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ABSTRACT

Optimized rock fragmentation is essential for minimizing downstream costs to
mining operations. Photographic fragmentation analysis, vibration monitoring, and high-
speed video all provide measurements of blast effectiveness and supply data that allows
operations to modify blasts to achieve downstream goals.

This study evaluates the effects of short hole-to-hole delay times on rock
fragmentation. Photographic fragmentation analysis and various delay times were used
on the same bench blast, the effects of timing on fragmentation were determined. This
analysis provides a representative understanding of timing effects on fragmentation in the
field, different from previous blast models which either negate the effects of timing or
geology. Four test blasts were conducted at a granite quarry in Talbotton, GA. For each
test blast, the bench was divided into three timing zones. This allowed for multiple delay
times to be evaluated in each shot and it provided visual comparison of the variable face
movement and throw. Hole-to-hole delay times included 0 ms, 1 ms, 4 ms, 10ms, 16 ms,
and 25 ms across the various zones. The 16 ms and 25 ms times were the baseline times
against which the short delay results were evaluated. The 0 ms and 1 ms times included
stress wave collision regions, and the 10 ms time was based on the speed of sound in the
rock and burden distance. Each blast was monitored using high-speed video and
seismographs. Dyno Consult provided additional seismograph and video monitoring,
along with bore track and 3D laser profile data. Multiple photographs were taken of each
of the zones for WipFrag analysis. Based on the fragmentation analysis the 25 ms and 10
ms delay times resulted in the smallest rock fragmentation, while the 1 ms delay gave the

coarsest fragmentation.
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1. INTRODUCTION

Rock fragmentation is a fundamental goal of bench blasting where the most
effective blasts can only be achieved through fragmentation optimization. The meaning
of optimized fragmentation is site dependent, as there is no single fragment size that is
the most cost effective for all mine sites, loading equipment, and processing facilities.
Often times, and in the case of this thesis, the goal is to decrease the average particle size
of the fragmented rock without overly increasing fines or, in other words, improve
fragmentation. There are many ways to measure blast performance including, but by no
means limited to, throw placement, diggability, downstream processing cost, and in-pit
fragmentation analysis. Observing and measuring rock fragmentation is one of the first
steps toward optimization. Photographic fragmentation analysis, vibration monitoring,
and high-speed video all provide measurements of blast performance and supply useful
data to the blaster and mine operator. Changes to the blast design, based on the blast
performance measures, can be made to improve fragmentation based on the mine’s goals.
One of the blast design parameters that can be modified to improve fragmentation is
timing.

There is some disagreement amongst researchers and blasters regarding the best
delay times for increased rock fragmentation. Some studies indicate that utilizing short
delay times, which allow for wave interaction and collision, will result in improved
fragmentation. One problem with that hypothesis stems from the difficulty of applying
delay times that will cause collision in the field; even delays that are based on the speed
of sound in the local rock can have their resulting waves altered by unknown geologic

discontinuities. Also, even when wave interaction occurs, it may not actually result in



improved fragmentation. The opposing school of thought is to use delay times that are
much longer than those which could result in wave collision. These delay times are long
enough for each hole to pre-stress the rock of the adjacent hole. Longer delay times are
also necessary when the concern is burden movement, but this applies to inter-row
delays, not inter-hole delays. Ultimately, either way, delay times must be designed based
on site-specific parameters in order to achieve optimized fragmentation. Also, given that
delay times affect fragmentation, fragmentation models, such as the Kuz-Ram, need to be
modified to include delay timing.

The goal of this thesis is to investigate the possible effects of short hole-to-hole
delay times on rock fragmentation in bench blasts. This thesis tests whether or not short
hole-to-hole delay times improve rock fragmentation in full scale bench blasting. Six
different delay times were tested during four blasts at a granite quarry in Talbotton, GA.
These tests included two delay times within the potential stress wave collision region,
another short delay time, an intermediate delay time, the mine’s standard delay time, and
another common long delay time. Hole-to-hole delay times were 0 milliseconds (ms), 1
ms, 4 ms, 10ms, 16 ms, and 25 ms. The 0 ms, 1 ms, and 4 ms delays were all considered
to be short delay times, and the 0 and 1 ms times were the only ones with the potential for
wave collision. The 16 ms and 25 ms times were the baseline long delay times against
which the short delay results could be compared, 16 ms was the mine’s standard inter-
hole delay. The 16 ms delay had been previously established as a standard at the mine by
trial and error. The intermediate, 10 ms delay, was used based on the recommendation of
DynoConsult, which is based on an equation that input speed of sound in the rock and

burden distance. Each shot was divided into three zones so that multiple delay times



could be tested on a single bench blast. All other blast parameters, including loading,
powder factor, and stemming, were completed using the mine’s standard blasting
procedures.

WipFrag analysis of photographs taken for the designated zones on the bench of
each shot was performed and quantitative measurements of the fragmentation
distributions resulting from the various delay times were made and analyzed. This
allowed for the effectiveness of the delays to be evaluated side by side in the most
controlled way possible given the constraints of working in a full-scale production mine
and in naturally variable rock. The WipFrag analysis also showed how the relatively
small variation in the rock can affect the fragmentation size. In addition to the
photographic image analysis, the shots were also monitored using high-speed video and
seismographs.

The goals of this thesis are to measure the effects of short inter-hole delay times
on blast performance. More specifically, the primary goal of testing was to determine if
short hole-to-hole delays improve rock fragmentation in full scale bench blasting.

Additionally, it was a goal to observe how short inter-hole delays affect throw.



2. LITERATURE REVIEW

2.1. INTRODUCTION TO ROCK FRAGMENTATION IN BENCH BLASTS
Rock fragmentation from blasting is dependent on a number of factors. These
factors include the properties of the in situ rock, such as jointing and fracturing,
properties of the explosives used, blast pattern design, and shot timing. The rock
properties such as compressive strength, porosity, density, Young’s modulus, Poisson’s
Ratio, and rock fracturing and jointing cannot be altered. Thus, any optimization to
fragmentation will have to occur within the limitations placed by the rock mass. This
leaves the explosive properties, blast design including timing design, and execution to
influence fragmentation. Explosive properties that influence fragmentation include the
Chapman-Jouget (C-J) pressure, density of the explosive, and the detonation velocity of
the explosive. Blast pattern design elements include burden, spacing, powder factor,
stemming length and type, hole depth and diameter, and sub-drill length (ISEE 2011).
Figure 2.1. from the ISEE (2011) illustrates these blast parameters. The delay timing of a
blast will also influence the fragmentation. This timing influence will be extensively

covered in Section 2.2.
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Figure 2.1. Blast Parameters (Johnson 2014)

A reasonable starting point for understanding the mechanisms by which rock
fragmentation occurs, is to examine how fragmentation happens around a single blast
hole. The process begins with the detonation of the explosives in the hole, which transmit
a radial shock wave into the rock mass. The detonation and this initial shock wave causes
crushing around the hole by exceeding the uniaxial compressive strength of the rock.
Relatively close to the hole, the shock wave will attenuate to a stress wave (ISEE 2011).
As the stress wave continues outward, breakage occurs in tension at rock fractures, joints,
and discontinuities. When the compressive wave reaches a free face, it reflects in tension
causing failure cracks and bench face spalling (Worsey 2014, Johnson 2014).
Immediately following the stress wave, the other major factor, the gas pressure comes
into play. The hole is pressurized by the gases, which leads to the growth of previously

created radial fractures, as well as the expansion of material flaws within a few borehole



diameters. As the fracture zone extends, dominant fractures continue to grow (Worsey
2014). Gas pressure is not able to dissipate until it reaches a significant phase change.
This will typically occur at a free face. The gas pressure bows the bench face and pushes
it forward (Johnson 2014).

While examining the fragmentation effects caused by single holes is essential; it is
far from all encompassing. When a bench blast occurs, rock damage accumulates behind
the stress wave and improves as stress waves from secondary holes move across areas
that have already been traversed by the stress waves of the initial holes (ISEE 2011).
Additional fragmentation occurs by collision between blasted rocks and the impact of the
rocks with the ground (Worsey 2014b). Basic principles of blast optimization provide
guidelines about how to alter fragmentation by modifying blast pattern geometry. Based
on these, fragmentation can be improved (smaller particle size) by decreasing burden and,
within limitations, decreasing spacing (effectively increasing powder factor). It is
important to note that in this scenario, improved fragmentation is not necessarily
optimized fragmentation, because reducing the pattern geometries can also cause an
increase in fines and other less than desirable effects. Also, stemming type and length can
affect fragmentation; this is particularly significant at the top of the bench and can result

in unbroken cap rock and oversize (Worsey 2015).

2.2. BLAST MODELS AND RESEARCH ON TIMING EFFECTS
The understanding of rock fragmentation mechanisms and the methods for
optimizing fragmentation have always been important for blasting engineers and mine

operators, because rock fragmentation can have a significant influence on production



costs. The optimization of fragmentation through trial and error as well as blaster
experience was used before many of the mechanics of fragmentation were understood.

2.2.1. Classic Blast Timing Principles. The utilization of correct delay
sequencing is essential for muck pile formation and delay timing is necessary to maintain
the balance between required confinement and the creation of relief, as crack extension
and face movement both progress. The degree of confinement of a blast is directly related
to the time it will take for the rock to respond; therefore as blast confinement increases,
so must the delay time utilized. Blast timing should direct the rock displacement to create
the desired muck pile shape and location (ISEE 2011). Traditional timing design
principles suggest that decreased hole-to-hole delay times decreases fragmentation and
increased row-to-row delay times increases fragmentation up to a certain limit (Worsey
2015).

Floyd (2013) suggests a number of typical timing ranges for optimum
fragmentation based on rock mass type. These include an inter-hole delay of less than 0.3
milliseconds per foot (ms/ft) of spacing for blocky and massive rock with an inter-row
delay of at least 2 to 3 times the inter-hole delay and an inter-row delay of 0.5 to 1.5 ms/ft
of burden for highly jointed or highly bedded rock. Floyd’s (2013) suggestions do not
align well with some of the recommendations stated in other research. Modifying pre-
existing timing plans and observing the results to achieve improved fragmentation is
another way that blasters have improved fragmentation using timing. Grant (1990)
reviewed a large number of published blast trials and found that optimized fragmentation

was found at 3-5 ms/m of burden.



2.2.2. Introduction to Wave Collision. The ISEE Blasters’ Handbook (2011)
states that, under certain timing circumstances, stress waves can collide between two
holes. Depending on where the stress waves collide, or interact, various results can occur
which affect fragmentation. One wave may be overwhelmed by the other, thus causing
effects of the first to be inhibited by those of the second. This occurs in the case that the
first wave has already depleted before interacting with the stronger second wave.
Yamamoto (1999), states that simultaneously detonating charges, referred to as zero
millisecond delays by the ISEE, will result in wave collision halfway between the two
holes. According to Yamamoto (1999), the greatest fragmentation between two holes
occurs when the tensile trailing sections of the blast waves interact. Worsey (1981)
disproves Yamamoto’s conclusion based on micro-fracture density. Worsey (1981) used
tests performed in resin blocks to show that, rather than initiating at the midway point
between holes, fractures from adjacent holes intersect and merge there. While
Yamamoto (1999) and the ISEE (2011) agree that wave collision occurs and has an
effect, in contrast to Yamamoto, damage, in the case of the ISEE (2011) simulation, was
increased by utilizing delay times that were significantly longer than those that would
have had any stress wave interaction. Rossmanith (2003), puts forth that the location and
size of the stress wave interaction very much depends on the ratio of the length of the
pulses, the hole spacing, and the delay time used. Rossmanith’s (2003) results are
discussed further in Section 2.2.3.

Early models of wave interaction lacked experimental data. More recent research
has begun to provide a clearer picture of what is actually happening. Many experimental

tests and newer model simulations disagree with Rossmanith (2003) and Yamamoto



(1999) and agree with the ISEE (2011), that the greatest fragmentation occurs at delay
times that are too long for wave interaction to occur. These models and tests are detailed
in Sections 2.2.4.

2.2.3. Blast and Fragmentation Simulations and Modeling. Traditional blast
design methods do not incorporate all of the variables that can be used to optimize
fragmentation and can be accounted for when using electronic detonators. While every
model has its limitations, blast and fragmentation modeling can provide information
about the outcome of a blast that would have previously been unknown. According to
Rossmanith (2003), laboratory scale tests have shown that the interaction of blast waves
and subsequent cracks can be used to achieve optimized fragmentation. In order for the
waves to utilize the superposition effect, delay times must be significantly shorter than
conventional delay times. One component that laboratory and scale tests cannot
incorporate well is rock jointing and faulting. In order for wave interaction to occur,
delay times must be selected based on site specific rock properties, such as the sonic
velocity of the rock and the presence of jointing and fractures. Since these features are
typically not thoroughly and accurately characterized for each blast, designing a blast
with the goal of interaction is difficult. This is also the major problem with modeling
blasts using computational mechanics methods. For these methods to be employed, one
must negate the effects of structural geology (Rossmanith 2003). Section 2.5 details how
geology influences fragmentation.

