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Abstract

This thesis introduces and experimentally demonstrates coherent control techniques
to exploit electron spins in diamond for applications in quantum information process-
ing and quantum sensing. Specifically, optically-detected magnetic resonance mea-
surements are performed on quantum states of single and multiple electronic spins
associated with nitrogen-vacancy centers and other paramagnetic centers in synthetic
diamond crystals.
We first introduce and experimentally demonstrate the Walsh reconstruction method
as a general framework to estimate the parameters of deterministic and stochastic
fields with a quantum probe. Our method generalizes sampling techniques based on
dynamical decoupling sequences and enables measuring the temporal profile of time-
varying magnetic fields in the presence of dephasing noise.
We then introduce and experimentally demonstrate coherent control techniques to
identify, integrate, and exploit unknown quantum systems located in the environment
of a quantum probe. We first locate and identify two hybrid electron-nuclear spins
systems associated with unknown paramagnetic centers in the environment of a single
nitrogen-vacancy center in diamond. We then prepare, manipulate, and measure their
quantum states using cross-polarization sequences, coherent feedback techniques, and
quantum measurements. We finally create and detect entangled states of up to three
electron spins to perform environment-assisted quantum metrology of time-varying
magnetic fields. These results demonstrate a scalable approach to create entangled
states of many particles with quantum resources extracted from the environment of
a quantum probe. Applications of these techniques range from real-time functional
imaging of neural activity at the level of single neurons to magnetic resonance spec-
troscopy and imaging of biological complexes in living cells and characterization of
the structure and dynamics of magnetic materials.

Thesis Supervisor: Paola Cappellaro
Title: Associate Professor
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Chapter 1

Introduction

Quantum systems composed of many interacting particles of light and matter exhibit

complex dynamical properties that can be studied experimentally to better under-

stand fundamental states of matter and design novel technologies. Coherent control

techniques to prepare, manipulate, and read out the quantum state of single and mul-

tiple interacting quantum systems have been demonstrated in a vast array of physical

systems, including superconducting qubits, trapped ions, quantum dots, ultracold

atoms in optical lattices, electron donors in semiconductors, and spin defects in solid-

state materials. Spin defects in solid-state materials are particularly promising for

applications in quantum metrology and sensing; in particular, electron and nuclear

spins associated with single and multiple nitrogen-vacancy (NV) centers in diamond

have recently been used as quantum probes to measure the spatiotemporal profile of

electric and magnetic fields associated with molecular and biological samples at the

atomic scale under ambient conditions.

Quantum metrology explores quantum strategies such as the use of entanglement,

discord, and squeezing to reduce the statistical error associated with the estimation of

unknown physical parameters. Environment-assisted metrology exploits the environ-

ment of a quantum sensor to estimate unknown parameters with an improvement in

precision beyond the limits allowed by classical strategies. Quantum strategies that

outperform classical strategies have been explored in different physical implementa-

tions of a quantum probe to improve the performance of metrology tasks, including
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squeezed states, non-Gaussian spin states, and entangled states of many quantum

particles. The creation of multipartite entangled states of electron spins in solid-state

materials has been hindered, however, by the difficulty of initializing their quantum

state in a state of low entropy and protecting their evolution against dephasing in the

presence of environmental fluctuations.

This thesis makes significant contributions to quantummetrology in two important

areas. First, we extend the framework of quantum parameter estimation to estimate

deterministic and stochastic time-dependent parameters. Our approach takes advan-

tage of the Walsh functions to generate a complete set of digital filters that efficiently

sample and reconstruct time-varying fields. Second, we develop coherent control tech-

niques to extract quantum resources from the environment of a quantum probe to

create entangled states of many quantum particles and perform environment-assisted

quantum metrology. These techniques are experimentally demonstrated with hybrid

electron-nuclear spin systems associated with unknown paramagnetic centers located

in the environment of a single nitrogen-vacancy center in diamond.

1.1 Conceptual framework

The conceptual framework underlying this thesis is the coherent control of open quan-

tum systems for applications in quantum metrology and sensing (Fig. 1-1). Coherent

control techniques are introduced to control and characterize the dynamics of open

quantum systems, specifically composed of a single quantum probe interacting with

an environment formed by a mesoscopic ensemble of interacting quantum particles,

such as electron spins in diamond. The goal is not only to characterize the influence

of the environment on the evolution of a quantum probe, but also to exploit the quan-

tum properties of the environment in order to improve the performance of quantum

metrology protocols. We introduce and experimentally demonstrate coherent con-

trol techniques to prepare, manipulate, and measure the quantum state of unknown

paramagnetic centers located in the environment of a single NV center in diamond.

We then convert these unknown paramagnetic centers into quantum resources useful

14
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Figure 1-1: Coherent control of open quantum systems for applications

in quantum information science and quantum sensing. a, A single quantum
probe interacts with many fragments of its environment, causing the decay of coherent
superposition of states and preventing interferometric measurements of time-varying
fields over long periods of time. b, Coherent control sequences applied on the quantum
probe decouple the quantum probe from its environment, increasing the lifetime of
coherent superposition of states and enabling interferometric measurements of time-
varying fields over long periods of time. c, Coherent control sequences simultaneously
applied on both the quantum probe and a resonant fragment of its environment
selectively recouple their mutual interaction, thus providing information about the
structure and dynamics of the environment. d, A single quantum probe converts
a fragment of its environment into quantum resources useful for creating entangled
states of many particles and performing interferometric measurements of time-varying
fields with improved sensitivity.

for creating entangled states of multiple electron spins and measuring time-varying

fields with improved sensitivity. Performing repetitive quantum measurements of the

quantum state of the electron spins provides a gain in information that balances the

detrimental effects of control errors and dissipation during quantum operations and

quantum evolution.

1.2 Outline of this thesis

This thesis addresses the problem of measuring deterministic and stochastic fields

with single quantum probes in Chapter 2 and Chapter 3, before tackling the problem
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of converting unknown quantum systems into quantum resources useful for quantum

sensing in Chapter 4.

Chapter 2 introduces the Walsh reconstruction method [15, 16, 17], which is a

new approach to quantum parameter estimation based on Walsh sequences that si-

multaneously extract information about time-varying fields and suppress dephasing

due to incoherent sources of noise. We experimentally demonstrate the Walsh recon-

struction method by measuring the temporal profile of various time-varying magnetic

fields, including the magnetic field created by an action potential traveling throught

the physical model of a neuron.

Chapter 3 extends the Walsh reconstruction method to the problem of estimating

the parameters of stochastic fields. The Walsh spectroscopy method samples the noise

spectrum in the sequency domain and synthesizes the autocorrelation function in the

time domain using a series of linear transformations without the need for solving a

deconvolution problem.

Chapter 4 addresses the problem of converting unknown quantum systems in

the environment of a quantum probe into quantum resources useful for quantum

metrology and sensing. Magnetic double-resonance techniques are introduced and

exploited to locate and identify unknown paramagnetic centers in the environment

of a single NV center in diamond. These paramagnetic centers are hybrid electron-

nuclear spin systems characterized by a single electron spin interacting with a single

nuclear spin. The parameters of the magnetic dipolar interaction terms and hyperfine

interaction terms are estimated by varying the strength and orientation of the static

magnetic field. After initializing the quantum state of multiple electron spins using

cross-polarization sequences and coherent feedback techniques, entangled states of

two and three electron spins are created to perform a.c. magnetometry, i.e., estimate

the amplitude of sinusoidal magnetic fields.

Chapter 5 summarizes the main scientific and technical contributions of this thesis

and discusses approaches to develop new technologies in quantum metrology and

sensing and solve fundamental problems in many-body quantum physics.
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Chapter 2

Time-resolved magnetic sensing with

electronic spins in diamond

Quantum probes measure time-varying fields with high sensitivity and spatial res-

olution, enabling the study of biological, material, and physical phenomena at the

nanometer scale. In particular, NV centers in diamond have recently emerged as

promising quantum probes for measuring magnetic [1, 2, 3] fields, electric [4] fields,

and temperature [5, 6, 7]. These sensors are ideal for nanoscale imaging of living bio-

logical systems [8, 9, 10] due to their low cytotoxicity, surface functionalizations [11],

optical trapping capability [12, 13] and long coherence time under ambient condi-

tions [14].

Although coherent control techniques have measured the amplitude of constant or

oscillating fields, these techniques are not suitable for measuring time-varying fields

with unknown dynamics. In this chapter, we introduce a coherent acquisition method

(Fig. 2-1) to accurately reconstruct the temporal profile of time-varying fields using

Walsh sequences [15, 16, 17]. These decoupling sequences act as digital filters that

efficiently extract spectral coefficients while suppressing decoherence, thus providing

an improved sensitivity over existing strategies. We experimentally reconstruct the

temporal profile of the time-varying magnetic field radiated by a physical model of a

neuron using a single electron spin in diamond.
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Figure 2-1: Understand the Walsh reconstruction protocol. a, A single
nitrogen-vacancy (NV) center in diamond, optically initialized and read out by confo-
cal microscopy, is manipulated with coherent control sequences to measure the arbi-
trary profile of time-varying magnetic fields radiated by a coplanar waveguide under
ambient conditions. b, Coherent control sequences, acting as digital filters on the
evolution of the qubit sensor, extract information about time-varying fields. c, An
𝑁 -point functional approximation of the field is obtained by sampling the field with
a set of 𝑁 digital filters taken from the Walsh basis, which contain some known set
of decoupling sequences such as the even-parity Carr-Purcell-Meiboom-Gill (CPMG)
sequences [18] (𝑤2𝑛) and the odd-parity Periodic Dynamical Decoupling (PDD) se-
quences [19] (𝑤2𝑛−1).
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2.1 Quantum parameter estimation with quantum

probes

Measurements of weak electric and magnetic fields at the nanometer scale are in-

dispensable in many areas, ranging from materials science to fundamental physics

and biomedical science. In many applications, much of the information about the

underlying phenomena is contained in the dynamics of time-varying fields. While

novel quantum probes promise to achieve the required combination of high sensitiv-

ity and spatial resolution, their application to efficiently mapping the temporal profile

of time-varying fields is still a challenge.

Quantum estimation techniques [20] measure time-varying fields by monitoring

the shift in the resonance energy of a quantum probe, e.g., via Ramsey interferome-

try. The quantum probe, first prepared in an equal superposition of its eigenstates,

accumulates a phase 𝜑(𝑇 ) = 𝛾
∫︀ 𝑇

0
𝑏(𝑡)𝑑𝑡, where 𝛾 is the strength of the interaction

with the time-varying field 𝑏(𝑡) during the acquisition period 𝑇 .

The dynamics of time-varying fields could be mapped by measuring the quantum

phase over successive, increasing acquisition periods [14] or sequential small acquisi-

tion steps [21]; however, these protocols are inefficient at sampling and reconstructing

time-varying fields, as the former involves a deconvolution problem, while both are

limited by short coherence times (𝑇 *
2 ) that bound the measurement sensitivity. Decou-

pling sequences [18, 22, 19] could be used to increase the coherence time [23, 24, 25],

but their application would result in a non-trivial encoding of the dynamics of the

field onto the phase of the qubit sensor [26, 27, 28, 29, 30].

Instead, here we propose to reconstruct the temporal profile of time-varying fields

with a set of digital filters, implemented with coherent control sequences over the

whole acquisition period 𝑇 , that simultaneously extract information about the dy-

namics of time-varying fields and protect the evolution of the qubit sensor against

dephasing noise. In particular, we use control sequences (Fig. 2-2) associated with

the Walsh functions [31], which form a complete orthonormal basis of digital filters

and are easily implementable experimentally.
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Figure 2-2: Understand the Walsh functions. Matrix representation of the Walsh
functions up to fourth order (𝑁 = 24) in a, sequency ordering, b, Paley ordering, and
c, Hadamard ordering. Each line corresponds to a Walsh sequence with the columns
giving the value of the digital filter in the time domain. Black and white pixels
represent the values ±1. Each ordering can be obtained from the others by linear
transformations. d Walsh functions {𝑤𝑚}𝑁−1

𝑚=0 up to 𝑁 = 24 in sequency ordering.
The sequency 𝑚 indicates the number of zero crossings of the 𝑚-th Walsh function.
The Rademacher functions 𝑟𝑘 = 𝑤2𝑘−1 correspond to the Walsh functions plotted in
blue. Some Walsh functions are associated with known decoupling sequences such
as the even-parity CPMG sequences [18] (𝑤2𝑘 green lines) and the odd-parity PDD
sequences [19] (𝑤2𝑘−1, blue lines).
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The Walsh reconstruction method uses a complete set of digital filters, imple-

mented with coherent control sequences over the acquisition period 𝑇 , to simulta-

neously extract information about the dynamics of time-varying fields and protect

the evolution of the quantum probe against dephasing noise. The Walsh reconstruc-

tion method can be applied to estimate various time-varying parameters via coherent

control of any quantum probe. In particular, we show that the phase acquired by

a qubit sensor modulated with Walsh decoupling sequences is proportional to the

Walsh transform of the field. This simplifies the problem of spectral sampling and re-

construction of time-varying fields by identifying the sequency domain as the natural

description for dynamically modulated quantum systems.

At the same time, the Walsh reconstruction method provides a solution to the

problem of monitoring time-dependent parameters with a quantum probe, which in

general cannot be achieved via continuous tracking due to the destructive nature

of quantum measurements. In addition, because the Walsh reconstruction method

achieves dynamical decoupling of the quantum probe, it further yields a significant

improvement in coherence time and sensitivity over sequential acquisition techniques.

These characteristics and the fact that the Walsh reconstruction method can be com-

bined with data compression [16] and compressive sensing [17, 32] provide clear ad-

vantages over prior reconstruction techniques [14, 21, 33, 34].

2.1.1 Understand the Walsh reconstruction method

The Walsh reconstruction method relies on the Walsh functions (Fig. 2-2), which

are a family of piecewise-constant functions taking binary values, constructed from

products of square waves, and forming a complete orthonormal basis of digital filters,

analogous to the Fourier basis of sine and cosine functions. The Walsh functions

are usually described in a variety of labeling conventions, including the sequency

ordering that counts the number of sign inversions or “switchings” of each Walsh

function. The Walsh sequences are easily implemented experimentally by applying

𝜋-pulses at the switching times of the Walsh functions; these sequences are therefore

decoupling sequences [35, 36], which include the well-known Carr-Purcell-Meiboom-
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Gill (CPMG) [18] and Periodic Dynamical Decoupling (PDD) sequences [19].

Walsh functions

The set of Walsh functions [31, 37, 38] {𝑤𝑚(𝑡)}∞𝑚=0 is a complete, bounded, and

orthonormal basis of digital functions defined on the unit interval 𝑡 ∈ [0, 1[. The

Walsh basis can be thought of as the digital equivalent of the sine and cosine basis in

Fourier analysis. There are different orderings of the Walsh functions in the basis that

are interchangeably used depending on the various conventions adopted in different

fields. The Walsh functions in the dyadic ordering or Paley ordering are defined as

the product of Rademacher functions (𝑟𝑘): 𝑤0 = 1 and 𝑤𝑚 =
∏︀𝑛

𝑘=1 𝑟
𝑚𝑘
𝑘 for 1 ≤ 𝑚 ≤

2𝑛 − 1, where 𝑚𝑘 is the 𝑘-th bit of 𝑚. The dyadic ordering is particularly useful in

the context of data compression [16].The Rademacher functions are periodic square-

wave functions that oscillate between ±1 and exhibit 2𝑘 intervals and 2𝑘 − 1 jump

discontinuities on the unit interval. Formally, the Rademacher function of order 𝑘 ≥ 1

is defined as 𝑟𝑘(𝑡) ≡ 𝑟(2𝑘−1𝑡), with

𝑟𝑘(𝑡) =

⎧⎨⎩ 1 : 𝑡 ∈ [0, 1/2𝑘[

−1 : 𝑡 ∈ [1/2𝑘, 1/2𝑘−1[

extended periodically to the unit interval.

The Walsh functions in the sequency ordering are obtained from the gray code

ordering of 𝑚. Sequency is a straightforward generalization of frequency which in-

dicates the number of zero crossings of a given digital function during a fixed time

interval. As such, the sequency 𝑚 indicates the number of control 𝜋-pulses to be ap-

plied at the zero crossings of the 𝑚-th Walsh function. The sequency ordering is thus

the most intuitive ordering in the context of digital filtering with control sequences.

The Walsh functions in the Hadamard ordering are represented by the Walsh-

Hadamard square matrix of size 2𝑛×2𝑛, whose elements are given by𝐻(𝑛)(𝑖+1, 𝑗+1) =∏︀2𝑛−1
𝑙=0 (−1)𝑖𝑙·𝑗𝑙 . The Walsh-Hadamard matrix is used as a quantum gate in quantum

information processing to prepare an equal superposition of 2𝑛 orthogonal states from

a set of 𝑛 initialized qubits.
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Walsh sequences

Because a microwave 𝜋-pulse effectively reverses the evolution of a quantum probe,

control sequences formed by a series of 𝜋-pulses act as digital filters that sequentially

switch the sign of the evolution between ±1. If 𝑤𝑚(𝑡/𝑇 ) is the digital filter created

by applying 𝑚 control 𝜋-pulses at the zero-crossings of the 𝑚-th Walsh function, the

normalized phase acquired by the quantum probe prepared in a coherent superposition

of states is
1

𝛾𝑇
𝜑𝑚(𝑇 ) =

1

𝑇

∫︁ 𝑇

0

𝑏(𝑡)𝑤𝑚(𝑡/𝑇 )𝑑𝑡 ≡ �̂�(𝑚). (2.1)

Here �̂�(𝑚) is the 𝑚-th Walsh coefficient defined as the Walsh transform of 𝑏(𝑡) eval-

uated at the sequence number (sequency) 𝑚. This identifies the sequency domain as

the natural description for digitally modulated quantum systems. Indeed, Eq. (2.1)

implies a duality between the Walsh transform and the dynamical phase acquired

by a quantum probe under digital modulation, which allows for efficient sampling

of time-varying fields in the sequency domain and direct reconstruction in the time

domain via linear inversion.

In particular, successive measurements with the first𝑁 Walsh sequences {𝑤𝑚(𝑡/𝑇 )}𝑁−1
𝑚=0

give a set of 𝑁 Walsh coefficients {�̂�(𝑚)}𝑁−1
𝑚=0 that can be used to reconstruct an 𝑁 -

point functional approximation to the field

𝑏𝑁(𝑡) =
𝑁−1∑︁
𝑚=0

�̂�(𝑚)𝑤𝑚(𝑡/𝑇 ). (2.2)

Eq. (2.2) is the inverse Walsh transform of order 𝑁 , which gives the best least-

squares approximation to 𝑏(𝑡). With few assumptions or prior knowledge about the

dynamics of the field, the reconstruction can be shown to be accurate with quantifiable

truncation errors and convergence criteria [37, 38].

Although the signal is encoded on the phase of a quantum probe in a different way

(via decoupling sequences), the Walsh reconstruction method shares similarities with

classical Hadamard encoding techniques in data compression, digital signal process-

ing, and nuclear magnetic resonance imaging [39, 40, 41]. All of these techniques could
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easily be combined to achieve both spatial and temporal imaging of magnetic fields at

the nanometer scale, given the availability of gradient fields and frequency-selective

pulses.

Walsh transform

The Walsh-Fourier series of an integrable function 𝑏(𝑡) ∈ 𝐿1([0, 𝑇 [) is given by

𝑏(𝑡) :=
∞∑︁

𝑚=0

�̂�(𝑚)𝑤𝑚(𝑡/𝑇 ), (2.3)

where the Walsh-Fourier coefficients are given by the Walsh transform of 𝑏(𝑡) evalu-

ated at sequency 𝑚, i.e.,

�̂�(𝑚) =
1

𝑇

∫︁ 𝑇

0

𝑏(𝑡)𝑤𝑚(𝑡/𝑇 )𝑑𝑡 ∈ R, ∀𝑚 ≥ 0. (2.4)

The truncation of the Walsh-Fourier series up to 𝑁 coefficients gives the 𝑁 -th

partial sums of the Walsh-Fourier series,

𝑏𝑁(𝑡) :=
𝑁−1∑︁
𝑚=0

�̂�(𝑚)𝑤𝑚(𝑡/𝑇 ), (2.5)

which can be shown to satisfy lim𝑁→∞ 𝑏𝑁(𝑡) = 𝑏(𝑡), almost everywhere for 𝑏(𝑡) ∈
𝐿1([0, 𝑇 [) and uniformly for 𝑏(𝑡) ∈ 𝐶([0, 𝑇 [) [38]. Equation (2.5) gives the 𝑁 -point

functional approximation to the field 𝑏(𝑡).

2.1.2 Quantify the performance of the Walsh reconstruction

method

The performance of the Walsh reconstruction method is determined by the reconstruc-

tion error 𝑒𝑁 and the measurement sensitivity 𝜂𝑁 . The least-squares reconstruction

error 𝑒𝑁 = ‖𝑏𝑁(𝑡) − 𝑏(𝑡)‖2 due to truncation of the Walsh spectrum up to 𝑁 = 2𝑛

coefficients is bounded by 𝑒𝑁 ≤ max𝑡∈[0,𝑇 ] |𝜕𝑡𝑏(𝑡)|/2𝑛+1 [38] and vanishes to zero as 𝑁

tends to infinity (as needed for perfect reconstruction). This implies that although
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the resources grow exponentially with 𝑛, the error converges exponentially quickly to

zero, and only a finite number of coefficients is needed to accurately reconstruct the

field.

Sensitivity

The measurement sensitivity of the 𝑚-th Walsh sequence in 𝑀 measurements,

𝜂𝑚 =
𝑣−1
𝑚

𝛾𝑒𝐶
√
𝑇 |𝑓(𝑚)|

=
𝜂𝑚

|𝑓(𝑚)|
, (2.6)

gives the minimum field amplitude, 𝛿𝑏𝑚 = 𝜂𝑚/
√
𝑀𝑇 = ∆𝑆𝑚/(|𝜕𝑆𝑚/𝜕𝑏𝑚|

√
𝑀), that

can be measured with fixed resources. Here 𝛾𝑒 = 2𝜋 ·28 Hz ·nT−1 is the gyromagnetic

ratio of the NV electronic spin and 𝐶 accounts for inefficient photon collection and

finite contrast due to spin-state mixing during optical measurements [1, 42].

The sensitivity is further degraded by the decay of the signal visibility, 𝑣𝑚 =

(𝑒−𝑇/𝑇2(𝑚))𝑝(𝑚) ≤ 1, where 𝑇2(𝑚) and 𝑝(𝑚) characterize the decoherence of the qubit

sensor during the𝑚-th Walsh sequence in the presence of a specific noise environment.

In general, 𝑇2(𝑚) > 𝑇2, as the Walsh sequences suppress dephasing noise and extend

coherence times by many orders of magnitude [35, 36]. The sensitivity 𝜂𝑚 is thus the

ratio between a field-independent factor 𝜂𝑚 and the Walsh coefficient |𝑓(𝑚)| for the
particular temporal profile of the measured field.

