpendicular) direction. A clear decreasing trend

is seen in the CP LA mode velocities from compressive strain to tensile strain with

Figure 2.3. The energy-resolved velocities of the longitudinal acoustic (LA) mode
shown for various strain amounts. The inset shows the three acoustic modes (TA1,
TA2, and LA) transport/parallel (solid) and boundary/perpendicular (dashed) com-
ponents of the group velocity vectors as a function of strain.
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about 10% variation at the highest strains, while IP velocities show less variation.

We do not plot the optical mode phonons here, because they generally have lower

velocities and do not contribute greatly to heat transport in Si and Ge.

2.3 Calculation of IP and CP thermal conductivity

We have calculated the in-plane (κIP) and cross-plane (κCP) thermal conductivities

of strained silicon and germanium thin-films from 1 to 500 K. A surface rms rough-

ness height (∆) of 0.45 nm is used as a typical value in calculating the boundary

scattering with roughened surfaces. The corresponding lattice orientations for the IP

and CP directions are [100] and [001] respectively. Due to lattice symmetry, the [100]

direction and the [010] direction are virtually identical in the unstrained and biaxially

strained materials. The thermal conductivities are presented in Fig. 2.4 where the IP

conductivity is in good agreement with previous theoretical and experimental studies

on silicon-on-insulator samples [3]. We note that, similar to previous studies on sili-

con, an anisotropy (κIP/κCP) of a factor of 2 is observed for the room-temperature IP

and CP conductivity due to boundary scattering. We extend these observations to

thin-films of germanium where a similar IP/CP anisotropy factor of approximately

1.8 is found.

The strain dependence for κIP is seen to be moderate for both Si and Ge. However,

for κCP at temperatures above roughly 100 K compressive (tensile) strain can be seen

to strongly increase (decrease) the overall conductivity. To better illustrate the strain

dependence, the bottom panel in Fig. 2.4 shows the percent change in κIP,CP as

a function of applied strain at room-temperature. We see a clear decreasing trend

from a maximum boost of ∼20% in Si (∼25% in Ge) at 4% compressive strain to a

decrease of ∼15% in Si (∼16% in Ge) in the CP conductivity at 4% tensile strain,

while the IP conductivity remains relatively unchanged with variations <5% in Si

(<10% in Ge) compared to the unstrained material. We note that our results are
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Figure 2.4. The in-plane (top) and cross-plane (middle) thermal conductivities
for 20nm thick silicon (left) and germanium (right) thin-films with 0.45 nm surface
roughness from 0 to 500 K. Strained materials are represented by blue (compressive)
and red (tensile) dotted and dashed lines. (bottom) Change in thermal conductivity
relative to the unstrained case as a function of strain for a 20 nm thin film with
surface roughness 0.45 nm at 300K, showing significant strain dependence of cross-
plane conductivity.

in agreement with prior theoretical [110] and experimental [73] studies supporting

weak IP strain dependence and a stronger CP strain dependence. We can understand

these trends based on Eqs. (2.10) and (2.11): the IP conductivity is driven more by

phonons with large IP components of their group velocity. Such phonons interact less

with boundary roughness, which is dependent on the CP velocity. In addition, heat

capacity is also decreasing with tensile strain; taken together, tensile strain decreases

heat capacity and IP velocity in the numerator of Eq. (2.10) but also decreases the

CP velocity, hence resulting in less boundary scattering, and the two trends cancel.
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Figure 2.5. The branch-wise contribution to IP (solid lines) and CP (dash lines)
thermal conductivities of the acoustic phonon modes at room temperature as func-
tions of strain. While the IP TA2 and LA mode contributions show no definitive
trend, the IP TA1 and all acoustic CP modes monotonically decrease from compres-
sive to tensile strain.

In contrast, CP transport depends only on the CP component of phonon veloc-

ity (Eq. 2.11) so phonons having larger CP velocity (directed into the boundary)

contribute more to the CP transport but they also encounter more boundary scat-

tering. Hence, as tensile strain reduces both the CP velocity and heat capacity, the

two trends add and result in a much more pronounced strain modulation than the

IP conductivity. In Fig. 2.5 the room-temperature IP and CP conductivities pre-

sented in Fig. 2.4 are broken down into their acoustic mode contributions. Regarding

the strain dependence of each acoustic mode, the TA2 and LA phonon modes for

IP transport show no definitive trend, while the TA1 mode for IP and all acoustic

modes for CP transport monotonically decrease from compressive to tensile strain.

Collectively, for IP transport the variations due to strain in the acoustic mode con-

tributions lead to very little change in the total conductivity. On the other hand,

since all acoustic modes show similar strain dependence, their collective contribution
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to CP transport reveals a clear increase (decrease) with compressive (tensile) strain

in the total conductivity.

2.4 Anisotropic transport as a function of film thickness

In addition, strain inherently promotes anisotropic transport by breaking lattice

symmetry between the direction(s) of the applied strain and the direction(s) perpen-

dicular to the applied strain direction. To further probe the effects strain has on the

anisotropy between IP and CP transport, we have calculated the room-temperature

thermal conductivity over several orders of magnitude of film thickness; the results

are presented in Fig. 2.6. The right end of the horizontal axis represents a bulk like

material where the left end represents thin-films with thickness approaching nanome-

ter lengths. As expected, anisotropy in unstrained Si or Ge goes to one at the bulk

limit.

As the thickness of the film becomes smaller and boundary roughness scattering

begins to play a stronger role, we can see a clear increase in the anisotropy in the

unstrained materials, in agreement with Eq. (2.12). The anisotropy between IP and

CP thermal conductivity gradually increases with decreasing thickness reaching a

peak value of 3 (∼ 2.4) at 2 nm for unstrained Si (Ge) and that tensile (compressive)

strain increases (decreases) this ratio at low thicknesses. As shown earlier in Fig. 2.4,

only the CP conductivity shows a pronounced strain dependence; hence the anisotropy

ratio κIP/κCP shows an inverse relationship to κCP, increasing with tensile strains and

decreasing for compressive strains.

We note that our model has been previously validated against experimental data

on supported Si films down to 20 nm thickness [3]; below this value, phonon confine-

ment effects may alter the phonon velocities [23], reducing thermal conductivity in

the IP direction. The phonon confinement is counterbalanced by a reduction in the

phase space available for scattering, which results in a reduced anharmonic phonon-
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Figure 2.6. The ratio between room-temperature in-plane and cross-plane thermal
conductivity as a function of film thickness. The unstrained case (black) converges
to one as expected when the thickness approaches the mean-free-path of phonons.
Compressive strain (blue) and tensile strain (red) cause anisotropy even at thickness
comparable to the bulk phonon mean-free-path.

phonon scattering rates [22], so that the thermal conductivity of thin films below 13

nm is still dominated largely by boundary scattering and matches closely the pre-

dictions based on bulk lattice dynamics [105]. Prasher et al. [87] have shown that

the heat capacity is also altered in ultrathin nanostructures (NWs) below a certain

critical diameter. Based on the dominant phonon model, they relate this critical

diameter to the dominant phonon wavelength [18, 19, 103], which is in the 1 to 10

nm range in Si [10, 42, 66]. Therefore, we consider the trends we observe in Fig.

2.6 below approximately 10-13 nm, including the peak in anisotropy at 2 nm, to be

a qualitative indicator of the trends, while the strain dependence of the CP ther-
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mal conductivity holds across a broad range of thicknesses approximately up to the

phonon mean-free-path, or so long as boundary scattering is dominant.

2.5 Chapter Summary

We have investigated the effects of biaxial strain on in-plane and cross-plane ther-

mal transport in Si and Ge thin-films. We show that the anisotropy between in-plane

and cross-plane thermal conductivities can be modulated with strain. This modula-

tion is a result of velocity dependent boundary scattering which, in a strongly diffuse

regime, depends roughly linearly on velocity. Our results indicate that strain may be

an effective tool for modulating the cross-plane thermal conductivity in thin-films for

efficient heat removal from strained Si/SOI and Ge/GOI devices.
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CHAPTER 3

CROSS-DIMENSIONAL PHONON TRANSPORT IN A
METAL-MONOLAYER-SUBSTRATE STACKS

In the previous chapter we revealed a unique strain dependence on cross-plane

transport in Si and Ge thin-films due to the dominance of velocity dependent bound-

ary scattering. As material/device downscaling is a traditional avenue for improved

performance, let us continue the trend of decreasing film thickness – that is, in the

limit of film thickness (H → single atom thickness) – and explore the role of bound-

aries/interfaces in atomic monolayers. The topic of boundaries with 2D materials

often concerns itself with edge roughness at the monolayers (MLs) planar edge. Edge

roughness in graphene has been extensively studied [31, 74, 30, 5, 6, 106], therefore

we do not elaborate on it here. Instead we focus on the less explored topic of ther-

mal transport across the interface formed between the monolayer and its underlying

substrate. In this chapter, we will review a recently developed theoretical model for

2D-3D phonon transport and apply it to the case of encapsulated (3D-2D-3D stack)

MLs. This model is general in that it can be applied to any 2D-3D vdW interface as

long as the phonon density of states of each material is known. In addition, we will

discuss the effects the substrate and (encapsulating) superstrate can have on the ML

in a Ti-ML-SiO2 (metal-ML-substrate) stacked system. We use first-principles DFPT

simulations to obtain the phonon dispersion of our MLs (graphene and MoS2) and

the metal overlayer (Titanium). We show that an encapsulating layer can increase

the thermal boundary conductance due to surface rayleigh waves in the superstrate

which hybridize in the monolayer, and thus open an additional pathway for heat to

transfer into the substrate. It is also evident that softer encapsulating layers, with low
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Figure 3.1. Schematic of the monolayer-substrate (a) and superstrate-monolayer-
substrate (b) interface structures.

transverse sound velocities can improve TBC. Our model suggests that the thermal

boundary conductance depends roughly quadratically on the spring coupling between

the 2D-3D material. This work helps to emphasize the role of adhesion, which is re-

lated to the spring coupling, between the monolayer and substrate (or superstrate)

as well as the choice of superstrate in influencing the overall cross-plane thermal

boundary conductance (TBC) in a 3D-2D-3D stacked system.

