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ABSTRACT 

 

 

This dissertation research consists of three papers that use the perspectives of regional economics 

to examine three key engines of economic growth -- technology, natural resource and human 

capital, by taking spatial heterogeneities and relationships into consideration.  The first paper 

empirically tests the trade-facilitated technology spillovers in the convergence of energy 

productivities at the disaggregated manufacturing sectors across European Union (EU) countries. 

The second paper develops a multi-objective non-linear optimization model to simulate the 

tradeoffs between streamflow restoration and economic welfare loss in a Chicago suburban 

county - McHenry County. The third paper establishes a dynamic modeling framework to explore 

the occupation-industry linkages and decipher an array of labor market signals.  

 

The first paper (chapter 2) differs from most previous empirical convergence studies in the 

economic growth literature by considering a relatively high degree of sectoral detail - 10 NACE 

(classification of economic activities in the European community) manufacturing sectors. To 

account for potential spatial heterogeneity and dependence in regional growth, this chapter adopts 

a spatial version of energy productivity equation, and extends the single equation cross-sectional 

setting to time series observations of cross-sectional setting. It reformulates the spatial 

convergence regression equations into a spatial panel data model with individual (country & 

industry) effects and uses the panel data procedure for estimation. Under the β-convergence 

spatial panel-data approach, the estimated coefficients of β are almost all negative and statistically 

significant. This shows EU countries with low starting energy productivity witness relatively 

faster growth of energy productivity, and former Eastern-bloc EU countries are catching up to 

more advanced economies in energy efficiency levels. The estimation results present evidence 

that energy productivity convergence is conditional upon the cross-country differences in steady-

state characteristics. The findings also provide insightful implications for energy and trade 

policies. It helps project trends in energy productivity and can be used to estimate the sector-

specific emission under the European Union's Emissions Trading Scheme (EU ETS). It also 

affirms that trade does appear to aid technology transfer and therefore promoting trade between 
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advanced countries and less developed countries becomes necessary.  

 

The second paper (chapter 3) intends to create planning strategies to promote sustainable 

economic growth while protecting the natural environment by minimizing the occurrence of low 

streamflows. Steams and associated biological communities are among our most valuable natural 

resources. Humans rely on the environmental services provided by streams in a myriad of ways. 

However, in some areas, excessive groundwater pumping exacerbates the already critical pressure 

on streamflow and needs to be managed through effective planning. Based upon economic and 

hydrogeological concepts, this paper calculates the amount of streamflow depletion due to 

groundwater pumping and estimates the negative impact on the socio-economic system if 

groundwater pumping has to be constrained to restore streamflow. An evolutionary algorithm is 

used to solve the optimization model and to identify the tradeoff curve (or Pareto frontier) 

between economic welfare loss and stream flow depletion. The multi-objective optimization is 

conducted at both county and municipality levels. Comparing municipal Pareto frontiers shows us 

spatially heterogeneous costs of preserving streamflow through various "shadow prices" and also 

the different capacity of restoring streamflow. It discusses the shapes of the Pareto frontier, the 

sensitivity of the pumping boundary constraints, and the sensitivity of return flow coefficients. It 

concludes that the multi-objective optimization model provides a useful framework to consider 

conflicting objectives in a typical environmental management and planning process, and that the 

findings can help decision makers and planners in formulating effective groundwater pumping 

strategies.   

 

The third paper (chapter 4) seeks answers toward regional labor market dynamics, such as 

industry-based or occupation-based growth, the sensitivity of occupational demand according to 

industrial performance, and well-connected industries that show higher multiplier effects in 

generating jobs. The increasing integration of the world economy has demonstrated the critical 

need to identify industries and an associated skilled workforce that could help regions maintain 

their competitiveness. The challenge is to align human capital with current and emerging trends of 

the regional economy. Bi-causative analysis and hypothetical industrial extraction method are 

adapted to serve these purposes, with applications to both state and national levels in the U.S. 

between 2005 and 2008. The findings derived from these linkage studies offers insights on 
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spatially heterogeneous distribution of occupation-based growth, and help identify key industries 

that cast major demand for each occupation and well-connected industrial sectors that have 

stronger multiplier effects to generate job growth. Careful monitoring of these signals by 

manpower planners may provide a means of identifying trends in the balance of skills demand 

that can be used to detect structural changes in the regional economy and guide manpower 

planning practice.  It provides a basis for determining the desirable level of public and private 

expenditure on specific education and training programs, and necessary assistance to industries. 
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Chapter 1   
INTRODUCTION 

 
During the past a few decades, economists have spared no effort to look for the engines of economic 

growth. In general, the most frequently visited three topics are technology, natural resource and human 

capital. One novelty of regional economics is to incorporate space and spatial relations into traditional 

economic studies. Recognition of uneven geographic distribution of technology, natural resource and 

human capital helps reconsider their role in promoting regional growth. Studies from a regional 

economics’ perspective could reveal the evolving spatial interdependences of economic relations when 

growth occurs. It can provide more insights than traditional economic analysis to guide policy makers and 

regional planners. This dissertation intends to explore economic activities associated with those three 

growth engines by taking spatial heterogeneities and relationships into consideration.   

 

In chapter 2, the main purpose is to ascertain possible trade-facilitated spatial correlation in the energy 

productivity improvement process across EU countries. Energy productivity is defined as output divided 

by final energy use, and in manufacturing sectors it highly depends on the technological advancement of 

the production process. Countries lagging behind in terms of energy productivity levels may benefit from 

experiences and technologies developed by countries operating at the forefront, a process that might lead 

to convergence of cross-country energy productivity levels. Also, spatial correlations associated with 

trade flow relations might contribute to the technology catch-up due to knowledge spillovers and 

technology diffusion. A spatial panel model is hence constructed to test two relevant concepts: 

convergence and spatial technology spillovers. The findings could provide insightful implications for 

energy and trade policies. It helps project trends in energy productivity and can be used to estimate the 

sector-specific emission under the European Union's Emissions Trading Scheme (EU ETS). It also tests 

the hypothesis whether trade would aid or promote technology transfer.   

 

Chapter 3 proposes an integrated hydrologic-economic framework to study groundwater resources under 

the context of a fast urbanization process. Excessive groundwater withdrawal can reduce environmental 

amenities by depleting the stream flow since wells and nearby streams are hydraulically connected to the 

same aquifer. Constraining well pumpage to return streamflow may result in consumer welfare loss. 

Therefore, effective and holistic management of groundwater resources becomes imperative, if it could 

incorporate concerns of preserving environmental amenities while minimizing the negative impacts on 

social, economic and political systems. In this chapter, tradeoffs between environmental amenity and 
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economic welfare loss from adopting spatially targeted pumping limits will be discussed and analyzed. 

The planning decisions will be based on the localities of wells and streams, physical hydrologic facts, and 

groundwater-supported socio-economic activities. 

 

The increasing integration of the world economy has demonstrated the critical need to identify industries 

and an associated skilled workforce that could help regions maintain their competitiveness. The challenge 

is to align human capital with current and emerging trends of the regional economy. Chapter 4 establishes 

an empirical modeling framework to explore the occupation-industry linkages and decipher an array of 

labor market signals, such as industry-based or occupation-based growth, the sensitivity of occupational 

demand according to industrial performance, and well-connected industries that show higher multiplier 

effects in generating jobs. The findings derived from these linkage studies offer insights on spatially 

heterogeneous distribution of occupation-based growth, and help identify key industries that cast major 

demand for each occupation and well-connected industrial sectors that have stronger multiplier effects to 

generate job growth. Careful monitoring of these signals by manpower planners may provide a means of 

identifying trends in the balance of skills demand that can be used to detect structural changes in the 

regional economy and guide manpower planning practice.  It provides a basis for determining the 

desirable level of public and private expenditure on specific education and training programs, and 

necessary assistance to industries. 
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Chapter 2  
TESTING OF TRADE-FACILITATED TECHNOLOGY SPILLOVERS IN ENERGY 

PRODUCTIVITY CONVERGENCE PROCESS AMONG EUROPEAN COUNTRIES 

 
2.1 Introduction and Literature Review 

 

Given the threat of disruptive climate change and high energy prices in recent years, the ability of nations 

to reduce their reliance on fossil fuels and subsequently lower their emission level of greenhouse gases 

becomes a primary concern of scientists, economists, and politicians. Increasing energy productivity or 

the economic output associated with a given unit of energy use is considered as an important policy 

objective to further economic development while reducing the risks of global warming (Patterson, 1996). 

Energy productivity is defined as output divided by final energy use. The world could reduce the growth 

of energy demand by raising energy productivity, and improved energy productivity level could also help 

assuage concerns about how to secure future energy supplies.  

 

Energy productivity in manufacturing sectors highly depends on the technology used in the production 

process. Traditional growth models simply assume all regions having access to the same blueprint of 

technology (Borts and Stein, 1964). We know, however, that spatial differences in technology do exist. 

Given that, are cross-country differences in energy productivity performance decreasing or is the gap 

between the leading and "backward" countries widening? Does geographical proximity or other forms of 

connectivity facilitate diffusion of energy saving technologies? To answer these questions, this chapter 

examines two concepts related to energy productivity: convergence and technology diffusion.   

 

Convergence in this context is assumed to involve the decrease in cross-country differences in energy 

productivity levels. The rationale behind this hypothesis is that countries lagging behind in terms of 

energy productivity levels can benefit from the experiences and technologies developed by countries 

operating at the forefront, a process that might lead to convergence of cross-country energy productivity 

levels. The concept of productivity convergence can be traced back to the traditional Solow-Swan 

neoclassical growth models with its central notion of a transitional growth path toward a steady state, due 

to diminishing returns to capital accumulation (Solow, 1956; Swan, 1956). Assumptions and predictions 

from theoretical convergence models have been tested by a large number of empirical contributions 

focusing on regional productivity growth and cross-country convergence of per capita income (Barro, 

1991; Barro and Sala-i-Martin, 1992; Mankiw et al., 1992; Sala-i-Martin, 1996; Carlino and Mills, 1996; 
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Bernard and Jones, 1996). The modern or endogenous growth theory (Lucas, 1988; Romer, 1986) 

produces a more diverse picture towards patterns of convergence, by considering knowledge 

accumulation and diffusion of technology. Following the seminal work by Coe and Helpman (1995), a 

growing trend in the literature has treated diffusion of technology across countries as a source of 

promoting productivity and thus eliminates the tendency toward diminishing returns prevalent in 

neoclassical models.  

 

Given that energy is a principal input in most of the production functions (Hudson and Jorgenson, 1974; 

Berndt and Wood, 1975) in addition to traditional factors such as labor and capital, similar concepts of 

convergence and catch-up have been applied to the field of energy productivity or energy intensity 

developments (Miketa and Mulder, 2005; Markandya et al., 2006; Mulder and Groot, 2007). Results 

provide support for the hypothesis that in most sectors lagging countries tend to catch up with 

technological leaders, particularly in terms of energy productivity. Figure 2.1 shows the energy 

productivity (1997 US dollar per kilo tons of oil equivalent) for 8 European countries in the 

manufacturing sector from 1995 to 2005. It is easy to notice that countries starting with low energy 

productivity levels (e.g., Slovakia, Poland, Czech Republic) are catching up with energy more efficient 

countries (e.g., Netherlands and Denmark). And the variances of energy productivity among these 

countries are decreasing across years, also indicating a converging process.  

 

 

Figure 2.1: Energy Productivity Dynamics for 8 EU Countries in Manufacturing Sector (1995 - 2005) 
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This chapter considers a relatively high degree of sectoral detail. This is important because analysis of 

energy productivity convergence at an aggregated level of industrial sector would mask internal structural 

change and substantial differences in energy productivity convergence dynamics at the sectoral level. Also 

it is well noticed that technologies are likely to be more transferrable within a sector than among sectors.  

 

This chapter addresses the problem of previous analyses on energy productivity convergence that have 

ignored the fact that processes of technology catch-up might be the result of technology diffusion. 

Technology spillovers could go beyond national (geographical) boundaries. International technology 

diffusion has been an important factor to determine the speed at which the world's technology frontier 

expands. The idea that trade might be contributing to the international transmission of technology has 

been frequently emphasized by scholars. For instance, Coe and Helpman (1995) presented evidence to 

show that technology spills over across countries through the channel of trade flows, and provided 

estimates of the magnitude of these spillovers.  

 

More specifically, in the context of energy productivity, export orientation could be a central determinant 

of energy efficiency innovation (Urpelainen, 2011). Current state-of-the-art energy efficient technologies 

created by concerted research efforts are embedded in the commodities, and the knowledge captured by 

the inventions could spill over to the destinations through bilateral trade linkages. From a macro-

perspective, domestic industry sectors tend to undergo a self-selecting process into export markets with 

high productivity, including high energy productivity. Strong trade linkages (both intra- and inter-industry 

trade) then help increase the absorptive capacity (Cohan and Levinthal, 1990) and structural similarity 

(Hayami and Ruttan, 1985) of energy efficient technologies between the trading nations.  From a micro-

perspective, in order to maintain competitive advantages, firms have strong incentives to develop and 

commercialize new energy technologies, especially when facing rocketing energy prices. Usually, intra-

industry trade is not confined to the trade of final products but also includes the trade of R&D results and 

technologies, especially energy efficient technologies, innovations used during the production process 

(e.g. patents), technology embodied intermediate goods, and etc.  For instance, Siemens has made energy 

efficiency innovation a key part of its business strategy, and they are now providing equipment, patents, 

and technology through trade to a variety of countries across the global, such as wind turbine technology.   

 

This chapter differs from previous work (Coe and Helpman, 1995; Coe and Helpman, 1995; Park, 1995) 

by using sector-level trade transaction data to proxy for the intensity of technology spillovers, as opposed 

to the country-level trade transaction data. The rationale behind is that studies employing aggregate data 
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are likely to miss the intra-industry dynamics of the technology flows by ignoring the diversity of sectoral 

characteristics. The use of two- or three-digit industry level trade transaction data should reduce this 

problem. Through identifying the trade flow relations at detailed sectoral level among these EU countries, 

it helps draw a clear picture on which partner countries are closely related and further helps trace the 

possible strong technology spillovers in the energy productivity improvement process. To accommodate 

the trade-facilitated spillover effects in energy-productivity growth specifications, this chapter harnesses 

the spatial econometric techniques (Amstrong, 1995; Rey and Montouri, 1999; Fingleton and McCombie, 

1998, Fingleton, 1999, Lopez-Bazo et al. 1999) by specifically considering the trade flow weight matrix.  

 

The following section presents the methodology, introducing the structural model on convergence, its 

specification, the selection of weight matrix, and the panel specification of convergence models. Section 

2.3 reviews the sources of data used, and section 2.4 reports and interprets the empirical analytical results 

of the spatial panel energy productivity convergence models. A concluding discussion is provided in 

section 2.5.  

 

2.2 Methodology 

 

2.2.1 A Structural Growth Model on Energy Productivity Convergence with Technology Spillovers 

 

To illustrate the concept of the various factors and mechanisms that may affect cross-country energy 

productivity differences and evolution dynamics, this chapter adopts a neoclassical Cobb-Douglas 

production function that uses labor (L), capital (K), and energy (E) to produce its output (Y):  

 ��� = ����������	 
���                                                                                                                                    (2-1) 

Ait denotes the technology at country i in period t. And since constant returns to scale are assumed in this 

formulation, I have further:  � = 1 − � − �                                                                                                                                         (2-2) 

 

Average labor productivity in country i in period t, yit, is a function of capital and energy per unit of labor 

(kit and eit): ��� = ������� ����                                                                                                                                          (2-3)             

 

In terms of energy productivity (Yit/Eit), equation (2-3) can be written as: 

������ = ���
�� ������� ��� ������������ = ��� ���

�� ���
����

                                                                                                      (2-4) 
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Similar to the setup of technological externalities adopted by Lopez-Bazo et al. (2004), ���   (= ���
��

) in the 

equation (2-3) is assumed to depend on the technological level of trading partners or neighboring 

countries: ��� = ∆�(�$��� �$��� )&                                                                                                                                (2-5) 

where ∆� is an exogenous component assumed identical for all economies, with a growth rate equal to g 

(∆�= ∆'�(�). Expressions �$���  and �$���
 denote the capital- and energy-labor ratios in the trading partners 

or neighboring countries. Finally, m measures the externalities across economies which are assumed to be 

positive. Therefore, under this assumption, new ideas and technological innovations flow or diffuse across 

economies so that an economy benefits from investment made by its trading partners or neighbors. 

Combining equation (2-5) with equation (2-3) and (2-4) yields an expression that relates labor 

productivity and energy productivity in a country to capital intensity in the same country and in its trading 

partners or neighboring countries:  ��� = ∆����� ���� (�$��� �$��� )&                                                                                                                       (2-6) 

������ = ∆�(�$��� �$��� )&���
�� ���

����
                                                                                                                     (2-7) 

 

Under the assumption of decreasing returns to capital and energy within each region, (� + �) < 1, the 

expressions for the steady state of capital and energy per effective labor can be written as: 

�+ ∗ = -./���.0�1+ 23�423�56(67 8�9
                                                                                                                             (2-8) 

�̃∗ = -./�.0���1+ 23�423�56(67 8�9
                                                                                                                             (2-9) 

while for output per unit of effective labor will reach a steady state �;∗: 

�;∗ = -./�.0�1+ 23�423�(56(67)�<� 8�9
                                                                                                                              (2-10) 

where sk and se are the rates of accumulation of capital and energy and n, g, and d are population, 

technology growth, and the rate of depreciation, respectively. The sum n+g+d is what has been called 

effective rate of depreciation in the growth literature and is assumed to be equal across types of capital 

and economies. From equations (2-8), (2-9), and (2-10), it can be observed how the technology of 

production is characterized by externalities across economies. The steady state depends on the usual 

technological and preference parameters but also on capital intensity in the trading partners or 

neighboring countries. If the steady states of  �+ ∗, �̃∗, and �;∗ are plugged into equation (2-7), the energy 
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productivity will reach a steady state as well. The influence of spillover or technological diffusion effect 

will be greater, the larger the returns to capital and the coefficient that measures the strength of the 

externality, m.  

  

2.2.2 Specifications of Convergence  

 

There are two traditional specifications that have been extensively used in the literature to analyze 

convergence, namely β–convergence and σ–convergence.  The β–convergence tests whether a statistically 

significant negative relationship exists between the initial level and the growth rate of energy productivity. 

Alternatively, the σ–convergence refers to the method that calculates the un-weighted standard deviation 

(Kuznets, 1955; Easterlin, 1960a, 1960b; Williamson, 1965; Amos, 1989; Coughlin and Mandelbaum, 

1988; Fan and Casetti, 1994; Carolin and Mills, 1996; Bernard and Jones, 1996) of energy productivity 

levels cross-country over time.  

 

Under the β–convergence specification, considering the fact that energy productivity convergence 

depends to a large extent on individual country-effects, it is necessary to incorporate additional variables 

(X) in the specification to control for factors determining steady states across different countries. The 

resulting specification is of the following form: =�> = ? + � ln(
B') + CD + E                                                                                                             (2-11) 

where =FG is the growth rate of EP (energy productivity, defined as 
��) in a country for a given period, 
B' 

is its initial energy productivity level, c denotes the intercept, E is a well-behaved error term and the scalar 

β is the measure of the speed of convergence. When β < 0 and significant, and D is a vector whose 

elements are non-significant, the energy-productivity is in favor of absolute β-convergence, while in the 

case of β < 0 and significant, and D is a vector of significant coefficients, the outcome is a conditional β-

convergence.   

 

2.2.3 Spatial Convergence Specification and Selection of Weight Matrix 

 

To account for potential spatial heterogeneity and dependence in regional growth specifications, this 

chapter adopts a spatial version (Armstrong, 1995; Rey and Montouri, 1999; Lopez-Bazo et al., 1999; 

Bivand and Brundstad, 2006) of energy productivity equation. The spatial version of the convergence 

equation includes the spatial lag of the growth rates (spatial lag model) and a spatial structure in the 

perturbance (spatial error model).  
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The choice of spatial weight matrix is mostly based on the researcher's assumption about how regional 

externalities occur (Li and Haynes, 2011). Frequent options for representing spillover effects would be the 

contiguity matrix based on adjacency, or a distance matrix based on physical distance. However, in the 

case of the EU countries, neighboring countries often do not have the same mother tongue and their 

technological interaction might not be well captured by the pure physical distance. Evidence shows that 

industries or firms that engage in international trade would be able to raise their productivity by 

interacting with technologically advanced trading partners (Keller, 2009). This fact could also be true to 

energy productivity when energy efficient technology diffusion appears to be increasing along with higher 

levels of economic integration. Therefore, this chapter chooses international trade activities among EU 

countries at each individual manufacturing sector to produce weight matrix.   

 

After specifying the weight matrix, a spatial lag model of energy productivity convergence can be 

expressed as:  =�> = ? + � ln(
B') + CD + HI=�> + E                                                                                            (2-12) 

where I=�> , the spatial lag of energy productivity growth rates, is obtained by pre-multiplying the 

vector of energy productivity growth rates of different countries by the trade-flow-based spatial weights 

matrix, W. This matrix is a pre-specified, non-negative, row-standardized matrix and describes the total 

amount of trade flows (including exports and imports) among EU countries. The variable H is the spatial 

autoregressive coefficient and E ~ N(0, σ2).   

