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    Department of Economics 

 A serious influenza pandemic could be devastating for the world.  Ideally, such a 

pandemic could be contained, but this may be infeasible.  One promising method for 

pandemic mitigation is to treat infectious individuals with antiviral pharmaceuticals.  

While most of the benefits from treatment accrue to the country in which treatment 

occurs, there are some positive spillovers: when one country treats more of its population 

this both reduces the attack rate in the other country and increases the marginal benefit 

from additional treatment in the other country.  These externalities and complementarities 

may mean that self-interested rich countries should optimally pay for some AV treatment 

in poor countries. 

 This dissertation demonstrates the presence of antiviral treatment externalities in 

simple epidemiological SIR models, and then in a descriptively realistic Global 

Epidemiological Model (GEM).  This GEM simulates pandemic spread between cities 

through the international airline network, and between cities and rural areas through 

ground transport.   

 Under the base case assumptions of moderate transmissibility of the flu, the 

distribution of antiviral stockpiles from rich countries to poor and lower middle income 

countries may indeed pay for itself: providing a stockpile equal to 1% of the population 

of poor countries will reduce cases in rich countries after 1 year by about 6.13 million 

cases at a cost of 4.62 doses per rich-country case avoided.  Concentrating doses on the 

outbreak country is, however, even more cost-effective: in the base case it reduces the 

number of influenza cases by 4.76 million cases, at the cost of roughly 1.92 doses per 

case avoided. These results depend on the transmissibility of the flu strain, the efficacy 

of antivirals in reducing infection and on the proportion of infectious who can 

realistically be identified and treated.   
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Chapter 1 Introduction 

In the 20
th

 century the world experienced three influenza pandemics (1918, 1957 

and 1968), which had significant economic costs and caused millions of illnesses and 

deaths.  The 1918 pandemic killed an estimated 3% of the world’s population, despite 

being slow to spread between countries in an age before air travel. With today’s global 

transportation network, an outbreak of influenza could quickly reach pandemic 

proportions.  There have been concerns since the 1990s about the potential for an H5N1 

"avian flu" strain mutating into a form that can be transmitted between humans.  The 

2009 H1N1 "swine flu" pandemic and the SARS outbreak of 2003 remind us of the 

continued risks to the world should a pandemic occur.  They also remind us that there is 

relatively little cooperation and coordination between countries, and that wealthy nations 

prioritize stockpiling doses of vaccines or antivirals for their own citizens before 

considering treatment in other countries.   

Whether such an inwardly focused policy is optimal depends on the nature and 

magnitude of externalities in treating pandemic flu.  How much do policies to slow the 

spread of the flu in one county reduce attack rates in other countries?  Does treatment of 

infected persons in one country increase the marginal benefits of treatment policies in 

other countries (i.e., are there treatment complementarities?).  The overarching goal of 

this dissertation is to answer both questions in a realistic model of the spread of influenza 

through the global air transport network.   

Simulating the impact of control strategies in a global epidemiological model 

allows examination of two questions regarding international cooperation to mitigate a 
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pandemic:  (1) Is it cost-effective for wealthy nations to pay for the purchase and 

distribution of antivirals in poor countries to slow the spread of the pandemic?  (2) What 

global allocation rules are most effective in reducing attack rates?  In the case where 

treatment with antiviral drugs alone can contain a potential pandemic, there is an obvious 

case for wealthy nations to pay for pandemic containment.  But what about the case 

where a pandemic cannot be detected early enough or treatment is not effective enough 

for containment to be possible?  Pandemic epidemiology involves two types of 

externalities that suggest that it might be in the self-interest of wealthy countries to fund 

such a scheme.  The treatment policy in one country will affect the rate at which the 

pandemic spreads to other countries, so treatment provides a positive externality.  At the 

same time, the increasing marginal effectiveness of treating more people can lead to 

complementarities across countries.   The question is: how large are these effects? 

To investigate these issues this dissertation uses a detailed Global 

Epidemiological Model to simulate influenza pandemics under a range of conditions and 

antivirus treatment policies.  The model divides the world into 106 regions and models 

travel among 288 cities and 101 rural areas in these regions.  The flu spreads from one 

city to another via air travel, and from cities to a rural area in each region via land travel.  

Within each city or rural area the flu spreads via a model in which people transition from 

susceptible to exposed to infectious to recovered or dead. The model distinguishes among 

age groups and uses age-specific contact rates to model the spread of the flu. The 

probability of infection given contact in a particular region varies with latitude (it 

decreases as one moves away from the equator) and season (it is higher during the winter 

than during the summer).   
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With or without control policies, the number of people infected in each region 

depends on when the flu begins (influenza that peaks in Northern Hemisphere winter 

infects more people) and on the infectiousness of the flu (i.e., the reproductive rate R0, 

which measures the number of people an infectious person would infect in an otherwise 

totally susceptible population). 

Ideally, a serious influenza outbreak could be contained and a pandemic 

prevented, but the difficulty in detecting a potential pandemic-strain before it spreads 

widely means that containment is generally infeasible.  However, control policies can 

reduce number of people infected by a pandemic; this dissertation considers the effects of 

administering antiviral (AV) pharmaceuticals to symptomatic infectious individuals.  It is 

not feasible to calculate optimal AV policies, but it is possible to consider a set of 

plausible AV scenarios. 

In the absence of international cooperation it is assumed that antiviral stockpiles, 

as a percent of population, vary with per capita income.  Poor countries are assumed to 

have no stockpiles.  Compare two rules for rich countries distributing stockpiles in poor 

countries: one under which each country receives a fixed number of doses (in proportion 

to population) and another under which antivirals are allocated to the country in which 

the flu begins, which is assumed to be a poor country.  The success of a control strategy 

is measured in terms of its impact on the attack rate (percent of the population infected) at 

the end of a year.  Does it (collectively) pay rich countries to make a donation in terms of 

the impact it has on their own attack rate? 
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The benefits from collective action in the form of influenza treatment depend on 

the size of treatment externalities.  Treatment externalities are large if a pandemic can be 

contained in the source country (Ferguson, et al., 2005; Longini, et al., 2005).  In the 

more likely case in which the pandemic will spread through air travel the externalities 

associated with anti-viral treatment are smaller: treating infectious people in one’s own 

country reduces the domestic attack rate, but has a proportionately much smaller impact 

on other countries.  The question is whether the cost of purchasing and distributing 

antivirals to other countries pays for itself in terms of reducing a country’s own attack 

rate.  

It is always in the interest of wealthy countries to purchase and distribute antivirus 

doses in the outbreak country when doing so can contain a pandemic.  In other cases, the 

marginal private benefits from using limited antivirus supplies to treat domestic patients 

exceed the marginal benefits from donating those doses abroad.  But, if wealthy countries 

retain a stockpile of antiviral drugs sufficient to treat their own cases, then they can 

increase their welfare by paying for purchase and distribution of additional doses to the 

outbreak source country. 

The benefits to rich countries of paying for antivirals in poor countries under 

"midrange" assumptions of influenza transmissibility cover the costs:  donation of 

antivirus to the outbreak source country reduces the number of influenza cases in rich 

countries after 1 year by 4.76 million cases, at the cost of roughly 1.92 doses per case 

avoided.  This donation policy is welfare-enhancing for wealthy countries even at a zero 

percent case fatality rate; at any positive fatality rate the policy is even more valuable. 
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The dissertation is organized as follows.  Chapter 2 briefly reviews the literature 

on policies to control pandemic flu.  Chapter 3 discusses the dynamics of pandemic 

influenza in simple one-city and two-city S-I-R models.  These models are used to 

illustrate the nature of externalities and complementarities present in treating influenza 

epidemics through antivirals, and to contrast the Nash equilibrium in treatment strategies 

with the socially optimum treatment strategy. Chapter 4 presents the Global 

Epidemiological Model, and describes the behavior of the model in a baseline scenario 

with no policy interventions.  Chapter 5 presents the results of simulating pandemic flu 

under various antiviral stockpile assumptions.  Chapter 6 concludes. 
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Chapter 2 Literature on pandemic 

influenza 

 To put this research into context, it is useful to consider three avenues of research 

in the existing literature: 1) the health literature on optimal vaccination policy for 

epidemic diseases, 2) a set of spatially detailed epidemiological models that model 

influenza spread within a city or country, and 3) a set of less detailed but global models 

that track the spread of the flu through the international airline network. 

 The literature on optimal vaccination policy considers the externality effects of 

vaccination policies, either domestically or internationally.  Vaccination provides 

significant benefits for an individual who is vaccinated, but also large external benefits to 

others in the same region; sufficiently high levels of vaccination lead to a "herd 

immunity" effect, where the reproductive rate of the disease is reduced to the point where 

epidemics can be prevented. 

 Francis (2004) considers optimal use of vaccines to control an influenza epidemic 

using a single region SIR model.  The model assumes that a perfectly effective vaccine 

exists at the beginning of the epidemic, and demonstrates that there can be a significant 

positive externality from vaccination.  The model assumes a decentralized setting, where 

agents optimally choose to vaccinate or not in each period as a function of the current 

model state variables.  There is thus there is an insufficient level of vaccination in a 

private market relative to the socially optimal vaccination level.  Francis develops a 

system of optimal vaccine subsidies (or taxes for avoiding vaccination) that internalize 
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this externality, and so induce agents to purchase an efficient level of vaccine; the 

optimal subsidy pays less than 100% of the price of vaccination. 

 Boulier et al. (2007) also consider vaccine use in a single region SIR model, 

focusing on the magnitude of the externalities in vaccine use.  They consider a setting 

where a vaccine exists at the start of an epidemic, but is not 100% effective.  They 

demonstrate that the marginal value to society from vaccination is positive and increases 

with more people vaccinated as long as the effective reproductive rate of the epidemic is 

greater than 1, and declines thereafter.  They estimate the average value of vaccination 

for influenza, and find that the size of the externality from vaccination can be greater than 

1 case reduced per person vaccinated.   

 Barrett (2003) considers international vaccination externalities for disease 

eradiation of endemic diseases (as opposed to epidemic diseases).  Such a disease can be 

eradicated if a sufficiently large proportion of people are vaccinated, but this vaccination 

must occur in every country, and thus eradication is a "weakest link" game.  Barrett 

shows that eradication will often not be the Nash equilibrium of this game, because poor 

countries may derive a lower local benefit from vaccination relative to vaccination costs, 

and because the herd immunity effect means that the benefits from vaccination to the last 

countries to vaccinate will be low, since vaccination elsewhere will have dramatically 

reduced the global disease prevalence.  A cooperative international regime with 

enforcement mechanisms may be needed to achieve the eradication outcome. 

 Spatially detailed models of avian flu transmission at the country level have been 

used to compare a wide set of policy interventions.  These models are able to use a much 
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greater level of detail and structure in metapopulations, and so are effective in analyzing 

policy interventions aimed at containing an influenza outbreak, such as ring quarantines 

or prophylaxis, or contact tracing strategies that use vaccination or antiviral strategies to 

target those likely to be contacted by infectious individuals.  However, these models 

cannot capture the international dimensions of pandemic control policies. 

 Ferguson et al. 2005 use a spatially explicit model of the 85 million people living 

in Thailand and a 100km radius of neighboring contiguous countries.  The model tracks 

influenza spread through households, workplaces, schools and random community 

contact.  They consider targeted prophylactic use of antivirus to contain a pandemic.  

They find that purely social targeting (blanket prophylaxis of all household, workplaces 

and schools that have any new infectious case) has a 90% probability of containing a 

pandemic with reproductive rate 1.25, so long as it can be implemented after only 20 

cases have been observed.  They find that ring prophylaxis (targeting everyone within a 

given radius of a new infectious case) with a 5 kilometer radius can contain a pandemic 

with reproductive rate of up to 1.5 at an average cost of 2 million AV courses.  They also 

consider physical distancing measures, where schools and workplaces are closed; these 

measures combined with prophylaxis can contain a pandemic of reproductive rate up to 

1.7 with 90% probability.  However, all policies require early detection of a pandemic 

strain and extremely rapid response. 

 Longini et al. 2005 use a stochastic model to track  influenza spread through a 

structured geographically distributed population of 500,000 people in rural SE Asia to 

examine the effectiveness of antivirus, quarantine and pre-vaccination with a low efficacy 

non-strain-specific vaccine.  They use data from Thailand to model the number of close 
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and casual daily contacts between individuals of various age-groups to build up a contact 

rate matrix.  The model includes a structured social network that maps households, 

household clusters, workplaces, communal mixing and a regional hospital; the network 

structure affects the mixing probabilities, and allows consideration of targeted policy 

interventions.  They find that targeted use of antivirals have a high chance of containing a 

pandemic for reproductive rates of up to 1.4, if implemented within 21 days of the first 

case.  Antivirals can be effective for reproductive rates up to 1.7 if accompanied by pre-

vaccination.   

 Germann et al. 2006 use a stochastic agent-based simulation model to track 

spread of an influenza pandemic through the United States.  They use US Census and 

Department of Transport data to construct a detailed spatial model of the United States, 

with a metapopulation of 281 million people distributed among 65,334 census tracts, each 

organized into 2,000 communities.  The model maps households, household clusters, 

preschools, playgroups, schools, workplaces neighborhoods and communities.  They 

consider a range of policy interventions including targeted prophylaxis, mass vaccination, 

school closure, and quarantine.  To achieve reductions in attack rate down to 10% 

through targeted antivirus use alone, 10 million doses are needed for an influenza strain 

with a reproductive rate of 1.7, and 51 million doses for a reproductive rate of 1.8.  But in 

all cases, this targeted treatment requires rapid and effective targeting, with a knowledge 

of population clusters that may not be available to public health agencies without 

significant upfront investment. 

 A series of global models follow Rvachev and Longini (1985) in using and 

refining an SIR model core to track the progress of an influenza pandemic.  Rvachev and 
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Longini develop a deterministic difference equation model to simulate travel within a 

network of 52 cities, and use this to reproduce the 1968-9 pandemic that started in Hong 

Kong.  They find that the predicted local outbreak peak timing roughly matches that of 

the actual pandemic. 

 Grais et al. (2003) use a global influenza pandemic model with the same 52 cities 

from Rvachev and Longini.  Their model adds seasonal variation in infectiousness; they 

use monthly seasonal scaling factors, one for the northern hemisphere and one for the 

southern hemisphere. They consider the dynamics of a pandemic that starts in Hong 

Kong, and show that the pandemic outbreaks occur concurrently in northern hemisphere 

and southern hemisphere cities despite the seasonal scaling factors.  They show that the 

pandemic reaches northern hemisphere cities an average of 111 days earlier using year 

2000 travel volumes rather than 1968 travel volumes.  Policy interventions are not 

considered. 

 Hufnagel et al. (2004) use a global pandemic model to track a generic pandemic 

disease, and demonstrate the example to model the 2003 SARS outbreak.  They use a 

probabilistic rather than deterministic model, where disease transmission and travel are 

stochastic.  A stochastic model is potentially valuable in considering the early stage of a 

pandemic, where the variation in behavior by a few infected individuals can alter the 

course of the pandemic.  However, they find that probabilistic variation has little impact 

at the global level, and that the pandemic outcomes remain predictable in spite of 

variation in the behavior of those individuals infected early on.  They consider 

quarantine-like restrictions on individuals and travel restrictions on cities.  Isolating only 

2% of individuals can be highly effective in reducing attack rates (from 78.45% to 
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37.50%) but travel restrictions are less effective; it would require shutting down the 

27.5% of the most highly trafficked air connections to achieve a similar effect. 

 Colizza et al. (2007) consider a global influenza pandemic model covering 3,100 

urban areas (but no rural areas).  They consider allocations of antiviral stockpiles across 

countries, but focus on containment rather than mitigation.  Containment is possible in 

their model if outbreak cities have an antivirus stockpile, but this relies on optimistic 

assumptions about antivirus treatment; they assume that 50-70% of new infectious cases 

can be treated, and that treatment occurs immediately, and so antivirals are very effective 

in reducing influenza transmission.  Their conception of global cooperation is one where 

AV doses are shared freely between countries, rather than one where rich countries retain 

most doses for domestic use.  They conclude that pandemic strains with reproductive 

rates up to 1.9 can be controlled with global stockpiles sufficient to treat 2%-6% of the 

world population, and that there is a strong case for cooperative use of AV where rich 

countries share their stockpile with poorer countries, but this is contingent on their 

model's ability to contain the pandemic. 

 Epstein at al. (2007) use an earlier version of the Global Epidemiological Model 

(with 155 cities) used in this dissertation to examine the effect of travel restrictions.  They 

find that travel restrictions alone provide only a small delay in the time it takes for a 

pandemic to arrive in the United States (2-3 weeks for an outbreak starting in Hong 

Kong; no delay for an outbreak starting in London), but note that delays can be longer 

when travel restrictions are combined with other policy measures.  They also note the 

critical effect of seasonality; travel restrictions that delay the pandemic can increase the 



12 
 

severity of local outbreaks if the outbreaks are pushed into the high infectiousness season 

(winter). 

