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In the doctoral dissertation a live load model for long span structures was derived. 

The live load model is valid for spans between 600 ft and 5000 ft and it is intended to 

reflect current traffic patterns, quantities of trucks and their weights. The live load models 

available were developed for short and medium span bridges. Those models were not 

appropriate for long span bridges due to different types of structure and critical traffic 

patterns. Live load on long spans depends on traffic mix. One heavily overloaded truck 

does not have significant influence. Moreover, the continuous increase in the number of 

the trucks, their weights, and high percentage of overweight trucks led to a search for the 

newest traffic data. The database includes variety of sites within many different states. A 

numerical procedure was developed to process the database and simulate traffic jam 

situations. From the simulation the values of uniformly distributed load were derived. 

Trucks were kept in actual order, as recorded in the WIM surveys. Results of the 

simulations were plotted as a cumulative distribution function of uniformly distributed 

load for considered span lengths. For longer spans, uniformly distributed load decreases 

and is closer to the mean value. The bias factors were calculated for the heaviest 75-year 

combination of vehicles. The 75-year uniformly distributed loads were derived from 



 

 

extrapolated distributions. It was stated that for most of the bridges current live load HL-

93 is appropriate. It was also noticed that some bridges, characterized by high ADTT and 

increased percentage of overloaded loaded vehicles, require special attention and 

application of increased design live load. The developed live load model is recommended 

to be taken into consideration in the bridge design code. 
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CHAPTER 1  

INTRODUCTION 

1.1. PROBLEM STATEMENT 

 

The live load models available were developed for short and medium span 

bridges. This doctoral dissertation deals with the development of a live load model for 

long span structures. The developed live load model is valid for spans between 600 ft and 

5000 ft. In contrast to short and medium spans, a long span live load must include the 

possibility of multiple trucks being present.  

The continuous increase in the number of the trucks and their weights led to a 

review of traffic data for live load. Observing traffic statistics helps to realize the rate of 

those changes, their importance, and to draw some conclusions regarding design. In the 

last 30 years, the number of the vehicle miles logged annually on American highways has 

increased 225%, with heavy truck traffic increasing 550%. Some percentage of trucks 

runs overweight, particularly if it is to their economic advantage. Therefore, a new live 

load model for long span bridges had to be developed and it had to be based on the 

newest traffic data obtained from highway and bridge administrators.  

During the AASHTO LRD calibration, the live load model for short and medium 

span bridges was developed based on a set of truck weight and load effect statistics that 

were presumed to be valid for any typical bridge site in the U.S. The live load model may 

not represent the actual loading conditions at a particular bridge site or bridges in a state. 

Nowadays, several states are using Weigh-In-Motion (WIM) systems to collect vast 
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amounts of truck weight and traffic data that can be used to obtain site-specific and state-

specific live load models for bridge design and load capacity evaluation. This could allow 

individual states to adjust the AASHTO live load factors to take into consideration the 

particular truck traffic conditions throughout a state, a region, or for a particular route. 

Site-specific or state-specific live load models may be developed based on actual truck 

weight and traffic data collected at the site or within the state. Traffic varies for different 

sites within each state. As a result, site specific models depending on average daily truck 

traffic and participation of heavily loaded vehicles seem to be more practical. 

Since early publications by the American Association of State Highway Officials 

(AASHO), live load was modeled as an HS20 truck. As an addition to truck load, the 

uniformly distributed load of 0.64 kip/ft was introduced in 1944. Since then the original 

definition of HS-20 has been changed. The concentrated load was substituted with three 

axial forces representing a truck. In contrast, the uniformly distributed load has never 

been updated. It is still used in the current AASHTO LRFD Code as it was in 1944. The 

derivation of uniformly distributed load is not clear. To amend this, a new approach to 

model uniformly distributed load had to be developed and new value of uniformly 

distributed load had to be proposed. Current multilane reduction factors and dynamic 

allowance also may not be appropriate for long span bridges. Review of those topics was 

necessary. 

 

1.2. OBJECTIVE AND BENEFITS OF THE STUDY  

 

The objective in this study was to develop a live load model for long span bridges. 