 

The expression for the spatial error model about energy productivity convergence is: =�> = ? + � ln(
B') + CD + E,         E = KIE + L                                                                              (2-13) =�> = ? + � ln(
B') + CD + (M − KI)NOL                                                                                         (2-14) 

 

In this case, a random shock in a country affects energy productivity growth rates in that country, and 

additionally impacts all other trade-related countries through the spatial transformation. The remaining 

disturbance term follows a first-order serially auto-correlated process with �� ~ N(0, PFQ). Variable K (|K| 
<1) is the spatial autocorrelation coefficient and S (|S| <1) is the serial autocorrelation coefficient. The 

model allows for serial correlation on each spatial unit over time as well as spatial dependence between 

spatial units at each time period.  L� =  S L�NO + ��                                                                                                                                   (2-15) 

 

2.2.4 A Panel Data Approach toward Energy Productivity Convergence  
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Most of the studies on energy productivity convergence are conducted under the framework of single 

cross-country regressions, by assuming identical production function for all the countries in the specified 

industrial sectors. However, the panel data framework (Islam, 1995) makes it possible to correct this bias 

by allowing for differences of the above-mentioned type in the form of unobserved individual "country 

effects" and "industry effects". It extends the single equation cross-sectional setting to time series 

observations of cross-sectional setting. The use of panel data offers a greater availability of degrees of 

freedom, increases the efficiency in the estimation, and avoids the collinearity among the variables 

(Elhorst, 2003). This chapter thus reformulates the spatial convergence regression equations into a spatial 

panel data model with individual (country & industry) effects and uses the panel data procedure to 

estimate it.  

 

More specifically, under the panel data structure, the spatial lag and error models of energy productivity 

convergence can be re-written as: =�>�T,� = ? + � ln U
B'�V,�W + C�V,�D + HI=�>�T,� + E�V,�                                                                     (2-16)  

=�>�T,� = ? + � ln U
B'�V,�W + C�V,�D + E�V,� ,         E�V,� = KIE�V,� + L�V,�                                           (2-17) 

where 
B'�V,�,  =�>�T,�   are starting year's and the growth of energy productivity for country i and industry 

j at the tth time period, and C�V,� are the control variables for country i and industry j at the tth time period. 

Trade-flow-based spatial weight matrix (W) for convergence models of panel structure is compiled as: 

I =  XYZO 0 00 ⋱ 00 0 YZV] , YZ5 = ^_` a_bcdefg� [Z5], and Z5 =  j 0 klQO ⋯ kl�OklOQ 0 ⋯ kl�Q⋮ ⋮ 0 ⋮klO� klQ� ⋯ 0 o                  (2-18) 

klGp = klpG = 
qr_bk(r, s) + Mcr_bk(r, s)                                                                                       (2-19) 

where r, s = 1, 2, … , f and v = 1, 2, … , w. The diagonal of spatial weight matrix (W) is composed of row 

normalized trade flow matrices (YZ5, v = 1, 2, … , w) for each detailed manufacturing sector specified in 

this chapter, and the off-diagonal values are set to zero. The elements (klGp) of trade flow matrix [Z5] is 

formed by the nominal dollar values of trade flow (exports plus imports) at a given year for sector n 

(v = 1, 2, … , w) between country p and country q. The diagonal values of matrix [Z5] are set to zero, 

indicating that each country does not trade with itself (no sub-country regional trade flow is assumed in 

this case).  

 

2.3 Data 
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The analysis presented in this chapter is based on a newly constructed database that combines the newly 

launched "EU KLEMS Growth and Productivity Accounts" with physical energy data from the 

International Energy Agency (IEA).  Economic and trade flow data are from the International Sectoral 

Database (ISDB) and the Structural Analysis Database (STAN), both published by Organizations for 

Economic Co-operation and Development (OECD). Construction of this database helps establish a link 

between economic and energy data at a detailed sectoral level. Table 2.1 shows the sector classification. 

This enables us to do a systematic cross-country convergence analysis of energy productivity performance 

at a high level of sectoral detail. The database covers the period 1970 - 2005 and includes the following 

16 EU countries (see figure 2.2): Austria (AUT), Belgium (BEL), Czech Republic (CZE), Denmark 

(DNK), Finland (FIN), France (FRA), Germany (GER), Hungary (HUN), Italy (ITA), Netherlands (NLD), 

Poland (POL), Portugal (PRT), Spain (SPA), Slovakia (SVK), Sweden (SWE), and United Kingdom (UK).  

 
Table 2.1: Sector Classification 

  Sector Abbreviation 

1 Food, Beverages and Tobacco FOD 
2 Textiles, Leather and Footwear TEX 
3 Wood and of Wood and Cork WOD 
4 Pulp, Paper, Printing and Publishing PAP 
5 Chemicals CHE 
6 Non-Metallic Minerals NMM 
7 Basic Metals BMI 
8 Machinery MAC 
9 Transport Equipment TRE 

10 Non-Specified Industry  NSI 

 

 

Figure 2.2: Map of European Countries 

Legend

16 EU Countries in the Study

¯

0 290 580 870 1,160145
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Energy productivity is measured by gross value added per unit of final energy consumption. Value added 

is the net economic output of a sector, measured by the price differential between the price of output and 

the cost of input. Value added data have been converted to constant 1997 US $, using industry-specific 

Purchasing Power Parities (PPPs) for 1997 (Mulder and Groot, 2011). Moreover, this database includes 

data on capital compensation (CAP), gross output (GOS). According to EU KLEM, energy use is defined 

as final energy consumption in kilo tonnes of oil equivalent (ktoe), with sectoral data excluding 

transformation losses. Sector-specific constant energy prices (1997 US$/ktoe) are also based on EU 

KLEM data.  

 

Trade flow data (including both imports and exports) for each industry sector among the 16 EU partner 

countries are retrieved from 2006 STAN Bilateral Trade Database, and the latest year's data (2004) are 

taken to estimate the benchmark level of trade relations among the EU countries at detailed sectoral level. 

The unit of measure is in thousands US $ at current price.  

 

2.4 Results of Spatial Panel Convergence Regressions 

 

2.4.1 Selection of Conditional and Instrument Variables 

 

This chapter searches for country-specific sectoral determinants (X) of energy productivity growth by 

including a number of country-specific explanatory variables in the spatial panel convergence regression 

models.   

 

Heating Degree Days (HDDs) and Cooling Degree Days (CDDs): A "degree day" is a measure of the 

average temperature's departure from a human comfortable level of 18 °C (65 °F). The concept of degree 

days is used primarily to evaluate energy demand for heating and cooling services. HDDs and CDDs are 

both calculated in a cumulative fashion. Data on HDDs and CDDs are collected from the Climate 

Analysis Indictors Tool (CAIT) at World Resource Institute (Baumert and Selman, 2003).  

 

Capital Share (K_SHARE): Capital Share is a measure of the capital use intensity in manufacturing 

production process, and is calculated by the ratio of capital compensation (CAP) to gross output (GOS). 

The accumulation of capital stock is associated with sector-specific learning-by-doing and high capital 

share raises the amount of sectoral public knowledge. It serves as a good indicator of country- and 

industry-specific level of development.  
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Energy Price (EPRIC): Price information on energy use for each country is calculated as sector-specific 

energy expenditure (in constant 1997 US $) divided by physical energy consumption (in ktoe). Energy 

expenditure (in $) and physical energy consumption (in ktoe) are both retrieved from EU KLEM database, 

where energy is defined as an intermediate input derived from national accounts and supply-and-use 

tables. However, in most cases, the price of energy is correlated with the energy productivity series that 

influence the growth rate of energy productivity via the convergence model specification, and in turn the 

estimation results from the regression are biased. A Two-Stage Least Square (2SLS) estimation is then 

adopted to address the issue of endogeneity. In the first stage, energy prices are regressed on a series of 

variables that do not endogenously correlate with the energy productivities (see equation 2-19). For the 

second stage, the spatial panel convergence regression models (see equations 2-16 and 2-17) then use the 

predicted energy prices from the first stage as an independent variable. Instrumental variables are selected 

to correct for the corresponding bias by replacing the original energy price variable with the new variable 

that is uncorrelated with the disturbance term of the dependent variable - energy productivity. In other 

words, the fitted values of log (
B^Mz)�V,�  of step 1 are used for a maximum likelihood estimation 

applied to the stacked panel structural model.  log (
B^Mz)�V,� = �' + �O BzB{|��V,� + �Q BzB}~��V,� + �� BzB�{~��V,� + �� log(z��� + ����)�V,� + �� �_���^
 �V,�                                                                                                              (2-19)   

 

In this chapter, the instrumental variables include per capita oil reserve (PCPOIL), per capita natural gas 

reserve (PCPGAS), per capita coal reserve (PCPCOAL), logarithm of the sum of HDDs and CDDs, and the 

K_SHARE. Data on international energy reserves and resources are obtained from U.S. Energy 

Information Administration (EIA). These variables serve as good instruments for the price variable, 

mainly because the natural endowment of energy resources, weather conditions, and the capital share of 

production process are correlated with the energy price but meanwhile they are all exogenous to and do 

not depend on the energy productivity.  

 

LEAD: Grams of lead content per gallon of gasoline are used as a proxy for the level of environmental 

stringency at the country level. Given that lead emissions are precursors to harmful local air pollutants, a 

country with relatively strict environmental policy should allow lower lead content per gallon of gasoline. 

LEAD data are collected from "worldwide gasoline survey" published annually by OCTEL (1983-1995), 

and this chapter uses the data from year 1995.  

 

Also, five types of dummy variables are created. INDUSTRY is a manufacturing sector associated dummy 
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variable, to test the varying effects associated with each sector; COUNTRY is a country-specific dummy 

variable, to test the varying effects associated with each EU country; TP is a time period dummy variable, 

to specify the time associated effects; NE is a dummy variable for "non-eastern" European regions; 

H_EPRIC is a dummy variable for top 4 countries (25th percentile) with the highest energy price for each 

specified manufacturing sector at a given testing time period. In this chapter, Czech Republic (CZE), 

Hungary (HUN), Poland (POL), and Slovakia (SVK) are classified as eastern European countries, and the 

rest 12 countries are considered as non-eastern European countries.  

 

2.4.2 Selection of Estimation Periods of Convergence 

 

Given that current spatial statistical package can only estimate spatial panel regression with balanced 

panel dataset, the selection of testing periods for convergence among specified EU countries is confined 

to the period of 1995-2005. Even though, such a time period under study still covers a sufficiently long 

horizon. Considering that the underlying dataset on cross-country & cross-industry energy productivity 

are available at the annual level, however, it seems that yearly time spans are too short to be appropriate 

for studying growth convergence. Instead, this chapter opts for five-year intervals (1995-2000, 2000-2005) 

to minimize business cycle effects. Therefore, the panel data formulation is able to turn a single cross-

section for the entire period (1995-2005) to cross-section for shorter periods that constitute it. In other 

words, after controlling for the individual country effects, the panel data setup helps to integrate the 

process of convergence occurring over several consecutive time intervals.  

 

There has been a variety of energy policies applied to the manufacturing sector. During 1990s, voluntary 

agreements for energy efficiency improvement and reduction of energy-related GHG emissions by 

industry were dominant (Price, 2005). First agreements were the Long-Term Agreements on Energy 

Efficiency in the Netherlands, the Danish Agreement on Industrial Energy Efficiency, and the Declaration 

of German Industry on Global Warming Prevention. Since year 2000, a number of countries that first 

established strictly voluntary agreements started to strength their programs in a follow-on phase. For 

instance, in 2002, France replaced its initial 1996 voluntary program with a new program that includes a 

penalty fee for non-compliance and allows for emission trading. Other countries that have a second 

generation of agreements, such as Finland, Germany, and The Netherlands, all either increased the 

number of incentives or added penalties to strengthen the programs (Price, 2005). Therefore, it is 

worthwhile to test the policy effects on energy productivity growth rates for the two periods (1995-2000 

and 2000-2005).  
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2.4.3 Analysis of Results 

 

In the panel regression models (equations 2-16 and 2-17), it is very likely that the error term contains all 

sorts of (unobserved) country- & industry-specific tangible and intangible factors that affect energy 

productivity growth. One common issue that arises in such estimation is whether the individual effects are 

to be thought of as "fixed" or "random". Typically, panel approach applies fixed- or random-effects 

models to solve this problem, and the random-effects model assumes the effects are uncorrelated with the 

exogenous variables included in the model (Islam, 1995). The presence of the spatial lag introduces a 

form of endogeneity that violates the assumption of the standard regression model that the regressors are 

uncorrelated to the error term. One frequently used estimation method for spatial models is maximum 

likelihood (ML) which then accounts for endogeneity. However, the ML estimation entails substantial 

computational problems if the number of cross sectional units is large (Kapoor, Kelejian, and Prucha, 

2007). To solve this problem, a generalized moments (GM) estimation was proposed by Kelejian and 

Prucha (1999). This chapter adopts the ML estimation methods based on the fact that there is a 

manageable size of cross sectional units (160 units) for the panel.  

 

First, equations (2-16) and (2-17) are estimated by using the fixed effects (FE) estimator. More 

specifically, for the FE specification, following Elhorst (2003), these models can be specified with 

"pooled effects" (only the optional constant term is included), "time period specific effects", and "both 

spatial and time period fixed effects". The results of "pooled effects" for spatial lag model and spatial 

error model are reported in table 2.2 and table 2.3. 
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Table 2.2: Estimation Results of Fixed Effect Spatial Lag Models under "Pooled Effects" 

                              

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7   

Intercept -3.446 *** -3.464 *** -1.611 * -3.562 *** -3.583 *** -0.945 0.126 
log(EP0) -0.030 ** -0.025 * -0.027 * -0.032 -0.011 -0.392 *** -0.160 ** 
EPRIC 0.112 *** 0.047 0.053 * 0.121 *** 0.113 ** 0.184 *** 0.111 ** 
log(HDDs + CDDs) 0.300 *** 0.390 0.188 *** 0.308 *** 0.297 *** 0.257 *** 
K_SHARE -1.195 *** -1.403 *** -1.403 *** -1.189 *** -1.254 *** -1.332 *** -1.587 *** 
LEAD 1.771 *** 
NE -0.200 *** 
log(EP0): Dummy(T2) 0.006 
log(EP0): Dummy(H_EPRIC) -0.078 ** 
log(EP0): Dummy(TEX) 0.090 
log(EP0): Dummy(WOD) 0.304 ** 
log(EP0): Dummy(PAP) 0.219 
log(EP0): Dummy(CHE) 0.389 ** 
log(EP0): Dummy(NMM) 0.075 
log(EP0): Dummy(BMI) 0.402 *** 
log(EP0): Dummy(MAC) 0.327 ** 
log(EP0): Dummy(TRE) -0.037 
log(EP0): Dummy(NSI) 0.323 ** 
log(EP0): Dummy(BEL) 0.098 
log(EP0): Dummy(CZE) 0.073 
log(EP0): Dummy(DNK) 0.090 
log(EP0): Dummy(FIN) 0.169 ** 
log(EP0): Dummy(FRA) 0.113 
log(EP0): Dummy(GER) 0.089 
log(EP0): Dummy(HUN) 0.185 ** 
log(EP0): Dummy(ITA) 0.091 
log(EP0): Dummy(NLD) 0.039 
log(EP0): Dummy(POL) 0.013 
log(EP0): Dummy(PRT) 0.037 
log(EP0): Dummy(SPA) 0.100 
log(EP0): Dummy(SVK) 0.207 *** 
log(EP0): Dummy(SWE) 0.190 ** 
log(EP0): Dummy(UK) 0.141 * 

ρ 0.364 *** 0.353 *** 0.354 *** 0.307 *** 0.354 *** 0.216 ** 0.418 *** 

(Asterisks denote levels of Significance: *** at 1%, ** at 5%; * at 10 %.) 
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Table 2.3: Estimation Results of Fixed Effect Spatial Error Models under "Pooled Effects" 

                              

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

                              Intercept -3.719 *** -3.524 *** -1.622 -3.690 *** -4.007 *** -1.069 0.011 
log(EP0) -0.030 ** -0.027 * -0.029 ** -0.038 * -0.012 -0.388 *** -0.183 *** 
EPRIC 0.123 *** 0.042 0.048 0.128 *** 0.135 ** 0.182 *** 0.139 *** 
log(HDDs + CDDs) 0.322 *** 0.413 *** 0.206 *** 0.325 *** 0.3209 *** 0.271 *** 
K_SHARE -1.296 *** -1.543 *** -1.542 *** -1.282 *** -1.379 *** -1.307 *** -1.738 *** 
LEAD 1.853 *** 
NE -0.215 *** 
log(EP0): Dummy(T2) 0.018 
log(EP0): Dummy(H_EPRIC) -0.083 *** 
log(EP0): Dummy(TEX) 0.083 
log(EP0): Dummy(WOD) 0.306 ** 
log(EP0): Dummy(PAP) 0.217 
log(EP0): Dummy(CHE) 0.377 ** 
log(EP0): Dummy(NMM) 0.070 
log(EP0): Dummy(BMI) 0.399 *** 
log(EP0): Dummy(MAC) 0.323 ** 
log(EP0): Dummy(TRE) -0.042 
log(EP0): Dummy(NSI) 0.323 ** 
log(EP0): Dummy(BEL) 0.077 
log(EP0): Dummy(CZE) 0.105 
log(EP0): Dummy(DNK) 0.117 
log(EP0): Dummy(FIN) 0.181 ** 
log(EP0): Dummy(FRA) 0.079 
log(EP0): Dummy(GER) 0.071 
log(EP0): Dummy(HUN) 0.213 *** 
log(EP0): Dummy(ITA) 0.077 
log(EP0): Dummy(NLD) 0.015 
log(EP0): Dummy(POL) 0.025 
log(EP0): Dummy(PRT) 0.032 
log(EP0): Dummy(SPA) 0.061 
log(EP0): Dummy(SVK) 0.234 *** 
log(EP0): Dummy(SWE) 0.222 *** 
log(EP0): Dummy(UK) 0.155 * 

λ 0.358 *** 0.347 *** 0.356 *** 0.307 *** 0.360 *** 0.168 * 0.484 *** 

(Asterisks denote levels of Significance: *** at 1%, ** at 5%; * at 10 %.) 

  

From table 2.2 and table 2.3, it can be seen that the almost all estimates of β (namely, coefficient of 

log(EP0)) are negative and statistically significant at the 1% level. Concerning the additional explanatory 

variables, it is found that energy price has the expected (positive) sign and shown statistically significance 

in most cases, indicating that high energy prices have a positive impact on energy productivity growth. 

The weather condition variable (logarithm of the sum of HDDs and CDDs) also has positive and 

statistically significant impact on energy productivity growth. The implication is that for countries facing 

high energy prices or severe weather conditions that demand energy for cooling or heating would generate 

strong incentives to improve their energy productivity levels. In terms of environmental policy stringency 

variable "LEAD", in case 2, the estimated coefficient turns to be positive and statistically significant. It 

implies that countries with less stringent environmental policy (namely, with high lead content in gasoline) 

tend to witness faster energy productivity growth. Such a finding makes me wonder whether the "LEAD" 

variable directly correlates with the development stage of the EU countries. Countries with low lead 

content in gasoline or high environmental stringency are always the countries at their relatively developed 

stage. Due to this concern, "LEAD" variable is replaced by the dummy variable "NE" in case 3 and the 

estimate associated with "NE" turns out to be negative and significant. In other words, non-eastern EU 

countries are slow in increasing energy productivity when compared to less developed eastern EU 
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countries. It reaffirms my speculation on technology catching up that the rate of energy productivity 

improvement is contingent upon the development stage of the country. This is also true when it comes to 

interpreting the estimated coefficients for variable "K_SHARE". High capital share for the production 

implies a high level of technology advancement and capital can also substitute the inputs of raw energy 

materials, and thus for these countries with high capital share they witness a relatively slower energy 

productivity growth rate.  

 

Estimated coefficient for the time period dummy variable (T2: 2000-2005) in case 4 is positive, showing 

that at the second stage of the study period the energy productivity growth is faster. Nevertheless, neither 

of time-associated dummies for the two models (spatial lag and spatial error) turns out to be statistically 

significant. In case 5, estimated β coefficients for countries with higher energy price (using dummy 

variable H_EPRIC) for both models are negative and significant, while the default β coefficients (for the 

entire sample) are not significant. This indicates that convergences in energy productivity are mostly 

found among countries with relatively high energy prices. It again proves that rising energy price has a 

positive pressure on energy efficiency catching up. Moreover, in order to understand the differences of 

energy productivity growth rates for each manufacturing sector, the estimated coefficients associated with 

the sector dummies can provide some insights. In case 6, five detailed manufacturing sectors including 

BMI (Basic Metals), CHE (Chemistry), MAC (Machinery), NSI (Non-Specified Industry), and WOD 

(Wood and of Wood and Cork) show statistically significant effect of energy productivity convergence. 

This makes sense since most of these are energy-intensive sectors and they face strong needs to improve 

energy productivity. In similar fashion, in case 7, country-fixed effects of energy productivity 

convergence are found to statistically significant in Finland (FIN), Hungary (HUN), Slovakia (SVK), 

Sweden (SWE), and United Kingdom (UK).  

 

Two different specifications (spatial lag and spatial error) of the spatial panel models produce very similar 

estimation results under the "pooled effects". The estimated spatial autoregressive and autocorrelation 

coefficients (ρ and λ) are both positive and statistically significant. It proves that the energy productivity 

growth of one country is positively related to the growth of its trading partner countries. The trade-

facilitated technology spillovers mostly occur among countries that share strong intra-industry trade flow 

partnership.  

 

Table 2.4 and table 2.5 present the estimation results when "cross-section specific effects" and "both 

spatial and time period fixed effects" are considered in the fixed effects spatial lag and error models. It is 

worth to notice that coefficients of time-invariant variables cannot be estimated under such two scenarios. 
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Thus, variables such as "log(HDDs + CDDs)", "LEAD", and all the dummy variables have to be dropped 

in the estimated equation. The estimates of β are negative and statistically significant, indicating a 

converging process of energy productivity level across EU countries. However, these estimated βs are in a 

much higher magnitude than the estimates in table 2.2 and 2.3. Mostly because there are still varying 

effects associated with country-specific and industry-specific factors that are not captured in fixed effects 

models under "cross-sectional specific effects" and "both spatial and time fixed effects". The estimated 

coefficients for "K_SHARE" are negative and significant, and similar interpretations can be made as 

discussed above in the "pooled effects" estimates for "K_SHARE". The estimated spatial autoregressive 

coefficients for ρ are positive but not statistically significant, but the autocorrelation coefficients for λ are 

all positive and statistically significant. It shows that the trade-induced correlations (or spillovers) are 

mostly found in the error terms of the panel convergence models, indicating nuisance error dependence in 

the energy productivity convergence process.  

