
i 
 

 

 

 

 

 

MOVING TOWARDS DISASTER: EXAMINING THE CHANGING 

PATTERNS OF SOCIAL VULNERABILITY IN A MULTI-HAZARD URBAN 

ENVIRONMENT 

 

 

 

 

BY 

 

MD SHAKIL BIN KASHEM 

 

 

 

 

 

 

 

 

DISSERTATION 

 

Submitted in partial fulfillment of the requirements  

for the degree of Doctor of Philosophy in Regional Planning  

in the Graduate College of the 

University of Illinois at Urbana-Champaign, 2015 

 

 

 

 

Urbana, Illinois 

 

 

Doctoral Committee: 

 

Assistant Professor Bev Wilson, Chair  

Professor Robert Olshansky 

Associate Professor Arnab Chakraborty  

Associate Professor Shannon Van Zandt, Texas A&M University 

 

 



ii 
 

ABSTRACT 

Studies of social vulnerability have repeatedly emphasized the importance of identifying 

the drivers of vulnerability, but very few studies have focused on empirically characterizing 

those drivers within the domain of vulnerability science that would help in effective 

policymaking. This dissertation is an initial step in this direction, examining social vulnerability 

in the context of multiple cities and evaluating the changing patterns of vulnerability in a multi-

hazard urban environment. It adopts a political-economic framing of vulnerability production 

(Dooling and Simon 2012) that conceptualizes vulnerability as a dynamic condition, produced 

through the historic interaction of economic, cultural, and social processes. It hypothesizes that 

the nature and distribution of social vulnerability in urban areas changes over time, and that the 

provision of subsidized low-income housing influences the hazard exposure of socially 

vulnerable populations. This is accomplished first by studying three cities in the Gulf coast 

region (Houston, New Orleans, and Tampa) and then by focusing on Houston, Texas as a case 

study city for a more detailed empirical analysis. The initial component of this research 

integrates neighborhood change theories and theories of social vulnerability to explain the 

changing patterns of social vulnerability in Houston, New Orleans, and Tampa over a 30 year 

time period (1980-2010). Next, the Houston case study further explores how vulnerable groups 

navigate the multi-hazard urban environment and how subsidized housing policies have 

influenced this interaction over time.  

The pattern of social vulnerability observed within the case study cities indicates that 

despite having drastically different population growth trajectories and being situated in different 

political and economic settings, the spatial concentration of social vulnerability has gradually 

decreased in the study cities in recent decades. Specific trends in vulnerability are identified for 

each of the cities and the potential for constraining climate adaptation efforts is discussed. After 

analyzing the location of subsidized housing in Houston, this study found that among the two 

most widespread housing subsidy programs (Housing Choice Vouchers and the Low Income 

Housing Tax Credit), supply based subsidies exemplified by the LIHTC significantly increases 

neighborhood social vulnerability when it is located in areas exposed to technological hazards. 

Limitations in the present administration of the subsidy programs are identified and policy 

alternatives are discussed that may help to reduce their contribution to vulnerability.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction  

Prior studies of social vulnerability and disaster risk management have repeatedly 

emphasized identifying the drivers of vulnerability, but very few studies have focused on 

empirically characterizing those drivers. Understanding these drivers within a multi-hazard urban 

context is important given the differential hazard exposure and disaster outcomes experienced by 

vulnerable low-income and minority population groups (Crowder & Downey, 2010; Finch et al., 

2010; Van Zandt et al., 2012). In recent years, urban sustainability and climate adaptation have 

gained increased attention due in large part to growing concerns related to the impacts of climate 

change (Blanco et al., 2009). The devastation wrought by Hurricanes Katrina and Sandy are two 

recent examples that clearly highlighted the vulnerabilities of major coastal cities and have 

renewed calls for a planning response. Billions of dollars are now being spent to restore the 

economies of impacted localities and to prepare for future climatic impacts but comparable 

resources have not been dedicated to the social dimensions of vulnerability, namely recovery of 

the urban poor or how to ensure secure and safe housing for vulnerable population groups. This 

neglect of social vulnerability is an important limitation of adaptation efforts, which promises to 

reduce climate change impacts but ―tend to exclude the possibility of non-adaptation from 

consideration‖ (Orlove, 2009). Despite these efforts, socially vulnerable populations may be 

increasingly concentrated in hazard exposed areas (Mohai & Saha, 2006; Wisner et al., 2004), 

significantly increasing the overall vulnerability of cities. What is required now is to consider the 

dynamics of social vulnerability and to identify the drivers that make the vulnerable population 

groups less able to avoid hazardous areas. This dissertation explores the changing patterns of 

social vulnerability and adopts a political-economic framing of vulnerability production (Dooling 

& Simon, 2012) to critically examine the drivers of vulnerability. It offers policy 

recommendations that move beyond the conventional notion of vulnerability as static and 

exogenous to urban development and politics. Finally acknowledging that there are multiple 

drivers of social vulnerability in a multi-hazard urban environment, this study focuses on 

subsidized housing and evaluates how market dependent housing subsidy programs for low-

income people can act as one of the drivers contributing to conditions that are ripe for disaster. 
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1.2 Study Background 

Although vulnerability has been defined differently across disciplines, it generally refers 

to susceptibility to harm (Adger, 2006; Füssel & Klein, 2006). However, even within this general 

definition of vulnerability, there are significant differences in its conceptualization in the policy 

arena and scholarly discourse. In the climate change literature for example, vulnerability is often 

understood to be a function of exposure to a hazard, sensitivity to that hazard, and the ability to 

respond accordingly (Parry et al., 2007; Smit & Wandel, 2006). In this biophysical conception of 

vulnerability, risk is seen as exogenous to society (McLaughlin & Dietz, 2008) as something that 

can be projected onto a socially-static landscape. It has been widely recognized, however, that 

adaptive capacity, exposure, and sensitivity are not static, and instead vary widely over time and 

across subpopulations, as do the damages experienced (Handmer, Dovers, & Downing, 1999; 

Turner et al., 2003). From this point of view, a social constructivist approach to vulnerability 

locates risk within society and places the burden of explanation of vulnerability within the social 

system (Ribot, 2009). An integrative vulnerability framework on the other hand, links both risk-

hazard and social constructivist models of vulnerability, and understands vulnerability as having 

―an external dimension, which is represented by the ‗exposure‘ of a system, as well as internal 

dimension, which comprises the ‗sensitivity‘ and ‗adaptive capacity‘ to these stressors‖ (Füssel 

& Klein, 2006). This study adopts an integrative framework of vulnerability to explain social 

vulnerability dynamics, where the external dimensions of hazard risks interact with internal 

dimensions of social vulnerability within the broader political-economic context of a region. 

While scholarship on hazard vulnerability (or biophysical risk) offers significant insights 

for understanding the geography of unequal risk, it provides an incomplete basis for examining 

contemporary generative processes (Collins, 2009, 2010). Political-economic theory and analysis 

focuses on this generative process by explicitly considering changes in economic policies, 

technological systems, institutional arrangements, and demographic processes, all of which 

shape social vulnerability (Collins & Jimenez, 2012). Politically and economically powerful 

institutions and individuals, through their political ideologies and strategies, influence access to 

human and natural resources for different social and economic groups, and thereby act as the 

drivers for production of vulnerability (Dooling & Simon, 2012; Pelling, 2003). Following the 

work on vulnerable spatialities of Findlay (2005), Dooling & Simon (2012) elaborated this 

production-oriented framework for analyzing how interactions between political economies of 
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resource use and normative planning and management interventions influence which places and 

populations are made vulnerable. In recent years, a number of studies have examined the effects 

of neoliberal
1
 policies on public space, neighborhood change, gentrification, and other forms of 

uneven development (Hackworth & Smith, 2001; Lees, 2003; Newman & Ashton, 2004; Perkins, 

2012). It has also been argued that the increased concentration of poverty in the United States 

over the last 40 years was more a result of housing policy than the result of income inequality 

(Reardon & Bischoff, 2011). Given this contextualization, this study examines the extent to 

which subsidized housing programs functioning within a neoliberal policy environment 

contribute to hazard exposure for socially vulnerable communities. 

Poverty and access to stable, affordable housing are key factors in determining a 

household‘s ability to withstand socio-economic stresses in urbanizing environments (Moser, 

1998; Sanderson, 2000). But in recent decades, policies designed to facilitate the provision of 

affordable housing in U.S. cities have undergone important changes. Since the early 1970s, a 

significant number of public housing projects have been dismantled and replaced with market-

oriented solutions such as rental assistance vouchers and HOPE VI housing developments. 

Disinvestment in inner-cities, the shifting of new investment to suburbs, designating areas as 

blighted, and post-disaster reconstruction have justified the clearance of ―slummed‖ 

neighborhoods resulting in direct subsidies to private real estate investors and the demolition of 

public housing (Angotti, 2008; Crump, 2002; Kamel, 2012). However, these market-oriented 

programs suffered from funding deficits since their inception and subsequent reductions in 

federal housing spending have exacerbated unmet housing needs (Malpass, 2003; Popkin et al., 

2004). A significant proportion of low-income households, especially inner-city minorities, 

remained trapped in substandard, overcrowded, and over-priced housing (HUD 1993; 2007). 

Prior research has considered whether programs for low-income housing succeeded in 

deconcentrating poverty (Goetz, 2005; Massey & Denton, 1993; Wilson, 1987) or provided any 

improvement in life outcomes for participating household and communities (Freeman, 2003; 

Goering et al., 2002; Van Zandt & Mhatre, 2009), but very few studies have explored the extent 

to which these housing provisions have increased or decreased the hazard exposure of vulnerable 

                                                        
1 Harvey (2005) identifies neoliberal policies as emerging from political-economic practices that ―proposes that 

human well-being can best be advanced by liberating individual entrepreneurial freedoms and skills within an 

institutional framework characterized by strong private property rights, free market, and free trade.‖ As Perkins 

(2012) asserts, neoliberal modes of environmental governance usually prioritize market profitability and personal 

responsibility. 
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populations (e.g. Cutter et al. 2001; Houston et al. 2013). 

Prior research on social vulnerability in urban areas has tended to focus on exposure to 

natural hazards (Maantay & Maroko, 2009b; Zahran et al., 2008) or differential outcomes in the 

context of recovery planning and disaster impacts (Van Zandt et al., 2012; Zhang & Peacock, 

2009), but the changing pattern of social vulnerability and the generative process of vulnerability 

has yet to be examined. Adopting the production-oriented framework of vulnerability (Dooling 

& Simon, 2012) this dissertation investigates the intensity and persistence of conditions of social 

vulnerability (Collins, 2010; Davis, 1998; Peet & Watts, 1996). Since the location and 

availability of subsidized low-income housing is considered a critical determinant in the spatial 

distribution of socially vulnerable populations (Moser, 1998; Sanderson, 2000), it is important to 

understand how these programs, in their present form, may influence social vulnerability within 

a multi-hazard landscape.   

Exponential population growth along the coasts of the United States in recent decades has 

increased the number of people and amount of property vulnerable to high winds, waves, and 

storm surge flooding of catastrophic coastal storms (Burby, 1998; Deyle et al., 2008; Godschalk 

et al., 1999). Therefore, coastal cities are the most appropriate test cases for the vulnerability 

framework discussed above. This dissertation selects three coastal cities (Houston, New Orleans, 

and Tampa) for exploring the changing pattern of social vulnerability over a 30 year time period 

(1980-2010). These cities were chosen due to the similarity of their geographic locations (i.e., all 

are located in Gulf Coast region) and because they exhibit significantly different patterns of 

population growth. The study then focuses exclusively on Houston to evaluate how subsidized 

housing programs may have influenced social vulnerability and hazard exposure. Houston is 

adopted as the subject of a detailed case study due to its high level of natural and technological 

hazard exposure (Nicholls et al., 2008; Schiller, 2010) and its situation within the archetypal 

neoliberal state of Texas (Miller et al., 2011). 

 

1.3 Objectives, Research Questions, and Hypothesis 

The primary objective of this study is to evaluate how urban growth and decline shapes 

and changes patterns of social vulnerability and how subsidized low-income housing programs 

influence social vulnerability in a multi-hazard environment. This dissertation will be guided by 

following central questions: 
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1. How do the spatial patterns of social vulnerability change over time in coastal 

metropolitan areas and how do these patterns vary across different cities (in terms of the 

distribution of vulnerable population groups and indicators of social vulnerability)? 

2. Are socially vulnerable populations more likely to live in hazard exposed (both natural 

and technological) areas and if so, has this relationship changed over time? 

3. To what extent have subsidized housing programs influenced the hazard exposure of 

socially vulnerable population groups?  

4. How can existing subsidized housing programs be modified to better address the 

problems of hazard exposure and disaster risk reduction? 

 

Considering the above research questions, this study tests three related hypotheses:  

 

H1. With the growth of a city, vulnerable population groups become less concentrated over 

time. The suburbanization of poverty, limited availability of affordable housing, and 

gradual gentrification of inner-city poor neighborhoods can contribute to such trends. The 

dimensions of social vulnerability also vary through changing demographic composition. 

H2. Over time, vulnerable population groups increasingly move into hazard exposed areas of 

a city, which further skews the already uneven geography of hazard exposure. A lack of 

housing security, decreasing provisions for a social safety net, and more limited housing 

options due to urban revitalization and gentrification are some of the key drivers behind 

this uneven geography. 

H3. Subsidized housing programs have failed to reduce the overall hazard exposure of 

socially vulnerable populations and to some extent, have contributed to an increased level 

of hazard exposure. Exposure to technological hazards may be higher than exposure to 

natural hazards due to the concentration of these land uses in space over time and their 

attendant impacts on land values and rent in these areas of the city. 

 

1.4 Dissertation Outline 

 To address the research questions mentioned above, this study begins by exploring the 

patterns of social vulnerability in three coastal cities, then narrows its focus to a detailed case 

study of subsidized low-income housing in Houston, Texas. Chapter 2 reviews literature on 



6 
 

social vulnerability, and particularly how different schools of thought have contributed to 

formalizing the concept of urban social vulnerability. It also gives a brief review of low-income 

housing subsidy programs in the U.S. and how these programs may influence the location 

decisions of vulnerable populations in a multi-hazard environment. This chapter also presents the 

overall framework of the research, summarizing the key theoretical basis and how the study is 

conducted in two stages. Chapter 3 presents the study methodology and briefly describes the 

three case study cities before elaborating the data processing methods, procedure for calculating 

social vulnerability, approach for analyzing the temporal trends of vulnerability, methods for 

calculating natural and technological hazard exposure, and later how the modeling framework 

was selected for evaluating the impacts of subsidized housing and hazard exposure on changing 

patterns of social vulnerability at census tract level. 

 Chapter 4 discusses the results of analyzing the changing patterns of social vulnerability 

in three coastal cities over a thirty year time period (1980-2010). It also presents a brief review of 

relevant neighborhood change theories before synthesizing social vulnerability and 

neighborhood change theory to explain the identified patterns of social vulnerability. This 

chapter concludes with a call for developing a land use planning framework that is more 

responsive to the changing patterns of vulnerability in a city. Chapter 5 presents the results from 

the detailed case study of Houston (Harris County), Texas evaluating the spatial distribution of 

socially vulnerable populations within the multi-hazard landscape and how the subsidized low-

income housing that existed there in 2000 and 2010 was distributed across different natural and 

technological hazard zones. This chapter also interprets the results of spatial econometric models 

that evaluate the interaction between subsidized housing and hazard exposure and how this may 

have contributed to an increase in social vulnerability within hazardous areas of the county. 

 Chapter 6 focuses on identifying limitations in present housing policies and policy 

alternatives that would ensure that low-income housing subsidies are channeled into lower 

hazard areas of the city. It evaluates the environmental requirements of housing projects that 

receive assistance from the U.S. Department of Housing and Urban Development (HUD), then 

looks at the requirements of two of the most popular subsidy programs—Housing Choice 

Vouchers (HCV) and Low Income Housing Tax Credit (LIHTC). Based on interviews with 

officials at the Houston Housing Authority and site visits to selected tax credit properties, this 

chapter further explains and contextualizes the findings from the spatial econometric models 
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presented in Chapter 5. Later this chapter proposes policy alternatives for modifying existing 

provisions of HCV and LIHTC, particularly how these programs can be more responsive to the 

hazard characteristics of an area and how these programs can ensure that socially vulnerable 

populations are not concentrating in those areas. This dissertation concludes with Chapter 7, 

which summarizes the findings of this study and reiterates the importance of considering the 

changing patterns of vulnerability in the current initiatives for adaptation planning as well as how 

our subsidized housing programs can be an integral part of climate adaptation initiatives.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

CHAPTER 2 

LITERATURE REVIEW AND RESEARCH FRAMEWORK 

 

2.1 Introduction 

Vulnerability science is multidimensional with researchers working in the fields of 

disaster management and hazards, environmental justice, food and water security, and climate 

change contributing theories that have helped to define and advance the field of vulnerability 

studies (Eakin & Luers, 2006; Ionescu et al., 2009; Kasperson et al., 2005; Turner et al., 2003). 

Scholars evaluating the dynamic tensions of vulnerability
2
 examine more explicitly the 

connections between pre-existing and emerging economic, environmental and social conditions 

that impact vulnerable communities (Andrey & Jones, 2008; Dooling & Simon, 2012; Hogan & 

Marandola, 2005; Pelling, 2003). Prior studies adopting a political-economic framing of 

vulnerability production have specifically explored these broader dynamic tensions, but detailed 

research that evaluates the outcomes of low-income housing programs can also make valuable 

theoretical contributions and yield useful policy recommendations. This dissertation represents 

an initial step in this direction. The remainder of this chapter discusses theoretical models of 

vulnerability itself, and then considers the political economic framing of vulnerability and the 

environmental justice framing of vulnerability. A brief overview of subsidized low-income 

housing programs is provided later, followed by a more detailed discussion of residential 

location choice and the hazard exposure of subsidized housing to explain their linkages under the 

political-economic and environmental justice framing of vulnerability. 

2.2 Theoretical Models of Vulnerability 

Interaction between biophysical and social vulnerability has always been a contentious 

issue among researchers. The biophysical conception of vulnerability considers risk as 

exogenous to society (McLaughlin & Dietz, 2008) and climate-related hazards can therefore, be 

mapped onto a socially-static landscape where adaptive capacity and sensitivity are assumed to 

be fixed in a particular geographic area. In contrast, a social constructivist approach relies on the 

theories of political economy and political ecology to uncover and evaluate the structural origins 

                                                        
2 Dynamic tensions of vulnerability refer to the processes through which conditions of, and experiences with, 

vulnerability are produced through specific cross-scale interactions that are historic in nature (Dooling & Simon, 

2012).  
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of vulnerability. Bohle et al. (1994) provided an early model of social vulnerability rooted in the 

political economy tradition and in their view, vulnerability is best understood and studied using 

concepts rooted in human ecology, political economy, and entitlement theory. Three of the most 

prominent theoretical models of vulnerability that draw upon this political economy tradition are 

briefly discussed here. 

2.2.1 Pressure and Release Model 

The Pressure and Release (PAR) model (Blaikie et al., 1994) addressed more specifically 

the construction of some of the contextual factors influencing vulnerability. In the PAR model, 

vulnerability is seen as part of a risk equation: Risk = Hazard + Vulnerability. Risk, in this 

application, is distinct from its traditional definition as the probability of event occurrence 

(Cutter, 1996), or as Sarewitz et al. (2003) put it, event risk. Risk in the above formula is what 

Sarewitz et al. called outcome risk—that is the probability of a specific outcome occurring. 

Vulnerability within the PAR model is conceptualized as stemming primarily from social 

structures and characteristics. Vulnerability originates from a variety of root causes, leading to 

what are termed as dynamic pressures. These dynamic pressures localize the influence of the 

broader root causes (e.g., poverty) into unsafe living conditions. Unsafe living conditions in turn 

interact with the probable or actual occurrence of hazard events to produce what may be called a 

higher outcome risk for less advantaged members of society. This model developed the idea that 

the consequences of a hazard event depend not only on the event in question, or even solely on 

the direct human-environmental systems, but also on the broader structure and characteristics of 

human society. 

2.2.2 Hazards of Place Model 

The Hazards of Place (HOP) model of vulnerability (Cutter, 1996) attempted to bridge 

the gap between vulnerability approaches focused solely on exposure, and those centered 

exclusively on social conditions related to resistance or resilience. Cutter proposed that the idea 

of place be used to unify these approaches and the diagram shown in Figure 2.1 offers an 

overview. Interactions between people and their environment occur within a particular place and 

places have a unique hazard potential, which arises from the interaction between hazard risk and 

socially determined mitigation activities (or lack thereof). Geographic contexts (characteristics) 

within the study area, such as elevation and proximity, work to modify hazard potential across 
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space. This modified, spatially differentiated hazard potential is called biophysical vulnerability. 

The hazard potential is also modified by the social fabric of the area, which in turn modifies and 

differentiates the hazard potential across space. The social fabric consists of those characteristics 

that describe the distribution and composition of the population measured, for example, by socio-

demographic, economic and welfare variables. The social contributions to the spatial differences 

are called social vulnerability. 

 

 

Figure 2.1 Hazards of Place (HOP) model of vulnerability (after Cutter (1996)) 

 

Biophysical and social vulnerability interact to create an overall place vulnerability, but place 

vulnerability can, in turn, modify both the event risk of an area as well as the mitigation 

approaches used in the area. The linkages displayed in the model (Figure 2.1) communicate an 

understanding of the dynamic nature of vulnerability—namely that changes in the physical and 

social setting of an area may result in changes in vulnerability, risk, mitigation, etc.  

2.2.3 Vulnerability Framework for Sustainability Science Model 

The Vulnerability Framework for Sustainability Science (VFSS) model (Turner et al., 

2003) was also developed to bridge gaps in existing approaches to studying vulnerability. But 

while the HOP model reconciled competing understandings of the factors contributing to 

vulnerability (physical and social), the VFSS approach sought to bridge the risk-hazards and the 

political economy and political ecology traditions as different ways of conceptualizing 

vulnerability. While it includes vulnerability stemming from biophysical subsystems seen in the 
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risk-hazards approaches, it also reconciles this with the multi-scaled and structural explanations 

of the political economy approaches
3
. Like the HOP model, it employs the geographic concept of 

place as the lens through which the interactions of social and physical systems are analyzed. In 

this framework, vulnerability occurs within a specific place, but is influenced by human and 

environmental influences at regional and global levels.  

Although the models discussed above explore vulnerability from different perspectives, 

all of them can be traced to the political-economic framing of vulnerability. This dissertation 

makes use of these established theoretical frameworks, but draws most heavily on the HOP 

model (Cutter, 1996) and VFSS framework (Turner et al., 2003). In order to evaluate the pattern 

of social vulnerability within the study cities, it adopts Cutter‘s approach, but for exploring the 

generative dynamics of vulnerability it takes cues from Turner et al.‘s VFSS framework given 

the latter‘s emphasis on political-economic explanations of vulnerability dynamics. 

 

2.3 Political-Economic Framing of Vulnerability 

A political-economic perspective on hazard exposure and vulnerability provides a 

foundation for describing uneven patterns of risk (Bolin & Stanford, 1998; Hewitt, 1983; 

Susman et al., 1983; Wisner et al., 1976, 2004). Like the PAR model of vulnerability (discussed 

above), this perspective considers risk as the product of people‘s exposure to an environmental 

hazard and their social vulnerability
4
. Political-economic theory and analysis focuses on the 

generative process of vulnerability by integrating changes in economic policies, technological 

systems, institutional arrangements, and demographic processes, all of which shape 

contemporary experiences of vulnerability. It questions the neoliberal objective of aggregate 

economic growth that promises to improve human well-being, but ultimately ignores the 

production of social vulnerability (Cannon & Müller-Mahn, 2010). Empirical analysis and 

theorizing about the neoliberal project provides the basis for understanding and challenging 

environmental injustice created by the neoliberal agenda. 

While a political-economic framing allows us to understand the broader generative 

process of vulnerability, it too is insufficient to explore the vulnerability dynamics in an urban 

context when taken in isolation. Risk exposure to urban environmental hazards is a complex 

                                                        
3 Specifically the linkages outlined from global root causes to local unsafe living conditions in the PAR model. 
4 The capacity to anticipate, respond to, and recover from exposure to a chronic stressor or perturbation (Wisner et 

al., 2004). 



12 
 

phenomenon, with overlapping risks associated with the household, workplace, or neighborhood, 

and pollution risks from industrial contamination (Hardoy et al., 2001). Poverty and access to 

stable, affordable housing are key factors in determining a household‘s ability to withstand 

socio-economic stresses in urbanizing environment (Dooling & Simon, 2012; Moser, 1998; 

Sanderson, 2000). In addition, people without access to safe housing are frequently the group 

most harmed by environmental hazards (Pelling, 2003), and on the other hand, neoliberal 

policies also impede a community‘s ability to preserve and deliver affordable housing (Kamel, 

2012). In addition to housing affordability, studies have also demonstrated the importance of 

local stresses as contributors to vulnerability in the context of health, racial, gender and age 

composition of affected households and communities (Phillips et al., 2009). Within the urban 

context, it is argued that social vulnerability emerges as a response to, and a byproduct of,  

phenomena operating at larger scales, including national policies, global financial markets, and 

regional environmental disasters (Collins, 2009; Dooling, 2012). In order to better conceptualize 

the role of these larger-scale phenomena vulnerabilities must be understood as conditions that are 

created and maintained through historical relationships and  arise from the interaction of 

economic, cultural, and social processes (Andrey & Jones, 2008; Blaikie et al., 1994; Hogan & 

Marandola, 2005; Pelling, 2003). 

A production-oriented framework of vulnerability (Dooling & Simon, 2012) analyzes 

how interactions between political economies of resource use and normative planning and 

management interventions—at both global and local scales—influence which places and 

populations are made vulnerable as well as the intensity and persistence of conditions of 

vulnerability (Collins, 2010; Davis, 1998; Mustafa, 2005; Orsi, 2004; Wisner et al., 2004). It 

focuses on articulating how the conditions and experience of vulnerability are produced, 

regulated, manipulated and resisted. By detailing the relationship between vulnerability and 

planning agendas that guide urban sustainability, gentrification, suburban development, climate 

change adaptation, and other planning initiatives, this production-oriented framing places 

vulnerability within the broader field of urban political ecology (Dooling, 2012; Heynen et al., 

2006). This framing focuses on the contradictions of a planning agenda that ignores the 

dynamics of social vulnerability and thereby, exacerbates existing risks and harms groups of 

people that are the least able to avoid the risks (Dooling, 2012).  
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2.4 Environmental Justice Framing of Vulnerability 

An environmental justice framing of vulnerability contributes important insights into the 

underlying dynamics of hazard exposure and vulnerability (Boone & Fragkias, 2013). The 

environmental justice literature examines inequalities in technological hazard exposure by race 

and class and has coalesced around concern and action regarding the societal distribution of 

environmental hazards and their health effects (Buzzelli, 2007). It specifically explores the 

nature and extent of disproportionate exposures to health hazards, ranging from toxic waste sites 

and air pollution to the landfill siting process, and how this exposure varies across population 

groups (Chakraborty & Armstrong, 2001; Crowder & Downey, 2010; Hamilton, 1995; Maantay, 

2001). Buzzelli (2007) presents a schematic (Figure 2.2) of the environmental justice 

conundrum, indicating that as Socio-Economic Position (SEP) rises, the corresponding exposure 

to environmental health hazards among individuals and neighborhoods diminishes. This general 

framing of environmental justice is augmented by two competing viewpoints (Crowder & 

Downey, 2010): the racial income inequality thesis and residential discrimination thesis, which 

are briefly discussed below. 

 

 

Figure 2.2 Schematic of environmental (in)justice (Buzzelli, 2007). 
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The racial income inequality thesis (Downey, 2005; Oakes et al., 1996) argues that, racial 

differences in exposure and proximity to environmental hazards largely reflect group differences 

in socioeconomic resources (Crowder & Downey, 2010). It holds that environmentally 

hazardous neighborhoods have relatively low property values and rents, which make those areas 

more accessible to lower-income families. Low-income families on the other hand are 

overrepresented by non-white families and as a result, higher proportions of non-white 

populations also live in hazardous areas. 

The residential discrimination thesis (Bullard, 1999; Mohai & Bryant, 1998) is more 

critical than the racial income-inequality thesis in explaining differential exposure to hazards. It 

argues that housing market discrimination reduces the ability of minority households to move out 

of, or to avoid moving into, hazardous neighborhoods, thereby creating or maintaining 

environmental racial inequality (Crowder & Downey, 2010). Studies based on this thesis show 

how discriminatory actions by real estate agents (Pearce, 1979; Yinger, 1995), local governments 

(Shlay & Rossi, 1981), and mortgage lenders (Ross & Yinger, 2002) limit residential location 

choice for minority home seekers (Galster & Keeney, 1988; Massey & Denton, 1993).  

Besides these two viewpoints some studies have assessed the argument that 

environmental injustice emerge because environmental hazards are disproportionately sited in 

minority neighborhoods who lack political influence to resist it (Downey, 2005; Pastor et al., 

2001). However, it is argued that in the context of high levels of residential mobility, initial 

siting decisions may have relatively less influence on prevailing patterns of hazard exposure 

(Crowder & Downey, 2010). Also, as both the income-inequality and discrimination perspectives 

predict, in comparison to whites, members of minority groups will be less likely to leave and 

more likely to enter, polluted neighborhoods, thereby increasing their overall proximity and 

exposure to environmental hazards (Downey, 2005; Hamilton, 1995; Mohai & Bryant, 1998; 

Oakes et al., 1996). Although environmental justice studies focus more on assessing fairness and 

vulnerability studies focus on the biophysical and social system, combining them in a common 

framework can strengthen and advance the goals of each (Boone & Fragkias, 2013). This study 

facilitates this integration by exploring vulnerability dynamics in a multi-hazard environment. 
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2.5 Subsidized Low-Income Housing in the U.S. 

Federally assisted public housing began in 1930s, primarily to stimulate employment 

after the crisis of the Great Depression in the U.S. (Cutter et al., 2001; Wyly & DeFilippis, 

2010). Over time, low-income housing assistance has evolved with the federal government 

playing a reduced role that favors state and locally led partnerships supplemented with a blend of 

block grants, tax credits to private developers, and vouchers (Wyly & DeFilippis, 2010). After 

widespread criticism of public housing as a key contributor to the creation and exacerbation of 

social and economic segregation in cities, federal housing policy since the 1970s has focused on 

two objectives—to help depressed neighborhoods through the construction of new affordable 

housing and to deconcentrate poor subsidized-housing residents (Galster, 2013; Scally & 

Koenig, 2012), but these policies have had relatively little impact in improving the conditions of 

low income neighborhoods (Galster, 2013). Many studies have argued that the placement of 

subsidized housing creates negative spillover effects in neighborhoods such as the devaluation of 

land, increased crime, and middle class flight and eventually lead to further concentrations of 

poverty (Carter et al., 1998; Galster et al., 1999; Holloway et al., 1998). However, other studies 

have argued that much of the negative reaction to low-income subsidized housing developments 

is unwarranted (Freeman, 2003; Green et al., 2002; Oakley, 2008). Further complicating matters 

is the fact that the outcomes of subsidized housing programs tend to vary by specific program 

and across local housing markets. A brief review of relevant subsidized housing programs is 

presented here
5
 and followed by a discussion of residential location choice and the hazard 

exposure of subsidized housing. 

2.5.1 Scattered-Site Public Housing 

As evidence mounted that public housing was contributing to the concentration of inner-

city poverty, at the beginning of 1970s, the U.S. Department of Housing and Urban Development 

(HUD) encouraged local Public Housing Authorities (PHAs) to develop more housing on a 

―scattered-site‖ basis (Galster, 2013). This scattered-site housing was typically operationalized 

through the construction and/or acquisition of low-density buildings with fewer than 15 units per 

site in locations that were not disproportionately minority-occupied (Hogan, 1996). However, 

this strategy was not widely adopted across the nation due to the near-elimination of funding 

                                                        
5 For a more detailed treatment, see Schwartz (2010). 
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from federal sources and there was huge variation in the density and locations of ―scattered sites‖ 

across PHAs (Galster, 2013). In general, it is argued that scattered site public housing programs 

have offered superior neighborhood environments for low-income tenants compared to 

conventional, large-scale, concentrated public housing developments, but the outcome also vary 

by the contexts of local housing markets (Galster, 2013). 

2.5.2 Housing Choice Vouchers Program 

Vouchers, authorized by Section 8 of the Housing and Community Development Act of 

1973, have been regarded as inherently superior to public housing in that they enable poor 

families to live in moderate- or middle-income neighborhoods (Wyly & DeFilippis, 2010). Since 

its inception in 1974, this housing assistance program had followed the general formula that the 

qualifying household must contribute a share of its income (currently 30%) toward rent of an 

apartment that meets certain quality standards and whose landlord agrees to sign a minimum 

one-year lease with the tenant and the PHA administering the voucher (Galster, 2013). In 1998 

Section 8 was renamed the Housing Choice Voucher (HCV) program. By encouraging residents 

of high-poverty neighborhoods to relocate to outlying areas, the program is intended to make 

more jobs accessible to program participants (Briggs, 1997; Goering et al., 2002), but an 

enduring problem  is that its effectiveness depends on the availability of affordable units in 

neighborhoods with low concentrations of poor persons. Pendall (2000) attributes the shrinking 

supply of affordable units to a combination of increased competition for land and unfavorable tax 

codes that hinder the development of multifamily housing. Efforts to close older public housing 

projects under the HOPE VI program (discussed later) also negatively affect the supply of 

affordable units. Further, despite the option to move out of high-poverty neighborhoods, many 

program participants choose not to move at all and instead opt to remain close to family, friends, 

and other social institutions (Briggs, 1997; Popkin et al., 2004).  

 Feins & Patterson (2005) conducted a longitudinal analysis using a national sample of 

those entering the HCV program from 1995 to 2002 and found that the trajectory of moves was 

not into significantly better neighborhoods (measured on many characteristics) over time. 

Research suggests that even after controlling for socioeconomic status, minorities are less likely 

than whites to move to predominantly white neighborhoods and more likely to move to minority 

or racially mixed neighborhoods (South & Crowder, 1998; Stearns & Logan, 1986). These 

results indicate that merely increasing the effective affordability of vacant apartments of decent 
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quality via a voucher is not enough to realize much improvement (on average) in the geographic 

outcomes for program participants relative to comparable renters who are not subsidized 

(Galster, 2013). 

