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ABSTRACT 
 
 
The aim of this study is to uncover the role of urban spatial structure in greenhouse gas 
(GHG) mitigation and to understand how sustainable urban form can better reduce 
climate change. Until now, a great number of studies have focused on the links between 
urban spatial structure and travel behavior, but little is known about spatial structure 
impacts on residential energy consumption. Most previous studies applied the use of 
neighborhood scale spatial structure to understand greenhouse gas emissions. However, 
such studies are too narrow to explain total urban spatial influences. This dissertation 
research therefore focuses on regional scale spatial structure (urban area level) in order to 
decrease GHGs and mitigate climate change. 

In doing so, this dissertation research consists of the three specific topics to scrutinize the 
role of sustainable urban spatial structure. The first topic (chapter 2) empirically 
examines whether and to what extent spatial structure affects the amount of household 
sector greenhouse gas emissions in U.S. urbanized areas. The study covers the 
comprehensive impacts of spatial structure not only on travel behavior, but also on 
residential energy consumption. Therefore, we can trace the overall impacts of urban 
spatial structure on all sources of GHG in the US household sector. The second topic 
(chapter 3) focuses on the impact of multiple geographic scales of sustainable built-
environment to mitigate GHGs. In the study, the impacts of neighborhood level 
characters and regional level urban form elements are compared. The final topic (chapter 
4) compares land-use policy with price policy to effectively reduce GHGs, and 
empirically shows how both policies can support GHG mitigation. 

 

1) The influence of urban form on greenhouse emissions in the household sector 
This study comprehensively investigates the diverse paths through which urban form 
influences an individual household’s carbon dioxide emissions in the 125 largest 
urbanized areas in the U.S. This research takes a consolidated approach in investigating 
all energy consumption in the household sector: CO2 emissions from heating, cooling and 
transportation. The result of the multilevel structure equation model (multilevel SEM) 
analyses shows that doubling population-weighted density is associated with a reduction 
in CO2 emissions from household travel and residential energy consumption by 48% and 
35%, respectively. The impacts of a centralized population and a polycentric structure 
have only a moderate impact in the analyses, but overall population centrality increase 
and polycentricity decrease are good for reducing CO2. In reality, however, the majority 
of US urban spatial structure have developed in the opposite direction of sustainability 
from 2000 to 2010; both population density and population-weighted density have 
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decreased by about 3.5% for last 10 years in the largest 121 urban areas. In addition, 
population centrality has decreased by about 16%, while polycentricity has increased by 
7%. The result also shows that doubling per capita transit subsidies is associated with a 
nearly 46% lower VMT and 18% reduction in transportation CO2 emissions. Given that 
household travel and residential energy use account for 42% of total U.S. carbon dioxide 
emissions, these research findings corroborate the notion that urban land use and 
transportation policies to build more compact and transit friendly cities should be a 
crucial part of any strategic efforts to mitigate GHG emissions and stabilize climate at all 
levels of government. 

 

2) Sustainable urban form at local and regional scales 
The link between urban form and travel behavior is recognized as a key role in 
understanding the role of sustainable urban development in reducing greenhouse gas 
emissions in the transportation sector. Many recent studies have found that urban form 
variables—such as density, land use diversity, street design, destination accessibility, and 
distance to transit (the “5Ds”)—significantly influence travel behavior including mode 
choice, trip frequency, trip distance, and ultimately vehicle miles traveled (VMT), and 
they are regarded as the fundamental principles for land use policies to promote more 
sustainable transportation. In previous study, the 5 element impacts on VMT (VMT 
elasticity w.r.t. 5Ds) are significant, but not large. The reason seems to come from the 
small geographic unit of analysis (census tract, census block group or TAZ level). 
According to the NHTS (2009), more than 85% Americans still use automobile when 
they travel, and the average one-way trip distance by auto is about 9 miles, while the 
average radius of census tract and census block group is only about 0.5 and 0.3 miles, 
respectively. Moreover, many sustainable urban form studies have focuses on 
neighborhood character based on residence or working place, but home based work 
(HBW) is less than 10%, and there are various trip purposes, so there are diverse origins 
and destinations in each travel. Ironically, however, most studies suggest that coupling 
sustainable urban structure with supporting neighborhood structures decreases VMT, but 
most people use cars for travel for trips beyond the geographic unit of analysis. 

To fill the gap in the literature, this study investigates the influences of urban form at 
both geographical scales on travel behavior and carbon dioxide emissions using a 
multilevel analysis (3 level analysis; individual household, neighborhood, and urbanized 
area). The results show that the influence of regional level urban form is higher than that 
of neighborhood level on VMT. Regional level variables such as population weighted 
density (PWD), population centrality, jobs-to-housing ratio, and transit service supply 
significantly reduce VMT and CO2 from transportation sector. Most 5D elements at the 
neighborhood level also significantly diminish VMT and CO2, but the coefficient of 
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regional level variables are higher than that of neighborhood level urban form elements. 
Moreover, the empirical outputs indicate that the positive effects of sustainable urban 
elements (5Ds) at the neighborhood level to reduce GHGs are increased under more high-
density, high-centralized, and high job accessible UAs than auto-oriented UAs. For 
instance, when we double the compactness level at the neighborhood level, VMT 
decreases by about 50% in the average PWD UAs such as St. Louis. However, the 
influence can intensify by about 75% when the UA density (PWD) arrives at the New 
York level. 

 

3) Complementarity between land use planning and pricing in VMT reduction 
To effectively reduce VMT, there seems to be no majority consensus. There is a wide gap 
between advocates of pricing policies and advocates of land use planning. Advocates of 
each approach underestimate the role and impacts of the other approach. In particular, 
skepticism still remains concerning the potential for more sustainable urban form and 
development patterns in reducing VMT and carbon emissions. The majority planners, on 
the other hand, emphasize that “getting prices right” policies cannot be effective in the 
absence of alternatives to automobile usage in many U.S. cities. However, land use 
planning and pricing approaches are complementary and potentially synergetic rather 
than competing and conflicting. Further, all possible policy options should be fully 
employed to achieve climate-stabilizing GHG reduction targets. Thus, policy analysts and 
decision makers should understand the complex interactions between various policy 
instruments to mitigate policy conflicts and maximize synergetic effects. Nonetheless, 
empirical research on the policy synergy between different approaches in transportation 
planning is extremely rare. 

To enhance the understanding of the policy synergy between pricing and land use 
planning approaches, this study examines the interaction effects between fuel prices and 
land use (urban form) variables in reducing VMT in 115 UAs for 10 years from Jan. 2002 
to Dec. 2011 (monthly data). To find the both policy impacts, diverse empirical analyses 
are conducted from simple comparative analysis, to regression analysis, panel analysis, 
and panel type locally weighted smoothing (P-LOESS). The results show that there are 
synergic effect between land use policies and fuel price policies. Under the high fuel 
price, VMT reducing impacts of most compact urban form variables (UA level) are 
estimated to be stronger. When PWD doubles, VMT is reduced by about 19% under 
around 1 dollar per gallon ($ 2005), but the impact increases to about 27% under about 
$2.5 /gallon. However, the complementary relations do not seem constant as gasoline 
price increases. With gasoline price increases, the elasticities of VMT dramatically 
increases below $2.5 per gallon. However, the elasticities remain at around 27%, even 
when the fuel price increases beyond $2.5 to $4 per gallon. The elasticities of urban 
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compactness and centrality also show a similar pattern, in which they stabilize at a certain 
level. 

 

The implications of all findings from the three topics may greatly add to sustainable land 
use policy and transportation planning. While current federal- and state-level climate 
change policies mainly depend on technology solutions, the first study gives strong 
evidence for the importance of land use planning, as GHG mitigation strategies must alter 
travel behavior as well as energy consumption behavior. The comparison between local 
and regional level built environment impacts in the second topic highlight an essential 
issue of whether the state and/or regional governance can effectively reduce GHGs. The 
study shows that scattered and fragmented development of compact neighborhoods is not 
sufficient to moderate auto-oriented travel behavior. Instead, the study implies that 
strategic regional level coordination of smart growth policies can effectively foster 
sustainable travel behavior such as urban growth boundaries, balanced jobs-housing 
development, and transit oriented development. The final study underlines how both land 
use and fuel price policies generates synergic effects, which is largely overlooked by 
planners. The study empirically shows the adequate range of fuel prices to stimulate 
increasing effectiveness of sustainable land use policy, so the results can provide great 
evidence for the actual implementation of synergic activities. 
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  CHAPTER 1
INTRODUCTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Our planet is warming. The global mean temperature (GMT) is projected to rise, with the 

lowest and highest projections being respectively 1.1°C and 6.4°C by 2100, if greenhouse 

gas (GHG) emissions from human activities are not curbed (Intergovernmental Panel on 

Climate Change, 2007; Smith et al., 2008). Over the last 55 years, CO2 concentrations 

have risen from 315 ppm in 1958 to 400 ppm in 2013. Climatologists warn that humans 

may face disastrous consequences when the CO2 concentration passes 450 ppm 1 (Jones, 

2013; Showstack, 2013; Stults, Wagner-Cremer & Axsmith, 2011); they suggest the 

GMT level be maintained under “the 2°C guardrail” 2 (Hansen et al., 2008).  

1 Many climatologists argue that the warm period of Pliocene (almost 3.6 million years ago) provides a 
potential analogue for the future climate change and impacts. Studies in paleoclimatology show that the 
concentrations of carbon dioxide ranged from about 380 to 450 ppm in the period of the middle Pliocene. 
The global mean temperature (GMT) was about 3°C warmer than now and the sea level lapped coasts 5 
meters or higher. Many species became extinct in the Pliocene era. 
2 The IPCC (2007) recommended that the GMT should be kept within a maximum of 2°C above pre-
industrial levels to prevent potentially catastrophic consequences for human society and natural ecosystems 
(Smith et al., 2009). This goal was also endorsed by the Copenhagen Climate Summit (Richardson et al., 
2009; UNFCCC, 2009) 
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In response to the scientists’ warning, the Obama Administration set an 

ambitious goal of reducing GHG emissions to 17 % below the 2005 levels by 2020 and to 

83 % thereof by 2050 (U.S. Department of State, 2010). Most of the current and proposed 

policy measures to meet the climate-stabilizing reduction target in the U.S. depend on 

technology and pricing solutions, including fuel economy standards, low-carbon fuels, 

and carbon taxes (Chapman, 2007; Ewing et al., 2008; Pacala & Socolow, 2004). Many 

studies, however, show that technology and market solutions alone, without involving 

energy demand moderation, cannot achieve the GHG emissions reduction goals (Boies et 

al., 2009; Grazi & van den Bergh, 2008; Johansson, 2009; Kromer, Bandivadekar & 

Evans, 2010; Morrow et al., 2010). Moreover, technology is not likely to develop at a 

sufficient rate to meet the challenge (Johansson, 2009), and even potential GHG savings 

from improved energy efficiency can be partially offset by rebounded energy 

consumption (Greening, Greene & Difiglio, 2000; Sorrell, Dimitropoulos & 

Sommerville, 2009). To fill this gap, additional steps will be needed. Reducing individual 

energy consumption through shifts in behavior presents one such opportunity to affect 

GHG emissions, and this study mainly focuses on the role of sustainable urban spatial 

structure to mitigate GHG emissions. 

The purpose of this dissertation is to uncover how sustainable urban spatial 

structure mitigates GHG emissions and stabilizes climate change. Over the last several 

decades, urban spatial structure has been steadily changing to a more decentralized, 

polycentric, and dispersed one. This trend can have negative impacts on global warming 

due to increased travel distances, traffic congestion, residential energy consumption, and 

so on. In addition, the change of built environments can leave long-lasting effects on 
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individual travel and residential energy consumption behaviors because of the durability 

of the built environment.  

Thus, many scholars realize the magnitude of the problem and have conducted a 

proliferation of empirical studies to discover the connections between specific land-use 

elements and sustainable travel behaviors in U.S. cities. They found that the links are 

statistically significant, but the size of the impacts is generally smaller than scholars and 

planners had expected. However, most of these studies focus on small scale geography, 

investigating the variations of neighborhood characteristics within a regional boundary. 

Thus, it is likely that the impacts of urban form change are underestimated in previous 

studies. Urban residents’ average one-way trip distance is nearly ten miles in the U.S. 

Thus, land use characteristics at the neighborhood level may not significantly influence 

people’s travel decisions and studies focusing on small scale variations in urban form 

may not disclose the profound relationships between urban form and travel behavior, 

resulting in an underestimating of the role of sustainable urban form. For this reason, this 

dissertation focuses on urban area level spatial structure—population-weighted density, 

population centrality, and polycentricity—and its role in GHGs reduction. 
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1.1. Urban spatial structure at the UA level 

Classic theoretical urban economic models describe monocentric urban spatial structure, 

in which land price, employment and population all decline with the distance from 

Central Business District (CBD) (Alonso, 1964; Mills, 1967; Muth, 1969). Over the 

second half of the last century, however, jobs and population have been constantly 

decentralizing, significant portion of which have re-concentrated in new job centers in 

U.S. metropolitan areas. These changes of urban structure have had profound influences 

on travel behavior and residential energy consumption. In an effort to analyze the 

decentralizing and polycentrizing trends, Giuliano & Small (1991), Bogart & Ferry 

(1999), McMillen (2001), Craig & Ng (2001), McMillen & Smith (2003), and Lee (2007) 

have recently developed new methods to quantify urban spatial structure.  

There are two dimensions of urban area-level spatial structure—centralized 

versus decentralized and clustered versus dispersed—as shown in Figure 1.1 (Anas, 

Arnott & Small, 1998; Galster et al., 2001; Meijers & Burger, 2010). The centralization 

dimension (x-axis) quantifies the proximity of population or employment to the major job 

center at the urban core location, CBD, while the concentration dimension (y-axis) 

measures how disproportionately jobs or population are clustered in a few locations over 

the urban area. 

This study focuses on two major spatial dimensions, population centrality and 

employment polycentricity, the latter of which is a combined outcome of metropolitan 

wide decentralization and local concentration—decentralized concentration. Population 

centrality measures the degree of population concentration near the CBD, whereas 

polycentricity measures the extent to which jobs and urban activities are clustered around 
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subcenters as opposed to the CBD (Anas, Arnott & Small, 1998; Galster et al., 2001; Lee 

& Lee, 2014). It is well known that polycentric structure may reduce the average 

commute distance, but is less supportive of public transit than monocentric urban areas 

(Lee & Lee, 2014). 

 

 
Figure 1.1. The classification of urban spatial structure with two dimensions. 

 

To identify employment centers in a metropolitan area, a geographical weighted 

regression (GWR) procedure developed by Lee (2007) is applied. The primary quality of 

employment centers is a significantly higher employment density than in the surrounding 

areas. First, two employment density surfaces are estimated using the GWR—one with a 

small window size (10 neighboring census tracts) and the other with a large window size 

(100 census tracts). Those census tracts where small window GWR estimates have 

statistically significantly higher density than large window GWR estimates are defined as 
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center candidates. In the second screening step, I defined the clusters of identified density 

peaks as employment centers when they have more jobs than an employment size 

threshold that ranges from 3,000 to 10,000 jobs, depending on metropolitan population 

size. I used census tract level employment data from Census Transportation Planning 

Packages (CTPP) in 2000, and Longitudinal Employer-Household Dynamics Origin-

Destination Employment Statistics (LODES) in 2010. 

I developed various indices of population centrality and polycentricity at the 

urbanized area level based on 1) the locations of subcenters, 2) the number of identified 

subcenters, 3) employment shares in subcenters, and 4) census tract level population in 

relation to the distance from the CBD (Table 1.1). To estimate population centrality, 

several different indices were used, focusing on the CBD’s population share, population 

density gradient, area-based or weighted area-based population density gradient, and so 

on. I used a principal component analysis (PCA) to summarize all these indices into one 

population centrality index. I also took several approached to estimating polycentricity 

indices based on subcenters’ employment share, the number of subcenters, and intra-

urban rank-size distribution of employment centers, and then summarized them by using 

a PCA. 
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Table 1.1. List of centrality and polycentricity indices. 

  Index Source Formula 
Population Centralization Index: the 1st factor of CPS, MWI, ACI & WADI, WUAD and PDG (results of PCA) 
  CBD Pop. Share (CPS) Lee (2007) 

 ∑
=

=
n

i
iCBD ppCPS

1

, 

The share of urbanized area population in the CBD. 
  Modified Wheaton Index 

(MWI) 
Wheaton (2004); Lee (2007) 

 
*

1 1
11 )(

DCBD

DCBDPDCBDP
MWI

n

i

n

i
iiii∑ ∑

= =
−− −

=  

  Area Based 
Centralization Index 
(ACI) 

Massey & Denton (1988); 
Lee (2007)  ∑ ∑

= =
−− −=

n

i

n

i
iiii APAPACI

1 1
11

, 

ACI measures how fast population cumulates with distance from 
the CBD compared to land area accumulation. It ranges between 
-1 and 1, with a larger value indicating a higher degree of 
centrality. 

 Weighted Average 
Distance from the CBD 
(WADI) 

Galster et al. (2001) 
 EDCBDpADC

n

i
ii∑

=

=
1

 

 Ratio of Weighted to 
Unweighted Average 
Distance (WUAD) 

Cutsinger et al. (2005) 
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The ratio typically ranges from 0 to 1, indicating the 
concentration of whole population in the CBD and a perfectly 
even distribution of population throughout the UA, respectively. 
An index value larger than 1 indicates an exceptional degree of 
suburbanization beyond even distribution. 

  Population density 
gradient (PDG) 

Lee & Lee (2014)  Density gradient measures the rate of decrease in population 
density with distance from the CBD. It can be estimated as a 
parameter β from a monocentric urban density gradient model, ln 
di = α + βDCBDi. 

Polycentricity Index: the 1st Factor of SUB, NES, SRSD, Primacy, and CSR (Result of PCA) 
  Subcenters’ Share of 

Center Emp. (SUB) 
Lee (2007)  Subcenters’ Share of Centers Employment: 

 )( SUBCBDSUB eeeSUB +=  
 The number of extra 

subcenters (NES) 
Veneri (2010) The difference between the number of identified employment 

subcenters and the number of subcenters predicted as a function 
of UA population by a Poisson regression analysis. 

 Slope of rank-size 
distribution (SRSD) 

Meijers & Burger (2010); 
Nordregio (2005) 

Estimated parameter 𝛽𝛽 of the rank-size distribution of 
employment centers in each UA, ln ek = α + β ln(rankk – 0.5). I 
use “rank – ½” rather than actual rank in the regression to reduce 
a bias due to small samples (Gabaix & Ibragimov, 2011). 

 Primacy Meijers (2008); Nordregio 
(2005) 

The degree by which the largest center in the UA deviates from 
the rank-size distribution of employment centers. To estimate the 
primacy index, I omit the largest employment center (the CBD in 
most cases) from the rank-size regression run and then compare 
predicted and actual employment sizes of it. 

  Commuter shed ratio 
(CSR) 

Lee & Lee (2014) This measure compares the commuter shed of all subcenters 
combined with that of the CBD. The commuter shed of a center 
is defined as census tracts from which more than 10% of workers 
commute to the center. I develop two indices by measuring the 
size of commuter shed in terms of employment and land area. 

Pi: cumulative proportion of employment in census tract i when all tracts are sorted by the distance from the CBD; Ai: cumulative 
proportion of land area in tract i; pi: population in tract i, CBDi: the distance of tract i from the CBD; 𝐸𝐸: total UA employment; 
𝑁𝑁: number of census tracts; 𝑑𝑑𝑖𝑖: population density in tract i; 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 : number of jobs in the CBD; eSUB: number of jobs in 
subcenters; ek: number of jobs in employment center k; rankk: the rank of urban employment center k in employment size within a 
UA.; DCBD*: urbanized area radius; n: number of zones. 
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Another basic but important element of urban spatial structure is population 

density. The conventional population density, however, has many shortcomings and is 

very sensitive to the boundary changes of census geographies over years. For instance, 

this conventional measure presents the Los Angeles urbanized area as having higher 

density than the New York UA although most people believe New York to be far denser 

than Los Angeles. The disconnect can be overcome by using population-weighted density 

(PWD)—the weighted mean of census block group level density within an UA, with each 

block group’s population being used as the weight. The PWD of New York is 

significantly higher than that of LA, which is consistent with our intuition. Several 

studies indicate that the PWD captures the density that an average urban resident 

experiences in daily life better than a conventional density (Lee & Lee, 2014; 

Transportation Research Board, 2009). Therefore, this study uses PWD as one of major 

regional-level land-use variables. 

As a preliminary analysis, spatial structure variables of the 125 largest UAs with 

more than 250 thousand residents as of 2000 are presented in Table 1.2-1.3 and Figure 

1.2-1.7. During the period between 2000 and 2010, urban areas became more clustered 

and polycentric in terms of employment distribution (Table 1.2) while population further 

decentralized across the board (Table 1.3). The CBDs of largest urban areas somewhat 

lost their employment shares by approximately 0.4 percent points, but most urban areas 

have gained clustered jobs in both the CBD and suburban job centers. CBD employment 

share slightly increased from 10.8 percent to 11.1 percent on average, and it increased by 

1.5 percent in small UAs having less than 1 million people over ten years. Subcenters 

have also shown steady growth as the role of job centers, and their growth overwhelms 
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the upturn of CBDs. Subcenter employment share has escalated by 3.7 percent on 

average, and the polycentricity index also increased by 7.3 percent. 

However, population has decentralized by about 16 percent in terms of the 

centrality index, on average, and both conventional population density and the 

population-weighted density (PWD) decreased as well (Table 1.3). Large urban areas in 

the East and West coasts still maintain higher population density than other small UAs 

(Figure 1.5). While population densities have decreased in most UAs for the 10 year 

period, some UAs such as Portland, Washington, D.C., and Miami have experienced an 

increase in population density. 

Figure 1.3 shows a negative association between population centrality and 

polycentricity in the 25 largest UAs. In general, most UAs moved in the direction from 

the fourth to the second quadrant in the 2000s, indicating decentralization and 

polycentrizing trends. For instance, both population density and PWD in the Chicago UA 

dropped by about 10% and 9%, respectively, while the number of subcenters has 

increased from 19 to 30 (Table 1.2). Polycentricity index upsurged by about 7%, but 

population centrality index fell by about 9% (Table 1.3). 

The negative association between population centrality and polycentricity is also 

found in the full sample as shown in Figure 1.4. In general, population centrality is 

relatively high in older UAs in the Eastern Coast (Figure 1.6), while urban areas in the 

Sunbelt region are more polycentric (Figure 1.7). 
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Table 1.2. Number of subcenters and employment shares of job centers in the largest 125 UAs. 

  

No. of Subcenters 
Employment Shares (%) 

All Centers (C=A+B) CBD (A) Subcenters (B) 

2000 2010* Diff. 2000 2010* Diff 
(%p) 2000 2010* Diff 

(%p) 2000 2010* Diff 
(%p) 

New York 28 32 4 23.4 27.5 4.1 12.0 10.0 −2.0 11.4 17.5 6.1 
Los Angeles 45 50 5 39.4 35.4 −3.9 3.7 4.4 0.7 35.6 31.0 −4.7 
Chicago 19 30 11 21.1 27.1 6.0 7.6 11.5 3.9 13.5 15.6 2.2 
Miami 9 17 8 22.1 29.0 6.9 5.3 2.9 −2.4 16.8 26.1 9.3 
Philadelphia 13 18 5 17.8 17.4 −0.4 9.6 8.0 −1.6 8.2 9.4 1.2 
Dallas 11 23 12 28.0 31.2 3.2 5.4 6.1 0.6 22.6 25.2 2.6 
Houston 12 16 4 30.3 33.4 3.1 9.4 8.1 −1.2 21.0 25.3 4.3 
Washington 15 20 5 29.9 35.3 5.4 12.7 11.6 −1.1 17.2 23.7 6.5 
Atlanta 6 20 14 20.6 34.1 13.5 8.6 8.1 −0.6 12.0 26.0 14.0 
Boston 6    16.7   10.9   5.8   
Population Size**             
higher than 2.5 million 14.4 20.5 6.1 26.6 29.8 3.3 8.8 8.4 −0.4 17.7 21.4 3.6 
1 million - 2.5 million 5.0 6.8 1.8 25.7 29.6 3.9 11.3 11.8 0.4 14.4 17.9 3.5 
less than 1 million 2.5 3.5 0.9 29.2 35.0 5.8 14.8 16.3 1.5 14.4 18.7 4.3 

Total (125 UAs) 4.6 6.3 1.7 27.0 31.0 4.0 10.8 11.1 0.3 16.2 19.9 3.7 
* Notes: LODES data is used to estimate the indices for Centrality and Polycentricity, but they don’t cover the state of 

Massachusetts. Thus, the three UAs―Boston, MA-NH-RI, Springfield, MA-CT, and Worcester, MA-CT―are not 
accounted for all indices as of 2010. 

** There are 16 UAs (higher than 2.5 million UAs), 25 UAs (1 million-2.5 million), and 84 UAs (less than 1 million). 
 

 

Table 1.3. The urban spatial structure comparison between 2000 and 2010 in the largest 125 UAs.  

  

Conventional 
Population density 

Population-weighted density 
(block group level) Population Centrality Polycentricity 

2000 2010 delta 2000 2010 delta 2000 2010* Delta* 2000 2010* Delta* 

New York 5,337 5,319 −0.3% 37,140 36,712 −1.2% 151 147 −2.7% 72 94 30.7% 
Los Angeles 7,088 6,999 −1.3% 14,368 14,108 −1.8% 75 69 −7.6% 168 153 −8.6% 
Chicago 3,921 3,524 −10.1% 11,898 10,853 −8.8% 132 120 −9.1% 97 103 7.0% 
Miami 4,424 4,442 0.4% 7,898 8,754 10.8% 61 60 −1.8% 115 145 26.1% 
Philadelphia 2,872 2,746 −4.4% 10,296 9,624 −6.5% 114 107 −6.7% 79 92 16.5% 
Dallas 2,957 2,879 −2.6% 6,123 5,631 −8.0% 65 59 −9.2% 131 138 4.7% 
Houston 2,978 2,978 0.0% 5,910 5,748 −2.7% 93 80 −13.5% 107 124 15.3% 
Washington 3,417 3,470 1.6% 8,475 9,118 7.6% 121 93 −22.6% 86 117 36.0% 
Atlanta 1,789 1,707 −4.6% 2,955 2,925 −1.0% 110 99 −10.5% 93 128 38.2% 
Boston 2,334 2,232 −4.4% 9,838 10,099 2.7% 130     53    

Population Size**             
higher than 2.5 million 3,685 3,636 −1.6% 10,177 9,989 −2.4% 100 89 −10.3% 107 119 11.1% 
1 million - 2.5 million 2,974 2,839 −4.8% 5,384 5,216 −3.2% 97 84 −13.2% 88 102 15.6% 
less than 1 million 2,272 2,183 −3.4% 4,220 4,057 −3.9% 114 93 −17.9% 98 102 4.0% 

Total (125 UAs) 2,598 2,508 −3.5% 5,240 5,078 −3.5% 108 91 -16.2% 97 104 7.3% 
* Notes: LODES data is used to estimate the indices for Centrality and Polycentricity, but they don’t cover the state of 

Massachusetts. Thus, the three UAs―Boston, MA-NH-RI, Springfield, MA-CT, and Worcester, MA-CT―are not 
accounted for both indices between Population Centrality and Polycentricity as of 2010. 

** There are 16 UAs (higher than 2.5 million UAs), 25 UAs (1 million-2.5 million), and 84 UAs (less than 1 million).  
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Figure 1.2. The change of urban spatial structure from 2000 to 2010 in the largest 25 UAs. 

 
 
 
 
 

 

Figure 1.3. The change of urban spatial structure from 2000 to 2010 in the largest 125 UAs. 
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Figure 1.4. The relations between population centrality and polycentricity, and the change from 
2000 to 2010 in the largest 125 UAs. 

 
 

 

Figure 1.5. Population-weighted density in the largest 125 UAs (2010). 
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Linear 2010: Polycentricity = −0.32 × Pop. Centricity + 133 (R² : 8.94%) 
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Figure 1.6. Population centrality index in the largest 125 UAs (2010). 

 
 

 

Figure 1.7. Polycentricity index in the largest 125 UAs (2010). 
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1.2. Three empirical studies 

Many scholars in planning and related fields have studied the role of sustainable urban 

form in moderating energy consumption and mitigating GHG emissions. The primary 

research question has been how land use planning in line with growth management and 

smart growth principles would reduce automobile dependency, thereby mitigating GHG 

emissions. In practice, such studies have made significant contributions by offering 

important guidance toward more sustainable development. However, several issues still 

remain regarding the role of sustainable urban form. 