The Walsh reconstruction method provides a gain in sensitivity of
√
𝑁 over se-

quential measurement techniques that perform 𝑁 successive amplitude measurements

over small time intervals of length 𝜏 = 𝑇/𝑁 ≤ 𝑇 *
2 . Indeed, Walsh sequences exploit

the long coherence time under dynamical decoupling to reduce the number of mea-

surements, and thus the associated shot noise. This corresponds to a decrease by a

factor of 𝑁 of the total acquisition time needed to reach the same amplitude resolu-

tion or an improvement by a factor of
√
𝑁 of the amplitude resolution at fixed total

acquisition time. Thus, unless the signal can only be triggered once, in which case

one should use an ensemble of quantum probes to perform measurements in small

time steps, the Walsh reconstruction method outperforms sequential measurements,
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which is an important step toward quantum-optimized waveform reconstruction [43].

Measurements with an ensemble of 𝑁NV NV centers improve the sensitivity by

1/
√
𝑁NV, such that the sensitivity per unit volume will scale as 1/

√
𝑛NV, where 𝑛NV

is the density of NV centers. Previous studies have demonstrated 𝜂1≈4 nT·Hz−1/2 for

a single NV center in an isotopically engineered diamond [14] and 𝜂1≈0.1 nT ·Hz−1/2

for an ensemble of NV centers [44], with expected improvement down to 𝜂1≈0.2 nT ·
𝜇m3/2 · Hz−1/2.

Sensitivity improvement over existing sensing techniques

We consider the problem of reconstructing an 𝑁 -point approximation to the time-

varying field 𝑏(𝑡) over the acquisition period of length 𝑇 . Here we show that the Walsh

reconstruction method offers an improvement in sensitivity scaling as
√
𝑁 over ex-

isting sequential methods. This corresponds to a reduction by
√
𝑁 of the minimum

detectable field at fixed total acquisition time or a reduction by 𝑁 of the total acqui-

sition time at fixed minimum detection field. We compare the Walsh reconstruction

method to piece-wise reconstruction of the field via successive acquisition (e.g. with

a Ramsey [14, 21] or CW [33] method).

Consider first that we use sequential (e.g., Ramsey) measurements to estimate the

amplitude of the field during each of the 𝑁 sub-intervals of length 𝜏 = 𝑇/𝑁 . The

error on each point for shot-noise limited measurements scales as 𝛿𝑏𝑗 ∼ 1/𝜏
√
𝑀1,

where 𝑀1 is the number of measurements performed for signal averaging. The total

acquisition time is 𝒯1 = 𝑀1𝑁𝜏 = 𝑀1𝑇 and the total reconstruction error on the

𝑁 -point reconstructed field is

(𝛿𝑏𝑁)1 =

⎯⎸⎸⎷𝑁−1∑︁
𝑗=0

𝛿𝑏2𝑗 =
√
𝑁𝛿𝑏𝑗 ∼

√
𝑁/𝜏

√︀
𝑀1. (2.7)

We compare this result to Walsh reconstruction performed via 𝑁 Walsh measure-

ments, each over the acquisition period 𝑇 . The error on each Walsh coefficient for

shot-noise limited measurements scales as 𝛿�̂�𝑚 ∼ 1/𝑇
√
𝑀2, where 𝑀2 is the num-

ber of measurements performed for signal averaging. The total acquisition time is
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𝒯2 = 𝑀2𝑁𝑇 and the total reconstruction error on the 𝑁 -point reconstructed field (

the main text) is

(𝛿𝑏𝑁)2 =

⎯⎸⎸⎷𝑁−1∑︁
𝑚=0

𝛿�̂�2𝑚 =
√
𝑁𝛿�̂�𝑚 ∼

√
𝑁/𝑇

√︀
𝑀2. (2.8)

For a fixed total acquisition time, 𝒯1 = 𝑀1𝑇 = 𝑀2𝑁𝑇 = 𝒯2, we have 𝑀1 = 𝑁𝑀2,

which means that 𝑁 times more Ramsey measurements can be performed than Walsh

measurements. We however have (𝛿𝑏𝑁)1 =
√
𝑁(𝛿𝑏𝑁)2, which means that the Walsh

measurements is more sensitive by a factor of
√
𝑁 .

For a fixed minimum detectable field, (𝛿𝑏𝑁)1 ∼
√
𝑁/𝜏

√
𝑀1 =

√
𝑁/𝑇

√
𝑀2 ∼

(𝛿𝑏𝑁)2, we have 𝑀1 = 𝑁2𝑀2, which means that 𝑁2 times more Ramsey measure-

ments are needed to measure the exact same minimum field provided by 𝑁 Walsh

measurements. We have then 𝒯1 = 𝑁𝒯2, such that the total acquisition time for

Ramsey measurements is 𝑁 times longer than for Walsh measurements.

In summary, the Walsh reconstruction method offers a
√
𝑁 improvement in sensi-

tivity over Ramsey measurements, i.e. (𝜂𝑁)2 = (𝜂𝑁)1/
√
𝑁 . Further improvement in

sensitivity can be achieved with data compression [16] and compressive sensing [17]

techniques. Given 𝑁2 < 𝑁1 and 𝑇 = 𝑁1𝜏 , we find

(𝜂𝑁)1
(𝜂𝑁)2

=
𝑁1

𝑁2

√︂
𝑇

𝜏
=

𝑁1

𝑁2

√︀
𝑁1 (2.9)

For 𝑁2 = 𝑁1 = 𝑁 , we retrieve (𝜂𝑁)2 = (𝜂𝑁)1/
√
𝑁 . Given a compression rate

𝜅 < 1, such that 𝑁2 = 𝜅𝑁1, we find (𝜂𝑁)2 = 𝜅(𝜂𝑁)1/
√
𝑁1 < (𝜂𝑁)1/

√
𝑁1. For

compressive sensing with resources scaling as 𝑁2 ∼ log2(𝑁1), we find

(𝜂𝑁)2 ∼
log2(𝑁1)

𝑁1

(𝜂𝑁)1√
𝑁1

<
(𝜂𝑁)1√
𝑁1

. (2.10)

In the discussion above, we did not consider other error sources besides shot noise.

Indeed, while the sequential acquisition times are limited by the dephasing noise,

the coherence time under the Walsh sequence is in general much longer (typically
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by 2-3 orders of magnitude for NV centers), thus additional decoherence losses are

comparable in the two protocols. We note that even if the total acquisition time

𝑇 over which one wants to acquire the signal were longer than the coherence time

under Walsh decoupling, 𝑇2, it would still be advantageous to use sequential Walsh

reconstruction over smaller time intervals, ∼ 𝑇2. Other considerations, such as power

broadening in CW experiments and dead-times associated with measurement and

initialization of the quantum probe, make the Walsh reconstruction method even

more advantageous.

Amplitude estimation

The sensitivity formula of Eq. (2.6) can be used to identify the Walsh sequences

that extract the most information about the amplitude of time-varying fields in the

presence of noise. In analogy to a.c. magnetometry [1], which measures the amplitude

of sinusoidal fields, we refer to the problem of performing parameter estimation of

the amplitude of an arbitrary waveform as arbitrary waveform (a.w.) magnetometry.

Indeed, if the dynamics of the field is known, the Walsh spectrum can be precomputed

to identify the Walsh sequence that offers the best sensitivity. Because different Walsh

sequences have different noise suppression performances [35, 16], the choice of the

most sensitive Walsh sequence involves a trade-off between large Walsh coefficients

and long coherence times.

Given some time-varying fields with known dynamics, the Walsh reconstruction

method provides a systematic way to choose for the Walsh sequence that gives the

best estimate of the amplitude of the field with the optimal sensitivity. For example,

the spin-echo sequence (𝑤1(𝑡/𝑇 )) gives the best sensitivity for measuring the am-

plitude of a sinusoidal field 𝑏(𝑡) = 𝑏 sin (2𝜋𝜈𝑡) with known frequency 𝜈 = 1/𝑇 . If

the dynamics of the field is only partially known, an estimate of the field amplitude

can be obtained by distributing the resources over a fixed subset of Walsh sequences;

for example, by choosing the spin-echo sequence (𝑤1(𝑡/𝑇 )) and CPMG-2 sequence

(𝑤2(𝑡/𝑇 )) to measure the amplitude of an oscillating field 𝑏(𝑡) = 𝑏 sin (2𝜋𝜈𝑡 + 𝛼) with

known frequency 𝜈 = 1/𝑇 but unknown phase 𝛼.
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Amplitude resolution

We can compute the minimum field amplitude that can be estimated from 𝑀 mea-

surements with the 𝑚-th Walsh sequence from the quantum Cramer-Rao bound:

𝛿𝑏𝑚 =
1√
𝑀

∆𝑆𝑚

|𝜕𝑆𝑚/𝜕𝑏|
=

𝑣−1
𝑚

𝛾𝑒𝐶
√
𝑀𝑇 |𝑓(𝑚)|

,

where 𝛾𝑒 = 2𝜋 · 28 Hz · nT−1 is the gyromagnetic ratio of the NV electronic spin, 𝐶

accounts for inefficient photon collection and finite contrast due to spin-state mixing

during optical measurements [1, 42] and 𝑣𝑚 = (𝑒−𝑇/𝑇2(𝑚))𝑝(𝑚) ≤ 1 is the visibility,

which depends on the parameters 𝑇2(𝑚) and 𝑝(𝑚), which characterize the decoherence

of the qubit sensors during the 𝑚-th Walsh sequence.

The minimum field amplitude 𝛿𝑏𝑚 is related to the minimum resolvable Walsh

coefficient 𝛿�̂�𝑚 = ∆𝑆𝑚/|𝜕𝑆𝑚/𝜕�̂�𝑚|
√
𝑀 = 𝛿𝑏𝑚|𝑓(𝑚)|. Given a total measurement time

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑀𝑇 , the corresponding sensitivities are 𝜂𝑚 = 𝛿𝑏𝑚
√
𝒯 and 𝜂𝑚 = 𝛿�̂�𝑚

√
𝒯 =

𝜂𝑚|𝑓(𝑚)| (cf. Eq. (3) of the main text). The statistical error on the field function 𝑏𝑁(𝑡)

reconstructed from the measured set of 𝑁 Walsh coefficients {�̂�(𝑚)}𝑁−1
𝑚=0 is obtained

from the errors on each coefficient by 𝛿𝑏2𝑁(𝑡) =
∑︀

𝑚 𝛿�̂�2𝑚|𝑤𝑚(𝑡)|2 =
∑︀

𝑚 𝛿�̂�2𝑚1[0,𝑇 [(𝑡),

which is constant on the time interval 𝑡 ∈ [0, 𝑇 [. This quantity gives the measurement

sensitivity of the Walsh reconstruction method 𝜂𝑁 = 𝛿𝑏𝑁
√
𝑁𝒯 =

√︀
𝑁
∑︀

𝑚 𝜂2𝑚.

The amplitude resolution of the Walsh reconstruction method, 𝛿𝑏𝑁 =
√︁∑︀

𝑚 𝛿�̂�2𝑚,

gives the smallest variation of the reconstructed field that can be measured from

the Walsh spectrum of order 𝑁 . If each Walsh coefficient is obtained from 𝑀 mea-

surements over the acquisition period 𝑇 , the measurement sensitivity of the Walsh

reconstruction method, 𝜂𝑁 ≡ 𝛿𝑏𝑁
√
𝑀𝑁𝑇 , is

𝜂𝑁 =

√︃
𝑁
∑︁
𝑚

𝜂2𝑚 =

√︁
𝑁
∑︀𝑁−1

𝑚=0 𝑣
−2
𝑚

𝛾𝑒𝐶
√
𝑇
√
𝑛NV

. (2.11)
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Reconstruction accuracy

The measurement sensitivity 𝜂𝑁 combines with the reconstruction error 𝑒𝑁 to deter-

mine the accuracy of the Walsh reconstruction method. If some small coefficients

cannot be resolved due to low signal visibility, the increase in reconstruction error

can be analytically quantified using data compression results [16]. In the same way,

the acquisition time can be reduced by sampling only the most significant coeffi-

cients and discarding other negligible coefficients. Furthermore, if the field is sparse

in some known basis, which is often the case, a logarithmic scaling in resources can

be achieved by using compressed sensing methods based on convex optimization al-

gorithms [17, 32], an advantage that is not shared by other sequential acquisition

protocols [14, 21, 33].

The Walsh spectrum of order 𝑁 = 16 for a bichromatic field is shown in Fig. 2-

3a-b. The Walsh coefficients were first computed in term of their sequency 𝑚, which

is related to the number of 𝜋 pulses needed to implement the corresponding 𝑚-th

Walsh sequence. The amount of information provided by each Walsh sequence is

proportional to the magnitude of the Walsh coefficient; the Walsh spectrum can thus

be reordered with the coefficients sorted in decreasing order of their magnitude (Fig. 2-

3b). As each Walsh coefficient adds new information to the reconstructed field, the

accuracy of the reconstruction improves while the reconstruction error decreases.

Figure 2-4a shows the reconstructed field with an increasing number of Walsh

coefficients (𝑚 ∈ [0,𝑚𝑚𝑎𝑥]) in sequency ordering. The reconstruction error decreases

monotonically as the number of coefficients increases. If the dynamics of the field is

known, the Walsh coefficients can be precomputed and sorted so to allocate the avail-

able resources to sample the largest coefficients, which provide the most information

about the field. Figure 2-4b shows that not only the accuracy of the reconstruction

improves monotonically, but also only the first few coefficients are needed to achieve

an accurate estimate of the field.

The set of Walsh sequences contains some known set of digital decoupling se-

quences such as the Carr-Purcell-Meiboom-Gill (CPMG) sequences (𝑤2𝑛 , 𝑛 ≥ 1) and
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Figure 2-3: Simulate the reconstruction of bichromatic fields with Walsh

sequences. Simulated Walsh spectrum for a bichromatic field. Walsh coefficients
are presented in a, sequency ordering and b, sorted ordering with decreasing mag-
nitude. If the temporal profile of the field is known, the resources can be allocated
to extract the most significant information about the field by sampling the largest
Walsh coefficients. c, Walsh spectrum up to fifth order (𝑁 = 24 = 16). The blue
dots and red squares respectively indicate the subset of coefficients associated with
the PDD sequences (𝑤2𝑛−1) and CPMG sequences (𝑤2𝑛). The field reconstructed
with the first 16 CPMG coefficients (d,), 16 PDD coefficients (e,) and both PDD
and CPMG coefficients (f,), remains inaccurate in comparison with the reconstructed
field obtained with the first 16 Walsh coefficients (black solid line in d-f).

the periodic dynamical decoupling (PDD) sequences (𝑤2𝑛−1, 𝑛 ≥ 1), which have

been studied in the context of dynamical error suppression and noise spectrum recon-

struction. Although the CPMG and PDD sequences can be shown to contain some

significant information about the field, they do not contain all the significant infor-
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Figure 2-4: Quantify the accuracy of the Walsh reconstruction method. a.
Reconstruction of a bichromatic field with an increasing number of Walsh coefficients
{𝑓(𝑚)}𝑚𝑚𝑎𝑥

𝑚=0 in sequency ordering. b. Reconstruction of a bichromatic field with an
increasing number of Walsh coefficients {𝑓(𝑚)}𝑚′

𝑚𝑎𝑥
𝑚=0 sorted by the coefficient magni-

tude. A finite number of coefficients is needed to reconstruct an accurate estimate of
the field. The upper left and upper right numbers respectively correspond to 𝑚 (in
the sequence order) and the 𝑙2-reconstruction error up to the 𝑚′ reconstruction, 𝑒𝑚′ .
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mation. The CPMG and PDD sequences are indeed symmetric and anti-symmetric

functions about their midpoint; they only sample the even and odd symmetries of

the field. Figure 2-3c-f shows that the Walsh reconstruction method outperforms the

CPMG and PDD sequences, even if the same amount of resources is allocated to sam-

ple an equal number of coefficients; because the field does not have a definite parity,

the CPMG and PDD sequences fail to accurately reconstruct the field. In addition,

these sequences require an exponentially large number of control pulses, which may

be detrimental in the presence of pulse errors. Therefore, sampling the field with only

these sequences provides incomplete information about the Walsh spectrum and thus

leads to inaccurate reconstruction in the time domain.

CPMG and PDD have been used as filters in the frequency domain to achieve

frequency-selective detection and reconstruction of noise spectral density.Even for

this task, Walsh reconstruction can provide an advantage. Indeed, in the frequency

domain, digital filters are trigonometric functions that are not perfectly approximated

by delta functions and exhibit spectral leakage, i.e., the non-zero side-lobes of the filter

function capture non-negligible signal contributions about other frequencies than the

main lobe. Although the CPMG and PDD sequences can be tuned to sample the field

at a specific central frequency, they also capture signal at other frequencies, which

prevents the accurate reconstruction of time-varying fields. The Walsh reconstruction

method removes the need for functional approximations or deconvolution algorithms

by choosing the representation that is natural for digital filters: the Walsh basis.
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2.2 Demonstrate the Walsh reconstruction method

experimentally with a single nitrogen-vacancy cen-

ter in diamond

We experimentally demonstrate the Walsh reconstruction method by measuring in-

creasingly complex time-varying magnetic fields with the electron spin associated with

a single nitrogen-vacancy center in diamond in an isotopically purified diamond sam-

ple. A single NV center is optically initialized and read out by confocal microscopy

under ambient conditions. A coplanar waveguide delivers both resonant microwave

pulses and off-resonant time-varying magnetic fields produced by an arbitrary wave-

form generator.

2.2.1 Reconstruct the temporal profile of sinusoidal fields

We first reconstructed monochromatic sinusoidal fields, 𝑏(𝑡) = 𝑏 sin (2𝜋𝜈𝑡 + 𝛼), by

measuring the Walsh spectrum up to fourth order (𝑁 = 24). Figure 2-5b shows the

measured non-zero Walsh coefficients of the Walsh spectrum. As shown in Fig. 2-5c,

the 16-point reconstructed fields are in good agreement with the expected fields. We

note that, contrary to other methods previously used for a.c. magnetometry, the

Walsh reconstruction method is phase selective, as it discriminates between time-

varying fields with the same frequency but different phase.

The𝑚-th Walsh coefficient 𝑓(𝑚) of the normalized field 𝑓(𝑡) = 𝑏(𝑡)/𝑏 was obtained

by sweeping the amplitude of the field and measuring the slope of the signal 𝑆𝑚(𝑏) =

sin (𝛾𝑏𝑓(𝑚)𝑇 ) at the origin (Fig. 2-5a). The qubit sensor is first initialized to its

ground state |0⟩ and then brought into a superposition of its eigenstates (|0⟩+|1⟩)/
√

2

by applying a 𝜋
2
-pulse along the 𝜎𝑥 rotation axis. During the free evolution time 𝑇 ,

the qubit acquires a phase difference 𝜑(𝑇 ) = 𝛾
∫︀ 𝑇

0
𝑏(𝑡)𝑑𝑡, where 𝛾 is the strength of the

interaction with the external time-varying field 𝑏(𝑡) directed along the quantization

axis of the qubit sensor. Under a control sequence of 𝑚 𝜋-pulses applied at the

zero-crossings of the 𝑚-th Walsh function 𝑤𝑚(𝑡/𝑇 ), the phase difference acquired
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Figure 2-5: Reconstruct sinusoidal fields with Walsh sequences. a, Measured
signal 𝑆𝑚(𝑏) = sin(𝛾𝑒𝑏𝑓(𝑚)𝑇 ) as a function of the amplitude of a cosine magnetic
field for different Walsh sequences with 𝑚 𝜋-pulses. Here 𝛾𝑒 = 2𝜋 · 28 Hz · nT−1 is
the gyromagnetic ratio of the NV electronic spin. The 𝑚-th Walsh coefficient 𝑓(𝑚)
is proportional to the slope of 𝑆𝑚(𝑏) at the origin. b, Measured Walsh spectrum up
to fourth order (𝑁 = 24) of sine and cosine magnetic fields 𝑏(𝑡) = 𝑏 sin (2𝜋𝜈𝑡 + 𝛼)
with frequency 𝜈 = 100 kHz and phases 𝛼 ∈ {0, 𝜋/2} over an acquisition period
𝑇 = 1/𝜈 = 10 𝜇s. Error bars correspond to 95 % confidence intervals on the Walsh
coefficients associated with the fit of the measured signal. c, The reconstructed fields
(filled squares) are 16-point piecewise-constant approximations to the expected fields
(solid lines, not a fit). Error bars correspond to the amplitude uncertainty of the
reconstructed field obtained by propagation of the errors on the estimates of the
uncorrelated Walsh coefficients.
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after an acquisition period 𝑇 is 𝜑𝑚(𝑇 ) = 𝛾
∫︀ 𝑇

0
𝑏(𝑡)𝑤𝑚(𝑡/𝑇 )𝑑𝑡 = 𝛾�̂�(𝑚)𝑇 , which is

proportional to the 𝑚-th Walsh coefficient of 𝑏(𝑡). A final 𝜋
2
-pulse applied along the

𝜎𝜃 = cos (𝜃)𝜎𝑥+sin (𝜃)𝜎𝑦 rotation axis converts the phase difference into a measurable

fluorescence signal 𝑆𝑥𝜃.
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Figure 2-6: Extract the Walsh coefficient from the fluorescence signal. Ex-
ample of experimental data for measuring the 𝑚-th Walsh coefficient. a, Measured
fluorescence signals 𝑆𝑥𝑦 and 𝑆𝑥𝑦 for a sinusoidal field measured with the 𝑚 = 1 Walsh
sequence. b, The measured fluorescence signals are normalized with respect to the
reference signals. c, Average normalized fluorescence signal 𝑆𝑚(𝑏) whose slope at the
origin is proportional to the 𝑚-th Walsh coefficient 𝑓(𝑚) of the normalized field 𝑓(𝑡).

Although performing a single measurement with 𝜃 = 𝜋/2 is enough to extract

the 𝑚-th Walsh coefficient, we sweep the field amplitude of 𝑏(𝑡) = 𝑏 𝑓(𝑡) to better

estimate it (Fig. 2-6). The 𝑚-th Walsh coefficient 𝑓(𝑚) of the normalized field is

obtained from the slope at the origin of the normalized fluorescence signal averaged

over 𝑀 ∼ 105 measurements: 𝑆𝑚(𝑏) = sin (𝛾𝑒𝑏𝑓𝑚𝑇 ) = 𝑆𝑥𝑦−𝑆𝑥𝑦

𝑆𝑥𝑦+𝑆𝑥𝑦
· 𝑆0+𝑆1

𝑆0−𝑆1
, where 𝑆0 is

the fluorescence count rate of the 𝑚𝑠 = 0 state measured after optical polarization,

and 𝑆1 is the fluorescence count rate of the 𝑚𝑠 = 1 state measured after adiabatic

inversion of the qubit with a 600 ns frequency-modulated chirp pulse over a 250 MHz

frequency range centered around the resonance frequency.

