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Providing people with safe drinking water is one of the most important health-

related infrastructure programs in the world. This dissertation investigates the effects 

of a major water improvement program in rural China on the health of adults and 

children. Using panel data covering about 4,500 households from 1989 to 2006, I 

estimate the impact of introducing village-level access to water from water plants on 

various measures of health. Ordinary least squares (OLS) estimation of the impact 

suggests a weak positive influence of the program on people’s health status, but these 

results may be contaminated by endogenous timing and placement of the water 

quality interventions across China. To address potential endogeneity problems, I use 

topographic characteristics of communities as instruments for program placement, as 

these characteristics affect the costs of the construction of water plants and pipelines 

into villages. My instrumental variables (IV) results show that the introduction of 

treated plant water into villages has had a stronger impact on the health status of both 



  

adults and children. However, the IV strategy may result into overestimation due to 

some omitted variables. Combining both OLS and IV estimates, I find that the illness 

incidence of adults decreased by 11 to 50 percent and their weight-for-height 

increased by 0.835 to 2.580 kg/m following the program implementation. There was 

also an improvement in self-reports of health. Children’s weight-for-height and height 

itself both rose, by 0.446 to 0.754 kg/m and 0.962 to 2.489 cm respectively, as a 

result of the program. Using a variety of robustness checks, I show that the results are 

not driven by measurement errors, omitted variable bias, or attrition bias, and that the 

mechanism by which the program was effective was via improved water quality 

rather than simply via increased access to water. No obvious heterogeneous treatment 

effects are found across income and educational groups. 
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Chapter 1 

Introduction and Motivation 

1.1 Introduction 

Helping people gain access to safe drinking water is one of the most important 

health-related infrastructure programs in the world. As of 2007, around 1.1 billion people 

were still using unsafe water (WHO World Health Report, 2007). Pathogenic 

microorganisms in drinking water, the leading causes of diarrhea, have drawn a lot of 

attention in public health and other related fields. In addition, chemical impurities are 

growing threats in many developing countries, especially in ones experiencing rapid 

industrialization, such as China. 

Viruses, bacteria, and parasites in water cause world epidemics of diarrheal 

illnesses (such as gastroenteritis, cholera, and typhoid), and in unsanitary environments 

without clean water, these diseases may result in severe dehydration and become life-

threatening. This is the situation that confronts most developing countries today. About 

4500 children under the age of five die from diarrhea in low-income countries every 

day.1 For older children and adults, even when diarrheal diseases are not fatal, long-term 

suffering can lead to malnutrition and diminished productivity. Thus a variety of water-

related interventions and trials, including water source treatments, point-of-use 

                                                 
1 “Diarrheal Disease messaging” at http://rehydrate.org/diarrhoea/pdf/diarrheal-disease-messaging.pdf 
(accessed on May 23, 2011). 
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disinfection and adoption of improved hygiene, have been performed to tackle the 

problems of diarrhea and child mortality in developing countries. Although it is the most 

widespread result of poor drinking water quality, diarrhea is less prevalent in China than 

in other developing nations because of cultural norms of eating cooked food and drinking 

boiled water (for example, to make tea). Braudel states that Chinese “…were also 

concerned about the dangers of pollution and recommended boiling any suspect water" 

(230) around four thousand years ago. A recent Chinese study by Chen (2009) has shown 

that the diarrhea mortality rate in rural areas of seven Chinese provinces is 0.51 per 

thousand, which is much lower than the average (6.5 per thousand) in other developing 

countries. That study also notes that in China the diarrhea incidence rate is around 836 

million per year, one third of which occur in children under the age of five.  

Recently, chemical impurities—toxic metals, inorganic and organic compounds—

are becoming new threats to drinking water quality in many developing countries. In 

addition to local soil constituents, human activities are increasingly contributing to the 

high concentration of chemical elements in water in developing countries. Vast 

discharges of industrial waste and excessive use of fertilizer and pesticides, along with 

relatively weak awareness or enforcement of government regulations, result in severe 

water pollution and, therefore, various diseases. For example, fluorosis is endemic in 25 

countries worldwide (Erkin, 2009)2  and arsenicosis in more than 70 countries 

(Ravenscroft, 2007). However, these kinds of water pollutants have heretofore been the 

subject of less public attention. The reason is that in reality the contents of chemical 

elements in water are minor and hard to detect. In addition, it usually takes long time 

                                                 
2
 “Facts and figures about water-related diseases”,  www.bpwnl.nl/water/arc/0610ff-diseases.doc (accessed 

on May 23, 2011). 
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(sometimes more than twenty years) for the caused medical symptoms to show up. Today 

in China, chemical impurities are the major threat to drinking water. A total of 1,115 

counties and about 81.6 million people are at risk of fluorosis via drinking water, and 35 

counties along with 385,000 people are at risk of arsenicosis (Chinese National Health 

Statistics, 2007). The Chinese government uses 0.05mg/L as the cutoff to define high-

arsenic drinking water, whereas by employing the current WHO’s guideline (0.01mg/L), 

the number of people exposed to high-arsenic drinking water may be over 15 million 

(Sun, 2003).  

Many chronic diseases, including respiratory problems, skin lesions, spontaneous 

abortion, and even digestive cancers, can be induced by long-term exposure to poisonous 

drinking water. The World Bank’s report (2007) estimates that about 66,000 people die 

from water pollution in rural China every year. The existence of harmful chemicals in 

drinking water has been an important impetus for the water improvement program in 

rural China since the 1980s and also influences the design and implementation of the 

program.    

Health is of great concern because it not only affects people’s wellness and 

perceived happiness, but also has substantial economic consequences. The influence of 

health is even greater and more direct in developing countries due to the fact that their 

health insurance systems are not well-established and that the majority of health 

expenditures are out-of-pocket. In low income countries out-of-pocket health 

expenditures account for over 60 percent of the total amount, as compared to 20 percent 

in high income countries (Schieber et al., 2006).  In China, the report of the third 

National Health Service Survey (2003) shows that 79.1 percent of the rural population 
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does not have any kind of health insurance. This number has decreased to 7.5 percent 

based on the preliminary results of the fourth National Health Service Survey (2008), as a 

result of the introduction of the New Rural Cooperative Medical Insurance scheme in 

2003. Regardless, the benefits remain limited due to its low premiums. 

Thus, medical treatments, especially those of chronic diseases, may lead to a large 

reduction in households’ financial resources and drive them into poverty. It is estimated 

that every year, about 100 million people are driven into poverty due to unaffordable 

medical services (WHO World Health Report, 2005), and in rural China this number is 

about 10 million3. In addition, poverty may also make people more vulnerable to illness 

and trap them in a vicious cycle of diseases and poverty.   

Considering the huge negative impact of diseases related to unsafe drinking 

water, a great number of governments and international organizations have launched 

water-related programs and interventions all over the world as an effective way to 

improve people’s health and welfare. The United Nations seeks to “halve, by 2015, the 

proportion of people without sustainable access to safe drinking water” as one of the 

Millennium Development Goals.4 The World Bank also places improvement of water 

and sanitation at the core of its efforts towards poverty reduction. The Chinese 

government began its nationwide water improvement program in rural areas in the 1980s. 

Since harmful chemicals in drinking water endanger hundreds of millions of people, the 

ultimate goal of this program is to provide widespread access to water from water 

purification plants. These plants can effectively eliminate both microorganisms and 

                                                 
3
 National Development and Reform Commission (NDRC), “Guidelines for pharmaceuticals industry 

development in the eleventh Five-Year Plan”, 
http://www.sdpc.gov.cn/fzgh/ghwb/115zxgh/P020070927315215459276.pdf (accessed on May 25, 2011). 
4
 The detailed information about United Nations’ Millennium Development Goals is on the website: 

http://www.unesco.org/water/wwap/facts_figures/mdgs.shtml (accessed on May 25, 2011). 
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chemical impurities by employing appropriate clean water technology and equipments. In 

addition, the pipeline systems are combined to deliver plant water to households directly.    

Based on the implementation process of the water program, this study estimates 

its causal effect on the health status of adults and children in rural China by employing 

data from China Health and Nutrition Survey (CHNS). This survey includes 

approximately 4,500 rural households in 152 villages, from 1989 to 2006 (7 waves). The 

treatment—improvement of water quality—employed in this study is defined by water 

sources (whether water comes from water plants) rather than just access to water. 

Ordinary least squares estimates show that the water quality improvement resulting from 

this program only has a moderate effect on health.  

One of the significant challenges in estimating causal effects of government 

programs is the endogeneity problem generated by program placement. Since water 

facilities are usually constructed and financed by local governments, the underlying 

placement rule varies greatly across regions. Unobservables affect when and where water 

plants and pipelines are built and, therefore, lead to positive or negative bias of OLS 

estimates. To address this omitted variable (endogeneity) issue, I instrument for the 

treatment using the topographic characteristics of the villages, which are assumed to 

influence the costs of the construction of water plants and the introduction of pipeline 

systems. With this instrumental variable, the estimated impacts on the health status of 

adults and children become stronger.  

 



 

 6 
 

1.2 Literature Review 

Four kinds of interventions that have been used to fight against water-related 

diseases are: improved hygiene practices, improved sanitation, improved accessibility to 

water, and improved water quality. Many studies have been performed to evaluate these 

interventions and compare their effects in reducing the incidences of diarrhea and other 

diseases, especially for children. In the case of hand washing, the literature includes 

several dozen randomized trials (Curtis and Cairncross, 2003; Rabie and Curtis, 2006). 

There are, however, questions about whether compliance with disinfection protocols 

continues after studies end5  and whether outcome variables (such as self-reported 

diarrhea) can be biased if experiments are not double blinded (Schmidt and Carincross, 

2008). In the case of community water supply (e.g., piped water connections) and 

sanitation, controlled experiments are more difficult to conduct and the literature contains 

many observational studies as well as a few studies that evaluate impacts using quasi-

experimental methods. The impact of having improved sanitary facilities and access to 

water is less clear (Merrick, 1985; Esrey, 1996; Jalan and Ravallion, 2003; Jacoby and 

Wang, 2004; Mangyo, 2008; Gamper-Rabindrani et al., 2008; Galiani et al., 2009).  

In contrast, improved water quality has been shown to play a substantial role in 

reducing diarrhea and mortality in different countries (Cutler and Miller, 2005; Clasen et 

al., 2007; Arnold and Colford, 2007; Kremer et al., 2009). The quality of drinking water 

is a serious issue in China, especially when it comes to chemical pollutants. Ebenstein 

(2010) describes the strong link between river pollution and digestive cancers in China. 

                                                 
5
 The benefits of source treatments of drinking water are small compared to point-of-use treatments (Zwane 

and Kremer, 2007). Water treated at the source can easily become contaminated during transportation and 
storage.   



 

 7 
 

In the 1980s, the Chinese government launched its water program, using water plants as a 

tool to help solve drinking water quality problems. During the implementation of the 

program, water access and quality have both increased, but along different growth paths. 

The CHNS data show that, in 1989, over 67 percent of rural households had water 

facilities (tap or wells) on their premises or inside their houses, while fewer than 21 

percent of them had water from water plants. In 2006, these two numbers had risen to 98 

and 42 percent, respectively. Figure 1 shows these trends in detail. In contrast to Mangyo 

(2008) who examines the impact of water access on child health in the early 1990s, in 

this study I focus on water quality improvement—the goal of the drinking water 

infrastructure program in China, and use the CHNS longitudinal data to estimate the 

impact of the water quality improvement program on the health status of adults and 

children in rural China, respectively. In Section 3.2.4 and 4.2.3, I discuss these two issues 

(water quality versus water access) and conclude that the program was effective through 

improved water quality rather than via increased access to water. 

 

1.3 Background: the Water Improvement Program in Rural China 

Since the 1950s, the Chinese government has made great strides in establishing 

the public water systems. By the 1980s, water treatment facilities had been built in 

almost all of the major cities to guarantee drinking water quality. But, the rural 

population, comprising more than 70 percent6 of the total population in China, still had 

difficulty in accessing safe drinking water. The CHNS data shows that more than 70 

                                                 
6
 According to the 1982, 1990 and 2000 census data, the proportions are 79.1, 73.6 and 63.8 percent, 

respectively (China Statistical Yearbook, 2001).   
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percent of rural households were using untreated water from springs, rivers, lakes, or 

wells in 1989. In addition, human waste was often stored in open pits in household 

backyards, and livestock was reared within the village. According to the CHNS data, 68 

percent of the households in rural areas used open pits as their toilet facilities and 64 

percent raised livestock in 1989. The crude sanitation situation, along with poor hygiene 

practices, exacerbated the harmful influences of unsafe drinking water. It is estimated by 

that the average diarrheal incidence is 2.5 episodes per child per year among children 

under 5 years of age in rural China (Wei, 2008) and the diarrheal mortality rate of 

children under five is 14 times as great in rural areas as in urban areas (Tao, 2008). 

Regardless, diarrheal diseases are less prevalent in China than in other developing 

countries due to the fact that people customarily eat cooked food and drink boiled water 

(notably in making tea). Zhang et al. (2009) find that more than 85 percent of rural 

households boil water for drinking. A recent Chinese study by Chen (2009) has found, 

for example, that the diarrheal mortality rate in rural areas of seven Chinese provinces is 

0.51 per thousand, which is much lower than the average (6.5 per thousand) in other 

developing countries. 

In addition to diarrheal diseases, other diseases are caused by chemical impurities 

in water such as toxic metals and inorganic or organic compounds.7  For example, 

fluorosis and arsenicosis, caused by high concentration of fluoride and arsenic in 

drinking water respectively, endanger tens of millions of people. A total of 1,115 

counties and about 81.6 million people are at risk of fluorosis via drinking water, and 35 

counties (385,000 people) are at risk of arsenicosis (Chinese National Health Statistics, 

                                                 
7
 Other endemic diseases, such as Keshan disease, Kashin-Beck Disease (KBD) and schistosomiasis, are 

considered in government yearly reports to be cured by improving water quality. 
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2007). Fluoride and arsenic are naturally occurring contaminants to a large extent. In 

addition, human activities have generated ever more severe water pollution in the process 

of China’s industrialization. Toxic metals from industrial disposals and persistent organic 

pollutants from fertilizer and pesticides are jeopardizing human health through drinking 

water. In China, the quantity of industrial wastewater was 39.7 billion tons in 1997 and 

49.7 billion tons in 2006 (China Water Resources Bulletin, 1997 and 2006). The 

consumption of chemical fertilizers increased from 17.75 million tons to 47.66 million in 

the period 1985 to 2005 and the use of nitrogenous fertilizers grew from 12.04 million 

tons to 22.29 million tons during the same period (China Statistical Yearbook, 2006). 

The World Bank’s report (2007) estimates that in rural China about 66,000 people die 

from water pollution every year. One reason why the health damages of chemical 

pollutants in drinking water have not drawn much public attention is that it is hard to 

determine when small changes of chemical contents in nature become health risks, and 

relevant symptoms may need long-time exposure to pollutants to become detectable.    

During the 1980s, the Chinese government started to launch a drinking water 

improvement program in rural areas. This program aims to build water plants to provide 

safe drinking water and pipeline systems to deliver it. The “Sanitary Standard for 

Drinking Water” and relevant guidelines for the program implementation in rural areas 

stipulate locations of water plants, safe drinking water standards (including aesthetic 

properties and general chemical, toxicological, bacteriological and radiative indexes), 

monitoring, etc. Water is treated using various technologies in four consecutive 

processes: coagulation, precipitation, filtration and disinfection.8  Considering the 

                                                 
8
 Chlorination, one of the most popular methods to improve water quality in the world, is sometimes used 

in the disinfection process. 
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diversity of natural conditions, deep well pumps and rainwater harvesting systems have 

been installed as temporary substitutes in some areas. Nevertheless, appropriate water 

plant systems are the ultimate goal of the program. As shown in the fourth National 

Health Service Survey (2008), the proportion of beneficiaries is 85.3 percent, overall, 

whereas only 41.9 percent of rural people have access to water from water plants.9 

Currently in rural China, about three hundred million rural people still use unsafe 

drinking water. The construction of this program is still ongoing.  

In terms of effectiveness of the water improvement program, Zhang et al. (2009) 

investigate water quality in rural households and find that, overall, water plants provide 

water with better quality than untreated water, as illustrated in Figure 2. This figure also 

shows that a greater proportion of households use drinking water that violates bacteria 

and coliform standards than violating other standards, which seems to contradict the 

argument that chemicals are the main pollutants in drinking water in China. However, as 

I mentioned in the beginning, the Chinese cultural norms of boiling water and cooking 

food can eliminate the pathogens to a large extent.   

The program is financed through a variety of sources. The central and local 

governments, villages, rural households and other international organizations (such as 

UNDP, WHO, UNICEF, World Bank) all contribute to parts of the funds, but the ratios 

are quite different across regions. Poor areas are more reliant on outside funds from 

governments and international organizations, while in rich areas majority of funds come 

from beneficiaries directly and some private capital. From 1981 to 2002, it is estimated 

that total investment in the water improvement program was about 8.8 billion US dollars 

                                                 
9
 Ministry of Health (2009), Analysis on the Fourth National Health Service Survey, 

http://www.chinacdc.net.cn/n272442/n272530/n272742/29573.html (accessed on May 25, 2011). 
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(Meng et al., 2004). Overall, 25.7 percent of funds come from the central and local 

governments (in western regions of China, this proportion is as high as 50 percent), 26.9 

percent from villages, 42.5 percent from beneficiaries and 4.9 percent as loans and 

donations from international organizations and other countries. The average cost of water 

plant and pipeline systems in this program is around 30 dollars per capita (Meng et al., 

2004). The detailed information is presented in Table 1.   