 This dissertation draws on the previous literature, but advances it in several 

important ways.  Though the positive externalities from vaccination are high and are well 

understood, the externalities from pandemic mitigation through antiviral use are not well 

understood, particularly in the realistic case where antiviral use alone is incapable of 

containing a pandemic.  This dissertation uses an epidemiological model similar to global 

models in the previous literature, but covers the entire global population of 6.41 billion 

rather than merely those in selected cities.  It adopts an age structure and age-specific 

contact rates similar to those used in the country-level models, unlike previous global 

models. 
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Chapter 3 Basic Influenza Models 

The main class of epidemiological models used to model the spread of an 

epidemic through a large population are known as ―compartmental‖ models, where at any 

given time the population is divided amongst a set of mutually exclusive categories.  This 

chapter describes the common core to these models, and uses simple one-city and two-

city simulation examples to demonstrate key properties of model dynamics, and the 

potential for positive externalities in this framework. 

i) SIR models 
The simplest compartmental model is known as the SIR model, where each 

member of the population is Susceptible (S), Infectious (I) or has Recovered (R)
1
.  The 

model is ideal for tracking spread of a disease such as a specific pandemic strain of 

influenza, where re-infection is not possible because people who recover develop 

antibodies that protect against the particular strain. 

The SIR model tracks the number of people in each category in each time period, 

such that S(t) + I(t) + R(t) = N (the population size).
2
  Given initial values, the number of 

people in each category changes over time as Susceptible cases are infected by Infectious 

cases, and as Infectious cases Recover.  Assume a very small but positive value of I(0), 

and assume R(0) = 0, so S(0) ≈ N.  The model operates in continuous time as described 

by: 

                                                           
1
 Sometimes this category is referred to as "Removed", since some proportion of infectious cases may die 

rather than recover.  For most of this analysis we assume a zero fatality rate, but adding a small positive 
fatality rate has little impact on model dynamics. 
2
 The model can also be written with S, I and R as proportions of the population, such that they sum to 1. 
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(1) 

      

  
                 

(2) 

      

  
       

(3) 

β represents the probability of transmission conditional on exposure to an infectious 

person, or the average rate of infection per susceptible.
3
  βS(t) represents the rate at which 

an infectious individual infects susceptible persons.  δ is the rate at which an infected 

individual recovers, and so 1/ δ is the average duration of infection.  Disease prevalence 

increases over time (dI(t)/dt > 0) if and only if [β/δ] S(t) > 1.  Simply put, prevalence 

increases only if the number of infections caused by an infectious person during the time 

he is infectious exceeds 1 (i.e., only if he can replace himself).  Thus, a necessary 

condition for an epidemic to begin is for β/δ > 1.   β/δ is also the average number of 

persons infected by an infectious person in an otherwise totally susceptible population 

(i.e., when S(0) = N) and is termed the basic reproductive rate, R0.
4
 

The system of equations does not have a closed form solution, but is known to 

have certain basic properties (Kermack and McKendrick 1927).  It can be shown that: 

                          (4) 

                                                           
3
 This implicitly assumes that the rate at which people contact each other remains constant throughout 

the epidemic; there is no scope for prevalence-elastic behavior, where individuals might take preventative 
actions to reduce exposure if much of the population is infected. 
4
 We denote the reproductive rate at time t as Rt.  R with a subscript will always refer to the reproductive 

rate, not the number of Recovered cases in period t, which we denote R(t) for both continuous and 
discrete time models.  This notation is unfortunate, but mirrors that used in the literature where R is used 
both for the stock of Recovered and for the Reproductive rate. 
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And that in the limit as t→∞ the number of Recovered is described by a transcendental 

equation: 

                            (5) 

where R(∞) is the limiting value of R(t) as t →∞.  With R(0) = 0, S(0) ≈ N and N = 1, (5) 

can be simplified as: 

                     (6) 

R(∞) < N, so the pandemic ends endogenously and the entire population is never 

infected.  The reproductive rate Rt declines over time because there are fewer Susceptible 

cases left in the population, and dI(t)/dt is increasing in S(t).  In practical terms, more of 

the people that a given Infectious person contacts have already Recovered and are 

immune to re-infection, so each successive Infectious case causes fewer new cases.  As 

long as the reproductive rate Rt is greater than one, then the number of infectious cases 

I(t) is increasing.  When Rt drops below one, then I(t) is decreasing, and the epidemic will 

end in the limit as I(t) and dI(t)/dt approach zero. 

A slight variation on the core SIR model is the SEIR model, which adds an 

Exposed category.  Susceptible cases that are contacted by an Infectious case move to an 

Exposed incubation state, where they are infected but not yet Infectious, before 

proceeding to Infectious after a fixed time period, and then on to Recovered.  The model 

performs in much the same way, but is more descriptively realistic and allows us to fit 

observed real-world parameter values more easily.  It is this SEIR model that underlies 

the GEM, but in this chapter I focus on simpler SIR models, which share the same 
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general properties.  The SIR model’s behavior can be difficult to demonstrate 

analytically, so instead I examine a series of simulation models to illustrate key properties 

of this class of models.  This informal and qualitative illustration will inform the 

discussion of the full GEM results. 

ii) One city model baseline 
Consider a discrete time version of the SIR model in a single city of population N.  

The model is described by: 

                       (7) 

                             (8) 

                   (9) 

Assume R(0) = 0, assume I(0) is very small relative to N, and so S(0) = N – I(0) ≈ N.  

Specifying parameter values for β, δ and N and assuming a seed value for I0 the model 

behavior to be observed, either analytically or by running the model using a simulation 

program.  For example, suppose: 

 β = 0.3 (each infectious person infects 0.3 people day when the entire population 

is susceptible) 

 δ = 0.2 (an expected infectious duration of 5 days) 

 Together these imply R0 = 1.5 

 N = 1 (which lets us interpret S, I and R as proportions) 

 I(0) = 0.001 (very small relative to the population size) 

Figure 3.1 shows how S(t), I(t) and R(t) behave over the course of an epidemic. 
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Figure 3.1: One city model, baseline 

 

S, I and R are well-behaved
5
.  The epidemic is effectively over in less than 4 

months, with only 0.01N new infectious cases occurring after day 104.  Much of the 

population remains uninfected at the end of the epidemic: the "attack rate"
6
 (R(t)/N) after 

1 year is 0.584; that is, 58.4% of the population have been infected, while 41.6% remain 

Susceptible.  The peak of the epidemic occurs on day 57, where 6.38% of the population 

is Infectious.  This implies that the reproductive rate on day 57 R75 ≈ 1, and that Rt < 1 

for t > 57.  

 Changing the parameter assumptions changes the observed outcome in an 

intuitive fashion.  For example, suppose β = 0.25 or β = 0.35, giving R0 values of 1.25 or 

1.75, respectively.  Figure 3.2 shows the behavior of I(t) and R(t) under these 

                                                           
5
 S, I and R are not continuous functions of time – in a discrete time model these values are only defined 

at discrete values of t – so we cannot formally talk about behavior of some continuous function S(t).  
Nonetheless, we can observe what behavior is occurring, and what the limiting function as the length of 
each interval →0 would look like, and what properties this limiting function would have.  This limiting 
function would be quasiconcave for S, I and R; increasing for R and decreasing for S. 
6
 Technically the attack rate is( R(∞) – R(0))/N, but since R(0) = 0 is assumed in all cases it is simpler to 

refer to R(t)/N as the attack rate throughout. 
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assumptions.  Model outcomes are highly sensitive to β; higher values of β mean a more 

severe epidemic, with faster onset, higher peak, and higher attack rate. 

Figure 3.2: One city model, Sensitivity to Beta 
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A key property of the model is how the attack rate changes as R0 declines (see 

Figure 3.3).  Recall that in the example with δ=0.2, R0 approaches 1 as β approaches 0.2.   

Figure 3.3: One city model, Attack rate sensitivity to Beta 

 

When β > δ the attack rate is an increasing function of β and is strictly concave (above a 
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7
.  This drives a key property of the SIR model: policy measures that reduce R0 
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in general, a policy that reduces R0 from 1.7 to 1.6 will have a smaller impact on the 

gross attack rate than a policy that reduces R0 from 1.4 to 1.3.  This means that policies 

that reduce R0 by a given amount are more effective in countries with lower disease 

transmission rates, due to density, social activity or climate.  Many policies could 

potentially reduce R0: treatment of Infectious cases with antivirus will reduce β and could 

increase δ, vaccinating Susceptible individuals (or providing them with prophylactic 

                                                           
7
 The function is not quite strictly concave when β is close to δ (ie when R0) is close to 1, there is an 

inflection point in the function.  See Appendix 1 for more details. 
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antivirus) would reduce β, using quarantine or other physical distancing measures to 

reduce contact rates would reduce β. 

iii) One city model with anti-viral treatment 
The SIR model can be used to analyze the impact of policy interventions, such as 

a policy to treat Infectious individuals with antiviral pharmaceuticals
8
 (AV).  This chapter 

considers a model where the policy choice variable is the size of an exhaustible stockpile 

of AV doses, mirroring the AV policy interventions used in the GEM (see Chapter 5).  

This model cannot be solved analytically, but its properties can be demonstrated through 

use of a simple simulation model.  Appendix 1 presents an alternative model (where the 

choice variable is the proportion of population that is treated) where model outcomes can 

be computed directly. 

Assume that there exists a fixed AV stockpile with P* doses, 0 ≤ P* ≤ N, and let 

P(t) be the number of doses consumed by day t (with P(0) = 0).  Also assume that a fixed 

proportion p of new infectious cases are immediately treated with AV, for as long as P(t) 

< P*.  Each case treated reduces the stockpile by one dose, so:  

                           if P(t) < P*               (10) 

           otherwise  

                                                           
8
 The most common antivirals are Zanamivir and Oseltamivir, sold and marketed as Tamiflu.  Treatment 

involves taking a course of one of these drugs, typically one dose a day for 5-10 days.  In this research a 
“dose” is used to refer to sufficient antivirals for a full course of treatment, not just a single capsule. 
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Treatment has the effect of reducing the effective infection rate by modifying the 

infectiveness parameter β.  There is an underlying β
o
 determined by infectiousness and 

contact rates , and then an effective β(t) in any time period.  Assume:
9
 

               if P(t) < P*               (11) 

          otherwise  

where e is the efficacy of the antivirus treatment.  Suppose for example that: 

 β
o
 = 0.3, δ = 0.2, N = 1, I0 = 0.001, as before. 

 P* = 0.2, i.e. the stockpile is sufficient to treat 20% of the entire population 

 p = 0.6, i.e. 60% of newly infectious cases can be treated 

 e  = 0.4, i.e. AV reduces the infectiousness of patients by 40% 

 These imply that as long as the AV stockpile has not been exhausted, the effective 

beta β
 
= 0.228 

Figure 3.4 shows the model dynamics in this case, where the stockpile is not exhausted. 

  

                                                           
9
 Note that this simple formulation ignores slight discreteness issues that occur in the period in which the 

stockpile is exhausted; total doses distributed will be slightly greater than the stockpile size, but this 
difference will be very small as long as the number of periods is large and the number of new infectious 
cases per period is small relative to P. 
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Figure 3.4: One city model with unexhausted AV stockpile 

 

 

 The attack rate here is much lower than in the case with no AV stockpile (24.1%, 

down from 58.4%), and the duration of the pandemic is longer (there are still new cases 

occurring near the end of the year).  The proportion of people ever treated is 14.4%, 

which is less than the size of the 20% stockpile, and so the excess AV doses are never 

used.  This highlights a key aspect of the choice of AV stockpile size; given any set of 

parameter inputs, there is an upper bound to the effective size of an AV stockpile - a city 

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0 100 200 300

P
ro

p
o

rt
io

n
 in

fe
ct

e
d

Day

I(t), no AV

I(t) with AV treatment

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300

Day

S(t), with AV treatment

R(t) with AV treatment

Prop_EverTreated



23 
 

cannot usefully deploy a stockpile larger than the number of people it can treat.  But this 

number of treatable cases can be observed only by running the model with AV treatment 

included.  Parameter inputs cannot be easily mapped directly into the implied maximum 

effective stockpile size. 

 Suppose now the same assumptions as used in Fig 3.4, but reduce the AV 

stockpile size from P* = 0.2 down to P* = 0.1.  Figure 3.5 demonstrates the resulting 

dynamics. 

Figure 3.5: One city model with AV stockpile exhaustion 
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The model follows an identical path to that of Figure 3.4 until day 151, when the AV 

stockpile is exhausted.  On day 151, β instantly jumps from 0.228 up to the original value 

of 0.3, and so dI(t)/dt rises proportionally.  The attack rate is 50.1%, as compared to 

52.9% with no AV treatment, and 24.1% with an unexhausted stockpile. 

 To understand the behavior, imagine splitting this epidemic with AV treatment 
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identically to a no-AV model with a β of 0.3 but with initial conditions equal to the those 

observed on day 150 of the first component; I(0) = 0.0076, S(0) = 0.8336 and R(0) = 

0.1588.  This means that changing the point where the stockpile is exhausted (by 

changing the stockpile size) in the original combined model is functionally identical to 

changing the initial conditions of this secondary component.  The impact of changing the 

stockpile size can be examined either directly (by running the AV-treatment model with 

different stockpile sizes) or indirectly (by running the no-AV model with different initial 
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conditions).  This does not allow running only the second part of the model (the full 

model is still needed in order to find the initial conditions for the second part), but it does 

explain how results can be mapped from the special case where we have a stockpile that 

is exhausted into the general case with no antivirus.  Similarly, the case where antivirus 

does not expire is just another version of the general no antivirus model with a lower 

value of β. 

 Figure 3.6 demonstrates the impact of varying the initialization values I(0) or S(0) 

values around the day 150 values of the example above.  Holding constant the pool of 

Susceptibles, the attack rate is increasing in the initial stock of infectious cases.  Holding 

constant the stock of infectious cases, , the attack rate is increasing in size of the pool of 

Susceptibles.
10

   Translating this back to AV stockpile size: increasing the stockpile size 

reduces the attack rate (as long as that larger stockpile is actually consumed), because it is 

equivalent to reducing the size of the stock of infectious cases present when the model 

reaches any value of S. 

 

  

                                                           
10

 This allows us to compare this model with antivirus to a model of vaccination, as in Boulier et al. (2007), 
where vaccination operates by directly removing individuals from the pool of Susceptibles. 
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Figure 3.6: One city model, sensitivity testing of initialization 
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P*.  Figure 3.7 demonstrates the effect on the attack rate for various values of stockpile 

size P* (Panel B is a "zoomed" version of Panel A). 

Figure 3.7: One city model, effect of changing stockpile size 
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depends on R0 (which determine the attack rate), and on p, the proportion of people who 

can be treated.  For example; if a particular set of parameter inputs lead to an attack rate 

of 0.2, then    is 0.2p.  In Figure 3.7,         .   

 The length of an epidemic has implications for the dates at which an analyst may 

want to calculate the attack rate.  A common approach is to examine attack rates after 1 

year, but if the epidemic is slow to spread (from a low R0 value, or a highly efficacious 

AV treatment policy) then it may not end within a year.  Figure 3.8 shows model 

dynamics for P* = 0.10 but with e = 0.45 (as opposed to 0.4 in previous examples), 

slowing the course of the epidemic as long as there is any stockpile left (the stockpile is 

exhausted on day 271).  The day attack rate after 365 days is 31.6%, but the final attack 

rate would clearly be higher if the model continued running past 1 year. 

 Considering only the attack rate on day 365 may be misleading.  This issue 

becomes more important in the full GEM, where the large populations and limited travel 

between airports increase the pandemic duration.  But it may be possible to develop, mass 

produce and distribute a strain-specific vaccine in roughly a year, so a one year window 

may be sufficient for examining the consequences of pandemic mitigation through 

antivirals, after which antiviral treatment would tend to be dominated by vaccine 

distribution in choice of control measure. 
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Figure 3.8: One city model, epidemic lasting more than 1 year 
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city solves a cost minimization problem, trying to minimize the sum of morbidity costs 

and stockpile/treatment costs: 

                        (12) 

where R(∞,P*)   is  the total number of cases of the disease determined by the epidemic 

model
11

, where K(.) is the disutility of morbidity (and is increasing in R(.)) and where 

C(.) is the cost of purchasing and disseminating the AV stockpile (and is increasing in 

P*).  For simplicity, suppose that U(.) is linear, so U(.) = VR(∞,P*), where V is the 

welfare loss of an influenza case.  Assume C(.) is linear, so C(P*) = cP*. 

 The concave shape of R(∞,P*) (see figure 3.7 and equation (5)) tends to drive the 

optimal policy towards the boundary cases: dR(∞,P*)/dP* is small in absolute value at 

low values of P*, but is large in absolute value as P* approaches   .  If V is high enough 

relative to c, then the solution is to choose P* =   .  If V is low enough relative to c, then 

the solution is to choose P* = 0.  Figure 3.9 shows the payoff to the city in where β
o
 = 

0.3, δ=0.2, e = 0.4, p = 0.6, for extreme cases [V=100,c=10] and [V=10,c=100] and an 

intermediate case [V=10,c=25]. 

