
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

2015

Reliabilibity Aware Thermal Management of Real-
time Multi-core Systems
Shikang Xu
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering
Commons

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been
accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Xu, Shikang, "Reliabilibity Aware Thermal Management of Real-time Multi-core Systems" (2015). Masters Theses. 175.
https://scholarworks.umass.edu/masters_theses_2/175

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/175?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

RELIABILITY AWARE THERMAL MANAGEMENT OF
REAL-TIME MULTI-CORE SYSTEMS

A Thesis Presented

by

SHIKANG XU

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

February 2015

Electrical and Computer Engineering

c© Copyright by Shikang Xu 2015

All Rights Reserved

RELIABILITY AWARE THERMAL MANAGEMENT OF
REAL-TIME MULTI-CORE SYSTEMS

A Thesis Presented

by

SHIKANG XU

Approved as to style and content by:

Israel Koren, Co-chair

C. M. Krishna, Co-chair

Sandip Kundu, Member

C. V Hollot, Department Chair
Electrical and Computer Engineering

ABSTRACT

RELIABILITY AWARE THERMAL MANAGEMENT OF
REAL-TIME MULTI-CORE SYSTEMS

FEBRUARY 2015

SHIKANG XU

B.Sc., SICHUAN UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Israel Koren and Professor C. M. Krishna

Continued scaling of CMOS technology has led to increasing working temperature

of VLSI circuits. High temperature brings a greater probability of permanent errors

(failure) in VLSI circuits, which is a critical threat for real-time systems. As the

multi-core architecture is gaining in popularity, this research proposes an adaptive

workload assignment approach for multi-core real-time systems to balance thermal

stress among cores. While previously developed scheduling algorithms use tempera-

ture as the criterion, the proposed algorithm uses reliability of each core in the system

to dynamically assign tasks to cores. The simulation results show that the proposed

algorithm gains as large as 10% benefit in system reliability compared with commonly

used static assignment while algorithms using temperature as criterion gain 4%. The

reliability difference between cores, which indicates the imbalance of thermal stress

on each core, is as large as 25 times smaller when proposed algorithm is applied.

iv

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES . vii

LIST OF FIGURES .viii

CHAPTER

1. INTRODUCTION . 1

1.1 Objective of Research . 1
1.2 Contributions of This Work . 2
1.3 Thesis Organization . 2

2. PREVIOUS WORKS . 3

2.1 Works in Temperature-Aware Scheduling . 3
2.2 Works in Reliability-Aware Scheduling . 6

3. BACKGROUND IN VLSI CIRCUIT RELIABILITY AND
REAL-TIME SYSTEMS . 8

3.1 VLSI Circuit Reliability . 8

3.1.1 Oxide Breakdown . 8
3.1.2 Electro-Migration (EM) . 9
3.1.3 Thermal Cycling . 10

3.2 Real-Time Systems . 10

3.2.1 Tasks In Real-Time Systems . 10
3.2.2 Task Scheduling In Real-Time Systems . 11

v

4. SYSTEM RELIABILITY AWARE SCHEDULING
ALGORITHM . 13

4.1 Reliability Models . 13
4.2 Motivation . 14
4.3 System Models . 16
4.4 Algorithm Description . 17

5. SIMULATION AND RESULT . 22

5.1 Simulation Structure . 22
5.2 Simulation Results . 24

6. CONCLUSIONS . 34

APPENDIX: RANDOM GENERATION OF TASK UTILIZATION
AND ACTUAL EXECUTION TIME . 35

BIBLIOGRAPHY . 37

vi

LIST OF TABLES

Table Page

5.1 Benchmarks Used in Simulation . 24

5.2 Parameter Value of Reliability Models . 25

A.1 Relative Contribution to Task Set Utilization . 36

vii

LIST OF FIGURES

Figure Page

3.1 Mechanism of defect generation to breakdown ([29]) 9

4.1 Reliability Decreases(β=2,α=3e8) . 15

4.2 Pseudocode for Initial Task Assignment . 18

4.3 Pseudo Code for Online Load Adjustment . 21

5.1 Original Alpha 21264 Floorplan[1] . 23

5.2 Simplified Floorplan . 23

5.3 Average Benefit over Static Algorithm . 27

5.3 Average Benefit over Static Algorithm(Continued) 28

5.4 Average Reliability Difference Among Cores when Using Different
Algorithms(Continued) . 29

5.4 Average Reliability Difference Among Cores when Using Different
Algorithms(Continued) . 30

5.5 Benefit over Static Algorithm when Using Different Floorplans 31

5.6 Benefit Using Different Reliability Update Interval 33

viii

CHAPTER 1

INTRODUCTION

1.1 Objective of Research

Continued scaling of CMOS technology has led to processors with large density of

transistors and much more powerful computation ability. Researchers have had to deal

with the resulting side effects of scaling, namely the increasing working temperature of

VLSI circuits. High temperature can lead to a greater probability of permanent errors

(failure) in VLSI circuits. While these failures increase cost in term of replacement

of chips in general-purpose systems, they can also lead to more severe consequences

in real-time systems, especially hard real-time systems. Improving the reliability of

VLSI circuits has become a focus of current research. With multi-core architectures

gaining in popularity, it is worthwhile to look into ways of reducing the thermal-

induced failure rates in a multi-core processor.

Another kind of failure that threatens a hard real-time system is transient failure.

A transient failure is an error caused by sudden and extreme changes in the environ-

ment (a temperature spike or large amount of radiation) but can recover after the

environment returns to normal. Such transient errors are very hard to predict. The

reliability referred in this research work focuses on the reliability with respect to the

permanent failure.

The objective of this research is to develop a real-time task assignment and

scheduling algorithm for multi-core processors, which ensures that deadlines are met

while reducing the thermally induced failure rate thereby improving the reliability of

the system.

1

1.2 Contributions of This Work

This research studies and presents an adaptive scheduling approach where work-

loads are dynamically assigned to multi-cores to deal with thermal stress in real-time

systems. It is shown that dynamic assignment of workloads using estimated reliability

as a criterion, rather than temperature, enhances the system reliability.

1.3 Thesis Organization

In Chapter 2, a literature study on previous research in thermal-aware computing

is presented. Chapter 3 provides a brief introduction to reliability models of VLSI

circuits and real-time system scheduling. Chapter 4 presents the motivation of this

work, the reliability models chosen, systems models and the proposed reliability aware

scheduling algorithm. In Chapter 5, the simulation structure and the benefit of

proposed reliability aware scheduling algorithm over previously developed algorithms

is presented. In Chapter 6, the conclusion is drawn and possible direction of future

work is proposed.

2

CHAPTER 2

PREVIOUS WORKS

2.1 Works in Temperature-Aware Scheduling

While reducing the power/energy consumption is an indirect approach to lower the

processor temperature, many researchers use temperature as the primary criterion.