 

Table 2.4: Estimation Results of Fixed Effect Spatial Lag Models under "Cross-Sectional Specific Effects" 

and "Both Spatial and Time Fixed Effects" 

          Cross Sectional 
Specific Effects  

Both Spatial and Time 
Period Fixed Effects 

          log(
B') -0.738 *** -0.748 *** 

EPRIC 0.035 0.015 

K_SHARE -1.592 *** -1.498 ** 

ρ 0.101   0.125   

(Asterisks denote levels of Significance: *** at 1%, ** at 5%; * at 10 %.) 

 

Table 2.5: Estimation Results of Fixed Effect Spatial Error Models under "Cross-Sectional Specific 

Effects" and "Both Spatial and Time Fixed Effects" 

          Cross Sectional 
Specific Effects  

Both Spatial and Time Period 
Fixed Effects 

          log(
B') -0.756 *** -0.764 *** 

EPRIC -0.003 -0.016 

K_SHARE -1.488 ** -1.436 ** 

λ 0.233 *** 0.239 *** 

                                    (Asterisks denote levels of Significance: *** at 1%, ** at 5%; * at 10 %.) 

 

Table 2.6 shows estimation results of the spatial error model when spatial correlation and random effects 

are considered. Random effects model avoids the loss of degrees of freedom incurred in the fixed effects 

model and the problem that the coefficients of time-invariant variables cannot be estimated. The findings 

are very similar to the fixed effect spatial error model under "pooled effects". Almost all the conditional 

variables are with the expected sign and the estimates of βs are negative and statistically significant, 

indicating a conditional convergence process. In case 4, it again shows that countries with higher energy 

prices are witnessing strong energy productivity converging process, and the estimated rates (-0.098) are 
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generally higher than the default overall βs estimates in case 1, 2, and 3 (-0.041, -0.036, and -0.042). The 

associated spatial autocorrelation coefficients λ are positive and statistically significant, showing the 

energy productivity growth of one country is positively related to its trading partners and technology 

spillovers are embedded in the trade flows.  

 

Table 2.6: Estimation of Error Models under "Spatial Correlation and Random Effects" 

                  

Case 1 Case 2 Case 3 Case 4 

                  
Intercept -3.685 *** -1.613 -3.780 *** -3.848 *** 
log(EP0) -0.041 ** -0.036 ** -0.042 ** -0.02 
EPRIC 0.125 ** 0.051 0.133 *** 0.1229 ** 
log(HDDs + CDDs) 0.330 *** 0.210 *** 0.336 *** 0.3322 *** 
K_SHARE -1.549 *** -1.711 *** -1.557 *** -1.654 *** 
NE -0.216 *** 
log(EP0): Dummy(T2) -0.127 
log(EP0): Dummy(H_EPRIC) -0.098 *** 
λ 0.393  *** 0.386 *** 0.316 *** 0.398 *** 

(Asterisks denote levels of Significance: *** at 1%, ** at 5%; * at 10 %.) 

 

2.4.4 Estimation Results with Distance Weight Matrix 

 

For identification purposes, the spatial weight matrix needs to be defined exogenously (Manski, 1993). 

The choice of an appropriate spatial weight matrix is an important methodological problem in the 

quantitative spatial dependence literature and is subject to some arbitrariness. Such arbitrariness could 

present a serious problem to inference model results, since estimation could depend critically on the 

choice of spatial weight matrix (Anselin, 2002; Fingleton, 2003). Hence, it becomes worthwhile to 

consider the performance of some alternative specifications of the weight matrix. In this chapter, the 

weighting scheme could be based on either spatial distance or economic distance. The trade flow weight 

matrix discussed above is a good example of economic distance. Geographical distances are also often 

used to approximate the strength of social relationships. Therefore, I re-estimate the energy convergence 

panel model using the traditional distance weight matrix to check the sensitivity of weight matrix 

specification on the results and corresponding interpretations.  

 

 

 

 

 

 

 



21  

 

Table 2.7: Estimation Results of Fixed Effect Spatial Lag Models under "Pooled Effects" (Using Distance 

Weight Matrix) 

                              

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7   

                              Intercept -3.899 *** -3.910 *** -1.920 ** -3.995 *** -4.070 *** -1.096 0.082 
log(EP0) -0.030 ** -0.026 * -0.028 * -0.029 -0.011 -0.392 *** -0.164 ** 
EPRIC 0.124 *** 0.053 0.057 0.135 *** 0.128 *** 0.188 *** 0.118 *** 
log(HDDs + CDDs) 0.339 *** 0.437 *** 0.223 *** 0.339 *** 0.334 *** 0.271 *** 
K_SHARE -1.163 *** -1.379 *** -1.379 *** -1.168 *** -1.226 *** -1.359 *** -1.529 *** 
LEAD 1.881 *** 
NE -0.216 *** 
log(EP0): Dummy(T2) -0.112 
log(EP0): Dummy(H_EPRIC) -0.083 *** 
log(EP0): Dummy(TEX) 0.089 
log(EP0): Dummy(WOD) 0.299 ** 
log(EP0): Dummy(PAP) 0.218 
log(EP0): Dummy(CHE) 0.399 ** 
log(EP0): Dummy(NMM) 0.057 
log(EP0): Dummy(BMI) 0.402 *** 
log(EP0): Dummy(MAC) 0.319 ** 
log(EP0): Dummy(TRE) -0.045 
log(EP0): Dummy(NSI) 0.322 ** 
log(EP0): Dummy(BEL) 0.104 
log(EP0): Dummy(CZE) 0.074 
log(EP0): Dummy(DNK) 0.086 
log(EP0): Dummy(FIN) 0.153 * 
log(EP0): Dummy(FRA) 0.115 
log(EP0): Dummy(GER) 0.089 
log(EP0): Dummy(HUN) 0.188 ** 
log(EP0): Dummy(ITA) 0.093 
log(EP0): Dummy(NLD) 0.041 
log(EP0): Dummy(POL) 0.004 
log(EP0): Dummy(PRT) 0.045 
log(EP0): Dummy(SPA) 0.106 
log(EP0): Dummy(SVK) 0.208 *** 
log(EP0): Dummy(SWE) 0.195 ** 
log(EP0): Dummy(UK) 0.146 * 
ρ 0.055   0.091   0.104   0.009   0.054   -0.026   0.197 *** 

(Asterisks denote levels of Significance: *** at 1%, ** at 5%; * at 10 %.) 
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Table 2.8: Estimation Results of Fixed Effect Spatial Error Models under "Pooled Effects" (Using 

Distance Weight Matrix) 

                              

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

                              Intercept -4.096 *** -3.848 *** -1.803 * -4.088 *** -4.349 *** -1.048 0.090 
log(EP0) -0.031 ** -0.026 * -0.028 * -0.030 -0.012 -0.395 *** -0.188 *** 
EPRIC 0.127 *** 0.045 0.051 0.135 *** 0.137 *** 0.190 *** 0.135 *** 
log(HDDs + CDDs) 0.360 *** 0.444 *** 0.222 *** 0.351 *** 0.356 *** 0.265 *** -1.611 *** 
K_SHARE -1.194 *** -1.456 *** -1.473 *** -1.184 *** -1.256 *** -1.380 *** 
LEAD 1.933 *** 
NE -0.221 *** 
log(EP0): Dummy(T2) -0.119 
log(EP0): Dummy(H_EPRIC) -0.083 *** 
log(EP0): Dummy(TEX) 0.088 
log(EP0): Dummy(WOD) 0.298 ** 
log(EP0): Dummy(PAP) 0.219 
log(EP0): Dummy(CHE) 0.405 ** 
log(EP0): Dummy(NMM) 0.054 
log(EP0): Dummy(BMI) 0.404 *** 
log(EP0): Dummy(MAC) 0.329 ** 
log(EP0): Dummy(TRE) -0.047 
log(EP0): Dummy(NSI) 0.325 ** 
log(EP0): Dummy(BEL) 0.1167 
log(EP0): Dummy(CZE) 0.1052 
log(EP0): Dummy(DNK) 0.1071 
log(EP0): Dummy(FIN) 0.1765 ** 
log(EP0): Dummy(FRA) 0.1166 
log(EP0): Dummy(GER) 0.1003 
log(EP0): Dummy(HUN) 0.212 *** 
log(EP0): Dummy(ITA) 0.1049 
log(EP0): Dummy(NLD) 0.0492 
log(EP0): Dummy(POL) 0.0319 
log(EP0): Dummy(PRT) 0.0574 
log(EP0): Dummy(SPA) 0.1234 
log(EP0): Dummy(SVK) 0.2424 *** 
log(EP0): Dummy(SWE) 0.2145 *** 
log(EP0): Dummy(UK) 0.1702 ** 
λ 0.102   0.152 ** 0.164 ** 0.053   0.109   -0.056   0.240 *** 

 (Asterisks denote levels of Significance: *** at 1%, ** at 5%; * at 10 %.) 

 

Table 2.9: Estimation Results of Fixed Effect Spatial Lag Models under "Cross-Sectional Specific Effects" 

and "Both Spatial and Time Fixed Effects" (Using Distance Weight Matrix) 

          Cross Sectional 
Specific Effects  

Both Spatial and Time 
Period Fixed Effects 

          log(
B') -0.756 *** -0.755 *** 

EPRIC 0.030 0.031 

K_SHARE -1.656 *** -1.661 ** 

ρ -0.025 -0.026 

(Asterisks denote levels of Significance: *** at 1%, ** at 5%; * at 10 %.) 

 

Table 2.10: Estimation Results of Fixed Effect Spatial Error Models under "Cross-Sectional Specific 

Effects" and "Both Spatial and Time Fixed Effects" (Using Distance Weight Matrix) 

          Cross Sectional 
Specific Effects  

Both Spatial and Time 
Period Fixed Effects 

          log(
B') -0.760 *** -0.760 *** 

EPRIC 0.087 0.088 

K_SHARE -2.175 *** -2.175 ** 

λ -0.277 *** -0.276 *** 

(Asterisks denote levels of Significance: *** at 1%, ** at 5%; * at 10 %.) 
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Table 2.11: Estimation of Error Models under "Spatial Correlation and Random Effects" (Using Distance 

Weight Matrix) 

                  

Case 1 Case 2 Case 3 Case 4 

                  Intercept -3.936 *** -1.740 * -4.074 *** -4.086 *** 

log(EP0) -0.042 ** -0.034 ** -0.035 * -0.019 

EPRIC 0.125 *** 0.052 0.139 *** 0.124 ** 

log(HDDs + CDDs) 0.360 *** 0.221 *** 0.354 *** 0.357 *** 

K_SHARE -1.474 *** -1.627 *** -1.531 *** -1.565 *** 

LEAD 

NE -0.221 *** 

log(EP0): Dummy(T2) 0.019 

log(EP0): Dummy(H_EPRIC) -0.099 *** 

λ 0.145 * 0.183 ** 0.059   0.148 * 

(Asterisks denote levels of Significance: *** at 1%, ** at 5%; * at 10 %.) 

 

From table 2.7 to table 2.11, it is easy to notice that the estimated coefficients associated with the 

conditional variables are very similar to my previous results using the trade flow weight matrix. However, 

significant differences are found in the estimates of the spatial autoregressive and autocorrelation 

coefficients (ρ and λ). In the case of using trade flow weight matrix, the estimates of ρ and λ are almost all 

positive and significant, indicating technology spillover effects among trading partner countries. However, 

in the case of using distance weight matrix, the estimates of ρ and λ are with mixed signs (either positive 

or negative), and most of the estimates are not statistically significant. This means physical distance might 

not serve as a good instrument to capture the technological communication among EU countries, in that 

geographically close countries might not witness strong technology diffusion. Instead, trade flow among 

EU countries could account for energy productivity spillover effects more.  

 

2.5 Conclusions and Discussions 

 

This chapter has offered some empirical spatial panel analyses of energy productivity convergence by 

specifically testing the technology spillover effects associated with trade flow among 16 EU countries, 

covering the period 1995-2005.  Under the panel-data approach, the estimated coefficients of β are almost 

all negative and statistically significant. It leads to the conclusion that EU countries with low starting 

energy productivity levels witness relatively faster growth of energy productivity, and it further proves 

that relatively backward EU countries tend to catch up to more advanced economies, particularly the 

energy productivity levels.  

 

The estimation results also provide evidence that energy productivity convergence is conditional upon the 

cross-country differences in steady-state characteristics. More specifically, it is found that high energy 

prices and severe weather conditions tend to stimulate energy productivity growth. A negative relationship 
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is found between the capital share of the industrial production process and the energy productivity growth. 

Non-eastern EU countries show statistically significant lower rates of energy productivity growth. And 

energy use intensive manufacturing sectors (such as Basic Metals, Chemicals, Machinery, Wood and of 

Wood and Cork) tend to show statistically significant rates of energy productivity converging effects. 

However, the results fail to show statistically significant difference in the energy productivity growth 

rates between 1995-2000 and 2000-2005.  

 

The application of exploratory spatial panel data analysis methods reveals strong evidence of trade-flow-

induced spatial correlation in the energy productivity growth process. Most of the estimated 

autocorrelation coefficients (ρ and λ) tend to be positive and statistically significant. This further means 

that while EU countries may be converging in country- and industry-specific energy productivity terms, 

they do not do so independently but rather to display movements similar to their trading partner countries. 

It also shows that technological externalities associated with international intra-industry trade flows 

should receive greater attention in the global warming and energy economics fields. High energy price 

could be a significant factor to induce technology innovation and subsequently promote spillover effects.  

 

Taking advantage of the presence of spatial correlation in energy productivity improvement process, 

policy makers could simulate the effects of random shocks (e.g. innovation or adopting new efficient 

technologies) to individual manufacturing sectors to not only move that country away from its current 

energy productivity level, but also to propagate the effects throughout the spatial correlation system to 

other EU countries. It helps project energy productivity at sectoral level across all concerned EU countries, 

and will be especially meaningful in designing EU-wide energy policies, such as the well-known EU ETS. 

Emissions projections have always been of vital importance to estimate the costs of emission trading 

programs, but unfortunately there were very few sector-specific emission prediction models (Ellerman 

and Buchner, 2007). The projection of energy productivity levels across EU countries at the detailed 

sector level, in combination with other factors such as expected rates of growth in economic activity, 

energy types, and effects of regulatory provisions can address the issue of predicting an inherently 

uncertain future of carbon emission level. Effective forecast of emission becomes a basis for the 

allocation of European Union Allowances (EUAs) in the future.  

 

The major limitations of this chapter arise from the following sources. First, the estimation results heavily 

rely on the recently developed spatial panel regression package in R. There are important tests to be 

further developed, such as Hausman test to select the preferred model between random effects and fixed 

effects in a panel setting, and the estimation approach for the spatial lag random effects model under 
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panel structure. I am very confined to the available functions in this package to generate estimation results. 

Second, there still lacks efficient statistical tests to estimate the choice of a spatial weight matrix amongst 

a predetermined set of alternatives (in this chapter I tested two - trade flow based weight matrix and 

distance based matrix - and there are many other options). These limitations will be left for future work to 

improve.  
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Chapter 3  
GROUNDWATER RESOURCE PLANNING TO PRESERVE STREAMFLOW - WHERE 

ENVIRONMENTAL AMENITY MEETS ECONOMIC WELFARE LOSS 

 

3.1 Introduction 

 

Groundwater and surface water are not isolated, but inter-connected through an identified aquifer system 

in many regions. Excessive groundwater pumping, especially during drought periods, may cause the 

natural flow in the streams to fall below a level necessary for instream uses. As a result, streamflow may 

dry up and jeopardize a healthy ecologic and aquatic community, leading to reduced environment 

amenities. Federal and State legislation has stated its intention to promote sustainable economic growth 

while protecting the natural environment by minimizing the occurrence of low streamflows (Viscusi, 

1995).  

 

Conjunctive groundwater/surface water models have been proposed to manage the water resources, and 

some of them have paid specific attention to stream depletion (Theis, 1941; Glover and Balmer, 1954; 

Hantush, 1965; Hunt, 1999). A large body of work adopted simulation and optimization methods for some 

particular groundwater systems to provide insights for groundwater management (Bredehoeft and Young, 

1970; Gorelick, 1983). Maddock (1974) developed operating rules that relate streamflow interaction with 

well pumping and with the statistics of the demands, streamflow, pumping and drawdowns. Mueller 

(1993) established a model to link groundwater withdrawals with surface streamflow and optimally 

implemented the permit conditions so that the depletion of streamflow stays below a certain standard. 

Some recent work has been devoted to modifying the hydrologic assumptions or aquifer conditions in 

previous stream-aquifer-system studies and re-estimating depletion rates/volume (Butler et al., 2007; Yeh 

et al., 2008; Ward and Callander, 2010). These models help ascertain the spatial and temporal interactions 

of the stream-well-aquifer system.   

 

In addition to studies on physical hydrological mechanisms, the economic impacts associated with 

groundwater supply have also been incorporated into the decision framework of groundwater 

management. Young and Bredehoeft (1972) developed a simulation model composed of a hydrologic 

model and an economic model. The latter one represented the responses of irrigation water users to 

variations in water supply and cost. Feinerman and Knapp (1983) investigated the benefits of 
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groundwater management and their related welfare effects on groundwater users. They showed that socio-

economic impacts caused by groundwater use regulations may also vary over space.  

 

Effective and holistic management of groundwater resources would ideally incorporate concerns of 

preserving environmental amenities while minimizing the negative socio-economic impacts. In this 

chapter, tradeoffs between restoring streamflow and economic welfare loss at a small spatial scale are 

analyzed. It proposes an integrated hydrologic-economic framework to study groundwater resources at 

county and municipality levels. The tradeoffs are based on the locations of the wells and streams, physical 

hydrologic factors, and water rates. The rest of the chapter is organized as follows. In section 3.2, I begin 

by introducing the groundwater use facts in the study site. Following the background, components of the 

optimization model, including decision variables, objectives and constraints, are elaborated. It also 

contains a brief description of the genetic algorithm I intend to use in this chapter. Section 3.3 explains the 

selection of benchmark year for this analysis and the available sources of data. Section 3.4 presents the 

Pareto frontiers under both county and municipality levels. Section 3.5 discusses the modeling results and 

the sensitivities of return flow coefficients and pumping boundary constraints I impose in the modeling 

process. The last section 3.6 summarizes and identifies some possible directions for future research.  

 

3.2 Methodology 

 

3.2.1 Study Site 

 

The study site, McHenry County (see figure 3.1), is located approximately 55 kilometers northwest of 

downtown Chicago. In the past several decades, McHenry County has undergone a fast urbanization and 

suburbanization process. From 1969 to 2008, the population almost tripled from 0.1 million to 0.3 million 

(Data Source: Regional Economic Accounts, Bureau of Economic Analysis). In McHenry County, 

groundwater functions as an especially key resource to support regional economic development as 

underlying aquifers provide almost all of the county’s water supply. In response to the rocketing 

population, total demand for groundwater has also increased dramatically. The groundwater withdrawals 

in McHenry County had risen from 1.2 billion cubic feet in 1979 to 2.3 billion cubic feet in 2008 (Data 

Source: Illinois State Water Survey). Immoderate withdrawal of groundwater can speed up the process of 

stream depletion in this area. From a land use perspective, the entire land cover area of McHenry County 

is 610.7 square miles, and in 2001 the highest portion (57%) of land was for agricultural use. Between 

2001 and 2005, comparing to other categories of land use types, agricultural land cover suffered the most 

severe decrease from 348.12 square miles to 321.64 square miles (Data Source: Land Use Inventory, 
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Chicago Metropolitan Agency for Planning). As agricultural land and wetlands are being converted to 

impervious surfaces, groundwater recharge rates may be lowered, which further exacerbates the 

streamflow depletion problem. According to the Illinois State Water Survey Groundwater Database, a 

significant portion (85%) of water supplied by the groundwater resources in McHenry County goes to 

public water supply, mostly residential water use. Therefore, the focus of this chapter is on groundwater 

supply for domestic use.   

 

 
Figure 3.1: Location of McHenry County 

 

3.2.2 Streamflow Depletion Due to Groundwater Pumping 

 

With the initiation of groundwater withdrawals, groundwater levels in the aquifer will start decreasing and 

some of the groundwater that flows to the stream in the absence of withdrawals is now captured by the 

wells. If the pumping rate is high enough, instream flow could be drawn into the aquifer (“infiltration”) 

and possibly captured by the well. Reduction in streamflow caused by groundwater withdrawals are 

considered as streamflow depletion. Efforts on calculation of stream depletion have been made by 

numerous scholars. Theis (1941) is considered as the first scholar to assess the impact of groundwater 

pumping on an associated stream. Glover and Balmer (1954) and later Jenkins (1968) developed a more 

generalized analytical approach that substituted the earlier integral formulation of Theis with the 

complementary error function, which serves as a more useful means to describe the complete aquifer – 

well relationship. For a single well, the analytical solution offered by Glover and Balmer (1954) to 

calibrate the stream depletion due to pumping in an aquifer is:  

Chicago 
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�(d, �, Y) = � ∗ �bl? ���������                                                                                                                (3-1) 

 

where erfc is the complementary error function; D [L3/T], flow depletion taken from the stream; a [L], 

distance between the well and the stream; S [Dimensionless], storativity of a confined aquifer or specific 

yield of an unconfined aquifer; T [L2/T], transmissivity of the aquifer (assuming homogenous between the 

well and the stream); Q [L3/T], daily pumpage; t [T], time elapsed since the start of pumping, and in this 

chapter I use 365 days. The total daily depletion of stream (Tot_D) can be obtained through:  

Y_k_� = ∑ �5(d, �, Y) = ∑ ��5 ∗ �bl? ����� ������ ��55                                                                              (3-2) 

where n is the well index.  