In practical applications for which the amplitude of the field cannot be swept,

the 𝑚-th Walsh coefficient can be equivalently measured by sweeping the phase 𝜃

of the last read-out 𝜋
2
-pulse and fitting the normalized signal to a cosine function:

1− 2𝑆𝑚(𝜃) = cos (𝛾𝑒�̂�𝑚𝑇 − 𝜃) = 𝑆𝑥𝜃−𝑆0

𝑆1−𝑆0
. This procedure gives an absolute estimate of

�̂�(𝑚) rather than an estimate of the normalized coefficient 𝑓(𝑚) = �̂�(𝑚)/𝑏.
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Figure 2-7: Reconstruct bichromatic fields with Walsh sequences. a, Mea-
sured Walsh spectrum up to fifth order (𝑁 = 25) of a bichromatic magnetic field
𝑏(𝑡) = 𝑏 · [𝑎1 sin (2𝜋𝜈1𝑡 + 𝛼1) + 𝑎2 sin (2𝜋𝜈2𝑡 + 𝛼2)] with 𝑎1 = 3/10, 𝑎2 = 1/5,
𝜈1 = 100 kHz, 𝜈2 = 250 kHz, 𝛼1 = −0.0741, and 𝛼2 = −1.9686. The zero-th
Walsh coefficient 𝑓(0) corresponds to a static field offset that was neglected. b, The
reconstructed field (filled squares) is a 32-point approximation to the expected field
(solid line, not a fit). Error bars correspond to the amplitude uncertainty of the
reconstructed field obtained by propagation of the errors on the estimates of the
uncorrelated Walsh coefficients.

2.2.2 Reconstruct the temporal profile of bichromatic fields

We further reconstructed a bichromatic field 𝑏(𝑡) = 𝑏 [𝑎1 sin (2𝜋𝜈1𝑡 + 𝛼1)+𝑎2 sin (2𝜋𝜈2𝑡 + 𝛼2)].

Figure 2-7a shows the measured Walsh spectrum up to fifth order (𝑁 =25). As shown

in Fig. 2-7b, the 32-point reconstructed field agrees with the expected field, which

demonstrates the accuracy of the Walsh reconstruction method (Fig. 2-4). In con-

trast, sampling the field with an incomplete set of digital filters, such as the CPMG

and PDD sequences, extracts only partial information about the dynamics of the

field (Fig. 2-3). By linearity of the Walsh transform, the Walsh reconstruction method

applies to any polychromatic field (and by extension to any time-varying field), whose

frequency spectrum lies in the acquisition bandwidth [1/𝑇, 1/𝜏 ] set by the coherence

time 𝑇 ≤ 𝑇2 and the maximum sampling time 𝜏 = 𝑇/𝑁 , which is in turn limited by
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the finite duration of the control 𝜋-pulses.

2.2.3 Reconstruct the temporal profile of arbitrary time-varying

fields
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Figure 2-8: Characterize the transmission properties of the coplanar waveg-
uide. The conversion factor converts the amplitude of the electric field Φ(𝑡) into
the amplitude of the magnetic field 𝑏(𝑡) measured by the NV center. The conver-
sion factor depends linearly on the frequency. Error bars are standard deviation of
measurements.

As a proof-of-principle implementation, we measured the magnetic field radi-

ated by a physical model of a neuron undergoing an action potential Φ(𝑡) approxi-

mated by a skew normal impulse [45, 46, 47]. Due to its linear response in the kHz

regime (Fig. 2-8), our coplanar waveguide acts as the physical model of a neuron, with

the radiated magnetic field given by the derivative of the electric field [48, 49]: 𝑏(𝑡) =

𝑑Φ(𝑡)/𝑑𝑡 (Fig. 2-9).

Calibrate the transmission spectrum of the coplanar waveguide

Coplanar waveguides were fabricated by e-beam photolithography on microscope glass

coverslips, soldered on a PCB board, and mounted to the confocal microscope. Elec-

tric waveforms Φ(𝑡) (Vpp) were generated with an arbitrary waveform generator,

amplified, and sent through the coplanar waveguide. The coplanar waveguide radi-

ates a magnetic field 𝑏(𝑡) (nT) at the location of the NV center which can be derived

from Φ(𝑡) via a conversion factor 𝑘(𝜈) (nT · Vpp−1).

We calibrated the conversion factor by performing a.c. magnetometry experiments

38



with sinusoidal oscillating fields (𝜈 = 1/𝑇 ) sampled with the corresponding Walsh

sequence 𝑤𝑚(𝑡/𝑇 ). The amplitude of the field was swept and the normalized Walsh

coefficient was extracted from the measured signal 𝑆𝑚(𝑏) = sin (𝛾𝑒𝑏𝑓(𝑚)𝑇 ). The slope

at the origin 𝜇𝑉 𝑝𝑝 = 𝛾𝑒𝑓(𝑚)𝑇 was compared with the value computed analytically,

e.g., by choosing 𝑓(1) = 2/𝜋 for the spin-echo sequence (m=1). The conversion factor

𝑘 = 𝜇𝑛𝑇/𝜇𝑉 𝑝𝑝 (nT · Vpp−1) was calculated from the ratio between 𝜇𝑛𝑇 calculated

analytically and 𝜇𝑉 𝑝𝑝 measured experimentally at different frequencies.

As shown in Fig. 2-8, the conversion factor 𝑘(𝜈) increases linearly in the frequency

range of interest. Taking into account the intrinsic 90∘ phase shift between the electric

and magnetic fields, we have 𝑏(𝜈) = −𝑖𝑐𝜈Φ(𝜈) such that 𝑏(𝑡) = −𝑐𝑑Φ(𝑡)
𝑑𝑡

with 𝑐 =

25.4 𝜇T · (Vpp · kHz)−1. Therefore, our coplanar waveguide behaves as the physical

model of a neuron, with the magnetic field given by the first derivative of the electric

field.

Simulate the magnetic field radiated by a single neuron

The creation and conduction of action potentials is the primary communication mean

of the nervous system. The flow of ions across neuronal membranes produce an electric

field that propagates through the axon of single neurons. The electric signals carried

by the action potentials radiate a magnetic field given approximately by the first

derivative of the action potential [48, 49]. As shown in Fig. 2-9, we approximated the

action potential by a skew normal impulse and extracted the physical parameters by

fitting the simulation data obtained for a rat hippocampal mossy fiber boutons [46].

The action potential was rescaled to perform proof-of-principle measurements.

Reconstruct the simulated magnetic field radiated by a single neuron

The Walsh coefficients were measured by fixing the amplitude of the field and sweep-

ing the phase of the last read-out pulse to reconstruct the absolute field 𝑏(𝑡) rather

than the normalized field 𝑓(𝑡). This protocol is in general applicable when the field

amplitude is not under experimental control. Figure 2-10a shows the measured Walsh

spectrum up to fifth order (𝑁 = 25). As shown in Fig. 2-10b, the 32-point recon-
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Figure 2-9: Simulate an action potential. a ,The simulated action potential of a
rat hippocampal mossy fiber boutons [46] is approximated by a skew normal impulse.
b, The action potential is rescaled to perform the Walsh reconstruction experiment,
with the radiated magnetic field corresponding to the first derivative of the action
potential.

structed field is in good agreement with the expected field. Although neuronal fields

are typically much smaller than in our proof-of-principle experiment with a single NV

center, they could be measured with shallow-implanted single NVs [50, 51, 52, 53] or

small ensembles of NV centers [10, 44, 54].

The total measurement time for acquiring all the data of the 𝑇 = 14 𝜇s waveform

presented in Fig. 2-10, excluding dead times associated with computer processing and

interfacing, was less than 4 h. Each of the 𝑁 = 32 Walsh coefficients were obtained

from two 𝑀 ′ = 90 measurements of the fluorescence signal as a function of the phase

and conjugate phase of the last readout pulse to correct for common-mode noise (we

note that in a well-calibrated, temperature stabilized and isolated setup this step

is unnecessary). Each experimental point was averaged over 𝑀 = 105 repetitive

measurements due to low light-collection efficiency. The length of each sequence was

about 42 𝜇s, including the two waveform measurements (28 𝜇s), optical polarization

and readout periods (5 𝜇s), adiabatic inversion (4 𝜇s) used for calibration purposes

but not necessary, and waiting time (5 𝜇s).
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Figure 2-10: Reconstruct arbitrary time-varying fields with Walsh se-

quences. a, Measured Walsh spectrum up to fifth order (𝑁 = 25) of the mag-
netic field radiated by a skew normal impulse flowing through the physical model
of a neuron. The Walsh coefficients were obtained by fixing the amplitude of the
field and sweeping the phase of the last read-out 𝜋/2-pulse. The acquisition time for
measuring all the Walsh coefficients was less than 4 hours. Error bars correspond to
95 % confidence intervals on the Walsh coefficients associated with the fit of the mea-
sured signal. b, The reconstructed field (filled squares) is a 32-point approximation
to the expected field (solid line, not a fit). Error bars correspond to the amplitude
uncertainty of the reconstructed field obtained by propagation of the errors on the
estimates of the uncorrelated Walsh coefficients.
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2.3 Conclusion and outlook

In conclusion, we used control sequences acting as digital filters on the evolution of a

single NV electronic spin to efficiently sample and accurately reconstruct the arbitrary

profile of time-varying fields with quantifiable errors and formal convergence criteria.

The Walsh reconstruction method is readily applicable to measure time-varying

parameters in a variety of physical systems, including light shift spectroscopy with

trapped ions [30]; magnetometry with single spins in semiconductors [2, 55, 56] or

quantum dots [57]; and measurements of electric fields [4] or temperature [5, 6, 7]

with NV centers in diamond. Other promising applications include magnetic reso-

nance spectroscopy of spins extrinsic to the diamond lattice [52, 53], measurements

of the dynamics of magnetic nanostructures [58], or magnetic vortices in nanodisk

chains [59].

The Walsh reconstruction method can easily be used together with spatial encod-

ing techniques to achieve both spatial and temporal imaging of magnetic fields. In

addition, this method is compatible with data compression techniques [16] and com-

pressed sensing algorithms [17, 32] to achieve a significant reduction in resources,

acquisition time, and reconstruction errors. Extension of the Walsh reconstruc-

tion method to stochastic fields could simplify the problem of spectral density es-

timation by removing the need for functional approximations or deconvolution algo-

rithms [60, 27, 29]. This would enable, e.g., in-vivo monitoring of cellular functions

associated with cell membrane ion-channel processes [61, 62]. Finally, this work con-

nects with other fields in which the Walsh functions have recently attracted attention,

e.g., in quantum simulation to construct efficient circuits for diagonal unitaries [63],

in quantum error suppression [35, 36], and in quantum control theory to improve the

fidelity of two-qubit entangling gates on trapped atomic ions [64].

2.3.1 Comparison with existing techniques

The problem of measuring the time-varying magnetic fields with NV centers in di-

amond has also been discussed by Balasubramanian et al. [14] and Hall et al. [21].
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They both considered Ramsey interferometry measurements to detect time-varying

magnetic fields, either by sweeping the measurement time or translating the acquisi-

tion window.

The first protocol presents a deconvolution problem that requires numerical algo-

rithms to be solved and makes it difficult to analytically quantify the reconstruction

error. In addition, the field is not efficiently sampled due to spectral leakage, because

the window function is a sinc function, rather than a delta function, in the frequency

domain. The Walsh transform method simplifies the problem of spectral sampling and

reconstruction by setting the sequency domain, rather than the frequency domain, as

the natural description for digitally sampled fields.

The second protocol does not require solving the inversion problem, as it directly

gives the average field value during each sampling interval. However, the time required

to achieve the same sensitivity as the Walsh method for an 𝑁 -point reconstruction is

𝑁 times longer.

More importantly, these methods are not compatible with optimized protocols

based on adaptive and compressive sampling. In particular, compressive sensing is

fully compatible with the Walsh reconstruction method and for many sparse signals

it would lead to a large saving in measurement time. Indeed, sequentially measuring

the field over small time intervals 𝛿𝑡 requires performing 𝑁 = 𝑇/𝛿𝑡 acquisitions

to reconstruct the whole evolution, while one in general only needs 𝑚 ∝ log(𝑁)

measurements using compressive sensing techniques [17].

Hall et al. [21] also considered using an optically detected magnetic resonance

protocol [33, 34] for measuring time-varying fields. This protocol is meant to perform

real-time measurements of the resonance frequency of the NV centers via a lock-in

detection system. Although this protocol is presented as continuously monitoring

the field, a finite binning time is required (∼ 24 𝜇s in the case of Ref. [21]) since

the measurement on the NV center is destructive. In addition, continuous driving

protocols are inherently less sensitive than pulsed ones, as the continuous laser light

and microwave field induce power broadenitng, in addition to heating, which can be

detrimental to biological samples.
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2.3.2 Applications to sensing neural activity

An active research direction for quantum sensors is measuring biological [61, 62, 10]

and neuronal [54, 21] activity at the nanometer scale. Hall et al. [21] provided com-

pelling evidence about the feasibility of measuring the magnetic fields radiated by

action potentials flowing through single neurons. They calculated magnetic field

strengths of the order of 10 nT at distance up to 100 nm from a morphologically

reconstructed hippocampal CA1 pyramidal neuron. These fields are within exper-

imental reach using small ensembles of shallow-implanted NV centers, e.g., located

less than 10 nm below the diamond surface [50, 51], given improvements in collection

efficiency [44, 65] and coherence times [66].

The Walsh reconstruction method may also prove useful in neuroscience, along-

side existing electrical activity recording techniques and other emerging neuroimag-

ing modalities, to monitor the weak magnetic activity of neuronal cells at subcellular

spatial resolution, as needed to better understand neurophysiology and map neuronal

circuits. To achieve a repeatable signal and reduce stochastic fluctuations during av-

eraging, sequential trains of action potentials could be evoked with conventional elec-

trophysiological techniques, photo-stimulation methods, or current injection through

underlying nanowire electrode arrays [67]. Technical issues associated with maintaing

the stability of the system over long time scale still remain to be solved.

An alternative to wide-field imaging would be to use functionalized nanodiamonds

with coherence time approaching bulk diamonds as both fluorescent biomarkers and

quantum probes to perform local measurements of magnetic fields and temperature.

Advantages would include selective positioning, high sensitivity, and minimal inva-

siveness. Neuronal growth and mobility could also be studied by optically tracking

the position of nanodiamonds over long time scale.

The spatial resolution will be limited by the diffraction limit in a confocal mi-

croscopy setting (unless sub-diffraction techniques are used) and the pixel size in a

wide-field imaging setup. Because neurons are living cells that move, relative dis-

placements of the quantum sensors with respect to the living neurons will induce
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fluctuations in the amplitude of the magnetic field at the position of each NV center.

These fluctuations will be averaged over each pixel for measurements with ensembles

of NV centers, given that the pixel size is greater than the displacement of the neuron

during the acquisition period.

The Walsh reconstruction method depends on a repeatable signal assumed to be

deterministic and triggered on-demand. Action potentials can be artificially created

by external stimulation techniques that involve creating large potential differences

across the membrane and injecting current into the system. An initial stimulus at

one end of the axon creates a potential difference across the axonal membrane; when

the difference is above some threshold value, the potential suddenly spikes upwards

and returns to its resting value as equilibrium is restored in the system. This spike,

called the action potential, propagates along the length of the axon to the other end,

where it can stimulate other connecting nerve cells. The action potential can create

magnetic fields at the nT scale [45] and each event lasts for a wide range of time

scales from 1 𝜇s to 10 ms.

While there is large variability in these techniques, their key point is that the tim-

ing of events can be controlled to a high degree. Trains of hundreds action potentials

can be repeatedly evoked in neuronal cells via conventional electrophysiological tech-

niques, photo-stimulation methods, or current injection through underlying nanowire

electrode arrays. The stimulation rate needs to be below the frequency threshold to

avoid propagation failure [47] due to geometrical constraints, depolarization of the

membrane, or hyperpolarization of the axon. The stimulation frequency threshold

depends on the type of neuronal cells and range from moderate (10−50 kHz) to high

(200− 300 Hz), sometimes even up to 1 kHz for axons in the auditory pathways [47].

Short trains of 𝑁 action potentials are evoked at a stimulation rate of 100 kHz in

𝑀 stimulation-recovery cycles of length 1 s, for a total acquisition time less than

few hours, within the lifespan of neurons (several hours). Data compression meth-

ods [16] or compressed sensing techniques [17] can be used to significantly reduce the

acquisition time.
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Chapter 3

Spectral reconstruction of stochastic

fields with Walsh sequences

This chapter extends the Walsh reconstruction method to characterize the spectral

properties of stochastic fields with quantum probes [68, 69].

3.1 Noise spectroscopy with single quantum probes

We consider the evolution of a quantum probe formed by a single qubit interacting

with an external time-varying magnetic field directed along its quantization axis, such

that the resonance frequency 𝜔(𝑡) of the qubit is varying in time. We prepare the

qubit in an equal superposition of its eigenstates and estimate the dynamic phase

acquired after a sensing period of duration 𝑇 ,

𝜑(𝑇 ) =

∫︁ 𝑇

0

𝜔(𝑡)𝑑𝑡 (3.1)

= 𝜔0(𝑇 ) · 𝑇, (3.2)

where the effective precession frequency 𝜔0(𝑇 ) = 1
𝑇

∫︀ 𝑇

0
𝜔(𝑡)𝑑𝑡 is equal to the time-

averaged precession frequency of the qubit during the sensing period [0, 𝑇 [. Gaining

information about the temporal dynamics of the resonance frequency 𝜔(𝑡) by perform-

ing a series of projective measurements on the quantum probe after short evolution

47



periods 𝑇 = 𝑇 *
2 is inefficient, because of the probabilistic nature of quantum mea-

surements that introduces projection noise in the measurement outcomes and destroy

the quantum information encoded into the quantum state of the quantum probe.

We instead modulate the evolution of the quantum probe with a control sequence

of 𝑚 time-inverting 𝜋-pulses, specifically chosen among the set of Walsh sequences.

The dynamic phase acquired by the qubit sensor modulated with the 𝑚-th Walsh

sequence 𝑤𝑚(𝑡/𝑇 ) after a sensing period of duration 𝑇 is

𝜑𝑚(𝑇 ) =

∫︁ 𝑇

0

𝜔(𝑡)𝑤𝑚(𝑡/𝑇 )𝑑𝑡 (3.3)

= �̂�𝑚(𝑇 ) · 𝑇, (3.4)

where the effective precession frequency 𝜔𝑚(𝑇 ) = �̂�𝑚(𝑇 ) is equal to the Walsh trans-

form of the time-varying resonance frequency computed over the interval [0, 𝑇 [,

�̂�𝑚(𝑇 ) ≡ 1

𝑇

∫︁ 𝑇

0

𝜔(𝑡)𝑤𝑚(𝑡/𝑇 )𝑑𝑡. (3.5)

The signal obtained after averaging the measurement results of a series of 𝑀

sequential Ramsey interferometry experiments is given by

𝒮𝑚(𝑇 ) = ⟨exp (𝑖�̂�𝑚(𝑇 ) · 𝑇 )⟩𝑀 (3.6)

= exp

(︃
∞∑︁
𝑛=1

(−𝑖𝑇 )𝑛

𝑛!
⟨�̂�𝑛

𝑚(𝑇 )⟩𝑐
)︃

(3.7)

≈ exp (−𝑖⟨�̂�𝑚(𝑇 )⟩𝑇 ) exp (−⟨�̂�2
𝑚(𝑇 )⟩𝑐𝑇 2/2), (3.8)

where ⟨·⟩𝑀 denotes the ensemble average over 𝑀 sequential measurements and ⟨·⟩𝑐
denotes the cumulants of the probability distribution associated with the stochastic

variable �̂�𝑚(𝑇 ). The last approximation, which is valid under the assumption of

Gaussian noise, shows that the signal 𝒮 = ℳ · 𝒩 is equal to the product of a

coherent term ℳ = exp (−𝑖⟨𝜔𝑚(𝑇 )⟩𝑇 ) that causes the signal to oscillate coherently

and an incoherent term 𝒩 = exp (−⟨𝜔2
𝑚(𝑇 )⟩𝑐𝑇 2/2) that causes the signal to decay.

The decay rate of the signal is given by the second cumulant of �̂�𝑚(𝑇 ), which as we
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will see, is proportional to the autocorrelation function 𝑅(𝑡1, 𝑡2) associated with the

fluctuations in the precession frequency 𝜔(𝑡).

The problem of estimating deterministic parameters addressed in Chapter 2 con-

sists in finding the modulation sequence 𝑤𝑚(𝑡) that maximizes the information ex-

tracted from the interferometric signal and thus involves a tradeoff between increasing

the coherent term and decreasing the incoherent term, which causes a loss in signal

visibility due to dissipative sources of noise. The problem of estimating stochastic

parameters addressed in this chapter consists in gaining information about the prob-

ability distribution of 𝜔(𝑡) from a series of measurements of the decay rate of the

signal Γ𝑚
2 (𝑇 ) =

√︀
⟨�̂�2

𝑚(𝑇 )⟩ for different choices of the evolution time 𝑇 and modula-

tion sequences {𝑤𝑚(𝑡)}. This chapter focuses on the problem of estimating stochas-

tic parameters, more precisely on the problem of estimating the spectral density of

stochastic fields with quantum probes modulated with Walsh sequences.

We model the external time-varying field 𝑏(𝑡) by a stochastic process, such that

the precession frequency of the qubit probe 𝜔(𝑡) = 𝛾𝑏(𝑡) is a stochastic variable, where

𝛾 is the interaction strength between the qubit probe and the external time-varying

field, e.g., 𝛾 = 𝛾𝑒 = 2.8025 MHz/G for electron spins interacting with magnetic

fields. The precession frequency of the qubit can be written as 𝜔(𝑡) = ⟨𝜔(𝑡)⟩ + �̃�(𝑡),

where �̃�(𝑡) = 𝜔(𝑡) − ⟨𝜔(𝑡)⟩ is assumed to be the realization of a zero-mean, real,

wide-sense stationary stochastic process described by its arithmetic autocorrelation

function 𝑅(𝑡1, 𝑡2) = 𝑅(𝑡1 − 𝑡2) = 𝐸[�̃�(𝑡1)�̃�(𝑡2)], where 𝐸[𝑋] denotes the expectation

of the random variable 𝑋.

The central limit theorem is invoked to equate the expectation of 𝑋 to the en-

semble average over 𝑀 realizations of 𝑋 in the limit of large 𝑀 , i.e., we write

𝐸[𝑋] = ⟨𝑋⟩ = 1
𝑀

∑︀𝑀
𝑗=1 𝑋𝑗. We can prove that the ensemble average is a consis-

tent estimator of the expectation with chi-squared distribution 𝜒2
𝑀 , i.e., it converges

in distribution to the expectation of 𝑋:

1

𝑀

𝑀∑︁
𝑗=1

𝑋𝑗
𝑑−→ 𝐸[𝑋] · 𝜒2

𝑀/𝑀. (3.9)
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We assume the external time-varying field to be a zero-mean stationary Gaussian

stochastic process, such that the stochastic variable �̃�(𝑡) = 𝛾𝑏(𝑡) is fully characterized

by its second cumulant, ⟨�̂�2
𝑚(𝑇 )⟩𝑐 = ⟨�̂�2

𝑚(𝑇 )⟩. The signal of Eq. (3.8) becomes

𝒮𝑚(𝑇 ) = exp
(︀
−⟨�̂�2

𝑚(𝑇 )⟩𝑇 2/2
)︀
. (3.10)

The effective decay rate of the signal Γ𝑚
2 (𝑇 ) =

√︀
⟨�̂�2

𝑚(𝑇 )⟩ during the evolution period

[0, 𝑇 [ is given by the variance of the effective precession frequency,

⟨�̂�2
𝑚(𝑇 )⟩ =

1

𝑇 2

∫︁ 𝑇

0

∫︁ 𝑇

0

⟨�̃�(𝑡1)�̃�(𝑡2)⟩𝑤𝑚(𝑡1/𝑇 )𝑤𝑚(𝑡2/𝑇 )𝑑𝑡1𝑑𝑡2 (3.11)

=
1

𝑇 2

∫︁ 𝑇

0

∫︁ 𝑇

0

𝑅(𝑡1 − 𝑡2)𝑤𝑚(𝑡1/𝑇 )𝑤𝑚(𝑡2/𝑇 )𝑑𝑡1𝑑𝑡2 (3.12)

=
1

𝑇 2

∫︁ 𝑇

0

∫︁ 𝑇

0

𝑅(𝑡1 − 𝑡2)𝑤𝑚((𝑡1/𝑇 ) ⊕ (𝑡2/𝑇 ))𝑑𝑡1𝑑𝑡2, (3.13)

The term (𝑡1/𝑇 ) ⊕ (𝑡2/𝑇 ) corresponds to the binary addition of (𝑡1/𝑇 ) ∈ [0, 1[ and

(𝑡2/𝑇 ) ∈ [0, 1[, which results from the composition property of Walsh functions under

multiplication. The binary addition is carried out by expressing 𝑡/𝑇 in its binary

expansion form, (𝑡/𝑇 )2 = (0.𝑡1𝑡2...𝑡𝑛), where the number of bits in the binary expan-

sion, 𝑛 = ⌈log2(𝑚)⌉, is equal to the smallest order at which the 𝑚-th Walsh sequence

can be represented.