First, the impacts of urban form on residential energy consumption have been 

relatively understudied while the connections between urban form and travel behavior are 

increasingly elucidated in recent years. Residential energy consumption is another 

significant source of GHG emissions and is also considerably influenced by urban form 

through many paths. The level of household energy consumption is apparently a function 

of housing type and size and available housing options are largely determined by how we 

develop urban areas. Urban footprint is also connected to urban heat island (UHI) effects 

that are believed to be affected by spatial development patterns. Thus, a comprehensive 

approach is required to account for both transportation and residential energy 

consumptions, since single-sector research cannot address the potential tradeoffs between 

transportation and residential sector emissions. In Chapter 2, I will investigate the various 

paths via which urban form influences household GHG emissions in residential and 

transportation sectors. 

Second, many of the existing studies primarily focus on the effects of 

neighborhood level characteristics. A growing body of literature provides important 
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guidance for more sustainable development such as the 5 Ds―Density, Diversity, 

Design, Destination, and Distance to transit. However, some recent studies indicate that 

regional level spatial structure may have more important implications on people’s travel 

behavior. Chapter 3 will examine how urban form elements at two spatial scales, 

urbanized area and neighborhood levels, interact to influence VMT and GHGs. It is 

assumed that smart growth policies at each level has a positive and reciprocal influence 

on promoting more sustainable travel behaviors. 

Finally, both scholars and policy makers undervalue the complementary nature 

of pricing policies and land use approaches to mitigate climate impacts in urban areas. 

Although many empirical studies have found that sustainable urban form can lead to 

lower vehicle miles traveled (VMT) and hence reduced GHG emissions, many 

economists are still skeptic about the magnitude of the urban form effects. They believe 

that getting-the-right-price policies such as increased fuel prices or road pricing can 

moderate the demand for private vehicle use in a more effective and efficient way by 

internalizing the environmental externalities of driving. The long standing disagreement 

between advocates of pricing policies and proponents of land use planning approach has 

often manifested itself in an unproductive way by underestimating the role of the other 

approach. In Chapter 4, I demonstrate that the two groups of policy approaches are not 

conflict or substitute for each other, but complementary to each other. Both policies 

should be fully employed to achieve climate-stabilizing GHG reduction targets. A key 

hypothesis of the chapter is that the fuel price elasticity of VMT is higher in compactly 

developed urbanized areas (UAs) than in sprawling regions, and increasing fuel prices 

will also reinforce the impacts of compact development on VMT reduction.  
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This dissertation research addresses the three closely related issues in the 

literature by three separate but closely connected empirical studies, each presented in 

following chapters. Figure 1.8 below depicts how the topics of following three chapters 

are inter-connected. 

 

 

 

Figure 1.8. Potential linkages of the three papers. 
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  CHAPTER 2
THE INFLUENCE OF URBAN FORM ON 
GREENHOUSE EMISSIONS IN THE 
HOUSEHOLD SECTOR3 
 
 
 
 
 
 
 
 
 
 
 
 
2.1. Introduction  

Experts widely agree that the global mean temperature (GMT) should be kept within a 

maximum of 2°C above preindustrial levels to prevent potentially catastrophic 

consequences for human society and natural ecosystems (Smith et al., 2009). In response 

to “the 2°C guardrail” endorsed by the Copenhagen Climate Summit (Richardson et al., 

2009; UNFCCC, 2009)  the U.S. federal government set a goal of reducing greenhouse 

gas (GHG) emissions by 17% below 2005 levels in 2020 and by 83% in 2050 (U.S. 

Department of State, 2010). Most of the current and proposed policy measures to meet 

the climate stabilizing GHG reduction target in the U.S. rely on technology and pricing 

solutions: stricter fuel economy standards, promoting low-carbon fuels, and cap and trade 

systems or carbon taxes (Chapman, 2007; Ewing et al., 2008a; Pacala & Socolow, 2004). 

3 This chapter has been adapted from “Lee, Sungwon, & Lee, Bumsoo (2014). The influence of urban form on 
GHG emissions in the U.S. household sector. Energy Policy, 68(0), 534-549. doi:10.1016/j.enpol.2014.01.024.” 
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Many studies, however, show that technology and market solutions alone, without 

moderating energy demand, cannot achieve these GHG reduction goals (Boies et al., 

2009; Grazi, van den Bergh & van Ommeren, 2008; Johansson, 2009; Kromer, 2010; 

Morrow et al., 2010). Moreover, technology may not develop at a sufficient rate to meet 

the challenge (Johansson, 2009), and the potential GHG savings from improved energy 

efficiency are likely to be (at least partially) offset by ‘rebounded’ energy consumption 

(Greening, Greene & Difiglio, 2000; Sorrell, Dimitropoulos & Sommerville, 2009). 

To fill this gap, additional steps are needed. Reducing individual energy 

consumption through shifts in behavior represents one opportunity to mitigate GHG 

emissions. This option is compelling given that households, as an end-user sector, 

account for 42% of total U.S. carbon dioxide emissions from fossil fuel combustion, 

combining emissions from residential buildings (22%) and passenger travel (20%) (U.S. 

Environmental Protection Agency, 2012). While various factors such as energy price, 

income, and weather affect household energy consumption, a growing body of literature 

has linked compact urban development to more carbon-efficient lifestyles, including less 

driving and more energy efficient housing choices (Ewing et al., 2008a; Ewing et al., 

2008b). Nevertheless, researchers disagree about the magnitude of urban form effects. 

Some argue that more sustainable urban form and transportation network can more 

effectively reduce carbon emissions than replacing all gasoline with corn ethanol 

(Marshall, 2008). Others question whether urban form matters at all (Echenique et al., 

2012). Therefore, more empirical research is necessary to systematically assess the 

potential of smart growth policies to mitigate household sector carbon emissions. 

22 



 

This study investigates the paths by which urban form influences household 

sector carbon dioxide emissions in the 125 largest urbanized areas (UAs) in the U.S. I 

estimate individual household carbon emissions from travel and home energy use by 

processing household surveys, including the census and quantify spatial structure of 

urbanized areas in several dimensions beyond a simple population density measure. 

Using this data, combined with a multilevel structural equation model (SEM), I 

demonstrate that shifting toward more compact urban form can significantly reduce 

energy consumption and CO2 emissions in the household sector. My analysis shows that 

increasing population-weighted density by 10% leads to a reduction in CO2 emissions by 

4.8% and 3.5% from household travel and residential building energy use, respectively. 

The effects of other spatial variables are estimated to be small. 
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2.2. Urban form and GHG emissions 

Connections between urban form and GHG emissions have been studied in the fields of 

transportation and building energy research. In the transportation sector, research has 

typically focused on the influence of the built environment on travel demand, often 

measured in vehicle miles traveled (VMT). In the absence of adequate emissions data at 

individual and even urban area levels, emissions are often assumed to be a function of 

VMT, given the current or a target fuel efficiency and fuel carbon content (Mui et al., 

2007). Despite earlier skepticism (Boarnet & Crane, 2001; Boarnet & Sarmiento, 1998), 

many recent empirical studies have found that urban form variables significantly 

influence travel behavior, including mode choice, trip frequency, trip distance, and, 

ultimately, VMT. These variables include density, land use diversity, street design (3Ds; 

Cervero & Kockelman, 1997), destination accessibility, and distance to transit (Added 

2Ds; Cervero et al., 2009). A growing body of literature shows that residents in more 

compact and transit-friendly neighborhoods drive considerably less than those living in 

sprawling neighborhoods. Moreover, the travel impacts of neighborhood characteristics 

are found to be significant, even after controlling for the effects of residential self-sorting 

by preferences and environmental attitudes (Cao, Mokhtarian & Handy, 2009; 

Mokhtarian & Cao, 2008). 

However, research on urban form and travel connections mostly focuses on 

neighborhood level effects, despite the continually reported significance of urban area 

level spatial structure. Several studies show that variables such as job accessibility (the 

4th D) and distance to downtown have larger impacts on VMT reduction (with a typical 

elasticity of −0.2) than neighborhood level attributes, whose elasticities typically range 
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between −0.04 and −0.12 (Cervero & Duncan, 2006; Ewing & Cervero, 2010; 

Kockelman, 1997; Næss, 2005; Sun, Wilmot & Kasturi, 1998). These results suggest that 

the location and distribution of developments within a metropolitan region may be more 

important determinants of travel behavior than neighborhood level density and land use 

mix at given locations. Nonetheless, few studies have examined the impacts of urbanized 

or metropolitan area level spatial form (Bento et al., 2005; Cervero & Murakami, 2010; 

Ewing, Pendall & Chen, 2003), primarily due to the lack of appropriate measures of 

urban area level spatial structure. 

Some research has extended urban form and travel connections to study the 

impacts on energy consumption and GHG emissions. A study of California households 

finds that 40% higher residential density is associated with a 5.5% fuel use reduction, 

with 3.8% coming from less driving and 1.7% derived from vehicle choice (Brownstone 

& Golob, 2009). Other studies show that households in denser urban areas are less likely 

to own and drive low fuel-efficiency vehicles such as SUVs and pickup trucks (Bhat, Sen 

& Eluru, 2009; Bhat & Sen, 2006; Fang, 2008; Liu & Shen, 2011). These findings 

suggest that vehicle choice in terms of fuel-efficiency, as well as VMT, should also be 

taken into account when measuring the effects of urban form on GHG emissions from 

household travel. 

Urban form also affects energy consumption, and hence GHG emissions in 

residential buildings, through two paths: housing choices—sizes and types—and, 

potentially, urban heat island (UHI) effects. Households in multifamily housing units, 

characterized by shared walls and typically smaller floor space, consume less energy for 

space heating, cooling, and all other purposes than do households in detached single-
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family homes, when controlling for the age of housing structures as a proxy of 

construction technology (Brown, Southworth & Stovall, 2005; Holden & Norland, 2005; 

Myors et al., 2005; Perkins et al., 2009). An analysis of the U.S. Residential Energy 

Consumption Survey (RECS) data shows that single-family home residents consume 

54% more energy for home heating and 26% more energy for home cooling than do 

comparable multifamily housing units (Ewing & Rong, 2008). The same study also 

shows that doubling home size is associated with the use of 16% more energy for heating 

and 13% more energy for cooling. However, research in this area is still too thin to derive 

a generalizable elasticity between residential energy use and development density. 

UHI effects, another potential path between urban form and residential energy 

use, are known to raise surface temperatures by 0.5 to 5°C in urban areas, compared with 

surrounding rural regions (Navigant Consulting, 2009; Rosenfeld et al., 1995; Stone, 

2007). Thus, UHI effects significantly affect the energy demand for home cooling and 

heating by changing the number of cooling degree days (CDDs) and heating degree days 

(HDDs) in large urban areas. While many studies indeed show the negative consequence 

of UHI effects in sun-belt cities such as Phoenix, AZ (Baker et al., 2002; Guhathakurta & 

Gober, 2007), potential heating energy savings in the winter, especially in frost-belt 

cities, remain understudied. A national scale study is needed to adequately assess this 

potential trade-off. The potential relationship between the intensity of UHI effects and 

urban development patterns also require further research. 

Although UHI intensity is found to increase with urban population size (Arnfield, 

2003; Oke, 1973), little is known about the effects of urban form—including population 

density and polycentric structure—on heat island formation. Because increased heat 
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storage capacity and limited evapotranspiration of constructed urban fabrics are the main 

causes of UHI (Oke et al., 1991), urban form would affect UHI intensity to the extent that 

it alters the thermal properties of urban surfaces. A study of the Atlanta (GA) region 

shows that lower density residential areas with large lots generate more radiant heat 

energy than do higher density developments (Stone & Rodgers, 2001). On the contrary, a 

county level cross-sectional study shows that the UHI effect is more intense in compact 

counties, with increased CDDs and decreased HDDs (Ewing & Rong, 2008). Further 

empirical studies are therefore necessary. 

Researchers have recently begun to take a more comprehensive and systematic 

approach to inventorying metropolitan carbon footprints. They associate the variation in 

newly estimated metropolitan level carbon emissions with population densities and public 

transportation systems, as well as with other variables such as weather and electricity 

prices (Brown, Southworth & Sarzynski, 2009; Glaeser & Kahn, 2010; Zhou & Gurney, 

2011). These studies of metropolitan level carbon footprints should be extended to 

examine the impact of other dimensions of spatial structure beyond simple density, 

including polycentricity and centrality. Household level analysis is also much more 

effective than aggregate scale examinations in isolating pure urban form effects from the 

effects of other socioeconomic and demographic variables. 
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Figure 2.1. Conceptual framework and key relationships among main variables. 

 
In sum, previous studies have explored the mechanisms by which urban form 

influences household sector GHG emissions and have provided meaningful data on 

certain aspects of this connection (e.g., the elasticities of VMT with respect to 

neighborhood level urban form indices). However, existing research is largely single-

sector driven and focuses mostly on urban form effects at the neighborhood scale. Single-

sector research cannot address the potential tradeoffs between transportation and 

residential emissions. For example, polycentric development may potentially mitigate 

UHI effects by preserving more natural surfaces between urban centers within a 

metropolitan region, as demonstrated by the Green Heart (Groene Hart), in Randstad, 

Holland. However, such development is likely to increase VMT, as a monocentric region 
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can be better served by public transportation. Thus, this study examines the effects of 

urbanized area level urban form on individual household level carbon dioxide emissions, 

accounting for both transportation and residential energy uses. 

The conceptual framework of the research, shown in Figure 2.1, summarizes the 

key relationships between my main variables. The chain of causal relationships begins 

with exogenous variables grouped at two levels: household and urbanized area. Spatial 

structure variables at the urbanized area level, as well as other transportation 

infrastructure variables, affect transportation CO2 emissions via choice of public transit 

use, VMT, and the choice of vehicle type (in terms of fuel efficiency), after controlling 

for household level demographic and socioeconomic factors. Two travel behavior 

variables that are endogenous to the model, public transit use and VMT, are negatively 

correlated. Urban development patterns also influence an individual household’s energy 

use, and hence CO2 emissions at home, by affecting available options for housing type 

and size. The UHI effect is also a potential link between urban form and residential 

energy consumption that should be further explored. 
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2.3. Research methods 

2.3.1. Model specification 

My basic approach is a multilevel structural equation model (SEM), which 

simultaneously tests multiple causal relations between urban spatial structure and 

household CO2 emissions. SEM is an increasingly popular statistical method in various 

disciplines, including travel behavior research. As a confirmatory analysis method, SEM 

can be used to examine a system of causal relationships covering both direct and indirect 

effects when, as is the case with this study, a suggested analytical framework has many 

endogenous variables (Golob, 2003). However, my data set has a hierarchical structure, 

with individual households being nested within an urbanized area (UA). Thus, a 

conventional SEM may lead to false inferences because the data violate the assumption 

of independent and identical distribution (iid). While many studies have opted to do an 

aggregate level analysis to avoid false inferences, the aggregate approach leads to 

substantial loss of statistical power and information, and, further, can be subject to an 

ecological fallacy (Bryk & Raudenbush, 1992). 

Multilevel SEM, introduced by Muthén (1994), combines the strengths of the 

multilevel linear model (MLM) with SEM. As demonstrated by Preacher et al. (2011; 

2010), Multilevel SEM has many advantages over MLM, including reduced bias and 

increased statistical power when analyzing clustered data. The parameters of my 

Multilevel SEM are estimated by the Weighted Least Squares Estimation with Missing 

Variable (WLSMV) method, which was developed for the unbiased and efficient 

estimation of multilevel models with non-normal variables, such as discrete endogenous 

variables (Hox, 2010; Preacher, Zhang & Zyphur, 2011). Housing type is a categorical 
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endogenous variable in the current research, and its presence merits the WLSMV over 

maximum likelihood estimation (MLE). I will use the WLSMV procedure available in 

Mplus® 5.21. 

The effects of urban form on CO2 emissions from household travel and 

residential energy use are estimated in separate models because of data limitations. To 

my knowledge, no single data source contains information on travel behavior, residential 

energy consumption, and sub-state level location variables. I use the 2000 Census Public 

Use Microdata Sample (PUMS) for residential carbon emission models and the 2001 

National Household Travel Survey for analyzing CO2 emissions from travel. The unit of 

analysis in both models is individual households nested within the 125 largest urbanized 

areas in the United States. 

The path diagram in Figure 2.2 summarizes the structure of the transportation 

CO2 emissions model, showing the chain of relationships among key variables with 

expected signs. The model includes two endogenous variables: VMT and the amount of 

travel related CO2 emissions. Key predictors of interest—urbanized area level spatial 

structure variables, including population density, population centrality, and 

polycentricity—influence household CO2 emissions via direct and indirect paths. The 

indirect effect includes all impacts through changes in VMT. For example, households in 

more compact UAs with a higher density and more centralized population are expected to 

drive less because of more frequent use of alternative modes of transportation and 

proximity to trip destinations. Hence, such households tend to emit less CO2 than 

comparable households in more automobile-oriented UAs with a lower density. In 

addition, studies have shown that residents in high density cities tend to drive more fuel-
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efficient vehicles. Further, carbon emissions per passenger mile by public transit should 

also be lower in compactly developed urban areas, because of higher average passenger 

loads in general. The impacts of lower CO2 emissions per vehicle mile and passenger 

mile will thus be captured by the direct path from population density to transportation 

CO2 emissions. 

 

 
Figure 2.2. Path diagram for transportation CO2 emissions with expected signs. 

 
Centrality is assumed to decrease VMT by promoting transit use, while 

population size is assumed to be positively associated with VMT. However, I assume that 

polycentricity has mixed effects on VMT: it reduces commuting distances, given the 

decentralized population in U.S. urbanized areas, but it discourages public transit use. 

The direction of the net effect on VMT is an empirical question. My model also considers 

the potential associations between population size and urban form variables. 
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Different levels of transportation supply among UAs should also be controlled to 

estimate the unbiased effects of urban-form variables on travel behavior and carbon 

emissions. Per capita highway lane miles and public transportation subsidy are included. I 

use the level of per capita subsidy to transit services as a proxy for public transportation 

policies. This is because the actual level of public transit services such as vehicle 

operation miles is likely to be endogenous to travel demand. In addition to the statistical 

controls at the urbanized area level, the transportation CO2 model includes 23 household 

level covariates, such as household size, income, age, race and education of household 

head, life cycle stage, and number of workers. Many of these covariates are used as 

dummy variables in considering the nonlinearity of the expected relationships. In general, 

socioeconomic status (SES) is assumed to be positively associated with VMT and carbon 

dioxide emissions. 

Figure 2.3 presents the more complex structure of the residential carbon 

emissions model. Urban spatial structure variables are assumed to influence individual 

household energy consumption at home, and hence carbon dioxide emissions, by 

affecting housing choices and UA level urban heat island (UHI) effects. Households in 

compactly developed UAs are more likely to live in energy efficient small and attached 

units. Thus, two housing choice variables, housing type and number of rooms, are used as 

intermediate variables between population density and residential energy consumption. 

The links between urban form and UHI effects are less established in the literature, as 

seen above. While density, given population size, is assumed to intensify UHI effects, 

following the results by Ewing and Rong (2008), I hypothesize that polycentric structure 
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will lessen the formation of UHIs by allowing more natural surface within an urbanized 

area. 

 
 
Figure 2.3. Path diagram for residential CO2 emissions with expected signs. 

 
I estimate the impacts of urban form variables on UHI effects by treating 

observed (actual) annual cooling degree days (CDD) and heating degree days (HDD), 

which have direct effects on energy use for home heating and cooling, as endogenous to 

the model. These actual degree days are modeled as a function of corresponding 

interpolated degree days and UA level exogenous variables, including population size, 

urban form, and coastal location indicator that are assumed to affect UHI intensity. Since 

interpolated degree days are expected to be unaffected by urbanization, the effects of UA 

variables on observed degree days and energy consumption, after controlling for 

interpolated degree days, can be interpreted as the impacts via UHI. I interpolate (or 

extrapolate for some coastal areas) observed temperature of surrounding rural stations 
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from U.S. Historical Climatology Network (USHCN) data into degree days in urbanized 

areas, using a kriging method. I apply an ordinary kriging, using a spherical model with a 

3.5° radius (about 300 miles), 1.2° ranges (about 100 miles), and 2° sill (about 150 

miles). Actual annual degree days are derived from daily temperature data of the Global 

Historical Climatology Network (GHCN) by the National Climatic Data Center (NCDC). 

The residential CO2 model includes housing age as a proxy for energy efficiency 

of the housing structure in addition to all household level exogenous variables used in the 

transportation CO2 model. 

 

2.3.2. Estimation of household level CO2 emissions 

Researchers have recently begun to take a more comprehensive and systematic approach 

to estimating metropolitan carbon footprints. The Vulcan project completed an inventory 

of the total fossil fuel CO2 emissions on a 10km ×10km grid that can be aggregated at the 

urban area or county scale (Gurney et al., 2009; Parshall et al., 2010). Although 

representing significant progress in regional level CO2 accounting, the resulting 

aggregate data sets have limited utility for studying individual household behavior. 

Further, the Vulcan project, a production-based study, traces where fossil fuels are 

burned instead of identifying the source of energy demand. In contrast, Glaeser & Kahn 

(2010) estimate carbon footprints for a standardized household in different regions by 

using household survey data. Carbon footprint estimations based on self-reported 

surveys, which are designed for purposes other than studying energy use, may not be as 

accurate as estimations based on observed data. Nonetheless, carbon footprint data 

estimated at the household level can be very useful in studying household energy 

consumption and GHG emission behaviors. 
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I take an approach similar to that of Glaeser & Kahn (2010) to estimate 

household level CO2 emissions from travel and residential energy consumption in the 125 

largest urbanized areas in the U.S. (areas with more than .2 million people). Carbon 

dioxide emissions from driving are estimated using annual VMT and fuel efficiency 

(mpg) variables from the 2001 National Household Transportation Survey (NHTS) data. I 

first estimate annual gasoline consumption for each vehicle as the product of VMT and 

gallons of fuel per mile and then aggregate to the household level. I then convert 

household level annual gasoline consumption to CO2 emissions by multiplying by an 

emission factor of 23.46 lbs/gallon (19.56 lbs/gallon plus 20% additional emissions for 

refining and distribution), as suggested by Glaeser & Kahn (2010). 

Although private vehicle use is the major source of household CO2 emissions, 

emissions from public transit should also be included for full transportation carbon 

accounting. As shown below, public transit can generate more carbon emissions per 

person mile than an average private vehicle when transit vehicle occupancy rate is low, 

which is the case in many U.S. urbanized areas (UAs). To estimate the carbon emissions 

from transit rides of individual households, I use annual frequency of public transit use 

from the 2001 NHTS and UA level characteristics of passenger trips by public transit 

derived from the 2001 National Transit Database. I estimate the average passenger trip 

length in each urbanized area by dividing total passenger miles by unlinked passenger 

trips. UA level emission factors per passenger mile are estimated by using transit agency 

level annual energy consumption by various sources (electricity, diesel, gasoline, LPG, 
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methanol, ethanol, CNG, bunker, biodiesel, and others) and modes (bus and rail), total 

passenger miles, and CO2 emission factors by energy source 4. 

 

• CO2 Private vehicle use = Annual VMT / Fuel efficiency (mpg) × Emission factor 

23.46 (lbs/gallon). 

• CO2 Public transit ride = Household annual transit rides × UA average passenger trip 

length * UA specific emission factor per passenger mile. 

 

I use Public Use Microdata Sample (PUMS) data from the 2000 census to 

estimate carbon dioxide emissions from residential energy use: heating, cooling, and 

general electricity. CO2 emissions from home heating are estimated by using such 

variables as annual natural gas cost and heating fuel type indicator. This choice is 

inevitable because the response rate for annual home heating fuel cost variable, an 

obviously better option, is too low to be used (5%). For households that use natural gas 

for home heating, I convert the annual natural gas cost to CO2 emissions by multiplying 

various factors, as shown below. For households that use different energy sources for 

home heating, such as electricity and LPG, I take two steps to estimate CO2 emissions. 

First, I predict annual energy consumption for home heating (kWh) of each individual 

household based on a multiple regression analysis for a sample of natural gas using 

households in the same urbanized area. The amount of energy for home heating is 

regressed on all available household and housing characteristics. Second, I convert 

predicted energy consumption (kWh) to CO2 emissions by multiplying various 

4 http://www.eia.gov/oiaf/1605/coefficients.html#tbl2.  
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conversion factors obtained from the U.S. Energy Information Administration (EIA) 5: 

LPG .467, kerosene .545, coal or coke .717, wood .035, solar 0, and emission factors for 

electricity varying by region. 

 

• CO2 Home heating, natural gas using household = Annual natural gas cost ($) / 

varying-by-state 6 natural gas price ($/ ft3) × energy efficiency 0.301 (kWh/ft3) × 

emission factor 0.399 (lbs/kWh). 

 

I estimate electricity consumption, including energy use for home cooling, based 

on the formula shown below. Electricity use for home heating is then subtracted to obtain 

the net electricity consumption for those households. It should be noted that the amount 

of carbon dioxide emissions from power generation varies substantially across regions, 

ranging from 775 to 2,283 lbs/mWh, as of 2000. 

 

• CO2 Electricity = Annual electricity cost ($) / varying-by-state 7 electricity price 

($/mWh) × varying-by-region 8 emission factor (lbs/mWh). 

 

In the last step, I add UA location information to household level data sets using 

GIS. For transportation emissions data, I use zip code of each sample household’s 

residence which is available in a DOT version of the NHTS data. Since Public Use 

Microsample Areas (PUMAs) in the PUMS data are considerably large, I undergo an 

5 http://www.eia.gov/oiaf/1605/coefficients.html. 
6 http://www.eia.gov/dnav/ng /ng_pri_sum_a_EPG0_PRS_DMcf_a.html. 
7 http://205.254.135.24 /FTPROOT/electricity/054000.pdf. 
8 http://www.epa.gov/cleanenergy/energy-resources/egrid/archive.html. 
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individual matching procedure through carful visual inspection of overlaid GIS maps 

rather than simply assigning PUMAs’ centroids to corresponding UAs. 

 

2.3.3. Urban form indices 

I measure UA level spatial form in three distinctive dimensions that are expected to have 

influences on household sector GHG emissions: population density, centrality, and 

polycentricity. Population density is one of the most important indicators of urban 

footprint and, hence, carbon footprint. I use population-weighted density instead of a 

conventional population density measure. While the latter would simply divide urbanized 

area population by total land area, the population-weighted density of a UA is estimated 

as the weighted mean of census block group level densities, with each block group’s 

population being used as the weight. I use this alternative measure because it better 

captures the population density that typical residents of an urban area experience in their 

daily lives than do conventional density measures (Transportation Research Board, 

2009). 

Centrality measures the extent to which a UA population is concentrated near the 

central location as opposed to being suburbanized toward fringe areas (Anas, Arnott & 

Small, 1998; Galster et al., 2001). Various indicators have been developed to measure the 

extent of population (de)centralization (See Lee, 2014 for a survey of indices). Given the 

pros and cons of different measures, I derive a centrality index from the multiple 

measures listed below, using a standard principal component analysis: 
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• Central business district’s (CBD) population share (Lee, 2007): The share of urbanized 

area population in the CBD. 

• Area-based centrality index (Lee, 2007; Massey & Denton, 1988): 

. ACI measures how fast population cumulates with 

distance from the CBD compared to land area accumulation. It ranges between -1 and 

1, with a larger value indicating a higher degree of centrality. 

• Ratio of weighted to unweighted average distance (Cutsinger et al., 2005): WUAD =

. The ratio typically ranges from 0 to 1, indicating the 

concentration of whole population in the CBD and a perfectly even distribution of 

population throughout the UA, respectively. An index value larger than 1 indicates an 

exceptional degree of suburbanization beyond even distribution. 

• Population density gradient: Density gradient measures the rate of decrease in 

population density with distance from the CBD. It can be estimated as a parameter β 

from a monocentric urban density gradient model, ln di = α + βDCBDi. 