 

3.2.3 Return Flow to the Streams 

 

Irrevocable water loss occurs when it is consumed by people or animals, transpired by plants, evaporated, 

or incorporated into plants or products (Solley et al., 1998). Consumptive water use may constitute a 

small portion of the total water withdrawal, and non-consumed water is returned to the hydrologic system 

as return flows. Therefore, calibration of the amount of return flow back to the stream is an important 

component to obtain the final balance of streamflow quantity. Usually, public-disposed wastewater is 

collected through sewers or wastewater-collection systems, treated at a wastewater treatment plant 

(WWTP) and discharged to receiving water such as a river, estuary, or aquifer. A WWTP serves one or 

more municipalities and is permitted under the U.S. Environmental Protection Agency (EPA) National 

Pollutant Discharge Elimination System (NPDES).  

 

Return flows to the streams in McHenry County are mainly estimated by information on discharges 

obtained from these WWTPs.  Another source of return flow is from wastewater disposed by individual 

users. However, due to the difficulty in obtaining such information, return flows from self-disposed 

wastewater through on-site septic systems are not considered in this chapter. Also, with no detailed 

information on where WWTPs receive their wastewater input, it is reasonable to assume that the 

processing efficiency of wastewater by WWTPs is the same across all 15 municipalities in McHenry 

County. The return flow coefficient is then calculated by the ratio of effluent discharged from all WWTPs 

to the total groundwater withdrawal on a daily basis (see equation 3-3). The coefficient is used as a proxy 

for the percentage of the depleted streamflow that will be eventually returned to the streams in a typical 

water cycle.  
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z_�ll_^�k�bv = ��.�4��(F_���>∑ ��� × 100%                                                                                           (3-3) 

 

3.2.4 Economic Welfare Loss  

 

According to equation (3-2), when the physical hydrogeological characteristics are fixed, reducing 

pumpage Qn is one way to reduce stream depletion. However, restricting pumping (in other words, 

reducing water supply) leads to negative economic impacts. As was mentioned earlier, a significant 

portion of groundwater supply goes to residential use. Unlike industrial production processes, the 

residential sector does not yield a directly measurable monetary cost when facing water restrictions. 

Usually, losses are measured by consumers’ willingness to pay to avoid water service interruptions, 

defined as the amount of money that residential customers would pay in order to avoid a break in water 

service of some duration (Brozovic et al., 2007; Jenkins et al., 2003). Scholars have explored several 

different approaches to estimate the economic losses associated with water supply shortage scenarios. A 

detailed analysis on welfare loss under water rationing scenarios can be found in Wan et al. (2011). In this 

chapter, I adopt the approach of Jenkins et al. (2003) by formulating water demand equations to estimate 

the willingness to pay from residential end users’ side to avoid water shortage. 

 

The elasticity denotes the change of marginal quantity of water consumed in case of a marginal water 

price alteration. The price elasticity of demand (η) for water in the residential sector can be defined by:   

 � = (��/�)/(�B/B) ≈ (△ �/�)/(△ B/B)                                                                                         (3-4) 

where P is the unit price of residential water (dollars per thousand cubic feet) and D is residential water 

demand (thousand cubic feet per day) at that price. The demand for water is said to be “inelastic” or 

“elastic” with regard to price depending on whether the value of the price-elasticity parameter lies 

between 0 and -1 or below -1. When the price of water with an inelastic demand rises, more is spent on 

water than previously because the decrease in consumption is insufficient to offset the increase in water 

price. On the other hand, when the price of a commodity with an elastic demand rises, less is spent on it 

than previously because the decrease in consumption more than offsets the increase in water price (Lesser, 

1954).  

 

When supply is restricted, users have to bid higher prices to gain access to limited water resources. Values 

on water are calibrated under the sense of how much the residential users (households) are willing to pay 

for each additional unit of water along their demand curves. When water supply is unrestricted, following 

the demand curve (see figure 3.2), residential users are willing to pay price P1 by consuming the ideal 

amount of water (Dmax). Under the intension to alleviate the pressure on the stream depletion, the amount 
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of water to be supplied (Dactual) is restricted to be less than the optimal unconstrained quantity (Dactual < 

Dmax). Thus, the economic loss represents the economic value or benefits that users would gain from 

additional water if deliveries were increased to the maximum quantity demanded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Demand Curve for Water Consumption in Residential Sector 

 

If I assume a constant price elasticity of demand (η), then equation (3-4) can be integrated to give the 

residential water demand function as: BO = exp [(ev�&�¤/�) + ?]                                                                                                                     (3-5)                            

in which c is an integration constant and can be estimated by: 

 ? = ln (BO) − [ln(�&�¤) /�]                                                                                                                   (3-6) 

 

Usually, surveys are sent to households or individuals to ask for their willingness to pay for water services 

or their likely reaction to changed water prices. Elasticity of demand for water can then be calculated 

from the survey data. If elasticity estimates are available, then the demand function can be estimated from 

the available price and quantity of water use. In other words, P, D, and η are the three parameters needed 

to establish/locate the residential demand curve. Economic loss can be calculated by integrating the 

demand curve from maximum residential demand leftward to the actual delivery. In figure 3.2, the shaded 

area indicates the welfare loss due to water supply constraint. After integration, the economic loss can be 

expressed as: 

  
?_v_�_�� = [exp(?)/(1 +  1/�)] × ��&�¤(O6 O/¥) − ����¦�§(O6 O/¥)�                                                            (3-7) 
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3.2.5 Multi-Objective Decision Making Model 

 

Environmental management problems always have multiple objectives and are spatially complex and 

potentially conflicting. In this study, the physical response of streamflow to groundwater withdrawals 

determines the planning strategies that may be used to balance residential water supply and aquatic-

habitat protection goals. More specifically, the multi-objective groundwater resource management model 

consists of a set of decision variables, two objective functions, and a set of constraints. The decision 

variables are daily pumping rate at each individual well (Qn) that supplies water for residential use. Let’s 

assume Un as the current pumping rate without any restriction for the well n in McHenry County, and the 

constrained desirable pumping rate is Rn (both in the unit of thousand cubic feet per day). The goal is to 

minimize stream depletion (in other words, restore streamflow) and also to minimize the economic 

welfare loss produced by constraining well pumpage. Equation (3-8) estimates the amount of daily 

streamflow depletion/loss in McHenry County by considering the water balances between outflows 

(depletion through groundwater pumping) and inflows (wastewater discharge into streams). Equation (3-9) 

shows the total economic welfare loss associated with restrictions on pumping. Thus, the objectives of 

this decision-making process are to understand the tradeoffs between streamflow depletion and total 

economic welfare loss.  

�kb�dc_�_�� = (1 − z_�ll_^�k�bv) ∗ ∑ �^5 ∗ �bl? ����� ��������5                                                        (3-8) 

Y¨Y_
z¨a_�¨�� = ∑ [exp(?5) /(1 +  1/�)] × �©5(O6 O/¥) − ^5(O6 O/¥)�5�ªO                                         (3-9) 

 

In addition to equations (3-8) and (3-9), two constraints are imposed in the multi-objective optimization 

process. Equation (3-10) specifies the lower bound (LB) of the restricted pumping rate at each well. LBn is 

a factor assigned to each well based upon its magnitude of impact toward stream depletion. From 

equation (3-1), I know that the contribution of each well's pumping toward stream depletion depends on 

the pumping rate and a well-specific depletion factor �bl? ����� ������ �. In this study, the depletion factors 

for all wells are calculated and ranked from highest to lowest. The wells with the 25% highest depletion 

factors are assigned a zero value for the lower bound variable LB. In the model, these wells can be shut 

down as Rn equals zero if necessary in the worst case. For the second (25%~50%), third (50%~75%), and 

fourth quarter (75~100%) of the depletion factor rank (high to low), the LBs are assigned values of 40%, 

50%, and 60%. The 40% lower bound was chosen on the fact that 40 gallons is considered as a necessity 

for a socially and economically developed community. The regular per capita domestic water 
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consumption in McHenry County is close to 100 gallons per day (Wan et al., 2011). The restriction 

becomes loose when the depletion factor becomes low. For the wells ranked in the lowest quarter of the 

depletion factor range, the constrained pumping must always stay above 60% of their previous 

unconstrained pumping rates. Equation (3-11) ensures the upper bound that the regulated pumping should 

stay below the previous unconstrained level of pumping. For practical implementation, the classifications 

and values of LBs can be easily adjusted accordingly.   ^5 ≥ ©5 ∗ �¬5                                                                                                                                      (3-10)  ^5 ≤ ©5                                                                                                                                                (3-11) 

 

3.2.6 Implementation of NSGA-II Method for Multi-Objective Mathematical Programming  

 

Unlike the single-objective optimization problems whose solutions are usually straightforward, a multi-

objective mathematical problem has no single optimal solution that can simultaneously optimize all the 

objective functions. This is especially true for environmental management decision-making processes, 

where multiple objectives may conflict. The challenge is to evaluate the performance of the action relative 

to the multiple objectives. Decision makers might have to explore a full set of solutions instead of a single 

answer.  

 

Frequently used is an a posteriori method that approximates the non-dominated Pareto frontier without 

using weightings and allows for visualization of the tradeoffs among objectives. A solution is considered 

as non-dominated if there exists no other feasible solution that will give an improvement in one objective 

without a subsequent degradation in at least one other objective (Cohon, 1978). The decision makers can 

then express their preferences by analyzing objective tradeoffs and select a point on the Pareto frontier as 

the most preferred one for environmental planning and management purpose. However, given the size of 

decision variables and objectives, consideration of the entire feasible space to determine the non-

dominated Pareto frontier can be computationally burdensome. The genetic algorithm (GA) has emerged 

as a robust global optimization algorithm and has been applied to many water quality management 

problems (Kalwij, 2008). GA searches complex problem spaces by using a process that is analogous to 

Darwinian natural selection (Srinivas and Deb, 1994).  GA is particularly suitable for multi-objective 

optimization problems, since it deals simultaneously with a set of possible solutions and produces Pareto 

optimal solutions in one single run of the algorithm.  

 

In the context of this chapter, a fast and elitist multi-objective genetic algorithm is selected to integrate the 

search algorithm with the calculation of objectives to locate the non-dominated Pareto frontier. The 
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optimization framework is based on a multi-objective optimization program, Non-dominated Sorting 

Genetic Algorithm (NSGA-II), developed by Deb et al. (2002). The NSGA-II algorithm is composed of 

five operators: initialization, fast non-dominated sorting, crossover, mutation, and the elitist crowded 

comparison operator. Different from other evolutionary algorithms, NSGA-II uses the non-dominated 

sorting and ranking selection with the crowded comparison operator (Deb et al., 2002). A real-coded 

NSGAII is employed as the optimization mechanism to search the solution space for the fittest individuals 

based on two objective functions while maintaining optimal individuals non-dominated by any other 

solutions. A source code of NSGA-II written by Aravind Seshdri (Matlab Exchange, 2007) was modified 

to incorporate the simulation model and objective functions in this chapter.  

 

3.3 Data  

 

3.3.1 Simulation Benchmark Year 

 

Maintaining an appropriate level of instream flow is needed to protect aquatic and riparian ecosystems. 

However, minimal ecological requirements for instream flow are not well defined. In most cases, criteria 

of instream flow are developed from historical streamflow statistics or regional average streamflow 

statistics. Due to unavailability of streamflow data, I decide to set year 2005 as the benchmark. It is based 

on the fact that in 2005 dry conditions reached a historic level of severity in some parts of Illinois 

(including McHenry County), and ranked as the one of the three most severe droughts in 112 years of 

record in Illinois (McHenry County Hazard Mitigation Planning Committee, 2010). As a result, 

groundwater withdrawal reached a record of 2.636 billion cubic feet in 2005 and these withdrawals of 

groundwater cast significant impact on stream flow.  

 

3.3.2 Water Price and Price Elasticity of Demand 

 

Water price data are always difficult to obtain, in that there is almost no uniform pricing system in the 

public water supply sector. Typically, water facilities have a fixed service charge as well as a commodity 

charge based on the quantity of water consumed. Water rates can be generic, increasing or decreasing 

across “blocks” of water consumed by households. Surveys are usually sent out to different municipal 

water supply facilities to collect related water rate information. In this chapter, data on water rates for 

each individual municipality as of August 2008 were provided by Chicago Metropolitan Agency for 

Planning. With no available price information for 2005, it is reasonable to use water rates in 2008 as an 

alternative, since water rates usually undergo very minor changes across years. Water rates for McHenry 
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County communities are tabulated in Table 3.1.  

 

Table 3.1: Water Rate and Annual Pumpage for Residential Use by Each Municipality in 

McHenry County 

Municipality 
Water Price  
(dollars per 

thousand cubic feet) 

Total Annual Pumpage for 
Residential Use in 2005  
(thousand cubic feet per 

year) 

ALGONQUIN 21.39 18,897 
CARY 26.48 100,215 
CRYSTAL LAKE 17.13 273,545 
FOX RIVER GROVE 17.13 26,110 
HARVARD 24.83 53,661 
HEBRON 5.91 4,801 
HUNTLEY 18.10 45,185 
LAKE IN THE HILLS 25.28 128,633 
LAKEWOOD 24.68 12,959 
MARENGO 23.26 29,510 
MC HENRY 26.11 143,634 
WONDER LAKE 26.18 16,238 
RICHMOND 23.34 8,064 
JOHNSBURG 23.49 26,569 
WOODSTOCK 10.62 150,365 

 

The municipality-wide estimation of elasticity for residential water use in McHenry County is also not 

available. Many empirical studies have been devoted to examine demand for water and the own-price 

elasticity of water. Classic work includes Howe (1982), Nieswiadomy (1982), Hewitt and Hanemann 

(1995), and Renwick and Green (2000). Several applications of using meta-analysis to identify important 

factors explaining the variation in estimated price elasticity of residential water demand have been 

discussed in the literature. Espey et al. (1997) found that approximately 90% of reported price elasticities 

of demand for residential water use were in the range between -0.75 and 0, with a mean price elasticity of 

-0.51. Another meta-analysis by Dalhuisen et al. (2003) reported a mean price elasticity of demand of -

0.41 and a median price elasticity of -0.35. Based upon the information above, the residential water price 

elasticity of demand was set as -0.40. The discussion of sensitivity of elasticities in McHenry County is 

available in the study by Wan et al. (2011). Although it is unavoidable that elasticity is deemed to change 

under different time and price settings along the water demand curve, adjustments to elasticity are usually 

difficult to make in a reliable manner. According to Jenkins et al. (2003), if deliveries remain within the 

price range of estimated elasticity, economic loss estimated using constant elasticity is a reasonable 

approximation.  

 

3.3.3 Features of Wells, Pumping Rate and Aquifer Characteristics in McHenry County 
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In 2005, there were 100 wells that pumped groundwater to provide daily residential water use for 20 

municipalities. However, water rates were unavailable for 13 wells from 5 municipalities (Island Lake, 

Lakemoor, Union, Holiday Hills, and Prairie Grove). Thus I decided to use the remaining 87 wells for my 

analysis. I assigned the municipal water rates to the wells located in that municipality. Data on pumping 

rate, capacity, geographical location of wells and hydrogeological parameters (specific yield or storativity 

Sn and transmissivity Tn) are from Meyer et al. (2009). Unconfined aquifers frequently have a direct 

hydraulic connection to rivers, lakes, streams, or other surface water bodies. They have high storativities 

(typically called specific yield, ranging from 0.1 to 0.3) and release water from storage by the mechanism 

of actually draining the pores of the aquifer, releasing relatively large amounts of water (Fetter, 1988). In 

contrast, confined aquifers have low storativity values (much less than 0.01), and they store water using 

the mechanisms of aquifer matrix expansion and the compressibility of water, which are typically both 

quite small quantities. Hence, based upon the previous work (Meyer et al., 2009) on the study region 

around McHenry County, I assume that stream depletion mostly corresponds to the unconfined aquifers 

and specific yield is used for Sn in equation (3-1). The distance from an individual well to its nearest 

stream is calculated in ArcGIS through the “proximity” function in “analytical tools”. Table 3.2 below 

tabulates the summary statistics of the variables I collected.   

 

Table 3.2: Statistics of the Variables (Sample Size:  n = 87 wells) 

 

Variable Max Min Mean 
Standard 

Deviation 

Un: pumping rate, 1,000 cubic feet per day 124.15 0.01 32.70 28.30 
an: distance between well and nearest stream, feet 13368.93 148.00 4042.67 3025.15 
Sn: specific yield of the aquifer 0.15 0.15 0.15 0.00 
Tn: transmissivity of the aquifer, square feet per day  24305.26 250.05 4738.60 4613.20 
Pn: price of water , $ per 1,000 cubic feet 26.48 5.91 21.17 5.57 

 

3.3.4 Calibration of Return Flow Coefficient 

 

Township shapefiles in McHenry County were downloaded from the Tiger/Line Shapefile Database at the 

U.S. Census website. In figure 3.3, I present the geographical visualization of well locations, streams, 

WWTPs, municipalities and townships in McHenry County. At municipal level, Crystal Lake has the 

highest number (18) of wells used for public water supply, followed by McHenry (12 wells), Cary (10 

wells) and Woodstock (8 wells). Table 3.1 shows the total yearly groundwater withdrawal for residential 

use by each municipality in 2005. Crystal Lake, Woodstock and McHenry rank as the top 3 municipalities 

for their annual groundwater withdrawal for residential use.  
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According to the U.S. EPA, there are 16 WWTPs located in McHenry County (see figure 3.3). Data on 

the locations and daily effluent discharged from WWTPs are retrieved from Clean Watersheds Needs 

Survey (CWNS) at the EPA website. The survey was conducted every four years, and the data from the 

2004 survey were used in this study because it is the closest one to the benchmark year 2005. Based upon 

the 2004 data, the total daily discharge from all WWTPs was 1.905 million cubic feet and the daily 

groundwater withdrawal at the entire county-level was 2.46 million cubic feet. Therefore, the return flow 

coefficient (see equation 3-3) is 77.42%.  

 

 

Figure 3.3: Locations of Streams, Pumping Wells and Wastewater Treatment Plants (WWTPs) in 

McHenry County 

 

3.4 Estimation Results 

 

3.4.1 County Level Analysis 

 

The solution to the multi-objective estimation problem is not a single unique set of parameters but 

consists of the Pareto set of solutions (non-dominated solutions), according to the various tradeoffs 

between economic welfare loss and the amount of streamflow to be restored. Using Equations (3-8) – (3-

11), the optimization algorithm NSGA-II assigns a pumping rate for each well to produce the Pareto 

frontier. The optimization is for all 87 wells in the county. In this hypothetical case, my concern is the 

overall economic welfare at the aggregated county level assuming that there is a centralized planning 
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regime across municipalities.  

 

In figure 3.4, each point represents a Pareto solution of 87 well pumping rates, and these points are 

equally valid from a multi-objective point of view. It shows the tradeoffs between the amount of 

streamflow depletion and the associated economic welfare loss due to restriction of pumping rates. When 

using the NSGA-II search algorithm, the population size and generation size were both set to 1000, and 

final optimal solutions were nicely distributed along the Pareto frontier. The Pareto frontier allows 

decision makers or water resource planners to identify solutions based on consequences of the whole set 

of relative preferences.  

 

 

Figure 3.4: The Pareto Frontier Showing the Tradeoffs between Streamflow Depletion and Economic 

Welfare Loss at McHenry County Level 

 
The shape of the curve indicates that as the amount of streamflow depletion decreases the economic 

welfare loss increases. More specifically, three search results (two extremes and one middle point) on the 

Pareto frontier are specified. Point A determines the highest available streamflow depletion level (208 

thousand cubic feet per day), while enduring the minimal amount of economic welfare loss (2,544 dollars 

per day). Point C determines the lowest available streamflow depletion level (71 thousand cubic feet per 

day), at the expenses of the highest amount of economic welfare loss (15,197 dollars per day). The range 

of streamflow depletion for decision makers to choose is between 71 and 208 thousand cubic feet (per 

day), with associated economic welfare costs between 2,544 and 15,197 dollars (per day). Point B shows 

an intermediate situation with streamflow depletion level at 118 thousand cubic feet (per day) and 
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economic welfare loss of 7,566 dollars (per day).   

 

Identification of three solutions (Point A, B, and C) allows decision makers to further explore the pattern 

of assigned optimal pumping rates for each well. To compare the spatially heterogeneous effect toward 

groundwater withdrawal, I summarize the total daily pumpage at each municipality under each scenario in 

table 3.3. When demand to restore streamflow is low, as in scenario A, the optimal pumping generated by 

the model at each municipality is just slightly less than its original non-restricted pumping level in 2005. 

As the demand for preserving streamflow increases, the restriction imposed on the original pumping 

intensifies. From scenario B to C, daily optimal groundwater withdrawal at each municipality drops in 

order to lower the amount of stream depletion caused by groundwater pumping, while maintaining the 

least economic welfare loss. In municipalities, such as Fox River Grove and Harvard, the solutions of 

optimal pumping generated by the model under both scenarios almost reach zero. On the other hand, Cary 

and Wonder Lake are assigned higher pumping rates from scenario A to scenario B, while the rest of the 

municipalities are asked to reduce pumping to preserve streamflow. The reason why such a solution 

occurs is because that Cary and Wonder Lake have very high water prices (see table 3.1) and restrictions 

of water supply produce a much higher economic welfare loss. Therefore, to maintain a low economic 

welfare loss at the entire county level, the decision makers might have to give preferences on water 

withdrawal allocation to certain municipalities.  

