
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

2014

Enhanced Capabilities of the Spike Algorithm and
a New Spike-OpenMP Solver
Braegan S. Spring
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been
accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Spring, Braegan S., "Enhanced Capabilities of the Spike Algorithm and a New Spike-OpenMP Solver" (2014). Masters Theses. 116.
https://scholarworks.umass.edu/masters_theses_2/116

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/116?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ENHANCED CAPABILITIES OF THE SPIKE
ALGORITHM AND A NEW SPIKE-OPENMP SOLVER

A Thesis Presented

by

BRAEGAN SPRING

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

September 2014

Electrical and Computer Engineering

ENHANCED CAPABILITIES OF THE SPIKE
ALGORITHM AND A NEW SPIKE-OPENMP SOLVER

A Thesis Presented

by

BRAEGAN SPRING

Approved as to style and content by:

Eric Polizzi, Chair

Zlatan Aksamija, Member

Hans Johnston, Member

Christopher V. Hollot , Department Chair
Electrical and Computer Engineering

ACKNOWLEDGMENTS

I would like to thank Dr. Zlatan Aksamija & Dr. Hans Johnston for assisting me in

this project, Dr. Polizzi for guiding me through it, and Dr. Anderson for his help

beforehand.

iii

ABSTRACT

ENHANCED CAPABILITIES OF THE SPIKE
ALGORITHM AND A NEW SPIKE-OPENMP SOLVER

SEPTEMBER 2014

BRAEGAN SPRING

B.Sc., UNIVERSITY MASSACHUSETTS AMHERST

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Eric Polizzi

SPIKE is a parallel algorithm to solve block tridiagonal matrices. In this work,

two useful improvements to the algorithm are proposed. A flexible threading strategy

is developed, to overcome limitations of the recursive reduced system method. Allo-

cating multiple threads to some tasks created by the SPIKE algorithm removes the

previous restriction that recursive SPIKE may only use a number of threads equal

to a power of two. Additionally, a method of solving transpose problems is shown.

This method matches the performance of the non-transpose solve while reusing the

original factorization.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iii

ABSTRACT . iv

LIST OF FIGURES . vii

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 The SPIKE Algorithm . 2

1.2.1 Overview . 2
1.2.2 Recursive implicit SPIKE with LU/UL factorization 7

1.2.2.1 Implicit V and W matrices . 7
1.2.2.2 LU/UL factorization . 9
1.2.2.3 Recursive Reduced System . 11

2. ENHANCED LOAD BALANCING . 17

2.1 Distribution of threads . 18
2.2 Partition ratios . 19
2.3 Partition sizes . 23

3. TRANSPOSE SCHEME FOR SPIKE . 25

3.1 Two partition case . 25

3.1.1 Transpose S matrix . 27
3.1.2 Transpose D matrix . 29
3.1.3 Summary . 30

3.2 Multi partition case . 31

v

3.2.1 New partitions . 31

3.2.1.1 Transpose S matrix . 32
3.2.1.2 Transpose D matrix . 37

3.2.2 Recursive reduced system solve . 39

4. IMPLEMENTATION DETAILS . 47

4.1 Advantages and Disadvantages of OpenMP . 47
4.2 Point to Point communication in OpenMP . 48

5. RESULTS . 51

5.1 Partition size ratios . 52
5.2 Scaling . 57
5.3 Solve Stage . 64

6. CONCLUSION . 68

BIBLIOGRAPHY . 69

vi

LIST OF FIGURES

Figure Page

5.1 Partition size map for 16 threads, contours represents .04s 54

5.2 Partition size map for 30 threads, contours represents .04s 55

5.3 Partition size map for 23 threads, contours represents .04s 56

5.4 Partition size map for 16 threads, contours represents .04s 58

5.5 Partition size map for 30 threads, contours represents .04s 59

5.6 Partition size map for 23 threads, contours represents .04s 60

5.7 Comparison of factorization stage scalability for bandwidth 320, with
matrix size 1M . 61

5.8 Comparison of factorization stage scalability for bandwidth 640, with
matrix size 1M . 61

5.9 Comparison of factorization stage scalability for bandwidth 320, with
matrix size 2M . 62

5.10 Comparison of factorization stage scalability for bandwidth 640, with
matrix size 2M . 63

5.11 Comparison of solve stage scalability for bandwidth 160, with matrix
size 1M, and 160 vectors, using solve tuned ratios 65

5.12 Comparison of combined scalability for bandwidth 160, with matrix
size 1M, and 160 vectors, using solve tuned ratios 65

5.13 Comparison of solve stage scalability for bandwidth 160, with matrix
size 2M, and 160 vectors, using solve tuned ratios 66

5.14 Comparison of combined scalability for bandwidth 160, with matrix
size 2M, and 160 vectors, using solve tuned ratios 67

vii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Linear systems are a basic tool, frequently used to to express our understanding of

the natural and engineering world. Because of this, high quality linear algebra soft-

ware is one of the cornerstones of computational science. Two well known examples of

such software are BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear

Algebra PACKage). These set of subroutines provide a consistent interface to high

performance linear algebra building blocks across hardware platforms and operating

systems.

Many recent improvements in available computational power have been driven by

increased use of parallelism. However, taking advantage of these improvements can

be a burden for programmers due to the added complexity involved in parallelizing an

algorithm. As a result, it is a often helpful to produce parallelized implementations of

common subroutines. This allows users to take advantage of the capabilities of their

hardware without redesigning their algorithms. Because of the popularity of linear

systems, linear algebra subroutines are a good candidate for this task.

In this work we will discuss enhancements to and an implementation of the SPIKE

algorithm. The end result is easy to use linear system solver for banded systems.

This solver duplicates the features of the LAPACK banded solver, and uses the well

supported OpenMP* threading library, for ease of use and installation.

1

1.2 The SPIKE Algorithm

1.2.1 Overview

The SPIKE algorithm is a domain decomposition method for solving block tridi-

agonal matrices. It can be traced back to work done by A. Sameh and associates

on banded system in the late seventies. [2, 7] Since then, it has been developed and

adapted for a number of special cases, such as diagonally dominant [3] and positive

definite matrices [4]

SPIKE is a flexible algorithm, and can be tuned for large scale distributed or con-

sumer level multi-core systems. Parallelism is extracted by decoupling the relatively

large blocks along the diagonal, solving them independently, and then reconstructing

the system via the use of smaller reduced systems. There are a number of versions of

the SPIKE algorithm, which handle the specifics of those steps in different ways. [6]

We will begin by briefly discussing a simple version at a high level.

The overall problem to be solved is

Ax = f for x (1.1)

Where A and f are known. In general for SPIKE, A must be block tridiagonal.

However, for this work we will consider only a diagonal matrix with constant band-

width. A is a n × n diagonal banded matrix, with upper and lower bandwidths ku

and kl respectively. x and f are vectors with n elements each. It is possible that we

would like to solve for multiple vectors, and we use the notation nrhs(number of right

hand sides) to represent the number of x or f vectors.

The first step of the SPIKE algorithm is the factorization stage. In this stage, we

separate the matrix A into the matrices D and S. This is the SPIKE factorization.

2

A =



A1

B1

.
.
.

Ci

Ai

Bi

.
.
.

Cp

Ap



= (1.2)

DS =

A1

. .
.

Ai

.
. .

Ap





I V1

. .
.

Wi I Vi

.
. .

Wp I


(1.3)

The Ai sub-matrices are the aforementioned large blocks along the diagonal of

A. These blocks are not necessarily all the same size. Instead, the size of a given

sub-matrix is ni × ni. The Vi and Wi matrices may be thought of as the coupling

between the Ai matrices and their neighbors. They are formed as follows.

AiVi =

[
0
Bi

]
→A−1

i

[
0
Bi

]
= Vi (1.4a)

AiWi =

[
Ci

0

]
→A−1

i

[
Ci

0

]
= Wi (1.4b)

3

The Bi and Ci matrices contain the elements of A along the diagonal that are

outside of Ai. They are ku × ku and kl × kl respectively. Therefore, the Vi and Wi

matrices are ni × ku and ni × kl.

After the factorization in to D and S, we enter the solve stage. We obtain two

sub-problems:

Ax = DSx = f (1.5a)

Dy = f (1.5b)

Sx = y (1.5c)

The vectors x, y, and f may be broken in to segments xi, yi and fi of height ni.

Because the blocks of D are uncoupled, 1.5b may be performed in parallel, as

yi = A−1
i fi for all i ∈ 1...p (1.6)

This is all that is required for the D stage. The next subproblem is the S stage.

Because of the structure of the S matrix, most of the work for this stage can actually

be performed by multiplication. For this stage, we will have to further segment the x

and y vectors. We will require the tips of these vectors to be separated from the main

body: xi =

 xit

x̃i

xib

. The height of the vectors xit and xib are ku and kl respectively.

The vector x̃i takes the remainder of the elements, so it has a height of ni− (kl + ku)

elements. Similarly, the Vi and Wi matrices can be segmented to Vi =

Vit

Ṽi

Vib

 and

Wi =

Wit

W̃i

Wib

. Thus, the S matrix becomes:

4

Sx = y

=



V1t

I Ṽ1

V1b

. . .

Wit Vit

W̃i I Ṽi

Wib Vib

. . .

Wpt

W̃p I

Wpb





x1t

x̃i

x1b

...

xit

x̃i

xib

...

xpt

x̃p

xpb



=



y1t

ỹi

y1b

..

.

yit

ỹi

yib

...

ypt

ỹp

ypb



(1.7)

After performing this multiplication, we obtain a simpler set of equations.

 y1t

ỹ1

y1b

 =

 x1t

x̃1

x1b

+

V1t

Ṽ1

V1b

x2t (1.8a)

 yit

ỹi

yib

 =

 xit

x̃i

xib

+

Vit

Ṽi

Vib

xi+1t +

Wit

W̃i

Wib

xi−1b (1.8b)

 ypt

ỹp

ypb

 =

 xpt

x̃p

xpb

+


Wpt

W̃p

Wpb

xp−1b (1.8c)

Notice that the top and bottoms tips of the xi and yi vectors are independent of

the middle sections. We can use this fact to extract a reduced system. This reduced

system will give us xit and xib, which we can then use to retrieve x̃i.