In [24] and [25], a temperature control method for general purpose multi-core system

was developed in order to keep the maximum temperature of the processor under a

given threshold while minimizing the power consumption. The method uses a table

computed offline and an online speed selection phase to keep maximum temperature

under a given threshold. The table is obtained by simulating the thermal behavior

of a processor and contains the clock frequencies at which each core should operate

under different temperature and performance requirements. The online phase is trig-

gered periodically to choose the clock frequencies according to the current maximum

processor temperature and performance requirement.

In [15], the authors propose a frequency control method which minimizes the com-

pletion time of the last finished task while operating under temperature constraints.

This research assumes that each core is assigned with a specific task whose power

consumption and execution cycles are known and the algorithm computes frequency

for each core during execution based on this information.

In [31], the authors propose a task allocation and scheduling algorithm for platform-

based MPSoC design and co-synthesis MPSoC design. The workload consist of a task

graph, which has a period and deadline. In this research, tasks are allocated and

scheduled according to criticality. The criticality of a task is calculated based on its

3

position in the task graph, WCET and power or temperature impact. The authors of

[18] claim that according to their algorithm, the thermal-aware approach outperforms

the power-aware approach in terms of maximal and average temperature reduction.

In [13], an offline task allocation and speed assigning algorithm to optimize the

throughput under thermal constraints is proposed. In this research, the processor is

assumed to have multiple ideal cores (speed can be selected anywhere from 0 to full

speed) and each core can have independently selected speed. First, the authors show

that the thermal flow in the horizontal direction can be neglected since the horizontal

thermal resistance (i.e. resistance to heat flow in the horizontal plane) is four times

higher than the vertical thermal resistance and the cores are usually surrounded by

cache which is relative cooler. The maximum acceptable speeds of each core running

each task are first computed by simulation. The tasks are then assigned to cores such

that the sum of the speeds of the cores is maximized.

In [23], the authors report a thermal balancing policy to reduce the temperature

gradient across the multi-core processor via task migration. The tasks will be mi-

grated from hotter to cooler cores when the temperature difference between them is

greater than a threshold.

In [10], the researchers also proposed a set of task migration policies to reduce the

temperature gradient across the multi-core processor. In this research, there is a pre-

defined preferred working condition (mean temperature, temperature gradient and

peak temperature) for the processor. During execution, these three parameters will

be compared with the preferred condition and the differences (negative or positive)

will be weighted and added up. This value will be accumulated over time and when

it reaches a threshold, the task migration will be performed.

Some work has also been reported on thermal aware computing for real-time

systems. There are two intuitive ideas when considering the processor temperature.

One is to adjust the workload of a core/processor according to its temperature. The

4

simplest way to do this is to let the core/processor run until the temperature reaches

a threshold and stop or slow it down for a while to let it cool down to keep the

temperature from rising further [14]. The second approach is to balance the load

of each core/processor so that the temperatures of the cores can be balanced and a

hotspot on the die can be avoided [9].

In [9], different approaches to assigning tasks to processors are compared in order

to minimize the instantaneous temperature of a multi-core processor. These methods

include First-Fit, Next-Fit, Best-Fit, Worst-Fit and the one proposed by the authors,

Largest Task First (LTF). In this research, the periodic real-time tasks are statically

assigned to each core according to the partitioned methods. The tasks on each core

are then scheduled using the Earliest Deadline First (EDF) algorithm. Simulation

results of this research show that LTF partitioning is probably the best from a thermal

viewpoint.

In [11], a global scheduling approach is developed for sporadic real-time tasks to

minimize the peak temperature in a system with a homogeneous multi-core processor.

The speed of each core in [11] is derived offline, according to the system performance

requirement (e.g. the sum of speeds of cores should be large enough to finish tasks

before their deadline and the core with highest speed should be able to finish the

task with largest utilization) using non-linear programming to minimize the peak

temperature. The cores will always run at these speeds. The tasks can be scheduled

according to global (tasks are allowed to execute on any available core) EDF[5] or

Deadline Monotonic (task with a smaller interval between arrival time and deadline

will have a higher priority) algorithm (DM)[6].

In [14], a speed and voltage assignment method to minimize the completion time of

the last finished task while meeting temperature constraint and deadlines of all tasks

is developed. In this research, the authors first optimize the finish time of the last

finished task subjected only to a temperature constraint. They adopt the result from

5

[9] that the optimal speed of core is full speed when temperature is under threshold,

0 when temperature is over threshold and some value between 0 and full speed when

the temperature is equal to the threshold. By finding the speed that can maintain

temperature below the threshold, the authors solve the problem when no deadline

constraint exists. When a constraint on deadline is added, the proposed method will

deal with deadline misses from the first time when such a miss happens and search if

a speed change in some previous time intervals (time interval is defined as the time

between when a deadline is missed and the finishing time of tasks before this deadline)

can solve this while keeping the temperature under threshold. However, this method

is designed for the situation where the number of cores equals to the number of tasks,

namely, each core is only assigned with one task.

2.2 Works in Reliability-Aware Scheduling

In the past few years, instead of treating reliability improvement as an indirect

benefit of thermal management, researchers have started to consider the reliability of

VLSI circuit directly and try to optimize it. In [22] and [20], the authors develop a

dynamic model for electro-migration (the model will be discussed in Section 3). In

these researches, the authors proposed that the previously suggested speed scheduling

policies are conservative compared with scheduling according to their reliability model

and reliability constraints. They claim that sometimes, the processor can run in a

faster speed since low speed interval will compensate for this in terms of reliability. In

[33], the authors discuss the failure in VLSI circuits brought about by oxide breakdown

and proposed a method to adopt static(in terms of temperature) reliability models

to dynamic working condition. The authors also proposed a workload prediction

scheme for server based on past workload of a server and pre-defined system life time.

Based on the dynamic reliability and workload prediction, the author designed a PID

6

controller for DVFS such that the performance (in terms of supply voltage), can be

improved without violating the given reliability constraint.

7

CHAPTER 3

BACKGROUND IN VLSI CIRCUIT RELIABILITY AND
REAL-TIME SYSTEMS

3.1 VLSI Circuit Reliability

The reliability of VLSI circuit is affected by multiple mechanisms. Modeling these

has been an active research topic for decades. In this section, the mechanism and

quantitative models of oxide breakdown, electro-migration (EM) and thermal cycling

are briefly introduced.

3.1.1 Oxide Breakdown

Oxide breakdown is also known as dielectric breakdown. It is a mechanism that

leads to a low resistance path in an oxide insulating area. The effect of oxide break-

down on modern VLSI circuits is getting worse due to thinner oxide layers brought

about by technology scaling. The present understanding of the oxide breakdown

process can be illustrated by Figure 3.1 [29].

When a voltage in applied across the gate oxide, there is an electron flow when the

electrical field over the oxide is high enough. In thick oxides, the current is controlled

by Fowler-Nordheim tunneling, while the current is generated by quantum-mechanical

tunneling in thin oxide (< 3nm)[29]. The electrons across the oxide trigger several

defect generation processes including impact ionization and anode holes injection

(which occur at high voltages), hole trapping and hole-related defect generation.