 

Polycentricity denotes the degree to which the functions of urban centers, which 

act as a hub of economic, commercial, and recreational activities, are shared between the 

traditional CBD and subcenters. The number of clustered jobs in urban centers is often 

used as a proxy of concentrated urban activities. Newer metropolitan areas in the West, 

such as Los Angeles and San Francisco, are generally more polycentric than their older 

counterparts in the East, such as Boston and New York (Lee, 2007). As discussed above, 

a polycentric structure may reduce the average commute distance, but is less supportive 
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of public transit than are monocentric urban areas. The polycentricity index is also 

derived from several different measures: 

 

• Subcenters’ share of center employment (Lee, 2007): SUB = eSub  / (eCBD + eSub). 

• The number of extra subcenters (Veneri, 2010): The difference between the number of 

identified employment subcenters and the number of subcenters predicted as a function 

of UA population by a Poisson regression analysis. 

• Slope of rank-size distribution (Meijers & Burger, 2010; Nordregio, 2005): Estimated 

parameter 𝛽𝛽 of the rank-size distribution of employment centers in each UA, ln ek = α 

+ β ln(rankk – 0.5). I use “rank – ½” rather than actual rank in the regression to reduce a 

bias due to small samples (Gabaix & Ibragimov, 2011). 

• Primacy (Meijers, 2008; Nordregio, 2005): The degree by which the largest center in 

the UA deviates from the rank-size distribution of employment centers. To estimate the 

primacy index, I omit the largest employment center (the CBD in most cases) from the 

rank-size regression run and then compare predicted and actual employment sizes of it. 

• Commuter shed ratio: This measure compares the commuter shed of all subcenters 

combined with that of the CBD. The commuter shed of a center is defined as census 

tracts from which more than 10% of workers commute to the center. I develop two 

indices by measuring the size of commuter shed in terms of employment and land area. 

 

Pi: cumulative proportion of employment in census tract i when all tracts are sorted by the distance from 

the CBD; Ai: cumulative proportion of land area in tract i; pi: population in tract i, CBDi: the distance of 

tract i from the CBD; 𝐸𝐸: total UA employment; 𝑁𝑁: number of census tracts; 𝑑𝑑𝑖𝑖: population density in tract 
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i; 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶: number of jobs in the CBD; eSUB: number of jobs in subcenters; ek: number of jobs in employment 

center k; rankk: the rank of urban employment center k in employment size within a UA. 

 

Building some of the spatial indices, especially the ones involving employment 

shares in urban centers, requires identifying employment centers in urbanized areas. I rely 

on employment density approaches to identifying urban centers, derived mainly from the 

field of urban economics (Giuliano & Small, 1991; McMillen, 2001). Urban centers 

should have significantly higher employment density than surrounding areas and 

considerable size of employment to function as loci of urban activities. In the first step, I 

identify two sets of employment density peaks in each UA by applying two alternative 

methods, absolute and relative density criteria. I then define those clusters of candidate 

tracts as employment centers that have cluster employment of more than a minimum 

employment threshold, ranging from 3,000 to 10,000 jobs depending on total 

metropolitan employment. See Lee (2007) for a detailed description for the procedure. 
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2.4. Results 

2.4.1. Household CO2 emissions in U.S. urbanized areas 

The average annual CO2 emission of U.S. households in the largest 125 urban areas is 

estimated at 49,733 lbs, as shown in Table 2.1, combining emissions from driving, public 

transit use, home heating, and electricity use. While my estimates are derived from 

household survey data, they are comparable with the results from production-based 

carbon accounting. The U.S. Energy Information Administration’s (EIA) Monthly 

Energy Review reports that, in 2000, the average CO2 emission per household from total 

energy use in the residential sector was 24,765 lbs, while in 2001 CO2 emissions from 

passenger travel were about 23,271 lbs, assuming that passenger travel accounts for about 

61% of total emissions in the transportation sector. The small difference can be attributed 

to several factors. First, because I use a natural gas consumption variable, my home 

heating energy figure may include energy use for water heating and cooking. Second, the 

method I use to estimate the frequency of transit use from the NHTS data underestimates 

transit ridership and hence CO2 emissions from public transportation use. Finally, my 

estimation is based on the 125 UA sample, not all households in the United States. 

The use of 2000/2001 data was inevitable because the data to build my key urban 

form variables, the Census Transportation Planning Package, were not available for more 

recent periods. The EIA data show that CO2 emissions per household in residential and 

transportation sectors decreased by about 8% and 9%, respectively, in the 2000s. I 

surmise that the reduction is due to many reasons including the economic recession and 

unprecedented oil price increase in the late 2000s. The de-carbonization of electric power 

generation was also significant during the period, reducing CO2 emission rate per MWh 
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by about 13% according to the EPA’s Emissions and Generation Resource Integrated 

Database (eGRID). Nonetheless, I do not believe this overall reduction in carbon 

emissions per household would systematically alter my main analysis results in the next 

section. I only expect that higher real energy price would have reinforced the impact of 

compact urban form on carbon efficient lifestyles. 

Private vehicle driving is a predominant source (97.5%) of carbon emissions 

from household travel simply because it is the dominant travel mode (88.2%). Switching 

from driving to riding public transit has a good potential for reducing carbon emissions. 

My data show that average public transit produces about 53% less CO2 per passenger 

mile than a single-occupancy private vehicle and 26% less than an average-occupancy 

vehicle. However, public transit is not cleaner than private vehicles in all cities. In 91 out 

of the 125 urbanized areas in my sample, public transit emits more CO2 per passenger 

mile—the result of low occupancy rates of transit modes in small and medium sized 

cities. 9 This does not mean that I should discourage public transportation in small and 

medium sized cities. Rather, it implies an even larger potential in GHG reduction of 

switching from driving to transit riding when threshold passenger loads are ensured by 

supporting land use and transportation policies. 

Regarding residential energy consumption, it should be noted that more CO2 is 

produced from electricity consumption (including electricity for home cooling) than from 

home heating, even as home heating accounts for double the energy use. In other words, 

on average, the current portfolio of power generation relies on much dirtier energy 

sources than does individual residential home heating. It is also notable that there is wide 

9 An analysis of the National Transit Database shows that a typical 40-passenger diesel bus is more carbon 
efficient than the average single-occupancy vehicle when it carries a minimum of 7 passengers on board 
(Hodges, 2010). 
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variation in the resources mix, and the relative carbon intensity of power generation, 

across the eGRID subregions. The amount of CO2 emissions per MWh of electricity 

ranges from 775 lbs in the SERC Tennessee Valley to 2,283 lbs in the Southwest Power 

Pool (SPP) North. This result does not automatically translate into the policies to 

discourage electricity use for home (water) heating since new electricity-based 

technologies, especially utilizing thermal heat pump, can be more carbon efficient than 

natural gas or oil heating systems (Mustafa Omer, 2008). However, the spatial variation 

in carbon intensities of electric power generation should certainly be considered when 

prioritizing energy policies. The result also suggests that switching to an alternative 

resource mix from coal in power generation should be a priority in warmer regions where 

the demand for home cooling is high. 

 

Table 2.1. Average annual CO2 emission per household in the largest 125 U.S. urbanized areas, 
2000. 

 Transportation CO2 Residential CO2 Total 
Private Vehicle Public Transit Heating Electricity  

CO2 emissions per household (lbs) 21,155 538 11,160 14,615 47,468 
  (44.6%) (1.1%) (23.5%) (30.8%)  (100%) 
Household travel 
   Annual miles traveled per householda 

 
19,706 

 
211    

   CO2 Emissions per VMT (lbs)b 1.07     
   CO2 Emissions per PMT (lbs)b 0.69 0.51    
Residential energy use 
   Energy Consumption (kWh)   

 
24,528 

 
11,934 

 
36,462 

  (67.3%) (32.7%)  (100%) 
   CO2 Emissions per kWh (lbs)   0.45 1.22  
a Vehicle miles traveled (VMT) for private vehicle use and person miles traveled (PMT) for public transit use. 
b The average occupancy rate of 1.56 per private vehicle and fuel efficiency of 20.96 mpg from the 2001 NHTS are 

applied to convert VMT to CO2 emissions. 
c Transportation CO2 is estimated for 2001 while residential CO2 is estimated using the 2000 census data. 
 

The geographic pattern of urbanized area carbon footprints shown in Figure 2.4 

is consistent with previous studies (Brown, Southworth & Sarzynski, 2008; Glaeser & 

Kahn, 2010). The average household carbon dioxide emissions are considerably lower in 
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UAs of the West Coast and Florida, with good climatic conditions, and Northeastern 

cities that are transit dependent. Many UAs in the Midwest and Southeast that are 

automobile-oriented and/or carbon intense in power generation have the largest carbon 

footprints per household. 

Figure 2.5 presents the negative relationship between average annual household 

CO2 emissions and population-weighted density, the most basic urban form indicator. 

The estimated elasticity of CO2 emissions with regard to density is about 17.34% at the 

aggregate level when no other covariates are included. However, population density 

explains only 18% of the variation in average carbon dioxide emissions at the aggregate 

level. In the following section, I will investigate the true relationship between urban form 

and CO2 emissions after controlling for demographic and socioeconomic conditions at 

the individual household level, along with other UA level characteristics such as climatic 

conditions and transportation infrastructure. 
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Figure 2.4. The geography of carbon footprints in U.S. urbanized areas, 2000. 
 

 

 
Figure 2.5. The relationship between population-weighted density and annual household CO2 

emissions. 
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2.4.2. Influence of urban form on household CO2 emissions 

As explained above, I model carbon dioxide emissions from travel and residential energy 

consumption separately, using a multilevel structural equation model (MSEM). For each 

sector, I estimate two alternative models, one with a conventional population density and 

the other with a population-weighted density. Table 2.2 summarizes several indices of 

overall goodness-of-fit that are recommended in the literature (Chou & Bentler, 1995; 

Fan, Thompson & Wang, 1999; Kaplan, 1995). The second column of the table shows a 

rule of thumb threshold value that represents a reasonable fit for each index. Most 

estimated statistics indicate that both transportation and residential models have a good or 

reasonable fit. Only the standard root mean square residual (SRMR) cut-off is not 

satisfied in some of the estimated models. The interclass correlation (ρ), the proportion of 

total variance explained by hierarchical grouping, ranges between 0.07 and 0.12, which 

indicates that multilevel modeling is appropriate. 

The next section will discuss estimated parameters for selected urbanized area 

level variables. Full estimation results, including the parameters for household level 

variables, are shown in Tables A.1 and A.2 in the Appendix A. Overall, when compared 

with previous studies, the results show relatively larger effects of population density on 

household CO2 emissions but less significant and marginal effects of other spatial 

variables such as centrality and polycentrality. I also found that the amount of carbon 

emissions is more sensitive to urban form variables in transportation than in the 

residential sector. 
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Table 2.2. Goodness-of-fit measures for estimated models. 

  General Criteria 
Transportation CO2 Residential CO2 

Model 2.1 Model 2.2 Model 2.3 Model 2.4 

CFI higher than 0.90 0.939 0.947 0.980 0.981 
TLI higher than 0.90 0.908 0.922 0.949 0.949 

RMSEA lower than 0.06 0.050 0.045 0.036 0.037 

SRMR (Within) lower than 0.08 0.009 0.009 0.229 0.229 

SRMR (Between) lower than 0.08 0.021 0.120 0.124 0.113 

Interclass correlation (ρ) - 0.092 0.078 0.113 0.116 

a Models 2.1 and 2.3 use a conventional population density measure, and models 2.2 and 2.4 use population-weighted 
density. 

b CFI: Comparative fit index; TLI: Tucker-Lewis index; RMSEA: Root mean square error of approximation; SRMR: 
Standard root mean square residual. 

c Interclass correlation (ρ): the ratio of between-group variance to the total variance: . 

 

2.4.2.1. Results for transportation CO2 emissions 

Table 2.3 and Figure 2.6 summarize the results of transportation CO2 models. Since 

Model 2.2, with a population-weighted density, is my final model, the effects of density 

only are shown for Model 2.1 results in Table 2.3. Combining all direct and indirect 

elasticities, a 10% increase in population-weighted density is associated with a 4.8% 

reduction in CO2 emissions from travel, all else being equal 10. Most of the density effect 

occurs via the VMT path, as shown by the indirect composite elasticity, −0.398 (−0.986 × 

0.404). High density developments reduce household VMT by promoting alternative 

transportation modes and bringing trip origins and destinations closer together. In 

addition, people tend to own more fuel efficient vehicles, and public transit is more 

carbon efficient per passenger mile, due to higher passenger loads in higher density 

10 The New York urbanized area can be suspected as an outlier due to its extremely high population-
weighted density and mode share of public transportation. Thus, I tested the robustness of my result by 
running the same analysis with a sample excluding New York. All estimated coefficients were consistent 
with the full sample analysis result while the overall elasticity with respect to population-weighted density 
is slightly smaller (−0.431).   
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communities. These additional effects are captured by the direct impact of density in my 

model: −0.08. 

 
Table 2.3. Direct, indirect, and total effects of key urbanized area characteristics on 

transportation CO2 emissions. 

Paths from selected UA level variables to transportation CO2 
Coefficient Elasticity a 
1) 2)   1) × 2) 

Model 2.1:       
Total effects of conventional population density         −0.224  
     Density →1) VMT →2) Transportation CO2 −0.371 ***  0.441 *** −0.164  
     Density →2) Transportation CO2     −0.060 ** −0.060  
Model 2.2:       
Total effects of population-weighted density         −0.478  
     Density →1) VMT →2) Transportation CO2 −0.986 ***  0.404 *** −0.398  
     Density →2) Transportation CO2     −0.080 *** −0.080  
Total effects of population centrality          −0.092  
     Centrality →1) VMT →2) Transportation CO2 −0.228 ***  0.404 *** −0.092  
Total effects of polycentricity          0.069  
     Polycentricity →1) VMT →2) Transportation CO2  0.171 **  0.404 ***  0.069  
Total effects of transit subsidy         −0.184  
     Transit subsidy →1) VMT →2) Transportation CO2 −0.456 ***  0.404 *** −0.184  
* Significant at 10%. ** Significant at 5%. *** Significant at 1%. 
 
a Elasticity column shows direct, composite indirect, and total elasticities of transportation CO2 emissions with respect 
to exogenous urbanized area level variables. The results for the density variable only are shown for model 2.1 for 
comparison. 

b Full model result is reported in Table A.1 in the Appendix A. 
 

Estimated density effects are larger than most estimates in previous studies. 

While the average elasticity of VMT with respect to local density as one of many urban 

form indicators is as small as −0.04 on average (Ewing & Cervero, 2010), it is generally 

accepted that the density effect is as high as −0.3 when used as a proxy for all other 

compact urban form characteristics, such as land use mix and urban design (Ewing et al., 

2008b). This study reveals that VMT is nearly unit elastic with respect to urban area level 

population density when a better measure—population-weighted density—is used. 

This somewhat exceptionally large elasticity (−0.986) merits further discussion. 

First, urbanized or metropolitan area level development patterns represented by 

population density generally have larger impacts on people’s travel behavior than do 

neighborhood level density and design variables. A recent study of per capita VMT in 
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370 urbanized areas shows that direct and net elasticities with respect to UA density are 

as high as −0.60 and −0.38, respectively (Cervero & Murakami, 2010). Second, the new 

measure of population-weighted density more accurately reflects the characteristics of the 

built environment that an average person experiences and thus explains variation in travel 

behavior better than a conventional density measure. When a conventional urbanized area 

density is used in Model 2.1, the elasticity of VMT is much smaller (−0.371) and is 

almost identical to the density effect estimated by Cervero & Murakami (2010). Because 

of the small elasticity of VMT, the total effect of conventional density measure on 

transportation CO2 emissions (−0.224) is smaller than half that of population-weighted 

density. 

The impacts of the other two urban form variables are estimated to be moderate. 

Consistent with my expectation, centralized population distribution, given the same 

population and density, significantly reduces the amount of vehicle travel, by promoting 

public transportation and reducing trip distances. The elasticity is estimated at about 

−0.09. Thus, both overall population density in an urbanized area and the density near the 

central location are important in reducing carbon dioxide emissions from household 

travel. 

As discussed above, a polycentric structure is expected to have dual effects. On 

the one hand, it can potentially shorten commute distances, given more decentralized 

population than employment; on the other, it can make serving urban activities by public 

transportation more difficult. The net effect is estimated to be moderately positive in this 

study, suggesting that the effect of discouraging transit use dominates in medium and 

large U.S. urbanized areas. This finding implies that increasing employment density near 
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the CBD can also be beneficial in terms of CO2 emission reduction. However, it should 

be noted that polycentric structure is a spatial adjustment to cope with negative 

externalities of city size (Fujita & Ogawa, 1982; McMillen & Smith, 2003). Empirical 

studies have associated polycentric metropolitan structure with higher productivity 

(Meijers & Burger, 2010), and decentralized employment has often been connected with 

a shorter average commute time (Crane & Chatman, 2003; Gordon & Lee, 2014). Thus, 

developing public transportation networks that can efficiently serve polycentrized urban 

regions would be a better policy solution (Brown & Thompson, 2008) than discouraging 

transformation from a monocentric to polycentric urban area. 

 

 
 
 
* Significant at 10%. ** Significant at 5%. *** Significant at 1%. 
 
Notes: The results for various household level exogenous variables are suppressed for space reason. They are included 

in Appendix Table A.1.  
 
Figure 2.6. Key results for the transportation carbon dioxide emissions model. 
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This policy implication is further articulated by the significance of the transit 

subsidy variable. Doubling transit subsidy per capita is associated with nearly 46% lower 

VMT and an 18% reduction in CO2 emissions. These elasticities are somewhat larger 

than expected. I suspect that the transit subsidy variable behaves as a catchall variable for 

many factors affecting transit ridership given my parsimonious model specification. 

Thus, I suggest that the coefficient should be interpreted as an association rather than a 

causal relationship. However, the other transportation infrastructure variable, highway 

lane miles per capita, was insignificant in my results. After controlling for urban form 

and other urbanized area level characteristics, population size does not exert consistent 

effects on household level transportation CO2 emissions—it is significant only in Model 

2.1. 

The results for individual household level demographic and socioeconomic 

variables are all consistent with my expectations, as shown in Table A.1 in the Appendix 

A. Higher income, larger household size, more employed workers, and being white are 

associated with higher CO2 emissions from travel. 

 

2.4.2.2. Residential CO2 emissions 

High density development also contributes to energy saving and CO2 emission reduction 

in residential buildings. As shown in Table 2.4, a 10% increase in population-weighted 

density is associated with a 3.5% reduction in residential CO2 emissions (the reduction is 

3.1% when accounting for only statistically significant path coefficients). While this 

elasticity is slightly smaller than the impact on transportation CO2 emissions, it is still a 

considerable effect that deserves policy attention. The result of Model 2.1 with a 
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conventional density measure is similar, except that the estimated elasticity is slightly 

larger, as shown in the top panel of Table 2.4: −0.375 (−0.351) 11.  

 

Table 2.4. Direct, indirect, and total effects of key urbanized area characteristics on residential 
CO2 emissions. 

Paths from UA level variables to Residential CO2 Coefficient Elasticitya 
1) 2) 3) 1) × 2) × 3) 

Model 2.3: 
Total effects of conventional population density 

       
−0.375 

 
(−0.351) 

  Through electricity consumption (including home cooling)       −0.257 (−0.240) 
    Density →1) #Rooms →2) Electricity →3) Residential CO2 −0.098 ***  1.138 ***  0.865 *** −0.096  
    Density →1) Housing Typea →2) Electricity→3)Residential CO2 −0.402 ***  0.413 ***  0.865 *** −0.144  
    Density →1) CDD →2) Electricity →3) Residential CO2 −0.059   0.333 ***  0.865 *** −0.017  
  Through home heating       −0.092 (−0.111) 
    Density →1) #Rooms→2) Heating →3) Residential CO2 −0.098 *** −0.440   0.375 ***  0.016  
    Density →1) Housing Typea →2) Heating →3) Residential CO2 −0.402 ***  0.735 ***  0.375 *** −0.111  
    Density →1) HDD→2) Heating →3) Residential CO2  0.012   0.571 ***  0.375 ***  0.003  
  Density →3) ResidentialCO2     −0.026  −0.026  
Model 2.4:  
Total effects of population-weighted density 

             
−0.355 

 
(−0.306) 

  Through electricity consumption (including home cooling)             −0.240 (−0.213) 
    Density →1) #Rooms →2) Electricity →3) Residential CO2 −0.077 ***  1.192 ***  0.851 *** −0.078   
    Density →1) Housing Typeb →2) Electricity→3)Residential CO2 −0.362 ***  0.437 ***  0.851 *** −0.135   
    Density →1) CDD →2) Electricity →3) Residential CO2 −0.096    0.335 ***  0.851 *** −0.027   
  Through home heating             −0.078 (−0.093) 
    Density →1) #Rooms→2) Heating →3) Residential CO2 −0.077 *** −0.392    0.378 ***  0.011   
    Density →1) Housing Typeb →2) Heating →3) Residential CO2 −0.362 ***  0.678 ***  0.378 *** −0.093   
    Density →1) HDD→2) Heating →3) Residential CO2  0.016    0.568 ***  0.378 ***  0.003   
    Density →3) ResidentialCO2         −0.037   −0.037   
Total effects of polycentricity             −0.010 (−0.007) 
    Polycentricity →1) CDD →2) Electricity →3) Residential CO2 −0.025 *  0.335 ***  0.851 *** −0.007   
    Polycentricity →1) HDD →2) Heating →3) Residential CO2 −0.011    0.568 ***  0.378 *** −0.002   
    Polycentricity →3) Residential CO2         −0.001   −0.001   
Total effects of population size              0.016 (  0.016) 
    Population →1) CDD→2) Electricity →3) Residential CO2  0.083 ***  0.335 ***  0.851 ***  0.024   
    Population →1) HDD→2) Heating →3) Residential CO2 −0.034 ***  0.568 ***  0.378 *** −0.007   
* Significant at 10%. ** Significant at 5%. *** Significant at 1%. 
 

a Elasticity column shows direct, composite indirect, and total elasticities of transportation CO2 emissions with respect to 
exogenous urbanized area level variables. The results for the density variable only are shown for model 2.3 for 
comparison. 

b Although housing type, an important mediating variable, is an ordinal variable, a composite elasticity of CO2 emissions 
with respect to population density can still be obtained as the product of comprising path coefficients because a latent 
continuous variable instead of observed housing type indicators is used when predicting electricity and home heating 
energy consumption.  

c Values in italics indicate elasticities of which all comprising coefficients are statistically significant at least 10%. Values 
in parentheses are sums of only statistically significant direct and indirect effects. 

 

My results also show that CO2 emissions from electricity consumption are more 

sensitive to population density change (−0.240) than are emissions from home heating 

(−0.078). This gap in sensitivity can be attributed to several factors. First, a small 

11 The result of an analysis excluding New York was almost identical to that of the full sample analysis, 
with estimated total effects of population–weighted density being −0.355 (−0.344).  
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variation in electricity consumption can lead to a large change in CO2 emissions, because 

power generation is 2.7 times more carbon intensive than home heating energy on 

average. As shown in the housing type path coefficients, the elasticity of home heating 

energy use with respect to density (−0.245 = −0.362×0.678) is actually larger than that of 

electricity consumption (−0.158 = −0.362×0.437). However, this order is reversed 

because CO2 emissions are more sensitive to electricity than to home heating energy use. 

Second, there can be measurement errors. The number of rooms, the only available but 

not the best proxy for housing size, turns out not to have significant effects on home 

heating energy use. As a result, it may underestimate the impact of urban density on CO2 

emissions from home heating. 

The other path from density to CO2 emissions, the impact of density on the urban 

heat island (UHI) effect, are found to be statistically insignificant after controlling for 

urban population size. Consistent with the literature, UHI intensity increases with urban 

population, with doubling population leading to an 8% increase of CDDs and a 3% 

decrease of HDDs. The net effect on CO2 emissions is estimated to be about 1.6% of 

additional emissions. However, my model does not show any significant impact of urban 

density given population size on degree days and hence on energy consumption. As 

discussed above, Ewing and Rong (2008), who took a similar approach to estimating the 

UHI effect, found that a 1% lower sprawl index (i.e., compact development) is associated 

with an increase of CDDs by 0.48% and a decrease of HDDs by 0.21%. Further empirical 

and scientific research is necessary to draw any meaningful conclusion on the potential 

links between urban density and UHI intensity. 
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The impact of polycentric structure on UHI intensity is only partially identified. 

Urban polycentricity is found to have a significant effect of reducing cooling degree days 

and hence reducing electricity consumption and CO2 emissions, consistent with my 

expectations. But the size of the effect is too small (−0.007) to have any meaningful 

policy implications, especially given the negative consequence of polycentric urban 

structure on VMT and transportation CO2 emissions. 

 

 

 
 
* Significant at 10%. ** Significant at 5%. *** Significant at 1%. 
 
Notes: The results for various household level exogenous variables and location dummy are suppressed to conserve 

space. They are included in the Table A.2 in Appendix A. Housing type is an ordinal variable (0= multi-family, 
1= single attached, and 2= single detached). Coefficients of exogenous variables on housing type are estimated 
using an ordered probit link function. 

 
Figure 2.7. Key results for the residential carbon dioxide emissions model.  
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As shown in Table A.2 in the Appendix A, the residential CO2 emission model 

shows expected results for household level demographic and socioeconomic variables. 

CO2 emissions from home heating and electricity use increase with household size, 

income, and education in general, combining all direct and indirect impacts. While newer 

homes are more energy efficient in home heating, as expected, the age of housing does 

not significantly affect the amount of electricity consumption. 

However, CO2 emissions are different to generate the same energy at the 

production level, so their own effects should be controlled to find the marginal effects of 

urban structure on residential CO2 emissions with holding production level influences. 

The previous results in Table 2.4 and Figure 2.7 have mixed impacts between the CO2 

intensity by different power plants at the production level and the energy usage by each 

household at the consumption level. Thus, the path model is slightly modified with 

adding one another direct path from CO2 emissions per kilo watt hour when generating 

energy (production level) to the final consumption of CO2 in each household.  

The new output shows that the impacts of urban spatial structure on residential 

CO2 emissions are relatively smaller than previous results (Figure 2.8, Table 2.5, and 

Table B.3). However, the results are not dramatically different with previous results. 

According to previous studies, the residential CO2 elasticities w.r.t. population density 

and w.r.t. population-weighted density are −0.375 and −0.355, respectively. However, 

they are −0.372 and −0.300 according to new outputs, so the updated results are slightly 

smaller than those of previous outputs. The impact of polycentric urban structure (−0.009) 

is similar to previous results (−0.01), but the mediation effects of population size are 

slightly decreased from 0.016 to 0.01. 
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* Significant at 10%. ** Significant at 5%. *** Significant at 1%. 
 
Notes: The results for various household level exogenous variables and location dummy are suppressed to conserve 

space. They are included in Table A.3. Housing type is an ordinal variable (0= multi-family, 1= single attached, 
and 2= single detached). Coefficients of exogenous variables on housing type are estimated using an ordered 
probit link function. 

 
Figure 2.8. Key results for the residential carbon dioxide emissions model with adding one 

another direction from power plant to residential CO2. 

  

Energy Use for 
Home Heating 

# Rooms Housing Type Observed HDD 

Population-weighted 
Density 

Electricity Use 
(Including Cooling) 

Residential CO
2
 

Observed CDD 

Polycentricity Population Size 

Interpolated 
HDD 

Interpolated 
CDD 

0.382*** −0.283 1.603*** 0.826*** 0.536*** 

0.310*** 

0.918*** 1.051*** 0.069*** 
−0.076*** −0.302*** −0.029*** 

0.006 −0.010 
−0.028 −0.077* 

−0.001 
−0.043 

0.708*** 

0.306*** 

  0.164*** 

Power Plant 
1.514*** 
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Table 2.5. Direct, indirect, and total effects of key urbanized area characteristics on residential 
CO2 emissions (under controlling the production level CO2 impacts). 