The removal of the middle sections middle sections of the equations in 1.8 results

in the following reduced system.

5

[
y1t

y1b

]
=

[
x1t

x1b

]
+

[
V1t

V1b

]
x2t (1.9a)[

yit

yib

]
=

[
xit

xib

]
+

[
Vit

Vib

]
x(i+1)t +

[
Wit

Wib

]
xi−1b (1.9b)[

ypt

ypb

]
=

[
xpt

xpb

]
+

[
Wpt

Wpb

]
xp−1b (1.9c)



y1t

y1b

y2t

y2b

...

yi−1t

yi−1b

yit

yib

...

yp−1t

yp−1b

ypt

ypb



=



I V1t

I V1b

W2t I

W2b I

. . .

I Vi−1t

I Vi−1b

Wit I

Wib I

. . .

I Vp−1b

I Vp−1b

Wpt I

Wpb I





x1t

x1b

x2t

x2b

...

xi−1t

xi−1b

xit

xib

...

xp−1t

xp−1b

xpt

xpb



(1.10)

This matrix may hypothetically be solved in a direct manner, resulting in values

for the xit and xib. These may, in turn, be used to retrieve the rest of the values for

x from 1.8. After this step, the problem has been solved.

x̃1 = ỹ1 − Ṽ1x2t (1.11a)

x̃i = ỹi −
(
Ṽixi+1t + W̃ixi−1t

)
(1.11b)

x̃p = ỹp − W̃pxp−1t (1.11c)

6

There are a number of areas for improvement in this method. The first relates to

the reduced system. The reduced system in this problem is 2(kl + ku)p elements in

size. This is much smaller than the original A matrix, but as the number of threads

is increased, the size of this reduced system is increased. Because the reduced system

is not solved in parallel, eventually it would become large enough to cause slowdown.

The next problem relates to the Vi and Wi matrices. These matrices are fairly

large. On a shared memory machine, as the number of cores increases the system

bandwidth to memory is not necessarily increased. As a result, the scheme discussed

in this section is likely to become starved for memory bandwidth prematurely. This

is particularly noticeable in the solve stage of the problem, as there is less work to do

per element. Therefore, it would be an improvement if we could avoid working with

V and W explicitly in the solve stage.

Finally, and relatedly, we would like to reduce the total number of solves operations

required. When creating the S matrix, we must perform a solve for each Vi =

A−1
i

[
0
Bi

]
, Wi = A−1

i

[
Ci

0

]
. We must also perform the solves for the blocks of the

D matrix, yi = A−1
i fi. We would like to minimize the total number of large solves

as much as possible.

1.2.2 Recursive implicit SPIKE with LU/UL factorization

This section describes the recursive, implicit SPIKE algorithm with LU/UL fac-

torization. Each of those terms will be explained shortly. This is the base algorithm

upon which the improvements described later in this paper have been made. We will

begin by discussing the implicit treatment of the V and W spikes.

1.2.2.1 Implicit V and W matrices

Let us reconsider the state of the problem immediately after solving the reduced

system. With the reduced system solved, we now have xit and xib. We also have,

from the D stage

7

yi =

 yit

ỹi

yib

 = A−1
i fi = A−1

i

 fit

f̃i

fib

 (1.12)

Our original goal in the S stage was to perform the operations in 1.8, reproduced

in compact form below.

y1 = x1 + V1x2t (1.13a)

yi = xi + Vixi+1t + Wixi−1b (1.13b)

yp = xp + Wpxp−1b (1.13c)

Now we put the V and W terms back in to their original form and rearrange the
equation to isolate the unknowns.


x1t

x̃1

x1b

 =


y1t

ỹ1

y1b

 − V1x2t = A
−1
1




f1t

f̃1

f1b

 −

 0

B1

x2t

 (1.14a)


xit

x̃i

xib

 =


yit

ỹi

yib

 − Vixi+1t − Wixi−1b = A
−1
i




fit

f̃i

fib

 −

 0

Bi

xi+1t −

 Ci

0

xi−1b

 (1.14b)


xpt

x̃p

xpb

 =


ypt

ỹp

ypb

 − Wpxp−1b = A−1
p




fpt

f̃p

fpb

 −

 Cp

0

xp−1b

 (1.14c)

Because the matrices containing the B and C sub-matrices consist mainly of

zeroes, we can replace the large multiplications with V and W by the much smaller

ones shown in 1.14. Unfortunately, it is still necessary to generate the entire V

and W matrices. This is because the top and bottom tips of these matrices are

required to construct the reduced system. However, these matrices are generated in

the factorization stage, and need not be stored once the tips have been extracted.

This is all that is required to avoid explicitly using the V and W matrices in the

solve stage.

8

1.2.2.2 LU/UL factorization

Until now, the method actually solving problems such as A−1
1 fi has been left

vague. These operations are performed in one of two ways. In some cases, the

popular LU or UL factorization and solve have been used. Specifically, a banded

primitive for LU and UL factorization and solve, build upon the BLAS triangular

primitives. In other cases, a special purpose SPIKE 2×2 primitive has been used,

which will be discussed later.

Note that we do not use a PLU factorization. That is, we do not permute in the

case of a zero-pivot. Instead, diagonal boosting is performed. This may result in the

loss of numerical accuracy should zero-pivots be encountered. However, the SPIKE

algorithm relies heavily on the upper and lower triangular nature of the L and U

matrices in some cases. Should diagonal boosting result in a loss of accuracy, the user

will have to be warned that an approximate answer has been produced.

The LU or UL factorization results in a pair of matrices L and U , which are lower

and upper triangular respectively. To solve a problem involving these factorizations,

we require one solve for the L matrix and another for the U matrix. We call these

solves ‘sweeps’ to distinguish from a full solve. This mnemonic is meant to evoke the

idea of moving up the U matrix, and down the L matrix, finding values of the vector

we are sweeping over. We can use the triangular nature of L and U to perform some

significant optimizations.

For partitions 1 and p a particularly large optimization can be made. In the

factorization stage, we must generate the V and W spikes, to extract their tips. In

the case of the first and last partitions, the operations to be performed are:

A−1
1

[
0
B1

]
(1.15a)

A−1
p

[
Cp

0

]
(1.15b)

9

We will perform the LU factorization on Ai and the UL factorization on Ap.

Because the matrices containing B1 and Cp consist mostly of zeroes, these sweeps

will be greatly shortened.

A−1
1

[
0
B1

]
=U−1

1 L−1
1

[
0
B1

]
(1.16a)

A−1
p

[
Cp

0

]
=L−1

p U−1
p

[
Cp

0

]
(1.16b)

Because the top of

[
0
B1

]
consists of zeroes, we may begin the sweep associated

with L−1
1 at the point where the zeroes end and B1 begins. This reduces the height

of the sweep from n1 to ku. Similarly, the sweep up the matrix containing Cp can be

reduced in height from np to kl.

Next, we observe that we do not actually need the value of V1t and Wpb. Recalling

the relevant pieces of the reduced system,



y1t

y1b

y2t

y2b

...
yp−1t

yp−1b

ypt

ypb



=



I V1t

I V1b

W2t I

W2b I

. . .

I Vp−1b

I Vp−1b

Wpt I

Wpb I





x1t

x1b

x2t

x2b

...
xp−1t

xp−1b

xpt

xpb


(1.17)

The values for V1t and Wpb are used to compute x1t and xpb. These values are

not needed to recover the rest of x, because there are no corresponding matrices W1

and Vp. The values for x1t and xpb can be retrieved along with x̃1 and x̃p. As a

10

result, we need only perform enough of the sweep associated with U−1 to extract the

bottom tip of V1b, and enough of the L−1
p sweep to obtain Wpt. These are, then,

reduced in size from n1 and np to ku and kl.Effectively, we have gotten rid of the

sweeps required in the factorization stage for the first and last partitions.

For the middle partitions, we need the whole of V and W in the factorization

stage, but there is still some possibility for optimization. The middle partitions, Ai

= A2 to Ap−1 are all LU factorized. The sweep associated with L−1
i

[
0
Bi

]
may be

shortened. Similar to the L−1
1

[
0
B1

]
sweep, we may skip the beginning zeroes and

shorten the sweep from ni to ku.

1.2.2.3 Recursive Reduced System

To mitigate the problem of the growing reduced system the recursive reduced

system method is used. [5] This is based on the observation that the reduced system

is, itself, banded. So, we may use SPIKE to solve it.

Rather than describe the most general case, we will look at a specific case – the

four partition case – and extrapolate. The recursive method includes multiple stages

of SPIKE, so a new index has been included, indicating the level of recursion. Also,

the reduced S matrices will be called S̃j , where j indicates recursion level.

We would like to factorize this to D and S matrices.

11

S̃1 =



I V1t1

I V1b1

W2t1 I V2t1

W2b1 I V2b1

W3t1 I V3t1

W3b1 I V3b1

W4t1 I

W4b1 I



= D1S̃2 (1.18)

The areas enclosed in the dotted lines becomes the new B and C matrices. Notice

that half of each dotted area is empty. The new V and W spikes will be formed in

the usual manner.



I V1t1

I V1b1

W2t1 I

W2b1 I



−1 

0 0

0 0

V2t1 0

V2b1 0


=



V1t2 0

V1b2 0

V2t2 0

V2b2 0


(1.19a)



I V3t1

I V3b1

W4t1 I

W4b1 I



−1 

W3t1 0

W3b1 0

0 0

0 0


=



W3t2 0

W3b2 0

W4t2 0

W4b2 0


(1.19b)

Zeroes have been explicitly included in this case, to shows an interesting trait of

the V and W matrices in the recursive scheme. With each level of recursion, the

12

V and W matrices grow taller, but not wider. This is helpful, because it limits the

interdependence between elements as the recursive stages continue.