The model is valid for spans between 600 ft and 5000 ft. It is intended to reflect current 

traffic patterns, quantities of trucks and their weights. The newest available traffic 

database from a variety of sites within many different states is used. Based on the 

analysis of traffic records (weigh-in-motion and videos) the design live load is developed 

and recommended to be taken into consideration in the bridge design code. Reliability 

analysis is used to verify the developed live load model.  

In accordance with the stated objective, the first stage was to study previous 

research and current international codes’ provisions on the topic. The second stage of the 
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research was the collection of state of the art traffic data from highway and bridge 

administrators. The data obtained had to be analyzed and filtered out from erroneous 

readings of measurement instruments. Then a new uniformly distributed load was 

derived. The value of the new live load is based on three models: an average 5-axle truck, 

legal load trucks and simulation of a traffic jam using WIM data. Such an extensive 

actual weigh in motion database has never been used in the derivation of live load for 

long span bridges. Most of the previous studies were based on measurements from 

limited numbers of sites within one state. The magnitude of the database obtained for the 

scope of this research has to be underlined. A derivation of uniformly distributed load 

from WIM data required developing a numerical procedure of calculation to process the 

extensive database. Cumulative distribution functions were plotted for all data, as well as 

for maximum daily and maximum weekly uniformly distributed load. New uniformly 

distributed load was proposed. Statistical parameters for live load (bias and coefficient of 

variation) are derived. Relationship between site characteristics (ADTT, percentage of 

overloaded loaded vehicles) and calculated values of uniformly distributed loads were 

studied. The problems of multilane reduction factors and the dynamic factor were also 

discussed.  

The final step of this dissertation was reliability analysis. Reliability analysis was 

performed in order to assess how the increase in live load influences reliability indexes. 

An exemplary suspension bridge, the bridge component and a limit state function that are 

the most influenced by live load were selected. The calculations were performed for the 

current AASHTO LRFD design live load and increased load values obtained from real 

traffic data. For the scope of this study, new statistical parameters for uniformly 

distributed load were used and statistical parameters of resistance were derived based on 

the newest material, fabrication and professional factors.  

The outcome of this research is the recommendation of a live load model for long 

span bridges. There is a recommended value of uniformly distributed load for bridges 

carrying low and average ADTT. In addition, there is a recommendation for an increase 

of the live load model for the long span bridges in heavily loaded urban and industrial 

areas.  
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1.3. ORGANIZATION OF THE DISSERTATION 

 

Chapter 1 of this dissertation is an introduction to the research conducted. It 

presents a problem statement, objectives and the scope of the study, as well as the 

benefits and limitations of this research. The chapter also includes a review of prior 

research on the topic.  

Chapter 2 reviews current international bridge design codes regarding live load, 

dynamic load and multiple presence factors provisions. Uniformly distributed load for 

wide range of spans is calculated and compared. 

Chapter 3 presents the principals of the reliability theory that were applied in this 

study. Definitions of standard variables, probability distributions, limit state functions 

and reliability index are introduced. Methods of use of the normal probability paper and 

simulation techniques are described.  

Chapter 4 describes the study of traffic data, regulations of truck types, truck sizes 

and weight limits, as well as the weight-in-motion technology and database to be used in 

this dissertation. 

Chapter 5 describes development of the live load model. A model based on an 

average 5-axle truck, a model based on legal load trucks, and a model based on traffic 

jam simulation using WIM data are presented. New values of uniformly distributed load 

are derived and proposed to be applied in the code. New statistical parameters for live 

load are calculated. 

In the Chapter 6, the problem of the presence of multiple trucks on a bridge is 

discussed. A short review of current studies, analysis of video recordings of traffic jam 

situations, and discussion on different approaches to the problem are presented. 

Chapter 7 presents the problem of dynamic factor. Parameters affecting bridge 

dynamic response are discussed. Exemplary bridge-vehicle interaction is modeled and the 

dynamic factor is derived. 

In the Chapter 8, the reliability procedures for a long span bridge are developed. 

The analysis is performed on a bridge tower of the selected suspension bridge. Reliability 

indexes for bridge loaded increasing values of live load are calculated. 
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Chapter 9 presents the summary and conclusions of research performed for the 

scope of this dissertation. As well, recommendations are specified. 