8

Figure 3.1: Mechanism of defect generation to breakdown ([29])

According to [28], the Mean-Time-To-Failure (MTTF) due to Oxide-Breakdown

process is modeled as:

MTTFbd = Abd ∗ (
1

V
)(a−bT) ∗ e

X+(Y/T)+ZT
kT (3.1)

where V is the voltage applied to the gate oxide, T is the absolute temperature in

Kelvin, k is Boltzman constant and Abd is scale factor. The values of other parameters

are from RAMP: a=78, b=-0.0081,X=0.759eV, Y=-66.8eV*K and Z=-8.37e4 eV/K.

3.1.2 Electro-Migration (EM)

EM is a failure caused by the movement of metal atoms in wires due to the electric

field of a VLSI circuit. The movement causes an open or short circuit in a wire. The

movement of the metal atoms is mainly caused by the electrical field, temperature

gradient and diffusion process in the wire [16]. The mechanism behind EM has been

9

studied for a long time. One of the early results that is still widely used for estimation

was proposed by J. Black in 1967 [7]

MTTFem = Aem ∗ J−ne
Ea
kT (3.2)

where Aem is scale factor, k is Boltzman constant and T is absolute temperature in

Kelvin. J is the current density. According to [21], the worst case current density

is 1e6 A/cm2. Ea is activation energy and is 0.9eV for copper. n is material based

constant and is 1.1 for copper [27].

3.1.3 Thermal Cycling

Thermal cycling is a mechanical stress mechanism that is manifested in many

locations in VLSI circuits including solder connections and thin-film interfaces [16].

When the temperature of the circuit changes, the components of the circuit expand or

contract at different rates due to different material compositions. These differences in

expansion/contraction rate eventually lead to a problem with adhesion. This situation

gets worse when dynamic power management techniques such as Dynamic Voltage

Scaling(DVS) are employed, since the temperature of the circuit can be expected to

vary much more frequently [16]. In [27], thermal cycling is modeled as:

MTTFtc = Atc ∗ (
1

T − Tambient
)q (3.3)

where Atc is scale factor, Tambient is the ambient temperature in Kelvin and q is the

Coffin-Manson exponent, an empirical determined material dependent constant.

3.2 Real-Time Systems

3.2.1 Tasks In Real-Time Systems

Differs from general purpose systems, a real-time system must process information

and produces a response before a specified time (deadline of a task). Thus, the tasks

10

in real-time systems have characteristics different those in general purpose systems.

Tasks in real-time systems are classified into periodic and aperiodic tasks.

Most of the tasks in real-time systems are periodic tasks and are executed peri-

odically. The periods(time interval between two consecutive arrivals of a task) and

worst case execution times (WCET) of periodic tasks in real-time systems are known

at designed time. Usually, the deadlines are equal to the periods. This means that

each task iteration should be finished before the next iteration is released. In practice,

the execution time of one iteration of a task is often much smaller than the WCET.

The actual execution time depends on the input, cache misses and other factors and

is generally unknown in advance.

Aperiodic tasks are those whose periods are not know in advance. One special

category of tasks in aperiodic tasks is sporadic task. The time interval of two con-

secutive arrival of a sporadic task is not known at design time but has a minimum

value.

3.2.2 Task Scheduling In Real-Time Systems

Since real-time systems require tasks to be finished before deadline, the research

on task scheduling problem is important. The first goal of task scheduling for a

real-time system is to ensure that a task can be finished before its deadline. For

real-time systems with a single processor or single-core processor, we have a well-

developed scheduling theory [18]. Among the algorithms for single processor or single-

core processor real-time system, Earliest Deadline First (EDF), in which tasks with

earliest deadlines have higher priority, has been proved to be an optimal algorithm

for a periodic workload with deadlines equal to periods; it can successfully schedule

all such task sets if the total utilization of tasks is under 1.0 if there is no preemption

overhead. Also, techniques like Dynamic Voltage Scaling (DVS) have been studied

and implemented for saving energy [32].

11

For real-time systems with multiprocessor or multi-core processors, the scheduling

problem becomes complex because task assignment needs to be taken into account. A

partitioned (non-migration) algorithm is one where all iterations of a task can only

execute on the same pre-assigned core while a global (full migration) algorithm is one

where one iteration of a task can be preempted and then be resumed on a different

core. There is also restricted migration algorithm, under which one iteration of a

task must execute on the same core, but different iterations of a task may execute on

different cores.

For real-time systems with multiprocessors or multi-core processors, EDF is no

longer an optimal algorithm although it is widely used [4]. A sufficient condition for

partitioned EDF to successfully schedule a task set on a m-core processor is that the

sum of utilizations Usum should be bounded by βm+1
β+1

[19], where β equals to b 1
Umax
c and

Umax is the utilization of the task with the largest utilization. The sufficient condition

for global EDF to successfully schedule a task set is Usum < m− (m− 1)Umax[12].

12

CHAPTER 4

SYSTEM RELIABILITY AWARE SCHEDULING
ALGORITHM

4.1 Reliability Models

Electro-Migration and Oxide-Breakdown are reported to be dominant mechanisms

that will lead to permanent failure of VLSI circuits as CMOS technology scales [26].

Thus, this research focuses on the reliability with respect to the electro-migration and

oxide breakdown.

The failure of a system is a random process and the reliability of a system at time

t is translated as the probability that the system is functional through time interval

[0, t].In [33], the authors stated that the probability of device failure occurrence can

be represented by the Weibull distribution (other distribution can be used to replace

Weibull distribution to calculate reliability if proved to fit better):

F (t) = 1−R(t) = 1− e−(t/α)β (4.1)

where F (t) is the failure occurrence probability, R(t) is the reliability function, β is

Weibull slope parameter(=2,[30]) α is a scale parameter[33] and α = MTTF/Γ(1 +

1/β).

The reliability models mentioned above are obtained from a combination of ex-

perimental results and proposed physical models. They usually model the reliability

of circuits under constant temperature and the MTTFs are the mean time to failure

if the temperature remains constant. But in practice, the working environment of a

13

processor is dynamic, as is the temperature of a running processor. In this research,

the approach of [33] is adopted to get the reliability in a dynamic thermal environ-

ment : divide time into k time frames, [0,∆t],[∆t, 2∆t],[(k-1)∆t, k∆t]. In each time

frame, the temperature and voltage are steady, the reliability of a functional block in

processor is:

Rblk(t) = R(k∆t) =
i=k∏
i=1

[1− (Ri((i− 1)∆t)−Ri(i∆t))] (4.2)

where Ri(i∆t)) = Riem(i∆t))∗Ribd(i∆t)). Riem(i∆t)) and Ribd(i∆t)) are the reliability

due to electro-migration and oxide breakdown and are calculated by equation 4.1

using the MTTFs get from the reliability model with the temperature of the ith time

interval.

The reliability of a core at time t is the product of the reliability of all the functional

blocks of the core at time t.