  

                                                           
11

 Since all infectious cases eventually recover and all Recovered cases were once infectious, it is simpler 
to track the value of R than the cumulative total of infectious cases. 
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Figure 3.9: One city model, Optimal stockpile size 
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As expected, when V is high relative to c, the optimal choice is to pick P* =    ≈ 0.145.  

When c is high relative to V, the optimal choice is to pick P* = 0There is no interior 

solution; for any c large enough that utility is increased by choosing some value    

slightly less than   , the planner is better off choosing P* = 0 instead of   .  The fourth 

panel of Figure 3.9 also indicates a potential complication: small changes in parameter 

values can lead to a large change in the optimal value of P*.  This means that best 

response functions can exhibit large discontinuities. 
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v) Two-city model 

 A one city model is useful for studying the course of an epidemic in a closed 

system, but to observe the interaction of choices across cities or countries a more 

complicated model is needed.  Suppose that the simple model is expanded to encompass 

two cities A and B, linked by a travel connection, each with their own AV stockpile Pi*.  

Both cities are identical, except that the epidemic starts in city A and then spreads to B 

through this travel connection.  Each period, a proportion α of the Infected cases in each 

city travel to the other city, and are replaced by an equal number of Susceptibles moving 

in the opposite direction.   

Figure 3.10: Two city model 

 

Migration       is defined in terms of movement from A to B, but a negative value 

indicates a movement of people from B to A.  Suppressing time subscripts (and using 

superscripts to indicate t+1), in city i : 

                                  (13) 

                                         (14) 



34 
 

                      (15) 

           
  if Pi < Pi* 

     
 if Pi ≥ Pi* 

(16) 

                              if Pi < Pi* 

         0 if Pi ≥ Pi* 

(17) 

where i and j subscripts denote cities A and B, where the daily travel rate       

              , where Pi* is the AV stockpile in city i, where Pi is the number of AV 

doses remaining in city i, and where pi is the proportion of people who become infectious 

in city i who receive city i.
12

  Note that βi is now time-varying, whereas βi* is a fixed 

parameter for each city. 

This model lets us examine the effect of changing the AV stockpile size in city i on the 

attack rate in city j.  Assume for this example that: 

 βA = βB = 0.3, p = 0.6, e = 0.4, δ = 0.2 as before 

 α = 0.01 (i.e., 1% of the number of infectious cases travel between cities each 

day) 

First, suppose that neither city has any AV stockpile.  Figure 3.11 demonstrates model 

dynamics. 

 

                                                           
12

 Note that the change in the number of Susceptibles each day is a function of the difference in the 
number of Infected cases.  This is necessary in order to ensure that an equal number of people move in 
each direction, to ensure that the population sizes stay constant over time.  The model requires that we 
do not allow movement of Recovered individuals between cities (or that we interpret the Recovered 
category to be those who recovered while in city i), as doing so would cause the proportion of Recovered 
in each city to converge in the limit as t →∞ to the same vale in both cities. 
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Figure 3.11: Two city model dynamics 
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 Now the impact of adding AV treatment can be considered.  Migration between 

the cities means that the impact of AV is not the same as in the one-city case, there are 

externalities and complementarities across cities.  For example, suppose that only city A 

has a positive AV stockpile, while city B has no stockpile (PA* > 0.150, PB = 0). 

Figure 3.12: Two city model, City A AV stockpile, City B no AV 
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 Panel A of Figure 3.12 shows the time path of the epidemic variables, Panel B 

shows the path of just IA(t) and IB(t), and Panel C compares the path of IB(t) in the case 

where neither city has any AV to the case where City A has a 15% stockpile.  The 

epidemic starts in A and increases more gradually than in the no AV case, because of AV 

treatment.  It spreads to B, where it spreads but still at a slower pace than in the no AV 

case, because there are fewer cases in A and so B is not importing as many infectious 

cases.  When A's stockpile is exhausted dI(t)/dt instantly rises in city A, but the impact on 

B is small, because the epidemic in B in this case is largely over.  The impact of A’s 

stockpile exhaustion on B would be more significant if it occurred earlier relative to B’s 

epidemic, either because A had a smaller stockpile or because the growth rate in B was 

lower.  The attack rate in A is 41.9%, as opposed to 58.8% with no AV.  There is a small 

positive externality to B from A's stockpile; the attack rate in B falls from 57.9% (when 

neither city has any AV) to 57.7% (when city A has a stockpile of 0.15).  There is also a 

delay effect; the pandemic peak in B is delayed by 14 days. 
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 Next, suppose that AV exists only in city B - suppose PA* = 0, PB* = 0.15.  Panel 

A of Figure 3.13 shows the time path of the epidemic variables, the second shows the 

path of just IA and IB, and the third compares the path of IA in the case where neither city 

has any AV to this case where City B has a 15% stockpile.  The stockpile in B has a 

major impact in B (reducing attack rate from 57.9% to 41.2%), and a small positive 

externality on city A (attack rate falls from 58.8% to 57.9%), because A is importing 

fewer infectious cases from B. 

Figure 3.13: Two city model, City B AV stockpile 
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 Now, suppose that both cities have some AV stockpile.  Suppose PA* = PB* = 

0.15.  Figure 3.14 shows the model when both A and B have a stockpile of P*=0.15.  

Panels A and B show the epidemic dynamics in this scenario.  Panels C and D show how 

IA and IB differ between the case where both cities have an AV stockpile and the cases in 

which only A or B has a stockpile.  What is crucial to note is how large this difference is: 

when city i has a sizeable AV stockpile, the attack rate in i falls dramatically when city j 

also has a stockpile.  This highlights a key property of the model: AV stockpile sizes are 

strategic complements (over at least some range
13

).  City i's marginal gain from choosing 

a higher value of Pi* is increasing in Pj* for at least some values of Pi*, Pj*. 

  

                                                           
13

 AV stockpile sizes will also be strategic substitutes for at least some range, because     is decreasing in 
Pj*. 
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Figure 3.14: Two city model, AV in both cities 
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vi) Two city model, optimal stockpile sizes 

 Consider how cities choose an optimal stockpile size in this model.  Each city has 

preferences over the number of cases caused by the epidemic, and over the size of their 

stockpile (a larger stockpile is more expensive).  But the attack rate in each city is 

affected both by their own stockpile and by the stockpile size of the other city.  So, City i 

solves: 
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   (18) 

where Ri(∞,.) is the terminal number of Recovered cases determined by the two-city 

epidemic model.  Suppose as before that Ki(.) = ViRi(∞,Pi,Pj), where Vi is the morbidity 

cost of an influenza case in city i.  If, for example, city i is poor while city j is rich, then 

the cities may have very different values of V.  Assume Ci(.) is linear and identical for 

both cities, so Ci(Pi*) = cPi*. 

 The function R(.) is not well-behaved, so it is easier to analyze its behavior 

through simulation.  Selecting parameter values of the model lets us run the simulation, 

and lets us trace out best response functions for each city, to find a Nash equilibrium.  

City i's best response function BRi(Pj*) is defined by: 

         
            

    
         

   (19) 

and a Nash equilibrium exists where each player chooses a value of Pi* such that both 

cities are choosing a mutual best response.  The shape of the best response functions and 

the properties of the Nash equilibrium depend crucially on the value of Vi relative to c.  

Several interesting cases arise.  Assume βA = βB = 0.3, ρ = 0.4, δ = 0.2, α = 0.01 as 

before. 

Case A: Mutual stockpiles. 

 Suppose VA = VB = 100, c = 10.  This leads to each city to choose the largest 

stockpile that it can use in each case,       
  , and noting that        is decreasing in Pj*.  

Figure 3.15 sketches the best response functions for each city.  The unique Nash 

equilibrium is at roughly [PA*= 0.144, PB* = 0.142].  The best response functions are 
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similar, but are not exactly symmetric, since the game is not exactly symmetric (the 

epidemic starts in city A).  In this case, both players choose the highest feasible levels of 

stockpile, and this is socially optimal. 

Figure 3.15: Two city model Nash equilibrium, mutual stockpiles 

 

Case B: Discontinuous best response functions 

 Suppose VA =5, VB = 100, c = 10.  Figure 3.16 shows how the best response 

functions can potentially be discontinuous.  The best response function for city B is the 

same as in Case A, but now City A's best response is to choose PA* = 0 for low values of 

PB*.  In this case, the Nash equilibrium is still roughly [0.144, 0.142] and this outcome 

remains socially efficient. 
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Figure 3.16: Two city model Nash equilibrium, discontinuous best response 

functions 

 

Case C: Inefficient outcome 

 Suppose VA = 3, VB = 100, c = 10.  In figure 3.17, the Nash equilibrium occurs at 

roughly [0, 0.17].  However, this outcome is socially inefficient.  At [0, 0.17], the total 

cost to City A is 1.69, the total cost to city B is 31.26, and so the total social cost is 32.97.  

However, at the [point 0.144,0.142] the total social cost is 27.05.  The Nash equilibrium 

is inefficient; it gives a higher social cost than the point which would be chosen by the 

social planner.  More importantly, there is scope for a Pareto improvement: if city B pays 

the entire treatment cost for the 0.144 stockpile in city A and the 0.142 stockpile in city 

B, the total costs borne by city B are only 26.36.  City B would be strictly better off if it 

purchased stockpile and donated it to city A, because of the positive externality to B. 

 Ideally, this kind of analysis would be carried out in the full GEM.  However, the 

model is simply too large for calculation of best response functions to be feasible (see 
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Chapter 5).  Instead the focus of analysis will be on policies that individual countries are 

likely to pursue.  

Figure 3.17: Two city Nash equilibrium, low value in city A 

 

 Analysis of these simple SIR models highlight several issues that warrant further 

investigation in a more realistic model.  How would a pandemic spread in a descriptively 

realistic model using real world data and parameter values?  How should stockpiles of 

antivirus be deployed in such a model?  How large are the externalities in AV treatment?  

Is there a pure efficiency case for rich, downstream countries to pay for antiviral doses 

for poor areas near the source of a pandemic?  How sensitive are answers to these 

questions to uncertainties in parameter values? 

  

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25

P
B
*

PA*

BR_B

BR_A



46 
 

Chapter 4 A Global Epidemiological 

Model 

 While simple one- and two-city models can demonstrate the core qualitative 

properties of categorical epidemiological models, equilibrium outcomes in these models 

are highly dependent on particular parameter values.  This makes it difficult to draw 

policy conclusions from such simple models.  In order to address policy questions there is 

a need for a more complicated model that is sufficiently realistic to use real-world data 

for parameter value inputs. 

 This dissertation uses a version of the Global Epidemiological Model (GEM) 

developed by Goedecke and Bobashev and fully described in Hajdin et al. (2009), 

expanded and modified for the purposes of this research.  The GEM is a discrete time 

stochastic SEIR model designed to simulate the spread of a pandemic throughout the 

entire world.  The framework of the model was based on the work of Rvachev and 

Longini (1985) and on the epidemic model of Baroyan, Mironov, and Rvachev (1981).  

The GEM extends Rvachev and Longini by adding stochastic components, disease 

interventions, and a more detailed population structure.  This dissertation further extends 

the network structure and parameterizes the model, but does not use the full capability of 

the GEM in modeling disease state transitions or treatment options.  This chapter 

describes the mechanics of the model, and demonstrates the model dynamics in a baseline 

setting with no policy interventions. 

i) Network structure 

 The GEM tracks the spread of a pandemic through a network of cities and rural 

areas that span the globe.  The world is divided into 106 regions – each of which is either 
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an individual country or a group of countries
14

 (see Appendix 2).  Every region contains 

at least one city, and nearly all contain a rural area.  There are 288 cities and 101 rural 

areas, for a total of 389 network points.  The regions were selected using definitions from 

the Global Trade Analysis Project (GTAP).  A rural area exists for every region except 

small islands and city states.  Cities were selected by choosing the union of: one city for 

every region; the largest 130 cities in the world by population; the 130 cities with the 

highest average airport flows per day; sufficient cities to ensure that every city is 

connected to a city in another region, and that the network is fully connected.
15

  Rural 

areas are defined as everything that is not explicitly urban, so the ―rural‖ areas contain the 

population of all cities in the world that are not explicitly included in the model.  Rural 

areas are treated the same as cities in the model, except that they are connected only to 

the cities within the same region, and not to cities in other regions.  Total world 

population is roughly 6.4 billion, of which roughly 84% is allocated to a rural area.  

 Cities and rural areas are connected by a daily flow between every city and its 

associated rural area, and by airline flows between cities.  It is assumed that 1% of the 

population of each urban area travels to its associated rural area each day, and an equal 

number travel from the rural area to the urban area
16

.  This assumption is somewhat 

                                                           
14

 Roughly 86% of the world's population live in a country that is its own region, the rest live in aggregate 
regions like "Caribbean", "Rest of Eastern Africa", "Rest of Western Asia". 
15

 This method means that we end up with many cities in rich countries, and relatively fewer cities in 
poorer countries.  Running the model with many rich country cities excluded had no significant impact on 
model results. 
16

 Attempts to estimate real world land travel rates using traffic count data encountered several 
problems.  First, while data was available in many rich countries, data in developing countries was sparse.  
Second, even the high quality developing data could be extremely misleading, as it was difficult to 
distinguish between commuters and travelers, leading to daily traffic flow estimates that could be as high 
as 15% of the value of the urban population.  Third, it was not possible to find reliable data for non-car 
based travel numbers. 
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arbitrary, but model results are not very sensitive to changes in travel rates
17

.  Cities are 

connected though 7,668 city-pair connections with a total global daily air movement of 

5,035,664 people per day.  Travelers are randomly selected from the available pool of 

Susceptible, Exposed, asymptomatic-Infectious and Recovered cases; symptomatic 

Infectious and Dead cases do not travel (these terms are described in section ii) below).  

This means that the pool of travelers (on average) is exposed or asymptomatic-infectious 

in the same proportions as the general population (once symptomatic-infectious cases and 

dead cases are excluded). 

 Data on airline flows is drawn from Official Airline Guide (OAG) statistics on 

flight schedules provided by Guimerà, Mossa, Turtschi, and Amaral (2005).  Air travel 

numbers are based on the daily seat capacity between each pair of cities for all cities in 

the model.  The raw data only tracks direct flights, but a proportion of travelers is 

assumed to take 2-leg indirect flights, following Epstein et al. (2007)
18

. 

 Data on regional populations is drawn from the World Bank development data 

portal.  Data on urban metropolitan area populations is taken from several sources, 

primarily the United Nations World Urbanization Prospects (2007), and uses broad 

                                                           
17

 Running the model with doubled and halved travel rates had no significant impact on attack rates by 
the end of the pandemic. 
18

 A dataset of 10% of domestic US airline ticket coupons for 2004 is used to estimate the proportion of 
travelers on any city pair who travel through a connecting airport, rather than directly.  These estimates 
are then applied to the cities in the GEM, taking the OAG data for international travel and applying 
estimates that split the daily travel numbers on each city pair into 1-leg travelers and 2-leg travelers.  For 
example for flights from Jakarta to Singapore and Singapore to New Delhi, a proportion of Jakarta to 
Singapore travelers are assumed to actually be 2-leg travelers moving between Jakarta and New Delhi 
(and similarly a proportion are assumed to be traveling from Jakarta to every other city connected to 
Singapore).  On average, 68.2% of tickets are assumed to be 1-leg, and 31.8% are assumed to be 2-leg 
(though this varies across each city pair in the model). 
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definitions of urban areas to try to capture the greater metropolitan population
19

.  Rural 

area populations are calculated by deducting urban populations from regional 

populations. 

 The GEM does not track individuals – it tracks only the size of each SEIR 

category in each city in each period.  This means round-trip travelers cannot be 

distinguished from one-way travelers.  In the real world, if a person flies from City A to 

City B or drives from city A to Rural Area C, then it is likely that they will return.  But in 

the GEM, once that person travels to B or C, they enter the uniform mixing pool of their 

destination, and are no more likely to travel elsewhere than any other member of their 

new city. 

ii) Disease spread mechanics 

 In each city or rural area, the population is divided into Susceptible, Exposed 

(infected but not yet Infectious), Infectious, Recovered and Dead disease state categories.  

Infectious cases may be either symptomatic or asymptomatic; asymptomatic cases are 

less infectious, will not be treated, and will still travel between cities.  At time zero, the 

entire population is Susceptible, except for a small number of Exposed cases in a single 

outbreak city.  A Suspectible individual who is contacted by an Infectious individual may 

be infected and become Exposed.  Every Exposed case transitions to an Infectious case, 

and then every Infectious cases either recovers or dies. 

 Within each region the population is divided into 4 age categories; under 5 years, 

5-14 years, 15-64 years and 65+ years, denoted with indexes a = 0,1,2,3, respectively.  

This allows incorporation of age-specific contact rates and to observe the incidence of the 

                                                           
19

 Some cities are urban agglomerations of multiple cities, like Washington DC-Baltimore. 
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pandemic by age-group.  Data on population age structure is drawn from United Nations 

World Population Prospects for 2007.  Within each city or rural area, the population is 

assumed to mix uniformly; every person in city i with the same characteristics (disease 

state, age, treatment status, infectiousness duration) is assumed to be identical.   