We obtain the equations for D1 and S̃2

D1S̃2 =

I V1t1

I V1b1

W2t1 I

W2b1 I

I V3t1

I V3b1

W4t1 I

W4b1 I





I V1t2

I V1t2

I V2t2

I V2b2

W3t2 I

W3b2 I

W4t2 I

W4t2 I


(1.20)

Because we have only four partitions, this is the bottom level of our recursion.

So, we must solve the problem:

S̃1xred = D1S̃2xred = yred (1.21a)

D1g = yred (1.21b)

S̃2xred = g (1.21c)

The first step is to solve the 1.21b The sub-matrices along the diagonal are de-

coupled, so we may solve the following in parallel.

13



I V1t1

I V1b1

W2t1 I

W2b1 I





g1t

g1b

g2t

g2b


=



y1t

y1b

y2t

y2b


(1.22a)



I V3t1

I V3b1

W4t1 I

W4b1 I





g3t

g3b

g4t

g4b


=



y3t

y3b

y4t

y4b


(1.22b)

The innermost block of these matrices is actually the only part that needs to be

solved, the other values can be retrieved with a multiplication and subtraction.

 I V1b1

W2t1 I


 g1b

g2t

 =

 y1b

y2t

 (1.23a)

g1t = y1t − V1t1g2t (1.23b)

g2b = y2b −W2b1g1b (1.23c) I V3b1

W4t1 I


 g3b

g4t

 =

 y3b

y4t

 (1.23d)

g3t = y3t − V3t1g4t (1.23e)

g4b = y4b −W4b1g3b (1.23f)

This gives us the entirety of g, now we retrieve xred from the D matrix.

14



I V1t2

I V1b2

I V2t2

I V2b2

W3t2 I

W3b2 I

W4t2 I

W4b2 I





x1t

x1b

x2t

x2b

x3t

x3b

x4t

x4b


=



g1t

g1b

g2t

g2b

g3t

g3b

g4t

g4b


(1.24)

Similarly to the previous problem, we can solve a small reduced system and extract

the rest of the answer.

 I V2b2

W3t2 I


 x2b

x3t

 =

 g2b

g3t

 (1.25a)

x1t = g1t − V1t2x3t (1.25b)

x1b = g1b − V1b2x3t (1.25c)

x2t = g2t − V2t2x3t (1.25d)

x3b = g3b −W3b2x2b (1.25e)

x4t = g4t −W4t2x2b (1.25f)

x4b = g4b −W4b2x2b (1.25g)

This completes the recursive scheme for four partitions. In the presence of more

partitions, it would be necessary to perform the spike factorization repeatedly until

the problem was reduced to the two by two block matrix. Then, the problem is solved

from the bottom level up, as we did in the example.

The recursive method is extremely useful because it allows the for parallelism in

the reduced system. However, it does have the limitation that the total number of

15

partitions must be a power of two. This is an unavoidable consequence of halving

the number of partitions with each recursive level. We will discuss mitigating this

problem in the next section.

At this point, the base algorithm has hopefully been sufficiently described. The

rest of this work will discuss new improvements to the SPIKE algorithm.

16

CHAPTER 2

ENHANCED LOAD BALANCING

A limitation for recursive SPIKE is the requirement that the number of partitions

used is 2m for some integer m. The work discussed here is meant to be a general pur-

pose implementation of SPIKE, so it makes sense to make as few assumptions about

the users’ hardware as possible. Additionally, as the number of threads increases,

the amount distance between subsequent values of 2m increases. If the general trend

for increasing cores continues, the amount of compute power possibly wasted by not

having the ability to address the in-between values increases. Finally, even in cases

where a user may have exactly 2m cores, they may wish to allocate some of them to

non-SPIKE related tasks. For these reasons we wish to expand the possible choices

for number of threads used.

The method of attaining this increased resource utilization is surprisingly straight-

forward. The recursive SPIKE algorithm implemented here benefits greatly from ex-

ploiting the LU/UL factorization for the first and last partitions. However, inner

partitions do not gain as much from this optimization. As the LU/UL factorization

does not help much on the inner partitions, we may instead use the SPIKE algorithm

in cases where matrix solves are called for. These partitions may then be increased

in size, until the load is balanced equally between threads.

A simplified SPIKE 2×2 primitive has been developed. The ability to use one or

two threads on inner partitions allows the algorithm to access anywhere from 2m to

2m−2 threads. This leaves us with a maximum gap of one thread wasted, in the case

when the total number of threads is 2m − 1, which is an acceptable limitatation.

17

2.1 Distribution of threads

For the SPIKE algorithm, there are two operations that make up the majority of

the computational cost. The most costly are the factorizations of the sub-matrices in

the D matrix. The second most costly operations are solve sweeps which involve the

whole of these sub-matrices.

The factorizations occur in the factorization stage. On some partitions we will

speed up these factorizations by using a simplified SPIKE 2×2 factorization instead

of a normal LU factorization. Similarly, we will use SPIKE solve on these partitions.

The degree to which this speeds up the work done in these partitions will be discussed

in the next section.

In the first and last partitions, the LU/UL factorization is used to perform a great

optimization. So, these partitions can not use the SPIKE factorization, and always

use one thread. For the rest of the threads, we begin doubling the number of threads

starting arbitrarily at the second topmost partition. For example, four, five, or size

threads would be distributed as follows, with the number representing the number of

threads that would be used for the partition associated with that location in the D

matrix

4 threads 5 threads 6 threads
1

1
1

1

1
2

1
1

1
2

2
1

(2.1)

And eight to fourteen threads would follow the pattern:

18

8 threads 9 threads 10 threads
1

1
1

1
1

1
1

1

1
2

1
1

1
1

1
1

1
2

2
1

1
1

1
1

11 threads 12 threads 13 threads 14 threads
1

2
2

2
1

1
1

1

1
2

2
2

2
1

1
1

1
2

2
2

2
2

1
1

1
2

2
2

2
2

2
1

(2.2)

With seven or fifteen threads, we ignore the final threads and use the scheme for six

or fourteen threads respectively. Continuing with this pattern, when using p = 2m

partitions (for some integer m), q single-thread partitions, and r double threaded

partitions, may have t threads.

0 ≤ r ≤ p− 2 (2.3a)

2 ≤ q ≤ p (2.3b)

p = 2m = q + r (2.3c)

t = q + 2r = 2m + r (2.3d)

2m ≤ t ≤ 2m + p− 2 (2.3e)

2m ≤ t ≤ 2m+1 − 2 (2.3f)

And so, we may use any number of threads, with the exception of 2m − 1

2.2 Partition ratios

Let us assume that we have a matrix A with a size of n and a one-half bandwidth

of klu. Previously we have specified the upper and lower bandwidth as ku and ku,

19

but the distinction is not as important in this case. Instead we assume just that n is

much greater than klu, to the point where we may approximate the half-bandwidth

as equal for upper and lower bands.

Note that the LU solve primitive we use has the ability to work on a number of

right hand sides. In the factorization stage of SPIKE, we perform solves on the B

and C matrices – these are klu wide. In the solve stage, we perform these solves on

the set of vectors supplied by the user, which are nrhs wide. The idea of wideness is

used below, where appropriate.

Additionally, we have a number of right hand side vectors which we are solving

for, nrhs

The costs incurred in each thread are as follows:

• First and last partitions

– Factorization stage: 1×LU (or UL) factorization

– Solve stage: 1× LU solve (width nrhs)

• Inner double threaded partitions

– Factorization stage: 1×SPIKE factorization, 1×SPIKE solve (width 2klu)

– Solve stage: 2×SPIKE solve (width nrhs)

• Inner single threaded partitions

– Factorization stage: 1×LU factorization, .5×LU solve (width 2klu), .5×LU

solve (width klu)

– Solve stage: 2× LU solve (width nrhs)

We will have three partition sizes, n1, n2, and n3. Respectively, they are the sizes

of the first/last partitions, the inner partitions on which the two threaded spike is

used, and the inner partitions which receive the single threaded LU factorization.

20

The relationship between these sizes is defined in terms of the ratios: R12 = n1

n2
and

R13 = n1

n3
. For optimal load balancing, we would like to have each partition take the

same amount of time to complete.

This SPIKE implementation uses a block LU factorization and solve, based on the

BLAS implementation provided by the system. The factorization has a performance

of approximately1 O(n × k2
lu), and the solve has a performance of approximately2

O(n×klu×width). Let us approximate these costs as K1×n×k2
lu and K2×n×klu×

width. In addition, let us call the ratio between K2 and K1 simply K, we will need it

later. For the two-partition case, the block LU factorizations and solves are replaced

by simplified SPIKE factorizations and solves, each using two threads. Because the

SPIKE 2×2 primitive scales perfectly, one SPIKE factorization requires one half the

time of an LU factorization, and one SPIKE solve takes one half the time of a full

LU solve.

The total amount of work on each of the inner partitions is the same, with one

exception. In the factorization stage, we perform the operation:

A−1
i

 0

Ci

 = U−1
i L−1

i

 0

Ci

 = Vi (2.4)

Because the sweep associated with the L matrix can be shortened to klu, it is

ignored. A LU solve requires an L and a U sweep, so the solve for V can only really

be called a half solve. Combined, we will call this 1.5 solves.

1This is assuming that the system BLAS dense LU factorization performs as O(k3lu). The primitive
called by SPIKE is mainly driven by the system factorization. Roughly, the banded matrix is broken
up in to blocks of size klu × klu along the diagonal. This results in a number of blocks equal to
n/klu, and so we really end up with O(n× kx−1

lu), where x is dependent on the system factorization.

