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ABSTRACT

IMPROVING EFFICIENCY OF THERMOELECTRIC
DEVICES MADE OF SI-GE, SI-SN, GE-SN AND
SI-GE-SN BINARY AND TERNARY ALLOYS

2016 SEPTEMBER

SEYEDEH NAZANIN KHATAMI

B.Tech., WESTERN NEW ENGLAND UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Zlatan Aksamija

Thermoelectric devices with the ability to convert rejected heat into electricity

are widely used in nowadays technology. Several studies have been done to improve

the efficiency of these devices. However, because of the strong correlation between

thermoelectric properties (electrical conductivity, Seebeck coefficient, and thermal

conductivity including lattice and electron counterpart), improving ZT has always

been a challenging task. In this study, thermal conductivity of group IV-based binary

and ternary alloys such as SiGe, SiSn, GeSn, and SiGeSn has been studied. Phonon

Boltzmann Transport Equation has been solved in the relaxation time approximation

including intrinsic and extrinsic (in the presence of boundary and interfaces in the

low-dimensional material) scattering mechanisms. Full phonon dispersion based on

the Adiabatic Bond Charge model has been calculated for Si, Ge, and Sn. Virtual

crystal approximation has been adapted to calculate the dispersion of SiGe, SiSn,
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GeSn, and SiGeSn. Two approaches have been introduced to reduce the lattice ther-

mal conductivity of the materials under study. First, alloying results in a significant

reduction of thermal conductivity. But, this reduction has been limited by the mass

disorder scattering in the composition range of 0.2 to 0.8. Second, nanostructuring

technique has been proposed to further reduce the thermal conductivity. Our study

shows that, due to the atomic mass difference which gives rise to the elastic mass

scattering mechanism, SiSn has the lowest thermal conductivity among the other

materials under study. SiSn achieved the thermal conductivity of 1.18 W/mK at 10

nm at the Sn composition of 0.18, which is the experimentally stable state of SiSn.

The results show that SiSn alloys have the lowest conductivity (3 W/mK) of all the

bulk alloys, more than two times lower than SiGe, attributed to the larger difference

in mass between the two constituents. In addition, this study demonstrates that thin

films offer an additional reduction in thermal conductivity, reaching around 1 W/mK

in 20 nm SiSn, GeSn, and ternary SiGeSn films, which is close to the conductivity of

amorphous SiO2. This value is lower than the thermal conductivity of SiGe at 10 nm

which is 1.43 W/mK. Having lattice thermal conductivity reduced, electron trans-

port has been studied by solving Boltzmann Transport Equation under low electric

field including elastic and inelastic scattering mechanisms. Rode’s iterative method

has been applied to the model for obtaining perturbation of distribution function

under low electric field. This study shows that nanostructuring and alloying can re-

duce κph without significantly changing the other parameters. This is because of the

phonon characteristics in solids in which MFP of phonons is much larger than those

of electrons, which gives us the possibility of phonons confinement without altering

electrons transport. Thermoelectric properties of SiGe in the bulk and nanostructure

form have been studied to calculate ZT in a wide range of temperatures. The results

demonstrate that ZT reaches the value of 1.9 and 1.58 at the temperatures of 1200 K

and 1000 K respectively, with the Ge composition of 0.2 and carrier concentration of
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5×1019 cm−3 at 10 nm thickness. This model can be applied to SiSn and other binary

and ternary alloys, to calculate the improved ZT. Hence, we conclude that group IV

alloys containing Sn have the potential for high-efficiency TE energy conversion.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Energy crisis, climate and environmental issues as well as global demand for sus-

tainable and renewable energy have made alternative sources of energy very attractive.

Based on Lawrence Livermore National Laboratory data on 2015, 59.4 quads of en-

ergy is rejected annually in the US alone. Efficient thermoelectric (TE) devices are

needed to recover the huge amount of waste heat that can be used as a source of en-

ergy. Thermoelectric devices were first proposed on 1821 and consequently Seebeck,

Peltier and Thompson effects were established thereafter. Thermo-electric devices

which are solid states heat engines, have the ability of converting heat directly into

electricity from temperature gradients. There are many applications attributed to

them, such as coal and solar power plant and combustion engine. Based on the direc-

tion of energy conversion, Peltier effect or Seebeck effect may occur. Thermoelectric

devices are based on the coupling process between heat and charge transport in many

materials and have increasing potential for practical application. They are reliable

devices with long life-time durability. However, the most critical disadvantage of TE

devices are their low efficiency and cost which have limited their applicability. Hence,

these devices have instigated tremendous research attention. Heat and charge trans-

port in materials are coupled processes that lead to thermoelectric effects such as

changes in the temperature gradient that results in a voltage drop, and vice versa.

Thermoelectric effects have practical applications to refrigeration and power gener-

ation. In order to harvest thermal energy from any sources (i.e. car exhaust, CPU
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of a computer,...) efficient thermoelectric devices are needed. Hence wherever waste

heat exists, thermoelectric devices can be applied. Unfortunately the efficiency of

thermoelectric devices is not at a satisfactory level to meet the demand of current

technologies. However, there have been continuous efforts in improving efficiency of

thermoelectric devices in recent decades. Thermoelectric efficiency is defined as the

ratio of heat absorbed over the energy produced, as seen below:

η =

(
1− TC

TH

) √
ZT + 1− 1√
ZT + 1 + TC

TH

 , (1.1)

In the equation above 1− TC
TH

is the Carnot limit (The maximum efficiency of the de-

vices that theoretically can be achieved) which is limited by ZT. TC is temperature on

the cold side and TH is the temperature of the hot reservoir between which the tem-

perature gradient is applied and the resulting heat flux is maintained. Figure of merit

(ZT) which strongly governs thermoelectric efficiency is defined by a dimensionless

expression [17]

ZT =
S2σT

κl + κe
, (1.2)

where S is the Seebeck coefficient, σ is the electrical conductivity (S2σ is called the

power factor), T is the absolute temperature, and κ is the total thermal conductivity

including both the carrier and phonon counterparts. Typically, the lattice (phonon)

contribution dominates over the electronic counterpart, in other words heat conduc-

tion in semiconductors is dominated by phonon transport [4]. In order to increase

the efficiency of TE materials, one can increase the numerator and/or decrease the

denominator of ZT. In essence to improve efficiency, one can decrease the thermal

conductivity while boosting the ZT. In the first part of this study, decreasing thermal

conductivity of the material is our primary goal.
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1.2 Thermoelectric Devices Based on the Semiconductors

There is an interdependence between the parameters in ZT. This interdependence

compromise between the Seebeck coefficient, electrical conductivity and thermal con-

ductivity, and must be considered to maximize thermoelectric figure of merit. Typ-

ically, ZT peaks at carrier concentrations between 1019 and 1021 carriers per cm−3

which can be achieved in heavily doped semiconductors [50]. Insulators have a low

figure of merit due to their small electrical conductivities. In metals, heat and charge

transport are coupled processes. They have high electrical conductivities with large

thermal conductivities and low Seebeck coefficients leading to a very low ZT. How-

ever, in semiconductors heat and charge are largely decoupled. Power factor (S2σ)

is governed by charge carrier transport which can be manipulated by doping. In ad-

dition, thermal conductivity is under the control of phonon scattering, this implies

that the lattice thermal conductivity can be reduced without significantly affecting

the electrical conductivity [5]. Most moderately doped semiconductors have high

electrical conductivity and a moderate Seebeck coefficient. However, ZT is still lim-

ited in bulk form due to high thermal conductivity mostly dominated by the phonon

contribution. Hence κel can be tuned to some extent, without adversely affecting

the power factor. Due to the interdependence of material properties, it has been

challenging to increase ZT > 1 with bulk materials. However, a ZT of 1.5-2 may be

sufficient for some applications such as vehicle heat recovery, car cooling/heating, and

home co-generation [59]. Several studies demonstrate ZT > 1 based on some form of

nanostructuring, however the goal of ZT > 3 has not yet been achieved [58]. Silicon

(Si) is considered to be the basis of modern electronics. This makes it a relatively

inexpensive and abundant semiconductor, especially when comparing it to other pop-

ular room-temperature thermoelectric materials, such as bismuth telluride (Bi2Te3),

which has a low thermal conductivity [7]. On the other hand, Si, as a bulk mate-

rial, is not a very efficient thermoelectric material due to its low conversion efficiency

3



[6]. Its efficiency is limited primarily by a large lattice contribution to the thermal

conductivity of 146 W/mK [23, 35] at room temperature, which limits the ZT to

approximately 0.05 [31]. Similar arguments apply to other bulk group IV material

such as germanium (Ge). The cost effectiveness as well as the demand for improving

efficiency of group IV materials, including Si, Ge, and Sn, provoked us to focus our

study on the combination of these materials.