4.2 Motivation

As is stated in the previous section, the Weibull distribution is used to model the

reliability of VLSI circuit. As shown in Figure 4.1, the reliability of the VLSI circuit

will decrease faster as it ages. It is easy to prove:

In a dual-core system, for a given task set (energy consumption is fixed), keeping the

reliability of cores the same all the time (keep the temperature of two cores the same

all the time) will maximize the reliability of the systems when each core is regards as

a single thermal node and the reliability of core is calculated using electro-migration

mode.

Assume the total energy consumed by a certain set of tasks in interval [0,t] on a

dual-core system is J . If the total energy is uniformly consumed and equally divided,

the power on each core is:

P0 = J/2t (4.3)

14

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

r
e
l
i
a
b
i
l
i
t
y

time

Figure 4.1: Reliability Decreases(β=2,α=3e8)

Using the standard thermal-equivalent circuit models [17], in which getting heat flow

equilibrium temperature is similar to electric circuit equation. Thermal heat flow,

thermal resistance, thermal capacity and temperature are analogous to electrical cur-

rent, resistance, capacity and voltage respectively. The temperature at time t will

be:

T0 = Tamb + P0 ∗R− (Tinit − (Tamb + P0 ∗R)) ∗ e−
t
RC (4.4)

If two cores do not have identical power, instead, P1 is the power of core 1 and P2 is

the power of core 2. (P1 ∗ t+ P2 ∗ t = J)

Ti = Tamb + Pi ∗R− (Tinit − (Tamb + Pi ∗R)) ∗ e−
t
RC (4.5)

where, i=1 or 2. From above equation, we can see, 2T0 = T1 + T2.

Using the equation 4.1 and 3.2, the reliability at time t is:

R(t) = exp(−C ∗ tβ ∗ e−
Eaβ
kT) (4.6)

15

where C = (1
A∗Γ(1+1/β)∗J−n)β

When two cores have identical and uniform power through [0,t], the reliability of

the dual-core system is:

Rsys(t) = exp(−2 ∗ C ∗ tβ ∗ e−
Eaβ
kT0) (4.7)

when the two cores have power P1 and P2 respectively, the reliability of the system

is:

Rsys(t) = exp(−C ∗ tβ ∗ (e
−Eaβ
kT1 + e

−Eaβ
kT2)) (4.8)

Thus, to compare the reliability of the above two situation (two cores with same

power and different power), it only needs to compare e
−Eaβ
kT1 + e

−Eaβ
kT2 and 2 ∗ e−

Eaβ
kT0

while 2T0 = T1 + T2. It is easy to observe e
−Eaβ
kT1 + e

−Eaβ
kT2 − 2 ∗ e−

Eaβ
kT0 ≥ 0 and this

proves the statement.

4.3 System Models

In this research, all cores in the multi-core system are assumed to share a main

memory and higher level caches. All cores have the same speed and no Dynamic

Voltage and Frequency Scaling (DVFS) technique is applied. With this assumption,

the overhead of task migration due to context switches is greatly reduced.

Tasks will be assigned to each core according to its utilization before execution

starts. During execution, this assignment will be adjusted according to the algorithm

introduced below. The restricted migration model is followed: a given task iteration

will stay on the same core for its entire execution; however, different iterations of the

same task may be assigned to different cores. Tasks and different iterations of the

same task are also assumed to be independent.

16

Based on the above assumption, task migration is assumed to have no overhead

in this research and the scheduling algorithm will not consider that the overhead of

task migration will lead to deadline misses.

All tasks are assumed to be periodic . Each task τi is characterized by the worst

case execution time (WCET) eτi and the period pi. The relative deadline (the interval

from the arrival of an iteration to the time it should be finished) of τi is equal to the

period pi. Thus the utilization of τi, Ui, is equal to ei
pi

.

The reliability of the processor will be the product of the reliability of each core.

For example, in a dual-core system, the reliability of the systems is Rsys = Rc1 ∗Rc2.

4.4 Algorithm Description

As is proved in section 4.1, the reliability will be maximized when the cores are

always thermally balanced. However, such balancing at all times is not practical

since different tasks will have different thermal impact. Thus the reliability aware

scheduling is proposed to dynamically adjust the reliability of each core.

As mentioned earlier, Largest Task First(LTF) was shown in [9] to be able to

reduce the temperature difference among cores more efficiently than the other offline

partitioning algorithm. The initial task assignment will follow the LTF algorithm.

As a workload executes, the reliability of each core will be updated periodically.

Using equation 4.2, it only needs the temperature profile since last reliability calcu-

lation and last updated reliability to obtain the current reliability. The workloads on

each core will not be adjusted when there is a small difference in reliability, because

the small difference may not exist or even be reversed by the time the next job arrives.

Instead, the reliability decreasing rate of each core m (the reliability difference of core

m between two consecutive updates), δm, will be monitored. The proposed algorithm

will update the accumulated difference in the reliability decreasing rate between each

pair (m,n) of cores, γmn, which is defined by equation 4.9 :

17

0 Notation:
τi: a task in the real-time system,with WCET ei,period pi
Cj : core in system
Lj : utilization of core j (sum of utilizations of jobs assigned to core j)
TSSi: steady state temperature of τi

0 Initial Assign()

1 sort tasks in descending order of utilization;
2 assign[i]=-1 for i=0,1..,;
3 Lj=0 for j=1,2,...,m;
4 for each task i
5 j=the # of core with min{U};
6 assign[i]=j;
7 Lj+ = ei/pi;
8 if(Lj > 1) return failure message;

Figure 4.2: Pseudocode for Initial Task Assignment

γmn(t) =
τ̄∑
t=tl

(δm(t)− δn(t)) (4.9)

where tl is the time when the workload on either core m or core n is adjusted and

t0 = 0. τ̄ = arg minτ{
∑τ

t=tl
(δm(t)− δn(t)) > thresh ∧ workload adjusted}. m and n

are two integers denoting core m and core n.

The initial value of γs are 0. If γmn is positive, the reliability of core m decreases

faster than the reliability of core n and vice versa. When the γmns are updated, the

maximum absolute value of γmn will be checked to see if it exceeds the threshold.

If so, the workload adjustment algorithm will be triggered. Workload adjustment

includes migrating/swapping tasks between the core pair of which the γmn is being

checked (if γmn > 0, core n is considered to be more reliable, vice versa). If the load

adjustment (task migration or task swapping that will be introduced below) fails due

to high load (large utilization) on the cores, the pair of cores with the second largest

absolute value of γmn will be chosen. Then, a check is made to see if the this quantity

exceeds the threshold. If so, task migration or task swapping is performed. If not, the

execution will continue with current task assignment. If the task migration or task

swapping also fails on the pair of cores with the second largest absolute value of γmn,

18

the pair with third, fourth,.... largest value of abs(γmn) will be chosen to perform load

adjustment. This process will continue until load adjustment (task migration or task

swapping) is successfully performed on one pair of cores or the pair of cores chosen

has a abs(γmn) smaller than threshold. Every time the load adjustment is triggered,

only the load on one pair of cores will be adjusted. And all the γs related two this

two cores will be set to 0.