For city i  on day t  define a set of variables
20

 : S(i,a,t), E(i,τ,a,t), I(i,s,θ,a,t), 

R(i,a,t) and D(i,a,t) for those individuals who are Susceptible, Exposed, Infectious, 

Recovered or Dead, respectively.  Define τ as the number of days a since a person 

became infected, so a new Exposed individual who has just become infected has τ = 0.  

Define    as the maximum number of days that a person may remain exposed before 

becoming Infectious, and    as the maximum number of days a person may remain 

infected before becoming Recovered or Dead.  Those who are Exposed on day t  were 

infected with the disease  days earlier, on day t - τ.  Those who are Infectious on day t 

became infectious θ days earlier, on day t – θ.  Infectious individuals may be either 

Asymptomatic  0s  or Symptomatic  1s .  From this point forward the city index i 

is suppressed for notational simplicity, but it is important to remember that each variable 

is city specific. 

 Given this notation, population of a city can be defined as the sum of this set of 

mutually exclusive disease states: 

 

                                                           
20

 It is convenient to describe the model in terms of city i, but note that this can refer to either a city or a 
rural area.  In the notation that follows, each of these variables is particular to city i, but this notation is 
suppressed in order to improve readability. 
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(20) 

Variables can be aggregated across age groups, such that: 

              
                 

    

                 
                         

    

             
                 

    

(21) 

A new Exposed case is the result of contact between a Susceptible person and an 

Infectious person.  The daily infectious contact rate between age-groups j and k is defined 

as λjk (see below).  This parameter λjk is equivalent to the parameter β in the simple SIR 

models in the preceding chapter.   

 Define γ(τ) as the probability that an Exposed case becomes Infectious, and σ(θ) 

as the probability that an Infectious person recovers.  Assume for simplicity (following 

Longini 2005) that 80% of Exposed cases transition to Infectious after 1 day and 20% 

after 2 days; they will become symptomatic-Infectious with probability 2/3 and 

asymptomatic-Infectious with probability 1/3.  Infectious cases either recover or die after 

3-6 days since they became infectious, with 30% recovering after 3 days, 40% after 5 

days, 20% after 5 days, and 10% after 6 days.  This means    = 1 and    = 5.  Thus: 

 
      

          
        

           

  
(22) 
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(23) 

 Define r(s) as the relative infectiousness of symptomatic state s, and f(t) as a 

seasonality factor.  Based on Ferguson, et al. (2005) and Longini, et al. (2005), it is 

assumed that r(s) = 1 if a person is symptomatic (s=1) and r(s) = 0.5 if a person is 

asymptomatic (s=0).  Seasonality is discussed in part iv) below.  Groups within a city mix 

uniformly, so the average number of new Exposed cases caused by one Infectious person 

in city i on day t is proportional to the number of Susceptible individuals in that city and 

is equal to λ
.
S(t)/N.  Ignoring travel between cities for the moment, the total number of 

Exposed cases of age k in city i evolves by:  

(24) 

           

 
 
 

 
 
         

      

             
               

 

   

    

  

   

 

   

         

                                

  

and the number of infectious cases of age k in city i evolves by: 

 

             

 
 

  
 

 
                

  

   

        

                                  

  

 

(25) 

 

             

 
 

  
 

 
                

  

   

        

                                  

  

(26) 



53 
 

 

for symptomatic and asymptomatic cases, respectively.  It is assumed 97.5% of 

symptomatic cases recover and 2.5% die, while 98.75% of asymptomatic cases recover 

and 1.25% die. 
21

  So the number of Recovered cases evolves by: 

 

                                                      

 

   

  

   

 

(27) 

 

and the number of Dead cases of age k evolves by:  

 

                                                    

 

   

  

   

 

(28) 

 The preceding describes an S-E-I-R model with no travel. In the model, 

the evolution of S(.), E(.), I(.), R(.) and D(.) are determined by both these equations and 

by travel between cities.  There is a fixed number of seats available Xij for travelers 

moving between two cities i and j determined either from the airline data (for city to city 

travel) or 1% of the urban population (for city to rural travel).  Each Susceptible, 

Exposed, Asymptomatic Infectious and Recovered individual has a probability of travel 

calculated by: 

                                                           
21

 This assumption is highly speculative, but gross attack rates would be similar so long as case fatality 
rates remained small.  Slight differences would occur because deceased are not contacted by others.  At a 
lower case fatality the proportion of proportion of Recovered people contacted by an infectious individual 
would be slightly higher, and the proportion of Susceptibles contacted would be slightly lower.  The 
combined effect would be for the pandemic to spread slightly more slowly, but the effect would be 
minimal for low case fatality rates (for example, 0-3%).  Increasing the case fatality rate further would 
have the opposite effect.  Since the case fatality rate is highly speculative, results analysis focuses on 
attack rates from the total number of cases, rather than separately considering deaths vs recoveries. 
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(29) 

The expected number of travelers of a particular subgroup who move from i to j on a 

particular day is the product of the number of persons in the subgroup multiplied by 

            .
22

   

iii) Contact rates 

 The key parameter determining the spread of the pandemic is λjk, the (city-

specific) daily infectious contact rate.  This parameter defines the number of new exposed 

cases of age k generated by an infectious individual of age j.  The rate is determined by 

two components: the number of people contacted daily by an infectious individual,
23

 and 

the probability of transmission given contact.  The contact rates are described by a matrix 

Ci whose elements Cijk describe the number of contacts per day that a person of age j has 

with people of age k in city i.  The P(T|C) is chosen by the modeler to determine the 

reproductive rate of the virus (determined by the particular biological characteristics of 

the specific influenza strain), and is constant in every city and age-group. 

 A key aspect of the modification of the GEM for this research has been an effort 

to incorporate realistic information on contact rates, so as to be able to partially explain 

observed variation in attack rates by age-group and to model variation in contact rates 

across urban/rural status and across countries.  This dissertation derives its assumptions 

on age-specific contact rates from survey data from European countries as reported in 

                                                           
22

 This means that the expected number of travelers moving from i to j will be less than Xij , as long as 
there are any cases who are symptomatic infectious or dead, since these people do not travel. 
23

 A contact is assumed to be a physical contact, where two individuals encounter each other closely 
enough that there is a chance of influenza transmission.  The precise definition of contact can be unclear 
in the literature, and this can complicate use of data where individuals report the number of contacts they 
undertake per day. 
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Mossong et al. (2009).  The method by which the contact rate matrix (and thus λjk) is 

derived is described in Appendix 3. 

 Contact rates vary by age-group; in general each age-group is more likely to 

contact people of their own age than other ages; school children contact mostly other 

school-children, adults contact mostly other adults, and so forth.  School-age children 

have the highest contact rates, while elderly people have the lowest contact rates.  This 

pattern influences the incidence of influenza cases across age-groups.  However, it is 

assumed that the total absolute number of contacts per day does not vary across cities 

based on age structure, so countries with younger populations will not have higher attack 

rates.
24

 

 Contact rates are adjusted across cities by urban density (for cities) and by the 

urbanization rate of the ―rural‖ areas (see Appendix 2 for details).  This has the effect of 

increasing contact rates (and thus attack rates) for cities in lower income countries (which 

tend to have high density cities), and for rural areas in higher income countries (which 

have higher urbanization rates). 

 A model extension could allow the P(T|C) to vary by age-groups, so that for 

example a child or elderly individual might be more likely to contract the virus than a 

healthy adult.  But this dissertation retains the assumption of a constant P(T|C) for two 

reasons.  First, reliable data on relative vulnerabilities is not available, and the 

relationship between age and vulnerability is not clear.  While the elderly may have 

poorer health and weaker overall immune systems, older individuals are also more likely 

                                                           
24

 An alternative treatment that held absolute contact rates constant for each age-group would increase 
average contact rates and thus transmission rates and attack rates in countries with younger populations. 
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to have encountered related influenza strains in the past, and so may have developed 

some natural resistance.  In the 2009 H1N1 pandemic, evidence suggests that healthy 

young adults may have been more vulnerable than older adults or children.  Second, this 

research does not examine non-pharmaceutical interventions, and so the epidemiological 

consequences of allowing the P(T|C) to vary by age-group would be very similar to the 

consequences from incorporating variation in contact rates by age-group - both have the 

affect of introducing age-dependent transmissibility.  For example, doubling the P(T|C) 

for some particular age-group pair would have a similar affect as doubling the number of 

daily contacts.  If the model were to examine policies that affected contact rates, then it 

would be more important to separate age-specific contacts from age-specific 

transmissibility. 

iv) Seasonality 

 One of the key stylized facts of influenza is that infection rates are much higher in 

winter months than in summer in temperate zones, but that there is less seasonal variation 

in tropical or arctic conditions.  The mechanism for this is not well understood.  Theories 

focus on both biological mechanisms and behavioral mechanisms.  Biological 

mechanisms include the possibility that the influenza virus is more fragile in warmer 

temperatures and has lower transmission at higher humidity (confirmed in controlled 

environment tests, e.g. Lowen et al. (2008)), perhaps because virus particles are coated in 

moisture and less able to infect new hosts.  Shaman and Kohn (2009) find that absolute 

humidity (rather than relative humidity) explains the seasonal variation of influenza in 

temperate zones, with lower transmissibility at higher humidity.  Behavioral mechanisms 

suggest that in winter months (particularly in higher latitudes) people spend more time 

indoors in close proximity, and so have higher contact rates and thus a higher daily 
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infectious contact rate.  In this dissertation, seasonality is incorporated by adjusting 

infectiousness rates rather than contact rates. 

 Existing global influenza models attempt to account for seasonality; most global 

pandemic models use some kind of step function as an approximation, where seasonality 

is constant for tropical regions and is lower during summer months in the temperate 

zones.  For example,  Colizza et al. (2007) divides the world into three zones; northern 

hemisphere, tropical, southern hemisphere.  They assume constant seasonal 

transmissibility in the tropical zone, and use a seasonal transmissibility factor that varies 

between 0.1 in summer and 1.1 in winter in the temperate zones, using a monthly 

stepwise function such that the average temperate zone transmissibility is 68.3% of that 

in the tropical zone.  The GEM takes a similar approach, but incorporates seasonality 

through a continuous seasonality infectiousness factor multiplier f(t) that varies by day of 

the year and by latitude of the city.
25

  Infectiousness is assumed to be constant in the 

tropics, and elsewhere to follow a sinusoidal pattern where it is at maximum value on 

January 1 in the northern hemisphere (July 1 in the southern hemisphere) and minimum 

value on July 1 in the northern hemisphere (January 1 in the southern hemisphere).  

Specifically, for city i the seasonality factor is given by: 

 
                                           

        

      
  

(30) 

 

Li is the latitude of city i (interpreting southern hemisphere as negative latitude), where t0 

                                                           
25

 The GEM uses the population-weighted mean latitude of the modeled cities in a region for the latitude 
of that region’s rural area. 
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is the day of the year corresponding to the start of the pandemic, and where i  scales Li 

to a value between 0 and 1 according to: 

 
               

         

         
   

(31) 

 

where 23.5 is the absolute value latitude of the tropics and 66.5 is the absolute latitude of 

the Arctic/Antarctic circles.  The i function thus implies that the seasonality factor is 

constant in the tropics, has increasing amplitude through the temperate zone, and does not 

increase in amplitude further in the polar zones.  The maximum value is constant for all 

latitudes, so the increasing amplitude means that in higher latitudes the average 

seasonality factor is lower - and so disease transmission (and thus attack rates) attack 

rates are highest in the tropics, and are lower the further a country is from the equator (up 

to the polar boundary).  

 Figure 4.1 shows the seasonality factors for Singapore (in the tropics), New York 

(temperate, northern hemisphere) and Sydney (temperate, southern hemisphere) with a 

pandemic starting on January 1 (winter in the northern hemisphere).  Note that New York 

is further north than Sydney is south, and so New York’s seasonality factor has higher 

amplitude and a lower mean value.  These imply that all else equal, Singapore will have a 

higher attack rate than Sydney, which will have a higher attack rate than New York. 
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Figure 4.1: Seasonality factor for selected cities 

 

 Unfortunately, there is little empirical data on which to base this assumption.  

Cooper et al. (2006) compare a constant-maximum infectiousness model (as latitude 

changes) to a constant-mean model and finds the former performs slightly better when 

trying to fit observed attack rates from the 1968/69 influenza pandemic.  They also find 

that a sine wave functional form fits the data better than a square wave or no seasonal 

variation.
 26

  In contrast, evidence from Shaman and Kahn (2009) suggests that influenza 

seasonality is driven largely by absolute humidity.  Absolute humidity is always high in 

the tropics but is high in temperate zones only in summer, which suggests that a constant 

minimum model may be more accurate than a constant-maximum model.  But, further 

evidence is lacking.  This is unfortunate, since this seasonality assumption has a huge 

impact on pandemic dynamics and on the incidence of attack rates across countries. 

                                                           
26

 While this functional form matches the single peaked seasonal pattern observed in many countries, it 
does not matched the bimodal seasonality observed in some cases, such as Hong Kong.  
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v) Performance of the GEM with no policy interventions 

 Before moving on to consider policy interventions in the GEM, it is useful to first 

describe the auxiliary assumptions made in running the GEM, and to demonstrate the 

performance of the model in the baseline scenario. 

 Though the GEM is stochastic, the main simulations are run using a deterministic 

version of the model where each random variable
27

 is assumed to take the mean value of 

its distribution (and so the model allows for fractional values of S(t), E(t), I(t), R(t) and 

D(t)).  This reduces the number of runs that needs to be performed by an order of 

magnitude.  While there is some variation across runs in the early stages of the stochastic 

model, the terminal values of key variables are nearly identical across runs of the 

stochastic model
28

.  This means the model loses the ability to consider variation in early 

spread patterns, but also that the model run-time is drastically reduced, and so many more 

scenarios can be examined given the limited computing time available. 

 The pandemic is assumed to begin with 100 infectious cases on January 1 in 

Jakarta.
29

  While the state of the model is observed for every day over the 3-year period 

for which the simulations run, analysis is focused on the attack rate after 1 year.  This is a 

somewhat arbitrary cutoff (though it is common in the literature), but in part it represents 

the approximate amount of time that it might take to develop, test and mass produce a 

pandemic-strain-specific vaccine.  Though any influenza vaccine remains exogenous, it is 

                                                           
27

 The probability of transmission given contact, the probability of recovery and the probability of travel 
are the key random variables in the stochastic version of the model. 
28

 The global attack rate is identical to five significant figures across stochastic runs. 
29

 There is no particular reason to pre-suppose that Jakarta is particularly likely to be a start point.  A 
pandemic influenza strain that mutates from an avian or other animal strain is more likely to occur in a 
country where people in rural areas live in close proximity to livestock, but depending on the movement 
of the first few cases an outbreak could occur virtually anywhere.  Jakarta was selected as a city in a large 
poor country that is well-connected to the international airline network. 
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an important motivating factor behind why consideration of attack rates after particular 

duration, rather than considering only the long-run steady state condition where the 

pandemic would be completely over without any further intervention.  Many of the gains 

from antivirus policy come from delaying the spread of the virus, and delay is valuable in 

part because it buys time for vaccination development. 

 Every region in the model is assigned to an Income Group
30

; countries either 

Poor, Lower Middle, Upper Middle or Rich (see Appendix 2).  This classification is 

useful for defining antiviral scenarios where the size of the stockpile differs depending on 

the purchasing power and public health system of the country in question (such as a 

scenario where rich countries have a large AV stockpile but poor countries do not), and is 

a useful means of showing the distributional impact of policies
31

.   

Figure 4.2: Distribution of population by income group and age-group 

 

Total age 0 age 1 age 2 age 3 

Poor 2,839,998,811 352,152,534 647,655,318 1,716,456,775 123,734,183 

Lower_Middle 2,156,161,724 165,680,600 361,106,698 1,473,910,542 155,463,884 

Upper_Middle 515,385,759 36,733,909 79,318,428 349,989,705 49,343,717 

Rich 914,861,650 53,135,831 109,758,061 610,674,513 141,293,245 

TOTAL 6,426,407,944 607,702,874 1,197,838,506 4,151,031,535 469,835,029 

 

                                                           
30

 Income groups classifications are based on International Monetary Fund data on nominal 2008 GDP per 
capita, at 2008 exchange rates.  Poor countries are those with GDP per capita less than $USD 3,000, Lower 
Income are those with GDP per capita up to $10,000, Upper Middle have income up to $20,000 and Rich 
countries are those with incomes exceeding $20,000.  For regions with multiple countries, the median 
income country is used to classify the region.  We use this classification (rather than say the World Bank 
income group classifications) because we feel it is more representative of public health sector 
infrastructure. 
31

 The identical nature of agents within a city or rural area mean that we cannot capture distributional 
consequences within a country, though it is likely that higher income people will have better access to 
healthcare services including antivirals and may have lower contact rates than lower income people (eg 
by driving rather than using public transport). 
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 The baseline scenario assumes a "moderate" P(T|C) value of 0.05333, which 

implies a global average R0 value of 1.48 (and an R0 in the outbreak source Jakarta of 

1.91). This value is somewhat arbitrary, but is designed to demonstrate the effectiveness 

of antivirus while remaining above the range where a small amount of anti-virus is able 

to prevent occurrence of a pandemic.  "Low" and "High" values of P(T|C) are assumed to 

be P(T|C) = 0.045 and 0.06, respectively, which imply global average R0 values of 1.25 

and 1.67. 