3.1 Motivation

Since the first lab realization of atomic monolayers in 2004 [76, 75, 36], there has

been a myriad of two-dimensional (2D) material discoveries [2, 50, 92, 11]. Atomically-

thin 2D materials have promising potential for next-generation electronics and opto-

electronics [111, 109], however heat dissipation from hot spots in the monolayer

to its environment remains a critical concern to the design of 2D-based devices

[116, 92, 107]. Thermal currents flowing in a monolayer (ML) can either dissipate

through source/drain contacts, as in a transistor configuration, and/or through an

often present supporting substrate via van der Walls interactions. When a monolayer

is supported by a substrate, the interfacial area formed between the ML and substrate

is often larger than the stacked (or lateral) source/drain contact interface area (or
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length). Thus it is suspected that the majority of waste heat dissipates across the

ML-Sub interface and through the substrate [77]. For such reasons, it is imperative

that the thermal boundary conductance (TBC) between MLs and substrates be well

understood and boosted for reliable 2D-device lifetime and performance.

For bulk 3D-3D and same dimensional welded (convalently bonded) interfaces

there exist two long-standing models for interfacial transport: the Diffuse Mismatch

Model [96, 97] (DMM) and the Acoustic Mismatch model [62] (AMM). In the DMM,

the interface is treated as completely diffuse where phonons impinging on the inter-

face are destroyed and the probability of transmission or reflection is determined by

the ratio of vibration density of states between the two materials. The DMM best

models short-wavelength phonons that are perturbed by interface roughness features,

however it often underestimates interfacial transport in cases where there is a large

contribution from long-wavelength phonons due to smooth interface features between

highly commensurate materials. For such smooth interfaces the AMM is often used,

where phonon transport across the interface is determined by the acoustic impedances

of either medium in a manner akin to Snell’s Law. Interface transport models beyond

these two methods bridge the gap between the DMM and AMM models by consid-

ering the specularity of incident phonons and better capturing the interplay between

internal scattering, surface roughness, and acoustic mismatch between domains [7].

While most welded interfaces can be mapped between the limits given by the

Acoustic and Diffuse Mistmatch Models, interfaces with van der Waals (vdW) gaps

are not properly represented in these approaches. For such vdW interfaces, Prasher

developed a variation of the AMM where a vdW coupling term is introduced [86]. In

this approach the transmission coefficient is written in the following way,

τ =
4z1z2cosθ1cosθ2

(z1cosθ1 + z2cosθ2)2 + ω2

K2
a
(z1z2cosθ1cosθ2)2

. (3.1)
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Here z1 and z2 are the acoustic impedances between either material, θ1 and θ2 are

the angles between the interface normal and phonon propagation in either material,

and Ka is the vdW spring coupling constant. In the limit of a welded interface

where Ka → ∞ the second term in the denominator vanishes, and we recover the

AMM. On the other hand, when Ka is weak (large vdW gaps) the second term in the

denominator dominates resulting in a quadratic dependence on spring coupling and

phonon frequency τ ∝ K2
a/ω

2 – which suggests that low-frequency, long-wavelength

phonons are primary TBC heat carriers in the limit of weak Ka.

The vdW+AMM model has been successfully been applied to 3D-3D interfaces

involving a vdW gap [91]. However, in the case of 2D-3D interface transport, as in

a monolayer-substrate system, the vdw-AMM cannot be used. The reasoning here is

the following; in Eq. 3.1 the acoustic impedance of the ML z1cosθ1 = ρ1v
⊥ depends on

the phonon velocity perpendicular to the interface. Since all ML phonons propagate

in-plane and parallel to the interface, there are no phonon modes with non-zero v⊥,

hence the vdW+AMM gives a τ that is always 0. There are rare occasions where

the vdW+AMM may work for 2D-2D interfaces as demonstrated in [113] where the

authors investigated the thermal conduction properties of single and bundled boron

nitride nanoribbons. However, it is important to note that the domains constructing

the interface have the same phase space and that the v⊥ is assumed to be some

non-zero in-plane phonon velocity in order to insure on non-zero acoustic impedance.

Thus, there is a need for a model for cross-dimensional 2D-3D interfaces beyond what

has been previously discussed.

3.2 Methodology

In this section we will review a recently developed model for phonon transport

across 2D-3D interfaces and discuss the approach for applying this model to a 3D-2D-

3D stack. This model is general in that it can be applied to any 2D monolayer and 3D
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Figure 3.2. The phonon density of states of graphene, MoS2, Ti, and SiO2. For
graphene, MoS2 and Ti the density of states was calculated from the full phonon
dispersion obtained from first-principles DFPT simulations. The density of states of
SiO2 was extracted from [104].

material interface provided a vibrational density of states can be determined for both

materials. We will apply this model to Ti-ML-SiO2 systems where the ML will be

either graphene or MoS2. The phonon dispersions of graphene, MoS2, and Titanium

are calculated from first-principles simulations which are described in detail in the

Appendix Sections A.1 and A.2. We then consider the effects the substrate and

superstrate can have on the monolayer vibrational spectrum and how they influence

the thermal boundary conductance in 3D-2D-3D stacked systems.

3.2.1 Review of 2D-3D Interface Transport Model

In previously discussed interface models (DMM, AMM, vdW+AMM), transport

across the interface requires that phonons first collide with the interface. In the

case of vdW bonded monolayer-substrate interfaces, phonons in the monolayer are
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always at the interface – thus, the depiction of phonons colliding with the interface

is inaccurate and we must redefine the process that initiates interface transport. In

a model developed in [21] phonon transfer across a 2D-3D interface is initiated when

phonons in the monolayer are perturbed by substrate interactions or defects. This

perturbation is caused by the coupling between monolayer atoms and surface atoms

of the substrate having spring coupling constant Ka, as defined in Eq. 3.1, between

them. In this perturbation phonons of mode q and branch j in the monolayer having

frequency ωj(q) hop across the interface transferring all of their energy E = ~ωj(q)

to the substrate where it ideally dissipates away from the monolayer.

A full derivation of the thermal boundary conductance is presented in [21]. In

short, when a temperature difference ∆T = TML−TSub exists between the monolayer

and substrate, the system is out-of-equilibrium, and there is a non-zero heat flux Q(T )

generated across the interface which can be written as an integral over the phonon

spectrum as,

Q(T ) =

∫ ∞
0

~ω
dN0(ω, T )

dT
∆TDM(ω)ΓS(ω)dω . (3.2)

In the above, DM(ω) is the monolayer vibrational density of states (vDOS), dN0(ω, T )/dT

is the temperature derivative of the Bose-Einstein distribution function for phonons

N0(ω, T ) = [exp(~ω/kBT ) − 1]−1, and ΓS(ω) is the substrate scattering rate that

determines the rate at which phonons transfer across the interface. The thermal

boundary conductance can then be calculated as the ratio between the net heat flux

Q(T ) and the temperature difference ∆T as,

G(T ) =
Q(T )

∆T
=

∫
C(ω, T )DM(ω)ΓS(ω)dω , (3.3)

where C(ω, T ) is the modal heat capacity of the monolayer given as C(ω, T ) =

~ωdN0(ω, T )/dT .
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The substrate scattering rate ΓS, which determines the rate at which phonons

in the ML are perturbed by the substrate, was obtained from Perturbation Theory

based on Fermi’s golden rule performed by Seol et al. [93] Here we write ΓS in the

following way,

ΓS(ω) =
π

2

DS(ω)

mMLmS

K2
a

ω2
, (3.4)

where mML is the mass of the monolayer atoms in contact with surface atoms of the

substrate with mass mS, DS(ω) is the vibrational density of states of the substrate

taken in this chapter to be amorphous SiO2, ω is the phonon frequency, and Ka is

the previously defined vdW spring coupling constant. From this equation, we can see

that ΓS(ω) ∝ DS(ω)K2
a/ω

2 which suggests that transmission across the interface, and

therefore the thermal boundary conductance, increases quadratically with coupling

strength and that long-wavelength, low-frequency modes contribute most to 2D-3D

interfacial transport.

At this point it is important to note the phonon characters that contribute to

interface transport in a 2D-3D system. It is quantitatively unclear how strongly

each phonon mode (ZA, TA, LA) of the monolayer couples to the substrate, that

is whether they couple equally each having Ka = KZA
a = KTA

a = KLA
a or each

have varying coupling strengths. In spite of this, one can explore various extreme

cases by choosing values of spring coupling constants and comparing to experimental

measurements. In fact, Seol et al. [93] performed such an investigation where it was

shown that assuming KTA
a = KLA

a = 0 and KZA
a > 0 gave better predictions on

in-plane transport when compared to experiments than when each acoustic branched

coupled equally KZA
a = KTA

a = KLA
a . Additionally, in Correa et al. [21] we show

that even if all three acoustic modes couple equally, the ZA mode of graphene still

dominates in contribution.
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This finding helps corroborate previous investigations on supported graphene

which point to dampening of the ZA mode as the cause of reduced thermal con-

ductivity – where an increase in dampening due to a substrate is indicative of strong

coupling between the ZA mode and the substrate. For all intents and purposes, in

this current chapter we assume KTA
a = KLA

a = 0 and that the ZA mode is the sole

pathway of heat transport across a 2D-3D interface. This is important to note prior

to the next two sections which will discuss how the supporting substrate and encap-

sulating layer of a 3D-2D-3D stack influence the monolayer dispersion and therefore

the thermal boundary conductance.