1.3 Approaches

In this study, we have proposed to improve the overall thermoelectric efficiency

of binary and ternary group IV alloys such as SiGe, SiSn, GeSn, and SiGeSn mate-

rials. In order to achieve this goal, we have proposed two approaches- alloying and

nanostructuring. Alloying is the first approach we have applied. This method has

been successful in improving the thermoelectric conversion efficiency of many bulk

materials, including Si and Ge [10]. The SiGe alloy has typically been used for TE

conversion at high temperatures having ZT > 1 around 900K [49]. The improvement

in ZT of bulk alloys is mostly due to the reduction of lattice thermal conductivity

κph. This reduction arises from large increases in phonon scattering due to random

mass variation. However, this reduction is limited by alloying alone which will be fur-

ther explained in the Section 3.1. Hence, additional methods of reducing the lattice

thermal conductivity in alloys are highly desirable.

Another approach to improve TE conversion efficiency is using low-dimensional

nanostructures [18, 24]. This approach was first proposed theoretically by Hicks and

Dresselhaus in 1993 [25]. Decreasing the size below the mean free (MFP) path in the

bulk materials results in two benefits. First and foremost, a significant decrease in

the thermal conductivity, which is our goal for improving thermoelectric conversion

efficiency [26, 37, 63]. The second is an increase in the power factor due to the reduc-

tion in the dimensionality [47]. Nevertheless, reducing lattice thermal conductivity
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without significantly affecting the Seebeck coefficient or electrical conductivity is a

way to increase the overall ZT which is the main focus in the first part of this study.

The remainder of this thesis document will discuss how applying these approaches

(alloying and nanostructuring) result in reduction of thermal conductivity. In chapter

2, we show the phonon dispersion of the materials under study. In chapter 3, we

discuss phonon transport in bulk and nanostructures including intrinsic and extrinsic

scattering mechanisms and the corresponding results is provided in chapter 4. The

electron transport is discussed in chapter 5. The electronic calculation and results

are demonstrated in chapter 6.1. And finally in chapter 6.2 we include the result of

improved ZT.

5



CHAPTER 2

PHONON DISPERSION

Regular arrangement of atoms in the crystal is called a lattice, which is formed

due to the constant spacing between the atoms. Si, Ge, and α-Sn, semiconductors of

the group IV have face centered cubic (fcc) structure. As atoms in the crystal gain

energy, they vibrate around their equilibrium position. Due to these lattice vibrations,

the crystal is able to store energy. These lattice vibrations are called phonons and

they are thermal energy transmitters. Phonons are considered as thermal energy

in the form of heat. Hence, the study of phonons plays an important role in both

thermal and electrical conductivity. Phonons have harmonic vibrations similar to

the vibrations of a mass and spring. Thus, their vibration can be modeled as solids

including the collection of mass that are connected through springs. Therefore, their

acceleration is the second derivative of displacement. As a result phonon dispersion,

which is the vibrational frequency of phonons as a function of wave vectors, can be

obtained. Group velocity, one of the important characteristics that will be needed in

calculating the thermal conductivity, is obtained from dispersion. Group velocity is

the derivative of frequency with respect to wave vector. In a 3D crystal it is obtained

from the gradient of frequency in three directions x, y, and z.

~vg(~k) =

[
∂ω(~k)

∂kx
,
∂ω(~k)

∂ky
,
∂ω(~k)

∂kz

]
, (2.1)

where ω is the frequency, k is the wave vector in three directions x, y, and z. Atoms

in 3D structure of a crystal are allowed to move in three directions relative to the
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direction of lattice wave propagation. If the direction of the atom displacement is

parallel to the direction of propagation, longitudinal waves are produced. And if the

direction of the atom displacement is perpendicular to the direction of propagation,

transverse waves are made. In this study, calculating the phonon dispersion of SiGe,

SiSn, GeSn, and SiGeSn is required to obtain the characteristics needed from their

dispersion relation. Full phonon dispersion based on Weber’s adiabatic bond charge

(ABC) model [61] can be calculated. The ABC model includes interactions between

ions, bond charges, bond bending, and long-range electrostatic interactions, and has

been shown to reproduce measured phonon vibrational frequencies in virtually all

group IV [4, 34, 46, 61], III-V [46, 53], and II-VI [42] semiconductors with excel-

lent accuracy. The ABC phonon dispersions for Si can be found in Refs. [4, 61],

and for Ge in Refs. [46, 61]. Vibrational properties of Si1−xGexSny alloys, including

phonon dispersion and velocity, are calculated here in the virtual crystal approxima-

tion (VCA) [1]. Dispersion of tin has been calculated based on the adiabatic bond

charge model, shown in Fig. 2.1. The experimental data from Ref. [41] matched with

the numerical simulation results obtained in this study. α-Sn with atomic mass of

118.71 amu has higher atomic mass and therefore larger density in comparison with

Si and Ge with atomic mass of 28.0855 amu and 72.640 amu respectively. This results

in lower vibrational frequency in the dispersion curve and consequently lower phonon

group velocity. As a result of a lower phonon group velocity and heavier mass, a

decrease in thermal conductivity of tin-based alloys is expected. Dispersion relation

of α-Sn is lower in comparison with Si and Ge due to higher atomic mass of Sn. The

dispersion of α-Sn inspired us that making alloy of group IV semiconductors includ-

ing α-Sn, can reduce thermal conductivity further than SiGe which has been studied

comprehensively for TE applications. In the Fig. 2.1 dispersion of Ge0.5Sn0.5 (dotted

lines) Si0.5Sn0.5 (dashed lines), which has been calculated using VCA method, along

7



with the dispersion of pure Sn are shown. The symbols represent the experimental

measurement of pure α-Sn from [41].

Figure 2.1. Phonon dispersion curves for α-Sn, Si0.5Sn0.5 and Ge0.5Sn0.5 showing the
vibrational frequencies (THz) vs. the phonon wave vector. The symbols represent
experimental measurement of α-Sn from [41] and solid lines are the numerical simu-
lation of α-Sn. Dotted lines represent the dispersion of Ge0.5Sn0.5 and dashed lines
depicts the dispersion of Si0.5Sn0.5 [27].

.
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CHAPTER 3

PHONON TRANSPORT

3.1 Boltzmann Transport Equation

Macroscale rate of heat transfer is explained by the Fourier’s law as:

~q = κ∇T, (3.1)

where ~q is the heat flux, κ is the thermal conductivity and ∇T is the temperature

gradient. In the nanoscale, Fouriers law of heat conduction becomes less accurate as

the size of the system becomes significantly smaller than the MFP. The MFP is the

average distance the phonon travels before scattering [30]. Hence understanding the

process of going from micro-scale down to nanoscale in electron and phonon transport

is crucial. Most semi-classical theories of transport in solids for either electrons and/or

phonons employ the Boltzmann transport equation (BTE). Applying a temperature

gradient, distribution function of phonons and electrons can be obtained by solving

the BTE. In the complete 3D time-dependent form, the BTE requires time, space and

momentum variables. In device simulation, one of the most convenient approaches is

to solve BTE in relaxation time approximation (RTA) by separating the symmetric

and asymmetric sections. This approximation is validated in the case that elastic

scattering is dominant. The steady state distribution function can be calculated by

solving the time independent BTE in the RTA. In this part of the study, BTE is

solved for phonon transport including the intrinsic and extrinsic scattering rates. For
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a distribution function Nb,q(x, y, z) which is a small deviation from the equilibrium

state N0
b,q, the phonon BTE (pBTE) is given by [13]:

~υb,~q · ~∇Nb,~q(x, y, z) = −
Nb,~q(x, y, z)−N0

b,~q(T )

τ intb (~q)
. (3.2)

As indicated in the pBTE, the steady-state phonon distribution functionNb,q(x, y, z)

is a function of the phonon branch b, wave vector q and position in 3D space (x, y, z).