2.5.3 Low-Income Housing Tax Credit Program 

Established by Congress in 1986, the Low-Income Housing Tax Credit Program (LIHTC) 

provides tax credits to developers for the construction and rehabilitation of affordable rental 

housing. Administered by the Internal Revenue Service (IRS) in partnership with state housing 

finance agencies (HFAs), the LIHTC has subsidized the production of over 2.2 million rental 

units between 1987 and 2010 (Khadduri et al., 2012). Subject to broad guidelines, each state 

develops criteria for awarding these tax credits and holds annual competitions among prospective 

developers for projects designed with a minimum share of ―affordable‖ units (Galster, 2013). 

Unlike the public housing or housing vouchers that often serve extremely poor households, the 

LIHTC targets households with incomes below 50 or 60 per cent of area median income (AMI) 

(Deng, 2011). While it has been criticized for failing to reach households with the most serious 

housing needs, this higher-income eligibility also makes the program popular among both non-

profit and for-profit developers. However, studies evaluating the LIHTC program have revealed 

a more mixed picture. Freeman (2004) found that relative to other neighborhoods, LIHTC 

neighborhoods experienced larger declines in poverty and similar increases in home values, but 

Rosenthal (2008) argued that the concentration of LIHTC units lays the foundation for 

deterioration of a neighborhood‘s economic status in the next decade. On the other hand, (Green 

et al., 2002) found that LIHTC projects either increased nearby property value or had no impact, 

but they were less likely to generate a negative impact. 

 Oakley (2008) found that the LIHTC program is more successful than other programs at 

locating developments in less disadvantaged neighborhoods in terms of income level and 

minority concentration, but was not as successful at avoiding clustering. Abt Associates (2006) 

concluded that in large metropolitan areas, LIHTC units are likely to be located in high-growth 

tracts and in areas of increasing poverty, but that the majority of LIHTC units are located in 

moderate-poverty neighborhoods. These studies indicate a lack of consensus on whether the 

LIHTC program is successful in providing affordable housing in low poverty areas or with 

respect to how it impacts the characteristics of neighborhoods where it is built.  
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2.5.4 HOPE VI Program  

Housing Opportunities for People Everywhere (HOPE) programs were initiated in 1994 

with the aim of revitalizing ―severely distressed‖ public housing sites (characterized by physical 

decay, high vacancies, drugs, gangs and violence) through locally developed PHA-private 

developer/financier partnerships (Galster, 2013). This program financed the demolition and 

rehabilitation of public housing units, the construction of new units on site, the temporary 

relocation of displaced tenants, and the provision of HCVs to displaced tenants who were 

unwilling or unable to return to the redeveloped sites. All totaled, HOPE VI demolished about 

150,000 dilapidated public housing units in 224 different projects nationwide (Landis & 

McClure, 2010). The national HOPE VI tracking study found that after the first eight years of the 

program only 19% of original residents were living on the redeveloped sites, 29 % were in other 

public housing, 33% were using HCVs, and 18% had left housing assistance (Popkin et al., 

2004). In summary,  HOPE VI has had only minimal success in substantially increasing housing 

opportunities for former public housing residents in non-poor environments (Galster, 2013). 

 

2.6 Location Choice and Hazard Exposure of Subsidized Housing 

In light of the preceding discussion, the location of subsidized housing is clearly 

important for understanding the production of social vulnerability in urban areas. Housing policy 

has increasingly aimed to deconcentrate poverty and increase the employment opportunities 

available to low income households, but whether these programs have really been successful 

remains uncertain. Further, the degree to which subsidized housing has managed to avoid 

hazardous locations is another issue that has yet to be rigorously explored. The outcomes of 

residential location choice can vary based on the specific characteristics of local housing markets 

and  program provisions (Pendall, 2000; Turner, 1998) and since the supply-side (i.e., scattered-

site or LIHTC program) and demand-side (i.e., vouchers) policies have different mechanisms for 

providing housing assistance, their location outcomes can also be expected to vary (Kucheva, 

2013). The location patterns of subsidized housing are discussed in the subsequent paragraph, 

and then prior studies on the hazard exposure of subsidized housing are briefly reviewed. 

Studies have shown that the use of HCVs can be higher in disadvantaged neighborhoods 

because landlords in these areas often eagerly recruit HCV holders (Galster, 2013). Private 

landlords are more likely to be faced with high vacancies in these neighborhoods and respond by 

aggressively marketing their units to voucher holders (Galster et al., 1999). For the LIHTC, a 
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number of studies have documented the effect of a specific location incentive called the qualified 

census tract (QCT), which provides additional credit for construction in designated low-income 

census tracts (Baum-Snow & Marion, 2009; Freeman, 2004; Hollar & Usowki, 2007; Oakley, 

2008). However, Lang (2012) showed that, even after controlling for QCT designations, 

differences in the market rent level affect the location of subsidized housing and specifically, 

developers are more likely to build subsidized housing in locations with low rent. Lang (2012) 

argues that subsidization is less likely to be profitable in locations with relatively high market 

rent because the opportunity cost of building subsidized housing is also higher in these locations. 

Burge (2011) shows that only a small portion of the cost of the LIHTC subsidy is used to reduce 

rent for tenants and rent savings diminish over the lifetime of the apartment units. The outcome 

Burge demonstrates may be the result of incentives to build subsidized housing in locations 

where the prevailing rent is already low. 

Although previous research has thoroughly examined the location of subsidized housing 

in terms of the socio-economic status of a neighborhood, very few studies have explored the 

level of hazard exposure experienced by participants in these programs. Cutter et al. (2001) 

examined the relationship between the location of environmental risks and federally assisted 

public housing in a sample of eight medium-sized United States metropolitan areas. They found 

that families living in HUD housing had a greater risk potential from hazardous facilities based 

on proximity and the reported releases from them, and that minority populations (defined as 

percentage non-White) had significantly greater locational exposure than non-minority 

populations. Houston et al. (2013) assessed the spatial distribution of subsidized housing units 

provided through two federally supported, low-income housing programs in Orange County, 

California, in relation to neighborhood walkability, transit access, and traffic exposure. They 

argued that, since LIHTC development proposals receive points in a competitive process for 

access to local amenities, these developments may be more sensitive to site feasibility 

considerations and may tend to be located in transportation corridors with lower property values 

and higher traffic. On the other hand, since the HCV program is not location based and allows 

participants to locate within the private rental market, their neighborhoods should differ spatially 

from areas prioritized by developers leveraging capital through the LIHTC program. From their 

analysis, Houston et al. (2013) also found  LIHTC projects more likely to be located in high-

traffic areas than voucher users.  
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2.7 Study Framework 

The analysis of social vulnerability generally focuses on social, economic, political, and 

institutional factors that lead to differential susceptibility or sensitivity (of different social 

groups) in the face of risk exposures (Tate et al., 2010). It is argued that the mounting financial, 

human, and environmental impacts in the United States are a function of the increasing 

movement of people and property into highly exposed areas (Cutter et al., 2007), however, very 

few studies have explored how social vulnerability changes over time across cities with different 

population growth trends. The first stage of this dissertation explores how the dimensions and 

spatial distribution of social vulnerability changed over a 30 year time period (1980-2010) in 

three coastal cities (Houston, New Orleans, and Tampa). This analysis  documents and interprets 

observed similarities and differences in the dynamics of social vulnerability across the study 

cities. This study recognizes that multiple drivers contribute to this changing pattern of social 

vulnerability, but focuses on subsidized low-income housing programs as a potentially 

important, yet understudied factor ripe for further exploration. In its second stage, this 

dissertation delves deeper into the relationship between subsidized housing and hazard exposure 

in Houston, Texas. Under the vulnerability production framing (Dooling & Simon, 2012), it 

explores the extent to which the market-based programs for providing low-income housing are 

contributing to vulnerability within the city. 

The spatial clustering of minorities and low-income households in neighborhoods 

vulnerable to hazardous and toxic materials is not uncommon in the United States (Massey & 

Denton, 1993; Mohai & Saha, 2006). Previous studies have proposed different but not mutually 

exclusive explanations for this including a lack of financial capacity (Galster & Keeney, 1988), 

discriminatory siting of hazardous facilities (Pastor et al., 2001), housing market discrimination 

(Dawkins, 2004; Freeman, 2004; Galster & Godfrey, 2005), and a lack of adequate knowledge 

about the risks (Zhang, 2010). On the other hand, studies of subsidized housing have also shown 

that these programs usually fail to deconcentrate poverty, in some cases create negative spillover 

effects on neighborhoods, and may even further concentrate poverty (Galster, 2013; Galster et 

al., 1999; Schill & Wachter, 1995). There is also evidence that market-oriented housing 

programs can actually incentivize low-income households to live in disadvantageous, low-rent 

neighborhoods (Freeman, 2004; Galster et al., 1999; Hollar & Usowki, 2007; Oakley, 2008). 

Since both natural and technological hazards exert a negative effect on residential property 
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values (Shultz & Fridgen, 2001; Speyrer & Ragas, 1991), it is reasonable to expect that 

subsidized housing programs may contribute to more low-income households living in those 

hazardous areas. Because minorities and low-income home owners usually do not have adequate 

knowledge about the risks associated with hazardous and toxic materials (Zhang, 2010), the 

probability that they may move into multi-hazard areas is even higher. However, it is also true 

that in some cases hazard exposure, in terms of distance to rivers and coastline, can also be 

perceived as an amenity (Smith et al., 2009) for the recreational opportunities and scenic views it 

may offer. As a result, such areas can serve as an important counterexample that defies the 

general trend (i.e., high hazard exposure coupled with low social vulnerability). These areas also 

can be expected to have fewer subsidized housing units due to higher land values. Ultimately, the 

above proposition should still hold that when located in hazardous areas, a higher proportion of 

subsidized units may be associated with a higher proportion of low-income minority households 

in the neighborhood. 

The conceptual framework of this dissertation is presented in Figure 2.3 below. As 

shown, under the broader political-economic framing of vulnerability this dissertation examines 

the ways in which vulnerable populations may move into hazard exposed areas. The first stage of 

the study explores the changing pattern of social vulnerability (in three coastal cities) over time 

and in the second stage it delves into one case study city, hypothesizing that subsidized low-

income housing programs may act as a key driver of social vulnerability in hazardous areas. 
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Figure 2.3: Conceptual framework of the dissertation 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

As discussed in the previous chapter, this dissertation is conducted in two stages—the first stage 

explores social vulnerability in three case study cities and the second stage examines the 

influence of subsidized housing programs on social vulnerability and hazard exposure in 

Houston, Texas. The methodology is discussed in detail here after a brief introduction to the case 

study cities. 

3.1 Case Study Cities 

For the first stage of the dissertation, similarity of geographic location and variation in 

population trends were the primary criteria for selecting case study cities. All three case study 

cities are located in the U.S. Gulf Coast region, but within different state jurisdictions—Houston 

in Texas, New Orleans in Louisiana, and Tampa in Florida. All of these cities are considered 

highly exposed to climate change impacts (Nicholls et al., 2008), but have varying levels of 

population and assets exposure (Table 3.1).  

Table 3.1: Case Study Cities 

Case study cities Population 

growth (2000-10) 

Current climate 

exposed pop. 

(thousands)* 

Current climate 

exposed assets 

(billion $)* 

Houston, TX  

(Harris County) 

7.46% 59 12.21 

New Orleans, LA  

(Orleans Parish) 

-29.06% 1,124 233.69 

Tampa, FL 

(Hillsborough County) 

10.63% 415 86.26 

* Estimates from Nicholls et al. (2008), Appendix 3: City Data and Rankings 

Since the boundary of the cities has changed over time, their respective counties
6
 are used to 

spatially delineate the study cities for this research. Figure 3.1 shows different trajectories of 

population change over time in each of the three study areas. While Houston has experienced 

consistent growth since 1960, Tampa was characterized by relatively moderate growth, and New 

Orleans experienced consistent decline. 

                                                        
6 Counties encompassing the core cities are considered for this study to maintain a consistent geographic area over 

time. Metropolitan areas not considered since MSA boundaries have also changed over time and outlying rural areas 

may significantly influence the results of this study. 



24 
 

 

 

Figure 3.1: Population trends of case study cities 

 

For the second stage of the dissertation, Houston (i.e., Harris County) serves as a detailed case 

study for examining the longitudinal relationship between subsidized low income housing and 

hazard exposure. The distinctly neoliberal approach to policy making that characterizes Texas 

also makes Houston the most suitable choice, given the political-economic framing of this study. 

Since the city boundary of Houston has changed, Harris County is adopted as the case study unit 

of analysis in order to maintain a consistent geographical extent over time. This area is also a 

prime candidate for the dissertation due to its multi-hazard environment. Harris County is the 

third most populous county in the United States
7
 with about 4 million residents

8
 and is located in 

the low-lying Texas coastal area that is exposed to both hurricane and flood hazards (Cutter, 

2003). Besides natural hazards, there are also hundreds of petrochemical manufacturing and 

distribution facilities across the county, which elevates the potential for toxic chemical hazards 

(EPA, 2008). Harris County is also demographically and socioeconomically diverse. According 

to 2012 American Community Survey data, the Hispanic and Latino population accounted for 

41.5 percent and the African American population accounted for 19.5 percent of the total 

                                                        
7 Both in the 2000 and 2010 Decennial Census. 
8 Total population of Harris County was 3,400,578 in 2000, which increased to 4,092,459 in 2010, as per the 2000 

and 2010 Decennial Census respectively. 
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population, with 17.3 percent of population below poverty level in this county. This diversity 

further recommends Harris County and the City of Houston as an interesting case for evaluating 

the location decisions of vulnerable low-income population groups in this urban agglomeration 

and how existing subsidized housing programs are influencing this vulnerability pattern. 

3.2 Evaluating the Changing Patterns of Social Vulnerability 

A variety of methods have been employed to measure social vulnerability at many 

different scales, but the one constant has been a consensus on the multidimensionality of this 

concept. For example, vulnerability is often understood to include poverty (Fothergill & Peek, 

2004; Long, 2007), race and ethnicity (Fothergill et al., 1999; Peacock et al., 1997), gender 

(Enarson & Morrow, 1998; Enarson et al., 2007), and age (Anderson, 2005; Smith et al., 2009). 

In order to evaluate social vulnerability dynamics in the study cities (Research Question 1), the 

Social Vulnerability Index (SoVI) is calculated decennially at the census tract level over a 30 

year time period (1980-2010). This was accomplished using the inductive approach for 

measuring social vulnerability developed by (Cutter et al., 2003) with some modifications 

considering data availability and suggested refinements to this foundational method by 

subsequent studies (Finch et al., 2010; Tate, 2012). Cutter et al. (2003) considered 42 variables 

for their study at the county level, but since this dissertation measures social vulnerability at the 

census tract level and focuses more on the social construction of vulnerability, it considers 26 

variables, following the approach of (Finch et al., 2010). The list of variables used for SoVI 

calculation is presented in Table 4.1 of Chapter 4. For 2010, these variables were collected from 

U.S. Census American Community Survey (ACS) 2008-2012, and for 1980 to 2000, data were 

drawn from the decadal census reports of U.S. Census Bureau
9
. Since the ACS data are based on 

sample surveys over a five-year period, 2008-2012 is considered representative data for 2010. 

The boundaries of census tracts also changed significantly in 2010, which makes it very difficult 

to construct a longitudinal database of the type required here. For the purposes of longitudinal 

comparison, all the data (1980 to 2010) were converted to 2010 census geography following the 

Longitudinal Tract Data Base (LTDB) approach developed by Logan et al. (2014). Census tracts 

with high group quarters populations (e.g. jails, university campuses, etc.) or too few residents in 

any time period were excluded from the analysis. These collected data were then normalized to 

                                                        
9 Census reports of 1980 to 2000 are collected from Social Explorer (http://www.socialexplorer.com/). 
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percent, per capita, or density functions given the differential population and area of census 

tracts. Each of the variables is standardized as a z-score
10

 before being incorporated into the 

Principal Components Analysis (PCA) so that no individual variable influences the final 

vulnerability score more than another. Before applying PCA to calculate the SoVI, biplots with 

alpha-bags (La Grange et al., 2009) were created to explore distributions of data over the years 

and to visualize the changing patterns of the various dimensions of social vulnerability. 

 

3.3. Multidimensional Biplots for Exploring Social Vulnerability 

The distribution of selected vulnerability indicators and their relationship with each other 

can be visualized through two-dimensional scatter-plots, but such plots can only present two 

variables and cannot show how all the variables are distributed in relation to each other. Biplots 

were introduced by Gabriel (1971) as a graphical display tool consisting of a vector for each row 

and a vector for each column of a matrix of rank two. Here the prefix ―bi-‖ refers to the 

simultaneous display of both the rows and columns of a data matrix and not to the dimension of 

the display space. It is also described as a multivariate analogue of the ordinary scatter plot 

(Gower & Hand, 1996). While a scatter-plot portrays the covariation of two variables, a biplot 

can contain as many axes as there are variables so as to provide information on all variables in a 

single plot. Biplots represent different variables by axes similar to ordinary scatter-plots and 

calibrate these axes in the original scales of measurement (Gardner et al., 2005). Here the 

individual observations are represented as points, and variables are represented as labeled, 

calibrated axes (La Grange et al., 2009). To accommodate more than two variables, the axes of 

biplots are not perpendicular as in ordinary scatter-plots, but they are still used in a similar way 

to provide information on all variables. As a multivariate extension of an ordinary scatter plot, 

non-statisticians should comfortably understand the basics of the biplot, enabling them to 

interpret the biplot display with relative ease (Walters & Roux, 2008). 

Since this dissertation explores how different dimensions of vulnerability are distributed 

over time, correlation biplots are created for each of the time periods (and for each of the study 

cities) separately. The biplot follows an ordinary eigenvalue
11

 problem and aims to optimally 

                                                        
10

 The z-score was calculated as follows: ZTract =  (ScoreTract – MeanMetro) / Standard DeviationMetro 
11 In Principal Component Analysis (PCA) the variance for each principal component is given by the eigenvalue of 

the corresponding eigenvector. The eigenvalue of each component indicates the percentage of variation in the total 

data explained by this component. For more discussion on eigenvectors and eigenvalues see Manly (1986). 
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represent the multidimensional variation of the observations in two dimensions (Gardner et al., 

2005). Like ordinary scatter plots, biplot axes do not intersect perpendicularly. In this case angles 

among the axes indicate correlations among the variables, where a smaller angle refers to a 

larger correlation (Le Roux & Gardner, 2005). Such a biplot can be overlaid with an alpha-bag 

(Gardner, 2001) to better present and aid interpretation of a large number of variables. An alpha-

bag is a contour enclosing the exact innermost α percentage of sample points in a biplot (Gardner 

et al., 2005). The distribution of the selected variables within the alpha-bags indicates how 

different dimensions of vulnerability are related and comparing alpha-bags of different time 

periods indicate how this relationship changes over time. Chapter 4 further elaborates on biplots 

and shows how the dimensions of social vulnerability have changed over time for each of the 

study cities. 

3.4 Calculation of SoVI and Exploring Its Distribution 

Biplots with alpha-bags (for all four census years) visually indicate the changing pattern 

of vulnerability dimensions, but for quantifying the relative levels of vulnerability, the Social 

Vulnerability Index (SoVI) is calculated at the census tract level. Since the SoVI algorithm of 

Cutter et al. (2003) has been found to be robust enough to withstand minor changes in variable 

composition and scale (Schmidtlein et al., 2008) and precision (Tate, 2012), this dissertation 

adapts this approach to measure social vulnerability at the census tract level. The SoVI is derived 

through Principal Component Analysis (PCA) which identifies a smaller set of independent 

factors that account for a majority of the overall variance within the original data. These 

component parts are then interpreted and assigned a general socioeconomic or demographic 

interpretation based on which factors loaded highest on each component. One of the key steps in 

this process is to choose the optimum number of factors to retain from the principal component 

analysis. Cutter et al. (2003) applied the Kaiser criterion
12

 for selecting the number of factors, but 

recent studies have shown that use of the Kaiser criterion overestimates the number of factors to 

retain (O‘Connor, 2000; Patil et al., 2008). Considering this limitation of the original approach of 

Cutter et al. (2003), this dissertation applies parallel analysis
13

 for determining the optimum 

                                                        
12

In which all components with an eigenvalue greater than one are retained. 
13 The rationale behind Parallel Analysis is that sampling variability may produce an eigenvalue greater than one 

even if all eigenvalues of a correlation matrix are exactly one and no large components exist (Zwick & Velicer, 

1986). Parallel analysis applies principal components analysis to a random matrix of identical dimensionality and 

compares it to the research data set. Through a Monte Carlo simulation approach it produces a distribution of 
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number of factors as suggested by (Tate, 2012).  

The aim of applying PCA to the standardized variables is to identify a certain number of 

factors that explain most of the variation in the dataset. These factors are interpreted and named 

based on the characteristics of the variables that are most closely associated with it and typically 

informed by one or more dominant variables. All factors are rescaled so that positive values 

indicated higher levels of vulnerability, while negative values are consistent with a decrease in 

vulnerability. The factor scores are then aggregated in an additive model to derive the overall 

composite social vulnerability score. The additive model assigns equal weight to all components, 

which makes no a priori assumptions about the relative importance of each component in 

producing social vulnerability (Cutter et al., 2003; Finch et al., 2010). This process of SoVI 

calculation is applied to each of the study areas (Houston, New Orleans, and Tampa) and for all 

time periods (1980, 1990, 2000, and 2010) separately. To determine the patterns of similarity and 

dissimilarity in the clustering of social vulnerability, the degree of spatial autocorrelation among 

the census tracts is evaluated. This portion of the analysis measures and visually depicts the 

spatial pattern of social vulnerability in each of the different study city contexts and how it has 

changed over time. Local Indicators of Spatial Association (LISA) cluster analysis (Anselin, 

1995) helps to identify the areas with significantly higher concentrations of vulnerable 

populations.  

Comparing the z-scores of the SoVI at the tract level shows which areas of the city (with 

respect to other parts of the city) have experienced a significant increase or decrease in 

vulnerability over time. The degree of spatial autocorrelation of the SoVI evaluates the pattern of 

change in social vulnerability throughout the study cities and how it varies in different city 

contexts. Chapter 4 discusses further on the statistical measures applied to compare SoVI and 

presents the results for all three study cities.  

 

3.5 Subsidized Low-Income Housing as Driver of Social Vulnerability 

This second stage of the study is conducted in two steps. First, the level of exposure to 

both natural (flood and hurricane) and technological hazards are evaluated for the entirety of 

                                                                                                                                                                                   
eigenvalues for each principal component in the random dataset. Simulated eigenvalue distributions are compared to 

the observed eigenvalues and whatever number of eigenvalues in the observed dataset exceeds the corresponding 

value in the simulated dataset is considered as the optimal number of factors to retain. This procedure usually results 

in a fewer number of factors (compared to Kaiser criterion) and considered as a superior alternative for determining 

the optimal number of factors (Tate, 2012). 
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Harris County, Texas, and population trends (for different vulnerable groups) within these areas 

are explored (Research Question 2). In the second step, spatial econometric models are applied 

to evaluate the extent to which subsidized low-income housing is influencing the hazard 

exposure of vulnerable population groups in Harris County (Research Question 3). Given the 

availability of data on subsidized housing, this part of the study was conducted for the period of 

2000 to 2010. 

3.5.1 Hazard Exposure and Social Vulnerability 

In order to capture the multi-hazard landscape of Harris County, both natural and 

technological hazards are included in this study. Given the high risk of floods and hurricanes in 

Harris County area, these two hazards are considered under the domain of natural hazards. For 

technological hazards, exposure through the facilities identified in the Toxic Release Inventory 

(TRI) of EPA is considered due to the prevalence of such industries in the low-lying areas of 

Houston. The impact areas for flooding and hurricane storm surge are identified based on 

publicly available outputs of computer modeling. The U.S. National Hurricane Center used the 

SLOSH (Sea, Land, and Overland Surge from Hurricanes) model to estimate worst-case-scenario 

storm-surge boundaries (Tate et al., 2010) and produced surge zones for each of the Saffir-

Simpson categories. GIS floodplain-boundary representations of these model outputs are 

available from FEMA Digital Flood Insurance Rate Map (DFIRM) database. Category-1 

hurricane risk zones and 100-year floodplains were identified from these sources and combined 

to identify and map the natural hazard exposed areas of Harris County. The proportion of 

residential lots falling within these areas was used as the indicator for determining the relative 

natural hazard exposure level of each census tract. This approach is similar to Cadastral-based 

Expert Dasymetric System (CEDS) methodology of Maantay et al. (2007) that considers 

residential area or the number of residential units as proxies for population distribution. This 

technique gives a more realistic population distribution compared to traditional mapping 

methods and is particularly useful for evaluating flood exposure in an urban environment 

(Maantay & Maroko, 2009a). Parcel information for Harris County was used in this study as the 

ancillary data required for the CEDS approach. These data were collected from the Harris 

County Appraisal District (HCAD) public downloads FTP site and the locations of residential 

lots were extracted. ArcGIS tools were used to combine the flood and hurricane risk maps, clip 

the residential lots located within risk areas, then intersect these layers with census tract layers to 
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calculate the percentage of residential lots within the natural hazard areas of each census tract. 

Areas with a higher percentage of its residential lots falling in the flood or hurricane risk areas 

are considered to be more exposed to natural hazards. 

For evaluating technological hazards, environmental pollution data collected by the 

United States Environmental Protection Agency‘s Toxic Release Inventory (TRI) were used for 

this study. The TRI is one of the most widely used data sources for environmental justice studies. 

Any facility that releases toxic chemicals is required to submit reports to the Environmental 

Protection Agency if certain minimum release thresholds and other criteria are met as mandated 

by the Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986. The 

locations of Toxic Release Inventory (TRI) facilities in Harris County were obtained by querying 

the TRI.NET application of the US Environmental Protection Agency (EPA). This application 

allows users to select, sort, and filter TRI data by geography, year, and hazard type. The location 

and total toxic release data of all facilities in Harris County for all years from 2000 to 2010 were 

collected to evaluate the relative hazardousness of the county‘s census tracts. All the locations 

were checked after mapping them by both geocoding addresses and plotting latitude and 

longitude coordinates. Since the release levels may vary from year to year for a certain facility, 

data for all years were considered in calculating the average level of hazardousness.  

An effective method for defining proximity and potential exposure to environmental 

hazards remains a widely debated issue in the environmental justice literature (Chakraborty & 

Maantay, 2011; Conley, 2011). Since this study is interested in proximity to hazards and its 

relative influence on social vulnerability, exposure based on distance decay or continuous 

distance from the hazard was deemed the best approach. But here as well there is no recognized 

standard for what the threshold distance of exposure from a facility should be or how the 

distance decay function should be defined. Considering this methodological uncertainty, two 

approaches were taken here that have contrasting distance decay specifications and can 

accommodate multiple threshold distances. The first approach uses a power function (Conley, 

2011) and the second approach considers cumulative exposure (Cutter et al., 2001) within a 

specified threshold distance. For both of these approaches, the total release from a given TRI 

facility is used as an indicator of its relative level of influence without considering the toxicity 

level of the chemicals released by them. It can be assumed that the total release will be 

commensurate with facility size and hence, a better indicator of relative influence on its 
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surrounding region. The two approaches taken for evaluating technological exposure are 

explained below. 

The first approach uses the power equation, taken from the physical model of gravity, and 

considers that the impact of a facility is proportional to the size of the release and inversely 

proportional to the distance (from a census tract centroid) raised to a parameterized component 

(Conley, 2011). The equation can be shown as: 

    
  
 

   
 

           

 

 

Here yi is the weighted cumulative exposure of census tract i, wj is the total release from facility j 

and dij is the distance from facility j to tract i. In this equation θ is a positive constant that 

determines the rate of decrease to which a facility may impact its surrounding region. To 

operationalize a situation where a facility exerts a very high impact on its immediate neighboring 

area and then its influence decreases rapidly with distance, θ is assigned a value of 2 in this study 

(Figure 3.4). An additional reason for this specification is that no threshold distance or cutoff 

point for facility impact (which is considered in the second approach) is assumed and hence, a 

given facility will still have a minimal impact on far away tracts.  

In the second approach, risk exposure at the census tract level was measured based on the 

potential exposure model of Cutter et al. (2001). Like the first approach, it is also based on the 

distance to existing hazard source and can incorporate multiple hazard sources, but has the 

option to impose a threshold distance or cutoff point on facility impact. The index measured 

through this model is labeled as proximal exposure as it does not purport to represent actual 

exposure. This proximal exposure model includes multiple hazard sources in order to compute a 

cumulative proximal exposure (CPE) for a census tract Cutter et al. (2001). Cumulative proximal 

exposure is defined as the sum of proximal exposure associated with each tract: 

              
   
 

 
 

           

 

 

Here, WCPEi is the weighted cumulative proximal exposure to population in census tract i from 

distance to facility at locations 1 through j (total number of facilities), wj is the total release from 

facility j, dij is the distance from tract i to facility j, T is the threshold distance at which exposure 

becomes negligible from a facility, and θ is the rate of reduction of exposure at increasing 
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distance from j. Unlike the power function of the first model, this model assumes a distance, T, at 

which the proximal exposure becomes zero. This point is called the ―negligible threshold‖ 

beyond which there is no locational risk. In this case the impact from a facility to its neighboring 

region decreases much more slowly (compared to power function), but does not assume any 

impact beyond the threshold distance (Figure 3.2). For the present analysis, θ is assigned a value 

of 2 (following Cutter et al. (2001)) and the negligible threshold is taken at multiple distances to 

evaluate whether the results change due to the threshold distances (i.e., sensitivity analysis). All 

the results presented in Chapter 5 were tested for threshold distances of 1, 3, and 5 miles
14

, but 

only the results from conservative estimate of 1 mile are presented after finding that it yielded 

the most consistent results.  

 

Figure 3.2: Comparison of distance decay functions. (For both functions θ =2, w=1000, and for 

CPE T=5 is considered to show a hypothetical TRI facility may impact its nearby region.)  

 

The two approaches discussed above produce two different hazard landscapes for the 

study area and hence, should provide a deeper understanding of the dynamics between 

subsidized housing and social vulnerability in the study area. For both of the approaches, 

                                                        
14 Since there is no widely accepted threshold distance, this study tested the results in these three distance bands of 

1,3, and 5 miles following the approach of Cutter et al. (2001) who also evaluated their results on 1 to 5 miles 

distance range. While Cutter et al. (2001) tested it for census tract level analysis, a subsequent study of Conley 

(2011) applied it for County level data with much larger distance threshold (5, 10, 15,….500 miles). 
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technological exposures at the census tract level were calculated for all years from 2000 to 2010 

and then the average level of exposure was calculated, which represents the relative 

hazardousness of an area.  Population trends, for different dimensions of social vulnerability (i.e. 

minority, low-income, etc.) were explored within census tracts having different levels of 

exposure to natural or technological hazards.  

3.5.2 Low-Income Housing in a Multi-Hazard Environment 

Data on the location and type of subsidized housing from the Department of Housing and 

Urban Development (HUD) were used for this study. HUD maintains the LIHTC Database and 

the Picture of Subsidized Households data set, which disaggregates building-based public and 

private ―fixed‖ subsidies (Public and Indian Housing, Section 236, Section 8 New Construction 

and Substantial Rehabilitation, FHA, LIHTC) from person-based ―voucher‖ subsidies (Section 8 

vouchers and certificates). These data were further verified against information collected from 

the Houston Housing Authority (HHA) and Texas Department of Housing and Community 

Affairs (TDHCA) to check the accuracy of the location and number of subsidized housing units. 

After geocoding the locations of the housing units, the total number of housing units (by type) in 

each of the census tracts was calculated. Considering variation in the coverage and approach of 

different housing assistance programs, this research focused on two programs that are among the 

most popular and widely used (Schwartz, 2010)—Section 8 or the Housing Choice Voucher 

(HCV) program and the Low Income Housing Tax Credit (LIHTC) program. These two 

programs also represent contrasting approaches for providing housing assistance, the supply-side 

(LIHTC program) and the demand-side (vouchers). However, HUD‘s Picture of Subsidized 

Households data set is consistently available only beginning in 1996 and to make it comparable 

with census data, 2000 and 2010 were chosen as the two time periods for HCV data. For the 

LIHTC data (collected from HUD‘s LIHTC Database), the locations of the properties were 

geocoded, then the year when a project was placed in service was extracted and used to assign 

them to either 2000 or 2010 (i.e. all active projects built before 2000 are assigned to year 2000, 

and all projects developed after 2000 are assigned to year 2010). For all of the LIHTC properties 

in a census tract the number of low income units available were aggregated to obtain total 

number of subsidized households in that tract attributable to this program. 

Before applying regression analysis to the social vulnerability and housing subsidy 

dataset, some of the key variables were explored through descriptive statistics. Principal 
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Component Analysis (PCA), applied for developing the SoVI, revealed the key indicators that 

explain most of the variation in the original data, which were race and poverty. Whether an 

increase in housing subsidies in a hazardous area contributes to social vulnerability there (e.g., 

higher poverty) compared to other areas which did not experience an increase in housing 

subsidies between 2000 and 2010 is a question that emerged from this initial exploration of the 

data. As hypothesized here, we should see a significant increase in vulnerable populations in an 

area (compared to other areas) when it receives increased number of housing subsidy and is also 

located in a hazardous area. While prior studies have extensively explored the neighborhood 

impacts of housing subsidy and found mixed results (Freeman, 2003; Galster et al., 1999; 

Holloway et al., 1998; Oakley, 2008), this kind of interaction between hazard exposure and 

housing subsidies, alongside their combined effects on neighborhood social vulnerability is yet 

to be explored. 