3.2.2 Effects of a Supporting Substate on Monolayer Dispersion

When a monolayer is placed on a substrate, the atoms in the monolayer couple to

the surface atoms in the substrate through weak van der Waals forces and hence trans-

fer vibrational energy between them. Due to this coupling, long-wavelength flexural

(ZA) phonons undergo a lifting in frequency caused by the collective interaction of the

atomic vdW forces on long-wavelength modes [9, 98]. Starting from our full phonon

dispersion of the monolayer, we modify the ZA mode to account for long-wavelength

substrate interactions with the following equation, ω̃ZA(q) =
√
ω2
ZA(q) + ω2

0; where

ω0 represents the amount of lifting. Subsequently the phonon velocities of near

zone-center ZA modes are also modified – this is imposed by taking the gradi-

ent of ω̃ZA(q) with respect to q. By applying the chain rule one can find that

ṽZA(q) = vZA(q)ωZA(q)/ω̃ZA(q). Since ωZA(q) < ω̃ZA(q) due to the lifting of the dis-

persion due to substrate interaction, the resulting phonon group velocities are always

smaller than their counterparts in suspended monolayers.

In Fig. 3.3 we show the phonon dispersion of graphene (a) and MoS2 (c) as calcu-

lated (dashed line) and after we impose the lifting to the ZA mode (red solid lines).

The amount of offset ω0 is calculated using the spring coupling constant Ka and the
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mass of the atoms in the monolayer mML that make contact with the substrate – pre-

cisely, ω0 =
√
Ka/mML [84]. Note this is the same equation as the oscillating angular

frequency of a simple harmonic oscillator. We can make such an assumption for the

following reason: vdW forces are often modeled using a Lennard-Jones potential [86]

which in the case of small displacements can be well-fit by the quadratic potential

energy of a simple harmonic oscillator. Since phonon displacements are small – from

fractions of an Å up to a few Å at most – we can safely make this assumption.

In Fig. 3.3b,d we show the vibrational Density of states (vDOS) before (dashed

line) and after (solid line) the application of the long-wavelength offset for graphene

Figure 3.3. Shown here are the full phonon dispersions and vibrational density of
states of graphene (a,b) and MoS2 (c,d) after we apply the lifting in the ZA mode due
to long-wavelength interactions with the substrate. The suspended (or as calculated)
dispersion and DOS are shown by the dashed dark grey line whereas the gapped ZA
mode is shown as a red solid line. The remaining phonon branches are shown as black
solid lines. The insets in (b,d) show a close up of the resonant energy ~ω0 which is
slight obscured in the full vDOS figures.
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and MoS2, respectively. Effectively, this offset is seen as a resonant peak in the vDOS

that peaks at ω0. Since the ZA mode is the only mode that contributes to cross-plane

(2D-3D) transport (see end of Section 3.2.1), this means that there are no phonon

modes in the monolayer beneath frequency ω0 available to transfer heat into the

substrate (or superstrate). Additionally, with respect to our substrate scattering rate

this means that the energy range from 0 to (slightly below) ~ω0 does not contribute

to heat transfer as it is negated by the zero DOS of the monolayer in that range; we

say “slightly below” ~ω0 here simply because the phonon energy ~ω0 is roughly the

onset of the ZA mode density of states.

3.2.3 Effects of an Encapsulating Layer

Common experimental techniques for measuring the thermal boundary conduc-

tance of thin-films and 2D materials such as the 3ω method [14, 20], ultra-fast laser-

based thermoreflectance techniques [121, 15] and more recently electrical thermometry

platforms [114] often involve depositing an metal layer on top of the ML-Sub (2D-

3D, single-interface) stack essentially forming a 3D-2D-3D (double-interface) stack.

Therefore, it is imperative to understand the physical effects an encapsulating layer

can have on the monolayer and ultimately the thermal boundary conductance. In

this section, we discuss the effects the encapsulating layer can have on the dispersion

of the monolayer and interfacial transport.

Similar to the case of monolayer on substrate, when a monolayer is encapsulated by

an overlayer (or superstrate) the surface atoms of the superstrate couple to the atoms

in the monolayer through weak van der Waals forces. Consequently, an additional

offset of long-wavelength flexural (ZA) mode phonons occurs that depends on the

independent spring coupling constant between the superstrate and monolayer. For

the remainder of this chapter we will refer to the spring coupling constant between

ML-Sub and Superstrate-ML (Sup-ML) asKsub andKsup, respectively. In terms of the
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resonant frequency offset ω0 (defined previously), we simply sum the spring coupling

constants to arrive at ω0 =
√

(Ksub +Ksup)/mML. Since weak van der Waals forces

are forces of attraction, values of Ksub/sup are always positive, and thus we always see

an increase in the ZA mode offset ω0 due to the presence of an encapsulating layer.

In addition to the increase in long-wavelength ZA-mode offset in the presence of

the encapsulating layer, it has been found that Rayleigh waves of the superstrate

hybridize with the monolayer and thus contribute to interfacial transport [77]. The

Rayleigh waves are essentially surface waves that propagate on the surface of the

superstrate due to collisions by transverse acoustic phonons in the superstrate with

the boundary facing the Sup-ML interface. The Rayleigh wave modes (RWMs) have

a linear dispersion given by the following equation ωRWM = cR||q||, where cR is the

sound velocity of the RWM which is close to the transverse acoustic sound velocity

of the superstrate and ||q|| is simply the norm of the wave-vector q.

The linear dispersion of the RWM closely resembles in-plane transverse and lon-

gitudinal acoustic modes of the monolayer in the long-wavelength regime, but with

out-of-plane displacements much like the characteristic quadratic ZA mode of mono-

layers. In Fig. 3.4 we show the effective phonon dispersion and density of states of

graphene (a,b) and MoS2 (c,d) in the presence of both a supporting substrate and

encapsulating layer. Here the encapsulating layer is taken to be titanium which has a

transverse sound velocity of cT = 3348 m s−1. Note this velocity is quite low as it is

comparable to the sounds velocities of the softer acoustic modes of MoS2 and notica-

bly lower than the stiffer acoustic velocities of graphene. For this reason, we actually

see a larger DOS contribution from the RWM in graphene than MoS2 since there is

already an appreciable presence of low-energy phonon modes in MoS2 as compared

to graphene.
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Figure 3.4. Full phonon dispersions of graphene (a) and MoS2 (c). The dashed
grey line represents the ZA mode of suspended monolayers, and the solid red line
represented the gapped ZA (g-ZA) mode characteristic of supported monolayers. The
linear dispersion of the Rayleigh Wave mode is also represented here as the solid blue
line. The remaining phonon modes are represented by the black solid lines. The
vibrational density of states (vDOS) are depicted for graphene (b) and MoS2 (d).
The insets show a low energy region where there is a resonant peak resulting from
the spring coupling of the monolayer to the super- and substrate.

3.3 Results and Discussion

We will now apply the 2D-3D model to a 3D-2D-3D stacked system in light of the

effects seen by the monolayer due to the presence of the substrate and superstrate

described in the previous section. In doing so we will assume an amorphous SiO2

substrate and a titanium encapsulating layer. We use relevant experimental data

from [20, 57, 114] to help aid our calculations and discussion, but our predictions on

TBC are not dependent on experimental measurements. Here it is important to note

that in our model the spring coupling constant used in the offset of the ZA mode and
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the substrate scattering rate (Eq. 3.4) is treated as an input parameter. Therefore,

we will fit our calculations to available experimental measurements by varying the

spring coupling constant between the monolayer and relevant 3D material.

In Fig. 3.5a-d we show the low-energy phonon dispersion (a,b) and density of

states (c,d) of graphene and MoS2 (Gr,MoS2). We emphasize the low-energy region

here because the substrate scattering rate Γsub/sup roughly follows a DS(ω)K2
a/ω

2

relationship, where the 1/ω2 term indicates that long-wavelength, low-energy phonons

contribute most to TBC. In 3.5a,b the grey dashed line represents the ZA mode of

the suspended ML (as calculated from first-principles), the red solid line represents

the gapped ZA (or g-ZA) mode which is lifted due to the simultaneous presence of

the substrate and superstrate, and the blue line represents the RWM arising from

the presence of the encapsulating layer (superstrate). The remaining solid black lines

represent the in-plane TA and LA modes (as well as the optical modes) which do

not contribute to interfacial transport – only the g-ZA and Rayleigh Wave modes

contribute to interfacial transport.

In Fig. 3.5c,d we have the g-ZA mode and the RWM vDOS contributions shown

as a red and blue solid line, respectively. The black solid line represents the vDOS of

all phonon modes. The g-ZA mode leads to a resonant peak at ~ω0 due to the large

contribution of long-wavelength modes caused by the flattening of the mode near

zone-center. If we were to consider a ML-Sub interface alone only ZA phonons would

contribute to TBC, and no phonon modes below ~ω0 would contribute. However, for

the Sup-ML-Sub case, the emergence of the RWM provides phonon modes below ~ω0

that can contribute to interfacial transport. In addition, if we look at the ratio of

the RWM contribution to the g-ZA mode contribution of both materials, the ratio is

higher for graphene than for MoS2. This is a direct consequence of the low-velocity

of the RWM relative to the ZA mode velocities of graphene, whereas the softer MoS2

monolayer has a lower ZA mode velocity and thus we see less of a difference in their
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vDOS contributions. This suggests that we should see a larger difference in the TBCs

of graphene with and without the presence of the RWM as compared to MoS2.