Within the rock mass or body, P-waves and S-waves, propagate. P-waves are
primary or longitudinal waves and S-waves are secondary or shear waves. Each of these

waves has a leading (compressive +) and a trailing (tensile -) part. Close to the hole these
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waves overlap, but as they travel out they will separate because their speeds are different.
Rossmanith (2003) states that given two holes separated by a spacing, the fundamental
event is the interaction of two stress waves: P1-P2, S1-S2, P1-S2, and S1-P2. A number of
zones of interaction can be identified, as illustrated in the Lagrange diagram shown in
Figure 2.2. The areas of stress wave interaction may cover the space between holes

multiple times when non-brisant explosives that produce long stress waves are used.
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Figure 2.2. Lagrange Diagram of the Interaction of Stress Waves from Two
Simultaneously Detonated Holes and Their Wave Interaction Patterns (Rossmanith
2003)

Another parameter that should be incorporated when designing a blast that utilizes
electronic detonators is acoustic impedance. The acoustic impedance of the explosives,
the rock, the ratio of the two, and the ratio between different rock strata are all important
quantities to understand. The stress and strain field caused by the detonation of a blast
hole is dependent on the ratios between the velocity of detonation and the wave speed in

the rock mass (Rossmanith 2003).
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Proposed by Cunningham in 1983, the Kuz-Ram model was one of the original
models used to predict rock fragmentation size, and it is still a commonly used model in
the industry. The model uses the combination of the Kuznetsov and Rosin-Rammler
equations. The Kuznetsov empirical equation gives the relationship between the mean
rock fragment size and the powder factor used. The Rosin-Rammler equation is used to
predict the rock fragment size distribution. There are a several problems with the Kuz-
Ram model. These include an inability to predict fines and a failure to account for shot
timing. A number of models and modifications have been proposed in order to mitigate
some of the problems with the Kuz-Ram model, and to improve rock fragment size
distribution prediction. Two examples of extensions of the Kuz-Ram model are the Crush
Zone Model (CZM) and the Two-Component Model (TCM). These models, known as the
Julius Kruttschnitt Mineral Research Centre (JKMRC) models, aim to improve the
prediction of fines (Gheibie 2009). All of the modified Kuz-Ram models still fail to
incorporate timing as a parameter (Johnson 2014). Of course, as it has been previously
stated, timing has an influence on fragmentation. So, any model that does not include
timing as a variable, must only be used with the understanding that once timing is
incorporated into the blast, the outcome may vary from the model.

2.2.4. Further Research, Lab Scale Tests, and Field Tests. Sjoberg’s (2012)
project tested Rossmanith’s (2002) hypothesis that fragmentation is improved in areas of
tensile tail interaction and the project developed computational tools for blast simulation.
Sjoberg (2012) used the 3D finite-element code LS-DYNA to model blasts, with Euler
formulation close to the blast hole and Lagrange formulations in the rock further from the

hole. A Riedel-Hiermaier-Thoma (RHT) material model was used to simulate the rock
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and an algorithm was developed to calculate fragmentation based on model
interpretation. The hole diameter was 311 mm. Explosive column heights of 8 meters (m)
and 11 m were used. The delays, amount of explosive, and distance between blast holes
were varied as shown in Table 2.1. Based on the cases tested, Sjoberg (2012) concluded
that there was a small effect from stress wave interaction, but that it was local and did not
significantly improve fragmentation. Varying hole space and explosive quantity had the
largest effect on fragmentation, and relatively long delay times where the stress wave

would have passed the second hole resulted in the most fragmentation.

Table 2.1. Cases analyzed by Sjoberg (2012)

Case no. Ignition fime Amount of Distance
explosive between blast

Hole1 | Hole2 | Hole1 | Hole 2 holes
1 0 ms 0ms 11Tm 11m 87m
2 0 ms 1.5 ms 11Tm 11m 87m
3 0 ms ams 11Tm 11m 8.7 m
4 0 ms 0ms 11Tm 11m 123 m
5 0ms 0 ms m 8&m 87m
6 0ms 0 ms m 11m 87m

Johansson and Ouchterlony (2013) performed model scale tests to study the
utilization of short delays to promote improved fragmentation caused by shock wave
interactions. The tests were made on magnetic mortar blocks confined by U-shaped
yokes, with the space between the yoke and the mortar block filled with fine-grained
expanding grout comparable to the yoke characteristics to minimize the impedance

mismatch. The block size was 650/660 x 205 x 300 mm (L x W x H). It had two rows of
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holes each with five 10-mm holes per row. The spacing and burden was 110 and 70 mm.
Decoupled 20 g/m PETN-cord was the explosive used. The two rows were shot
separately and the first row caused back break into the second. Delay times were first
selected based on the measured elastic P-wave velocity of 3,800 m/s which indicated an
arrival time at the adjacent hole for the elastic wave of ~28 ps. They used hole-to-hole
times that covered from before the P-wave from the adjacent hole arrived until well after
the S-wave had passed. Table 2.2 shows the full range of delay times used by Johansson
and Ouchterlony (2013) and the reason for their use based on the expected wave
interaction or lack thereof. They found that their second row of holes had significantly
different fragmentation results from the first, because of the backward penetration of
cracks from the first row. The second row material was significantly smaller and more
uniform. This indicates that the pre-stressing of the rock mass by preceding blast holes as
a shot progresses plays an important role in the overall fragmentation distribution of the

shot.

Table 2.2. Test Matrix Johansson and Ouchterlony (2013)

Test no. Block no. Nominal delay Expected interaction Campaign no.
tume (us)
1 1 28 P-wave velocity (cp) interaction at neighbour hole 1
2 6 146 No shock wave interaction 1
3 2 x Single shots to determine shock wave arrival times at neighbour hole 2
4 3 37 Shock wave interaction at neighbour hole 2
5 4 46 Initial ‘tensile’ (negative) phase interaction with shock wave 3
6 ) 56 Intermediate ‘tensile’ (negative) phase interaction with shock wave 3
7 8 46 Repetition because test no. 5 gave anomalous results 4
8 7 86 Vanbrabant’s recommendations 4
9 11 73 2nd variety of Vanbrabant's scheme 5
10 9 146 No shock wave interaction and confined 5
11 13 73 Vanbrabant 2nd scheme and confined 3
12 14 146 No shock wave interaction and confined 6
13 10 73 Vanbrabant 2nd scheme and confined 6
14 12 73 Vanbrahant 2nd scheme 6
15 15 0 Instantancous initiation 6
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Katsabanis has published a number of papers regarding the effects of timing on
rock fragmentation and in 2014 published a review of past research about the timing
parameters necessary for fragmentation optimization, which covered much of his own
previous research, several other studies of significance, and new experiments in grout
specimens. Studies completed by the USBM (Stagg and Nutting 1987, Stagg and Rholl
1987, Otterness et al.1991), included reduced scale tests and full scale tests. While not
many conclusions can be made based on the early tests, it seemed that very short delays
were associated with coarse fragmentation. In 1996, Katsabanis and Liu studied delay
effects on a small granite bench using manual digitization of high-speed films. This
method only allowed large differences to be observed because its accuracy was
compromised by penalizing small fragments. Zero delay times resulted in boulders and
the optimum delay was found to be 2.4 ms/ft (8 ms/m) of burden (Katsabanis and Liu
1996).

Katsabanis et al. (2006) performed small scale tests in high quality granodiorite
using an equilateral triangular pattern that had 10.2 cm between 11 mm in diameter holes.
Each hole was 18 cm long. 23 holes were drilled in each 92 cm x 36 cm x 21 cm (length
x width x height) block. The holes were each loaded with three strands of 5.3 g/m (25
grain/ft) detonating cord and coupled to the rock with water. Lengths of detonating cord
and seismic detonators fired with a sequential blasting machine were used to achieve
delay times from 0 to 4000 ps. After each shot, fragments were collected and screened to
determine the fragmentation sizing. Results of the tests showed that the coarsest
fragmentation occurred when all charges were initiated simultaneously and that

fragmentation became finer as delay time increased, up to 1 ms between holes. There was
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little difference between delays varying from as fast as 10 ps to as long as 1 ms. This
gave an ideal range of delays for fragmentation optimization between 0.03 ms/ft (0.11
ms/m) of burden to 3.4 ms/ft (11 ms/m) of burden. Fragmentation became coarser at very
long delays because the fragments become separated by open cracks. This work shows
that the selection of fast firing times is not ideal for fragmentation optimization
(Katsabanis et al. 2006).

Katsabanis et al. (2014) sought to eliminate some of the problems that were
present in previous research. These were scatter in measurements, unwanted edge effects,
and few data points covering the entire range of delays. To solve these problems, small
scale tests were conducted, simulating a rock bench, using a grout resembling rock
encased in a yoke that eliminated unwanted reflections. The blocks were 60 cm x 40 cm X
25 cm and were drilled with a 7.5 cm x 10.5 cm (burden x spacing) pattern of 12 mm
diameter holes. Each hole was 23 cm long and was loaded with two strands of 10 g/m (50
grain/ft) detonating cord coupled to the block with water. Delay times were obtained
using lengths of detonating cord for those times less than 100 s and sub-millisecond
electronic detonators were used for delays greater than 100 us. Fragments from each shot
were collected and screened to determine the fragmentation sizing. Very short delays
produced the worst fragmentation. The best fragmentation was achieved between 4 ms/m
of burden and 10 ms/m of burden. Then, at long delay times fragmentation became
coarser and back break was increased (Katsabanis et al. 2014).

Johnson (2014) investigated the effects on fragmentation of head on collision of
shock waves in a rock mass and of detonation waves within the explosive column.

Twenty seven small scale tests in 15 x 7 % x 7 ¥ inch concrete blocks were performed.
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Each of the blocks was wrapped in geotextile fabric and wire mesh so that in situ
fracturing could be examined. 50 gr/ft detonating cord was used. Three types of tests
were completed. Six concrete blocks were used to test single initiation as a baseline for
comparison with the second test. These tests had detonating cord initiated from one end
so that no wave collision would occur. Six blocks were used to test colliding detonating
waves. In these tests, detonating cord was initiated from both ends. This resulted in the
collision of detonation waves through the center of the block. The third set of tests
consisted of 15 blocks and tested colliding shock waves. These experiments had no
explosives in the center of the block. This allowed only the shock waves to move through
the block and collide in the center. This test was similar to what happens between blast
holes. The second test set resulted in the same radial crack formation as in test one, but
had the addition of a horizontal crack through the center. For the third set of tests, both
instantaneous detonation of the two holes and various changes in initiation time were
tested. Here the largest fragments were found in the center of the blocks where there was
no explosive, but there was shock wave collision.

Collision of shock waves between blast holes was found to decrease
fragmentation. The directional particle movement between holes resulted in an increase
in the concrete density at the collision point, which resulted in decreased fragmentation
and increased throw because of the impedance mismatch at the center point. Simulations
were done which backed up the small scale experimental data, but no full scale bench
blast tests were completed (Johnson 2014).

The results of tests done by Sjoberg (2012), Johansson and Ouchterlony (2013),

Katsabanis et al. (1996, 2006, 2014), and Johnson (2014) contradict Rossmanith (2003)
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and Yamamoto (1999) and agree with the ISEE (2011). These results point to the
conclusion that the best fragmentation results are achieved using delay times that are
much longer than those which can produce wave interaction. Additionally, very long
delay times should be avoided as they result in coarser fragmentation and increased back
break.

Yang and Rai (2011) studied the effects of inter-row delay timing on
fragmentation and fragment size distribution in full scale at the Century Cements
limestone quarry in Raipur, India. Previous research at the same quarry led them to test
the timing on straight V and diagonal patterns, because these had provided better results
than other pattern types. Inter-row delay times of 17 ms and 25 ms were tested on both
pattern types. These times gave effective firing delays of about 2.4 ms/ft (8 ms/m) of
burden and 3.7ms/ft (12 ms/m) of burden, respectively.

The digital image analysis software Fragalyst was used to measure fragment size
and distribution. Photos were taken every hour to capture the entirety of the excavation
and a large number of images were analyzed for each muck pile. This study provides a
good example of the effective use of a digital image analysis program. (The use of digital
image analysis for rock fragmentation characterization is detailed in Section 2.6.) For
both of the pattern types tested, the 17 ms delay resulted in better fragmentation. It was
concluded that the 17 ms delay allowed for more in-flight, inter-rock collisions than the
25 ms delay time (Yang and Rai 2011). While this study provides insight into how
various inter-row delays influence fragmentation, because of the use of a shock tube
based pyrotechnically delayed initiation system, the timing accuracy was much lower

than what would have been achieved using an electronic system. Thus, if the study were
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to be repeated utilizing electronic detonators, the results might not be the same.
Additionally, the delay times tested did not represent a range of short and long times, but

rather two fairly similar mid-range times.