 

3.5.3 Model Selection and Analysis 

Both standard OLS regression and spatial regression models were estimated to evaluate 

the above mentioned hypothesis, which necessitates controlling for base year neighborhood 

socio-economic characteristics along with changes in these characteristics in the 10 year period 

between 2000 and 2010. Particularly, considering the spatial pattern of vulnerability 

concentration and diffusion (as presented in Chapter 4), a spatial Durbin model (LeSage & Pace, 

2009) was estimated to evaluate the extent to which subsidized housing may have contributed to 

the location of vulnerable populations in hazard exposed areas. Here the dependent variables are 

the number of residents exhibiting key dimensions (determined from the SoVI analysis) of social 

vulnerability (e.g., African-American population in poverty, Hispanic population in poverty, etc.) 

while four interaction variables (e.g., two hazard types by two subsidy types) are the key 

independent variables for this model. All other variables related to social vulnerability and 

hazard exposure were treated as control variables. The rationale for estimating a spatial Durbin 

model (SDM) is due to the patterns of spatial dependence among social vulnerability, hazard 

exposure, and housing subsidy observed by previous studies. First, prior studies have shown 

significant clustering of minorities and low-income households in neighborhoods vulnerable to 

hazardous and toxic materials (Bullard, 1999; Massey & Denton, 1993; Mohai & Saha, 2006). 

Second, subsidized low-income housing has been found to be geographically concentrated in 
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certain areas (Oakley, 2008), and sometimes highly clustered in areas characterized by high 

poverty rates, minority concentrations, and poor educational opportunities (Van Zandt & Mhatre, 

2009). The provision of incentives through qualified census tracts (QCTs) for the LIHTC 

program was also found to be contributing to higher numbers of low-income housing in high-

poverty areas (Abt Associates, 2006; Hollar & Usowki, 2007). Thirdly, studies have found 

negative spill-over effects of subsidized housing on land value, crime, middle class flight, and 

concentration of poverty (Galster et al., 1999; Holloway et al., 1998; Massey & Kanaiaupuni, 

1993). In light of this evidence, it can be expected that subsidized housing and poverty 

concentration are not only related within a neighborhood, but also influencing surrounding 

neighborhoods, and to capture the spill-over effects (if there are any) the SDM should be a better 

modeling approach. An unconstrained SDM is a general-to-specific approach which can consider 

such indirect spatial interactions as when the exogenous explanatory variables influence not only 

the dependent variable in an area, but also in neighboring areas as well (LeSage & Pace, 2009).  

The most commonly encountered specification in spatial econometrics is the spatial lag 

model (Anselin, 1988; LeSage & Pace, 2009; Ord, 1975): 

              (1) 

where y is a vector of observations on a dependent variable taken at each locations, X is a matrix 

of exogenous variables, W is row-standardized n by n spatial weight matrix, β is a vector of 

parameters, ε is a vector of independent and identically distributed disturbances and ρ is a scalar 

spatial lag parameter. The spatial error model can be written as (Anselin, 1988; LeSage & Pace, 

2009; Ord, 1975): 

               (2)           

           (3) 

Here λ is the spatial autoregression parameter of error term u. While spatial lag model (1) treats 

spatial correlation as a process or effect of interest and incorporates spatial dependence (Wy), the 

spatial error model treats spatial correlation as a nuisance and examines whether the error term 

has a spatial dependency (Wu). The spatial Durbin model, on the other hand, includes a spatial 

lag of the dependent variable as well as spatial lags of the explanatory variables: 

                (4) 

where θ is a vector of parameters. Here ρ is the spatial autoregressive parameter that measures 

the degree of spatial dependence between the numbers of vulnerable population of nearby census 
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tracts. The WXθ term in Eq. (4) captures the extent to which the characteristics of neighboring 

areas (for hazard exposure and housing subsidy) influence the size of vulnerable populations in 

an area and specifically captures the spill-over effect of subsidized housing shown by previous 

studies (Galster, 2013; Galster et al., 1999; Schill & Wachter, 1995). The Wy term is expected to 

capture the clustering of minority and low-income populations in certain areas of the city and the 

SDM is solved using maximum likelihood estimation (Bivand & Gebhardt, 2000; LeSage & 

Pace, 2009).  

Before applying the spatial Durbin model, Elhorst (2010) suggests that other modeling 

alternatives be explored to find out which model is the most likely candidate to explain the data 

and test hypothesized relationships. LeSage & Pace (2009) advocate for use of the SDM model 

as the model to test for spatial interaction effects for two main reasons. First, in the case that the 

true spatial process is one in which spatial dependence exists between the dependent variable in 

one area and the exogenous covariates in neighboring areas, and these variables happen to be 

correlated with independent variables not omitted from the model, the SDM will produce 

unbiased coefficient estimates (but a spatial lag model will not). This is considered to be a salient 

issue for this study, since vulnerability indicators (poverty, minority populations etc.) tend to be 

clustered in space, thus implying correlation between the values in neighboring tracts. Second, 

when the true spatial process is one in which the outcome variable is spatially correlated with the 

exogenous covariates within the same tract or in which there exists a spatially correlated error 

term (i.e. spatial error model), the SDM model will continue to produce unbiased coefficient 

estimates
15

. So it can be inferred that, except under circumstances in which the spatial lag or 

error model is an unequivocally better fit to the underlying spatial process, the SDM model is the 

preferred option. It should also be noted that in recent simulation experiments conducted by Beer 

& Riedl (2012), the spatial Durbin model also outperformed a structural equations model (SEM) 

specification.  

 Elhorst (2010) proposed a procedure to determine which model, among OLS, spatial lag, 

SEM, and SDM is the most likely candidate to explain the data. In this procedure, first an OLS 

model is tested to check if a spatial lag or spatial error model is more appropriate for describing 

the data. The classic LM-tests (Anselin, 1988) and the robust LM-tests (Anselin et al., 1996) can 

                                                        
15

 Spatial dependence in the error term modeled in the spatial error model is usually referred to as nuisance 

dependence (Anselin, 2003). The spatial error model usually loses its popularity given its lack of interpretation of 

spatial dependence and, more importantly, its susceptibility to omitted variables (Brown et al., 2009). 



37 
 

be used for this purpose. If the OLS model is rejected in favor of a spatial lag specification, the 

spatial error model, or in favor of both models (as indicated by LM tests), then the spatial Durbin 

model (SDM) should be estimated. If these models are estimated by maximum likelihood, 

Elhorst (2010) suggested using a likelihood ratio (LR) test to evaluate the hypothesis H0: θ = 0 

and H0: θ+ρβ = 0. The first hypothesis examines whether SDM can be simplified to spatial lag 

model (Eq. 1) and if it cannot be rejected, then the spatial lag model best describes the data 

(provided that the robust LM also pointed to the spatial lag model). The second hypothesis 

examines whether the SDM can be simplified to the spatial error model (Eq. 2, if θ = -ρβ then 

λ=ρ), and if it cannot be rejected, then the spatial error model best describes the data (provided 

that the robust LM also pointed to the spatial error model). If none of these conditions are 

satisfied, then SDM should be adopted, because it generalizes both the spatial lag and spatial 

error models (Elhorst, 2010).  

In case the estimated OLS model is not rejected in favor of both the spatial lag and the 

spatial error model, Elhorst (2010) suggested reestimating the OLS model with spatially lagged 

independent variables (WX). This approach allows testing of the hypothesis H0: θ = 0, and if this 

hypothesis also cannot be rejected, then the OLS model should be adopted. On the other hand, if 

this hypothesis is rejected, then there should be another iteration applying the SDM and testing 

the additional hypothesis H0: ρ = 0. If this hypothesis is also rejected, then SDM should be 

considered; otherwise, the spatial lag model should be considered as the best description of the 

data
16

. This procedure proposed by Elhorst (2010) was adopted for this study to identify 

statistical models describing the changing patterns of social vulnerability in Harris County, 

Texas. Chapter 5 discusses these models and their findings in greater detail. 

 

3.6 Analysis of Policy and Planning Practice for Subsidized Housing 

Findings from the spatial analysis described above indicates the extent to which 

subsidized low-income housings are clustered in Houston and how they are contributing to the 

concentration of vulnerable populations in hazardous areas. In this last stage of the dissertation, 

policies and planning approaches for locating subsidized housing are evaluated and suggestions 

are offered for making them more consistent with climate change adaptation and disaster risk 

reduction efforts (Research Question 4). HUD regulations for locating subsidized housing in a 

                                                        
16 For elaborate discussion on model comparison procedure and more statistical background, see Elhorst (2010) 
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multi-hazard environment were reviewed to compare those provisions with the HCV and LIHTC 

programs. Housing officials with the Houston Housing Authority were interviewed to gauge 

awareness of the prevailing issue of environmental justice in the study area and what factors are 

considered when permitting (or issuing tax credits) for construction of any subsidized housing. 

Since prior studies have found significant variation in location outcomes (of subsidized housing) 

depending on local housing markets and planning approaches (Galster, 2013; Pendall, 2000), it is 

necessary to evaluate how these aspects of Houston may have influenced the observed 

distribution of subsidized housing. A variety of documents on housing subsidy programs were 

collected and analyzed to determine how the allocation of funds for subsidized housing is made 

and which factors have guided the decision making process. Short visits to some of the LIHTC 

projects in Houston were made to see first-hand how they are situated with respect to hazard 

sources and to get a better sense of their surrounding neighborhoods. The findings from the 

interviews, document analysis, and field visits helped to highlight the limitations of present 

approaches for affordable housing and to identify opportunities for subsidized housing to become 

more consistent with climate change adaptation and disaster risk reduction efforts. 
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CHAPTER 4 

CHANGING PATTERNS OF SOCIAL VULNERABILITY IN COASTAL 

CITIES 

 

4.1 Theoretical Framework 

Planning for climate adaptation tends to overemphasize future climate variability, which 

can lead to non-adaptive or even mal-adaptive outcomes (Barnett & O‘Neill, 2010; Macintosh, 

2013; Orlove, 2009). This approach runs the risk of focusing solely on identifying the climatic 

hazards of a place rather than exploring why people are located in hazard exposed areas in the 

first place. Recent research indicates that in addition to hazard exposure and physical 

vulnerability, social vulnerability, or the variation in characteristics such as income, 

race/ethnicity, gender, and household composition (among others), matters when predicting the 

impacts of coastal surge and flooding (Highfield et al., 2014).  Adaptation approaches that ignore 

the social dynamics of a city can create an environment for non-adaptation when, despite efforts 

to climate-proof places, people are pushed into harm‘s way. This becomes more problematic in a 

multi-hazard urban environment where zoning restrictions or flood-proofing policies may further 

the climate adaptation of certain places, but the socially vulnerable population may only find it 

affordable to live in places which are exposed. The intersection of adaptation and social 

vulnerability demands a new approach to land use planning that is more responsive to how 

socially vulnerable people find their places within a multi-hazard urban area. 

Although theories of neighborhood change and social vulnerability represent two distinct 

literatures, when considered jointly they should yield important insights into the vulnerability 

dynamics of a city. While neighborhood change theories explain the underlying forces that drive 

shifts in the demographic composition of neighborhoods (Glaeser et al., 2008; Peterman, 2000; 

Temkin & Rohe, 1996), social vulnerability theories explore how factors such as poverty, race, 

age, migration, etc. reduce the capacity of marginalized population groups to withstand hazard 

events or delay their recovery process (Blaikie et al., 1994; Hewitt, 1997; Peacock et al., 1997). 

This chapter integrates these two theoretical frameworks in order to explore changing patterns of 

social vulnerability in three coastal cities (Houston, New Orleans, and Tampa). Recognizing the 

historical path dependency of social vulnerability, this chapter analyzes three decades of data 

(1980-2010) to understand how the different dimensions of vulnerability interacted with each 
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other over time and to identify emerging dimensions of vulnerability that warrant attention in 

future adaptation efforts. Since city boundaries often change significantly over time, the 

respective counties of the three coastal cities are taken as the study units to maintain geographic 

consistency. Houston is located in Harris County, Texas; New Orleans in Orleans Parish, 

Louisiana, and Tampa in Hillsborough County, Florida. As mentioned in Chapter 3, despite 

being located in the same Gulf Coast region, these cities are experiencing drastically different 

population trends, and also have different planning and policy approaches. One commonality 

among them is that all three cities are considered to be highly exposed to projected climate 

change impacts (Nicholls et al., 2008). Studying the changing pattern of social vulnerability 

within and across these cities should yield important insights for adaptation planning efforts in 

the region and beyond. The next section further discusses neighborhood change theories and how 

integrating those with social vulnerability theories will further the aims of this study. Changing 

patterns of vulnerability are explored through two different approaches, first by multidimensional 

biplots and then by measuring the Social Vulnerability Index (Cutter et al. 2003) and its spatial 

dimensions over time. Similarities and dissimilarities in longitudinal patterns of social 

vulnerability among the cities are identified and explained through the lens of neighborhood 

change theories.  

 

4.2 Social Vulnerability and Neighborhood Change 

Social vulnerability theorists contend that vulnerability is a social condition, a measure of 

societal resistance and resilience to hazards (Blaikie et al., 1994; Hewitt, 1997). In other words, 

this perspective emphasizes the socioeconomic characteristics that influence a community‘s 

ability to prepare for, respond to, cope with, and recover from a hazard event (Cutter et al., 2003; 

Laska & Morrow, 2006; Peacock et al., 1997) and is most often described using individual 

characteristics (e.g., age, race, health, income, type of dwelling unit, employment). This 

approach situates disasters and their impacts within broader social contexts and processes 

(Wisner et al., 2004) and emphasizes social factors that influence or shape the susceptibility of 

various groups to harm (Cutter et al., 2003). Studies of social vulnerability have extensively 

documented the disproportionate impacts of hazards events on socially vulnerable population 

groups (Cutter, 1996; Cutter et al., 2003; Fothergill & Peek, 2004; Highfield et al., 2014; 

Peacock et al., 2007; Zahran et al., 2008). Prior research has also shown that minority and low-



41 
 

income households usually have a lower level of disaster preparedness (Mileti & Darlington, 

1997; Peacock, 2003; Russell et al., 1995), are less likely to hold earthquake or flood insurance 

instruments (Blanchard-Boehm, 1998; Fothergill, 2004), and are less likely to receive and 

believe official disaster warnings (Fothergill & Peek, 2004; Perry & Mushkatel, 1986; Perry & 

Nelson, 1991). Although these studies contribute important insights to better understanding the 

differential outcomes of disasters, they typically fail to explore the generative process of social 

vulnerability in a place—specifically, why vulnerable population groups move into hazardous 

areas and how present patterns of social vulnerability have evolved over time. Within the 

framework of social vulnerability there have been some efforts to incorporate societal processes 

and mechanisms of vulnerability (Eriksen & Kelly, 2007), but these studies are also limited in 

their scope by evaluating only cross-sectional variation. There have been attempts to explore 

longitudinal change in social vulnerability (Cutter & Finch, 2008), but very few studies (if any) 

have done so at the urban neighborhood level or attempted to explain the drivers for the changing 

geography and composition (of different dimensions) of social vulnerability.  

Neighborhood change theorists have long investigated the underlying drivers of shifts in 

the social characteristics of urban neighborhoods and this literature also offers significant 

insights into the changing pattern of social vulnerability within the cities. While social 

vulnerability explores what makes people vulnerable to hazards, neighborhood change theories 

explain, among other things, why vulnerable people move to or concentrate in certain areas of a 

city. Integrating these two theoretical perspectives allows for a broader and more realistic 

framing of the changing patterns of social vulnerability, which is currently lacking in the 

vulnerability science literature. Neighborhood change theories explain the macro- and micro-

level socioeconomic, political, and institutional forces that drive changes in neighborhood 

characteristics (Temkin & Rohe, 1996) and emphasize understanding the dynamics of 

neighborhood change to fully grasp the implications for urban planning and policy (Glaeser et 

al., 2008; Li & Morrow-Jones, 2010; Peterman, 2000). Within these theories there are three 

major schools of thought (Temkin & Rohe, 1996)—ecological, subcultural, and political 

economy. Within ecological change are the invasion-succession (Burgess, 2008), filtering (Hoyt, 

1939), and neighborhood life-cycle models (Downs, 1981; Hoover & Vernon, 1959), which 

basically treat neighborhood change as a natural evolution process. Subcultural models (Firey, 

1945; Gans, 1962; Suttles, 1972) reject the economic determinism of the ecological models and 
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stress the attachment of residents to their neighborhoods as a key determinant of why and how 

residents live in certain parts of the city. Political economy models (Castells, 1983; Harvey, 

1973; Logan & Molotch, 1987), on the other hand, highlight the institutional forces that 

influence neighborhood change. Rather than viewing urban development as a process of market 

equilibrium, as promoted by urban ecological theorists, political economists argue that social, 

economic, and political forces are the key drivers of neighborhood change. Considering the 

overall focus of this study and that it adopts a political economic framing of vulnerability 

production, political economy theories of neighborhood change are used to explain the changing 

patterns of social vulnerability within the study cities.  

 

4.3 Political Economy Theories of Neighborhood Change 

Political economy theorists explain neighborhood change through two broad streams of 

thought—the ―urban growth machine‖ thesis (Logan & Molotch, 1987; Molotch, 1976), and the 

―urban restructuring‖ or ―globalization‖ thesis (Borja & Castells, 1997; Sassen, 2000; Soja et al., 

1983). While urban growth machine theorists argue that neighborhood change occurs through 

active exploitation of the real estate market and political process by local elites, theories of urban 

restructuring focus on how capital and labor restructuring at the global scale influences urban 

growth and movement within cities. One of the basic tenets of growth machine theorists is that 

the local growth coalition, driven by their fixation on economic growth, can bend the policy 

priorities of localities toward developmental rather than redistributional goals (Logan et al., 

1997). This can be particularly problematic for vulnerable populations in poor neighborhoods 

who may face displacement and hardship, as happened through the 1960s ―urban renewal‖ 

projects and now as a result of the gentrification process. Economic and labor restructuring, as 

argued by the urban restructuring theorists, also makes it harder for vulnerable populations to 

find better paying jobs or affordable housing. The transformation of the economy from 

manufacturing to services has relocated better paying jobs from the inner city to the suburban 

fringe and thereby, increased unemployment in poor neighborhoods (Dickens, 1999). Economic 

restructuring and increased liberalization also led the federal government to reduce funding for 

affordable housing (as discussed in Chapter 2) and made it difficult for vulnerable populations to 

find houses in safer areas. Decreased public spending on social services has strained low-income 

residents of many inner-city neighborhoods (Fainstein & Fainstein, 1985) and economic 
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restructuring has contributed to poverty rates in predominantly black neighborhoods rising faster 

than in white neighborhoods (Galster et al., 1997).  

Globalization of the economy coupled with local economic restructuring is rapidly 

changing the demographic composition of cities, particularly in the growing coastal cities of the 

U.S. Demand for low-wage workers fueled an  influx of immigrant workers from Latin America 

and Asia, and thereby created a ―heterogeneous mosaic of new and old ethnicities‖ (Soja, 2000) 

breaking down the dominant black-white race paradigm within the cities, as Soja et al. (1983) 

showed for Los Angeles. These forces are also changing the patterns of social vulnerability in 

urban neighborhoods and this reality needs to be accounted for in climate adaptation initiatives. 

The next section explores the evolving and increasingly heterogeneous nature of socially 

vulnerable groups within the three coastal urban counties using biplots and in later sections 

through the analysis of Social Vulnerability Index (SoVI). 

 

4.4 Exploring Social Vulnerability through Biplots 

An historical exploration of social vulnerability requires an evaluation of how the 

different dimensions of vulnerability are related to each other and how they have changed over 

time in different cities. Dimensionality reduction through Principal Component Analysis (PCA) 

is one approach, but visualizing these dimensions can help to explain and communicate how 

social vulnerability has evolved over time, given demographic shifts and urban growth. Biplots 

are effective for analyzing multivariate data in that they can simultaneously provide information 

on both the samples and the variables in a two- or three-dimensional representation (La Grange 

et al., 2009; Le Roux & Gardner, 2005). For this study, the neighborhoods or census tracts are 

the samples and variables selected for measuring social vulnerability (as shown in Table 4.1) are 

the variables represented as a calibrated axis on the biplot. The distribution of the sample points 

on a biplot indicates how different census tracts are located along the axis of all the variables and 

at the same time, how the variables (or axes) are related to one another. Correlation biplots are 

created for this analysis that scale all the variables to unit variance
17

 and then adjusts the points 

and axes in such a way that the cosines of the angles between the axes approximate the 

correlations between the corresponding variables (La Grange et al., 2009). This means that if two 

                                                        
17 For calculating unit variance, all elements of a data matrix X are divided by their standard deviations (i.e.,  
     

        
). For correlation biplots, data are also centered around their means (i.e.,                  ).  
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axes are closer together they are positively correlated and if they are in opposite directions 

(around 180°) that would indicate a negative correlation between them. As a result, the relative 

position of the axes visually communicates the degree of similarity among the variables they 

represent in a concise and accessible way. 

Table 4.1: Variables used for creating biplots and to calculate the SoVI. 

# Variables Normalized Variable 

1 Black or African-American population % of Black population 

2 Hispanic population % of Hispanic population 

3 Asian population % of Asian population 

4 Native American population % of Native American population 

5 Population under 5 years old % of population under 5 years old 

6 Population 65 years or older % of population 65 years or older 

7 Group quarters population % of population living in group 

quarters 

8 Foreign born population % of foreign-born population 

9 Household size Average number of people per 

household 

10 Female population % of female population 

11 Female-headed households  % of families with female-headed 

households with no spouse present 

12 Female labor force participation % of female population in civilian labor 

force 

13 Public transportation dependence % of workers (Civilian pop. 16+ and 

employed) using public transport 

14 Education attainment % of population over 25 years old with 

less than 12 years of education 

15 Unemployment rate % of the civilian labor force 

unemployed 

16 Manufacturing employment % of persons (16+ years old) employed 

in manufacturing, transportation and 

public administration 
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Table 4.1 (cont.) 

# Variables Normalized Variable 

17 Employment in service occupations % of persons (16+ years old) employed 

in service occupations 

18 Poverty rate % of population in poverty 

19 Social security recipients % of population who are social security 

recipients 

20 Average household income  Average household income last year ($) 

21 Renter-occupied housing units % of renter-occupied housing units in 

total occupied housing units 

22 Number of mobile homes % of housing units that are mobile 

homes 

23 Average gross rent  Average gross rent ($) for renter-

occupied housing units 

24 Average home value Average dollar value of owner 

occupied housing units 

25 Population in civilian labor force % of population in civilian labor force 

26 Housing density Number of houses per sq. mile 

 

All biplots created for this analysis are presented in Appendix Figures A1 to A3. Figures 

4.1 to 4.3 presented below also show the same biplots, but highlight three important 

race/ethnicity and poverty variables for easier interpretation of the findings from this biplot 

analysis. Alpha bags (Gardner, 2001; La Grange et al., 2009), containing 90% of the samples 

(i.e. α = 0.9) are superimposed on the biplots to identify the prominent dimensions of 

vulnerability at different time periods. Alpha bags can be understood as a multivariate extension 

of the univariate boxplot which can contain any specified proportion of data nearest to the 

median (unlike the central 50% contained by boxplots) and as a result, is effective in highlighting 

differences in variation or the role of outlying values (Walters & Le Roux, 2008). When data 

points are more dispersed in the biplot, there would be an alpha bag of larger size to encompass 

defined percentage of samples (i.e. 90% for this study) and if some data points (i.e., census 

tracts) deviate significantly from the median value due to a higher value of any particular 
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variable (e.g., higher concentration of Hispanic or African-American population), the alpha bag 

will be elongated along the axis of that variable.  

Figure 4.1 shows Harris County, Texas biplots for the four years delineating the three 

decade study period. Changes in the shape of the alpha bag and the relationship among the 

race/ethnicity and poverty axes are evident, particularly after 1990. Changes in the angles 

between the axes can be attributed to high growth of the Hispanic population and the increase of 

poverty in suburban census tracts, which was more concentrated in inner city areas prior to 1990. 

Harris County has experienced enormous growth in its Hispanic population in recent decades. In 

1980 the Hispanic population was only about 15% but increased to 22% in 1990 and then rapidly 

climbed to 33% and 40% in 2000 and 2010 respectively
18

. The black or African American 

population remained consistent at about 18 to 20% of the total population at all three decades, 

and although absolute numbers increased, their percentage remained at a significantly lower rate 

than the Hispanic population. As a result, in 1980 and 1990 (when the Hispanic and African-

American population shares were not that different) there were high correlations among poverty 

rate and minority population, as indicated by smaller angles among these axes (Figure 4.1). In 

2000 however, when the Hispanic population jumped to 33%, a sizable number of census tracts 

exhibited a higher share of Hispanic population and this reduced the historically high correlation 

between concentration of Hispanic and black population. With growth of Hispanic population, 

this pattern continued in 2010 when the axes showed angles similar to those observed for 2000. 

Angles between the axis of poverty rate and race/ethnicity increased after 1990 primarily due to 

a greater negative correlation between the Hispanic and black populations in 2000 and 2010. 

Since the areas with higher minority populations continued to hold higher percentages of the 

population living in poverty, the axis for poverty rate is located in almost equal distance from 

these two axes, indicating a positive correlation with both the Hispanic and black population 

percentage. In 1980, mobile homes comprised a higher percentage of the housing stock in some 

census tracts of Harris County along with a higher percentage of the population employed in 

manufacturing jobs. This is the reason for the 1980 alpha bag having a second spike besides the 

one associated with high poverty and minority population (Figure 4.1, top left box). This 

distortion gradually decreased in subsequent decades and for 2000 and 2010 the alpha bags 

                                                        
18 Calculated from 1980, 1990, 2000 decadal census data and 2008-2012 ACS data (considered as representation of 

2010). All values are rounded to nearest whole number for easies interpretation. 
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indicated two spikes for census tracts with a higher share of black population and Hispanic 

population. This indicates that for Harris County, poverty and minority populations are the 

dominant social vulnerability factors in recent decades, whereas other indicators (e.g. percentage 

of mobile homes) were dominant in previous decades. 

 

1980 

 

1990 

 

2000 

 

2010 

: % population under poverty, : % Black population, : % Hispanic population 

 

Figure 4.1: Correlation biplots (with alpha bag) of Harris County with poverty rate, % black 

population and % Hispanic population highlighted 

SHRBLK80
-1 0 1 2 3

SHRHSP80

-1

0

1

2

SHRASN80

-2

0

SHRIND80

0

KIDS80

-3

-2

-1

0

1

2

OLD80

-1

0

1

2

GROUPQ80

0

SHRFOR80

-1

0

1

AVHHSZ80

-3

-2

-1

0

1

2

FEMR80

0

2

FFH80

-2

-1

0

1

2

3

4

FEMLABR80

-2

-1

0

1

2

3

TRVLPB80

-1

0

1

2

3

4

EDUCUH80

-2

-1

0

1

2

3

UNEMPRT80

-2
-1

0
1

2
3

4

MANUF80

-2

-1

0

1

2

SERVOCC80
-2 0 2 4

POVRAT80

-2

0

2

4
WELFARE80

-2

0

2

4

AVHHIN80

-2

0

RNTUR80

-2

-1

0

1

2

3

MOB80

0

AVGVAL80

0

AVGRNT80

-3

-2

-1

0

1

2

LABPOP80

-3

-2

-1

0

1

2

3

4

HODENT80

-2

0

2

SHRBLK90

-1

0

1

2

3

SHRHSP90

-1

0

1

2

SHRASN90

-1

0

1

SHRIND90

0

KIDS90

-1

0

1

OLD90
0 1

GROUPQ90

0

SHRFOR90

-1

0

1

2

AVHHSZ90

-3

-2

-1

0

1

2

FEMR90

0

FFH90

-2

-1

0

1

2

3

4

FEMLABR90

-3

-2

-1

0

1

2 TRVLPB90

-1

0

1

2

3

EDUCUH90

-2

-1

0

1

2

3

UNEMPRT90

-2 -1 0 1 2 3 4

MANUF90

-2

-1

0

1

SERVOCC90

-2

-1

0

1

2

3

4

POVRAT90

-2

-1

0

1

2

3

4

WELFARE90
-2

0
2

4

AVHHIN90

-2

0

RNTUR90

-2

-1

0

1

2

3

MOB90

0

AVGVAL90

-2

0

AVGRNT90

-2

0

LABPOP90

-3

-2

-1

0

1

2

3

HODENT90

0

2

SHRBLK00

-1

0

1

2

3

4

SHRHSP00

-2

-1

0

1

2

3

SHRASN00

-1

0

1

SHRIND00

-2

0

KIDS00

-2

0

2

OLD00

-1

0

1

GROUPQ00

0

SHRFOR00

-2

-1

0

1

2

3

AVHHSZ00

-2

-1

0

1

2

3

FEMR00

0

2
FFH00

-2

0

2

4

6

FEMLABR00

-3

-2

-1

0

1

2

TRVLPB00

-2

0

2

4

EDUCUH00

-2
-1

0
1

2
3

UNEMPRT00

-2

-1

0

1

2

3

4

MANUF00

0

SERVOCC00

-2

-1

0

1

2

3

4
POVRAT00

-2

-1

0

1

2

3

4

5

WELFARE00

-2

0

2

4

AVHHIN00

-2

0

2

RNTUR00

-1

0

1

2

MOB00

-1

0

AVGVAL00

-2

0

2

AVGRNT00

-2

0

2

LABPOP00

-3
-2

-1
0

1
2

3

HODENT00

0

SHRBLK10

-1

0

1

2

3

4

SHRHSP10

-2

-1

0

1

2

3
SHRASN10

-1

0

1

SHRIND10

0

KIDS10

-2

-1

0

1

2

OLD10

-2

0

2

GROUPQ10

0

SHRFOR10

-2

-1

0

1

2

3

AVHHSZ10

-2

-1

0

1

2

3

FEMR10

0

2

FFH10

-2

-1

0

1

2

3

4

FEMLABR10

-2

-1

0

1

TRVLPB10

-1

0

1

2

3

4

EDUCUH10

-2
-1

0
1

2
3

UNEMPRT10

-2

-1

0

1

2

3

4

5

MANUF10

0

SERVOCC10

-2

-1

0

1

2

3

4

POVRAT10

-2

-1

0

1

2

3

4

WELFARE10

-1

0

1

2

3

AVHHIN10

-2

0

2

RNTUR10

-1

0

1

2

MOB10

-1

0

1

AVGVAL10

0

AVGRNT10

-2

0

2

LABPOP10

-3

-2

-1

0

1

2

HODENT10
0



48 
 

Unlike Harris County, which experienced consistently high population growth, Orleans 

Parish, Louisiana saw a gradual decrease in population over time—specifically, it lost about 

145,000 people between 2000 and 2010
19

. Hurricane Katrina in 2005 is one of the key factors 

behind this population loss as the storm displaced thousands of people and the parish has yet to 

fully recover from that devastation. In terms of racial/ethnic composition, Orleans Parish did not 

experience any significant shift in contrast to Harris County. The black or African American 

population was the largest racial group in the parish in 2000 (about 55%) and remained so in 

2010 (about 60%), while the Hispanic or Latino population continued to constitute a small 

minority (about 3% in 1980 to only 5% in 2010). These trends are also reflected in the biplots of 

Orleans Parish presented in Figure 4.2. In this case, the poverty rate has a higher correlation with 

the black population percentage (as indicated by smaller angle between these two axes) in all 

time periods. The very low presence of Hispanic population also contributed to the negative 

correlation between Hispanic population percentage with poverty rate and Black population 

percentage. Here, none of the vulnerability dimensions are significantly influencing the shape of 

the alpha bag, in contrast to the Harris County case. Still, the poverty rate and black population 

percentage are the two key factors that are moving in tandem with other dimensions of 

vulnerability (particularly after 1990), as evidenced by the concentration of the axes of other 

variables near these two axes (Figure 4.2). Principal Components Analysis for calculating the 

Social Vulnerability Index, as discussed in next section, revisits and further examines those other 

dimensions of vulnerability that correlate with poverty and race in Orleans Parish.  

                                                        
19 In 2000 total population of Orleans Parish was 484,674, which decreased to 339,016 in 2010, as documented by 

Census 2000 and ACS 2008-2012 respectively. 
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1980 

 

1990 

 

2000 

 

2010 

: % population under poverty, : % Black population, : % Hispanic population 

 

Figure 4.2: Correlation biplots (with alpha bag) of Orleans County with poverty rate, % Black 

population and % Hispanic population highlighted 
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The vast majority of the population in Hillsborough County in Florida has historically 

been white. Although the county experienced gradual growth of its black and Hispanic 

populations in recent decades, it neither experienced a high growth rate (like the Hispanic 

population in Harris County) nor a high concentration of racial or ethnic minorities (like the 

black population in Orleans Parish). As shown in the biplots in Figure 4.3, in all three time 

periods (with the exception of 1980) the poverty rate and concentration of minority populations 

were highly correlated with each other in Hillsborough County (as indicated by the smaller 

angles between the three axes). The departure from this trend seen in 1980 is due to the fact that 

the Hispanic population was smaller compared to the black population (10% vs. 13% 

respectively), but by 1990 these populations were almost equal (both comprising about 13% of 

the total population)
20

. In 2000 the Hispanic population surpassed the black population (18% vs. 

16%) and the gap increased further by 2010 (25% Hispanic and 17% black population)
21

. Census 

tracts with a higher share of minority populations also tend to have higher poverty rates, as 

indicated by the small angles between axis of the poverty rate and Black and Hispanic population 

percentage variables (Figure 4.3). Besides poverty and minority population, the alpha bags for 

Hillsborough County indicate other emerging dimensions of social vulnerability in this county. 

While in 1980 and 1990, the shape of the alpha bags was primarily determined by poverty and 

minority population, in 2010 the percent elderly population is associated with another spike or 

elongation. This indicates that census tracts where the elderly comprise a larger percentage of the 

overall population also tend to exhibit higher social vulnerability.  

 

                                                        
20 Calculated from 1980 and 1990 census report collected through Social Explorer  
21 Calculated from 2000 census and 2008-2012 ACS data. All values are rounded to nearest whole number for easies 

interpretation. 
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1980 

 

1990 

 

2000 

 

2010 

: % population under poverty, : % Black population, : % Hispanic population 

 

Figure 4.3: Correlation biplots (with alpha bag) of Hillsborough County with poverty rate, % 

Black population and % Hispanic population highlighted 
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4.5 Results of PCA Analysis 

The SoVI was calculated by applying Principal Component Analysis (PCA) to 26 

variables (table 4.1) that have been established in the literature and were described in Chapter 2. 