The first load adjustment that will be tried is migrating the task from the less

reliable core to the more reliable core with. The migration here indicates that the

next job of the migrated task will be executed on the target core. The current job

of the task will stay on the core it is originally assigned to. In order to guarantee

that all tasks meet their deadlines, the utilization of the target core should be smaller

than or equal to 1 after migration.

When the utilization of each core is close to 1, it is quite possible that no task can

be migrated from one core to another. This can also happen when the total utilization

of the task sets are slightly higher than 1, but the task migration mechanism wants

to move all tasks from one core to another. When this is encountered, the task

assignment will stay unchanged and a task swapping process will be activated when

there is no utilization space to migrate a task.

In the task swapping process, each core has a task list in which tasks are sorted

according to its Ui ∗ Tssi (Tssi is steady state temperature of task i). The steady

state temperature of task i is the steady temperature when it is executed repeatedly

with Ui = 1.0. The task with the maximum Ui ∗ Tssi on the less reliable core will be

chosen to swap with the task with the minimum Ui ∗ Tssi on the more reliable core.

This swapping may fails if the utilization of the task on the less reliable core is larger

than the utilization of the task on more reliable core and lead to the utilization of

the less reliable core larger than 1.0. If so, the swapping process will try to swap two

tasks with the minimum Ui ∗Tssi on more reliability core with the one task from the

19

less reliable core. If it still fails, then the swapping process will try two swap three

tasks with the minimum Ui ∗ Tssi on the more reliable core with the one task from

the less reliable core. Until all tasks on the more reliability core are included. If the

task with the maximum Ui ∗ Tssi can not be swapped after the above process, the

task with second maximum Ui ∗ Tssi on the less reliable will be chosen to repeat the

process, until all tasks on the less reliable core are tried. It is also possible that the

task from the more reliability core has a larger utilization and the above tries fail.

Then a reverse process will be activated. The task with the minimum Ui ∗ Tssi from

the more reliable core is first chosen to swap with the tasks with maximum Ui ∗Tssi.

If it fails, then the algorithm will try to swap the first two tasks with maximum

Ui ∗ Tssi on the less reliable core with the tasks with smallest Ui ∗ Tssi on the more

reliable ... and so on.

20

0 online load adjustment()

1 Update all γmn;
2 Define S as the set containing all core pairs
3 (j, k)=the core pair in S with maximum abs(γ);
4 while(S is not empty)
5 if(abs(γj,k)>= Threshold)

// assume corej is less reliable

6 if(migrate(j,k))
7 all γs related two core j and core k are set to 0;
8 break;
9 else

10 if(swap(j,k))
11 all γs related two core j and core k are set to 0;
12 break;
13 else
14 remove (j,k) from S;
15 (j,k)=the core pair in S with maximum abs(γ);
16 else
17 continue execution with current assignment;
18 break;

0 migrate(m,n)

1 τi: lowest-utilization task on core m;
2 if((Ln + ei/pi) <= 1)
3 assign[i]=k;
4 Ln+ = ei/pi;
5 return 1;
6 else return 0;

0 swap(m,n)

1 for each task i in on core m // start from the task with the maximum Ui ∗ Tssi
2 k=1
3 while k <= No. of tasks on core n
4 try swap task i with the first k task(s)

with the minimum U ∗ Tss
5 successes: break,return 1
6 fails: k + +

//fails if utilization of one core is larger than 1 after swapping

7 for each task i in on core n // start from the task with the maximum Ui ∗ Tssi
8 k=1
9 while k <= No. of tasks on core m

10 try swap task i with the first k task(s)
with the minimum U ∗ Tss

11 successes: break,return 1
12 fails: k + +
13 return 0;

Figure 4.3: Pseudo Code for Online Load Adjustment

21

CHAPTER 5

SIMULATION AND RESULT

5.1 Simulation Structure

A simulator of a processor with two Alpha 21264 cores is built to evaluate the

proposed reliability aware algorithm. Temperature of each functional block is needed

to calculate the reliability of the processor. The temperature is calculated using

TILTS, which is a faster thermal simulation method than the popular HotSpot tool

[2] (the accuracy and speed up of TILTS compared with HotSpot can be found in

[3]). The power profile of the workload is obtained using Wattch [8] simulator.

In simulation, the exact thermal information (temperature) of each functional

block can be obtained and is used to get the reliability of the processor. This quan-

tity is used to access the proposed algorithm using the thermal information from

practical approaches (i.e. task migration decision will be made according to thermal

information from practical approach; reliability used to compare with other algorithm

is obtained using exact information). In practice, the temperature of each functional

blocks is obtained using the power profile estimated from the performance counter or

temperature sensors. But there may not be enough performance counters/sensors for

all functional blocks. To model this, a simplified floorplan of Alpha 21264 (Figure 5.2)

is used to get the temperature needed for reliability calculation. When calculating

temperature using the simplified floor plan, the power of each block in the simplified

floorplan is equal to the sum of the power of the blocks of the original Alpha 21264

floorplan that is contained in the block of simplified floorplan. The task migration in

22

the proposed algorithm will be based on the reliability estimated using the simplified

floorplan.

decode

branch

RAT

RUU

LSQ IALU

FPALU

IntReg
FPReg

ITLB

IL1

DTB

DL1

Figure 5.1: Original Alpha 21264
Floorplan[1]

decode

RAT+ruu+laq+itlb

IALU

FPU

IntReg

L1+branch+dtb

Figure 5.2: Simplified Floorplan

The workloads are real-time tasks made of benchmarks from SPEC2K(Table 5.1).

Benchmarks act as periodic real-time tasks which are independent of each other and

are characterized by worst case execution time (WCET) and period (equal to relative

deadline). The WCET of each task is the time running the corresponding benchmark

in Wattch simulator. The power profile of each benchmark is sent to thermal simulator

when the corresponding task is in execution. In real-time system, the actual execution

time will not always be equal to WCET. The actual execution time of each task is

modeled as a rand ∗WCET where rand is a random variable belongs to (0:1.0] and

follows normal distribution. This random variable is generated during the simulation

of execution. (e.g. If the actual execution time of a task is 0.5 of its WCET, the

power of every two time steps in power profile will be averaged and read as the power

of one time step. Thus, the power changes in the execution of this task are captured

and the execution time is scaled according to the ratio to WCET). In practice, a

task can have different thermal impact on the system when its utilization is different.

23

This is modeled by running multiple task sets in which the tasks are the same but

the utilization of each task are randomly generated.

Table 5.1: Benchmarks Used in Simulation

Benchmark Benchmark Description
Bzip Integer; Compression
Gcc Integer; C Complier
Gap Integer; Group Theory
Mesa Floating Point; 3-D Graphics
Mgrid Floating Point; Multi-grid Solver
Sixtrack Floating Point;High Energy Nuclear Physics Accelerator Design
Galgel Floating Point; Computational Fluid Dynamics

5.2 Simulation Results

To evaluate the proposed algorithm, it is compared with three previously devel-

oped scheduling algorithms:

Utilization balancing scheduling is a static scheduling which assigns tasks to each

core using largest task first assignment (LTF) before execution [9] using the worst

case execution utilization (WCET/Period). No migration will be performed during

execution.