τ intq is the relaxation time due to all of the intrinsic scattering mechanisms including

both resistive umklapp and non-resistive normal anharmonic phonon-phonon, isotope,

impurity, and alloy mass difference interactions. τ intq can be obtained using the stan-

dard single-mode relaxation time approximation [38]. The equations hold for each

branch, and inter-branch scattering which is included in τ intb (~q). In the calculation of

relaxation time τ intb (~q) for a phonon in mode b and with wave vector ~q, we consider

normal τb,N(~q) and umklapp τb,U(~q) three-phonon scattering, impurity τb,I(~q), and

mass-disorder τb,Mass(~q) scattering. The total intrinsic relaxation time is given by:

1

τ intb (~q)
=

1

τb,N(~q)
+

1

τb,U(~q)
+

1

τb,I(~q)
+

1

τb,Mass(~q)
. (3.3)

3.1.1 Mass Scattering

The combination of Si1−x−yGexSny, results in variation in the local atomic mass

that leads to strong mass-difference scattering of phonons. In the case of alloys, mass-

difference disorder will have three components: alloying, isotopic mass variation, and

the small local strain field induced by variations in the atomic species (Si, Ge or Sn).

The scattering strength will be proportional to the total fraction of mass-disordered

constituents [13]:

ΓMass(x) = ΓAlloy(x) + ΓIso(x) + ΓStrain(x). (3.4)
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The mass-difference constant is defined as [2]:

ΓAlloy =
∑
i

fi(1−Mi/M̄)2, (3.5)

where fi is the proportion of material i with mass Mi, while the average mass is

M̄ =
∑

i fiMi [38].

The primary driver of thermal conductivity reduction from pure Si, Ge or Sn to the

SiGe, SiSn or GeSn alloy is the quadratic dependence on the germanium concentration

in alloy mass-difference. The energy dependence of the alloy scattering rate follows

a Rayleigh-like (τ−1 ∝ ω4) trend and is calculated from the vibrational density of

states as [54, 33]:

1

τMass(ω)
=
π

6
V0ΓMassω

2D(ω), (3.6)

where V0 is the volume per atom, D(ω) is the vibrational density of states per unit

volume and ω is the phonon frequency [21]. The total energy dependent vibrational

density of states is given by a sum over all phonon branches b.

3.1.2 Density of States

Bloch theorem states that observable quantities in the crystal such as charge den-

sity and wave function are periodic. Based on Born-von Karman periodic boundary

condition, in combination with the Bloch theorem, the number of available states

in the crystal are discrete and countable. Density of states (DOS) is the function

responsible for calculating the number of available states for storing energy in the

crystal. DOS is defined as the number of states per unit volume. However we are

more interested in defining it in terms of energy or frequency. In an isotropic crystal,

we need to calculate the phonon DOS using the Debye approximation. In a 3D solid,

Debye approximation expresses that in the center of the Brillioun Zone (uniquely

defined primitive cell in reciprocal lattice space) the dispersion is proportional to the
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speed of sound. In a more general case, the crystal can be anisotropic, hence the DOS

can be calculated by the sum over all phonon branches as:

D(ω) =
∑

b

∫
d~q

(2π)3
δ [ω − ωb(~q)] . (3.7)

The volume integral of the energy-conserving delta function over the whole first Bril-

louin zone is calculated from the full phonon dispersion using the method of Gilat

and Raubenheimer [22].

3.1.3 Equilibrium Distribution Functions

Total energy of the crystal can be obtained using Density of States. In order to

calculate the energy that can be stored in the crystal, we need to apply the distribution

function to determine if states of energy are occupied. Distribution functions for

electrons follow the Fermi Dirac distribution while phonons follow the Bose Einstein

distibution function.

fFD(E, T ) =
1

exp(E−EF

KBT
) + 1

(3.8)

fBE(E, T ) =
1

exp( ~ω
KBT

)− 1
(3.9)

Utilizing the particular distribution function for electrons and phonons, total energy

can be calculated.

3.1.4 Isotope Scattering

A similar expression as Eq. 3.5 holds for isotope and impurity scattering within

each material in the alloy [32]. The contribution due to isotopic variation in each

of the constituent materials can be obtained by combining the isotope constants for

each pure material as:

ΓIso(x) =
(1− x− y)ΓSiM

2
Si + xΓGeM

2
Ge + yΓSnM

2
Sn

(xMGe + (1− x− y)MSi + yMSn)2 , (3.10)
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where the pure silicon and germanium isotope scattering constants ΓSi and ΓGe were

taken from Ref. [38]. The tin isotope scattering constant ΓSn has a value of 3.64,

which was calculated based on the known isotope composition of Sn. An additional

component to alloy scattering arising from the strain field, due to the difference in

lattice constants of pure Si and Ge and their alloys, has been proposed.

3.1.5 Strain Scattering

The contribution due to strain is given by [2]

ΓStrain = ε
∑
i

fi(1− ai/ā)2, (3.11)

where fi is the proportion of material i with lattice constant ai (in this case Si, Ge

and Sn), while the average lattice is ā =
∑

i fiai. Composition-dependent alloy lattice

constant (aSiGeSn(x)) taken in the virtual crystal approximation, including bowing

parameter [44]. The empirical strain parameter is taken to be ε = 39 [1]. For most

values of germanium concentration x, the strain contribution ΓStrain(x) is found to be

much smaller than the mass-difference component.

3.1.6 Umklapp Scattering

The resistive umklapp phonon- rate was calculated in the standard general ap-

proximation for dielectric crystals [38]

τ−1
b,U(~q) =

~γ2
b

MΘbῡ2
b

ω2
b(~q)Te−Θb/3T , (3.12)

where the speed of sound ῡb of each branch b is determined from the average slope

of its dispersion curve near the Γ point, and M is the average atomic mass. The

Grüneissen parameter γb was obtained for each branch from the phonon dispersion.

It has a value of 1.1 for the longitudinal acoustic branch and −0.6 for the transverse

acoustic branches. The expression in Eq.3.12 contains the exponential term e−Θb/3T in
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the temperature dependence, which controls the onset of resistive umklapp scattering

for each phonon branch through the branch-specific Debye temperatures, Θλ, which

were obtained from [48]

Θ2
b =

5~2

3k2
B

∫
ω2gb(ω)dω∫
gb(ω)dω

, (3.13)

where the vibrational density of states (vDOS) function gb(ω) =
∑

b,~q δ [ω − ωb(~q)]

was calculated for each phonon branch b from the full dispersion. Using this method,

the temperature dependence of the contribution from each phonon branch to the total

thermal conductivity is correctly represented.
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CHAPTER 4

THERMAL CONDUCTIVITY OF BULK AND
NANOSTRUCTURE ALLOYS

4.1 Thermal Conductivity of Bulk Alloys

In the bulk case, the crystal is assumed to be infinite and uniform. There are

no boundaries and interfaces in the material. The distribution is only a function

of temperature and in the absence of boundaries and interfaces, the solution of the

pBTE equation is simply given by

n~q = τint.(~q)~υ~q · ∇~rT
∂N0

~q (T )

∂T
. (4.1)

The lattice thermal conductivity of bulk ternary alloy SiGeSn was calculated from

the full dispersion pBTE model discussed previously. The plot in Fig. 4.1 depicts

thermal conductivity of bulk SiGeSn alloys against their contributed composition.