In its most general form, Equation (3.11) shows that the decay rate is propor-

tional to the autocorrelation function of the time-varying field 𝑅(𝑡1, 𝑡2) sampled by

the two-dimension filter 𝑤𝑚(𝑡1, 𝑡2) = 𝑤𝑚(𝑡1)𝑤𝑚(𝑡2) generated by the Walsh modula-

tion sequence. The symmetry properties of the Walsh functions make it possible to

represent the two-dimensional Walsh filters illustrated in Fig. 3-1 as a one-dimensional

Walsh filter 𝑤𝑚(𝑡1, 𝑡2) = 𝑤𝑚(𝑡1 ⊕ 𝑡2) (Fig. 3-2).

3.1.1 Discrete representation of the autocorrelation function

We simplify Eq. (3.12) by expressing the autocorrelation function in its discrete rep-

resentation. Let N(𝑛) = {0, 1, · · · , 2𝑛−1} be the set of the first 𝑁 = 2𝑛 non-negative
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Figure 3-1: Represent two-dimensional Walsh filters 𝑤𝑚(𝑡1, 𝑡2) = 𝑤𝑚(𝑡1)𝑤𝑚(𝑡2)
in R2([0, 1[) up to order 𝑛 = 3 in sequency ordering. The Walsh filters swiches
between 𝑤𝑚 = 1 (yellow) and 𝑤𝑚 = −1 (blue).

integers. We subdivide the continuous interval [0, 𝑇 [ into 𝑁 sub-intervals of equal

length 𝜏 = 𝑇/𝑁 with left indices 𝜏𝑗 = 𝑗 · 𝜏, ∀𝑗 ∈ N(𝑛). We define the discrete

autocorrelation function, 𝑅′(𝑗) : N(𝑛) → R, as the average value of the continuous

autocorrelation function 𝑅 on each sub-intervals [𝜏𝑗, 𝜏𝑗+1[, i.e.,

𝑅′(𝑗) =
1

∆𝑗

∫︁ 𝜏𝑗+1

𝜏𝑗

𝑅(𝑡)𝑑𝑡, ∀æ ∈ N(𝑛), (3.14)

where the length of each interval is ∆𝑗 = 𝜏𝑗+1 − 𝜏𝑗 = 𝜏 .

Equation (3.12) can thus be written as

⟨�̂�2
𝑚(𝑇 )⟩ =

1

𝑇 2

∫︁ 𝑇

0

∫︁ 𝑇

0

𝑅(𝑡1 − 𝑡2)𝑤𝑚(𝑡1/𝑇 )𝑤𝑚(𝑡2/𝑇 )𝑑𝑡1𝑑𝑡2 (3.15)

≈ 1

𝑁2

𝑁−1∑︁
𝑗,𝑘=0

𝑅′(𝑗 − 𝑘)𝑤𝑚(𝑗/𝑁)𝑤𝑚(𝑘/𝑁) (3.16)

=
1

𝑁2

𝑁−1∑︁
𝑗,𝑘=0

𝑅′(𝑗 − 𝑘)𝑤𝑚((𝑗 ⊕ 𝑘)/𝑁), (3.17)
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Figure 3-2: Represent two-dimensional Walsh filters 𝑤𝑚(𝑡1, 𝑡2) = 𝑤𝑚(𝑡1)𝑤𝑚(𝑡2)
in R2([0, 1[) up to order 𝑛 = 2 in sequency ordering. The Walsh filters swtiches
between 𝑤𝑚 = 1 (yellow) and 𝑤𝑚 = −1 (blue). The labels indicate the result of the
binary addition 𝑡1 ⊕ 𝑡2 to illustrate that 𝑤𝑚(𝑡1, 𝑡2) = 𝑤𝑚(𝑡1)𝑤𝑚(𝑡2) = 𝑤𝑚(𝑡1 ⊕ 𝑡2),
i.e., two-dimensional Walsh filters are defined by a single parameter 𝑣 = 𝑡1 ⊕ 𝑡2.
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where we have used the composition property of Walsh functions under multiplication,

𝑤𝑚(𝑗)𝑤𝑚(𝑘) = 𝑤𝑚(𝑗 ⊕ 𝑘) ∀𝑗, 𝑘 ∈ N(𝑛). After the change of variable 𝑗 → 𝑗 ⊕ 𝑘, we

obtain

⟨�̂�2
𝑚(𝑇 )⟩ =

1

𝑁2

𝑁−1∑︁
𝑗,𝑘=0

𝑅′(𝑗 ⊕ 𝑘 − 𝑘)𝑤𝑚(𝑗/𝑁) (3.18)

=
1

𝑁

𝑁−1∑︁
𝑗=0

𝐿𝑁(𝑗)𝑤𝑚(𝑗/𝑁) (3.19)

= 𝑃𝑁(𝑚), (3.20)

where we have defined the local logical autocorrelation function [70, 71] as

𝐿𝑁(𝑗) =
1

𝑁

𝑁−1∑︁
𝑘=0

𝑅′(𝑗 ⊕ 𝑘 − 𝑘), (3.21)

and the local Walsh spectral density as

𝑃𝑁(𝑚) =
1

𝑁

𝑁−1∑︁
𝑗=0

𝐿𝑁(𝑗)𝑤𝑚(𝑗/𝑁). (3.22)

The local Walsh spectral density corresponds to the Walsh transform of the local

logical autocorrelation function on the finite time interval [0, 𝑇 [. The local Walsh

spectral density converges to the Walsh spectral density in the limit of large 𝑁 , i.e.,

𝑃 (𝑚) = lim
𝑁→∞

𝑃𝑁(𝑚). (3.23)

Equation (3.20) shows that the variance of the precession frequency is equal to the

local Walsh spectral density of �̃�(𝑡) evaluated at sequency 𝑚. Measuring the decay

rate of the signal Γ𝑚
2 (𝑇 ) =

√︀
⟨�̂�2

𝑚(𝑇 )⟩ after an evolution time 𝑇 for different Walsh

sequences {𝑤𝑚(𝑡/𝑇 )} is equivalent to sampling the local Walsh spectrum 𝑃𝑁(𝑚), from

which the local logical autocorrelation function 𝐿𝑁(𝑗) can be estimated by applying

the inverse Walsh transform. The problem of recovering the autocorrelation function

𝑅′(𝑗) from the logical autocorrelation function 𝐿𝑁(𝑗) is addressed in the following

53



0

1

2

3

4

5

6

7

1

0

3

2

5

4

7

6

2

3

0

1

6

7

4

5

3

2

1

0

7

6

5

4

4

5

6

7

0

1

2

3

5

4

7

6

1

0

3

2

6

7

4

5

2

3

0

1

7

6

5

4

3

2

1

0

v = t1) t2

t1
0 1 2 3 4 5 6 7

t2

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

-1 0 1 2 3 4 5 6

-2 -1 0 1 2 3 4 5

-3 -2 -1 0 1 2 3 4

-4 -3 -2 -1 0 1 2 3

-5 -4 -3 -2 -1 0 1 2

-6 -5 -4 -3 -2 -1 0 1

-7 -6 -5 -4 -3 -2 -1 0

u = t1 - t2

t1
0 1 2 3 4 5 6 7

t2

0

1

2

3

4

5

6

7

Figure 3-3: Represent the arithmetic 𝑢 = (𝑡1 − 𝑡2) and dyadic 𝑣 = (𝑡1 ⊕ 𝑡2)
sampling domain. The dyadic sampling domain is computed from the bitwise XOR
operation of 𝑡1 and 𝑡2, which is equivalent to the nimber addition or Caley table of
Z4

2.

sections.

3.1.2 Continuous representation of the autocorrelation func-

tion

An equivalent derivation of the expressions for the decay rate is introduced using a

continuous representation of the autocorrelation function. We first define 𝑑𝜇(𝑡1, 𝑡2) =

𝑑𝑡1𝑑𝑡2/𝑇
2 for (𝑡1, 𝑡2) ∈ R2([0, 𝑇 [) as the integration measure on R2([0, 1[), such that

the second cumulant in Eq. (3.12) can be written as

⟨�̂�𝑚(𝑇 )2⟩ =

∫︁ ∫︁
𝑑𝜇(𝑡1, 𝑡2)𝑅(𝑡1 − 𝑡2)𝑤𝑚((𝑡1/𝑇 ) ⊕ (𝑡2/𝑇 )). (3.24)

We then perform the change of variables 𝑢 = (𝑡1 − 𝑡2) ∈ R([−𝑇, 𝑇 [) and 𝑣 =

((𝑡1/𝑇 )⊕(𝑡2/𝑇 )) ∈ R([0, 1[), where the dyadic addition is carried out by continuously
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Figure 3-4: Represent the autocorrelation function 𝑅(𝑡1, 𝑡2) = 𝑅(𝑡1 − 𝑡2) =
exp(−|𝑡1 − 𝑡2|) of a stationary process on the dyadic grid up to order 𝑛 = 3.
The labels indicate the coordinates (𝑢 = 𝑡1 − 𝑡2, 𝑣 = 𝑡1 ⊕ 𝑡2). The diagonal elements
correspond to regions where 𝑢 = 𝑡1 − 𝑡2 is a constant.

extending the set of dyadic rational numbers of order n, Q2(𝑛) = {𝑧/2𝑛 | 𝑧 ∈ N(𝑛)},
to the set of real numbers on the unit interval, R([0, 1[). The sampling domain on

the discrete grid set by the Walsh filters of order 𝑛 = 3 is represented in Fig. 3-3.

We finally choose 𝑑𝜈(𝑢, 𝑣) as the integration measure on R([−𝑇, 𝑇 [) × R([0, 1[),

such that Eq. (3.24) can be written as

⟨�̂�𝑚(𝑇 )2⟩ =

∫︁ ∫︁
𝑑𝜈(𝑢, 𝑣)𝑅(𝑢)𝑤𝑚(𝑣). (3.25)

An an example, Figure 3-4 illustrates the autocorrelation function 𝑅(𝑡1, 𝑡2) =

𝑅(𝑡1 − 𝑡2) = exp(−|𝑡1 − 𝑡2|) over the discrete sampling domain set by the Walsh

filter 𝑤𝑚(𝑣). The integrals in Eq. (3.25) are solved by computing the overlap between

the autocorrelation function 𝑅(𝑢) and the Walsh filter 𝑤𝑚(𝑣), which effectively corre-

spond to adding and substracting the discrete elements of the autoccorelation function

according to the sign of the Walsh filter. The labels indicate the (𝑢, 𝑣) coordinates in
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Figure 3-5: Represent the arithmetic 𝑢 = (𝑡1 − 𝑡2) and dyadic 𝑣 = (𝑡1 ⊕ 𝑡2)
sampling domain. Each sampling point of the arithmetic space is mapped to a
sampling point in the dyadic space. The transformation from the arithmetic domain
to the dyadic domain is however not injective; there exist distinct elements of the
arithmetic domain that are mapped to the same elements in the dyadic domain.
The number of elements (𝑡1, 𝑡2) in the arithmetic domain that are mapped to the
same element (𝑢, 𝑣) in the dyadic domain is given by the transfer function 𝑇 (𝑢, 𝑣).
For example, the Walsh functions sample the zero time-lag elements of 𝑐(𝑡1 − 𝑡2) at
𝑣 = 𝑡1− 𝑡2 = 0 whenever 𝑢 = 0 with 𝑇 (0, 0) = 𝑁 degenerate elements. The long-time
correlation elements 𝑐(𝑁 − 1) are sampled only once at 𝑢 = 𝑁 − 1.

the discrete sampling domain, which show that the element (0, 0) is sampled 𝑁 = 2𝑛

times, the elements (1, 1) and (−1, 1) are sampled 𝑁/2 = 2(𝑛−1) times, etc.

The degeneracy number of each element of the sampling domain is captured by

the transfer function, 𝑇 (𝑢, 𝑣), which is defined such that 𝑑𝜈(𝑢, 𝑣) = 𝑑𝑢𝑑𝑣𝑇−1(𝑣, 𝑢)

and

∫︁
𝑇−1(𝑣, 𝑢)𝑇 (𝑢, 𝑣′)𝑑𝑢 = 𝛿(𝑣 − 𝑣′) (3.26)∫︁
𝑇 (𝑢, 𝑣)𝑇−1(𝑣, 𝑢′)𝑑𝑣 = 𝛿(𝑢− 𝑢′) (3.27)∫︁

𝑑𝜈(𝑢, 𝑣)𝑇 (𝑢, 𝑣) =

∫︁ ∫︁
𝑑𝑢𝑑𝑣𝑇−1(𝑣, 𝑢)𝑇 (𝑢, 𝑣) = 1. (3.28)
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The change in integration space associated with the change of variable from (𝑡1, 𝑡2)

to (𝑢, 𝑣) is illustrated in Fig. 3-5.

Using the expression for the transfer function, Equation (3.25) becomes

⟨�̂�𝑚(𝑇 )2⟩ =

∫︁ ∫︁
𝑑𝑢𝑑𝑣 𝑤𝑚(𝑣) 𝑇−1(𝑣, 𝑢) 𝑅(𝑢) (3.29)

=

∫︁
𝑑𝑢 𝑅(𝑢)

∫︁
𝑑𝑣 𝑤𝑚(𝑣) 𝑇−1(𝑣, 𝑢) (3.30)

=

∫︁
𝑑𝑣 𝑤𝑚(𝑣)

∫︁
𝑑𝑢 𝑇−1(𝑣, 𝑢) 𝑅(𝑢), (3.31)

where the decay rate has two equivalent representations depending on the order in

which the integration is carried out. The variance can thus be expressed in two

equivalent ways.

First, we can write the variance in the arithmetic representation as

⟨�̂�𝑚(𝑇 )2⟩ =

∫︁
𝑑𝑢 𝑅(𝑢)𝐹𝑚(𝑢), (3.32)

where 𝐹𝑚(𝑢) =
∫︀
𝑑𝑣 𝑤𝑚(𝑣) 𝑇−1(𝑣, 𝑢) is the autocorrelation filter [72]. The decay rate

is given by the overlap between the autocorrelation function and the autocorrelation

filter generated by the modulation sequence.

Second, we can write the variance in the dyadic representation as

⟨�̂�𝑚(𝑇 )2⟩ =

∫︁
𝑑𝑣 𝑤𝑚(𝑣) 𝐿(𝑣) (3.33)

= 𝑃𝑚(𝑇 ), (3.34)

where 𝑃𝑚(𝑇 ) is the local Walsh spectral density or local Walsh energy spectrum defined

as the Walsh transform of the logical autocorrelation function, 𝐿(𝑣), which is obtained

from the arithmetic autocorrelation function, 𝑅(𝑢), through the application of the
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transfer function 𝑇 (𝑢, 𝑣):

𝐿(𝑣) =

∫︁
𝑑𝑢𝑇−1(𝑣, 𝑢)𝑅(𝑢) (3.35)

𝑅(𝑢) =

∫︁
𝑑𝑣𝑇 (𝑢, 𝑣)𝐿(𝑣)𝑑𝑣. (3.36)

The transfer function 𝑇 (𝑢, 𝑣) converts the arithmetic autocorrelation function ex-

pressed in the arithmetic domain (𝑡1 − 𝑡2) to the logical autocorrelation function

expressed in the dyadic domain ((𝑡1/𝑇 )⊕ (𝑡2/𝑇 )). Because the autocorrelation func-

tion is even-symmetric about the origin, 𝑅(𝑡) = 𝑅(−𝑡), the domain can be restricted

to 𝑢 = (𝑡1 − 𝑡2) ∈ R([0, 𝑇 [) by the change of variable 𝑇 ′(𝑢, 𝑣) = 𝑇 (𝑢, 𝑣) for 𝑢 = 0

and 𝑇 ′(𝑢, 𝑣) = 2 · 𝑇 (𝑢, 𝑣) elsewhere. The size of the transfer matrix then changes

from (2𝑁 − 1 × 𝑁) to (𝑁 × 𝑁). In practice, the transfer function 𝑇 (𝑢, 𝑣) performs

a shuffling of the coefficients of 𝑅(𝑢), defined in the arithmetic domain to generate

𝐿(𝑣), defined in the dyadic domain [73].

Given a knowledge of the spectral density in the sequency domain, we can es-

timate the spectral density in the frequency domain by a applying series of linear

transformations

𝑃𝑊
𝑊𝑇−1

→ 𝐿𝑊
𝑇𝑊𝐹→ 𝑅𝐹

𝐹𝑇→ 𝑆𝐹 , (3.37)

where 𝑊𝑇 stands for Walsh Transform, 𝐹𝑇 stands for Fourier Transform, and 𝑇𝑊𝐹

stands for the transfer function, which converts from the dyadic time domain to the

arithmetic time domain.

The Walsh sequences generate a complete set of digital filters that can be used to

directly sample the coefficients of the spectral density in the sequency domain. An

estimate of the autocorrelation function is obtained through a series of linear transfor-

mations without the need for undue approximations on the simplified representation

of the filter in the frequency domain. The reconstruction protocol does not rely on

any prior information about the field other than the assumptions of Gaussianity and

stationarity, although additional assumptions about the characteristics of the stochas-
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tic process can be used to design more efficient sampling strategies. Future work will

focus on comparing the performance of the proposed method with existing sampling

protocols and exploring applications of the Walsh spectroscopy method to character-

ize the dynamics of ensembles of interacting spins and estimate the parameters of

deterministic fields using asynchronous measurements, i.e., measurements performed

without the ability to synchronize the sampling sequence with the sampled field.

59



60



Chapter 4

Environment-assisted quantum

metrology with entangled states of

electron spins in diamond

Quantum metrology explores quantum strategies such as the use of entanglement,

discord, and squeezing to reduce the statistical error associated with the estimation

of unknown physical parameters and ultimately attain the fundamental bounds set

by the Heisenberg uncertainty relations. Quantum strategies have been explored in

different physical implementations of a quantum probe to improve the performance

of metrology tasks, including squeezed states, non-Gaussian spin states, and entan-

gled states of many particles. Entangled states of electron spins have been proposed

to enhance the performance of quantum sensors [74, 75], but their implementation

in solid-state materials has been hindered by the difficulty of accessing ensembles of

electron spins that can be prepared, manipulated, and measured with high fidelity.

In this chapter, we introduce coherent control techniques to convert unknown quan-

tum systems located in the environment of a quantum probe into quantum resources

available for sensing time-varying fields with improved performance.

We experimentally demonstrate these techniques with a composite quantum sys-

tem formed by the electron spins associated with optically-bright nitrogen-vacancy

centers (NV) and other optically-dark paramagnetic centers (𝑋) in an engineered di-
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amond sample. We first identify the hyperfine components of the spin Hamiltonian of

two hybrid electron-nuclear spin systems associated with two unknown paramagnetic

centers (𝑋1, 𝑋2) located in the environment of a single NV center in diamond. We

then initialize and measure the quantum state of two 𝑋 electron spins using cross-

polarization techniques, coherent feedback, and repetitive quantum measurements.

We finally create and exploit entangled states of two and three electron spins to

estimate the amplitude of time-varying magnetic fields. Our results demonstrate an

approach to environment-assisted quantum sensing and quantum-enhanced metrology

with electron spins in diamond.
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4.1 Quantum system identification

An essential requirement for achieving environment-assisted quantum metrology is

the ability to identify unknown quantum systems located in the environment of a

quantum probe. In this section, we introduce spectroscopic techniques to estimate the

components of the internal Hamiltonian of some unknown quantum systems located

in the environment of a single quantum probe. We then experimentally demonstrate

these techniques to measure the spin Hamiltonian of two hybrid electron-nuclear

spins systems, including the principal values and orientation of the hyperfine tensor

𝐴. These two unknown paramagnetic centers are possibly nitrogen-related defects,

dangling bonds, or other impurities located inside the diamond or near its surface.

4.1.1 Identify two unknown paramagnetic centers in the envi-

ronment of a single nitrogen-vacancy center in diamond

Magnetic double-resonance control sequences extract spectral information about elec-

tron spins in the environment of a single NV center. The spin-echo sequence (SE) is

the simplest instance of a pulse decoupling sequence with a single decoupling pulse

applied midway the evolution period. SE suppresses the contribution from the secular

dipolar interaction terms from all subsets of the environment. The recoupled spin-echo

sequence (SEDOR), similar to the spin-echo double-resonance sequence, decouples the

quantum probe from its environment, but selectively recouples the dipolar interaction

with a resonant subset of the environment by simultaneously applying decoupling and

recoupling pulses on both the quantum probe and the environment [76]. The recou-

pled spin-echo sequence is one instance of magnetic double resonance sequences, also

called double electron-electron resonance (DEER) or pulse electron double resonance

(PELDOR).

We measure the electron spin resonance spectrum of the electron spin environment

of a single NV center by varying the frequency of the recoupling pulse in the SEDOR

sequence (Fig. 4-1). In our experiment, the NV electron spin is prepared in a coherent

superposition of states with a 𝜋/2 pulse and decoupled from its environment with a
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series of resonant microwave 𝜋 pulses. The magnetic dipolar interaction with nearby

electron spins is selectively recoupled by applying a series of recoupling 𝜋 pulses on

the electron spins. The series of decoupling and recoupling pulses effectively decouple

the NV electron spin from dephasing noise, while selectively recoupling the dipolar

interaction terms to nearby electron spins whose resonance frequency is included in

the spectral bandwidth of the excitation pulses. The measured fluorescence signal

decreases whenever electron spins are resonantly excited by the microwave excitation

pulses; varying the frequency of the microwave excitation pulses produces an electron

resonance spectrum from which the resonance frequencies of two hybrid electron-

nuclear spin systems are determined.
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Figure 4-1: Measure the electron spin resonance spectrum of two hybrid

electron-nuclear spin systems in the environment of a single NV center

using a recoupled spin-echo sequence. The static magnetic field is aligned along
the molecular axis of the NV center. The esr spectrum of the environment shows four
spectral peaks centered around the resonance frequency expected for free electrons.
The two pairs of inner and outer spectral lines correpond to two paramagnetic cen-
ters formed by an electron spin interacting with a nearby nuclear spin via hyperfine
interaction. The hyperfine splitting for the two 𝑋 electron spins is 26.4 MHz and
8.3 MHz respectively.