Instantaneous temperature based scheduling is the most straight forward ther-

mal aware scheduling. The task migration will be triggered when the instantaneous

temperature difference between two cores is larger than a threshold (10 degree in the

comparison).

Temperature history based scheduling will record the temperature difference

(positive or negative) between cores/processors. When the accumulated temperature

difference reaches a threshold, tasks will be migrated from the historically hotter core

to the historically cooler core [10]. Initially, tasks are assigned according to LTF as-

signment. During execution, the difference (positive or negative) between maximum

temperatures of each core will be accumulated after each temperature calculation. If

24

the accumulated value is larger than a threshold (5000 in current simulation), the

tasks on the hotter core will be moved to the cooler core. The value 5000 is set ran-

domly. If the threshold is large, the scheduling will act more like utilization balancing

algorithm. If it is smaller, it will act more like the instantaneous temperature based

algorithm.

The utilization balancing scheduling will be regarded as the baseline of compari-

son. The “R - U” stands for the benefit of the proposed reliability aware algorithm

over utilization balancing scheduling. The “T inst - U” stands for the the benefit

of instantaneous temperature based scheduling over utilization balancing scheduling.

The “T - U” stands for the the benefit of temperature history based scheduling over

utilization balancing scheduling. The benefit is calculated using function:

BenefitR−U = (RR(t∗)−RU(t∗))/(1−RU(t∗)) ∗ 100% (5.1)

BenefitT inst−U = (RT inst(t
∗)−RU(t∗))/(1−RU(t∗)) ∗ 100% (5.2)

BenefitT−U = (RT (t∗)−RU(t∗))/(1−RU(t∗)) ∗ 100% (5.3)

where t∗ is the time when reliability of the system using utilization balancing algo-

rithm is equal to 0.99. The parameters for the two reliability models is shown in

Table 5.2.

Table 5.2: Parameter Value of Reliability Models

EM Oxide Breakdown
Aem 0.3 Abd 2.88e7
J 1e6A/cm2 a 78
Ea 0.9eV b -0.0081
n 1.1 X 0.759eV

Y -66.8eV*K
Z -8.37e4 eV/K

25

Figure 5.3 show the average benefit of different scheduling algorithms over the

baseline algorithm running multiple randomly generated task sets. The x-axis is the

total utilization (worst case) of the system while the y-axis is the benefit using the

benefit functions presented above.

As is shown in Figure 5.3, when the total utilization of the system is high([1.6,1.8]),

the benefit is larger. This is due to the fact that the the thermal load imbalance is

higher when the system has less idle time. Using the task swapping mechanism, the

proposed reliability aware algorithm can still adjust the thermal load on cores. The

proposed reliability aware algorithm doesn’t gain too much over the two comparisons

when the utilization is smaller. This is because the static utilization balancing algo-

rithm has already properly balanced the thermal load on two cores. In Figure 5.3,

it can be seen that, as the actual execution time of each task varies larger (larger

sigma) from its mean execution time, the benefit also goes down. This is because the

reliability aware algorithm can be seen as predict the future thermal impact based on

the historical thermal impact. As the actual execution varies, this prediction is less

precise.

In Section 4.2, it is proved that the reliability of the whole system will be max-

imized when the reliability of each core is balanced. Figure 5.4 shows the average

reliability difference using different algorithms. The task sets used are the same task

sets used for results in Figure 5.3. As is shown, the proposed reliability aware al-

gorithm gives much smaller reliability difference than other three. If no dynamic

frequency/voltage scaling is performed, this benefit can be seen as the maximum

possible benefit.

As is mentioned in Section 5.1, a simplified floorplan is used to get the tempera-

ture and reliability used for task migration/swapping since there may not be enough

temperature information in a real processor. Figure 5.5 shows the difference in ben-

efit if the original floorplan of Alpha 21264 core is used to get the temperature and

26

 0

 2

 4

 6

 8

 10

 1 1.2 1.4 1.6 1.8

A
v
g

B
e
n
e
f
i
t
(
%
)

Utilization

Sigma=0.05

R - U
T - U

T_inst - U

(a)

 0

 2

 4

 6

 8

 10

 1 1.2 1.4 1.6 1.8

A
v
g

B
e
n
e
f
i
t
(
%
)

Utilization

Sigma=0.1

R - U
T - U

T_inst - U

(b)

Figure 5.3: Average Benefit over Static Algorithm

27

 0

 2

 4

 6

 8

 10

 1 1.2 1.4 1.6 1.8

A
v
g

B
e
n
e
f
i
t
(
%
)

Utilization

Sigma=0.4

R - U
T - U

T_inst - U

(c)

 0

 2

 4

 6

 8

 10

 1 1.2 1.4 1.6 1.8

A
v
g

B
e
n
e
f
i
t
(
%
)

Utilization

Uniform Distribution

R - U

T - U

T_inst - U

(d)

Figure 5.3: Average Benefit over Static Algorithm(Continued)

28

0.0e0

5.0e-5

1.0e-4

1.5e-4

2.0e-4

2.5e-4

3.0e-4

3.5e-4

4.0e-4

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

A
v
g

R
e
l
i
a
b
i
l
i
t
y

D
i
f
f
e
r
e
n
c
e

Utilization

Sigma=0.05

U
T

T_inst
R

(a)

0.0e0

5.0e-5

1.0e-4

1.5e-4

2.0e-4

2.5e-4

3.0e-4

3.5e-4

4.0e-4

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

A
v
g

R
e
l
i
a
b
i
l
i
t
y

D
i
f
f
e
r
e
n
c
e

Utilization

Sigma=0.1

U
T

T_inst
R

(b)

Figure 5.4: Average Reliability Difference Among Cores when Using Different Algo-
rithms(Continued)

29

0.0e0

5.0e-5

1.0e-4

1.5e-4

2.0e-4

2.5e-4

3.0e-4

3.5e-4

4.0e-4

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

A
v
g

R
e
l
i
a
b
i
l
i
t
y

D
i
f
f
e
r
e
n
c
e

Utilization

Sigma=0.4

U
T

T_inst
R

(c)

0.0e0

5.0e-5

1.0e-4

1.5e-4

2.0e-4

2.5e-4

3.0e-4

3.5e-4

4.0e-4

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

A
v
g

R
e
l
i
a
b
i
l
i
t
y

D
i
f
f
e
r
e
n
c
e

Utilization

Uniform Distribution

U

T

T_inst

R

(d)

Figure 5.4: Average Reliability Difference Among Cores when Using Different Algo-
rithms(Continued)

30

 0

 2

 4

 6

 8

 10

 1 1.2 1.4 1.6 1.8

A
v
g

B
e
n
e
f
i
t
(
%
)

Utilization

Sigma=0.1

R_simplified
R_full

(a)

 0

 2

 4

 6

 8

 10

 1 1.2 1.4 1.6 1.8

A
v
g

B
e
n
e
f
i
t
(
%
)

Utilization

Sigma=0.1

T_simplified
T_full

(b)

Figure 5.5: Benefit over Static Algorithm when Using Different Floorplans

31

reliability. In Figure 5.5 , ”R simplified” and ”T simplified” stand for the benefit of

reliability aware algorithm and temperature history based scheduling algorithm using

the simplified floorplan (this is the data shown in Figure 5.3). “R full” and “T full”

stand for the benefit using the original floorplan.