Paths from UA level variables to Residential CO2 Coefficient Elasticitya 
1) 2) 3) 1) × 2) × 3) 

Model 2.3: 
Total effects of conventional population density 

       
−0.372 

 
(−0.368) 

  Through electricity consumption (including home cooling)       −0.207 (−0.194) 
    Density →1) #Rooms →2) Electricity →3) Residential CO2 −0.097 ***  1.552 ***  0.705 *** −0.106  
    Density →1) Housing Typea →2) Electricity→3)Residential CO2 −0.337 ***  0.368 ***  0.705 *** −0.087  
    Density →1) CDD →2) Electricity →3) Residential CO2 −0.062   0.309 ***  0.705 *** −0.014  
  Through home heating       −0.082 (−0.175) 
    Density →1) #Rooms→2) Heating →3) Residential CO2 −0.097 *** −0.372   0.314 ***  0.011  
    Density →1) Housing Typea →2) Heating →3) Residential CO2 −0.337 ***  0.867 ***  0.314 *** −0.092  
    Density →1) HDD→2) Heating →3) Residential CO2 −0.010   0.532 ***  0.314 *** −0.002  
  Density →3) ResidentialCO2     −0.083 * −0.083  
Model 2.4:  
Total effects of population-weighted density 

             
−0.300 

 
(−0.262) 

  Through electricity consumption (including home cooling)             −0.185 (−0.185) 
    Density →1) #Rooms →2) Electricity →3) Residential CO2 −0.076 ***  1.603 ***  0.708 *** −0.086   
    Density →1) Housing Typeb →2) Electricity→3)Residential CO2 −0.302 ***  0.382 ***  0.708 *** −0.082   
    Density →1) CDD →2) Electricity →3) Residential CO2 −0.077 *   0.306 ***  0.708 *** −0.017   
  Through home heating             −0.072 (−0.077) 
    Density →1) #Rooms→2) Heating →3) Residential CO2 −0.076 *** −0.283    0.310 ***  0.007   
    Density →1) Housing Typeb →2) Heating →3) Residential CO2 −0.302 ***  0.826 ***  0.310 *** −0.077   
    Density →1) HDD→2) Heating →3) Residential CO2 −0.010    0.536 ***  0.310 *** −0.002   
    Density →3) ResidentialCO2         −0.043   −0.043   
Total effects of polycentricity             −0.009 (−0.000) 
    Polycentricity →1) CDD →2) Electricity →3) Residential CO2 −0.028   0.306 ***  0.708 *** −0.006   
    Polycentricity →1) HDD →2) Heating →3) Residential CO2 −0.011    0.536 ***  0.310 *** −0.002   
    Polycentricity →3) Residential CO2         −0.001   −0.001   
Total effects of population size              0.010 (  0.010) 
    Population →1) CDD→2) Electricity →3) Residential CO2  0.069 ***  0.306 ***  0.708 ***  0.015   
    Population →1) HDD→2) Heating →3) Residential CO2 −0.029 ***  0.536 ***  0.310 *** −0.005   
* Significant at 10%. ** Significant at 5%. *** Significant at 1%. 
 

a Elasticity column shows direct, composite indirect, and total elasticities of transportation CO2 emissions with respect to 
exogenous urbanized area level variables. The results for the density variable only are shown for model 2.3 for 
comparison. 

b Although housing type, an important mediating variable, is an ordinal variable, a composite elasticity of CO2 emissions 
with respect to population density can still be obtained as the product of comprising path coefficients because a latent 
continuous variable instead of observed housing type indicators is used when predicting electricity and home heating 
energy consumption.  

c Values in italics indicate elasticities of which all comprising coefficients are statistically significant at least 10%. 
Values in parentheses are sums of only statistically significant direct and indirect effects. 
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2.5. Conclusions 

To enhance my understanding of the role of sustainable urban development in GHG 

mitigation, this study investigated the paths via which urban form influences household 

carbon dioxide emissions in the 125 largest urbanized areas in the United States. Toward 

that end, I estimated individual household level CO2 emissions from travel and residential 

energy consumption based on the 2001 National Household Travel Survey and the 2000 

Census PUMS data. Estimates show that an average U.S. household in large and medium 

size urban areas annually produces 49,733lbs of CO2, combining emissions from travel 

(45.7%) and residential energy consumption (54.3%). It is notable that the carbon 

intensity of electricity is about 2.7 times that of home heating energy on average and has 

wide variation from region to region. 

The results of multilevel SEM analyses show that doubling population-weighted 

density is associated with a reduction in CO2 emissions from household travel and 

residential energy consumption by 48% and 35%, respectively. Population density is 

believed to function as a catchall variable for compact urban form, which may also 

include land use mix and alternative urban design elements, although several additional 

UA level urban form variables are included in my models. In any case, my analysis 

presents considerably larger elasticities than previous estimates by using population-

weighted density instead of a conventional density measure. Furthermore, though not 

included in my analysis, compact urban form can also contribute to reducing energy use 

and GHG emissions in commercial buildings that may be comparable to carbon savings 

from residential buildings shown in this study. 
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The other two urban form variables were only moderately significant: centralized 

population distribution helps reduce VMT and hence transportation CO2 emissions, while 

polycentric structure is associated with an opposite outcome. Perhaps more importantly in 

terms of policy implications, I also found that public transportation policy can play a 

significant role in lowering VMT. Doubling the per capita transit subsidy is associated 

with a nearly 46% lower VMT and an 18% reduction in transportation CO2 emissions. A 

caveat, though, is that the transit subsidy variable in my parsimonious model seems to 

capture the impacts of various factors that affect transit mode shares. 

A notable limitation of the present analysis is that my urban form measures focus 

only on the macro spatial structure at the urbanized area level, leaving out other urban 

form dimensions such as land use mix and street connectivity. There is a promising 

research opportunity in the future in which one can examine urban form effects at both 

neighborhood and urban area levels in a three-level hierarchical model. 

Given that household travel and residential energy use account for 42% of total 

U.S. carbon dioxide emissions, my research findings corroborate that urban land use and 

transportation policies to build more compact cities should play a crucial part of any 

strategic efforts to mitigate GHG emissions and stabilize climate at all levels of 

government. Changing urban settlement forms certainly require long term efforts. 

Researchers can only offer a wide range of scenarios regarding the percent of all new 

development by 2050 which is compact: between 25% and 75% (Transportation 

Research Board, 2009) or between 60% to 90% (Ewing et al., 2008b). However, studies 

show that there are latent demands for more sustainable developments in light of 

demographical and socio-economic changes (Nelson, 2009). My findings using 

61 



 

population-weighted density highlight that concentrating density in central areas by 

strategic infill (re)development will be particularly beneficial. In recent years, smart 

growth principles aimed at reversing the long-standing trend of sprawled development in 

U.S. urban areas have been increasingly adopted by urban planners and 

environmentalists. While these efforts to create more compact, mixed-use and transit-

oriented urban areas have produced some evident changes in pioneering regions such as 

Portland, OR, smart growth still remains an unrealized vision in many other parts of 

urban America (Downs, 2005). Federal and state level policies and programs are needed 

to support local and regional efforts to implement smart growth. 

The findings of this study also suggest that GHG mitigation strategies should be 

customized for individual cities or regions to be more effective and efficient, as each 

region has different characteristics in terms of carbon footprint. For example, it is 

suggested that electric vehicles (EVs) and electricity-based home heating should get low 

policy priority in regions where the carbon intensity of electric power generation is high 

(Kennedy, 2011). However, this kind of policy decision should also take into account that 

electricity-based systems can be more carbon efficient than other fuel uses depending on 

the efficiency of the equipment and the time of electricity use (King, 2007; Mustafa 

Omer, 2008). Switching to alternative power resources should take high priority in warm 

regions, where the demand for home cooling is high. In low density urban areas with 

currently high VMT, tighter vehicle fuel efficiency standards and alternative fuel policies 

are necessary in the short run, while well-coordinated smart growth policies to create 

sustainable urban environment should follow in the long run. 
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   CHAPTER 3
SUSTAINABLE URBAN FORM AT LOCAL 
AND REGIONAL SCALES 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1. Introduction 

In the past twenty years or so, a great number of studies have examined the associations 

between urban form and travel behavior. These studies show that sustainable urban 

development can lead to a significant reduction of greenhouse gas emissions, thus 

providing the basis for smart growth policies. The five elements (the “5Ds”) of the built 

environment are regarded as the fundamental principles for land use policies to promote 

more sustainable transportation. These elements include high density, highly mixed land 

use (diversity), highly interconnected street networks (street design), and good 

accessibility to main facilities and transit (distance to transit & destination access) 

(Cervero & Kockelman, 1997; Cervero et al., 2009; Ewing et al., 2008; Ewing & Cervero, 

2001, 2010; Handy et al., 2002; Krizek, 2003a). 
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While the 5Ds principles are very important factors in designing sustainable and 

livable communities, one of their critical limitations lies in their focus on neighborhood 

level characteristics. Many existing studies largely fail to take into account regional level 

urban form factors. Although one of the 5Ds—Destination access typically measured by 

job accessibility by auto and distance to downtown variables—does indirectly relate to 

regional level urban structures, it still remains to be a local measure but fails to capture 

various features of regional level distribution of population and workplaces. Aside from 

accessibility, all other elements are generally defined at the neighborhood level, typically 

represented by census block group, census tract, and Traffic Analysis Zone (TAZ). 

Few studies have investigated how both local and regional level urban form 

influence travel behavior. Some earlier studies that examined the relationship between 

urban spatial structure and travel behavior took a regional approach only by using 

aggregate data (Eager, 1993; Giuliano, 1989, 1991; Gomez-Ibanez, 1991; Newman & 

Kenworthy, 1989; Pucher, 1988). These studies analyzed the linkages between 

aggregated geographic elements—population density in most cases—and aggregated 

travel patterns such as per capita VMT or gasoline consumption at the metropolitan area 

level. Such an approach cannot properly capture the marginal impacts of urban structure 

underlying individual travel decisions while controlling for individual household 

characteristics. Indeed, some of the studies may be subject to the ecological fallacy 

(Piantadosi, Byar & Green, 1988). While many recent studies use individual level data 

and more sophisticated econometric models to reveal how urban form influences 

individuals’ travel decisions, again, they tend to focus on neighborhood level urban form 

characteristics, often ignoring the effects of metropolitan level spatial structure. 
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Given the limitations of the existing studies, I focus on the influences of urban 

structure on travel behavior at two different geographic scales. In other words, this study 

aims to consider both regional level (urbanized area) spatial characteristics and 

neighborhood level urban form elements in explaining individual level travel and hence 

greenhouse gas (GHG) emission behaviors. In addition, this study will also investigate 

the interaction effects of urbanized area level spatial structure and sustainable 

neighborhood built form. I assume that well-designed transit-oriented neighborhoods will 

promote sustainable travel behavior more in high-density urbanized areas than in auto-

oriented urbanized areas. Therefore, the aim of this study is twofold: to find the different 

geographic scale impacts of urban spatial structure and to investigate the interaction 

effects between different spatial level land use variables on both travel behavior and 

carbon dioxide emissions. A multi-level regression method is employed to overcome the 

statistical issues arising from the nested data structure. 
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3.2. The influence of urban form at two spatial levels 

Since the linkage between land use and travel behavior is very important in designing 

successful public policies that promote sustainable development and smart growth, a 

number of recent studies have investigated the relationship, targeting various regions and 

neighborhoods in the US (For recent surveys of the literature, see Boarnet & Crane, 

2001b; Cao, Mokhtarian & Handy, 2006; Ewing & Cervero, 2001, 2010; and Handy, 

2005). Because the transportation sector is responsible for about 30% of GHG emissions 

in the US (U.S. Energy Information Administration, 2011), research has recently begun 

to examine the impacts of spatial structure on climate change (Brown, Southworth & 

Sarzynski, 2008; Glaeser & Kahn, 2010; Jones & Kammen, 2014; Lee & Lee, 2014). 

Although technological development and market solutions may significantly contribute to 

mitigating the environmental impact, many scholars argue that without moderating the 

energy demand, these policies alone cannot achieve the “2°C guardrail” goal (Boies et al., 

2009; Grazi & van den Bergh, 2008; Johansson, 2009; Kromer, Bandivadekar & Evans, 

2010; Morrow et al., 2010). Therefore, as one of many methods to moderate the energy 

demand, many urban planners believe that transit-friendly neighborhoods discourage 

private vehicle use and hence reduce GHG emissions in the transportation sector. 

As a result, many recent studies have focused on examining whether, and to what 

extent, well-designed neighborhoods trigger the shift in individual travel behavior away 

from private vehicle use. The literature shows substantial progress in many related topical 

areas, including how to measure and classify both the built environment (Cervero & 

Kockelman, 1997; Cervero et al., 2009; Handy, 1996b) and travel behavior (Cao, 

Mokhtarian & Handy, 2006; Ewing & Cervero, 2001; Frank, 2000; Handy, 1996a), and 
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how to handle the self-selection bias (Cao, Mokhtarian & Handy, 2009; Ewing & 

Cervero, 2010; Mokhtarian & Cao, 2008). However, the geographical scale of the built 

environment has received less attention. Specifically, most empirical studies investigate 

how neighborhood level urban form and land use influence travel behavior, even though 

regional level spatial structure can have larger impacts. 

According to the National Household Travel Survey (NHTS, 2009), in the U.S., 

the average one-way trip distance by auto is about 10 miles; while it is approximately 3 

miles and 1 mile for bike and walking trips, respectively. (Table 3.1). Moreover, most 

Americans (over 85%) still use their private vehicle when they travel and only about 10% 

of all travel is related to walking. In sum, these statistics imply that the spatial boundary 

within which land uses matter for private vehicle use is significantly larger than that for 

non-motorized travel. Since intra-urban daily trips in U.S. cities are overwhelmingly 

dominated by vehicle travel, both research and policy considerations for sustainable 

urban form should be pursued at a larger scale beyond the neighborhood level. 

Many empirical studies have examined the links between neighborhood level land 

use characters and vehicle miles traveled (VMT). VMT can be considered to be a 

composite index of many other travel-related variables such as auto ownership, trip 

frequency, mode choice, and trip length (Ewing & Cervero, 2001). Small scale land use 

elements indeed affect the mode shift from private vehicles to public transit or non-

motorized travel that is the outcome of neighborhood level attraction. However, the 

lengths of commuting trips or shopping trips to main shopping districts are largely 

determined by regional level urban structure. 
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Table 3.1. The average one-trip travel miles and travel frequency by different modes in the 121 
UAs (NHTS, 2009 a)). 

  

Travel Miles (One-trip) b) Travel Frequency Ratio c) 
Total 

(121 UAs) 
High 
Density 
UAs1) 

Medium 
Density 
UAs2) 

Low 
Density 
UAs3) 

Total 
(121 UAs) 

High 
Density 
UAs1) 

Medium 
Density 
UAs2) 

Low 
Density 
UAs3) 

Auto 8.79 8.55 8.89 9.25 85.58% 84.12% 88.15% 89.21% 

Transit 7.69 7.84 7.32 8.12 2.90% 3.33% 2.90% 2.75% 

Bike 2.76 2.96 2.65 2.25 0.95% 1.12% 0.85% 1.09% 

Walk 0.70 0.69 0.71 0.70 10.57% 13.92% 10.23% 9.09% 
a) Sample size: 452,748. 
b) One-trip travel miles exclude the samples of long distance travel such as city to city travel, the trip using airplane or 

inter-city trains. 
c) ‘Travel Frequency Ratio’ is the ratio among different modes. 
1) The high density urbanized areas (UAs) are defined as the UAs of which population-weighted density (PWD) is 

higher than 5,000, and there are 28 in 121 UAs. 
2) The medium density UAs are defined as the UAs of which PWD is higher than 2,500 UAs except the 28 high 

density UAs, and there are 63 in 121 UAs. 
3) The low density UAs are designated as the UAs of which PWD is lower than 2,500, and there are 30 among 121 

UAs. 
 

Table 3.2. The average one-trip travel miles and travel frequency by different trip purposes with 
different modes in the 121 UAs (NHTS, 2009 a)). 

 
Travel Miles (One-trip) b) Travel Frequency Ratio c) 

HBW1) HBSs2) HBSsR
3) HBO4) NHB5) HBW1) HBSs2) HBSsR

3) HBO4) NHB5) 
Total 11.65 5.24 8.85 6.68 9.06 9.48% 23.78% 15.05% 21.83% 29.85% 
Auto 11.94 5.54 12.19 7.64 9.88 93.35% 92.65% 68.97% 82.11% 88.39% 
Transit 11.47 5.54 9.53 5.54 10.29 3.83% 1.28% 1.24% 5.97% 2.49% 
Bike 4.19 1.45 2.70 1.53 4.71 0.82% 0.53% 3.28% 0.59% 0.42% 
Walk 1.12 0.57 0.85 0.56 0.63 2.01% 5.54% 26.52% 11.33% 8.70% 

a) Sample size: 452,748. 
b) One-trip travel miles exclude the samples of long distance travel such as city to city travel, the trip using airplane or 

inter-city trains. 
c) ‘Total Travel Frequency Ratio (1st row)’ is the ratio among different travel purposes such as HBW, HBSs, HBSsR, 

HBO, and NHB, while the other ‘Travel Frequency Ratios’ from ‘Auto’ to ‘Walk’ (2nd to 5th rows) are the ratio 
among 4 different travel modes from ‘Auto’ to ‘Walk.’ 

1) ~ 5) ‘Home-based Work (HBW)’, ‘Home-based Shopping (HBSs)’, ‘Home-based Social/Recreational (HBSsR)’, 
‘Other home-based (HBO)’, and ‘Not home-based (NHB)’. 

 

In the 1990s, empirical studies primarily investigated the relatively easily-

measured impacts of regional level urban structure on aggregated travel patterns (Eager, 

1993; Giuliano, 1989, 1991; Gomez-Ibanez, 1991; Newman & Kenworthy, 1992). For 

example, Newman & Kenworthy (1989) examined the association between urbanized 

area level population density and per capita energy use in 10 U.S. cities and 22 global 
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cities. They concluded that U.S. cities used twice, 4 times, and 10 times the amount of 

gasoline on average as those in Australia, Europe, and Asia as of the 1980s, respectively. 

However, this research has been heavily criticized for several reasons, including that: 1) 

it oversimplifies and disregards the complex realities for different cultures, political 

backgrounds, and economic contexts; 2) it has statistical problems for limited variances, 

for both independent and dependent variables; 3) it doesn’t consider the trip purpose; 4) 

the single “average density” variable represents the land use pattern; and 5) it over-

interprets statistical results (Gomez-Ibanez, 1991; Gordon & Richardson, 1989).  

Newman & Kenworthy (2006) went on to update their research, but that study too 

was criticized for its statistical problems (Ewing & Cervero, 2010). The ‘average density’ 

at the urbanized area level cannot explain the land use pattern sufficiently. Handy (1996a) 

points out that the ‘average density’ at the regional level can mask the diverse densities 

within the region, the different land use patterns, and the various neighborhood designs in 

the region. 

Criticism of the regional level analysis presented a turning point toward 

neighborhood level research. Crane (2000) adds that the many limitations of previous 

simulation studies also necessitated neighborhood level empirical studies with 

disaggregate data to better understand the subtle built environmental impacts on travel 

behavior. In addition, the needs for specific land use policies to promote non-motorized 

travel may be another reason. Since the scale of non-motorized travel is far smaller than 

motorized trips, the subtle built environmental impacts on travel behavior. 

Early neighborhood level studies focused on narrative descriptions with relatively 

coarse categories based on the ‘pattern language’ in the field of urban design. However, 
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the research trend gradually moved to more statistical analyses (Handy et al., 2002). 

Cervero & Seskin (1995) and Handy (1992) empirically verified that compact 

neighborhoods led to a decrease in vehicle trips by boosting non-motorized travel. They 

suggested a variety of examples: people typically do not use cars for short trip distances, 

and high-density neighborhoods are connected to good transit services, relatively mixed 

land-use, and low-income levels. After this data appeared, the number of neighborhood 

level studies increased dramatically, involving different trip purposes and targeting 

diverse regions (Boarnet & Crane, 2001b; Cao, Handy & Mokhtarian, 2006; Cao, 

Mokhtarian & Handy, 2007; Cervero & Gorham, 1995; Cervero & Seskin, 1995; Krizek, 

2003a, b). 

Cervero & Kockelman (1997) identified three important built-environment 

elements—density, diversity, and design—and called them the 3Ds. Ewing & Cervero 

(2001) compare the influences of the 3Ds with regional accessibility on travel behavior, 

such as trip frequency, length, mode choice, and VMT based on more than 50 empirical 

studies. In 2009, Cervero et al. (2009) added ‘destination accessibility’ and ‘distance to 

transit’ to the 3Ds, forming the “5Ds”. Ewing & Cervero (2010) then adopted the 5Ds 

from Cervero et al. (2009), updating their meta-analysis. Their results show that residents 

in more compact and transit-friendly neighborhoods drive less and hence emit 

significantly less carbon dioxide than those living in sprawled neighborhoods. Moreover, 

the travel impacts of neighborhood characteristics were found to be significant even after 

normalizing for the effects of residential self-sorting by preferences and environmental 

attitudes (Cao, Mokhtarian & Handy, 2009; Mokhtarian & Cao, 2008). 
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To this day, the neighborhood level studies have been useful in supporting the 

ideal of New Urbanism. However, the importance of the regional level spatial structure 

should not be overlooked. Despite the trend toward New Urbanism in the past two 

decades, driving alone is still the predominant travel mode in most U.S. cities. According 

to the U.S. National Household Travel Survey (2009), more than 90% of workers use 

their own vehicles to commute, with an average commute of almost 15 miles. Without 

altering the automobile-oriented regional level spatial arrangement, neighborhood level 

efforts to promote density and land use mix are not likely to see expected outcomes. 

Indeed, studies show that variables such as job accessibility and distance to 

downtown have larger impacts on VMT reduction (with a typical elasticity of −0.2) than 

do neighborhood level attributes, whose elasticities range between −0.04 and −0.12 

(Cervero & Duncan, 2006; Ewing & Cervero, 2001, 2010; Kockelman, 1997; Næss, 2005; 

Sun, Wilmot & Kasturi, 1998). Handy et al. (2002) suggest that ‘commuting trips’, 

perhaps the longest daily trip segment for most people, are affected by travel patterns at 

the metropolitan scale, while ‘non-work trips’ are more associated with neighborhood 

scale attributes.  

These findings imply that location and the distribution of developments in the 

metropolitan context may be more important than neighborhood level characteristics in 

moderating travel demand. Nonetheless, the impacts of the urbanized or metropolitan 

area level urban form have been examined in only a handful of recent studies (Bento et 

al., 2005; Cervero & Murakami, 2010; Ewing, Pendall & Chen, 2003), mainly due to the 

difficulty in quantifying spatial structure at the metropolitan and urbanized area levels. 

This is also one of the reasons why existing studies at the urbanized or metropolitan area 
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levels only considered population density (Cervero & Murakami, 2010; Ewing, Pendall 

& Chen, 2003) and job centrality (Bento et al., 2005). 

Furthermore, metropolitan level spatial structure seems to moderate neighborhood 

effects. Cervero & Gorham (1995) show that in the San Francisco region transit ridership 

is significantly higher in transit-oriented neighborhoods than in auto-oriented 

communities, but the difference is not nearly as strong in the Los Angeles metropolitan 

area. They conclude that ‘islands of neo-traditional development in a sea of freeway-

oriented suburbs will do little to change fundamental commuting habits’. 

Lin & Long (2008) examine the journey to work vehicle trip rate between urban 

and suburban neighborhoods. They find that various neighborhood characteristics 

significantly affect travel behavior for urban groups, but not for suburban groups. In fact, 

the results of all these studies imply that regional scale urban structure can overwhelm 

neighborhood scale effects. 

The purpose of this research is to examine the impact of built environments on 

travel behavior at two different geographic levels—neighborhood and urbanized area. I 

assume that regional level urban form has large impacts on both VMT and CO2 emissions, 

since, in the U.S., a typical trip distance by auto passes over the small neighborhood 

boundary. Thus, regional level spatial structure has more direct impacts on auto-oriented 

travel behavior and should receive more attentions in both research and policy 

implementation. 
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3.3. Urban form and individual characteristics that affect travel 
behaviors 

Various factors influence individual travel behavior both directly and indirectly, but all of 

them can be summarized under three level elements: individual household, neighborhood 

(census tract), and regional (urbanized area) levels. 

 

Individual/household level (level1) 

Many studies have investigated individual or individual household characteristics as main 

determinants of travel behavior. Although this research focuses on urban form variables, 

individual or household level elements should be controlled for in order to capture the 

marginal impacts on urban structure. Previous studies have shown that socio-economic 

status is an important element; the wealthy and the upper classes tend to spend more 

money on, and time toward, gasoline consumption. In addition, a households’ life-cycle 

status, the number of household members or workers, and the gender and age of the 

household head can affect the total use of household vehicle. 

 

Neighborhood level (level 2: census tract) 

Many researchers have developed methods to construct variables to represent 

neighborhood level urban form and design characteristics in an effort to analyze 

neighborhood effects on travel behavior. Crane & Crepeau (1998) focus on street patterns 

with street design, the distance to downtown at the census tract level, and land use 

characteristics, such as residential, commercial and vacant. Snellen, Borgers & 

Timmermans (2002) consider transportation network type, and distance from the central 

business district (CBD), subcenter, and intercity station. Krizek (2003a) identifies four 
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elements describing neighborhood design: 1) densities for population, housing units, and 

employment; 2) land use mix with several quantified variables such as presence of a 

food/drug store, entropy, or a dissimilarity index; 3) street design for ‘X’ type 

intersections (4-way intersections), total street miles, or traffic volumes; and 4) composite 

indices such as pedestrian-friendliness. Zhang (2004) compares travel behavior in Boston 

and Hong Kong, for three land use dimensions: density, diversity, and street design at the 

TAZ level. The study covers population and job density, cul-de-sac density, and the 

entropy index of land use with public parking spaces per number of jobs for both travel 

origin and destination. Although there are numerous categories used by different studies, 

Ewing & Cervero (2010) summarize all of them under the 5Ds (density, diversity, street 

design, destination accessibility, and distance to transit) in their meta-analysis. 

Residential neighborhood variables include gross population density, an entropy 

index for land use among residential, commercial, industrial and office sectors, street 

densities for beta index and 4-way intersection density, and the distance from the closest 

regional CBD and subcenter. Workplace neighborhood variables include all residential 

neighborhood variables except gross residential density. Instead, gross employment 

density is considered for workplace neighborhood studies. The specific measurements of 

the neighborhood variables are explained in Appendix Table C.1 and C.2. 

The neighborhood geographic scope is represented by the census tract in this 

study. 12 Several scholars point out that the census tract is a relatively wide boundary for 

12 In general, the size of the neighborhood has been defined as ‘census tract’, ‘block group’, ‘block’, 
‘Traffic Analysis Zone (TAZ)’ or ‘zip code’ level, while a region is often defined as an ‘urbanized area’ or 
‘Metropolitan Statistical Area’. Boarnet and Crane (2001a) apply two different geographic scales to define 
different density variables; population density is measured at the ‘census block group’ but retail and service 
density is accounted at the ‘census tract’ level. Guo and Bhat (2007) try to find the optimal neighborhood 
boundary by testing three alternative methods including census based, circular-unit, and network band 
representation. However, their results show that there is no superior definition that satisfies all criteria. 
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neighborhood level studies since non-motorized activities are generally at the mercy of 

walkability and, in the U.S., the census tract is too large to cover by foot. However, the 

portion of bike users has steadily increased, and the bike mode should be covered at the 

neighborhood level as well. In addition, the small areas are generally homogenous.  

Some scholars suggest using the traffic analysis zone (TAZ) for neighborhood 

studies. However, the unit of the TAZ is different for different metropolitan areas; while 

the TAZ is equivalent to a ‘census block group’ or ‘census block’ in some regions, 

‘census tract’ is used to define the TAZ in others. Since the boundary of the TAZ is 

delineated by Metropolitan Planning Organizations (MPO), the TAZ can be a good 

alternative if the study area is limited to one metropolitan region. However, as this study 

covers 121 urbanized areas, having the same standard among different urbanized areas is 

critical. 

 

Regional level (level 3: urbanized area) 

The major UA level spatial structure variables can be classified into four distinctive 

dimensions: population density, centrality, polycentricity, and job accessibility. 

Population density is the most important element in checking the intensity of land use at 

the UA level. The conventional population density is too sensitive to the designated 

boundary and does not cover the distribution of population in each urbanized area. For 

example, according to 1990, 2000, and 2010 census statistics, Los Angeles is ranked as 

the densest urbanized area, surpassing New York, even as most people believe New York 

to be far denser than Los Angeles. The disconnect can be overcome by using population-

After testing a quarter mile buffer, Frank et al. (2007) apply a 1-km buffer for general built environment 
variables. Hong et al. (2014) tested two different geographic scales, the 1 km buffer and the TAZ. 
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weighted density (PWD), the weighted mean of census block group level density with 

each block group’s population being used as the weight. Thus, the PWD of New York is 

considerably higher than that of the Los Angeles urbanized area. As such, several studies 

indicate that the new population density captures more vividly the urban experiences of 

daily lives (Lee & Lee, 2014; Transportation Research Board, 2009).  