This study examines the impact of the water improvement program on the health 

status of adults and children in rural China by employing the CHNS longitudinal data. At 

least two possibilities could limit its impact. One is that the water quality from water 

plants may not be greatly improved relative to untreated water. This may be due to plant 

operations that do not meet government standards. The other issue is compliance; i.e., 

whether plant water is supplied continuously, 24 hours per day and 7 days a week, 

because water can also be contaminated by microbes during storage. Some studies show 

that mean coliform levels were considerably higher in households’ water containers than 

in the original water sources (Fewtrell et al., 2005).  

In the next three chapters, I describe the estimation strategies employed and 

evaluate the impacts of the water program on adults and children in rural China.  
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Chapter 2 

Estimation on the Water Improvement Program in Rural China 

2.1 Data and Variables 

In this study I employ the China Health and Nutrition Survey (CHNS) dataset. 

The sample selection is based on a multistage, random cluster scheme in nine Chinese 

provinces: Liaoning, Heilongjiang, Jiangsu, Shandong, Henan, Hubei, Hunan, Guangxi, 

and Guizhou. In 1997 Liaoning was missing and Heilongjiang was included as a 

replacement. In later surveys, both provinces are covered. The ranks of per capita GDP of 

these nine provinces among 31 province-level administration regions recorded in the 

China Statistical Yearbook (2007) is the following: Liaoning(8), Heilongjiang(12), 

Jiangsu(5), Shandong(7), Henan(16), Hubei(17), Hunan(21), Guangxi(27), Guizhou(31). 

The average per capita GDP of these nine provinces is 16137 Chinese yuan (2024 US 

dollars), slightly smaller than the national average, 18662.52 Chinese yuan (2341 US 

dollars). In terms of the geographic regions, no provinces in North-west China and North 

China are included in this survey. Thus, the CHNS sample is not likely to be nationally 

representative. Regardless, in Figure 3 we can see that there is large variation across 

these provinces in the prevalence of fluorosis. And four counties are randomly selected 

from an income-stratified sample in each province generated from a weighted sampling 

scheme. The smaller sampling units, such as villages or towns, are then randomly drawn 

from each county. 
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The survey was taken in 1989, 1991, 1993, 1997, 2000, 2004, and 2006 so far, 

which allows me to explore the variation in program implementation during this period. 

As mentioned in Clasen et al. (2007), most trials and experiments can only focus on a 

small group and do not have sufficiently long follow-up periods (usually less than one 

year), which may lead to inaccurate estimates due to seasonality or the fact that some 

agents of infectious diarrhea are often delayed, such as campylobacteriosis. The desire to 

avoid this shortcoming is one reason why I choose to use the longitudinal data. 

 The CHNS data includes the samples in rural and urban areas and I restrict my 

analysis to the rural sample. In total, approximately 4,500 households and 152 villages or 

towns in rural China are included. In this study I do not distinguish between villages and 

towns.   

One main advantage of the CHNS data in studying the health impact of water 

treatment plants is that it has multiple individual health indicators, including subjective 

(self-reported health status) and objective (weight and height) indicators, along with 

other demographic variables. In addition to the individual survey, a detailed community-

level survey contains much information about infrastructure, which is useful in 

confirming that my results are not driven spuriously by variation in other infrastructure 

conditions across villages. The main problem with the longitudinal data is attrition, much 

of it being the result of substantial migration out of rural China since the 1980s. I find 

that the young, aged from 15 to 40, make up a large proportion of observations that attrit 

from the sample. This may cause bias if the migration is correlated with the water 

program implementation. In Section 3.2.5, I address this issue further. 



 

 14 
 

The treatment variable in this study is defined based on the survey question 

answered by the households: “What is your water source?” The possible options include 

water plants, wells, springs, and rivers. Given the fact that households in a village live 

close together in rural areas, it is reasonable to expect that the water program is 

implemented at the village level and that there might not be much selection on the plant 

water coverage within the village. This is also justified by the CHNS data, showing that 

most of the proportions of households with plants as water sources in a village are very 

close to zero or one, as shown in Figure 4. Thus, in order to capture the water program 

implementation better and to avoid possible measurement error problems when using 

household reports as the treatment variable, I define the treatment at the village level by 

detecting a relatively large increase in the number of households who self-report access 

to water plants in a village. A dummy treatment variable—water plant—indicating 

whether the village is covered by the water improvement program is defined in the 

following ways: 

• In the first survey year, the water plant = 1 if 80 percent or more of households 

in a village report a water plant as their water source.  

• If water plant = 0 in the first wave, then in all subsequent waves water plant = 1 

if there is more than a 20 percentage point increase in plant coverage for each 

year since the last wave. The reason for using the percentage change per year is 

the difference in time span between two consecutive waves of CHNS data. For 

example, if over 40 percent of households in a village report that their water 

sources switched to plants from 1989 to 1991, then the treatment variable—water 

plant—is set to 1.  
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• Once water plant = 1 in a given period, all subsequent periods are coded as 1.  

The potential bias caused by measurement errors in household reports exists in OLS 

regressions; nevertheless, instrumenting for the treatment variable solves both the 

measurement error and the endogeneity problems, which provides me with a way to 

check whether the defined village-level treatment variable truly captures the 

implementation of the water improvement program. In Section 3.2.1 and 4.2.1, I show 

that the definition of treatment is reasonable by comparing the estimation results using 

household reports and my defined variable. It should also be mentioned that there are 

other possible water treatments (deep wells and rain harvesting systems) that serve as 

temporary substitutes for water plants in some areas, but they cannot be identified from 

the questionnaire. Thus, in this study I only focus on water plants, which may lead to 

underestimation of the impacts of the water improvement program. 

 

2.2 Estimation Strategy 

OLS regression with fixed effects 

To estimate the causal effects of the drinking water infrastructure program on 

people’s health status, the basic regression model is as follows: 

���� � ����� � 	��
 � �� � 
� � ����                                           (1) 

where Y��� is the health measure of person i in village v in year t. In empirical studies, it 

is always challenging to consider how to measure health precisely. In this study, three 

different health measures are employed.  

I use a binary variable indicating whether the respondent has been sick during the 

last four weeks as one outcome variable. In the questionnaire, the survey question related 
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to this variable is: “Have you been sick or injured within the last four weeks? Have you 

suffered from a chronic or acute disease?” Here I do not specify whether sickness is 

water related or not, based on the following considerations: 1) unsafe drinking water in 

China may cause multiple complicated symptoms, such as diarrhea, joint pains (from 

fluorosis) and skin rash (from arsenicosis and fluorosis); 2) the recording of symptoms of 

illness in the CHNS survey varies across waves (for example, diarrhea is combined with 

stomachache after 2000); 3) in the CHNS data, the incidence of diarrhea is less than one 

percent, which may result in inaccurate estimates of the program’s impacts when it is 

used as an outcome variable. 

Considering that this indicator is self-reported, nutrition-based anthropometric 

measurements are also employed to estimate the impacts of drinking water improvement. 

Given the fact that lots of diseases besides diarrhea are caused by the water pollutants in 

China, these anthropometric outcomes may be able to capture the health gains in a more 

complete way. In addition, these measures are objective to large extent, or at least the 

measurement errors in them is less likely to be systematically correlated with 

respondents’ income than self-reported health measures (Strauss and Thomas, 1998).  

The weight-for-height ratio adequately represents the long-run nutrition status of 

adults (Waterloo, 1972), which reflects both consumption and health status. Since the 

diseases caused by unsafe drinking water, whether diarrheal or other chronic diseases, 

usually lead to weight loss, weight-for-height is a reliable health outcome measure in this 

context.10 For example, Cöl et al. (1999) state that the symptoms of acute arsenic 

poisoning include vomiting, diarrhea, and weight loss.  

                                                 
10

 Personal communication with Jin Jiang from Medical School, Tongji University, China, November, 2009.  
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In addition, the last four waves of CHNS (1997, 2000, 2004, and 2006) include 

self-reported health status of adults and this subjective measure is used as another adult 

health outcome as well.   

For children (age from zero to 17), the outcome variable ����  includes two 

anthropometric measures (weight-for-height and height), along with the illness incidence 

in the last four weeks. Anthropometric indicators of children are even more of interest in 

this context. Weight-for-height is considered to be an indicator of the short-term nutrition 

status of children, and height is a good way to measure the duration of children’s 

malnutrition and growth (de Onis, 2000). Briend (1990) states that there is no suggestive 

evidence of the causal relationship between diarrhea and children’s malnutrition since the 

catch-up growth reduces the harms caused by diarrhea. However, Humphrey (2009) 

shows that other water-related diseases, such as tropical enteropathy, can still cause 

malnutrition. In terms of chemical pollutants, Wang et al. (2007) present epidemiological 

evidence in China that that high concentration of fluoride and arsenic in drinking water is 

negatively correlated with children’s height, weight, IQ scores and lung capacity.  

Child mortality is sometimes used as an outcome variable in other studies of 

improved water. However, in my sample fewer than 10 child deaths can be observed in 

each wave and, therefore, the impact of water from treatment plants on mortality must be 

small in terms of overall lives lost, and impossible to measure meaningfully given my 

sample sizes.  

����  represents characteristics of individuals, households and villages, such as 

age, sex, educational attainment of adults, household size, and distance to the nearest 

medical facility in adults’ regressions. When considering the impact on child health, I 
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substitute parents’ educational attainment for children’s own education since the water 

program, as a health intervention, might also improve children’s educational attainment 

(Bleakley, 2006; Politi, 2008). If parents’ educational attainment is missing, I use that of 

the oldest male or female adults in the household as the proxies.   

Considering that healthy people are able to work more productively and earn 

more money, I use income in the first wave when the household appears in the survey in 

order to avoid the possible endogeneity problem by using current income. Here, gross 

income instead of net income is employed because durable expenses are sometimes 

recorded in the survey which may lead to negative net income, as suggested by de Mel et 

al. (2007). 

	�� is a dummy variable indicating whether plant water is available in village v in 

year t (water plant). �� and 
� are the region and year fixed effects respectively, and ���� 

is the idiosyncratic error term. The average treatment effect 
  can be consistently 

estimated by OLS regressions if the error term ���� satisfies ��	������|����, ��, 
�� � 0.  

Instrumental variable strategy 

A threat to the OLS regression validity in this context is the program placement 

issue. Consistent estimates of the causal effects of water quality improvement require that 

��	������|����, ��, 
�� � 0 , which means that the installation of water plants and 

pipelines is exogenous or randomly assigned conditional on ���� , ��  and 
� . By 

employing the OLS strategy with region and time fixed effects, I am able to capture some 

unobservables that are constant across regions or years. However, considering the 

implementation and financing mechanisms of the water improvement program, some 
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unobservables that vary within regions across time may affect the timing and locations of 

the program construction and, therefore, may generate an endogeneity problem.  

One possible concern about the endogeneity of program placement is that local 

governments may prefer to carry out the program in the villages with high growth rates 

or with great potential to develop first (for example, villages near recently-built national 

highways). In these areas, well-established infrastructure can attract more investment. 

The governments have incentives to implement the program in those places to stimulate 

the local economy and to increase tax revenue. Furthermore, since, on average, the 

majority of funds come from villages and households directly, the program is also easier 

to fund in those places. People there may tend to be in better health than those in remote 

areas. If so, the positive relationship between program implementation and health implies 

that ��	������|����, �� , 
�� � 0, which causes upward bias of OLS estimates. Program 

placement can also be negatively correlated with health, i.e., ��	������|����, ��, 
�� � 0. 

Based on equity considerations, the central and local governments might be more likely 

to target locations by priority where people suffer from severe health impairments 

induced by drinking water. China’s Eleventh Five-Year Plan (2006–2010) emphasizes 

expediting the water improvement program in areas suffering from high fluoride water, 

high arsenic water, high salinity water, and polluted water. The proportion of government 

investment in the program in western areas (which are relatively poor areas) can be as 

much as 50 percent. As a result, the OLS estimates are very like to be biased downward.  

To address this endogeneity issue, I instrument for program placement using the 

topographic characteristics of villages (flat versus hilly or mountainous), which are 

assumed to influence the costs of the construction of water plants and pipeline systems in 
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several ways. Fixed costs are higher in non-flat areas since it becomes more difficult to 

introduce pipes, and high-pressure water pumps must be installed to deliver water. As for 

variable costs, large amounts of electricity need to be consumed to pump water from 

plants to villages in hilly and mountainous areas. The system of regression equations, 

then, is:  

First stage:  	�� � ����� � ��� � �� � 
� � ����                      (2) 

Second Stage: ���� � ����� � 	��
 � �� � 
� � ����                      (3) 

where �� is the instrument representing the topography of  the villages.  

The key identification assumption of the IV estimation strategy is that, 

conditional on demographic characteristics, household income, accessibility to medical 

facilities and the fixed effects, topographic characteristics of the villages should affect 

people’s health status only through the quality of drinking water.  

Topography, or land gradient, has been discussed in the literature as affecting 

agricultural productivity (Udry, 1996), crop types (Qian, 2008) and infrastructure 

construction (Duflo and Pande, 2007; Dinkelman, 2008; Donaldson, 2009). These factors 

may affect health mainly through household income. Therefore, controlling for 

household income in the regression can help the estimation satisfy the exclusion 

restriction when using the villages’ topography as an instrument. In Section 3.2.3 and 

4.2.2, I add other infrastructure information, including road construction, distance to 

schools, and electricity and telephone coverage as control variables in the regressions to 

test this assumption.  

 After using the instrument, the estimation parameter 
 captures the local average 

treatment effect (LATE) and, more specifically, the weighted average of covariate-
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specific LATE (Angrist and Pischke, 2009). This refers to the weighted average impact 

of the water program on the villages whose implementation timing is affected by their 

topographic characteristics (compliers). The usefulness of IV estimates depends on the 

degree to which the impact on compliers can represent that on the total population. In my 

study the mechanism through which improved drinking water affects health is mainly a 

biological process, especially when chemical impurities are the major harmful contents. I 

would not expect that human behavior influences the program’s impact to a great extent, 

which is also justified by the fact that I do not find heterogeneous treatment effects across 

income and educational groups in Section 3.3 and 4.3. Thus, the LATE on the compliers 

should be quite similar to the average treatment effect (ATE) on the whole population.  

 

2.3 Summary Statistics 

 Table 2 presents the summary statistics of adult observations in all the waves. The 

illness incidence in last four weeks for adults is around 9.0 percent, on average, which is 

much lower than the national survey results. According to the National Health Service 

Survey (1998, 2003, 2008), the two-week morbidity rates in rural China were 13.7 

percent in 1998, 13.9 percent in 2003 and 17.7 percent in 2008. The low rate in the 1989 

wave is due to the fact that this question targets only individuals under age 7 or between 

20 and 45. Despite this fact, this number in other waves remains low.   

For the anthropometric measure of adults,11 WHO regards a Body Mass Index 

(BMI) under 16 severely underweight and over 40 Obese Class III. In order to avoid 

errors in the survey data, I exclude 230 adult observations whose BMI is less than 10 or 

                                                 
11

 In the 1989 wave, the majority of height records are for preschool students and adults aged from 20 to 45. 



 

 22 
 

greater than 46. The average weight-for-height ratio of adults is 35.485 kg/m, and the 

average BMI is 22.20. In my sample, 8.55 percent of adults are considered underweight 

(BMI<18.5), while 16.74 percent are considered overweight (BMI>25).  Columns (2) 

and (3) show the means and standard deviations of the variables in villages with and 

without access to water from water plants for all of the waves respectively, and Column 

(4) compares their differences. Not surprisingly, people in the treated villages have 

higher socioeconomic status. We see that in the villages with plant water, adults are 

relatively wealthier, more highly educated and less likely to raise livestock than those in 

the villages without. 

Table 3 presents the summary statistics of child observations when pooling all the 

waves. The illness incidence in last four weeks for children is 6.6 percent, on average. In 

order to eliminate the possibility of misreporting height, I employ the WHO growth table 

to calculate z scores and exclude the observations with z scores below -6 and above 6.12 

The outlier cutoffs recommended by WHO are around 5. According to Chang et al. 

(2006), which studies the growth characteristics of children under age 5 in China 

between 1990 and 2005, in rural China, 41.4 percent in 1990 and 13.1 percent in 2005 

showed stunted growth. Therefore, I extend the normal range of children’s height and 

exclude 146 observations. For the weight-for-height measure, I use similar cutoffs as 

adults and drop 138 child observations. The means of children’s weight-for-height ratio 

and height are 21.429 kg/m and 124.338 cm, respectively, as shown in Table 3.  