 Figure 4.3 shows how the pandemic progresses in this baseline scenario.  Panel A 

shows behavior of the global categorical variables (from aggregating each state across all 

cities and rural areas) for the entire 3-year run of the simulation model.  Panel B shows 

the number of new infectious cases on each day, broken down across the 4 income 

groups, while Panel C shows the data but concentrates on the first year of the pandemic. 

Panel D shows the incidence of attack rates (total proportion of people ever infected) by 

country income group
32

, while Panel E shows the incidence by age-group. 

  

                                                           
32

 Recall that this is incidence across countries by the average income of the country; the model says 
nothing about incidence varying by income within a particular country. 
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Figure 4.3: Pandemic time path, baseline 
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 On day 1, the entire world is susceptible (except 100 infectious cases in Jakarta).  

Over time some people become Exposed, Infectious and then Recover or Die, first at an 

increasing rate though to the primary pandemic peak and then at a decreasing rate as the 

pandemic passes its peak (and the reproductive rate falls below 1 in most countries).  A 

secondary wave occurs after roughly 300 days, as the northern hemisphere (where most 

of the population lives) re-enters winter.  Most cases occur within a year; the 1-year 

attack rate is 44.6%, rising to 49.9% after 3 years. 

 Attack rates are higher in poor countries and lower in rich countries, due primarily 

to the positive correlation of income and latitude (see below.  Rich countries have a larger 

increase in attack rate after the first year because they are at higher latitude, and so are 

more affected by seasonality, and so have a larger number of cases from the second 

pandemic wave.  School-age children suffer higher attack rates than other age-groups, 

because of their high contact rates; the elderly suffer lower attack rates because of their 

relatively low contact rates. 

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

World <5 yrs 5-14 yrs 15-64 yrs 65+ yrs

Panel E: Attack rate incidence by agegroup

day 365

day 730

day 1095



66 
 

 

 Attack rates and attack rate incidence are highly sensitive to the pandemic start 

date, due to the interaction of start date and seasonality assumptions.  Figure 4.4 

compares the pandemic time path and attack rates for a January 1 start date (where the 

pandemic peaks during northern hemisphere summer) as compared to a July 1 start date 

(where the pandemic peaks during northern hemisphere winter).  The secondary infection 

wave occurs in the Jan1 scenario only because the pandemic is choked off prematurely by 

rising temperatures as the northern hemisphere enters summer, while in the July1 

scenario northern hemisphere temperatures are cooling as the disease spreads and so the 

pandemic reaches a single, more intense peak.  The increase in attack rate after 1-year is 

largest for rich countries, due to the truncation of the full pandemic impact created by 

looking only at a 1-year attack rate. 

Figure 4.4: Start date variation, baseline 
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 The incidence of attack rates across income groups is driven in large part by the 

combination of the seasonality assumptions and the real world correlation between 

income and latitude; countries more distant from the equator have lower average 

seasonality factors, and so lower attack rates.  Figure 4.5 displays the distribution of 

attack rates (after 3 years) by latitude across the GEM's 106 regions.  Panel A shows the 

distribution of regions across latitude by income group, and demonstrates the stylized fact 

that higher income countries lie further from the equator.  Panel B shows attack rates 

under a January 1 start date, while Panel C shows attack rates under a July 1 start date. 

 Recall that the seasonality factor is constant in the tropics (between positive and 

negative 23.5 degrees latitude) and then average infectiousness decreases with distance 

from the equator.  This explains why attack rates are roughly constant in the tropics, and 

then generally decreasing away from the tropics.  The decrease is larger for the northern 

hemisphere in panel B and the southern hemisphere in panel C, because of the timing of 

the pandemic peak relative to summer in each case (seasonality factor is at minimum in 
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summer).  Variation in attack rates not due to latitude (the upward slope above ~mid 30s 

latitude in Panel B for example) are largely due to the structure of the international airline 

network and regional populations (and so the number and timing of exposed cases 

imported) and to variation in density and urbanization rates across countries.   Cities in 

poorer countries are more likely to be high density (increasing contact and attack rates), 

but poorer countries tend to have lower urbanization rates(decreasing contact and attack 

rates). 

Figure 4.5: Effect of latitude in baseline model 
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 A higher value of P(T|C) results in a faster pandemic and a higher attack rate (and 

the opposite for a lower P(T|C) value) while retaining similar qualitative properties (see  

Figure 4.6).  In a "severe" pandemic with P(T|C) = 0.06 the global 1-year attack rate rises 

to 53.3%, while in a "minor" pandemic with P(T|C) = 0.045 the global 1-year attack rate 

falls to 28.7%. 
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Figure 4.6: Effect of latitude in baseline model 

 

 

 

 Results are generally insensitive to travel rate assumptions.  Figure 4.7 shows that 

1-year attack rates for wealthier countries vary slightly with a doubling or halving of 

travel rates, and the impact on terminal attack rates after 3 years is minimal.  Adjusting 

travel rates has two effects; a higher travel rate means a slightly faster pandemic spread 

(which might be expected to lead to higher attack rates), but a higher attack rate also 

shifts the season in which the pandemic peak occurs (which may increase or decrease 

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

0 200 400 600 800 1000 1200

N
u

m
b

e
r 

o
f 

ca
se

s

Day

Panel A: Pandemic dynamics

PT|C = 0.053333

PT|C = 0.06

PT|C = 0.045

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

World Poor Lower 
middle

Upper 
middle

Rich

Panel B: Attack rate incidence

PT|C = 0.053333

PT|C = 0.06

PT|C = 0.045



71 
 

attack rates depending on whether it shifts the pandemic peak towards or away from 

summer in the northern hemisphere).  It appears that the second effect dominates; attack 

rates are marginally lower with higher travel rates.  The apparent insensitivity of attack 

rates to travel rates implies that airline travel restrictions would be relatively ineffective 

(as in Epstein et al. 2007). 

Figure 4.7: Effect of latitude in baseline model 
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 While the GEM has not been formally validated against modern pandemics, 

earlier versions of the GEM have been compared to those of earlier pandemic models.  

Rvachev and Longini (1985) test their model against the 1968-9 pandemic starting in 

Hong Kong, and found an approximate fit to the first wave of the pandemic, though they 

noted that there was often little empirical data with which to compare their model - either 

the data were not collected, or there was no actual outbreak in some cities.  Grais et al. 

(2003) expand the model, and validate their model by reproducing the Rvachev and 

Longini results.  In unpublished background work, Goedecke and Bobashev find that the 

GEM is able to replicate the Rvachev and Logini results when running the GEM with 

1968 parameters.  
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Chapter 5 Policy interventions in the 

Global Epidemiological Model 

 Single-city and two-city epidemic models are unable are to give policy results that 

are robust to any input parameters.  To progress further some idea of what is a 

"reasonable" input parameter is needed, but it is difficult to make judgments about what 

inputs are realistic in such highly stylized models.  Adopting the GEM allows policy 

questions to be approached using a model with a high degree of descriptive realism, and 

allows use of data inputs and assumptions based on observable or semi-observable real 

world parameter values.  This chapter describes how and why the GEM is adapted to 

focus on antivirus stockpiles, and presents results on: the value of antivirus in reducing 

the number of influenza cases, the incentive for wealthy countries to pay for antivirus in 

poor countries, the effectiveness of various antivirus stockpile allocation rules, the value 

of improving health infrastructure and the cost effectiveness of antivirus policy options. 

i) The GEM and Antivirals 

 The generalized version of the GEM is capable of modeling several policy 

interventions; it can model vaccine use (which reduces the probability that a vaccinated 

Susceptible case will be infected if contacted), it can model travel restrictions (where 

cities cut air travel links), it can model non-pharmaceutical interventions such as physical 

distancing measures or partial quarantine (which reduce contact rates) or it can model 

treatment with antivirals (which reduces the probability that an infectious individual will 

infect others when contacted).  This research focuses on antivirals.   

 The GEM is not very helpful in changing our understanding of vaccine policy 

issues.  As in the 2009 influenza pandemic, by the time a pandemic influenza strain has 
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been detected and a strain-specific vaccine has been developed, mass produced and 

distributed, it is highly likely that a severe pandemic will have already run its course 

(though a milder pandemic that spreads more slowly may still be susceptible to 

significant mitigation through vaccine).  The externalities of vaccine are relatively well 

understood (see for example Boulier et al. 2007); there is a strong "herd immunity" effect 

from preventative vaccination, and so mass prophylaxis with vaccine can be highly 

effective. 

 Travel restrictions have been studied using an earlier version of the GEM in 

Epstein et al. (2007).  In general, travel restrictions are not very effective for most cities 

unless they are absolute and can be implemented extremely early (which is difficult to do 

when a pandemic may not be detected for weeks or months), because after a relatively 

small number of infectious cases exist in a city most of the additional contagion comes 

from natural increase rather than by importing infected cases.  In the modern global 

economy absolute travel restrictions are extremely expensive, which limits their realistic 

effectiveness as a policy measure. 

 The GEM is capable of modeling physical distancing measures, such as school 

closures or workplace closures.  These policies reduce the contact rates of individuals in 

particular age-groups (though they might also increase contact rates between other age-

groups); for example, a school closure policy might reduce the rate at which children 

contact other children, but might increase the rate at which children contact adults.  

However, the effect of physical distancing measures in an epidemiological model is very 

similar to the effect of antivirals.  What matters is the daily infectious contact rate, and so 

the effect of physical distancing measures that reduce the number of contacts will be 
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almost identical to antivirus treatment policies that reduce the probability of transmission 

given contact by an equivalent amount.  There is also less policy value from considering 

external benefits from physical distancing, since it would be difficult for one country to 

pay for another country to undertake physical distancing measures (in contrast to 

antivirals, where one country could pay for doses to be provided to and distributed in 

another country).
33

 

 The GEM is prescriptive, rather than agent-based.  Though governments 

implement policy actions, these policies are imposed as part of the model design, rather 

than policies that are selected optimally
34

.  Individuals in the model make no decisions.  

They do not change their travel patterns in response to the pandemic, either at a global 

level (by reducing or changing the pattern of their movement between cities to avoid 

areas where the contact risk is high) or at a local level (by reducing their contact rates per 

day through self-sequestration when they are infectious, or self-isolation when there are 

many other infectious cases present in their city).  Instead, people are assumed to act in a 

way dictated by parameter estimates calculated from behavior observed in non-pandemic 

settings.  This will tend to lead to over-estimates of disease spread and attack rates from 

the GEM, relative to a real world pandemic. 

 There are agent-based epidemiological models that incorporate prevalence-elastic 

behavior endogenously, but not at the global scale of the GEM.  The sheer scale of the 

GEM makes individual optimization infeasible; the computational power needed to 

                                                           
33

 However, it might be possible for a donor country to partially subsidize physical distancing measures by 
providing masks or gloves. 
34

 The GEM is motivated by the idea that there is an initial first step where governments are 
simultaneously choosing an optimal stockpile size for their region, but this is not explicit in the model. 
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calculate optimizing decisions by individuals or even representative agents of every type 

in every city in every day would be extremely high.  Such models are more effective 

when used in a smaller setting or a model with less detail. 

 The GEM is a model of perfect information.  Even if the model included a step 

where governments chose an optimal stockpile size, it would still have to assume that the 

decision was made with perfect knowledge that a pandemic influenza strain with 

particular properties (start date, start location, biological properties such as transmission 

rate and recovery rate) will occur with probability 1.  In reality, governments have to 

make pandemic plans and decisions about AV stockpiles without knowing whether or 

when a pandemic will occur. 

 The GEM is a large and complex model – the runtime of the model is significant 

even when using considerable computing power.  This limits the number of model runs 

that can realistically be undertaken in a research project, and so limits the ability to 

explore the parameter space.  In particular, it rules out the feasibility of doing the kind of 

optimization calculations that would be needed in order to calculate Nash equilibria in a 

formal strategic version of the model, with Regions or Super-Regions choosing stockpile 

sizes to maximize an objective function.  This limits the ability to conduct formal 

economic analysis, but some important insights can be gained from examining particular 

parts of the parameter space to inform policy questions. 

 The GEM is not an effective model for tracking containment strategies.  In some 

cases it may be possible to contain a virulent new influenza strain, and prevent a 

pandemic from occurring.  In practice, this requires public health officials to perform a 
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focused contact-tracing procedure, where they target pharmaceutical interventions (such 

as antivirus) and physical distancing measures (such as quarantine) to specific individuals 

that may have had contact with early infectious individuals.  This kind of process can be 

modeled, but it requires a hierarchical social network model that can differentiate 

between individuals of varying probabilities of having contacted an infectious individual, 

rather than the homogenous mixing procedures calculated in the GEM. 

ii) Effects of Antivirus treatment 

 Following Longini et al. (2005), it is assumed that treating infectious cases with 

antivirus has two effects
35

: treatment reduces the probability of transmission given 

contact by a multiplicative factor (1 – e) where e is the efficacy of the antivirus,
36

 and it 

reduces the average duration spent Infectious by one day, by uniformly shifting the 

probability distribution downwards.  This means that an Infectious individual treated with 

AV will recover after 2-5 days of being Infectious (rather than 3-6 days for untreated 

individuals), with 30% recovering after 2 days, 40% after 3 days, 20% after 4 days, and 

10% after 5 days, and so: 

   

 

             

 
 
 

 
 

           
                  
                  

        
           

  

(32) 

                                                           
35

 Another possibility would be for treatment to reduce the case fatality rate, but here we focus on attack 
rates rather than mortality rates and so we do not consider this possibility.  A modest reduction in case 
fatality rates will have little impact on the model dynamics or on the total number of people ever 
infected, but it could dramatically increase the value of avoiding a case. 
36

 It is assumed that this efficacy is constant throughout the pandemic.  The model does not allow for an 
AV-resistant strain to develop during the pandemic, which might be possible in the real world.  An AV-
resistant influenza strain (ie one where efficacy e was very low) would dramatically reduce the value of all 
AV interventions. 
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 Each region has an AV stockpile size P*(r), and an amount of stockpile remaining 

P(r,t).  AV held by region r will be used to treat people in all cities (including the rural 

area) within that region.  It is assumed that AV stockpile distribution begins in city i only 

when 1,000 people have become infectious in city i, 
37

 and then continues until there is no 

AV remaining in the region.  Note however that in many cases a large stockpile in a 

region will not be exhausted.  Any doses not consumed are wasted. 

 It is assume that a constant proportion p of symptomatic-Infectious cases are 

treated with AV (asymptomatic cases are not treated)
38

.  This is a highly unrealistic 

assumption; real world treatment rates will vary depending on a number of factors 

including health system infrastructure and the proportion of the population infected.  

Unfortunately, there is little reliable data in which to build a plausible location-specific 

treatment number.  In most model runs it is assumed that p = 0.5, so one-third of 

infectious cases are treated (while one-third are symptomatic but untreated and one-third 

are asymptomatic but untreated).  This treatment occurs only after 1 day, so newly 

Infectious cases have 1 full day to infect others before they receive treatment to reduce 

their infectiousness.   

 Assume that there are no type 1 errors in treatment – AV doses are never used to 

treat non-infectious cases.  While unrealistic, this assumption is relatively harmless, since 

                                                           
37

 This assumption is designed to model the difficulty in detecting the pandemic strain of influenza 
particularly against the “background noise” of regular seasonal influenza cases.  Sensitivity tests show that 
final attack rates are not significantly affected by changing the number of cases needed before 
distribution begins, except in the special case of low P(T|C) where early detection will significantly reduce 
the number of cases, particularly in the outbreak source country where early detection can mean the 
outbreak is contained and no pandemic occurs. 
38

 Treatment of influenza with AV involves a 5-day course of AV being consumed at a rate of 2 pills per 
day, so we assume each “dose” of AV is enough for the 5 day course. 
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the stockpile size could simply be increased in every city by some factor and receive the 

same qualitative results (treating x cases with no type 1 error is similar to treating 1.25x 

cases with a 20% false positive rate). 

 Antivirus is not used as prophylaxis.  Though prophylactic use does have some 

medical benefit (a Susceptible individual treated with AV will have a lower probability of 

being infected if contacted), preliminary investigations with the GEM indicated that 

prophylactic use is relatively ineffective at influencing the pandemic spread.  This occurs 

in part because the effect of being treated wears off rapidly after treatment ceases, and so 

prophylactic treatment is effective on a Susceptible person who is contacted during the 

brief duration in which the dose is effective.  So a vast numbers of doses would be 

needed to sustain any significant reduction in the population at large.  Those doses could 

be more effectively used for treating actual infectious cases rather than trying to blanket 

the population. 

 How will countries choose their antivirus stockpile?  Ideally I could consider the 

possibility of locally and globally optimal allocation rules, assuming some welfare 

function that compared the social value of preventing cases across different countries.
39

  

But in practice, the GEM is too complicated for the optimal allocation to be calculated.  