 

1.4. PRIOR INVESTIGATIONS 

 

1.4.1. Prior Investigations on Live Loading on Short and Medium Span Bridges 

 

Live load models for short and medium span bridges were of interest to many 

researchers. Most of the studies performed on live load models were based on truck data 

obtained within programs carried out by the Ontario Ministry of Transportation since the 

early 1970s. This was the vastest database available until now. 

Nowak and Hong (1991) formulated a procedure to calculate maximum moments 

and shears for various time periods. The maximum load effects for various time periods 

from one day to 75 years were derived from extrapolated distributions. Single and two 

lane bridges are considered. For one lane traffic a single truck governs for shorter spans, 

and two following trucks govern for longer spans. For two lanes of traffic, the maximum 

effect is obtained for two trucks with fully correlated weights, travelling side-by-side. It 

has also been concluded that the bias factor (ratio of the mean to nominal value) is larger 

for smaller spans.  

Kim, Sokolik, and Nowak (1997) studied actual truck loads on selected bridges in 

the Detroit area. The measurements were taken by using a weight in motion system. It 

was observed that truck loads are strongly site specific. The observed truck weights were 

often heavier than legal limits. The maximum observed truck weights were up to 250 

kips, causing maximum moments two times larger than AASHTO load and resistance 

factor design values. Gindy and Nassif (2006) formulated a similar conclusion based on 

data from New Jersey. It was found out that maximum gross vehicle weight reaches a 

value of 225 kips and it shows a steady increase at an annual growth rate is 1.2%. 

Nowak, Laman, and Nassif (1994) published a research report on the effect of 

truck loading on bridges. The WIM measurements were taken on seven bridges in 

Michigan. The researchers developed procedures for evaluation of live load spectra on 

steel girder bridges with regard to fatigue. The deteriorating capacity of bridge was 
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evaluated as a function of the rate of corrosion. It has been proved that WIM 

measurements show the unbiased truck weights, which are 30-50 percent larger than 

extreme values obtained at weight stations. The WIM data is unbiased because the drivers 

are not aware of the measurements and they do not make an effort to avoid the scales. 

The WIM measurements from Michigan have also been used to study dynamic load, 

Nassif and Nowak (1995). It was found out that the dynamic load factor decreases with 

increased static loads, and that larger values of DLF are observed in exterior girders due 

to relatively smaller static load effect. Derivation of the dynamic load model is described 

by Hwang and Nowak (1991). 

 

1.4.2. Prior Investigations on Live Loading on Long Span Bridges 

 

The most widely known researcher in the field of live loading on long span brides 

is Peter G. Buckland (1978, 1980, and 1991). He concluded that traffic loading on long 

span bridges can be accurately represented in the traditional manner, by one set of 

uniform and concentrated loads. One of his findings was that uniform load per foot 

reduces as the load length is increased. However, unlike many other studies he found out 

that concentrated load increases as the loaded length increases. Four uniform loading 

curves were developed for different loading cases. The load cases were distinguished 

depending on the percentage of “heavy vehicles”: 2.4, 7.4, 30.0, or 100 percent, where 

“heavy vehicles” are defined as trucks and buses over 12000 lb. These loading curves 

were recommended by the ASCE Committee as vehicle loading of long-span bridges, in 

1981. They are known unofficially as the ASCE Loading. However, they have never been 

applied into the design codes. 

Peter G. Buckland had also made a valuable observation regarding several loaded 

lanes. He stated that if a single lane has a certain load on it, than the additional lanes 

would increase the load in the lane closer to the curb, as trucks gravitate towards it. 

However, load in the additional lanes can be reduced.  

In the paper by Buckland (1991) the comparison of North American and British 

live loads on long-span bridges is presented. The loads are compared as equivalent 

uniformly distributed loads, calculated as an equivalent shear and bending moment for 
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simply supported beams. This approach can be successfully used for short and medium 

span bridges. However, its application to long spans can be questioned, since long span 

bridges cannot be constructed as simply supported beams. This method of deriving the 

equivalent load can be used exclusively for comparison of codes. 