The electron spin resonance spectrum measured with the static magnetic field

oriented along the molecular axis of the NV center shows four resonant transitions

centered at the single resonance transition expected for free electrons at 𝜔𝑆 = 𝛾𝑒𝐵0.

We associate these four resonant transitions with the existence of two hybrid electron-

nuclear spin systems associated with two nearby paramagnetic centers.

The two unknown paramagnetic centers are modeled by two hybrid electron-
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nuclear spin systems formed by a single electron spin (𝑆 = 1/2) interacting via

hyperfine interaction with a single nuclear spin (𝐽 = 1/2). The Hamiltonian of a

single hybrid electron-nuclear spin system is

ℋ = 𝛽𝑒/~ 𝐵0 · 𝑔 · 𝑆 + 𝑆 · 𝐴 · 𝐽 − 𝑔𝑛𝛽𝑛/~ 𝐵0 · 𝐽, (4.1)

where 𝛽𝑒/~ = 2𝜋·13.996 GHz T−1 is the Bohr magneton, 𝛽𝑛/~ = 2𝜋·7.623 MHz T−1 is

the nuclear magneton, 𝑔𝑛 is the g-factor of the unknown nuclear spin, 𝑔 is the g tensor

of the electron spin, 𝐴 is the hyperfine tensor describing the hyperfine interaction

between the electron and nuclear spins, 𝐵0 is the static magnetic field, and 𝑆 and 𝐽

are the vector operators for the electron and nuclear spins. We assume the hyperfine

tensor to be an axially symmetric tensor with 𝐴𝑥 = 𝐴𝑦 = 𝐴⊥ and 𝐴𝑧 = 𝐴‖, and the

g tensor to be an isotropic tensor, 𝑔 = 𝑔𝑥 = 𝑔𝑦 = 𝑔𝑧, such that the spin Hamiltonian

is fully determined by six unknown components, (𝐴⊥, 𝐴𝑦, 𝛼, 𝛽, 𝑔, 𝑔𝑛), where 𝛼 and

𝛽 are the Euler angles defining the orientation of the molecular axis of the 𝑋 centers

with respect to the molecular axis of the NV center. These assumptions make the

problem of identifying the unknown components of the spin Hamiltonian tractable

experimentally.

4.1.2 Estimate the parameters of the internal spin Hamilto-

nian of two unknown paramagnetic centers in diamond

The resonance frequencies of the electron spin double-resonance spectrum depend on

the strength of the hyperfine interaction between the electron spin and its nearby

nuclear spin, which itself depends on the strength and orientation of the static mag-

netic field with respect to the orientation of the principal axes of the hyperfine tensor

(molecular frame). We estimate the parameters of the spin Hamiltonian of two un-

known paramagnetic centers in the environment of a single NV center by monitoring

the resonance frequencies of the SEDOR spectrum as a function of the strength and

orientation of the static magnetic field, which is varied by translating and rotating

a permanent magnet with respect to the diamond sample. The spatial components
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of the static magnetic field in the crystallographic frame of the diamond sample are

estimated with the NV center acting as a vectorial magnetometer.

Vary the strength and orientation of the static magnetic field

The strength and orientation of the static magnetic field is varied by translating and

rotating a permanent magnet with respect to the diamond sample (Fig. 4-2). The

diamond sample is cut with its edge directed along the 110 crystallographic axis, such

that the 111 molecular axis of the NV center lies in the 110 × 001 crystallographic

plane with its transverse projection oriented towards the 110 edge of the diamond

sample rather than towards its corner, as it would have been the case for a diamond

sample with its edge oriented along the 100 crystallographic axis.

Figure 4-2: Observe from above the Terra-B diamond sample when it is

mounted in the confocal microscope on top of the coplanar waveguide.

The implantation pattern is facing down towards the coplanar waveguide and the
microscope objective. The bottom edge of the sample is oriented along the 110
direction, the up edge of the sample is oriented along 11̄0, and the top face of the
sample facing the viewer when looking down at the sample is oriented along the 001
direction. The permanent magnet is oriented and translated along the 110 direction
so as to vary the polar angle 𝜃 of the static magnetic field in the azimuthal plane
𝜑 = 0.

A 1 ′′ cubic magnet is mounted with its magnetization axis oriented along the

edge of the diamond sample. The orientation of the magnet is defined in spherical
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coordinates with respect to the molecular axis of the NV center. When the magnet

is placed exactly on top of the NV center, the static magnetic field at the position of

the NV center is oriented along the 110 direction. Translating the magnet along its

magnetization axis rotates the magnetic field in the 110× 001 crystallographic plane,

and thus corresponds to a rotation of the polar angle 𝜃 in the molecular frame of the

NV center. Rotating the magnet with respect to the diamond edge corresponds to a

rotation of the azimuthal angle 𝜑 in the molecular frame of the NV center.

Estimate the strength and orientation of the static magnetic field

The spatial components of the static magnetic field in the molecular frame of the

NV center are estimated by using the NV center as a vectorial magnetometer. The

hyperfine interaction between the NV electron spin and the host N-15 nuclear spin

modulates the spin-echo signal at the nuclear frequencies, from which the transverse

components of the static magnetic field in the NV molecular frame is inferred. Mea-

suring the electron spin resonance spectrum of an ensemble of NV centers provides

additional information about the strength and orientation of the static magnetic field.

The magnet is translated along the 110 direction over a displacement range of

50 mm with a linear actuator. Translating the magnet induces a rotation of the polar

angle 𝜃 of the static magnetic field in the azimuthal plane 𝜑 = 0. The resonance

frequency of the NV electron spin in the 𝑚𝑠 ∈ {0,−1} manifold is measured at

each position of the magnet with a cw-ESR sequence (continuous driving of the NV

electron spin under optical illumination with a carrier microwave signal of varying

frequency). The measured values of the resonance frequency at each position of

the magnet, {𝜈(𝑥)}, do not uniquely determine the strength and orientation of the

magnetic field; they rather generate a surface of possible values for the strength and

polar orientation of the magnetic field, 𝒮 = {(𝐵0, 𝜃) | 𝜈(𝐵0, 𝜃) = 𝜈(�⃗�)}, i.e., there are
multiple choices of the strength and orientation of the magnetic field that give rise to

the same resonance frequency.

The strength and orientation of the magnetic field at each position of the magnet

is uniquely determined by measuring both the resonance frequency of the NV electron

67



spin with a cw-esr sequence and the hyperfine-modulated signal of the NV-N electron-

nuclear spin system with a spin-echo sequence. In the presence of a static magnetic

field oriented along a different direction than the molecular axis of the NV center,

the energy levels of the NV electron spin are mixed with the energy levels of the N

nuclear spin and the spin-echo signal is modulated at the nuclear frequencies and

their combinations, {𝜔1, 𝜔0, 𝜔1 ± 𝜔0}. This modulation of the spin-echo signal is the

so-called electron spin-echo envelope modulation (ESEEM). The nuclear frequencies,

which can be computed numerically by diagonalizing the spin Hamiltonian of the

electron-nuclear spin system with 𝑆 = 1 and 𝐼 = 1/2 for an intrinsic N-15 nuclear

spin, correspond to the quantization energies of the nuclear spin conditional on the

NV electron spin being in the state 𝑚𝑠 = 0 or 𝑚𝑠 = 1.

We numerically compute the resonance frequencies of the NV center for different

values of the strength and orientation of the static magnetic field. For each position

of the magnet, we use the set of numerically computed values, {𝜈(𝐵0, 𝜃)}, to deter-

mine the one-dimensional curve of field parameters (𝐵0, 𝜃) that provides a resonance

frequency equal to the measured resonance frequency 𝜈(𝑥). This one-dimensional

curve corresponds to the interesection between the surface of all resonance frequen-

cies ({𝜈(𝐵0, 𝜃)}) and the plane of constant height set by the measured frequency

(𝜈(𝑥)) at a specific position of the magnet (𝑥). We then numerically simulate the

modulated spin-echo spectrum for all field parameters on the one-dimensional curve.

We finally perform a table search to identify the parameters of the static field (𝐵0, 𝜃)

that minimize the distance between the measured ESEEM spectrum and the simu-

lated ESEEM spectra (Fig. 4-3).

The set of cw-esr spectra measured for an ensemble of NV centers match the

cw-esr spectra simulated using the parameters of the static magnetic field estimated

from cw-esr and ESEEM measurements on a single NV center (Fig 4-4), validating

the assumption that the magnet is translated in the azimuthal plane 𝜑 = 0. These

results show that overlapping the spectral doublets of two spectral classes provides a

convenient method to orient the magnetization axis of the magnet in the azimuthal

plane 𝜑 = 0.
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Figure 4-3: Estimate the strength and orientation of the static magnetic

field as a function of the longitudinal position of the permanent magnet

from electron spin resonance measurements on the NV center. a, Resonance
frequency of the NV electron spin measured from cw-esr measurements on the NV
center. The solid line is a numerical calculation of the resonance frequency calculated
by diagonalizing the spin Hamiltonian of the NV center using the estimated field
parameters. b, Spectrum of the modulated spin-echo signal obtained from spin-
echo measurements on the NV center. The solid line is a numerical calculation of
the nuclear frequencies calculated by diagonalizing the spin Hamiltonian of the NV
center using the estimated field parameters. c-d, Strength and orientation of the
static magnetic field estimated from cw-esr and ESEEM measurements on the NV
center.

The electron spin resonance spectrum for an ensemble of NV centers gives four

pairs of spectral doublets associated with all of the four possible molecular orientations

of the NV center in the diamond crystal. When the static magnetic field is oriented

along the 111 direction, the resonance frequencies of three out of four NV families

are overlapping. When the static magnetic is oriented along the 001 direction, the

resonance frequencies of all of the four NV classes are degenerate. When the rotation

of the magnetic field is restricted to the 110 × 001 plane the resonance frequencies of

at least two out of four classes are overlapping. This provides a convenient approach

to align the static magnetic field along a specific crystallographic direction.
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Figure 4-4: Measure the cw-esr spectrum of an ensemble of NV centers

oriented along all of the four possible crystallographic orientations in the

diamond lattice. The solid lines are the resonance frequencies calculated numeri-
cally by diagonalizing the spin Hamiltonian of an ensemble of NV centers with the
estimated values of the field parameters. Because the magnet is translated in the
azimuthal plane 𝜑 = 0, the spectral lines of two out of four NV families are degen-
erate, such that only three out of four spectral doublets are visible in the measured
spectrum.
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Figure 4-5: Estimate the components of the hyperfine tensor of two hybrid

electron-nuclear spin systems associated with two paramagnetic centers in

diamond. a, Hyperfine splitting of the spectral doublets of two 𝑋 electron spins as
a function of the polar angle of the static magnetic field with respect to the molecular
axis of the NV center in the azimuthal plane 𝜑 = 0. The solid line is a numerical fit
to the eigenvalues of an axially-symmetric hyperfine tensor with four free parameters.
b, Hyperfine splitting of the spectral doublets of two 𝑋 electron spins as a function of
the azimuthal angle of the static magnetic field measured at the polar angle 𝜃 = 35.7∘.
A third spectral doublet is identified, possibly indicating the presence of a third
unknown paramagnetic center in the environment of the single NV center.

We estimate the components of the hyperfine tensor describing the interaction

between the electron spin and the nuclear spin of the two unknown paramagnetic
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centers by monitoring the change in the hyperfine splitting of the spectral doublets

as a function of the orientation of the static magnetic field defined with respect to

the molecular axis of the NV center. The experimental data reported in Fig. 4-5 are

fitted to the values computed numerically by diagonalizing the Hamiltonian expressed

in Eq. (4.1). Assuming 𝑔 = 2.002, a numerical fit to the experimental data gives

𝑋1=(𝐴⊥ = 17.16, 𝐴𝑧 = 29.45, 𝛼 = 87.07, 𝛽 = 0.30) for the first paramagnetic center

and 𝑋2=(𝐴⊥ = 1.58, 𝐴𝑧 = 11.22, 𝛼 = 65.72, 𝛽 = 44.88) for the second paramagnetic

center (𝑋2). These parameters do not match the hyperfine values of known defects

reported in the scientific literature, possibly indicating that we are dealing with yet

unstudied paramagnetic centers in diamond.

Estimate the components of the dipolar tensor

We located two unknown paramagnetic centers in the environment of a single NV cen-

ter by measuring the angular dependence of the dipolar interaction strength on the

static magnetic field. The secular dipolar Hamiltonian for heteronuclear spins quan-

tized along the static magnetic field, which describes the magnetic dipolar interaction

between spins having different Zeeman energies, is usually given by

ℋSI = 𝑑(𝛼) · 2𝑆𝑧𝐼𝑧, (4.2)

where 𝑑(𝛼) = −(𝜇0/4𝜋)~2𝛾𝑆𝛾𝐼𝑟−3𝑃2(cos𝛼) is the dipolar interaction strength and

𝑃2(cos (𝛼)) = (3 cos (𝛼)2 − 1)/2 is the geometric scaling factor, which depends on the

angle 𝛼 between the interspin vector 𝑟 and the static magnetic field 𝐵0. Because the

NV electron spin is effectively quantized along its zero-field splitting oriented along

the 111 crystallographic direction for small values of the static magnetic field, the

geometric scaling factor for the NV–𝑋 electron spin system is

𝑃2(𝛼, 𝜃) = [cos (𝜃) − 3 cos (𝛼) · cos (𝛼− 𝜃)]/3, (4.3)
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where 𝛼 is the angle between the interspin vector 𝑟 and the static magnetic field

𝐵0 and 𝜃 is the angle between the molecular axis of the NV center and the static

magnetic field. Equation (4.3) is valid under the stringent assumption that the two

electron spins lie in the same azimuthal plane 𝜑 = 0. This assumption can be lifted

by measuring the dipolar interaction strength between the two electron spins in more

than one azimuthal plane.

We measure the components of the dipolar tensor between a single NV electron

spin and two 𝑋 electron spins by monitoring the change in the dipolar interaction

strength as a function of the polar angle 𝜃 of the static magnetic field with respect to

the molecular axis of the NV center in the azimuthal plane set by 𝜑 = 0. The dipolar

interaction strength is estimated from the coherent modulation of the recoupled spin-

echo experiments (SEDOR) measured up to 72 𝜇s.
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Figure 4-6: Estimate the dipolar components of hybrid electron-nuclear

spin systems associated with unknown paramagnetic centers in diamond.

The solid line is a numerical fit to the eigenvalues of an axially-symmetric hyperfine
tensor with four free parameters. a, Polar plot indicating the location of two unknown
paramagnetic centers in the environment of a single nitrogen-vacancy center in dia-
mond assuming they are located in the same azimuthal plane 𝜑 = 0. b, Measured
dipolar coupling constants for two electron spins as a function of the polar angle of
the static magnetic field with respect to the molecular axis of the NV center in the
azimuthal plane 𝜑 = 0. The solid line is a fit to the geometrically-scaled dipolar
coupling constant.

We fit the experimental data reported in Fig. 4-6 to the dipolar coupling constant

expressed in Eq. (4.3) to obtain (𝛼 = 4.1∘, 𝑑 = 67.9 kHz) for the first 𝑋 electron

spin and (𝛼 = −36.1∘, 𝑑 = 86.8 kHz) for the second 𝑋 electron spin (modulo an

indistinguishable 𝜋 factor in the estimation of the angle 𝛼). These values correspond
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to an interspin distance between the 𝑋 paramagnetic centers and NV center of 𝑟1 =

9.2 nm and 𝑟2 = 8.4 nm. Assuming the two electron spins to lie in the same azimuthal

plane 𝜑 = 0, the internuclear distance between the two electron spins computed by

solving 𝑟212 = 𝑟21 + 𝑟22 − 2𝑟1𝑟2 cos (𝛼1 − 𝛼2) is 𝑟12 = 6.1 nm. This distance corresponds

to a dipolar coupling constant of 𝑑12 = 65.2 kHz when the magnetic field is aligned

along the molecular axis of the NV center. We could not detect the coupling between

the two 𝑋 electron spins, possibly indicating that the two paramagnetic centers are

located further apart in different azimuthal planes.
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4.2 Quantum system integration

Quantum system integration aims at combining quantum resources extracted from

the environment of a quantum probe into a large-scale quantum system that can effi-

ciently process quantum information. Integrating additional quantum resources into

an existing quantum system requires the ability to prepare and maintain the quantum

system in a state of low entropy, create quantum correlations between spatially-remote

quantum subsystems, and perform measurements on these quantum subsystems with-

out disturbing the rest of the system.

Preparing unknown quantum systems in a state of low entropy can be achieved

by using passive or active cooling approaches. Passive cooling approaches increase

the intrinsic polarization bias of the quantum system by increasing the occupation

probability of the lowest energy state, e.g., by applying a strong external magnetic

field or decreasing the temperature of the physical system. Active cooling approaches

rely on the existence and accessibility of a physical mechanism to extract entropy

out of a quantum system and transfer that entropy into an external heat bath, e.g.,

via optical pumping. Quantum measurements combined with coherent feedback con-

trol techniques and cross-polarization techniques enable reducing the entropy of a

quantum system that lacks an accessible physical mechanism for entropy extraction.

4.2.1 Initialize quantum systems using coherent feedback con-

trol

Quantum measurements use quantum probes to extract information about quantum

systems that cannot be directly measured using projective measurements. Quantum

measurements are performed in two steps: (1) correlate the state of the quantum

probe with the state of the quantum system via direct or mediated interaction and (2)

perform a (strong) projective measurement on the quantum probe to infer the state

of the quantum system from the measurement outcomes. Quantum measurements

enable identifying unknown quantum systems by gaining information about their

physical properties, such as their structure, dynamics, dimensionality, and topology.
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Quantum measurements can also be used to reduce the entropy of unknown quantum

systems.

Mathematically, quantum measurements are described by a set of operators {𝐴𝑛}
that satisfy

∑︀
𝑛 𝐴

†
𝑛𝐴𝑛 = 1, where 1 is the identity operator [77]. The polar de-

composition theorem states that any operator 𝐴𝑛 can be written as 𝐴𝑛 = 𝑈𝑛Π𝑛,

where 𝑈𝑛 is a unitary operator and Π𝑛 is a positive operator. Projective measure-

ments are described by a set of projection operators {Π𝑛} with Π2
𝑛 = Π𝑛 (idempo-

tent) and
∑︀

Π†
𝑛Π𝑛 =

∑︀
Π𝑛 = 𝐼, where Π𝑛 = Π†

𝑛 is a positive Hermitian operator

with a complete set of real eigenvalues greater or equal than zero, which thus rep-

resents a physical observable associated with a measurable quantity. According to

the measurement postulate, projective measurements project the state of a quan-

tum system onto the subpace associated with the 𝑛-th measurement outcome, Π𝑛,

such that the density operator collapses to 𝜌𝑛 = Π𝑛𝜌Π𝑛

Tr{Π𝑛𝜌Π𝑛} = Π𝑛 with probability

𝑝𝑛 = Tr{Π𝑛𝜌Π𝑛} = Tr{Π𝑛𝜌}. Projective measurements are specific instances of

quantum measurements with 𝑈𝑛 = 𝐼.

Measuring the quantum system in the 𝜎�⃗� basis requires choosing an interaction

operator that rotates the state of the quantum probe by an amount proportional to

the population of the quantum system in the eigenbasis of 𝜎�⃗�, e.g., choosing 𝜎2⊗𝜎�⃗� to

generate the joint unitary operator 𝑈�⃗� = 𝑒−𝑖𝜃𝜎1⊗𝜎�⃗�/2 for a quantum probe initialized

in a polarized state 𝜌𝛼 = (𝜎0 + 𝛼𝜎3)/2.

Classical measurements with correlating gates

If the state of the quantum system commutes with the measurement operator 𝑈𝑛, the

quantum system is not perturbed during the joint unitary evolution with the quan-

tum probe, even though it becomes correlated with the quantum probe, as quantified

by the increase in mutual information. Although the projective measurement on the

quantum probe does not disturb the state of the quantum system, the state of knowl-

edge of the observer described by the density operator must still be updated based

on the information extracted. The quantum measurement thus acts as a classical

measurement, in the sense that the change in the density operator is fully described
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by classical probability theory, e.g., using the Bayesian formalism.

Correlating gates that act on state operators that are diagonal in the measurement

basis 𝜎�⃗� implement classical measurements that increase the state of knowledge of the

observer about the state of the system. To understand that fact, let’s consider the

state of an initially uncorrelated bipartite quantum system 𝜌𝛼𝛽 = 𝜌𝛼 ⊗ 𝜌𝛽, where the

marginal states 𝜌𝛼 =
∑︀

𝑛 𝜆
𝛼
𝑛𝜋

𝛼
𝑛 and 𝜌𝛽 =

∑︀
𝑛 𝜆

𝛽
𝑛𝜋

𝛽
𝑛 are diagonal in the eigenbasis of

𝜎�⃗�. The joint state

𝜌𝛼𝛽 =
∑︁
𝑛1,𝑛2

𝜆𝛼
𝑛1
𝜆𝛽
𝑛2
𝜋𝛼
𝑛1

⊗ 𝜋𝛽
𝑛2

(4.4)

=
∑︁
𝑛

𝜆𝛼𝛽
𝑛 𝜋𝛼𝛽

𝑛 (4.5)

is diagonal in the joint basis defined by the projection operators 𝜋𝛼𝛽
𝑛 = 𝜋𝛼

𝑛1
⊗ 𝜋𝛽

𝑛2
.

In general, 𝜌 =
∑︀

𝑛 𝜆𝑛𝜋𝑛, where 𝜆𝑛 =
∏︀𝑁

𝑗=1 𝜆𝑛𝑗
is the occupation probability of

the 𝑛-th energy level and 𝜋𝑛 =
⨂︀𝑁

𝑗=1 𝜋𝑛𝑗
= |𝑛⟩⟨𝑛| is the projection operator on the

𝑛-th energy eigenstate |𝑛⟩ = |𝑛1 · · ·𝑛𝑁⟩, with 𝑛 = (𝑛1𝑛2...𝑛𝑁)2 denoted as a 𝑁 -bit

binary string, where 𝑁 is the number of qubits in the multipartite quantum system.

For a bipartite quantum system with 𝑁𝐴𝐵 = 𝑁𝐴 + 𝑁𝐵, the dimension of the joint

Hilbert space is 𝑑𝐴𝐵 = 𝑑𝐴 · 𝑑𝐵 = 2𝑁𝐴2𝑁𝐵 = 2𝑁𝐴𝐵 .

If the outcome of the projective measurement on the quantum probe is discarded,

the resulting effect on the state of the quantum system is dephasing. The state of the

quantum system after such unconditional measurements is described by a statistical

mixture over all possible measurement outcomes, 𝜌𝛽 =
∑︀

𝑛 𝑝𝑛𝜌
𝛽
𝑛. If the state of the

quantum system is updated based on the outcome of the projective measurement on

the quantum probe, the purity of the quantum system is increased. Implementing such

conditional measurements rely on the ability to perform single-shot measurements of

the state of the probe, i.e., to estimate the measurement outcome after a single trial

rather than after averaging over many repetitions of the measurement.
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Quantum measurements with entangling gates

If the state of the quantum system does not commute with the measurement operator

𝑈𝑛, i.e., the density matrix is not diagonal in the measurement basis, the quantum

system becomes entangled with the quantum probe during the joint evolution period

and the projective measurement on the quantum probe disturbs the state of the

quantum system, an effect that is referred to as the measurement backaction. The

strength of the backaction depends on the strength of the quantum measurement or

the amount of quantum correlations created between the quantum system and the

quantum probe, which depends on the coupling rate between the quantum system

and the quantum probe and the duration of the interaction period.