2.3. TIMING INFLUENCE ON THROW

Delay time influences how the blasted rock will move, and blasts can be designed
so that the desired throw is achieved. In addition to timing, other blast design parameters
such as burden; spacing; hole diameter, depth, and angle; pattern type; and explosive type
can influence rock movement. Bench blasting is one of the most efficient blast
geometries for fragmentation and throw. Different types of bench blasting, such as quarry
blasts and cast blasts, have different goals in terms of throw and, therefore, have differing
design parameters, which include varying delay times. Typically in a quarry blast the aim
is to spread the rock on the quarry floor in such a way that diggability is optimized for the
quarry’s available excavation equipment. There are a number of ways that cast blasting
differs from quarry blasting. In terms of the muck pile, cast blasts aim to throw as much
muck as possible to the final location so that the minimum amount of handling is
required. They also aim to achieve looseness and fragmentation that allows for easy
digging by the dragline. In cast blasting, it is important to use sufficient inter-row delay
times to allow for necessary burden relief (ISEE 2011). Short hole-to-hole timing is
necessary so that holes interact and a higher percent cast is achieved (Worsey 2015 b).
Grant (1990) states that for a front row of holes, the greatest throw is achieved when all
holes are fired simultaneously. Small scale tests performed by Johnson (2014) found an

increase in throw when adjacent holes were simultaneously detonated.
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2.4. BENEFITS OF ELECTRONIC DETONATORS

It must be understood that rock damage and crack propagation occurs
significantly behind the stress wave in order to utilize detonators in a way that allows for
the optimization of fragmentation based on those effects. No other type of commercial
blasting detonator has the accuracy along with precision necessary to take advantage of
timing plans that correctly match the best time for optimized fragmentation. One of the
key ways that electronic detonators differ from their predecessors is that, rather than
using relatively inaccurate pyrotechnic delays, they utilize an integrated circuit chip to
control the delay time. This electronic chip allows for their nearly complete accuracy and
precision. Typical electronic detonators have an accuracy of plus or minus 1 ms for all
delay times and delays can range up to 20,000 ms (ISEE 2011). Some manufacturers sell
detonators that are said to provide even more accuracy with precision, and a larger delay
range. An example of these is Orica’s (2015) newest detonator which is specified as
having timing that has precision as a coefficient of variation of 0.005% and a maximum
delay time of 30,000 ms. Studying the effects of short delay times would be ineffective
and nearly useless without the ability to utilize accurate electronic delays. The scatter that
would be present when using detonators with pyrotechnic delays would most likely result
in some holes firing out of planned order or at otherwise incorrect times. These timing
inaccuracies would affect the fragmentation of the shot and would likely negate any

possibility of wave interaction.
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2.5. THE INFLUENCE OF GEOLOGIC STRUCTURES ON FRAGMENTATION
The properties of the rock mass being shot can have a significant influence on the
fragmentation outcomes of the blast. Rock properties such as compressive strength,
porosity, density, Young’s modulus, Poisson’s Ratio, and rock fracturing and jointing can
all influence fragmentation. Rock structures, fracture planes, and voids can attenuate
fragmentation crack network formation and can cut into the energy distribution of the
pattern. Both of these can cause less than optimum fragmentation results from a blast. It
is important for rock structures to be identified and mapped because if blast hole pattern
dimensions exceed those of structure spacing, fragmentation will be poor (ISEE 2011).
Abu Bakar et al. (2013) reviewed the influence of geological discontinuities on
fragmentation. Most rock masses have fissures and they act to reduce induced stress on
the rock and radial cracks from blasting are arrested at the fissures when stress
concentration becomes too low. Previous stress-time history and the differences in
principle stresses can change the fracture pattern caused by blasting. Energy loss in joints
increases as joint size increases and the infilling of joints can affect the wave
transmission through the joint depending on how well the infill material matches the
impedance of the rock mass. For small joints with well-matched infill material, the wave
transmission will be better than for larger joints or those with mismatched infill material.
Jointing controls rock fragmentation in a number of ways. Jointing will reduce
and reflect waves, thus limiting their effects, as well as control the radial fracturing zone.
Joints will often stop the extension of fractures, as a fracture will tend to follow along the

joint rather than passing through it. Also, gases can escape into the joint causing reduced
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fragmentation because of the venting. Finally, jointing can reduce rock mass strength
(Worsey 2014 c).

Rock mass strength influences fragmentation, but it can be difficult to
characterize in rock that is not homogenous. One thing that affects rock mass strength is
bedding planes. Their presence in a rock mass will lower its strength and allow for easier
fragmentation. Additionally, as the number of bedding planes in a rock mass increases,
the ability for those bedding planes to control the maximum fragmentation size also
increases. Bedding at the bottom of a bench allows for easier movement and better
fragmentation. Weathering of the rock mass can also affect fragmentation by creating
zones of rock with strengths that differ from the rock below or surrounding a contact
zone. Weathering which results in weakened rock can cause confinement problems, and
weathering that exposes a hard layer that ends up being the bench surface can result in
cap rock problems. Small voids can also affect the rock strength if many of them are
present. Large voids can have an effect on fragmentation because they allow for the

venting of gas and therefore a reduction in gas pressure (Worsey 2014 c).

2.6. ROCK FRAGMENTATION ANALYSIS METHODS

Rock fragmentation distribution can be evaluated in a number of different ways.
These methods vary from those that are very simple to perform and qualitative to the
impractically difficult in production situations, but very quantitatively accurate.
Fragmentation can be evaluated qualitatively on a shot to shot basis by blaster
observation and loader operator feedback about sizing and diggability. This method lacks

data and is subject to a significant amount of human error and bias. Sieving of shot rock
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is a very accurate quantitative method of determining fragmentation size, but it is time
consuming, impractical, and expensive in active mining operations. Digital image
analysis provides a middle ground between the previous methods with a quantitative
measure of fragmentation sizing that is minimally disruptive to the mining process, and is
therefore a practically applicable method of obtaining the fragmentation results of bench
blasts. Digital image analysis of shot rock can be performed using images of the
muckpile taken with handheld/portable cameras, with belt mounted systems, or loader
mounted systems (Motion Metrics 2015).

There are various software packages and image capture systems designed to
facilitate digital image analysis for fragmentation sizing. These include WipFrag, Split,
PortaMetrics, GoldSize, Fragscan, PowerSieve, and BLASTFRAG (Split Engineering
2015, Motion Metrics 2015, Sanchidrian 2009, Johnson 2014). Many of the image
analysis systems operate in a similar manner and most require some type of scaling item
to be placed in the photo. For example, WipFrag takes an image of a muckpile or other
broken rock and converts that image into a net of rock fragments. This net is measured
and used to provide a sieve simulation of the fragments. This provides fragmentation
statistics, such as the D10, mean, D50, and D90, and graphs of the fragmentation sizing
(WipFrag 2015). WipFrag (2015) states that, “images must be clear, evenly lit and must
be acquired systematically in order to minimize editing and to optimize results.” Even
when using high quality photos, rock outline editing is typically necessary to distinguish
fragments, identify fines, and identify shadow or other areas to be excluded from the
analysis. Systematic photo acquisition is important both immediately after the shot and

throughout the mucking process to ensure all areas of interest are accounted for. Photos
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must be collected throughout mucking to eliminate the sampling bias caused by the
typically more course fragmentation found on the surface of muck piles (Johnson 2014).
There are a few problems associated with digital image analysis methods that
should be understood when utilizing them for fragmentation optimization, but that do not
negate the usefulness of the analysis. These include the previously mentioned manual
editing of rock outlines to ensure correct delineation of fragments. This introduces human
error into the analysis, especially when particle sizes are small. In images with larger
particle size or where the image resolution is high, this error is minimized. Other issues
include errors associated with the calculations used to transform rock surface
measurements into volumes, the limitations of the resolution of image systems, shape
effects causing fragments to be assigned mesh sizes differently in the image analysis than
they would be in sieving, and density assumptions. When utilizing image analysis to do
side-by-side comparisons, some of these problems, such as the volume calculations, are
irrelevant because any error introduced will apply to all of the images and the difference
in size distribution from photo to photo will still be evident. Additionally, despite the
issues, when tested, the size distributions found using digital image analysis of muck
piles matches those of sieved material well. Coarse materials tend to result in fewer errors

than fine materials (Sanchidrian 2009).

2.7. IMPACT OF FRAGMENTATION ON BLAST PERFORMANCE AND
DOWNSTREAM COST EFFECTS

There are a large number of ways to evaluate the effectiveness of a blast
depending on the desired outcomes. Historically, blast effectiveness has been measured

based on in-pit results, but given that these results do not fully encompass the areas that
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blast performance affects, it is necessary to evaluate a blast based on downstream results.
Effective rock fragmentation is key to minimizing downstream costs by optimizing
crusher and grinder throughput, minimizing wear on equipment, maximizing dig rate and
payload, decreasing energy consumption of equipment, and controlling fines production.
Photographic fragmentation analysis, vibration monitoring, and high-speed video provide
quantitative measurements of blast effectiveness and supply data that allows operations to

modify blasts to achieve downstream goals (ISEE 2011).

2.8. LITERATURE REVIEW SUMMARY

Rock fragmentation in bench blasting is dependent on many factors. Some of
these, such as the rock mass characteristics, cannot be modified. Other variables, such as
the blast design and delay timing, can be modified to optimize the fragmentation of a
shot. Understanding the mechanics of a single blast hole is important when designing for
fragmentation, but it is not all encompassing. Fragmentation also occurs because of pre-
stressing of holes and the impact of rocks on each other and the ground. Increased
powder factor will lead to smaller fragment sizes.

Blast timing should direct the rock displacement and create the desired muck pile
shape. There is some disagreement among blasters and researchers about what delay
times are ideal for fragmentation optimization. Some researchers argue that short times,
that cause wave collision, result in the best fragmentation. The majority assert that the
best fragmentation occurs at delay times much longer than those that have the potential
for wave collision. Another blast outcome that is affected by delay timing is throw. Short

hole-to-hole timing is necessary to achieve the greatest throw. In order to study the
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effects of short delays, electronic detonators are needed for their superior accuracy and
precision.

There are several ways to analyze rock fragmentation, but digital image analysis
has many advantages. WipFrag is a program which allows the user to take an image of a
muck pile and convert that image into a net of rock fragments, which can then be
virtually sieved. This provides fragmentation statistics, such as the D10, mean, D50, and

D90, and graphs of the fragmentation sizing.
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3. EXPERIMENTAL SETUP
All four test blasts were conducted on the North 2" Bench of an actively mining
granite quarry in Talbotton, GA. The test blasts were full-size production shots conducted
between April 16, 2015 and September 15, 2015. The tests included all shots on this
bench during this timeframe. Each blast shot approximately 48,000 cubic yards of rock.
The mine ran two Caterpillar 990 loaders, four 70 ton haul trucks, and one 50 ton haul

truck. The last photographs for WipFrag analysis were taken on September 29, 2015.

3.1. STANDARD BLAST DESIGN

The mine’s standard inter-hole delay time was 16 ms and the inter-row delay was
142 ms. Each shot consisted of two rows of 5.75 inch holes with a total of 85 or 86 holes
per blast. The burden and spacing were 13 feet and 17 feet, respectively. The mine’s
standard blast design was used for all of the shots. The only modifications made were to
the hole-to-hole delay times. Other than the delay time variable all blast design
parameters, including loading, powder factor, planned burden and spacing, and stemming
were held constant. The zones in which the various delay times were used and additional
details about each shot are detailed in Section 3.2 and Sections 3.4 through 3.7,
respectively. The burden measurements from Boretrack and 3D Laser Profile data will be
discussed in the individual shot sections. The bench height was approximately 70 feet and
holes were drilled with a 3 foot sub-drill, at a 5 degree angle. The shots had only one
open face. The typical stemming height was 8 to 9 feet and the stemming material used

was good quality angular %4 crushed rock as shown in Figure 3.1.
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Figure 3.1. Typical Angular %” Stemming Material

Holes were loaded with either Titan 1000 SME or Titan 1000 SD. The two
emulsion types were very similar. They both had a density of 1.20 g/cc, energy of 680
cal/g, and relative bulk strength of 1.13. The Titan 1000 SD had a slightly higher velocity
and detonation pressure. Detailed information about the two emulsion types, as well as
full loading details for each shot, is included in Appendix B. It would have been ideal if
all holes could have been loaded with the exact same emulsion. Because of the loading
capacity of the available powder trucks in the area, Zones 1 and 2 were loaded with Titan
1000 SME and Zone 3 was loaded with Titan 1000 SD. Dual electronic, Digishot,
detonators were used to initiate each hole and allowed for the use of any desired delay
time. Detonators with boosters were placed near the top and bottom of the hole and had a
2 ms delay between the bottom and top detonators. The bottom detonator was fired first
and the top detonator was there as a back-up. The detonators were approximately 30 feet
apart and given the detonation velocity of the explosive, the top detonator was overcome
by the column detonation before firing. A typical bench and standard hole loading are

shown in Figures 3.2. and 3.3.