 

1.4.3. Prior Investigations on Structural Reliability 

 

The theory of structural reliability have been investigated and described by many 

researchers. Several books and publications provide available knowledge regarding 

reliability theory, for instance, Thorf-Christtensen and Baker (1982), Ang and Tang 

(1984), Madsen, Krenk and Lind (1986); Thorf-Christtensen and Murotsu (1986), Ayyub 

and McCuen (1997), Murzewski (1989), Nowak and Collins (2000) and Wolinski and 

Wrobel (2001). The application of reliability theory has resulted in the improvement of 

structural design in terms of safety, serviceability and durability. However, it was not 

until the late 70’s when safety factors based on load and resistance uncertainties were 

proposed for introduction into the codes. In the United States, it was the building design 

code (Galambos and Ravindra 1978, and Ellingwood 1980, 1982), and in Canada, it was 

the Ontario highway bridge design code (Nowak and Lind 1979). Since then, reliability 

techniques have been increasingly used in modern design codes. Nowadays many 

researchers keep working on further development of new methods of structural reliability 

analysis, among them A.H.-S. Ang, O. Ditlevesen, R.E. Melchers, H. Nielsen- Faber, 

A.S. Nowak, R. Rackwitz, and P. Thoft-Christiansen. 

For many years the random nature of various parameters influencing structural 

safety has been of interest to engineers. Until they gathered more knowledge about the 

laws of nature, they used to assure structural safety through ‘trial and error’ and intuition. 

Mathematical theories available nowadays describe material and structural behavior 

sufficiently enough to give a rational basis for structural safety evaluations (Nowak and 

Collins, 2000). Early publications that quantified and presented a mathematical 

formulation of structural safety problems were published by Mayer (1926) and 

Wierzbicki (1936). They recognized that load and resistance parameters have random 

characteristics, and that each structure has a finite and limited probability of failure. Their 
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concept of a structural reliability problem has been subsequently adopted in the 

precursory publication for that field by Freudenthal (1956). In the 1960s, a new trend in 

using probabilistic concepts in the analysis of limit capacity and structural resistance was 

developed. It was first presented by researchers Augusti and Baratta (1973, 1973). 

Subsequently, important work was done by Corotis and Nafday (1989) analyzing the 

limit capacity of beam-column frame structures using the principles of conditional 

probability.  

The extensive development of practical tools and efficient methods for evaluating 

the probability of structural failure has been made in the last 30 decades. Initially, the 

probability of failure was defined by multidimensional integral functions of distributions 

and it was cumbersome to evaluate. Pioneering studies on the first practical application of 

reliability analysis were performed by Cornell and Lind in the late 1960s and early 1970s. 

Their approach estimated the limit state function at mean values of random parameters 

and used a linearized limit state function. A milestone was the estimation of the 

probability of failure proposed by Hasofer and Lind (1974). The simplified procedure 

involved a nonlinear mathematical programming problem with boundary conditions (an 

estimated limit state for all variables and a defined probability in the so called “design 

point”). The extension of the Hasofer and Lind approach and the transformation of 

uncorrelated random variables of various distributions into standardized normal 

distributions were proposed by Rackwitz and Fiessler (1978). The developed numerical 

procedure of the design point estimation used to be called the Rackwitz-Fiessler 

procedure. Hohenbichler and Rackwitz (1988) used the Rosenblatt (1952) transformation 

procedure for the transformation of dependent (correlated) random variables from and 

into standardized form, which is currently one of the major tools used in modern 

reliability analysis. Another commonly used transformation is Nataf’s transformation, 

which was presented in work by Kiureghian and Liu (1986). Commonly used methods of 

reliability analysis are based on the approximation of the limit state function at the design 

point using first or second order functions (FORM and SORM). Advanced SORM have 

been elaborated by researchers such as Fiessler, Neumann and Rackwitz (1979), Breitung 

(1984), Nowak and Collins (2000). Adhikari (2004) systemized and published all of the 

earlier proposed SORM procedures. Simulation techniques are another approach to 
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estimating probability of failure. The most popular is the Monte Carlo Method simulation 

technique (Thoft-Christensen and Baker, 1982; Hart, 1982). Determination of the 

probability of structural failure with the use of simulation techniques has limited 

accuracy, and a huge number of numerical simulations are required to achieve a high 

accuracy of results. This method becomes very useful and an especially practical tool in 

cases where physical testing is expensive. 