An input parameter for the GEM with a stockpile allocation is a vector with 106 variables 

(and so 105 degrees of freedom for any given stockpile size) and so the number of 

possible combinations is enormous.  It is not possible to predict the outcome of attack 

                                                           
39

 Such a welfare function might value all cases equally across all countries, or might value cases as a 
function of the dollar cost of cases in different countries (and so cases prevented in rich countries might 
be treated as more valuable than cases prevented in poor countries).  Different beliefs about an 
appropriate global welfare function would lead to radically different outcomes. 
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rates across country without actually running the GEM, which takes over 30 minutes per 

run, and so it is infeasible to run the model enough times for any kind of optimization 

algorithm to converge.  Instead, I examine the effects of antivirus by concentrating on a 

set of "plausible" antivirus stockpile combinations, where wealthier countries have larger 

AV stockpiles while poorer countries have smaller or no access to AV (unless it is 

provided to them by donors). 

 This notation indicates that all regions in the Poor income group have a stockpile 

size of a% of their population, Lower middle income regions have a stockpile size of b%, 

and so forth.
40

  The four scenarios are (A) 0/0/5/10; (B) 0/1/5/10; (C) 1/1/5/10 and (D) 

0/1/5/10 + a 4.2% stockpile for the outbreak country, Indonesia, which is in the Poor 

income group.  The combined stockpile size of all rich regions is 91.5 and 25.8 million 

doses for all upper middle income regions (10% and 5% of their respective populations) 

in all scenarios.
41

 The difference between scenario A and scenario B could be interpreted 

as a gift from wealthier countries of 21.5 million doses to Lower Middle income 

countries (equal 1% of their population), while the movement from B to C is equivalent 

to rich countries paying for 28.4 million doses in Poor countries (equal to 1% of their 

population).  In scenario D Lower Middle income countries have stockpiles equal to 1% 

                                                           
40Although all regions in a particular income group receive the same stockpile, as a percent of their 
population, it is possible that the stockpile may be exhausted in some regions but not in others.  This 
complicates interpretation of a change in stockpile size across an income group, since such a change may 
lead to additional people being treated in some regions but not in others. 

41
 However, note that the entire 91.5 million doses are not always consumed, or are not always consumed 

within the first year, as some regions will not exhaust a stockpile equal to 10% of their population size.  
Since 1/3 of infectious cases are treated, a region will not exhaust a 10% stockpile any time its attack rate 
is less than 0.3. 
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of their populations and Indonesia has a stockpile of 9.2 million doses
42

, which equals 

4.2% of its population. 

ii) The value of antivirus 

 Treatment with antivirus is highly effective in reducing pandemic attack rates.  

Figure 5.1 shows the effect on the global attack rate from AV treatment under a range of 

scenarios where AV stockpiles are concentrated in wealthier countries.  The impact of 

each scenario on attack rates at the end of one year depends on the infectiousness of the 

flu (i.e., P(T|C)), the timing of the flu (whether the flu starts on January 1 or July 1) and 

the effectiveness of antivirals (e). 

 In all cases, there is a sizeable reduction in attack rate; recall that a reduction in 

global attack rate of 0.01 is equal to roughly 64 million fewer influenza cases by the end 

of the first year.  Larger stockpile sizes lead to lower attack rates.  Lower AV efficacy 

leads to a smaller reduction in attack rate.  A high P(T|C) value reduces the effectiveness 

of AV.  A low P(T|C) value means that the 1/1/5/10 scenario is able to contain the 

pandemic completely, because this scenario allocates AV to the outbreak source 

(Indonesia) and the low P(T|C) value implies that treatment in Indonesia is able to reduce 

the R0 value below 1, and prevent a pandemic.  But containment is not possible in other 

scenarios. 

 Figures 5.2-5.4  show the impact of varying these parameters on the cumulative 

number of influenza cases at the end of one year.  In the standard case (medium 

infectiousness, January 1 start date and reduction in infectiousness of 60%), Scenario A 

                                                           
42

 The 9.2 million doses are 1% of the Rich income group population, so Scenario D is the equivalent of 
Rich countries purchasing an additional 1% stockpile, but distributing it to Indonesia. 
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reduces the attack rate by 5.2 percentage points (334 million cases); scenario B reduces 

the attack rate by 13.6 percentage points (877 million cases) and scenario C reduces the 

attack rate by 19.3 percentage points (1,237 million cases), all relative to the no-AV 

baseline.  Scenario A leads to an average of 2.85 fewer cases per dose, 7.16 fewer cases 

per dose for Scenario B, and 8.60 fewer cases per dose for Scenario C. 

Increasing the infectious of the flu (P(T|C) = 0.06) reduces the effectiveness of 

AVs, while a lower value of P(T|C) makes containment of the flu possible under scenario 

C.  Scenario C allocates AV to all poor countries, including the outbreak source 

(Indonesia), and the low P(T|C) value implies that treatment in Indonesia is able to 

reduce the R0 value below 1, and prevent a pandemic.  But containment is not possible in 

other scenarios.  Reducing the effectiveness of the AV dose from e = 0.6 to e = 0.5 

reduces the number cases reduced per dose of AV from 2.85 to 2.55 in scenario A, from 

7.16 to 6.36 in scenario B, and from 8.60 to 6.10 in scenario C. 
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Figure 5.1: Effect of AV on global 1-year attack rate 

Scenario 

ID 

AV stockpile 

size (% 

population, by 

income group) P(T|C) 

Start 

date 

AV 

Efficacy 

Baseline 

attack 

rate 

Attack 

rate with 

AV Difference 

A1 0/0/5/10 Low 1-Jan 0.6 0.287 0.235 0.052 

A2 0/0/5/10 Medium 1-Jan 0.6 0.446 0.394 0.052 

A3 0/0/5/10 Medium 1-Jul 0.6 0.547 0.456 0.091 

A4 0/0/5/10 Medium 1-Jan 0.5 0.446 0.400 0.047 

A5 0/0/5/10 High 1-Jan 0.6 0.533 0.480 0.053 

B1 0/1/5/10 Low 1-Jan 0.6 0.235 0.154 0.081 

B2 0/1/5/10 Medium 1-Jan 0.6 0.446 0.310 0.136 

B3 0/1/5/10 Medium 1-Jul 0.6 0.547 0.385 0.162 

B4 0/1/5/10 Medium 1-Jan 0.5 0.446 0.325 0.121 

B5 0/1/5/10 High 1-Jan 0.6 0.533 0.499 0.034 

C1 1/1/5/10 Low 1-Jan 0.6 0.235 0.000 0.234 

C2 1/1/5/10 Medium 1-Jan 0.6 0.446 0.254 0.193 

C3 1/1/5/10 Medium 1-Jul 0.6 0.547 0.301 0.246 

C4 1/1/5/10 Medium 1-Jan 0.5 0.446 0.309 0.137 

C5 1/1/5/10 High 1-Jan 0.6 0.533 0.461 0.072 

Note: "Standard" assumption scenarios are in bold.  AV stockpile sizes a/b/c/d refer to 

Poor/LowerMid/UpperMid/Rich regions. Low P(T|C) = 0.045, Medium P(T|C) = 

0.05333, High P(T|C) = 0.06. 

Figure 5.2: Reduction in global influenza cases from AV, sensitivity to virulence  

 P(T|C) = 0.045 P(T|C) = 0.05333 P(T|C) = 0.06 

Scenario Δ 

Attack 

rate 

Δ Cases 

(billions) 

Cases 

reduced 

per AV 

dose 

Δ 

Attack 

rate 

Δ Cases 

(billions) 

Cases 

reduced 

per AV 

dose 

Δ 

Attack 

rate 

Δ Cases 

(billions

) 

Cases 

reduced 

per AV 

dose 

Baseline 

(no AV) 0 0  0 0  0 0  

Scenario 

A 0.052 0.333 2.836 0.052 0.334 2.848 0.053 0.341 2.906 

Scenario 

B 0.132 0.850 6.946 0.136 0.877 7.163 0.034 0.219 1.793 

Scenario 

C 0.286 1.839 12.773 0.193 1.237 8.594 0.072 0.466 3.235 

Note: Change in attack rate and number of cases refer to the reduction relative to the no-

AV baseline (so a positive value indicates fewer people infected).  All figures are for the 

point 1 year after the pandemic commences. 
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Figure 5.3: Reduction in global influenza cases from AV, sensitivity to start date 

 January 1 start July 1 start 

Scenario Δ Attack 

rate 

Δ Cases 

(billions) 

Cases 

reduced per 

AV dose 

Δ 

Attack 

rate 

Δ Cases 

(billions) 

Cases reduced 

per AV dose 

Baseline 

(no AV) 0 0  0 0  

Scenario A 0.052 0.334 2.848 0.091 0.585 4.993 

Scenario B 0.136 0.877 7.163 0.162 1.041 8.508 

Scenario C 0.193 1.237 8.594 0.246 1.581 10.984 

Note: Change in attack rate and number of cases refer to the reduction relative to the no-

AV baseline (so a positive value indicates fewer people infected).  All figures are for the 

point 1 year after the pandemic commences. 

Figure 5.4: Reduction in global influenza cases from AV, sensitivity to AV efficacy 

 γ = 0.6  γ = 0.5 

Scenario Δ Attack 

rate 

Δ Cases 

(billions) 

Cases 

reduced per 

AV dose 

Δ 

Attack 

rate 

Δ Cases 

(billions) 

Cases reduced 

per AV dose 

Baseline 

(no AV) 0 0  0 0  

Scenario A 0.052 0.334 2.848 0.047 0.299 2.550 

Scenario B 0.136 0.877 7.163 0.121 0.779 6.360 

Scenario C 0.193 1.237 8.594 0.137 0.879 6.104 

Note: Change in attack rate and number of cases refer to the reduction relative to the no-

AV baseline (so a positive value indicates fewer people infected).  All figures are for the 

point 1 year after the pandemic commences. 

 The impact of AV on attack rate is and is also affected by the start date of the 

pandemic, due to the seasonality assumptions.  Recall that infectiousness in non-tropical 

regions is highest in winter and lowest in summer.  This means that AV distribution, 

which slows the pandemic, will also have an indirect effect on infectiousness by changing 

the time of year during which the pandemic peak occurs.  As shown in Chapter 4, a 

pandemic that starts on January 1 peaks during northern hemisphere summer given a 

"medium" P(T|C), but peaks during northern hemisphere winter for a pandemic starting 

on July 1.  AV policies that slow the pandemic will tend to increase the average 
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seasonality factor for a Jan 1 start date, and decrease the average seasonality factor for a 

July start date, because most of the population lives in the northern hemisphere.  The net 

impact of an AV policy is a combination of both its direct effect from reducing 

infectiousness, and its indirect effect via the change in seasonality factor. 

 Figure 5.5 shows how AV treatment delays the pandemic (shifting the distribution 

rightwards).  With a January 1 start date, delay blunts the effectiveness of AV in reducing 

the attack rate, because it pushes the pandemic peak towards northern hemisphere winter.  

With a July 1 start date, delay augments the effectiveness of AV in reducing the attack 

rate, because it pushes the pandemic peak away from northern hemisphere winter. 

Figure 5.5: GEM pandemic dynamics with AV treatment 
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Note: Results are for a P(T|C) of 0.05333, and AV efficacy 0.6. 

 

iii) Antivirus, externalities and complementarities 

 In one and two-city SIR models, most of the gains from AV treatment accrued to 

the region in which the treatment was taken, but there were some positive spillover 

effects.  These results also hold in the full GEM.  Figure 5.6 shows the reduction in attack 

rates from AV treatment across income groups for the standard set of assumptions.  

Moving from no AV to the 0/0/5/10 scenario, there is a very large reduction in attack rate 

in Rich regions, a large attack rate reduction in Upper middle income regions, and 

negligible impacts in lower income regions
43

.  Moving to 0/1/5/10 adds a stockpile in 

lower middle income regions, which significantly reduces the attack rate there while 

causing a small but positive impact elsewhere.  Moving then to 1/1/5/10 adds an AV 

stockpile in poor countries, leading to a large attack rate reduction in poor countries and 

moderate benefits elsewhere.  

                                                           
43

 In fact, there is a very small increase in attack rate in Poor and Lower Middle income regions.  This is 
due to interaction with seasonality effects; AV in wealthier countries delays the pandemic slightly, which 
means that northern hemisphere countries (including India and China) have slightly higher average 
seasonality factors. 
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Figure 5.6: Impact of AV on 1-year attack rate, incidence by income group, 

standard parameters 

AV scenario 

#AV 

doses World Poor 

Lower 

middle 

Upper 

middle Rich 

Jan 1 start date, Medium P(T|C)  

 Baseline (no AV) 0.0 0.446 0.528 0.401 0.397 0.325 

Scenario A 117.3 0.394 0.529 0.403 0.210 0.059 

Scenario B 138.8 0.310 0.525 0.169 0.166 0.052 

Scenario C 167.2 0.254 0.458 0.121 0.051 0.045 

Jan 1 start date, Low P(T|C)  

 Baseline (no AV) 0.0 0.287 0.353 0.226 0.285 0.225 

Scenario A 117.3 0.235 0.351 0.223 0.010 0.027 

Scenario B 138.8 0.154 0.343 0.003 0.003 0.010 

Scenario C 167.2 0.000 0.001 0.000 0.000 0.000 

Jan 1 start date, High P(T|C)  

 Baseline (no AV) 0.0 0.533 0.631 0.492 0.473 0.362 

Scenario A 117.3 0.480 0.630 0.487 0.299 0.102 

Scenario B 138.8 0.499 0.627 0.547 0.299 0.102 

Scenario C 167.2 0.461 0.606 0.458 0.302 0.108 

July 1 start date, Medium 

P(T|C)  

 Baseline (no AV) 0.0 0.547 0.546 0.536 0.617 0.538 

Scenario A 117.3 0.456 0.544 0.532 0.268 0.110 

Scenario B 138.8 0.358 0.542 0.331 0.249 0.102 

Scenario C 167.2 0.301 0.484 0.183 0.183 0.077 

Note: Results are for a January 1 start date, and AV efficacy 0.6 

The small external benefits to Rich countries of Lower Middle and Poor countries 

having stockpiles still holds when the flu starts on July 1, assuming it is moderately 

transmissible.  A highly transmissible flu, however, sharply reduces the benefits to Rich 

countries of stockpiles in Lower Middle income and Poor countries, because a small 

stockpile is rapidly exhausted under a virus with a high reproductive rate.  Indeed, in the 

January 1, High Transmissibility case Rich countries are slightly worse off in Scenario C 

compared to Scenario B.  This effect is driven by seasonality; in the high transmissibility 

scenario, AV in poor countries is ineffective in reducing attack rates by the slight delay it 
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causes pushes the pandemic peak in the northern hemisphere towards winter.  The fact 

that Lower Middle income countries themselves are worse off when using AVs (118 

million additional cases relative to no treatment) in the High transmissibility scenario 

with the January 1 start date follows largely from a higher attack rate in China, where the 

slight delay from a 1% stockpile pushes the pandemic peak towards winter (and so 

increases China's average seasonality factor).   

 It seems likely that in reality poor and lower middle income countries will not 

purchase and maintain their own stockpiles of antivirus, for use in the course of a 

pandemic.  But the external benefits to rich countries suggest that there may be scope for 

a pareto-improvement; rich countries may find it in their interest to pay the costs of 

acquiring and distributing antivirals in poor countries.  As discussed more fully below, 

Table 5.7 implies that the reduction in number of influenza cases in rich countries per AV 

dose administered in poor or lower middle income countries is 1/3 or more when the 

transmissibility of the flu is low to moderate.    

 An alternative possibility is for rich countries to donate AV directly to the 

outbreak source.  Consider a scenario where rich countries collectively provide AV doses 

equal to 1% of their population directly to Indonesia.  Figure 5.7 shows the effect of this 

policy when combined with a 0/1/5/10 scenario.  In nearly every case, the donation policy 

reduces the global attack rate and the attack rate in rich countries.  In a few cases attack 

rates are increased, due to the seasonality effect with the January 1 start date, where 

slowing the pandemic spread increases the average seasonality factor in the northern 

hemisphere.  The gain from donation is largest in the Low P(T|C) scenarios, because in 

these cases donation to the outbreak source reduces the R0 below 1 and the pandemic is 
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contained.  the gains are also large in the July 1 start date scenario, where delay is more 

valuable due to the seasonality interaction.  The external benefits of providing AV are 

lower when the AV efficacy is lower, which contributes to the negative impact of 

donation in the low AV efficacy scenario. 