Thermal conductivity of binary alloys SiGe, SiSn, and GeSn can also be seen along

the edges where Ge, Si, and Sn compositions equal to zero for SiSn, GeSn, and SiGe,

respectively. Also, at the corners thermal conductivity of pure Si, Ge and Sn is

depicted when the composition of the other two constituents are zero. We note here

that the broad plateau which thermal conductivity reaches in the alloy composition

range of 0.2 < x < 0.8 for germanium composition in Si1−xGex and 0.2 < y < 0.8 for

tin composition in Si1−ySny, and a similar plateau for GeSn, have limited the amount

of reduction in lattice thermal conductivity which can be achieved through alloying

alone.
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Figure 4.1. 3D plots of thermal conductivity vs. Sn and Ge composition (ySn and
xGe respectively) for SiSn, GeSn and SiGe of bulk material at room temperature.
SiSn has the lowest thermal conductivity in the bulk form [27].

The reason for this broad plateau is related to the dominant mass disorder scatter-

ing in alloys which depends on the difference in atomic mass between the constituent

materials and the average mass. However, our results, as shown in Fig. 4.1, demon-

strate that adding Sn into the alloy causes further reduction of thermal conductivity

below the minimum value achievable in SiGe. The lowest thermal conductivity for

bulk binary alloys SiSn and GeSn are 3 W/mK, reached at Sn composition of 0.51,

and 5.86 W/mK at Sn composition of 0.61, respectively. These values are significantly

lower than the lowest thermal conductivity of bulk SiGe, which is 6.7 W/mK at Ge

composition of 0.34. Among these alloys, the binary SiSn alloy is found to have the

lowest bulk thermal conductivity, in good agreement with RNEMD calculations at

the mass ratio of 4.2 between Si and Sn [20]. The reduction is explained by the larger
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mass difference between Si and Sn which results in a higher mass disorder scattering

rate, hence a lower lattice thermal conductivity [55]. Bulk SiSn alloys at such a high

Sn concentration have not been demonstrated experimentally due to the low solid

solubility of Sn in Si; nonetheless, thermal conductivity at 18% Sn concentration, the

highest Sn fraction demonstrated in a far [29], is 4.71 W/mK, which is nearly a 50%

reduction from the lowest bulk SiGe value.

4.2 Minimum Achievable Thermal Conductivity

The behavior of thermal conductivity as the thickness is reduced to the nanoscale

can be altered based on the model and assumptions used. Cahills minimum thermal

conductivity model [12] implies that the scattering rate has an upper bound (while

only approximate and not necessarily a general lower bound) [19]. This bound can be

obtained when the phonon lifetime equals one-half period of the vibrational frequency.

Hence, the upper bound on the scattering rate is given by τ−1
max = ω/π. In a crys-

tal, this theoretical minimum value would be achieved by having maximum disorder

while bulk vibrational modes are retained. Utilizing this maximum scattering rate

(Cahills minimum thermal conductivity model), experimental values for amorphous

Si (1 W/mK), Ge (0.6 W/mK) and Sn(W/mK) have been achieved. We contrast the

bulk alloy results to their corresponding theoretical minimum values, often called the

amorphous limit. The calculations provide us with some indication of what conduc-

tivity might be achievable through disorder (mass/alloy or boundary roughness) in a

crystalline material. The calculated amorphous (disordered) thermal conductivity of

ternary alloys of SiGeSn are shown in the Fig. 4.2. Unlike the bulk results, there is

no plateau and pure Sn has the lowest achievable thermal conductivity in comparison

with all other alloy compositions due to its lowest vibrational frequencies of the three

materials. We find that the amorphous limit values are all below 1 W/mK; conse-
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Figure 4.2. 3D surface plot of lowest achievable thermal conductivity vs. alloy
compositions for SiGeSn at room temperature. Binary alloys correspond to the edges
of the triangle of data points, showing that Sn has the lowest thermal conductivity
in the amorphous (disordered) limit [27].

quently, there is room to reduce the thermal conductivity further through size effects

caused by boundary roughness scattering in nanostructures.

4.3 Thermal Conductivity in Low-dimensional Alloys

In this part, we study and compared the cumulative thermal conductivity of pure

Si, Ge, and Sn with their corresponding binary alloys. These results help us figure

out the extent to which size scaling can reduce the thermal conductivity.

4.3.1 Cumulative Thermal Conductivity

In this section, the cumulative thermal conductivity is scaled by the total thermal

conductivity so that it shows how lattice thermal conductivity is accumulated against
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Figure 4.3. Cumulative thermal conductivity of pure Si (dashed lines) and SiGe
alloy (solid lines) for acoustic branches [27].

phonon MFP. This allows us to visualize and compare the extent to which restricting

the phonon MFP via nanostructuring can result in thermal conductivity reduction

[3].

Fig. 4.3 shows the cumulative thermal plot of pure Si and Si0.5Ge0.5 bulk alloy

vs. mean free path. Fig. 4.4 demonstrates the cumulative thermal plot of pure Si

and Si0.5Sn0.5 bulk alloy vs. mean free path. Fig. 4.5 depicts the cumulative thermal

conductivity vs. mean free path for the pure Ge and Ge0.5Sn0.5 bulk alloy. In the

mentioned figures solid lines represent a longitudinal and acoustic mode of the bulk

alloy while the dashed lines depict the pure material. Comparing pure material with

their corresponding alloys in the micro-scale regime shows that alloy materials have

lower accumulated thermal conductivity. Therefore, decreasing the size down to the

nanoscale regime (below the MFP) can result in the reduction of thermal conductivity.

19



Figure 4.4. Cumulative thermal conductivity vs. mean free path of pure Si (dashed
lines) and SiSn alloy (solid lines) [27].

Because the density of states peaks near van Hove singularities which is a non-smooth

point in the DOS of the first Brillouin zone (BZ), there are sharp bends in the slope

of the cumulative thermal conductivity plot corresponding to these peaks. Through-

out these plots, we have focused on the longitudinal and transverse acoustic modes

and omitted the optical ones due to their low contribution to thermal conductivity,

caused by their very flat dispersion and consequently low phonon group velocities.

As a result, we proposed our second approach which is to use low-dimensional nanos-

tructures. This could result in reduction of thermal conductivity and become further

closer to the amorphous limit.
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Figure 4.5. Cumulative thermal conductivity vs. mean free path of pure Ge (dashed
lines) and GeSn alloy (solid lines) [27].

4.3.2 Boundary Scattering

In the bulk due to the two assumptions of being infinite and uniform, boundaries

and interfaces have been neglected. However, boundaries and interfaces play an im-

portant role in the solution of pBTE in nanostructures. Hence, in nanostructures, we

have to add an extrinsic relaxation rate τ−1
b,B(~q) due to boundary roughness (B) scat-

tering. We study this phenomena by attributing probability to the phonons that are

being scattered by ”1-p” or not being scattered by ”p”. Each time a phonon reaches

the boundary, we capture the probability of it not being scattered by the roughness

through the momentum-dependent specularity parameter 0 < p(~q) < 1 given by:

p(~q) = exp
(
−4∆2q2 cos2 Θ

)
(4.2)

with ∆ being the rms boundary roughness (typically 0.1 < ∆ < 1 nm, depending

on sample quality and processing) and Θ being the angle between the direction of
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propagation of the phonon wave and the boundary normal. The specularity parameter

allows us to capture both the magnitude and the angle dependence of the scattering

and distinguish between the contribution to the heat flux from phonons traveling

into the boundary (small Θ, hence smaller p(~q) and more scattering) and phonons

traveling parallel to the boundary (large Θ and larger p(~q), leading to less scattering).