Because the backaction induced on quantum systems by quantum measurements

is equivalent to the action of a unitary operation on the state of quantum systems,

measurement backaction can be used to manipulate the state of quantum systems.

The state of the system is steered towards a specific target state by repeating the

quantum measurement with the measurement strength updated adaptively. This

requires the ability to update in real-time the strength of the measurement conditional

on the measurement outcome.

Quantum measurements using classical and coherent feedback control

Classical feedback control can be used to initialize the state of a quantum system

into an arbitrary pure state by applying a unitary transformation on the quantum

system conditional on the outcome of the projective measurement on the probe. Co-

herent feedback control replaces classical feedback operations with coherent feedback

operations that are described by a joint unitary operator acting on the joint system.

Extract entropy using coherent feedback control

The requirement for preparing a quantum system in a state of low entropy is the

existence of a physical mechanism for extracting entropy out of the quantum system.

We consider the experimental situation where the quantum system lacks a direct
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physical mechanism to reduce its entropy, but the quantum probe possesses a physical

mechanism to reduce its entropy on a timescale faster than the relaxation time of the

quantum system. Extracting entropy out of the quantum system can be achieved

by implementing an amplitude damping channel using a coherent feedback protocol.

The quantum circuit that implements coherent feedback to reduce the entropy of a

bipartite quantum system of two qubits is shown in Fig. 4-7.

Φρα

ρβ

Φ

a

|00〉 |01〉

|11〉|10〉

|00〉 |01〉

|11〉|10〉

|00〉 |01〉

|11〉|10〉

|00〉 |01〉

|11〉|10〉

Φ

b

Figure 4-7: Initialize quantum systems using coherent feedback control.

a, Quantum circuit to initialize a two-qubit system in a pure state using coherent
feedback control when the first qubit possesses an accessible physical mechanism to
reduce its entropy, e.g., via optical pumping. The dissipative channel Φ initializes the
first qubit in a pure state and the two C𝛼NOT𝛽 and C𝛽NOT𝛼 gates exchanges the
state of the first qubit with the state of the second qubit. b, The initial state of the
two-qubit system is a maximally mixed state with equal occupation probability of all
four basis states. Applying a dissipative gate on the first qubit initializes the state
of the first qubit, while leaving the state of the second qubit in a maximally mixed
state. The two controlled-NOT gates exchange the state of the first qubit with the
state of the second qubit, leaving the first qubit in a maximally mixed state and the
second qubit in a polarized pure state. The last dissipative gate initializes the state
of the first qubit, such that the two-qubit system is prepared into a polarized pure
state.

Assuming perfect unitary operations, the quantum circuit shown in Fig. 4-7 sim-

ulates the action of an amplitude damping channel acting on the quantum system
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with a combination of two controlled-NOT operations and one projective measure-

ment. The first controlled-NOT operation correlates the state of the quantum system

with the state of the quantum probe. The second controlled-NOT operation performs

a coherent feedback operation that flips the state of the quantum system conditional

on the state of the quantum probe having been flipped by the first controlled-NOT

operation. The projective measurement resets the state of the quantum probe so that

it can be reused in a cycling process.

In general, coherent feedback control techniques reduce the entropy of a quantum

system by performing a quantum measurement on the quantum system with the aid

of a quantum probe and coherently updating the state of the quantum system towards

a desired target state, e.g., its ground state. To better understand the principle of

entropy extraction using coherent feedback control, let’s consider a bipartite quantum

system formed by a single quantum probe and some unknown quantum system with

vanishing initial correlations, such that the joint state is given by a separable product

state 𝜌𝛼𝛽 = 𝜌𝛼 ⊗ 𝜌𝛽. The state space of the joint system is the Hilbert space ℋ𝛼𝛽 =

ℋ𝛼 × ℋ𝛽 with dimension 𝑑𝛼𝛽 = 𝑑𝛼 · 𝑑𝛽. The quantum probe is initialized in a pure

state 𝜌𝛼 = 𝜋0 such that 𝑆(𝜌𝛼) = 0, whereas the quantum system is initialized in

a maximally mixed state with 𝑆(𝜌𝛽) = log 𝑑𝛽, where 𝑑𝛽 is the dimension of the

Hilbert space of the quantum system. The quantum mutual information 𝐼(𝜌𝛼𝛽) =

𝑆(𝜌𝛼𝛽||𝜌𝛼 ⊗ 𝜌𝛽) = 𝑆(𝜌𝛼) + 𝑆(𝜌𝛽) − 𝑆(𝜌𝛼𝛽) = 0 is zero, as expected in the absence of

correlations between the quantum system and the quantum probe.

Reducing the entropy of a quantum system by applying a unitary operation

on the joint system requires finding and applying the joint unitary operation 𝑈 =

argmin{𝑆(𝜌𝛽) | 𝜌𝛽 = Tr𝛼{𝑈𝜌𝛼𝛽𝑈
†}} that minimizes the entropy of the marginal state

𝜌𝛽 on the unitary orbit 𝒪𝜌 = {𝜌′𝛼𝛽 = 𝑈𝜌𝛼𝛽𝑈
†}. The unitary orbit 𝒪𝜌 defines an isen-

tropic manifold 𝑆(𝜌𝛼𝛽) = cst. for the joint state. For a separable state, 𝜌𝛼𝛽 = 𝜌𝛼⊗𝜌𝛽,

this unitary operation corresponds to a permutation of the eigenvalues of the joint

state [78]. The permutation operation is implemented with two successive controlled-

NOT operations, C𝛽NOT𝛼 followed by C𝛼NOT𝛽. The C𝛽NOT𝛼 operation inverts

the state of the quantum probe conditional on the state of the quantum system. For
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a system of two spins with resolved couplings, the controlled-NOT operations can

be implemented with selective 𝜋 pulses. For a system of two spins with unresolved

couplings, the controlled-NOT operations can be implemented using a combination

of non-selective pulses and joint evolution periods under the interaction Hamiltonian.

Reducing the entropy of a quantum system by applying a non-unitary dissipative

gate such as an amplitude damping channel requires constructing Φ(𝜌𝑆) = 𝜌′𝑆 such

that 𝑆(𝜌𝑆) ≥ 𝑆(𝜌′𝑆) ≥ 0, with the right equality in the case of a perfect channel,

which maps any mixed quantum state to a pure state, e.g., Φ : 𝜌 ↦→ Π0 ∀𝜌, where Π0

is the projector associated with the ground state manifold. In general, the action of

an amplitude damping channel on an arbitrary quantum state can be written as

Φ : 𝜌 ↦→ 𝜌′ =
𝑟∑︁

𝑘=1

𝐴𝑘𝜌𝐴
†
𝑘, (4.6)

where 𝐴1 =

⎡⎣1 0

0
√

1 − 𝑝

⎤⎦ and 𝐴2 =

⎡⎣0
√
𝑝

0 0

⎤⎦ for 𝑟 = 2. The set of discrete operators

{𝐴𝑘} are the Kraus operators for the amplitude damping channel, which satisfy the

completeness relation
∑︀𝑟

𝑘=1𝐴
†
𝑘𝐴𝑘 = 1. We can verify that Φ : 𝜌 = diag(𝜆1, 𝜆2) ↦→

diag(𝜆1 + 𝑝𝜆2, (1 − 𝑝)𝜆2), which is a maximally polarized pure state in the limit

𝑝 → {0, 1}.

For the sake of completeness, remember that the state of a single qubit can be

decomposed on the single-spin operator basis, such that 𝜌 = 1/2 + �⃗� · �⃗�, where
�⃗� = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) are the Pauli matrices. The quantum channel Φ : 𝜌 ↦→ 𝜌′ transforms

𝜌 to 𝜌′ = 1/2 + �⃗� ′ · �⃗�, where �⃗� ′ = 𝑡�⃗� + �⃗�, 𝑡 = 𝑂1�⃗�𝑂2 is a real matrix of size 3 and 𝑂1,

𝑂2 are rotation matrices that specify the orientation of the ellipsoid representing the

quantum state. The distortion vector �⃗� converts the Bloch ball to an ellipsoid

1/4 = 𝜏 2𝑥 + 𝜏 2𝑦 + 𝜏 2𝑧 = (𝜏 ′𝑥/𝜂𝑥)2 + (𝜏 ′𝑦/𝜂𝑦)
2 + (𝜏 ′𝑧/𝜂𝑧)

2,

while the translation vector �⃗� moves the centre of mass of the Bloch ball. For the

amplitude damping channel, �⃗� = (
√

1 − 𝑝,
√

1 − 𝑝, 1 − 𝑝) and �⃗� = (0, 0, 𝑝). Because
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�⃗� ̸= 0, the amplitude damping channel is not a unital map; a unital map is defined

such that the centre of the Bloch ball is a fixed point of the map, i.e., the map

transforms the identity state to itself.

Thermodynamics of coherent feedback control

The coherent feedback protocol to extract entropy out of a quantum system with

a quantum probe can be understood as a physical implementation of the Maxwell’s

demon gedanken experiment. The quantum probe plays the role of the demon, which

measures the microscopic state of the quantum system and use that information to

update the state of the system so as to reduce its entropy. The first controlled-NOT is

equivalent to the demon performing a coherent measurement on the quantum system,

which correlates the state of the demon with the state of the quantum system (through

the creation of two-spin order 2𝑆𝑧𝐼𝑧). The gain in information about the system is

quantified by the increase in quantum mutual information. The second controlled-

NOT is equivalent to the demon using his knowledge about the state of the quantum

system as a resource to perform work on the quantum system and thus reduce its

entropy. The projective measurement on the quantum probe dissipates entropy to

the environment, is equivalent to erasing the memory of the demon, which contains

information about the initial state of the system.

Quantify the amount of entropy extracted

The decrease in entropy of the quantum system after applying the amplitude damping

channel is captured by the relative entropy, 𝑆(𝜌𝐵||𝜌′𝐵), which quantifies the change in

entropy between the initial and final state of the quantum system. For a closed system

at quasi-equilibrium, i.e., at equilibrium with respect to its internal Hamiltonian, but

not with the larger environment, estimating the decrease in entropy is equivalent to

estimating the change in effective temperature of the equilibrium state.

Quantifying the amount of entropy extracted is thus equivalent to the problem of

estimating the change in the state parameters of the quantum system. Assuming the

quantum system to be a closed system at quasi-equilibrium described by a thermal
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state 𝜏𝛽 ∝ 𝑒−𝛽ℋ at a well-defined temperature 𝑇 = (𝛽𝑘𝐵)−1 (𝑘𝐵 is the Boltzmann

constant), e.g., the temperature of the lattice, the problem is to estimate the change

in inverse temperature 𝛿𝛽 = 𝛽−𝛽′. The smallest change in effective temperature that

can be measured is proportional to the relative entropy 𝑆(𝜏𝛽||𝜏 ′𝛽) of 𝜏𝛽 with respect

to 𝜏 ′𝛽, which is a measure of distinguishability between 𝜏𝛽 and 𝜏 ′𝛽.

Let’s consider a quantum system composed of a spin ensemble initialized in a

state of thermal equilibrium with the crystal lattice with inverse spin temperature

𝛽𝐿. The crystal lattice plays the role of a reservoir with infinite heat capacity. In the

high temperature limit, the thermal equilibrium state is a weakly ordered state that

only slightly differs from the state of complete disorder (mixed state) by 𝑆(𝜏𝛽||1𝑁) ≈
𝛽2‖ℋ‖2/𝑁 , with ‖ℋ‖2 = Tr{ℋ2}.

By definition, the thermal state maximizes the entropy under the constraint of

constant energy, Tr{𝜏𝛽ℋ} = ⟨ℋ⟩ = cste with Tr{𝜏} = 1. The equilibrium state

for the canonical ensemble is 𝜏 = 𝑒−𝛽ℋ · 𝒵−1 with 𝒵 = Tr{𝑒−𝛽ℋ}. In the limit

of high temperature, 𝜌 = 𝑒−𝛽ℋ · 𝒵−1 ≈ (1 − 𝛽ℋ)/Tr{1}, with 𝒵 = Tr{𝑒−𝛽ℋ} ≈
Tr{1}. The dimension of the Hilbert space for an ensemble of 𝑛 spins is given by

𝑁 = Tr{1} = (2𝐼 + 1)𝑛, which is equal to 𝑁 = 2𝑛 for an ensemble of 𝑛 spins

𝐼 = 1/2. The mean energy is ⟨ℋ⟩ = Tr{ℋ𝜌} ≈ −𝛽‖ℋ‖2/𝑁 , where ‖ℋ‖2 = Tr{ℋ2}.
The heat capacity, defined with respect to a change in inverse temperature 𝛽, is

−𝜕⟨ℋ⟩/𝜕𝛽 = ‖ℋ‖2/Tr{1}.

The von Neumann entropy of 𝜏𝛽 is 𝑆(𝜏𝛽)/𝑘B = −Tr{𝜏 log (𝜏)} = log (𝒵) + 𝛽⟨ℋ⟩,
which is equal to 𝑆(𝜏𝛽) ≈ log (𝑁) + 𝛽2‖ℋ‖2/𝑁 for an ensemble of 𝑛 non-interacting

spins 𝐼 = 1/2. The relative entropy of the thermal equilibrium state 𝜏𝛽 with respect

to the maximally mixed state 1𝑁 is thus

𝑆(𝜏𝛽||1𝑁) = Tr{𝜏𝛽 log 𝜏} − Tr{𝜏𝛽 log 1𝑁} (4.7)

= log (𝑁) − 𝑆(𝜏) (4.8)

≈ 𝛽2‖ℋ‖2/𝑁, (4.9)

which approches zero in the limit of infinite temperature, i.e., 𝑆(𝜏𝛽||1𝑁) → 0 for 𝛽 →
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0. We have made use of the fact that 𝑆(𝜏𝛽) = log (𝒵) +𝛽⟨𝐻⟩ ≈ log (𝑁)−𝛽2‖ℋ‖2/𝑁
for ⟨ℋ⟩ = Tr{𝜏𝛽ℋ} ≈ Tr{ℋ}/𝑁−𝛽Tr{ℋ2}/𝑁 , where Tr{𝐻} = 0 is chosen according

to an arbitrary definition of the energy scale. Note that the condition 𝑆(𝜏𝛽||1𝑁) ≪
1 guarantees the validity of the the spin temperature assumption, i.e., the density

matrix can be approximated by its first order expansion in 𝛽. For a two-level system

with Zeeman Hamiltonian equal to ℋ𝑆 = ~𝜔0 · 𝜎𝑧/2, we have 𝑆(𝜏𝛽||1𝑁) ≈ (𝛽~𝜔/2)2.

4.2.2 Initialize quantum systems using cross-polarization

Electron spins associated with paramagnetic centers in diamond are prepared in a

state of low entropy by exchanging energy with the NV electron spin, which is pre-

pared in a pure state using optical pumping (Fig. 4-8). Cross-polarization techniques

enable exchanging spin excitations between two spin systems. Cross-polarization in

the laboratory frame is achieved by matching the quantization energy of the two spin

systems in the laboratory frame by varying the strength and orientation of the static

magnetic field. Cross-polarization in the rotating frame is achieved by modulating

the energy levels of the two spin systems with continuous driving fields so as to enable

the coherent exchange of energy at a level anti-crossing in the tilted doubly-rotating

frame. The rate of polarization exchange is maximized at the Hartmann-Hahn match-

ing condition when the amplitude of the continuous driving fields is the same for both

spin systems.

Understand cross-polarization in the rotating frame

Cross-polarization in the rotating frame is best understood by considering the Hamil-

tonian of a quantum system of two spins of different spin species under continuous

irradiation with resonant driving fields,

ℋ = 𝜔𝑆𝑆𝑧 + 𝜔𝐼𝐼𝑧 + 𝑑 · 2𝑆𝑧𝐼𝑧

+ 2Ω𝑆 cos (𝜔𝑆𝑡)𝑆𝑥 + 2Ω𝐼 cos (𝜔𝐼𝑡)𝐼𝑥,
(4.10)
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b

Figure 4-8: Initialize quantum systems using cross-polarization in the ro-

tating frame. a, Quantum circuit to initialize a two-qubit system in a pure state
when the first qubit possesses an accessible physical mechanism to reduce its entropy,
e.g., via optical pumping. The dissipative channel Φ initializes the first qubit in a
pure state and the 𝑆𝑊𝐴𝑃 gate, which is represented in the quantum circuit by two
multiplication symbols linked by a straingth line, exchanges the state of the first qubit
with the state of the second qubit. b, The initial state of the two-qubit system is a
maximally mixed state with equal occupation probability of all four basis states. A
first dissipative channel initializes the state of the first qubit without affecting the
state of the second qubit. A 𝑆𝑊𝐴𝑃 gate then exchanges the state of the first qubit
with the state of the second qubit, leaving the first qubit in a maximally mixed state
and the second qubit in a polarized pure state. A second dissipative channel finally
initializes the state of the first qubit and thus prepares the joint state of the two-qubit
system into a polarized pure state.

such that the time-independent Hamiltonian in the doubly-rotating frame, ℋ𝐷𝑅 =

𝑈 †ℋ𝑈 − 𝑖𝜕𝑡𝑈𝑈 † with 𝑈(𝑡) = 𝑒𝑥𝑝(−𝑖(𝜔𝑆𝑆𝑧 +𝜔𝐼𝐼𝑧)𝑡), after the rotating wave approx-

imation is

ℋ𝐷𝑅 = Ω𝑆𝑆𝑥 + Ω𝐼𝐼𝑥 + 𝑑 · 2𝑆𝑧𝐼𝑧, (4.11)

where the 𝑆 and 𝐼 spins are effectively quantized along 𝑆𝑥 and 𝐼𝑥 with a quantization

energy of Ω𝑆 and Ω𝐼 . The dipolar interaction Hamiltonian has been approximated to
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its secular terms for heteronuclear spins.

To have the 𝑆 and 𝐼 spins quantized along 𝑆𝑍 and 𝐼𝑍 in a newly defined tilted

frame, we apply the frame transformations 𝑈(𝜃𝑆) = 𝑒−𝑖𝜃𝑆𝑆𝑦 and 𝑈(𝜃𝐼) = 𝑒−𝑖𝜃𝐼𝐼𝑦

with 𝜃𝑆 = 𝜋/2 and 𝜃𝐼 = 𝜋/2, which transform the spin operators {𝑆𝑧, 𝑆𝑥} to

{𝑆𝑍 = 𝑆𝑥, 𝑆𝑋 = −𝑆𝑧} and {𝐼𝑧, 𝐼𝑥} to {𝐼𝑍 = 𝐼𝑥, 𝐼𝑋 = −𝐼𝑧}. The Hamiltonian in

the tilted doubly-rotating frame ℋ𝑇𝐷𝑅 = 𝑈 †ℋ𝐷𝑅𝑈 after the frame transformation

𝑈 = 𝑈(𝜃𝑆)𝑈(𝜃𝐼) is

ℋ𝑇𝐷𝑅 = Ω𝑆𝑆𝑍 + Ω𝐼𝐼𝑍 + 𝑑 · 2𝑆𝑋𝐼𝑋 (4.12)

= (ΩΣ𝑆
Σ
𝑍 + 𝑑𝑆Σ

𝑋) + (ΩΔ𝑆
Δ
𝑍 + 𝑑𝑆Δ

𝑋) (4.13)

= ℋΣ + ℋΔ, (4.14)

where we have expressed the spin operators in the {Σ,∆} basis with ΩΣ = (Ω𝑆 +Ω𝐼),

ΩΔ = (Ω𝑆 − Ω𝐼), 𝑆Σ
𝑍 = (𝑆𝑍 + 𝐼𝑍)/2, 𝑆Δ

𝑍 = (𝑆𝑍 − 𝐼𝑍)/2, 𝑆Δ
𝑋 = (𝑆𝑋𝐼𝑋 + 𝑆𝑌 𝐼𝑌 ) =

(𝑆+𝐼− + 𝑆−𝐼+)/2, and 𝑆Σ
𝑋 = (𝑆𝑋𝐼𝑋 − 𝑆𝑌 𝐼𝑌 ) = (𝑆+𝐼+ + 𝑆−𝐼−)/2.
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Figure 4-9: Exchange spin excitations between two quantum systems using

cross-polarization in the rotating frame at the Hartmann-Hahn matching

condition. a, Energy levels of a two-spin system under continuous irradiation with
resonant driving fields in the tilted doubly-rotating frame. We observe a level anti-
crossing in the limit of ΩΔ → 0. b, Coherent exchange of spin order between the
NV electron spin and the first 𝑋 electron spin. The solid line is a fit to a sinusoidal
function decaying exponentially with a decay of 60.3 𝜇s.

The Hamiltonian for the system of two spins in the titled doubly-rotating frame

is decomposed into a sum of two commuting Hamiltonians that reside in the {Σ,∆}
subspaces respectively. Each Hamiltonian can be associated with an effective spin-
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1/2 with quantization energy ΩΣ and ΩΔ coherently driven at a rate specified by the

dipolar coupling constant 𝑑. For strong driving fields ΩΣ ≫ 𝑑 in the limit of nearly

exact amplitude matching ΩΔ . 𝑑, the Hamiltonian in the tilted rotating frame is

approximately given by

ℋ𝑇𝐷𝑅 ≈ (ΩΣ𝑆
Σ
𝑍 ) + (ΩΔ𝑆

Δ
𝑍 + 𝑑𝑆Δ

𝑋). (4.15)

The secular dipolar interaction term is driving coherent Rabi nutations in the ∆

subspace spanned by the eigenstates of 𝑆Δ
𝑍 , {|10⟩, |01⟩}, at the rate given by Ω̃ =√︀

Ω2
Δ + 𝑑2. Figure (4-9) shows the energy levels of Hamiltonian (4.15) and the level

anticrossing in the limit of ΩΔ → 0. The fidelity of the spin exchange operation is

maximized in the limit of perfect matching from the level anti-crossing, i.e., ΩΔ =

Ω𝑆 − Ω𝐼 → 0.

In our experiment, we implement the Hartmann-Hahn cross-polarization sequence

between the NV electron spin and X electron spin in three steps. First, we prepare

the NV electron spin in a coherent superposition of states with a 𝜋/2 pulse along 𝜎2.

Second, we continuously drive on resonance the NV electron spin with a continuous

microwave pulse of constant amplitude along 𝜎1. This step is equivalent to spin

locking the NV electron spin along the 𝜎1 direction. Third, we continuously drive on

resonance the X electron spin with a continuous driving field of constant amplitude.

The Hartmann-Hahn matching condition is found by sweeping the amplitude of the

continuous driving field on the X electron spin and identifying the amplitude at

which the relaxation of the NV center is maximal. The driving fields are applied on

resonance with the electron spin transitions to avoid measuring a resonance doublet

associated with the matching conditions Ω𝐼 = ±
√︀

Ω2
𝑆 + 𝛿𝜔2

𝑆. In our experiment, we

drive only one of the two hyperfine transitions of the NV electron spin associated

with the N-15 nuclear spin polarized with 𝑝 ≥ 85% to guarantee perfect matching

with the Hartmann-Hahn condition. Driving only one hyperfine transition reduces

the visibility of the signal, but does not affect the interpretation of the experimental

data.