In calculating the TBC of the Ti-ML-SiO2 stack we use the following proce-

dure: 1st) We replace the original ZA mode frequencies ωZA(q) with ω̃ZA(q) =√
ω2
ZA(q) + ω2

0 as in Section 3.2.2, but with ω0 =
√

(Ksub +Ksup)/mML as in Section

3.2.3. 2nd) We add the hybridized RWM to the dispersion of the monolayer as a new

branch having the dispersion ωRWM = cR||q||. 3rd) We calculate the Sup-ML and

ML-Sub scattering rates Γsup and Γsub based on Eq. 3.4 using their respective spring

coupling constant terms and 3D material masses – that is, Ksup and the mass of Ti

for Γsup, and Ksub and the average mass of SiO2 for Γsup. (Note it is the average

Figure 3.5. The low-energy region of the phonon dispersion of graphene (a) and
MoS2 (b) where the gapped ZA (g-ZA) mode (solid red) is contrasted with the sus-
pended ZA mode (dashed grey), and the linear Rayleigh Wave mode (solid blue)
arising from encapsulation is shown. Similarly, the vibrational density of states for
graphene and MoS2 are shown in (c) and (d), respectively. Thermal boundary con-
ductance vs. temperature for single and double interfaces involving graphene (e) and
MoS2 (f) from 25 to 350 K. The solid lines represent our theoretical results, while
experimental data are represented by the lines with markers. The dashed black line
is the series combination of two independent Ti/ML and ML/SiO2 single interfaces.
The legend in the top right corner refers to data presented in figures (e) and (f)
exclusively.
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mass of SiO2 only since the surface termination of SiO2 is quantitatively unclear.

That is, it is unclear if the surface terminates with more Si atoms, more O atoms

or equal amounts – therefore we take the average for simplicity). 4th) We take each

Γsub/sup, compute Gsub/sup(T ) as in Eq. 3.3, and finally compute the total thermal

boundary conductance as the sum of series conductances – Temperature dependent

TBC = G−1
total(T ) = G−1

sub(T ) +G−1
sup(T ).

In Fig. 3.5e,f we show the calculated TBC of Ti-ML-SiO2 with ML being graphene

in (e) and MoS2 in (f). As we mentioned before, the values of Ksub/sup are input

parameters in our model. Therefore, starting in Fig. 3.5e we first use experimental

data of a Gr/SiO2 single-interface from Chen et al. [20] (black dashed line with

upward facing triangles) to find a value of Ksub that gives the best fit (blue dashed

line) on the measurement – this value turns out to be Ksub = 2.25 Nm−1. From there

keeping the same Ksub, we use experimental data from Koh et al. [57] (red solid

line with red circles) and Yasaei et al. [114] (pink dashed line with downward facing

triangles) for Ti-Gr-SiO2 double-interfaces to find a value of Ksup that best fits (solid

black line) their measurements – we get a Ksup = 1 Nm−1.

Keeping Ksub = 2.25 Nm−1, we then look at Ti-MoS2-SiO2 double-interfaces in

Fig. 3.5f with provided experimental data from Yasaei et al [114]. Here we again

vary Ksup to get a best fit (black solid line) on the direct-grown Ti-MoS2-SiO2 stack

(green solid line with downward facing triangles) – this gives us a Ksup = 2.7 Nm−1.

The choice to keep Ksub fixed and vary Ksup is merely a means to an end, and it

need-not be true that the spring coupling constant between Gr-SiO2 and MoS2-SiO2

be the same. In fact, the adhesion between the Sup-ML and ML-Sub will depend

on the ML, superstrate, substrate, and fabrication process used. For instance, we

see an approximate 8-9 MWm−2K−1 difference between direct-grown and transferred

Ti-MoS2-SiO2 stacks. It is likely that the difference is attributed to the different

fabrication approaches, leading to different adhesion energy (which is proportional to
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the spring coupling constant [21]) where the transferred MoS2 on SiO2 (orange line

with stars) is surpassed by the direct-grown sample.

In both Fig. 3.5e,f the solid red and blue lines represent the extracted TBCs of

the single-interfaces Ti-ML (Gsup(T )) and ML-SiO2 (Gsub(T )) in the double-interface

calculation. The sum of the series conductance of the red and blue solid lines recovers

the black solid line for the whole Ti-ML-SiO2 stack. The black dash line in either

panel (e,f) represents the case if the two interfaces in the Ti-ML-SiO2 stack are treated

completely independent of each other. In that, we still have the same Ksub/sup pairs,

but we calculate the single-interface conductances Gsub/sup with the individual ZA

mode offsets from Ksub/sup rather than their sum. In addition, in the black dashed

line case since we treat the Ti-ML-SiO2 stack as two independent 2D-3D interfaces,

there is no RWM mode present.

This emphasizes the importance of treating the 3D-2D-3D stacked system as a

whole rather than as two independent interfaces. Since an increase in the ω0 offset

alone (as a result of depositing an encapsulating layer) should lead to a decrease in

TBC – due to the 1/ω2 term in Γsub/sup – we see the importance of the RWM contri-

bution as we ultimately see an increase in TBC with the addition of the encapsulating

layer. This states that the additional pathway for interfacial heat transport opened

by the hybridized RWM more than offsets the increase in the ZA mode lifting caused

by the encapsulating layer. Lastly, we see a much larger influence from the RWM in

the Ti-Gr-SiO2 stack than Ti-MoS2-SiO2 which corroborates our observation of the

ratios of the vDOS between the RWM and the ZA mode earlier in this section.

Earlier we stated that our model is not dependent on experimental data, to show

this we further study the role of Ka on the TBC by plotting the room-temperature

TBC as a function of the vdW coupling Ka for graphene in Fig. 3.6a and MoS2 in Fig.

3.6b. The overall trend is nearly quadratic because the rate of phonon interaction

with either substrate or superstrate metal Γsub/sup ∝ D(ω) K2
a/ω

2 is proportional to
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Figure 3.6. The dependence of room-temperature TBC on spring constant for single
and double interfaces involving graphene (a) and MoS2 (b), respectively. Dashed red
and blue lines are ZA, while dotted red and blue lines are the RWM contributions to
each (Ti/ML and ML/SiO2) interface. Dashed black line is the series combination
of two independent Ti/ML and ML/SiO2 single interfaces. The insets in (a) and
(b) highlight the regions on the curves corresponding to the range of spring coupling
constants used in the calculations in Fig. 3.5e and Fig. 3.5f above. Spring coupling
constants in the range of [0.1, 10] N/m corresponds to a long-wavelength flexural
mode offset range of [1.5, 14.7] meV for graphene and [0.9, 9] meV for MoS2.

the square of the coupling constant and inversely proportional to phonon frequency,

suggesting that most of the heat being transferred is by long-wavelength modes. The

solid black line represents the TBC of a Ti/ML/SiO2 stack where the long-wavelength

ZA mode offset is ω0 =
√

2Ka/mML. The branch-wise breakdown per interface for

the solid black line is shown by the color-coded dashed and dotted lines, where dashed

(dotted) refers to the ZA (RWM) mode and red (blue) refers to the extracted TBC of

the Ti/ML (ML/SiO2) interface. Note that in Fig. 3.6b for values of Ka >1 N/m the

dotted blue line is under the solid black line. The dashed black line represents the TBC

of a Ti/ML/SiO2 stack if the two interfaces (Ti-ML and ML-SiO2) were independent

of one another. In other words, as if the presence of each interface has independent

effects on the monolayer (i.e. ω0 =
√
Ka/mML) and no RWM is present. To show
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the trend in the Ka dependence of the TBC we also plot the curve TBC = K2
a in

Figs. 3.6a,b which shows good agreement with both graphene and MoS2. Ultimately

the calculated TBC is slightly sub-quadratic in Ka, which is most pronounced in the

ZA mode contributions to Ti/Gr* and Gr/SiO2* at values of Ka >1-2 N/m of Fig.

3.6a.

3.4 Chapter Summary

We have reviewed a previously developed model for cross-dimensional 2D-3D

phonon interface transport that is both computationally inexpensive and general for

any monolayer-bulk interface provided that the vibrational density of states is known

for both materials. We then take that model and apply it to 3D-2D-3D stacked sys-

tems and provide a discussion on the effects the substrate and superstrate can have

on the monolayer dispersion and interfacial transport. We use the spring coupling

constant (an approximation to the weak van der Waals forces) as an input variable to

fit available experimental data. Our results show that the emergence of RWMs due

to encapsulation offsets the increase in the ZA mode offset and leads to a doubling

or tripling of the TBC. Our results also indicate that softer encapsulating layers with

lower transverse sound velocity can boost the TBC, provided the spring coupling

constant remains the same.
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CHAPTER 4

EXTRINSIC EFFECTS ON PHONON TRANSPORT IN
TRANSITION METAL DICHALCOGENIDE ALLOYS

So far we have investigated the unique strain dependence in cross-plane phonon

transport due to velocity-dependent boundary scattering of phonons in quasi-two-

dimensional Si and Ge thin-films down to several nanometers in thickness. Then we

applied a 2D-3D cross-dimensional phonon transport model to calculate the thermal

boundary conductance of 3D-2D-3D stacked systems based on graphene and MoS2

monolayers. There, we outlined the effects of substrate and superstrate interactions

on thermal boundary conductance (TBC), where it was shown that the TBC strongly

depends on the spring coupling constant (Ka) at the interface and that the presence

of an encapsulating superstrate can increase heat transfer from the monolayer to the

substrate. In this chapter, we will take related aspects from Chapters 2 and 3, and

apply them to transition metal dichalcogenide (TMD) ternary alloys; MoS2−2xSe2x,

WS2−2xSe2x, Mo1−xWxS2, and Mo1−xWxSe2 for x ∈ [0, 1]. Alloying two materials

together is a common engineering technique for tuning the electronic band gap and

phonon frequencies between constituent materials, as well as introducing alloy scat-

tering which greatly reduces thermal conductivity while minimally affecting electron

transport [26, 59, 90, 53]. Here we investigate how alloying affects in-plane phonon

transport in the presence of edge-roughness and a supporting SiO2 substrate, as well

as alloying effects on the TBC between TMD alloys and SiO2. Our results show that

through alloying alone, the lattice thermal conductivity can be significantly reduced

even at modest alloying compositions. Further, with the introduction of (extrinsic)

atomically rough edges through nanostructuring and substrate effects the thermal
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conductivity drops by at least another factor of 3 or more. We also show that alloy

composition dependence of TBC is modest and qualitatively different than in-plane

transport. Our results show that through the combination of alloying and extrinsic

effects one can modulate the in-plane thermal conductivity and through-plane (TBC)

conductance of TMD alloys. The former being beneficial for thermoelectric applica-

tions which require ultra-low thermal conductivity, and the latter would help improve

waste heat removal from hot-spots in the active-layer of 2D-based devices.