The specularity parameter is used in solving the pBTE as a boundary condition, with

[1− p(~q)] giving the fraction of the incoming phonons which are scattered randomly.

As boundary scattering is a momentum-randomizing elastic process, the scattered

phonons will carry zero heat flux, so they can be represented by the equilibrium

Bose-Einstein distribution (which was discussed in detail in Section 3.1.3), leading to

a boundary condition of the form:

Nb(~q)+ = p(~q)Nb(~q)− + [1− p(~q)]N0
b,T (~q). (4.3)

with + and - representing the solution before reaching and after leaving the bound-

ary respectively, and N0(~q) is the equilibrium Bose-Einstein phonon distribution of

phonon mode ~q in branch b. The boundary scattering rate for a film of thickness H

is then obtained as [6]:

τ−1
b,B(~q) =

υb,⊥(~q)

H

Fp(~q,H)

1− τ int
b (~q)υb,⊥(~q)

H
Fp(~q,H)

, (4.4)

where a mode-dependent scaling factor Fp(~q,H) is given by:

Fp(~q,H) =
[1− p(~q)] {1− exp [−H/τ intb (~q)υb,⊥(~q)]}

1− p(~q) exp [−H/τ intb (~q)υb,⊥(~q)]
. (4.5)

This formulation of interface scattering allows for the rates of internal (intrinsic)

and boundary roughness scattering to be added together, despite of their interde-

pendence [56]. The factor given by Eq. 4.5 encapsulates the competition between

the boundary and internal scattering: the effective strength of boundary scattering

22



will depend on the relative strength of the competing internal scattering mechanisms

[52]. The full thermal conductivity tensor καβ is obtained as a sum over all phonon

momenta and branches [28]

καβ =
∑
b,~q

τb(~q)Cb,T (~q)υαb (~q)υβb (~q), (4.6)

where τb(~q) is the total phonon relaxation time [for a bulk sample, τb(~q) = τb,Internal(~q)

from Eq. 3.3] and the phonon heat capacity per mode Cb,T (~q) is given by:

Cb,T (~q) =
[~ωb(~q)]2

kBT 2

e(~ωb(~q)/kBT )

[e(~ωb(~q)/kBT ) − 1]
2 . (4.7)

υαb (~q) is a component of the phonon velocity vector calculated from the full phonon

dispersion based on Weber’s adiabatic bond charge (ABC) model [61] which was

discussed in chapter 3.

4.4 Results and Discussions on Phonon Transport in Nanos-

tructures

In this section pBTE in the RTA for nanostructures including the extrinsic bound-

ary scattering has been solved to observe the thermal conductivity reduction from bulk

to nanostructure. This study includes calculation of the lattice thermal conductivity

of thin alloy films for binary SiGe, GeSn and SiSn and ternary SiGeSn to further

decrease the thermal conductivity towards the amorphous limit.

4.4.1 Binary Alloys

The results of our calculations for thin SiGe alloy films are depicted in the plot

of Fig. 4.6; these results have been validated through comparison with experimental

data from Cheaito et al. [14, 39]. Overall the trends follow the expected reduction due

to extrinsic boundary scattering in thin films. We include SiGe results here mainly

for comparison with our new results in Fig. 4.7 and Fig. 4.8 for SiSn and GeSn
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Figure 4.6. Lattice thermal conductivity of binary alloy SiGe vs. Ge composition
for bulk, 500 nm, 100 nm, 20 nm and 10 nm thickness at room temperature. The
sample thickness is 1 µm for nanostructures with 0.45 nm roughness. The bottom
line shows the lowest achievable thermal conductivity- amorphous limit- of SiGe vs.
Ge composition [27].

respectively. Comparing the results across compositions at a fixed film thickness,

we find that the thermal conductivity SiGe thin alloy films reach the lowest value of

1.718 W/mK at 20 nm thickness for Ge composition of 0.46 and 1.43 W/mK at 10 nm

thickness for Ge composition of 0.51. In contrast, the lowest thermal conductivity for

SiSn at 20 nm thickness is 0.91 W/mK, achieved at Sn composition of 0.59 Sn. Such

high Sn compositions exceeding 18% may be achievable in very thin films; however, we

note here that at 0.18 Sn composition and 10 nm thickness, the thermal conductivity

only increases to 1.10 W/mK because of the broad plateau in thermal conductivity

vs. composition which can be seen in Fig. 4.7. This value still represents nearly a

30% reduction from the lowest value achievable in SiGe thin films of equal 20 nm

thickness.
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Figure 4.7. Lattice thermal conductivity of binary alloy SiSn vs. Sn composition
for bulk, 500 nm, 100 nm, 20 nm and 10 nm thickness. The simulation is done at
room temperature with the roughness of 0.45 nm and sample thickness of 1 µm for
nanostructures. The bottom line depicts the amorphous limit thermal conductivity
of the alloy against Sn composition while the top line shows thermal conductivity of
bulk SiSn [27].

For GeSn thin films, shown in Fig. 4.8, the lowest thermal conductivity value in

20 nm films is 1.53 W/mK at Sn composition of 0.57. Reducing the thickness further

down to 10 nm, our model shows that the thermal conductivity becomes even closer

to the amorphous limit. For GeSn, the lowest value achieved in a 10 nm thin film

is 1.24 W/mK, obtained at Sn composition of y = 0.59. The thermal conductivity

of SiSn alloy films is lower than the other two binary alloys owing to the larger

difference in mass between Si and Sn, as compared to that of Ge and Sn. Epitaxial

GeSn and ternary SiGeSn alloy layers on Si have been demonstrated and employed in

the literature [9, 16] with larger Sn concentration than their SiSn counterparts. As it

was expected, boundary scattering and mass scattering (which is higher in the SiSn)

results in further decrease in thermal conductivity toward the amorphous limit.
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Figure 4.8. Lattice thermal conductivity of binary GeSn vs. Sn composition for
bulk, 500 nm, 100 nm, 20 nm and 10 nm thickness. The simulation is done at
room temperature with roughness of 0.45 nm and 1 µm in-plane sample length. The
bottom line depicts the amorphous limit thermal conductivity of the alloy against Sn
composition while the top line shows thermal conductivity of bulk SiSn [27].

4.4.2 Ternary Alloy

Cumulative contributions to thermal conductivity vs. phonon mean free path has

also been depicted in the Fig. 4.9 which shows that alloying leads to a broader range

and a more gradual dependence on mean free paths, allowing us to further decrease the

thermal conductivity through nanostructuring. In Fig. 4.10, we depict the thermal

conductivity of ternary alloy vs. Ge and Sn composition. We have assumed that

germanium and tin compositions, x and y respectively, are equal (x = y) and are

varying from 0 to 0.5 while the silicon composition (1 − x − y) is reduced from 1 to

0. At germanium and tin compositions of x = y = 0.32 and the film thickness of 10

nm, the thermal conductivity reaches its lowest value of 0.93 W/mK, which is lower

than the SiGe thermal conductivity at the same thickness, but slightly higher than
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Figure 4.9. Cumulative thermal conductivity vs. mean free path of pure Sn (dashed
lines) and Si0.3Ge0.3Sn0.3 alloy (solid lines) [27].

the lowest value achieved in SiSn at that same thickness. However, this is the closest

value to the lowest achievable thermal conductivity given by the amorphous limit.