 

Table 3.3: Comparison of Optimal Groundwater Pumping in Three Scenarios and Original Level (Unit: 

thousand cubic feet per day) 
      

   Point A Point B Point C Original Pumping 

ALGONQUIN  49.98 45.28 38.17 51.77 
CARY  269.89 273.88 181.32 274.56 
CRYSTAL LAKE  738.88 704.73 575.27 749.44 
FOX RIVER GROVE  59.91 0.94 0.51 71.53 
HARVARD  98.16 0.00 0.11 147.02 
HEBRON  8.97 8.28 11.07 13.15 
HUNTLEY  122.59 59.38 57.36 123.80 
LAKE IN THE HILLS  344.17 319.96 277.83 352.42 
LAKEWOOD  33.98 15.06 10.83 35.50 
MARENGO  80.67 76.68 33.41 80.85 
MC HENRY  363.49 332.76 201.51 393.52 
WONDER LAKE  40.82 42.31 32.44 44.49 
RICHMOND  18.69 11.87 5.87 22.09 
JOHNSBURG  71.02 36.20 22.31 72.79 
WOODSTOCK  351.02 172.97 133.64 411.96 

TOTAL  2652.23 2100.30 1581.65 2844.89 

 

3.4.2 Municipality Level Analysis 
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In the previous part, the analytical results are derived assuming that each municipality will honor the 

entire county’s overall economic loss as their primary interests and would collaborate with each other 

without incurring administrative costs. However, such a concept does not consider the specific incentives 

of participating municipalities. If I respect the autonomy of each municipality, their decisions on restoring 

streamflow should be based on the economic welfare losses occurred to the municipalities themselves 

instead of the entire county. Therefore, I relax the previous assumption and explore the costs of lowering 

streamflow depletion for each individual community. For Equations (3-8) – (3-11), I no longer aggregate 

each well n toward the entire county level, and instead I examine the wells located at each specific 

municipality and aggregate the associated economic welfare loss and stream depletion toward that 

municipality. Correspondingly, the model will produce the Pareto frontier to show the tradeoffs between 

stream depletion and economic welfare loss for each individual municipal unit. Figures 3.5 shows the 

Pareto frontiers for all identified 15 municipalities.  

 

Each municipality in McHenry County faces a unique tradeoff situation between streamflow depletion 

and welfare loss. Municipalities, such as Huntley, Hebron, Richmond, Lakewood, and Algonquin, show 

very low capacity for depleting streamflow, mostly due to the fact that in these municipalities only one or 

two wells are in operation and/or under specific hydrogeological conditions (e.g. low transsimisivity, long 

distance between the wells and the stream) that the associated streamflow depletion is fairly small. In turn, 

their Pareto frontiers are all located at the bottom left corner of the graph. Woodstock, McHenry, Crystal 

Lake, Cary, and Harvard, on the other hand, are the 5 municipalities with the highest capacities to deplete 

streamflow and have relatively more impact on the overall streamflow depletion situation at the county 

level. The slope of the Pareto frontier curve indicates the "shadow price" of the streamflow. For instance, 

Woodstock shows a relatively steep Pareto frontier curve, which suggests that for one unit reduction of 

streamflow depletion (in other words, one unit of streamflow restoration), the associated economic 

welfare loss is less. Interestingly, in contrast to the other municipalities, the Pareto frontier of Lake in the 

Hills shows a very flat shape in the tail part. It happens because four out of seven wells in operation at 

Lake in the Hills are located far away from the stream, and according to equation (3-1) their pumping 

produces very small impact toward streamflow depletion. When restricting the pumping from these four 

wells, the associated economic welfare loss increases due to lack of water supply, but this does not 

remarkably restore the streamflow. Hence, these Pareto frontiers together provide decision makers with 

valuable information on the range of tradeoffs between streamflow depletion and economic welfare loss 

associated with the unique pumping decisions in each municipality.  

 



 
Figure 3.5: The Pareto Frontiers Showing the Tradeoffs between Streamflow Depletion and Economic 

Welfare Loss for Each Municipality. 

A: All Municipalities in McHenry County

B. Municipalities with Low Capacity for Streamflow Restoration

 

3.5 Discussion 

 

It is noticeable that some municipal Pareto frontiers have a piece
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5: The Pareto Frontiers Showing the Tradeoffs between Streamflow Depletion and Economic 

Welfare Loss for Each Municipality.  

A: All Municipalities in McHenry County 

B. Municipalities with Low Capacity for Streamflow Restoration 

It is noticeable that some municipal Pareto frontiers have a piece-wise shape (such as Woodstock
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Johnsburg and Fox River Grove), while no such feature is observed from the county-wide Pareto frontier. 

This happens when homogenous price rates are assigned to each well located in one municipality. For one 

unit less groundwater withdrawal, according to equation (3-7), the associated economic welfare loss at the 

municipal level will be the same no matter which well's pumping will be under restriction. 

Acknowledging this further proves that when constraining one unit of groundwater withdrawal 

(associated with equal welfare loss), reducing the pumping from the well with the highest depletion 

capacity will restore a maximal amount of streamflow. Under this rationale, the optimal solution along the 

Pareto frontier (from left to right) will start with restraining pumping from the well with the highest 

depletion capacity until it reaches its lower bound, and then it moves to the well with the second highest 

depletion capacity, and goes on till the last well with the least depletion capacity reaches its lower bound. 

If two consecutive wells along the rank have a remarkable magnitude difference of their depletion 

capacity, the tradeoffs between restoring streamflow and economic welfare loss will undergo a significant 

change, and that contributes to the piecewise shape of the Pareto frontier curve in aforementioned 

municipalities. This finding confirms the importance of spatial planning in producing optimal solutions 

for groundwater resource management. The well-specific depletion factor �bl? ����� ������ � , or in other 

words the hydrogeological factors (distance to streams, specific yield and transmissivity) becomes an 

important information criterion and suggest a rule of thumb for decision makers to prioritize the 

preference towards wells in terms of using pumping restrictions to restore streamflow. Given that water 

rates are the same across all the wells in a municipality, the rule of thumb is to reduce pumpage of the 

well with the highest stream depletion factor until the streamflow goal is met or the well's lower bound is 

reached, and then continue this process with the well having the next highest depletion factor. 

 

At an aggregated county level, the optimal solutions can no longer start with the wells having the highest 

depletion capacity, mainly because the water rates vary across municipalities and economic welfare loss 

produced by one less unit of groundwater withdrawal is not constant across wells. The rule of thumb no 

longer holds at the county scale, and the Pareto frontier for McHenry County gets smooth and no obvious 

step-wise shape is observed.      

  

Another concern is the sensitivity on how the setup of lower bound (LB) - 0, 40%, 50%, and 60% - affects 

the shape of the Pareto frontier. Does it also contribute to the piecewise shape we observe? In order to 

answer both questions, I remove the lower bound condition in equation (3-10) and just require the 

restricted pumping rate ^5 to be no less than zero. Figure 3.6 shows the comparison of two Pareto 

frontiers for Woodstock: the blue curve is the Pareto frontier with lower bound imposed, while the red 
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curve is the Pareto frontier without lower bound. In the case of no LBs, no restriction is imposed on the 

minimal pumping of each well, and hence the Pareto frontier without LBs can reach the x-axis. It means 

all wells are shut down, no streamflow depletion occurs, and the welfare loss achieves the maximum. 

 

 

Figure 3.6: Comparison of Pareto Frontiers in Woodstock Municipality for Sensitivity Test of Lower 

Bounds 

 
The rule of thumb still holds at Woodstock for the optimal solutions that comprise the Pareto frontier. 

Under LBs condition, four out of eight operating wells in Woodstock have stream depletion factors in the 

highest 25% percentile and their pumping could be reduced to zero, while others would not. In the no LBs 

case, all eight wells can have their pumping rate reduced to zero regardless of their depletion capacity. 

After comparing the two frontiers, I see that the two Pareto frontiers coincide for the first half range (from 

left to right), simply because these curves from both cases represent optimal solutions that start with the 

wells of highest depletion capacity and the solutions moves until their pumping reaches zero. After 

passing the mid-range of the curve, the two Pareto frontiers start to diverge, and the one with LBs get 

flattened off while the one without LBs continues with piecewise curvature until it reaches the x-axis. 

Divergence of the two frontiers is mostly created by the fact that with the LBs condition, a minimum 

pumping requirement is imposed for some wells (which means they are not required to shut down in any 

case). Following the rule of thumb, when one well reaches the lower bound the optimal solution will 

switch to reducing the pumping of next well that has less depletion capacity than the previous one along 

the rank. For wells with above zero lower bound constraints (40%, 50%, or 60%), their available range 

for pumping reduction is narrower than the ones without a lower bound constraint (from original pumping 

rate to zero). Therefore, in case of with LBs condition, when optimal solutions reach wells with low rank 
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depletion capacity (which are not required to shut down) and move from restricting one well to another, 

the possible piece-wise curvature is shortened and becomes less obvious. In that sense, the Pareto frontier 

for the case of LBs constraint gets flattened off at the second half and no longer has a piecewise shape. To 

sum up, the condition of LBs will limit the range of pumping restriction of wells in the solution space, and 

it will somehow change the tradeoff dynamics shown by the Pareto frontier.  

 

The return flow coefficient I used is 77.42%. In order to test the sensitivity to the return flow coefficient, 

three alternative values (80%, 70%, and 60%) were chosen for the same optimization modeling at the 

county level. Figure 3.7 shows the comparison of four Pareto frontiers when different return coefficients 

are used. The population and generation sizes were also set to 1000 in the GA solutions during the 

sensitivity tests of three alternative return flow coefficients. The Pareto frontier with 80% return flow 

coefficient is located fairly close to the one I use (77.72%) in this chapter. However, the Pareto frontiers 

with 70% and 60% return flow coefficients move outward.  That is because, as the return flow coefficient 

decreases (from 77.72% to 70% to 60%), more irrevocable water loss is observed and a smaller portion of 

groundwater withdrawal is returned to the stream. In that sense, to increase streamflow stock becomes 

more expensive, since pumping constraints need to be more stringent.   

 

For the four Pareto Frontiers shown in figure 3.7, there are discontinuities of the optimal solutions at 

similar x-axis values (approximately between economic welfare loss of $3,063 and $3,088 per day). Such 

a gap indicates that one extra unit of economic welfare loss can contribute to significant improvement of 

streamflow depletion level. Although I am not expecting continuous solutions generated by GA under the 

settings of each return flow coefficient, it still remains interesting for me further explore how such gaps 

are formed. After looking further into the details of the optimal pumping rates produced in the GA 

solutions that form the two ends of the gap, it is found that at the beginning of the frontier (top left 

portion), only moderate reductions of the wells' pumping are imposed which leads to small decreases of 

the streamflow depletion. However, after the observed break near x-axis = $3,063 ~ $3,088, the optimal 

solution forming the start of a new portion of the Frontier curve starts to have one well significantly 

reducing its pumping rates (from 31.47 to 4.33 thousand cubic feet per day). This well is found to be 

located in an area that is very proximate to a stream (thus with high stream depletion capacity) and has 

relatively low water rates. The gap was again found near x-axis = $3,412 ~ $3,419 with another well's 

pumping being remarkably reduced (from 63.92 to almost 0 thousand cubic feet per day). This well also 

has a high depletion capacity (due to moderate distance to a stream and high transimissivity value). In that 

sense, significantly reducing the pumping of such a well will bring more benefits in terms of lowering 

stream depletion level while maintaining relatively low economic welfare loss. Such a finding informs me 
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that there is a "threshold" for this trade-off to occur. For the decision of moderately lowering the pumping 

rate, the solutions will be located at the very beginning of the Pareto frontier (top left portion before the 

break). For the decision of making an effort to improve the environmental amenity, it will be necessary to 

significantly restrict the pumping of certain wells (like the two I found at these breaking points) to return 

more streamflow to the environment. In that way, decision-makers can evaluate the different portions of 

the Pareto frontier curve based on the trade-off benefit.  

 

 
 

Figure 3.7: Pareto Frontiers under Different Return Flow Coefficients 

 

3.6 Conclusion 

 

This chapter employs the evolutionary algorithms for multi-objective optimization to gain insights on the 

tradeoffs between stream restoration and economic welfare loss in a hypothetical case study based upon 

the data available from the McHenry County, Illinois. The decision instruments are based on the 

groundwater pumping rate of each well, and the study demonstrates that there is a great potential to 

alleviate the stream depletion problem through optimizing pumping strategies. The NSGA-II algorithm 

adopted in this chapter provides the decision maker or water resource planner with Pareto frontiers 

showing a wide range of practical alternatives to manage groundwater resources. By taking advantage of 

the posteriori approach, the decision makers or water resource planners can choose a preferred solution 
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along the Pareto frontier at a later stage instead of specifying preferences to any of the objectives at the 

estimation stage.  

 

The shadow price of streamflow found in this study shows a strong spatial heterogeneity, since economic 

and environmental relations are highly dependent on the spatial locations between wells and streams, 

hydrogeological characteristics, and water rates. A wide range of regulatory and non-regulatory tools can 

be tailored to the needs, resources, and political climate of different regional scales. Innovative regulatory 

tools such as flexible zoning, conservation cluster zoning, and urban growth boundaries can steer 

groundwater use toward appropriate areas and away from environmentally sensitive ones. At the 

municipal scale, the rule of thumb serves as a useful guidance for planners and policy makers to 

effectively select wells to restrain pumping to preserve maximum amount of streamflow. A trade process 

on streamflow depletion units might be further designed among municipalities to ultimately achieve an 

economic equilibrium.  

 

The major limitations of the proposed economic-hydrologic-integrated optimization framework arise from 

several factors. First, the price elasticity of demand is borrowed from the literature and assumed to be 

constant in the entire county area. In reality, residential users’ preferences toward water might vary 

according to their income level, living habit, housing situations, and so forth. The modeling outcomes will 

be more informative if better information on elasticities becomes available. Second, streamflow depletion 

might be one of the negative impacts resulting from excessive pumping and there are other dimensions of 

environmental amenities deterioration for further exploration, such as water quality, and stream ecology. 

Issues discussed in this chapter might not suffice to deliver a complete sustainable water resource 

planning but a proof of concept and guidance on data collection. These factors of environmental concerns 

can be captured in future studies. Third, this chapter of study is static and short-term based, in that it only 

considers a bench mark year of 2005. Optimization models can be further improved to produce planning 

solutions under the long-term conditions of additional wells, change of water prices, dynamics of 

pumping rates, etc.  

 

To conclude, the merit of this chapter is to propose a modeling framework to determine the optimal 

spatial and temporal allocation of groundwater via regulating pumping rates in a multi-objective setting of 

hydrologic and economic concerns. It takes specific consideration of the spatial tradeoffs between 

economic loss due to constrained groundwater supply and restored streamflow conditions. It confirms the 

idea that effective planning strategies could be adopted to produce cost-effective outcomes to maintain 

environmental amenities and ecological values in areas like McHenry County.  
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Chapter 4 

 

INSPECTING THE OCCUPATION-INDUSTRY LINKAGES IN THE REGIONAL 

WORKFORCE DEVELOPMENT 

 
 

4.1 Introduction 

 

The relationship between the industry performance and its impact on the economy is one of the 

continuing analytical and policy challenges. Florida et al. (2008) noted that if you ask a typical person on 

the street about what drives economic development, his/her answer is probably the jobs created by some 

booming industries. It is true that well performing industries usually have the potential to stimulate 

workforce growth and promote new firm spin-offs. However, one shortcoming of industry-based 

approaches (Tiebout, 1956; Krugman, 1983), as typically practiced, is that policy makers have not 

focused as much attention on the supply (input) side of industrial production, especially the role of human 

capital or special skill-mixes in enhancing the productivity and profitability of firms.  

 

Following the pioneer work by Piore and Sabel (1984) who highlighted the role of innovation and human 

skills as the drivers of regional productivity growth, the concept of treating regional economic 

development as a function of its concentration of new ideas, innovation, knowledge spillovers and 

division of labor has been echoed by many other scholars (Lucas, 1988; Saxenian, 1994; Storper, 1997; 

Mathur, 1999; Scott, 2000; Florida, 2002; Glaeser and Saiz, 2004). The theoretical breakthrough occurred 

when Romer (1990, 1994) proposed the idea of “endogenous growth theory” in contrast to Solow’s (1956) 

model that treated technology as exogenous in the economic growth process. Romer’s (1986, 1987, 1990) 

theory is based on the premise that economic growth is an endogenous outcome of the economic system 

and technological advance comes from things that people do, with an emphasis on the linkage among 

technology, human capital, and economic growth.  

 

The conventional approach that uses educational attainment to account for human capital (Rauch, 1993; 

Berry and Glaeser, 2005) does not elaborate on how demographic characteristics of a population (e.g. 

years of education) contribute to a regional economy, and also does not provide an appropriate metric to 

measure innovative skills and entrepreneurial potential. Even four decades ago, Mincer (1974) recognized 

that schooling was an incomplete specification of human capital in terms of wage inequalities. Hence, 

Thompson and Thompson (1987, 1994) proposed a complementary “occupational-function” approach to 
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study local human resources and this idea has been further developed by Feser (2003), Markusen (2004 & 

2008), Koo (2005), and Florida et al. (2008) to become a potentially more robust measure of utilized skill 

– that is, how human talent or capability is absorbed by and used in the economy.  Following their 

perspectives, occupation is the mechanism through which education is converted into skill and labor 

productivity, and becomes part of the signaling and the codification of labor specialization in the 

economic production process (Sweeney, 2004).  

 

Therefore, understanding the workforce dynamics and economic development potential requires 

investigating occupations (what people do) as well as industries (where people work) (King et al., 2010). 

This chapter intends to explore the linkages between occupations and industries in the context of regional 

workforce development. The findings will provide crucial insights for manpower planners in adjusting 

training systems to changing economic conditions and to meet the demand for different kinds of skills. In 

section 4.2, the linkage between occupations and industries is elaborated and an occupation-industry 

hybrid approach is introduced as an alternative methodology to gain insights into regional workforce 

dynamics. Section 4.3 establishes a modeling framework to calibrate the magnitude of growth signals of 

industrial and occupational forces in workforce development dynamics. Also in this section, empirical 

tests of the model are provided and the results are interpreted by comparing them with earlier findings. 

Section 4.4 uses a hypothetical industry extraction method to test the sensitivity of occupational demand 

and identifies the “key industrial sectors” that have high capacity for generating jobs through multiplier 

effects. The final section 4.5 summarizes and concludes with some policy implications. 

 

4.2 The Occupation-Industry Linkages and Manpower Planning 

 

Since labor demand is derived from economic production, the structural composition of regional 

occupational groups is the result of constant market selection processes of particular skill mixes needed to 

maintain competitive and efficient production. In this sense, the mix of executives and managers, 

scientists and engineers, and skilled, semi-skilled and unskilled workers becomes the enduring legacy of a 

local workforce. Occupational analysis informs the supply side of regional productivity and growth, and 

reveals what type of work is taking place and how the varieties of work are linked with one another 

(Markusen et al., 2004; Currid and Stolarick, 2010).  

 

In addition to industrial performance, well functioning occupational groups become another force to 

promote regional workforce growth. Geographical concentration of firms in the same or related industries 

creates a pooled market for workers with similar skills. This reduces the uncertainties about manpower 
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and raises the availability of knowledge and skills. Occupation-based human capital thus enriches the host 

locality by attracting more industries interested in taking advantage of the skilled labor force, since 

proximity to people increases the access to the ideas of those people. As global market integration 

enhances the inter-connections and competitions among places, spatial heterogeneous distributions of 

labor and scattered firm functionalities have been commonly witnessed. Places gradually distinguish 

themselves through the functions they perform – financial centers, manufacturing headquarters, cultural 

and educational leaders, and so forth (Duranton and Puga, 2005; Markusen and Schrock, 2006).  

Therefore, the growth effect of certain industries may not equally apply to all staffed occupations, but 

instead some occupations might outperform others and thus grow faster.   

 

After acknowledging the intricate linkage of industry and occupation in their functional roles of 

promoting workforce growth, manpower planners face the challenge of exploring labor growth signals 

from both industries and occupations in an interrelated and simultaneous framework. The opportunity 

emerges when occupation-by-industry workforce matrices become available across different time periods. 

An occupation-by-industry workforce matrix helps classify the existing workforce into two dimensions 

and offers a uniquely rich representation of workforce structure. The rows of the matrix represent the 

specified occupational groups, and the columns of the table represent the industrial sectors. Each cell of 

the table represents the number employed in one specific occupation-industrial combination. For one 

specific year, each column of the occupation-by-industry workforce matrix shows the distribution of total 

employment in this industrial sector across identified occupational groups, thus providing an “industry 

staffing pattern”. Similarly, each row of the occupation-by-industry workforce matrix explains how one 

occupational group is allocated among different industrial sectors, yielding an “occupation allocation 

pattern”. Analyzing occupation-by-industry tables across time provides insights into the underlying 

process of structural changes in the past. Certain occupational groups or industrial sectors are likely to 

produce strong agglomerative effects that are reinforcing (Thompson and Thompson, 1986). Insights into 

the dynamics of occupation-by-industry employment compositions offer a fresh new perspective to 

examine and disassemble the functions performed by industrial sectors and occupational groups to jointly 

promote regional workforce development.  

 

In the United States, job training and workforce development entered the public policy field in the early 

20th century, with the federal government as the prime innovator and financial supporter. In 1973 

Congress consolidated several of these programs into the Comprehensive Employment and Training Act 

(CETA) that was later replaced by the Job Training and Partnership Act (JTPA) in the early 1980s. JTPA 

relies heavily on private business sector involvement through private industry and “state coordinating 
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councils” with overall planning of programs and funds. In similar fashion to the federal efforts, individual 

states operate their own forms of skill training programs. Effective planning techniques are crucial in 

providing information that enables training programs to adjust to changing economic conditions to meet 

the demand for different kinds of occupational skills (Adams et al., 1992).  

 

4.3 Detecting Signals of the Occupational and Industrial Growth Forces 

 

4.3.1 Motivation and Model Formulation 

 

Under an integrated global economy, manpower planners or policy makers need to sense and respond 

quickly to the occupation needs produced by changes in the demand for goods and services, by the 

adoption of new technologies, and by the emergence of new industries. There has been an increasing 

literature (Stolarick and Florida, 2006; Barbour and Markusen, 2007; Currid and Stolarick, 2010) 

exploring possible ways to link performance of occupational groups with regional economic development. 

Frequently studied are arts, design, business, and information technology occupations. However, few 

prior studies developed a holistic perspective to examine the occupational and industrial composition, and 

subsequent dynamic changes of the regional workforce structure. In order to address these limitations, this 

chapter proposes consideration the occupation-by-industry composition of the entire regional labor force 

and extends usually static analyses to a more dynamic context.  