86



Initialize electron spins using cross-polarization
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Figure 4-10: Initialize the first 𝑋 electron spin in a pure state using cross-

polarization in the rotating frame at the Hartmann-Hahn matching con-

dition. a-b, The spin-echo signal is modulated at 200 kHz. Recoupling the NV
electron spin with the first 𝑋 electron spin polarized up (blue) shifts the spectral
line by the dipolar interaction strength 𝑑1 = 64 kHz. The decay time decreases from
54.4 𝜇s to 23.9 𝜇s after recoupling to the second polarized 𝑋 electron spin, indicating
a source of unwanted dissipation that should be suppressed c, Quantum circuit to
initialize and detect the quantum state of a single electron spin. d, Spectrum of the
recoupled spin-echo signal for the NV electron spin interacting with an unpolarized
(red), partially polarized (yellow), or fully polarized (blue) 𝑋 electron spin (𝑋1). The
partially polarized signal is obtained by tuning the cross-polarization sequence in res-
onance with only one hyperfine transition of the first 𝑋 electron spin. The spectral
line at 200 kHz corresponds to the leaking coherence terms from the NV electron spin
that are created in the absence of recoupling with the 𝑋 electron spin, e.g., when
the 𝑋 electron spin occupies a hyperfine state that is not resonant with the control
pulses. The fully polarized signal is obtained by injecting polarization to the two
hyperfine transitions 𝑋1𝑎 and 𝑋1𝑏 of the 𝑋 electron spin.

We implement cross-polarization techniques in the rotating frame to polarize elec-

tron spins associated with unknown paramagnetic centers in diamond. The increase

in polarization is estimated using quantum parity measurements performed with the

SEDOR sequence. The parity observable𝒪 = 𝑆𝑧⊗𝐼𝑧 measures the imbalance between
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the population in the Σ and ∆ subpsaces spanned by the quantum states {|00⟩, |11⟩}
and {|01⟩, |10⟩} respectively. We can show that for electron spins with initial polar-

ization 𝑝𝛼 = 𝛼 and 𝑝𝛽 = 𝛽, the quantum measurement extracts ⟨𝒪⟩ = 𝑝𝛼𝑝𝛽 = 𝛼𝛽.

Figure 4-10 and Figure 4-11 show that we can efficiently initialize the two 𝑋 electron

spins from maximally mixed thermal states to polarized states using Hartmann-Hahn

cross-polarization sequences, as needed to create entangled states of multiple electron

spins.

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

j0ih0j

j1ih1j

a

Frequency (MHz)

P
ow

er

Figure 4-11: Initialize the second 𝑋 electron spin in a pure state using

cross-polarization in the rotating frame at the Hartmann-Hahn matching

condition. The spin-echo signal is modulated at 200 kHz. Recoupling the NV
electron spin with the second 𝑋 electron spin polarized up (red) or down (blue) shifts
the spectral line by the dipolar interaction strength 𝑑2 = 42 kHz. The decay time
decreases from 52.4 𝜇s to 39.6 𝜇s after recoupling to the second polarized 𝑋 electron
spin.
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4.3 Quantum system exploitation

Entanglement is the authentic form of quantum correlations that provide an oper-

ational advantage in measuring time-varying fields using quantum probes [20]. En-

tangled states of light and matter in increasingly large many-body quantum systems

have been created for precision measurements of frequency shifts and magnetic reso-

nance imaging. Recent experiments with trapped ions [79] have used entangled states

of electron spins to measure the magnetic interaction strength between two electron

spins in the presence of magnetic noise with an improvement in sensitivity [80].

This thesis addresses the problem of estimating the amplitude of time-varying

magnetic fields with entangled states of electron spins associated with two unknown

paramagnetic centers (𝑋1, 𝑋2) located in the environment of a single nitrogen-vacancy

center (NV) in diamond. Each paramagnetic center has an electron spin that is

strongly coupled to a nearby nuclear spin (𝐽 = 1/2). The resonance spectrum of

each electron spin exhibits two resolved hyperfine transitions associated with the two

possible states of the strongly-coupled nuclear spin. The nuclear spin thus labels

the electron spins by shifting their resonance frequencies in such a way that each

electron spin can be individually addressed with negligible crosstalk. The magnetic

dipolar interaction between the labeled electron spins and other bare electron spins

is also suppressed. This section describes our efforts to create entangled states of

electron spins between the NV electron spins and the 𝑋 electron spins to estimate

the amplitude of time-varying magnetic fields with improved sensitivity.

4.3.1 Understand entangled states of electron spins

The maximally entangled states for two qubits are the Bell states (modulo an arbitrary

phase factor) given by

|Φ±⟩ = (|00⟩ ± |11⟩)/
√

2 (4.16)

|Ψ±⟩ = (|01⟩ ± |10⟩)/
√

2. (4.17)
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The projection operators associated with the maximally entangled states, 𝜋Φ
± =

|Φ±⟩⟨Φ±| and 𝜋Ψ
± = |Ψ±⟩⟨Ψ±|, are represented in the computational basis as

𝜋Φ
± =

1

2
·

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 ±1

0 0 0 0

0 0 0 0

±1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝜋Δ
± =

1

2
·

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 1 ±1 0

0 ±1 1 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (4.18)

The maximally entangled states |Φ±⟩ and |Ψ±⟩ can be understood as coherent super-

position of states in the {Σ,∆} subspaces, which are spanned by the set of energy

levels {|00⟩, |11⟩} and {|01⟩, |10⟩} and are generated by the Pauli matrices

𝜎Σ
0 = (𝜎0 ⊗ 𝜎0 + 𝜎3 ⊗ 𝜎3)/2 (4.19)

𝜎Σ
1 = (𝜎1 ⊗ 𝜎1 − 𝜎2 ⊗ 𝜎2)/2 (4.20)

𝜎Σ
2 = (𝜎2 ⊗ 𝜎1 + 𝜎1 ⊗ 𝜎2)/2 (4.21)

𝜎Σ
3 = (𝜎3 ⊗ 𝜎0 + 𝜎0 ⊗ 𝜎3)/2, (4.22)

and

𝜎Δ
0 = (𝜎0 ⊗ 𝜎0 − 𝜎3 ⊗ 𝜎3)/2 (4.23)

𝜎Δ
1 = (𝜎1 ⊗ 𝜎1 + 𝜎2 ⊗ 𝜎2)/2 (4.24)

𝜎Δ
2 = (𝜎2 ⊗ 𝜎1 − 𝜎1 ⊗ 𝜎2)/2 (4.25)

𝜎Δ
3 = (𝜎3 ⊗ 𝜎0 − 𝜎0 ⊗ 𝜎3)/2, (4.26)

where the Pauli matrices are given by

𝜎0 =

⎛⎝1 0

0 1

⎞⎠ , 𝜎1 =

⎛⎝0 1

1 0

⎞⎠ , 𝜎2 =

⎛⎝0 −𝑖

𝑖 0

⎞⎠ , 𝜎3 =

⎛⎝1 0

0 −1

⎞⎠ . (4.27)

These Pauli matrices satisfy the usual commutation relationships, e.g., 𝜎Σ
3 =
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−𝑖[𝜎Σ
1 , 𝜎

Σ
2 ]/2, and are explicitely written as

𝜎Σ
0 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝜎Σ
1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝜎Σ
2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 −𝑖

0 0 0 0

0 0 0 0

𝑖 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝜎Σ
3 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠
and

𝜎Δ
0 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝜎Δ
1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝜎Δ
2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 −𝑖 0

0 𝑖 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝜎Δ
3 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

The joint state of two partially polarized qubits can be expressed as a statistical

mixture of partially polarized qubits in the {Σ,∆} subspaces,

𝜌𝛼𝛽 = 𝜌𝛼 ⊗ 𝜌𝛽 (4.28)

=
(𝜎0 + 𝛼 · 𝜎3)

2
⊗ (𝜎0 + 𝛽 · 𝜎3)

2
(4.29)

= (
(𝜎0𝜎0 + 𝛼𝛽 · 𝜎3𝜎3)

2
+

(𝛼 · 𝜎3𝜎0 + 𝛽 · 𝜎0𝜎3)

2
)/2 (4.30)

=
(1 + 𝛼𝛽)

2
· 𝜎

Σ
0

2
+

(1 − 𝛼𝛽)

2
· 𝜎

Δ
0

2
+

(𝛼 + 𝛽)

2
· 𝜎

Σ
3

2
+

(𝛼− 𝛽)

2
· 𝜎

Δ
3

2
(4.31)

= 𝑝Σ · (𝜎Σ
0 + 𝛼Σ · 𝜎Σ

3 )/2 + 𝑝Δ · (𝜎Δ
0 + 𝛼Δ · 𝜎Δ

3 )/2 (4.32)

= 𝑝Σ · 𝜌Σ𝛼𝛽 + 𝑝Δ · 𝜌Δ𝛼𝛽, (4.33)

where the population and the polarization of the joint state in the {Σ,∆} subspaces

is

𝑝Σ = (1 + 𝛼𝛽)/2 (4.34)

𝑝Δ = (1 − 𝛼𝛽)/2 (4.35)

91



and

𝛼Σ =
(𝛼 + 𝛽)

(1 + 𝛼𝛽)
(4.36)

𝛼Δ =
(𝛼− 𝛽)

(1 − 𝛼𝛽)
. (4.37)

The occupation probability (population) in the {Σ,∆} subpaces is determined by the

even/odd parity (𝛼𝛽) of the initial state of the two qubits, whereas the polarization in

the {Σ,∆} subpaces is determined by the occupation probability of the ground and

excited states, |00⟩ vs. |11⟩ for the Σ subspace, and |01⟩ vs. |10⟩ for the ∆ subspace.

In theory, an entangled state of two qubits can be created by applying one of

many possible entangling gates, e.g., by applying an entangling gate that implements

the equivalent of a 𝜋/2 pulse along 𝜎Σ
2 + 𝜎Δ

2 , such that

𝜌′𝛼𝛽 = 𝑝Σ · (𝜎Σ
0 + 𝛼Σ · 𝜎Σ

1 )/2 + 𝑝Δ · (𝜎Δ
0 + 𝛼Δ · 𝜎Δ

1 )/2. (4.38)

In the limit of maximally polarized qubits with |𝛼| → 1 and |𝛽| → 1, the entangling

gate creates a maximally entangled states

𝜌′𝛼𝛽 ∈ {𝜋Φ
± = (𝜎Σ

0 ± 𝜎Σ
1 )/2, 𝜋Ψ

± = (𝜎Δ
0 ± 𝜎Δ

1 )/2}. (4.39)

Understand the formalism of spin operators

The formalism of spin operators facilitates understanding the experimental imple-

mentation of entangling gates. The state of a quantum system is described by the

density operator 𝜌, which can be expressed as a density matrix

𝜌 =
∑︁
𝑘𝑙

𝜆𝑘𝑙|𝑘⟩⟨𝑙|, (4.40)

where 𝜆𝑘𝑙 are the matrix elements of the density matrix expressed in the basis gen-

erated by the set of quantum states {|𝑘⟩}. The diagonal elements 𝜆𝑘𝑘 quantify the

population in the state |𝑘⟩, whereas the non-diagonal elements 𝜆𝑘𝑙 quantify the co-
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herence between the states |𝑘⟩ and |𝑙⟩.
The density operator can be written as a linear combination of spin operators,

𝜌 =
∑︁
𝑘

𝜆𝑘𝑆𝑘, (4.41)

which generate a complete set of orthogonal basis operators {𝑆𝑘} in the Liouville

space. The spin operators satisfy the commutation relations [𝑆𝑘, 𝑆𝑙] = 𝑖𝜖𝑘𝑙𝑚𝑆𝑚, where

𝜖𝑘𝑙𝑚 is the Levi-Civita symbol with 𝜖𝑥𝑦𝑧 = 1 for the three Cartesian dimensions

{𝑥, 𝑦, 𝑧}. The spin operators for a spin-1/2 can be expressed in terms of the Pauli

matrices, {1, 𝑆𝑥, 𝑆𝑦, 𝑆𝑧} = {𝜎0, 𝜎1/2, 𝜎2/2, 𝜎3/2}.
The spin operators provide a simple way to calculate the unitary evolution of a

quantum system,

𝑈𝜌𝑈 † =
∑︁
𝑘

𝜆𝑘𝑈𝑆𝑘𝑈
†, (4.42)

by calculating the evolution of each spin operator 𝑆𝑘. Given the unitary operator

𝑈(𝜃, 𝑆𝑙) = 𝑒−𝑖𝜃𝑆𝑙 , the Baker-Hausdorff formula applied to spin operators gives

𝑈(𝜃, 𝑆𝑙) : 𝑆𝑘 ↦→ 𝑆𝑘 cos 𝜃 − 𝑖[𝑆𝑙, 𝑆𝑘] sin 𝜃 (4.43)

for 𝑆𝑙 different than 𝑆𝑘. For example, the unitary operation 𝑈(𝜋/2, 𝑆𝑦) is transformed

to the spin operator 𝑆𝑧 to 𝑆𝑥 = −𝑖[𝑆𝑧, 𝑆𝑦], such that the polarized state 𝜌 = 1/2+𝑆𝑧 =

|0⟩⟨0| transforms to the coherent state 𝜌′ = 1/2 + 𝑆𝑥 = |+⟩⟨+|, as expected for a

spin-1/2 rotated by 𝜋/2|𝑦 microwave pulse.

The set of basis operators for a quantum system composed of multiple subsystems

is generated by taking the direct product between the spin operators for each sub-

system. The set of spin operators for a system of two qubits 𝑆 = 1/2 and 𝐼 = 1/2

are
{1, 𝑆𝑥, 𝑆𝑦, 𝑆𝑧} ⊗ {1, 𝐼𝑥, 𝐼𝑦, 𝐼𝑧}

{1, 𝑆𝑥, 𝑆𝑦, 𝑆𝑧, 𝐼𝑥, 𝐼𝑦, 𝐼𝑧,

2𝑆𝑥𝐼𝑥, 2𝑆𝑥𝐼𝑦, 2𝑆𝑥𝐼𝑧, 2𝑆𝑦𝐼𝑥, 2𝑆𝑦𝐼𝑦, 2𝑆𝑦𝐼𝑧, 2𝑆𝑧𝐼𝑥, 2𝑆𝑧𝐼𝑦, 2𝑆𝑧𝐼𝑧},

(4.44)
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where the prefactor 2 is added to the two-spin operators to satisfy the commutation

relations.

Create entangled states of electron spins

A bipartite entangled state of two electron spin qubits initialized in a polarized state

𝜌𝛼𝛽 = 𝜌𝛼 ⊗ 𝜌𝛽 is created by preparing the first qubit in a superposition of states

with a Hadamard gate and correlating the state of the first and second qubits with

a C𝛼NOT𝛽 gate. We experimentally implement this entangling gate with spin qubits

associated with electron spins by preparing the first qubit in a superposition of state

with a 𝜋/2 along 𝜎𝑦 (𝑈(𝜋/2, 𝑆𝑦)), and correlating the two spins with an INEPT

sequence, which consist in preparing the second qubit in a superposition of states

with a 𝜋/2 pulse along 𝜎𝑦 (𝑈(𝜋/2, 𝐼𝑦)), evolving the joint state under the secular

dipolar interaction ℋ = 𝑑 · 2𝑆𝑧𝐼𝑧 for a duration 𝑡 = 𝜋/(2𝑑), such that 𝜃 = 𝑑 · 𝑡 = 𝜋/2

(𝑈(𝜋/2, 2𝑆𝑧𝐼𝑧)), and combining the coherence terms with a final 𝜋/2 pulse along 𝜎𝑥

on the second qubit (𝑈(𝜋/2, 𝐼𝑥)).

Given the initial state of the quantum system of two qubits,

𝜌𝛼𝛽 = 𝜌𝛼 ⊗ 𝜌𝛽 (4.45)

= (1/2 + 𝛼𝑆𝑧) ⊗ (1/2 + 𝛽𝐼𝑧), (4.46)

where 𝑝𝛼 = ⟨𝑆𝑧⟩ = Tr{𝜌𝛼𝑆𝑧}/Tr{𝑆𝑧𝑆𝑧} = 𝛼 and 𝑝𝛽 = 𝛽 are the initial polariza-

tions of the first and second qubits, the series of 𝜋/2|𝑦 pulses acting on both qubits

(𝑈(𝜋/2, 𝑆𝑦 + 𝐼𝑦)) creates a coherent superposition of states on each qubits,

𝜌𝛼𝛽 = (1/2 + 𝛼𝑆𝑧) ⊗ (1/2 + 𝛽𝐼𝑧) (4.47)

↦→ (1/2 + 𝛼𝑆𝑥) ⊗ (1/2 + 𝛽𝐼𝑥) (4.48)

𝜌′𝛼𝛽 = (1/4 + 𝛼/2 · 𝑆𝑥 + 𝛽/2 · 𝐼𝑥 + 𝛼𝛽/2 · 2𝑆𝑥𝐼𝑥). (4.49)

The evolution under the secular dipolar interaction term, ℋ = 𝑑 · 2𝑆𝑧𝐼𝑧 transforms
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the spin operators to

𝑆𝑥 ↦→ 𝑆𝑥 cos 𝜃 + 2𝑆𝑦𝐼𝑧 sin 𝜃 (4.50)

𝐼𝑥 ↦→ 𝑆𝑥 cos 𝜃 + 2𝑆𝑧𝐼𝑦 sin 𝜃 (4.51)

2𝑆𝑥𝐼𝑥 ↦→ 2𝑆𝑥𝐼𝑥, (4.52)

where 𝜃 = 𝑑 · 𝑡. We have used the Baker-Hausdorff formula for spin operators

(Eq. (4.43)) with [2𝑆𝑧𝐼𝑧, 𝑆𝑥] = 𝑖2𝑆𝑦𝐼𝑧 and [2𝑆𝑧𝐼𝑧, 2𝑆𝑥𝐼𝑥] = 0. Choosing the evo-

lution time 𝑡 = 𝜋/(2𝑑) such that 𝜃 = 𝜋/2, the state of the joint system obtained after

the evolution period under the dipolar interaction term and the 𝜋/2|𝑥 pulse on the

second qubit (𝑈(𝜋/2, 𝐼𝑥)) is

𝜌′𝛼𝛽 = (1/4 + 𝛼/2 · 𝑆𝑥 + 𝛽/2 · 𝐼𝑥 + 𝛼𝛽/2 · 2𝑆𝑥𝐼𝑥) (4.53)

↦→ (1/4 + 𝛼/2 · 2𝑆𝑦𝐼𝑧 + 𝛽/2 · 2𝑆𝑧𝐼𝑦 + 𝛼𝛽/2 · 2𝑆𝑥𝐼𝑥) (4.54)

↦→ (1/4 − 𝛼/2 · 2𝑆𝑦𝐼𝑦 + 𝛽/2 · 2𝑆𝑧𝐼𝑧 + 𝛼𝛽/2 · 2𝑆𝑥𝐼𝑥). (4.55)

The entangled nature of this state is better seen by transforming the spin operators to

the {Σ,∆} subspaces spanned by the maximally entangled states. The spin operators

are grouped, such that

𝜌′′𝛼𝛽 = 1/4 − 𝛼/2 · 2𝑆𝑦𝐼𝑦 + 𝛽/2 · 2𝑆𝑧𝐼𝑧 + 𝛼𝛽/2 · 2𝑆𝑥𝐼𝑥 (4.56)

= (1/2 + 𝛽 · 2𝑆𝑧𝐼𝑧)/2 − 𝛼 · (2𝑆𝑦𝐼𝑦 − 𝛽 · 2𝑆𝑥𝐼𝑥)/2 (4.57)

= (1 + 𝛽)/2 · (1Σ/2 + 𝛼𝑆Σ
𝑥 ) + (1 − 𝛽)/2 · (1Δ/2 − 𝛼𝑆Δ

𝑥 ) (4.58)

= 𝑝Σ · 𝜌Φ + 𝑝Δ · 𝜌Ψ, (4.59)

where the identity operators are defined as

1 = 1Σ + 1Δ (4.60)

1Σ/2 = (1/2 + 2𝑆𝑧𝐼𝑧)/2 (4.61)

1Δ/2 = (1/2 − 2𝑆𝑧𝐼𝑧)/2, (4.62)
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and the spin operators in the {Σ,∆} subspaces are defined as

𝑆Σ
𝑥 = (2𝑆𝑥𝐼𝑥 − 2𝑆𝑦𝐼𝑦)/2 = 𝜎Σ

1 /2 (4.63)

𝑆Δ
𝑥 = (2𝑆𝑥𝐼𝑥 + 2𝑆𝑦𝐼𝑦)/2 = 𝜎Δ

1 /2. (4.64)

The initial polarization of the second qubit determines the occupation probability in

each subspace

𝑝Σ = (1 + 𝛽)/2 (4.65)

𝑝Δ = (1 − 𝛽)/2, (4.66)

whereas the initial polarization of the first qubit 𝑝𝛼 = 𝛼 determines the polarization

of the entangled state in each subpsace. This experimental implementation of the

entangling differs from what had been derived in Eq. (4.38) by applying a 𝜋/2 pulse

along 𝜎Σ
2 + 𝜎Δ

2 .

Understand entangling gates

Let’s consider the joint state of a quantum system of two qubits prepared in partially

polarized states, 𝜌𝛼𝛽 = 𝜌𝛼 ⊗ 𝜌𝛽, with 𝜌𝛼 = (𝜎0 + 𝛼𝜎3)/2 and 𝜌𝛼 = (𝜎0 + 𝛽𝜎3)/2.