2Working under the same assumptions as in 1

21

Putting this all together, we obtain the following requirement for a balanced load:

K1n1k
2
lu + K2n1klunrhs =

K1n2klu + 2K2n2k
2
lu + 2K2n2klunrhs

2
= K1n3k

2
lu + 1.5K2n3k

2
lu + 2K2n3klunrhs

(2.5a)

K1n1klu + K2n1nrhs =

K1n2klu
2

+ K2n2klu + K2n2nrhs = K1n3klu + 1.5K2n3klu + 2K2n3nrhs (2.5b)

(
K1n2

2
+ K2n2)klu + K2n2nrhs = (K1n3 + 1.5K2n3)klu + 2K2n3nrhs (2.5c)

The relationship between klu and nrhs is, naturally, defined by the problem. Let

us start with the easier case. If nrhs is much larger than klu, we may treat klu as zero.

This will allow us to find a system non-specific value for the ratios.

K2n1nrhs = K2n2nrhs = 2K2n3nrhs (2.6a)

n1 = n2 = 2n3 (2.6b)

R12 =
n1

n2

= 1 (2.6c)

R13 =
n1

n3

= 2 (2.6d)

The other case is one in which we have very few right hand sides and very large

bandwidth, such that nrhs is approximated as zero.

K1n1klu = (
K1n2

2
+ K2n2)klu = (K1n3 + 1.5K2n3)klu (2.7a)

K1n1 =
K1n2

2
+ K2n2 = K1n3 + 1.5K2n3 (2.7b)

R12 =
n1

n2

=
1

2
+

K2

K1

=
1

2
+ K (2.7c)

R13 =
n1

n3

= 1 + 1.5
K2

K1

= 1 + 1.5K (2.7d)

22

The constant K depends on the system hardware and the underlying BLAS im-

plementation. Due to the vagaries of hardware and software, it is unlikely that a

universally good value for K exists. However, for a given system K may be easily

found. Using the same approximations as above,

factorization time =K1 × n× k2
lu (2.8a)

solve time =K2 × n× klu × nrhs (2.8b)

K =
K2

K1

(2.8c)

=
solve time

n× klu × nrhs

× n× k2
lu

factorization time
(2.8d)

(2.8e)

So, we may calculate the value of K by performing a factorization and solve on a

matrix and vector such that nrhs = klu

K =
solve time

factorization time
(2.9a)

This calculation could be performed when the SPIKE package is installed.

2.3 Partition sizes

Once the ratios between partition sizes have been decided upon, sizing the par-

titions is easier. The main requirement is that all of the partitions must add up to

be equal in size to the matrix A, n. Assume that there are x partitions of size n2, y

partitions of size n3, and the first/last partitions, each of which is size n1.

23

n = 2n1 + xn2 + yn3 (2.10)

= 2n1 +
xn1

R12

+
yn1

R13

(2.11)

nR12R13

2R12R13 + xR13 + yR12

= n1 (2.12)

nR13

2R12R13 + xR13 + yR12

= n2 (2.13)

nR12

2R12R13 + xR13 + yR12

= n3 (2.14)

24

CHAPTER 3

TRANSPOSE SCHEME FOR SPIKE

An efficient transpose solve option, to solve ATx = f for x, is a standard feature

of the BLAS and Lapack libraries. The alternative would be to explicitly transpose

A, and them perform a normal factorization and solve. This is wasteful, because

it involves needlessly moving values around in memory. Additionally, because the

factorization stage is more computationally expensive than the solve stage, some al-

gorithms will benefit from the ability to use the same factorization for both transpose

non-transpose problems.

3.1 Two partition case

We will begin with the simplified case for two partitions. Here we would like to

perform the operation

Solve ATx = f for x

Where A is an n-by-n diagonal matrix with upper and lower half-bandwidth ku and

kl, x and f are vectors. We would also like the computational cost of this operation

to be minimal – roughly the same as for the non-transpose option. Primarily, we

would like to limit this solve stage to performing one full solve (comprised of two

solve sweeps) on each of the large sub-matrices, A1 and Ap.

Given the factorization designed for non-transpose SPIKE:

25

A =


A1

B

C
A2


= (3.1)

DS =


L1U1

U2L2




I V

W I


(3.2)

The transpose of A can clearly be rewritten in terms of D and S.

AT = STDT =


I

W T

V T

I




UT

1 LT
1

LT
2U

T
2


(3.3)

At this point we obtain two subproblems for the solve stage. These are analo-

gous to the two subproblems in non-transpose SPIKE, although their order has been

reversed.

STDTx = f (3.4a)

STy = f (3.4b)

DTx = y (3.4c)

26

3.1.1 Transpose S matrix

The form of the ST matrix limits the unknowns in the y vector to a small number

of values, which are located at the center of y. The eventual goal will be to use this

fact to construct a reduced system and solve for just these values.

The y and f vectors can be broken up as follows:

STy =


I

0

W T

V T

I
0





ỹ1

y1b

y2t

ỹ2


=



f̃1

f1b

f2t

f̃2


(3.5)

For now let us assume that the segments are sized as follows: y1b, y2t, f1b and

f2t are each a max(kl, ku) elements tall; ỹ1, ỹ2, f̃1 and f̃2 take up the remainder of

the elements in the corresponding halves of the vector, so they are all n
2
−max(kl, ku)

elements tall.

ỹ1 = f̃1 (3.6a)

ỹ2 = f̃2 (3.6b)

y1b = f1b −W T

 y2t

ỹ2

 = f1b −

(U2L2)
−1

 C

0




T  y2t

f̃2

 (3.6c)

y2t = f2t − V T

 ỹ1

y1b

 = f̃2 −

(L1U1)
−1

 0

B




T  f̃1

y1b

 (3.6d)

A large gain in performance is obtained by making two observations. First in 3.6c

and 3.6d, in the 0 sub-matrices are much larger than the C and B sub-matrices.

Secondly, the U−1 and L−1 matrices are upper and lower triangular. Because of

this, some rearranging allows for the solve sweeps associated with U2 and L1 to be

reduced in height from n
2

to max(ku,kl).

27

To simplify the notation, U−1
2t will be used to represent the top-left max(kl,ku)

by max(kl,ku) blocks of elements from U−1
2 . Similarly, L−1

1b will be used to represent

bottom-right max(kl,ku) by max(kl,ku) blocks of elements from L−1
1 .

(U2L2)
−1

 C

0




T  y2t

f̃2

 =

U−1
2

 C

0




T

L−1,T
2

 y2t

f̃2


=

 U−1
2t C

0


T

L−1,T
2

 y2t

f̃2

 (3.7a)

(L1U1)
−1

 0

B




T  f̃1

y1b

 =

L−1
1

 0

B




T

U−1,T
1

 f̃1

y1b


=

 0

L−1
1b B


T

U−1,T
1

 f̃1

y1b

 (3.7b)

These can then be placed back in to the systems from 3.6

y1b = f1b −

 U−1
2t C

0


T

L−1,T
2

 y2t

f̃2


= f1b −

L−1
2

 U−1
2t C

0




T  y2t

0

−
 U−1

2t C

0


T

L−1,T
2

 0

f̃2

 (3.8a)

y2t = f2t −

 0

L−1
1b B


T

U−1,T
1

 f̃1

y1b


= f2t −

U−1
1

 0

L−1
1b B




T  0

y1b

−
 0

L−1
1b B


T

U−1,T
1

 f̃1

0

 (3.8b)

28

The coefficient of

 y2t

0

 in equation 3.8a is the transpose of Wt from the non-

transpose case, which has been created in the factorization stage. Similarly, the

coefficient of

 0

y1b

 in 3.8b is the transpose of Vt. This leads to the reduced system

below.

 I W T

V T I


 y1b

y2t

 =


f1b −

 U−1
2t C

0


T

L−1,T
2

 0

f̃2


f2t −

 0

L−1
1b B


T

U−1,T
1

 f̃1

0




(3.9)

The right hand side of 3.9 requires solve sweeps of L−1,T
2 and U−1,T

1 (performed

in parallel). These are large solves, of height n/2, in fact they are the bulk of the

work involved in solving the ST matrix. Fortunately, this work can be reused in the

next stage.

After the right hand side is constructed, all that remains to be done is to solve this

reduced system. Since it is only of size 2×max(kl, ku) by 2×max(kl, ku) , solving this

system is not too costly. For the more general case, where the number of partitions

is increased, a recursive scheme has been found.

3.1.2 Transpose D matrix

The D matrix is simpler to transpose than S because D is block diagonal. Re-

calling 3.3 the problem to be solved in this stage is:

DTx =


UT

1 LT
1

LT
2U

T
2





x1t

x1b

x2t

x2b


=



ỹ1

y1b

y2t

ỹ2


=



f̃1

y1b

y2t

f̃2


(3.10)

29

The system 3.10 in is trivially broken up in to two which may be solved in parallel.

Also, work done on f̃1 and f̃2 may be recovered at this point, by splitting the y vector

in to large parts which have been solved already, and small parts which have not.

Finally, because U−1,T
1 is lower triangular, and L−1,T

2 is upper, optimizations similar

to those in 3.7 can be used to reduce the sweeps over sections y associated with these

sub-matrices from a height of n
2

to max(kl, ku). The notation for subsections of the

U and L matrices from those equations is repeated here.

 x1t

x1b

 = L−1,T
1 U−1,T

1

 f̃1

y1b

 = L−1,T
1

U−1,T
1

 f̃1

0

+ U−1,T
1

 0

y1b




= L−1,T
1

U−1,T
1

 f̃1

0

+

 0

U−1,T
1 y1b


 (3.11a)

 x2t

x2b

 = U−1,T
2 L−1,T

2

 y2t

f̃2

 = U−1,T
2

L−1,T
2

 0

f̃2

+ L−1,T
2

 y2t

0




= U−1,T
2

L−1,T
2

 0

f̃2

+

 L−1,T
2t y2t

0


 (3.11b)

Where U−1,T
1

 f̃1

0

 and L−1,T
2

 0

f̃2

 were performed in the S stage. This

means that the only large sweeps required at this point are the outermost ones asso-

ciated with L−1,T
1 in 3.11a and U−1,T

2 in 3.11b.