4.1 Overview of thermal transport in 2D TMDs

The thermal transport properties of transition metal dichalcogenide (TMDs) has

been studied both theoretically [39, 80, 44, 120] and experimentally [112, 79, 118, 51].

Early experimental measurements of the in-plane thermal conductivity κIP via raman

spectroscopy of single-layer suspended MoS2 [112] and WS2 [79] show rather low values

of 34 and 32 W.m−1.K−1, respectively. These measurements contradicted available

theoretical predictions for single-layer suspended MoS2 and WS2 from calculations,

that combined density functional theory (DFT) and a Peierls-Boltzmann transport

(PBTE) model, which placed the in-plane thermal conductivities of MoS2 and WS2 at

103 and 142 W.m−1.K−1 [39], respectively. Later, a DFT-driven Slack model for the

thermal conductivity predicted low κIP values (∼ 30− 33 W.m−1.K−1) [80] for MoS2

and WS2 in agreement with the measured values from [112, 79]. However, raman

spectroscopy performed in [118] demonstrates κIP of MoS2 and MoSe2 as high as

84±17 and 59±18, respectively, which surpass the lower measurements in [112, 79] and

are in good agreement with DFT+PBTE [39]. More recent theoretical calculations

provide further support for κIP > 70 W.m−1.K−1 for sulfides (MoS2 and WS2) and

κIP ≈ 50±10 W.m−1.K−1 for selenides (MoSe2 and WSe2). Non-equilibrium molecular

dynamics and Green-Kubo method were employed [44] to calculate κIP in the zig-zag

and armchair directions. There, the authors report for single-layer MoS2 κ
zigzag
IP = 110
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W.m−1.K−1 and κarmchairIP = 100 W.m−1.K−1, and for MoSe2 κ
zigzag
IP = 44 W.m−1.K−1

and κarmchairIP = 41 W.m−1.K−1. This was followed by DFT-driven phonon Boltzmann

transport equation (pBTE) predictions [120] of 82.2, 121.2, 46.2, and 72.7 W.m−1.K−1

for MoS2, WS2, MoSe2, and WSe2 respectively. These theoretical predictions are

then followed by time-domain thermoreflectance (TDTR) measurements [51] of κIP

on bulk, natural TMDs (MoS2, WS2, MoSe2, and WSe2). In-plane conductivity values

obtained from TDTR were 82, 120, 35, and 42 W.m−1.K−1 for MoS2, WS2, MoSe2,

and WSe2 respectively. Although the values from TDTR are on bulk multilayer

TMDs, the in-plane conductivity values serve as a baseline for comparison to single-

and few-layer suspended TMDs [51].

There has been far less attention given to the thermal properties of TMD alloys,

despite their potential applications in solid-state memory and thermoelectric devices

[40, 61]. The in-plane thermal conductivity of a Mo1−xWxS2 alloy with and without

WSe2 nanoclustering was investigated via DFT+PBTE [40]. DFT+PBTE revealed

a minimum of ∼20 W.m−1.K−1 at ∼40% W mixing, only reduced further by ∼10%

through the introduction of nanoclustering. The thermal properties of janus1 MoSSe

was investigated [41] with a DFT+pBTE model where a room-temperature value for

the compound was found to be 14.9 W.m−1.K−1. Very recently, anisotropic thermal

transport (in-plane and cross-plane) was studied [88] in layered 2H- and Td-phase

WSe2(1−x)Te2x alloys using a combination of TDTR measurements and DFT calcu-

lations. There, the minimum κIP for 2H-phase alloys was ∼10 W.m−1.K−1. Despite

these works, there is still a lack of investigations into the thermal conductivities of

suspended and supported single-layer ternary TMD alloys. In this work we use a

DFT-driven pBTE model to study boundary effects on homogeneous and ternary

1Janus transition metal dichalcogenides are compound materials and represent a class of TMDs
where one of the layers of chalcogen atoms are completely replaced by a different chalcogen species
[117]. For example, janus MoSSe is the compound S-Mo-Se with no randomization between chalcogen
species.
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TMD alloy nanoribbons as well as the alloy composition dependence of κIP of sus-

pended and supported TMDs. We also use our 2D-3D interface model to study the

thermal boundary conductance dependence on alloy mixing of SiO2 supported TMD

alloys.

4.2 Methodology

We start by calculating the full phonon dispersion of four TMDs of the type MX2,

where M=Mo,W and X=S,Se, from first-principles density functional perturbation

theory (DFPT) simulations. The resulting full phonon dispersions of the four homo-

geneous TMDs are plotted in Fig. 4.1 (simulations discussed in Appendix A.3). We

then approximate a virtual alloy dispersion using a virtual crystal approximation (de-

Figure 4.1. The full phonon dispersion is shown for MX2 TMDs where M=Mo, W
and X=S, Se. Starting from MoS2, the phonons energies decrease as W and Se atoms
replace Mo and S, respectively. The reduction is primarily driven by the increased
unit cell mass and larger lattice constants from the heavier W and Se atoms (See
Table 4.1).
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tailed in the next Section) and use it as input data to a phonon Boltzmann transport

equation (pBTE). Our pBTE model for two-dimensional thermal conductivity follows

Allen’s modified Callaway model [65] and takes into consideration all relevant scatter-

ing mechanisms; three-phonon normal and umklapp, isotope, alloy mass-difference,

line-edge roughness, and substrate scattering. We then use our 2D-3D phonon trans-

port model to investigate the TBC between TMD alloys on SiO2.

4.2.1 Virtual Crystal Approximation

In the virtual crystal approximation (VCA), material properties of two or more

materials are mixed, often linearly, to arrive at approximated material properties for

a virtually alloyed material. The simplicity of the VCA is attractive for its com-

putational cost but limiting in its accuracy of representing practical alloys whose

inherent randomness breaks long-range periodicity, which the VCA preserves. There-

fore, the VCA is generally coupled with an additional scattering mechanism, termed

alloy (mass-difference or mass-disorder) scattering, to account for additional anhar-

monicty caused by the disordered mixing of masses between the alloyed species [58].

Traditionally, the VCA has been successful in predicting the material properties of

alloyed Group IV semiconductors and Group III-V Nitrides [33, 35, 63]. Here we use

the VCA to mix the lattice constants, atomic mass, phonon dispersion, and group

velocities of 2D single-layer TMDs.

In implementing the VCA here we follow a similar approach as the one detailed

in [53] where one can write the alloyed materials’ unit cell mass and lattice constant

as a linear combination of the constituent materials, as malloy = (1 − x)m1 + xm2

and aalloy = (1 − x)a1 + xa2. Unit cell masses and lattice constants for the four

homogeneous TMDs used in this work are shown in Table 4.1. Next, we compute the

phonon dispersion and group velocities of the alloy from the corresponding values of

the homogeneous materials as,
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Table 4.1. Unit cell masses (m) and lattice constants (a0) for homogeneous TMDs.
The unit cell masses are obtained through simple summation of the three atom basis of
MX2 TMDs, as in m = mM + 2mX. The lattice constants for WS2, MoSe2 and WSe2

represent the equilibrium structure parameters achieved after structural relaxation
where the forces on each atom are < 5× 10−4 eV/Å (See Appendix A.3).

MoS2 WS2 MoSe2 WSe2

m (a.u.) 160.06 247.96 253.86 341.76

a0 (Å) 3.165† 3.19 3.288 3.321

ωalloy(q, j) =

[
(1− x)m1a

2
1ω

2
1(q, j) + xm2a

2
2ω

2
2(q, j)

malloya2
alloy

]1/2

, (4.1)

and

~valloy(q, j) =
(1− x)m1a

2
1ω1(q, j)~v1(q, j) + xm2a

2
2ω2(q, j)~v2(q, j)

malloya2
alloyωalloy(q, j)

. (4.2)

In Fig. 4.2 we plot the phonon dispersion of MoS2, WS2, and a 50% (x=0.5) mixed

Mo1−xWxS2 alloy. As tungsten (W) atoms are introduced the phonon dispersion de-

creases, interpolating between the dispersions of the homogeneous materials. The

VCA has been used previously in [40] to study phonon transport in single-layer

Mo1−xWxS2 alloys embedded with WS2 nanodomains. There, the VCA was applied

more rigorously at the level of interatomic force constants which were then used to

extract phonons frequencies, whereas here we have applied VCA in the latter stage

at the level of the phonon frequencies themselves. Despite this fact, we find that

the acoustic modes, the primary heat carriers, agree well with the alloyed phonon

dispersion presented in [40].