After reducing the number of variables through PCA, the resulting component scores were 

aggregated using the additive approach pioneered by Cutter et al. (2003). The PCA results 

indicate how the prominent dimensions of vulnerability have evolved over time, as well as how 

the role of different variables used to construct the SoVI changed along with the shifting 

demographic composition of the counties. As mentioned in Chapter 3, this study used parallel 

analysis (Zwick & Velicer, 1986) rather than the Kaiser criterion applied in the original SoVI 

methodology of Cutter et al. (2003) to determine how many components to retain. Parallel 

analysis usually retains fewer components than the Kaiser criterion and is considered a superior 

alternative for determining the optimal number of components (Tate, 2012). After applying PCA, 

the selected components were interpreted and labeled based on the characteristics of the 

variables, specifically the loadings of the variables. Tables 4.2 to 4.4 show the selected 

vulnerability components along with the percentage of overall variance explained by those 

components for each of the three study counties. Appendix Tables A1 to A4 present a more 

detailed version of these tables and show which variables are contributing most to each of the 

components.  

Among the three study counties, one common trend from the PCA was that the 

percentage of total variance explained by the SoVI components gradually decreased over time. 

Further, the parallel analysis approach retained a different number of components for each of the 

counties (and even in different years) and the variance explained by the individual components 

also changed across time periods. This suggests actual changes in the composition and 

significance of the underlying dimensions of social vulnerability in different time periods. For 

census tracts in Harris County (Table 4.2), the overall variance explained by the selected 

components decreased from 74.4% in 1990 to 72.5% in 2000 and 65.5% in 2010. In all four 

years, five components were consistently retained by the parallel analysis with Race and socio-

economic status (i.e., percent Black, poverty, unemployment, income, etc.) as the leading 

component in all years. While Housing and labor force was the second most important 

component in 1980 and 1990 (explaining 16.5% and 15.1% variance), it was replaced by the 

Hispanic and foreign-born component in 2000 and 2010 (explaining 17.6% and 13.9% 
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variance), which can be attributed to the rapid growth of the Hispanic population during this time 

period.  

The PCA components explained 71% of the overall variance among the census tracts of 

Orleans Parish in 1980, 70.5% in 1990, 69.6% in 2000, and 67.7% in 2010. While four 

components were retained by the parallel analysis in 1980, 1990, and 2000, five components 

were retained in 2010. Race and socio-economic variables consistently emerged as the leading 

component, although the percentage of variance it explained decreased significantly in 2010. 

This can be attributed to the massive loss of population in Orleans County between 2000 and 

2010 as a result of Hurricane Katrina, which may also have contributed to the retention of more 

components in 2010 (i.e., previously insignificant components became more prominent in the 

wake of population loss).  

In the case of Hillsborough County, the PCA did not indicate any consistent trend (in 

terms of the percentage of variance explained or for the number of components retained) unlike 

Harris or Orleans County. In 1990, 73.6% of the variance among the census tracts of 

Hillsborough County were explained by five components, by 2000 74.3% was explained by six 

components, and in 2010 only 65.8% was explained by the five components retained. Race and 

socio-economic variables also comprised the leading component for all four decades here. A 

growing concentration of elderly population in certain census tracts (as mentioned in previous 

section) contributed to the significantly higher percentage of variance explained by the Age and 

labor force component in 2010 (increased from 13.3% in 2000 to 16.2%). 
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4.6 Spatial Changes in the SoVI 

Component scores calculated through PCA were aggregated to derive the overall 

composite social vulnerability index (SoVI). Since the composition of the vulnerability factors 

varies from place to place and even over time in the same area (as the biplots in section 4.3 

showed), the SoVI was calculated for each county and each decadal period separately. Figures 

4.4 to 4.6 present the SoVI maps for the three study counties in all four decades. In these maps, 

the SoVI is classified based on standard deviations from the mean, which helps to better 

visualize comparative vulnerability of the census tracts within a county and longitudinally. In the 

case of Harris County, Texas (Figure 4.4) in 1980 and 1990, high concentrations of SoVI near 

the inner-city (surrounding the downtown) areas were evident. Between 2000 and 2010 social 

vulnerability decreased, particularly in the north-west and western parts of the downtown area, 

due to gentrification in the Heights, Memorial Park, and other surrounding neighborhoods 

consistent with the findings of prior studies (Podagrosi et al., 2011). An increase in vulnerability 

in the south and south-west part of the county, particularly in the Central Southwest, Sunnyside, 

and Southwest Houston neighborhoods is also evident during the same time period.  

In Orleans Parish, Louisiana (Figure 4.5) changes in the SoVI between 2000 and 2010 are 

more apparent, which can be attributed to displacement after Hurricane Katrina, particularly in 

the Gentilly, Upper Ninth Ward, and Lower Ninth Ward neighborhoods in the north and north-

east parts from the downtown area. For Hillsborough County, Florida (Figure 4.6) the SoVI 

appears to be less spatially concentrated in 2010 than in earlier years, particularly in the inner-

city areas of Tampa. During the same time period vulnerability has increased in southern part of 

county in the census tracts along Hillsborough Bay. 
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4.7 Cluster Analysis of the SoVI 

While the SoVI maps presented in previous section show the spatial distribution of 

vulnerability within the counties, they do not indicate the extent to which census tracts with 

higher SoVI are clustered together and how this spatial distribution changed over time. To 

identify the patterns of similarity and dissimilarity in the clustering of social vulnerability, spatial 

autocorrelation of the SoVI among the census tracts was evaluated. Both global and local 

measures of spatial autocorrelation were calculated and when considered jointly, they reveal two 

distinct but complementary spatial characteristics of vulnerability. The global autocorrelation 

measure involves studying the entire map pattern and identifies whether the observed pattern is 

clustered, dispersed, or random (Cliff & Ord, 1981; Goodchild, 1986) and in this case, indicates 

whether overall social vulnerability within the county has become more or less concentrated over 

time. Local indicators of spatial of spatial autocorrelation or LISA statistics (Anselin, 1995), on 

the other hand, capture local variability and identify significant clusters of similar SoVI values 

(high or low social vulnerability). Tables 4.5 to 4.7 present the global Moran‘s I
22

 and number of 

census tracts within clusters based on local Moran‘s I of the SoVI for all three study counties, 

while Figures 4.7 to 4.9 present the corresponding LISA cluster maps for the three counties. 

One important trend that emerged from the global analysis of SoVI is that the Moran‘s I 

value decreased over time for all of the counties. This suggests that, despite experiencing 

different patterns of population growth (as mentioned in section 4.1) and different compositions 

of vulnerability (as revealed through the biplots and PCA earlier), in all three study counties the 

overall concentration of social vulnerability has decreased over time. Although the positive 

values of Moran‘s I (all of which were statistically significant at p < 0.05) indicate that social 

vulnerability is highly concentrated in all of the counties, their decreasing values indicate that the 

level of concentration of vulnerability has lessened. In Harris County, Texas (Table 4.4), the 

global Moran‘s I was 0.63 in 1980, but gradually decreased to 0.46 in 2010 and the number of 

census tracts in high-high clusters (indicating concentration of high values of the SoVI) also 

decreased from 88 (12.34% of tracts) in 1980 to 70 (9% of tracts) in 2010. 

 

 

                                                        
22 The Moran‘s I statistic is interpreted as follows: a value close to +1 represents strong similarity between the 

values of the SoVI (i.e. higher concentration); a value of -1 indicates dissimilarity (i.e. higher dispersion); while a 

value of zero represents a random pattern. 
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Table 4.5: Spatial clustering statistics and LISA cluster categories for Harris County 

Global 

Moran‘s I 

1980 1990 2000 2010 

0.63 0.62 0.58 0.46 

LISA 

categories 
Count %total Count %total Count %total Count %total 

Significant local spatial clusters 

High-High 88 12.34 100 12.95 81 10.51 70 9.00 

Low-Low 0 0.00 0 0.00 0 0.00 0 0.00 

Spatial outliers 

Low-High 62 8.70 79 10.23 72 9.34 57 7.33 

High-Low 1 0.14 2 0.26 0 0.00 2 0.26 

No statistically significant spatial clustering 

Tracts 562 78.82 591 76.55 618 80.16 649 83.42 

Total 713 100 772 100.00 771 100.00 778 100.00 

 

In the case of Orleans Parish, Louisiana (Table 4.6) the global Moran‘s I was lower in 

earlier years (0.40 in 1980 and 0.37 1990), but increased in 2000 (0.47) and then decreased in 

2010 (0.44). This suggests an overall decrease in the concentration of social vulnerability in 

recent years, but the number of tracts in high-high clusters barely changed. There were 10 census 

tracts in high-high clusters in 1980, which decreased in 1990 and 2000 only to climb back to 10 

in 2010.  
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Table 4.6: Spatial clustering statistics and LISA cluster categories for Orleans Parish 

Global 

Moran‘s I 

1980 1990 2000 2010 

0.40 0.37 0.47 0.44 

LISA 

categories 
Count %total Count %total Count %total Count %total 

Significant local spatial clusters 

High-High 10 5.99 8 4.85 9 5.42 10 6.21 

Low-Low 0 0.00 0 0.00 0 0.00 0 0.00 

Spatial outliers 

Low-High 5 2.99 5 3.03 5 3.01 14 8.70 

High-Low 1 0.60 1 0.61 0 0.00 0 0.00 

No statistically significant spatial clustering 

Tracts 151 90.42 151 91.52 152 91.57 137 85.09 

Total 167 100.00 165 100.00 166 100.00 161 100.00 

 

For Hillsborough County in Florida (Table 4.7) the concentration of vulnerability 

(measured with global Moran‘s I) followed a consistent downward trend, similar to Harris 

County in Texas. Although Hillsborough County had a low concentration of vulnerability in 

1980 (0.53), it increased in 1990 (0.62) before gradually decreasing in 2000 (0.57) and 2010 

(0.42). For a number of tracts in high vulnerability clusters (i.e. high-high spatial clusters), 

however, the number of census tracts did not follow the downward trend of the global Moran‘s I. 

While there were 44 census tracts located in high vulnerability clusters in 1990, this number 

decreased to 33 in 2000, then increased to 46 in 2010. The larger number of census tracts (326 

versus 300 in 2000) included in the 2010 analysis (which were excluded
23

 in earlier years due to 

low population counts) may have had an effect, but this is not a sufficient explanation since even 

with a lower number of census tracts in 1990, a greater number of census tracts were part of 

high-high SoVI clusters than in 2000.  

                                                        
23 Since both global and local spatial autocorrelations were measured separately for every year (i.e. with separate 
weight matrix), excluding any feature in one year shouldn‘t influence the result of another year. Although having 

different number of features may make the temporal comparison difficult, as the result shows here, number of 

features are not influencing the results. Also, in most cases excluded features are located nearby (i.e. tracts with 

fewer population clustered together), and as a result it can be expected that they will not affect the results in 

subsequent years. 
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Table 4.7: Spatial clustering statistics and LISA cluster categories for Hillsborough County 

Global 

Moran‘s I 

1980 1990 2000 2010 

0.53 0.62 0.57 0.42 

LISA 

categories 
Count % total Count % total Count % total Count %total 

Significant local spatial clusters 

High-High 24 11.37 44 17.89 33 11.00 46 14.11 

Low-Low 0 0.00 0 0.00 0 0.00 1 0.31 

Spatial outliers 

Low-High 17 8.06 6 2.44 27 9.00 23 7.06 

High-Low 0 0.00 0 0.00 2 0.67 0 0.00 

No statistically significant spatial clustering 

Tracts 211 100.00 246 100.00 238 79.33 256 78.53 

Total 252 119.43 296 120.33 300 100.00 326 100 

 

The LISA cluster maps in Figures 4.7 to 4.9 show the locations of clusters and spatial 

outliers within the study counties and how they changed over time. One trend that can be 

identified from these maps is, the high vulnerability clusters (i.e. high-high clusters) have 

become relatively less spatially concentrated in all three counties, and this is most evident in 

Harris County. In Harris County some of the high-high clusters have shifted from the immediate 

north and north-west vicinity of the downtown to further northern location. For Orleans Parish 

(Figure 4.8) some shifts in the high-high cluster near the downtown area can be identified 

between 2000 and 2010. In Hillsborough County (Figure 4.9) there is also evidence of 

fragmentation of established high-high clusters during the same time period. Compared to 2000, 

in 2010 there were fewer census tracts in the high vulnerability cluster near the downtown area 

(of Tampa) and there were more tracts in high vulnerability clusters located in northern and 

southern parts of Hillsborough County. 
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4.8 Temporal Changes in the SoVI 

Measuring temporal change in social vulnerability is a challenging task due to shifts in 

the composition of vulnerability at the different time periods considered. Still, if we consider the 

SoVI as a relative measure of vulnerability within a county, it can be useful in examining how 

the degree of social vulnerability among all census tracts in the county has changed over time 

and for identifying areas that have experienced an increase or decrease in social vulnerability. 

Keeping this in mind, the approach taken by Cutter & Finch (2008) is applied here to identify 

historical trends of social vulnerability within the three study counties. Although Cutter & Finch 

(2008) focused on U.S. counties, this study adapted their methods for temporal trend analysis at 

the census tract level. Specifically, individual SoVI scores of census tracts were converted to z-

scores (based on county mean score per decade) in order to improve their comparability over 

time. If this transformed score consistently increased over time in a census tract, that tract can be 

viewed as an area experiencing a gradual increase in social vulnerability. Applying simple linear 

regression, a line of best fit from 1980 to 2010 was calculated for each of the census tracts (with 

their transformed SoVI score for all time periods considered). The slope of the line of best fit 

indicates the directionality of vulnerability over time and the resulting R
2
 captures the strength of 

this best fit line in capturing the trend in the transformed SoVI score. A positive slope of the best 

fit line indicates an increasing trend of social vulnerability and a negative slope indicates 

decreasing social vulnerability in a census tract. For all regressions, F-statistics were used to 

determine the statistical significance of the best fit lines at a 0.05 alpha level. This is an 

inherently aspatial approach to evaluating longitudinal trends of social vulnerability since each of 

the census tract is analyzed as a separate entity without considering changes in vulnerability in 

surrounding regions, but it still helps to visually locate areas that experienced a consistent 

increase or decrease in social vulnerability over time. Another potential issue with this approach 

is that it is based on the vulnerability of a census tract with respect to the whole county. As a 

result, even if a census tract experienced an increase in vulnerability in a certain time period, a 

much higher increase or decrease of vulnerability in other areas may influence its transformed 

SoVI score. Also, census tracts having a high increase or decrease in vulnerability only in recent 

decades (with opposite trends in previous decades) may end up showing an insignificant overall 

trend. Accepting these limitations, this study adopted the Cutter & Finch (2008) approach for 
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evaluating longitudinal trends of social vulnerability, given its establishment in the literature and 

because there is no other widely accepted alternative for performing this kind of analysis. 

SoVI trend maps for the three study counties are presented in Figures 4.10 to 4.12 and 

include the coefficient of the best fit trend line of SoVI scores for each of the tracts, outlining the 

tracts for which the trends were found to be statistically significant (at the 0.05 alpha level). As 

mentioned previously, here a positive slope indicates a consistent increase in social vulnerability 

and a negative slope indicates a consistent decrease in social vulnerability over time. From these 

maps one common trend can be identified for all three counties—the decrease of social 

vulnerability in inner city census tracts and increase of vulnerability in suburban census tracts. 

This can be attributed to the general phenomenon of suburbanization of poverty in major U.S. 

cities, which is widely discussed by the neighborhood change theorists (Dickens, 1999).  

Although these trends were statistically significant for only a few census tracts, these maps still 

provide an overall representation of the longitudinal trend of social vulnerability in the study 

counties.



7
0

 
 

 

F
ig

u
re

 4
.1

0
: 

T
e
m

p
o

ra
l 
tr

en
d
s 

o
f 

S
o

V
I 

in
 H

ar
ri

s 
C

o
u
n
ty

, 
T

X
 (

1
9
8
0

-2
0
1
0
) 



7
1

 
 

 

F
ig

u
re

 4
.1

1
: 

T
e
m

p
o

ra
l 
tr

en
d
s 

o
f 

S
o

V
I 

in
 O

rl
ea

n
s 

C
o

u
n
ty

, 
L

A
 (

1
9
8
0

-2
0
1
0
) 



7
2

 
 

 

F
ig

u
re

 4
.1

2
: 

T
e
m

p
o

ra
l 
tr

en
d
s 

o
f 

S
o

V
I 

in
 H

il
ls

b
o

ro
u
g
h
 C

o
u
n
ty

, 
F

L
 (

1
9
8
0

-2
0
1
0
) 



73 
 

4.9 Challenges for Adaptation Planning 

This chapter identified several commonalities in the observed pattern of social 

vulnerability change among the study counties. Despite having drastically different population 

growth trajectories and being located in different political and economic settings, in recent 

decades the spatial concentration of social vulnerability has gradually decreased in all of them. 

However, the composition of social vulnerability was different in each of the counties and also 

changed in a non-uniform way over time. For Harris County (Houston) in Texas, the high growth 

of the Hispanic and immigrant populations in recent decades elevated the importance of these 

factors in the SoVI, along with the percentage of black or African-American population and the 

poverty rate. This trend is consistent with the ―urban restructuring‖ or ―globalization‖ thesis of 

neighborhood change (Borja & Castells, 1997; Sassen, 2000; Soja et al., 1983) that attributes 

these demographic changes to capital and labor restructuring both at the global and local level. 

Demand for cheap labor has attracted sizeable immigrant and minority populations, which will 

make adaptation planning efforts more challenging because of the tendency of these groups to 

exhibit higher vulnerability. Ensuring equity and the legitimacy of adaptation efforts (Adger et 

al., 2005) would be problematic in this changed context when these new ethnic minority and 

immigrant population lack adequate political participation to have their voices heard in the 

planning process. 

In Orleans Parish (New Orleans) Louisiana, displacement by Hurricane Katrina has 

significantly influenced the pattern of social vulnerability, which has become less concentrated 

and less dominated by race and socio-economic indicators. As the Katrina recovery process 

moves forward and planning for climate adaptation continues, this changed vulnerability pattern 

should be kept in mind both to ensure equitable outcomes from the planning process and to 

identify effective ways of avoiding future disasters. Hillsborough County (Tampa) in Florida 

exhibits two notable trends in its social vulnerability patterns, along with the decreased 

concentration of vulnerability found in the other two counties. In this county, gentrification in the 

inner city areas is pushing socially vulnerable populations (primarily minority and low income 

groups) to suburban and coastal census tracts and at the same time, some of the coastal locations 

are experiencing high growth of elderly populations due to the development of retirement 

communities there. These trends can be explained by urban ‗growth machine‘ theories of 

neighborhood change (Logan & Molotch, 1987; Molotch, 1976) that emphasize how the 
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economic interests of local elites drive policy decisions, which are in turn changing the pattern of 

social vulnerability on the ground. Both of these trends will make adaptation planning more 

challenging in the future and reveal two priorities—first evaluating the climatic risks of census 

tracts being populated by low-income and minority population and finding safer places for them, 

and second ensuring that climatic uncertainties are considered when developing retirement 

communities and that steps are taken to prevent displacement of other vulnerable groups. 
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CHAPTER 5 

SUBSIDIZED HOUSING AND SOCIAL VULNERABILITY IN A MULTI-

HAZARD URBAN AREA 

 

5.1 Study Area  

Harris County, Texas is taken as a detailed case study based on its level of risk exposure 

to both natural and technological hazards (Cutter et al., 2003; EPA, 2008; Nicholls et al., 2008; 

Sexton et al., 2007) and its high racial/ethnic diversity. As reported in the 2012 American 

Community Survey (ACS), this county has more than 4 million residents with 41.5 percent 

identifying as Hispanic/Latino, 19.5 percent as Black/African American, and about 17.3 percent 

living below the poverty level. The population of this county is primarily centered in the city of 

Houston (Figure 5.1), the largest cultural and economic center of the Southwestern United States. 

Houston is also the only major city in the United States without zoning as an element of its land 

use planning and is often portrayed as an archetype of the free enterprise, capitalist, or laissez-

faire city (Lamare, 1998; Lin, 1995). Despite a lack of zoning, local land use regulatory policies 

made by the municipality significantly influence urban development in Harris county (Qian, 

2010), but the high natural and technological risk of this area makes it a complex environment 

for socially vulnerable populations to navigate. Efforts to minimize costs for potential investors 

as an economic development strategy in the metropolitan area have created less than ideal living 

conditions, especially for socially vulnerable groups (Vojnovic, 2003). Similar to other large 

U.S. cities, Houston is also faced with environmental justice problems as a result of 

disproportionately placing environmental hazards in areas occupied by lower income groups and 

non-whites (Bullard & Wright, 1993; Chakraborty et al., 2014; Pulido, 2000). While this issue is 

extensively studied in the environmental justice literature, the role of policies like low-income 

housing subsidies in placing marginalized groups in harm‘s way in a multi-hazard urban 

environment like Houston has not yet been explored. The spatial distribution of housing 

subsidies under the broader umbrella of two different programs (HCV and LIHTC) is explored 

here and ways in which housing subsidies influence neighborhood social vulnerability over time 

are examined through spatial econometric models. 
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Figure 5.1: Map of Harris County, Texas 

 

5.2 Hazard Risk Exposure in Harris County 

In order to portray the multi-hazard risk context of Harris County, both natural and 

technological risks are considered in this study. Specifically, natural hazard risk due to flood and 

hurricane storm surge and technological hazard risk due to the locations of TRI facilities, with 

Chapter 3 detailing the methodological steps followed for creating these multi-hazard risk 

measures. Figure 5.2 shows the natural hazard risks identified at the census tract level and in this 

case, risk is measured as the percentage of residential lots in each census tract that fall in either 

the 100 year flood plain or a Category-1 hurricane risk zone. Some census tracts are excluded 

from this analysis (shown in grey) that had very few people (less than 1,000 in both 2000 and 

2010) or a high percentage (greater than 30%) of residents living in group quarter housing (i.e., 

jails, senior housing, university campuses, etc.). Although Houston has a vast amount of low-

lying land in its south-east and eastern region, natural hazard exposure was not found to be 

significantly higher in these parts of that region (compared to other areas) due to the lower 

percentage of residential areas falling in the 100 year flood plain or Category 1 hurricane risk 
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zone. Still, the map (Figure 5.2) shows a high number of census tracts having at least 40 percent 

of their residential lots in the natural hazard risk zone, particularly concentrated in the southwest 

and northern part of the county. 

 

Figure 5.2: Natural hazard risk (i.e. % of residential lots in flood and hurricane risk zone) of 

Harris County 

 

As detailed in Chapter 3, technological hazard risk for Harris County is estimated using 

two different measures of distance decay which, produce significantly different hazard exposure 

patterns. Since there is no theoretical consensus on the ideal specification for distance decay or 

what the threshold distance for impacts from a facility should be, this study considers both 

approaches in order to capture as wide a spectrum of technological risk as possible. Since this 

study is more interested in relative hazard risk and how people locate within this hazard context, 

proximal exposure due to distance and total toxic emission from TRI facilities is considered 

more relevant than the actual health risks posed by a specific type of toxic chemical. Further, 

prior studies have extensively examined such health risks due to both point and non-point 

sources of emissions in Harris County or Houston (Chakraborty et al., 2014; Linder et al., 2008; 
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Sexton et al., 2007). Considering the variability of emissions in different years, all reported TRI 

locations and their emissions from 2000 to 2010 were included in the hazard calculation and then 

an average level of hazard exposure is identified for the whole study period. Although it can be 

argued that new facilities appearing during this time period could in theory alter this risk 

measure, the data do not indicate that this is the case. Firstly, there was not a large increase in 

reported TRI facilities during this time (349 in 2001 increased to 367 in 2010) and secondly, the 

new facilities were located mostly in the areas which already had other facilities nearby. Due to 

these two factors, the relative risk measures should not change significantly, which is a key 

assumption of this study.  

Figures 5.3 and 5.4 show quantile maps for risk measures calculated using the two 

distance decay approaches adopted for this study. Since it takes the average of exposure (for 

2000 to 2010) weighted by the total emissions, measures using the power function were denoted 

AWPOWR, while measures based on the WCPE function were named AWCPE. Drastic 

differences in the hazard landscapes created under the two distance decay specifications are 

evident in Figures 5.3 and 5.4. Since the power function considers high exposure in the 

immediate vicinity of a facility with a rapid decrease in impact thereafter and does not consider 

any distance threshold or cutoff, it results in a relatively larger area identified as exposed to 

technological hazards. On the other hand, since the WCPE function imposes a distance threshold 

(Figure 5.4 shows a one mile threshold) it confines exposure to areas within that threshold 

distance and does not consider impacts for areas located far away from the facilities. Still, there 

are some common areas identified as high technological risk zones in both of the maps and in 

particular, near the south-eastern ship channel and along the north-west corridor (Highway 290). 
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 Figure 5.3: Technological risk exposure (measured by power function) in Harris County  
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Figure 5.4: Technological risk exposure (measured by WCPE function, 1 mile distance 

threshold) in Harris County 

 

5.3 Social Vulnerability in the Hazard Zones 

The hazard risk measures discussed in previous section were used in a spatial regression 

analysis to understand the interaction between hazard risk and social vulnerability. This section 

discusses how the population in different racial/ethnic groups and poverty statuses are spatially 

distributed within this hazard context of Harris County in the year 2000 and 2010. Figures 5.5 to 

5.7 show the race/ethnicity distribution within different levels of natural and technological 

hazard areas. Contrasting trends in the spatial distribution of Non-Hispanic White (henceforth 

mentioned as ‗white‘) and Hispanic populations is evident here, while for the Non-Hispanic 

Black or African-American population (henceforth mentioned as ‗black‘) this trend is unclear. 

With the growth of the Hispanic population in Harris County, the white population percentage 

has decreased significantly between 2000 and 2010, but within the identified hazard zones the 
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relative distribution is consistent in both time periods. While the White population percentage is 

higher in safer areas (i.e., less risk from flood or hurricane storm surge), in hazardous areas the 

percentage of Hispanic population is higher consistently in both 2000 and 2010.  

 
Low: Less than 20% residential area in hazard zone, Medium: 20%-40% area in hazard zone, High: More than 40% area in 
hazard zone 

Figure 5.5: Race/ethnicity distribution in natural hazard areas 

 

Considering the different hazard landscapes created by the power function and the WCPE 

function (Figures 5.3 and 5.4) it could be expected that the pattern of racial/ethnic distribution 

within hazard exposed areas would be different, but as shown in Figures 5.6 and 5.7 the patterns 

are actually similar in both 2000 and 2010. Since the power function assigns risk measures to all 

census tracts, its median value is used as the cutoff point for technological hazards (Figure 5.6) 

and in the case of the WCPE function, areas within the threshold distance of one mile is taken as 

the cutoff point (Figure 5.7). Despite these different approaches, both of the methods for 

technological risk measures indicate that the percent white is significantly lower and percent 

Hispanic is significantly higher in hazardous areas in both 2000 and 2010. For the black 

population however, these two approaches show different distributions. While the hazard zones 

from the power function do not show any consistent trend (Figure 5.6), from the WCPE function 
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(Figure 5.7) it appears that the black population percentage within technological hazard areas 

was higher compared to that in non-hazard areas. 

 
Figure 5.6: Race/ethnicity distribution within technological hazard zones (power function) 

 

 

Figure 5.7: Race/ethnicity distribution within technological hazard zones (WCPE function) 
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Poverty rates within the natural and technological hazard areas are comparatively higher 

than the non-hazard areas and Figures 5.8 to 5.10 show this trend for both 2000 and 2010. Since 

the total poverty rate has increased in Harris County between these two time periods, the 

percentages of people under the poverty level has increased in all areas, but within hazardous 

areas, the concentration of poverty is consistently higher throughout the study period. All three 

figures (5.8 to 5.10) also show similar trends for female-headed families in poverty (as a 

percentage of all families with children). This indicator is considered here based on its enduring 

status in the principal component analysis as a significant contributor to social vulnerability. 

Although it can be expected to move in tandem with the findings for overall poverty rate, it is 

included here considering the higher degree of vulnerability experienced by female-headed 

households during any disaster event (Donner, 2003; Rodriguez & Russell, 2006). As Figures 5.8 

to 5.10 indicate, among all the families with children living in different hazard zones, the 

presence of female-headed families living in poverty is significantly higher in natural or 

technological hazard areas.  

 

 
Low: Less than 20% residential area in hazard zone, Medium: 20%-40% area in hazard zone, High: More than 40% area in 

hazard zone 

Figure 5.8: Percentage of population under poverty and Percentage of female headed families 

(with children) under poverty by natural hazard zones 
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Figure 5.9: Percentage of population under poverty and Percentage of female headed families 

under poverty (with children) by technological hazard zones (power function) 

 

 
Figure 5.10: Percentage of population under poverty and Percentage of female headed families 

under poverty (with children) by technological hazard zones (WCPE function) 
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5.4 Housing Subsidies in the Hazard Zones 

While the above findings on race/ethnicity or poverty distribution in urban hazard zones 

is not surprising, there is yet to be any study that explores the location outcomes produced by 

housing subsidies within these multi-hazard contexts (Cutter et al., 2001; Houston et al., 2013). 

This section centers on how the two housing subsidy programs considered in this study are 

performing in terms of avoiding hazardous areas. Although the findings discussed in previous 

section were for the distribution of population groups within the hazard zones, in the interest of 

having a better reference for comparison, the population distribution throughout the county is 

compared to the distribution of housing subsidies among the hazard zones. If the distribution of 

housing subsidies follows the overall distribution of population, it can be argued that housing 

units provided under these programs are not concentrated within hazardous areas. However, 

considering the broader objective of poverty deconcentration associated with these programs, it 

can be expected that the housing subsidies would be located in less hazardous areas compared to 

the overall population distribution. Since the two programs have different approaches for 

providing housing subsidies (demand based HCV and supply oriented LIHTC), different 

outcomes are to be expected. 

Figures 5.11 to 5.13 indicate that for all hazard measures, subsidized housing units are 

not successfully avoiding hazardous areas; rather they are slightly more concentrated in hazard 

zones compared to the overall population distribution. Although both of the subsidy programs 

performed better in avoiding highly exposed natural hazard zones (i.e. census tracts with more 

than 40% in natural hazard zone), in the case of moderate exposure (i.e. census tracts with more 

than 20% in natural hazard zone) they exhibit a slightly higher presence compared to the overall 

population distribution in both 2000 and 2010 (Figure 5.11). Between the two programs, the 

HCV program appears to be performing marginally better than the LIHTC in avoiding moderate 

hazard zones, but in the case of high exposure areas, the LIHTC is performing better. 
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Low: Less than 20% residential area in hazard zone, Medium: 20%-40% area in hazard zone, High: More than 40% area in 

hazard zone 

Figure 5.11: Comparing distribution of HCV recipients and LIHTC units to population 

distribution within natural hazard zones of Harris County 

 

For technological hazards, both of the hazard measures indicate similar outcomes for the 

subsidy programs, although they vary in terms of the extent of their differences (between the 

programs). Following the trends of natural hazards, in the case of technological hazards both of 

the housing subsidy programs also failed to find safer areas and instead their placement in 

hazardous areas is marginally higher compared to the overall distribution of the population. For 

example, if we consider the hazard zones identified by the WCPE function (Figure 5.13), in 2010 

about 30 percent of the population of Harris County lived in a hazardous area, but about 33 

percent of HCV recipients and 40 percent of LIHTC units were found in those areas during the 

same time period. Between the two programs, despite performing better in terms of avoiding 

technological hazard areas in 2000 (33% LIHTC versus 36% HCV, Figure 5.13), in 2010 a 

higher proportion of LIHTC units were found in hazardous areas (40% versus 33% for HCV). 
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Figure 5.12: Comparing distribution of HCV recipients and LIHTC units to population 

distribution within technological hazard zones (power function) of Harris County  

 

 
Figure 5.13: Comparing distribution of HCV recipients and LIHTC units to population 

distribution within technological hazard zones (WCPE function) of Harris County 
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5.5 Subsidized Housing in a Multi-hazard Area: Impacts on Social Vulnerability 

The broad objective of this study is to explore the drivers of social vulnerability and 

examine how housing subsidy programs may act as a driver to locate more vulnerable population 

in harm‘s way. The previous sections advance this objective by clearly depicting the higher 

presence of vulnerable populations in hazardous areas and at the same time, how housing 

subsidies are failing to avoid the hazard zones of Harris County. This outcome can be attributed 

to limitations in the present mechanisms of subsidized housing provision (detailed in Chapter 6), 

while the political economic and environmental justice framing of vulnerability (discussed in 

Chapter 2) explains the location decisions of vulnerable populations in a contested urban space. 

Now the critical question to be asked is how the ostensibly progressive agenda of providing 

housing subsidies in a neoliberal political setting can influence and even exacerbate vulnerability 

in a multi-hazard urban area. This is where the idea of the production of urban vulnerability 

(Dooling, 2012), that examines how political economies of resource use and normative planning 

and management interventions influence which places and populations are made vulnerable 

(Collins, 2009; Orsi, 2004), reenters the discussion. Keeping this broader theoretical 

underpinning in mind, this study explores the impacts of placing subsidized housing in hazardous 

areas on the social vulnerability outcomes in Harris County. While the regression analysis 

discussed in the next section helps to empirically examine the relationship, a descriptive 

exploration is conducted before estimating the models.  

Since social vulnerability is a multidimensional concept, it makes sense to explore it 

through an index (SoVI) as discussed in Chapter 4. But such an index is difficult to interpret for 

specific policy outcomes due to its changing composition from year to year. Keeping these 

limitations of the SoVI in mind, this study considers prominent indicators that contribute 

significantly to the overall social vulnerability index. As discussed in Chapter 4, poverty was 

found to be a consistent indicator that met this criterion for all study years. But it is also true that 

the experience of poverty is not the same across all population sub-groups. For example, 

analyzing the neighborhood crime rate of HCV recipients, Lens et al. (2011) found that black 

voucher holders lived in significantly safer areas than poor households of the same race, but that 

Hispanic and white voucher holders did not experience the same outcome. Considering this 

possible difference in the location patterns of those in poverty among population sub-groups, this 

study considers the poverty rate of racial and ethnic subgroups (e.g., Hispanic, Non-Hispanic 
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White, Non-Hispanic Black) along with the overall poverty rate. Before exploring the poverty 

rate for different subgroups, Table 5.1 shows population growth in different areas of Harris 

County categorized by the presence of natural hazard zones (greater than 40% residential land in 

natural hazard area) and increase in vouchers between 2000 and 2010. As this table shows, safer 

areas (away from natural hazards) that had an increase in HCV recipients experienced the highest 

population growth (32.34%), but it also shows significant population growth (7.46%) in 

hazardous areas with HCV growth between 2000 and 2010.  