The structural system reliability is a field of interest for many researchers. Bridges 

usually consist of a combination of series and parallel systems. Identification of collapse 

mode and degree of correlation between members is very difficult or often even 

impossible to evaluate. Moses (1982) proposed incremental load approach and suggested 

a procedure for identifying collapse mode for both ductile and brittle components. The 

identification of collapse mode was also discussed by Rashedi and Moses (1988). 

Reliability models applied to bridge evaluation were addressed by Nowak and 

Tharmabala (1988). Moses and Verma (1987) used a load and resistance approach to 

evaluate the strength of bridges with reliability principles. Tantawi (1986) developed a 

grid nonlinear analysis program to calculate the moment-carrying capacity of a bridge. 

Than Zhou (1987) developed an integration sampling technique to calculate the system 

reliability of a bridge. Both Tantawi and Zhou, found that bridge system reliability is 

higher than girder reliability. 

Practical procedures for system reliability analysis were suggested by Nowak and 

Zhou (1990), Zhou and Nowak (1990), and Tabsh and Nowak (1991). The procedures 

assumed that the ultimate load carrying capacity is equal to the weight of a truck which 

causes a collapse. A collapse was defined as an excessive, non-acceptable deflection. 

Estes and Frangopol (1999) assumed that failure occurs when failure occurs in three of 

five adjacent girders. Several major contributions were also made by researchers such as 

Ditlevsen (1982, 1996), Grigoriu (1982, 1983), and Rackwitz (1985). Ditlevsen used 

conditional probability to calculate bounds of the probability of failure, Grigoriu 

discussed a parallel system with brittle elements, and Rackwitz recognized the effect of 

correlation on system performance. 

The present requirements for civil engineering structures primarily focus on 

structural safety. New structural design codes are calibrated using the limit state analysis 
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approach to assure safety standards and to provide the required reliability of new design 

structures. However, there is a major gap between the development of reliability 

techniques and their application to structural engineering design and evaluation. The 

system reliability analysis requires an efficient structural analysis procedure, as the 

calculations have to be repeated many times. Therefore, a more comprehensive method to 

assess the system reliability of a bridge needs to be developed. 
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CHAPTER 2  

LIVE LOAD IN CURRENT DESIGN CODES  

2.1. INTRODUCTION 

 

While approaching the problem of live load for bridges it is necessary to review 

the current codes and perform a comparative analysis. The codes were selected with the 

objective to present various approaches to design live load, use of multilane factors, and 

dynamic impact allowance. 

The live load for bridges can be represented in many ways, including a uniform 

load and a combination of truck(s), as for example in AASHTO LRFD Bridge Design 

Specifications (2007), CAN/CSA-S6-00 Canadian Highway Bridge Design Code (2000), 

and Eurocode 1 (2002). Non-uniform loading curves are used in the British Standard 

5400 (2006) and ASCE Recommended Design Loads for Bridges (1981). 

The design live loads specified in AASHTO LRFD Code (2007), OHBDC (1991), 

CAN/CSA-S6-00 [2000], Eurocode [2002], and ASCE (1981) were briefly summarized 

in the following paragraphs. The comparison of equivalent uniformly distributed loads 

for a variety of spans is presented in Paragraph 2.5. 
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2.2. INTERNATIONAL PROVISIONS FOR LIVE LOADING 

 

2.2.1. AASHTO LRFD Code [2007] 

 

The American Association of State Highway and Transportation Officials 

Standard Specifications for Highway Bridges define HL-93 live load as the extreme force 

effect taken as the larger of following: 

1) The AASHTO LRFD 3-axle design truck, and uniformly distributed design lane 

load of 0.64 klf. Figure 2.1.  

2) The AASHTO LRFD Design Tandem, and uniformly distributed design lane load 

of 0.64 klf. Figure 2.2.  

3) For negative moment between points of contraflexure and reaction at interior 

piers, combination of two design trucks spaced at minimum of 50 ft, and 

uniformly distributed design lane load of 0.64 klf, should be considered. All of the 

forces reduced to 90 %. Figure 2.3. 