†The lattice constant for MoS2 is chosen from structural relaxations performed using a GGA
functional which are known to better reproduce experimental measurements [80], whereas in our
DFPT simulations an LDA functional was implemented for MoS2 (See Appendix A.1) which tends
to underestimate the lattice constant [16].
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Figure 4.2. The full phonon dispersion of MoS2 (black solid), WS2 (red dash), and
Mo0.5W0.5S2 (blue dash). Through the introduction of W atoms, we see a gradual
reduction in the phonon spectrum that interpolates between the dispersions of the
homogeneous materials.

4.2.2 In-plane Phonon Transport

The phonon Boltzmann transport equation (pBTE) has been used to study ther-

mal transport in semiconductor materials [34, 53] as well as two-dimension graphene

[65]. Here we use Allen’s solution [8] to the pBTE, which is a slight modification

to Callaway’s original model [17]. Normal scattering processes are non-resistive be-

cause they conserve crystal momentum and thus do not inhibit thermal transport

but rather lead to a redistribution of phonon modes [17]. Both Callaway and Allen

sought to correct the underrepresentation of non-resistive normal phonon scattering

to the thermal conductivity. In either approach the steady-state pBTE is written as,

~v(q, j) · ∇~rNq = −
Nq −N0

q

τR(q, j)
−
Nq −N∗q
τN(q, j)

, (4.3)
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where on the left hand side ~v(q, j) is the phonon velocity and ∇~rNq is the spa-

tial gradient of the out-of-equilibrium distribution function Nq. While on the right

hand side, τ−1
R (q, j) represents the resistive scattering rate which relaxes the out-of-

equilibrium distribution back to a zero heat flux equilibrium distribution N0
q, repre-

sented by the Bose-Einstein distribution function N0
q(T ) = [exp(~ω(q)/kBT )− 1]−1,

and τ−1
N (q, j) represents the non-resistive (normal) scattering rate that pushes the

out-of-equilibrium distribution toward a non-zero heat flux flowing equilibrium dis-

tribution N∗q.

In solving for the thermal conductivity κ, both Allen and Callaway models arrive

at the general form,

κ = κRTA +
λ1λ2

λ3

, (4.4)

which consists of the widely used relaxation time approximation (RTA) term κRTA

plus a correction term λ1λ2
λ3

. The RTA term is written as

καβRTA(T ) =
kB
h2D

∑
j

∑
q

~ω(q, j)
∂N0(T )

∂T
τC(q, j)vα(q, j)vβ(q, j) , (4.5)

where kB is Boltzmann’s constant, h2D is the 2D layer thickness (including interplanar

vdW gap), ~ω(q, j) represents phonon energy, ∂N0(T )
∂T

is the temperature derivative

of the equilibrium Bose-Einstein distribution function, τC(q, j) is the total relaxation

time, and vα,β(q, j) represents the phonon group velocity in the α and β cartesian

directions. In Allen’s solution λ1,2,3 are written in the following form,

λ1,j =
1

Aδ

∑
q

v‖(q, j)q‖τC(q, j)
∂Nq

∂T
, (4.6)

λ2,j =
1

Aδ

∑
q

v‖(q, j)q‖

[
τC(q, j)

τN(q, j)

]
∂Nq

∂T
, (4.7)
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λ3,j =
1

Aδ

∑
q

(
q2
‖

~ωq,j

)[
τC(q, j)

τR(q, j)

]
∂Nq

∂T
, (4.8)

where q‖ is the component of the phonon wave-vector that is perpendicular to the

boundary normal. Collectively, λ1,2,3 quantify the additional thermal conductivity

produced by the flowing equilibrium. In Eqs. (4.5-4.8), τC(q, j) combines all resis-

tive τR(q, j) and non-resistive τN(q, j) scattering mechanisms, that is τ−1
C (q, j) =

τ−1
R (q, j) + τ−1

N (q, j).

The anharmonic phonon-phonon normal scattering rate used here follows the work

of Morelli et al. [72] where τ−1
N (q, j) = BNω

aN
q,jT

bN e−Θj/3T and

BN(aN , bN) =

(
kB
~

)bN ~γ2
j [S0h2D](an+bN−2)/3

MvaN+bN
j

. (4.9)

In the above, Θj is the branch-wise debye temperature, γj is the branch-wise Grüneisen

parameter, S0 is the surface area of the 2D layer unit cell (S0 =
√

3
2
a0 for homoge-

neous TMDs or S0 =
√

3
2
aalloy for alloyed TMDs), and M is the unit cell atomic mass

(i.e., values in Table 4.1 for homogeneous TMDs or values from malloy defined in Sec.

4.2.1 for alloyed TMDs). The emprical exponential factors aN and bN that determine

the frequency and temperature dependencies are [1 2 2]j and 1, respectively. The

Grüneisen parameter, which determines the anharmonicity of phonon-phonon inter-

actions (where larger values represent more anharmonicity) [80], is 2 for all branches.

Resistive scattering mechanisms are comprised of any collision that destroys crys-

tal momentum, which includes anharmonic umklapp scattering τ−1
U (q, j), isotope

scattering τ−1
iso (q, j), impurity scattering τ−1

imp(q, j), alloy mass-difference scattering

τ−1
mass(q, j), line-edge roughness scattering τ−1

LER(q, j), and substrate scattering τ−1
sub(q, j).

The scattering rate of resistive processes is thus written as

τ−1
R (q, j) = τ−1

U (q, j) + τ−1
iso (q, j) + τ−1

imp(q, j) + ...

...+ τ−1
mass(q, j) + τ−1

LER(q, j) + τ−1
sub(q, j) . (4.10)
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We again follow the work of [72] in considering anharmonic umklapp processes as,

τ−1
U (q, j) = BUω

aU
q,jT

bU e−Θj/3T where

BU(aU , bU) =
~γ2

j

MvaUj ΘbU
j

. (4.11)

Here the values of aU and bU are 2 and 1, respectively. Normal and umklapp scat-

tering typically dominate in bulk crystals where sample dimensions are large and im-

purities/defects are low in concentration, however here we are interested in studying

phonons in the presence of boundaries of alloyed materials. Hence, strong bound-

ary scattering from nanostructuring and mass-difference scattering from alloying will

dominate over three-phonon (N and U) processes and determine the effective relax-

ation time of phonons. The remaining scattering mechanisms can be grouped as

mass-disorder scattering (τ−1
iso , τ−1

imp, and τ−1
mass) and extrinsic boundary/interface scat-

tering (τ−1
LER and τ−1

sub).

Phonon scattering due to mass-disorder can occur with isotopes, vacancies/impurities,

and atoms with different atomic mass than the host species (e.g., in alloys). These

mechanisms are elastic and can be written independent of the phonon wave-vector

(q) as [100, 99],

τ−1
iso (ω) =

πS0

12
Γisoω

2D2D(ω) , (4.12)

where Γiso is the natural abundance of isotopes Γiso = χ(1− χ)/(M + χ)2 with χ =

3.4%. The phonon density of states D2D(ω) is calculated following the Brillouin zone

integration method [38], which for dense q-point grids can be numerically calculated

as a sum over all phonon modes q and branches j, D2D(ω) =
∑

q,j δ[ω − ω(q, j)].

Scattering with impurities occurs with lattice vacancies/defects and are calculated

as,
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τ−1
imp(ω) =

πS2
0

12
nimpω

2D2D(ω) , (4.13)

where nimp represents the concentration of impurities. Typically, the mass-difference

of isotopes is small and when abundance is low, phonon-isotope scattering is weak.

Similarly, phonon-impurity scattering depends largely on its concentration and does

not contribute largely to the effective relaxation time until nimp is comparable to

the atomic density of the host material. In this work, we consider the abundance of

isotopes and impurities to be small and hence they do not contribute greatly to τ−1
R .

On the other hand, scattering caused by the mass-difference in alloys dominates even

in bulk materials often leading to an order of magnitude or more reduction in the

thermal conductivity [35, 52]. Phonon scattering due to mass-disorder in alloys can

be written in a similar form to 4.12 as [53]

τ−1
mass(ω) =

πS0

12
Γalloyω

2D2D(ω) , (4.14)

where Γalloy is the mass-disorder term for alloyed materials and is written as

Γalloy =
x(1− x)(m1 −m2)2

m2
alloy

=
x(1− x)(m1 −m2)2

[(1− x)m1 + xm2]2
. (4.15)

Scattering due to alloying is typically stronger than isotope or impurity scattering

due to the larger mass-difference (m1 −m2) between the constituent materials even

at small mixing percentages [52, 53].