 

Table 5.1: Population growth by location in natural hazard
*
 areas and HCV growth 

Natural Hazard and HCV growth 

Population 

2000 2010 Growth (%) 

Nat. Haz. Areas with increased HCV 246,399 264,782 7.46 

Other areas with increased HCV 1,878,958 2,486,683 32.34 

Nat. Haz. Areas without increased HCV 263,199 263,380 0.07 

Other areas without increased HCV 991,011 1,063,400 7.30 

*
Areas with more than 40% residential land in natural hazard Area 

 

While all the areas irrespective of hazard level or HCV presence experienced significant 

population growth, a question of interest for this study is how the poverty profile changed in 

those areas during the study period. Table 5.2 presents changes in vulnerability by the overall 

poverty rate and also by the poverty rate of major racial and ethnic population subgroups. As 

shown, the incidence of poverty for all groups was significantly higher in natural hazard areas 

that experience any growth in voucher households. These areas also witnessed an increase in 

poverty rate between 2000 and 2010. 
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Table 5.2: Changes in vulnerability by location in natural hazard* areas and HCV growth 

Natural 

hazard and 

HCV growth 

%population under 

poverty 

%population under 

poverty (White) 

%population under 

poverty (Black) 

%population under 

poverty (Hispanic) 

2000 2010 

(+/-) 

% 2000 2010 

(+/-) 

% 2000 2010 

(+/-) 

% 2000 2010 

(+/-) 

% 

Nat. Haz. 

Areas with 

increased 

HCV 

16.57 23.32 6.75 5.88 12.49 6.62 5.25 6.64 1.39 7.87 13.91 6.04 

Other areas 

with 

increased 

HCV 

13.06 16.43 3.37 5.24 8.23 2.99 3.71 4.57 0.86 5.88 8.52 2.63 

Nat. Haz. 

Areas without 

increased 

HCV 

18.91 22.34 3.42 7.78 13.08 5.30 4.12 4.14 0.01 11.54 15.27 3.73 

Other areas 

without 

increased 

HCV 

17.05 18.82 1.77 7.01 11.41 4.40 4.82 3.86 -0.96 9.46 12.25 2.79 

*Areas with more than 40% residential land in natural hazard areas 

 

In the same fashion, if we categorize all census tracts based on their natural hazard 

exposure and growth of LIHTC units, the results are the same. As Table 5.3 shows, natural 

hazard areas with any growth of LIHTC units had comparatively higher poverty rates in both 

2000 and 2010. The overall poverty rate in those areas also increased significantly between 2000 

and 2010 compared to other areas. 
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Table 5.3: Changes in vulnerability by location in natural hazard* areas and LIHTC units growth 

Natural 

hazard and 

change in 

poverty % 

%population under 

poverty 

%population (White) 

under poverty 

%population (Black) 

under poverty 

%population 

(Hispanic) under 

poverty 

2000 2010 

(+/-) 

% 2000 2010 

(+/-) 

% 2000 2010 

(+/-) 

% 2000 2010 

(+/-) 

% 

Nat. Haz. 

Areas with 

increased 

TCU 

24.42 34.22 9.80 7.79 17.26 9.47 8.83 11.29 2.46 12.3 20.34 7.99 

Other areas 

with 

increased 

TCU 

18.66 22.93 4.27 5.98 10.01 4.03 8.12 8.96 0.84 7.51 10.83 3.32 

Nat. Haz. 

Areas without 

increased 

TCU 

17.48 22.21 4.74 6.82 12.55 5.73 4.48 5.07 0.59 9.65 14.28 4.63 

Other areas 

without 

increased 

TCU 

13.55 15.78 2.23 5.83 8.99 3.17 3.25 3.27 0.03 7.04 9.35 2.32 

*Areas with more than 40% residential land in natural hazard areas 

 

Like natural hazards, areas with technological hazards showed a similar pattern of 

population growth and social vulnerability. Since both measures of technological hazards 

showed similar trends, only the results from the power function are presented here. Table 5.4 

shows population growth of different areas categorized by their technological hazards (i.e., 

above the median value of AWPOWR) and increased presence of HCV households. The pattern 

of population growth observed in all areas is similar to that of natural hazards. 
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Table 5.4: Population growth (2000-2010) by location in technological hazards
*
 areas and HCV 

growth 

Technological Hazard and population growth 

Population 

2000 2010 

Growth 

(%) 

Tech. Haz. Areas with increased HCV 44,746,302 48,654,600 8.73 

Other areas with increased HCV 167,789,527 226,491,900 34.99 

Tech. Haz. Areas without increased HCV 40,005,169 40,249,300 0.61 

Other areas without increased HCV 85,415,935 92,428,700 8.21 

*Areas with above median value of AWPOWR 

 

In the case of vulnerability measures however, technological hazard areas yielded 

different results than natural hazard areas. Although hazardous areas with an increase in HCV 

households had comparatively higher poverty rates than other areas also experiencing HCV 

growth, the highest poverty rates were found in hazardous areas without any growth in HCV. 

This finding is consistent with the hypothesis that housing subsidies when placed in hazardous 

areas significantly increase neighborhood vulnerability compared to other non-hazardous areas 

also having such subsidies. Although for the overall population the change in poverty rate was 

higher in non-hazardous areas (4.03 versus 2.93) and the actual poverty rate in 2010 was higher 

in hazardous areas with HCV growth (21.42% versus 16.16%). However, for the white and 

Hispanic population living in poverty even the change in the rate of poverty is higher in 

hazardous areas with HCV growth compared to other areas also experiencing an increase in 

HCV households. 
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Table 5.5: Changes in vulnerability by location in technological hazard* areas and HCV growth 

Tech. hazard 

and change in 

poverty% 

%population under 

poverty 

%population (White) 

under poverty 

%population (Black) 

under poverty 

%population 

(Hispanic) under 

poverty 

2000 2010 

(+/-) 

% 2000 2010 

(+/-) 

% 2000 2010 

(+/-) 

% 2000 2010 

(+/-) 

% 

Tech. Haz. 

Areas with 

increased 

HCV 

18.49 21.42 2.93 7.10 11.13 4.03 5.54 5.60 0.05 9.35 12.71 3.37 

Other areas 

with 

increased 

HCV 

12.13 16.16 4.03 4.85 8.11 3.26 3.45 4.59 1.14 5.25 8.24 2.99 

Tech. Haz. 

Areas 

without 

increased 

HCV 

23.90 26.22 2.32 9.93 15.62 5.69 5.87 5.39 -0.5 15.4 18.68 3.27 

Other areas 

without 

increased 

HCV 

14.43 16.61 2.19 5.88 10.06 4.18 4.12 3.28 -0.8 7.33 10.32 2.99 

*Areas with above median value of AWPOWR 

 

As for the increase of LIHTC units in technological hazard areas, the findings also fit 

well with the hypothesis of this study. As Table 5.6 shows, hazardous areas with increased 

LIHTC units had significantly higher poverty rates in both 2000 and 2010 compared to other 

areas also receiving new LIHTC units during this time period. For the racial and ethnic 

population subgroups considered the same trend holds with the exception of the black population 

living in poverty. 
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Table 5.6: Changes in vulnerability by location in technological hazard* areas and LIHTC units 

growth 

Tech. hazard 

and change in 

poverty% 

%population under 

poverty 

%population (White) 

under poverty 

%population (Black) 

under poverty 

%population 

(Hispanic) under 

poverty 

2000 2010 

(+/-) 

% 2000 2010 

(+/-) 

% 2000 2010 

(+/-) 

% 2000 2010 

(+/-) 

% 

Tech. Haz. 

Areas with 

increased 

TCU 

21.04 26.66 5.62 7.68 12.48 4.80 7.63 8.49 0.87 9.72 14.71 4.99 

Other areas 

with 

increased 

TCU 

18.09 22.39 4.30 5.44 9.64 4.20 8.35 9.21 0.86 6.94 10.15 3.20 

Tech. Haz. 

Areas 

without 

increased 

TCU 

21.05 22.91 1.87 8.59 13.32 4.73 5.30 4.83 -0.5 12.7 15.57 2.85 

Other areas 

without 

increased 

TCU 

12.00 15.04 3.04 5.15 8.48 3.33 2.86 3.18 0.33 5.78 8.58 2.80 

*Areas with above median value of AWCPE 

 

5.6 Spatial Regression Model for Social Vulnerability 

The exploration of changes in social vulnerability with respect to hazard exposure and 

housing subsidies in Harris County as presented in previous section appear to confirm the 

hypothesis of this study that housing subsidies exacerbate social vulnerability when located in 

hazardous areas, controlling for background or baseline rates of vulnerability attributable to 

population growth. This finding conflicts with the central objectives of the subsidy programs to 

revitalize depressed neighborhoods and to provide safer housing to low-income people. As this 

study posits, present attempts to achieve these objectives through the provision of market 

dependent housing subsidies is likely to fail, particularly in hazard exposed neighborhoods. To 
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confirm these results, a spatial regression analysis was performed (as explained in Chapter 3). 

This kind of regression analysis not only controls for other factors that may contribute to social 

vulnerability, but also can account for spatial autocorrelation of the dependent variables. All four 

dependent variables considered in this study (Table 5.7) were found to exhibit significant spatial 

autocorrelation, warranting spatial regression analysis. In addition to standard ordinary least 

squares (OLS), spatial lag, spatial error, and spatial Durbin (SDM) models were estimated to 

compare their results. Each of these model results along with the Lagrange Multiplier (LM) 

diagnostics (Anselin, 1988; Anselin et al., 1996) for model selection are presented in Appendix 

C. Following the procedures suggested by Elhorst (2010), likelihood ratio (LR) tests were 

conducted to identify the model that best describes the data
24

. 

Identifying neighboring areas and assigning spatial weights for those neighboring areas is 

a key issue for spatial regression. The spatial weight matrix specifies which neighboring tracts 

are most important in defining the characteristics of an area and thereby formally articulates the 

spatial dependence relationships assumed by the regression analysis. Neighborhood change 

studies have documented how areas surrounding a neighborhood influences white flight 

(Crowder & South, 2008; Denton & Massey, 1991), minority composition (Denton & Massey, 

1991; Massey & Mullan, 1984), housing values and appreciation rates (Burnell, 1988; Sampson 

et al., 1999), and loss of population (Morenoff & Sampson, 1997). Studies of subsidized housing 

have also shown spill-over effects on surrounding neighborhoods (Galster, 2013; Galster et al., 

1999; Schill & Wachter, 1995). These studies indicate spatial dependence in the characteristics 

of a given neighborhoods on the characteristics of neighboring areas and the spatial matrix is 

designed to capture this influence. Since spatial dependence tends to decline with distance 

(Downey, 2006), an inverse distance weighting strategy is adopted for this study in which the 

influence of neighboring census tracts is assumed to be inversely related to distance. This 

distance-decay strategy defines the elements of the spatial weights matrix as Wij = 1/dij where dij 

is the geographic distance
25

 between the centroid of tract i and the centroid of the neighboring 

tract j. In this case another critical factor is the distance beyond which a zero influence will be 

assumed (i.e., threshold distance for negligible influence). Voss & Chi (2006) tested multiple 

distance thresholds (and matrices) and selected the one that achieved a high coefficient of spatial 

                                                        
24 See Chapter 3 section 3.3.2 for detail procedure followed in this study. Elhorst (2010) gives elaborate discussion. 
25 This distance can also be powered by two or more value. 
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autocorrelation along with a high level of statistical significance, while Crowder & South (2008), 

selected a much larger distance (100 miles) without a clear theoretical foundation
26

. In this study, 

a smaller threshold distance (eight miles) is selected, which was found to be the minimum 

distance (for Harris County) to assign all census tracts at least one neighbor (i.e., eight miles is 

the maximum distance between all the tract centroids) and which also gives the highest 

coefficient of spatial autocorrelation
27

. Since the traditional adjacency approach ignores tracts 

that do not share a boundary, a distance decay approach offers important theoretical and practical 

advantages. While, both approaches emphasize neighboring tracts, the distance-decay function 

produces a more realistic spatial pattern of neighborhood characteristics and residential location 

choice. This approach is consistent with the argument that householders consider conditions in a 

broad range of geographic areas when making their residential location choices (Crowder & 

South, 2008; Krysan, 2008).  

Table 5.7 lists all variables used for the regression analysis. Change in social 

vulnerability (ΔSoVI) between 2000 and 2010 is one of the key dependent variables and is used 

to model how the independent variables are contributing to overall changes of vulnerability 

throughout Harris County. This variable is calculated from the SoVI values (as described in 

Chapter 4), by subtracting the standardized value of the 2000 SoVI from that of 2010. It should 

be noted that because the SoVI is a composite measure of social vulnerability, it may mask 

changes in specific dimensions of vulnerability. Similarly, as explained in Chapter 4 (section 

4.7), temporal comparison of the SoVI can be problematic since the composition of vulnerability 

dimensions (and variables) may change over time. Considering these limitations of the SoVI, 

individual dimensions of social vulnerability are also explored here alongside changes in the 

SoVI. The poverty rate is one of the key measures of social vulnerability (as also found through 

the PCA results discussed in Chapter 4) and change in the poverty rate between 2000 and 2010 

(Δpoverty_rate) is evaluated to determine how subsidized housing and hazard exposure 

interacted with the overall poverty rate at the census tract level. Since the experience of poverty 

is also not the same across all population subgroups (Lens et al., 2011), the change in the 

percentage of the population who are black and living in poverty (Δblack_poverty) as well as 

                                                        
26 Spatial weights by inverse distance are quite small beyond distance of about 10 miles, as contended by Crowder & 

South (2008) in support of taking 100 mile distance threshold.  
27 It is quite obvious that higher distance threshold will produce lower spatial autocorrelation, but in this case the 

minimum distance was taken that would assign all neighborhood with at least one neighborhood and would better 

help to capture the spatial spill over patterns of neighborhood characteristics through distance decay function. 
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Hispanic and living in poverty (Δhispanic_poverty) is also examined to determine if poor people 

within these subgroups are experiencing differential outcomes.  

 

Table 5.7: Variables used for the models 

Dependent Variables   

ΔSoVI 

Δpoverty_rate 

Change in standardized values of SoVI (2000-2010) 

Change in % of population under poverty (2000-2010) 

Δblack_poverty Change in % of population who are Non-Hispanic Black and 

under poverty (2000-2010) 

Δhispanic_poverty Change in % of population who are Hispanic and under poverty 

(2000-2010) 

Independent Variables   

zpowr*pchcvgr Standardized value of technological exposure from power 

function*change in % of households with HCV  

zpowr*pctcugr Standardized value of technological exposure from power 

function*change in % of households in LIHTC units 

zcpe1*pchcvgr Standardized value of technological exposure from CPE 

function* change in % of households with HCV 

zcpe1*pctcugr Standardized value of technological exposure from CPE 

function* change in % of households in LIHTC units 

zfldrt*pchcvgr Standardized value of % residential lot in natural hazard area* 

change in % of households with HCV 

zfldrt*pctcugr Standardized value of % residential lot in natural hazard area* 

standardized growth of LIHTC units 

pchcvgr change in % of households with HCV (2000-2010) 

pctcugr change in % of households in LIHTC units (2000-2010) 

zfldrt Standardized value of % residential lot in natural hazard area 

zpowr Standardized value of technological exposure from power 

function 

zcpe1 Standardized value of technological exposure from CPE function 

Control variables   

Popgr % growth of population (2000-2010) 

Blkgr Change in % of Black population (2000-2010) 

Hspgr Change in % of Hispanic population (2000-2010) 

pov2000 % of population under poverty in 2000 

hsp2000 % of Hispanic population in 2000 

blk2000 % of Non-Hispanic Black population in 2000 

mdrnt2000 Median rent of renter-occupied units in 2000 

cbd_dist  Distance from CBD in miles 
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Among the independent variables, the key variables of interest for this study are the 

interaction terms for hazard exposure and housing subsidy. If those variables are statistically 

significant and carry a positive coefficient, this would confirm the hypothesis of this study. Each 

of the hazard exposure and housing subsidy variables were standardized (using the z-score 

transformation
28

) before incorporating them in the regression analysis to enhance the 

interpretability of the regression coefficients (Schielzeth, 2010). Centering variables through 

standardization is important when the interaction of two continuous variables is included in a 

model, because without centering the input variables will result in an interaction predictor that is 

collinear with the main effects (Schielzeth, 2010). Standardization of the input variables before 

estimating the model will largely eliminate this problem of correlation (Aiken & West, 1991; 

Neter et al., 1999) and also allows tests for interaction effects
29

 (Schielzeth, 2010). For the 

present analysis, the estimated coefficient for the interaction term will indicate if the combination 

of hazard risk and housing subsidy significantly impacts social vulnerability beyond the 

individual effect of these two variables that are estimated as main effects. Since this study 

adopted two different measures of technological hazards (i.e., the power function and WCPE 

function), all the models are estimated for both of these measures separately. 

Several control variables were included in the models that may influence the changes of 

social vulnerability indicators of an area. The growth of the total population and growth of 

different racial and ethnic groups are included, assuming that they may influence the percentage 

of the population under poverty in an area. Base year poverty (pov2000) and racial/ethnic 

composition (blk2000 and hsp2000) are included in the model because prior studies have shown 

that poor people usually find it easier to move into areas that already have high poverty rates and 

high minority concentrations (Galster et al., 2008; Logan & Zhang, 2010). The median rent of 

housing units in 2000 (mdrnt2000)  represents the affordability of an area, while distance from 

the central business district (cbd_dist) indicates accessibility to employment opportunities, which 

can also be important decision factors whether people living in poverty will move to a certain 

area (Brueckner & Rosenthal, 2009). After controlling for all these relevant factors, it can be 

expected that the independent variables will capture their net effects on the dependent variables. 

Procedures for preparing all the data used in the models are discussed in detail in Chapter 3. 

                                                        
28 The z-score is derived as follows: ZTract =  (ScoreTract – Meancounty) / Standard Deviationcounty 
29 For example, if combinations of the two variables produce differential responses in addition to what is explained 

by the sum of the main effects. 
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5.7 Model Results Discussion 

Model estimates for change in social vulnerability (ΔSoVI) in the census tracts between 

2000 and 2010 are presented in Table 5.8. The Lagrange Multiplier (LM) diagnostics of the OLS 

models (Appendix Table C2 and C5, for both measures of technological hazard) indicated that 

both a spatial lag and error model specification can be selected for this variable, but the 

Likelihood Ratio (LR) test (Table C3 and C6) recommended by Elhorst (2010) indicated the 

Spatial Durbin Model (SDM) would be a better choice. As a result, OLS and SDM estimates are 

presented in Table 5.8 for both measures of technological hazard. As the OLS model results 

indicate, tracts with an increase in the percentage of households with HCV (pchcvgr) have 

experienced an increase in social vulnerability between 2000 and 2010. Although the SDM using 

the power function did not find a significant relationship, the SDM using the WCPE function did 

and for all models the interaction terms did not indicate any significant influence on changes in 

social vulnerability at the census tract level. As discussed in previous section, since the SoVI is a 

composite measure of vulnerability, it may mask the impacts of specific dimensions of social 

vulnerability. While the models for change in SoVI (Table 5.8) indicate the outcomes for the 

overall vulnerability pattern, it may also have suppressed underlying heterogeneity for different 

dimensions of vulnerability.  

 

Table 5.8: Models estimating change in standardized value of SoVI between 2000 and 2010 

(ΔSoVI) 

  Power function for tech. hazard WCPE function for tech. hazard 

Variables OLS Spatial Durbin OLS Spatial Durbin 

(Intercept) -0.472 (0.194)* -0.192 (0.506)  -0.492 (0.195)* -0.277 (0.503)  

zfldrt:pchcvgr -0.013 (0.018)                                                 -0.007 (0.017)  -0.013 (0.018)  -0.009 (0.017)  

zfldrt:pctcugr   0.004 (0.007)           0 (0.007)    0.004 (0.007)    0.002 (0.007)  

pchcvgr:zpowr -0.007 (0.011)   -0.012 (0.011)  

  pctcugr:zpowr   -0.008 (0.01)   -0.014 (0.009)  
  pchcvgr:zcpe1 

  

-0.016 (0.011)  -0.019 (0.011)  

pctcugr:zcpe1 
  

-0.015 (0.012)    -0.02 (0.012)  

Pchcvgr   0.046 (0.015)**   0.028 (0.014)    0.048 (0.015)**     0.03 (0.014)* 

Pctcugr   0.002 (0.005)      0.001 (0.005)    0.001 (0.005)           0 (0.005)  

zfldrt -0.012 (0.029)  -0.036 (0.033)     -0.01 (0.029)   -0.028 (0.033)  

zpowr -0.075 (0.036)* -0.005 (0.044)  
  zcpe1 

  

 -0.005 (0.036)    0.062 (0.039)  

Popgr                 0 (0)                  0 (0)                   0 (0)                   0 (0)  

Blkgr     0.03 (0.004)***   0.026 (0.004)***      0.03 (0.004)***    0.026 (0.004)*** 
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Table 5.8 (cont.) 

  Power function for tech. hazard WCPE function for tech. hazard  

Variables OLS Spatial Durbin Variables OLS 

Hspgr   0.033 (0.003)***   0.029 (0.003)***  0.033 (0.003)***  0.029 (0.003)*** 

mdrnt2000                 0 (0)                  0 (0)*                0 (0)                  0 (0)* 

pov2000 -0.021 (0.005)*** -0.018 (0.005)*** -0.022 (0.005)*** -0.017 (0.005)** 

hsp2000     0.01 (0.002)***   0.012 (0.003)***   0.009 (0.002)***  0.013 (0.003)*** 

shrblk2000     0.01 (0.002)***   0.015 (0.003)***     0.01 (0.002)***  0.015 (0.003)*** 

cbd_dist     0.01 (0.006)   -0.026 (0.045)      0.01 (0.006)  -0.033 (0.045)  

lag.pchcvgr 

 

- 0.006 (0.061)  

 

    0.009 (0.06)  

lag.pctcugr 
 

  0.019 (0.027)  
 

  0.008 (0.028)  

lag.zfldrt 

 

  0.161 (0.097)  

 

  0.123 (0.097)  

lag.zpowr 
 

  0.022 (0.152)  
  lag.zcpe1 

   

-0.193 (0.187) 

lag.popgr 
 

         0 (0.001)  
 

         0 (0.001)  

lag.blkgr 

 

  0.015 (0.013)  

 

  0.016 (0.013)  

lag.hspgr 
 

 -0.003 (0.009)  
 

-0.008 (0.009)  

lag.mdrnt2000     0.001 (0.001)  

 

         0.001 (0)  

lag.pov2000 
 

  0.012 (0.016)  
 

  0.009 (0.016)  

lag.hsp2000 

 

   -0.01 (0.006)  

 

 -0.008 (0.006)  

lag.shrblk2000 
 

- 0.017 (0.006)** 
 

 -0.014 (0.006)* 

lag.cbd_dist 

 

    0.013 (0.05)  

 

    0.021 (0.05)  

lag.zfldrt:pchcvgr   0.087 (0.072)  
 

  0.088 (0.071)  

lag.zfldrt:pctcugr   0.002 (0.033)  

 

  0.019 (0.031)  

lag.pchcvgr:zpowr   0.003 (0.061)  
  lag.pctcugr:zpowr  -0.062 (0.061)  

  lag.pchcvgr:zcpe1 
  

  0.024 (0.072)  

lag.pctcugr: zcpe1 

  

 -0.094 (0.091)  

rho/lambda   0.516 (0.076)***   0.518 (0.075)*** 

Adj.R2       0.2896 

 

      0.2834 

 AIC 1780.967  1719.9 1787.633 1717.7 

Log likelihood  -872.4837   -824.9665  -875.8167  -823.8262 

Moran‘s I for 

residuals        0.117*** 
 

       0.125*** 
 *p< .05, **p< .01, ***p< .001 

 

OLS and SDM estimates for the change in poverty rate between 2000 and 2010 variable 

(Δpoverty_rate) are presented in Table 5.9 while the full model results including LM diagnostics 

and LR test results are presented in Appendix Tables C7 to C12. While the LM test favored the 

spatial error model specification, the LR test again identified the SDM as the preferred 

alternative. As the model results indicate (Table 5.9), for both measures of technological hazard 
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the interaction of tax credit units (i.e., LIHTC units) and technological hazards (pctcugr: zpowr 

and pctcugr: zcpe1) are statistically significant predictors for an increase in poverty rate. This 

effect is in addition to the positive effect of the growth of such subsidized units (pctcugr) 

considered individually (i.e., its main effect). However, for HCV households or natural hazard 

exposure, the models do not indicate any significant influence. On the other hand, while 

technological hazard (zcpe1 and zpowr) itself is not significantly related to change in poverty 

rate, when those hazardous areas experience an increase in the number of tax credit units 

(pctcugr: zpowr and pctcugr: zcpe1), poverty rates increase significantly in the neighborhood. 

This result confirms the key hypothesis of this study that subsidized housing contributes to 

increased social vulnerability in an area, although it was only found to be significant for tax 

credit units (i.e. LIHTC) and not for vouchers (i.e. HCV).  

 

Table 5.9: Models estimating change in % of population under poverty between 2000 and 2010 

(Δpoverty_rate) 

  Power function for tech. hazard WCPE function for tech. hazard 

Variables OLS Spatial Durbin OLS Spatial Durbin 

(Intercept) -0.146 (1.822)    2.308 (4.876)  -0.173 (1.821)   0.524 (4.846)  

zfldrt:pchcvgr -0.158 (0.172)  -0.181 (0.167)  -0.122 (0.172)  -0.159 (0.166)  

zfldrt:pctcugr   0.029 (0.068)          0 (0.065)  -0.002 (0.067)  -0.013 (0.064)  

pchcvgr:zpowr -0.017 (0.104)   -0.12 (0.102)  

  pctcugr:zpowr   0.278 (0.093)** 0.212 (0.089)* 

  pchcvgr:zcpe1 

  

    -0.096 (0.1)  -0.105 (0.109)  

pctcugr:zcpe1 

  

   0.38 (0.116)**   0.341 (0.115)** 

Pchcvgr   0.343 (0.141)*  0.256 (0.139)   0.308 (0.141)*   0.239 (0.138)  

Pctcugr   0.154 (0.051)**  0.142 (0.049)**  0.167 (0.051)**     0.155 (0.05)** 

zfldrt   0.551 (0.272)*  0.304 (0.319)   0.559 (0.272)*     0.324 (0.32)  

zpowr  -0.849 (0.341)*  0.219 (0.421)  

  zcpe1 

  

-0.181 (0.333)      0.359 (0.38)  

Popgr    -0.01 (0.003)***   -0.01 (0.003)**   -0.01 (0.003)***    -0.01 (0.003)** 

Blkgr   0.174 (0.037)***    0.22 (0.039)***  0.171 (0.037)***    0.217 (0.039)*** 

Hspgr   0.312 (0.027)**  0.334 (0.032)***  0.317 (0.028)***    0.336 (0.032)*** 

mdrnt2000  -0.003 (0.002)  -0.003 (0.002)  -0.002 (0.002)    -0.003 (0.002)  

pov2000  -0.274 (0.046)*** -0.288 (0.051)*** -0.279 (0.046)***   -0.283 (0.051)*** 

hsp2000   0.139 (0.018)***   0.184 (0.027)***   0.135 (0.018)***    0.183 (0.028)*** 

shrblk2000     0.09 (0.018)***   0.166 (0.029)***     0.09 (0.018)***    0.163 (0.029)*** 

cbd_dist   0.062 (0.052)   -0.305 (0.439)    0.071 (0.052)    -0.256 (0.439)  

lag.pchcvgr 

 

   0.068 (0.589)  

 

    0.324 (0.581)  
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Table 5.9 (cont.) 

  Power function for tech. hazard WCPE function for tech. hazard 

Variables OLS Spatial Durbin Variables OLS 

lag.pctcugr 

 

-0.079 (0.261)  

 

-0.084 (0.273)  

lag.zfldrt 

 

  1.155 (0.938)  

 

  0.785 (0.938)  

lag.zpowr 

 

 -1.308 (1.481)  

  lag.zcpe1 

   

-3.002 (1.815) 

lag.popgr 

 

    0.01 (0.009)  

 

  0.012 (0.009)  

lag.blkgr 
 

   -0.123 (0.12)  
 

 -0.092 (0.121)  

lag.hspgr 
 

 -0.061 (0.091)  
 

 -0.083 (0.092)  

lag.mdrnt2000 

 

  0.002 (0.005)  

 

  0.003 (0.005)  

lag.pov2000 

 

  0.206 (0.152)  

 

    0.19 (0.152)  

lag.hsp2000 

 

-0.137 (0.062)* 

 

 -0.122 (0.061)* 

lag.shrblk2000 

 

-0.209 (0.062)*** 

 

 -0.182 (0.061)** 

lag.cbd_dist 

 

  0.233 (0.481)  

 

  0.179 (0.479)  

lag.zfldrt:pchcvgr 

 

  1.581 (0.694)* 

 

  1.616 (0.691)* 

lag.zfldrt:pctcugr 
 

 -0.067 (0.319)  
 

      0.126 (0.3)  

lag.pchcvgr:zpowr 
 

 -0.136 (0.588)  
  lag.pctcugr:zpowr 

 

   -0.565 (0.59)  

  lag.pchcvgr:zcpe1 

   

  0.252 (0.701)  

lag.pctcugr: zcpe1 

   

    0.204 (0.88)  

Rho   0.284 (0.091)**   0.316 (0.089)*** 

Adj.R2         0.2872 

 

       0.2869 

 AIC   5222.408   5198.1  5222.682   5198.1 

Log likelihood -2593.204  -2564.032 -2593.341  -2564.033 

Moran‘s I for 
residuals        0.069*** 

 

        0.075*** 

 *p< .05, **p< .01, ***p< .001 

 

Since the experience of poverty is not the same across population subgroups (Lens et al., 

2011), separate models were estimated for change in the percentage of population who are black 

and living in poverty (Δblack_poverty) as well as Hispanic and living in poverty 

(Δhispanic_poverty). Despite significant impacts on change in the overall poverty rate for 

technological hazard and LIHTC units, for the black population (under poverty), as Table 5.10 

shows, no such influence was found. This measure in particular follows the overall change in 

social vulnerability, indicating that an increase of voucher recipient households (pchcvgr) in a 

census tract also increases the percentage of poor black residents there. This pattern persists even 

after controlling for the overall trends of black population (blkgr) growth during the same period 

and similar results were found for both measures of technological hazards. The full model 
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results, including LM diagnostics and LR test results for this variable are presented in Appendix 

Table C13 to C18. 

Table 5.10: Models estimating change in % of population Black and under poverty between 2000 

and 2010 (Δblack_poverty) 

  Power function for tech. hazard WCPE function for tech. hazard 

Variables OLS Spatial Durbin OLS Spatial Durbin 

(Intercept)    0.162 (0.886)    2.481 (2.365)    0.181 (0.885)    2.407 (2.346) 

zfldrt:pchcvgr    0.072 (0.084)    0.069 (0.081)      0.08 (0.083)      0.082 (0.08)  
zfldrt:pctcugr  -0.037 (0.033)  -0.045 (0.032)   -0.043 (0.032)  -0.046 (0.031)  

pchcvgr:zpowr    -0.016 (0.05)    -0.054 (0.05)  
  pctcugr:zpowr   0.054 (0.045)   0.038 (0.043)  

  pchcvgr:zcpe1 
  

  -0.01 (0.049)  -0.045 (0.053)  

pctcugr:zcpe1 

  

 0.094 (0.056)    0.069 (0.056)  

pchcvgr     0.37 (0.069)***   0.296 (0.067)***  0.362 (0.068)***   0.296 (0.067)*** 

pctcugr   0.026 (0.025)    0.025 (0.024)   0.031 (0.025)    0.026 (0.024)  

zfldrt   0.272 (0.132)*  -0.049 (0.155)   0.271 (0.132)*  -0.046 (0.155)  

zpowr -0.044 (0.166)    0.328 (0.204)  

  zcpe1 
  

-0.006 (0.162)    0.283 (0.184)  

popgr -0.003 (0.001)*  -0.003 (0.001)  -0.003 (0.001)*  -0.003 (0.001)  

blkgr   0.255 (0.018)***   0.273 (0.019)***   0.254 (0.018)***   0.272 (0.019)*** 

hspgr   0.003 (0.013)    0.003 (0.016)    0.004 (0.013)    0.004 (0.015)  

mdrnt2000  -0.001 (0.001)   -0.001 (0.001)  -0.001 (0.001)   -0.001 (0.001)  

pov2000  -0.135 (0.022)***  -0.113 (0.025)*** -0.135 (0.022)***  -0.109 (0.025)*** 

hsp2000   0.053 (0.009)***     0.04 (0.013)**  0.052 (0.009)***   0.042 (0.013)** 

shrblk2000   0.043 (0.009)***   0.064 (0.014)***  0.043 (0.009)***   0.064 (0.014)*** 

cbd_dist   0.003 (0.025)   -0.069 (0.213)   0.004 (0.025)   -0.104 (0.213)  

lag.pchcvgr 

 

  0.079 (0.288)  

 

  0.161 (0.284)  

lag.pctcugr 
 

 -0.069 (0.126)  
 

   -0.16 (0.132)  

lag.zfldrt 

 

    1.09 (0.455)* 

 

   0.988 (0.456)* 

lag.zpowr 
 

 -0.363 (0.711)  
  lag.zcpe1 

   

  -0.363 (0.872)  

lag.popgr 
 

  0.006 (0.004)  
 

   0.007 (0.004)  

lag.blkgr 

 

 -0.173 (0.061)** 

 

    -0.17 (0.061)** 

lag.hspgr 
 

 -0.024 (0.041)  
 

    -0.04 (0.042)  

lag.mdrnt2000 

 

 -0.001 (0.002)  

 

  -0.001 (0.002)  

lag.pov2000 
 

 -0.025 (0.074)  
 

  -0.038 (0.074)  

lag.hsp2000 

 

    0.014 (0.03)  

 

     0.017 (0.03)  

lag.shrblk2000 
 

     -0.07 (0.03)* 
 

  -0.065 (0.029)* 

lag.cbd_dist 

 

  0.039 (0.233)  

 

    0.072 (0.232)  

lag.zfldrt:pchcvgr 
 

 -0.086 (0.336)  
 

     -0.01 (0.334)  

lag.zfldrt:pctcugr 

 

  0.128 (0.154)  

 

    0.183 (0.145)  
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Table 5.10 (Cont.) 