As is shown in Figure 5.5, there is only a very small difference using different

floorplans. This is because the reliability of a core is dominated by the hot blocks.

The integer ALU and integer register are individual blocks in the simplified floorplan.

These two blocks are usually the hottest parts of the core. The other two hot blocks,

the floating point register and floating point ALU, are merged in a simple block.

Since the activities of these two blocks are tightly related, the temperature of this

two block will vary in the same direction. Merging this two blocks into one will not

lead to the situation where hot block become a cool block after being merged.

The reliability update interval is another parameter that can affect the perfor-

mance of the proposed algorithm. Reliability of each core is updated using the av-

erage temperature of past interval. A small interval will lead to an increase in the

overhead due to temperature acquirement and reliability calculation. Using a large

interval, on the other hand, the algorithm will have less opportunities to migrate

tasks and may fail to capture the impact of hot but small tasks. The benefit shown

above uses an interval of 0.5 second. Figure 5.6 shows the difference in benefit when

using different reliability update interval. The benefit decreases when the reliability

update interval is larger. This is because the temperature difference between two

cores used to calculated reliability is small when the interval is large. The estimated

reliability is not precise enough. The reliability difference is not enough to trigger the

task migration/swapping. Less migration/swapping will be performed.

32

 0

 2

 4

 6

 8

 10

 1 1.2 1.4 1.6 1.8

A
v
g

B
e
n
e
f
i
t
(
%
)

Utilization

Sigma=0.1

s=0.25s

s=0.5s

s=1.0s

s=5.0s

s=50.0s

Figure 5.6: Benefit Using Different Reliability Update Interval

33

CHAPTER 6

CONCLUSIONS

This research proposes a reliability aware dynamic workload balancing algorithm

to improve the reliability of multi-core real-time systems. The simulation result shows

that the proposed algorithm outperforms the static scheduling algorithm and the pre-

viously suggested algorithms that balance the load on each core according to tem-

perature. The proposed algorithm gains nearly 10% of benefit in reliability over the

static algorithm while algorithms using temperature information gain 4% or less over

the static algorithm. Using the proposed reliability aware algorithm, the reliability

difference between two cores is 5 to 25 times smaller (high utilization to low utiliza-

tion) than static approach and 4 to 10 times smaller than the temperature based

algorithm. It is proved in this research that keeping the thermal impact balanced

on the cores at all times (the reliability difference among cores to be 0 all the time)

will maximize the system reliability. The reduction of the reliability difference among

cores achieved by the proposed algorithm shows the proposed algorithm provides a

considerable improvement over the previous algorithms.

The suggested direction of future study is to reduce the reliability difference among

cores further. For a given task set with certain energy consumption, it is possible to

use DVFS technique to make the power of each core fluctuate less (thus the tem-

perature of core will fluctuate less) and achieve a further reduction in the reliability

difference among cores.

34

APPENDIX

RANDOM GENERATION OF TASK UTILIZATION AND
ACTUAL EXECUTION TIME

In this research, the proposed reliability aware algorithm need to be evaluated

under different total utilization. Also, tasks can have different thermal impact on

systems. Some tasks lead to higher temperature when executing repeatedly with no

break. Some tasks lead to lower temperature. Thus, the proposed algorithm is also

evaluated using the task sets in which different task sets have different utilization.

(For example, in task sets 1, task 1 may have a utilization of 20 percent of the total

utilization but only have 10 percent of total utilization in sets 2).

The tasks used in the simulation are 7 applications from SPEC2000. The worst

case execution time (WCET) of each task is the time to run it on Simplescalar with

ALPHA configuration using the input from SPEC2000 package. Since WCET of each

task is determined, the utilization(WCET
period

) of each tasks can be adjusted by setting

different periods.

The utilization of each task is determined by the following way: 7 integers (randi, i =

1, 2, .., 7) in [1,100] are generated using the Mersenne twister random number gener-

ator. The utilization weight of task τi will be randi∑
randi

. If the desired total utilization

is 1.8, the utilization of τi will be randi∑
randi

∗ 1.8. Table A.1 shows randi∑
randi

of each task

in the different task sets used for result in Chapter 5. Each column is a task sets.

In real-time system, the actual execution time will not always (seldom, actually)

equal to the WCET. In simulation, this is model by setting the actual execution time

of each iteration equal to the random generated ratio of WCET. This random ratio

35

belong to [0.1,0.2,...,1.0]. And is generated when the iteration arrives. The ratio of

WCET is generated by sampling the normal distribution with different deviations.

Table A.1: Relative Contribution to Task Set Utilization

Task Sets
1 2 3 4 5 6 7 8 9 10

six 0.064 0.207 0.093 0.145 0.107 0.160 0.040 0.132 0.085 0.188
gcc 0.192 0.237 0.139 0.097 0.171 0.106 0.202 0.227 0.030 0.104
mesa 0.085 0.110 0.185 0.145 0.190 0.177 0.179 0.176 0.070 0.208
mgrid 0.256 0.092 0.046 0.145 0.143 0.266 0.269 0.265 0.282 0.156
gap 0.192 0.104 0.030 0.218 0.071 0.160 0.040 0.040 0.211 0.156
galgel 0.171 0.221 0.370 0.194 0.143 0.089 0.134 0.132 0.080 0.139
bzip 0.038 0.028 0.139 0.055 0.171 0.044 0.134 0.026 0.241 0.052

36

BIBLIOGRAPHY

[1] Ptscalar, Dec. 2003.

[2] Hotspot, Dec. 2011.

[3] Comparison between tilts and hotspot, Dec. 2013.

[4] Baruah, S., and Carpenter, J. Multiprocessor fixed-priority scheduling with
restricted interprocessor migrations. In Real-Time Systems, 2003. Proceedings.
15th Euromicro Conference on (July 2003), pp. 195–202.

[5] Baruah, Sanjoy, and Baker, Theodore. Schedulability analysis of global edf.
Real-Time Systems 38, 3 (2008), 223–235.

[6] Baruah, Sanjoy, and Fisher, Nathan. Global deadline-monotonic scheduling of
arbitrary-deadline sporadic task systems. In Principles of Distributed Systems,
Eduardo Tovar, Philippas Tsigas, and Hacne Fouchal, Eds., vol. 4878 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2007, pp. 204–216.

[7] Black, James R. Mass transport of aluminum by momentum exchange with
conducting electrons. In Reliability Physics Symposium, 2005. Proceedings. 43rd
Annual. 2005 IEEE International (April 2005), pp. 1–6.