 

As previously discussed, the growth of the workforce could result from the increased demand from a 

booming industrial sector or it could also be caused by well functioning occupation-based human capital 

base that yields job opportunities for their own specific occupational group across different industrial 

sectors. To identify/measure the forces across time from both dimensions, occupation-by-industry 

workforce tables at two time periods are compiled. A “bi-causative matrix” modeling approach is then 

adapted to model the forces generating the changes of two occupation-industry workforce matrices over 

time. 1 

 

The idea of using a causative matrix was initially proposed by Lipstein (1968) to transform one transition 

probability matrix at time t to the next period t+1 in a stochastic process to improve Markovian 

predictions.   B�z = B�6O                                                 (4-1)                                             
1 The word “causative” commonly used in input-output studies no longer carries its literal meaning in the context of workforce 
development studies. 
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When B� is nonsingular, C can be derived by z = B�NOB�6O                               (4-2) 

 

In equations (4-1) and (4-2), a temporally constant matrix C is used to summarize the nature of inter-

period change of the two matrices and C is referred to as a causative matrix. Rogerson and Plane (1984) 

further developed an alternative specification to equation (4-1), in that matrices are not necessarily 

communicative with respect to multiplication.  zB� = B�6O                            (4-3) 

and z = B�6OB�NO                                                                                                                            (4-4) 

 

Rogerson and Plane treat equations (4-1) and (4-3) as different views on system change, and denote the 

causative matrix in equation (4-1) as the right causative matrix, CR, and the causative matrix in equation 

(4-3) as the left causative matrix, C
L. In order to capture a mixture of effects denoted by C

L and C
R, 

Jackson et al. (1990) proposed a doubly causative model: z�B�z® = B�6O                            (4-5) 

and r�V,�6O = ∑ ∑ ?�§�5§ªO51ªO r§1,�?1V®                             (4-6) 

 

In equation (4-6), the number of unknowns to be estimated from both left and right causative matrices 

surge to 2n
2 and render it impossible to find viable solutions. The interpretations of each cell in the left 

and right matrices become more complex as well. A useful way to handle this problem is to simplify these 

two causative matrices into two diagonal matrices and the total number of unknowns to be estimated 

reduces to 2n (de Mesnard, 2000). Such a bi-causative matrices approach has been widely used in input-

output studies (de Mesnard, 1990 & 1997; Jackson et al., 1990; Domingues et al., 2002) to interpret 

structural change in a regional economy. In this chapter, the structure of causative formulation is adapted 

to model the driving forces and inter-relationships of occupational groups and industrial sectors during the 

change of regional labor force systems in two time periods.  

 

In equation (4-7),  �̄� and �̄� are two occupation-by-industry regional workforce matrices compiled for 

time t1 and t2. There are p occupational groups and q industrial sectors.  z{and z| are the two diagonal 

matrices indicating the forces from the occupation side and industrial side that jointly render the changes 

from matrix  �̄� to �̄�. Under matrices multiplication, employment at occupation i and industry j at time 

t1, c�V,��, is multiplied by ?�{ and ?V| to become the actual observation of employment at occupation i and 

industry j at time t2, c�V, �� . (See equation 4-9.) ?�{  and ?V|  denote the forces from occupation i and 
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industry j.  z{ �̄�z| = �̄�                                                                                                                                       (4-7) 

Expressed in matrix form, 

 X?O{ ⋯ 0⋮ ⋱ ⋮0 ⋯ ?G{] °cOO,�� ⋯ cOp,��⋮ ⋯ ⋮cGO,�� ⋯ cGp,��
± X?O| ⋯ 0⋮ ⋱ ⋮0 ⋯ ?p| ] = °cOO,�� ⋯ cOp,��⋮ ⋯ ⋮cGO,�� ⋯ cGp,��

±                                     (4-8) 

and  ?�{c�V,��?V| = c�V,��                                                                                                                          (4-9) 

 

With the availability of occupation-by-industry workforce matrices for two time periods at a certain 

regional scale, unknowns of the diagonal elements in ?�{  and ?V|  in equation (4-8) could be estimated 

through an optimization process. Equation (4-10) yields the objective of such an optimization process, 

which is obtained through minimization of the Sum of Squares (SS) of the differences between c�V,�Q and ?�{c�V,�O?V| (de Mesnard, 2000): �� = ∑ ∑ [(c�V,�Q − ?�{c�V,�O?V|)]Q5VªO&�ªO                                                                                               (4-10) 

 

The results are following expressions: 

?�{ = ∑ &�T,��&�T,���T²³T´�∑ (&�T,��³T´� )�(�T²)�  , for all i                                              (4-11) 

?V| = ∑ &�T,��&�T,����µ¶T´�∑ (&�T,��³T´� )�(��µ)�  , for all j                                              (4-12) 

 

In the model formulation above �̄�  and �̄�  do not need to be square and they could be rectangular 

(r ≠ s). This is a real advantage, “because transforming a naturally rectangular matrix into a square 

matrix requires additional hypothesis” (de Mesnard, 2000). Interpretations of the estimated z{and z| are 

derived after comparing them with the identity matrix (I). If z{ = z| = I, then ?�{ = 1, ?V| = 1, and c�V,�� = c�V,��; the number of people employed at industry j holding occupation i remains the same from 

time t1 to t2. Employment at the intersection of occupation i and industry j are under non-changing/neutral 

forces from two sides. Elements from z{and z|matrices, if different from elements of an identity matrix, 

then indicate forces underlying structural changes inside the regional workforce.     

 

X?O{ 0 00 ?Q{ 00 0 ?�{
] °cOO,�� cOQ,�� cO�,��cQO,�� cQQ,�� cQ�,��c�O,�� c�Q,�� c��,��

± X?O| 0 00 ?Q| 00 0 ?�|
] = j?O{cOO,��?O| ?O{cOQ,��?Q| ?O{cO�,��?�|?Q{cQO,��?O| ?Q{cQQ,��?Q| ?Q{cQ�,��?�|?�{c�O,��?O| ?�{c�Q,��?Q| ?�{c��,��?�|

o               (4-13) 
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The z{ matrix can be interpreted as a “matrix of occupational forces”. The element ?�{ affects equally all 

terms of row i. (For illustration purpose, a simplified 3 × 3 occupation-by-industry workforce model is 

constructed in equation 4-13.) If element ?�{ is larger than 1, the employment for occupation i across all 

industrial sectors is multiplied by a value larger than 1 leading to positive growth. In turn, they will be 

negatively affected if the element ?�{  is less than 1. The z|  matrix can be interpreted as a “matrix of 

industrial forces”. The element ?V| affects equally all terms of column j in matrix �̄O. If element ?V| is 

larger than 1, the employment for industry j across all occupations is positively affected, while they will 

be negatively affected if the element ?V| is less than 1. In general, z{and z| matrices provide signaling 

information on fabrication or transformation effects jointly imposed by occupational groups and industrial 

sectors on regional workforce growth.   

 

Findings on the signaling from “occupational forces” can be compared with recent empirical analyses 

(Florida, 2002; Markusen, 2004; McGranahan and Wojan, 2007) on human capital or occupation-based 

theories for economic development. One well-known occupation-mix approach is from Florida’s (2002) 

“creative class theory”. According to Florida, creative occupations are defined as those in which 

individuals “engage in complex problem solving that involves a great deal of independent judgment and 

requires high levels of education or human capital”. Markusen (2004) proposed targeting occupations as 

well as industries in formulating economic development strategies, including the identification of “key 

occupations” (Markusen, 2004) where there are “high levels of ‘capturability’ (proxied by uneven 

distributions across regions and localities), high levels of absolute and expected growth, high levels of 

connectivity and cross-fertilization across industries, and high levels of self-employment and 

entrepreneurship.” 

 

Although Florida devoted a great deal of effort to solidify the concept of creative class (or occupational 

skill) as an important input for regional development, he still left the identified creative classes as 

exogenous variables in his empirical analysis (Florida et al., 2008). It has been argued that the distinction 

between human capital theory and the creative class thesis was left ambiguous both theoretically and 

empirically (McGranahan and Wojan, 2007). Florida’s classification might be challenged, since functions 

performed by these “creative classes” in promoting a regional economy might vary significantly from 

region to region, and it is not always a tenable idea to draw a generic conclusion. The criteria for choosing 

“key occupations” proposed by Markusen (2004) are not always precise and are open for different 

interpretations, such as “connectivity”. McGranahan and Wojan (2007) re-examined Florida’s creative 

class thesis in the context of rural areas and argued that the analysis by Florida does not critically assess 
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the construct validity of the creative class measure. Hence, the merit of the modeling approach in this 

chapter lies in the fact that it takes a holistic approach to examine the dynamic changes of regional 

workforce and it considers both occupational and industrial forces simultaneously without predetermining 

the “creativeness” of certain occupations.  

 

4.3.2 Data & Analysis  

 

Occupation-by-industry workforce matrices are compiled at both the national and state level for 2005 and 

2008, using data from the Public Use Micro-data Sample (PUMS) files of the American Community 

Survey (ACS). The PUMS contains an approximately one-percent sample record of the entire population 

and provides information related to the surveyed people on their occupations and industries. Only one job 

(with occupation and industry information) is reported for a single worker and thus excludes the 

possibility of reporting multiple jobs.  PUMS files can help cross-classify the number employed under 

different occupation-industry combinations.   

 

Occupational groups and industrial sectors are specified according to the Census occupation (Standard 

Occupational Classification, SOC) and 2-digit NAICS industry codes, as listed in table 4.1.  All records of 

the surveyed workers in each state’s PUMS file are taken into account to construct the occupation-by-

industry workforce table.  In the process of occupation-by-industry workforce table compilation, the 

weights, assigned to individual samples in survey design and post-survey work, are considered.  (Note 

that, O23, the military specific occupations, is excluded in that such occupations are only surveyed in 

sector I20 (Federal, state, and local government) and too many zeros showing in other industrial sectors 

in the table complicates the analysis.) 

 

Once the occupation-by-industry workforce matrixes for all 50 states (Washington D.C. and Puerto Rico 

are excluded) as well as the entire U.S. are prepared, analyses are conducted in the manner proposed in 

equation (4-7) - (4-12). GAMS (General Algebraic Modeling System) is used to accomplish the non-

linear optimization to generate solutions for z{ and z| - more specifically, CONOPT, a nonlinear 

programming solver, was employed to solve the optimization problem, due to its recognized strength in 

solving models with a large degree of nonlinearity.  It needs to be noted that both upper and lower bounds 

of the elements in z{and z| (i.e. 2.0 and 0.5, respectively) were imposed to control possible diverging 

estimates (outliers) in a few industrial sectors and occupational groups.   
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Table 4.1: Descriptions of Occupation Code and Industry Code 

 

Occupation 
Code 

Description 
Industry 
Code 

Description 

O1 Management occupations I1 
Agriculture, Forestry, Fishing, 
and Hunting 

O2 
Business and financial operations 
occupations 

I2 Mining 

O3 
Computer and mathematical 
occupations 

I3 Utilities 

O4 
Architecture and engineering 
occupations 

I4 Construction 

O5 
Life, physical, and social science 
occupations 

I5 Manufacturing 

O6 
Community and social services 
occupations 

I6 Wholesale Trade 

O7 Legal occupations I7 Retail Trade 

O8 
Education, training, and library 
occupations 

I8 
Transportation and 
Warehousing 

O9 
Arts, design, entertainment, 
sports, and media occupations 

I9 Information 

O10 
Healthcare practitioners and 
technical occupations 

I10 Finance and Insurance 

O11 Healthcare support occupations I11 
Real Estate and Rental and 
Leasing 

O12 Protective service occupations I12 
Professional, Scientific, and 
Technical Services 

O13 
Food preparation and serving 
related occupations 

I13 
Management of Companies 
and Enterprises 

O14 
Building and grounds cleaning 
and maintenance occupations 

I14 
Administrative and Support 
and Waste Management and 
Remediation Services 

O15 
Personal care and service 
occupations 

I15 Educational Services 

O16 Sales and related occupations I16 
Health Care and Social 
Assistance 

O17 
Office and administrative support 
occupations 

I17 
Arts, Entertainment, and 
Recreation 

O18 
Farming, fishing, and forestry 
occupations 

I18 
Accommodation and Food 
Service 

O19 
Construction and extraction 
occupations 

I19 
Other Services (except Public 
Administration) 

O20 
Installation, maintenance, and 
repair occupations 

I20 
Federal, State, and Local 
Government 

O21 Production occupations 
  

O22 
Transportation and material 
moving occupations   

   

4.3.3 Analyses of Results  

 

Table 4.2 tabulates the result of the model estimation on occupation-by-industry workforce changes 

between 2005 and 2008 in the U.S.  As noted earlier, a large magnitude of elements in z{or z| (over 1.0) 
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indicates an underlying strong signaling on growth in the occupational groups or industrial sectors 

respectively. From the estimation (table 4.2), the top 5 groups from the occupation side with strong 

growth forces are:  O18 (Farming, fishing, and forestry occupations), O1 (Management occupations), O2 

(Business and financial operations occupations), O13 (Food preparation and serving related 

occupations), and O3 (Computer and mathematical occupations). By the same token, the top 5 groups 

from industry side (table 4.2) are I2 (Mining), I13 (Management of companies and enterprises), I14 

(Administrative and support and waste management and remediation services), I3 (Utilities) and I4 

(Construction). However, I1 (Agriculture, forestry, fishing, and hunting) and I6 (Wholesale trade) seem to 

lack forces in promoting workforce growth.  

 

Table 4.2: Estimation of Occupational Forces z{ and Industrial Forces z| for US (National) 

 

Occupation Code Estimates of Co Industry Code Estimates of CI 

O1 1.071 I1 0.833 
O2 1.069 I2 1.415 
O3 1.064 I3 1.093 
O4 1.013 I4 1.088 
O5 1.033 I5 0.971 
O6 1.050 I6 0.881 
O7 0.993 I7 1.040 
O8 0.996 I8 1.032 
O9 1.011 I9 0.968 

O10 1.022 I10 0.968 
O11 1.027 I11 0.951 
O12 1.050 I12 1.053 
O13 1.067 I13 1.126 
O14 1.013 I14 1.098 
O15 1.055 I15 1.060 
O16 1.013 I16 1.046 
O17 0.999 I17 1.085 
O18 1.272 I18 1.031 
O19 0.925 I19 1.015 
O20 0.982 I20 0.997 
O21 0.956 
O22 1.040   

 

Judging from the estimated magnitudes of the forces, it is interesting to notice some mixed results that 

O18 (Farming, fishing, and forestry occupations) shows an underlying strong growth momentum, 

whereas I1 (Agriculture, forestry, fishing, and hunting industry) follows an opposite pattern. For O18 & I1 

combination (farming, fishing, and forestry occupations at agriculture, forestry, fishing, and hunting 

industry), during 2005 – 2008, the number employed increased from 1.18 million to 1.26 million. The low 

estimate from the industrial side indicates I1 (Agriculture, forestry, fishing, and hunting industry) itself 

may not generate enough “demand power” to create incentives for the workforce growth across all 
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occupations. However, there are significant increases of employment in O18 (Farming, fishing, and 

forestry occupations) across several industry sectors. For instance, O18 (Farming, fishing, and forestry 

occupations) at the I16 (Health care and social assistance industry sector) increased from 464 to 1554. It 

is possible that the skill-linkage associated with O18 (Farming, fishing, and forestry occupations) helps 

inject vigor into the labor market as the I16 (Health care and social assistance industry sector) gains its 

growing momentum. More farming related occupational workers are hired to support a wide range of 

services (especially food products, gardening, logging, and etc.) needed by the health care industry.  In 

that sense, one should be cautious about ascribing negative contributions for agricultural occupations 

based on the agricultural sectors' lack of growth. A recent study by Currid and Stolarick (2010) identifies 

similar findings about the information system/information technology (IS/IT) occupation and industry in 

Los Angeles. They found “a substantial number of those IS/IT occupations are working in categorically 

non-IS/IT industries” and the real strength of Los Angeles’ IS/IT skill/knowledge cluster is embedded in 

other industries other than the IS/IT industry.   Another possible explanation is the sampling error or bias 

associated with American Community Survey. Even though I've carefully considered the number of 

people surveyed and their representing weights in the labor market, it is still possible that in 2005, 

farming occupational workers employed by health care industries were less extensively surveyed as 

opposed to the case in 2008, and the increase of 464 to 1554 could produce very sensitive results to the 

"bi-causative" estimation system, not only because their small numeric values but also the rate of change 

ratio.  

 

The model is extended to 50 individual states in the U. S. (excluding Washington D. C. and Puerto Rico) 

to estimate the state-specific occupational and industrial forces. State-level analyses provide additional 

insights toward the workforce dynamics at smaller regional scales. Among others, the analyses reveal 

both the magnitudes of growth forces from occupations and industries in each state and their spatial 

heterogeneity. Generally, among the estimates, a considerable degree of variance is found, whereas some 

occupations and industries show consistent positive influence in most states. In the following, attention 

will be directed to the implications of these outcomes. (See the table 4.3 and 4.4 for the detailed state-

level estimations.) Since the data are retrieved from a survey, there are missing values in the occupation-

by-industry tables. Those missing values do not necessarily mean no worker is employed at such 

occupation-by-industry categories, but instead probably the survey sample is not comprehensive enough 

to cover such information. Nevertheless, without better data available, the entry for this scenario is 

recorded as zero in the occupation-by-industry workforce tables, which results in N.A. (not available) 

estimates in the modeling outcomes. In order not to bring possible bias to complex the conclusion towards 

the interpretations of occupational and industrial forces, these N.A. values are replaced by a neutral value 
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“1”.  

 

One example is provided in figure 4.1 where each occupation or industry is represented as a dot on the X 

(Mean) – Y (Standard Deviation) coordinates.  This figure is intended to place the industries/occupations 

with strong forces to promote workforce growth (cross-state averages of estimated elements of  z{or  z| 
are larger than 1) on the right side, and the industries/occupations with high variations across states in the 

upper portion (cross-state variances of the elements of z{  or  z| are larger).   

 
Table 4.3: Estimation of Occupational Forces z{for 50 States (2005 – 2008) 

 

 
 
 
 
 
 
 

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17 O18 O19 O20 O21 O22

AK 0.728 0.711 0.893 0.86 0.993 1.6 0.85 1.193 1.373 1.216 1.435 1.191 1.531 1.5 1.546 1.266 1.148 1.3 0.819 1.298 1.038 1.253

AL 1.083 1.128 1.095 0.932 0.767 1.107 0.817 1.019 1.066 1.148 1.052 1.118 1.034 0.971 1.081 1.088 1.016 1.137 0.896 1.035 0.954 1.103

AR 0.983 1.073 0.776 1.08 0.874 0.813 0.86 1.013 0.833 1.161 1.055 1.013 1.053 0.812 0.934 1.049 0.95 0.88 0.636 0.89 0.9 0.896

AZ 1.032 1.061 1.044 1.007 0.876 1.174 0.968 0.917 0.858 1.036 1.13 1.105 0.958 1.051 1.169 0.972 1.028 0.895 0.831 0.932 0.866 0.955

CA 1.171 1.152 1.281 1.081 1.215 1.126 1.145 1.06 1.194 1.098 1.126 1.222 1.287 1.17 1.309 1.159 1.129 1.317 0.968 1.083 1.073 1.207

CO 1.028 0.984 0.899 0.895 0.856 0.925 0.832 0.914 1.007 0.932 0.862 0.83 1.159 0.995 0.97 0.92 0.909 1.356 0.918 0.926 0.984 1.01

CT 1.237 1.272 1.229 1.039 1.07 1.604 0.886 1.116 1.351 1.319 1.359 1.298 1.28 1.158 1.412 1.186 1.14 0.5 1.013 1.104 1.081 1.291

DE 1.131 0.827 0.622 0.971 0.61 1.02 1.016 1.093 0.597 1.293 1.355 1.256 1.155 1.242 1.828 0.919 1.04 0.5 1.038 1.041 0.822 0.692

FL 1.185 1.233 1.177 1.087 1.156 1.134 1.173 1.125 1.133 1.083 1.141 1.201 1.293 1.171 1.036 1.057 1.122 1.15 1.067 1.093 1.06 1.038

GA 0.957 0.945 0.972 0.907 0.8 0.91 1.015 0.892 0.812 0.904 0.873 0.872 0.899 0.844 0.968 0.973 0.871 1.187 0.933 0.839 0.831 0.929

HI 0.876 1.147 1.125 1.567 1.088 1.022 0.955 1.041 0.963 0.88 1.324 0.848 0.862 0.733 0.985 0.723 0.969 0.693 0.916 0.799 0.708 0.916

IA 1.051 1.105 0.808 1.176 0.862 1.136 1.015 0.837 1.067 1.016 1.013 1.026 1.164 0.885 1.037 0.989 0.979 1.307 0.993 0.847 1.01 1.06

ID 1.492 1.635 2 1.438 1.257 1.382 0.924 1.69 1.742 1.632 1.405 1.412 1.969 1.316 1.519 1.692 1.554 1.624 1.547 1.111 1.547 1.255

IL 1.049 1.053 1.034 1.007 1.067 1.044 0.989 0.948 1.059 1 1.049 0.981 0.851 1.06 1.041 0.984 0.995 1.275 1.021 0.943 0.992 1.051

IN 1.085 1.074 1.102 1.035 0.997 0.947 1.154 0.968 0.866 1.083 1.04 1.147 0.897 0.854 0.892 0.921 0.95 1.331 1.002 1.009 0.87 0.953

KS 1.451 1.746 1.378 1.411 1.403 1.887 1.802 1.8 1.532 1.387 1.465 1.429 1.502 1.412 1.192 1.439 1.37 1.716 1.328 1.211 1.201 1.273

KY 1.062 1.044 1.232 1.004 0.873 0.823 1.081 0.89 1.136 0.958 0.997 1.027 0.961 1.184 0.889 0.96 0.987 1.097 1.038 0.924 0.899 1.048

LA 1.087 0.988 0.752 1.098 0.584 1.227 0.746 0.943 1.239 0.996 1.033 0.98 0.955 0.949 1.003 0.952 0.913 0.679 0.977 0.901 0.905 0.999

MA 0.808 0.756 0.715 0.696 0.776 0.62 0.78 0.691 0.697 0.734 0.781 0.778 0.781 0.688 0.763 0.753 0.735 0.794 0.63 0.683 0.581 0.653