Figure 5.7: Impact of AV on 1-year attack rate: Scenario D 

P(T|C) 

Start 

date 

AV 

efficacy 

Attack 

rate 

for: 

Policy: 

No 

donation 

Policy: 

Donation to 

Indonesia Difference 

Low 1-Jan 0.6 World 0.178 0.001 0.176 

Low 1-Jan 0.6 Rich 0.015 0.001 0.014 

Medium 1-Jan 0.6 World 0.310 0.289 0.021 

Medium 1-Jan 0.6 Rich 0.052 0.047 0.005 

Medium 1-Jan 0.5 World 0.310 0.319 -0.009 

Medium 1-Jan 0.5 Rich 0.052 0.068 -0.016 

Medium 1-Jul 0.6 World 0.450 0.328 0.122 

Medium 1-Jul 0.6 Rich 0.111 0.081 0.031 

High 1-Jan 0.6 World 0.489 0.468 0.021 

High 1-Jan 0.6 Rich 0.103 0.108 -0.005 

 

 Which strategy is more effective for rich countries, paying for AV doses to be 

spread amongst poor countries in general, or paying for AV doses to be targeted to the 

outbreak source?  Under what circumstances will welfare in rich countries be increased 

by undertaking this strategy?  Figure 5.8 compares the effectiveness of purchasing doses 

for low income countries in general to the effectiveness of purchasing doses for the 

outbreak source country.  Neither strategy is effective in reducing the number of cases in 

rich countries for a high virulence pandemic (P(T|C) = 0.06).  But in all other cases, 

targeting the outbreak source is dramatically more cost effective than spreading doses 

throughout Poor or Lower middle income regions. 
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Figure 5.8: Rich country cases reduced per dose purchased for low income countries 

Transition: P(T|C) 

Start 

date 

Rich country cases reduced 

per extra AV dose 

purchased 

Scenario A1 → B1 Low 

1-

Jan 0.74 

Scenario A2 → B2 Medium 

1-

Jan 0.31 

Scenario A3 → B3 Medium 1-Jul 0.33 

Scenario A4 → B4 High 

1-

Jan 0.00 

Scenario B1 → C1 Low 

1-

Jan 0.29 

Scenario B2 → C2 Medium 

1-

Jan 0.22 

Scenario B3 → C3 Medium 1-Jul 0.83 

Scenario B4 → C4 High 

1-

Jan -0.17 

Scenario B1 → D1 Low 

1-

Jan 1.42 

Scenario B2 → D2 Medium 

1-

Jan 0.52 

Scenario B3 → D3 Medium 1-Jul 3.06 

Scenario B4 → D4 High 

1-

Jan -0.51 

Note: AV efficacy is 0.6 in all cases. 

 Figure 5.8 suggests that providing AVs to developing countries in the event of a 

pandemic may pass a benefit-cost test.  Although the percentage reduction in cases from 

providing AVs is small, millions of cases of the flu in rich countries would thereby be 

avoided, at a cost of 3-4 doses of antivirals per case avoided.  Even at a cost of $25-$30 

per course of treatment (including distribution costs), this would likely pass a benefit-cost 

test, even without any fatalities.
44

  Sander et al. (2009) predict the economic cost of an 

                                                           
44

 Evidence on costs of AV is difficult to come by.  Lokuge et al. (2006) report average stockpile acquisition 
costs per course for the USA, UK, Australia and Canada of $17-$50.  Sander et al. (2009) assume a 20% 
markup to cover distribution costs.  It is also unclear which costs should be considered; from a particular 
country's perspective we may wish to consider wholesale prices, but from a global welfare perspective we 
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influenza epidemic in the U.S. at $187 per person, based on a 50% attack rate.  Keogh-

Brown et al. (2010) suggest that a mild influenza pandemic in the UK (similar to the 

1957 or 1968 pandemics) would reduce GDP by 0.58% over the course of year; a more 

severe pandemic (with a case fatality rate of 1%) would reduce GDP by 4.5% over the 

course of a year.  Typical estimates of the value of a statistical life in rich countries are in 

the millions of dollars, and so even a very low but positive case fatality rate would lead to 

a large value from reducing cases. 

v) The value of health infrastructure 

 The effectiveness of using AV to mitigate pandemics is a function of the 

effectiveness of the public health system infrastructure in each country, and its ability to 

rapidly and accurately identify infectious individuals and provide them with AV 

treatment.  In the primary simulation runs, it is assumed that 50% of symptomatic cases 

(and thus 33.35% of infectious cases, since 33.3% of cases are asymptomatic) could be 

reached a single day after symptoms presented, in any country that had a stockpile.  

These assumptions are arguably too optimistic, particularly for developing countries, 

though they are more pessimistic than the assumptions used in some other global 

influenza papers
45

.  By weakening these assumptions and reducing the proportion of 

symptomatic infectious cases who receive treatment, I can examine the sensitivity to 

these assumptions – and investigate the value of strengthening public health systems in 

poor countries. 

                                                                                                                                                                             
should be concerned only with pure manufacturing and distribution costs, as the wholesale markup is a 
welfare transfer to drug manufacturers rather than a cost. 
45

 For example Colizza et al. (2007) assume that 30, 50, or 70% of new infectious cases, can be treated. 
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Consider a weak health infrastructure scenario (Figure 5.9), where only 30% of 

symptomatic infectious cases can be treated in poor and lower middle income countries, 

40% in upper middle income countries, and (as before) 50% in rich countries. 

 Figure 5.9 presents simulations based on a weak health infrastructure scenario in 

which only 30% of symptomatic infectious cases can be treated in poor and lower middle 

income countries, 40% in upper middle income countries, and (as before) 50% in rich 

countries. The effect of reducing the proportion who are treated is dramatic, both on the 

direct value of antiviral treatment in countries that have a stockpile, and on the external 

benefits to rich countries from providing antiviral doses to poorer countries.  In terms of 

direct effects, the marginal benefit (in terms of world cases reduced) from an AV 

stockpile in upper middle and rich countries is reduced from 5.2 percentage points to 4.8 

percentage points.  The marginal benefit from adding a 1% stockpile to lower middle 

income countries is reduced from 8.4 percentage points to 2.5 percentage points.  The 

marginal benefit from adding a 1% stockpile to poor countries is reduced from 5.6 

percentage points to 1.3 percentage points.   
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Figure 5.9: Attack rate after 1 year, standard vs. reduced proportion of infectious 

treated, January 1 start date 

 

Scenario 
Strong health 

infrastructure 

Weak health 

infrastructure 

World 

Baseline (no 

AV) 0.446 0.446 

 

Scenario A 0.394 0.398 

 

Scenario B 0.310 0.373 

 

Scenario C 0.254 0.360 

Poor 

Baseline (no 

AV) 0.528 0.528 

 

Scenario A 0.529 0.529 

 

Scenario B 0.525 0.525 

 

Scenario C 0.458 0.518 

Lower 

middle 

Baseline (no 

AV) 0.401 0.401 

 

Scenario A 0.403 0.403 

 

Scenario B 0.169 0.336 

 

Scenario C 0.121 0.314 

Upper middle 

Baseline (no 

AV) 0.397 0.397 

 

Scenario A 0.210 0.254 

 

Scenario B 0.166 0.248 

 

Scenario C 0.051 0.224 

Rich 

Baseline (no 

AV) 0.325 0.325 

 

Scenario A 0.059 0.061 

 

Scenario B 0.052 0.058 

 

Scenario C 0.045 0.055 

Note: Strong health infrastructure means 50% of new symptomatic infectious cases are 

treated (in regions that have an AV stockpile); weak health infrastructure means that 

30% of cases are treated in poor and lower middle income regions, 40% in upper middle 

income regions, and 50% in rich regions. 
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 The effect of reducing the proportion who are treated is dramatic, both on the 

direct value of antiviral treatment in countries that have a stockpile, and on the external 

benefits to rich countries from providing antiviral doses to poorer countries.  In terms of 

direct effects, the marginal benefit (in terms of world cases reduced) from an AV 

stockpile in upper middle and rich countries is reduced from 5.2 percentage points to 4.8 

percentage points.  The marginal benefit from adding a 1% stockpile to lower middle 

income countries is reduced from 8.4 percentage points to 2.5 percentage points.  The 

marginal benefit from adding a 1% stockpile to poor countries is reduced from 5.6 

percentage points to 1.3 percentage points.  The indirect effects are also significant.  The 

marginal reduction in the attack rate in rich countries from adding a 1% stockpile for 

lower middle income countries falls from 0.7 percentage points to 0.3 percentage points.  

Similarly for adding a 1% stockpile to poor countries, the benefit falls from 0.7 to 0.3.  

These results follow from the basic "increasing returns" property of the core SIR model; 

with a lower percentage of people treated, the effect of AV on reducing the reproductive 

rate is diminished proportionally, which has a greater than proportional impact on the 

benefits of AV from reducing attack rtes. 

 These results suggest that if the "Reduced" proportion treated parameters are a 

more accurate description of the real world, then investments that increase the number of 

infectious people than can be treated in poorer countries will have large benefits, and will 

be complementary with policies that provide antiviral doses to poor countries. 
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Figure 5.10: Rich country cases reduced per AV dose purchased in poor countries, 

sensitivity to weak health infrastructure 

Scenario Transition: P(T|C) 

Start 

date 

Rich country cases reduced per 

extra AV dose purchased 

   

Strong health 

infrastructure 

Weak health 

infrastructure 

Scenario A → B Medium 

1-

Jan 0.31 

0.12 

Scenario B → C Medium 

1-

Jan 0.22 

0.09 

Scenario B → D Medium 

1-

Jan 0.52 

0.21 

Note: "4.2 in Indonesia" refers to the fact that the 9.14 million doses donated to 

Indonesia constitute 4.2% of Indonesia's population.  AV efficacy is 0.6 in all cases.  

"Strong health infrastructure" means 50% of symptomatic infectious cases are treated in 

all income groups.  "Weak health infrastructure" means 30% of symptomatic infectious 

cases are treated in Poor and Lower middle income group regions, 40% in Upper middle 

income group regions, and 50% in Rich regions. 

 

vi) Allocating antivirals across countries 

 Discussions of global public health are often motivated by different perspectives 

on altruism and global fairness, as much as economic efficiency.  But what are the 

epidemiological consequences of different views of fairness?  Suppose that a global 

agency such as the World Health Organization was able to purchase a stockpile and 

distribute it over the course of a pandemic.  If it did so, how should the agency distribute 

doses so as to maximize the number of cases prevented?  Consider two extreme 

allocation rules that might be adopted under different conceptions of global fairness.  One 

allocation would be to simply have a single global stockpile, that uses doses to treat 

infectious cases as they develop symptoms, no matter where in the world they are.  This 

"patient-oriented" rule could be viewed as fair under a perspective that sees people as 

having an equal right to treatment.  A second possibility is to evenly divide up the 

stockpile among regions in proportion to population size, so each region uses its share of 
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the stockpile to treat only its own citizens.  This "nation-oriented" rule could be seen as 

fair under a moral view that each country has equal right to access to treatment, 

regardless of the whether the pandemic reaches them quickly or slowly. 

 What are the implications of these allocation rules?  Consider each allocation rule 

for a global stockpile size equal to 1% or 2% of the world population (roughly 64 million 

doses or 128 million doses, respectively).  The main practical differences between the 

allocation rules are the speed at which they disburse doses and the number of doses 

allocated to each country.  Doses are disbursed faster in the early stage of the pandemic 

under the ―patient-oriented‖ rule than under the ―nation-oriented‖ rule, because people in 

regions that suffer many cases early on keep treating patients even after they would have 

consumed a stockpile equal to 1% or 2% of their population size.  However, this also 

means that the global stockpile is exhausted more rapidly under the ―patient-oriented‖ 

rule, and so this rule effectively transfers doses from countries where the pandemic is late 

to arrive to countries where the pandemic is early to arrive. 

 Figure 5.11 compares global attack rates across the two rules for the standard 

assumptions (P(T|C) = 0.05333, Jan 1 start date), the severe pandemic (P(T|C) = 0.06), 

the mild pandemic (P(T|C) = 0.045) and the July 1 start date (P(T|C) = 0.05333). 
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Figure 5.11:  World attack rates under varying allocation rules 

 

1% global stockpile 2% global stockpile 

 

Baseline (no 

AV) 

Patient-

oriented 

Nation-

oriented 

Patient-

oriented 

Nation-

oriented 

Standard 0.446 0.389 0.281 0.037 0.152 

High P(T|C) 0.533 0.589 0.509 0.601 0.409 

Low P(T|C) 0.287 0.000 0.001 0.000 0.000 

July 1 start date 0.547 0.412 0.369 0.210 0.227 

 

 In the ―Low‖ scenario, the pandemic is contained because AV doses are provided 

to the outbreak source under both rules, and this is sufficient to push the R0 below 1.  In 

most other cases, the nation-oriented rule performs better (ie leads to a lower attack rate 

after 1 year) than the patient-oriented rule.  The reason for this is straightforward; under a 

patient-oriented rule, doses continue to be allocated to the outbreak country even after the 

pandemic has spread beyond the outbreak country.  Those additional doses in the 

outbreak country have a negligible impact on the rest of the world, but they exhaust the 

stockpile rapidly, so there are many fewer doses to be used in other countries, and the 

number of global cases increases sharply as the global stockpile expires. 

 The patient-oriented method appears to give a better result for the standard case 

with the 2% stockpile, but this is highly sensitive to the 1-year cutoff date.  Figure 5.12 

demonstrates the impact of the 1-year cutoff under the two rules.  The 1% stockpile is 

exhausted after 280 days under the patient-based rule.  The 2% stockpile is not exhausted 

until day 370, which makes it superior for reducing the attack rate after 1 year, but once 

the stockpile is exhausted the pandemic spreads very rapidly, and beyond day 455 the 

attack rate is higher under the patient-based rule than under the nation-based rule. 
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Figure 5.12: World pandemic dynamics for Patient- vs. Nation-oriented allocation 

rules 
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 The optimal policy depends on how long it will take to develop, manufacture, 

distribute, and administer an effective vaccine, and on the size of the stockpile (relative to 

the pandemic reproductive rate.  If the global stockpile is large, then the rapid 

disbursement property of the patient-oriented method makes it superior; when exhaustion 

of the stockpile is less of a risk, then the faster disbursement rate is valuable.  Fast 

disbursement is similarly advantageous if the appropriate time horizon (after which 
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vaccine is available) is short – for example, the attack rate after 9 months is lower under 

the patient-oriented rule for both 1% or 2% global stockpiles.  But if the global stockpile 

is small or the relevant time horizon is longer, then the nation-oriented method is more 

desirable, because it ensures that limited AV uses are used to treat the early cases in 

every country.  This is more effective in slowing the pandemic spread and reducing the 

one-year attack rate than continue to spend doses on new cases in the outbreak country 

even once the pandemic has spread throughout the world.  
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Chapter 6 Conclusions 

 Treating infectious individuals with antiviral drugs may be an effective method 

for mitigating the consequences of an influenza pandemic. While most of the benefits 

from a country choosing to treat its population with antivirals will accrue to that country, 

there are some positive externalities.  This implies that, in a world in which poor 

countries are unlikely to hold stockpiles of antiviral drugs, it may be in the self-interest of 

wealthy countries to (collectively) pay for purchase and distribute antivirals to poor 

countries, even without any altruistic or humanitarian motivations. 

 The payoff to providing antiviral doses to poor countries is illustrated by a simple, 

two-country SIR model.  In that model there are significant externalities and 

complementarities in antiviral treatment: when one country treats more of its population 

this both reduces the attack rate in the other country and increases the marginal benefit 

from additional treatment in the other country.   

 It would, however, be misleading to draw policy conclusions from a simple two-

country model.  In reality, influenza spreads through a complex network of air- and land-

based travel.  The spread of the flu and the effectiveness of treatment policies depend on 

seasonal factors—e.g., whether the flu peaks in Northern Hemisphere winter or Northern 

Hemisphere summer.  And, the number and distribution of poor v. rich countries differs 

significantly from the symmetric two-region SIR model.  The spread of the flu is 

simulated in a more descriptively realistic global epidemiological model in order to 

capture the impact of these features on the effectiveness of treatment policies.   
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 Under the base case assumptions of moderate transmissibility of the flu, the 

distribution of antiviral stockpiles from rich countries to poor and lower middle income 

countries may indeed pay for itself: providing a stockpile equal to 1% of the population 

of poor countries will reduce cases in rich countries after 1 year by about 6.13 million 

cases at a cost of 4.62 doses per rich-country case avoided.  Concentrating doses on the 

outbreak country is, however, even more cost-effective: in the base case it reduces the 

number of influenza cases by 4.76 million cases, at the cost of roughly 1.92 doses per 

case avoided.  

 These results are, however, dependent on the transmissibility of the flu, its 

effectiveness in reducing infection and on the proportion of infectious who can 

realistically be identified and treated.  Simulations reveal that reducing the proportion of 

symptomatic infectious that can be treated from 50% (our base case assumption) to 40% 

in lower middle income countries and 30% in poor countries more than doubles the 

number of doses required to reduce a case of the flu in rich countries. Providing 

stockpiles to poor countries may still pass the ―selfish‖ benefit-cost test.  But the results 

suggest that improving the delivery of health services in poor countries will complement 

policies to treat pandemic flu, in addition to yielding other health benefits.  