3.1.3 Summary

The two partition transpose spike scheme described above has essentially the

same positive aspects as the non-transpose scheme. Specifically, it contains the same

number of n
2

height sweeps – two per partition. These sweeps make up the majority

of the work for the solve when the matrix size is large and the bandwidth is small.

30

Because a normal BLAS solve requires two sweeps of height n, this scheme will give

almost perfect 2× scaling in these conditions.

3.2 Multi partition case

In order to increase the number of threads that may be used by SPIKE, the number

of partitions is increased. This results in an increase in the size of the reduced system,

as it did in the case of the non-transpose version. To resolve this issue, a recursive

scheme is used to solve the reduced system. The recursive scheme for the reduced

system is conceptually isolated from the rest of the problem – that is, we can abstract

it away as just a matrix solve problem. So, we will begin by discussing the scheme

to deal with the increased number of partitions, then go on to discuss the specifics of

the recursive reduced system method.

3.2.1 New partitions

In this case, we have a matrix of the form:

(3.12)

A =



A1

B1

. . .

Ci

Ai

Bi

. . .

Cp

Ap



(3.13)

31

Where p is some power of two equal to the number of partitions and i is some

integer between 1 and p. The requirement that p is a power of two comes from the

recursive reduced system scheme. The Ai is not necessarily the same size for all i,

but they are all square.

Partitions 1 and p are similar to those in the two partition case. The inside

partitions, however, are different in that they have both a Ci and Bi attached.

Because of this, some of the optimizations available to partitions on the ends will no

longer be available to them.

The overall method in this section is again to perform:

STDTx = f (3.14a)

STy = f (3.14b)

DTx = y (3.14c)

3.2.1.1 Transpose S matrix
The transpose S matrix has the form

ST = (3.15)

I
WT

2
V T
1

I
WT

3

· · ·

. . .

..

.

V T
i−1

I
WT

i+1

· · ·

. . .

...

V T
p−1

I



The above graphic is not perfectly to scale. Specifically, the V and W matrices

are the same size as they have always been, ku or kl elements wide, and a height equal

32

to that of the partition with which they are associated. As such, the V T matrices

are ku elements high, and the W T matrices are kl elements high.

The S matrix can be broken in to subproblems of the form (following the notation

of 3.6):

y1t = f1t (3.16a)

ỹ1 = f̃1 (3.16b)

y1b = f1b −W T
2 y2 =f1b −

 0

B2


T

A−1,T
2


y2t

f̃2

y2b

 (3.16c)

yit = fit − V T
i−1yi−1 =fit −

 Ci−1

0


T

A−1,T
i−1


yi−1t

f̃i−1

yi−1b

 (3.16d)

ỹi = f̃i

yib = fib −W T
i+1yi+1 =fib −

 0

Bi+1


T

A−1,T
i+1


yi+1t

f̃i+1

yi+1b

 (3.16e)

ypt = fpt − V T
p−1yp−1 =fpt −

 0

Bp−1


T

A−1,T
p−1


yp−1t

f̃p−1

yp−1b

 (3.16f)

ỹp = f̃p

ypb = fpb (3.16g)

33

Note that, unlike in the two partitions case, the A matrices are not explicitly

broken up into L and U matrices. In the two partition case, the matrix was written

in a factorized form to allow us to exploit the upper and lower triangular nature of

U and L to reduce the number of full n
2

height sweeps. Those optimizations were

dependent on knowing all of the values for a given partition of y past a certain point.

As a result, in the many partition case these optimizations can only be applied to

the sweeps over the first and last partitions of y which are not shown explicitly here.

However, they are performed in exactly the same way as they were in the two partition

case.

For the rest of the partitions (1 < i < p) we may break apart the known and

unknown values to obtain the following:

 0

Bi


T

A−1,T
i


yit

f̃i

yib

 =

 0

Bi


T

A−1,T
i




yit

0

yib

+


0

f̃i

0


 (3.17a)

= W T
i


yit

0

yib

+

 0

Bi


T

A−1,T
i


0

f̃i

0

 (3.17b)

=

[
W T

it 0 W T
ib

] 
yit

0

yib

+

 0

Bi


T

A−1,T
i


0

f̃i

0

 (3.17c)

34

 Ci

0


T

A−1,T
i


yit

f̃i

yib

 =

 Ci

0


T

A−1,T
i




yit

0

yib

+


0

f̃i

0


 (3.18a)

= V T
i


yit

0

yib

+

 Ci

0


T

A−1,T
i


0

f̃i

0

 (3.18b)

=

[
V T

it 0 V T
ib

] 
yit

0

yib

+

 Ci

0


T

A−1,T
i


0

f̃i

0

 (3.18c)

This arrangement of the sub-matrices represents the implicit spike method. The

W and V matrices are generated in the factorization stage, but only the tips are

saved. However, for the set of multiplications involving y in 3.17c and 3.18c only

the tips of the W and V are used. The middle values of these matrices are simply

multiplied by zeros, so their value is unimportant.

The sweeps associated with A−1,T
i over the f̃i are unavailable. These are a part

of building the modified right hand side for the reduced system. They do require two

large n
2

sweeps each, and we cannot reuse them perfectly for the D stage, unlike in the

two partition case. However, by performing the operations in this order, rather than

explicitly generating the W and V spikes, we attain a substantial space savings. This

is because the post-sweeps values for A−1,T
i


0

f̃i

0

 are stored back in to the fi array.

Because the Ci and Bi sub-matrices are only kl × kl and ku × ku, we only need that

much additional storage from these operations. This can lead to significant speedup,

because the solve stage is likely to be memory bound (naturally this is dependent on

the physical system and the specifics of the problem being solved). At this point we

can build the reduced system:

35



I WT
2t WT

2b

. . .

. . .

V T
i−1b V T

i−1t I

I WT
i+1t WT

i+1b

. . .

. . .

V T
pb V T

pt I





y1b

y2t

y2b

...
yi−1t

yi−1b

yit

yib

yi+1t

yi+1b

...
yp−1t

yp−1b

ypt



=

(3.19)

g1b
g2t
g2b
...

gi−1t

gi−1b

git
gib

gi+1t

gi+1b

...
gp−1t

gp−1b

gpt


(3.20)

The g vector is the modified right hand side, set up from combining 3.17c and

3.18c back in to 3.16. Explicitly,

36

gp−1b = fp−1b −

L−1
p

 0

Bp




T

U−1,T
p


0

f̃p

fpb

 (3.21a)

g2t = f2t −

U−1
1

 C1

0




T

L−1,T
1


f1t

f̃1

0

 (3.21b)

gib = fib −

 0

Bi+1


T

A−1,T
i+1


0

f̃i+1

0

 1 ≤ i < p− 1 (3.21c)

git = fit −

 Ci−1

0


T

A−1,T
i−1


0

f̃i−1

0

 2 < i ≤ p (3.21d)

The optimizations from the two partition case can naturally be applied to reduce

the size of the U−1
1 and L−1

p sweeps in 3.21a and 3.21b. Also, it should be noted

that for a given sub-matrix Ai, the solve is only performed once here – in the imple-

mentation, a thread is generally linked to a given sub-matrix of A. So, the Ai sweeps

and the multiplications by Bi and Ci are performed in a thread, and then the result

is sent to the threads that require it. This avoids repeating the work done for the

matrix solves.

With that in mind, the reduced system can be solved at this point. The solution

of the reduced system will be discussed in the next section. One could conceptually

invert the matrix in 3.19, although the recursive method discussed later is much more

efficient. After the reduced system has been solved, we know all of the values in the

y vector, and so we will go on to the D stage.

3.2.1.2 Transpose D matrix

37

DTx = y (3.22)

UT
1 LT

1

AT
2

. . .

AT
i

. . .

LT
pU

T
P





x1

x2

...

xi

...

xp



=



y1

y2

...

yi

...

yp



For partitions x1 and xp, this stage is the same as it was in the two partition case.

For the other partitions, we are in a slightly interesting situation. We know that the

inner portions of yi, ỹi should be equal to the inner portions of fi. So we would like

to perform the following operation for all 1 < i < p.

A−1,T
i


yit

f̃i

yib

 (3.23)

But, because we have already performed A sweeps over the modified versions of

the f in the previous stage, we no longer have f̃i Instead, we must perform sweeps

on a vector built from the tips of y.

A−1,T
i


yit

f̃i

yib

 = A−1,T
i


yit

0

yib

+ A−1,T
i


0

f̃i

0

 (3.24)

38

This incurs the cost of two large sweeps (bringing us up to a total of four for the

middle partitions), and a large addition. There does not seem to be a way to avoid

these sweeps, which somewhat intuitively bring us up to the same number of sweeps

as the non-transpose case.

After this addition is performed, the problem is complete. The presence of the

large addition would seem to give this algorithm a disadvantage compared to the

non-transpose case, but preliminary tests have shown the transpose case running in

the same or less time than the non-transpose case, for most problem sizes.

3.2.2 Recursive reduced system solve

As mentioned in the previous section, increasing the number of threads used by

the SPIKE algorithm requires increasing the number of partitions. This means that

the number of interfaces between these partitions is increased, which can result in

an impractically large reduced system. The recursive method of solving the reduced

system takes advantage of the fact that the reduced system is itself block diagonal,

conceptually using the SPIKE algorithm to solve it. Another advantage of the re-

cursive reduced system is that it is largely constructed in the factorization stage. In

fact, the V and W matrices have been created for the non-transpose case, for each

level of recursion, in the factorization stage. The transpose case has been designed

to take advantage of this fact.

Because the recursive method involves repeatedly recasting the problem in terms

of new spike matrices, it can be difficult to follow. So, let us begin with the four

partition case.

The reduced spike matrix will be designated as S̃1. The transpose is shown below.

The new indices indicate the recursion level. They begin at two because there will be

two levels, and the spikes visible now are the bottom level.