Columns (2) and (3) in Table 3 list means and standard deviations of the variables 

in villages with and without plant water for all of the waves, and Column (4) compares 

                                                 
12

 The means and standard deviations of the reference population are for age in months in the WHO growth 
table; here, I choose just the means and standard deviations in the 6th month for each age. 
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their differences. Children in the treated villages are healthier and live in households with 

higher socioeconomic status. For example, in the villages with plant water, children are 

heavier (0.484 kg/m) and taller (2.896 cm) and their parents have more years of 

education (0.436 for fathers and 0.933 for mothers) than those in the villages without.  

Table 4 presents the descriptive statistics of some variables about households’ 

environments and villages’ infrastructure conditions. These variables are used in the 

robustness check to see if the baseline regression results are stable after controlling for 

them. They have been shown to influence individuals’ labor supply decision (Dinkelman, 

2008) and households’ income. However, since their direct impact on health may be 

secondary, I do not include them as control variables in the baseline regressions. From 

Table 4, we can see that the means and standard deviations are very comparable in the 

adult and child samples. For example, the average distance to the nearest middle school 

is 1.831 km in the adult sample and 1.834 km in the child sample. 

 

2.4 Program Implementation 

In Tables 2 and 3, I compare the characteristics of individuals and households in 

villages covered by the water improvement program and with those in villages not 

covered by the program. Generally, people in treated villages are wealthier and have 

more educational attainment. However, no causality can be concluded through the simple 

comparison; this correlation can be explained by the fact that wealthier villages can 

afford the program or that improved water quality makes people healthier and, therefore, 

able to earn more money, or both.   
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In order to see if there is any selection rule when implementing the water 

improvement program, I compare the demographic and infrastructure characteristics of 

treated villages one to five years before the treatment with those of villages that had not 

been treated by 2006. Table 5 shows the means of the characteristics’ differences 

(untreated years of treated villages one to five years before the treatment – untreated 

villages) after controlling for year fixed effects. We can see that there is no suggestive 

evidence that the program is more likely to be launched in richer areas or areas with 

better infrastructure conditions, except that the areas closer to a medical facility tend to 

be covered by the water program earlier.  
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Chapter 3  

Results for Adults 

3.1 OLS and IV Regression Results 

3.1.1 OLS regression results with fixed effects 

Table 6 presents regression results with different levels of fixed effects and for 

different outcome variables for adults. All standard errors are clustered at the village 

level. Generally, the regression coefficients are more pronounced when controlling for 

the county fixed effects than for the village fixed effects. With the county fixed effects, 

OLS regression results show significantly positive estimates of the program’s impact on 

adult health. On average, a water treatment plant decreases adults’ illness incidence by 

one percentage point and increases their weight-for-height ratio by 0.835 kg/m. Given the 

average illness incidence of about 9.0 percent, the estimate actually implies that the 

probability of illness in the last four weeks is reduced by about 11 percent when a water 

treatment plant is present. The self-reported health status also rises by around 0.027 

point. Although this estimate is short of significance, its p-value is very close to 0.1.  

The estimated coefficients on the other covariates in the county fixed-effect 

specification are sensible in signs and magnitudes. Health decreases with age. Males 

report better health status than females do. Men’s illness incidence is one percentage 

point lower than for women; they have 0.063 point higher self-reported health status, and 

are 1.780 kg/m heavier in weight-for-height ratio. A one year increase in educational 
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attainment is associated with a 0.1 percentage point reduction in illness incidence, a 

0.014 point increase in self-reported health status and a 0.087 kg/m rise in weight-for-

height. Married persons tend to feel healthier and are heavier than single people. Given 

constant household income, a larger household implies that fewer resources are allocated 

to each member, which may worsen household members’ health. Nevertheless, the 

estimation results present mixed evidence: Household members in large families are less 

likely to be sick and evaluate their own health as being better, though they weigh a little 

less. The positive correlation between health and income may be due to non-market 

home production and the existence of economies of scale (public goods) in a household 

(Barten, 1964). Household income is negatively correlated with illness incidence and 

positively correlated with self-reported health status and weight-for-height. Raising 

livestock shows a minor negative correlation with adult health: It is associated with a 

0.854 kg/m reduction in weight-for-height. The distance to a nearest medical facility does 

not have a significant impact on adult health.  

Regression results with the village fixed effects are also presented in Table 6. The 

estimated coefficients of the treatment variable vary from ones with the county fixed 

effects in terms of magnitudes and significance, whereas most of other covariates show 

very similar relationships with health. The water improvement program is estimated to 

lead to a two percentage point reduction in adults’ illness incidence, a 0.030 point 

increase in their self-reported health status, and 0.279 kg/m rise in their weight-for-

height. However, none of these health benefits are statistically significant.   
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An important question here is which regression specification is better in this 

context when employing a difference-in-difference strategy: the county fixed effects or 

the village fixed effects?  

Given the huge population and vast land area in rural China, the water 

improvement infrastructure program has been rolled out slowly in terms of coverage. 

Figure 1 shows that over 20 percent of villages in this sample already had access to plant 

water before the first wave and around 60 percent were not yet covered by this program 

by the last wave. The treatment status of those villages, which constitute a majority of the 

sample, stays constant during the survey period. As a result, the health status of residents 

of those villages does not contribute to the estimation of the magnitudes of treatment 

effects when employing village fixed effects, but does contribute to identification when 

county fixed effects are used instead. Not surprisingly, then, the standard errors of the 

estimates of the effects of water treatment plants using village fixed effects are larger for 

all three of the health outcomes, and more than doubled for two of them as compared to 

those using county fixed-effects This partially explains why the estimates on the water 

plant treatment variable are not statistically significant with the village fixed effects. 

Bootstrap Hausman tests are implemented to see whether those estimated treatment 

effects are different from the ones estimated using county fixed effects. As shown in 

Table 6, the p-values from the Hausman tests are over 0.1 for two of the outcomes—

illness in the last four weeks and self-reported health status, but not for weight-for-height, 

where the point estimate of the effect of water treatment plants on weight-for-height is 

only one third as large when using village fixed effects, although still positive.  
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Furthermore, I restrict the sample to the villages that started to access plant water 

between the second wave (1991) and the final wave (2006) so that at least one of their 

pre- and post-periods can be observed. In total, 37 out of 152 villages and around 9000 

adult observations are included. The estimation from the full sample with the village 

fixed effects comes mainly from the variation in these villages. Thus, if employment of 

the county fixed effects still leads to similar treatment effects in this restricted sample, it 

suggests that the baseline estimates from the full-sample country fixed effects are not 

driven by the simple comparison between villages treated before the first wave and those 

having not been treated by the last wave—that is, by sets of villages that may be very 

different from each other in unobservable ways.  

Table 7 shows the estimated treatment effects of the water improvement program 

on the restricted sample. We can see that with county fixed effects, adults’ illness 

incidence in last four weeks decreases by 2.1 percentage points with access to plant 

water, which is equivalent to a 25.8 percent deduction give the average incidence is 8.13 

percentage points in this subsample. And the estimated treatment effect is significant at 

the 10 percent level. A water plant increases adults’ self-report health status by 0.059 

point, but not significantly, and raises their weight-for-height significantly, by 0.727 

kg/m. To summarize, the impact of plant water on adult health in villages that started 

receiving it only during the survey period is comparable to the impact on the whole 

sample.  

Considering the problems of drinking water in China, the long-term benefit of the 

program may be even larger because some chronic diseases caused by chemical 

impurities occur only after long-term exposure to unsafe drinking water. Inclusion of the 
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villages with constant treatment status—that is, those that have been exposed for many 

years to water from treatment plants and those that have never been exposed—is very 

informative in evaluating this program. Thus, in the rest of this dissertation, I will focus 

on the OLS estimates with the county fixed effects.  

To explore the impact patterns of the water improvement program and to check 

for the existence of a pre-existing health trend in the treated villages, I substitute leads 

and lags of treatment for the single treatment variable in the regressions. Due to the 

definition of the treatment and the time spans between CHNS survey waves, only several 

specific leads and lags can be identified. The estimated coefficients of the leads and lags 

and 95 percent confidence intervals are drawn in Figure 5. We can see that there is no 

clear evidence of a positive or negative health trend before the program implementation, 

in spite of a few significant coefficients. In most of the cases, the health benefits occur 

right after usage of plant water and remain persistent afterwards.  

Although Table 5 and Figure 5 do not suggest any strong program placement 

problems, it is reasonable to expect that areas where people are suffering from water-

related diseases may have priority in program implementation, according to the policy 

guidelines of the Chinese government. As a result, the estimates of treatment effects in 

the baseline regressions could be downward biased, something that is suggested by the 

results of the instrumental variables strategy. However, they are still meaningful since 

they likely inform us of the lower bounds of the program’s impacts.  

 

3.1.2 IV regression results 
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The first stage regression results of program assignment are presented in Table 8. 

Compared to flat areas, the probability of villages being covered under the water program 

in non-flat (hilly and mountainous) areas is 41.9 percentage points lower. Similar to the 

relationships between the covariates and the treatment shown in Table 2, household 

income and residents’ educational attainment are positively conditionally correlated with 

the treatment variables. However, this conditional correlation does not shed light on the 

direction of causality. Table 8 shows that the villages with access to water plants also 

have more females. One possible explanation is that better infrastructure conditions can 

help females perform agricultural production alone, which may allow males to work 

outside of villages. The negative conditional correlation between the program placement 

and the indicator of livestock raised might be due to the fact that more urbanized areas 

are less likely to have the space or conditions to perform livestock and poultry farming. 

The F-statistic on the instrument is around 17.29, which implies that topography is not a 

weak instrument in this context. The rule of thumb suggested by Staiger and Stock 

(1997) is that F-statistic should be greater than 10 when there is only one endogenous 

regressor. It can guarantee that the maximum bias of Two Stage Least Squares (2SLS) 

estimates is less than 10 percent.  

In the CHNS survey, communities’ topography is described by three different 

categories: flat, hilly, and mountainous. Therefore, in theory, two dummy variables can 

be defined and used as the instruments for the treatment variable. However, the F-statistic 

in the first stage is around 9, so the weak instrument problem exists when using those two 

instruments. Moreira and Cruz (2005) and Mikusheva and Poi (2006) suggest that 

estimating confidence intervals inverted from fully-robust tests under weak instruments 
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is also meaningful. Chernosukov and Hansen (2007) provide a new method to deal with 

heteroscedasticity of standard errors in this scenario, but their method becomes less 

powerful when the number of instruments exceeds that of endogenous variables. 

Therefore, they suggest making the model just identified by eliminating some 

instruments if the explanatory power of the remaining instruments does not decrease 

much. Based on the above considerations, I choose to use one combined instrument—

non-flat—in this study. Furthermore, the estimates of treatment effects by using the 

combined instrument are very similar, in both magnitudes and significance, to the ones 

with the two instruments in the basic specification.  

 Table 9 presents results of instrumental variables regressions for different adults’ 

outcome variables. Here, all standard errors are also clustered at the village level. As 

compared to OLS estimates, the IV strategy generates stronger and statistically 

significant effects on behalf of the water intervention. The probability of adults’ illness 

incidence in the last four weeks decreases by 4.5 percentage points, or 50 percent, after 

villages are provided with plant water. Self-evaluation of health status increases by 0.144 

and, objectively, adults’ weight-for-height also shows a significant 2.580 kg/m gain, 

which is equivalent to saying that an individual who is 180 cm tall gains 4.68 kg. If 

adults’ BMI index is employed as an outcome variable, the estimate on water plant is 

1.26 and significant at the one percent level. The coefficients of the other covariates are 

very similar to the ones in OLS regressions in terms of magnitudes and significance. 

 From the above table, we see that the OLS and IV strategies both generate 

positive impacts of the water improvement program on the health status of adults; the 

difference is that IV estimates are larger in magnitudes. However, there is still a concern 
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about the validity of using topography as the instrument in this context, i.e., whether the 

exclusion restriction holds. Flat areas are where town centers are located and, therefore, 

are more developed and have better infrastructure and social services, as discussed in 

Lipscomb et al. (2008). Thus, the instrumental variables strategy might lead to upward-

biased estimates, providing us with the upper bounds of true estimates.  

Combining both OLS and IV estimates, I find that the illness incidence of adults 

decreases by 11 to 50 percent and their weight-for-height increases by 0.835 to 2.580 

kg/m following the program implementation. Chinese National Health Service surveys 

show that digestive diseases accounted for 26.8, 25.9, 23.6, and 16.1 percent of two-week 

morbidity in rural China in 1993, 1998, 2003, 2008, respectively. Excess amounts of 

fluoride and arsenic can also cause other kinds of diseases, such as skin and respiratory 

diseases (which accounted for 3.1 and 50.4 percent, respectively, of two-week morbidity 

in rural China in 2008). In addition, the average weight gains from the OLS and IV 

estimation are 1.57 and 4.85 kg, which imply 2.7 and 8.5 percent increases, given that the 

average adult weight is 57.323 kg. Milne et al. (2006) conduct meta-analysis on the 

effects of protein and energy supplementation on the elderly and show that their weight 

change is around 2.5 percent in the short term. Thus, it can be concluded that the 

estimated treatment effects from OLS and IV estimation provide us with reasonable 

ranges of the impacts of the water improvement program.    

As I mentioned earlier, given the slow coverage of this water infrastructure 

program and the fact that some villages have just recently been included, I expect that the 

long-term benefit of the program may be even larger.  
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In this study, the main treatment variable—water plant—is a dummy variable 

indicating whether the village has access to water from water plants. And one of my 

outcome variables, illness incidence in last four weeks, is also binary. In the baseline 

specifications, I estimate the effect of having water from a treatment plant using 2SLS, 

assuming linearity of the first and second stages. Abadie (2003) proposes a way to deal 

with scenarios in which the instrument and endogenous regressor are both bivariate along 

with a dummy or continuous outcome variable. However, given the limited sample size, I 

am able to apply this method only in the regression with adults’ weight-for-height as the 

outcome variable. The estimated health gain is 2.8 kg/m and significant at the one 

percent level. 

Nonlinear profiles of age and household income when considering health have 

been the subject of much research. In this study I use different specifications for adults 

and children, which partially helps me avoid the nonlinear relationship between age and 

health. Since rural households are relatively poor, it is unlikely that a negative impact of 

income on health exists. To test the above hypothesis, I add age-squared and income-

squared terms as control variables in the baseline regressions. The OLS and IV 

regression results are shown in Table 10. We can see that inclusion of these nonlinear 

terms barely changes the significance and magnitudes of the baseline estimates of the 

impact of plant water.  

In the remainder of this dissertation, I conduct several robustness checks on both 

OLS and IV estimates to see whether they are stable and how they may vary with 

people’s demographic characteristics. 
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3.2  Robustness Check 

3.2.1 Justification of the definition of the treatment variable  

In this robustness check, I tackle whether the defined village-level treatment 

variable is correct: that is, whether it reflects the implementation of the water 

improvement program in rural China. Since water plants and pipeline systems are 

constructed at the village level, all of the households in a village are assumed to be 

covered at almost the same time. Therefore, the coefficients of the treatment variable I 

define at the village level should be very similar to ones that use individual household 

reports as the treatment variable. I expect this to be true especially when I compare their 

IV estimates since the instrumental variables strategy helps correct the bias caused by 

measurement errors. In this check, I instead define the household-level treatment variable 

to be 1 if a household reports a plant as its water source, and 0 otherwise. It turns out that 

14.8 percent of the household observations show a discrepancy in values between the 

household-level reports and my village-level constructed treatment variables. 

 Table 11 shows the OLS and IV results using these two treatment levels. We see 

that IV regressions generate very similar impacts on adults. For example, the estimate of 

household reports on adults’ weight-for-height ratio is 2.683 kg/m versus 2.580 kg/m of 

the village-level treatment variable reported in Table 11, Column 6. Moreover, their OLS 

estimates are also close in magnitudes. The coefficient on adults’ weight-for-height is 

1.027 kg/m for the household-level definition and 0.835 kg/m for the village-level 

definition. In conclusion, the similarities between the OLS and IV estimates suggest that 

the defined village-level treatment variable—water plant—does reflect the program 

implementation to a large extent. 
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3.2.2 Sensitivity analysis on the cutoffs used to define the treatment variable  

In this section, a sensitivity analysis is conducted that tests whether estimates of 

the impact vary with the criterion I use for defining when a village obtains plant water. 

As mentioned in section 2.2, I define a threshold number—20 percent—to detect the 

change in the proportion of households that have access to plant water in a village. Here I 

use five different cutoffs—10 percent, 15 percent, 20 percent, 25 percent and 30 percent, 

respectively—to construct a treatment variable. Only 15.6 percent of the household 

observations do not have the same values for those five treatment variables. Their kernel 

density plots, drawn in Figure 6, imply that they are quite similar. 

The OLS and IV regression results for each treatment variable are presented in 

Table 12. For the OLS estimates, the significance and magnitudes do not change 

dramatically.  For example, the probability of being ill for adults in the last four weeks 

decreases by 1.2 percentage points when using a 10 percent cutoff, which is quite similar 

to the 1.0 percentage point decline with a 20 percent cutoff and 1.3 percentage point 

decline with a 25 percent cutoff. All of these are statistically significant. When 15 

percent and 30 percent are employed, the estimates are slightly smaller (0.6 and 0.9 

percentage point) and become insignificant. The magnitude of the estimated impact of 

plant water on adults’ weight-for-height ratio is slightly different, along with the criterion 

used, and varies from 0.751 kg/m to 1.087 kg/m, while the significance stays the same.  