4.5 Summary of the Thermal Conductivity in Bulk and Nanos-

tructure

The goal of this thesis is to improve the overall conversion efficiency of thermoelec-

tric devices (which have the ability to harvest electricity from waste heat). To improve

the efficiency, ZT needs to become greater in size. Therefore, initially, the main study

was to focus on decreasing the thermal conductivity in the denominator of ZT. In this

work, we have concentrated on group IV semiconductor materials including binary

SiGe, SiSn, and GeSn, as well as ternary SiGeSn bulk and nanostructure alloys. The

lattice contribution to thermal conductivity, in binary and ternary group-IV alloys,

has been calculated by solving phonon Boltzmann transport equation in the relaxation
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Figure 4.10. Lattice thermal conductivity of ternary of alloy SiGeSn vs. Ge or
Sn composition for bulk, 500 nm, 100 nm, 20 nm and 10 nm thickness at room
temperature with 0.45 nm roughness and 1 µm in-plane film length. The bottom
black line shows the lowest achievable thermal conductivity of the alloy against Ge
or Sn composition [27].

time approximation. In this calculation, all intrinsic scattering mechanisms (3-phonon

umklapp and normal, isotope, impurity, and mass-difference alloys scattering) as well

as interactions with partially diffused boundaries of the nanostructures described by

a momentum dependent model for phonon scattering with boundary roughness have

been considered. In addition, the full phonon dispersion computed from the adiabatic

bond charge model was combined by the phonon dispersions for alloys in the virtual

crystal approximation. Significant reduction in the thermal conductivity cumulative

plot of alloy material in comparison with pure material demonstrates that thermal

conductivity is tunable by both thickness and alloying over a wide range of values.

Among the materials under study Si and Sn have the largest mass difference, leading

to the highest mass scattering in the SiSn alloy of all the binary combinations, and
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hence the lowest thermal conductivity. In nanostructures, there is a further reduction

in thermal conductivity due to size effects to values far below the bulk and almost

to the amorphous limit. Our results demonstrate that binary and ternary group IV

alloys involving Sn have low lattice thermal conductivity, and therefore may have

potential as high-efficiency TE materials, especially in nanostructured form.
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CHAPTER 5

ELECTRON TRANSPORT

Having the thermal path data reduced by alloying and nanostructuring approaches,

the next step of this thesis is to study electrical path including Seebeck coefficient

(S), electrical conductivity (σ), and electronic contribution of thermal conductivity

(κel) of these materials. In the first part of this study, we used the full phonon disper-

sion to calculate the thermal conductivity (κph). Thus, in this part of the study, we

have calculated full electron band structure for different compositions of SiGe alloys

to allow integration with the first part. Si and Ge have the bottom of conduction

band near the ∆ and L point respectively; two completely different directions. The

bandstructure changes tremendously from Si to Ge with alloying and the bandgap

reduces from 1.1 to 0.6 eV. Subsequently, the location and energy of the conduction

band minimum will change with the composition. Hence, it is required to calcu-

late the bandstructure for each composition. In this study, we have calculated 13

bandstructures ranging between Ge composition of 0 and 1. A dense grid of wave

vector (~k) within the first BZ has taken to calculate the corresponding energies. The

electron velocities for each of the wave vector (~k) are obtained by finite differences

method. In our model, both the ∆ and L conduction minima and their relative

positions with respect to the germanium composition have been considered. When

calculating electrical properties, BTE needs to be solved by including all elastic and

inelastic scattering mechanisms. The iterative Rodes method can be used to calcu-

late the perturbed distribution function. Having the data on thermal conductivity

along with the power factor, we can find a range of compositions and thicknesses in
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which the highest ZT can be achieved in the materials under study. These results

can be utilized to design next generation of thermoelectric converters that will enable

us to recover significant amounts of waste heat back into useful electric energy with

higher efficiency. The question is whether the thermoelectric properties of SiGe can

be further improved by changes in composition, doping, thickness, and temperature.

5.1 Rode’s Method for Electron Mobility Calculation

As symmetry plays an important role, usually the distribution functions is split

into symmetric and anti-symmetric part. In the case of anisotropic and inelastic

scattering, the RTA can not be applied for solving BTE. Instead, Rode’s iterative

method can be used for calculating the actual distribution function under the low

field. Rode’s method is an iterative method widely used in calculating mobility of

carriers. Applying a low field or temperature gradient results in a linear difference

equation for the perturbed part of the distribution function [45]. In this method,

perturbation in distribution function is iteratively solved to calculate the mobility of

the carriers. This approach is used in the case that the scattering process is inelastic

and anisotropic in which RTA can not be used. In the inelastic and anisotropic

case, it is almost impossible to define a simple relaxation time that does not depend

on the distribution function because the distribution of carriers does not relax to

their equilibrium distribution. In the Rode’s method inelastic scattering of carriers

are effectively implemented to capture the perturbation to the distribution function

under low-field condition.

In our model, BTE is solved by including alloy scattering and the effect of separate

∆ and L bands similar to the approach used in the Ref. [10]. In order to do so, the

distribution function is approximated to the first order using Lagrange polynomials

and only linear terms have been kept (shown in equation 5.1).
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f(x) = f0(k) + g(k)cosθ (5.1)

where f0(k) is the equilibrium distribution function, g(k) is the perturbation to the

distribution function and θ is the angle between velocity and the applied electric

field. Having the approximated distribution function, the BTE including the inelastic

scattering rate is iteratively solved to calculate the perturbed distribution function

shown in the equation 5.2. This calculation continues until the result converges.

In our model, successive iteration differs by a tolerance defined as 10−3 from the

previous iteration. Usually few iterations are required to satisfy this condition as

the convergence proceeds exponentially. This formalism is valid only for low electric

fields [45]. The perturbation to the distribution function is defined below, which is

taken form Ref. [57] to include the in-scattering rate of inelastic rate and the total

scattering rate:

gi+1 =
Si0gi − eF

~
∂f0
∂k

S0

(5.2)

gi will be referred to as the perturbation distribution. gi+1 which is the (i + 1)th

solution is calculated using ith iteration solution (gi) of the perturbed distribution

function. In this equation, Si0 is the in-scattering rate of inelastic scattering and S0

is the total out-scattering rate.

The Rode’s method immediately gives RTA solution for elastic and isotropic cases

(zeroth solution) in which in-scattering rates vanishes. Implementing the Eq. 5.2 into

the isotropic mobility expression discussed in the Ref. [15], the mobility for anisotropic

case can be obtained be equation below:

µe =

∫ ∫
v(k)gi(k)δ(E − E(k))dk

F
∫ ∫

f(k)δ(E − E(k))dk
(5.3)

where v(k) is the group velocity and F (eE) is the electric force. Having the electron

mobility, the electrical conductivity (σ) and electrical contribution to thermal conduc-

tivity κel can be achieved. Having the electron mobility, σ and κel can be achieved.
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Seebeck coefficient derives from continuity equations, passing carrier densities into

the current operators [62]. The Seebeck coefficient is obtained by implementing Eq.

5.2 into the isotropic expression for Seebeck coefficient in the Ref. [15]. Hence, the

Seebeck coefficient is calculated using the expression below:

S =

∫ ∫
v(k)gi(k)δ(E − E(k))dk

T
∫ ∫

v(k)gi(k)δ(E − E(k))dk
(5.4)

5.1.1 Wiedemann-Franz Law

The Wiedemann-Franz law (FWL) is typically used to estimate to what extent

the electron has contributed to the thermal conductivity [15]. This law, shows the

interdependence of κel, σ, and T to a Lorenz number (L) which is shown below:

L =
κel
σT

(5.5)

Lorenz number is typically close to the value of 2.45×10−8 (WΩK−2) In the metals

that electrons are the primary heat carriers, it can be used to directly calculate the

thermal conductivity from electrical conductivity, but in the semiconductors it slightly

changes depending on the doping level [15].

5.2 Scattering Rates

The elastic and inelastic scattering rates that are included in the Rode’s code are

introduced in this section. The elastic scatterings are ionized impurity scattering,

deformation potential acoustic phonon scattering, boundary scattering, and alloy

scattering (in the case of alloy such as SiGe). The inelastic scattering rates are

intervalley optical phonon scattering including f-type and g-type that describes the

emitted or absorbed energy when electrons interact with phonons.
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5.2.1 Deformation Potential Acoustic Phonon Scattering

The vibration of the crystalline lattice gives rise to phonon scattering. Acoustic

phonon scattering rate (Γ3d
acs) in Bulk or 3D material is given as [43]:

Γ3d
acs =

2πE2
adefkBT

~v2ρ
DOS(E) (5.6)

where Eadef is acoustic phonon deformation potential, ρ is density, v is velocity,

DOS(E) is density of states.