39

S̃T
1 yred = g =



I

I W T
2t1 W T

2b1

V T
1t1 V T

1b1 I

I W T
3t1 W T

3b1

V T
2t1 V T

2b1 I

I W T
4t1 W T

4b1

V T
3t1 V T

3b1 I

I





y1t

y1b

y2t

y2b

y3t

y3b

y4t

y4b


(3.25)

This matrix is clearly block diagonal, and so we apply transpose SPIKE to it.

40

S̃T
1 =



I

I WT
2t1 WT

2b1

V T
1t1 V T

1b1 I

I

0 0

WT
3t1 WT

3b1

V T
2t1 V T

2b1

0 0

I

I WT
4t1 WT

4b1

V T
3t1 V T

3b1 I

I



= (3.26)



I

I

I

I WT
3t2 WT

3b2 WT
4t2 WT

4b2

V T
1t2 V T

1b2 V T
2t2 V T

2b2 I

I

I

I





I

I WT
2t1 WT

2b1

V T
1t1 V T

1b1 I

I

I

I WT
4t1 WT

4b1

V T
3t1 V T

3b1 I

I


(3.27)

= S̃T
2 DT

2 (3.28)

The V and W blocks enclosed in dashed lines have become the new B and C

partitions, and a level is of SPIKE is created. As noted earlier, the new V and W

spikes have already been created for the non-transpose case in the factorization stage,

so we can just use those matrices, transposed. Also, notice that the new matrices,

V T
12, V T

22, W T
32 and W T

42 are actually each 2max(kl, ku)×max(kl, ku). This is because

the rows of zeroes in the boxed blocks in 3.26. For example,

41



I V1t1

I V1b1

W2t1 I

W2b1 I



−1 

0 0

0 0

V2t1 0

V2b1 0


=



V1t2 0

V1b2 0

V2t2 0

V2b2 0


(3.29)

The new spike retains the column of zeros (which becomes the bottom row of zeroes

when transposed). This is convenient, as it limits the inter-element dependencies as

we work our way through recursive steps. As a result, most of the work to solve these

matrices can be done via modifying the right hand side with matrix multiplication,

rather than performing large matrix solves.

This can be broken up in the conventional subproblems. The z vector will be used

to keep track of intermediary stages in the recursive process.

S̃T
2 D

T
2 yred = g (3.30)

S̃T
2 z = g (3.31)

DT
2 yred = z (3.32)

Following the usual pattern, we will begin with the S̃T
2 matrix.



I

I

I

I W T
3t2 W T

3b2 W T
4t2 W T

4b2

V1t2 V1b2 V T
2t2 V T

2b2 I

I

I

I





z1t

z1b

z2t

z2b

z3t

z3b

z4t

z4b



=



g1t

g1b

g2t

g2b

g3t

g3b

g4t

g4b



(3.33)

42

All of z is known and equal to the corresponding value of g, with the exception

of z2b and z3t. These can be then be multiplied by the corresponding sections of the

V and W matrices. This results in a reduced system of size (2×max(kl, ku))2.

 I W T
3t2

V T
2b2 I


 z2b

z3t

 =

 g2b

g3t

−
[
W T

3b2 W T
4t2 W T

4b2

] [z3b
z4t
z4b

]
[
W T

1t2 W T
1b2 W T

2t2

] [z1t
z1b
z2t

]
(3.34)

After this is solved, we move on to the D stage of this recursive level. Looking

back at 3.27, now that the S stage is solved the D matrix is effectively decoupled.

So, we have two independent problems, which can be distributed to different cores.



I

I W T
4t1 W T

4b1

V T
3t1 V T

3b1 I

I





z3t

z3b

z4t

z4b


=



y3t

y3b

y4t

y4b


(3.35a)



I

I W T
2t1 W T

2b1

V T
1t1 V T

1b1 I

I





z1t

z1b

z2t

z2b


=



y1t

y1b

y2t

y2b


(3.35b)

We are now at the bottom level of the recursion – the sub-blocks of this D matrix

are already set up as if they were each an S matrix. So, we may simply solve these

to find the final version of y,

43

 I W T
4t1

V T
3b1 I


y3b

y4t

 =

 z3b

z4t

−V T
3t1z3t

−W T
4b1z4b1

 (3.36a)

 I W T
2t1

V T
1b1 I


y1b

y2t

 =

 z1b

z2t

−V T
1t1z1t

−W T
2b1z2b1

 (3.36b)

After solving these problems, the recursive scheme is completed. Because the

matrix solves are performed in parallel for a given level, the critical path length in

this case is two matrix solves.

To expand this process to a larger number of partitions, we would just continue

performing the transpose SPIKE factorization. This results in a sequence of D ma-

trices. The matrices used for this process may seem to be numbered in reverse – this

is to retain compatibility with the non-transpose version. Each recursive stage works

on twice as many partitions as the previous. So, if the total number of partitions is

p, the total of stages is r=log2(p), including the outermost S stage.

S̃T
1 =S̃T

r Π1
i=r−1D

T
i (3.37)

The shape of these matrices is shown below. The process to solve these matrices

is a natural extension of the four partition example given above, so it will not be

shown here. Di,j , used below, is 2imax(kl,ku)×2imax(kl,ku) elements in size.

44

S̃
t
r = (3.38)

I

I

I

.
.
.

I W
T
(r
2

+1)tr W
T
(r
2

+1)br · · · W
T
rtr W

T
rbr

V1tr V1br · · · V
T
r
2

tr V
T
r
2

br I

.
. .

I

I

I



DT
i =



DT
i1

. . .

DT
ij

. . .

DT
i2r−i


(3.39)

45

DT
ij =



I

. . .

I W T
(2i−1+1)ti · · · W T

2ibi

V T
1ti · · · V T

2i−1bi I

. . .

I


(3.40)

This concludes the description of the transpose recursive reduced system solve. In

preliminary tests the recursive reduced system solve has not consumed a significant

amount of the run time. However, this has not specifically been measured, it is

inferred from the fact that other portions of the program combine to make up the

vast majority of the run time in most cases.

46

CHAPTER 4

IMPLEMENTATION DETAILS

4.1 Advantages and Disadvantages of OpenMP

Overall, OpenMP is a useful tool for parallel programming. First and foremost, it

is well supported and portable. The OpenMP API is supported by majority of major

compilers for Fortran and C. Because support is provided by the compiler, an end

user is not required to locate an obscure external library.

OpenMP is also fairly user friendly. The API has been designed to allow the user

to add parallelism after the base program is working. For example a do-loop may be

run in parallel, assuming no dependencies between iterations, with a single call to the

API. This will create a create a task for each iteration of the loop, each of which may

be completed by a different thread.

Additionally, the fork/join model is fairly intuitive and well known. In general,

the expectation is that a single master thread will work sequentially until a parallel

section is encountered. At this point the master thread will spawn a set of child

threads, which will complete the tasks in the parallel section.

An added benefit of the fork/join model is the assumption that the calling code

will be single-threaded. One goal of this project was the creation of a version of SPIKE

that is easy to use. The fork/join model allows the user to write single threaded code,

and offload the responsibility for managing threads to SPIKE.

Unfortunately, the main limitation encountered in OpenMP for this project was

related to the fork/join model. In particular, the problem is nested parallelism. The

child threads in a parallel region are able to encounter further parallel regions and

47

spawn their own set of child threads. This feature appeared to be a straightforward

way to implement the flexible threading enhancement for the SPIKE algorithm, de-

scribed in section two. Unfortunately, this feature is limited. An implementation

may comply with the OpenMP standard by creating a thread team of size one when

a nested parallel section is encountered. As a result, using nested parallelism may

result in the use of no additional threads, which prevents the desired increase in

parallelism.

The alternative to nested parallelism is to create all necessary threads at once.

This allows us to ensure that the threads are created an distributed appropriately, but

partitions upon which two threads are used require special handling, as the SPIKE

2×2 primitive requires some communication between threads. Explicit communica-

tion and waiting between pairs of threads is not a strength of OpenMP. It appears

that the common method of synchronization is the use of OpenMP barriers, which

cause all threads to wait, or the simple termination of the parallel section.

4.2 Point to Point communication in OpenMP

The issue of point to point communication in OpenMP is covered well in [1],

which develops a general purpose function to indicate dependencies between OpenMP

threads. Our requirements are only for synchronization between two threads. Ad-

ditionally, our synchronizations take place infrequently, and between blocks of code

significant computational cost. As a result, our code implements a simplified and

specialized version of their method.

The basis of this implementation is a series of spin-locks, which monitor a counter

in a shared section of memory. This counter is held in a small three element array,

which also contains flags to indicate ownership of chunks of work. Ownership of these

chunks of work is distributed explicitly before the parallel section is encountered. A

simple example will make this scheme clear. Let us assume we have only two threads,

48

with thread numbers 1 and 2. Let us also assume that we have some blocks of code,

called A,B,C, and D. A and B can be performed in parallel. C and D can also be

performed in parallel, but require the results of A and B.

keys (1) = 0 ! Counter to i n d i c a t e how much work has been completed

keys (2) = 1 ! I n d i c a t e s ownership o f some chunks by thread 1

keys (3) = 2 ! I n d i c a t e s ownership o f some chunks by thread 2

!$OMP PARALLEL

I f keys (2) . eq . omp get thread number () then

Perform chunk A ! Thread 1 w i l l do t h i s work

!$OMP ATOMIC

keys (1) = keys (1) + 1

End I f

I f keys (3) . eq . omp get thread number () then

Perform chunk B ! Thread 2 w i l l do t h i s work

!$OMP ATOMIC

keys (1) = keys (1) + 1

End I f

Do While(keys (1) . l t . 2)

!$OMP FLUSH

End Do

I f keys (2) . eq . omp get thread number () then

Perform chunk C ! Thread 1 w i l l do t h i s work

End I f

I f keys (3) . eq . omp get thread number () then

Perform chunk D ! Thread 2 w i l l do t h i s work

End I f

49

!$OMP END PARALLEL

The ATOMIC command prevents a possible write collision, while the FLUSH

command indicates that the thread should look to memory and ensure that its context

accurately reflects the global context. Without the FLUSH commands, the spin-lock

loops could continue spinning indefinitely, as they would not be notified of the change

in the key array.