Our model also includes phonon scattering due to line-edge roughness and sub-

strate interactions. Phonon collisions with rough boundaries of the 2D layer can

be modeled using a 2D variant of the boundary scattering model (See Eqs. 2.8

and 2.9) used in Chapter 2. In this way, phonons collide with the boundary pro-

vided they have not already scattered internally where each collision is treated with a
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momentum-dependent specularity parameter p(q) = exp(−4q2∆sin2θB). The specu-

larity parameter determines how specular or diffuse the collision event is based on the

root-mean-square (rms) roughness ∆, wave-vector q2 = ||q||2, and angle of incidence

θB. Line-edge roughness (LER) scattering can be written as [6, 65]

τ−1
LER(q, j) =

v⊥(q, j)

W

Fp(q, j)[
1− Λ⊥

int(q,j)

W
Fp(q, j)

] , (4.16)

where W is the width of the nanoribbon, v⊥(q, j) are the phonon group velocities

perpendicular to the flow of transport (i.e., toward the boundary), and Λ⊥int(q, j) =

v⊥(q, j)τ−1
int (q, j) is the phonon mean-free-path perpendicular to the direction of trans-

port. Here, τ−1
int (q, j) represents the scattering rate of all internal mechanisms; includ-

ing three-phonon N+U processes, mass-disorder, and substrate interactions when

supported. The form factor Fp(q, j) is written as

Fp(q, j) =
[1− p(q)]1− exp[−W/Λ⊥int(q, j)]

1− p(q)exp[−W/Λ⊥int(q, j)]
. (4.17)

This model captures the interplay between internal scattering mechanisms and bound-

ary roughness scattering and has been previously used to model line-edge roughness

in graphene nanoribbons [6]. Lastly, we also consider the effects of substrate interac-

tions on in-plane transport. For this we follow the work of [93] on the substrate effects

on in-plane phonon transport in graphene monolayers, where the substrate scattering

rate can be written as

τ−1
sub(ω) =

π

2

(
Dsub(ω)

msubmalloy

+
D2D(ω)

m2
alloy

)
K2
a

ω2
. (4.18)

In the above, Dsub(ω) is the phonon density of states of the supporting substrate (SiO2

here), msub is the mass of atoms on the surface of the substrate, and Ka is the van der

Waals (vdW) spring coupling constant. This form of the substrate scattering rate is
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analogous to the rate used for 2D-3D phonon transport (See Eq. 3.4), however here

(for in-plane transport) we assume that the net heat flux across the 2D-3D interface

is zero and hence, any phonon that hops from the 2D layer to the substrate must hop

back or be replaced by an equivalent phonon from the substrate.

4.2.3 Through-Plane Transport

In addition to studying in-plane phonon transport in TMD alloys, we also study

the thermal boundary conductance (TBC) between TMD alloys and a supporting

SiO2 substrate using our 2D-3D interface transport model from Chapter 3. For sake

of brevity, the model is identical to the one presented in Sections 3.2.1 and 3.2.2

where we calculate the rate of heat transfer across the 2D-3D interface as a substrate

scattering rate written as,

τ−1
sub(ω) =

π

2

Dsub(ω)

msubmX

K2
a

ω2
. (4.19)

Here, the mX term represents the atomic mass of chalcogen atoms of the TMD alloy,

that is mX = mS,mSe for homogeneous TMDs (and for TMD alloys where only

the transition metals are mixed) and mX = (1 − x)mS + xmSe for TMD alloys

where the chalcogen atoms are mixed. The phonon density of states of amorphous

SiO2 is extracted from previous molecular dynamics simulations [104]. Also, recall

that when a 2D layer is placed on substrate, long-wavelength interactions with the

substrate through weak van der Waals forces cause a gapping of the ZA mode. Thus,

in calculating the TBC we gap the ZA mode as, ω̃ZA(q) =
√
ω2
ZA(q) + ω2

0, where

ω0 =
√

Ka

mX
represents the resonant frequency. After the ZA mode is gapped, we

calculate the phonon Density of States (pDOS) of the 2D-layer as defined previously

(See discussion after Eq. 4.12). Once we calculate the substrate scattering rate and

the pDOS of the 2D-layer, we can calculate the TBC as the product of the specific heat
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and pDOS of the 2D-layer and substrate scattering rate integrated over all phonon

energies,

G(T ) =
Q(T )

∆T
=

∫
C2D(ω, T )D2D(ω)τ−1

sub(ω)dω . (4.20)

The intriguing aspects of studying the effects of alloying on TBC is within the inter-

play between the atomic mass mX in the substrate scattering rate, the gapping of the

resonant frequency, and the 2D pDOS.

4.3 Effects of LER and substrate scattering on IP transport

Calculations of room-temperature κIP for suspended single-layer homogeneous and

50% alloyed TMDs over several orders-of-magnitude in width (W) are shown in Fig.

4.3. The length (L) and rms roughness (∆) at the line edge are considered to be

100 µm and 0.45 nm, respectively, throughout. Our κIP predictions for large-sample

Figure 4.3. The width dependence of in-plane thermal conductivity (κIP) in the of
suspended (a) homogeneous and (b) 50% alloyed TMDs. In either case, transport is
considered to be in the zigzag direction with the boundary normals perpendicular to
the direction of transport.
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homogeneous (> 10µm in Fig. 4.3a) are within the range of previously reported

values but differ in trend for the sulfides. For the four homogeneous TMDs, the bulk

in-plane conductivity values are 159, 80.2, 70.5, and 61 W.m−1.K−1 for MoS2, WS2,

WSe2, and MoSe2, respectively. As width dimensions are scaled down below the 100

nm range, we begin to see a significant reduction in κIP due to phonon collision with

rough line-edges. When the width is scaled down to 5 nm (∼ 15 unit cells across) we

see a 75% reduction from the bulk values. Similar size scaling is demonstrated for

50% mixed TMD alloys in Fig. 4.3b, however there are some definitive differences

from the homogeneous counterparts.

At large sample dimensions, the 50% mixed TMD alloys show a 3-fold reduction in

κIP ranging from 18.7 W.m−1.K−1 in Mo0.5W0.5Se2 to 22.5 W.m−1.K−1 in Mo0.5W0.5S2

and are in good agreement with values from DFT+PBTE [40] and DFT+pBTE [41].

These values for large-sample alloys, are comparable to the homogeneous nanoribbons

with widths smaller than 5 nm. The intrinsically low κIP for the 50% alloys is further

reduced when width-scaling decreases beyond 100 nm, although the decrease is more

gradual than in the homogeneous TMDs. The stronger dependence on size-scaling

in the homogeneous TMDs lends itself to larger contributions from long mean-free-

path (MFP) phonons which collide more readily with the boundary than in the alloys

where there are larger contributions from short MFP phonons. Through alloying and

nanostructuring our predictions show an order-of-magnitude reduction in κIP when

comparing nanoribbon sized (W<10 nm) TMD alloys to large-sample homogeneous

TMDs.

Next, we probe the dependence of κIP on alloy concentration of suspended and

SiO2 supported large-sample (100×100 µm) TMDs in Fig. 4.4a,b. For suspended

TMD alloys κIP we see a steep decline at modest alloying concentrations reaching

minimums in the range of 25% to 75% alloy mixing. The values in Fig. 4.4a at

50% alloy mixing are precisely the bulk values presented in Fig. 4.3b. When the
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Figure 4.4. The in-plane thermal conductivity of (a) suspended and (b) SiO2-
supported 100×100 µm TMD flakes as a function of alloy mixing. Comparing the
suspended and supported flakes, there is a near 3-fold reduction in κIP of the homo-
geneous (x = 0, 1) SiO2-supported TMDs, and a further 4-fold reduction in κIP of
50% (x = 0.5) alloyed TMDs.

2D-layers are supported by a SiO2 substrate, phonon modes (primarily ZA phonons)

[93] are dampened by substrate interactions. As a result, the overall scattering of

acoustic modes increases leading to a decrease in the in-plane thermal conductivity.

For the homogeneous TMDs we see a 3-fold reduction in κIP across all TMDs. These

results for SiO2-supported single-layer TMDs agree well with measured values of κIP

TMDs supported on a gold-coated SiO2 substrate handle [118]. When the supported

TMDs are alloyed (Fig. 4.4b) we see a similar dependence as the suspended TMDs,

where moderate alloying compositions result in a significant reduction in κIP and

a common minimum occurs around 4.6-6 W.m−1.K−1. Predicted values for large-

sample SiO2-supported TMD alloys display very low κIP comparable to suspended

TMD nanoribbons of width less than 2 nm. These significantly low κIP values for

supported large sample size TMD alloys are promising for improved thermoelectric

performance.
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Figure 4.5. Here we show the thermal boundary conductance between select TMD
alloys and an SiO2 substrate as a function of alloy mixing. Compared to the alloy
mixing dependence of κIP, the TBC shows a rather modest alloy composition depen-
dence. The largest and smallest modulation of TBC are +65% and +8.2% along the
Mo1−xWxS2 and Mo1−xWxSe2 curves, respectively. The value of the vdW coupling
constant in these calculations is Ka = 2.7 N/m.

4.4 Effects of Alloying on TBC

We also calculated the through-plane thermal boundary conductance (TBC) be-

tween TMD alloys and an SiO2 substrate. In Fig. 4.5 we show TBC as a function

of alloy mixing where we see values in the range 16-26 MW.m−2.K−1 which are in

good agreement with reported measurements of single-layer MoS2 on SiO2 [114, 111].

Our results show a TBC of 25.8, 21.1, 19.5, and 16.3 for WS2, WSe2, MoSe2, and

MoS2 on SiO2, respectively. We find that the trend in TBC across different TMDs

depends primarily on variations in atomic mass and phonon spectrum which roll into

important features that determine TBC such as the resonant frequency gap, sub-

strate scattering rate, and 2D pDOS. That is, the light atomic mass of the sulfur
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atoms in WS2 combined with the lower phonon frequencies caused by the heavier

tungsten transition metal maximize Γsub despite having a larger resonant frequency

gap ω0. With the introduction of Se atoms, although the phonon spectrum decreases

(increasing the pDOS at low-frequency) and the resonant frequency gap is lower, the

reduction in Γsub caused by the heavier chalcogen atom causes a net reduction in

the TBC. Replacing W atoms with Mo atoms increases the phonon spectrum, thus

reducing the pDOS at low-frequency and further decreasing the TBC.