The joint state is diagonal in the computational basis spanned by the basis states

{|𝑚⟩} = {|00⟩, |01⟩, |10⟩, |11⟩}, where𝑚 = (𝑚1𝑚2)2 is the binary number indexing the

states of the quantum system. The entangling gate maps the joint state 𝜌 =
∑︀

𝑚 𝑝𝑚𝜋𝑚

to 𝜌′ =
∑︀

𝑚 𝑝𝑚𝜋
′
𝑚, where 𝜌′ is expressed as a linear combination of the projection

operators on the Bell states

𝜋±
Ψ = |Ψ±⟩⟨Ψ±| (4.67)

𝜋±
Φ = |Φ±⟩⟨Φ±|, (4.68)

with occupation probabilities given by {𝑝𝑚} = {𝑝0𝛼𝑝0𝛽, 𝑝0𝛼𝑝1𝛽, 𝑝1𝛼𝑝0𝛽, 𝑝1𝛼𝑝1𝛽} with {𝑝0𝛼, 𝑝1𝛼} =

{(1 + 𝛼)/2, (1 − 𝛼)/2} and {𝑝0𝛽, 𝑝1𝛽} = {(1 + 𝛽)/2, (1 − 𝛽)/2}. The entangling

96



gate transforms the projection operators on the computational basis states {𝜋𝑚} =

{𝜋00, 𝜋01, 𝜋10, 𝜋11} into the projection operators on the Bell states {𝜋′
𝑚} = {𝜋+

Φ , 𝜋
+
Ψ, 𝜋

−
Φ , 𝜋

−
Ψ},

as shown in the transformation table

𝜌𝛽

𝜋0 𝜋1

𝜌𝛼
𝜋0 𝜋+

Φ 𝜋+
Ψ

𝜋1 𝜋−
Φ 𝜋−

Ψ

Maximally entangled states are obtained for pure initial states with |𝛼| = 1 and

|𝛽| = 1. In such a case, the initial state of the control qubit (𝜌𝛼) determines the

parity of the entangled state ({+,−}), whereas the initial state of the target qubit

(𝜌𝛽) determines the phase of the entangled state ({Φ,Ψ}).
The projection operators {𝜋+

Φ , 𝜋
−
Φ , 𝜋

+
Ψ, 𝜋

−
Ψ} can be transformed to the Pauli matri-

ces in the {Σ,∆} subspaces {𝜎Σ
0 , 𝜎

Σ
1 , 𝜎

Δ
0 , 𝜎

Δ
1 } with {𝜋Σ

+, 𝜋
Σ
−} = {(𝜎Σ

0 + 𝜎Σ
1 )/2, (𝜎Σ

0 −
𝜎Σ
1 )/2)} and {𝜋Δ

+ , 𝜋
Δ
−} = {(𝜎Δ

0 + 𝜎Δ
1 )/2, (𝜎Δ

0 − 𝜎Δ
1 )/2}, such that the entangled state

𝜌 = (𝑝Σ+𝜋
Σ
+ + 𝑝Σ−𝜋

Σ
−) + (𝑝Δ+𝜋

Δ
+ + 𝑝Δ−𝜋

Δ
− ) (4.69)

= 𝑝Σ(𝜎Σ
0 + 𝛼Σ𝜎

Σ
1 ) + 𝑝Δ(𝜎Δ

0 + 𝛼Δ𝜎
Δ
𝑥 ) (4.70)

can be understood as a coherent superposition of states in the {Σ,∆} manifolds with

𝑝Σ = 𝑝Σ++𝑝Σ−, 𝑝Δ = 𝑝Δ++𝑝Δ−, 𝛼Σ = (𝑝Σ+−𝑝Σ−)/(𝑝Σ++𝑝Σ−), and 𝛼Δ = (𝑝Δ+−𝑝Δ−)/(𝑝Δ++𝑝Δ−).

4.3.2 Create and detect entangled states of two electron spins

We create bipartite entangled states of two electron spins between the NV electron

spin and the first 𝑋 electron spin (Fig. 4-12). After initializing the state of the NV

electron spin by optical pumping, the two hyperfine transitions of the𝑋 electron spins

are polarized with a series of two Hartmann-Hahn cross-polarization sequences. After

initializing the two electron spins, bipartite entangled states are created by applying

an entangling gate, which consists in a Hadamard gate on the first qubit to create a

coherent superposition of states on the NV electron spin and a C𝛼NOT𝛽 to transfer

the single-spin coherence into two-spin coherence. These gates are implemented using

97



a series of control pulses and periods of evolution under the dipolar interaction, vid.,

INEPT sequence.

Φ Φ H Hρα

ρβ

Z

a

|00〉 |01〉

|11〉|10〉

|00〉 |01〉

|11〉|10〉

|00〉 |01〉

|11〉|10〉
b

|00〉 |01〉

|11〉|10〉

|00〉 |01〉

|11〉|10〉

|00〉 |01〉

|11〉|10〉
c

Figure 4-12: Create entangled states of two electron spins in diamond.

a, Quantum circuit to create entangled states of two electron spins with the entangling
gate enclosed in a black box. b, The population of the two-qubit polarized state is first
converted into single-spin coherence on the NV electron spin with a Hadamard gate
and then transferred into two-spin (double quantum) coherence with a controlled-not
gate. Applying the entangling gate starting from the polarized state |00⟩ creates the
Bell state Φ = (|00⟩ + |11⟩)/

√
2. c, Applying the entangling gate to the 𝑋 electron

spin prepared in a mixed state creates a quantum state corresponding to a statistical
mixture of zero-quantum (|Ψ⟩⟨Ψ|) and double-quantum (|Φ⟩⟨Φ|) coherences.

We confirm the creation of entangled states of two electron spins by performing

state tomography in the subspace of the Hilbert space spanned by the two-qubit Bell

states. The phases of the microwave pulses implementing the disentangling gate are
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modulated at 𝜈𝛼 = 500 kHz and 𝜈𝛽 = 300 kHz to simulate the evolution of the

entangled state under the Zeeman Hamiltonian ℋ/ℎ = 𝜈𝛼𝑆𝑧 + 𝜈𝛽𝐼𝑧, where 𝛼 and

𝛽 denotes the electron spins of the NV center and paramagnetic center respectively.

The occupation probability of the entangled state in the subspaces associated with the

Bell states |Φ⟩ and |Ψ⟩ is captured by spectral components at 𝜈Σ = 𝜈𝛼+𝜈𝛽 = 800 kHz

and 𝜈Δ = 𝜈𝛼 − 𝜈𝛽 = 300 kHz. Figure 4-13 shows that we can efficiently create and

detect bipartite entangled states of electron spins after initializing the state of the 𝑋

electron spin in a pure state.

Imperfect recoupling to the 𝑋 electron spin, e.g., when driving only one of the two

possible hyperfine transitions, creates single-spin coherence terms on the NV electron

spin that modulates the fluorescence signal at 𝜈𝛼. These coherence terms are elimi-

nated by averaging over two symmetric realizations of the experiment obtained with

and without shifting by 𝜋 the phase of all of the pulses implementing the disentan-

gling gate [81]. This phase cycling technique is commonly used in quantum sensing

protocols to cancel out common mode noise and nuclear magnetic resonance to iso-

late spectral components associated with specific coherence terms in the many-body

Hamiltonian.

4.3.3 Create and detect entangled states of three electron spins

We create entangled states of three electron spins associated with a single nitrogen-

vacancy center (NV) and two paramagnetic centers (Fig. 4-14). The quantum system

of three electron is prepared in a pure state with a series of optical pulses acting

on the NV center and cross-polarization sequences acting on both the NV electron

spin and X electron spins. Specifically, we transfer polarization from the NV electron

spin to the X electron spins with a series of four Hartmann-Hahn cross-polarization

sequences resonantly driving each one of the four hyperfine transitions of the two

paramagnetic centers.

We create the entangled state |𝐺𝐻𝑍⟩ = (|000⟩ + |111⟩)/
√

2 with an entangling

operation composed of a Hadamard gate and two controlled-not gates. The entangling

gate consists in a Hadamard gate applied on the first qubit and two controlled-not
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Figure 4-13: Detect entangled states of two electron spins in diamond.

a, Quantum circuit with the disentangling gate enclosed in a black box. b, Apply-
ing an entangling gate to an unpolarized spin (black) creates a statistical mixture of
maximally mixed states 𝜌𝛼𝛽 = (𝜌Ψ + 𝜌Φ)/2. Applying an entangling gate after po-
larizing the electron spin in the state |0⟩ or |1⟩ creates the bipartite entangled states
|Φ⟩ = (|00⟩ + |11⟩)/

√
2 or |Ψ⟩ = (|01⟩ + |10⟩)/

√
2. The phases of the pulses driving

the disentangling gate are modulated at 𝜈𝑁𝑉 = 500 kHz, 𝜈𝑋 = 300 kHz, so that the
bipartite entangled states |Ψ⟩ = (|01⟩+|10⟩)/

√
2 and |Φ⟩ = (|00⟩+|11⟩)/

√
2 oscillates

at 𝜈Δ = 200 kHz and 𝜈Σ = 800 kHz.

gates applied on the first and second qubits and the first and third qubits. The

Hadamard gate prepares the NV electron spin into a coherent superposition of states;

then, the first C𝑁𝑉NOT𝑋1 gate converts the single-spin coherence on the NV electron

spin into two-spin coherence in the double-quantum subspace; finally, the second

C𝑁𝑉NOT𝑋2 gate converts the two-spin coherence in the double-quantum subspace
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Figure 4-14: Create and detect entangled states of three electron spins

in diamond. a, Quantum circuit to create and detect entangled states of three
electron spins. b, The population of the three-qubit polarized state is first converted
into single-spin coherence on the NV electron spin with a Hadamard gate and then
transferred into three-spin coherence with a series of two controlled-not gates to create
the tripartite entangled state |GHZ⟩ = (|000⟩ + |111⟩)/2.

into three-spin coherence in the triple-quantum subspace.

We detect the tripartite entangled state by converting the three-spin coherence

back into a population state on the three qubits and performing a projective measure-

ment on the NV electron spin. Figure 4-15 shows the creation of a tripartite entangled

state of three electrons. The signal is modulated at 𝜈Σ = 𝜈𝛼 + 𝜈𝛽 + 𝜈𝛾 = 800 kHz

for the |GHZ⟩ state when the phases of the pulses of the distentangling gate are

modulated at 𝜈𝛼 = 500 kHz, 𝜈𝛽 = 200 kHz, and 𝜈𝛾 = 100 kHz.

4.3.4 Measure magnetic fields with entangled states of elec-

tron spins

We estimate the amplitude of a sinusoidal waveform oscillating at 100 kHz with

entangled states of two electron spins. The entangled state is decoupled from external

sources of noise by simultaneously applying two decoupling 𝜋 pulses on both the NV
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Figure 4-15: Create and detect entangled states of three electron spins in

diamond. Normalized spectrum of the tomography signal after applying an entan-
gling operation between the NV electron spin and two 𝑋 electron spins. The phase
of the readout pulses for the disentangling operation is modulated at 𝜈𝛼 = 0.5 MHz,
𝜈𝛽 = 0.2 MHz, and 𝜈𝛾 = 100 kHz for the NV electron spin and the two 𝑋 electron
spins respectively. The coherent modulation at 𝜈Σ = 𝜈𝛼 +𝜈𝛽 +𝜈𝛾 = 800 kHz indicates
the creation of the tripartite entangled state |𝐺𝐻𝑍⟩ = (|000⟩ + |111⟩)/

√
2.

electron spin and the first 𝑋 electron spin during the sensing period. The relative

delay between the sinusoidal waveform and the sampling sequence is calibrated so as

to maximize the phase acquired by the entangled state of two electron spins.

After initializing the state of the NV electron spin and the first 𝑋 electron spin

with a cross-polarization sequence, we create the entangled state Φ = (|00⟩+|11⟩)/
√

2,

let it interact with the sinusoidal waveform for a single period 𝑇 = 1/𝜈 = 10 𝜇s, and

convert the acquired phase 𝜑Σ = 𝜑𝛼+𝜑𝛽 into a measurable population difference onto

the NV electron spin. The signal measured for a coherent superposition of state on

the NV electron spin and an entangled state of the NV electron and 𝑋 electron spin

is shown in Fig 4-16.

The interferometric signal for the bipartite entangled state precesses at twice the

rate as the coherent state, but its visibility is about thrice as small. The decrease in
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Figure 4-16: Measure magnetic fields with entangled states of two electron

spins in diamond. a, Differential fluorescence signal as a function of the amplitude
of a sinusoidal field oscillating at 100 kHz. The bipartite entangled state |Φ⟩ =
(|00⟩+ |11⟩)/

√
2 oscillates at twice the rate than the coherent superposition of states

(|0⟩ + |1⟩)/
√

2. b, The decrease in the smallest field as a function of the number of
repetitions shows that the coherent superposition of states of the single NV electron
spin outperforms the bipartite entangled state of two electron spins by a factor of 1.4
due to control imperfections and dissipation during state preparation and readout.
Each average consists in 1𝑒4 repetitions of the measurement sequence.

visibility of the interferometric signal is caused by coherent and incoherent sources

of errors. Coherent sources of errors are associated with the creation of unwanted

coherence terms due to imperfect control pulses. Incoherent sources of errors are

associated with dissipation due to imperfect decoupling from external sources of noise

during control operations and sensing, as well as spin relaxation during the whole

duration of the sensing protocol.

We quantify the performance of our method by computing the sensitivity, which

measures the smallest change in amplitude that can be estimated with a finite amount

of resources, e.g., the total number of measurements or the number of entangled

quantum probes. The sensitivity to small variations in amplitude of the time-varying

magnetic field 𝑏0 is experimentally obtained by 𝛿𝐵 = 𝜎𝑁/𝑑𝑆𝐵, where 𝜎𝑁 is the

standard deviation of the measured signal after averaging the outcomes of a series of

𝑁 measurements and 𝑑𝑆𝐵 is the maximum slope of the signal variation with 𝑏0 [2].

The scaling of the sensitivity as a function of the number of averages is shown

in Fig. 4-16 for a coherent superposition of states of the NV electron spin and for

a bipartite entangled state between the NV electron spin and the first 𝑋 electron
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spin, which was created from an initially polarized and unpolarized 𝑋 electron spin.

Recoupling the NV electron spin to the two hyperfine transitions of the first𝑋 electron

spins increases the sensitivity over recoupling only one hyperfine transition of the first

𝑋 electron spin. The coherent superposition of state on the NV electron spin performs

better than the bipartite entangled state by a factor of 1.4.

The sensitivity can be increased by performing repetitive measurements of the elec-

tron spins, implementing numerically optimized pulses, and driving simultaneously

multiple resonance transitions to reduce relaxation during the state preparation step.

4.3.5 Perform repetitive quantum measurements of electron

spins

To increase the sensitivity of the interferometric signal obtained with entangled states

of electron spins, we map the phase information acquired by the entangled state as a

population difference onto the 𝑋 electron spin and perform repetitive quantum mea-

surements of the 𝑋 electron spin [82] with the NV electron spin. These measurements

take advantage of the X electron spins being stable under optical illumination.

We calibrate the repetitive readout sequence by measuring the increase in SNR on

the estimate of the polarization of the 𝑋 electron spin after initializing its quantum

state with a cross-polarization sequence. We demonstrate a relative improvement in

SNR by a factor of 1.6 after 𝑀 = 32 repetitions (Fig. 4-17).

The cumulative weighted signal after 𝑀 repetitions of the quantum measurement

(signal) and its associated statistical error (noise) are given by [82]

𝑆𝑀 =
𝑀∑︁

𝑚=1

𝑤𝑚 |𝑆𝑚| (4.71)

𝜎𝑀 =

⎯⎸⎸⎷ 𝑀∑︁
𝑚=1

𝑤2
𝑚𝜎

2
𝑚, (4.72)
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Figure 4-17: Perform repetitive quantum measurements of the polarization

of the first 𝑋 electron spin. a, Fluorescence signal for each repetition measured
after a series of repetitive quantum measurements of the 𝑋 electron spin with the 𝑁𝑉
electron spin measured along ±𝑆𝑧. b, Differential signal for each repetition obtained
after computing the difference of the two fluorescence curves. The solid line is a fit to a
decaying exponential function with half-life equal to𝑚 = 3.0. c, Cumulative weighted
signal computed for an increasing number of repetitions. The figure of merit is the
SNR, which corresponds to the ratio between the signal and its standard deviation
(noise). d, Improvement in SNR over a single repetition for an increasing number of
repetitions computed for the weighted signal (blue) and the unweighted signal (red).
Assigning a lower weight to realizations of the signal with a smaller SNR maximizes
the SNR of the cumulative signal.

where the weights 𝑤𝑚 = |𝑆𝑚|/𝜎2
𝑚 are chosen so as to maximize the SNR,

SNR(𝑀) = 𝑆𝑀/𝜎𝑀 (4.73)

=

⎯⎸⎸⎷ 𝑀∑︁
𝑚=1

|𝑆𝑚|/𝜎𝑚

2

. (4.74)

The signal decreases exponentially with the number of repetitions with a decay

rate equal to 𝜆 = 0.23, which correspond to a half-life of 𝑚1/2 = log 2/𝜆 = 3.0.

The decrease in signal is attributed to the depolarization of the 𝑋 electron spin af-

105



ter repeating the quantum measurement. Possible mechanisms for depolarization of

electron spins during repetitive measurements are imperfect control pulses converting

population of the 𝑋 electron spin into single-spin coherences that is dissipated under

free evolution, imperfect recoupling sequences converting population of the 𝑋 elec-

tron spin into two-spin coherences that is dissipated under projective measurements

on the NV electron spin, light-induced photoionization of the paramagnetic center,

incoherent spin flips of the 𝑋 nuclear spin, homonuclear spin diffusion with weakly

coupled electron spins of the same species and spin-lattice relaxation.

To confirm the proper conversion and storage of coherence into population onto

the 𝑋 electron spin, we create an entangled state of two electron spins and performed

a tomographic measurement of the quantum state assisted with repetitive measure-

ments of the electron spins. Figure 4-18 shows a relative increase in the spectral

power (area under the spectral peak) by 4.05 for 𝑀 = 4 repetitions.
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Figure 4-18: Perform repetitive quantum measurements of the coherence

stored in the bipartite entangled state formed by the NV electron spin and

the first 𝑋 electron spin. a, Quantum circuit to initialize, entangle, disentangle,
and repetitively measure the bipartite quantum system of two electron spins. b, Power
spectrum of the cumulative weighted signal for up to𝑀 = 4 repetitions. The phases of
the pulses of the disentangling gate are modulated at 𝜈𝛼 = 250 kHz and 𝜈𝛽 = 150 kHz,
such that the entangled state |Ψ⟩ = (|01⟩ + |10⟩)/

√
2 produces a modulation at

𝜈Δ = 𝜈𝛼 − 𝜈𝛽 = 100 kHz.
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4.4 Conclusion and outlook

In conclusion, we introduced coherent control techniques to manipulate electron spins

in diamond and experimentally demonstrated an approach to environment-assisted

quantum sensing and quantum-enhanced metrology.

We first identified two hybrid-electron nuclear spin systems associated with un-

known paramagnetic centers in the environment of a single nitrogen-vacancy center in

diamond. We estimated the components of their hyperfine tensor by monitoring the

change in the resonance frequencies of the esr spectrum as a function of the strength

and orientation of the static magnetic field.The large hyperfine coupling strength en-

abled selectively addressing each hyperfine transitions and effectively protecting the

electron spins against spin diffusion with free electrons. The nuclear spins will pro-

vide additional quantum resources for storing quantum information and assisting in

implementing quantum protocols.

We then introduced magnetic double-resonance techniques to initialize, manipu-

late, and measure the quantum states of single electron spins through quantum control

on the NV electron spin. Electron spins associated with unknown paramagnetic cen-

ters were initialized in a pure state using coherent feedback and cross-polarization

in the rotating frame. The increase in polarization was measured by performing a

quantum measurement on the electron spins with the NV electron spin acting as a

quantum probe.

We further created entangled states of two and three electron spins between the

NV electron spin and two X electron spins, taking advantage of our ability to efficiently

initialize their quantum state using coherent feedback control techniques and cross-

polarization techniques. These entangled states of two electron spins were used to

detect time-varying magnetic fields, thus demonstrating an approach to environment-

assisted quantum sensing. To increase the visibility of the interferometric signal

obtained with entangled states, we implemented repetitive readout of the 𝑋 electron

spins, taking advantage of their stability under optical illumination.

Future work will exploit the nuclear spins associated with these paramagnetic cen-
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ters as robust long-lived quantum registers (memories) suitable for storing quantum

information, suppressing errors, and assisting in performing quantum logic opera-

tions [83, 84, 85].

Combining these spectroscopic techniques with the deterministic fabrication of

spatially-confined ensembles of interacting electron spins in diamond will enable

studying nonequilibrium dynamics in many-body correlated states of electron and

nuclear spins at the atomic scale. Coherent control of interacting spins on discrete

arrays embedded in photonics structures or combined with cold atomic systems will

enable exploring fundamental ideas in quantum simulation of topological matter.
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Chapter 5

Conclusion and outlook

In this thesis, we introduced and experimentally demonstrated coherent control tech-

niques to initialize, manipulate, and measure the quantum state of single and multiple

electron spins in diamond for applications in quantum information science and quan-

tum sensing. We developed control sequences to modulate the evolution of electron

spins and gain spectral information about time-varying fields and unknown quantum

systems. We first showed how a series of time-inverting 𝜋 pulses generate digital

filters that are naturally described by Walsh functions, which form a complete basis

of orthonormal functions suitable for sampling and reconstructing deterministic and

stochastic time-varying fields with improved efficiency. We then showed how driving

the resonant transitions of the spin environment enables identifying and converting

unknown quantum systems into quantum resources useful for processing quantum

information and sensing time-varying fields with improved efficiency, e.g., by creating

entangled states of many electron spins. Scaling up the size of quantum systems by

integrating quantum resources from the environment of a quantum probe is a promis-

ing approach to improve the performance of quantum sensors when deterministically

fabricating an ensemble of interacting quantum probes is prohibitively difficult.

We first introduced in Chapter 2 and Chapter 3 the Walsh reconstruction method

to reconstruct the temporal profile of deterministic fields and perform spectral mea-

surements of stochastic fields with a single quantum probe. This method provides

a general framework for quantum parameter estimation, e.g., to identify control se-
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quences that provide the best performance in terms of information extraction vs. noise

suppression and design sampling strategies that maximize the information extracted

during each sampling step. The Walsh reconstruction method can be generalized to

sample higher cumulants of the probability distribution associated with non-gaussian

stochastic processes or probe the dynamics of multipartite quantum systems. Prac-

tical applications of this method include measuring action potentials at the level of

single neurons, characterizing the transmission properties of microwave structures, or

studying the many-body dynamics of ensembles of interacting spins.

We then located and identified in Chapter 4 two hybrid electron-nuclear spin sys-

tems in the environment of a single NV center by measuring the dipolar coupling

constant and the hyperfine spectrum for different values of the strength and orien-

tation of the static magnetic field. Performing quantum measurements on these two

hybrid electron-nuclear spin systems made it possible to initialize and measure their

quantum state using the NV center as an auxiliary quantum system. We finally cre-

ated entangled states of two and three electron spins to measure the amplitude of

time-varying magnetic fields with improved sensitivity. We showed that repetitive

measurements of the electron spins provide a gain in signal-to-noise that is greater

than the loss caused by imperfections in state preparation and readout. Combining

these techniques will provide the gain in sensitivity needed to demonstrate quantum-

enhanced magnetic sensing with quantum probes in solid-state materials.

Perfoming quantum measurements on the nuclear spins using electron-nuclear

double-resonance sequences will enable identifying the gyromagnetic ratio of the nu-

clear spin and improving the estimates of the hyperfine components. Measuring the

hyperfine spectrum for additional orientations of the external magnetic fields will

shine light on the possible existence of a third paramagnetic center in the vicinity of

a single NV center, which may be useful in creating quadripartite entangled states of

electron spins and implementing quantum algorithms with spin systems of higher di-

mension. Characterizing the physical properties of these unknown defects, including

their physical structure and photoionization properties, will facilitate modeling their

dynamics and fabricating similar defects on demand. In addition, the efficiency of the
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initialization process, especially in systems requiring repetitive polarization injection

steps, will be improved by implementing entangling gates, adiabatic operations and

driving protocols with shortcuts to adiabaticity, and algorithmic cooling techniques.

Future work will focus on creating hybrid electron-nuclear spin systems of increas-

ing dimension to study spin diffusion and non-equilibrium dynamics in many-body

interacting spin systems, explore the limits on the efficiency of cooling quantum sys-

tems, and implement novel strategies for improving the sensitivity of quantum sensors

for applications in quantum information science and quantum sensing.
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