 In addition, the point estimates and statistical significance of the IV estimates are 

also stable. An interesting pattern is observed: The impact becomes slightly stronger 

when a stricter criterion is applied. For example, the probability of illness for adults in 
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last four weeks decreases with water treatment by 3.6 to 5.4 percentage points 

(corresponding to a 40 to 60 percent reduction), and their weight-for-height increases 

from 2.077 kg/m to 3.111 kg/m, when the cutoff increases from 10 to 30 percent. 

Therefore, both the OLS and the IV estimation results in Table 12 suggest that access to 

water from a water treatment plant does benefit adult health significantly, although the 

magnitudes of the influences vary slightly with the criteria employed. Ultimately, this 

exercise shows that 20 percent seems an appropriate cutoff to be applied in this study.  

 

3.2.3 Omitted Variable Bias—Other Infrastructure Construction  

The basic assumption of validity of the OLS in this study is that, conditional on 

covariates controlled in the regressions, the treatment variable should be uncorrelated 

with the error term. And the instrumental variable strategy also relies on the assumption 

that topographic characteristics of the villages should affect people’s health only through 

water quality, when controlling for those covariates. Since poor sanitation conditions can 

lead to water-related diseases and topography has been argued to influence several kinds 

of infrastructure construction (such as road construction and electrification), in this 

section I add these controls in the regression specifications to see if the baseline estimates 

are still robust.  

 Sewage and sanitation environment 

Most diarrheal diseases occur through oral-fecal or hand-to-mouth transmission. 

Therefore, when studying water interventions, the sewage and sanitation environments 

are also considered important factors affecting people’s health since they may work 
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interactively with drinking water. Thus, sanitation might be an omitted variable that 

could bias estimates of the effect of the water program.  

In the public health literature, findings about the complementarity between water 

improvement and other interventions are somewhat limited. Fewtrell et al. (2005) point 

out that combined interventions do not have an advantage in reducing diarrheal 

incidences over those with a single focus. Zwane and Kremer (2007) and Clasen (2007) 

also present similar findings showing no statistically significant additional effects from 

combined interventions. They argue that it is consistent with epidemiological models that 

a large dose of pathogens can cause diseases. Once a single intervention reduces the 

volume of pathogens to a certain threshold, additional efforts may not generate extra 

benefits.  

Besides water and sanitation, hygiene interventions are implemented to reduce 

water-related diseases in developing countries. A review paper by Curtis and Cairncross 

(2003) notes that hand washing reduces diarrhea risk by 47 percent. Hygiene education is 

executed alongside the water improvement program in rural China. However, I cannot 

disentangle its impact given the fact that there is no information about hygiene practices 

in the CHNS survey. 

Since the 1980s the Chinese government has also promoted a sanitation 

improvement program—a disposal system called “Rural Ecological Sanitation”—in 

addition to pipeline flushing. In this setup, excrement flows into a sealed biogas tank 

under a household bathroom. Then, after biomass gasification, gas can be used as fuel 

and remains (which contain no bacteria) can be used as a safe fertilizer containing plenty 

of nitrogen, potassium, phosphorus and organic components. The reasons for promoting 
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this waste disposal system are several. Rural people have used human and livestock 

waste as fertilizers for a long time, which can help them save money on chemical 

fertilizers. In addition, rural households traditionally used wood and straw as fuels, 

producing significant indoor pollution (smoke) and doing harm to people’s health. Also, 

the use of traditional fuels may result in deforestation. The ecological sanitation system 

helps solve all of these problems at one time. 

 In terms of implementation, the sanitation program significantly lags the water 

improvement program. The percentage of total beneficiaries was about 33 percent in 

2006, but it varies a lot across the country. In the northern and western provinces, this 

number is below 10 percent (The Ministry of Health of China, 2006). Since it is hard to 

clearly identify the sanitation improvement program from the CHNS household survey 

and its coverage is relatively low, in this study I only focus on the water program.  

In the robustness check, in order to consider how much my baseline estimates 

may be affected by ignoring sanitation conditions, I control for households’ toilet types 

and sanitation environments (interviewers’ evaluation of the amount of excreta around 

households’ dwellings) in the regressions. The estimation results are shown in Table 13. 

Overall, we see that adding sanitation controls to the model causes the coefficients on the 

water treatment plant variable to be smaller and less significant for both OLS and IV 

estimates. In Table 13, the OLS estimate, when the outcome is adults’ illness incidence, 

decreases from 1.0 to 0.8 percentage point in the magnitude and becomes insignificant. 

And the estimate for adults’ weight-for-height, while still significant, decreases from 

0.835 to 0.467 kg/m. The coefficient for self-reported health status decreases by a small 

amount, from 0.027 to 0.023, and stays statistically insignificant. For the IV estimates, as 
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compared to the OLS estimates, the decreased amounts are less and the changes in 

significance are the same. The illness incidence drops by 4.2 percentage points and is no 

longer significant. The estimate on adults’ weight-for-height drops by a small amount, 

from 2.580 to 2.068 kg/m and keeps significant. One exception is that the coefficient for 

self-reported health status increases slightly, from 0.144 to 0.167. 

 Some caution must be exercised in interpreting these regression results since 

households’ sewage facilities and sanitation environment may be endogenous to access to 

plant water or piped water. For example, Bennett (2008) proposes a possibility—a moral 

hazard issue that piped water could worsen the sanitation environment since the marginal 

health benefit of clean surroundings decreases. The opposite may also be true: I.e., access 

to piped water decreases the opportunity cost of households’ use of flush toilets and 

cleaning of houses and surroundings. The CHNS data support the second argument: 

Households’ adoption of flush toilets is positively correlated with access to plant water 

and, on average, happens 1.1 years after the water program is implemented. Therefore, 

the change of estimates here might be due to the fact that including sanitation 

implementation “over-controls” for the treatment effects of water plant implementation.  

A poor sanitation environment is likely to counteract the impact of water 

improvement on diseases caused by microorganisms, but it is less likely to do so when 

water pollution comes, instead, from chemical impurities. As I showed earlier, the 

inclusion of sanitation information does have an influence on the coefficients of 

improved water, although not to a large extent.  

 Other infrastructure (roads, distance to schools, electricity, etc.)  
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Besides sanitation, some other infrastructure construction, such as electrification 

and roads, can also be affected by the land gradient. However, when considering 

determinants of health, the benefits from these infrastructure components may be 

secondary and may be captured to a large extent by household income. If this is true, the 

inclusion of other infrastructure conditions should not change my results much. In Table 

14, I present such tests by controlling in the regressions for road construction (dirt, stone 

or paved), distances to schools (closest primary and middle schools), accessibility to 

trade areas, and telephone and electricity availability. We see that only a few of the 

coefficients of these infrastructure variables are significant. Regardless, the magnitudes 

and significance of OLS and IV estimates of the health impact of plant water for adults (a 

1.2 percentage point reduction in illness incidence, a 0.033 point rise in self-reported 

health status and a 0.646 kg/m increase in weight-for-height from OLS regression results; 

a 4.9 percentage point reduction in illness incidence, a 0.176 point rise in self-reported 

health status and a 2.381 kg/m increase in weight-for-height from IV regression results) 

are almost the same as my baseline estimates (a 1.0 percent point reduction in illness 

incidence, a 0.027 point rise in self-reported health status and a 0.835 kg/m increase in 

weight-for-height from OLS regression results; a 4.5 percent points reduction in illness 

incidence, a 0.144 point rise in self-reported health status and a 2.580 kg/m increase in 

weight-for-height from IV regression results). This test shows that these infrastructure 

conditions do not seem to have first-order influence on the estimated impacts.  
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3.2.4 Channels Clarified—Safe Drinking Water versus Water Accessibility (Quality 

versus Quantity) 

Unlike some studies focusing on piped water, in this study I define the treatment 

based on households’ water sources to address the importance of water quality in China. 

But it is true that the introduction of pipelines in this program also improves households’ 

access to water. This is an issue of water quality versus water quantity. Water quality 

affects people’s health directly through microbial contents and toxic elements in drinking 

water. Access to water generally benefits people’s health in a more indirect way. For 

example, access to water can enable people to save time, leading to increases in labor 

supply and, therefore, increases in household income. As a result, people’s health is 

improved because more resources are allocated to the consumption of household 

members. Weak evidence has been found to link water quantity and health in the 

literature. One piece of research close to this study is Mangyo (2008), which uses the 

CHNS data and does not find any significant impact of water access on the health status 

of children under age 10 in China in the early 1990s. Clasen et al. (2007) point out one 

possible explanation that water supply interventions take effect only if there is direct-

connection provision to households and water is used with no storage.  

More importantly, an emphasis only on water access could actually exacerbate 

the poor quality of drinking water. The CHNS data show that in 1989, 67 percent of rural 

households had in-yard water, so called “optimal water access,” and 66 percent of them 

used untreated well water. It has been found that the concentration of some chemical 

impurities (such as fluoride or arsenic) in underground water is even higher than in 

surface water since these elements come mainly from local soils or rocks. Furthermore, 
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disentangling the effects of water quality improvement and water access in this context 

has an important policy implication. In Figure 1, we see that in 2006, around 98 percent 

of rural households could access water on their property. If the impacts of improved 

water that I estimated before were generated from better water access only, then the 

water program may not need to be continued.      

In this section, I test the hypothesis that it is water quality, not access, that drives 

my results. Here the variable that refers to households’ water accessibility—water 

access—is constructed in the same way as in Mangyo (2008). A question in the CHNS 

survey is asked at the household level: How does your household obtain drinking water? 

1) in-house tap water; 2) in-yard tap water; 3) in-yard well; 4) other place. Then, the 

water access is coded as 1 if the answer is 1), 2), or 3) and as 0 otherwise. With this 

newly constructed variable, several sets of regressions have been run in the following 

way.  

First, I add water access as one of the control variables. Panel A of Table 15 

shows the estimated coefficients of both water quality and water access variables in the 

OLS and IV specifications. For both regression results, all estimates on the water quality 

variable stay almost the same as the baseline ones in terms of magnitudes and 

significance, while for water access, only the estimate for adults’ weight-for-height ratio 

is significant in the OLS specification. The OLS estimated impact of having plant water 

on adults’ illness incidence remains at one percentage point; the impacts on self-reported 

health status and on weight-for-height are a 0.026 point increase and a 0.795 kg/m gain, 

respectively. The IV regressions show that adults’ illness incidence decreases by 4.5 

percentage points with exposure to treated water, their self-reported health status rises by 
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0.136 point, and their weight-for-height ratio increases by 2.614 kg/m. This suggests that 

the impacts estimated in the baseline regressions come from water treatments in water 

plants.  

Next, I restrict the sample to households that can access in-yard water (optimal 

water access) in all of the waves when they exist and see how the existence of water from 

a treatment plant affects adults’ health in these households. The regression results are 

presented in Panel B of Table 15. We see that the estimates of water improvement are 

quite similar to those from the baseline regressions, which also supports the hypothesis 

that it is quality, not access, that improves health. For example, the OLS estimate for 

adults’ weight-for-height is 0.996 kg/m and the IV estimate is 3.154 kg/m, as compared 

to 0.835 and 2.580 kg/m. To summarize, the health gain predicted by the baseline 

regressions come mainly from the improvement of water quality, which plays a more 

important role than water access in the context of Chinese drinking water problems.   

 

3.2.5 Attrition Bias—Migration and the Data Attrition Problem  

In China, there has been much migration out of rural areas since the late 1980s 

because, beginning at that time, the old household registration (Hukou) system and 

consequent legal urban-rural segregation were relaxed (Zhao, 2003). According to the 

2000 census data, there are 12.46 million migrants, comprising 10.6 percent of the total 

population, and 58.9 percent of those migrants come from rural areas (Cai and Wang, 

2003). The CHNS data show that 40 percent of individuals cannot be tracked during the 

whole period from 1989 to 2006. Figure 7 shows the age distribution of observations that 
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attrit from the sample; we see that people aged 15 to 40 account for a large proportion of 

them.  

Sample attrition is of concern in this study if it is correlated with the treatment 

variable. The sign of the bias from attrition is theoretically ambiguous. If access to plant 

water in a village makes people healthier the young, healthiest group in the entire 

population may be more likely to move out to look for a job, compared to those in 

villages without access to water plants. As a result, the estimates would be downward 

biased. The opposite situation may also be true, however: The younger people in 

untreated villages may be willing and able to leave home to escape a dirty environment. 

Thus, the impacts estimated from the regressions would be over-estimated. 

To check if the sample attrition sorts on the treatment, I regress the probability of 

adults’ not being present for the next survey wave on the treatment and demographic 

characteristics in the current survey year, using a variety of different specifications.13 

Table 16 shows that this probability is positively correlated with the bivariate treatment 

variable, but not statistically significantly. This provides relatively weak evidence that 

sample attrition sorts on the implementation of the water improvement program in either 

direction.  

 Another way to test whether the treatment effects are biased is to use inverse 

probability weighted (IPW) estimators, which assume that attrition can be explained by 

observables. To correct for attrition bias, this method puts more weight on the 

observations that have characteristics similar to those who end up leaving the survey. 

Wang (2008) employs this procedure for the CHNS attrition problem. Here I focus only 

                                                 
13

 Besides checking the probability of being missing, I also compare the demographic characteristics of 
missing people in the treated and untreated villages. No significant differences show up, except for marital 
status.  
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on adults present in the first wave and implement the procedure in the following two 

steps: First, I estimate the probability of staying in each wave after 1989, based on the 

individuals’ characteristics in the first wave (1989), and then I use the inverse of these 

probabilities as weights to rerun my basic regressions. Table 17 shows the estimated 

treatment effects with and without correcting for data attrition. The IPW estimates are 

basically the same as those without weighting. For example, with the IPW correction, the 

water improvement program increases the weight-for-height ratio of adults in the first 

wave by 1.208 kg/m with the OLS strategy and 2.860 kg/m with the IV strategy. These 

results are only slightly less than those from my basic specifications (1.132 and 2.891 

kg/m) for the same adults. In conclusion, sample attrition does not appear to cause much 

bias since there is little observed sorting of migrants on whether villages have access to 

plant water. 

 

3.2.6 Two Placebo Tests  

Placebo Test 1: Treatment effects on the incidences of water-related and 

other kinds of diseases 

If the water improvement program in rural China does benefit people’s health and 

reduce illness incidence, then the treatment variable should affect only water-related 

diseases. In the CHNS data, diagnoses of illness in last four weeks were recorded if 

patients visited a medical facility. Based on the suggestions of Rachel Rosenberg,14 an 

expert on the toxicology of drinking water, and on my knowledge, I divide the diagnoses 

into two categories:  
                                                 
14

 Personal communication with Rachel Rosenberg from School of Public Health, University of Maryland 
at College Park, February 2nd, 2010. 
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Water-related diseases include: infectious/parasitic disease, tumor, respiratory 

disease, endocrine disorder, hematology/blood disease, mental retardation, neurological 

disorder, eye/ear/nose/throat/teeth disease, digestive disease, urinary disease, neonatal 

disease, dermatological disease, and hereditary disease.  

Other kinds of diseases include those less likely to be caused by poor drinking 

water quality: heart disease, injury, alcohol poisoning, mental/psychiatric disease, sexual 

disorder, muscular/rheumatological disease, and old-age/mid-life syndrome.  

I exclude from classification two categories—obstetrical/gynecological disease 

and other—both of which are non-specific enough to make it impossible to classify them 

as being related (or not) to water quality. The average adults’ illness incidences within 

the two categories of diseases are 3.70 and 1.32 percent, respectively. It is expected that 

the coefficients of the treatment variable should be significant when using the incidence 

of water-related diseases as an outcome variable, but not when employing the other 

group, which is less likely to be caused by the poor quality of drinking water. The 

regression results in Table 18 are consistent with this. Plant water reduces the incidence 

of water-related diseases for adults by 0.5 percentage point in the OLS specification 

(although this estimate is not statistically significant) and 2.9 percentage points in the IV 

specification, respectively. These results imply a 13.5 to 78.4 percent reduction in water-

related diseases when a water improvement program is launched in a village. Meanwhile, 

the placebo test reveals that plant water has no significant impact on other kinds of 

diseases; the point estimate for both the OLS and IV specifications are small (0.002).  

Placebo Test 2: Treatment Effects on Adult Height  
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Another interesting falsification check is to use adults’ height as an outcome 

variable since plant water should not change young adults’ height. If there are other 

unobserved factors that affect people’s health, then the impacts of these omitted variables 

could lead to a spuriously positive and statistically significant estimated effect of the 

coefficient on water plant. Here, I exclude adults who benefitted from water 

improvement when they were children and those over 50 because the elderly’s height 

may change with their health status. The sample size decreases to around 18,000.  The 

regression results are presented in Table 19. The results are not conclusive. The OLS 

estimate is 0.363 cm and the IV estimate is a very large 9.441 cm, but both are 

insignificant.  