Figure 3.2. Hole Loading During Test Shot 1, with Titan 1000 SME Truck in
Background

Figure 3.3. Loading a Hole for Test Blast 1 with Titan 1000 SME
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3.2. TIMING ZONES

For each test blast the bench was divided into three zones. Separating the bench
into zones allowed for three different delay times to be evaluated on each shot. It also
provided visual comparison of the variable face movement and throw. The separations
were identified using buckets on top of the bench, as well as on the floor below. Shock
tube “flash bulbs” were used to indicate the column detonation of the opening hole in
each zone and could be seen clearly on the high-speed video. Figure 3.4. shows the set-up
of a shock tube “flash bulb.” In addition to the separation buckets, a bucket was hung
over the face in the center of each zone, approximately 30 feet down to investigate face

velocity.
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Figure 3.4. Shock Tube “Flash Bulb” (hole outside of photo in lower left)
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On the floor below the shot, in the center of each zone, neon painted rocks were placed at
150, 200, 250, and 300 feet from the face. These rocks allowed for observation of the
throw distance achieved in each zone. The layout of the zones, buckets, and marker
rocks are shown in Figure 3.5. An image of the neon rocks and face bucket is shown in

Figure 3.6. and an example of the zone marker bucket on the bench floor below is shown

in Figure 3.7.
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Figure 3.5. Top View of Bench Showing Zone Layout, Buckets, and Marker Rocks



Figure 3.6. Measurement Rocks and Face Bucket
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Figure 3.7. Zones 1 and 2 Demarcation Below Test Shot 1

The mucking of each shot took several weeks and as a result, mucking of Zone 3
had typically not begun when the second set of photographs were taken. This affected the
number of Zone 3 Photos available for WipFrag analysis on Shots 2 and 3. On Shot 1,
Zone 3 was not evaluated, and on Shot 4 only two sets of photos were taken because of

time constraints. Figure 3.8. shows the mucking process.

Figure 3.8. Shot Mucking (Catipillar 990 Loader)
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3.3. INSTRUMENTATION

There were several ways in which information for each text blast was collected.
The main source of shot data was collected via photographs taken for digital image
analysis in WipFrag. Photographs were taken systemically for each timing zone,
immediately after each shot and throughout the mucking process. The WipFrag analysis
and results are detailed extensively in Section 4. The analysis photos and graphs can be
found in Appendix A. Photographs were also used to document bench and floor
conditions and the set-up of zone markers, seismographs, and other instrumentation.
Additionally, still photographs were taken of each blast as it was shot. These photos are
included in Appendix D.

High-speed video was taken of each shot. The first two shots were recorded by
DynoConsult. For the second two shots, an MREL Blaster’s Ranger 1l camera was used.
The shock tube “flash bulbs,” as discussed in Section 3.2., showed the start of each zone
on the high-speed video recording and the buckets hung over the face showed the face

movement. The Ranger Il high-speed camera set-up is shown in Figure 3.9.

Figure 3.9. MREL Blaster’s Ranger 1T Camera Set-up with Dr. Johnson
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Seismographs were used to monitor each blast as well as to calculate the speed of
sound in the rock and the airblast speed. Several White Mini Seis 1l were deployed by
DynoConsult. Once available, two White Mini Seis I11 were used in addition to those
provided by Dyno Consult. The two Mini Seis Il were used to determine the speed of
sound in rock, used in the determination of the 10 ms delay time, and the airblast speed.
The speed of sound in the rock mass and airblast speed were found by tethering the two
seismographs together at a known distance. The seismograph closest to the blast was the
master which triggered the slave seismograph to begin recording at the same time. There
were no concerns regarding the overpressure at the mine, because there were no close
neighbors to the mine. The airblast recording is useful should short delay times be used in
situations with neighbors in close proximity. The specific placement of seismographs is
detailed in Section 3.4., the seismograph reports are included in Appendix C., and

seismograph results are detailed in Section 4.4.

3.4. TEST BLASTS

The test blasts were completed on April 16, June 4, July 30, and September 15,
2015. Each blast was set-up using the blast design, zones, and instrumentation as stated
earlier in Section 3. The various delay times that were tested and the zones in which they

were shot are summarized in Table 3.1.



Table 3.1. Delay Times and Zones

Test Shot Date |Zone Timing (ms)
4/16/2015 1 16
4/16/2015 2 4

1 |4/16/2015 3 16
6/4/2015 1 4

- 6/4/2015 2 16

2 6/4/2015 3 25
7/30/2015 1 1
7/30/2015 2 25

3 [7/30/2015 3 16
9/15/2015 1 10
9/15/2015 2 25

4 |9/15/2015 3 0
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3.4.1. Test Shot 1. The first test blast was conducted on April 16, 2015. The shot

occurred at 1:05 PM on the North 2" Bench. The shot had 85 holes that were angled 5°

toward the face, and were designed to be drilled to a depth of 72 feet. The designed drill

depth included a 3 foot sub-drill and the bench height was 69 feet. The planned burden
was 13 feet and the spacing was 17 feet. Based on the Boretrack and 3D Laser Profile
data, the actual front row burden varied from approximately 10 feet to greater than 37
feet. The most significant portion of the overburdening occurred at the toe. Figure 3.10
shows an example of a boretrack with face profile from the first test blast that has

significant overburdening at the toe. Table 3.2. provides the hole and face profile data.



Scale 1:633.8

Figure 3.10. Face Profile and Boretrack from Test 1
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Table 3.2. Hole and Face Profile Data

Hole Diameter 6.00 in
Hole Length 67.6 ft
Stemming 10.0 ft
Back Fill: 0.0ft
Subdrill 341t

Hole Angle 5°

Frofile Cross-Section 1144 5 ft2
Borehole Volume: 171650 3

Minimum Burden

12.08 ft @10.0 ft

Maximum Burden

3533 ft @67.0 ft

Ave Burden

18.1 ft

This shot utilized 16 ms inter-hole delays in Zones 1 and 3, and 4 ms delays in

Zone 2. 16 ms was the mine’s standard delay time and 4 ms was chosen as a fast delay
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time outside of the stress wave collision region. For this test, Zone 3 was not included in

the analysis because the 16 ms timing was evaluated in Zone 1, and it was to be evaluated

in Zone 3 on later shots. 16 ms was used in two zones on the first test blast so that the

mine supervision could get comfortable with modifying delay times. Figure 3.11. shows

the location of the shot and the seismographs provided by DynoConsult. The details of

the seismograph recordings can be found in Appendix C.
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Figure 3.11. Shot 1 and Seimograph Locations

3.4.2. Test Shot 2. The second test blast was conducted on June 4, 2015. The
shot occurred at 12:50 PM on the North 2" Bench. The shot had 86 holes that were
angled 5° toward the face, and were designed to be drilled to a depth of 73 feet. The
designed drill depth included a 3 foot sub-drill and the bench height was 70 feet. The
planned burden was 13 feet and the spacing was 17 feet. Based on the Boretrack and 3D
Laser Profile data, the actual front row burden for Zone 1 varied from 10.01 to 37.42 feet.
The front row burden for Zone 2 varied from 9.33 to 44.77 feet, and for Zone 3 it varied
from 9.23 to 51.86 feet. The most significant overburdening occurred at the toe, and it did
not significantly continue up the face. Typically, under-burdening occurred at the top of
the face. An example of the Boretrack and 3D Laser Profile recording from Zone 2 is
included in Appendix C.

Test blast 2 used 4 ms inter-hole delays in Zone 1, 16 ms inter-hole delays in
Zone 2, and 25 ms inter-hole delays in Zone 3. Switching the 4 ms delays from Zone 2 on

the first shot to Zone 1 on the second shot, and the 16 ms delays from Zone 1 on the first
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shot to Zone 2 on the second shot, was designed to allow for comparison of the same
delay times across zones. These comparisons are detailed in Section 4.

3.4.3. Test Shot 3. The third test blast was conducted at 1:40 PM on July 30,
2015. The shot had 85 holes that were angled 5° toward the face, and were designed to be
drilled to a depth of 72 feet. The designed drill depth included a 3 foot sub-drill and the
bench height was 69 feet. The planned burden was 13 feet and the spacing was 17 feet.
Summary Boretrack and 3D Laser Profile data was received for this shot, the full
Boretrack data was not available.

This shot was the first to use a delay time that had the possibility of causing stress
wave collision. This 1 ms inter-hole delay was used in Zone 1. Zone 2 used a 25 ms inter-
hole delay and Zone 3 used a 16 ms inter-hole delay. The use of 25 ms and 16 ms delays
in different Zones than they were used on previous shots, allowed for comparison of the
delay effects across the different zones.

As with all of the blasts, seismographs were set-up to record ground vibration and
airblast from the shot. On this blast, two Mini Seis Il seismographs were tethered
together to facilitate the calculation of the speed of sound in the rock and the airblast
speed. Figure 3.12., shows the location of the blast and approximate seismograph
locations. The results of the calculations are detailed in Section 4.4. and the full

seismograph reports can be found in Appendix C.
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Figure 3.12. Approximate Sesimograph Locations Relative to Shot 3

3.4.4. Test Shot 4. The fourth test blast was completed at 2:40 PM on September
15, 2015. The shot had 85 holes that were angled 5° toward the face, and were designed
to be drilled to a depth of 70 feet. The designed drill depth included a 3 foot sub-drill and
the bench height was 67 feet. The planned burden was 13 feet and the spacing was 17
feet. This shot used hole-to-hole delays of 10 ms in Zone 1, 25 ms in Zone 2, and 0 ms in
Zone 3. The 0 ms delay was the second delay time that had the potential for stress wave
interaction. The 10 ms delay was selected on the recommendation of DynoConsult. The

recommendation was based on the following equation:
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15.6 =+ sonic velocity X burden = delay time Q)
Where sonic velocity is kilometers per second (km/s), burden is in meters (m),
and delay time is in milliseconds (ms).
Using the sonic velocity of 5.8396 km/s, found during Test Blast 3, and the burden of

3.9642 m, the recommended delay time was found to be 10.5852 ms.

3.5. EXPERIMENT SUMMARY

Four full scale test blasts were completed at a granite quarry. The blast design for
all of the shots consisted of 85 or 86, 5.75 holes, with of burden and spacing of 13 feet
and 17 feet, respectively. A 142 ms inter-row delay was used. All of the blast parameters
were held constant, except for the hole-to-hole delay times. Each bench was divided into
three zones so that three delay times could be tested during each shot. 0 ms, 1 ms, 4 ms,
10 ms, 16 ms, and 25 ms delay times were tested across the zones. Various marking
devices were used to measure throw and show face movement of each zone. Shots were
monitored using seismographs and recorded with high-speed video cameras, and

analyzed with photographic fragmentation analysis in WipFrag.
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4. ANALYSIS, RESULTS, AND DISCUSSION
The method by which the fragmentation for each zone and delay time was
evaluated was through digital image analysis using WipFrag commercial software. A
total of 28 photographs were analyzed in WipFrag. Each of the photographs was
extensively manually edited to ensure that the rock outlines, as they were shown and
evaluated in the program, truly represented the actual rocks in the field. In addition to the
WipFrag analysis of fragmentation, observations of several blast performance parameters

were made.

4.1. WIPFRAG FRAGMENTATION ANALYSIS

The digital image analysis program WipFrag was used to determine the
fragmentation distribution of each of the blast zones using photographs taken of each
zone immediately after the shot and throughout the mucking process. The rock outlines
generated by WipFrag were edited to ensure that they were true to the actual fragments.
The zone separations were identified using the zone marker buckets, previously shown in
Figure 3.5. The first set of photos for each shot was taken while on site, immediately after
the blast, and subsequent photos were received throughout the mucking process. The
second set of photos typically did not include Zone 3, because mucking had not yet begun
on Zone 3 at the time the photographs were taken. Therefore the muck pile had not
changed since immediately after the shot. Most blasts had three sets of photographs
taken. The first was taken right after the shot, the second set was taken one to two weeks
after the shot, and the third set was taken one to two weeks after the second. Typically,

one photograph per zone per photograph capture date was analyzed. Uniform times
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between photograph sets would have been ideal, but the ability to get photographs was
constrained by the availability of DynoConsult.

Using WipFrag, a net of rock outlines was created for each of the photographs.
The rock outline and the scaling object in the photo allowed the program to virtually
sieve the exposed surface of the rock fragments and generate a graph of the fragmentation
distribution. An example of a portion of a net is shown in Figure 4.1. Each of the rock
fragments is outlined in blue, the grey box shows the scale object, and the white sections
are defined as fines. Figure 4.2. is an example of the fragmentation graph generated for
each of the photos analyzed throughout this study. All of the photos used and their
corresponding graphs are included in Appendix A. A summary of the data collected

through WipFrag analysis is shown in Table 4.1.