  Power function for tech. hazard WCPE function for tech. hazard 

Variables OLS Spatial Durbin OLS Spatial Durbin 

lag.pchcvgr:zpowr 

 

-0.146 (0.285)  

  lag.pctcugr:zpowr 
 

-0.295 (0.285)  
  lag.pchcvgr:zcpe1 

   

-0.137 (0.339)  

lag.pctcugr: zcpe1 
   

-0.789 (0.424)  

rho/lambda   0.395 (0.085)***                0.4 (0)*** 

Adj.R2         0.3327 
 

        0.3338 
 AIC   4113.338   4087   4112.064       4085.1 

Log likelihood -2038.669 -2008.487 -2038.032      -2007.56 
Moran‘s I for 

residuals         0.07*** 

 

        0.069*** 

 *p< .05, **p< .01, ***p< .001 

 

 

In the case of change in the percentage of the poor Hispanic population 

(Δhispanic_poverty), the two measures of technological hazard exhibited different patterns of 

relationships with the independent variables. As Table 5.11 shows, for interaction between 

technological hazard and an increase in LIHTC units the power function did not indicate any 

significant contribution (pctcugr:zpowr), but the WCPE function (pctcugr:zcpe1) model 

specification suggested a positive relationship between LIHTC units and poor Hispanic residents. 

This result persists after controlling for the growth of the Hispanic population (hspgr) during the 

same time period and given the main effect of LIHTC growth (pctcugr) indicating a significant 

positive impact on the change in the percentage of the poor Hispanic population. Different 

results from the two interaction terms (pctcugr:zpowr and pctcugr:zcpe1) are primarily due to the 

different hazard measures produced by the two models and how poor Hispanic people have 

located themselves with high growth of Hispanic population in Harris County. All the model 

results, including LM diagnostics and LR test results for this variable are presented in Appendix 

Table C19 to C24. In this case too, although LM tests favored a spatial error model specification, 

the LR test identified SDM as a better alternative. 
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Table 5.11: Models estimating change in % of population Hispanic and under poverty between 

2000 and 2010 (Δhispanic_poverty) 

  Power function for tech. hazard WCPE function for tech. hazard 

Variables OLS Spatial Durbin OLS Spatial Durbin 

(Intercept)  -1.812 (1.401)  -0.432 (3.794)  -1.887 (1.402)    -2.05 (3.771)  

zfldrt:pchcvgr      -0.2 (0.132)    -0.242 (0.13)  -0.175 (0.132)  -0.229 (0.129)  

zfldrt:pctcugr   0.043 (0.052)   0.022 (0.051)   0.023 (0.051)      0.015 (0.05)  

pchcvgr:zpowr    -0.028 (0.08)  -0.099 (0.079)  
  pctcugr:zpowr   0.182 (0.071)*   0.135 (0.069)  

  pchcvgr:zcpe1 

  

-0.092 (0.077)  -0.075 (0.084)  

pctcugr:zcpe1 

  

  0.258 (0.089)**     0.249 (0.09)** 

Pchcvgr   0.004 (0.109)           0 (0.108)  -0.013 (0.108)   -0.008 (0.107)  

Pctcugr   0.097 (0.039)*   0.084 (0.038)*   0.107 (0.039)**     0.097 (0.038)* 

Zfldrt   0.404 (0.209)    0.458 (0.248)    0.408 (0.209)    0.475 (0.248)  

Zpowr -0.772 (0.262)**  -0.042 (0.327)  
  zcpe1 

  
 -0.273 (0.256)     0.073 (0.295)  

Popgr -0.005 (0.002)*  -0.006 (0.002)*  -0.005 (0.002)*  - 0.006 (0.002)* 

Blkgr -0.017 (0.028)      0.018 (0.03)   -0.019 (0.028)       0.016 (0.03)  

Hspgr   0.387 (0.021)***   0.402 (0.025)***     0.39 (0.021)***    0.403 (0.025)*** 

mdrnt2000  -0.001 (0.001)  -0.001 (0.001)   -0.001 (0.001)    -0.001 (0.001)  

pov2000  -0.077 (0.035)* -0.107 (0.039)**  -0.082 (0.035)*   -0.106 (0.039)** 

hsp2000   0.091 (0.014)***   0.136 (0.021)***   0.089 (0.014)***    0.134 (0.021)*** 

shrblk2000   0.038 (0.014)**   0.085 (0.022)***   0.039 (0.014)**    0.083 (0.022)*** 

cbd_dist     0.011 (0.04)   -0.072 (0.341)      0.018 (0.04)      -0.007 (0.34)  

lag.pchcvgr 

 

 -0.074 (0.455)  

 

   0.138 (0.448)  

lag.pctcugr 

 

 -0.048 (0.203)  

 

   0.012 (0.212)  

lag.zfldrt 

 

 -0.208 (0.726)  

 

  -0.454 (0.724)  

lag.zpowr 

 

 -1.166 (1.151)  

  lag.zcpe1 

   

    -2.99 (1.414)* 

lag.popgr 
 

   0.005 (0.007)  
 

   0.007 (0.007)  

lag.blkgr 
 

 -0.053 (0.093)  
 

   0.022 (0.093)  

lag.hspgr 
 

 -0.032 (0.077)  
 

  -0.039 (0.077)  

lag.mdrnt2000 

 

   0.001 (0.004)  

 

   0.003 (0.004)  

lag.pov2000 

 

       0.2 (0.117)  

 

   0.192 (0.117)  

lag.hsp2000 

 

    -0.13 (0.048)** 

 

  -0.117 (0.047)* 

lag.shrblk2000 

 

  -0.131 (0.048)** 

 

  -0.109 (0.047)* 

lag.cbd_dist 

 

  -0.007 (0.373)  

 

  -0.076 (0.372)  

lag.zfldrt:pchcvgr 
 

       1.69 (0.54)** 
 

   1.653 (0.536)** 

lag.zfldrt:pctcugr 
 

  -0.103 (0.247)  
 

   0.028 (0.232)  

lag.pchcvgr:zpowr 
 

  -0.093 (0.457)  
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Table 5.11 (cont.) 

  Power function for tech. hazard WCPE function for tech. hazard  

Variables OLS Spatial Durbin Variables OLS 

lag.pctcugr:zpowr 

 

-0.145 (0.458)  

  lag.pchcvgr:zcpe1 
   

0.357 (0.544)  

lag.pctcugr: zcpe1 

   

0.917 (0.684)  

rho/lambda    0.227 (0.095)*   0.243 (0.093)** 

Adj.R2         0.4099 

 

       0.4081 

 AIC   4818.134    4807.5  4820.529   4804.3 

Log likelihood -2391.067  -2368.733 -2392.265  -2367.154 

Moran‘s I for 

residuals        0.059*** 
 

       0.052*** 
 *p< .05, **p< .01, ***p< .001 

 

 

 

5.8 Summary of Findings  

Although the descriptive analyses at the beginning of this chapter suggested that an 

increase of both forms of housing subsidy (HCV and LIHTC) in both natural and technological 

hazard zones contributed to increased social vulnerability, the spatial regression found this 

relationship to be statistically significant only for an increase of LIHTC units in technological 

hazard zones. Also, further nuance was discovered when the outcomes for different racial and 

ethnic subgroups of the population living in poverty were examined. For tracts experiencing an 

increase in the share of black population living in poverty, none of the interactions (between 

hazards and housing subsidies) were found to be significant, but for the Hispanic population a 

significant relationship was found when technological hazards are measured using the WCPE 

function. The different approaches for providing affordable housing exemplified by the HCV and 

LIHTC programs may have also contributed to the different outcomes identified in this study. 

One of the key aspects of the LIHTC program is that it is project based and thereby, tends to 

concentrate low-income units in a neighborhood. Exploration of the spatial distribution of 

subsidized housing units also revealed a higher percentage of LIHTC units in the hazard zones. 

Taken together, these two factors help to explain the positive relationship between social 

vulnerability and an increase of LIHTC units in technological hazard zones.  

For natural hazards, the locations of subsidized housing units did not deviate very much 

from the distribution of the overall population. Although Harris County exhibits a high degree of 
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social vulnerability in natural hazard areas, because those areas did not experience a significant 

increase in subsidized housing units, this study also did not find any evidence that the HCV or 

LIHTC programs are contributing to social vulnerability in natural hazard areas for the time 

period considered. These findings suggest that while tax credit properties significantly increase 

social vulnerability when they are located in technological hazard areas, since there were not 

many new LIHTC developments in natural hazard zones between 2000 and 2010, their 

contribution to vulnerability in those areas was not found to be significant. The results of this 

analysis argue for scrutinizing the location requirements of the LIHTC program in terms of 

neighborhood environmental quality and proximity to hazardous facilities. Chapter 6 discusses 

existing environmental location requirements of housing subsidy programs, first in general for all 

HUD assisted housing, and then specifically for the HCV and LIHTC programs. Interviews of 

officials at the Houston Housing Authority and selected examples of LIHTC developments are 

also presented in Chapter 6 to further contextualize the findings presented in this chapter. 
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CHAPTER 6 

HOUSING POLICY FOR A MULTI-HAZARD ENVIRONMENT 

 

6.1 Introduction 

Housing is more than just a shelter. Besides providing a place to sleep and to store 

belongings, it plays a vital role in the health and wellbeing of individuals and communities. 

Housing is an integral part of human identity and shapes the way that current residents and future 

generations interact with others. Further, housing affordability is one of the key determinants of 

how individuals and households locate themselves within the housing market, which in turn, 

shapes a variety of life outcomes. Low-income and marginalized groups have a more difficult 

time finding and retaining decent quality housing, which would better enable them to overcome 

the cycle of social vulnerability. Since the 1949 Housing Act when the U.S. Congress envisioned  

ensuring ―a decent home in a suitable living environment for every American family‖, the 

federal government has helped to fund the construction and rehabilitation of more than 5 million 

housing units for low-income households and provided rental vouchers to nearly 2 million 

additional families (Schwartz, 2010). But these programs have undergone significant changes 

over time, starting with public housing type direct subsidy provision to the present market 

dependent approaches of the Low Income Housing Tax Credit (LIHTC) program and Housing 

Choice Voucher (HCV) program (McClure & Johnson, 2014; Schwartz, 2010). Recently the 

LIHTC and HCV programs have grown and currently rank as the largest components of the 

federal portfolio of assisted households and units. The two programs now serve in excess of 2 

million households each
30

 and considering the overall focus of these subsidy programs, prior 

studies have evaluated their outcomes in terms of whether housing units and households are 

being placed in low poverty, low crime neighborhoods with better opportunities (Baum-Snow & 

Marion, 2009; Freeman, 2004; Galster, 2013; Hollar & Usowki, 2007; Lang, 2012; Oakley, 

2008). However, very few studies have explored their location outcomes in terms of 

environmental justice. As discussed in the previous chapter (through the case of Harris County, 

Texas) these programs are placing proportionally more subsidized housing units and households 

                                                        
30 It is commonplace to add up all of the federal housing programs to generate a total, but this process exaggerates 

the count somewhat because there is some unknown amount of overlap between the two programs in that voucher 

households may lease units in LIHTC developments (O‘Regan & Horn, 2013). The overlap may be 16% or more of 

all vouchers (Williamson et al., 2009). 
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(compared to overall population distribution) in environmentally hazardous areas and are 

therefore, failing to achieve their desired neighborhood impact (of providing safer places to low-

income people) and in some cases increasing social vulnerability. This chapter argues that these 

failures are due to oversights in the locational provisions of these programs and discusses policy 

changes that should be considered to address these issues. It begins with a discussion of low-

income housing and its implications for environmental justice, then explores what the 

environmental quality provisions of the Department of Housing and Urban Development (HUD) 

are and why those provisions are not being applied in the LIHTC and HCV programs. Finally, 

the housing subsidy program administered by Houston Housing Authority is discussed and 

selected cases of LIHTC properties in Houston that underscore these points are presented. 

 

6.2 Environmental Justice and Low-income Housing 

 Although the concerns of environmental justice (EJ) have been widely researched, the 

present provisions for low-income housing and their possible EJ outcomes have garnered less 

attention. This section briefly discusses EJ theories and then explores why low-income housing 

subsidies need to consider EJ issues more explicitly. Broadly speaking, EJ theories emphasize 

social justice aspects of disproportionate environmental quality and illustrate how certain 

communities face greater environmental risks than others. In the United States, early studies on 

EJ linked exposure to environmental risks and pollution to both class and race, and explicitly 

showed that it was not only poor communities that bear disproportionate environmental burdens, 

but communities of color as well (Buzzelli, 2007; Schlosberg, 2013). Studies have widely 

documented the nature and extent of disproportionate exposures to health hazards, ranging from 

toxic waste sites and air pollution to the landfill siting process, and how it varies by population 

subgroups (Chakraborty & Armstrong, 2001; Crowder & Downey, 2010; Hamilton, 1995; 

Maantay, 2001). However, EJ scholarship has also moved beyond the simple description and 

documentation of inequity into a thorough analysis of the underlying reasons for that injustice 

and specifically, the question of why those communities were devalued in the first place 

(Schlosberg, 2013). As discussed in Chapter 2 (section 2.4), the racial income inequality thesis 

(Downey, 2005; Oakes et al., 1996) and the residential discrimination thesis (Bullard, 1999; 

Mohai & Bryant, 1998) both answer this question following two different perspectives, 

emphasizing the lower affordability thresholds of minority people and discriminatory housing 
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practices respectively. The location outcomes of housing subsidy programs can be explained by 

both theses. First, since non-white households are overrepresented in the universe of low-income 

households, they are more likely to receive a housing subsidy. Second, real estate agents and 

local governments, even without any intent to discriminate, will locate housing subsidies in low 

rent and hazardous areas since this is where resistance is likely to be lowest (Mohai et al., 2009). 

Seicshnaydre (2010) documented this problem in post-Katrina New Orleans recovery process. 

One issue that is still being debated in the EJ literature is the establishment of causation 

through the question of ―which came first‖ (Boone et al., 2014)—whether the polluting facility 

was already there and then minority population moved in, or whether the areas was already 

minority dominated before the facility located there. In both cases the issue of EJ holds—

minority people moving in near the polluting industry can still be an EJ problem, since the tight 

housing market plus discrimination and unfair housing practices, might diminish opportunities 

for minorities to find safer places (Boone et al., 2014). If we allow housing subsidies to be placed 

in polluted areas then EJ concerns will be intensified, and in this case through an institutional 

process. Another debated issue in EJ scholarship is identifying the evidence of harm (Bowen, 

2002). To ensure the health and wellbeing of nearby residents, determining what a safe distance 

from the hazardous facility is can be an important piece of information (Brulle & Pellow, 2006; 

Hynes & Lopez, 2012). While this distance can be measured through a complex epidemiological 

study and applied for evaluating EJ (Osiecki et al., 2013), there are several strong arguments 

against this approach (Boone et al., 2014). First, waiting for the scientific demonstration to 

establish the causal link can be perilous for residents living near a polluting facility and this can 

also be a time consuming process for planning decision making (e.g., permitting process). 

Second, the proof of harm should not rest with victims, as is typically the case, but with the 

polluters themselves. So, there should be defined guidelines for the polluters (or for the 

developers, who propose to develop any housing project) to show that the polluting facility will 

not harm the residents. As shown in the next section, HUD already has such regulations for 

assisted housing, but those are not applicable for the particular case of the HCV or LIHTC 

programs.  

Section 3604(b) of the Fair Housing Act (Title VIII of the Civil Rights Act of 1968) 

makes it unlawful to ―discriminate against any person in the terms, conditions, or privileges of 

sale or rental of a dwelling, or in the provision of services or facilities in connection therewith.‖ 
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For the last fifteen years or so, Title VIII has been an area of some commentary in the 

environmental-justice movement (Kaswan, 1997). Although it has been widely applied and 

debated in the cases for locating new public housing or during post-disaster recovery process 

(Rajotte, 2007; Seicshnaydre, 2010), its appropriateness as a general provision for the HCV and 

LIHTC programs, the problems of EJ, or how these programs may violate section 3604(b) has 

not yet to received much attention. Since this study does not intend to give an extensive review 

of legal provisions, some limitations of these popular housing subsidy programs that need further 

scrutiny are highlighted here without going into specifics of the legislation. 

 

6.3 Environmental Quality Requirements for HUD Assisted Housing 

 Considering the possible impacts of placing low-income people in hazardous areas, HUD 

has established detailed guidelines for any HUD assisted housing through Title 24 Code of 

Federal Regulations (CFR), which outlines all the rules and regulation to be followed by HUD 

officials and for any HUD assisted activity (i.e., those receiving HUD funding). The discussion 

here is limited to those rules that focus on the environmental requirements of subsidized housing 

and that should play significant roles in preventing any housing from being placed in natural or 

technological hazard areas. As it is shown in this section and later (section 6.4 and 6.5), most of 

these regulations do not apply for the HCV or LIHTC programs since they do not fall under the 

umbrella of typical HUD assisted housing projects. Despite this fact, these regulations are 

described to give a better sense of the problems associated with moving to market dependent 

housing subsidies. 

 

6.3.1 Technological Hazards 

The Environmental quality requirements of HUD assisted housing are outlined in 24 CFR 

§50.3 (2014), which states, ―[i]t is the policy of the Department to reject proposals which have 

significant adverse environmental impacts and to encourage the modification of projects in 

order to enhance environmental quality and minimize environmental harm.‖ While it is more 

concerned with specific impacts of the housing, it also addresses the environmental quality of 

housing locations in §50.3(i): 

―(1) It is HUD policy that all property proposed for use in HUD programs be free of 

hazardous materials, contamination, toxic chemicals and gasses, and radioactive 
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substances, where a hazard could affect the health and safety of occupants or conflict 

with the intended utilization of the property. 

(2) HUD environmental review of multifamily and non-residential properties shall 

include evaluation of previous uses of the site and other evidence of contamination on 

or near the site, to assure that occupants of proposed sites are not adversely affected by 

the hazards listed in paragraph (i)(1) of this section. 

(3) Particular attention should be given to any proposed site on or in the general 

proximity of such areas as dumps, landfills, industrial sites or other locations that 

contain hazardous wastes. 

(4) HUD shall require the use of current techniques by qualified professionals to 

undertake investigations determined necessary.‖ 

Particularly, §50.3(i)(3) is specifically mentioning the proximity to hazardous facilities for any 

HUD assisted housing. Besides specific HUD regulations (discussed later), 24 CFR §50.3(b) 

gives a list of related federal laws and authority that also guide the HUD assisted housing. 

Particularly, this section mentions that HUD housing should comply with Flood Disaster 

Protection Act, The Coastal Zone Management Act, The Safe Drinking Water Act, The Clean 

Air Act, etc. 

24 CFR §51 (Environmental Criteria and Standard) gives the detailed guidelines for 

environmental quality of HUD assisted housing. Subpart B of §51 outlines regulations for noise 

abatement and control, while Subpart C gives regulations regarding proximity to technological 

hazards. In these regulations (Subpart C) the acceptable distance from specific, stationary, 

hazardous operations (which store, handle, or process hazardous substances) is termed as 

acceptable separation distances or ASD
31

. Subpart C gives detailed technical guidance for 

identifying hazard operations, evaluating the anticipated degree of danger, and based on these 

factors, how to measure ASD for any HUD assisted housing. For calculating ASD, §51.203 (of 

24 CFR) dictates: 

―The following standards shall be used in determining the acceptable separation distance 

of a proposed HUD-assisted project from a hazard: 

                                                        
31 ASD is defined as ―the distance beyond which the explosion or combustion of a hazard is not likely to cause 

structures or individuals to be subjected to blast overpressure or thermal radiation flux levels in excess of the safety 

standards in § 51.203. The ASD is determined by applying the safety standards established by this subpart C to the 

guidance set forth in HUD Guidebook, ―Siting of HUD-Assisted Projects Near Hazardous Facilities.‖ 



113 
 

(a) Thermal Radiation Safety Standard. Projects shall be located so that: 

(1) The allowable thermal radiation flux level at the building shall not exceed 

10,000 BTU/sq. ft. per hr.; 

(2) The allowable thermal radiation flux level for outdoor, unprotected facilities 

or areas of congregation shall not exceed 450 BTU/sq. ft. per hour. 

(b) Blast Overpressure Safety Standard. Projects shall be located so that the maximum 

allowable blast overpressure at both buildings and outdoor, unprotected facilities or areas 

shall not exceed 0.5 psi. 

(c) If a hazardous substance constitutes both a thermal radiation and blast overpressure 

hazard, the ASD for each hazard shall be calculated, and the larger of the two ASDs shall 

be used to determine compliance with this subpart. 

(d) Background information on the standards and the logarithmic thermal radiation and 

blast overpressure charts that provide assistance in determining acceptable separation 

distances are contained in appendix II to this subpart C.‖ 

Appendix I and II of subpart C (of 24 CFR §51) gives list of hazardous liquids and gases, and 

detailed calculation methods for determining ASD. Appendix D of this dissertation presents 

those appendices that can be used by planners for determining the acceptable distance from 

hazardous facilities (as required by HUD) for locating any assisted housing.  

Two limitations in the approach for calculating ASD can be identified. The first involves 

the amount of hazardous material stored at certain point in time and the type of material. As the 

TRI data shows, the amount and type of hazardous material for certain facility can change over 

time and 24 CFR §51.203 (Safety Standards) does not give any guidance on how to calculate 

ASD in such a case. Second, it only considers the location of hazardous facilities, not the access 

road to the facility (although ‗road‘ can come in as part of noise level mentioned in Subpart B of 

24 CFR §51). Carrying hazardous materials to the facility can pose threat to the assisted housing 

if the access road is located nearby. These regulations are detailed enough to be followed in case 

of location decisions for any HUD assisted housing, but are most often applied to HUD assisted 

public housing or any other project-based developments and not for tax credit properties or 

vouchers (as discussed in section 6.4 and 6.5). 
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6.3.2 Flood and Natural Hazards 

HUD regulations are also specific enough to strictly control any development in flood or 

natural hazard areas. 24 CFR §55 gives the required guidelines for developing and maintaining 

HUD assisted housing located in floodplains. Particularly, §55.1(b) instructs: 

―(b) Under section 202(a) of the Flood Disaster Protection Act of 1973, 42 U.S.C. 

4106(a), proposed HUD financial assistance (including mortgage insurance) for 

acquisition or construction purposes in any ―area having special flood hazards‖ (a flood 

zone designated by the Federal Emergency Management Agency (FEMA)) shall not be 

approved in communities identified by FEMA as eligible for flood insurance but which 

are not participating in the National Flood Insurance Program….‖ 

So, instead of categorically denying any development in flood plain areas, this legislation 

mandates denial of any subsidized housing in areas which are identified by FEMA to be located 

in floodplains, but are not participating in the National Flood Insurance Program (NFIP). Instead 

of giving its own regulation (like technological hazard), in this case the regulations mostly refer 

to FEMA guidelines. For example, 24 CFR §55.1I(3) instructs to deny any subsidy in these 

cases: 

―(3) Any non-critical action located in a coastal high hazard area, unless the action is 

designed for location in a coastal high hazard area or is a functionally dependent use. An 

action will be considered to be designed for location in a coastal high hazard area if: 

(i) In the case of new construction or substantial improvement, the work meets the   

     current standards for V zones in FEMA regulations (44 CFR 60.3(e)) and, if  

     applicable, the Minimum Property Standards for such construction in 24 CFR  

     200.926dI(4)(iii); or 

(ii) In the case of existing construction (including any minor improvements): 

(A) The work met FEMA elevation and construction standards for a 

coastal high hazard area (or if such a zone or such standards were not 

designated, the 100-year floodplain) applicable at the time the original 

improvements were constructed; or 

(B) If the original improvements were constructed before FEMA standards 

for the 100-year floodplain became effective or before FEMA designated 

the location of the action as within the 100-year floodplain, the work 
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would meet at least the earliest FEMA standards for construction in the 

100-year floodplain‖. 

Although this section clarifies that any development in a floodway or coastal high hazard area 

will not get approval for HUD assistance or will need to meet necessary construction standards 

(in case of 100-year floodplain), through 24 CFR §55.12(c) it excludes such requirements for any 

housing voucher. As §55.12(c) mentions: 

―(c) This part shall not apply to the following categories of proposed HUD actions: 

……. 

(11) Issuance or use of Housing Vouchers, Certificates under the Section 8 

Existing Housing Program, or other forms of rental subsidy where HUD, the 

awarding community, or the public housing agency that administers the contract 

awards rental subsidies that are not project-based (i.e., do not involve site-specific 

subsidies);‖ 

So, the above mentioned regulations regarding flood hazards are mainly for public housing or 

other project-based HUD assistance and not for housing vouchers or any other development not 

directly assisted by HUD (like the LIHTC program).  

 

6.4 Environmental Requirements for the HCV Program 

 Since its inception in the mid-1970s, the Section 8 housing voucher program (later 

renamed  Housing Choice Voucher or HCV program) has grown from a small pilot project to 

become one of the primary programs for providing housing assistance to low-income households 

in the United States (Carlson et al., 2012). HUD spends about 19 billion dollars
32

 every year 

through the Housing Choice Voucher program to provide rental assistance to over two million 

households. Moving away from the concept of public housing, this program is premised on the 

notion that the existing private market will provide an adequate number of quality units and that 

households will use their rental assistance to locate in quality neighborhoods (Winnick, 1995). 

Since it is dependent on the private market, this program does not have much control over the 

location outcomes of voucher recipients. The general expectation in this case is that the voucher 

will increase the rental affordability of low-income people and will enable them to find better 

                                                        
32 Based on Department of Housing and Urban Development budget outlays by program Comparative summary, 

fiscal years 2013-2015, available at: http://portal.hud.gov/hudportal/documents/huddoc?id=fy15cj_bdgt_otly_tbl.pdf 
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places that require payment of higher rent. Through this program, HUD allocates certificates to 

participating Public Housing Authorities (PHA), which maintains waiting lists of eligible 

households, ordered according to both local and federal preference criteria. The PHAs allocate 

the vouchers following the waiting list and the voucher recipient households negotiate a lease 

with a landlord in the private market under the condition that the rent must be reasonable, the 

unit must be appropriately sized for the household, and the unit must pass a physical inspection 

(McClure & Johnson, 2014). In this case the unit rent cannot be more than the fair market rent 

and the tenant pays between 30 to 40 percent of their annual income for rent.  

 Since HCV is a rental support program, for determining eligible housing units (to be 

supported by HCV) it focuses more on the quality of the housing unit itself rather than the 

neighborhood quality or the distance of the unit from any kind of hazard. 24 CFR Section 

982.401- Housing Quality Standard (HQS) defines ―standard housing‖ and establishes the 

minimum criteria necessary for the health and safety of program participants. It gives detailed 

requirements for sanitary facilities, space and security, thermal environment, water supply, etc. 

that must be checked before considering any unit eligible for accepting HCV recipients. HUD 

developed an inspection manual for conducting this physical inspection for use by the PHA and 

also provides the necessary Inspection Form (HUD-52580) and Inspection Checklist (form HUD 

52580-A). While CFR 24§982.401 gives detailed guidelines for HQS and HUD provides 

supporting checklists for the physical inspection, the regulations for site and neighborhood 

quality are comparatively lax. As part of the HQS, §982.401(l) gives this guideline for 

neighborhood quality of the HCV unit: 

―(l) Site and Neighborhood— 

(1) Performance requirement. The site and neighborhood must be reasonably 

free from disturbing noises and reverberations and other dangers to the health, 

safety, and general welfare of the occupants. 

(2) Acceptability criteria. The site and neighborhood may not be subject to 

serious adverse environmental conditions, natural or manmade, such as dangerous 

walks or steps; instability; flooding, poor drainage, septic tank back-ups or 

sewage hazards; mudslides; abnormal air pollution, smoke or dust; excessive 

noise, vibration or vehicular traffic; excessive accumulations of trash; vermin or 

rodent infestation; or fire hazards.‖ 
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There is considerable room for subjectivity in the evaluation of site quality compared to the 

detailed guidelines provided for any project-based HUD assistance (as discussed in previous 

section). HUD can allow PHAs to accommodate variations in the acceptability criteria outlined 

by HQS to make it compatible with the standards of local housing codes or other codes adopted 

by the PHA or because of local climatic or geographic conditions. The Houston Housing 

Authority (HHA) could use this option to impose more restrictions on neighborhood quality 

requirements considering the density of hazardous facilities in certain areas of this city (as 

discussed in Chapter 5), but as the administrative plan for HCV
33

 adopted by the HHA shows, 

they have adopted some additional criteria (on top of HUD requirements) but those are also only 

for unit characteristics
34

 rather than the site or neighborhood quality of the unit. 

 As this study showed (Chapter 5), in Harris County, Texas (primarily served by the HHA 

for housing vouchers), compared to the overall population distribution, a higher proportion of 

HCV recipients are living in hazardous areas. With high population growth and an increasingly 

tight housing market, more HCV recipients may have to move into hazardous areas in the 

absence of any safeguards against such movement. Considering the key focus of HCV program 

to provide ―decent, safe, and sanitary
35

‖ affordable housing to low-income people, the focus on 

the quality of the HCV unit is understandable, but in terms of ‗safe‘ housing this program is 

failing to fully achieve its objective. One study exploring crime patterns in the neighborhoods of 

HCV households found that although they tend to live in safer neighborhoods than households in 

supply-side subsidized housing, these households still lag behind the general population in terms 

of neighborhood safety (Lens, 2013). Van Zandt & Mhatre (2013) also found that due to a lack 

of adequate voucher accepting units in safer areas, HCV households tend to live in higher crime 

neighborhoods. Comparing the locations of voucher households to other households living in 

project-based housing subsidies (like LIHTC), another study found that schools near voucher 

holders have lower performing students than the schools near other poor households without a 

housing subsidy (Horn et al., 2014). Apart from these findings, in general, existing research on 

the neighborhoods of voucher holders indicates that, on average, voucher holders live in slightly 

less disadvantaged neighborhoods than other poor households (Pendall, 2000; Wood et al., 

                                                        
33 Administrative Plan for Section 8 Housing Programs, Houston Housing Authority (2014), available at: 

http://www.housingforhouston.com/voucher-program/the-administrative-plan.aspx 
34 Page 34 of the Administrative Plan. for Section 8 Housing Programs, Houston Housing Authority (2014) 
35 Page 5 of the Administrative Plan. for Section 8 Housing Programs, Houston Housing Authority (2014) 
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2008), but, as this study shows, if we consider the hazard levels of different neighborhoods, in 

case of Harris County, Texas, HCV households are not in a significantly better position. 

 

6.5 Environmental Requirements for the LIHTC Program 

The LIHTC program was created by the Tax Reform Act of 1986 and is administered by 

the Department of the Treasury, as opposed to HUD. The portfolio of LIHTC properties grew 

dramatically over the last 2 decades and the program now supports more than 39,000 projects 

and 2.4 million units (HUD, 2014). Despite suffering a significant setback with the financial 

crisis of 2008–2010, the LIHTC program has now become the primary program that adds to the 

supply of rental housing for low- and moderate-income households  (McClure & Johnson, 2014). 

Under this program, the federal government grants tax credits to states on a per capita basis and 

the states distribute the tax credit to developers (proposing projects) on a competitive basis. For 

distributing the tax credits, each state publishes a Qualified Allocation Plan (QAP), which details 

the criteria for evaluation of the proposed projects. Proposed projects should designate a 

minimum share of ―affordable‖ units
36

 within the development and projects that obtain the 

highest score as per the criteria outlined in QAP to receive the tax credits. After completion of 

the project, the developer receives a tax credit over a 10-year period, but the project must remain 

in low- or moderate-income occupancy for at least 15 years (McClure & Johnson, 2014).  

Developers awarded the credits sell them to investors to pay for some of the project‘s total 

development costs
37

. The tax credit amounts are generally 9% of the non-land development costs 

and in case it is financed through bonds with interest that is exempt from federal income taxes, it 

decreases to 4%. To encourage affordable rental developments in difficult development areas (a 

location with particularly high development costs relative to incomes) or in a qualified census 

tract (a census tract with a high incidence of low-income households), the tax credit amounts are 

boosted by an additional 30% if it is located in those areas. Following the scoring criteria of the 

QAP, developers generally try to maximize the amount of subsidy and as a result they are 

attracted to sites located in difficult development areas and qualified census tracts, which are 

often badly deteriorated neighborhoods (Oakley, 2008). 

                                                        
36 To be eligible to apply for the program, developments must have a minimum of 20% of the units affordable to 

households earning 50 % of the metropolitan area‘s median family income or, a minimum of 40 % of the units are 

affordable to households earning 60% of the metropolitan area‘s median family income (Schwartz, 2010)s. 
37 Additional costs are usually paid via a combination of debt and other subsidy programs. (McClure & Johnson, 

2014) 
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 Since the LIHTC program is primarily guided by the QAP of state housing financing 

agency, to get better idea of their location requirements the state‘s regulations need to be 

evaluated. In the case of Texas (where the primary case study Harris County is located), the 

Texas Department of Housing and Community Affairs (TDHCA) is assigned the responsibility 

of awarding and allocation of housing tax credits. Following the general guidelines for the 

LIHTC program discussed above, TDHCA also publishes a QAP every year
38

 to establish the 

procedures and requirements relating to an award and allocation of housing tax credits. Besides 

outlining the procedures for administering the program, it details the scoring criteria upon which 

the proposed housing developments will be selected for awarding tax credits. As per the 2015 

QAP, there are criteria like size and quality of units (15 points), income level of tenants (16 

points), rent level of tenants (13 points), tenant services (11 points), and other criteria that would 

promote community support and engagement. While this scoring criteria favors development in 

low poverty area (giving 7 points for development in census tracts with poverty rate below 15 

percent), it does not have any criteria that would encourage development in safer areas or 

discourage development in hazardous areas. The only criteria that talk about such hazards are 

under the broad criteria for community support and engagement, and actually gives additional 

points (6 points) when the development is located in a hazardous area and there is a community 

revitalization plan for that area. One of the factors for such revitalization plan is mentioned as: 

―adverse environmental conditions, natural or manmade, that are material in nature and 

are inconsistent with the general quality of life in typical average income neighborhoods. 