MD 1.138 1.058 1.01 1.132 0.933 0.898 1.089 1.144 1.03 1.01 1.039 1.064 1.103 1.011 0.976 1.043 0.989 1.262 1.013 1.119 0.96 1.059

ME 1.407 1.665 1.489 1.303 1.204 1.146 1.539 1.32 1.293 1.573 1.472 1.74 1.583 1.711 1.341 1.431 1.245 1.7 1.213 1.217 1.506 1.399

MI 1.094 1.075 1.034 1.031 1.019 1.164 0.789 0.997 0.901 1.099 1.144 1.215 1.12 1.018 1.043 1.022 1.016 1.518 0.799 0.994 1.035 1.127

MN 1.287 1.256 1.155 1.204 0.943 1.27 0.995 1.104 1.229 1.036 1.062 1.076 1.192 1.039 1.196 1.187 1.2 1.431 1.106 1.126 1.126 1.263

MO 1.035 1.111 1.098 0.964 1.041 1.194 1.032 1.149 0.849 1.018 0.922 0.975 0.999 0.938 1.148 1.057 0.95 1.388 0.892 1.006 0.896 1.047

MS 1.127 1.069 1.324 1.31 1.118 1.043 0.997 0.976 0.891 1.115 1.127 0.936 0.87 1.063 0.874 0.88 1.027 0.828 0.973 0.909 0.928 0.942

MT 1.116 1.172 0.947 0.955 0.729 0.801 0.883 0.703 0.825 0.779 1.156 1.14 0.649 0.697 1.07 1.067 1.002 1.565 0.786 1.055 0.899 0.911

NC 1.691 1.627 1.687 1.372 1.686 1.644 1.717 1.668 1.659 1.595 1.522 1.358 1.661 1.605 1.654 1.711 1.629 2 1.352 1.707 1.44 1.672

ND 0.671 0.63 0.575 0.85 0.678 0.572 0.618 0.62 0.683 1.192 0.962 2 1.166 1.038 1.109 0.952 0.727 0.981 0.818 0.612 0.5 0.794

NE 1.441 1.432 1.36 1.53 1.205 1.387 1.135 1.249 0.881 1.026 1.061 1.858 1.094 1.11 1.073 1.15 1.191 1.489 1.569 1.212 1.344 1.247

NH 1.421 1.34 1.186 1.1 0.792 1.541 1.014 1.502 1.164 1.129 1.151 1.061 1.099 1.265 1.193 1.197 1.135 1.609 1.124 1.112 1.005 1.131

NJ 1.267 1.224 1.248 1.202 1.261 1.188 1.203 1.299 1.132 1.322 1.091 1.108 1.374 1.305 1.346 1.238 1.161 1.488 1.096 1.134 1.173 1.386

NM 1.006 1.058 0.954 0.83 0.998 0.88 0.864 0.919 0.946 0.872 0.849 1.046 0.833 0.901 0.941 0.965 0.9 1.186 1.006 0.793 1.076 1.048

NV 1.052 1.02 1.129 0.881 0.5 1.005 0.951 1.387 0.942 1.125 1.039 1.09 1.114 1.217 0.972 0.931 0.902 0.901 1.111 0.714 0.94 1.025

NY 1.037 1.125 1.017 1.063 1.004 1.071 0.951 0.964 1.002 1.006 1.047 1.047 1.151 1.071 1.064 0.975 1.01 1.459 0.864 0.977 0.916 1.049

OH 1.04 1.105 1.18 1.048 0.953 1.079 1.067 0.991 0.975 0.974 0.945 1.123 1.145 0.983 1.035 1.048 1.019 1.422 0.986 1.017 1.014 1.075

OK 1.196 1.019 1.142 1.071 1.103 1.076 1.256 1.097 0.937 1.007 0.991 1.002 1.022 0.973 0.869 0.994 1.074 0.892 0.995 0.891 0.966 1.081

OR 1.198 1.322 1.127 1.151 1.316 1.212 1.075 1.127 0.999 1.264 1.077 1.374 1.418 1.248 1.039 1.142 1.161 1.277 1.017 0.947 0.945 1.12

PA 1.057 1.012 1.024 1.032 1.024 1.024 0.886 0.935 1.005 0.99 1.058 1.067 1.066 1.035 1.124 1.02 0.971 1.231 0.91 0.938 0.897 1.086

RI 0.527 0.608 0.529 0.599 0.7 0.68 0.67 0.546 0.594 0.552 0.544 0.598 0.57 0.5 0.634 0.671 0.635 2 0.533 0.628 0.644 0.553

SC 1.152 1.095 1.22 1.211 1.134 1.178 1.167 1.167 0.962 1.172 1.167 1.246 1.171 1.05 1.104 0.979 1.069 0.855 0.908 1.036 1.018 0.961

SD 0.643 0.619 0.502 0.835 0.577 1.145 1.135 1.079 0.677 0.88 1.135 0.961 0.738 0.711 1.172 0.525 0.836 0.691 0.902 0.71 0.693 0.662

TN 1.161 1.15 1.302 1.168 1.046 1.123 1.263 1.01 1.097 1.207 1.095 1.153 1.224 1.14 1.099 1.157 1.052 1.344 0.869 1.009 0.99 1.03

TX 1.056 1.07 0.935 1.052 1.071 1.09 0.905 1.018 0.994 1.014 1.003 1.023 1.021 0.96 1.029 1.011 0.984 1.603 0.976 1.042 1.035 1.016

UT 1.159 1.071 1.168 1.329 0.958 1.134 1.167 1.171 0.961 1.126 1.063 1.106 1.152 1.081 1.065 0.977 0.937 1.341 0.963 0.869 0.973 0.98

VA 1.055 1.081 1.029 0.965 0.959 0.877 0.913 1.051 0.91 0.994 1.144 1.097 1.001 1.078 1.135 1.025 0.963 1.563 0.849 0.985 0.979 1.052

VT 0.898 0.754 0.905 0.633 0.806 1.493 0.881 0.908 0.5 0.84 0.979 1.215 1.015 0.906 0.543 0.826 0.751 1.561 1.11 0.592 0.8 0.852

WA 1.096 1.057 1.012 1.099 1.096 1.075 1.072 1.035 1.134 1.041 0.958 1.036 1.167 1.006 1.048 1.016 1.003 1 0.939 1.019 0.96 0.981

WI 0.606 0.597 0.671 0.543 0.5 0.638 0.611 0.581 0.582 0.632 0.692 0.726 0.628 0.594 0.66 0.615 0.62 0.646 0.563 0.622 0.644 0.69

WV 1.013 0.938 0.867 0.523 0.852 0.969 1.061 0.768 0.696 1.126 0.906 0.718 1.12 0.803 1.051 0.918 1.021 0.547 0.996 0.837 0.949 1.005

WY 1.034 0.532 0.533 0.87 1.497 1.302 1.114 0.967 0.668 0.932 1.333 0.712 0.947 1.028 1.027 1.219 1.119 1.311 0.943 0.892 0.778 0.879
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Table 4.4: Estimation of Industrial Forces z|for 50 States (2005 – 2008) 

 

 
 
 
 

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17 I18 I19 I20

AK 0.597 1.799 0.722 1.13 1.452 1.263 0.81 0.66 0.5 1.553 1.107 0.926 1 1.16 0.85 0.768 0.791 0.607 0.631 1.169

AL 0.686 0.924 0.92 1.171 0.986 0.76 0.917 1.091 1.032 0.836 0.975 1.025 1.074 1.141 1.074 0.919 0.925 1.055 1.011 1.091

AR 0.873 1.996 1.159 1.467 1.058 0.886 1.055 1.113 1.197 1.006 0.97 1.008 1.036 1.203 0.979 1.002 1.011 1.047 1.136 0.967

AZ 1.036 1.683 1.116 1.223 0.991 0.807 1.189 1.121 0.98 0.974 0.963 1.023 0.895 1.023 1.143 1.07 0.955 1.189 1.204 1.047

CA 0.898 1.362 1.026 1.003 0.846 0.764 0.92 0.933 0.897 0.808 0.808 0.907 0.967 0.909 0.966 0.958 0.886 0.908 0.87 0.88

CO 0.796 1.9 1.349 1.204 1.106 0.957 1.161 1.148 0.985 1.064 1 1.225 0.693 1.264 1.129 1.216 1.231 0.95 1.194 1.287

CT 1.62 0.507 0.842 0.91 0.856 0.674 0.883 0.741 0.613 0.825 0.868 0.883 1.051 0.973 0.912 0.859 0.773 0.891 0.848 0.83

DE 0.931 1 0.827 1.017 1.064 0.992 1.313 0.802 1.434 0.887 0.823 1.224 0.741 0.93 0.937 0.829 0.797 1.003 0.565 1.05

FL 0.913 0.755 1.131 0.892 0.907 0.787 1.017 0.977 0.835 0.886 0.814 0.904 0.835 0.929 0.966 0.983 0.954 0.872 0.969 0.893

GA 0.838 1.206 1.182 1.102 1.16 1.02 1.068 1.153 1.129 1.053 1.034 1.177 1.544 1.372 1.292 1.192 1.48 1.329 1.132 1.224

HI 1.995 1 1.063 1.403 1.019 1.406 1.211 1.071 0.909 1.087 1.032 0.998 1 1.146 0.982 1.058 1.248 1.244 0.939 1.11

IA 0.823 0.908 0.633 0.988 0.995 0.829 1.055 1.069 0.931 1.097 0.993 1.038 0.768 1.257 1.163 1.048 1.061 1.007 1.097 1.073

ID 0.607 2 0.562 0.677 0.687 0.679 0.75 0.946 0.781 0.614 0.51 0.756 0.5 0.695 0.646 0.659 0.68 0.548 0.751 0.652

IL 0.858 1.361 1.166 0.99 0.965 0.885 1.076 1.001 0.882 1.054 0.886 1.062 1.266 1.059 1.064 1.03 1.145 1.166 1.054 0.886

IN 0.801 1.498 0.984 0.986 1.015 0.934 1.087 1.027 1.059 1.014 1.114 1.145 0.974 1.388 1.204 1.067 1.228 1.215 1.137 0.979

KS 0.508 0.979 0.86 0.835 0.768 0.631 0.75 0.741 0.646 0.734 0.743 0.64 2 0.821 0.666 0.734 0.643 0.742 0.694 0.76

KY 0.782 1.009 0.983 0.935 1.014 0.872 1.094 1.017 1.221 0.997 1.017 1.054 1.172 1.064 1.105 1.044 0.877 1.086 1.041 0.894

LA 1.178 1.354 1.422 1.087 1.046 0.928 1.063 0.878 0.961 0.958 1.076 1.088 1.316 1.079 0.983 1.035 1.037 1.03 1.007 0.97

MA 1.449 0.5 1.433 1.587 1.412 1.097 1.415 1.561 1.346 1.385 1.192 1.494 0.869 1.534 1.524 1.474 1.56 1.537 1.498 1.271

MD 0.737 0.587 1.086 1.015 0.882 0.843 0.994 1.029 0.987 0.867 0.989 1.023 0.5 1.02 0.975 1.075 1.178 1.06 0.985 0.95

ME 0.663 2 0.831 0.699 0.619 0.591 0.753 0.652 0.74 0.805 0.571 0.662 0.701 0.869 0.694 0.723 0.587 0.659 0.734 0.652

MI 0.901 1.047 0.959 1.049 0.865 0.804 1.004 1.014 0.923 0.971 0.93 1.042 0.86 1.06 0.985 0.942 1.039 0.95 0.993 0.955

MN 0.721 0.912 0.919 0.861 0.858 0.842 0.923 0.894 0.778 0.813 0.818 0.862 1.035 1.021 0.925 0.969 0.883 0.821 0.91 0.904

MO 0.738 1.435 1.087 1.109 1.028 0.883 0.999 0.854 0.942 1.053 0.9 1.079 1.06 1.276 0.996 1.051 1.287 1.012 0.953 1.011

MS 0.914 1.619 1.084 1.17 0.896 0.853 1.064 1.087 0.762 0.911 1.037 1.063 1 0.952 1.1 0.965 0.934 1.228 0.992 0.933

MT 0.724 1.99 0.906 1.225 1.093 0.83 0.963 1.009 0.613 0.998 1.124 1.156 1 1.448 1.365 1.148 1.162 1.228 1.037 0.882

NC 0.652 0.758 0.732 0.767 0.616 0.615 0.658 0.612 0.599 0.635 0.665 0.684 0.562 0.664 0.692 0.701 0.845 0.641 0.653 0.731

ND 1.387 2 1.051 1.162 1.48 1.301 1.112 1.597 1.024 1.959 0.646 1.737 1 1.895 1.369 1.066 0.505 0.967 0.774 1.561

NE 0.577 0.906 0.952 0.685 0.799 0.705 0.864 0.808 0.848 0.712 1.296 0.902 2 0.901 0.85 0.938 0.83 0.836 0.858 0.68

NH 0.593 2 0.662 0.805 0.887 0.81 0.863 0.822 1.016 0.852 0.769 0.815 1.767 1.075 0.735 0.967 0.986 0.859 0.66 0.817

NJ 0.589 0.727 0.925 0.979 0.759 0.79 0.869 0.758 0.734 0.796 0.762 0.894 1.114 0.894 0.847 0.845 0.837 0.807 0.812 0.808

NM 0.785 1.378 1.155 1.041 1.147 0.742 1.039 1.037 1.097 1.017 0.934 1.065 1 1.341 1.113 1.104 1.192 1.019 1.158 0.96

NV 1.078 1.105 1.121 0.983 1.008 0.939 1.282 1.147 0.918 0.973 0.963 1.066 0.5 1.208 0.979 1.036 0.812 1.186 1.114 1.154

NY 0.811 0.829 1.093 1.139 0.953 0.938 1.084 1.05 0.969 0.944 0.993 1.053 1.419 1.077 1.099 1.04 1.143 0.98 1.055 0.99

OH 0.819 0.88 0.988 0.974 0.925 0.807 0.994 1.013 0.991 0.943 0.843 1.072 0.596 1.1 1.063 1.055 1.054 0.904 1.004 0.867

OK 1.028 1.292 1.028 1.116 0.99 0.773 1.028 0.977 0.872 0.878 0.92 0.93 1.44 0.912 0.892 1.078 1.334 1.044 1 0.99

OR 0.731 1.35 0.811 0.978 0.902 0.681 0.899 1.095 0.85 0.806 0.841 0.97 0.953 0.8 0.927 0.979 1.031 0.824 1.086 0.809

PA 0.841 0.986 1.037 1.13 1.046 0.936 1.056 0.996 1.051 0.975 0.871 1.079 1.195 1.082 1.085 1.017 1.105 0.987 0.983 0.997

RI 0.733 2 1.455 1.892 1.521 1.786 1.566 1.981 1.065 1.547 1.506 1.976 1 1.714 1.963 1.84 1.915 1.881 1.148 1.672

SC 0.948 2 0.67 1.128 0.868 0.783 0.987 1.219 0.949 0.931 1.179 1.069 0.5 1.074 0.951 0.976 0.975 1.059 0.977 0.935

SD 1.512 0.5 0.797 1.352 1.411 1.853 1.775 1.681 1.229 1.602 0.988 1.558 1 1.196 1.003 1.333 1.589 1.396 0.674 1.275

TN 0.895 1.205 1.039 1.176 0.868 0.777 0.918 1.059 0.933 0.961 0.942 0.898 1.072 1.106 1.067 0.937 0.974 0.887 0.892 1.064

TX 0.693 1.499 1.057 1.115 0.979 0.936 1.035 1.121 0.965 1.025 1.057 1.13 0.987 1.159 1.037 1.081 1.187 1.115 0.985 1.041

UT 0.965 1.29 1.067 1.117 0.92 0.951 1.111 1.035 1.023 0.985 1.009 0.989 0.589 1.168 1.042 1.043 1.013 1.08 0.91 0.995

VA 0.79 1.31 1.261 1.164 0.936 0.795 1.009 1.04 0.957 0.965 0.824 1.12 1.908 1.164 1.057 1.061 1.235 1.098 0.98 1.037

VT 1.104 0.5 1.697 0.841 1.038 1.049 1.309 1.644 1.138 0.985 1.681 0.982 1 1.931 1.11 1.29 1.448 1.132 1.162 0.863

WA 0.968 1.51 1.069 1.158 0.97 0.912 1.022 1.057 0.913 0.895 0.971 1.113 0.787 1.088 1.005 1.058 0.881 0.981 0.988 1.058

WI 1.41 1.073 1.922 1.542 1.692 1.286 1.587 1.758 1.577 1.725 1.423 1.845 0.649 1.82 1.72 1.59 1.878 1.593 1.638 1.55

WV 0.938 1.422 0.704 1.074 1.007 1.012 1.139 0.765 0.813 0.89 0.793 1.074 1 1.016 1.168 1.04 1.113 0.995 0.957 1.198

WY 0.596 1.137 0.928 1.209 1.699 1.14 0.89 0.984 1.102 0.81 1.387 0.906 1 1.005 0.925 1.008 0.795 0.924 1.039 1.239
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Figure 4.1: Mean and Standard Deviation of the Occupational Forces z{ and Industrial Forces z|for 50 

States  

 
First of all, from the occupation side, most of the cross-state averages of the estimates for z{ elements are 

between 1 and 1.1, indicating a positive force on workforce growth. The highest cross-state averages of 

the estimates is for O18 (Farming, fishing, and forestry occupations), which is similar to the conclusion 

the occupational group with the highest estimate at national level. Nevertheless, the high variance 

associated with O18 also indicates that such strong force to promote workforce growth does not equally 

apply to all states. One explanation is that there are spatial heterogeneities about the performance of O18 

in regional workforce growth dynamics. Another explanation is that these results are possibly biased and 

are sensitive due to the quality of American Community Survey data. In terms of variance, the lowest 

cross-state variance of the estimates for occupational groups is found for O17 (Office and administrative 

support occupations), indicating that functions performed by this occupational group are mostly stable 

across states and are less spatially heterogeneous. The combinations of low estimate of cross-state average 

with the low cross-state variance are found at O21 (Production occupations), O20 (Installation, 

maintenance, and repair occupations) and O19 (Construction and extraction occupations). This finding 

shows that these occupations exert relatively weak strength to promote state-level workforce growth, and 
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it is weak almost across all the 50 states with small spatial variances.   

 

Secondly, when it comes to the industrial side, from figure 4.1, most of the cross-state averages of the 

estimates on the z|  elements are located on the right side of the Y-coordinate, indicating that most 

industrial sectors cast positive effects on regional workforce growth. The cross-state variances of these 

estimates, however, are generally larger than cross-state variances from the occupation side. The highest 

cross-state average of the estimates is found for I2 (Mining), which is also similar to previous findings at 

the national level. Growing forces from I2 (Mining) sector could vary remarkably on a spatial scale, 

indicated by this sector having the highest cross-state variance. Mining usually requires a relatively high 

intensity of labor input, and subsequent drastic numerical increase in mining industries in some states is 

interpreted as sending strong growing forces to the state-level workforce from the model outcomes. The 

lowest cross-state average of estimates for industrial sectors is found for I1 (Agriculture, forestry, fishing, 

and hunting industry), and it is with extremely high cross-state variance, indicating strong spatial 

heterogeneity. From table 4.4, the lowest estimate (0.508) is found in Kansas, and the highest estimate 

(1.995) is found in Hawaii. 

 

 
 

Figure 4.2: Correlation between the estimates of the forces and state employment growth rate 

 
Figure 4.2 shows the correlations between estimated elements of each state-level industrial force or 
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occupational force (z| _b z{) and the state’s total employment growth rate between 2005 and 2008.2  The 

intent here is to check if a particular occupation or industry’s growth force is highly associated with 

overall state’s employment increase, since Florida (2002) and Markusen (2004) had emphasized the 

important functions performed by “creative class” and “key occupations”, such as engineering, 

information technology, arts, and entertainment occupations in generating economic growth.  

 

Sectors that show relatively higher positive correlations are mostly from the occupation side. This 

indicates that certain occupational groups could serve as the key source to inject vigor into the regional 

labor market. Occupational groups showing high positive correlation with regional labor growth rates are: 

O11 (Healthcare support occupations), O5 (Life, physical, and social science occupations) and O17 

(Office and administrative support occupations). Although the magnitude is relatively small, O9 (Arts, 

design, entertainment, sports, and media occupations) also shows a positive correlation with their state’s 

employment growth. 

 

 
 

Figure 4.3: Plots of state level estimates for O9 and their employment growth rates (2005-2008) 

 
In figures 4.3, state level estimates of occupational force for O9 (Arts, design, entertainment, sports, and 

media occupations) during 2005 to 2008 are plotted against the state level employment growth rates in the 

same period. The positive relationships between occupational forces and growth rates are noticeable. 

However, such strong implications of occupational estimates towards workforce growth are not found 

among industrial estimates from the model outcomes. For instance, state level estimates of industrial force 

for I17 (Arts, entertainment, and recreation) are plotted against the state level employment growth rates 

in figure 4.4 and no strong trends are detectable; the correlation between these two variables even turns 

out to be negative. To conclude based on these observations of the estimates under such an occupation-                                            
2 To compute the state-level employment growth rate, we used a data series from Bureau of Economic Analysis, because this 
information may be more accurate than PUMS, ACS in measuring the number of employment. 
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industry-hybrid approach, estimates of growth forces from the occupation side may serve as a better 

proxy to understand regional workforce growth.  

 

 
 

Figure 4.4: Plots of state level estimates for I17 and their state employment growth rates (2005-2008) 

 

4.4 Sensitivity Analysis of Occupational Demand and Identification of Key Industries 

 

Stimulated by the concerns over the loss of key industries, hypothetical extractions are frequently used to 

measure the inter-industry linkages in an input-output analytical structure (Meller and Marfan, 1981; 

Dietzenbacher et al., 1993). Assuming that one industry sector E is removed from the economy and all 

intermediate and final requirements of sector E’s output are replaced by imports, sector E no longer buys 

or sells any inputs to the remaining sectors, the backward and forward linkages disappear as well. On-

going economic activities then have to adjust to this change, and the hypothetical extraction of sector E 

will result in losses in gross output at all sectors on the assumption that there is no spatial substitution of 

inputs from other economies or technological substitution from other sectors. 