Figure 4.1. WipFrag Net Example
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Figure 4.2. WipFrag Graph from Test Shot 2 Zone 2
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Table 4.1. WipFrag Data
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Timing (ms) |Shot Date [Photo Date [Photo Zone D10 (in.) [Mean (in.) |D50 (in.) |D90 (in.) |Max (in.)
16| 4/16/2015| 4/16/2015|DSC04758w 1 4.268 3.297 10.519 22.048 26.543
4|4/16/2015( 4/16/2015|DSC04789 2 5.982 4.771 20.206 46.069 64.835
16(4/16/2015| 4/24/2015|DSCF1839w 1 0.162 4.535 6.947 18.404 34.267
4|4/16/2015| 4/24/2015|DSCF1848w 2 3.955 5.802 12.253 28.858 38.881
16| 4/16/2015 5/1/2015|zonelb 5-1-15w 1 0.126 2.126 4,588 29.895 56.543
4| 4/16/2015 5/1/2015(zone2d 5-1-15 2 2.393 2.132 6.408 15.198 19.917
4| 6/4/2015 6/4/2015|DSC02034 1 1.411 0.878 7.187 26.302 28.202
16| 6/4/2015| 6/4/2015|DSC02046 2 1.617 0.986 9.985| 37.832| 36.848
25| 6/4/2015 6/4/2015|DSC02062 3 0.932 0.591 4.836 14.714 16.503
4| 6/4/2015| 6/10/2015|#1 Middle 1 4.201 4.19 12.587 31.487 52.938
16| 6/4/2015| 6/10/2015|#2 Middle 2 5.761 4.693 19.022 43.966 60.424
4| 6/4/2015| 6/25/2015|Znla 6-25-15 1 0.245 3.296 4.851 17.642 36.036
16| 6/4/2015| 6/25/2015|Zn2a 6-25-15 2 0.25 3.05 5.565 15.378 31.819
25| 6/4/2015| 6/25/2015|Zn3a 6-25-16 3 1.931 2.775 8.462 26.362 33.775
1| 7/30/2015| 7/30/2015|DSC02118 1 2.772 2.276 9.958 31.626 39.982
1| 7/30/2015 8/5/2015(Zone 1 A_1598x1063 1 4.678 4.835 14.102 49.217 63.916
1|7/30/2015| 8/19/2015|IMG_0059_1129x1505 1 2.707 4.204 10.38 29.713 42.121
25| 7/30/2015| 7/30/2015[DSC02128w_1835x926 2 2.912 3.079 7.816 24.782 30.585
25| 7/30/2015 8/5/2015|Zone 2 A_1598x1063 2 4.708 4,938 13.504 31.124 39.008
25| 7/30/2015| 8/19/2015(IMG_0061_1129x1505 2 0.312 3.559 5.056| 22.667| 37.669
16| 7/30/2015| 7/30/2015|DSC02139_1599x1062 3 3.122 2.958 10.967 25.227 24.292
16| 7/30/2015| 8/19/2015|IMG_0065_1129x1505 3 4.86 5.707 13.897 29.24 33.657
10| 9/15/2015| 9/15/2015[DSC02277_1599x1062 1 1.953 1.824 7.645 21.779 25.365
10| 9/15/2015| 9/29/2015[{IMG_0670_1505x1129 1 2.826 4.082 10.867 27.248 32.766
25| 9/15/2015| 9/15/2015|DSC02283_1599x1062 2 1.379 1.315 4.532 13.097 13.786
25| 9/15/2015| 9/29/2015(IMG_0673_1505x1129 2 2.457 2.962 8.472 26.372 44,291
0[9/15/2015| 9/15/2015|DSC02294_1599x1062 3 2.607 3.395 8.4 20.621 20.406
0| 9/15/2015| 9/29/2015|IMG_0677_1505x1129 3 4.208 3.94( 12.153| 30.843| 37.088

4.2. WIPFRAG RESULTS

In order to evaluate the effects of each delay time, and how the various zones

responded to each delay time, a number of tables and graphs were generated. These

graphs allowed for easier visualization of the data. Based on the mean averages for each

delay time, Table 4.2. lists the delay times in order of the smallest maximum

fragmentation size to the largest, and Figure 4.3. visualizes that same data. These show

that the smallest maximum fragment size was achieved with the 0 ms delay, but was very

closely followed by the 10 ms delay. Figure 4.4. shows the size distributions in the order

of the shortest to longest delay times.
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Table 4.2. Delay Time by Max. Fragment Size

# of Photos |Timing (ms) D10 (in.) |Mean (in.) |D50 (in.) |D90 (in.) |Max (in.)
2 0 3.41 3.67 10.28 25.73 28.75
2 10 2.39 2.95 9.26 24.51 29.07
7 25 2.09 2.75 7.53 22.73 30.80
8 16 2.52 3.42 10.19 27.75 38.05
6 3.03 3.51 10.58 27.59 40.13
3 1 3.39 3.77 11.48 36.85 48.67

4.3. FRAGMENTATION ANALYSIS DISCUSSION

There are advantages and disadvantages of using the maximum fragment size
versus the D90 size as a determination of the largest particle sizes. On one hand, the
maximum size could come from a rock whose size is an outlier, whereas, on the other
hand, the D90 size is calculated based on the sieve sizes rather than a measured value.
Results show that all of the values for the 10 ms delay time, other than the maximum
size, are smaller than those for the 0 ms delay time and that the maximum size was less
than a third of an inch larger. Thus, it can be concluded that the 10 ms delay time
achieved better overall fragmentation than the 0 ms delay time. The 25 ms delay time had
even smaller D10, Mean, D50, and D90 sizes, but had a larger maximum fragment size
than either the 0 ms or 10 ms sizes. Given the greater number of photographs analyzed,
its smaller size in values other than the maximum, and its use in multiple zones, the 25
ms delay time, was the best overall at increasing fragmentation. Even if the 25 ms delay
time is evaluated only on its performance in Zone 2, it performed better in all values
other than the maximum. The results disagree with Floyd’s (2013) recommendation of an
inter-hole delay of less than 0.3 milliseconds per foot (ms/ft) of spacing. The best

performing time, 25 ms, had 1.47 ms/ft of spacing, and the second best, 10 ms, had 0.59
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ms/ft of spacing. The worst performing times were closer to his recommended delay
time with 0.8 ms/ft of spacing for the 1 ms delay and 0.31 ms/ft of spacing for the 4 ms
delay, respectively. The overall poor performance of short delay times agrees with the
conclusion made by Johnson (2014), that short delay times do not improve fragmentation.
The tests performed by Johnson (2014), like much of the previous fragmentation
research, were scale tests that require full size testing to confirm their results.

Delay times used in multiple zones had larger standard deviations than those only
used in one zone. This could be due to the rock differences that are present in the varying
zones, the use of a different emulsion in Zone 3, or it may have been caused by the
greater number of images available for delay times that were used in multiple zones.

Table 4.3. lists the standard deviation of the fragmentation distribution averages.

Table 4.3. Fragment Size Standard Deviation

Timing (ms) |D10 (in.) |Mean (in.) |D50 (in.) |D90 (in.) |Max (in.)
0 0.80 0.27 1.88 5.11 8.34

1 0.91 1.09 1.86 8.78 10.81

4 1.90 1.64 5.18 10.10 14.96

10 0.44 1.13 1.61 2.73 3.70

16 2.14 1.42 4.41 9.02 12.44

25 1.35 1.33 2.93 6.07 10.69

In order to evaluate the effects that the different zones had on the fragmentation
size. The average fragmentation sizes for each zone were found. Table 4.4. lists the

averages for each zone. Figure 4.5. visualizes the Table 4.4. data.
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Figure 4.5. Fragmentation by Zone

An overall observation shows that Zone 3 had smaller fragmentation than Zones 1 and 2.
Zone 3 used delay times of 0 ms, 16 ms, and 25 ms. The maximum fragment size from
the 16 ms delay in Zone 3 was smaller than the one that resulted from the 16 ms delay
when it was used in Zones 1 and 2. This did not hold true for both Zones 1 and 2 in the
corresponding D10, mean, D50, or D90 size. Also, the D10, Mean, D50, D90, and
Maximum sizes for the 25 ms delay time were on average smaller for Zone 3 than they
were when the 25 ms delay was used in Zone 2. This shows that the rock type in Zone 3
may have resulted in improved fragmentation in that zone independent of the delay time
effects. Comparing delay time effects on fragmentation just on the times used in Zone 3,

results in 25 ms being the smallest for the D10, mean, D50, D90 and Max sizes.



Table 4.4. Average Fragmentation for Each Zone

# of Photos (Zone (D10 (in.) |Mean (in.) |D50 (in.) |D90 (in.) |Max (in.)
11 1 2.30 3.23 9.06 27.76 39.88
11 2 2.88 3.39 10.26 27.76 38.01
6 3 2.94 3.23 9.79 24.50 27.62

50

Since the number of photos analyzed was limited, and because 0 ms was only
used in Zone 3, there is some uncertainty in conclusions made regarding the 0 ms delay
time. The decision to use Zone 3 for the 0 ms delay time was based on concerns from
DynoConsult that the other zones were under-burdened. Given the lack of data for 0 ms
in other zones, the otherwise superior results of the 10 ms and 25 ms delays, and the
limited number of photographs analyzed, it cannot be concluded that the 0 ms time would
typically have the best fragmentation results based on the maximum size alone.

In order to show the variation in fragmentation for individual delay times, Table
4.5. was generated. Table 4.6. and Figure 4.6. show the average sizes by zone for 16ms
delays. Table 4.7. and Figure 4.7. show the average sizes by zone for 25 ms delays. Table
4.8. and Figure 4.8. show the average sizes by zone for 4 ms delays. These tables and

figures illustrate that the zones result in some variation in fragmentation size.
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Table 4.5. Values Sorted by Timing
Shot Date |Zone Timing (ms) |# of Images [D10 (in.) |Mean (in.) D50 (in.) [D90 (in.) |Max (in.)
9/15/2015 3 0 2 3.41 3.67 10.28 25.73 28.75
7/30/2015 1 1 3 3.39 3.77 11.48 36.85 48.67
4/16/2015 2 4 3 4.11 4.24 12.96 30.04 41.21
6/4/2015 1 4 3 1.95 2.79 8.21 25.14 39.06
9/15/2015 1 10 2 2.39 2.95 9.26 24.51 29.07
4/16/2015 1 16 3 1.52 3.32 7.35 23.45 39.12
6/4/2015 2 16 3 2.54 2.91 11.52 32.39 43.03
7/30/2015 3 16 2 3.99 4.33 12.43 27.23 28.97
6/4/2015 3 25 2 1.43 1.68 6.65 20.54 25.14
7/30/2015 2 25 3 2.64 3.86 8.79 26.19 35.75
9/15/2015 2 25 2 1.92 2.14 6.50 19.73 29.04
Table 4.6. Values by Zone for 16 ms Delay
Zone D10 (in.) |Mean (in.) |D50 (in.) D90 (in.) |Max (in.)
1 1.52 3.32 7.35 23.45 39.12
2 2.54 2.91 11.52 32.39 43.03
3 3.99 4.33 12.43 27.23 28.97




Table 4.7. Values by Zone for 25 ms Delay

Zone D10 (in.) |Mean (in.) (D50 (in.) D90 (in.) |Max (in.)
2 2.281| 2.99858333 7.647| 22.96275( 32.39625
3 1.43 1.68 6.65 20.54 25.14
Table 4.8. Values by Zone for 4 ms Delay
Zone D10 (in.) |Mean (in.) (D50 (in.) D90 (in.) |Max (in.)
1 1.95 2.79 8.21 25.14 39.06
2 4.11 4.24 12.96 30.04 41.21

4.4. OTHER RESULTS

Seismographs were set up for each of the test blasts. Table 4.9 summarizes the
locations and results of the White Mini Seis I11 Seismographs. A summary of the results
from the seismographs provided by DynoConsult and the full seismograph reports for all
recordings can be found in Appendix C. During the third test blast, the Mini Seis 111
seismographs were tethered together and used to find the speed of sound in the rock, as
well as the airblast speed. An additional recording of the speed of sound in rock and the
airblast speed was attempted during the fourth test blast, but some unknown event pre-
triggered the master seismograph on the same event that it recorded the shot data. This
eliminated the chance to find a speed of sound in rock or airblast time difference, because
typically the speed would be determined using the difference between when the master
seismograph tripped in the pre-trigger time and when the slave seismograph started
recording the blast vibration. Table 4.10. Summarizes the speed of sound in rock mass

calculations found using the July 30, 2015 seismograph recordings. The speed of sound
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in the rock mass was similar to the standard expected speed in granite of 5.950 km/s (The

Physics Hypertextbook). Table 4.11. summarizes the airblast calculations.