5.2.2 Impurity Scattering

Impurity scattering arises when the material is doped. This type of scattering is

usually dominant at low temperatures. The impurity scattering rate that has been

implemented in the code is [43]:

Γimp =
Z2e4NI

16
√

2πε2m∗1/2E
3/2
k

log

(
1 +

Ze2N
1/3
I

4πεEk

)
(5.7)

where NI is the number scattering centers created due to the impurities, m∗ is effective

mass of the material, Ek is the energy of carriers and Z is the number of equivalent

valleys. Si has 6 and 8 equivalent respectively. Relative permittivity, ε, of Si and Ge

are 11.8 and 16.1 respectively.

5.2.3 Boundary Scattering

The boundary scattering rate arises in the case of confinement of material with

width L and velocity of carriers perpendicular to the boundary vz is given as [4]:

Γboundary =

(
1− p
1 + p

)
L

vz
(5.8)
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where the specularity parameter p is calculated by

p = exp(−4k2∆2cos(φB)) (5.9)

and k is the wave vector of the electron, ∆ is the surface roughness and φB is the

angle between the incident electron with the normal of the boundary. The boundary

scattering plays an important role in a case that the thickness of the material is

comparable to the MFP. However, in this thesis, the widths of the thin films are not

lower than 10 nm which is ten times higher than the MFP of an electron. Hence, this

scattering is not a dominant scattering mechanism in the electrical part of our study,

though it plays a major role in the thermal part as discussed in the Section 4.3.2.

5.2.4 Intervalley Optical Phonon Scattering

In this study, the scattering of carriers due to their coupling to the phonons which

results in emission and absorption has been considered. In calculation of intervalley

optical phonon scattering, contributions from other branches as well as the same

branch should be considered. f -type and g-type transitions is the transition between

parallel and perpendicular valleys respectively [40].

Intervalley optical phonon f -type out-scattering rate (Γ3d
iop) in bulk or in a 3D

material is given as [43]:

Γfiop =
q(Z − 2)D2

kf (N
f
po + f±f )

ρωf
DOS(E ± Ef ) (5.10)

where Ef is f -type optical phonon energy, ff is Fermi-Dirac statistics for electron, N f
po

is the Bose-Einstein statistics for f -type optical phonons given by the Eq. 3.9. Dkf

is f -type optical phonon coupling constant, ωf is frequency of f -type optical phonons

and Z is the number of symmetry directions which is 6 for the Si and 8 for the Ge. ’+’

denotes absorption of phonon and ’-’ denotes emission of phonon, the corresponding
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change in energy of electron are taken care through Fermi-Dirac statistics. Dkf which

is a fitted parameter in our model; is assumed to be 2×1010 eV/m for Si and 0 eV/m

for Ge.

Intervalley optical phonon g-type out-scattering rate (Γ3d
iop) in bulk or in a 3D

material is given as:

Γgiop =
qD2

kg(N
g
po + f±g )

ρωg
DOS(E ± Eg) (5.11)

where Eg is g-type optical phonon energy, fg is Fermi-dirac statistics for electron,

N g
po is the Bose-Einstein statistics for g-type phonon, ωg is frequency of g-type op-

tical phonons and Dkg is g-type optical phonon coupling constant which is a fitted

parameter in our model and is 4×1010 eV/m for Si and 6×1010 eV/m for Ge.

5.2.5 Alloy Scattering

Alloy scattering (a short-range type interaction) was implemented in the code

to capture scattering while the carriers travel in the alloy. Alloy scattering is one

of the major scattering mechanisms limiting mobility in alloys, especially at low

temperatures. The plateau mobility reaches in the compositions ranging between

0.2 and 0.8 which is shown in the Fig. 6.1 in Section 6.1 demonstrates that the alloy

scattering is dominant [36]. This will be explained in more detail in Section 4.4. The

alloy scattering for non-parabolic band structure is shown in equation below [57]:

Γalloyk =

[
x(x− 1)aSiGe3

π

](
D2
alloy

~4

)
d.m∗

√
γk(1 + 2αEk) (5.12)

where x is the alloy composition, aSiGe is the lattice constant of the alloy, Dalloy is

the scattering potential and d is the lattice disorder. γk is defined as [51, 57]:

γk = Ek(1 + αEk) =
~2k2

2m∗
(5.13)
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To calculate the scattering rate, perturbing Hamiltonian is needed. In the case of

constant or harmonic perturbation, the scattering rate is proportional to the DOS.

Based on the Fermi’s Golden Rule which is derived from perturbation theory, transi-

tion probability per unit of time from initial to final states is constant and shown in

the equation 5.14 below [40]:

Γif =
2π

~
| < f |H ′| i > |2DOS (5.14)

where < f |H ′| i > is the matrix element of the perturbation H′ between the two

states of transition. Hence, equation 5.12 can be written as below:

Γalloyk = πx(x− 1)a3
SiGed

(
D2
alloy

~

)
DOS(E) (5.15)

where Dalloy is a fitted parameter and equals to 0.35 eV in our model, and d is lattice

disorder which is considered 0 for the perfect lattice and 1 for maximum disorder.
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CHAPTER 6

THERMOELECTRIC PROPERTIES CALCULATION

6.1 Results and Discussions on Electronic Properties

Figure 6.1. Electron mobility vs. Ge composition for n-doped Si1−xGex with donor
concentration of 1014, 1016, 1019 and 5×1019 cm−3. The result at nd=1014 is in good
agreement with Ref. [36]

In this part of the study, theoretical calculation of electrical conductivity, Seebeck

coefficient, and electrical and lattice contributions to the thermal conductivity is

implemented to calculate the ZT. This calculation is specified by band structure,

scattering mechanisms and the density of states in a similar fashion as Ref. [51].
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Figure 6.2. Electrical conductivity vs. Ge composition for four carrier concentra-
tions of 1014, 1016, 1019 and 5×1019 cm−3.

Our results for the electrical path are in good agreement with the bulk experimental

results for a broad range of doping concentrations, from 300 K to 1200 K [10] [40].

The results including electronic mobility (µ), electrical conductivity (σ), Seebeck

coefficient (S), power factor (S2σ), and thermal conductivity (κel and κph) are system-

atically computed as a function of temperature for different carrier concentrations.

Depending on the alloy compositions (whether it is close to the Si or Ge side), The

conduction band minimum in Si1−xGex is either at the L or ∆-valley [40]. When

the Ge composition equals to the 0.85, the transition between conduction band min-

ima occurs (Si0.15Ge0.85). Hence, in our model, we assume this composition as the

crossover between Si and Ge.

Fig. 6.1 demonstrates the electron mobility vs. the Ge composition for four dif-

ferent carrier concentrations of 1014,1016, 1019 and 5×1019 cm−3. In our model, we
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Figure 6.3. Seebeck coefficient vs. Ge composition for four carrier concentrations
of 1014, 1016, 1019 and 5×1019 cm−3.

studied the effect of low and high carrier concentrations to observe the effect of al-

loying on both extremes. And as a result, we would be able to find the range of

optimal concentrations. The alloy electron mobilities calculated in our model have

been validated by the theoretical and experimental results for 1016 cm−3 in Ref. [36]

and 1014 cm−3 in [10] and [40]. The dramatic decrease in the mobility from pure Si to

the SiGe alloy and the plateau µ reaches after Ge composition of 0.1 (which continues

toward the composition of 0.9) demonstrates that elastic alloy disorder scattering is

the dominant scattering mechanisms, except for almost pure Si and Ge. However, in

the pure Si and Ge, the acoustic phonon scattering is the most dominant one [40].