Another example of the importance of population-weighted density concerns 

Houston and Philadelphia. Conventional population density in Houston is higher than that 

of Philadelphia, although a larger population is gathered near the central business district 

(CBD) in the latter than that in the former (Figure 3.1). Reflecting this, the PWD of 

Philadelphia is far higher than that of Houston—nearly double. This is because the new 

index (PWD) covers the intra-urban distribution of population in the designated boundary 

(UA)—a population distribution that conventional density measurements cannot capture. 

Therefore, this study focuses on PWD as one of the main regional level land use 

characteristics, though I consistently compare the variable with traditional population 

density. 

Centrality measures the degree of the concentrated population near the major job 

center (Anas, Arnott & Small, 1998; Galster et al., 2001; Lee & Lee, 2014). There are 

numerous indicators to capture this centrality, such as CBD population share, the area-

based centrality index (ACI), the ratio of weighted to unweighted average distance 

(WUAD), and the population density gradient. The CBD population share is estimated as 

the share of the UA population in the CBD (Lee, 2007; Lee & Lee, 2014). The ACI 

estimates how fast population cumulates relative to distance from the CBD compared to 

land area accumulation (Lee & Lee, 2014; Massey & Denton, 1988). The WUAD 
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indicates the concentration of the whole population in the CBD (weighted) and a 

perfectly even distribution of population throughout the UA (unweighted) (Cutsinger et 

al., 2005; Lee & Lee, 2014). The population density gradient is the rate of decrease in 

population density as dependent on distance from the CBD (Lee & Lee, 2014). Each 

index has its own advantages and disadvantages; thus, all centrality indicators are 

summarized as one variable applying a standard principal component analysis. 

Polycentricity represents the extent of the shared function from the traditional 

CBD to subcenters such as economic, commercial and recreational activities (Lee & Lee, 

2014). As polycentricity increases, the new job centers are newly clustered; however, 

overall regional employment is de-centralized from the CBD, morphologically. The 

benefit of increasing polycentricity leads to a reduction in the average commuting 

distance. Various indices have been suggested to measure the polycentricity, such as the 

subcenters’ share of center employment (SUB), the number of extra subcenters (EXS), 

the slope of the rank-size distribution (RS), the primacy index, and the commuter shed 

ratio. The SUB is the employment in the subcenter divided by both employment between 

the CBD and subcenter (Lee, 2007; Lee & Lee, 2014). The EXS is the difference between 

the number of identified subcenters and the predicted number from the UA population 

Poisson regression (Lee & Lee, 2014; Veneri, 2010). The RS is the estimated coefficient 

of the rank-size distribution of employment centers in each UA (Lee & Lee, 2014; 

Meijers & Burger, 2010). The primacy index is the extent of the deviation from the 

estimated rank-size distribution among the subcenters (Lee & Lee, 2014; Meijers, 2008). 

Both the RS and the primacy index are based on rank-size theory, meaning the more flat 

the distribution, the more polycentric the urban area. Applying it to job centers in the 
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intra-UA, the primacy index is more beneficial when analyzing UAs with small 

subcenters since the index excludes the largest employment center. The commuter shed 

ratio measures the subcenter commuter shed portion of all employment center commuter 

shed (Lee & Lee, 2014). The diverse indices are also encapsulated into one polycentricity 

index. 

Besides the four dimensions describing population and employment distributions 

in UAs, I also consider a jobs-to-housing ratio to measure regional level land use mix. 

The jobs-to-housing ratio is estimated in two steps: 1) to estimate census tract level index 

by simply dividing the number of employment by the number of households within ten-

mile buffers, and 2) to estimate a UA level index by getting the population weighted 

average. I chose the 10 mile buffer since it is about the average one-way trip distance by 

auto, according to the National Household Travel Survey (NHTS, 2009).  

The density of total lane mile and public transit service supply are not urban 

spatial variables, but both are important variables affecting the VMT. This study uses the 

total lane mile density for both freeways and major arterial roads at the regional level. 

With any increase to these thoroughfares, I can expect an increase in commuting 

distance, since the high-speed roads lead to a decrease in the travel time. In comparison 

to road construction, I can assume that increasing public transit would attract people to 

change the mode choice from private car to public transit, and thereby the number of 

VMT would decrease. This research covers both vehicle revenue miles and public transit 

subsidy. 
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Figure 3.1. Conventional population density and population-weighted density in Houston (left) 

and in Philadelphia (right) based on CENSUS population (2010). 

 

3.4. Land use effects at neighborhood and urbanized area levels 

This section compares the marginal impacts of several urban form variables on VMT at 

both neighborhood and regional levels. Multilevel regression modeling is an appropriate 

approach to addressing the research question, as it accounts for the hierarchical structure 

of the data (Hox, 2010). When a data set is structured hierarchically, ordinary least square 

regression (OLS) models may lead to false inferences because they tend to violate the 

assumption of independency among observations. More discussion on model 

specification is provided in Appendix B and the descriptions and data sources for all 

variables used are presented in Appendix C. 

Table 3.3 presents a summary result of the analysis, and full model results are 

provided in Appendix D. All variables are transformed into logarithm forms, so each 
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coefficient can be directly interpreted as VMT elasticities with respect to each variable. 

There clearly are density effects to mitigate VMT and CO2 at both spatial levels. Under 

different model specifications, the influences of population density at the urbanized area 

level are consistently larger than those at the neighborhood level. A 100% increase of 

urbanized area population density leads to a decrease in VMT by about 6 to 9%, but the 

density impacts at the census tract level are only about 5%. 

More importantly, the spatial distributions of population and employment at the 

regional level rather than a simple density are the keys to reducing private vehicle use 

and CO2 emissions. There are six variables related to the intra-regional population and 

employment distributions: PWD, centrality index, polycentricity index, job accessibility, 

distance to downtown, and distance to the closest subcenter. Four of the variables, 

excluding polycentricity and distance to the closest subcenter, are significantly associated 

with VMT (Table 3.3).  

The coefficient of population-weighted density (PWD) is far larger than those of 

both conventional regional population density and neighborhood density. Beyond the 

overall intensity of land use in the region, a high PWD means that the UA has several 

focal spots including the typical CBD and subcenters where population is highly 

concentrated. The results of this study imply that increasing population and employment 

densities in these centers would reduce VMT much more effectively than the policies that 

increase the overall UA density. 

Population centrality is also a significant factor in reducing private vehicle use, 

but polycentricity is not significantly. Given the same level of overall UA density, 

increasing the density near the downtown will additionally decrease VMT and GHG 
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emissions, perhaps expanding the proportion of urban residents who are covered by better 

public transit systems. Polycentric structure may lead to either direction. While 

decentralized concentration of employment in multiple subcenters is expected to reduce 

average travel distances for notably commuting trips and other trips for center-oriented 

activities; travels to subcenters are more likely to be done by private cars because these 

areas are not well served by transit and have less traffic congestion than in downtown. 

These two effects seem to cancel out in our analysis.   

Jobs-housing ratio within a 10 mile buffer has the largest coefficient to decrease 

VMT with statistical significance. A 10% increase in this meso scale land use mix 

variable reduces VMT by about 1.5 to 2.6%, and leads to CO2 reduction of about 3.6 to 

3.7%. This is a very interesting and important finding: combining the results of centrality 

and polycentricity, it suggests that how to balance housing and workplaces development 

or land use mix at a larger-than-neighborhood scale matters more than whether the region 

is monocentric or polycentric. 

The results of neighborhood level variables are all consistent with an expectation 

and previous studies except for street design variables. VMT elasticity with respect to 

neighborhood population density is around −6% which is smaller the UA level elasticity. 

The influence of land-use diversity (land-use mix) is only −3% which is relatively 

smaller than the estimates in previous studies. In our model, street design measured by 

beta index turns out to be not statistically significant. 

The distance to the downtown (i.e., CBD) is as an important factor as the density 

in affecting travel behavior, as indicated by the similar size of coefficients. However, it 

should be noted that the distance to the CBD represents a contextual location within an 
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urbanized area although this variable is measured at the census tract level. Again, this 

result highlights the importance of population distribution at the urbanized area level. It is 

also notable that the strong impacts of the CBD together with the insignificance of 

proximity to the closest subcenter are in accordance with the results of regional level 

spatial variables, centrality and polycentricity. 

 

Table 3.3. VMT elasticities with respect to each variable. 

    Model 3.1 Model 3.2 Model 3.2' 
    Beta t-value Beta t-value Beta t-value 

Urbanized Area Level (Level 3)                 

 Population weighted Density (PWD) −0.108 −4.0 ***       
 Population Density    −0.066 −2.5 ** −0.065 −2.5 ** 

 Centrality Index    −0.031 −1.8 * −0.028 −1.8 * 

 Polycentricity Index       0.022 0.7  
 Jobs-to-housing ratio −0.264 −1.8 * −0.171 −1.9 * −0.147 −1.8 * 

 Transit Service Supply  −0.104 −2.6 *** −0.043 −3.1 *** −0.042 −2.9 *** 

 Total Lane Miles −0.016 −1.1  −0.053 −1.0  −0.049 −0.9  
           Census Tract Level (Level 2)                   

 Population Density −0.058 −10.7 *** −0.058 −10.5 *** −0.060 −10.7 *** 

 Land-use Mix (Entropy Index) −0.031 −4.3 *** −0.031 −4.3 *** −0.031 −4.4 *** 

 Street Design (Beta Index) −0.057 −1.1  −0.074 −1.4  −0.071 −1.3  
 Distance to the Closest Transit Stop 0.033 5.8 *** 0.034 6.0 *** 0.034 5.9 *** 

 Distance to the Downtown (CBD) 0.051 9.7 *** 0.050 9.3 *** 0.049 9.2 *** 
  Proximity to the Closest Subcenter −0.002 −1.0   −0.002 −0.9   −0.002 −1.0   
***: significant at 1%, **: significant at 5%, and *: significant at 10% 
 

Note: 
1) Full model result is reported in Table D.1 in Appendix D. 
2) Dependent and all continuous independent variables except proximity to the closest subcenter are in natural logarithm, so 

estimated coefficients can be interpreted as elasticities. 
3) The elasticity is defined as the ratio of the percent change in dependent variable to the percent change in each independent 

variable. 
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3.5. Interaction effects of neighborhood and urbanized area level urban 
forms 

The analysis of interaction effects of urban forms at two spatial scales further highlights 

the importance of regional level spatial structure. I hypothesized that VMT and CO2 

emission reduction effects of compact neighborhoods are greater in urban areas that have 

higher density, better jobs-housing balance, and more centralized structure. Random 

coefficient models enable us to investigate how urbanized area level spatial structure 

moderates neighborhood level effects on travel behavior, by producing different 

coefficients of neighborhood urban form variables under the different regional 

characteristics. 

The results indeed show that more sustainable regional level structures serve to 

increase the effects of compact neighborhood level land use and design. Table 3.4 

presents the summary result of a model which includes a cross-level interaction term 

between UA level population-weighted density and the census tract level compactness 

index developed by Hamidi & Ewing (2014). The interaction term was highly significant 

with an expected negative sign, indicating a larger VMT reduction effect of compact 

urban form in a high density urbanized area. As simulated in the graph, an increase in the 

neighborhood compactness level by 100 lowers VMT by about 50% in an average 

population-weighted density urban area, such as St. Louis; however, the neighborhood 

impacts increase to 75% when the UA PWD is as high as New York level. 

Further, I found similar interaction effects when used alternative regional level 

spatial variables such as conventional density and population centrality and neighborhood 

level urban form variables such as the compactness index, population density, and the 

proximity to transit terminal (Table D.2). As summarized in Figure 3.2, VMT reducing 
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effects of compact neighborhood forms are intensified when overall UA level spatial 

characteristics support more sustainable transportation by increasing density or 

centralized population distribution. Particularly interesting to observe is that the 

interaction term between regional level density and the proximity to subcenter is 

negatively connected with VMT, with statistical significance. The connection was not 

significant absent the interaction model. The results indicate that the distance to subcenter 

can also be an important element under higher regional population density. 

The significance of the interaction term between PWD and the distance to transit 

stop supports the idea that transit oriented development (TOD) rather than increasing 

overall UA density should be given a higher policy priority. Similar to VMT results, the 

interaction term was highly significant with an expected negative sign, indicating a larger 

CO2 reduction effect of compact urban form in a high density UA (Table E.1 in Appendix 

E). For example, double increase in the neighborhood compactness level lowers CO2 by 

about 78% in an average PWD UA; however, the neighborhood impacts increase to 153% 

when the UA PWD is as high as New York level. 

Table 3.4. The interpretation of interaction terms with census tract level coefficients. 
    Model 3.5 

 

     Beta t-value 
Urbanized Area Level (Level 3)    
  Population Weighted Density (PWD) −0.099  −3.50 *** 

 Jobs-to-housing ratio (10 mile Buffer) −0.242  −2.03 ** 

 Transit Service Supply (VRM / pop) −0.088  −2.10 ** 

 Total Lane Miles (TLM / pop) −0.008  −0.60  
     Census Tract Level (Level 2)       

 
Neighborhood Compactness Index −0.499  −22.20 *** 

     Interaction Effect(Level 3 × Level 2)    

  
[UA] Pop. Weighted Density  
    × [CT] Compactness Index −0.251  −10.30 *** 

     Household Level (Level 1)       

   < Skip >    

***: significant at 1%, **: significant at 5%, and *: significant at 10% 
Note:  
1) Full model result is reported in Table D.2 (Model 3.5). 
2) The elasticity is defined as the ratio of the percent change in dependent variable to the percent change in each independent variable.
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Note: The interaction term between the proximity to the closest transit stop and regional level conventional population density is not statistically significant (final graph). 

Figure 3.2. The variations of VMT elasticities w.r.t. neighborhood level urban form elements (compactness index, population density, and the 
proximity to the closest transit stop) under the different regional level urban form elements (population-weighted density, and 
conventional population density).
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3.6. Conclusions 

This study is significant in that I empirically uncover how multi-scale urban spatial 

structures interact to mitigate auto-oriented travel behavior. I found that regional level 

spatial structure variables such as population density, centrality, and jobs-housing balance 

have significant impacts on reducing VMT, perhaps more so than compact neighborhood 

design. Further, urbanized area level spatial characteristics moderate the impacts of 

compact neighborhoods in a way to intensify the neighborhood impacts. For example, 

while doubling neighborhood compactness level is associated with a VMT reduction by 

about 50% in an average population-weighted density urban area, such as St. Louis; 

however, this neighborhood impact increases to 75% when the UA’s population weighted 

density is as high as New York level. I found similar results when used other urbanized 

area level spatial variables such as conventional density and population centrality. 

What are the policy implications of the synergic impacts between different 

geographic scales of urban forms? First, the findings of this chapter reveal the specific 

ways that regional development can be effectively pursued with limited resources to 

minimize auto dependency. Many planners and policy makers agree that regional policy 

is important, but are hesitant to support it, as the time scale of regional improvement is 

long. This research, however, shows that concentrating population density in several 

focal spots is a more effective policy than increasing overall urban density to curb the 

excessive auto dependency in U.S. cities. The policies to increase the population near 

downtown areas and along transit corridors are indeed beneficial. Polices for balancing 

jobs and population at a sub-regional scale beyond neighborhood boundaries, also, are 
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helpful to decrease VMT. In sum, “where” to locate new residential development is far 

more important than “how” to develop them. 

Second, the role of metropolitan planning organizations (MPO) is important in 

order to plan and guide regional developments in a sustainable way. Every census 

urbanized area (UZA) is currently represented by an MPO (23 USC 134(b) and 49 USC 

5303(c)), but their roles are extremely limited. The delegation of greater authorities and 

responsibilities to MPOs is necessary to guide and coordinate the locations of new 

developments at the regional scale. This will inevitably involve state level legislation. 
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  CHAPTER 4
COMPLEMENTARITY BETWEEN LAND USE 
PLANNING AND PRICING IN VMT 
REDUCTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1. Background 

Transportation policy in the U.S. has been recently shifting away from a focus on 

increasing mobility with expanded physical infrastructures and toward sophisticated 

transportation demand control.  

Since the Interstate Highway Act of 1956, the federal government had poured vast 

resources to build one of the most extensive national highway networks in the world. 

However, this massive expansion of the highway system has led to a marked increase in 

automobile travel throughout the country. From 1969 to 2001, the average annual vehicle 

miles traveled (VMT) per household nearly doubled, from 12,423 to 21,187, according to 

data from the Nationwide Personal Transportation Survey (NPTS, 1969) and the 

subsequent National Household Travel Survey (NHTS, 2001). This occurred even while 
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the number of people per household actually decreased from 3.16 in 1969 to 2.58 in 

2001.  

Over the same period, the use of public transit and non-motorized travel 

plummeted, as automobile dependency increased (Figure 4.1). Such an auto-oriented 

lifestyle resulted in many environmental and health issues including greenhouse gas 

(GHG) emissions, air pollution, and obesity. As a result, the Department of 

Transportation (DOT) recently changed their funding priorities away from roads and 

highways and toward transit, biking and walking. As a corollary, sustainable 

development, smart growth, and growth management have also become important 

strategic goals in transportation planning. 

 

 
Notes: the original sources from 1977 to 1995 come from Nationwide Personal Transportation Survey (NPTS), while the 

sources of 2001 and 2009 stem from National Household Travel Survey (NHTS). This table is re-calculated from 
the table 7 in the summary report for NPTS and NHTS by Santos et al. (2011). 

Figure 4.1. Average annual VMT per household and travel mode split, 1969-2009. 
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Owing in part to these efforts, the average VMT per household slightly deceased 

by 6 percent from 2001 to 2009. However, this reduction is far short of the one that is 

required to meet GHG reduction goals in transportation and to mitigate climate change. 

According to the Organization for Economic Co-operation and Development (OECD, 

2006), the annual VMT per capita in the U.S. is nearly twice that in Western European 

countries such as Sweden, Belgium, and the United Kingdom; three times higher than 

that in Eastern Europe and North Eastern Asia; and ten times higher than the VMT in 

Turkey (VTPI, 2007). 

Various policy recommendations have been proposed to reduce VMT, including 

the extension and improvement of public transit, an increase in urban density, land use 

mix, the construction of grid road networks, fuel price increases by taxation, and parking 

price increases. These proposals can be largely classified into two groups: land use 

change policies and pricing policies. Behind land use policies is an assumption that 

personal travel attitudes can be changed if we build urban structures in a different way. 

Following this line of thought, building new subway or light rail lines would encourage 

people to change travel modes from private vehicles to mass transit. Furthermore, land 

use mix and grid-based street designs are expected to reduce VMT by shortening travel 

distances.  

In general, increased urban density provides many environmental benefits, as 

denser urban areas (UA) are likely to employ, out of necessity, a high land use mix, and 

have a high neighborhood population density, good network connectivity, a high jobs-to-

housing rate, and relatively good transit accessibility. Statistically, UA level population 

density is strongly correlated with other land use variables. 
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Price policies employ an economic theory to internalize external side effects in to 

the market. Retail gasoline prices or road prices do not cover the external environmental 

costs of gasoline consumption and road usage, so people tend to overconsume gasoline 

and roads—drive too much. Pricing policies are to reduce personal vehicle use to a 

socially desirable level by getting the price right.  

However, both land use and pricing policies have their limitations. Critics argue 

that land use policies are long-term and relatively expensive, while fuel taxation is a hot-

button issue politically and thus difficult to enact. Thus, it is important to demonstrate 

how and to what extent these land use and pricing policies can contribute to reducing 

VMT. The majority of empirical studies, however, show that both VMT elasticities with 

regard to (w. r. t.) land use and fuel prices are quite small, even though the impacts are 

statistically significant in most studies. As several studies reveal, VMT reduction 

associated with doubling neighborhood density ranges from 4% (Ewing & Cervero, 

2010) to 12% (Brownstone & Golob, 2009), and to 19% (Heres-Del-Valle & Niemeier, 

2011). These estimated effects of compact development in the literature are far smaller 

than what planners had expected. One recent study by Lee & Lee (2014) shows that the 

VMT elasticity with respect to (w.r.t.) urban area level density can be as high as 37%.  

VMT is also inelastic with regard to fuel prices: long-run elasticity is about 30% 

(Small & Van Dender, 2007), but short-run elasticity only ranges from about 3% to 16% 

(Hughes, Knittel & Sperling, 2008). Moreover, price elasticities have declined over time. 

Current fuel price fluctuation indicates that doubling fuel prices is not an unlikely 

scenario (Figure 4.2), but several studies show that the price policy alone is insufficient 
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for fundamental travel behavior modifications (Cervero & Landis, 1995; Winkelman, 

Bishins & Kooshian, 2010). 

Several researchers have recently argued that quantity regulation, such as land use 

planning, and price regulations, such as congestion pricing and gasoline prices, are 

complementary and potentially synergistic, rather than competing and conflicting 

(Boarnet, 2010; Guo, Agrawal & Dill, 2011; Lee & Lee, 2013; May, Kelly & Shepherd, 

2006; Zhang, 2004). If the two types of policy instruments are not in conflict with each 

other, they argue, both policies should be fully employed and coordinated to achieve 

climate-stabilizing GHG reduction targets. Thus, policy analysts and decision makers 

should understand the complex interactions between diverse policy instruments to 

mitigate policy conflicts and maximize synergetic effects. Nonetheless, empirical 

research on the synergy effects of complementary policy approaches in transportation 

planning is extremely rare. 

 

 

Figure 4.2. Monthly motor gasoline regular grade retail price (dollars per gallon, source: EIA). 
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To enhance our understanding of the policy synergy between pricing and land use 

planning approaches, this paper will examine the interaction effects between fuel prices 

and land use (urban form) variables in reducing the VMT in U.S. urbanized areas. More 

specifically, this study focuses on whether the elasticity of the VMT with respect to fuel 

prices is augmented in more compact and transit friendly urban areas. It will also 

investigate how the elasticity of the VMT with respect to urban form variables such as 

population density varies with fuel price changes. To obtain more robust analysis results, 

this study employs various regression models from ordinary least-squares regression 

(OLS), panel regression with both fixed- and random-effect models, and a non-

parametric approach— panel type locally weighted smoothing (P-LOESS). 
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4.2. Land use planning and fuel price impacts on travel behavior 

As mentioned above, urban policies employed to reduce VMT and GHG emissions can 

be categorized into two groups: 1) land use control and 2) market solution. Market 

oriented approaches are primarily developed by urban and environmental economists, 

and aim to achieve climate mitigation by price policy without market distortion. Planners 

mostly support land use planning approaches to smart growth, and suggest diverse ways 

of curbing urban sprawl (Brueckner, 2000; Ewing, 1997; Gordon & Richardson, 1997; 

Knaap, 2008). 

The price solution emphasizes “getting-the-right-price” (Brueckner, 2005; Parry 

& Small, 2005; Small, 1997), and suggests that the price of travel should cover the cost 

of negative externalities such as congestion, air pollution, and GHGs, as well as the 

private expenses of vehicle use. The proponents of pricing approaches believe that 

correct pricing that includes social costs will immediately and efficiently moderate the 

travel demand for private vehicles through the market system (Anas & Rhee, 2006, 2007; 

Brueckner, 2007; Moore, Staley & Poole Jr., 2010; Staley, 2006). Congestion pricing, 

congestion fee for parking, VMT tax for trucks, gasoline tax, and carbon tax are good 

examples of pricing approaches.  

However, pricing approach has been criticized for several reasons. The first 

argument is that pricing is not a realistic strategy for controlling travel demand in the 

U.S. because most politicians oppose the raising of fuel taxes or the imposing of any new 

fees. Further, since the fuel tax portion of the total gasoline price in the U.S. is very 

small, any attempts through taxing gasoline consumption would work only at the margins 

in practice (Bento et al., 2009; Parry & Small, 2005). As of April 2014, both state and 
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federal gasoline taxes constitute only about 50 cents per gallon on average, ranging 

between 30.8 cents (Alaska) and 71.3 cents (California). 

A second argument is that the pricing approach alone is insufficient to induce 

travel behavior change from a car-oriented to a transit-friendly lifestyle (Cervero & 

Landis, 1995; Winkelman, Bishins & Kooshian, 2010). A number of estimated 

elasticities of the VMT w.r.t. the gasoline price support such arguments. Regardless of 

the short run and long run standards, travel behavior has been estimated to be inelastic 

with respect to fuel prices. For the period from 1997 to 2001, Small and Van Dender 

found −0.07 short run and −0.34 long run elasticities (Small & Van Dender, 2007). 

Komanoff reported −0.04 for 2004, −0.08 for 2005, −0.12 for 2006, −0.16 for 2007, and 

−0.29 for 2011 (Komanoff, 2008-2011). For the period of 2001 to 2006, Hughes and his 

colleague published short run elasticities ranging from −0.077 to −0.034 (Hughes, Knittel 

& Sperling, 2008). The inelastic demand for gasoline or VMT is mainly a result of 

insufficient substitutes for private vehicle travel in many U.S. cities (Cervero & Landis, 

1995; Winkelman, Bishins & Kooshian, 2009). Even when the substantial increase in 

gasoline prices incentivizes a mode shift away from private vehicles, people cannot easily 

change their travel mode since urban areas have become dispersed over the last several 

decades and public transit does not reach most of the residential areas. 

Through the land use planning approaches, various policies in line with smart 

growth principles can reverse the sprawling trend and more sustainable built 

environments are expected to positively drive changes in travel behavior (Handy et al., 

2008). Planners have identified five elements of the built environment that significantly 

affect people’s travel behavior: high density, diverse land use (mixed-use), walkable 
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street design, close destination to transit service, and short distance from job centers. 

Various policy tools including smart codes, transit-oriented development, job-housing 

balance programs, and urban growth boundaries have been increasingly proposed and 

adopted to promote the “5 Ds” (Cao, Mokhtarian & Handy, 2009; Ewing & Cervero, 

2001, 2010; Kuzmyak et al., 2003). 

Many studies report a wide range of estimated elasticities of the VMT w.r.t. the 

characteristics of neighborhood built environments. A typical elasticity of VMT w.r.t. 

population density ranges from −0.07 to −0.19 (−0.07 (Bento et al., 2005); −0.09 (Fang, 

2008); −0.12 (Brownstone & Golob, 2009); −0.19 (Heres-Del-Valle & Niemeier, 2011)). 

However, all these studies were done at the neighborhood level density. A more recent 

study by Lee & Lee (2014) shows that the elasticity of the VMT w.r.t urban area (UA) 

level population density is −0.37, and an elasticity w.r.t population-weighted density can 

be as high as −0.99. Many planners believe a sustainable urban form also creates livable, 

healthy, and diverse communities (Aytur et al., 2008; Boarnet, 2011; Heath et al., 2006; 

Levine, Inam & Torng, 2005). 

Nevertheless, some studies still cast doubt on the impacts of sustainable urban 

form on travel behavior (Brueckner, 2007; Echenique et al., 2012; Mitchell et al., 2011; 

Staley, 2008), arguing that land use regulations distort housing prices (Dawkins & 

Nelson, 2002; Phillips & Goodstein, 2000), cause congestion (Sorensen et al., 2008), and 

ultimately impose negative impacts on economies (Small, 1992). These researchers are 

concerned that the losses outweigh the gains. Furthermore, recent work has revealed that 

urban form impacts from many old studies were overestimated, due to self-selection bias 

(Cao, Mokhtarian & Handy, 2007; Handy, Cao & Mokhtarian, 2006). Although 
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sustainable urban structures seem to be significantly associated with non-motorized travel 

and less driving, the ultimate cause may be the residents’ preferences or lifestyles, rather 

than the physical environment. That is, the effect may be attributed to the fact that people 

who prefer to walk self-select more walkable neighborhoods. If this is the case, many 

people who enjoy a car-oriented lifestyle would not change their behavior simply because 

the built form changes. Recent studies show, however, that there are clear causal 

relationships between the land use character and travel behavior, even after self-selection 

is controlled for, although the size of urban form variables’ coefficients usually shrinks 

(Cao, Mokhtarian & Handy, 2009; Ewing & Cervero, 2010). 

Few studies focus on the interaction between land use policies and pricing 

approaches. To estimate travel mode choice and trip frequency, Crane & Crepeau (1998) 

take into account both price and land use variables, but the study does not directly 

measure the complementary effect between them. Zhang (2004) points out that the 

coordination between the market approach and spatial regulation is important in reducing 

private vehicle use. Stepp et al. (2009) describe the complex relationships between 

factors affecting travel behavior, noting that fuel price, built environment, and individual 

characteristics are both directly and indirectly related, such that some are reciprocally 

supportive while others substitute for or conflict with each other. 