 

3.3 Heterogeneous Treatment Effects 

The previous estimates present only the average treatment effects on adult health. 

However, heterogeneous treatment effects are of interest since their impacts may vary 

with beneficiaries’ socioeconomic characteristics, both because their knowledge can 

influence whether usage of water is effective and because their health endowment may 

affect the marginal gains from the program.  

In this section, I explore heterogeneous treatment effects across income and 

education groups. The sample is divided into three groups (poor, middle and rich) based 

on the village’s average income in the first survey year. The reason for using the average 

income at the village level is to avoid the endogeneity between households’ income and 

their members’ health status. Panel A of Table 20 shows the OLS and IV regression 

results across these three income groups. The estimates are sometimes imprecise, but are 
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qualitatively similar. For example, when employing the IV strategy, the coefficient on 

adults’ weight-for-height is zero for the middle income group; however, the coefficients 

for low and high income groups are similar (2.489 and 3.498 kg/m) and both significant,  

and they are also consistent with the baseline IV estimate (2.580 g/cm). Meanwhile, the 

OLS estimates for the same outcome are 0.779 kg/m for the low income group, 0.391 

kg/m for the middle income group and 0.974 kg/m for the rich group. All of these OLS 

estimates are significant. From the above table, we can see that there is no clear evidence 

showing the existence of heterogeneous treatment effects across different income groups. 

Another interesting hypothesis is that education is a complement to usage of safe 

drinking water. As in the case study by Ahmed et al. (1998) in Bangladesh, safe drinking 

water can be contaminated if households still use untreated surface water to wash 

containers. Better-educated individuals may be more aware of the importance of drinking 

water quality and have better hygiene practices, so their water is less likely to be 

contaminated. To test this hypothesis, I place adults into four education groups: Illiterate 

(years of education=0), Primary school (0<years of education<=6), Lower middle school 

(6<years of education<=9), and Upper middle school and above (years of education>9). 

Panel B of Table 20 shows the treatment effects on adult health across their own 

educational groups. The results indicate that access to plant water does lead to 

differential benefits in different measures across these educational groups, but these 

estimates do not vary much in terms of magnitudes and are not very different from the 

average treatment effects in the baseline regressions. For example, the OLS estimates for 

weight-for-height vary from 0.568 to 1.454 kg/m, while the IV estimates vary from 1.437 

to 3.434 kg/m.   
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 In summary, there is little evidence of heterogeneous treatment effects across 

income and educational groups. This may not be surprising considering that chemical 

impurities are the major problem with drinking water in China, and that they are hard to 

eliminate through human hygiene behavior such as boiling, the point-of-use water 

treatment generally employed in Chinese daily life.15   

  

                                                 
15

 According to Zhang et al. (2009), only 5.11 percent of rural households conduct other treatments. 
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Chapter 4 

Results for Children 

4.1 OLS and IV Regression Results 

 Table 21 presents OLS regression results for children.16 OLS regressions with the 

county fixed effects indicate positive and significant impacts of the water program on 

children’s weight-for-height and height. They predict gains for children of 0.446 kg/m in 

weight-for-height and 0.962 cm in height. In terms of other covariates, older children are 

healthier, and boys are heavier and taller than girls. Higher educational levels of fathers 

and mothers also significantly benefit children’s health status. Larger household size 

worsens children’s health status, presumably because children in large households obtain 

fewer household resources. Raising livestock has a negative and significant influence on 

children’s anthropometric measures. Other controls—income and distance to a medical 

facility—do not show any statistically significant impact on child health.  

Similar to what we see in adult health, the estimates of the impacts of plant water 

become smaller and insignificant when using the village fixed effects. The bootstrap 

Hausman tests are performed and their p-values are all above 0.2, which provides 

evidence that the OLS and IV estimates are not statistically different.  In Table 22 I 

report results where I restrict the sample to the villages whose water treatment status 

                                                 
16

 In this study, children are defined as individuals aged from zero to 17. The regression results do not 
qualitatively change when I exclude infants aged from zero to two from the child sample.    
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changed during the survey period from 1989 to 2006 in order to explore the treatment 

effects on child health in those villages. As a result, around 3,000 children are included. 

None of the estimated coefficients are significant, which might be due to the limited 

sample size.  

Next, I use same the instrumental variables strategy as I used for adults in order to 

deal with the potential endogenous placement of the water treatment plants—the 

instrument is the indicator for whether the village is in a non-flat area. The first stage 

regression results of program assignment for the child sample are presented in Table 23, 

and not surprisingly, the coefficient on the instrument (-0.431) is very similar to that in 

the first stage for the adult sample. The estimates of the relationship between other 

covariates and the treatment variable are similar to those in Table 3. For example, 

children in the treated villages tend to have better-educated parents, to live in a family 

that is less likely to raise livestock and to live closer to a medical facility.  The F-statistic 

on the instrument is 17.36 and, therefore, finite sample bias resulting from a weak 

instrument employed in an IV regression is not a concern. Table 24 presents the results of 

OLS and IV strategies and for different outcome variables of children. All standard errors 

are clustered at the village level. The IV estimates for children’s anthropometric 

measures are almost twice as large as the OLS estimates: 0.754 kg/m in weight-for-

height and 2.489 cm in height, while the OLS estimates are 0.446 kg/m in weight-for-

height ratio and 0.962 cm in height. While both are statistically significant at the one 

percent level, the treatment effect on children’s illness incidence remains insignificant. 

The estimated coefficients on other covariates in the IV specifications are comparable to 

the ones in the OLS specifications. Considering, as discussed in the adult analysis, the 
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potential biases generated by the OLS and IV estimation, I take the results as the lower 

and upper bounds of the true treatment effects of the drinking water improvement 

program.  

To summarize, the predicted gains of plant water on children are 0.446 to 0.754 

kg/m in weight-to-height and 0.962 to 2.489 cm in height. In addition, the children’s 

estimated health benefit in weight is 0.932 to 1.400 kg. Kanani and Poojara (2000) 

present epidemiological evidence that adolescent Indian girls aged 10 to 18 gain 0.83 kg 

with three months of iron and folic acid supplementation. In the meta-analysis by Brown 

et al. (2002), a set of studies shows that the height gain of children under 10 years old 

varies from -0.26 to 1.70 cm after treatment with zinc supplements for 6.8 months, on 

average. Habicht et al. (1995) find that in Guatemala, three-year zinc treatment had a 

cumulative effect of up to 2.5 cm on the height of children under the age of three. Thus, 

we can see that the estimated impacts of the water improvement program in this 

dissertation are in line with studies in the areas of nutrition and public health.  

In Table 25, I include the age-square and income-square as control variables to 

see if they are crucial determinants in this context. The estimates are very similar to the 

baseline ones, as we see in the results for adults. For example, the OLS coefficient for 

children’s height with the nonlinear terms as controls is 1.043 cm, and the IV coefficient 

is 2.241 cm, similar to the results without these controls (0.962 and 2.489 cm). Therefore, 

it can be concluded that the exclusion of nonlinear terms of the age and income variables 

does not affect the estimation of the treatment effects of plant water.   

 The OLS and IV estimates both support the positive impacts of the water 

infrastructure program on child health, and the estimation from the IV specifications 
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demonstrates a stronger influence than from OLS specifications. In the following 

sections in this chapter, I follow the structure of Chapter 3, checking the robustness of 

baseline estimates and exploring heterogeneous treatment effects across different 

demographic groups for children.  

 

4.2 Robustness Check 

4.2.1 Sensitivity analysis with regard to the definition of the treatment variable  

First, I compare the regression results with different levels of definitions of 

treatment variables—the household level and the village level (water plant), in order to 

see whether the defined treatment variable reflects the actual program implementation 

because IV can correct for bias caused by omitted variables and measurement errors. In 

fact, 14.8 percent of households in the child sample have different values of those two 

variables. Table 26 presents the coefficients of the treatment variables at the household 

and village levels. We see that the regression results are very comparable when using 

different levels of treatment variables, regardless of whether they are derived from the 

OLS or the IV estimation. 

For example, when children’s weight-for-height is the outcome variable, the OLS 

estimates of the household-level and the village-level treatment variables are 0.465 and 

0.446 kg/m, respectively, and the IV estimates of these two variables are 0.749 and 0.754 

kg/m. For children’s height, the OLS estimates are 0.875 cm at the household level and 

0.962 cm at the village level, while the IV estimates are 2.708 and 2.489 cm, 
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respectively. Thus, we can conclude that the definition of the treatment variable is 

reasonable in terms of reflecting reality.  

Table 27 shows regression results with different percentage increases used to 

detect the timing of program implementation. The cutoffs and the treatment variables 

defined by those cutoffs are the same as the ones used in the analysis for adults. I do 

observe that the impacts estimated in the IV specifications become slightly stronger when 

a stricter criterion is applied. For example, the IV estimates on children’s weight-for-

height ratio and height change from 0.638 to 0.874 kg/m and from 2.108 to 2.878 cm, 

respectively. Moreover, the OLS estimates do not show such a pattern. For example, the 

coefficient of the treatment variable defined by a 10 percent cutoff for children’s weight-

for-height is 0.485 kg/m, while one defined by a 30 percent cutoff is 0.407 kg/m. In 

terms of significance, the estimates do not change across these numbers, except for 

children’s height with both the OLS and IV specifications. Nevertheless, we can 

conclude that the benefits of the drinking water infrastructure program to child health are 

also relatively stable and robust across different definitions of the treatment variable. 

 

4.2.2 Omitted Variable Bias—Other Infrastructure Construction 

 In this section, I address a similar consideration that some possible omitted 

variables may exist in the baseline regression. How the sanitation environment could 

affect the way that drinking water improvement works is especially important when we 

consider child health since children are more vulnerable to diarrheal diseases or diseases 

caused by microorganisms. In Table 28, I control for households’ toilet types and 

sanitation environment (excreta around households’ dwellings as evaluated by 
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interviewers) in the regressions. Overall, both the OLS and IV estimates for children’s 

anthropometric indicators fall to almost half of the baseline estimates. And they are all 

short of statistical significance except for the OLS estimate on weight-for-height ratio. 

The health gain decreases from 0.446 to 0.286 kg/m in weight-for-height and from 0.962 

to 0.500 cm in height in the OLS regressions, and from 0.754 to 0.458 kg/m and from 

2.489 to 1.771 cm, respectively, in the IV regressions.  

As discussed in Section 3.2.3, the weakness of the estimates when controlling for 

sanitation variables does not necessarily imply that the baseline estimates of the impacts 

of the water improvement program are overstated. Sanitation improvement, whether due 

to a government program or to households’ own decisions, may rely on the availability of 

plant water or piped water. Therefore, the change in the estimates here might be due to 

the regressions “over-controlling” for the impact evaluation of plant water through the 

inclusion of the sanitation variables. Furthermore, when the sanitation variables are 

included as controls, the amounts of the reductions in the magnitudes of estimated 

treatment effects imply the extent to which microorganisms influence health through 

drinking water. Not surprisingly, the changes in coefficients of plant water are relatively 

larger for child health than for adult health, which suggests that children are more 

vulnerable to bacteria and germs in drinking water.  

In Table 29, I add the information of some other infrastructure construction to see 

if the baseline estimates for child health are robust. Here new control variables include 

roads (dirt, stone or paved), schools (distances to closest primary and middle schools), 

accessibility to trade areas, and telephone and electricity availability. The OLS estimates 

(0.427 kg/m for weight-for-height and 0.759 cm for height) are similar to the baseline 
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estimates (0.446 kg/m for weight-for-height and 0.962 cm for height). The IV estimate 

for children’s weight-for-height stays at the same magnitude (0.761 kg/m) and significant 

at the 10 percent level, while the estimate for children’s height drops a little, from 2.489 

to 2.178 cm, and is not significant (its p-value is still close to 0.1) now. Therefore, I can 

conclude that other infrastructure conditions only show secondary influences on health in 

this context and omitting them does not change my estimate substantially.  

 

4.2.3 Channels Clarified—Safe Drinking Water versus Water Accessibility (Quality 

versus Quantity) 

In order to explore the channel through which this program benefits child 

health—water quality or water quantity, I again run regressions, including water access 

as a control variable, and the results are presented in Panel A of Table 30. Here the 

variable—water access—is constructed in the same way as in the adult analysis. We can 

see that the estimated effects of water improvement generated by the program stay very 

similar to the baseline estimates: 0.457 versus 0.446 kg/m in weight-for-height and 0.943 

versus 0.962 cm in height from the OLS estimation; and 0.849 versus 0.754 kg/m in 

weight-for-height and 2.589 versus 2.489 cm in height from the IV estimation. And they 

are also significant, with the exception of the IV estimate on child height, while water 

access does not generate any statistically significant influences. In Panel B, we restrict 

the sample to children whose households always have optimal water access. For them, 

the health gain from plant water becomes slightly greater and remains significant. For 

instance, the OLS coefficient of the treatment for children’s weight-for-height increases 

from 0.446 to 0.508 kg/m, and the coefficient for height rises from 0.962 to 1.443 cm. 
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This change may reflect only the treatment effect for this sample, but the similarity 

between these estimates and the baseline ones again suggests that the benefits of this 

program come from the improvement of water quality. In Panel C of Table 30, I also 

focus on the children under age 10 in the first three waves that Mangyo (2008) studies, 

and consider how water improvement affects their weight, height and BMI. The results 

suggest that children gained 0.560kg in weight and 1.380 cm in height in the OLS 

regressions and 1.825 kg and 2.214 cm in the IV regressions, after plant water is 

accessible (although only the OLS results are statistically significant). These estimated 

benefits are much more pronounced than those of water access. For children who always 

have optimal water access, the health gain from having access to water from a treatment 

plant is almost double as shown in Panel D of Table 30.  

Next, I attempt to replicate Mangyo’s (2008) study in which children are less than 

10 years old and show up in all of the first three waves. The sample size I obtain is 

slightly different from what he uses: 904, 1007, and 708 children for height, weight, and 

BMI as outcome variables, respectively, as compared to 1094, 1192 and 816 in his 

sample. The regressions results for this replication sample are presented in Table 31. For 

the very limited sample, plant water generates effects that are comparable to the full 

sample results, while water access does not. For example, the OLS estimates are 0.466 kg 

for weight and 1.622 cm for height, and the IV estimates are 1.937 kg and 3.426 cm. 

However, when restricting the sample to observations with optimal water access in all 

three waves, the sample size shrinks by half, and the almost all of the estimates are 

doubled in magnitude and statistically significant.  
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4.3 Heterogeneous Treatment Effects 

In this section, I explore heterogeneous treatment effects on children across 

income and parents’ educational groups. The sample is divided into three groups (poor, 

middle and rich) according to the village’s average income in the first survey year. Table 

32 presents the estimates across these income groups in Panel A. The estimates are 

sometimes imprecise. For example, the IV coefficient on illness incidence for the low 

income group is positive (0.049) and statistically significant, while the coefficients for 

the middle and high income groups are negative and insignificant. When using 

anthropometric measures (weight-for-height and height) as the outcome variables, the 

program has a significant impact only on poor children. Children in low income villages 

shows, on average, a 0.739 kg/m gain in weight-for-height and a 2.723 cm increase in 

height from the OLS estimation and 1.284 kg/m and 3.251 cm from the IV estimation 

after the water infrastructure program covers these villages.  

Next, I test whether the impact of this program on child health is a function of 

their parents’ educational attainment. Panels B and C of Table 32 present the treatment 

effects across mothers’ and fathers’ education groups, respectively. We can see that the 

estimates stay stable across mothers’ educational groups, although they are sometimes 

imprecise. The estimated impact on children’s weight-for-height is quite similar: around 

0.4 kg/m for OLS estimates and around one kg/m for IV estimates when mothers’ highest 

education varies from illiterate (0.424 and 0.970 kg/m), to primary school (0.438 and 

0.954 kg/m), to lower middle school (0.483 and 0.878 kg/m) to upper middle school or 

above (0.486 and 1.198 kg/m). However, if we look at the same estimates across fathers’ 

educational groups, they vary across a larger range. This can be explained by the findings 
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from many other empirical studies that mothers’ education plays a more essential role 

than fathers’ in child growth. However, this may be also due to the fact that for one third 

of children in my sample their fathers are missing and that I use the education of the 

oldest male in their households as a substitute.  
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Chapter 5 

Conclusion 

Providing people with safe drinking water is one of the most important health-

related infrastructure programs in the world. The most prevalent water pollutants in the 

world—microorganisms—can be partially eliminated by the Chinese tradition of 

drinking boiled water and eating cooked food. As a result, chemical impurities likely are 

the main threat to drinking water quality in China. Such impurities are a result of 

geography—high concentration of chemical elements in natural soil and rocks—and 

human activities due to vast disposal of industrial waste and excess usage of fertilizers 

during rapid industrialization.  

 Since the 1980s, the Chinese government has implemented a water improvement 

program in rural areas, constructing water plants and pipeline systems to provide people 

with safe drinking water. Those water plants install equipment and employ clean water 

technology to eliminate contaminants in drinking water, and the pipeline systems deliver 

treated water to households directly. It has been almost thirty years since the government 

launched the drinking water improvement program, which now covers around half of 

China’s rural population. The impact of this program on people’s health has important 

policy implications.   