By way of example, such conditions might include significant and recurring flooding, 

presence of hazardous waste sites or ongoing localized emissions not under appropriate 

remediation, nearby heavy industrial uses, or uses presenting significant safety or noise 

concerns such as major thoroughfares, nearby active railways (other than commuter 

trains), or landing strips; significant and widespread (e.g. not localized to a small number 

of businesses or other buildings) rodent or vermin infestation acknowledged to present 

health risks requiring a concerted effort; or fire hazards;‖
39

  

This encompasses both natural and technological hazards and supports any revitalization 

initiative taken by a municipality or county for those hazardous areas. Other than this criterion, 

                                                        
38 2014 and 2015 QAP of TDHCA are available at: http://www.tdhca.state.tx.us/multifamily/nofas-rules.htm 
39 Page 25 of 2015 QAP, available at: http://www.tdhca.state.tx.us/multifamily/docs/15-QAP.pdf 
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which indirectly supports any clean-up or hazard mitigation activity, the QAP does not give any 

specific provision that would disincentivize development in the floodplain or near hazardous 

facilities.  

 

6.6 Subsidized Housing in Houston, Texas 

Besides analyzing subsidized housing data and exploring its location in the multi-hazard 

environment of Harris County (as discussed in Chapter 5), the author visited Houston in Spring 

2014 to gain a better sense of the social vulnerability scenarios there and how subsidized housing 

is being managed, particularly in the city of Houston. Several neighborhoods were visited, both 

declining and gentrifying, and officials with the Houston Housing Authority (HHA)—the public 

housing agency that manages housing vouchers in Houston and also maintains some public 

housing and tax credit properties—were interviewed. The key objective of this visit was to relate 

the findings of the spatial analysis (presented in Chapter 5) to actual developments on the ground 

in Houston. Due to time and resource constraints, extensive surveys or interviews could not be 

conducted, but short visits to selected sites were able to provide a deeper understanding of how 

the location of housing subsidies interacts with the multi-hazard context of Houston. This section 

briefly discusses gentrifying and declining neighborhoods in Houston and then describes the key 

informant interviews with HHA officials focusing on their provision of housing vouchers. 

Finally, the chapter examines selected housing projects funded through the LIHTC program.  

 

6.6.1 Gentrification and Low-Income Housing 

 As identified in Chapter 4, certain neighborhoods of Houston have gradually gentrified 

over time, while others have consistently been characterized by high poverty and high minority 

concentration (i.e., high social vulnerability). The juxtaposition of neighborhoods with vastly 

different levels of affordability combined with strong population growth means that  low-income 

households are likely to encounter difficulty in obtaining quality housing in safe neighborhoods. 

Midtown is an example of a gentrifying neighborhood located just west of Houston Downtown 

(Figure 6.1) and shown in Photo 6.1. The gentrification process has advanced by demolishing old 

houses and developing new upscale condominiums on several blocks. In 2010, about 57%
40

 of 

the population (25 years and above) in this neighborhood had a bachelor‘s degree or higher 

                                                        
40 Data collected from City-Data.com; http://www.city-data.com/neighborhood/Midtown-Houston-TX.html 
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education, a poverty rate of 17.4% (compared to 23.8% in Houston), and was comprised of about 

50% non-Hispanic white population. Compared to the Midtown neighborhood, the Park Place 

neighborhood located southwest of the downtown (Figure 6.2) is a depressed neighborhood with 

high concentration of poverty and minority population and also mostly contains dilapidated 

housing structures (Photo 6.2). In 2010, this neighborhood had only about 27% of its population 

(25 years or above) with a bachelor‘s degree or higher education, about 34% population living 

under the poverty line, and more than 75% Hispanic population. 

 

 

Photo 6.1: Midtown Neighborhood (near Gray St. and Bagby St.) 
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Figure 6.1: Map of Midtown neighborhood 

 

Photo 6.2: Park Place Neighborhood (near Broadway St. and Detroit St.) 
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Figure 6.2: Map of Park Place Neighborhood, Houston 

 

Due to the differences in their physical and socio-economic conditions, these two neighborhoods 

also exhibit different levels of affordability. In 2011, the median rent in the Midtown 

neighborhood was $936, and at the same time the median rent in the Park Place neighborhood 

was $575
41

. Given these different levels of affordability, poor people coming into the city find it 

more affordable to move into low rent neighborhoods like Park Place and if the present trend of 

gentrification continues (which can be expected with population growth), poor people may find it 

even more difficult to rent places in better neighborhoods even with housing vouchers. These 

conclusions are echoed in the interviews
42

 conducted with HHA officials. 

 

6.6.2 Housing Vouchers and the HHA 

 The Houston Housing Authority (HHA) is the public agency in Houston responsible for 

administering and managing the Housing Choice Voucher (HCV), Moderate Rehabilitation, 

                                                        
41 Data collected from city-data.com 
42 Necessary approval from Institutional Review Board (IRB) at the University of Illinois was obtained prior to 

conducting these interviews. 
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Single Room Occupancy (SRO), Disaster Voucher, and other Houston Housing Authority 

Section 8 special programs. In order to learn about the HCV program and how the voucher 

award process shapes housing outcomes, interviews were conducted with two HHA officials—

Senior Policy Advisor Brian Gage, and Policy Analyst Ross LaFour. As they informed in the 

interviews, HHA currently supports about 17,000 households through its HCV program and 

owns about 3,000 project-based units (combination of public housing, tax credit projects, and 

Section 8 projects). The waiting list for awarding HCVs was initiated about two years ago when 

roughly 80,000 people applied. Through a lottery they selected 20,000 households to support and 

currently they have about 13,000 households on the waitlist to receive vouchers. The same 

procedures outlined by HUD (see section 6.4) are used to identify housing units eligible for 

selection by HCV households. In response to the question of whether HHA is concerned about 

vouchers being used primarily in low-income neighborhoods and whether HHA takes any 

measure to recruit landlords in better neighborhoods, the interviewees acknowledged that 

although they try do this, funding is a substantial obstacle. According to Brian: 

―One of the things we have been looking into implementing is, how do we go out to these 

areas where we have very few voucher holders now and get landlords interested in the 

program…, but the honest truth of the matter is our funding level for administering the 

program is declining sharply. In the past three to five years or so they (i.e., HUD) only 

give us 75 cents on a dollar what is actually cost to run the program. So, doing those 

extras make it much more difficult to fit in budget-wise. You know, there are lots of 

things that we know we can do if we had the administrative funding to go out and build 

our relationships with landlords.‖ 

 

As this response conveys, although the HHA knows about the problem of poverty concentration, 

budgetary constraints do not allow them to make a concerted effort to find housing units in 

higher rent areas that would accept housing vouchers. In response to the question of whether 

vouchers allow or perhaps encourage people to move to better neighborhoods, as suggested in 

literature (Carlson et al., 2012), the interviewees have not seen significant evidence of this in 

Houston. As Brian said: 

―Yes, we have people that want to stay in their neighborhood, they don‘t want to move 

into neighborhood they are not familiar with, because of their churches, kids go to school, 
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because their cousin lives around the corner… because they are comfortable with that. 

We did a major relocation initiative down here (after demolishing public housing units)… 

and… I want to say about half stayed in the same zip code although they had the choice 

to go anywhere in the city. And, there were some who moved, even moved to California, 

cause you can move anywhere in the country, but they are just one or two individuals…‖ 

According to Brian and Ross, currently the HHA is identifying areas which have fewer vouchers 

and planning to offer the maximum allowable subsidy (110% of Fair Market Rent) to households 

moving into those areas. Still, they expressed their concern that such a task will be hard to 

accomplish since Houston is a majority minority city and there simply are not very many areas 

with low minority populations and where the vouchers can be allocated. 

 The Housing Quality Standard (HQS) checklist required by HUD is the basis for 

evaluating the eligibility of any unit (for giving vouchers), but Brian found this approach too 

restrictive and he thinks that more flexible inspection protocol would allow more landlords to 

participate in the program. As per this current checklist, any minor problem may make an 

otherwise good housing unit ineligible to accept voucher households. However, Brian also 

acknowledged the fact that due to this strict checklist, people are moving into higher quality units 

overall. In terms of the location requirement of the HCV housing unit, as mentioned in Section 

6.4, the HHA does not follow any particular provision for avoiding hazardous areas, since this is 

not required by HUD.  

 

6.6.3 Selected Examples of LIHTC Developments 

 In addition to interviewing HHA officials, a selected number of tax credit developments 

were visited to get a better sense of such developments and how their neighborhoods fit within 

the broader context of Houston. During the interviews at the HHA, Brian Gage noted that 

developing gated communities through the LIHTC is particularly popular in Houston since it 

gives a sense of security to the prospective tenants. One of the aims of the visits to a few of the 

LIHTC projects was to see whether that is the case and to observe the degree of integration 

between those developments and their surrounding neighborhoods. South Houston and Pasadena 

were chosen since the analysis of natural and technological hazards (presented in Chapter 5) 

found this part of Houston to be significantly exposed to both kinds of hazards. Most of the 

census tracts in this part of the city also have higher poverty rates and larger minority 
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populations. Of the eight LIHTC developments visited, six were gated housing projects. A brief 

overview of three of those tax credit developments is presented here and the question of how 

those developments may have been impacting their neighborhoods is considered later. Data on 

these developments were collected from the Texas Department of Housing and Community 

Affairs (TDHCA). 

 

Vista Bonita Apartments 

Vista Bonita Apartments (Photo 6.3) is a gated community of 118 tax credit units located in 

South Houston (9313 Tallyho Road, Houston, TX). Due to its location just east of the Gulf 

Freeway (I-45) it has easy access to Houston downtown and Hobby Airport (Figure 6.3). 

Approved by the TDHCA in 2008, it is a competitive (9%) Housing Tax Credit (HTC)
43

 

development. The site visit revealed that this project is not assimilating very much with its 

surrounding neighborhood. There is another gated community (non-LIHTC) just opposite of this 

development on Tallyho road and other than that, there are few residential developments in its 

immediate vicinity. The surrounding blocks are mostly commercial and light industrial uses 

(storage, construction yards, motel, etc.) with some scattered houses, but being a recent 

development, the units here are in very good condition. 

 

Granada Terrace Apartments 

Granada Terrace Apartments (Photo 6.4) is an older LIHTC project also located in South 

Houston (1301 Avenue A, Houston, TX). The TDHCA awarded tax credit status for this 

development in 1991 and it has a total of 154 tax credit units. Unlike Vista Bonita Apartments, it 

is not gated and mostly surrounded by residential development. As an older development, the 

physical condition of the units does not seem to be very high and most of the houses in the 

surrounding neighborhood are in a shabby state, suggesting that they are mostly occupied by 

low-income people.  

 

                                                        
43 For 9% HTC the tax credit amount is 9% of the non-land development cost 
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Photo 6.3: Vista Bonita Apartments  

 
Figure 6.3: Location of Vista Bonita Apartments 
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Photo 6.4: Granada Terrace Apartments 

 

Figure 6.4: Location of Granada Terrace Apartments 
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Gardenview Apartments 

Gardenview Apartments (Photo 6.5) is located in Pasadena (2730 Lafferty Road, Pasadena, TX) 

and about two miles away from Granada Terrace Apartments. It is also an older development 

(tax credit status awarded in 1993), but unlike Granada Terrace it is a gated community. It has a 

total of 309 tax credit units and despite being an older development, most of the units here seem 

to be in a good condition. A park and an elementary school isolate this project from the single 

family housing in its neighborhood, which appears to be home to mostly middle-income 

households. Although this development is somewhat detached from rest of the neighborhood and 

there are few similar residential developments in its vicinity, there is a mobile home park just 

south of this project, indicating a concentration of low-income households. So while this project 

is located in a middle-income neighborhood, the fact that it is a gated community and separated 

by physical barriers (park and school) means that it is not well integrated with its neighboring 

areas. In fact the concentration of low-income households (i.e., mobile home park) provides 

further evidence of the heterogeneity and incongruity characterizing this neighborhood. 

 

Photo 6.5: Gardenview Apartments  
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Figure 6.5: Location of Gardenview Apartments 

 

The preceding cases focus on one recent LIHTC project and two older projects (one gated 

and another non-gated). While the recent project was not found to be well integrated with its 

surrounding neighborhood, the older two projects present interesting examples of how they may 

be influencing their neighborhoods. The older non-gated community (Granada Terrace) is 

located in a low-income neighborhood and may have contributed to the changes there over time. 

Similarly, the older gated community (Grandview Apartments), despite being located in a 

middle-income neighborhood, may have contributed to the emergence of a low-income 

community in its immediate vicinity. More detailed case studies may have helped to understand 

these specific developments, but they also indicate the heterogeneity of location and patterns of 

tax-credit developments, which makes it harder to isolate the influences of these developments. 

Still, the popularity of developing gated communities through the LIHTC program invites further 

scrutiny. For more than a decade scholars have debated the consequences of the socio-economic 

differentiation and particularly the residential segregation created by the gated communities 

(Atkinson & Blandy, 2006; Blakely & Snyder, 1997; Gordon, 2004; Le Goix, 2005; Vesselinov, 

2008). In terms of property values, while some studies indicate that such gated residential 
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developments can play an instrumental role in avoiding decay and other externalities in a 

neighborhood (LaCour-Little & Malpezzi, 2001), others have argued that sometimes such 

development can be detrimental to property values in non-gated developments nearby (Le Goix 

& Vesselinov, 2013). While this study found that LIHTC developments are associated with 

increasing vulnerability in hazardous areas, the role played by gated developments in the 

particular case of Houston warrants further research. 

 

6.4 Opportunities for Policy Intervention 

 Although HUD has specific environmental regulations in place that would better ensure 

the safety (i.e., areas less exposed to natural or technological hazards) of low income households, 

those regulations are not applicable for the two most popular low-income housing programs—the 

HCV and LIHTC programs. Given that these are market driven approaches operating within a 

neoliberal policy environment, this lack of regulatory safeguards against natural or technological 

hazards increases the possibility that they will concentrate low-income people in hazardous areas 

of the city (as this study found was particularly true for the LIHTC program). As in the case of 

Houston, this can be more problematic at times when the city is experiencing high rates of 

population growth alongside an influx of low-income and minority residents. An increasingly 

competitive housing market may push these socially vulnerable people into hazardous areas and 

thereby create a breeding ground for catastrophic disaster, whether by natural hazards 

exemplified by Hurricanes Katrina or Ike, or via a technological hazard like the fertilizer plant 

explosion in West, Texas
44

. While mitigation of those hazards can be one approach for avoiding 

such a catastrophic disaster, at the same time we need to examine how our plans and policies are 

influencing people‘s location choices within this multi-hazard environment. Several 

recommendations have emerged from the analysis presented in this dissertation that if 

implemented, should help to ensure that we are not placing socially vulnerable people in harm‘s 

way. 

 First, despite being a HUD assisted program, the HCV program does not require that the 

location criteria applicable to other HUD assisted project-based developments be followed. This 

is an administrative challenge because applying the present checklists for Housing Quality 

                                                        
44 The explosion killed 15 and wounded another 226 people in West, Texas. More on this explosion here: 

http://www.cnn.com/2014/04/22/us/west-texas-fertilizer-plant-explosion-investigation/ 
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Standard (HQS) to identify eligible housing units is already a difficult and time-consuming task 

for public housing officials (as confirmed by the HHA interviewees). Particularly, conducting 

case by case inspection of housing units, while ensuring good quality housing for HCV 

households can become problematic if environmental quality or the hazard exposure of the units 

must also be considered. Instead, it can be suggested that for such measurement of environmental 

quality and hazard exposure, public housing authorities can make use of the already available 

data from U.S. Environmental Protection Agency (EPA) and Federal Emergency Management 

Agency (FEMA). The EPA provides data on air quality and the location of contaminated sites or 

facilities handling toxic materials (i.e., TRI sites) while FEMA maintains and distributes data on 

floodplains and coastal hazard zones. As previously noted, HUD regulations already mandate the 

use of these data sources for identifying the location of housing projects, which is done on a case 

by case basis. The issue is that while such a case by case evaluation can be financially and 

administratively feasible for multi-family units, it is much more difficult for housing vouchers 

which are more flexible in terms of potential locations and more widely scattered across a broad 

region. In this case, housing officials can look at neighborhood or census tract data, much like 

they already do for poverty level or minority concentration, but also incorporate EPA and FEMA 

data to simultaneously evaluate the environmental quality and hazard exposure of areas under 

consideration. During the process of allocating vouchers, housing officials can check whether the 

candidate housing units are located in those census tracts and thereby determine the eligibility of 

the unit for accepting vouchers. 

 Second, since the LIHTC program is not administered or assisted by HUD, these 

developments are not required to follow the regulations like HUD assisted housing projects 

currently do, but because this program also targets low- and medium-income households, there is 

no reason why the same environmental regulations cannot be applicable to LIHTC projects as 

well. It is true that in the absence of any strict guidelines from the federal level the state housing 

finance agency (e.g., TDHCA in Texas) enjoys much freedom and flexibility to adjust the 

program requirements to meet local needs. But as it turns out, despite being a state frequently 

ravaged by different natural and technological hazards, there are not clear and detailed guidelines 

for locating tax credit properties in this state. The current scoring criteria outlined by the QAP of 

TDHCA gives scores based on neighborhood socio-economic condition, but there is no specific 

scoring mechanism that would disincentivize development in hazardous areas. In this case, it can 
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be suggested that the TDHCA (and for that matter any other housing finance agency in states 

with a higher frequency of hazards) should take cues from HUD for the environmental 

requirements of the tax credit properties. Like HUD assisted projects, they can adopt acceptable 

separation distances (ASD) for locating tax credit properties near hazardous sites and can ask 

developers to not propose projects (or give negative scores) in areas not participating in the 

National Flood Insurance Program (NFIP).  

 Third, the problems inherent in these market dependent housing subsidy approaches need 

to be reevaluated at the national level, particularly in the present context of high population 

growth in coastal metro areas which are also experiencing increases in poverty and the spatial 

concentration of minority populations. Gentrification and increasingly tight housing markets will 

make it gradually more difficult for HCV households to find safe and secure places to live. 

While the growth of LIHTC is vulnerable to economic downturns because of its dependence on 

the tax credit market, in terms of location outcomes it can become concentrated in depressed 

neighborhood to maximize the tax credit benefits. With the increased price of tax credits, LIHTC 

units may be able to gradually enter the suburbs (McClure, 2006), but it also indicates the 

limitation of this approach. How the location of low-income housing will turn out is totally 

dependent on the market‘s profitability from such investments. This outcome needs to be 

analyzed in the broader context of environmental justice to determine if this market dependent 

subsidy approach will push more low-income minority people in hazardous areas of the city. As 

the results of this study suggest, this is precisely what is happening in the case of Houston. 

 With the increased emphasis on climate change and adaptation planning, particularly in 

coastal metro areas, the provision of low-income housing subsidies needs to be further 

scrutinized. When these market-dependent approaches fail to provide safe housing to socially 

vulnerable population groups, any climate adaptation effort that do not consider their housing 

needs (or pose any threat to existing stock of affordable housing) may turn out to be a mal-

adaptive approach in the long term.  
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CHAPTER 7 

CONCLUSION 

With recent enthusiasm for urban sustainability and climate change adaptation (Blanco et 

al., 2009), planners need to be more careful and attentive to the equity outcomes in this policy 

environment. Climate change is expected to increase the frequency and severity of natural 

hazards and in the near future more disaster events are a likely outcome. In a multi-hazard urban 

environment a clear challenge for planners is to ensure that socially marginalized populations are 

not disproportionately exposed to hazards. Differential hazard exposure and disaster outcomes 

for vulnerable low-income and minority population groups are already well documented 

(Crowder & Downey, 2010; Finch et al., 2010; Van Zandt et al., 2012), but how the present 

pattern of vulnerability has evolved over time and how political-economy of cities may play a 

role in this process has not been extensively studied. Moving beyond the conventional notion of 

vulnerability as static and exogenous to urban development and politics, this study demonstrates 

how social vulnerability has changed over time in three coastal cities and calls for planning 

approaches that are more responsive to prevailing trends in vulnerability. Through a vulnerability 

production framing (Dooling & Simon, 2012) this study further explored how our present 

provision of subsidized low-income housing is failing to provide safer housing, and in some 

cases, is increasing vulnerability.  

Present scholarship on social vulnerability, while highlighting the underlying cause of 

differential disaster outcomes and rightly identifying the social factors that need to be 

emphasized, paints an incomplete picture of how vulnerability evolves over time. By integrating 

neighborhood change theories and social vulnerability theories, this study explores three 

different coastal cities to explain the dynamics behind the changing patterns of vulnerability 

observed there. As this study found, despite having drastically different population growth 

trajectories and being located in different political and economic settings, in recent decades the 

spatial concentration of social vulnerability has gradually decreased in the study cities. However, 

in terms of the composition of social vulnerability, the study cities exhibited different trends. In 

the case of Harris County (Houston) in Texas, the high growth of the Hispanic and immigrant 

populations in recent decades made these the key factors in social vulnerability, along with the 

percentage of Black or African-American population and poverty rate. In the case of Orleans 
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Parish (New Orleans) Louisiana, displacement by Hurricane Katrina has significantly influenced 

the pattern of social vulnerability, which has become less concentrated and less dominated by 

race and socio-economic indicators. For Hillsborough County (Tampa) in Florida, gentrification 

in the inner city areas is pushing socially vulnerable populations to suburban and coastal census 

tracts and at the same time, some of the coastal locations are experiencing high rates of growth of 

elderly populations due to the development of retirement communities there. These trends imply 

drastically different adaptation challenges in these counties.  

Analyzing the location outcomes of subsidized housing in Houston, this study found that 

among the two most popular housing subsidy programs (HCV and LIHTC), the supply-side 

based subsidy provision of LIHTC program significantly increases neighborhood social 

vulnerability when it is located in technological hazard areas. In comparison to the total 

population distribution however, it was found that both of these subsidies have a proportionally 

higher presence in both natural and technological hazard areas. A potential explanation for the 

significant contribution of the LIHTC program can be that it is a project based approach and 

necessarily concentrates low-income units within a given neighborhood. On the other hand, it 

was found that a substantial number of these projects are gated communities, which may also 

exert negative neighborhood impacts by devaluing adjacent property values (i.e., spillover 

effects).  

Evaluating the environmental requirements of different subsidized housing programs, this 

study identified limitations that may have contributed to unfavorable location outcomes from the 

HCV and LIHTC programs. While HUD has explicit regulations regarding the placement of 

assisted projects in natural or technological hazard zones, those provisions are not applicable for 

these two subsidy programs. Since the HCV program is not project based and the LIHTC is 

administered by the U.S. Treasury Department, the location requirements for traditional public 

housing established by HUD cannot be directly applied to these programs. Because these are 

market driven approaches operating within a neoliberal policy environment, this lack of 

regulatory safeguards increases the possibility that they will concentrate low-income people in 

hazardous areas of the city (as this study found was particularly true for the LIHTC program). 

While this study emphasizes reevaluating the provisions of these market-based programs, policy 

modifications were also proposed that should help to ensure that housing subsidies are not placed 

in natural or technological hazard zones if implemented. 
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APPENDIX A 

RESULTS OF PCA ANALYSIS  

Table A1: PCA results for Harris County 

Major components  

(% variance explained) 

Major contributing variables 

1980 (total variance explained: 71.8%) 

Race and socio-economic status (28.9) SHRBLK80, FFH80, TRVLPB80, EDUCUH80, 

UNEMPRT80, SERVOCC80, POVRAT80, 

WELFARE80, AVHHIN80, AVGRNT80 

Housing and labor force (16.5) KIDS80, AVHHSZ80, FEMLABR80, RNTUR80 

Hispanic and foreign-born (9.9) SHRHSP80, SHRFOR80 

Age and gender (8.9) SHRASN80, OLD80, FEMLABR80 

Employment and mobile homes (7.6) MANUF80, MOB80 

1990 (total variance explained: 74.4%) 

Race and socio-economic status (29.4) SHRBLK90, FFH90, TRVLPB90, EDUCUH90, 

UNEMPRT90, SERVOCC90, POVRAT90, 

WELFARE90, AVHHIN90, AVGRNT90 

Housing and labor force (15.1) AVHHSZ90, FEMLABR90, RNTUR90, 

LABPOP90, HODENT90 

Hispanic and foreign-born (12) SHRHSP90, SHRFOR90, FEMR90 

Age (10) KIDS90, OLD90, AVGVAL90 

Employment and mobile homes (7.9) SHRASN90, MANUF90, MOB90 

2000 (total variance explained: 72.5%)  

Race and socio-economic status (27.5) SHRBLK00, FFH00, TRVLPB00, EDUCUH00, 

UNEMPRT00, SERVOCC00, POVRAT00, 

WELFARE00, AVHHIN00, AVGVAL00, 

AVGRNT00 

Hispanic and foreign-born (17.6) SHRHSP00, KIDS00, SHRFOR00, AVHHSZ00, 

EDUCUH00 

Employment and housing (11.4) MANUF00, RNTUR00, MOB00, HODENT00 

Age and labor force (10) OLD00, FEMLABR00, LABPOP00 

Gender (6) GROUPQ00, FEMR00 

2010 (total variance explained: 65.5%) 

Race and socio-economic status (23.4) SHRBLK10, FFH10, TRVLPB10, EDUCUH10, 

UNEMPRT10, SERVOCC10, POVRAT10, 

WELFARE10, AVHHIN10, AVGVAL10, 

AVGRNT10 

Hispanic and foreign-born (13.9) SHRHSP10, SHRFOR10, AVHHSZ10, EDUCUH10 

Age and labor force (11.4) OLD10, FEMLABR10, WELFARE10 

Employment and housing (9.2) MANUF10, HODENT10 

Gender (7.6) GROUPQ10, FEMR10 
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Table A2: PCA results for Orleans Parish 

Major components  

(% variance explained) 

Major contributing variables 

1980 (total variance explained: 71%) 

Race and socio-economic status (40.3) SHRBLK80, FFH80, TRVLPB80, EDUCUH80, 

UNEMPRT80, SERVOCC80, POVRAT80, 

WELFARE80, AVHHIN80, RNTUR80, 

AVGVAL80, AVGRNT80, LABPOP80, HODENT80 

Age and Hispanic population (13.4) SHRHSP80, KIDS80, OLD80, AVHHSZ80 

Foreign-born and Asian population 

(8.7) 

SHRASN80, SHRFOR80, MOB80 

Employment and Gender (8.6) FEMR80, FEMLABR80, MANUF80 

1990 (total variance explained: 70.5%) 

Race and socio-economic status (39.8) SHRBLK90, FFH90, TRVLPB90, EDUCUH90, 

UNEMPRT90, SERVOCC90, POVRAT90, 

WELFARE90, AVHHIN90, RNTUR90, 

AVGRNT90, LABPOP90, HODENT90 

Hispanic population (11.9) SHRHSP90, SHRFOR90, AVHHSZ90 

Foreign-born, Asian, mobile homes 

(10.5) 

SHRASN90, SHRFOR90, MOB90 

Employment and Gender (8.3) FEMLABR90, AVHHIN90, AVGVAL90 

2000 (total variance explained: 69.6%) 

Race and socio-economic status (38.7) SHRBLK00, FFH00, TRVLPB00, EDUCUH00, 

UNEMPRT00, SERVOCC00, POVRAT00, 

WELFARE00, AVHHIN00, RNTUR00, 

AVGVAL00, AVGRNT00, LABPOP00, HODENT00 

Hispanic population and employment 

(15) 

SHRHSP00, AVHHSZ00, FEMR00, MANUF00, 

AVGVAL00, HODENT00 

Foreign-born and Asian (8.7) SHRASN00, SHRFOR00 

Age and gender (7.2) OLD00, GROUPQ00, FEMLABR00 

2010 (total variance explained: 67.7%) 

Race and socio-economic status (26.5) SHRBLK10, FFH10, TRVLPB10, EDUCUH10, 

UNEMPRT10, SERVOCC10, WELFARE10, 

AVHHIN10, RNTUR10, AVGVAL10, AVGRNT10, 

LABPOP10 

Employment, gender (12.7) KIDS10, AVHHSZ10, FFH10, LABPOP10, 

HODENT10 

Hispanic and foreign-born (10.9) SHRHSP10, SHRASN10, SHRFOR10 

Age and gender (10.1) OLD10, FEMLABR10, WELFARE10 

Housing, employment (7.5) GROUPQ10, MANUF10, 
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Table A3: PCA results for Hillsborough County 

Major components  

(% variance explained) 

Major contributing variables 

1980 (total variance explained: 75.5%) 

Race and socio-economic status (31.1) SHRBLK80, FFH80, TRVLPB80, EDUCUH80, 

UNEMPRT80, SERVOCC80, POVRAT80, 

WELFARE80, AVHHIN80, RNTUR80, 

AVGRNT80, HODENT80 

Age, labor force (11.5) OLD80, FEMLABR80, LABPOP80 

Household size,  age (9.1) KIDS80, OLD80, AVHHSZ80 

Hispanic, foreign-born (8.6) SHRHSP80, SHRFOR80 

Employment and housing (8.5) GROUPQ80, EDUCUH80, MANUF80 

Gender (6.7) SHRIND80, FEMR80, MOB80 

1990 (total variance explained: 73.6%) 

Race and socio-economic status (32.6) SHRBLK90, FFH90, TRVLPB90, EDUCUH90, 

UNEMPRT90, SERVOCC90, POVRAT90, 

WELFARE90, AVHHIN90, RNTUR90, 

AVGRNT90, HODENT90 

Age, labor force (13.9) SHRASN90, OLD90, FEMLABR90, LABPOP90 

Household size,  employment (10.7) AVHHSZ90, MOB90, HODENT90 

Hispanic, foreign-born (9) SHRHSP90, SHRFOR90 

Gender and Housing (7.4) GROUPQ90, FEMR90, MOB90 

2000 (total variance explained: 74.3%) 

Race and socio-economic status (27.6) SHRBLK00, FFH00, TRVLPB00, EDUCUH00, 

UNEMPRT00, SERVOCC00, POVRAT00, 

WELFARE00, AVHHIN00, RNTUR00, 

AVGRNT00 

Age, labor force (13.3) SHRASN00, OLD00, FEMLABR00, LABPOP00 

Household size,  employment (10.9) AVHHSZ00, MANUF00, RNTUR00, HODENT00 

Hispanic, foreign-born (9.5) SHRHSP00, SHRFOR00 

Income, home value (7.3) SHRIND00, AVHHIN00, AVGVAL00 

Employment and housing (5.7) GROUPQ00, UNEMPRT00 

2010 (total variance explained: 65.8%) 

Race and socio-economic status (23.8) SHRBLK10, FFH10, TRVLPB10, EDUCUH10, 

UNEMPRT10, SERVOCC10, POVRAT10, 

WELFARE10, AVHHIN10, RNTUR10, 

AVGVAL10, AVGRNT10 

Age, labor force (16.2) OLD10, FEMLABR10, WELFARE10, LABPOP10 

Hispanic, foreign-born (10) SHRHSP10, SHRFOR10 

Household size,  housing (8.6) KIDS10, AVHHSZ10 

Gender and employment (7.2) FEMR10, MANUF10, MOB10, HODENT10 
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APPENDIX B 

CORRELATION BIPLOTS 
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Figure B1: Correlation biplots (with alpha bag) of Harris County 
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Figure B2: Correlation biplots (with alpha bag) of Orleans Parish 
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Figure B3: Correlation biplots (with alpha bag) of Hillsborough County  
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APPENDIX C 

MODEL RESULTS AND COMPARISONS 

 

Table C1: Models estimating change in standardized value of SoVI (using power function for 

technological hazards) 

Variables OLS Spatial Lag Spatial Durbin Spatial Error 

(Intercept) -0.472 (0.194)* -0.125 (0.188)  -0.192 (0.506)  -0.61 (0.25)* 

zfldrt:pchcvgr -0.013 (0.018)  -0.014 (0.017)  -0.007 (0.017)  -0.015 (0.017)  

zfldrt:pctcugr 0.004 (0.007)  0.001 (0.007)  0 (0.007)  0 (0.007)  

pchcvgr:zpowr -0.007 (0.011)  -0.009 (0.01)  -0.012 (0.011)  -0.01 (0.01)  

pctcugr:zpowr -0.008 (0.01)  -0.009 (0.009)  -0.014 (0.009)  -0.009 (0.009)  

Pchcvgr 0.046 (0.015)** 0.034 (0.014)* 0.028 (0.014)  0.034 (0.014)* 

Pctcugr 0.002 (0.005)  0.001 (0.005)  0.001 (0.005)  0.001 (0.005)  

Zfldrt -0.012 (0.029)  -0.013 (0.027)  -0.036 (0.033)  -0.024 (0.031)  

Zpowr -0.075 (0.036)* -0.033 (0.034)  -0.005 (0.044)  -0.027 (0.039)  

Popgr 0 (0)  0 (0)  0 (0)  0 (0)  

Blkgr 0.03 (0.004)*** 0.022 (0.004)*** 0.026 (0.004)*** 0.025 (0.004)*** 

Hspgr 0.033 (0.003)*** 0.025 (0.003)*** 0.029 (0.003)*** 0.03 (0.003)*** 

mdrnt2000 0 (0)  0 (0)* 0 (0)* 0 (0)* 

pov2000 -0.021 (0.005)*** -0.015 (0.005)*** -0.018 (0.005)*** -0.019 (0.005)*** 

hsp2000 0.01 (0.002)*** 0.006 (0.002)*** 0.012 (0.003)*** 0.01 (0.002)*** 

shrblk2000 0.01 (0.002)*** 0.007 (0.002)*** 0.015 (0.003)*** 0.011 (0.002)*** 

cbd_dist 0.01 (0.006)  -0.002 (0.005)  -0.026 (0.045)  0.018 (0.011)  

lag.pchcvgr 

  