There are only a handful of empirical studies that directly estimate the 

complementary effects of urban form and pricing policies. Rufolo & Kimpel (2009) find 

that the impacts of road pricing on reducing the VMT substantially increase in areas with 

high bus stop frequency, such as Portland, OR. Guo, Agrawal & Dill (2011) directly 

focuses on the interaction effects between land use planning and congestion pricing and 
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empirically tests them with a pilot mileage fee program in Portland, OR. A synergistic 

effect was found; congestion pricing was shown to have a greater impact on VMT 

reduction in traditional neighborhoods than in low density suburban neighborhoods. The 

impact of density and land use mix was also higher in areas imposing congestion pricing 

than in areas without the pilot program.  

The findings from Rufolo & Kimpel (2009) and Guo, Agrawal & Dill (2011) are 

useful, but it is hard to generalize with results based on several small neighborhood cases 

in the Portland MSA. Lee & Lee (2013) focus on the interaction effects on increasing 

transit ridership in 67 UAs from 2002 to 2010. They find that the ridership elasticity 

w.r.t. fuel price increases as population density increases, and the elasticity is higher in 

UAs having a containment policy comapred with other UAs without one. However, the 

mode share of public transit is under 2% in the U.S., and, as of 2009, major MSAs’s 

transit share is only about 4% (Figure 4.1). For this reason, this study will use VMT, 

rather than the transit ridership, which is the ultimate indicator of the reduction of GHGs. 

I will also employ a more advanced method. The Lee and Lee study finds a constant 

value for the complementary effect between transit ridership and the fuel price due to 

panel analysis limitations. However, the effect can vary based on the level of the fuel 

price or the UA density. Thus, my research will relax the constant complementary effect 

assumption by using the P-LOESS model as well as panel analysis.  

The main hypothesis of this study is that compact development and high fuel 

prices are complementary in reducing VMT. Put another way, the impacts of the compact 

urban form on travel behavior would be reinforced under high fuel prices. Conversely, 

the influence of high gasoline price on moderating private vehicle use would be stronger 
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in denser urbanized areas than in sprawling areas. As the gasoline price increases, people 

who live in transit accessible or walkable areas would easily shift from private vehicle 

use to public transit services, though it would be difficult for someone who resides in a 

non-transit friendly city to do the same. Inconvenient physical environments would lead 

to long commute times, just as long shopping distances combined with insufficient 

alternative travel modes would inhibit behavioral change.  

To test the hypothesis discussed above, this study investigates the changes in the 

elasticity of monthly VMT w. r. t. both fluctuating gasoline prices over time and varied 

spatial forms in the cross section of large urban areas. The VMT elasticities are defined 

as the percentage change in monthly VMT per capita from a one-percent change in either 

fuel price or urban form variables, ceteris paribus. The influence of both urban form and 

gasoline prices on per capita VMT is analyzed over 10 years, from 2002 to 2011, in the 

largest 115 urbanized areas (UAs) in the U.S. The modeling strategy employs various 

regression models to analyze the panel data (115 UAs and 120 time-series from Jan. 2002 

to Dec. 2011), including ordinary least-squares regression (OLS) analysis for every 

month, a fixed and random effect panel analysis with multiplicative interaction terms, and 

fixed panel type locally weighted smoothing (P-LOESS). The specific methods and data 

sources are described in the appendices. 
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4.3. Descriptive comparative analysis results 

This study covers 115 largest urban areas in the U.S. over 120 months, so as to allow 

abundant variations in terms of land use, fuel price, and VMT. Before a series of 

regression analyses for the full sample, this section presents a descriptive analysis that 

explores how differently compact and sprawled UAs responded to the fluctuation of 

gasoline prices in the last decade. To do this, I compared per capita VMT changes 

between high density and low density UAs that are otherwise comparable, over three 

distinctive periods (Figure 4.3). 

 

Figure 4.3. Three distinctive periods of fuel price fluctuation. 

 

The first term is a 5 year range from July 2004 to July 2008. During this period, 

fuel price steadily increased, with seasonal fluctuations, so we can examine the effects of 

continuous fuel price increase on VMT. Although the increasing trend of fuel prices had 

already began prior to 2004, the shortage of crude oil supplies in May of 2004 gave the 
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consumer market a strong signal of rising fuel prices, and as a result most economic 

sectors began to react sensitively to the fuel price change. Per capita VMT trend also 

shows that July 2004 was a turning point.  

The second study period is a two year period, from July 2008 to July 2010. 

Although the gasoline price plummeted from almost $4 to $1.5 per gallon in the third and 

fourth quarters of 2008, the period was too short to observe a significant change in VMT. 

Rather, I include the months until July 2000 since relatively low fuel price was sustained 

under the 2.5 dollar level for another year after the price collapse and its rapid recovery. 

The third term represents a second “rebounding” period of gasoline price from July 2010 

to July 2011. 

To identify comparable UAs with different urban form characteristics, I 

classified 115 UAs into 5 different urban groups using a cluster analysis. For the specific 

cluster analysis, I applied the flexible-beta method—one of the most common approaches 

developed by Lance & Williams (1967). Demographic factors (population) and economic 

variables (household income, housing price, cost of living, employment and 

unemployment rate, among others) were used in the cluster analysis. But, three key 

variables of this study—VMT, urban density (population-weighted density), and fuel 

price—were not included.  

Table 4.1 provides summary statistics of the five cluster groups and the detailed 

information about individual urban areas is reported in Appendix H. Overall, population 

size appears to be a dominating factor in clustering urban groups and, in general, socio-

economic variables such as average median household income, housing price, transit 
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subsidy, and living cost decrease with population size, with a notable exception of groups 

1 and 2. 

 

Table 4.1. Summary statistics of five urban clusters. 

Group† # of 
UAs 

Average 
Population 

Housing 
Price Index 
(HPI)* 

Median 
household 
annual income** 

Cost of 
living 
Index 

Employment 
rate 

Transit 
subsidy per 
100 persons 

0 3 12,903,713 267 59,259 1.617 62.653 93,454 
1 9 2,653,351 255 59,360 1.313 64.973 67,439 
2 8 4,563,275 222 60,081 1.227 64.531 59,089 
3 36 1,173,463 195 53,207 1.127 63.142 32,210 
4 59 412,960 185 47,451 1.083 61.587 19,194 

Total 115 1,440,929 204 51,372 1.139 62.571 31,757 
Note:  
† Group 0: New York, Los Angeles, and Chicago (see Figure I.1). 

Group 1: San Francisco, San Diego, Baltimore, Denver, Seattle, Phoenix, Minneapolis, Tampa, and St. 
Louis. 

Group 2: Philadelphia, Boston, Miami, Washington, D.C., Houston, Dallas, Detroit, and Atlanta. 
Group 3: San Jose, Las Vegas, Milwaukee, Bridgeport, Providence, Jacksonville, Nashville, Raleigh, 

Charlotte, Birmingham, and the other 26 UAs. 
Group 4: Fresno, Madison, Allentown, Lansing, Lexington, Greenville, Knoxville, Augusta, Winston, 

Chattanooga, and the other 49 UAs. 
Full UA lists in each group are reported in Figure H.1 in Appendix H. 

* Original data sources comes from monthly HPI (Federal Housing Finance Agency) at the MSA level, and 
the table values are average of all 120 month HPIs by each UA matched to MSA. 

** Data Source: US. Bureau of the Census. 
 
 

In the next step, I compared the changes in per capita VMT between the four to 

five highest and lowest density UAs in each cluster. Group 0 composed of only three 

largest UAs in the 115 UAs was excluded from the analysis. Analysis results are 

presented in Table 4.2 and Figures 4.4-4.7. Overall, monthly per capita VMT is 

apparently lower in high density UAs than in low density UAs in all groups and the 

hypothesized trend that VMT change would be more responsive to gasoline price 

fluctuation in high density UAs is partially observed. The pattern of larger VMT 

reductions in high density UAs than in low density UAs is more pronounced in period 1 

during which gasoline prices constantly increased to the unprecedented level. The gaps 
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between high and low density UAs are larger in small urban areas in groups 3 and 4. 

Group 2 is an exception in which high density UAs experienced an increase in VMT 

despite the fast fuel price appreciation. I believe this is due to some measurement errors 

or city specific issues in Boston and Washington, D.C. that have unusual drops in VMT 

in 2004. 

In period 3 when gasoline prices resurged after a quick drop, groups 3 and 4 

again show an expected change, steeper VMT reductions in high density UAs. But, the 

opposite pattern is observed in UAs of groups 1 and 2. The two year period when 

gasoline price fell after the peak of 2008 (period 2) shows a more mixed pattern: VMT 

bounced back more quickly in low density UAs in groups 1 and 3, but in high density 

UAs in group 3. All in all, the results of descriptive comparative analysis are not 

conclusive although an expected trend is found in small urbanized areas. Since the 

changes in VMT can be caused by many other factors such as economic conditions and 

transportation policies specific to certain urban areas, these variables should be controlled 

for to isolate the effects of gasoline price changes. A more rigorous multivariate analysis 

in the next section does this. 
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Table 4.2. The percent change of VMT in the 5 highest and 5 lowest population-weighted density 
UAs in each group by three different fuel price periods. 

 

Period 1 [fuel price ↑] 
Smr.* 2004−Smr.* 2008 

Period 2 [fuel price ↓] 
Smr.* 2008−Smr.* 2010 

Period 3 [fuel price ↑] 
Smr.* 2010−Smr.* 2011 

High PWD Low PWD High PWD Low PWD High PWD Low PWD 
Group 12) −7.2% −5.2% 11.2% 14.3% −11.8% −14.3% 
 (−12.0%) (−6.5%) (12.1%) (15.5%) (−11.6%) (−14.9%) 
Group 23) 5.0% −8.2% 10.3% 9.3% −14.1% −17.3% 

 
(−3.3%) (−11.3%) (10.8%) (10.8%) (−13.5%) (−17.2%) 

Group 34) −4.5% 1.9% 5.5% 10.5% −18.0% −15.3% 

 
(−7.5%) (−1.2%) (6.4%) (12.4%) (−17.8%) (−16.7%) 

Group 45) −10.6% −1.5% 16.7% 2.9% −16.0% −8.3% 
 (−14.4%) (−4.8%) (18.4%) (5.3%) (−18.0%) (−9.9%) 
Notes: 
* The summer (Smr.) is defined two ways; 1) June, July, and August (bold figures), 2) July (parenthesis 

figures).  
1) In the group 1, there are only 9 UAs, so average VMT change is measured by each 4 UAs of high and low 

PWD rather than by each 5 UAs. The 4 highest PWD UAs are San Francisco, San Diego, Baltimore, and 
Denver, while the 4 lowest PWD UAs are Phoenix, Minneapolis, Tampa, and St. Louis. 

2) The group 2 also has only 8 UAs, so 4 highest and lowest PWD UAs are selected. The 4 highest PWD 
UAs are Philadelphia, Boston, Miami, and Washington, while the 4 lowest PWD UAs are Houston, 
Dallas, Detroit, and Atlanta in the group 2 as of 2010 Census. 

3) The 5 highest PWD UAs are San Jose, Las Vegas, Milwaukee, Bridgeport, and Providence, while the 5 
lowest PWD UAs are Jacksonville, Nashville-Davidson, Raleigh, Charlotte, and Birmingham in the 
group 3 as of 2010 Census. 

4) The 5 highest PWD UAs are Fresno, Madison, Allentown, Lansing, and Lexington, while the 5 lowest 
PWD UAs are Greenville, Knoxville, Augusta, Winston, and Chattanooga in the group 4 as of 2010 
Census. 
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Figure 4.4. The monthly per capita VMTs in the 4 highest population-weighted density UAs 
(blue line, left axis) and 4 lowest population-weighted density UAs (red line, left axis) 
of group 1, and their monthly fuel prices (right axis, cent per gallon). 

 

 

Figure 4.5. The monthly per capita VMTs in the 5 highest population-weighted density UAs 
(blue line, left axis) and 5 lowest population-weighted density UAs (red line, left axis) 
of group 2, and their monthly fuel prices (right axis, cent per gallon). 
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Figure 4.6. The monthly per capita VMTs in the 5 highest population-weighted density UAs 
(blue line, left axis) and 5 lowest population-weighted density UAs (red line, left axis) 
of group 3, and their monthly fuel prices (right axis, cent per gallon). 

 

 

Figure 4.7. The monthly per capita VMTs in the 5 highest population-weighted density UAs 
(blue line, left axis) and 5 lowest population-weighted density UAs (red line, left axis) 
of group 4, and their monthly fuel prices (right axis, cent per gallon). 
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4.4. Multivariate analysis results 

4.4.1. Panel model analysis 

The first approach to testing the complementarity between fuel price and urban form in 

VMT reduction is a panel analysis with multiplicative interaction terms of gasoline price 

and various urban form variables. I tried both random and fixed effects models. To 

control for other socio-economic and physical infrastructure conditions in each urban 

area, various control variables were included in panel models. Table 4.3 presents a 

summary result of the panel analysis, showing only land use, gasoline price, and their 

interaction variables. 

Full models are reported in Appendix F and the descriptions and data sources for 

all variables used are presented in Appendix G. The results of both fixed and random 

effects models are similar. But the results of the Hausman tests suggest that a random 

effects model better fits models 1R (population-weighted density) and 2R (population 

density), while a fixed effects model shows a better fit for model 3F (compactness index). 

Both dependent and all independent variables are in natural logarithm, so all estimated 

coefficients (Coef.) can be interpreted as the elasticities of VMT w.r.t. corresponding 

independent variables. To compare the relative size of the impacts of independent 

variables on VMT, standardized coefficients (Std. Coef.) are additionally conducted. 

All key independent variables are significant with expected signs. Gasoline price 

is negatively associated with per capita VMT with statistical significance. VMT 

elasticities w.r.t. gasoline price are comparable with previous estimates of short term 

elasticities (Hughes, Knittel & Sperling, 2008; Small & Van Dender, 2007), which are in 

the range of −0.05 to −0.07. All alternative urban form variables such as population 
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density, population-weighted density (PWD), and compactness index also have 

significant and negative impacts, and the estimated elasticities range from −0.37 to −0.29. 

These elasticities are also within the range of previous estimates at the urbanized area 

level (the VMT elasticity w.r.t. density: −0.381 (Cervero & Murakami, 2010), −0.371 

(Lee & Lee, 2014); the VMT elasticity w.r.t. PWD: −0.986 (Lee & Lee, 2014)). 

Population centrality given urban density also works to reduce VMT and the estimated 

elasticity is −0.24. But, the impact of polycentric structure is not statistically significant. 

 Interaction terms with gasoline price were significant for population-weighted 

density and sprawl index, indicating synergistic effects between high gasoline price and 

compact urban form, but not for conventional density variable. First, population-weighted 

density and fuel price interactions were negative with statistical significance. This means 

that the marginal impact of high population-weighted density on VMT is higher under the 

condition of high gasoline price; alternatively, the influence of gasoline price on VMT 

will be intensified in cities with high population-weighted density. The main hypothesis 

of the complementary impacts of land use and gasoline price was also confirmed when 

the sprawl index variable was used instead. However, the interaction term was not 

significant when the conventional density variable was used.  
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Table 4.3. The results of panel model analysis. 
Dep. Variable Model 4.1R Model 4.2R Model 4.3F 
 Monthly per    
 capita VMT 

Std. 
Coef. Coef. t-value Std. 

Coef. Coef. t-value Std. 
Coef. Coef. t-value 

Indep. Variables             
Real gasoline price −0.069 −0.048 −2.79 *** −0.094 −0.066 −3.64 *** −0.096 −0.067 −3.75 *** 

Population-
weighted density −0.580 −0.292 −10.95 *** 

        

× gasoline price −0.044 −0.003 −1.69 * 
        

Population density     −0.470 −0.310 −9.90 *** 
    

× gasoline price      −0.087 −0.007 −1.04  
    

Pop. centrality     −0.221 −0.242 −8.87 *** 
    

× gasoline price      0.274 0.036 4.14 *** 
    

Polycentricity     0.016 0.014 1.03  
    

× gasoline price      −0.189 −0.025 −2.68 *** 
    

Sprawl index         −0.300 −0.288 −6.09 *** 

× gasoline price          −0.049 −0.006 −1.86 * 

Pseudo R-square 0.385 0.388 0.776 

F-test   141.23*** 

Hausman Test 16.94 23.38  

Breush-Pagan Test 203,029*** 190,675*** 201,103*** 
Note: ***: significant at 1%, **: significant at 5%, *: significant at 10% 

1) Full model result is reported in Table J.2 (Model 4.1R & 4.2R) and Table J.1 (Model 4.3F) in Appendix J. 
2) As the control variables, population size, freeway lane miles, transit service supply, employment rate, trend, post-peak 

dummy, monthly dummies are considered. 
3) ‘Std. Coef.’ indicates the coefficient of standardized regression for each independent variable, so we can compare the 

relative impacts of different independent variables on monthly per capita VMT. 
4) Dependent and all continuous independent variables are in natural logarithm, so estimated coefficients (Coef.) can be 

interpreted as elasticities. The elasticity is defined as the ratio of the percent change in dependent variable to the 
percent change in each independent variable. 

 

From the results of panel analysis, it is hard to clearly confirm that there are 

complementary relations between land use elements and fuel price. The interaction term 

between population-weighted density and gasoline price shows a significant and negative 

coefficient as hypothesized, but the interaction between fuel price and population density 

is not statistically significant. In following next sections, I further relax the assumption of 

linear interaction effects. The marginal impacts of land use on VMT can be seen to 

sensitively react to increasing retail gasoline price, while the influence of fuel price on 

VMT can be relatively stable if urban population density increases. Therefore, I re-
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analyze the interactions between land use and fuel price on VMT using P-LOESS 

analysis. 

 
4.4.2. Varying Land Use Effects Depending on Fuel Prices 

The built environment changes slowly, but personal attitudes toward land use change and 

land use policies can evolve relatively easily. In this study, I assume that the fluctuation 

of gasoline price significantly alters people’s perception of land use, leading to a change 

in travel behavior. This attitude change can be captured by the change of VMT 

elasticities w.r.t. land use variables. Figure 4.8 depicts monthly VMT elasticities w.r.t. 

PWD that look to move in the opposite direction of the gasoline price trend, with the 

range of the elasticity changes being almost 25%. Over the ten years (2002-2012), 

average PWD in 115 urban areas decreased by only 3.56 percent, from 4,508 to 4,263, 

with no violent fluctuation of density. Thus, it is likely that the observed changes in the 

elasticities came from the variations in gasoline price. The elasticities of VMT w. r. t. 

population density seem to follow a similar pattern (Figure 4.9) in a wider range of 

change, nearly 40%.   
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Figure 4.8. The elasticity of per capita VMT w.r.t. population-weighted density (red point, left 

axis) compared to average nominal gasoline price (gray line, right axis), Jan. 2002 - 
Dec. 2011. 

 

 

Figure 4.9. The elasticity of per capita VMT w.r.t. conventional population density (red point, 
left axis) compared to average nominal gasoline price (gray line, right axis), Jan. 2002 
- Dec. 2011. 
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 These simple comparisons, however, cannot control for the impacts of other time 

variant characteristics of each urban area. Thus, in the next step, I conducted P-LOESS 

analysis with a window size of 2,930 (20% of all 14,652 observations in the sample). 

Figure 4.10 shows the results, with each point indicating the local VMT elasticity w.r.t. 

PWD under different fuel price levels. There is a clear pattern that the elasticity grows 

bigger with the fuel price to a certain price level, $2.5 per gallon in 2015 real dollars ($1 

in 1983 real dollars)). When the gasoline price is about $1 (all in 2015 real dollars 

hereafter), the VMT elasticities w.r.t. PWD is about −0.19, but it increases to around 

−0.27 when the gasoline price is about $2.50. But, the impacts of higher density remain 

the constant when gasoline price further moves beyond $2.50.  

 

 
     $1.18     $1.41      $1.65      $1.89      $2.13      $2.36     $2.60      $2.84     $3.07      $3.28 

       Gasoline Price (Black: 1983 cent per gallon, denominated by cost of living index (CLI, Rochester, NY=1), 
                      Blue: 2015 dollar per gallon, denominated by CLI (Rochester, NY=1)) 

Figure 4.10. VMT elasticity w.r.t. population-weighted density under the different fuel price 
from the results of P-LOESS analysis (band size: 2,930 (20%), total sample size: 
14,652). 
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As shown in Figure 4.11, an analysis with conventional population density 

variable also shows a similar pattern. The elasticities of VMT move from about −0.21 to 

−0.29 as gasoline price increases from $1 to $2.5 and they stay at the range between 

−0.27 and −0.29 under higher gasoline prices than $2.5.  

However, the impacts of compactness index on VMT show quite a different 

pattern (Figure 4.12). The synergistic effects of compact development and higher 

gasoline prices exist only up to a certain price level, $1.8 per gallon. Beyond that gasoline 

price level, the elasticity of VMT w. r. t. the compactness index seems to rather shrink. 

This is a puzzling result, which needs to be further explicated in future research. 

 

 
     $1.18     $1.41      $1.65      $1.89      $2.13      $2.36     $2.60      $2.84     $3.07      $3.28 

       Gasoline Price (Black: 1983 cent per gallon, denominated by cost of living index (CLI, Rochester, NY=1), 
                      Blue: 2015 dollar per gallon, denominated by CLI (Rochester, NY=1)) 

Figure 4.11. VMT elasticity w.r.t. conventional population density under the different fuel price 
from the results of P-LOESS analysis (band size: 2,930 (20%), total sample size: 
14,652). 
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  $1.18     $1.41      $1.65      $1.89     $2.13      $2.36      $2.60      $2.84     $3.07      $3.28 

       Gasoline Price (Black: 1983 cent per gallon, denominated by cost of living index (CLI, Rochester, NY=1), 
                      Blue: 2015 dollar per gallon, denominated by CLI (Rochester, NY=1)) 

* Note: Compactness Index estimated by Ewing & Hamidi (2014) does not cover 7 urban areas (Colorado Spring, CO; 
Bridgeport-Stamford, CT-NY; Virginia Beach, VA; San Diego, CA; Santa Rosa, CA; Providence, RI-MA) among 
115 UAs, so the total sample and band size are smaller than those of the other analysis. 

 
Figure 4.12. VMT elasticity w.r.t. compactness index under the different fuel price from the 

results of P-LOESS analysis (band size: 2,738 (20%), total sample size: 13,692). 
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4.5. Conclusions 

This chapter examined how land use policies and fuel price policies can jointly affect the 

travel behavior, using diverse statistical methods. When sustainable land use keeps pace 

with adequate fuel price, they generate synergistic effects in reducing VMT. When 

population-weighted density doubles, VMT is reduced by about 19% when gasoline price 

is about $1/gallon in 2015 dollars, but the impact of higher density increases to about 

27% under $2.5. Under higher fuel prices, VMT reducing impacts of most compact urban 

form variables including urban density, compactness index, and population centrality 

index were estimated to be stronger. This confirms the hypothesis of this chapter that 

sustainable land use policy can have much stronger impacts under higher gasoline prices. 

However, their complementary relations do not seem constant. The elasticities of 

VMT remain at around 27%, even when the fuel price increases beyond $2.5 to $4 per 

gallon (in 2015 dollars). The elasticities of urban compactness and centrality also show a 

similar pattern, in which they stabilize at a certain level or even shrink as gasoline prices 

continue to rise over 2 dollars (in 2015 dollars).  

Even though the study focuses on the two elements between land use regulation 

and fuel price and their complementary effects, the two elements represent diverse 

policies in the implementation stage. Fuel price stands for gasoline tax, carbon tax, VMT 

fee, and parking fee, congestion charge and other policies for increasing costs of driving. 

UA level land use policies encompass transit oriented development (TOD), compact 

development, land-use mix exceeding neighborhood boundary, and so on. Even for the 

same goal of discouraging driving and attaining sustainable travel behavior, it is true that 

most planners and policy makers have exclusively focused on either land use regulation 
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or fuel pricing policy. However, the results of this study draw an important implication 

that land use regulation and fuel price increase can be mutually supportive to reduce auto-

oriented travel patterns. They are not in a competitive relationship, but a complementary 

one with synergic effects. This means that both policy areas should recognize the 

significance of the other part and make a collaborative effort to enhance the policy 

effectiveness. 
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  CHAPTER 5
CONCLUSIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The aim of this dissertation is to elucidate the role of urban spatial structure in mitigating 

GHG emissions to stabilize climate change. A large and increasing volume of empirical 

studies have been investigating the connections between specific land-use elements and 

sustainable travel behaviors in U.S. cities, but most of these studies have mainly focused 

on examining neighborhood scale links between urban form and transportation. However, 

the average one-way trip distance of automobile trips in U.S. cities is about ten miles. In 

other words, the changes in small scale built environments may not have significant 

impacts on most urban trips. As such, geographical scale of land use-transportation links 

is a critical dimension to come up with effective policies. But it did not get much 

attention in previous studies mainly due to the difficulty of measuring urban spatial 

structure at the urban area or MSA level. In this dissertation, I advanced the way to 

measure spatial structure at the urban area level by developing several spatial indicators 
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such as population-weighted density, centrality index, and polycentricity index. Using 

these spatial measures, I investigated how urban spatial structure influences travel 

behavior and residential energy consumption from various angles. 

The dissertation presented three pieces of semi-independent but related empirical 

studies. Chapter 2 examined the comprehensive impacts of urban spatial structure on 

household GHG emissions by tracing various paths between them through housing type 

choices, vehicle type choices, travel mode choices, and so on. Chapter 3 compared the 

impacts of built environment characteristics on VMT at neighborhood and urban area 

levels, and examined the complementary nature of the two scale land use characteristics. 

Chapter 4 compared and contrasted land use and pricing policies, and explored how the 

two different policies interact with each other to reduce car-oriented travel behavior. All 

three papers aim to discover and highlight the role of urban spatial structure in mitigating 

household GHGs. 
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5.1. Summary 

Chapter 2 examines the paths by which urban form influences an individual household’s 

carbon dioxide emissions in the 125 largest urbanized areas in the U.S. The result of the 

multilevel SEM analyses shows that doubling population-weighted density is associated 

with a reduction in CO2 emissions from household travel and residential energy 

consumption by 48% and 30%, respectively. The impacts of centralized population and 

polycentric structure are only moderate. The result also shows that doubling per capita 

transit subsidy is associated with a nearly 46% lower VMT and 18% reduction in 

transportation CO2 emissions. Given that household travel and residential energy use 

account for 42% of total U.S. carbon dioxide emissions, these research findings 

corroborate the notion that urban land use and transportation policies to build more 

compact and transit friendly cities should be a crucial part of any strategic efforts to 

mitigate GHG emissions and stabilize climate at all levels of government. 

Chapter 3 focuses on urban form at two different geographic scales and their 

influences on travel behaviors. Travel behaviors are affected by regional scale 

development patterns as well as by physical characteristics of a resident’s neighborhood. 

The analysis results show that regional scale urban form elements are far more important 

than neighborhood land use design in mitigating the environmental impacts of auto-

oriented travel. Specifically, population-weighted density, centrality, job accessibility, 

and the proximity to downtown significantly decrease VMT and GHG emissions. 

Moreover, the results show that there are positive interaction effects between compact 

urban forms at the two scales: the influences of neighborhood level land use design on 

both VMT and GHGs are amplified in cities with higher population-weighted density. 
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The VMT elasticities with respect to neighborhood compactness is approximately 50% in 

the average population-weighted density, but these increase to 75% when population-

weighted density increases from average levels to the New York urbanized area level. 

Chapter 4 assesses how land use policies and gasoline prices jointly affect travel 

behavior. When the fuel price is at a moderate level, there are significant complementary 

effects between sustainable land use policy and rising gasoline price. Under $1/gallon in 

2015 constant dollars, doubling population-weighted density is associated with a 19% 

lower VMT per capita, but the VMT elasticity rises to about −27% when gasoline price is 

about $2.5. Population centrality and compactness index developed by Ewing and 

Hamidi (2014) also show stronger VMT reduction effects under higher gasoline prices. 