Table 4.9. Mini Seis Ill Locations and Results

Shot Date Seismo ID Shot Northing Shot Easting Distance to Shot (ft) Location Relative to Shot
6/4/2015 7173 N 32°38'02.3” W84°30'01.5” 200 behind
6/4/2015 7174 N 32°38'02.3” W84°30'01.5” 400 behind

7/30/2015 7173 N 32°38'02.29980” W84°30'01.09980” 389 below in front

7/30/2015 7174 N 32°38'02.29980” W84°30'01.09980” 594 below in front

9/15/2015 7173 N 32°37'57.49980” W84°30'01.80000” 500 below in front

9/15/2015 7174 N 32°37'57.49980” W84°30'01.80000” 871 below in front

Shot Date Seismo ID Acoustic (dBL) RPPV V PPV TPPV Max PPV R Frequency V Frequency T Frequency
6/4/2015 7173 140.2 6.03 4.11 2.8 6.03 17.1 26.9 15.5
6/4/2015 7174 136.1 3.53 1.13 1.86 3.53 23.3 51.2 1.86
7/30/2015 7173 148.2 1.36 1.07 0.657 1.36 21.3 14.6 42.7
7/30/2015 7174 148.2 0.872 0.953 0.501 0.953 22.3 36.6 18.3

9/15/2015 7173 148.2 0.769 0.747 1.29 1.29 40.2 20.7 20.3

9/15/2015 7174 148.1 0.435 0.391 0.706 0.706 23.8 233 19.1

Table 4.10. Speed of Sound in Rock Mass

Date Measured Distance (ft) |Time (s) Speed (ft/s) Speed (ft/ms) |Speed (km/s)
7/30/2015 205 0.0107 19158.88 19.16 5.84

Table 4.11. Airblast Speed

Date Measured |Distance (ft) |[Time(s) [Speed (ft/s) |Speed (ft/ms)
7/30/2015 205 0.1777 1153.63 1.15

All of the test blasts had stemming ejection occur across various parts of the
zones. There were a number of possible causes of stemming ejection. On the first test
blast, there was a significant amount of stemming ejection that began just before the start

of Zone 2 and continued into Zone 3. Figure 4.9. shows the stemming ejection as it
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occurred during the shot. The likely cause of this was the increased broken ground, as
recorded by the driller, on a number of holes through this section. Holes 35 through 42 all
had broken ground between 9 and 11 feet. It is unknown if stemming was extended
through the broken ground, but assuming it was not, this would be a major cause of
stemming ejection because the powder column came up into the broken areas, reducing

the top confinement.

Figure 4.9. Shot 1 Stemming Ejection

For all shots in holes where the emulsion did not rise to the planned height,
bagged emulsion was added to the top of the powder column. Powder loss because of
fractured ground and the extra emulsion added to the top of holes may have contributed
to the stemming ejection problem. Overbreak from the holes on the bench above likely
contributed to stemming ejection. holes Since an individual hole loading breakdown was
not completed for any of the blasts, it is unknown which holes had emulsion bags added
to them. Stemming ejection for each of the test blasts can be seen in the shot photographs

included in Appendix D.
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4.4.1. Timing Effects on Throw. The short delay times, especially the 0 ms
delay, greatly increased the throw distance in the zone that they were used. This agrees
with Johnson’s (2014) conclusion that 0 ms delays increase throw because of the
increased rock density that results from wave collision between holes. This also agrees
with Worsey’s (2015 b) assertion that short hole-to-hole timing is necessary so that holes
interact to achieve greater throw. Figures 4.10. and 4.11. show the increased throw in

Zone 3, resulting from the 0 ms delay, during the fourth test blast.

Figure 4.10. Increased Throw from 0 ms Delay
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Figure 4.11. Increased Throw from 0 ms Delay (far 1/3 of photograph)

4.4.2. High-speed Video and Face Movement. High-speed video was taken of
each shot. The first two shots were recorded by DynoConsult. For the second two shots,
an MREL Blaster’s Ranger II camera was used. Figure 4.12. shows the start of Zone 1
during the first test blast, Figure 4.13. shows the start of Zone 2, and Figure 4.14. shows
the face after all of the zones have started moving. During this shot, a significant amount
of stemming ejection can be seen beginning just before the start of Zone 2 and continuing
into Zone 3. Figure 4.15 show the face of the second test blast after all zones have started

moving.
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Figure 4.13. Zone 2 “Flash Bulb” Start

Figure 4.14. Test Blast 1 Movement
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Figure 4.15. Test Blast 2 Movement

For the third test blast, the MREL Blaster’s Ranger II camera was used for the
first time during these tests. Due to the size of the camera lens available and the
necessary safe distance for the set-up of the camera, only part of the face was able to be
seen in the recording. This provided a much closer look at the face. Figure 4.16. shows

Zone 1 and part of Zone 2 that was captured.



Figure 4.16. Test Blast 3 Movement

For the final test blast the recording was taken from across the pit. The video
captured the end of Zone 2 and all of Zone 3. The instantaneous detonation of the entire
first row of Zone 3 can clearly be seen as the entire face moves out as one mass. Figure
4.17 shows Zone 3 moving outward. Observations of the face movement were made, but

because the view was either too far out or too close, velocities were not calculated.
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Figure 4.17. Test Blast 4 Movement

4.5. DISCUSSION

This thesis used photographic fragmentation analysis of muck piles created using
various delay times on the same bench blast to evaluate the effects of inter-hole timing on
rock fragmentation. This analysis provided a representative understanding of timing
effects on fragmentation in the field and differentiated itself from many previous blast
models which had either negated the effects of timing or geology. While blasting in a
full-scale operating mine site introduced a number of uncontrollable variables to the tests,
testing in the full scale is necessary to determine if timing options are viable for use in
real world mining applications. Scale tests and computer models provide consistency, but
that consistency does not necessarily translate to applications in naturally variable
material, like a quarry bench.

The analysis of the 0 ms delay time was not as complete as anticipated because of
unavoidable time constraints. In the original analysis, it had the smallest maximum size,

but when photographs were received later in the mucking process, after all of the analysis
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had been completed, they showed a significant amount of oversize. Photographs of the
muck piles were received for test blast 4 after all WipFrag analysis and average
calculations had been completed. Full evaluation of these results was outside of time
constraints and graduation deadlines. These photographs provided some additional
insight into the fragmentation results in Zone 3 of that shot, which used the 0 ms delay
timing. Feedback from the mine operators was that Zone 3 was digging tight and had a
significant amount of oversize. The observations made by DynoConsult were that
fragmentation was good between holes, but the burden had been pushed out in one mass
resulting in the apparent oversize. Figure 4.18 shows the DynoConsult’s view in the field
of Zone 3 during the mucking process. This apparent good fragmentation between holes
fits with the conclusions of Rossmanith (2003) and Yamamoto (1999), that fragmentation
will be improved between holes where wave interaction occurs. This is not necessarily
practical in the field, because oversize remains in the burden areas when they are pushed
out in a single mass. While a full WipFrag analysis was not able to be performed on the
photographs received on October 20, 2015, measurement of some of the larger fragments
in these photographs found them to be in excess of 60 inches as shown in Figure 4.19.
Previously, the maximum size found for the 0 ms delay was 28.75 inches.

Additionally, from a practical perspective the 0 ms delay time presents additional
concerns. For example, for many applications, shooting that many pounds of explosives
per delay may not be legally allowed. More relevant to fragmentation, is the issue that
shooting the holes on a 0 ms delay does not allow for the pre-stressing of the rock mass
by preceding blast holes as a shot progresses, which was found to have an influence on

fragmentation by Johansson and Ouchterlony (2013).



Figure 4.19. October 20, 2015 Large Fragment Example
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4.6. ANALYSIS, RESULTS, AND DISCUSSION SUMMARY

The fragmentation in each zone was evaluated through digital image analysis of
28 photographs using WipFrag. Photographs were taken of each zone immediately after
the shot and throughout the mucking process. The outlines generated by WipFrag were
edited to ensure that they were true to the actual rocks. 0 ms, 1 ms, 4 ms, 10 ms, 16 ms,
and 25 ms delay times were tested. The analysis of the fragmentation results of all of the
delay times showed that the 25 ms delay time was the best overall at improving
fragmentation. Short delay times performed the worst. Fragmentation varied by zone, and
Zone 3 had the smallest fragmentation sizes. Stemming ejection occurred during all shots.
The 0 ms delay resulted in the greatest throw. Seismographs and high-speed video
cameras were used to record each of the test blasts. Testing in full scale was necessary to
determine the practicality of the delay times for use in mining operations. Late
photographs from Zone 3 of the final test blast showed the maximum particle size to be

much larger than those which were included in the analysis.



65

5. CONCLUSION

The 25 ms and 10 ms delay times had the best fragmentation. Through
photographic fragmentation analysis in WipFrag, it was found that the 25 ms delay had
the smallest D10, Mean, D50, and D90 sizes. Given the greater number of photographs
analyzed, its smaller size in values other than the maximum, and its use in multiple zones,
the 25 ms delay time, was the best overall at improving fragmentation.

Short hole-to-hole delay times do not improve rock fragmentation in full scale
bench blasting. The best performing delay times were outside of the short delay range
and the worst performing delays were the shortest. The 1 ms delay time had the worst
fragmentation results. A full analysis of the photographs for the 0 ms delay time was not
able to be completed because of time constraints, but it performed poorly as well.

The 0 ms delay had the most throw. This agrees with other studies that have
shown that instantaneous or short delays increase throw.

Timing affects fragmentation, so the Kuz-Ram model cannot be complete because

it does not incorporate timing into its equations.
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6. FURTHER STUDIES

This research could be continued and expanded by evaluating of all of the photos
taken in late October 2015, and by testing the 0 ms, 1ms, and 10 ms times in additional
zones. Full evaluation of the late results was outside of time constraints and graduation
deadlines. This would strengthen the conclusions about the effectiveness of those times.
Full analysis of these delay times will be completed and published.

This research could be expanded to any number of different quarries, with
different rock types. Doing so would further show how rock type differences influence
the effectiveness of timing modification. Additionally, testing at a mine with a faster
blasting cycle time would allow for photos of the muck to be taken over the course of a
few days rather than a few weeks. This could allow for more photos to be taken
throughout the mucking process, and it would provide more consistency in the
photographs taken across the zones. High-speed video where the face buckets can be seen
more clearly would allow for face velocity measurements to be made.

The increased throw that was caused by the 0 ms delay suggests that a study of
the timing effects on fragmentation should be completed at a site that does cast blasting.

Finally, given that the Kuz-Ram model is used to estimate fragmentation, but does
not incorporate timing as a variable, this research could be extended to create a

modification the Kuz-Ram model that incorporates timing.



APPENDIX A.
WIPFRAG PHOTOS AND CHARTS



Figure A. 1: Shot 1, Zone 1, 16ms, DSC04758, Taken April 16, 2015
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Figure A. 3: Shot 1, Zone 1, 16ms, DSCF1839w, Taken April 24, 2015
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Figure A. 5: Shot 1, Zone 1, 16ms, zonelb 5-1-15w, Taken May 1, 2015
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Figure A. 7: Shot 1, Zone 2, 4 ms, DSC04789, Taken April 16, 2015
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Figure A. 9: Shot 1, Zone 2, 4 ms, DSCF1848w, Taken April 24, 2015
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Figure A. 11: Shot 1, Zone 2, 4 ms, zone2d 5-1-15, Taken May 1, 2015
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Figure A. 13: Shot 2, Zone 1, 4 ms, DSC02034, Taken June 4, 2015
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Figure A. 15: Shot 2, Zone 1, 4 ms, #1 Middle, Taken June 10, 2015
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Figure A. 17: Shot 2, Zone 1, 4 ms, Znla 6-25-15, Taken June 25, 2015
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Figure A. 19: Shot 2, Zone 2, 16 ms, DSC02046, Taken June 4, 2015
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Figure A. 21: Shot 2, Zone 2, 16 ms, #2 Middle, Taken June 10, 2015
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Figure A. 23: Shot 2, Zone 2, 16 ms, Zn2a 6-25-15, Taken June 25, 2015
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Figure A. 25: Shot 2, Zone 3, 25 ms, DSC02062, Taken June 4, 2015
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Figure A. 27: Shot 2, Zone 3, 25 ms, Zn3a 6-25-15, Taken June 25, 2015
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Figure A. 29: Shot 3, Zone 1, 1 ms, DSC02118, Taken July 30, 2015
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Figure A. 31: Shot 3, Zone 1, 1 ms, Zone 1 A_1598x1063, Taken August 5, 2015
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Figure A. 32: Chart for Zone 1 A_1598x1063



91

0059 1129x1505, Taken August 19, 2015

Figure A. 33: Shot 3, Zone 1, 1 ms, IMG
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Figure A. 34: Chart for IMG_0059 1129x1505

Figure A. 35: Shot 3, Zone 2, 25 ms, DSC02128w_1835x926, Taken July 30, 2015
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Figure A. 36: Chart for DSC02128w_1835x926
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Figure A. 37: Shot 3, Zone 2, 25 ms, Zone 2 A_1598x1063, Taken August 5, 2015
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Figure A. 38: Chart for Zone 2 A_1598x1063
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Figure A. 39: Shot 3, Zone 2, 25 ms, IMG_0061_1129x1505, Taken August 19, 2015
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Figure A. 40: Chart for IMG_0061_1129x1505

Figure A. 41: Shot 3, Zone 3, 16 ms, DSC02139_1599x1062, Taken July 30, 2015
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Figure A. 42: Chart for DSC02139_1599x1062
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Figure A. 43: Shot 3, Zone 3, 16 ms, IMG_0065_1129x1505, Taken August 19, 2015
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Figure A. 44: Chart for IMG_0065_1129x1505