-0.006 (0.061)  

 lag.pctcugr 

  
0.019 (0.027)  

 lag.zfldrt 

  

0.161 (0.097)  

 lag.zpowr 

  

0.022 (0.152)  

 lag.popgr 

  

0 (0.001)  

 lag.blkgr 

  
0.015 (0.013)  

 lag.hspgr 

  

-0.003 (0.009)  

 lag.mdrnt2000 

  

0.001 (0.001)  

 lag.pov2000 

  
0.012 (0.016)  

 lag.hsp2000 

  

-0.01 (0.006)  

 lag.shrblk2000 

  

-0.017 (0.006)** 

 lag.cbd_dist 

  
0.013 (0.05)  

 lag.zfldrt:pchcvgr 

 

0.087 (0.072)  

 lag.zfldrt:pctcugr 

 

0.002 (0.033)  

 lag.pchcvgr:zpowr 

 

0.003 (0.061)  

 lag.pctcugr:zpowr 

 
-0.062 (0.061)  
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Table C1 (cont.) 

rho/lambda   0.574 (0.061)*** 0.516 (0.076)*** 0.661 (0.064)*** 

Adj.R2 0.2896 

   AIC 1780.967 1715.4 1719.9 1714.5 

Log likelihood -872.4837 -838.7081 -824.9665 -838.2343 

*p< .05, **p< .01, ***p< .001 

 

Table C2: Lagrange Multiplier diagnostics for OLS model estimating change in standardized 

value of SoVI (using power function for technological hazards) 

  Statistic df p-value 

LM (error) 92.88 1 0.000 

LM (lag) 95.908 1 0.000 

Robust LM (error) 6.864 1 0.009 

Robust LM (lag) 9.892 1 0.002 

SARMA 102.772 2 0.000 

 

Table C3: Likelihood Ratio (LR) test for spatial regression models estimating change in 

standardized value of SoVI (using power function for technological hazards) 

  Log Likelihood Likelihood ratio with SDM 

Spatial Durbin Model -824.966 

 Spatial Lag Model -838.708 27.483* 

Spatial Error Model -838.234 26.536* 

*p< .05, **p< .01, ***p< .001; df=16 

 

Table C4: Models estimating change in standardized value of SoVI (using WCPE function for 

technological hazards) 

Variables OLS Spatial Lag Spatial Durbin Spatial Error 

(Intercept) -0.492 (0.195)* -0.124 (0.188)  -0.277 (0.503)  -0.625 (0.254)* 

zfldrt:pchcvgr -0.013 (0.018)  -0.014 (0.017)  -0.009 (0.017)  -0.017 (0.017)  

zfldrt:pctcugr 0.004 (0.007)  0.001 (0.007)  0.002 (0.007)  0 (0.007)  

pchcvgr:zcpe1 -0.016 (0.011)  -0.018 (0.01)  -0.019 (0.011)  -0.018 (0.009)  

pctcugr:zcpe1 -0.015 (0.012)  -0.015 (0.012)  -0.02 (0.012)  -0.016 (0.011)  

Pchcvgr 0.048 (0.015)** 0.035 (0.014)* 0.03 (0.014)* 0.035 (0.014)* 

Pctcugr 0.001 (0.005)  0 (0.005)  0 (0.005)  0 (0.005)  

Zfldrt -0.01 (0.029)  -0.011 (0.027)  -0.028 (0.033)  -0.021 (0.031)  

zcpe1 -0.005 (0.036)  0.027 (0.033)  0.062 (0.039)  0.033 (0.035)  

Popgr 0 (0)  0 (0)  0 (0)  0 (0)  

Blkgr 0.03 (0.004)*** 0.022 (0.004)*** 0.026 (0.004)*** 0.025 (0.004)*** 

Hspgr 0.033 (0.003)*** 0.025 (0.003)*** 0.029 (0.003)*** 0.03 (0.003)  

mdrnt2000 0 (0)  0 (0)* 0 (0)* 0 (0)* 

pov2000 -0.022 (0.005)*** -0.016 (0.005)*** -0.017 (0.005)** -0.019 (0.005)*** 
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Table C4 (cont.) 

hsp2000 0.009 (0.002)*** 0.006 (0.002)** 0.013 (0.003)*** 0.01 (0.002)*** 

shrblk2000 0.01 (0.002)*** 0.007 (0.002)*** 0.015 (0.003)*** 0.011 (0.002)*** 

cbd_dist 0.01 (0.006)  -0.001 (0.005)  -0.033 (0.045)  0.019 (0.011)  

lag.pchcvgr 

  

0.009 (0.06)  

 lag.pctcugr 

  

0.008 (0.028)  

 lag.zfldrt 

  

0.123 (0.097)  

 lag.zpowr 

  

-0.193 (0.187)  

 lag.popgr 

  

0 (0.001)  

 lag.blkgr 

  

0.016 (0.013)  

 lag.hspgr 

  

-0.008 (0.009)  

 lag.mdrnt2000 

  

0.001 (0)  

 lag.pov2000 

  

0.009 (0.016)  

 lag.hsp2000 

  

-0.008 (0.006)  

 lag.shrblk2000 

  

-0.014 (0.006)* 

 lag.cbd_dist 

  

0.021 (0.05)  

 lag.zfldrt:pchcvgr 

 

0.088 (0.071)  

 lag.zfldrt:pctcugr 

 

0.019 (0.031)  

 lag.pchcvgr:zpowr 

 

0.024 (0.072)  

 lag.pctcugr:zpowr 

 

-0.094 (0.091)  

 rho/lambda   0.592 (0.059)*** 0.518 (0.075)*** 0.676 (0.062)*** 

Adj.R2 0.2834 

   AIC 1787.633 1716.6 1717.7 1714.3 

Log likelihood -875.8167 -839.3218 -823.8262 -838.1588 

*p< .05, **p< .01, ***p< .001 

 

Table C5: Lagrange Multiplier diagnostics for OLS model estimating change in standardized 

value of SoVI (using WCPE function for technological hazards) 

  Statistic df p-value 

LM (error) 106.362 1 0.000 

LM (lag) 104.920 1 0.000 

Robust LM (error) 9.817 1 0.002 

Robust LM (lag) 8.375 1 0.004 

SARMA 114.737 2 0.000 

 

Table C6: Likelihood Ratio (LR) test for spatial regression models estimating change in 

standardized value of SoVI (using WCPE function for technological hazards) 

  Log Likelihood Likelihood ratio with SDM 

Spatial Durbin Model -823.826 

 Spatial Lag Model -839.3218 30.991* 

Spatial Error Model -838.1588 28.665* 

*p< .05, **p< .01, ***p< .001; df=16 
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Table C7: Models estimating change in % of population under poverty (using power function for 

technological hazards) 

Variables OLS Spatial Lag Spatial Durbin Spatial Error 

(Intercept) -0.146 (1.822)  0.092 (1.782)  2.308 (4.876)  -1.087 (2.111)  

zfldrt:pchcvgr -0.158 (0.172)  -0.192 (0.168)  -0.181 (0.167)  -0.241 (0.165)  

zfldrt:pctcugr 0.029 (0.068)  0.02 (0.066)  0 (0.065)  0.012 (0.064)  

pchcvgr:zpowr -0.017 (0.104)  -0.029 (0.101)  -0.12 (0.102)  -0.054 (0.099)  

pctcugr:zpowr 0.278 (0.093)** 0.274 (0.091)** 0.212 (0.089)* 0.273 (0.089)** 

Pchcvgr 0.343 (0.141)* 0.287 (0.138)* 0.256 (0.139)  0.284 (0.138)* 

Pctcugr 0.154 (0.051)** 0.144 (0.05)** 0.142 (0.049)** 0.15 (0.049)** 

Zfldrt 0.551 (0.272)* 0.46 (0.266)  0.304 (0.319)  0.449 (0.288)  

Zpowr -0.849 (0.341)* -0.619 (0.333)  0.219 (0.421)  -0.358 (0.367)  

Popgr -0.01 (0.003)*** -0.008 (0.003)** -0.01 (0.003)** -0.009 (0.003)*** 

Blkgr 0.174 (0.037)*** 0.155 (0.037)*** 0.22 (0.039)*** 0.187 (0.038)*** 

Hspgr 0.312 (0.027)** 0.278 (0.029)*** 0.334 (0.032)*** 0.316 (0.029)*** 

mdrnt2000 -0.003 (0.002)  -0.003 (0.002)  -0.003 (0.002)  -0.003 (0.002)  

pov2000 -0.274 (0.046)*** -0.244 (0.045)*** -0.288 (0.051)*** -0.277 (0.048)*** 

hsp2000 0.139 (0.018)*** 0.115 (0.019)*** 0.184 (0.027)*** 0.148 (0.021)*** 

shrblk2000 0.09 (0.018)*** 0.076 (0.018)*** 0.166 (0.029)*** 0.105 (0.021)*** 

cbd_dist 0.062 (0.052)  0.019 (0.053)  -0.305 (0.439)  0.096 (0.078)  

lag.pchcvgr 

  

0.068 (0.589)  

 lag.pctcugr 

  

-0.079 (0.261)  

 lag.zfldrt 

  
1.155 (0.938)  

 lag.zpowr 

  

-1.308 (1.481)  

 lag.popgr 

  

0.01 (0.009)  

 lag.blkgr 

  
-0.123 (0.12)  

 lag.hspgr 

  

-0.061 (0.091)  

 lag.mdrnt2000 

  

0.002 (0.005)  

 lag.pov2000 

  

0.206 (0.152)  

 lag.hsp2000 

  
-0.137 (0.062)* 

 lag.shrblk2000 

  

-0.209 (0.062)*** 

 lag.cbd_dist 

  

0.233 (0.481)  

 lag.zfldrt:pchcvgr 

 
1.581 (0.694)* 

 lag.zfldrt:pctcugr 

 

-0.067 (0.319)  

 lag.pchcvgr:zpowr 

 

-0.136 (0.588)  

 lag.pctcugr:zpowr 

 
-0.565 (0.59)  

 rho/lambda   0.308 (0.074)*** 0.284 (0.091)** 0.482 (0.08)*** 

Adj.R2 0.2872 

   AIC 5222.408 5208.6 5198.1 5196.5 

Log likelihood -2593.204 -2585.282 -2564.032 -2579.226 

*p< .05, **p< .01, ***p< .001 
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Table C8: Lagrange Multiplier diagnostics for OLS model estimating change in % of population 

under poverty (using power function for technological hazards) 

  Statistic df p-value 

LM (error) 32.925 1 0.000 

LM (lag) 18.926 1 0.000 

Robust LM (error) 14.241 1 0.000 

Robust LM (lag) 0.242 1 0.623 

SARMA 33.167 2 0.000 

 

Table C9: Likelihood Ratio (LR) test for spatial regression models estimating change in % of 

population under poverty (using power function for technological hazards) 

  Log Likelihood Likelihood ratio with SDM 

Spatial Durbin Model -2564.03 

 Spatial Lag Model -2585.28 42.499*** 

Spatial Error Model -2579.23 30.386* 

*p< .05, **p< .01, ***p< .001; df=16 

Table C10: Models estimating change in % of population under poverty (using WCPE function 

for technological hazards) 

Variables OLS Spatial Lag Spatial Durbin Spatial Error 

(Intercept) -0.173 (1.821)  0.133 (1.778)  0.524 (4.846)  -1.088 (2.109)  

zfldrt:pchcvgr -0.122 (0.172)  -0.16 (0.167)  -0.159 (0.166)  -0.211 (0.165)  

zfldrt:pctcugr -0.002 (0.067)  -0.012 (0.065)  -0.013 (0.064)  -0.017 (0.064)  

pchcvgr:zcpe1 -0.096 (0.1)  -0.11 (0.097)  -0.105 (0.109)  -0.109 (0.093)  

pctcugr:zcpe1 0.38 (0.116)** 0.373 (0.113)*** 0.341 (0.115)** 0.349 (0.11)** 

Pchcvgr 0.308 (0.141)* 0.246 (0.137)  0.239 (0.138)  0.243 (0.137)  

Pctcugr 0.167 (0.051)** 0.157 (0.05)** 0.155 (0.05)** 0.161 (0.049)** 

Zfldrt 0.559 (0.272)* 0.462 (0.265)  0.324 (0.32)  0.452 (0.288)  

zcpe1 -0.181 (0.333)  -0.002 (0.325)  0.359 (0.38)  0.084 (0.335)  

Popgr -0.01 (0.003)*** -0.008 (0.003)** -0.01 (0.003)** -0.009 (0.003)*** 

Blkgr 0.171 (0.037)*** 0.15 (0.036)*** 0.217 (0.039)*** 0.182 (0.038)*** 

Hspgr 0.317 (0.028)*** 0.28 (0.029)*** 0.336 (0.032)*** 0.317 (0.029)*** 

mdrnt2000 -0.002 (0.002)  -0.003 (0.002)  -0.003 (0.002)  -0.003 (0.002)  

pov2000 -0.279 (0.046)*** -0.245 (0.045)*** -0.283 (0.051)*** -0.276 (0.048)*** 

hsp2000 0.135 (0.018)*** 0.109 (0.019)*** 0.183 (0.028)*** 0.144 (0.021)*** 

shrblk2000 0.09 (0.018)*** 0.075 (0.018)*** 0.163 (0.029)*** 0.105 (0.021)*** 

cbd_dist 0.071 (0.052)  0.024 (0.053)  -0.256 (0.439)  0.106 (0.078)  

lag.pchcvgr 

  

0.324 (0.581)  

 lag.pctcugr 

  
-0.084 (0.273)  

 lag.zfldrt 

  
0.785 (0.938)  

 lag.zpowr 

  
-3.002 (1.815)  

 lag.popgr 

  
0.012 (0.009)  
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Table C10 (cont.) 

lag.blkgr 

  

-0.092 (0.121)  

 lag.hspgr 

  

-0.083 (0.092)  

 lag.mdrnt2000 

  

0.003 (0.005)  

 lag.pov2000 

  

0.19 (0.152)  

 lag.hsp2000 

  

-0.122 (0.061)* 

 lag.shrblk2000 

  

-0.182 (0.061)** 

 lag.cbd_dist 

  

0.179 (0.479)  

 lag.zfldrt:pchcvgr 

 

1.616 (0.691)* 

 lag.zfldrt:pctcugr 

 

0.126 (0.3)  

 lag.pchcvgr:zpowr 

 

0.252 (0.701)  

 lag.pctcugr:zpowr 

 

0.204 (0.88)  

 rho/lambda   0.328 (0.074)*** 0.316 (0.089)*** 0.483 (0.08)*** 

Adj.R2 0.2869 

   AIC 5222.682 5206.3 5198.1 5194.7 

Log likelihood -2593.341 -2584.14 -2564.033 -2578.334 

Moran‘s I for 
residuals 0.117***  0.125***  

*p< .05, **p< .01, ***p< .001 

 

Table C11: Lagrange Multiplier diagnostics for OLS model estimating change in % of 

population under poverty (using WCPE function for technological hazards) 

  Statistic df p-value 

LM (error) 38.620 1 0.000 

LM (lag) 22.746 1 0.000 

Robust LM (error) 16.127 1 0.000 

Robust LM (lag) 0.253 1 0.615 

SARMA 38.873 2 0.000 

 

Table C12: Likelihood Ratio (LR) test for spatial regression models estimating change in % of 

population under poverty (using WCPE function for technological hazards) 

  Log Likelihood Likelihood ratio with SDM 

Spatial Durbin Model -2564.033 

 Spatial Lag Model -2584.14 40.214*** 

Spatial Error Model -2578.334 28.602* 

*p< .05, **p< .01, ***p< .001; df=16 
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Table C13: Models estimating change in % of population Black and under poverty (using power 

function for technological hazards) 

Variables OLS Spatial Lag Spatial Durbin Spatial Error 

(Intercept) 0.162 (0.886)  0.248 (0.86)  2.481 (2.365)  -0.198 (1.06)  

zfldrt:pchcvgr 0.072 (0.084)  0.095 (0.081)  0.069 (0.081)  0.078 (0.08)  

zfldrt:pctcugr -0.037 (0.033)  -0.045 (0.032)  -0.045 (0.032)  -0.049 (0.031)  

pchcvgr:zpowr -0.016 (0.05)  -0.016 (0.049)  -0.054 (0.05)  -0.025 (0.048)  

pctcugr:zpowr 0.054 (0.045)  0.053 (0.044)  0.038 (0.043)  0.055 (0.043)  

Pchcvgr 0.37 (0.069)*** 0.328 (0.067)*** 0.296 (0.067)*** 0.333 (0.067)*** 

Pctcugr 0.026 (0.025)  0.028 (0.024)  0.025 (0.024)  0.026 (0.024)  

Zfldrt 0.272 (0.132)* 0.223 (0.128)  -0.049 (0.155)  0.134 (0.141)  

Zpowr -0.044 (0.166)  0.031 (0.161)  0.328 (0.204)  0.143 (0.18)  

Popgr -0.003 (0.001)* -0.002 (0.001)  -0.003 (0.001)  -0.002 (0.001)  

Blkgr 0.255 (0.018)*** 0.242 (0.018)*** 0.273 (0.019)*** 0.263 (0.018)*** 

Hspgr 0.003 (0.013)  -0.005 (0.013)  0.003 (0.016)  0.003 (0.014)  

mdrnt2000 -0.001 (0.001)  -0.001 (0.001)  -0.001 (0.001)  -0.001 (0.001)  

pov2000 -0.135 (0.022)*** -0.117 (0.022)*** -0.113 (0.025)*** -0.123 (0.023)*** 

hsp2000 0.053 (0.009)*** 0.046 (0.009)*** 0.04 (0.013)** 0.048 (0.01)*** 

shrblk2000 0.043 (0.009)*** 0.041 (0.009)*** 0.064 (0.014)*** 0.047 (0.01)*** 

cbd_dist 0.003 (0.025)  -0.019 (0.025)  -0.069 (0.213)  0.014 (0.041)  

lag.pchcvgr 

  

0.079 (0.288)  

 lag.pctcugr 

  

-0.069 (0.126)  

 lag.zfldrt 

  

1.09 (0.455)* 

 lag.zpowr 

  

-0.363 (0.711)  

 lag.popgr 

  

0.006 (0.004)  

 lag.blkgr 
  

-0.173 (0.061)** 
 lag.hspgr 

  
-0.024 (0.041)  

 lag.mdrnt2000 

  

-0.001 (0.002)  

 lag.pov2000 

  

-0.025 (0.074)  

 lag.hsp2000 

  

0.014 (0.03)  

 lag.shrblk2000 

  

-0.07 (0.03)* 

 lag.cbd_dist 

  

0.039 (0.233)  

 lag.zfldrt:pchcvgr 

 

-0.086 (0.336)  

 lag.zfldrt:pctcugr 
 

0.128 (0.154)  
 lag.pchcvgr:zpowr 

 
-0.146 (0.285)  

 lag.pctcugr:zpowr 

 

-0.295 (0.285)  

 rho/lambda   0.397 (0.072)*** 0.395 (0.085)*** 0.54 (0.075)*** 

Adj.R2 0.3327 

   AIC 4113.338 4092.2 4087 4084 

Log likelihood -2038.669 -2027.111 -2008.487 -2023.006 

Moran‘s I for 
residuals 0.069*** 

 

0.075*** 

 *p< .05, **p< .01, ***p< .001 
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Table C14: Lagrange Multiplier diagnostics for OLS model estimating change in % of 

population Black and under poverty (using power function for technological hazards) 

  Statistic df p-value 

LM (error) 32.176 1 0.000 

LM (lag) 25.299 1 0.000 

Robust LM (error) 7.153 1 0.008 

Robust LM (lag) 0.276 1 0.599 

SARMA 32.452 2 0.000 

 

Table C15: Likelihood Ratio (LR) test for spatial regression models estimating change in % of 

population Black and under poverty (using power function for technological hazards) 

  Log Likelihood Likelihood ratio with SDM 

Spatial Durbin Model -2008.49 

 Spatial Lag Model -2027.11 37.247** 

Spatial Error Model -2023.01 29.037* 

*p< .05, **p< .01, ***p< .001; df=16 

 

Table C16: Models estimating change in % of population Black and under poverty (using WCPE 

function for technological hazards) 

Variables OLS Spatial Lag Spatial Durbin Spatial Error 

(Intercept) 0.181 (0.885)  0.282 (0.858)  2.407 (2.346) -0.158 (1.056)  

zfldrt:pchcvgr 0.08 (0.083)  0.103 (0.081)  0.082 (0.08)  0.086 (0.08)  

zfldrt:pctcugr -0.043 (0.032)  -0.051 (0.031)  -0.046 (0.031)  -0.054 (0.031)  

pchcvgr:zcpe1 -0.01 (0.049)  -0.011 (0.047)  -0.045 (0.053)  -0.016 (0.045)  

pctcugr:zcpe1 0.094 (0.056)  0.098 (0.054)  0.069 (0.056)  0.102 (0.053)  

Pchcvgr 0.362 (0.068)*** 0.32 (0.066)*** 0.296 (0.067)*** 0.325 (0.067)*** 

Pctcugr 0.031 (0.025)  0.033 (0.024)  0.026 (0.024)  0.031 (0.024)  

Zfldrt 0.271 (0.132)* 0.221 (0.128)  -0.046 (0.155)  0.131 (0.141)  

zcpe1 -0.006 (0.162)  0.034 (0.157)  0.283 (0.184)  0.104 (0.163)  

Popgr -0.003 (0.001)* -0.002 (0.001)  -0.003 (0.001)  -0.003 (0.001)  

Blkgr 0.254 (0.018)*** 0.241 (0.018)*** 0.272 (0.019)*** 0.262 (0.018)*** 

Hspgr 0.004 (0.013)  -0.004 (0.013)  0.004 (0.015)  0.004 (0.014)  

mdrnt2000 -0.001 (0.001)  -0.001 (0.001)  -0.001 (0.001)  -0.001 (0.001)  

pov2000 -0.135 (0.022)*** -0.116 (0.022)*** -0.109 (0.025)*** -0.122 (0.023)*** 

hsp2000 0.052 (0.009)*** 0.045 (0.009)*** 0.042 (0.013)** 0.047 (0.01)*** 

shrblk2000 0.043 (0.009)*** 0.041 (0.009)*** 0.064 (0.014)*** 0.047 (0.01)*** 

cbd_dist 0.004 (0.025)  -0.019 (0.025)  -0.104 (0.213)  0.013 (0.041)  

lag.pchcvgr 

  

0.161 (0.284)  

 lag.pctcugr 
  

-0.16 (0.132)  
 lag.zfldrt 

  

0.988 (0.456)* 

 lag.zpowr 

  

-0.363 (0.872)  

 lag.popgr 

  

0.007 (0.004)  
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Table C16 (cont.) 

lag.blkgr 

  

-0.17 (0.061)** 

 lag.hspgr 

  

-0.04 (0.042)  

 lag.mdrnt2000 

  

-0.001 (0.002)  

 lag.pov2000 

  

-0.038 (0.074)  

 lag.hsp2000 

  

0.017 (0.03)  

 lag.shrblk2000 

  

-0.065 (0.029)* 

 lag.cbd_dist 

  

0.072 (0.232)  

 lag.zfldrt:pchcvgr 

 

-0.01 (0.334)  

 lag.zfldrt:pctcugr 

 

0.183 (0.145)  

 lag.pchcvgr:zpowr 

 

-0.137 (0.339)  

 lag.pctcugr:zpowr 

 

-0.789 (0.424)  

 rho/lambda   0.398 (0.072)*** 0.4 (0)*** 0.536 (0.075)*** 

Adj.R2 0.3338 
   AIC 4112.064 4090.5 4085.1 4082.7 

Log likelihood -2038.032 -2026.242 -2007.56 -2022.33 
Moran‘s I for 

residuals 0.07*** 

 

0.069*** 

 *p< .05, **p< .01, ***p< .001 

 

Table C17: Lagrange Multiplier diagnostics for OLS model estimating change in % of 

population Black and under poverty (using WCPE function for technological hazards) 

  Statistic df p-value 

LM (error) 33.185 1 0.000 

LM (lag) 26.079 1 0.000 

Robust LM (error) 7.386 1 0.007 

Robust LM (lag) 0.281 1 0.596 

SARMA 33.465 2 0.000 

 

Table C18: Likelihood Ratio (LR) test for spatial regression models estimating change in % of 

population Black and under poverty (using WCPE function for technological hazards) 

  Log Likelihood Likelihood ratio with SDM 

Spatial Durbin Model -2007.56 

 Spatial Lag Model -2026.242 37.364** 

Spatial Error Model -2022.33 29.541* 

*p< .05, **p< .01, ***p< .001; df=16 
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Table C19: Models estimating change in % of population Hispanic and under poverty (using 

power function for technological hazards) 

Variables OLS Spatial Lag Spatial Durbin Spatial Error 

(Intercept) -1.812 (1.401)  -1.685 (1.38)  -0.432 (3.794)  -2.233 (1.557)  

zfldrt:pchcvgr -0.2 (0.132)  -0.232 (0.13)  -0.242 (0.13)  -0.275 (0.129)* 

zfldrt:pctcugr 0.043 (0.052)  0.041 (0.051)  0.022 (0.051)  0.037 (0.05)  

pchcvgr:zpowr -0.028 (0.08)  -0.034 (0.078)  -0.099 (0.079)  -0.047 (0.077)  

pctcugr:zpowr 0.182 (0.071)* 0.179 (0.07)* 0.135 (0.069)  0.176 (0.069)* 

Pchcvgr 0.004 (0.109)  -0.012 (0.107)  0 (0.108)  -0.015 (0.107)  

Pctcugr 0.097 (0.039)* 0.089 (0.038)* 0.084 (0.038)* 0.095 (0.038)* 

Zfldrt 0.404 (0.209)  0.369 (0.206)  0.458 (0.248)  0.416 (0.22)  

Zpowr -0.772 (0.262)** -0.666 (0.258)** -0.042 (0.327)  -0.523 (0.279)  

Popgr -0.005 (0.002)* -0.005 (0.002)* -0.006 (0.002)* -0.005 (0.002)* 

Blkgr -0.017 (0.028)  -0.024 (0.028)  0.018 (0.03)  -0.009 (0.029)  

Hspgr 0.387 (0.021)*** 0.364 (0.023)*** 0.402 (0.025)*** 0.387 (0.022)*** 

mdrnt2000 -0.001 (0.001)  -0.001 (0.001)  -0.001 (0.001)  -0.001 (0.001)  

pov2000 -0.077 (0.035)* -0.067 (0.035)  -0.107 (0.039)** -0.086 (0.036)* 

hsp2000 0.091 (0.014)*** 0.078 (0.015)*** 0.136 (0.021)*** 0.099 (0.015)*** 

shrblk2000 0.038 (0.014)** 0.03 (0.014)* 0.085 (0.022)*** 0.046 (0.016)** 

cbd_dist 0.011 (0.04)  -0.002 (0.04)  -0.072 (0.341)  0.027 (0.054)  

lag.pchcvgr 

  

-0.074 (0.455)  

 lag.pctcugr 
  

-0.048 (0.203)  
 lag.zfldrt 

  

-0.208 (0.726)  

 lag.zpowr 
  

-1.166 (1.151)  
 lag.popgr 

  

0.005 (0.007)  

 lag.blkgr 
  

-0.053 (0.093)  
 lag.hspgr 

  

-0.032 (0.077)  

 lag.mdrnt2000 
  

0.001 (0.004)  
 lag.pov2000 

  

0.2 (0.117)  

 lag.hsp2000 
  

-0.13 (0.048)** 
 lag.shrblk2000 

  

-0.131 (0.048)** 

 lag.cbd_dist 
  

-0.007 (0.373)  
 lag.zfldrt:pchcvgr 

 

1.69 (0.54)** 

 lag.zfldrt:pctcugr 
 

-0.103 (0.247)  
 lag.pchcvgr:zpowr 

 

-0.093 (0.457)  

 lag.pctcugr:zpowr 
 

-0.145 (0.458)  
 rho/lambda   0.195 (0.072)** 0.227 (0.095)* 0.38 (0.087)*** 

Adj.R2 0.4099 
   AIC 4818.134 4813.1 4807.5 4804 

Log likelihood -2391.067 -2387.557 -2368.733 -2382.99 
Moran‘s I for 

residuals 0.052*** 

   *p< .05, **p< .01, ***p< .001 
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Table C20: Lagrange Multiplier diagnostics for OLS model estimating change in % of 

population Hispanic and under poverty (using power function for technological hazards) 

  Statistic df p-value 

LM (error) 18.781 1 0.000 

LM (lag) 7.876 1 0.005 

Robust LM (error) 11.202 1 0.001 

Robust LM (lag) 0.297 1 0.586 

SARMA 19.078 2 0.000 

 

Table C21: Likelihood Ratio (LR) test for spatial regression models estimating change in % of 

population Hispanic and under poverty (using power function for technological hazards) 

  

Log 

Likelihood 

Likelihood ratio with 

SDM 

Spatial Durbin 

Model -2368.733 

 Spatial Lag Model -2387.557 37.649** 

Spatial Error Model -2382.99 28.513* 

*p< .05, **p< .01, ***p< .001; df=16 

 

 

Table C22: Models estimating change in % of population Hispanic and under poverty (using 

WCPE function for technological hazards) 

Variables OLS Spatial Lag Spatial Durbin Spatial Error 

(Intercept) -1.887 (1.402)  -1.719 (1.38)  -2.05 (3.771)  -2.305 (1.566)  

zfldrt:pchcvgr -0.175 (0.132)  -0.212 (0.13)  -0.229 (0.129)  -0.258 (0.128)* 

zfldrt:pctcugr 0.023 (0.051)  0.021 (0.05)  0.015 (0.05)  0.017 (0.05)  

pchcvgr:zcpe1 -0.092 (0.077)  -0.101 (0.076)  -0.075 (0.084)  -0.099 (0.073)  

pctcugr:zcpe1 0.258 (0.089)** 0.252 (0.088)** 0.249 (0.09)** 0.229 (0.086)** 

Pchcvgr -0.013 (0.108)  -0.033 (0.106)  -0.008 (0.107)  -0.038 (0.107)  

Pctcugr 0.107 (0.039)** 0.098 (0.039)* 0.097 (0.038)* 0.102 (0.038)** 

Zfldrt 0.408 (0.209)  0.37 (0.206)  0.475 (0.248)  0.422 (0.22)  

zcpe1 -0.273 (0.256)  -0.162 (0.253)  0.073 (0.295)  -0.114 (0.258)  

Popgr -0.005 (0.002)* -0.005 (0.002)* -0.006 (0.002)* -0.005 (0.002)* 

Blkgr -0.019 (0.028)  -0.027 (0.028)  0.016 (0.03)  -0.011 (0.029)  

Hspgr 0.39 (0.021)*** 0.365 (0.023)  0.403 (0.025)*** 0.388 (0.022)*** 

mdrnt2000 -0.001 (0.001)  -0.001 (0.001)  -0.001 (0.001)  -0.001 (0.001)  

pov2000 -0.082 (0.035)* -0.07 (0.035)* -0.106 (0.039)** -0.088 (0.036)* 

hsp2000 0.089 (0.014)*** 0.073 (0.015)*** 0.134 (0.021)*** 0.097 (0.016)*** 

shrblk2000 0.039 (0.014)** 0.03 (0.014)* 0.083 (0.022)*** 0.047 (0.016)** 

cbd_dist 0.018 (0.04)  0.003 (0.04)  -0.007 (0.34)  0.036 (0.055)  

lag.pchcvgr 
  

0.138 (0.448)  
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Table C22 (cont.) 

lag.pctcugr 

  

0.012 (0.212)  

 lag.zfldrt 

  

-0.454 (0.724)  

 lag.zpowr 
  

-2.99 (1.414)* 
 lag.popgr 

  

0.007 (0.007)  

 lag.blkgr 

  

-0.022 (0.093)  

 lag.hspgr 

  

-0.039 (0.077)  

 lag.mdrnt2000 
  

0.003 (0.004)  
 lag.pov2000 

  

0.192 (0.117)  

 lag.hsp2000 

  

-0.117 (0.047)* 

 lag.shrblk2000 
  

-0.109 (0.047)* 
 lag.cbd_dist 

  

-0.076 (0.372)  

 lag.zfldrt:pchcvgr 

 

1.653 (0.536)** 

 lag.zfldrt:pctcugr 

 

0.028 (0.232)  

 lag.pchcvgr:zpowr 
 

0.357 (0.544)  
 lag.pctcugr:zpowr 

 

0.917 (0.684)  

 rho/lambda   0.216 (0.072)** 0.243 (0.093)** 0.395 (0.086)*** 

Adj.R2 0.4081 
   AIC 4820.529 4813.8 4804.3 4803.8 

Log likelihood -2392.265 -2387.918 -2367.154 -2382.907 

Moran‘s I for 

residuals 0.059*** 
   *p< .05, **p< .01, ***p< .001 

 

Table C23: Lagrange Multiplier diagnostics for OLS model estimating change in % of 

population Hispanic and under poverty (using WCPE function for technological hazards) 

  Statistic df p-value 

LM (error) 23.489 1 0.000 

LM (lag) 9.920 1 0.002 

Robust LM (error) 13.971 1 0.000 

Robust LM (lag) 0.402 1 0.526 

SARMA 23.891 2 0.000 

 

Table C24: Likelihood Ratio (LR) test for spatial regression models estimating change in % of 

population Hispanic and under poverty (using WCPE function for technological hazards) 

  Log Likelihood 

Likelihood 

ratio with SDM 

Spatial Durbin 

Model -2367.154 
 Spatial Lag Model -2387.918 41.528*** 

Spatial Error Model -2382.907 31.506* 

*p< .05, **p< .01, ***p< .001; df=16 
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APPENDIX D 

HUD GUIDELINE FOR CALCULATING ACCEPTABLE SEPARATION DISTANCE 

(ASD) 

 

24 CFR §51 (Subpart C) gives instructions for identifying hazardous materials and how to 

calculate Acceptable Separation Distance (ASD) for developing any kind of HUD assisted 

project. Appendix I and II of this section gives the list of the hazardous materials and shows the 

calculation methods to be followed. Those appendices are presented here which might be helpful 

for planners in case of location decisions for any multi-family low income housing project. 
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