 These results also focus on the use of antivirals alone.  In practice, a variety of 

interventions may be adopted, including non-strain specific vaccination or non-

pharmaceutical interventions such as face masks and gloves or school or workplace 

closures.  These policies will tend to complement antiviral treatment, and should not be 

ignored when considering pandemic mitigation. 
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Appendix 1: One and Two-City SIR 

models reframed 

 Chapter 3 considered one and two city SIR models with antiviral policy 

interventions where the choice variable was the stockpile size.  While this 

characterization is useful in providing background and intuition for the policy 

interventions applied in the full Global Epidemiological Model, it is difficult to 

characterize in an analytic fashion.  An alternative characterization that is easier to 

analyze is to instead consider a model where the choice variable is the proportion of 

infectious cases who receive treatment p, and to assume that the planner has perfectly 

information and so purchases exactly enough doses to treat proportion p of infectious 

cases for the duration of the epidemic.  Hence, there is no concept of a "stockpile" that 

can be exhausted, and the effect of applying antivirus is merely to reduce the effective 

reproductive rate for the full epidemic duration.  The advantage of this characterization 

model is that the terminal values S(∞) and R(∞) can be observed from the transcendental 

equation, and so there is no need to run a simulation model. 

 The equations of motion for S(t), I(t) and R(t) remain unchanged from equations 

(7) through (9), but now rather than choosing a stockpile size P* a city chooses a 

proportion of people to treat         , where p* is the maximum possible proportion of 

infectious cases that can be treated, determined by the level of health infrastructure.  This 

means that the effective beta for the full duration of the pandemic is β = (1 - pe)β
o
, and 

the number of people treated is p[1-S( )]N.  A city chooses p to maximize: 

 F(p) = V[S( )]N – cp[1-S( )]N (A1) 
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where S(∞,p) is defined by the transcendental equation ln(S( )) = R0(S( )-1),where R0 = 

β
o
(1-pe)/δ.   

For values of R0 that characterize pandemic flu, the p that maximizes equation 

F(p) is a corner solution: either p=0 or p=1.  First-order conditions to the maximization 

problem call for p to be chosen to the point where the marginal benefits of increasing 

S( ) both in terms of reducing the number never infected and the number of doses 

needed to treat the infectious, equal or exceed the cost of an additional dose, 

 dF(p)/dp = (V + cp)[dS( )/dp] – c[1- S( )] ≥ 0 (A2) 

 The second-order conditions for an interior maximum, d
2
F(p)/dp

2
 < 0, are, however, not 

satisfied for pandemic flu.
46

  Equation (6) implies that the proportion of people never 

infected, S( ), increases as R0 falls (i.e., as p is increased); however, for values of R0  > 

1.05, increasing p increases S( ) at an increasing rate.
47

  Influenza pandemics have 

generally been characterized by reproductive rates greater than 1.5.
48

  This implies that p 

= 0 maximizes (5) if V is low relative to c, but p = 1 maximizes (5) if V is high relative to 

c. To illustrate, when β° = 0.3, δ = 0.2 and e = 0.2, setting p = 1 is optimal if V/c > 1.2.
49

  

                                                           
46

 d
2
F(p)/dp

2
 = (V + cp)[d

2
S( )/dp

2
] + c[dS( )/dp] which need not be negative. 

47
 A sufficient condition for d

2
F(p)/dp

2
 > 0 is d

2
S( )/dR0

2
  > 0.  Formally, dS( )/dR0 = [S( )-1]/[ S( )

-1
 – 

R0] and 

d
2
S(∞)/dR0

2
 = [ S( )

-1
 – R0]

-1 
[dS( )/dR0] [2 + S( )

-2
[dS( )/dR0]]. 

This second derivative d
2
S(∞)/dR0

2
 > 0 provided 2 + S( )

-2
[dS( )/dR0] < 0. Equation (6) implies that this 

condition is satisfied if R0 > 1.05. 

48
 The R0 for the 1957 Asian flu has been estimated at 1.8 (Vynnycky and Edmunds 2008). Vynnycky et al. 

(2007) estimate an R0 of 2.4-4.3 for the 1918 Spanish flu. 
49

 If we considered the case where e = 0.4 then p = 1 would nearly always be optimal, because p = 1 and e 
= 0.4 imply R0

eff
 = 0.9, and so no pandemic occurs. 
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 This model with choice variable p can be expanded to the two-city case in a 

similar fashion to the stockpile size model.  The qualitative results are similar, and are 

dependent on the particular parameter values.  Appendix table 1 demonstrates the attack 

rates that result from this model for various input parameters.   

Three points about Appendix Table 1 deserve emphasis: (1) when only one city 

treats its infectious, the effectiveness of its treatment is less than in the one-city case 

where there is no travel; (2) when only one city treats its infectious, the external benefits 

to the no-treatment city are small;   (3) when both cities treat, the effectiveness of each 

city’s stockpile is greater than when only one city employs a treatment strategy.  When 

city A treats 60% of its infectious in isolation, the attack rate is reduced from 58% to 

24%.  In the two-city case, the attack rate is reduced from 59% to 30%.  People from city 

B continue to re-infect city A, making city A’s treatment of its infectious less effective.  

The benefits to city B of A’s stockpile are, however, small: when city B has no stockpile, 

its attack rate is reduced by only 1.6 percentage points by virtue of the fact that A treats 

its infectious.  When both cities treat their infectious, the benefits to both cities increase, 

compared to the case in which each city acts in isolation.  When both cities treat, the 

attack rate is reduced from about 58% to 24% in each city, as in the single city case.  (In 

effect, the two cities have become a single city, employing the same treatment as in the 

single-city case.) 

 The magnitude of the externalities and complementarities observed in Appendix 

Table 1 are affected by the transmissibility of the flu (β
0
/δ), the proportion of infectious 

who can be treated (p*) and by the effectiveness of treatment (e).  The benefits to the no-

treatment city of antivirals in the treatment city are greater the less transmissible is the 
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flu, as are the complementarities of treatment (see Table 1). Treatment complementarities 

are also greater the higher the proportion of infectious who can be treated (p*) and the 

greater the efficacy of treatment (the higher is e).   

 With appropriate choice of V and c, it is possible to generate results where the 

Nash equilibrium is (pA = 0,  pB = p*) while the socially optimal solution is (pA = p*,  pB 

= p*) and yet there exists a pareto improvement where city B is made better off by paying 

for the costs of increasing pA from zero to p*.  For example, consider the case when VA = 

3, VB = 100 and c = 10.  The Nash equilibrium is pA= 0, pB = 0.6, whereas the treatment 

strategy that maximizes the sum of cases avoided minus treatment costs for the two cities 

combined is pA = pB = 0.6.  It is also the case that it pays city B to pay for antivirals 

sufficient to treat 60% of infectious in city A.  The cost of the treatment 

(10*(0.6)*0.235N) is less than the value of the resulting reduction in city B’s influenza 

cases (100*0.061N). 
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Appendix Table 1: Results from 2-city model with proportion treated as choice 

variable 

β° e α pA pB Attack rate in City 

A 

Attack rate in City 

B 

0.3 0.4 0.01 0 0 0.588 0.579 

   0.6 0 0.301 0.563 

   0 0.6 0.565 0.296 

   0.6 0.6 0.240 0.235 

0.35 0.4 0.01 0 0 0.719 0.707 

   0.6 0 0.475 0.705 

   0 0.6 0.709 0.468 

   0.6 0.6 0.456 0.449 

0.25 0.4 0.01 0 0 0.376 0.370 

   0.6 0 0.111 0.326 

   0 0.6 0.329 0.107 

   0.6 0.6 0.012 0.005 

0.3 0.3 0.01 0 0 0.588 0.579 

   0.6 0 0.381 0.569 

   0 0.6 0.573 0.376 

   0.6 0.6 0.353 0.348 

0.3 0.5 0.01 0 0 0.588 0.579 

   0.6 0 0.224 0.555 

   0 0.6 0.557 0.220 

   0.6 0.6 0.090 0.083 

0.3 0.4 0.01 0 0 0.588 0.579 

   0.7 0 0.249 0.558 

   0 0.7 0.559 0.244 

   0.7 0.7 0.145 0.138 

0.3 0.4 0.01 0 0 0.588 0.579 

   0.5 0 0.355 0.567 

   0 0.5 0.570 0.349 

   0.5 0.5 0.318 0.313 

0.3 0.5 0.015 0 0 0.587 0.580 

   0.6 0 0.318 0.555 

   0 0.6 0.557 0.314 

   0.6 0.6 0.239 0.235 

0.25 0.5 0.005 0 0 0.588 0.579 

   0.6 0 0.278 0.572 

   0 0.6 0.574 0.271 

   0.6 0.6 0.240 0.234 
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Appendix 2: List of Regions in the GEM, 

by Income Group 

Regions in the Poor Income Group: 

Bangladesh, Bolivia, Cambodia, Egypt, Georgia, India, Indonesia, Kyrgyz Republic, 

Madagascar, Malawi, Morocco, Mozambique, Nicaragua, Nigeria, Pakistan, Paraguay, 

Philippines, Senegal, Sri Lanka, Tanzania, Uganda, Viet Nam, Zambia, Zimbabwe, Rest 

of Central Africa, Rest of East Asia, Rest of Eastern Africa, Rest of Former Soviet 

Union, Rest of Oceania, Rest of South African Customs Union, Rest of South America, 

Rest of South Asia, Rest of South-Central Africa, Rest of Southeast Asia, Rest of 

Western Africa,  

Regions in the Lower Middle Income Group: 

Albania, Argentina, Armenia, Azerbaijan, Botswana, Brazil, Bulgaria, China, Colombia, 

Ecuador, Iran, Kazakhstan, Malaysia, Mauritius, Peru, Romania, South Africa, Thailand, 

Tunisia, Ukraine, Rest of Central America, Rest of Eastern Europe, Rest of Europe, Rest 

of North Africa, Rest of Western Asia 

Regions in the Upper Middle Income Group: 

Chile, Croatia, Estonia, Hungary, Latvia, Lithuania, Mexico, Poland, Republic of Korea, 

Russian Federation, Slovak Republic, Taiwan, Turkey, Uruguay, Venezuela, Rest of the 

Caribbean 

Regions in the Rich Income Group: 

Australia, Austria, Belgium, Canada, Cyprus, Czech Republic, Denmark, Finland, 

France, Germany, Greece, Hong Kong S.A.R. of China, Iceland, Ireland, Israel and 

Arabia, Italy, Japan, Luxembourg, Malta, Netherlands, New Zealand, Portugal, 

Singapore, Slovenia, Spain, Sweden, Switzerland, United Kingdom, United States of 

America, Rest of EFTA, Rest of North America 
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Appendix 3: Deriving the daily infectious 

contact rate 

 This appendix describes the derivation of the matrix of contact rates, and hence 

the daily infectious contact rates λ.  The goal is to derive contact rates for each age-group 

in each city based on real world data from Europe, and attempt to adjust the European 

data to fit other cities by accounting for differences in age structure and density. 

 First define the 4x4 contact rate matrix Ci.  The elements Cijk describe the number 

of contacts per day that an Infectious person of age-group j has per day with individuals 

in age-group k in city i.  Following Hethcote and Yorke (1984) and Over and Piot (1993), 

decompose this matrix into two parts: a 4x4 mixing matrix Mi and a 4x1 contact vector 

Ai, such that : 

             (A3) 

where I4 is the 4x4 identity matrix. 

 The vector Ai gives the absolute number of contacts per day for each agegroup; so 

for example AJakarta' = [7.29, 9.45, 6.41, 3.98] means that in Jakarta, each Infectious case 

with a=0 has 7.29 contacts per day, each Infectious case with a=1 has 9.45 contacts per 

day, and so forth.  Denote the 4x1 vector ni as the proportion of the population that are of 

each age category, so the elements of ni sum to 1.  The total number of contacts per 

person per day in city i is then the product ni'Ai.  For example, in Indonesia, 9.64% of the 

population are age0, 18.75% are age1, 66.09% are age2 and 5.52% are age3, so the total 

contacts per day is the product nJakarta'AJakarta = 6.94.  



110 
 

 The mixing matrix Mi describes the relative mixing rates between age-groups. 

Each row of the M matrix sums to 1, so the element Mijk describes the proportion of an 

individual of age-group j's contacts that they have with age-group k.  For example, if the 

jth row of Mi were [0.25, 0.25, 0.25, 0.25] then age-group j individuals in city i would 

contact equal numbers of all four age-groups each day.   

 C, M and A have subscripts i because these vary across cities, though all cities 

within a region are assumed to have the same values of C, M, A and n.  Values for A and 

M are generated based on mixing data from Mossong et al. (2008) and from data on 

population density and urbanization rates.  Mossong et al. measure self-reported physical 

contact rate matrices for eight European countries for ten age categories from self-

reported contacts across 7,290 individuals.
 50

  Their data provides the equivalent of a C-

matrix for each of the 8 countries.  The goal is to use these to extract an underlying set of 

"core behavior" that can be assumed to hold in all countries, and will allow 

reconstruction of a C-matrix for every region in the GEM. 

 The Mossong data is used directly to estimate the absolute number of contacts in 

each city, and the relative mixing rates of one age-group with another.  A-vectors are 

defined for each region such that n’A = 6.94 in every region – where 6.94 is the 

weighted-average absolute contact per day across the 8 Mossong countries and across all 

age-groups.
51

 

                                                           
50

 Belgium, Germany, Finland, Great Britain, Italy, Luxembourg, Netherlands and Poland. 
51

 This crucial assumption, made for simplicity, implies that there is no variation in total contacts per day 
by age-structure; it will not be the case that the pandemic spreads faster in countries with younger 
populations merely because young people have higher contact rates.  An alternative structure that would 
have this property could be generated by fixing the individual elements A i across countries, but that 
would lead to very large variation in contact rates (and thus attack rates) across countries. 
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 But I cannot simply work directly with the C or M matrices from the Mossong 

data; the C and M matrices are in part a product of the particular age structure of the 

country they are observed in, and age-structures vary across countries.  For example, 

consider the hypothetical example above, where the jth row of Mi = [0.25, 0.25, 0.25, 

0.25], and suppose that all 4 age-groups in city i are of equal size (ie ni' = 

[0.25,0.25,0.25,0.25]).  This represents fully random mixing, every person has an equal 

probability of contacting any other person, regardless of age-category.  Now, consider 

some other city y with the same underlying behavior (fully random mixing), but with a 

younger population; suppose ny' = [0.35, 0.25, 0.25, 0.15].  Clearly, it cannot be the case 

that the jth row of My =[0.25,0.25,0.25,0.25], because that would imply that a person of 

age j was contacting the same number age1 and age4 people in both cities, despite the 

fact that there are many fewer age3 people available to contact in city y and many more 

age1 people.  So the confounding effect of the relative age-group sizes needs to be 

separated out. 

 An M matrix for each region by is estimated by assuming a structural form for the 

matrix, and then using the 8 Mossong matrices to estimate an underlying mixing matrix 

stripped of the country-specific n-vectors.  Following Hethcote and Yorke, define a 4x1 

vector Bi: 

 
    

      

       
 
   

 
(A4) 

And a 4x4 matrix G and G whose elements are defined by: 

                  (A5) 
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where Gijk is the (j,k) element of the B matrix for city i, and similarly for M.  Bij is the jth 

element of the B-vector in city i, and can be interpreted as the proportion of contacts that 

would be with age-group j city i under random mixing.  The G-matrix is what allows us 

to move away from random mixing, and captures the more complex structure where 

people can have differential mixing rates across age-groups. 

 Assume a structural form for the G-matrix where Gijk = Gij, i.e. all elements of the 

same row have the same value.
52

  That is, each age-group is assumed to have the same 

relative preference for mixing with its own age-group as for all other age-groups.  

Estimate the G-matrix that minimizes the sum of squared residuals across the 8 Mossong 

countries to find an ―optimal‖ G-matrix G*.  M, and hence C matrices, for every region 

in the model are then reconstructed by substituting G* and the region-specific age 

structures from real world population data into the equations above. 

 Contact rates are adjusted by adding a semi-arbitrary adjustment for population 

density, recognizing that areas with higher population density have higher contact rates.  

Define the ―residual urbanization rate‖ of a region as the urbanization rate of the ―rural‖ 

population that is not a member of the 289 cities explicitly included included in the 

model.  For example, Indonesia has an urbanization rate of 48.1%, but when the 

populations of Bandung, Denpasar, Jakarta, Medan and Surabaya (the Indonesian cities in 

the model) are excluded, the residual urbanization rate is 41.5%. 

 Every city and rural area is assigned to one of four categories, each with a relative 

density factor di; d = 1 for rural areas with residual urbanization <40%, d=1.1 for rural 

                                                           
52

 Tested alternative forms showed that moving from a 16-unique-element G-matrix to a 4-unique 
element G-matrix had very little impact on the fit to the Mossong data, but that moving from a 4-element 
G-matrix to a 1-element G-matrix significantly worsened the fit. 
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areas with residual urbanization >40%, d = 1.3 for low density urban areas (cities with 

density < 1,000 people per square kilometer), and d = 1.4 for urban area low density (for 

cities with density > 1,000 per square kilometer).  In general, ―rural‖ areas in high income 

countries have high residual urbanization while those in low income countries have low 

residual urbanization, and cities in high income countries have low population densities 

while those in low income countries have high population densities. 

 Finally, the daily infectious contact rate is λ given by: 

 

             

 

   

        

(A6) 

where the values of the C-matrix for each city are derived from the Mossong data as 

described above.  This leaves us with the infectious contact rate dependent on one free 

parameter input (the probability of transmission given contact), which can then be varied 

to explore moderate, mild and severe pandemic strains. 
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