This appears to be a simple and efficient way to synchronise a pair of OpenMP

threads. The use of spin-locks causes the threads to stay awake, preventing them

from being retasked by the OS. For SPIKE, this is acceptable because the run times

of the pairs of tasks are nearly identical. In the presence of load imbalance, a slightly

more complicated scheme would likely be necessary to allow for the reuse of waiting

threads.

50

CHAPTER 5

RESULTS

The following benchmarks were possible thanks to the kindness of Dr. Sameh,

and his associates at Purdue, whom generously allowed us to use their cluster, Golub.

Golub is a large shared memeory machine with the following characteristics and soft-

ware:

• 8×Intel R© Xeon R© E7-8870: 10 cores @ 2.40 GHz with 30MB cache

• Intel R© fortran 12.0.4

• Intel R© MKL 10.3.4

• OpenMP 3.0

The Xeon R© E7-8870 uses hyperthreading, which causes each core to appear as two

threads. For HPC applications this ability is frequently detrimental. For these ex-

periments, hyperthreads have been avoided using OpenMP core affinity settings. For

Intel R© compilers this functionality is accessed using the following Linux environment

variable.

KMP AFFINITY=g r a n u l a r i t y=f ine , compact , 1 , 0

The substring ‘compact’ instructs the OpenMP runtime to link cores to threads in

such a way that neighboring OpenMP threads are located as ‘closely’ as possible. The

substring ‘1,0’ defines cores inside the same socket to be ‘very close,’ and hyperthreads

for the same core to be ‘very far away.’ A more detailed description may be found

online, at the following address:

51

https://software.intel.com/sites/products/documentation/hpc/composerxe/

en-us/2011Update/fortran/lin/optaps/common/optaps\openmp\thread\affinity.

htm

By using the above affinity setting, and limiting ourselves to 80 threads at most,

we will ensure that hyperthreads are always seen as too far away to use. Unfortu-

nately, thread affinity settings are a non-standard feature in OpenMP, and so this

environment variable would need to be modified for alternative compilers.

5.1 Partition size ratios

In chapter two, we discuss the relative size of the partitions into which the matrix

A is to be broken. The relationship between the partition sizes is defined in terms

of ratios, and these ratios are largely dependent the specifics of the underlying BLAS

implementation.

Variables are defined as in chapter two – klu is the half-bandwidth of the A matrix,

and it is assumed that the upper and lower bandwidths are equal. The following

equations define the ratios for cases in which the bandwidth is much greater than the

number of vectors in the solution, nrhs. K is the hardware dependent tuning variable.

R12 =
n1

n2

=
1

2
+

K2

K1

=
1

2
+ K (5.1a)

R13 =
n1

n3

= 1 + 1.5
K2

K1

= 1 + 1.5K (5.1b)

Using the simplified version of the big-O run-times for the factorization and solve,

we will attempt to find K. This is possible by performing a factorization and solve on

a matrix for which the bandwidth is equal to the number of vectors in the solution;

klu = nrhs.

52

factorization time =K1 × n× k2
lu (5.2a)

solve time =K2 × n× klu × nrhs (5.2b)

K =
K2

K1

(5.2c)

=
solve time

n× klu × nrhs

× n× k2
lu

factorization time
(5.2d)

=
solve time

factorization time
(5.2e)

To begin, a problem of size N = 640, 000 klu = nrhs = 256 was run. This resulted

in a tuning variable value K = 22.8
13.5

= 1.7. The partition ratios associated with this

value are R12 = 2.2 and R13 = 3.5

To check the accuracy of this method, a search of plausible ratio values was per-

formed. This search was performed using for 16, 23, and 30 OpenMP threads. These

values were chosen to cover the different cases for the partition schemes. 16 threads

ensures that all partitions are given one thread. 30 threads ensures that all parti-

tions, with the exception of the first and last, are given two threads. 23 is directly in

the middle, with half of the inner partitions allocated one thread, and the other half

allocated two.

An alternative selection would have been 32,47,and 62 threads. However, as the

number of partitions is increased, the problem becomes less sensitive to changes in

the ratios. The selected numbers of threads make the benefit clearly visible.

For the factorization stage, matrices of size N = 1, 000, 000 with bandwidths of

2×klu = 320 and 160 were used. In figure 5.1 we see the results for 16 threads. As one

would suspect, the run times are not modified by the ratio R12, because there are no

two-thread partitions. The computed ratio is directly inside the band of good values.

In figure 5.2 we can see that the run times are insensitive to R13 for 30 threads. In

this case we are slightly off of the optimal value when bandwidth is 160, but still

within roughly .04s, or 6.5% of the run time of the optimal case. Finally, in figure

53

 1

 1.3

 1.6

 1.9

 2.2

 2.5

 2.8

 3.1

 3.4

 3.7

 4

 4.3

 4.6

 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6

S
m

a
ll
e
r

p
a
rt

it
io

n
 r

a
ti

o

Larger partition ratio

Factorization times for N=1,000,000 Bandwidth=320

 1.95

 2

 2.05

 2.1

 2.15

 2.2

 2.25

 2.3

 2.35

Computed Ratio

 1

 1.3

 1.6

 1.9

 2.2

 2.5

 2.8

 3.1

 3.4

 3.7

 4

 4.3

 4.6

 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6

S
m

a
ll
e
r

p
a
rt

it
io

n
 r

a
ti

o

Larger partition ratio

Factorization times for N=1,000,000 Bandwidth=160

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

Computed Ratio

Figure 5.1. Partition size map for 16 threads, contours represents .04s

54

 1

 1.3

 1.6

 1.9

 2.2

 2.5

 2.8

 3.1

 3.4

 3.7

 4

 4.3

 4.6

 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6

S
m

a
ll
e
r

p
a
rt

it
io

n
 r

a
ti

o

Larger partition ratio

Factorization times for N=1,000,000 Bandwidth=320

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

Computed Ratio

 1

 1.3

 1.6

 1.9

 2.2

 2.5

 2.8

 3.1

 3.4

 3.7

 4

 4.3

 4.6

 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6

S
m

a
ll
e
r

p
a
rt

it
io

n
 r

a
ti

o

Larger partition ratio

Factorization times for N=1,000,000 Bandwidth=160

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

Computed Ratio

Figure 5.2. Partition size map for 30 threads, contours represents .04s

55

 1

 1.3

 1.6

 1.9

 2.2

 2.5

 2.8

 3.1

 3.4

 3.7

 4

 4.3

 4.6

 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6

S
m

a
ll
e
r

p
a
rt

it
io

n
 r

a
ti

o

Larger partition ratio

Factorization times for N=1,000,000 Bandwidth=320

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

Computed Ratio

 1

 1.3

 1.6

 1.9

 2.2

 2.5

 2.8

 3.1

 3.4

 3.7

 4

 4.3

 4.6

 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6

S
m

a
ll
e
r

p
a
rt

it
io

n
 r

a
ti

o

Larger partition ratio

Factorization times for N=1,000,000 Bandwidth=160

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

Computed Ratio

Figure 5.3. Partition size map for 23 threads, contours represents .04s

56

5.3, we see the case in which the run time depends on both ratios. As expected,

the computed ratios are in the area defining the fastest set of runs. For the solve

stage, the expected optimal ratios are R12 = 1 and R13 = 2, independent of the

tuning variable K. This means that the value for R12 was at the minimum edge of

the ratios checked. Despite this, in figures 5.4, 5.5 and 5.6 show the computed ratios

are consistent with the ratios found through searching.

As a result, we may come to the conclusion that the tuning ratios may be found

by performing a single computation, rather than searching the total space of possible

ratios. This will ease the process of installing this implementation of the SPIKE

algorithm considerably.

5.2 Scaling

We now would like to measure the scalability of the enhanced load balancing

scheme. The overall goal is to obtain additional speedup when the number of threads

used is not a power of two. We will use the tuning ratios obtained in the previous

section.

In this section, we will compare the performance of this implementation of SPIKE

to two other solvers. The baseline is the banded Lapack solver, provided by Intel R©

MKL 10.3.4. We will also compare against an older version of SPIKE, implemented

in MPI. This older version does not include the flexible threading features, or the

LU/UL factorization strategy.

In 5.7 and 5.8 we see the factorization stage of these solvers compared. The new

SPIKE-OpenMP implementation outperforms the MKL solver in most cases, with

the exception of a small number of threads, for larger bandwidths. The SPIKE-

OpenMP and SPIKE-MPI implementations are more competitive in performance.