 

Under the industry-occupation framework, the quantity of goods produced by each industry requires labor 

input through a combination of various occupations. The removal of sector E not only eliminates the 

needs of its own demand for occupations (direct effect), but also reduces the demand of occupations 

(indirect effect) of the remaining industrial sectors that supply intermediate inputs, directly and indirectly, 

to sector E. According to Meller and Marfan (1981), the capacity of an industrial sector to generate 

employment corresponds to the sum of direct and indirect labor requirements. When assuming a constant 

relationship between output and occupational demand in each industrial sector for a given year, the 

sensitivity that an industrial sector casts on the overall demand of occupations can be illustrated through 

this extraction method.  
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Given the usual input-output system (see equation 4-14), which in this case is a 20-sector economy 

specified in 2-digit NAICS industry codes (I1 ~ I20),  C = �C + �                                                                                                                                (4-14) 

where X is a vector of gross output [20×1]; A is a direct input coefficients matrix [20×20]; Y is a vector of 

final demand [20×1], the vector of gross output can be expressed as  C = (M − �)NO� = º�                                                                                                                           (4-15) 

where I is a [20×20] identity matrix and Z is the Leontief inverse [20×20].  

 

When a sector E is extracted, all of sector E’s linkages to the rest of the economy are eliminated. The 

input coefficient matrix becomes �∗ [19×19], which is obtained by removing from A the row and column 

of sector E. This captures the comprehensive impact of sector E toward the economy by removing all 

connections – forward, backward, and internal. The adjusted gross output C∗ for the remaining sectors can 

be measured as: C∗ = (M∗ − �∗)NO�∗                                                                                                                              (4-16) 

where M∗ is a [19×19] identity matrix and �∗ is a vector of final demand [19×1] after removing sector E.  

 

To show the impact on occupational demand due to reduced gross output, an H matrix [22×20] is 

calibrated to denote the occupational requirement for each industrial sector to produce one unit of gross 

output, which is obtained by dividing employment in occupation i for industry j (element c�,V in 

occupation-by-industry workforce matrix M) by the gross output of that industry sector (qV) in a given 

year.  

� = X cO,O/qO ⋯ cO,Q'/qQ'⋮ ⋮ ⋮cQQ,O/qO ⋯ cQQ,Q'/qQ']                                                                                                       (4-17) 

 

Therefore, the impact on overall occupational demand across all remaining industries (∆OD) after 

extracting sector E can be estimated by comparing the original overall demand for each occupation prior 

to extraction with the resulting demand for each occupation after extraction.  ∆¨� = ¨� − ¨�∗ = � ∙ C − �∗ ∙ C∗ = � ∙ (M − �)NO� − �∗ ∙ (M∗ − �∗)NO�∗                                 (4-18) 

where �∗ matrix [22×19] is a matrix of occupational requirement per unit output for the remaining sectors 

after removing sector E at a given year.   

 

4.4.1 Extraction Analysis at National Level 
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U.S. national 20-sector input output tables are compiled from BEA Input-Output Accounts for 2005 and 

2008. Impacts on occupational demand, by industrial sector, for each of the 20 possible extractions are 

calculated through equation (4-18). Moreover, the impact on occupational demand (∆OD) due to the 

hypothetical extraction of industry E can be further disaggregated into self-induced effects and nonself-

induced effects. The self-induced impact (direct effects) denotes the loss of occupations for the industry E 

itself and the non-self-induced impact (indirect effects) refers to the occupations loss in other industries 

due to inter-industry linkages.  

 

The fact that the self-induced impact generates high percentage loss of one entire occupational group due 

to extracting one or several industrial sectors indicates these sectors are the key industries demanding 

such an occupation. In addition, through indirect effects, the extraction of one industry can indirectly 

result in a significant portion of employment loss in one or a few occupational groups. Industry of this 

kind can be considered as the "key industry" to indirectly demand such occupations. The findings on key 

industries from both direct and indirect effects are summarized in table 4.5. The percentage number in the 

brackets shows the percentage of loss of the occupational group due to hypothetical extraction of such an 

industry under either effect. If the direct/indirect effects cast on one occupation group are relatively small 

and even across each industry that is extracted, it is concluded that no available (N.A.) key industries exist 

for that specific occupation.  

 

For instance, in terms of direct effects, I1 (Agriculture, forestry, fishing, and hunting) is the key industry 

to demand O18 (Farming, fishing, and forestry occupations); I20 (Federal, state, and local government) 

is the key industry to demand O12 (Protective service occupations); I9 (Information) is the key industry 

to demand O9 (Arts, design, entertainment, sports, and media occupations), and so forth. In other terms, 

the extraction of industry I1 (Agriculture, forestry, fishing, and hunting) will directly lead to 56.8% loss of 

the O18 (Farming, fishing, and forestry occupations), regardless of the non-self-induced impact. The self-

induced impacts on O1 (Management occupations), O17 (Office and administrative support occupations) 

and O20 (Installation, maintenance, and repair occupations) from extractions are relatively small across 

all industries, suggesting that these occupations are less sensitive to the performance of certain industrial 

sectors and no serious influential industrial sector(s) exists.  

 

In terms of the non-self-induced impact (indirect effects), key industries can be identified in the same 

manner. In the same table, it is found that most of the strong impacts through indirect effects are 

generated by industries I5 (Manufacturing) and I20 (Federal, state, and local government). For instance, 
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the extraction of I5 will indirectly result in 45.65% loss of the total O18 (Farming, fishing, and forestry 

occupations). In other words, the performance of I5 (Manufacturing) has a strong impact on the overall 

demand of O18 (Farming, fishing, and forestry occupations). 

 

Table 4.5: Identification of Key Industries for Occupational Demand through Direct and Indirect Effects 

in 2005 
            

Through Direct Effect Through Indirect Effect 

  KEY INDUSTRY KEY INDUSTRY 

O1 N.A. I5 (9.0%), I20 (7.7%) 
O2 I10 (22.7%) I5 (10.3%) 
O3 I12 (31.4%) I5 (12.6%), I20 (12.1%) 
O4 I5 (33.4%), I12 (34.9%) I5 (10.2%), I20 (12.9%) 
O5 I12 (26.4%), I20 (24.4%) I5 (9.4%), I20 (9.4%) 
O6 I16 (49.2%) N.A. 
O7 I12 (58.9%) I5 (12.5%), I20 (12.7%) 
O8 I15 (89.2%) I20 (6.6%) 
O9 I9 (28.7%), I12 (17.5%) I20 (10.6%) 

O10 I16 (77.5%) N.A. 
O11 I16 (86.5%) N.A. 
O12 I20 (60.6%) N.A. 
O13 I18 (79.2%) N.A. 
O14 I14 (36.9%) I20 (10.4%) 
O15 I16 (31.7%) N.A. 
O16 I7 (59.8%) N.A. 
O17 N.A. N.A. 
O18 I1 (56.8%) I5 (45.7%) 
O19 I4 (75.6%) N.A. 
O20 N.A. I5 (8.2%), I20 (7.1%) 
O21 I5 (72.9%) I20 (11.2%) 
O22 I8 (27.0%) I5 (13.3%) 

 
To compare the overall extraction effects (direct plus indirect) toward the demand of occupations among 

individual industrial sectors, figure 4.5 presents the overall percentage loss of each occupation that results 

from the extraction of six typical industries. The outcomes reveal that when extracting I2 (Mining), I3 

(Utilities) and I17 (Arts, entertainment, and recreation), the overall effects have relatively small impacts 

across all occupational groups. In contrast, extracting I5 (Manufacturing), I12 (Professional, scientific, 

and technical services) and I20 (Federal, state, and local government) will create significant percentage 

loss across a broad range of occupational groups, and these industries have stronger linkages that affect 

overall occupational demand at the national level.    
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Table 4.6: Employment Linkage Coefficient and Output Linkage Coefficient in 2005 and 2008 

            

Per Employment Linkage Coefficient Per Output Linkage Coefficient 

  2005 2008   2005 2008 

I1 3.31 3.76 4.85 4.31 
I2 3.22 3.10 4.15 3.43 
I3 3.20 2.94 4.51 3.57 
I4 1.79 1.67 10.38 9.88 
I5 1.64 1.70 5.03 4.34 
I6 1.45 1.47 7.82 7.19 
I7 1.20 1.20 15.11 14.85 
I8 1.42 1.47 10.25 9.28 
I9 1.94 2.08 5.55 5.15 
I10 1.59 1.75 4.82 4.70 
I11 4.01 3.24 3.51 2.62 
I12 1.42 1.39 7.62 6.81 
I13 1.53 1.52 7.92 7.27 
I14 1.16 1.17 16.68 14.83 
I15 1.04 1.04 68.18 58.04 
I16 1.28 1.28 14.19 12.87 
I17 1.28 1.31 12.93 11.77 
I18 1.20 1.20 19.84 18.61 
I19 1.43 1.47 10.42 9.86 
I20 1.98 2.03   7.24 6.40 

 
Table 4.7: Breakdown of Per Employment Linkage Coefficients across 22-Occupation for Industries 

Showing Significant Linkage Effects 
          

  I11 I1 I2 I3 

O1 0.25 0.14 0.19 0.17 
O2 0.27 0.12 0.17 0.17 
O3 0.12 0.07 0.10 0.10 
O4 0.07 0.08 0.12 0.15 
O5 0.03 0.03 0.06 0.05 
O6 0.01 0.01 0.01 0.01 
O7 0.04 0.02 0.03 0.03 
O8 0.03 0.07 0.05 0.03 
O9 0.05 0.03 0.03 0.03 

O10 0.04 0.02 0.02 0.02 
O11 0.02 0.01 0.01 0.01 
O12 0.09 0.03 0.03 0.03 
O13 0.18 0.06 0.08 0.13 
O14 0.26 0.07 0.07 0.07 
O15 0.05 0.04 0.03 0.03 
O16 0.54 0.19 0.19 0.15 
O17 0.98 0.50 0.55 0.64 
O18 0.01 0.69 0.01 0.01 
O19 0.14 0.09 0.45 0.28 
O20 0.25 0.14 0.18 0.38 
O21 0.26 0.49 0.43 0.37 
O22 0.31 0.44 0.39 0.35 

Sum 4.01 3.31 3.22 3.20 
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Table 4.7 shows the further breakdown of the "per employment linkage coefficient" across the entire 

range of occupational groups for four industries with high "per employment linkage coefficients" in 2005. 

For Industrial Sector I11 (Real estate and rental and leasing), every 100 jobs lost/created in this sector 

will generate a total of 401 jobs losses/gains in the economy. Among these 401 jobs, 98 positions will be 

under O17 (Office and administrative support occupations); 54 positions will be under O16 (Sales and 

related occupations); also substantial numbers of positions will be created under O22 (Transportation and 

material moving occupations), O2 (Business and financial operations occupations), O21 (Production 

occupations), O14 (Building and grounds cleaning and maintenance occupations), O20 (Installation, 

maintenance, and repair occupations), and O1 (Management occupations).  

 

4.4.2 Extraction Analysis at the State Level: Illinois 

 

Due to the difficulty in obtaining state level input-output tables, in this study for illustration purposes, 

state level analysis on sensitivities of occupational demand due to hypothetical industrial extraction is 

conducted only for Illinois. The input-output table used for Illinois is compiled from IMPLAN Illinois 

Industry Transaction Matrix. Although IMPLAN collects state-level input-output information annually, 

only IMPLAN 2006 is available for me to use. Therefore, in the following analysis, Illinois input-output 

table in 2006 is used to proxy for the input-output table for Illinois in 2005.   

 

Table 4.8 tabulates the key industries for the demand of each occupational group in Illinois State in 2005 

for both direct (self-induced) and indirect (non-self-induced) effects. In terms of direct (self-induced) 

effects, the identified industries that cast significant impact on the demand of each occupation are similar 

to those at the national level. It is worth noticing that instead of having no key industries for certain 

occupations at the national level, in Illinois, I5 (Manufacturing) turns out to be the key industry for the 

O1 (Management occupations), I10 (Finance and insurance) and I16 (Health care and social assistance) 

for the O17 (Office and administrative support occupations), and I19 (Other services except public 

administration) and I5 (Manufacturing) for the O20 (Installation, maintenance, and repair occupations). 

When it comes to the indirect effects, Illinois State shows a slightly different pattern of linkages among 

industries and occupations. I5 (Manufacturing) continues to strong influences on the demand of most 

occupations through input-output linkages, while I20 (Federal, state, and local government) no longer 

has significant indirect impact like it shows at the national level.    

 

Table 4.9 shows the "per employment linkage coefficients" and "per output linkage coefficients" for the 

Illinois in 2005. In contrast to the national level, the highest per employment linkage coefficients are seen 
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at I13 (Management of companies and enterprises) and I2 (Mining). The highest per output linkage 

coefficient is seen at I15 (Educational services), which is the same as at the national level. Other 

industrial sectors with high per output linkage coefficients are I17 (Arts, entertainment, and recreation), 

I7 (Retail trade), and I18 (Accommodation and food service). Every additional one million dollars output 

produced by sector I5 (Educational services) will generate 67 jobs in the Illinois labor market.  

 

By the same token, the breakdown of the highest per employment linkage coefficients of I13 

(Management of companies and enterprises), I2 (Mining), and I11 (Real estate and rental and leasing) is 

shown in table 4.10. For every 100 jobs created/lost in I13 (Management of companies and enterprises), 

the economy in Illinois will eventually gain/lose a total of 760 jobs. Among them, 140 jobs will be in O17 

(Office and administrative support occupations), 98 jobs will be in O1 (Management occupations), and 

84 jobs will be in O16 (Sales and related occupations). In other words, the performance of I13 

(Management of companies and enterprises) has quantitatively significant linkages to generate workforce 

externalities.  

 

Table 4.8: Identification of Key Industries for Occupational Demand through Both Effects for Illinois 

State in 2005 
              

DIRECT EFFECT INDIRECT EFFECT 

  KEY INDUSTRY KEY INDUSTRY 

O1 I5 (15.9%) I5 (7.5%) 
O2 I10 (25.2%) I5 (9.6%) 
O3 I12 (30.41%) I5 (9.7%) 
O4 I5 (41.7%) I5 (7.9%) 
O5 I12 (25.11%) I5 (6.9%) 
O6 I16 (37.7%) N.A. 
O7 I12 (63.1%) I5 (13.1%) 
O8 I15 (86.1%) N.A. 
O9 I12 (22.2%), I9 (18.2%) I5 (9.5%) 

O10 I16 (82.7%) N.A. 
O11 I16 (90.0%) N.A. 
O12 I20 (58.3%) N.A. 
O13 I18 (80.8%) I5 (6.7%) 
O14 I14 (35.9%) N.A. 
O15 I16 (33.9%) I5 (4.5%) 
O16 I7 (51.3%) I5 (15.6%) 
O17 I10 (12.6%), I16 (11.4%) I5 (7.9%) 
O18 I1 (79.4%) I5 (20.3%) 
O19 I4 (84.9%) N.A. 
O20 I19 (21.5%), I5 (19.5%) I5 (7.9%) 
O21 I5 (75.5%) I4 (4.5%) 
O22 I8 (35.4%) I5 (8.2%) 
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Table 4.9: Employment Linkage Coefficient and Output Linkage Coefficient in 2005 for Illinois State 

      

  Per Employment Linkage Coefficient Per Output Linkage Coefficient 

I1 1.27 9.65 
I2 2.77 2.45 
I3 1.48 4.48 
I4 1.36 11.97 
I5 1.54 5.33 
I6 1.50 6.44 
I7 1.09 22.77 
I8 1.27 9.63 
I9 1.53 6.63 

I10 1.27 5.49 
I11 1.83 4.50 
I12 1.41 7.48 
I13 7.64 2.35 
I14 1.18 13.18 
I15 1.03 67.30 
I16 1.19 16.64 
I17 1.10 23.19 
I18 1.14 22.44 
I19 1.20 16.85 
I20 1.20 3.40 

 

Table 4.10: Breakdown of Per Employment Linkage Coefficients across 22-Occupation for Industries 

Showing Significant Linkage Effects in 2005 in Illinois 
        

  I13 I2 I11 

O1 0.98 0.25 0.26 
O2 0.71 0.15 0.12 
O3 0.45 0.06 0.03 
O4 0.31 0.08 0.02 
O5 0.11 0.05 0.01 
O6 0.06 0.01 0.01 
O7 0.37 0.05 0.03 
O8 0.07 0.02 0.01 
O9 0.29 0.08 0.02 

O10 0.07 0.02 0.01 
O11 0.02 0.00 0.00 
O12 0.09 0.04 0.04 
O13 0.18 0.06 0.05 
O14 0.28 0.09 0.16 
O15 0.16 0.06 0.02 
O16 0.84 0.34 0.48 
O17 1.40 0.35 0.30 
O18 0.01 0.00 0.00 
O19 0.33 0.40 0.05 
O20 0.23 0.14 0.05 
O21 0.39 0.25 0.07 
O22 0.29 0.28 0.08 

Sum 7.64 2.77 1.83 
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4.5 Concluding Remarks 

 

The central purpose of this chapter has been to construct a general framework to trace the continuing 

transformations of a regional workforce, to understand and to guide that change through the linkages of 

occupations and industries. The analysis is a contribution to the larger body of research seeking to find 

measures to probe the linkages among industry-based policy, occupation-based targeting and regional 

workforce growth. The objective is not to forecast occupation shortages or surpluses or to provide 

estimates of occupational employment at each industry, but to estimate the growth signals from 

occupations and industries and to explore the fabric of occupation-industry linkage through sensitivity 

analysis. Outcomes and subsequent policy implications from the modeling have three major 

improvements over previous studies. 

 

Firstly, labor market signaling focuses on the dynamic nature of skills demand and supply, and this 

chapter is geared toward examining forces that contribute to workforce changes over time. The results 

could be more informative, since identifying and calibrating the forces in action help understand how the 

structure of a local workforce is being shaped. Trends in the workforce through time can be detected to 

better guide policy-making decisions for both short-term and long-term bases. The proposed framework 

of linkage analysis between occupation and industry can be replicated in different time periods at different 

regional scales, and the occupation-by-industry matrices can be further disaggregated to detailed 

occupational and industrial levels.  

 

Secondly, the monitoring of occupation-industry linkages can be used to detect labor market signals and 

further suggest appropriate schooling and training. This chapter demonstrates how forces underlying 

regional workforce growth can be decomposed and evaluated simultaneously. It differs from prior one-

sided “industry-based” or “occupation-based” approaches and yields a number of rather acute insights 

into these rising and falling employment patterns. From the sensitivity and “key industry” analysis, a 

particular occupation/industry might be found to be strategically important in the development of an 

industry/occupation, and without it other occupations might not be created. There might be an upward or 

downward pressure on training and investment in some particular occupations. Therefore, the analysis 

guides manpower planners to revisit the social benefits from developing the strength of such an 

occupation and improve possible underinvestment in training. Moreover, the region-specific analysis of 

"per employment linkage coefficient" and "per employment output linkage coefficient" serves as a useful 

tool for development planners and policy makers to identify the priority of industries and justify state 

intervention to give incentives to these sectors for development purpose. 
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Thirdly, the model in this chapter takes a holistic approach to examine the composition of a regional 

workforce using a complete set of occupational groups and industrial sectors. It avoids the limitation of 

previous studies that rely heavily on pre-defined “creative occupations” without considering spatial 

heterogeneous distributions of occupation-based human capital and their functional roles. Particularly, the 

state-level analysis in this chapter helps clarify how divergent the growth force from an occupational 

group or an industrial sector could in comparison to the national level. The special features embedded in 

each state (such as existing occupation-mix or industry-mix, their endowment of human capital, policy 

environment for certain favored industrial sectors, etc.) could generate very different outcomes; these can 

be carefully incorporated into development strategy-making processes initiated by the policy makers. It 

appears that certain occupational groups or industrial sectors, not usually considered as “creative class” 

by Florida’s standard, remain active in injecting vigor into the employment market. This may suggest that 

policy makers should not overlook the “non-creative” class and its functional role in an embedded 

economy. In some states, positive strong forces from O18 (Farming, fishing, and forestry occupations), I2 

(Mining) and other supportive sectors do exist, and in this sense they deserve an equal recognition of their 

roles in promoting regional workforce growth. In other words, targeted occupations may not be limited to 

those held by highly educated professionals (Markusen, 2004).   

 

Fourthly, it reveals possible cross-fertilization of occupational knowledge across industrial sectors for 

regional workforce growth. For example, the analysis revealed that while O18 (Farming, fishing, and 

forestry occupations) sends positive growing forces, sector I1 (Agriculture, forestry, fishing, and hunting 

industry) is experiencing negative growth. Obviously, farming, fishing, and forestry occupations are not 

the exclusive purview of agricultural, forestry, fishing, and hunting industry. The former provides a broad 

skill base to multiple industries, and the empirical analysis sends a clear message that the strength of 

skills/knowledge associated with agricultural work can be embedded in industries other than agricultural 

industries.  

 

In common with other research work, analysis of regional workforce dynamics under industry-occupation 

linkage framework proposed in this chapter is not without limitations. First of all, the modeling structure 

simplifies the forces of employment growth into occupational and industrial functions. It does not 

explicitly consider scale effects and other less visible linkages. The numeric increase of occupational or 

industrial employment does not specify the quality of development. “Not all jobs are created equal; some 

pay a good deal more than others.” (Florida et al., 2008) Secondly, categories of occupational groups and 

industrial sectors used in this chapter still remain at an aggregated level – i.e. a great deal of valuable, 
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detailed information and dynamics, among more disaggregated occupational groups and industrial sectors, 

might have been overlooked in the findings. Also, the aggregated level of estimation results of the growth 

forces from the occupation side might not be particularly helpful in designing specific occupation training 

programs. This chapter, however, is demonstrative of the possibility of adopting an occupation-industry 

linkage analytical approach to study regional workforce dynamics. In future research, attention will be 

directed to these limitations.    
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