These complementary effects peter out when fuel prices increase to the upper range 

above 2 dollars. 
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5.2. Policy implications 

All three papers included in this dissertation bear profound policy implications in 

sustainable land use and transportation planning. Chapter 2 makes a strong case for land 

use planning as an important GHG mitigation strategy while current federal- and state-

level climate change policies predominantly rely on technology solutions. Although a 

growing body of literature has explored the mechanisms by which urban form influences 

household sector GHG emissions especially in transportation, there remains a lack of 

agreement among researchers on the magnitude of urban form effects. Current 

metropolitan area- or urban area-level studies have critical limitations in providing a 

generalizable assessment of the role of sustainable urban form and the national scale 

studies are in their infancy. Chapter 2 advances our knowledge of the connections 

between urban form and household sector carbon emissions. By studying multiple scales 

and dimensions of urban form and addressing both transportation and residential carbon 

emissions, this research yields rich insights into the spatial changes that are needed to 

significantly reduce total household carbon emissions. 

Chapter 3 poses a serious question of the state of the regional governance to 

develop a strategic land use plan to effectively reduce GHG emissions. It shows empirical 

evidence that sustainable regional spatial structure not only matters more but also 

augments the positive impacts of neighborhood level compact design. In other words, 

scattered and fragmented development of compact neighborhoods is not enough to 

modify automobile dependent travel behavior. Regional scale coordination of smart 

growth strategies such as urban growth boundaries, balanced jobs-housing development, 

and transit oriented development would foster sustainable transportation in a much more 
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effective way. Chapter 3 raises important implementation issues regarding regional level 

smart growth policies. Who should plan for regional smart growth strategies and who 

should be empowered to execute them? Which system would work more effectively, state 

government-led initiatives or voluntary regional governance based on communicative and 

collaborative planning? How can we cultivate voluntary governance or build the 

consensus with institutional arrangements to overwhelm local resistance under the 

‘bottom-up’ framework? While more research is needed to address these issues in the 

future, my study highlights that regional level coordination of smart growth policies is 

imperative. Increasing number of metropolitan planning organizations (MPOs) have been 

exercising regional scenario planning to develop a regional blueprint–e.g. Denver’s 

Metro Vision, Chicago’s 2040, and so on. However, resulting plans of these efforts are 

largely conceptual, but lack in specific measures and tools to assure implementation at 

the local level. In this regard, state level legislation empowering regional level 

governments or MPOs such as a series of growth management codes in the State of 

Oregon and, more recently, California’s AB 32 in 2006 and SB 375 in 2008 seems to be a 

necessary condition for more effective smart growth policies and the regional level. 

Chapter 4 highlights the importance of how urban form structure influence is 

changed under the fluctuation of gasoline price, which has been largely ignored by 

planners. The important implication is that both land use and gasoline price are closely 

connected to reduce private vehicle use, so we need to take both elements into account 

for transportation policy. When sustainable land use policy keeps pace with adequate fuel 

price, they create complementary effects with corresponding reductions in the demand for 

gasoline, but the policies need to be applied in sophisticated ways in the implementation 
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stage. Urban density increase gives rise to diverse benefits, but it also causes land value 

increase around the denser areas. High population density can negatively affect residents’ 

ability to find affordable housing near job centers, so it can lead to average commuting 

distances increase. Given the density increases, enough alternative public transits seem to 

be supported as urban density increases. 
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APPENDIX A 
FULL MODEL RESULTS (CHAPTER 2) 
 
Table A.1. Full result of transportation CO2 model (Model 2.2). 

***: significant at 1%, **: significant at 5%, *: significant at 10% 
 
Note: 
Reference categories for dummy variables are as follows: Age3 (household head age 31-40); Race3 (all other races); 
Education3 (technical training); Household annual income3 ($35,000-$55,000); Life Cycle 3 (youngest child 5-16).   
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Table A.2. Full result of residential CO2 model (Model 2.4). 

***: significant at 1%, **: significant at 5%, *: significant at 10% 
 
Note: 
Reference categories for dummy variables are as follows: Age3 (household head age 31-40); Race3 (all other races); 
Education3 (technical training); Household annual income3 ($35,000-$55,000); Life Cycle 3 (youngest child 5-16).   
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Table A.3. Full result of residential CO2 model (modified version of Model 2.4). 

***: significant at 1%, **: significant at 5%, *: significant at 10% 

 
Note: 
Reference categories for dummy variables are as follows: Age3 (household head age 31-40); Race3 (all other races); 
Education3 (technical training); Household annual income3 ($35,000-$55,000); Life Cycle 3 (youngest child 5-16). 
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APPENDIX B 
MODEL SPECIFICATION (CHAPTER 3) 

Level 1 (individual household): ),0(~, 2
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where Yijk is the per capita VMT or CO2 emission for the i-th household in the j-th 
neighborhood within the k-th urbanized area; apjk are the household characteristics such as 
age, education, household income, race, household size and the number of workers; πpjk 
are the coefficients of the household behaviors with other covariates; π0jk is the intercept 
of the household level; epjk is the error term of the household level; Xijk are the 
neighborhood characteristics (5Ds) such as neighborhood level population density, land 
use mix, beta index, distance from the CBD, and distance from the subcenter; βpqk are the 
coefficients of the neighborhood within the k-th urbanized area,; βp0k is the intercept of 
the neighborhood level; rpjk is the error term of the neighborhood level; Wsk are the 
urbanized area (UA) characteristics such as UA population density, UA population-
weighted density, centrality, polycentricity, UA level sprawl index, freeway lane mile, 
vehicle revenue miles, and the subsidies for public transit; γpqs are the coefficients of the 
urbanized area variables; βpq0 is the intercept of the urbanized area level; upqk is the error 
term of the urbanized area level. All dependent and independent variables are the natural 
logarithm form, thus all coefficients can be interpreted as elasticity. 
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APPENDIX C 
MEASURES OF DEPENDENT AND INDEPENDENT VARIABLES 
(CHAPTER 3) 
 
 
Dependent variables 
Both the annual VMT per household and CO2 emissions generated from the 
transportation sector are considered. The VMT variable covers all other travel behavior 
indices such as trip frequency, trip length, trip time, and mode choice (Ewing & Cervero, 
2001). The amount of GHGs per household comes from the output of the multiplication 
of the VMT and pounds of CO2 per 1 gallon of gasoline divided by miles per gallon (see 
Mui et al. (2007) and Cervero & Murakami (2010)). 

Independent variables 
As mentioned above, there are three levels of independent variables representing 
household, neighborhood and urbanized characteristics. Household characteristics are 
largely divided into demographic and socioeconomic factors. More specifically, 
demographic factors include the number of households, age of the household head, race, 
and family life cycle. Socioeconomic factors include household income, employment 
status, and education attainment. All of the data for household variables comes from the 
NHTS (2009). The sample size of the total number of households is 48,831 in the largest 
121 urbanized areas. 

Next, neighborhood characteristics are based on diverse sources. Census tract 
level population and employment densities come from the NHTS (2009). Land use mix 
index is accounted for based on Longitudinal Employment-Household Dynamics 
(LODES, 2009). Street design variables such as the beta index and 4-way intersection 
density are measured with CENSUS TIGER files (2009) covering all arterial, collector 
and local roads except freeways. Distances from the CBD and the closest subcenter are 
based on the Gaussian distance from the centroid of each census tract to the CBD and the 
closest subcenter. The physical boundary files come from the CENSUS TIGER file (2010) 
and the employment information from LODES (2009) and population information taken 
from the CENSUS (2010) are used to identify urban employment centers such as the 
CBD and subcenters. 

To build the job centers, a geographically weighted regression (GWR) procedure 
derived from Giuliano & Small (1991) and McMillen (2001) is applied under the 
assumption that urban centers should have higher employment density than the 
surrounding areas. The differentials between two estimated employment density surfaces 
are estimated, one with a small window size (10 neighboring census tracts) and the other 
with a large window size (100 census tracts). Among the clusters of density peaks as 
defined by the significant differentials, only those with more than 10,000 jobs as 
employment centers qualified (for a detailed description of the procedure, see Lee 
(2007)). 

Finally, urbanized characteristics use numerous sources. Both population density 
and population-weighted density are calculated based on the CENSUS (2010) data. To 
identify intra-urban population and employment distributions, the location information 
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for job centers is used based on CENSUS (2010), the CENSUS boundary file (2010), and 
LODES (2009). The major source of land use mix variables is LODES (2009), and 
urbanized area level freeway lane miles come from Federal Highway Administration 
(FHWA, 2009). Both ‘vehicle revenue mile’ and ‘public transit subsidy’ variables come 
from the National Transit Database (NTD, 2009). 
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Table C.1. Definitions of dependent and explanatory variables. 
  Variable Description Source 

  
  

  
  

  
 D

ep
en

de
nt

 Annual vehicle mile traveled 
[lnVMT]  

■ Natural logarithm of annual vehicle mile traveled per 
household 

NHTS 
2009  

Annual CO2 emission from 
private vehicle and public 
transit ride 
[lnTCO2] 

■ Natural logarithm of annual CO2 emissions per household 
• Annual CO2 [TCO2] = CO2 Private vehicle use [VCO2] 
                  + CO2 Public transit ride [PCO2] 
• CO2 Private vehicle use = Annual VMT / Fuel efficiency  
       (mpg) × Emission factor 23.46 (lbs/gallon).   
• CO2 Public transit ride = Household annual transit rides   
       × UA average passenger trip length  
       × UA specific emission factor per passenger mile. 
 

NHTS 
2009 
 
NTD 2009 
EIA 

Household (Level 1) 

  

Age 
[AGE1] [AGE2] … [AGE6] 
 

■ Household Head Age   
5 different dummy variables: [AGE1] under 20; [AGE2] 
21~30; [AGE3] 31~40; [AGE4] 41~50; [AGE5] 51~64; 
[AGE6] larger than 65. 

NHTS 
2009 

 

Education 
[EDU1] [EDU2] … [EDU5] 

■ Education level of household head NHTS 
2009 5 different dummy variables: [EDU1] less then high school 

graduate; [EDU2] high school graduate; [EDU3] some college 
or associate's degree; [EDU4] bachelor's degree (BA, AB, BS); 
[EDU5] graduate or professional degree. 

 

Household income 
[INC1] [INC2] … [INC5] 

■ Total Household Income NHTS 
2009 5 different dummy variables: [INC1] under $20,000; [INC2] 

$20,000~$35,000; [INC3] $35,000~$55,000; [INC4] 
$55,000~$80,000; [INC5] higher than $80,000 

 

Race 
[White] [Black] [Asia] 
[Other] 

■ Race 
4 different dummy variables: [White] White; [Black] African 
American; [Asia] Asian, [Other] all other races. 

NHTS 
2009 

Household size 
[lnHHSIZE] 

■ Natural logarithm of the number of household member NHTS 
2009 

Number of worker ■ Natural logarithm of the number of worker NHTS 
2009 
  

[lnWRK]  

Census Tract (Level 2) 

  

Population density 
[lnC_PDEN] 

■ Natural logarithm of population density at the level of 
census tract (pop. density = # of pop. / sq. miles) 

NHTS 
2009 

Land use mix 
[lnC_LUMIX] 

■ Natural logarithm of entropy index  
Entropy Index : −1 × {[∑(𝑝𝑝𝑖𝑖) ln(𝑝𝑝𝑖𝑖)] ∕ ln(𝑘𝑘)} 
   where   pi=land use i's % of total land area 
             k=number of categories of land use 
4 different land areas are considered as follows:  
        Residential; Commercial; Industrial; Office districts. 
• The proportion of each districts are re-defined as the same 

proportion of number of worker who works at the census 
tract. (Entropy index range: b/w 0 to 1) 

LODES 
2009 

Beta index 
[lnBETA] 

■ Natural logarithm of Beta Index 
• Beta index is defined as the ratio of links to nodes as follows; 
  𝛽𝛽 = 𝑒𝑒 ∕ 𝑣𝑣, e: number of links, v: number of nodes 

CENSUS 
2009 
(Tiger file) 

Distance to the closest 
transit terminal 
[lnC_DTT] 

■ Natural logarithm of 4 way intersection density 
• The density is defined as 4 way intersection divided by street 

length (mile) at the targeted census tract 

CENSUS 
2009 
(Tiger file) 

Distance to downtown 
[lnC_DCBD] 

■ Natural logarithm of distance (mile) from Central Business 
District (CBD) to each census tract 

LODES 
2009 

Distance to the closest 
subcenter [DSUBD] 

■ 1 ∕ �𝐷𝐷𝑖𝑖𝑠𝑠𝑠𝑠.𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
  (based on shepard's method (Gordon & Wixom, 1978)) 

LODES 
2009 

Compactness Index 
[lnC_SPW] 
 
[continue to the next page] 

■ Natural logarithm of compact. index at the census tract level 
  Compactness index comes from Hamidi & Ewing (2014) 
 

Hamidi & 
Ewing, 
2014 
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Table C.1. (cont.). 

Urbanized Area (Level 3) 

  

Population density 
[lnU_PDEN] 

■ Natural logarithm of urbanized area pop density 
  Population density = urbanized area pop. / sq. mile 

CENSUS 
2010 

Population-weighted density 
[lnU_PWDEN] 

■ Natural logarithm of population-weighted density (PWD) 
• PWD is estimated as the weighted mean of census block 

group level density with each block group’s population 

CENSUS 
2010 

Centrality index 
[lnU_CENp] 

■ Natural logarithm of population centrality index 
 • Centrality index is summarized as principle component 

analysis (PCA) from the 4 indices as follows; 
1) Central business district (CBD) population share 
2) The area-based centrality index (ACI) 
3) The ratio of weighted to unweighted average distance 

(WUAD) 
4) The population density gradient.  

 
• The CBD population share is estimated as the share of the UA 

population in the CBD (Lee, 2007; Lee and Lee, 2014). 

CENSUS 
2010 
& 
LODES 
2010 

Job accessibility 
[lnU_JTH10b] 

■ Natural logarithm of population weighted jobs-to-housing 
index of census tracts in 10 mile buffer. 

  Jobs-to-housing index: −1 × {[∑(𝑝𝑝𝑖𝑖) ln(𝑝𝑝𝑖𝑖)] ∕ ln(2)} 
    where p1=# employment / ∑(#ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜 + #𝑒𝑒𝑒𝑒𝑒𝑒. ) 
         p2=# household / ∑(#ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜 + #𝑒𝑒𝑒𝑒𝑒𝑒. ) 

LODES 
2010 

Total lane miles 
[lnU_TLMpt] 

■ Natural logarithm of total lane miles per 1,000 persons FHWA 2009 

Transit service supply 
[lnU_VRMp] 

■ Natural logarithm of vehicle revenue miles (VRM) per 100 
persons; VRM is defined as the miles that vehicles travel 
(public transit) while in revenue service 

NTD 2009 

Compactness Index 
[lnU_SPW] 

■ Natural logarithm of compact. index at the UA level 
  Compactness index comes from Hamidi & Ewing (2014) 

Hamidi & 
Ewing, 2014 
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Table C.2. Characteristics of dependent and independent variables. 

  Mean Median S.D. Categories (%) 
Dependent : 56,373 Households 

 lnVMT  9.63 9.79        
 └ VMT (miles) 19,844 16,516        
 lnTCO2 9.53 9.80        
 └ TCO2  (lbs/CO2) 21,222 17,367        
 └ VCO2  (lbs/CO2) 21,098 17,269        
 └ PCO2  (lbs/CO2) 124 0        
           Household (Level 1) : 56,373 Households 

 Age 54 57 22 AGE1 AGE2 AGE3 AGE4 AGE5 AGE6 

 └ AGE (Categories)    3.5% 4.5% 7.9% 11.8% 27.6% 36.4% 

 Edu (Categories)    EDU1 EDU2 EDU3 EDU4 EDU5  

     5.9% 19.4% 34.2% 22.7% 17.9%  

 Income ($) 71,887 57,500 50,388 INC1 INC2 INC3 INC4 INC5  

 └ INC (Categories)    13.8% 13.1% 18.7% 22.5% 31.9%  

 Race (Categories)    White Black Asia Other   

     79.6% 8.6% 3.2% 4.2%   

 lnHHSIZE 0.75 0.69 0.52       
 └ HHSIZE 2.41 2.00 1.29       
 lnWRK 0.33 0.00 0.39       
 └ WRK 0.97 1.00 0.90       
           Census Tract (Level 2) : 16,695 Census Tracts 

 lnC_PDEN 8.31 8.01 0.94       
 └ C_PDEN 6,107 3,000 6,031       
 lnC_LUMIX 0.48 0.47 0.21       

 └ LUMIX −0.86 −0.75 0.55       

 lnC_BETA 0.20 0.19 0.09       
 └ BETA 1.22 1.21 0.11       
 lnC_DTT 1.22 1.36 0.94       
 └ DTT 4.77 3.88 3.59        lnC_DCBD 2.13 2.26 0.99       
 └ DCBD 12.90 9.76 10.83       

 DSUBD 1.06 0.63 2.04       
 └ DSUB 3.18 2.52 2.59       
 lnC_SPW 4.59 4.54 0.28       
 └C_SPW 101.24 100.74 19.37       
           Urbanized Area (Level 3) : 121 Urbanized Areas 

 lnU_PWDEN 8.60 8.47 0.72       
 └ U_PWDEN 7,419 4,764 7,744        lnU_PDEN 7.82 7.86 0.48       
 └ U_PDEN 6,317 3,646 13,069       
 lnU_CENp 4.53 4.49 0.24       

 └CENp 90.36 86.99 21.29        lnU_JTH10b 4.48 4.48 0.05       

 └ JTH10b 88.08 88.13 3.93       
 lnU_TLMpt 2.74 2.72 0.64       
 └ TLM 3.96 4.01 1.53        lnU_VRMp 10.54 10.61 0.79       
 └ VRMp 18.56 15.11 11.39       

 lnU_SPW 4.60 4.61 0.19       
 └U_SPW 102.95 93.95 28.96       
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APPENDIX D 
FULL MODEL RESULTS OF VMT ELASTICITIES (CHAPTER 3) 
 
Table D.1. VMT elasticities (Model 3.1-3.4). 

 
Model 3.1 Model 3.2 Model 3.3 Model 3.4 

Beta t-value Beta t-value Beta t-value Beta t-value 
 

Fixed Effect             
 Intercept 9.173 449.8 *** 9.32 55.2 *** 9.159 445.3 *** 9.341 54.8 *** 

 Urbanized Area Level (Level 3)                                                                                                                  
 Pop.-weighted Density −0.108  −4.0 ***   −0.090  −3.2 ***   
 Population Density    −0.066  −2.5 **    −0.099  −2.1 ** 
 Centrality Index    −0.031  −1.8 *    −0.038  −2.2 ** 
 Jobs-to-housing ratio −0.264  −1.8 * −0.171  −1.9 *    −0.115  −0.6   Transit Service Supply  −0.104  −2.6 *** −0.043  −3.1 ***   −0.034  −2.4 ** 
 Total Lane Miles −0.016  −1.1  −0.053  −1.0     −0.017  −0.3  
             Census Tract Level (Level 2)                                                                                                    
 Population Density −0.058  −10.7 *** −0.058  −10.5 ***       Land-use Mix  −0.031  -4.3 *** −0.031  −4.3 ***      
 Street Design (Beta Index) −0.057  −1.1  −0.074  −1.4         Dist. to Closest Transit Stop 0.033 5.8 *** 0.034 6 ***      
 Dist. to Downtown 0.051 9.7 *** 0.05 9.3 ***       Prox. to Closest Subcenter −0.002  −1.0  −0.002  −0.9        
 Compactness Index (H&E)       −0.527  −23.4 *** −0.539  −23.5 *** 
             Household Level (Level 1)                                                                                                                      
 Age1 (Under 20) 0.067 3.9 *** 0.065 3.7 *** 0.065 3.8 *** 0.063 3.6 *** 
 Age2 (21 ~ 30) 0.09 5.6 *** 0.087 5.3 *** 0.089 5.5 *** 0.086 5.3 *** 
 Age3 (31 ~ 40) 0.012 0.9  0.012 0.9  0.012 0.9 

 
0.012 0.9 

  Age5 (51 ~ 64) 0.111 11.2 *** 0.113 11.3 *** 0.111 11.3 *** 0.114 11.4 *** 
 Age6 (larger than 65) −0.014  −1.2  −0.015  −1.3  −0.014  −1.2 

 
−0.015  −1.3 

  Race1 (White) 0.028 2.1 ** 0.026 1.9 * 0.037 2.7 *** 0.034 2.5 ** 
 Race2 (African American) −0.035  −1.9 * −0.040  −2.1 ** −0.037  −2.0 ** −0.042  −2.2 ** 
 Race3 (Asian) −0.074  −3.4 *** −0.076  −3.5 *** −0.066  −3.0 *** −0.068  −3.1 *** 
 Edu1 (Under High School) −0.061  −3.1 *** −0.061  −3.0 *** −0.067  −3.4 *** −0.067  −3.3 *** 
 Edu2 (High School Graduate) −0.013  −1.2  −0.016  −1.4  −0.013  −1.2  −0.016  −1.4  
 Edu4 (Bachelor's degree) −0.006  −0.6  −0.007  −0.7  −0.007  −0.7  −0.008  −0.8   Edu5 (Graduate) −0.007  −0.7  −0.009  −0.8  −0.013  −1.2  −0.014  −1.3  
 Income1 (Under $20,000) −0.307  −17.8 *** −0.305  −17.5 *** −0.314  −18.2 *** −0.313  −17.9 *** 
 Income2 ($20,000  ~$35,000) −0.149  −10.1 *** −0.146  -9.8 *** −0.148  −10.1 *** −0.145  −9.7 *** 
 Income4 ($55,000 ~$80,000) 0.126 11 *** 0.125 10.8 *** 0.127 11.1 *** 0.126 10.9 *** 
 Income5 ($80,000~) 0.237 21.6 *** 0.238 21.5 *** 0.238 21.6 *** 0.238 21.5 *** 
 Household Size 0.487 54.1 *** 0.487 53.6 *** 0.489 54.4 *** 0.489 53.8 *** 
 # Worker 0.338 33.2 *** 0.336 32.7 *** 0.338 33.2 *** 0.337 32.7 *** 

  

Random Effect 
 

V.C.   
 

V.C.   
 

V.C.   
 

V.C.   
 Int. level 3 (UA) 0.003 0.051  0.003 0.057  0.003 0.055  0.003 0.059   Int. level 2 (census tract) 0.009 0.096  0.009 0.097  0.01 0.1  0.01 0.101   Int. level 1 (household) 0.435 0.659  0.436 0.66  0.435 0.659  0.436 0.66   Sum (level 1+2+3) 0.446   0.448   0.448   0.449   
              Pseudo R-Sq (level 3) 70.10%   62.60%   65.40%   60.50%    Pseudo R-Sq (level 2) 88.60%   88.50%   87.60%   87.50%    Pseudo R-Sq (level 1) 49.80%   49.70%   49.70%   49.60%   

***: significant at 1%, **: significant at 5%, *: significant at 10% 
 

 

Note: 
1) Model 3.1-3.4 are adopted by 3-level random intercept model with different independent variables. 
2) Dependent and all continuous independent variables except distance to the closest subcenter are in natural logarithm, 

so estimated coefficients can be interpreted as elasticities. 
3) Reference categories for dummy variables are as follows: Age4 (household head age 41~50); Race4 (all other races); 

Education3 (some college or associate's degree); Household annual income3 ($35,000~$55,000).  
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Table D.2. VMT elasticities with various interaction terms (Model 3.5-3.6). 
    Model 3.5 Model 3.6 
    Beta t-value Beta t-value 
Fixed Effect             

 Intercept 9.171  444.30 *** 9.181  446.50 *** 

            

 
Urbanized Area Level (Level 3)           

 
Population Weighted Density (P.W.D.) −0.099  −3.50 *** −0.123  −4.40 *** 

 Jobs-to-housing ratio (10 mile Buffer) −0.242  −2.03 ** −0.227  −1.98 ** 

 Transit Service Supply (VRM / pop) −0.088  −2.10 ** −0.097  −2.30 ** 

 Total Lane Miles (TLM / pop) −0.008  −0.60  −0.013  −0.80   

 
 

          

 
Census Tract Level (Level 2)             

 Compactness Index −0.499  −22.20 ***       

 Population Density (Tract Level)      −0.047  −8.50 *** 

 Land-use Mix (Entropy Index)      −0.037  −5.10 *** 

 Street Design (Beta Index)      −0.074  −1.40   

 Distance to the Closest Transit Stop      0.026  4.50 *** 

 Distance to Downtown      0.055  10.50 *** 

 Proximity to the Closest Subcenter      −0.002  −1.00   

 
    

 
    

 
  

 
Interaction Effect(Level 3 × Level2)             

 
[UA] P.W.D. × [CT] Compactness Index −0.251  −10.30 ***       

 
[UA] P.W.D. × [CT] Pop. Density      −0.029  −4.00 *** 

 
[UA] P.W.D. × [CT] Land-use Mix      0.008  0.70   

 
[UA] P.W.D. × [CT] Street Design      0.006  0.10   

 
[UA] P.W.D. × [CT] Dist. to Transit Stop      0.016  2.00 ** 

 
[UA] P.W.D. × [CT] Dist. to Downtown      0.036  4.80 *** 

 
[UA] P.W.D. × [CT] Prox. to Subcenter      −0.005  −1.70 * 

    
 

    
 

  

 
Household Level (Level 1)             

            <Skip>           

            
Random Effect V.C.     V.C.     
  Int. level 3 (UA) 0.003 0.056 

 
0.003 0.052   

 Int. level 2 (Census Tract) 0.008 0.089 
 

0.007 0.082 
  Int. level 1 (individual Household) 0.435 0.660 

 
0.435 0.660 

  Sum (level 1+2+3) 0.447 
  

0.445 
  

        
 

Pseudo R-Sq (level 3) 63.59% 
  

68.64% 
  

 
Pseudo R-Sq (level 2) 90.17% 

  
91.68% 

    Pseudo R-Sq (level 1) 49.67%     49.68%     
***: significant at 1%, **: significant at 5%, *: significant at 10% 
 
Note: 
1) Model 3.5-3.6 are adopted by 3-level random coefficient model with interaction terms (random coefficients) 

between level 3 (UA level) and level 2 (census tract level). 
2) Dependent and all continuous independent variables except distance to the closest subcenter are in natural logarithm, 

so estimated coefficients can be interpreted as elasticities. 
3) Individual household level results are not described because of the limit of the space, but they are same with Model 

3.1 in Table D.1 and the results are similar with the outputs of Model 3.1 to Model 3.4. 
4) All interacted variables are used after centering for the ease of interpretation. 
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Table D.3. VMT elasticities with various interaction terms (Model 3.7-3.9). 