Upon alloying, the TBC values show a qualitatively different trend than in-plane

transport and appears to be mostly linear for each TMD alloy, with the exception

of MoS2−2xSe2x. Additionally, the modulation of TBC values as a function of alloy

composition is far weaker than in-plane transport. The largest modulation is seen in

Mo1−xWxS2 which shows a 65% increase in TBC at increasing concentrations of W

atoms. On the other hand, small modulation is seen in Mo1−xWxSe2 showing only a

8.2% increase with increasing concentration of W atoms. In device scenarios where

high TBC is required, these results indicate that WS2 would outperform other TMDs

in interface heat transfer. Further, while TBC can be moderately modulated via al-

loying, the effects are far weaker than in-plane transport. Hence, alloying TMDs may

be a useful method for limiting in-plane heat transfer while simultaneously boosting

through-plane (TBC) heat removal.

4.5 Chapter Summary

We have investigated the effects of alloying on TMD nanoribbons and suspended

and supported micron-sized TMD flakes through a combination of DFPT simulations

and phonon Boltzmann transport modeling. Nanostructuring TMDs into nanorib-

bons we show at least a 3-fold reduction in the thermal conductivity due to line-edge

roughness when the ribbon width approaches 5nm. The internal mass-difference

scattering imposed through alloying, increases anharmonicty and reduces the ther-
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mal conductivity further by at least a factor of 3 compared to the bulk and nanos-

tructured equivalents. We then investigated the effects of substrate interactions on

in-plane transport in micron-sized flakes of TMD alloys. Due to the dampening of

ZA phonons from substrate interactions we see again a 3-fold (4-fold) reduction in

the thermal conductivity from the suspended homogeneous (alloyed) TMDs. Lastly,

we studied the effects of alloying on thermal boundary conductance between TMDs

and an SiO2 substrate. Our 2D-3D interface model revealed that the TBC has a

qualitatively different trend than in-plane transport as well as a far weaker (nearly

linear) dependence on alloy composition. This work helps highlight the importance

of line-edge roughness and substrate interactions on the in-plane and through-plane

thermal transport of alloyed and non-alloyed TMD 2D-layers.
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CHAPTER 5

SUMMARY

In this document we have discussed how modern performance enhancing tech-

niques (strain, nanostructuring, alloying, etc.) affect thermal transport at boundaries

and across interfaces through the avenue of three case studies. We used first-principles

Density Functional Perturbation Theory to obtain the phonon spectrum of materi-

als of interest and then used the dispersion data as input to semi-classical transport

models. In Chapter 2, we investigated the combined effects of strain and boundary

scattering on the in-plane and cross-plane thermal conductivity of thin-film silicon

and germanium. Our results confirmed a weak strain dependence of the thermal

conductivity in the in-plane (IP) direction and uncovered a near ±20% modulation

in the cross-plane (CP) direction with ∓4% strain. The contradictory responses be-

tween the IP and CP thermal conductivities creates a modulation in the anisotropy

between in-plane and cross-plane thermal transport with the application of strain.

This modulation was a result of velocity dependent boundary scattering which, in a

strongly diffuse regime, depends roughly linearly on velocity. Our results indicated

that strain may be an effective tool for modulating the cross-plane thermal conductiv-

ity in thin-films for efficient heat removal from strained Si/SOI and Ge/GOI devices.

In Chapter 3, we reviewed a recently developed model for cross-dimensional (2D-3D)

phonon transport and applied it to 3D-2D-3D stacked interfaces involving graphene

and molybdenum disulfide 2D-layers. We showed that an encapsulating layer (atop

a 2D-3D interface) can increase the thermal boundary conductance due to surface

rayleigh waves in the superstrate which hybridize to monolayer, and thus open an
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additional pathway for heat to transfer into the substrate. It is also evidenced that

softer encapsulating layers, with low transverse sound velocities can improve TBC by

adding to the low-frequency pDOS of the 2D-layer. We reveal a roughly quadratic

depdence of the TBC on the van der Waals spring coupling between the 2D and 3D

materials. This work helps to emphasize the role of adhesion, which is related to

the spring coupling, between the monolayer and substrate (or superstrate) as well

as the choice of superstrate in influencing the overall cross-plane thermal boundary

conductance (TBC) in a 3D-2D-3D stacked system. In Chapter 4, we combined rel-

evant models from Chapters 2 and 3 and studied extrinsic effects, such as line edge

roughness and substrate effects, on in-plane and through-plane thermal transport in

1H-phase transition metal dichalcogenide (TMD) alloys. Our results showed that

through alloying alone, the lattice thermal conductivity can be significantly reduced

even at modest alloying compositions. Further, with the introduction of (extrinsic)

atomically rough edges through nanostructuring and substrate effects the thermal

conductivity drops by at least another factor of 3 or more. We also show that alloy

composition dependence of TBC is modest and qualitatively different than in-plane

transport. Our results showed that through the combination of alloying and extrinsic

effects one can modulate the in-plane thermal conductivity and through-plane (TBC)

conductance of TMD alloys. The former being beneficial for thermoelectric applica-

tions which require ultra-low thermal conductivity, and the latter would help improve

waste heat removal from hot-spots in the active-layer of 2D-based devices.
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APPENDIX

FIRST-PRINCIPLES PHONON SIMULATIONS

A.1 Graphene and MoS2

The full phonon dispersions of graphene, MoS2, and Titanium are calculated from

first-principles using the open-source suite Quantum-Espresso [37]. Graphene dis-

persions were obtained using a scalar relativistic norm-conserving pseudopotential

(NCPP) which uses a direct-fit Von Barth-Car method with a Perdew-Zunger [81]

(LDA) exchange-correlation functional. For MoS2 we used a non-relativistic NCPP

for molybdenum and a scalar relativistic NCPP for sulfur. Both potentials in the

MoS2 calculation employed a Martins-Troullier method with a Perdew-Wang [83]

(LDA) functional. In order to minimize any interaction between stacked layers, planes

of single-layer graphene with planar lattice constant a=2.46 Å or tri-layered S-Mo-

S stacked MoS2 (a=3.125 Å; S-S dist.=3.11 Å) are separated by a 20 Å vacuum.

We begin with self-consistent total energy Density Functional Theory (DFT) calcu-

lations, with plane wave energy cutoffs of 120 Ry on a Monkhorst-pack (MP) grid

size of 12×12×1 for graphene and 140 Ry on a 6×6×4 MP grid for MoS2. Af-

ter obtaining the eigensystem of electron orbitals and energy states, we use Density

Functional Perturbation Theory (DFPT) to obtain the dynamical interatomic force

constant matrices [12]. We then inverse Fourier transform the dynamical matrices

into real space onto a dense grid of 126,040 q-points, which contains the set of 25,208

equidistant q-points plus grid points for a 2D central difference method around each

equidistant point (4×25,208+ 25,208 = 126,040). The phonon group velocities are

then calculated from the dispersion data using a central difference method.
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Figure A.1. Phonon dispersion of graphene (left) and MoS2 (right) from first-
principles simulations.

A.2 Titanium

For the phonon dispersion of hexagonal titanium we used a Vanderbilt ultra-

soft pseudopotential with a Perdew-Burke-Ernzerhof (GGA) [82] exchange-correlation

functional. We relax our unit cell of Ti on a 16×16×16 MP grid with Methfessel-

Paxton smearing, a degauss of 0.01 eV and plane wave and charge density energy

cutoffs of 50 and 500 Ry, respectively. The system is relaxed until the forces on the

atoms are less than 0.0015 eV/Å at which point the lattice constants are a=2.935

Å and c=4.643 Å. After relaxation, we self-consistently calculate the total system

energy on a 16×16×16 MP grid. The total energy calculation is then proceeded with

a phonon simulation using density functional perturbation theory as implemented

in QE [37] on a reduced 4×4×4 MP grid producing the dynamical matrices. We

then inverse Fourier transform the dynamical matrices onto real space and extract

the phonon frequencies on a dense grid of 176,064 q-points, which contains the set

of 25,152 equidistant q-points plus a set of points for a 3D central difference method

(25,152 × 6 + 25,152 = 176,064). The resulting dispersion and phonon density of

states are presented in Fig. A.2.
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Figure A.2. Phonon dispersion and density of states of Titanium from first-
principles simulations.

A.3 MoSe2, WS2, and WSe2

Phonon calculations of single-layer, 1H-phase homogeneous MoSe2, WS2, and

WSe2 are performed through density functional perturbation theory [37]. For MoSe2

we used a non-relativistic Martins-Troullier pseudopotential with a PBE/GGA [82]

functional. We relax the unit cell structure on an offset 6×6×4 Monkhorst-Pack grid

with a plane wave energy cutoff of 140 Ry and a self-consistent field convergence

threshold of 10−14. In calculating the phonon dispersion of WS2 and WSe2 we used a

scalar relativistic Vanderbilt ultrasoft pseudopotential with a PBE/GGA functional.

The structures are relaxed on an offset 27×27×1 and 16×16×1 MP grids for WS2 and

WSe2, respectively, with a plane wave energy cutoff of 100 Ry and a self-consistent

field convergence threshold of 10−14. All structures are relaxed until the forces on

atoms are all less than 5×10−4 eV/Å. After structural optimization, we calculate the

dynamical matrices using a 6×6×4 Monkhorst-Pack grid for MoSe2 and a 8×8×1 MP

grid for both WS2 and WSe2. We then inverse Fourier transform the dynamical ma-

trices into real space onto a dense grid of 126,040 q-points, which contains the set of
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25,208 equidistant q-points plus grid points for a 2D central difference method around

each equidistant point (4×25,208+ 25,208 = 126,040). The phonon group velocities

are then calculated from the dispersion data using a central difference method. The

full phonon dispersion obtained from our simulations are shown in Fig. 4.1.
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