In the crossover between L and ∆-valley both elastic and inelastic scattering become

important since they are close in energy [40]. As the mobility of the pure Ge is higher
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Figure 6.4. Power factor vs. Ge composition for four carrier concentrations of 1014,
1016, 1019 and 5×1019 cm−3.

than pure Si, the alloys with higher Ge composition (xGe > 0.8) have higher mobility

compared to the alloys with higher Si composition.

Fig. 6.2 depicts the electrical conductivity vs. Ge composition for four carrier

concentrations of 1014, 1016, 1019 and 5×1019 cm−3. Alloys with higher doping con-

centration have higher electrical conductivity. The plateau σ reaches shows the dom-

inance of alloy scattering mechanism. Fig. 6.3 shows the Seebeck coefficient against

Ge composition for four carrier concentrations of 1014,1016, 1019 and 5×1019 cm−3.

Unlike the electrical conductivity, the Seebeck coefficient decreases by increasing the

donor concentrations. The sudden drop at the higher Ge composition (xGe >0.8) is

due to the transition from the ∆ to L-valley. The results are in good agreement with

the Ref. [8] which only includes the Seebeck coefficient against Si composition for the

range of 0 to 0.2 for both low and high carrier concentrations. As electron conduc-

tivity values are significantly greater than the Seebeck coefficients, the power factor

is mostly governed by σ. This results in increasing power factor with the increase of

carrier concentration as shown in Fig. 6.4. Fig. 6.5 shows the electronic contribution
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Figure 6.5. Electronic contribution to the thermal conductivity vs. Ge composition
for four carrier concentrations of 1014,1016, 1019 and 5×1019 cm−3.

of thermal conductivity vs. Ge composition for donor concentrations of 1014,1016,

1019 and 5×1019 cm−3. This result illustrates that the significant thermal transport

by electrons are occurring at high doping level, and κph is weak for the low doping

level, which in good agreement with [60].

6.2 Results and Discussions on ZT of Bulk and Nanostruc-

ture Alloys

Having all the electrical and thermal path parameters calculated, we are now in

the position of calculating the ZT over a wide range of temperatures for both bulk

and thin films. First, we calculate the ZT of bulk to find the optimal Ge composi-

tions and carrier concentrations. Fig. 6.6 (a) depicts the ZT of bulk Si1−xGex vs. the

Ge composition for donor concentrations of 1014,1016, 1019 and 5×1019 cm−3. The
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Figure 6.6. (a) ZT vs. xGe for nd=1014, 1016, 1019 and 5×1019 cm3. (b) ZT vs. nd
for Ge composition of 0, 0.1, 0.2, 0.3, 0.9, 0.95, and 1.

trade-off between the increase of σ, decrease of S and increase of κel due to increasing

the carrier concentrations, results in ZT to have its maximum in the range of 1019

and 1020 cm−3. Higher carrier mobility and power factor of Ge compare to Si, result

in higher power factor in the Ge side (xGe=0.9 and 0.95). This results in achieving

higher ZT in these compositions. Besides, in the indirect band-gap semiconductors

ZT peaks when the thermal energy is in the range of 6-10 kBT [51]. Si has a bandgap

of Eg=(1.21-4.1×10−4T) eV and Ge has a bandgap of Eg=(0.785-4.4×10−4T) eV [23].

Hence, in the lower temperatures, ZT of the alloy with higher Ge compositions peaks

earlier. This effect is shown in Fig. 6.6 (b). On the other hand, the large bandgap of

silicon ensures that in the alloys with higher Si compositions, minority carrier dom-

inance does not arise. This gives us the possibility of increasing ZT values to 0.5

and higher by reducing thermal conductivity (because of increase in the phonon scat-

tering) without affecting the electron mobility [11]. Having the range of the optimal

compositions, we calculate the optimal carrier concentrations in which ZT peaks. Fig.

6.6 (b) shows the ZT vs. carrier concentrations for couple of Ge compositions that
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Figure 6.7. ZT vs. Temperature for Ge composition of 0.9 with nd=3×1019 cm−3

for bulk, 500 nm, 100 nm, 20 nm and 10 nm.

that are more likely to produce the higher ZT. This plot illustrates that the alloys

with higher Ge compositions peak earlier at lower carrier concentrations (xGe=0.95

at nd=2×1019 cm−3 and xGe=0.90 at nd=3×1019 cm−3), while the alloys with lower

Ge compositions peak later at higher carrier concentrations (xGe=0.1 at nd=6×1019

cm−3 and xGe=0.2 at nd=5×1019 cm−3). Having the optimal alloy compositions and

carrier concentrations, we are in the position of reducing the thermal conductivity

by nanostructuring. The thin films that are studied in this thesis are range between

500 nm to 10 nm. The MFP of an electron is ten times lower than the lowest thin

film. Hence, we can manipulate thermal path without significantly altering the elec-

trical path. As a result, we calculated the ZT of four optimal compositions (0.1, 0.2,

0.9, and 0.95) each with the corresponding optimal carrier concentrations. The Fig.

6.7 and 6.8 depicts our results for higher Ge compositions and lower carrier concen-
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Figure 6.8. ZT vs. Temperature for Ge composition of 0.95 with nd=2×1019 cm−3

for bulk, 500 nm, 100 nm, 20 nm and 10 nm.

trations and Fig. 6.9 and 6.10 demonstrates the results for lower Ge compositions

at higher carrier concentrations. It is illustrated that tuning the thickness results

in higher ZT, especially at the higher temperature. Our calculation shows that ZT

reaches as high as 1.9 at the temperature of 1200 K and 1.58 at the temperature of

1000 K at Ge composition of 0.2 at 10 nm thickness with the carrier concentration of

5×1019 cm−3 (Fig. 6.10). Our model does not capture the thermal conductivity at

higher temperatures, however, at very high temperatures, thermal conductivity starts

to increase due to electron-hole pair creation and diffusion. At the high temperature,

because of the large amount of available heat, electrons move toward the conduction

band. Hence, electron-hole pairs are created. The electron-hole pair diffuse the tem-

perature gradient down and will recombine again . During this process, an energy

equals to the band gap releases [23]. Subsequently, thermal conductivity starts to
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Figure 6.9. ZT vs. Temperature for Ge composition of 0.1 with nd=6×1019 cm−3

for bulk, 500 nm, 100 nm, 20 nm and 10 nm.

increase resulting in the reduction of the ZT afterwards.
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Figure 6.10. ZT vs. Temperature for Ge composition of 0.2 with nd=5×1019 cm−3

for bulk, 500 nm, 100 nm, 20 nm and 10 nm.
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CHAPTER 7

CONCLUSION

Si-based thermoelectric devices are widely used in nowadays technology. How-

ever, thermoelectric properties of materials are strongly correlated, this makes ZT

improvement a challenging task. This study shows that nanostructuring and alloying

can reduce κph without significantly changing the other parameters. This is because

of the phonon characteristics in solids in which MFP of phonons are much larger than

those of electrons. This give us the possibility of phonon confinement without alter-

ing electron transport. In this study, thermal conductivity of group IV-based binary

and ternary alloys such as SiGe, SiSn, GeSn, and SiGeSn were considered. Applying

nanostructuring and alloying techniques, we reduced thermal conductivity of binary

and ternary alloys. Our study shows that, due to the atomic mass difference, which

gives rise to the elastic mass scattering mechanism as the most dominant one, SiSn

has the lowest thermal conductivity among the other materials under study. SiSn

achieved thermal conductivity of 1.18 W/mK at 10 nm at composition of 0.18, which

is the experimentally stable state of SiSn. This value is lower than thermal conduc-

tivity of SiGe at 10 nm which is 1.43 W/mK. In the second part of this study, we

considered the electronic transport of SiGe in order to see how much ZT improvement

has been achieved using alloying and nanostructuring. We also studied the temper-

ature dependence of thermal and electrical transport which implies that at higher

temperature SiGe can achieve desired ZT. This model can be applied to SiSn and

other binary ternary alloys, to calculate the improved ZT.
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