 
Model 3.7 Model 3.8 Model 3.9 

Beta t-value Beta t-value Beta t-value 
 

Fixed Effect       
  Intercept 9.36 54.2 *** 9.367 54.07 *** 9.339 53.73 *** 

          
Urbanized Area Level (Level 3)                                                                                                       
  Population Density (UA Level) −0.044  −2.51 ** −0.076  −2.74 *** −0.085  −1.84 * 
  Centrality Index −0.041  −2.26 ** −0.039  −2.18 ** −0.034  −1.87 * 
  Jobs-to-housing ratio (10 mile Buffer) −0.232  −2.49 ** −0.149  −1.80 * −0.195  −2.22 ** 
  Transit Service Supply (VRM / pop) −0.024  −1.63  −0.041  −2.82 *** −0.035  −2.44 ** 
  Total Lane Miles (TLM / pop) −0.016  −0.30  −0.056  −1.02  −0.053  −0.99  
          
Census Tract Level (Level 2)                                                                                                           
  Compactness Index (H&E) −0.504  −21.01 ***       
  Population Density (Tract Level)    −0.055  −9.89 *** −0.047  −8.31 *** 
  Land-use Mix (Entropy Index)    −0.034  −4.64 *** −0.035  −4.82 *** 
  Street Design (Beta Index)    −0.076  −1.37  −0.072  −1.31  
  Distance to the Closest Transit Stop    0.033 5.6 *** 0.028 4.83 *** 
  Distance to Downtown    0.053 9.91 *** 0.054 9.85 *** 
  Proximity to the Closest Subcenter    −0.002  −2.00 ** −0.002  −1.33  
          
Interaction Effect (Level 2 × Level3)                                                                                                  
  [UA] Pop. Density × [CT] Compactness Index −0.307  −6.72 ***       
  [UA] Pop. Density × [CT] Pop. Density    −0.029  −2.38 ** −0.015  −1.25  
  [UA] Pop. Density × [CT] Land-use Mix    0.007 0.4  0 0.02  
  [UA] Pop. Density × [CT] Street Design    −0.021  −0.17  −0.046  −0.37  
  [UA] Pop. Density × [CT] Dist. Transit Terminal    0.021 1.58  0.016 1.14  
  [UA] Pop. Density × [CT] Dist. to Downtown    0.051 4.12 *** 0.05 4.1 *** 
  [UA] Pop. Density × [CT] Dist. to Subcenter    −0.008  −2.03 ** −0.007  −1.73 * 
  [UA] Centrality × [CT] Compactness Index −0.478  −5.54 ***       
  [UA] Centrality × [CT] Pop. Density       −0.068  −3.00 *** 
  [UA] Centrality × [CT] Land-use Mix       0.092 2.89 *** 
  [UA] Centrality × [CT] Street Design       0.042 0.18  
  [UA] Centrality × [CT] Dist. to Transit Stop       0.075 3.11 *** 
  [UA] Centrality × [CT] Dist. to Downtown       0.053 2.82 *** 
  [UA] Centrality × [CT] Prox. to Subcenter       0.002 0.26  
          
Household Level (Level 1)                                                                                                            
  <Skip>          
          
 

Random Effect V.C.   V.C.   V.C.   
  Pseudo R-Sq (level 3) 58.24%   58.95%   63.77%   
  Pseudo R-Sq (level 2) 89.30%   90.02%   91.08%   
  Pseudo R-Sq (level 1) 49.62%   49.62%   49.61%   

***: significant at 1%, **: significant at 5%, *: significant at 10% 
 
Note: 
1) Model 3.7-3.9 are adopted by 3-level random coefficient model with interaction terms (random coefficients) 

between level 3 (UA level) and level 2 (census tract level). 
2) Dependent and all continuous independent variables except distance to the closest subcenter are in natural logarithm, 

so estimated coefficients can be interpreted as elasticities. 
3) Individual household level results are not described because of the limit of the space, but they are same with Model 

3.1 in Table D.1 and the results are similar with the outputs of Model 3.1 to Model 3.4. 
4) All interacted variables are used after centering for the ease of interpretation.  
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APPENDIX E 
FULL MODEL RESULTS OF CO2 ELASTICITIES (CHAPTER 3) 
 
Table E.1. CO2 elasticities (Model 3.10-3.11). 

  
    Model 3.10     Model 3.11 

Beta   t-value Beta  t-value 
Fixed Effect             
  Intercept 9.032  349.20 *** 9.077  366.00 *** 
       
 Urbanized Area Level (Level 3)       
  Population Weighted Density (P.W.D.) −0.126  −2.80 *** −0.152  −3.80 *** 

 
Centrality Index       

 Jobs-to-housing ratio (10 mile Buffer) −0.369  −1.60  −0.362  −1.80 * 

 Transit Service Supply (VRM / pop) −0.168  −2.50 ** −0.133  −2.20 ** 

 Total Miles (TLM / pop) −0.052  −2.10 ** −0.054  −2.50 ** 

         Census Tract Level (Level 2)       

 
Neighborhood Compactness Index (H&E) −0.935  −33.10 *** −0.778  −28.20 *** 

       
 Interaction Effect (Level 2 × Level3)       
  [UA] P.W.D. × [CT] Compactness Index       −0.751  −26.70 *** 
       
 Household Level (Level 1)       

 Age1 (Under 20) 0.042  2.10 ** 0.045  2.30 ** 

 Age2 (21 ~ 30) 0.068  3.60 *** 0.064  3.40 *** 

 Age3 (31 ~ 40) −0.003  −0.20  0.001  0.10  
 Age5 (51 ~ 64) 0.151  13.30 *** 0.150  13.30 *** 

 Age6 (larger than 65) 0.055  4.10 *** 0.049  3.70 *** 

 Race1 (White) 0.098  6.40 *** 0.084  5.50 *** 

 Race2 (African American) −0.091  −4.30 *** −0.093  −4.50 *** 

 Race3 (Asian) −0.062  −2.40 ** −0.071  −2.80 *** 

 Edu1 (Less then High School Graduate) −0.190  −8.50 *** −0.194  −8.80 *** 

 Edu2 (High School Graduate) −0.001  0.00  −0.002  −0.10  
 Edu4 (Bachelor's degree (BA, AB, BS)) −0.021  −1.90 * −0.022  −1.90 * 

 Edu5 (Graduate or Professional Degree) −0.041  −3.20 *** −0.044  −3.50 *** 

 Income1 (Under $20,000) −0.623  −32.50 *** −0.630  −33.20 *** 

 Income2 ($20,000 ~$35,000) −0.207  −12.20 *** −0.215  −12.80 *** 

 Income4 ($55,000 ~$80,000) 0.134  10.00 *** 0.135  10.20 *** 

 Income5 (higher than $80,000) 0.267  20.80 *** 0.268  21.10 *** 

 Household Size (# members) 0.574  55.40 *** 0.572  55.70 *** 

 # Worker 0.337  28.40 *** 0.338  28.70 *** 
Random Effect V.C.     V.C.     
  Int. level 3 (UA) 0.010 0.101  0.007 0.086  
 Int. level 2 (Census Tract) 0.054 0.232  0.036 0.190  
 Int. level 1 (individual Household) 0.570 0.755  0.573 0.757  
 Sum (level 1+ 2+3) 0.634   0.616   

 
Pseudo R-Sq (level 3) 63.36%   73.49%   

 
Pseudo R-Sq (level 2) 82.03%   87.90%   

  Pseudo R-Sq (level 1) 53.52%     53.31%     
***: significant at 1%, **: significant at 5%, *: significant at 10% 
 

Note: 
1) Model 3.10 is adopted by random intercept model, while Model 3.11 is adopted by random coefficient model. 
2) Dependent and all continuous independent variables except distance to the closest subcenter are in natural logarithm, 

so estimated coefficients can be interpreted as elasticities. 
3) Reference categories for dummy variables are as follows: Age4 (household head age 41~50); Race4 (all other races); 

Education3 (some college or associate's degree); Household annual income3 ($35,000~$55,000).  
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APPENDIX F 
MODEL SPECIFICATION (CHAPTER 4) 
 
OLS Analysis 
As a preliminary test, OLS analysis is applied before more sophisticated regression 
models. The dependent variable is the monthly VMT per capita and the key independent 
variable is the urban form such as population density or the compactness index. Other 
factors affecting the monthly VMT are also included as control variables (equation 1). 
Gasoline prices change dramatically with time for the study period and I will analyze 
how the impacts of urban form on VMT change with gasoline prices. Thus, the sample 
will be divided by 120 months, and the same regression model will be repeatedly run 
with each period sample. The purpose of the analysis is to compare the elasticity of the 
VMT w.r.t. density (β1) with the changes in gasoline price level. If the absolute values of 
the density coefficient (β1) and gasoline prices move in the same direction over time, it 
validates my hypothesis of the complementarity between pricing and density. 
 

OLS Model Specification:  

εβββββ +⋅+⋅+⋅+⋅+⋅= POPEMPVRMptFWLYphDENVMT lnlnlnlnlnln 54321
 (1) 

where the DEN variable is designated as 1) traditional population density at the 
UA level, 2) UA population-weighted density, or 3) the compactness index; all 
dependent and independent variables are in the natural logarithm form, thus all 
coefficients can be interpreted as a point elasticity. The sample size is 115 for all 
periods.  

 

Panel Analysis 
The second empirical model is a panel analysis with interaction terms between the 
gasoline price and land use variables to statistically test the presence of complementary 
or potential synergic effects (see equations 2 & 3). Multiplicative interaction models are 
popular in testing a conditional hypothesis, which typically assumes that X affects Y 
depending on the condition of Z (Brambor, Clark & Golder, 2006; Friedrich, 1982; 
Wright, 1976). A negative coefficient of the interaction term in this analysis will 
corroborate the main research hypothesis – an increase in gasoline prices has a greater 
stimulating effect on reducing the VMT in urban areas that have more transit-friendly 
land uses and policies such as transit oriented development (TOD) in comparison to 
sprawling areas that are less transit friendly. To ease in interpretation, all interacting 
variables are centered by subtracting the mean values. The centered coefficients explain 
the change in the response variable by one unit change of each explanatory variable when 
the other interacting variable is at the average level. Additionally, dependent and 
interacting variables are converted to the log transformations in order to focus on the per 
capita VMT elasticity and compare the results to previous studies. 
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This research analyzes a unique panel data set covering 115 UAs for 120 time 
periods, which produces more generalizable findings than in previous cross-sectional or 
time-series studies. As mentioned above, ordinary least squares (OLS) regression models 
would produce biased and inconsistent estimates of key coefficients since monthly VMT 
per capita is affected by both time- and space-variant elements. The gasoline price is a 
time variant variable, but the price changing patterns are relatively similar among the 
UAs. Instead, population density and urban compactness tend to ratchet down for 10 
years, but the UA densities are substantially different. Thus, the range of density 
variations among the UAs is far larger than that of the time-series variations. To cover 
both the cross-section and time-series effects, panel analysis is applied in this research. 

In general, a one-way fixed effects model that controls for unobserved area-
specific but time-invariant effects could best fit this analysis. However, it is possible that 
the UA fixed effects might swamp the effects of other UA-specific land use variables 
because these key variables do not vary much over a short time span. Therefore, both 
fixed effects and random effect models are employed, leading to more robust results. All 
regression models are estimated with heteroskedasticity consistent standard errors. 
Finally, including time trend and month dummy variables, controls for time and seasonal 
effects are in place. To choose the best model, an incremental F-test, Breusch-Pagan test, 
and Hausman test (Breusch & Pagan, 1980; Hausman, 1978) are conducted. 

 

Fixed Effect Model: iti iik itkkit DXY εαββ ++⋅+⋅= ∑∑    (2) 
where Yit is the monthly per capita VMT for the i-th urbanized area at t-th time; 
Xitk is the k-th independent variable such as real gasoline price, population 
densities, population size, freeway lane miles, transit service supply, 
unemployment rate, post-peak or monthly dummy, with interaction terms between 
gasoline price and urban form variables; Di denotes 114 dummies for all UAs 
except the one reference UA, Yongstown, OH; βk and βi are the coefficient of 
independent and dummy variables, respectively; α is the intercept of the model; εit 
is random error. All dependent and independent variables are the natural 
logarithm form, so all coefficients can be interpreted as point elasticity. 

 
Random Effect Model:  ,0 itik kitkit XY εββ ++=∑  

    ,0 iii νββ +=  

,iitik kitkit XY νεββ +++=∴ ∑      (3) 
where Yit and Xkit are the major dependent and independent variables, same as 
with the Fixed model; intercept β0i is a random outcome variable among the 114 
UAs, and it is composed of a mean value βi and random error νi; random error νi 
indicates the deviation from the constant of the 114 UAs (heterogeneity among 
114 UAs); random error εit is specific to observations for general independent 
variables (Xkit). To estimate variance components, Wallace and Hussain’s method 
is applied (Wallace & Hussain, 1969). As with the fixed model, all coefficients 
can be interpreted as point elasticity. 
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P-LOESS Analysis 
The third approach to testing the interaction effects relies on a locally weighted 
regression covering fixed panel model (P-LOESS). Although the panel analysis with an 
interaction term can test the complementary effects with statistical inference, it inevitably 
assumes a linear relationship. However, the extent of synergistic effects can be larger (or 
smaller) under very high gasoline prices or in high density cities. The P-LOESS does not 
impose a linear relationship to capture the potential variation in the interaction effects. 

The conventional locally weighted model (LOESS) analysis is a popular 
technique for fitting a regression model to data through multivariate smoothing 
(Cleveland, 1979; Cleveland & Devlin, 1988). At each data point, a regression model is 
fit to a subset of the data, which is composed of observations near the data point being 
estimated. P-LOESS follows the concept of the original LOESS but it covers a fixed 
panel model. The fixed panel model is fitted to only one third of the sample that is similar 
in gasoline price level with the estimation points and more weights are given to closer 
data points in the dimension of the gas price. A 20% window size and the bi-square 
weight function are used. The estimation results of both the panel with interaction terms 
and the LOESS are compared. The specific model is as follows (equations 4 through 7): 

∑ +=
k

iikiki Xy εβ        (4) 

YiWXXiWX )('])('[ˆ 1−=β       (5) 

)(])('[)('])(['ˆ 2112 iXXiWXXiWXXiXWX ssi ss −−=    (6) 
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iij
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where the varying parameters at a target data point, I, are estimated by a 
weighted regression as in equation 4. W(i) is the weighting matrix for 
regression point, I, of which the diagonal elements are the weights given to n 
observations, Wj(i); the off-diagonal elements are zero. 
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APPENDIX G 
MEASURES OF DEPENDENT AND INDEPENDENT VARIABLES 
(CHAPTER 4) 
 
Geographic Area with Time Trend and Data Source 
The spatial scopes in this research are the 115 largest UAs in the U.S. with more than 
250,000 residents, based on U.S. Census 2000 data. In the continental U.S., there are 125 
urbanized areas as of 2000, but 10 UAs are excluded from the sample in this research 
mainly due to missing values. New Orleans, LA is excluded to remove the Hurricane 
Katrina impacts. Although the metropolitan area defined by economic activity can be 
considered for this study, it contains large areas in which no people live, such as the 
desert. Thereby, the areas can cause biased results. The term urbanized area is defined as 
densely settled core and surrounding census blocks that meet minimum population 
density. In other words, the boundary is based on number of residents rather than 
economic performance such that the urbanized area is suitable. This study covers 120 
time periods for the monthly data from January 2002 through December 2011. 

There are seven data sources used for this study - Highway Performance 
Monitoring System (HPMS, 2002-2011), Oil and Gas Journal (OGJ, 2002-2011), 
CENSUS (2000, 2010), Longitudinal Employer-Household Dynamics (LODES, 2002-
2011), National Transit Database (NTD, 2002-2011), Bureau of Labor Statistics (BLS, 
2002-2011), and Compactness index from Ewing & Hamidi (2014). HPMS provides 
annual vehicle miles traveled (VMT) with population information at the urbanized area 
level. Additionally, Federal Highway Administration (FWHA) delivers monthly traffic 
volume trends using HPMS sources at the State level. Therefore, monthly vehicle miles 
traveled per capita is accounted for by multiplying both terms. 

To determine the fuel price, the real gasoline price is adopted as reflected on 
regional living cost level to exclude the effect of regional living cost level on fuel prices. 
Information from the OGJ is used for the nominal gasoline price. The OGJ gathers a 
sample of gasoline stations at the city level at weekly intervals (OGJ, 2009). 
Consumption price index (CPI) and living cost index (CLI) come from the BLS. Various 
land use variables are considered in the research: population density, population-
weighted density, centrality index, polycentricity index, compactness index, and 
population size. To find the complementary effect, interaction terms are also considered. 
All land use variables and the gasoline price variable are interacted and they are used 
after centering for ready interpretation. Freeway lane miles, transit service supply, the 
unemployment rate, gasoline price peak dummy and monthly dummies are used as 
control variables. Summaries of dependent and explanatory variables are given in Table 
G.1. 
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Table G.1. Descriptions of variables in the analyses. 

  Variable Description Major 
Source 

Dependent variable   
 

Monthly vehicle mile 
traveled [lnVMT]  

■ Natural logarithm of monthly vehicle mile traveled (VMT) 
per capita. 

HPMS 
(2002-11)  

Key Independent variable 1: Gas Price  

 

Real gasoline price 
[clnGAS83] 

■ Centered logarithmic term of monthly real gasoline price. 
Real gasoline price (1983 real $) = PR / (CPI × CLI). 
• PR: monthly gasoline price for each time and urban area 
• CPI: consumer price index (CPI,1983=1) for each time 

and urban area 
• CLI: cost of living index among UAs (Rochester, NY=1) 

for each time and urban area. 

OGJ 
(2002-11) 
& 
BLS 
(2002-11) 

Key Independent variable 2: Urban Form Variables 

  

Population density 
[clnPDEN] 

■ Centered logarithmic term of monthly urbanized area pop 
density for each time and urban area. 
• Population density = urbanized area pop. / sq. mile. 

HPMS 
(2002-11) 

Population-weighted density 
[clnPWDEN] 
 

■ Centered logarithmic term of monthly UA population-
weighted density (PWD). 

  PWD is estimated as the weighted mean of census tract 
level density with each block group’s population. 

CENSUS 
(2000, 10) 

Centrality index 
[clnCEN] 

■ Natural logarithm of centrality index. 
 

LODES 
(2002-11) 

Polycentricity index 
[clnPOL] 

■ Natural logarithm of polycentricity index. 
 

LODES 
(2002-11) 

Compactness Index 
[clnSPW] 

■ Natural logarithm of sprawl index at the UA level. 
  The index comes from Hamidi & Ewing (2014). 

Hamidi & 
Ewing, 2014 

Population size [lnPOP] ■ Natural logarithm of UA population size. CENSUS 

Interaction Terms (Gas Price × Urban Form Variables) 

  

Pop. density interaction 
[ilnPDEN] 

■ Interaction gasoline price and population density. 
  = [clnGAS83] × [clnPDEN] 

 

PWD interaction 
[ilnPWDEN] 

■ Interaction gasoline price and population-weighted density. 
  = [clnGAS83] × [clnPWDEN] 

 

Centrality interaction 
[ilnCEN] 

■ Interaction gasoline price and centrality index. 
= [clnGAS83] × [clnCEN] 

 

Polycentricity interaction 
[ilnPOL] 

■ Interaction gasoline price and polycentricity index. 
  = [clnGAS83] × [clnPOL] 

 

Compactness index 
interaction [ilnSPW] 

■ Interaction gasoline price and compactness index. 
  = [clnGAS83] × [clnSPW] 

 

Control variables 

  

Freeway lane miles 
[lnFWYLph] 

■ Natural logarithm of freeway lane miles per 100 people. FHWA 
(2002-11) 

Transit service supply 
[lnVRMpt] 

■ Natural logarithm of vehicle revenue miles (VRM) per 100 
people; VRM is defined as the miles that vehicles travel 
(public transit) while in revenue service. 

NTD 
(2002-11) 

Employment Rate 
[lnEMP] 

■ Natural logarithm of monthly employment divided by 
working age non-industrialized population (UA level). 

BLS 
(2002-2011) 

Trend 
[lnTREND] 

■ Natural logarithm of Trend. 
Trend is defined as follows:  
Jan 2002 = 1, Feb 2002 = 2, … , Dec 2011 = 120 

 

Postpeak dummy 
[POSTPEAK] 

■ Dummy variable showing whether each month is before or 
after the gasoline price peak (June 2008). 

 

Month dummies ■ 11 dummy variables for each month except May (Reference Month). 
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Table G.2. Descriptive statistics of key variables in 115 UAs. 

Variable Unit Mean Median S.D. Max Min 
Monthly VMT  [VMT]  (mile/person) 769 751 189 136 1,833 
Nominal gas price  [GAS] (cent/gallon) 213 214 75 65 446 
Real gasoline price [GAS83] (1983 real cent/gallon) 104 103 31 37 203 
Real gasoline price  
 (living cost of UAs) 
 Ref. Rochester, NY 

[GAS83cl] (1983 real cent/gallon) 92 90 30 22 200 

Population density [PDEN] (pop./sqmile) 2,531 2,267 1,010 1,196 7,073 
Pop-w.g.t. density [PWDEN] Σ[(pop.wgt)×(pop./sqm)] 4,435 3,910 3,251 1,591 33,249 
Centrality index [CEN]  100 94 24 59 191 
Polycentricity index [POL]  100 103 23 34 155 
Sprawl index [SPW]  99 96 23 37 184 
Freeway lane miles [FWYLph] (FWYL/ 100 people) 0 0 0 0 0 
Transit service supply [VRMpt] (VRM / 100 people) 1,012 880 723 0 6,673 
Employment rate [EMP] (emp./total working age) 62.69 62.61 4.93 45.02 78.67 
 

160 



 

APPENDIX H 
CLUSTER ANALYSIS (CHAPTER 4) 

 

Figure H.1. The output of cluster analysis.
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APPENDIX I 
DESCRIPTIVE COMPARATIVE ANALYSIS RESULTS (CHAPTER 
4) 
 

 
Figure I.1. The monthly per capita VMTs in New York, Los Angeles, and Chicago, and their 

monthly fuel prices (right axis, cent per gallon). 
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APPENDIX J 
FULL MODEL RESULTS OF VMT ELASTICITIES (CHAPTER 4) 
 
Table J.1. Analysis of monthly per capita VMT between urban form and gasoline price (fixed 

effects panel models). 
Dep. Variable Model 4.1F Model 4.2F Model 4.3F 
Monthly per capita 
VMT 

Std. 
Coef. Coef. t-value Std. 

Coef. Coef. t-value Std. 
Coef. Coef. t-value 

Real gasoline price −0.066 −0.046 −2.67 *** −0.093 −0.065 −3.58 *** −0.096 −0.067 −3.75 *** 
Population-weighted 
density −0.440 −0.222 −4.96 ***         

× gasoline price −0.045 −0.003 −1.72 *         Population density     −0.371 −0.245 −5.60 ***     
× gasoline price      −0.112 −0.009 −1.33 

     Population 
centrality     −0.189 −0.207 −6.71 ***     

× gasoline price      0.290 0.038 4.35 ***     Polycentricity     0.015 0.013 0.95 
     

× gasoline price      −0.183 −0.024 −2.59 ***     Sprawl index         −0.300 −0.288 −6.09 *** 
× gasoline price          −0.049 −0.006 −1.86 * 

Population size 0.308 0.079 2.42 ** 0.408 0.105 −5.60 *** −0.091 −0.023 −0.69  Freeway lane miles 0.284 0.165 23.15 *** 0.293 0.17 −1.33  0.278 0.161 22.39 *** 
Transit service 
supply −0.004 −0.001 −0.20  −0.015 −0.004 −6.71 *** 0.002 0.001 0.12  
Employment rate 0.033 0.022 3.63 *** 0.027 0.018 −1.61  0.032 0.021 3.43 *** 
Trend 0.104 0.026 11.14 *** 0.106 0.027 0.95  0.113 0.029 12.01 *** 
Post-peak dummy −0.061 −0.030 −6.62 *** −0.060 −0.030 −2.59 *** −0.050 −0.025 −5.47 *** 
Monthly dummies 

                 January −0.240 −0.206 2.42 ** −0.240 −0.206 −42.81 *** −0.231 −0.199 −39.99 *** 
     February −0.282 −0.242 23.15 *** −0.282 −0.242 −50.42 *** −0.280 −0.240 −48.53 *** 
     March −0.086 −0.074 −0.20  −0.086 −0.074 −15.60 *** −0.083 −0.072 −14.59 *** 
     April −0.071 −0.061 3.63 *** −0.071 −0.061 −12.95 *** −0.070 −0.060 −12.30 *** 
     June −0.005 −0.004 11.14 *** −0.005 −0.004 −0.86  −0.005 −0.004 −0.92       July 0.077 0.066 −6.62 *** 0.078 0.066 14.04 *** 0.075 0.064 13.14 *** 
     August 0.041 0.035 −42.60 *** 0.041 0.035 7.48 *** 0.038 0.033 6.68 *** 
     September −0.083 −0.071 −50.19 *** −0.083 −0.071 −15.06 *** −0.087 −0.075 −15.25 *** 
     October −0.030 −0.026 −15.53 *** −0.030 −0.026 −5.46 *** −0.029 −0.025 −5.08 *** 
     November −0.113 −0.097 −12.89 *** −0.114 −0.098 −20.32 *** −0.112 −0.096 −19.44 *** 
     December −0.118 −0.101 −0.91  −0.119 −0.102 −20.95 *** −0.116 −0.100 −19.83 *** 
UA dummies 

            < Skip > 
Constant   7.792 16.76 ***   8.854 17.49 ***   8.761 16.34 *** 
R-square 0.775 0.777 0.776 
F-test 128.24*** 123.62*** 141.23*** 
Breush-Pagan Test 200,493*** 187,849*** 201,103*** 

***: significant at 1%, **: significant at 5%, *: significant at 10%. 
 
Note: 
1) ‘Std. Coef.’ indicates the coefficient of standardized regression for each independent variable, so we can compare 

the relative impacts of different independent variables on monthly per capita VMT. 
2) Dependent and all continuous independent variables are in natural logarithm, so estimated coefficients (Coef.) can be 

interpreted as elasticities. The elasticity is defined as the ratio of the percent change in dependent variable to the 
percent change in each independent variable. 
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Table J.2. Analysis of monthly per capita VMT between urban form and gasoline price (random 
effects panel models). 

Dep. Variable Model 4.1R Model 4.2R Model 4.3R 
Monthly per capita 
VMT 

Std. 
Coef. Coef. t-value Std. 

Coef. Coef. t-value Std. 
Coef. Coef. t-value 

Real gasoline price −0.069 −0.048 −2.79 *** −0.094 −0.066 −3.64 *** −0.098 −0.068 −3.82 *** 
Population-
weighted density −0.580 −0.292 −10.95 ***         

× gasoline price −0.044 −0.003 −1.69 *         Population density     −0.470 −0.310 −9.90 ***     
× gasoline price      −0.087 −0.007 −1.04      Population 

centrality     −0.221 −0.242 −8.87 ***     
× gasoline price      0.274 0.036 4.14 ***     Polycentricity     0.016 0.014 1.03      
× gasoline price      −0.189 −0.025 −2.68 ***     Compactness index         −0.367 −0.352 −10.23 *** 
× gasoline price          0.014 0.002 0.54  Population size 0.325 0.083 5.83 *** 0.292 0.075 5.23 *** −0.051 −0.013 −1.03  Freeway lane miles 0.282 0.164 23.62 *** 0.293 0.17 24.24 *** 0.277 0.161 22.88 *** 

Transit service 
supply −0.003 −0.001 −0.14  −0.020 −0.006 −1.05  −0.001 0 −0.08  
Employment rate 0.03 0.02 3.3 *** 0.026 0.017 2.85 *** 0.028 0.018 3.04 *** 
Trend 0.103 0.026 11.3 *** 0.107 0.027 11.91 *** 0.113 0.029 12.22 *** 
Post-peak dummy −0.060 −0.030 −6.74 *** −0.058 −0.029 −6.47 *** −0.048 −0.024 −5.31 *** 
Monthly dummies                  January −0.240 −0.206 −42.66 *** −0.240 −0.206 −42.83 *** −0.231 −0.198 −40.00 *** 
     February −0.282 −0.242 −50.24 *** −0.282 −0.242 −50.44 *** −0.280 −0.240 −48.54 *** 
     March −0.086 −0.074 −15.53 *** −0.086 −0.074 −15.59 *** −0.083 −0.071 −14.58 *** 
     April −0.071 −0.061 −12.91 *** −0.071 −0.061 −12.96 *** −0.070 −0.060 −12.31 *** 
     June −0.005 −0.004 −0.87  −0.005 −0.004 −0.87  −0.005 −0.004 −0.89       July 0.078 0.066 14 *** 0.078 0.066 14.04 *** 0.075 0.064 13.16 *** 
     August 0.041 0.035 7.47 *** 0.041 0.035 7.48 *** 0.038 0.033 6.68 *** 
     September −0.083 −0.071 −14.99 *** −0.083 −0.071 −15.08 *** −0.087 −0.075 −15.27 *** 
     October −0.030 −0.026 −5.40 *** −0.030 −0.026 −5.48 *** −0.029 −0.025 −5.11 *** 
     November −0.114 −0.097 −20.22 *** −0.114 −0.098 −20.34 *** −0.113 −0.097 −19.48 *** 
     December −0.118 −0.102 −20.83 *** −0.119 −0.102 −20.98 *** −0.116 −0.100 −19.90 *** 
UA dummies 

            < Skip > 
Constant   8.523 41.36 ***   10.104 35.13 ***   9.103 37.36 *** 
R-square 0.385 0.388 0.38 
Hausman Test 16.94 23.38 22.77** 
Breush-Pagan Test 203,029*** 190,675*** 203,631*** 

***: significant at 1%, **: significant at 5%, *: significant at 10%. 
 
Note: 
1) The results are similar to Table J.1, but the results are not outputs of fixed effects model, but those of random effects 

model. 
2) ‘Std. Coef.’ indicates the coefficient of standardized regression for each independent variable, so we can compare 

the relative impacts of different independent variables on monthly per capita VMT. 
3) Dependent and all continuous independent variables are in natural logarithm, so estimated coefficients (Coef.) can be 

interpreted as elasticities. The elasticity is defined as the ratio of the percent change in dependent variable to the 
percent change in each independent variable. 
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