[8] Brooks, D., Tiwari, V., and Martonosi, M. Wattch: a framework for
architectural-level power analysis and optimizations. In Computer Architecture,
2000. Proceedings of the 27th International Symposium on (2000), pp. 83–94.

[9] Chen, Jian-Jia, Hung, Chia-Mei, and Kuo, Tei-Wei. On the minimization of
the instantaneous temperature for periodic real-time tasks. In Real Time and
Embedded Technology and Applications Symposium, 2007. RTAS ’07. 13th IEEE
(2007), pp. 236–248.

[10] Cuesta, D., Ayala, J.L., Hidalgo, J.I., Atienza, D., Acquaviva, A., and Macii,
E. Adaptive task migration policies for thermal control in mpsocs. In VLSI
(ISVLSI), 2010 IEEE Computer Society Annual Symposium on (2010), pp. 110–
115.

[11] Fisher, N., Chen, Jian-Jia, Wang, Shengquan, and Thiele, L. Thermal-aware
global real-time scheduling on multicore systems. In Real-Time and Embedded
Technology and Applications Symposium, 2009. RTAS 2009. 15th IEEE (2009),
pp. 131–140.

37

[12] Goossens, Joël, Funk, Shelby, and Baruah, Sanjoy. Priority-driven scheduling of
periodic task systems on multiprocessors. Real-Time Syst. 25, 2-3 (Sept. 2003),
187–205.

[13] Hanumaiah, V., Rao, R., Vrudhula, S., and Chatha, K.S. Throughput optimal
task allocation under thermal constraints for multi-core processors. In Design
Automation Conference, 2009. DAC ’09. 46th ACM/IEEE (2009), pp. 776–781.

[14] Hanumaiah, V., and Vrudhula, S. Temperature-aware dvfs for hard real-time
applications on multicore processors. Computers, IEEE Transactions on 61, 10
(2012), 1484–1494.

[15] Hanumaiah, V., Vrudhula, S., and Chatha, K.S. Performance optimal speed con-
trol of multi-core processors under thermal constraints. In Design, Automation
Test in Europe Conference Exhibition, 2009. DATE ’09. (2009), pp. 1548–1551.

[16] Karl, E., Blaauw, D., Sylvester, D, and Mudge, T. Multi-mechanism reliability
modeling and management in dynamic systems. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on 16, 4 (2008), 476–487.

[17] Krishna, C. M. Ameliorating thermally acclerated aging with state-based appli-
cation of fault-tolerance in cyber-physical computers. In IEEE Transactions on
Reliability (March 2015, to appear).

[18] Liu, J.W.S. Real-Time Systems. Prentice Hall, 2000.

[19] Lopez, J.M., Garcia, M., Diaz, J.L., and Garcia, D.F. Worst-case utilization
bound for edf scheduling on real-time multiprocessor systems. In Real-Time
Systems, 2000. Euromicro RTS 2000. 12th Euromicro Conference on (2000),
pp. 25–33.

[20] Lu, Zhijian, Huang, Wei, Lach, J., Stan, M., and Skadron, K. Interconnect
lifetime prediction under dynamic stress for reliability-aware design. In Com-
puter Aided Design, 2004. ICCAD-2004. IEEE/ACM International Conference
on (2004), pp. 327–334.

[21] Lu, Zhijian, Huang, Wei, Stan, Mircea, Skadron, Kevin, and Lach, John. Inter-
connect lifetime prediction with temporal and spatial temperature gradients for
reliability-aware design and run 134 time management: Modeling and applica-
tions. very large scale integration (vlsi) systems. IEEE Transactions on (2006).

[22] Lu, Zhijian, Huang, Wei, Stan, M.R., Skadron, K., and Lach, J. Interconnect
lifetime prediction for reliability-aware systems. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on 15, 2 (2007), 159–172.

[23] Mulas, F., Pittau, M., Buttu, M., Carta, Salvatore, Acquaviva, A., Benini, L.,
Atienza, D., and De Micheli, G. Thermal balancing policy for streaming comput-
ing on multiprocessor architectures. In Design, Automation and Test in Europe,
2008. DATE ’08 (2008), pp. 734–739.

38

[24] Murali, S., Mutapcic, A., Atienza, D., Gupta, R., Boyd, S., Benini, L., and
De Micheli, G. Temperature control of high-performance multi-core platforms
using convex optimization. In Design, Automation and Test in Europe, 2008.
DATE ’08 (2008), pp. 110–115.

[25] Murali, S., Mutapcic, A., Atienza, D., Gupta, R., Boyd, S., and De Micheli,
G. Temperature-aware processor frequency assignment for mpsocs using
convex optimization. In Hardware/Software Codesign and System Synthe-
sis (CODES+ISSS), 2007 5th IEEE/ACM/IFIP International Conference on
(2007), pp. 111–116.

[26] Srinivasan, J., Adve, S.V., Bose, P., and Rivers, J.A. The impact of technol-
ogy scaling on lifetime reliability. In Dependable Systems and Networks, 2004
International Conference on (June 2004), pp. 177–186.

[27] Srinivasan, J., Adve, S.V., Bose, P., and Rivers, J.A. Lifetime reliability: toward
an architectural solution. Micro, IEEE 25, 3 (2005), 70–80.

[28] Srinivasan, Jayanth, Adve, Sarita V., Bose, Pradip, and Rivers, Jude A. The
case for lifetime reliability-aware microprocessors. In Proceedings of the 31st
Annual International Symposium on Computer Architecture (Washington, DC,
USA, 2004), ISCA ’04, IEEE Computer Society, pp. 276–.

[29] Stathis, J.H. Physical and predictive models of ultrathin oxide reliability in cmos
devices and circuits. Device and Materials Reliability, IEEE Transactions on 1,
1 (Mar 2001), 43–59.

[30] Wu, E, Su, J, Lai, W, Nowak, E, McKenna, J, Vayshenker, A, and Harmon,
D. Interplay of voltage and temperature acceleration of oxide breakdown for
ultra-thin gate oxides. Solid-State Electronics 46, 11 (2002), 1787 – 1798.

[31] Xie, Yuan, and Hung, Wei-Lun. Temperature-aware task allocation and schedul-
ing for embedded multiprocessor systems-on-chip (mpsoc) design. J. VLSI Signal
Process. Syst. 45, 3 (Dec. 2006), 177–189.

[32] Zhu, Xiaomin, He, Chuan, Bi, Yuping, and Qiu, Dishan. Towards adaptive
power-aware scheduling for real-time tasks on dvs-enabled heterogeneous clus-
ters. In Green Computing and Communications (GreenCom), 2010 IEEE/ACM
Int’l Conference on Int’l Conference on Cyber, Physical and Social Computing
(CPSCom) (Dec 2010), pp. 117–124.

[33] Zhuo, Cheng, Sylvester, D, and Blaauw, D. Process variation and temperature-
aware reliability management. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2010 (2010), pp. 580–585.

39

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2015

	Reliabilibity Aware Thermal Management of Real-time Multi-core Systems
	Shikang Xu
	Recommended Citation

	tmp.1417708330.pdf.c9pHH