My dissertation uses the CHNS data to estimate the impact of the drinking water 

improvement program in rural China on the health of adults and children. Here two 

estimation strategies are employed: Ordinary Least Squares strategy with fixed effects 
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and Instrumental Variables. Given that the program may have been launched first in 

areas having unsafe drinking water, the impacts estimated from the OLS specifications 

may be under-estimated. Moreover, the IV estimates when using villages’ topography as 

the instruments for the possible endogenous program placement may imply the upper 

bounds of the treatment effect. This may be due to upward bias caused by other 

unobservable conditions that are better in villages in flat areas. Thus, in this study 

combining these two sets of estimates can help us identify the range where the treatment 

effects are located.   

The estimated effects of plant water are that the illness incidence of adults 

decreases by 10 to 50 percent, and that their weight-for-height increases by 0.835 to 

2.580 kg/m. Adults also self-evaluate their own health to be better when they have access 

to treated plant water. Children’s weight-for-height and height rise by 0.446 to 0.754 

kg/m and 0.962 to 2.489 cm, respectively, after the program is launched. These health 

gains for adults and children are consistent with studies in the areas of nutrition and 

public health. Given the fact that some villages have only recently been covered, the 

long-term benefits to health might be even greater.  

 I show that the estimated impacts are fairly robust and are not driven by 

measurement errors, omitted variable bias from obvious candidates, or attrition bias. The 

OLS and IV estimates are not sensitive to the definitions of the treatment variable, 

regardless of whether it is defined at the household or the village level and what cutoffs 

are used. Inclusion of sanitation reduces the program impacts but sanitation may itself be 

endogenous to water treatment plan access. Adding villages’ other infrastructure 
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conditions as controls barely changes the coefficients of plant water, implying that these 

conditions do not have first-order influences on health.  

I also confirm that sample attrition does not sort on the treatment, and the inverse 

probability weighted estimates are quite similar to the results from the unweighted 

specifications. Finally, the mechanism through which the program takes effect is via 

improved water quality rather than simply via increased access to water. Placebo tests 

show that plant water decreases the illness incidence of water-related diseases among 

adults, but not of other diseases that are less likely to be caused by unsafe drinking water. 

Furthermore, this water program does not generate any statistically significant effects on 

adults’ height, supporting the validity of the estimation strategies employed in this study. 

The heterogeneous treatment effects across income and educational groups are 

sometimes imprecise, but are qualitatively similar. This is consistent with the fact that the 

main threats to drinking water quality in China are chemical impurities. 

My results clearly indicate that the construction and implementation of water 

plants in rural China has resulted in short-term health benefits for adults and children. To 

the extent that these water treatment plants are costly to construct, and to the extent that 

we are still only able to see short-run benefits on health, a full analysis of the health 

benefits awaits future research. 
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Figure 1 Coverage of Water Plant versus Water Access from 1989 to 2006 (CHNS) 
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Figure 2 Proportions of Households Violating the Standards of Drinking Water in China 
in 2006 

 

 
 
Source: Zhang et.al., “Current Situation Analysis on China Rural Drinking Water Quality”, Journal of 
Environment and Health, Jan 2009, 26(1) 
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Figure 3 Map of Population Drinking High Fluoride Water in China in 2006 
 

 
 

Source: Chinese National Health Statistics, 2007 
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Figure 4 Fraction of Households reporting plants as water source in a village 
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Figure 5 Coefficients of the Treatment’s Leads and Lags 
 

 
Notes: The estimated coefficients of the treatment’s leads and lags are drawn in solid lines and their 95 
percent confidence intervals are in dash lines. If time distance is greater than 5 years, I code the leads and 
lags as -5 or 5 depending on it’s before or after program implementation. 
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Figure 6 Kernel Densities of the Treatment Variables with Different Cutoffs  
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Figure 7 Age Distribution of Missing Observations (CHNS) 
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Table 1 the Cost of the Construction of Water and Sewage Systems 
 

 water pipeline 
system 

deep well pump rainwater 
harvesting 

system 

household 
sewage setup 

public and 
school sewage 

setup 
Cost <$30 per capita $5-$10 per 

capita 
$50-$80 per 

capita 
$90-$120 per 

setup 
$500-$850 per 

sitting 
Source: Meng et al (2004) “water supply and sanitation environment in rural China: promote service to the 
poor,” Poverty Reduction Conference in Shanghai, China (2004).  
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Table 2 Descriptive Statistics of Adults 
 

 All Treatment Control T C−∆  
Variables (1) (2) (3) (4) 

Illness in last four weeks 0.090 0.088 0.091 -0.003 
(0.286) (0.284) (0.287) (0.008) 

Self-reported health status 
(1=poor, 2=fair, 3=excellent) 

1.598 1.616 1.589 0.027 
(0.603) (0.597) (0.606) (0.024) 

Weight-for-height 
(kg/m) 

35.485 35.810 35.347 0.463 
(5.640) (5.791) (5.568) (0.385) 

Age 41.627 43.186 40.968 2.218*** 
 (15.740) (16.307) (15.447) (0.482) 

Female 0.505 0.510 0.504 0.006 
(0.500) (0.500) (0.500) (0.004) 

Educational attainment 
(years) 

6.267 6.820 6.033 0.787*** 
(3.947) (4.110) (3.853) (0.227) 

Married 0.770 0.761 0.773 -0.012 
 (0.421) (0.427) (0.419) (0.013) 

Household size 4.566 4.497 4.595 -0.098 
(1.688) (1.754) (1.658) (0.134) 

Log household annual income in 
first wave 

8.699 8.805 8.654 0.151** 
(1.014) (0.987) (1.023) (0.073) 

Whether households raise 
livestock 

0.503 
(0.500) 

0.346 
(0.476) 

0.570 
(0.495) 

-0.224*** 
(0.057) 

Distance to the nearest medical 
facility (km) 

0.364 0.292 0.394 -0.102 
(0.930) (0.529) (1.053) (0.079) 

Observations 39517 11738 27779  
Notes: Column (1) displays sample means and standard deviations (in parentheses) for adult observations 
in all waves, and Column (2) and (3) by their treatment status. The mean differences between column (2) 
and (3) and their standard errors in parentheses (clustered at the village level) are shown in column (4). *** 
p<0.01, ** p<0.05, * p<0.1 
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Table 3 Descriptive Statistics of Children 
 

 All Treatment Control T C−∆  
Variables (1) (2) (3) (4) 

Illness in last four weeks 0.066 
(0.247) 

0.057 
(0.231) 

0.069 
(0.253) 

-0.012 
(0.008) 

Weight-for-height 
(kg/m) 

21.429 21.785 21.301 0.484 
(7.067) (7.107) -7.048 (0.379) 

Height (cm) 124.338 126.466 123.570 2.896** 
(27.767) (27.876) -27.688 (1.272) 

Age 8.879 9.150 8.785 0.365** 
(5.020) (4.971) -5.033 (0.166) 

Female 0.466 0.472 0.464 0.008 
(0.499) (0.499) -0.499 (0.017) 

Father’s education 
(years) 

7.365 7.689 7.253 0.436* 
(3.405) (3.544) -3.349 (0.234) 

Mother’s education 
(years) 

5.755 6.447 5.514 0.933** 
(3.890) (3.997) -3.824 (0.423) 

Household size 4.855 4.817 4.868 -0.051 
(1.511) (1.590) -1.482 (0.142) 

Log household annual income 
in first year 

8.660 8.785 8.617 0.168* 
(1.010) (1.003) -1.009 (0.087) 

Whether households raise 
livestock 

0.543 0.406 0.591 -0.185*** 
(0.498) (0.491) -0.492 (0.063) 

Distance to the nearest medical 
facility (km) 

0.372 0.329 0.386 -0.057 
(0.927) (0.556) -1.024 (0.091) 

Observations 14494 3737 10757  
Notes: Column (1) displays sample means and standard deviations (in parentheses) for child observations 
in all waves, and Column (2) and (3) by their treatment status. The mean differences between column (2) 
and (3) and their standard errors in parentheses (clustered at the village level) are shown in column (4). *** 
p<0.01, ** p<0.05, * p<0.1 



 

 73 
 

Table 4 Descriptive Statistics of Infrastructure Variables 
 

Variables Little excreta Some 
excreta 

Much excreta No bathroom Flush toilet 

Adult 
Sample 

0.293 0.181 0.013 0.017 0.176 
(0.444) (0.385) (0.112) (0.128) (0.381) 

Child 
Sample 

0.298 0.213 0.013 0.017 0.142 
(0.458) (0.410) (0.114) (0.130) (0.349) 

      
 Non-flush toilet Open pit Dirt road Stone road Distance to the 

nearest primary 
school (km) 

Adult 
Sample 

0.160 0.625 0.263 0.292 0.291 
(0.367) (0.484) (0.440) (0.455) (0.855) 

Child 
Sample 

0.145 0.669 0.313 0.291 0.281 
(0.352) (0.471) (0.464) (0.454) (0.884) 

      
 Distance to the 

nearest middle 
school (km) 

Trade area 
near the 
village 
(yes/no) 

Telephone 
availability in 

the village 
(yes/no) 

Electricity 
availability in 

the village 
(yes/no) 

 

Adult 
Sample 

1.831 0.264 0.719 0.983  
(4.673) (0.441) (0.450) (0.131)  

Child 
Sample 

1.834 0.237 0.682 0.981  
(4.262) (0.425) (0.466) (0.138)  

      
Notes: The table displays sample means of the variables referring to households’ infrastructure conditions 
for adult and child sample, respectively. The standard deviations are in parentheses. Households’ sanitation 
environment evaluated by the interviewers is divided into four categories: no excreta (omitted), little 
excreta, some excreta and much excreta. Five types of households’ toilet facilities are no bathroom, flush 
toilet (in- and outside house), non-flush toilet (in- and outside house), open pit (cement and earth) and other 
(omitted). Road conditions around the villages are described by three categories: dirt, stone and paved 
(omitted). 
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Table 5 Mean Differences between Characteristics of Treated and Untreated Villages 
 

 Log 
household 

annual 
income 

Adults’ 
educational 
attainment 

Proportion of 
female 

Distance to 
nearest 
medical 

facility (km) 

Paved road Distance to a 
middle 

school (km) 

 (1) (2) (3) (4) (5) (6) 
Mean 

differences 
0.042 0.060 -0.003 -0.362* 0.054 -0.709 

(0.098) (0.069) (0.007) (0.186) (0.084) (0.880) 
Notes: the means of the treated villages are the average of their characteristics in five years before the 
treatment. The mean differences are adjusted for year fixed-effects and the standard errors in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1. 
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Table 6 Treatment Effects on Adults’ Health Status 
 

Dependent Variables Illness in last four 
weeks 

Self-reported health 
status 

Weight-for-height 

 (1) (2) (3) (4) (5) (6) 
Water plant  -0.010* -0.020 0.027 0.030 0.835*** 0.279 

(0.006) (0.012) (0.016) (0.067) (0.174) (0.199) 
Age 0.003*** 0.003*** -0.011*** -0.010*** -0.003 -0.013*** 

(0.000) (0.000) (0.000) (0.000) (0.005) (0.004) 
Female 0.010*** 0.009** -0.063*** -0.062*** -1.780*** -1.906*** 

 (0.004) (0.004) (0.009) (0.009) (0.114) (0.115) 
Educational attainment 

(years) 
-0.001** -0.002** 0.014*** 0.014*** 0.087*** 0.033** 
(0.001) (0.001) (0.002) (0.002) (0.016) (0.015) 

Married -0.005 -0.004 0.057*** 0.058*** 1.437*** 1.524*** 
(0.004) (0.004) (0.012) (0.012) (0.122) (0.117) 

Household size -0.005*** -0.005*** 0.009** 0.009** -0.059** -0.057** 
(0.001) (0.001) (0.004) (0.004) (0.029) (0.028) 

Log income in first year -0.005** -0.005** 0.017*** 0.015*** 0.215*** 0.210*** 
(0.002) (0.002) (0.005) (0.005) (0.058) (0.056) 

Livestock 0.004 0.011** -0.010 -0.012 -0.854*** -0.186** 
(0.005) (0.004) (0.012) (0.013) (0.109) (0.080) 

Kms to the nearest medical 
facility 

-0.000 0.001 -0.001 -0.011 -0.018 0.000 
(0.004) (0.004) (0.011) (0.012) (0.064) (0.048) 

Constant 0.088*** 0.150*** 1.708*** 1.664*** 34.988*** 37.749*** 
(0.026) (0.026) (0.065) (0.092) (0.704) (0.626) 

County fixed effect Yes No Yes No Yes No 
Village fixed effect No Yes No Yes No Yes 

Observations 39,278 39,278 21,308 21,308 33,116 33,116 
R-squared 0.059 0.069 0.178 0.194 0.203 0.237 

P value  
(bootstrap Hausman test) 

0.390 0.963 0.024 

Notes: each column lists coefficient estimates with standard errors in parentheses (clustered at the village 
level) from separate regressions of a health outcome. In addition to the covariates listed above, each 
regression also controls for year fixed-effects. The bootstrap Hausman tests are based on 1000 bootstrap 
replications. *** p<0.01, ** p<0.05, * p<0.1 
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Table 7 Treatment Effects on Adults’ Health Status in the Restricted Sample 
 

Dependent Variables Illness in last four weeks Self-reported health status Weight-for-height 
(1) (2) (3) (4) (5) (6) 

Water plant  -0.021* -0.027 0.059 0.035 0.727*** 0.404* 
 (0.010) (0.017) (0.037) (0.075) (0.240) (0.213) 

Constant 0.145*** 0.170*** 1.731*** 1.707*** 35.032*** 35.074*** 
 (0.043) (0.044) (0.134) (0.146) (1.443) (1.384) 

County fixed effect Yes No Yes No Yes No 
Village fixed effect No Yes No Yes No Yes 

Observations 9,248 9,248 4,632 4,632 7,782 7,782 
R-squared 0.057 0.062 0.183 0.192 0.233 0.244 

Notes: the other covariates controlled for in each regression are the same as ones in Table 6. The standard 
errors in parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 8 Assignment to Treatment for Adult Sample—OLS (First Stage)  
 

Treatment Water plant 
 (1) 

Non-flat -0.419*** 
 (0.101) 

Age 0.003*** 
 (0.001) 

Female 0.025*** 
 (0.007) 

Educational attainment 
(years) 

0.012*** 
(0.003) 

Married -0.021** 
 (0.009) 

Household size 0.001 
 (0.004) 

Log income in first year 0.005 
 (0.009) 

Livestock -0.182*** 
 (0.038) 

Kms to the nearest medical facility -0.043*** 
 (0.016) 

Constant 0.449 
 (0.283) 

Observations 35,752 
R-squared 0.380 

F-stat on instruments 17.29 
Prob>F 0.0001 

Notes: the regression also controls for county and year fixed-effects. The standard errors in parentheses are 
clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 9 Treatment Effects of Water Program on Adults’ Health Status 
 

Dependent Variables Illness in last four weeks Self-reported health 
status 

Weight-for-height 

 OLS IV OLS IV OLS IV 
 (1) (2) (3) (4) (5) (6) 

Water plant  -0.010* -0.045** 0.027 0.144** 0.835*** 2.580*** 
 (0.006) (0.022) (0.016) (0.065) (0.174) (0.756) 

Age 0.003*** 0.003*** -0.011*** -0.011*** -0.003 -0.012** 
(0.000) (0.000) (0.000) (0.001) (0.005) (0.006) 

Female 0.010*** 0.010** -0.063*** -0.067*** -1.780*** -1.762*** 
(0.004) (0.004) (0.009) (0.011) (0.114) (0.121) 

Educational attainment 
(years) 

-0.001** -0.001 0.014*** 0.012*** 0.087*** 0.057*** 
(0.001) (0.001) (0.002) (0.002) (0.016) (0.021) 

Married -0.005 -0.007 0.057*** 0.060*** 1.437*** 1.435*** 
(0.004) (0.004) (0.012) (0.013) (0.122) (0.132) 

Household size -0.005*** -0.005*** 0.009** 0.008* -0.059** -0.063** 
(0.001) (0.001) (0.004) (0.004) (0.029) (0.031) 

Log income in first year -0.005** -0.005** 0.017*** 0.018*** 0.215*** 0.179*** 
(0.002) (0.002) (0.005) (0.005) (0.058) (0.062) 

Livestock 0.004 -0.006 -0.010 0.014 -0.854*** -0.414** 
(0.005) (0.007) (0.012) (0.018) (0.109) (0.204) 

Kms to the nearest 
medical facility 

-0.000 -0.001 -0.001 -0.003 -0.018 0.054 
(0.004) (0.004) (0.011) (0.014) (0.064) (0.086) 

Constant 0.088*** 0.096*** 1.647*** 1.667*** 34.988*** 35.177*** 
(0.026) (0.029) (0.063) (0.076) (0.704) (0.783) 

Observations 39278 35538 21308 17890 33116 29763 
R-squared 0.059 0.058 0.178 0.172 0.203 0.183 