Figure A. 45: Shot 4, Zone 1, 10 ms, DSC02277_1599x1062, Taken September 15, 2015
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WinFrag 2.7.28 Margaret Hettinger - Missouri S&T - 808344172913440246
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Figure A. 46: Chart for DSC02277_1599x1062
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Figure A. 47: Shot 4, Zone 1, 10 ms, IMG_0670_1505x1129, Taken September 29, 2015



WioFrag 2.7.28 Margaret Hetlinger - Missouri S&T - 808344172913440248
IMG_0670_1505x1128 Qctober 08, 2015, 11:38:12 AM Central Daylight Time

100  ———

1220 Particles:
min=10.216in

/f’

—

901 max=32.766n
mean=4.082in
stdey=3.982 in

80 M made = 8.000 in
D10=2.8261in
D25=57781in

D80 =27.2481in

70H D50=10.867 in
D76=17.682in /

60N sph= 0647
Non-Calibrated:
Kmax=32.766 in

50 %50=10.867 in
Xc=13.897 in
h=2.480

% Passing

40H n=1193

30

20

10

0.1 1. 10.
Size (in)

Diameter of an Equivalent Sphere

Figure A. 48: Chart for IMG_0670_1505x1129
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Figure A. 49: Shot 4, Zone 2, 25 ms, DSC02283_1599x1062, Taken September 15, 2015
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WipFrag 2.7.28 Margaret Hettinger - Missouri S&T - 808344172913440246
DSC02283_1599x1062 October 08, 2015, 02:36:43 PM Central Daylight Time
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Figure A. 50: Chart for DSC02283_1599x1062
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Figure A. 51: Shot 4, Zone 2, 25 ms, IMG_0673_1505x1129, Taken September 29, 2015
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WipFrag 2.7.28 Margaret Hettinger - Missouri S&T - 808344172913440246
IMG_0673_1505x1129 October 09, 2015, 04:53.:44 PM Central Daylight Time
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Figure A. 52: Chart for IMG_0673_1505x1129
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Figure A. 53: Shot 4, Zone 3, 0 ms, DSC02294 1599x1062, Taken September 15, 2015
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WipFrag 2.7.28 Margaret Hettinger - Missouri S&T - 808344172913440246
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Figure A. 54: Chart for DSC02294_1599x1062
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Figure A. 55: Shot 4, Zone 3, 0 ms, IMG_0677_1505x1129, Taken September 29, 2015
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WinFrag 2.7.28 Margaret Hettinger - Missouri S&T - 808344172913440246
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Figure A. 56: Chart for IMG_0677_1505x1129
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TITAN® SME™
(SITE MIXED EMULSION)

Gassed Bulk Emulsion

Product Description

TITAN SME (SITE MXED EMULSION) 5 3 gassed, Dul aimusion made on T
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+ TITAN SME can be used in boreholes up to 36 m (120 ) deep.
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should be pasiionad near the boliom of the hole and Te second near Pe colar
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Dymo Nobel reprasentaitve
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Figure B. 1: Titan 1000 SME Product Information
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Figure B. 2: Titan 1000 SD Product Information
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Dyno Nobel North America BLAST REPORT
PO NUMBER: JCM 20529 DY NO
SERVIC LOCATION: Whiesbug  ORDER NO.: 905547
B2 Dyno Nobel
BLAST NUMBER. 10-2015 ProductioBLAST TIME: 1,05 pm ___ BLAST DATE: 04/16:2015
CUSTOMER: ANDERSON COLUMBIA COM MINE: JUNCTION CITY MINING __ ADDRESS: Talbotion, GA
ROCK TYPE: Granite Tons/Yd3: 227 EXPECTED VIBRATION: 0060
LOCATION OF BLAST
LOCATION OF BLAST IN MINE: North BENCH. 2nd Bench
BLAST GPS POINTS:  N-032 37 56 59980 & W -084 30 07.30020
WEATHER
WEATHER. Overcast CEILING: <2,000 TEMPERATURE: 58 WIND DIRECTION & SPEED, Noriheast 10
NEAREST NON-OWNED STRUCTURE
NAME: GPS Points: N -032 38 38 63800 & W -084 30 51.30000
DISTANCE.  5688F! DIRECTION.  221°
SEISMOGRAPH DATA
LOCATION DISTANCE _GPS POINTS CALIBRATION DATE
1| Roper Residence 5,688 Fi |N-032 38 38 6660 & W -084 30 51 30000 06/16/2009
L ® 1T ® 1V ® AR (d:) SEISMOGRAPH SERIAL OPERATOR
T |0000 © (0000 O |0000 O ph ABGS 7
ym' DATA
| NUMBER OF 25 EXPLOSIVES SIZE, TYPE & WEIGHT
| HOLE DIAMETER (IN) 5.75 SIZE TYPE WEIGHT
HOLE DEFTH (FT) 72 200LB F00G 170_|
FAGE HEIGHT (FT) 69 07518 SPARTAN 350SR %] &30P |
[SUB DRILLING (FT) 3 BULK TITAN 1000 5D 10,800
[AVG. STEM FACE HOLES (FT) " BULK TITAN 1000 SME 405 000
STEM OTHER HOLES (FT) B
BURDEN FRONT ROW (FT) 13
OTHER 13
SPACING FRONT ROW (FT) 17 &7
SPACING OTHER ROWS (FT) 7 TOTAL WEIGHT |57 538.0D
DETONATORS USED IN BAST:  DigiSnol MATS USIED No STEM TYPE; #6'S
TYPE TYPE
BLASIGEL 19704 X 20 Dyno Nobet Giobal | OGFE1SD1 0o DIGISHOY 30 FY Oyro Nobe! Glotal | DOJA1ESY 1
DIGISHOT BOF T Dyno Nobwes Giobe! | 85JA1551 3 DIGISHOT 0F T Dyna Notw! Glotal | DOFF 1681 40
DIGIGHOT B0FT Dyno Node! Global | 12081881 9 SPARTAN 250SR Dyna Notel Glota! AN L L)
DIGISHOT 0 FT Dyno Nobel Globa! | 220€1481 5 006 Oyno Notel Glbel | 2258391 [ L]
CUYDS INSHOT, _ 48008  SCALED DISTANCE FACTOR. __ 142 % OF ANFO. 0
TONS IN SHOT. 108,189 HOLES/DELAY : _ 20 FUEL OIL % (BULK)Y ___0 |
MAX LBSIDELAY: 1600 AVERAGE LBSMOLE 785
POWDER FACTOR (TONSILB). 162 POWDER FACTOR POUNDS/YD3: 141
BLASTERS NAME: BLASTERS NUMBER & STATE__ GA 18120 Goorgs
BLASTERS mru% SAFETY INSPECTION PERFORMED: Yes
MINE MGT. SIGNATUR NUMBER OF PERSONNEL ON SITE: 5
REMARKS :
T ) TRUCK NUMBERS
7o0AM | 12.00PM 0500 | WY 1190 1T1265

Figure B. 3: April 16, 2015, Shot 1 Blast Report
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Dyno Nobel North America BLAST REPORT
PO NUMBER: JCM 20929
SERVICE SITE LOCATION:

DYNO

Dyno Nobel

Whitesburg ORDER NO.: 815364

BLAST NUMBER: 14-2015 ProductioBLAST TIME: 12:50 pm BLAST DATE: 06/04/2015
CUSTOMER: ANDERSON COLUMBIA COM MINE: JUNCTION CITY MINING ADDRESS: Taibotton, GA

ROCK TYPE: Granite Tons/Yd3; 227 EXPECTED VIBRATION: 0.060
LOCATION OF BLAST
LOCATION OF BLAST IN MINE: North BENCH: 2nd Bench
BLAST GPS POINTS: N-032 37 5889980 & W-084 30 01.98980
WEATHER
WEATHER: Partly Cloudy CEILING: <2,000 TEMPERATURE: 78 WIND DIRECTION & SPEED: North &

NEAREST NON-OWNED STRUCTURE
GPS Points: N -032 38 38.68800 & W -084 30 51.30000

NAME: Roper Residence

DISTANCE: 5,826 Ft DIRECTION:  226°
SEISMOGRAPH DATA
LOCATION DISTANCE GPS POINTS CALIBRATION DATE
1 Roper Residence 5826 Ft |N-032 38 38.6880:& W -084 30 51.30000 06/16/2008
L (F) T (F) 1 (F) | AIR (db) | SEISMOGRAPH SERIAL OPERATOR
1 0000 0 0000 O 0.000 0O 0 Fe&smograph ABSG 1
BLAST DATA
NUMBER OF HOLES (EA) 86 EXPLOSIVES SIZE, TYPE & WEIGHT
HOLE DIAMETER (IN) 5.75 SIZE TYPE WEIGHT
HOLE DEPTH (FT) 73 200LB 900G 17
FACE HEIGHT (FT) 70 1.00 LB BLASTGEL 1070 4 X 20 380.000
SUB DRILLING (FT) 3 0.75LB SPARTAN 350SR 65.25
AVG. STEM FACE HOLES (FT) 0 BULK TITAN 1000 SD 7,120.000
STEM OTHER HOLES (FT) 0.127 BULK TITAN 1000 SME K7,284.000
BURDEN FRONT ROW (FT) 13
"BURDEN OTHER ROWS (FT) 13
SPACING FRONT ROW (FT) 17
SPACING OTHER ROWS (FT) 17 TOTAL WEIGHT: |55,021.250
DETONATORS USED IN BLAST:  DigiShot MATS USED.No  STEM TYPE: #'S
TYPE MFG DATE CODE| USED TYPE MFG DATE CODE| USED
DIGISHOT 30 FT Dyno Nobel Giobal | 02FE1551 3 BLASTGEL 10704 X 20 | Dyno Nobe! Giobal | 04FE15D1 380
SPARTAN 35088 Dyno Nobel Giobal | 04MY15)2 87 DIGISHOT 80FT Dyno Nobg! Global | G4MY 1551 40
900G Dyno Nobel Global |  D5JATSWI 86 DIGISHOT 80FT Dyno Nobe! Global | 0BAP15S1 46
DIGISHOT 30 FT Dyno Nobel Giobal | 08FE15S1 84
CU YDS IN SHOT: __ 48,275 SCALED DISTANCE FACTOR:___148 % OF ANFO: 0]
TONS IN SHOT:__ 112075 HOLES/DELAY : 2.0 FUEL OIL % (BULK): 0
MAX LBS/DELAY: 1512 AVERAGE LBSHOLE 756
POWDER FACTOR (TONS/LB): 1.72 POWDER FACTOR POUNDS/YD3: 1.32
BLASTERS NAME BLASTERS NUMBER & STATE:__ GA18128 Georga
Yes

CLASTERS SIGNATURE: /222 [ ;% l SITE SAFETY INSPECTION PERFORMED:

MINE MGT. SIGNATURE: NUMBER OF PERSONNEL ON SITE:

REMARKS :
START TIME END TIME TOTAL TIME TRUCK NUMBERS
7:00AM 12:00 PM 05:00

Figure B. 4: June 4, 2015, Shot 2 Blast Report



Dyno Nobel North America BLAST REPORT
PO NUMBER: JCM 21445
SERVICE SITE LOCATION: Whitesburg ORDER NO.: 926208

DYNO

Dyno Nobel

BLAST NUMBER; 21-2015 ProductioBLAST TIME: 1:40 pm BLAST DATE: 07/30/2015
CUSTOMER: ANDERSON COLUMBIA COM MINE: JUNCTION CITY MINING ADDRESS: Talbotton, GA
ROCK TYPE: Granite Tons/Yd3: 2.27 EXPECTED VIBRATION:

0.060

LOCATION OF BLAST

BENCH: 2nd Bench
& W-084 30 01.09980

LOCATION OF BLAST IN MINE: North
BLAST GPS POINTS:  N-032 38 02.29980

WEATHER

WEATHER: Partly Cloudy CEILING: <2,000 TEMPERATURE: 92 WIND DIRECTION & SPEED: Northeast 5