For smaller numbers of threads, SPIKE-OpenMP has a clear advantage, owing to

57

 1

 1.3

 1.6

 1.9

 2.2

 2.5

 2.8

 3.1

 3.4

 3.7

 4

 4.3

 4.6

 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6

L
a
rg

e
r

p
a
rt

it
io

n
 r

a
ti

o

Smaller partition ratio

Solve times for N=1,000,000 Bandwidth=160 Vectors=160

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

Computed Ratio

 1

 1.3

 1.6

 1.9

 2.2

 2.5

 2.8

 3.1

 3.4

 3.7

 4

 4.3

 4.6

 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6

L
a
rg

e
r

p
a
rt

it
io

n
 r

a
ti

o

Smaller partition ratio

Solve times for N=1,000,000 Bandwidth=160 Vectors=160

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

Computed Ratio

Figure 5.4. Partition size map for 16 threads, contours represents .04s

58

 1

 1.3

 1.6

 1.9

 2.2

 2.5

 2.8

 3.1

 3.4

 3.7

 4

 4.3

 4.6

 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6

L
a
rg

e
r

p
a
rt

it
io

n
 r

a
ti

o

Smaller partition ratio

Solve times for N=1,000,000 Bandwidth=160 Vectors=160

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

Computed Ratio

 1

 1.3

 1.6

 1.9

 2.2

 2.5

 2.8

 3.1

 3.4

 3.7

 4

 4.3

 4.6

 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6

L
a
rg

e
r

p
a
rt

it
io

n
 r

a
ti

o

Smaller partition ratio

Solve times for N=1,000,000 Bandwidth=160 Vectors=160

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

Computed Ratio

Figure 5.5. Partition size map for 30 threads, contours represents .04s

59

 1

 1.3

 1.6

 1.9

 2.2

 2.5

 2.8

 3.1

 3.4

 3.7

 4

 4.3

 4.6

 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6

L
a
rg

e
r

p
a
rt

it
io

n
 r

a
ti

o

Smaller partition ratio

Solve times for N=1,000,000 Bandwidth=160 Vectors=160

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

Computed Ratio

 1

 1.3

 1.6

 1.9

 2.2

 2.5

 2.8

 3.1

 3.4

 3.7

 4

 4.3

 4.6

 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6

L
a
rg

e
r

p
a
rt

it
io

n
 r

a
ti

o

Smaller partition ratio

Solve times for N=1,000,000 Bandwidth=160 Vectors=160

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

Computed Ratio

Figure 5.6. Partition size map for 23 threads, contours represents .04s

60

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 8 16 32 64

S
p
e
e
d
u
p

Threads

N=1,000,000 Bandwidth=320 Base Time=10.1s

SPIKE-OMP
LAPACK-MKL

SPIKE-MPI

Figure 5.7. Comparison of factorization stage scalability for bandwidth 320, with
matrix size 1M

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 2 4 8 16 32 64

S
p
e
e
d
u
p

Threads

N=1,000,000 Bandwidth=640 Base Time=31.9s

SPIKE-OMP
LAPACK-MKL

SPIKE-MPI

Figure 5.8. Comparison of factorization stage scalability for bandwidth 640, with
matrix size 1M

61

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 8 16 32 64

S
p
e
e
d
u
p

Threads

N=2,000,000 Bandwidth=320 Base Time=20.3s

SPIKE-OMP
LAPACK-MKL

SPIKE-MPI

Figure 5.9. Comparison of factorization stage scalability for bandwidth 320, with
matrix size 2M

the enhancements that have been made to the algorithm. As the number of threads

increases, the older MPI implementation overcomes the OpenMP implementation.

This is likely a result of the explicit nature of communication in MPI. The as-

sumption for SPIKE-OpenMP is that the code will be called from a single threaded

environment, so the benchmarking code for SPIKE-OpenMP creates the matrix A

with just one thread. When the OpenMP section is opened, the proper sections of the

matrix A are unlikely to be resident in the proper cache for most cores. This is not a

problem for the MPI code, which distributes the matrix outside of the benchmarking

code. Conceptually, the assumption is that an OpenMP program will originate as a

single-threaded code, to which parallelism is added. MPI, on the other hand, requires

that the code be designed from the ground up with parallelism in mind. So, these

benchmarks reflect the most likely real world use case for their respective paradigms.

62

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 8 16 32 64

S
p
e
e
d
u
p

Threads

N=2,000,000 Bandwidth=640 Base Time=63.8s

SPIKE-OMP
LAPACK-MKL

SPIKE-MPI

Figure 5.10. Comparison of factorization stage scalability for bandwidth 640, with
matrix size 2M

In figures 5.9 and 5.10, the matrix size is increased to 2,000,000. The results are

largely the same. For a small number of threads, the SPIKE-MPI failed to perform the

factorization. This is likely a consequence of the MPI runtime limiting the amount of

memory allocated per thread. Decreasing the number of threads increases the amount

of memory that must be allocated to each thread, as a larger portion of the matrix

must be held by each thread.

The most interesting measurement is this set is shown in 5.10. It appears that

SPIKE-OpenMP maintains an advantage over SPIKE-MPI in with this extremely

large matrix in until 64 threads are reached. This is consistent with the hypothesis

that SPIKE-MPI is obtaining an advantage from explicit communication resulting in

better data locality. As the matrix increases in size, the percentage of the matrix

that is likely to begin inside the proper cache is reduced for SPIKE-MPI.

63

5.3 Solve Stage

In the solve stage, we look at the performance of the normal and transpose solve.

We desire the solve times to be uniform between the two. For the first set of runs,

we will use the solve-stage tuned partition size ratios for SPIKE-OpenMP.

In figure 5.11 we see a substantial advantage for the new SPIKE-OpenMP. Given

that the advantage is retained over the SPIKE-MPI implementation for numbers of

threads equal to a power of two, it is likely that a much of the advantage comes from

having the optimal partition size ratios.

It is also worthwhile to recall that, as mentioned in section 1.2.2, the SPIKE uses

an in-house banded primitive to perform the factorizations and solves on the diagonal

blocks of A. The banded primitive is configured to use boosting, rather than pivoting,

in the presence of zero-pivots. Additionally, the banded primitive is designed to

improve cache locality. This is done by tiling the matrix and performing all of the

work for a given tile of the matrix on each of the vectors in the solution before moving

along the diagonal to the next tile. For example, the banded primitive performs the

factorization and solve a matrix of size N=1,000,000 and Bandwidth=160, with 160

vectors, in 3.37 and 9.18 seconds, respectively. This is a substantial savings over

the native Lapack-MKL solver, which takes 3.8 and 20.1 seconds, respectively, to

perform the same operations. As a result, the appearance of superlinear scalability

in the SPIKE-OpenMP solver is illusionary.

For this problem size, the solve stage takes up the majority of the running time.

However, there is still a significant contribution from the factorization stage. The

combined scalability, for the factorization and solve stages, has been shown in 5.12.

From this measurement, it is apparent that a slight price is paid in the factorization

stage by the SPIKE-OpenMP implementation. This is the result of using the solve

tuned factorization ratios. Despite this, the SPIKE-OpenMP implementation shows

strong performance across all numbers of threads.

64

 0

 5

 10

 15

 20

 25

 30

 2 4 8 16 32 64

S
p
e
e
d
u
p

Threads

N=1,000,000 Bandwidth=160 Base Time=20.1s

SPIKE-OMP
SPIKE-OMP transpose

LAPACK-MKL
SPIKE-MPI

Figure 5.11. Comparison of solve stage scalability for bandwidth 160, with matrix
size 1M, and 160 vectors, using solve tuned ratios

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 8 16 32 64

S
p
e
e
d
u
p

Threads

N=1,000,000 Bandwidth=160 Base Time=23.9s

SPIKE-OMP
SPIKE-OMP transpose

LAPACK-MKL
SPIKE-MPI

Figure 5.12. Comparison of combined scalability for bandwidth 160, with matrix
size 1M, and 160 vectors, using solve tuned ratios

65

 0

 5

 10

 15

 20

 25

 30

 2 4 8 16 32 64

S
p
e
e
d
u
p

Threads

N=2,000,000 Bandwidth=160 Base Time=40.8s

SPIKE-OMP
SPIKE-OMP transpose

LAPACK-MKL
SPIKE-MPI

Figure 5.13. Comparison of solve stage scalability for bandwidth 160, with matrix
size 2M, and 160 vectors, using solve tuned ratios

Finally, in figures 5.13 and 5.14 we see effect of doubling the matrix size. The

scalability in these measurements is qualitatively the same as in the previous set,

with only a slight increase in the advantage gained by SPIKE-OpenMP. Additionally,

all cases the transpose solve appears to closely mimic the performance of the non-

transpose solve.

66

 0

 5

 10

 15

 20

 25

 2 4 8 16 32 64

S
p
e
e
d
u
p

Threads

N=2,000,000 Bandwidth=160 Base Time=48.5s

SPIKE-OMP
SPIKE-OMP transpose

LAPACK-MKL
SPIKE-MPI

Figure 5.14. Comparison of combined scalability for bandwidth 160, with matrix
size 2M, and 160 vectors, using solve tuned ratios

67

CHAPTER 6

CONCLUSION

Significant progress has been made in the direction of an easy to use, high per-

formance implementation of the SPIKE algorithm. The ability to solve transpose

problems has been shown, which brings SPIKE to feature parity with the LAPACK

banded solve. With these enhancements SPIKE may soon have the capability to be-

come a drop-in replacement for the standard LAPACK solver. Additionally, a more

flexible threading strategy has been developed. Combined, these features will allow

for greatly improved utilization of computational resources, with little effort on the

part of the user.

68

BIBLIOGRAPHY

[1] Bull, M. J., and Ball, C. Point-to-point synchronisation on shared memory archi-
tectures.

[2] Chen, S. C., Kuck, D. J., and Sameh, A. H. Practical parallel band triangular
system solvers. ACM Trans. Math. Softw. 4, 3 (Sept. 1978), 270–277.

[3] Dongarra, Jack J., and Sameh, Ahmed H. On some parallel banded system solvers.
Parallel Comput. 1, 3-4 (Dec. 1984), 223–235.

[4] Lawrie, D H., and Sameh, A H. The computation and communication complexity
of a parallel banded system solver. ACM Trans. Math. Softw. 10, 2 (May 1984),
185–195.

[5] Mendiratta, Karan, and Polizzi, Eric. A threaded ”spike” algorithm for solving
general banded systems. Parallel Computing 37, 12 (2011), 733 – 741. 6th Inter-
national Workshop on Parallel Matrix Algorithms and Applications (PMAA’10).

[6] Polizzi, Eric, and Sameh, Ahmed. Spike: A parallel environment for solving
banded linear systems. Computers & Fluids 36, 1 (2007), 113 – 120. Challenges
and Advances in Flow Simulation and Modeling.

[7] Sameh, A. H., and Kuck, D. J. On stable parallel linear system solvers. J. ACM
25, 1 (Jan. 1978), 81–91.

69

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2014

	Enhanced Capabilities of the Spike Algorithm and a New Spike-OpenMP Solver
	Braegan S. Spring
	Recommended Citation

	tmp.1413570597.pdf.SDw4q