Notes: each regression also controls for county and year fixed-effects. The standard errors in parentheses 
are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 10 Treatment Effects on Adult Health with and without Controlling for Nonlinear 
Terms of Age and Income 

 
Dependent 
Variables 

Illness in last four weeks Self-reported health status Weight-for-height 

 Without With Without With Without With 

 (1) (2) (3) (4) (5) (6) 

 OLS Estimates 

Water plant -0.010* -0.011* 0.027 0.028* 0.835*** 0.864*** 

(0.006) (0.006) (0.016) (0.016) (0.174) (0.175) 

 IV Estimates 

Water plant -0.045** -0.045** 0.144** 0.142** 2.580*** 2.630*** 

(0.022) (0.022) (0.065) (0.064) (0.756) (0.768) 

Notes: the nonlinear terms are age2 and log household income in the first year2. The other covariates in 
each regression are the same as ones in Table 9. The standard errors in parentheses are clustered at the 
village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 11 Regression Results with Treatment Variables at Different Levels 
 

Dependent 
Variables 

Illness in last four weeks Self-reported health status Weight-for-height 

 OLS IV OLS IV OLS IV 

 (1) (2) (3) (4) (5) (6) 

Household-level 
Treatment 

-0.011** -0.047** 0.029* 0.131** 1.027*** 2.683*** 

(0.005) (0.021) (0.016) (0.057) (0.124) (0.643) 

Village-level 
Treatment  

(water plant) 

-0.010* -0.045** 0.027 0.144** 0.835*** 2.580*** 

(0.006) (0.022) (0.016) (0.065) (0.174) (0.756) 

Notes: the other covariates in each regression are the same as ones in Table 9. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 12 Treatment Effects on Adult Health across Different Cutoffs  
 

 OLS Estimates IV Estimates 

 Illness in last 
four weeks 

Self-reported 
Health Status 

Weight-for-
height 

Illness in last 
four weeks 

Self-reported 
Health Status 

Weight-for-
height 

Cutoffs (1) (2) (3) (4) (5) (5) 

10% -0.012** 0.010 1.087*** -0.036** 0.108** 2.077*** 

(0.006) (0.017) (0.176) (0.016) (0.048) (0.463) 

15% -0.006 0.011 1.035*** -0.041** 0.130** 2.415*** 

(0.006) (0.017) (0.186) (0.020) (0.059) (0.610) 

20% 
(water plant) 

-0.010* 0.027 0.835*** -0.045** 0.144** 2.580*** 

(0.006) (0.016) (0.174) (0.022) (0.065) (0.756) 

25% -0.013** 0.027* 0.751*** -0.054** 0.180** 3.107*** 

(0.006) (0.016) (0.181) (0.026) (0.079) (1.133) 

30% -0.009 0.021 0.772*** -0.054** 0.181** 3.111*** 

(0.006) (0.016) (0.185) (0.026) (0.080) (1.134) 

Notes: the other covariates in each regression are the same as ones in Table 9. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 13 Treatment Effects on Adult Health Controlling for Households’ Sanitation 
Facilities and Environment 

 
  OLS Estimates IV Estimates 

Variables  Illness in 
last four 
weeks 

Self-
reported 
Health 
Status 

Weight-for-
height 

Illness in 
last four 
weeks 

Self-
reported 
Health 
Status 

Weight-for-
height 

        
  (1) (2) (3) (4) (5) (6) 

Water plant   -0.008 0.023 0.467*** -0.042 0.160** 2.068*** 
(0.006) (0.017) (0.153) (0.027) (0.081) (0.759) 

Sanitation 
Environment 

Little excreta 0.006 -0.014 -0.397*** 0.004 -0.005 -0.330*** 
(0.004) (0.015) (0.092) (0.005) (0.017) (0.112) 

Some excreta 0.021*** -0.042** -0.360*** 0.018*** -0.027 -0.245* 
(0.006) (0.017) (0.110) (0.006) (0.018) (0.130) 

Much excreta 0.060*** -0.224*** -0.355 0.062*** -0.273*** -0.304 
(0.018) (0.064) (0.273) (0.019) (0.073) (0.367) 

Toilet type No bathroom -0.011 0.048 0.154 -0.005 0.009 0.080 
(0.015) (0.070) (0.584) (0.015) (0.072) (0.659) 

Flush toilet -0.013 0.105 0.885*** -0.004 0.053 0.331 
(0.013) (0.066) (0.318) (0.014) (0.067) (0.407) 

Non-flush 
toilet 

0.003 0.077 0.243 0.006 0.054 0.073 
(0.013) (0.065) (0.324) (0.013) (0.063) (0.362) 

Open pit -0.007 0.094 -0.520* -0.007 0.083 -0.539* 
(0.012) (0.063) (0.301) (0.012) (0.060) (0.312) 

Constant  0.079*** 1.573*** 36.011*** 0.090*** 1.541*** 35.960*** 
(0.028) (0.089) (0.716) (0.031) (0.094) (0.780) 

 Observations 38,672 20,943 32,626 34,992 17,573 29,322 
 R-squared 0.061 0.180 0.211 0.060 0.172 0.194 

Notes: the omitted group of sanitation environment is “no excreta” and that of toilet types is “other”. 
The other covariates in each regression are the same as ones in Table 9. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 14 Treatment Effects on Adult Health Controlling for Other Infrastructure 
 

 OLS Estimates IV Estimates 
 Illness in last 

four weeks 
Self-reported 
Health Status 

Weight-for-
height 

Illness in last 
four weeks 

Self-reported 
Health Status 

Weight-for-
height 

Control variables (1) (2) (3) (4) (5) (6) 
Water plant 

 
-0.012* 0.033** 0.646*** -0.049* 0.176** 2.381*** 
(0.006) (0.017) (0.173) (0.025) (0.076) (0.820) 

Dirt roads around 
villages 

-0.002 0.011 -0.381*** -0.007 0.032 -0.173 
(0.005) (0.022) (0.135) (0.006) (0.029) (0.187) 

Stone roads around 
villages 

-0.004 0.028 -0.511*** -0.008 0.047** -0.229 
(0.005) (0.017) (0.101) (0.006) (0.023) (0.166) 

Kms to the nearest 
primary school 

-0.002 0.003 -0.013 -0.002 0.005 -0.001 
(0.002) (0.010) (0.045) (0.003) (0.014) (0.055) 

Kms to the nearest 
middle schools 

0.000 -0.001 -0.021* -0.000 0.000 -0.009 
(0.000) (0.001) (0.011) (0.000) (0.001) (0.009) 

Trade areas nearby -0.000 0.013 0.229** -0.000 -0.002 0.129 
(0.007) (0.017) (0.109) (0.008) (0.024) (0.150) 

Telephone 
availability 

0.002 -0.024 0.273** 0.005 -0.049* 0.031 
(0.006) (0.022) (0.126) (0.007) (0.026) (0.160) 

Electricity -0.014 -0.018 0.266 -0.018 0.048 0.670* 
(0.014) (0.032) (0.368) (0.014) (0.058) (0.361) 

Constant 0.104*** 1.673*** 34.831*** 0.117*** 1.633*** 34.595*** 
 (0.032) (0.074) (0.775) (0.036) (0.101) (0.833) 

Observations 39,193 21,266 33,039 35,495 17,890 29,728 
R-squared 0.059 0.178 0.206 0.058 0.170 0.187 

Notes: the other covariates in each regression are the same as ones in Table 9. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 15 Treatment Effects Controlling for Water Accessibility  
 

 PANEL A: Controlling for Water Access 
 OLS Estimates IV Estimates 
 Illness in 

last four 
weeks 

Self-
reported 
Health 
Status 

Weight-for-
height 

Illness in 
last four 
weeks 

Self-
reported 
Health 
Status 

Weight-
for-height 

 (1) (2) (3) (4) (5) (6) 
Water plant -0.010 0.026 0.795*** -0.045* 0.136** 2.614*** 

 (0.006) (0.016) (0.177) (0.025) (0.066) (0.821) 
Water access -0.010 0.033 0.425*** -0.004 0.018 0.023 

 (0.007) (0.022) (0.155) (0.009) (0.027) (0.237) 
Observations 38,939 21,082 32,827 35,237 17,702 29,512 

R-squared 0.060 0.178 0.203 0.058 0.173 0.182 
 PANEL B: the Sample always with Optimal Water Access  
 OLS Estimates IV Estimates 
 Illness in 

last four 
weeks 

Self-
reported 
Health 
Status 

Weight-for-
height 

Illness in 
last four 
weeks 

Self-
reported 
Health 
Status 

Weight-
for-height 

 (1) (2) (3) (4) (5) (6) 
Water plant  -0.013* 0.019 0.996*** -0.036 0.168 3.154*** 

 (0.007) (0.018) (0.190) (0.035) (0.102) (0.772) 
Observations 23,944 13,881 20,395 20,900 11,061 17,660 

R-squared 0.061 0.172 0.190 0.061 0.163 0.172 
Notes: the other covariates in each regression are the same as ones in Table 9. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 16 Regression Results of Adults’ Probability of Leaving the Sample 
 

 (1) (2) (3) 
Water plant 

 
0.017 0.017 0.018 

(0.021) (0.021) (0.021) 
Age  -0.000 -0.005*** 

 (0.000) (0.001) 
Age2   0.000*** 

  (0.000) 
Female  0.003 0.002 

 (0.002) (0.002) 
Years of education  -0.000 -0.000 

 (0.001) (0.001) 
Married  -0.009** 0.011** 

 (0.004) (0.005) 
Household size  -0.007*** -0.008*** 

 (0.002) (0.002) 
Log income in first year  -0.004 -0.017 

 (0.003) (0.025) 
Log income in first year2   0.001 

  (0.001) 
Livestock  -0.024*** -0.023*** 

 (0.008) (0.008) 
Constant 0.447*** 0.530*** 0.658*** 

(0.019) (0.032) (0.109) 
Observations 39,517 39,517 39,517 

R-squared 0.162 0.164 0.166 
Notes: in addition, each regression controls for village and year fixed effects. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 17 Treatment Effects on Adult Health with and without Correcting for Data 
Attrition  

 
Dependent 
Variables 

Illness in last four weeks Self-reported health status Weight-for-height 

 without with without with without with 

  (1) (2) (3) (4) (5) (6) 

 OLS Estimates 

Water plant -0.010 -0.002 0.051** 0.051* 1.132*** 1.208*** 

 (0.008) (0.010) (0.025) (0.026) (0.238) (0.258) 

Observations 19,960 19,960 10,575 10,575 17,387 17,387 

R-squared 0.061 0.073 0.167 0.180 0.198 0.200 

 IV Estimates 

Water plant 
 

-0.035 -0.034 0.198** 0.223** 2.891*** 2.860*** 

(0.027) (0.027) (0.081) (0.086) (0.840) (0.818) 

Observations 19,587 19,587 10,352 10,352 17,077 17,077 

R-squared 0.072 0.061 0.175 0.160 0.189 0.187 

Notes: the other covariates in each regression are the same as ones in Table 9. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 18 Treatment Effects on Adults’ Illness Incidence 
 

Dependent Variables Water-related diseases Other kinds of diseases 
 OLS IV OLS IV 
 (1) (2) (3) (4) 

Water plant -0.005 -0.029** 0.002 0.002 
 (0.003) (0.014) (0.002) (0.004) 

Constant 0.043*** 0.045** 0.001 0.001 
 (0.016) (0.018) (0.009) (0.009) 

Observations 39,288 35,548 39,281 35,541 
R-squared 0.022 0.020 0.018 0.016 

Notes: the other covariates in each regression are the same as ones in Table 9. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 19 Treatment Effects on Adults’ Height 
 

VARIABLES Height Height 
 OLS IV 
 (1) (2) 

Water plant 0.363 9.441 
 (0.273) (5.914) 

Constant 168.526*** 168.858*** 
 (1.033) (2.545) 

Observations 18,500 16,700 
R-squared 0.546 0.432 

Notes: the other covariates in each regression are the same as ones in Table 9. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
 

 
 
 
  



 

 
 

89 
 

Table 20 Heterogeneous Treatment Effects on Adult Health across Income and 
Educational Groups  

 
PANEL A: Income Groups 

  OLS Estimates IV Estimates 

Income Group 

 Illness in 
last four 
weeks 

Self-
reported 
Health 
Status 

Weight-for-
height 

Illness in 
last four 
weeks 

Self-
reported 
Health 
Status 

Weight-for-
height 

 (1) (2) (3) (4) (5) (6) 
Poor Water plant -0.022** 0.006 0.779*** -0.013 0.152 2.489** 

 (0.011) (0.033) (0.275) (0.031) (0.102) (0.972) 
Middle Water plant -0.013 0.048* 0.391* -0.069** 0.220 -0.037 

 (0.008) (0.025) (0.229) (0.033) (0.151) (0.569) 
Rich Water plant -0.017 0.037 0.974** -0.070 0.233 3.498** 

 (0.015) (0.025) (0.371) (0.066) (0.234) (1.550) 
PANEL B: Adults’ Educational Groups  

  OLS Estimates IV Estimates 

Educational 
Groups 

 Illness in 
last four 
weeks 

Self-
reported 
Health 
Status 

Weight-for-
height 

Illness in 
last four 
weeks 

Self-
reported 
Health 
Status 

Weight-for-
height 

 (1) (2) (3) (4) (5) (6) 
Illiterate Water plant  -0.008 0.036 1.454*** -0.074* 0.160 1.437 

 (0.011) (0.037) (0.357) (0.038) (0.133) (0.989) 
Primary 
school 

Water plant  -0.003 0.013 1.036*** -0.046 0.199** 3.045*** 
 (0.010) (0.028) (0.228) (0.036) (0.090) (1.067) 

Lower middle 
school 

Water plant  -0.016*** 0.031* 0.568*** -0.026 0.101 3.434*** 
 (0.006) (0.017) (0.178) (0.020) (0.068) (1.063) 

Upper middle 
school 

Water plant  -0.010 0.042** 0.805*** -0.062* 0.098** 1.957** 
 (0.008) (0.018) (0.267) (0.032) (0.048) (0.911) 

Notes: the other covariates in each regression are the same as ones in Table 9. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 21 Treatment Effects on Child Health 
 

Dependent Variables Illness in last four weeks Weight-for-height Height 
 (1) (2) (3) (4) (5) (6) 

Water plant -0.004 0.015 0.446*** 0.355 0.962*** 0.318 
(0.007) (0.016) (0.129) (0.255) (0.352) (0.662) 

Age -0.006*** -0.006*** 1.190*** 1.185*** 5.488*** 5.468*** 
(0.001) (0.001) (0.012) (0.012) (0.024) (0.024) 

Female 0.002 0.003 -0.446*** -0.486*** -1.895*** -1.840*** 
(0.004) (0.004) (0.075) (0.074) (0.158) (0.151) 

Father’s education (years) -0.002*** -0.002*** 0.010 0.000 0.106*** 0.069** 
(0.001) (0.001) (0.014) (0.014) (0.028) (0.028) 

Mother’s education (years) -0.001 -0.000 0.022 0.006 0.189*** 0.122*** 
(0.001) (0.001) (0.015) (0.015) (0.030) (0.028) 

Household size -0.003 -0.003 0.034 0.043 -0.272*** -0.260*** 
(0.002) (0.002) (0.032) (0.033) (0.083) (0.081) 

Log income in first year -0.000 -0.002 0.052 0.088 0.088 0.065 
(0.003) (0.003) (0.060) (0.062) (0.113) (0.117) 

Livestock 0.005 0.004 -0.388*** -0.173* -0.705*** 0.108 
(0.005) (0.005) (0.096) (0.103) (0.224) (0.212) 

Kms to the nearest medical 
facility 

0.002 0.005 0.043 0.028 0.119 0.009 
(0.005) (0.006) (0.048) (0.054) (0.100) (0.085) 

Constant 0.276*** 0.306*** 12.272*** 15.354*** 77.893*** 79.906*** 
(0.039) (0.031) (0.744) (0.585) (1.364) (1.329) 

County fixed effect Yes No Yes No Yes No 
Village fixed effect No Yes No Yes No Yes 

Observations 14,394 14,394 12,141 12,141 12,075 12,075 
R-squared 0.066 0.081 0.710 0.718 0.927 0.930 

P value  
(bootstrap Hausman test) 

0.243 0.697 0.309 

Notes: each column lists coefficient estimates with standard errors in parentheses (clustered at the 
village level) from separate regressions of a health outcome. In addition to the covariates listed above, 
each regression also controls for year fixed-effects. The bootstrap Hausman tests are based on 1000 
bootstrap replications. *** p<0.01, ** p<0.05, * p<0.1 
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Table 22 Treatment Effects on Child Health in the Restricted Sample 
 

Dependent Variables Illness in last four weeks Weight-for-height Height 
 (1) (2) (3) (4) (5) (6) 

Water plant 0.001 -0.012 0.326 0.119 -0.127 -0.392 
 (0.015) (0.024) (0.269) (0.261) (0.597) (0.712) 

Observations 3,197 3,197 2,701 2,701 2,686 2,686 
R-squared 0.058 0.066 0.709 0.714 0.927 0.928 

Notes: the other covariates controlled for in each regression are the same as ones in Table 21. The 
standard errors in parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 23 Assignment to Treatment for Child Sample—OLS (First Stage) 
 