NEAREST NON-OWNED STRUCTURE
GPS Points: _N -032 38 38.68800 & W -084 30 51.30000

NAME: Roper Residence

DISTANCE: 5,658 Ft DIRECTION:  229°
SEISMOGRAPH DATA
LOCATION DISTANCE _ GPS POINTS CALIBRATION DATE
1 Roper Residence 5658 Ft |N-032 38 38.6880/ & W -084 30 51.30000 06/16/2009
L F | T (F) | V (F) |AR(@db)| SEISMOGRAPH SERIAL OPERATOR
1 |0000 O (0000 O [0000 O 0 eismograph AB96" 1 Vibra-, Tech
BLAST DATA
NUMBER OF HOLES (EA) 85 EXPLOSIVES SIZE, TYPE & WEIGHT
HOLE DIAMETER (IN) 5.75 SIZE TYPE WEIGHT
HOLE DEPTH (FT) 72 2.00 900G 17
FACE HEIGHT (FT) 69 1.00 BLASTGEL 1070 4 X 20 1.721
SUB DRILLING (FT) 3 0.75 SPARTAN 350SR 63
AVG. STEM FACE HOLES (FT) 9 BULK TITAN 1000 SD 6,800
STEM OTHER HOLES (FT) 9 BULK TITAN 1000 SME 59.049
BURDEN FRONT ROW (FT) 13
BURDEN OTHER ROWS (FT) 13
SPACING FRONT ROW (FT) 17
SPACING OTHER ROWS (FT) 17 TOTAL WEIGHT:| 67,803.75
DETONATORS USED IN BLAST Electronic MATS USED: No STEM TYPE. #6'S
TYPE MFG DATE CODE| USED TYPE MFG DATE CODE| USED
800G Dyno Nobel Gicbal [ 04MY15W1 79 900G Dyno Nobel Global |  05JA15W1 8
DIGISHOT 30 FT Dyne Nobe! Global |  18MY 1551 1" DIGISHOT BOFT Dyno Nobel Global | 18MY1551 _ 85
BLASTGEL 1070 4 X 20 Dyno Nobet Global | 22JY15D1 1,720 DIGISHOT 30 FT Dyno Nobei Global | 23FE1581 74
SPARTAN 350SR Dyno Nobel Global | 23JU15J3 85
CUYDS IN SHOT: 48,006 SCALED DISTANCE FACTOR: _142 % OF ANFO: 1]
TONS IN SHOT: __ 109,188 HOLES/DELAY : 2 FUEL OIL % (BULK): o]
MAX LBS/DELAY:___ 1,575 AVERAGE LBS/HOLE __ 798
POWDER FACTOR (TONS/LB): 1.61 POWDER FACTOR POUNDS/YD3: 1.41
BLASTERS NAME: Mm_JﬁP BLASTERS NUMBER & STATE:___ GA 18129 Georga
BLASTERS SIGNATURE: hm SITE SAFETY INSPECTION PERFORMED: Yes
MINE MGT, SIGNATURE: NUMBER OF PERSONNEL ON SITE: 5
REMARKS : Shot had cracks and voids all through it
START TIME END TIME TOTAL TIME TRUCK NUMBERS
7.00 AM 12:00 PM 05:00

Figure B. 5: July 30, 2015, Shot 3 Blast Report
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Dyno Nobel North America BLAST REPORT
PO NUMBER: JCM 21888 DY N@
SERVICE SITE LOCATION: Whitesburg ORDER NO.: 935010
Dyno Nobel
BLAST NUMBER: 26-2015 productiorBLAST TIME; 2:40 pm BLAST DATE: 09/15/2015
CUSTOMER: ANDERSON COLUMBIA COM MINE: JUNCTION CITY MINING  ADDRESS: Talbotton, GA
ROCK TYPE: Granite Tons/Yd3: 227 EXPECTED VIBRATION: 0.050
LLOCATION OF BLAST
LOCATION OF BLAST IN MINE: North BENCH: 2nd Bench
BLAST GPS POINTS: N-032 37 57.49980 & W-084 30 01.80000
WEATHER
WEATHER: Partly Cloudy  CEILING: High TEMPERATURE: 79 WIND DIRECTION & SPEED: East 8
NEAREST NON-OWNED STRUCTURE
NAME: Roper Residence GPS Points: _N_-032 38 38.68800 & W -084 30 51,30000
DISTANCE: 5,044 Ft DIRECTION;  225°
SEISMOGRAPH DATA
LOCATION DISTANCE GPS POINTS CALIBRATION DATE
1 Roper Residence 5,944 Ft |N-032 38 38.68801& W -084 30 51.30000 06/16/2009
L 1T B V'  (F) | AIR(db) ] SEISMOGRAPH SERIAL OPERATOR
1 10000 O 0000 O [0.000 © 0 [Seismograph ABS6* 1
BLAST DATA
NUMBER OF HOLES (EA} 85 EXPLOSIVES SIZE, TYPE & WEIGHT
HOLE DIAMETER (IN) 5.75 SIZE TYPE WEIGHT
HOLE DEPTH (FT) 70 2.00 900G 184
FACE HEIGHT (FT) 67 1.00 BLASTGEL 1070 4 X 20 1,540
SUB DRILLING (FT) 3 0.75 SPARTAN 350SR 63.75
AVG. STEM FACE HOLES (FT) 9 BULK TITAN 1000 SD 10,680
STEM OTHER HOLES (FT) 9 BULK TITAN 1000 SME 58,772
BURDEN FRONT ROW (FT) 13
BURDEN OTHER ROWS (FT) 13
SPACING FRONT ROW (FT) 17
SPACING OTHER ROWS (FT) 17 TOTAL WEIGHT:| 71,239.75
DETONATORS USED IN BLAST: Eleclronic MATS USED: No STEM TYPE: #6'S
TYPE MFG DATE CODE| USED TYPE MFG DATE CODE| USED
900G Dyno Nobe! Global 13JY15Wi 92 SPARTAN 350SR Dyno Nobel Globat 14AU15J3 83
BLASTGEL 10704 X 20 Dyno Nobe! Global 17AU15D1 680 BLASTGEL 10704 X 20 Dyne Nobel Globat 21JY15D1 860
SPARTAN 350SR Dyno Nobel Global 23JU15J3 2 DIGISHOT 30 FT Dyno Nobe! Global 27JY1681 85
DIGISHOT DETONATOR 100F 1 Dyno Nobel Global 273Y1581 92
CUYDSINSHOT: 46,615  SCALED DISTANCE FACTOR:___ 152 % OF ANFO: 14
TONS IN SHOT: 106,024 HOLES/DELAY : 2 FUEL OIL % (BULK): 0
MAX LBS/DELAY:____ 1,525 AVERAGE LBS/HOLE___ 838
POWDER FACTOR (TONS/LB): 1.49 POWDER FACTOR POUNDS/YD3: 1.53
BLASTERS NAME: Moore. James P BLASTERS NUMBER & STATE: _ GA 18129 Gaorgia
BLASTERS SIGNATURE: SITE SAFETY INSPECTION PERFORMED: Yes
MINE MGT. SIGNATURE: NUMBER OF PERSONNEL ON SITE: 5
REMARKS : Shot had void and cracks all through it
START TIME END TIME TOTAL TIME TRUCK NUMBERS
7:30 AM 12:00 PM 04:30

Figure B. 6: September 15, 2015, Shot 4 Blast Report
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APPENDIX C.
SEISMOGRAPH AND BORETRACK REPORTS



Table C.1: DynoConsult Seismograph Summary

Shot Date Seismo ID Seimo Northing Seismo Easting Shot Northing

4/16/2015
4/16/2015
4/16/2015

6/4/2015

6/4/2015
9/15/2015
9/15/2015

892 32°38'2.6”
450 N32°38'3.1"
2344 N32°37'16.6”
450 N32°37'55.0"
892
892
450

W84°30'06.7".
W84°30'11.3".
W84°29'51”.

W84°29'52.1”.

N 32°37'56.59980"
N 32°37'56.59980”
N 32°37'56.59980”
N 32°38'02.3”

N 32°38'02.3”

N 32°37'57.49980"
N 32°37'57.49980"

Shot Easting
W84°30'07.30020”
W84°30'07.30020”
W84°30'07.30020”
W84°30'01.5”
W84°30'01.5”
W84°30'01.80000”
W84°30'01.80000”

Location Relative to Shot Acoustic (dBL) RPPV VPPV TPPV MaxPPV R

below in front
below in front
behind (pond)
behind (pond)

behind (pond)
in front across pit

142
142
133
<100
142
139
136

0.49
0.26
0.43
0.45
0.17
2.52
0.16

0.48
0.27
0.48
0.61

0.1
1.48
0.33

0.44
0.22
0.49
0.45
0.14
1.36
0.15

0.49
0.27
0.49
0.61
0.17
2.52
0.33

119

46.5 39.3 36.5
26.9 56.8 17.6
10.2 9.3 13.1
34.1 12.4 26.9
19.6 18.9 18.9
34.1 23.2 46.5
20.4 23.3 28.4



File
Humber 008
Date and Time 962015 1206 00 PM
SN Deg2

Savwmnc Togger 00800 inwec
At Trigger 142 4BL

Pauks und Froquences
PV Maximum: 0 490 indsec (0 4404 soc)

Ucouste A2 4BL & 426 Hz (04130 sec)

Frachel O 4B in'sec @ 45 5 iz (04404 wec)

[Vertical 0 &80 svsec @ 39 3 Hz (0 1992 sec)
Tranavmrne 0430 ivnec & 35 5 Ha (04840 sec)
IVoctor Sum 0505 inwec (0 4404 vac)

lLast Cabbration Date $22014

[Curanon 0300 8 To: 2000 s
pcoustic Scale 14) 3@L

Time Intervals 050 sec

iemig Scale 0600 winec [0 180 misecialy)

\

i
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Vicougoe 1 75 Mz (Arg = 708 31) Range 1% 100 Mz
64,50 Mz (Amg « 07 Acoushc Scele. 700 1Y
225 Wz (Amp « 26 84) Seama Some 3807
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Figure C.1: April 14, 2015 892 Seismograph Report
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Figure C.2: April 14, 2015 450 Seismograph Report
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Mumber 021

Date and Time: §/22015 12:51.00 PM
SN: (450

Sewmic Tngger 00600 insec

Aur Trigger: 142 o8L

PraTrigger 0.5 Second
Seismc Renge 500 invs
fcousto Range 142 4BL

Poaks and F'roguencies
PPV Maximam 0 610 wvoc: (0 2208 vec)

Pcousss <100 8L

Fadisl 0450 wwec @ 347 Hz (02021 anc)

Vertical. 0 610 invnee @ 12 4 Wz (02285 sec)
Transverse: 0 450 insec @ 26.9 Mz (0. 3457 sec)
Vactor Sum: 0680 ivaec () 2275 sec)

Lsst Calibrpwon Diste: $32014

Gam 1 0n
[Durmson <0400 3 To 40008

Veltage: & 50
jAcouatis Scaln 126 aBL

[Senmic Scale’ 0 800 iVsec (D200 insec'tiv)
ITime Imervala: G50 sec
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Figure C.3: June 4, 2015 450 Seismograph Report
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Figure C.4: June 4, 2015 892 Seismograph Report



Anderson Mining
9-15-15
Across pit

File: 4502015001 51442022 am|
Number: 022

Diste BI5/2015]

Time: 14:42

SN: 04501

Seig. Trigger: 0.05 injeac

Air Trigger: 142

Sarmphe Rate: 1024

Duration: 4.0 Seconds
Pre-Trigger: 0.50 Seconds

Gaan: 1.0x%
Veltage: 6.8(
Peaks and Frequancies Graph Information
PPV Maximum: 0.33 infsac (0.1650 sec) Dwration: -0.500 s To: 4.000 s
Acoustic: 136 dBL 1@ 3.4 Hz (1.8496 sec) Acoustic Scale: 138 dBL
Radial: 0.16 in'sec {@ 20.4Hz (02637 sec) Seismic Scala: 0.40 infsec (0. 100 in/secidiv)
Wartical: 0.33 infsac @ 23.3Hz (0.1650 sac) Tima Intarvals: 0.50 sac
Transverse: 0.15 infsec (@ 28.4Hz (0.2979 sec)
Last Calibration Date: V32014
Cal 0.98 OK]

S

Cal 0.4 OK]

S

Cal 0.51 OK]

S

Cal 0.50 OK]

1 1
1.00 1.50

1 1
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Figure C.5: September 15, 2015 450 Seismograph Report
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Andarson Columbia

9-15-15
Haul Road behind shot near pond

File
Nurnber: 013

Diate: HSA015|

Time: 14:38]

SN: B

Seis Tripger: 0.080 injsac|
Air Trigger: 142

Sarmple Rate: 1024
Duration: 2.0 Seconds
Pre-Trigges: 0.50 Seconds
Gain: 2.0x

Peaks and Frequencies

PPY Maximum: 2.520 infsec (0.4512 sac)
Acoustic: 139 dBL (@ 3.4 Hz (1.3135 sec)
Radiak 2.520 in'sec @ 34.1Hz (0.4512 sec)
Vartical: 1.480 infsec @ 23.2Hz (0.5791 sec)
Transwerse: 1.360 in'sec @ 46.5Hz (0.4814 sec)
Last Calibration Date: S/3/2014

Graph Information
Duration: -0.500 5 To: 2.000 5
Acoustic Scala: 140 dBL
Saismic Scale: 2.60 infsec (0.650 infsecidiv)
Time Intervals: 0.50 sac
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Figure C.6: September 15, 2015 892 Seismograph Report
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Figure C.6: September 15, 2015 7173 Seismograph Report
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Figure C.6: September 15, 2015 7174 Seismograph Report
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APPENDIX D.
SHOT PHOTOGRAPHS
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Figure E. 1: April 16, 2015, Shot 1 Blast Photographs
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Figure E. 2: June 4, 2015, Shot 2 Blast Photographs
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Figure E. 4: September 15, 2015, Shot 4 Blast Photographs
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