 Child Sample  
Treatment Water plant 

 (3) 
Non-flat -0.431*** 

 (0.103) 
Age 0.004*** 

 (0.001) 
Female 0.005 

 (0.007) 
Father’s education (years) 0.005** 

 (0.002) 
Mother’s education (years) 0.006** 

 (0.003) 
Household size -0.000 

 (0.005) 
Log income in first year 0.008 

 (0.011) 
Livestock -0.149*** 

 (0.034) 
Kms to the nearest medical facility -0.038** 

 (0.018) 
Constant 0.508* 

 (0.280) 
Observations 13,321 

R-squared 0.371 
F-stat on instruments 17.36 

Prob>F 0.0001 
Notes: the regression also controls for county and year fixed-effects. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 24 Treatment Effects of Water Program on Children’ Health Status 
 

Dependent Variable Illness in last four 
weeks 

Weight-for-height Height 

 OLS IV OLS IV OLS IV 
 (2) (3) (5) (6) (8) (9) 

Water plant -0.004 -0.023 0.446*** 0.754* 0.962*** 2.489* 
(0.007) (0.026) (0.129) (0.426) (0.352) (1.433) 

Age -0.006*** -0.006*** 1.190*** 1.177*** 5.488*** 5.474*** 
(0.001) (0.001) (0.012) (0.013) (0.024) (0.026) 

Female 0.002 0.002 -0.446*** -0.407*** -1.895*** -1.864*** 
(0.004) (0.004) (0.075) (0.074) (0.158) (0.169) 

Father’s education (years) -0.002*** -0.002*** 0.010 0.003 0.106*** 0.088*** 
(0.001) (0.001) (0.014) (0.015) (0.028) (0.032) 

Mother’s education 
(years) 

-0.001 -0.000 0.022 0.008 0.189*** 0.172*** 
(0.001) (0.001) (0.015) (0.017) (0.030) (0.037) 

Household size -0.003 -0.002 0.034 0.053 -0.272*** -0.257*** 
(0.002) (0.002) (0.032) (0.033) (0.083) (0.090) 

Log income in first year -0.000 -0.001 0.052 0.071 0.088 0.004 
(0.003) (0.003) (0.060) (0.058) (0.113) (0.128) 

Livestock 0.005 0.002 -0.388*** -0.315** -0.705*** -0.264 
(0.005) (0.006) (0.096) (0.134) (0.224) (0.388) 

Kms to  the nearest 
medical facility 

0.002 0.001 0.043 0.047 0.119 0.124 
(0.005) (0.006) (0.048) (0.056) (0.100) (0.117) 

Constant 0.276*** 0.283*** 12.272*** 12.114*** 77.893*** 78.300*** 
(0.039) (0.039) (0.744) (0.713) (1.364) (1.521) 

Observations 14394 13234 12,141 11,114 12,075 11,055 
R-squared 0.066 0.065 0.710 0.717 0.927 0.929 

Notes: each regression also controls for county and year fixed-effects. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 25 Treatment Effects on Child Health with and without Controlling for 
Nonlinear Terms of Age and Income 

 
Dependent 
Variables 

Illness in last four weeks Weight-for-height Height 

 Linear Model Nonlinear 
Model 

Linear Model Nonlinear 
Model 

Linear Model Nonlinear 
Model 

 (1) (2) (3) (4) (5) (6) 

 OLS Estimates 

Water plant -0.004 -0.004 0.446*** 0.416*** 0.962*** 1.043*** 

(0.007) (0.007) (0.129) (0.128) (0.352) (0.334) 

 IV Estimates 

Water plant -0.023 -0.021 0.754* 0.847** 2.489* 2.241 

(0.026) (0.026) (0.426) (0.427) (1.433) (1.377) 

Notes: the nonlinear terms are age2 and log household income in the first year2. The other covariates in 
each regression are the same as ones in Table 24. The standard errors in parentheses are clustered at 
the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 26 Regression Results with Treatment Variables at Different Levels 
 

Dependent 
Variables 

Illness in last four weeks Weight-for-height Height 

 OLS IV OLS IV OLS IV 

 (1) (2) (3) (4) (5) (6) 

Household-level 
Treatment  

-0.004 -0.025 0.465*** 0.749** 0.875*** 2.708* 

(0.005) (0.027) (0.111) (0.377) (0.262) (1.376) 

Village-level 
Treatment  

(water plant) 

-0.004 -0.023 0.446*** 0.754* 0.962*** 2.489* 

(0.007) (0.026) (0.129) (0.426) (0.352) (1.433) 

Notes: the other covariates in each regression are the same as ones in Table 24. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 27 Treatment Effects on Child Health across Different Cutoffs  
 

 OLS Estimates IV Estimates 

 Illness in last  
four weeks 

Weight-for 
-height 

Height Illness in last  
four weeks 

Weight-for 
-height 

Height 

Cutoffs (1) (2) (3) (4) (5) (6) 

10% -0.005 0.485*** 1.071*** -0.019 0.638** 2.108* 

(0.007) (0.114) (0.295) (0.021) (0.307) (1.102) 

15% -0.004 0.555*** 1.142*** -0.022 0.726* 2.393* 

(0.007) (0.118) (0.309) (0.025) (0.369) (1.289) 

20% 
(water plant) 

-0.004 0.446*** 0.962*** -0.023 0.754* 2.489* 

(0.007) (0.129) (0.352) (0.026) (0.426) (1.433) 

25% -0.007 0.435*** 1.024*** -0.026 0.872* 2.870 

(0.006) (0.137) (0.365) (0.029) (0.518) (1.741) 

30% -0.006 0.407*** 1.052*** -0.027 0.874* 2.878 

(0.007) (0.139) (0.382) (0.030) (0.520) (1.745) 

Notes: the other covariates in each regression are the same as ones in Table 24. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 28 Treatment Effects on Child Health Controlling for Households’ Sanitation 
Facilities and Environment 

 
  OLS Estimates IV Estimates 

Dependent 
Variables 

 Illness in 
last four 
weeks 

Weight-for-
height 

Height Illness in 
last four 
weeks 

Weight-
for-height 

Height 

  (1) (2) (3) (4) (5) (6) 
Water plant   -0.003 0.286** 0.500 -0.026 0.458 1.771 

(0.008) (0.123) (0.322) (0.032) (0.437) (1.502) 
Sanitation 

Environment 
Little excreta 0.004 -0.204** -0.418* 0.005 -0.224** -0.401 

(0.006) (0.096) (0.225) (0.007) (0.102) (0.256) 
Some excreta 0.002 -0.118 -0.784*** 0.000 -0.116 -0.672** 

(0.008) (0.115) (0.266) (0.009) (0.121) (0.310) 
Much excreta 0.029 0.005 -1.042 0.033 0.013 -0.919 

(0.025) (0.286) (0.801) (0.025) (0.296) (0.736) 
Toilet type No bathroom -0.005 0.280 -0.571 -0.006 0.389 -0.268 

(0.031) (0.404) (0.785) (0.033) (0.432) (0.716) 
Flush toilet -0.027 0.633** 1.288** -0.018 0.531 0.838 

(0.020) (0.289) (0.626) (0.023) (0.346) (0.766) 
Non-flush 

toilet 
-0.022 0.197 -0.046 -0.021 0.152 -0.053 
(0.020) (0.241) (0.587) (0.021) (0.251) (0.581) 

Open pit -0.021 0.004 -0.814 -0.021 0.018 -0.670 
(0.019) (0.209) (0.530) (0.019) (0.211) (0.514) 

Constant  0.294*** 12.430*** 79.213*** 0.303*** 12.253*** 79.388*** 
(0.043) (0.764) (1.356) (0.043) (0.751) (1.499) 

 Observations 14,161 11,951 11,880 13,019 10,943 10,879 
 R-squared 0.068 0.711 0.927 0.066 0.718 0.929 

Notes: the omitted group of sanitation environment is “no excreta” and that of toilet types is “other”. 
The other covariates in each regression are the same as ones in Table 24. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 29 Treatment Effects Controlling for Other Infrastructure  
 

 OLS Estimates IV Estimates 
Dependent 
Variables 

Illness in last 
four weeks 

Weight-for-
height 

Height Illness in last 
four weeks 

Weight-for-
height 

Height 

 (1) (2) (3) (4) (5) (6) 
Water plant 

 
-0.002 0.427*** 0.759** -0.020 0.761* 2.178 
(0.007) (0.133) (0.341) (0.029) (0.459) (1.495) 

Dirt roads around 
villages 

0.013 -0.227** -1.013*** 0.012 -0.205 -0.784*** 
(0.009) (0.109) (0.198) (0.010) (0.125) (0.250) 

Stone roads around 
villages 

-0.004 -0.260** -0.574*** -0.008 -0.209 -0.283 
(0.007) (0.123) (0.208) (0.008) (0.147) (0.275) 

Kms to the nearest 
primary school 

0.006* -0.016 -0.038 0.007* -0.001 -0.044 
(0.004) (0.052) (0.116) (0.004) (0.050) (0.108) 

Kms to the nearest 
middle school 

-0.000 0.003 -0.017 -0.000 -0.001 0.003 
(0.000) (0.007) (0.018) (0.000) (0.007) (0.016) 

Trade areas nearby -0.002 0.014 -0.111 -0.001 -0.026 -0.157 
(0.010) (0.133) (0.243) (0.012) (0.146) (0.288) 

Telephone 
availability 

-0.016** -0.251** 0.166 -0.016 -0.319** 0.001 
(0.008) (0.114) (0.226) (0.010) (0.127) (0.276) 

Electricity -0.021 0.002 0.308 -0.015 -0.041 1.197* 
(0.030) (0.302) (0.655) (0.034) (0.315) (0.649) 

Constant 0.303*** 12.599*** 78.050*** 0.305*** 12.518*** 77.579*** 
 (0.048) (0.815) (1.418) (0.051) (0.802) (1.527) 

Observations 14,363 12,111 12,045 13,222 11,102 11,043 
R-squared 0.068 0.711 0.927 0.067 0.717 0.929 

Notes: the other covariates in each regression are the same as ones in Table 24. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 30 Treatment Effects on Child Health with Controlling for Water Accessibility  
 

PANEL A: the Whole Sample 
 OLS Estimates IV Estimates 
 Illness in 

last four 
weeks 

Weight-
for-height 

Height Illness in 
last four 
weeks 

Weight-
for-height 

Height 

 (1) (2) (3) (4) (5) (6) 
Water plant -0.003 0.457*** 0.943*** -0.019 0.849* 2.589 

 (0.007) (0.133) (0.344) (0.029) (0.498) (1.587) 
Water access -0.004 -0.137 0.392 -0.001 -0.211 0.059 

 (0.010) (0.134) (0.319) (0.011) (0.180) (0.406) 
Observations 14,262 12,031 11,963 13,109 11,016 10,955 

R-squared 0.067 0.711 0.927 0.066 0.718 0.928 
 

PANEL B: Sample always with Optimal Water Access 
 OLS Estimates IV Estimates 
 Illness in 

last four 
weeks 

Weight-
for-height 

Height Illness in 
last four 
weeks 

Weight-
for-height 

Height 

 (1) (2) (3) (4) (5) (6) 
Water plant  -0.011 0.508*** 1.443*** -0.003 1.509** 2.725** 

 (0.009) (0.181) (0.367) (0.034) (0.709) (1.319) 
Observations 7,951 6,758 6,718 7,032 5,949 5,913 

R-squared 0.063 0.706 0.925 0.063 0.718 0.928 
 

PANEL C: Children under Age 10 in the First Three Waves 
 OLS Estimates IV Estimates 
 Weight Height BMI Weight Height BMI 
 (1) (2) (3) (4) (5) (6) 

Water plant  0.560** 1.380*** -0.066 1.825 2.214 0.435 
 (0.267) (0.440) (0.189) (1.106) (1.539) (0.588) 

Water access -0.193 0.517 -0.112 -0.482 0.340 -0.241 
 (0.217) (0.330) (0.158) (0.331) (0.455) (0.212) 

Observations 4,160 4,023 4,068 4,092 3,955 4,000 
R-squared 0.587 0.890 0.167 0.582 0.889 0.164 

 
PANEL D: Children under 10 always with Optimal Water Access in the First Three Waves 

 OLS Estimates IV Estimates 
 Weight Height BMI Weight Height BMI 
 (1) (2) (3) (4) (5) (6) 

Water plant  1.030** 2.295*** 0.204 2.769** 2.160 1.705* 
 (0.409) (0.560) (0.270) (1.197) (1.808) (0.957) 

Observations 2,142 2,079 2,100 2,097 2,034 2,055 
R-squared 0.546 0.891 0.162 0.538 0.891 0.144 

Notes: the other covariates in each regression are the same as ones in Table 24. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 31 Treatment Effects on Child Health for Mangyo (2008)’s Sample 
 
 

PANEL A: the Replicated Sample 
 OLS Estimates IV Estimates 
 Weight Height BMI Weight Height BMI 
 (1) (2) (3) (4) (5) (6) 

Water plant 0.466* 1.622*** -0.144 1.937* 3.426** 0.266 
 (0.278) (0.479) (0.220) (1.032) (1.665) (0.647) 

Water access -0.097 0.335 -0.125 -0.471 -0.106 -0.233 
 (0.195) (0.388) (0.182) (0.328) (0.536) (0.243) 

Observations 2,780 2,506 1,966 2,723 2,452 1,918 
R-squared 0.618 0.889 0.127 0.610 0.887 0.126 

 
PANEL B: Children always with Optimal Water Access in the Replicated Sample 
 OLS Estimates IV Estimates 
 Weight Height BMI Weight Height BMI 
 (1) (2) (3) (4) (5) (6) 

Water plant  1.156* 3.366*** 0.107 4.527*** 6.573*** 2.130*** 
 (0.640) (0.830) (0.408) (1.052) (2.357) (0.611) 

Observations 1,018 937 748 983 906 719 
R-squared 0.587 0.883 0.197 0.561 0.878 0.168 

Notes: the other covariates in each regression are the same as ones in Table 24. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 32 Heterogeneous Treatment Effects on across Income and Parents’ 
Educational Groups  

PANEL A: Income Groups 
  OLS Estimates IV Estimates 

Income 
Group 

 Illness in 
last four 
weeks 

Weight-for-
height 

Height Illness in 
last four 
weeks 

Weight-for-
height 

Height 

 (1) (2) (3) (4) (5) (6) 
Poor Water plant -0.006 0.739*** 2.723*** 0.049*** 1.284* 3.251*** 

 (0.016) (0.249) (0.505) (0.018) (0.726) (1.052) 
Middle Water plant -0.013 0.161 0.070 -0.027 0.388 -0.025 

 (0.011) (0.184) (0.488) (0.026) (0.485) (1.211) 
Rich Water plant 0.016 0.644 1.326 -0.143 1.826 5.924 

 (0.014) (0.403) (0.837) (0.217) (1.335) (7.980) 
PANEL B: Mothers’ Educational Groups 

  OLS Estimates IV Estimates 

Educational 
Groups 

 Illness in last 
four weeks 

Weight-for-
height 

Height Illness in 
last four 
weeks 

Weight-for-
height 

Height 

 (1) (2) (3) (4) (5) (6) 
Illiterate Water 

plant 
-0.008 0.424** 0.525 -0.093* 0.970 2.173 
(0.012) (0.195) (0.773) (0.054) (0.631) (2.028) 

Primary 
school 

Water 
plant 

-0.009 0.438** 0.946** -0.051* 0.954* 1.316 
(0.009) (0.172) (0.473) (0.030) (0.558) (1.539) 

Lower middle 
school 

Water 
plant 

0.002 0.483** 0.828* 0.027 0.878* 3.739** 
(0.012) (0.189) (0.433) (0.045) (0.511) (1.605) 

Upper middle 
school and 

above 

Water 
plant 

-0.015 0.486 2.408*** -0.042 1.198** 2.790*** 
(0.017) (0.296) (0.653) (0.031) (0.575) (0.931) 

PANEL C: Fathers’ Educational Groups 
  OLS Estimates IV Estimates 

Educational 
Groups 

 Illness in last 
four weeks 

Weight-for-
height 

Height Illness in 
last four 
weeks 

Weight-for-
height 

Height 

 (1) (2) (3) (4) (5) (6) 
Illiterate Water 

plant 
-0.012 0.503 1.051 0.138*** -0.706 5.631* 
(0.025) (0.395) (0.700) (0.051) (1.046) (3.239) 

Primary 
school 

Water 
plant 

-0.009 0.322* 0.610 -0.059 0.466 0.917 
(0.011) (0.186) (0.518) (0.038) (0.521) (1.525) 

Lower middle 
school 

Water 
plant 

0.006 0.265** 1.109*** -0.001 1.099* 3.632** 
(0.009) (0.125) (0.368) (0.039) (0.608) (1.458) 

Upper middle 
school and 

above 

Water 
plant 

-0.019 0.773** 1.091 -0.059 0.639 2.605 
(0.014) (0.319) (0.707) (0.038) (0.930) (2.496) 

      
Notes: the other covariates in each regression are the same as ones in Table 24. The standard errors in 
parentheses are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1 
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