 

 

Figure 2.1. HL-93 Live Loading in AASHTO LRFD Code [2007]. 

Truck and Lane Load. 

 

 

Figure 2.2. HL-93 Live Loading in AASHTO LRFD Code [2007]. 

Tandem and Lane Load. 
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Figure 2.3. HL-93 Live Loading in AASHTO LRFD Code [2007]. 

Alternative Load for Negative Moment between points of contraflexure 

and reaction at interior piers. 

 

The loads shall occupy 10 ft transversally within a design lane. Truck wheels are 

assumed to be spaced 6.0 ft transversally. 

 

2.2.2. OHBDC [1991] 

 

The Ontario Highway Bridge Design Code (Third edition) determines live load as 

a truck or a combination of truck and lane load, whichever produces the maximum load 

effect: 

1) The OHBD Truck, which is a 5-axle truck. Figure 2.4. 

2) The OHBD Lane Load consists of an OHBD Truck with each axle reduced to 

70%, and superimposed centrally within the width of a 3.0 m (10 ft) wide 

uniformly distributed load of 10.0 kN/m (0.685 kip/ft). Figure 2.5. 

 

 

Figure 2.4. OHBD Live Loading [1991]. OHBD Truck. 
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Figure 2.5. OHBD Live Loading [1991]. OHBD Truck and Lane Load. 

 

Table 2.1. Number of design lanes vs. road width in OHBDC [1991] 

Width Number of lanes 

Wc ≤ 6.0 m 1 

6.0 m < Wc ≤ 10.0 m 2 

10.0 m < Wc ≤ 13.5 m 3 

13.5 m < Wc ≤ 17.0 m 4 

17.0 m < Wc ≤ 20.5 m 5 

20.5 m < Wc ≤ 24.0 m 6 

24.0 m < Wc ≤ 27.5 m 7 

27.5 m < Wc 8 

 

2.2.3. CAN/CSA-S6-00 [2000] 

 

The Canadian Highway Bridge Design Code applies CL-W loading, which 

consists of the truck or the lane load: 

1) The CL-W Truck is 5-axle truck. The number "W" indicates the gross load of the 

truck in kN. For the design of a national highway network, loading not less than 

CL-625 shall be used. Figure 2.6. 

2) The CL-W Lane Load consists of CL-W Truck with each axle reduced to 80%, 

and a superimposed uniformly distributed lane load of 9.0 kN/m (0.617 kip/ft), 

that is 3.0 m (10 ft) wide. Figure 2.7. 
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Figure 2.6. CAN/CSA-S6-00 Live Loading [2000]. CL-W Truck 

 

 

Figure 2.7. CAN/CSA-S6-00 Live Loading [2000]. CL-W Lane Load 

 

Table 2.2. Number of design lanes vs. road width in CAN/CSA-S6-00 

Width Number of lanes 

Wc ≤ 6.0 m 1 

6.0 m < Wc ≤ 10.0 m 2 

10.0 m < Wc ≤ 13.5 m 2 or 3 (check both) 

13.5 m < Wc ≤ 17.0 m 4 

17.0 m < Wc ≤ 20.5 m 5 

20.5 m < Wc ≤ 24.0 m 6 

24.0 m < Wc ≤ 27.5 m 7 

27.5 m < Wc 8 

 

2.2.4. BS 5400 [2006] 

 

According to British Standard the structures and its elements shall be designed to 

resist the more severe effects of either design HA loading or design HA loading 
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combined with design HB loading. HA loading represents normal traffic in Great Britain. 

HB loading is an abnormal vehicle unit loading. Both loadings include impact.  

 

HA loading consists of uniformly distributed load (UDL), and a knife edge load 

(KEL), or a single-wheel load. Live Loading curve HA UDL is shown in the Figure 2.8. 

Value of nominal uniformly distributed load (UDL) equal to: 

• for loaded lengths up to and including 50 m: 

W = 336 (1/L) 0.67  [kN] 

• for loaded lengths in excess of 50 m but less than 160 0m: 

W = 36 (1/L) 0.1  [kN] 

• for loaded lengths above 1600 m, the UDL shall be in agree with the relevant 

authority. 

 

The nominal knife edge load (KEL) per lane shall be taken as 120 kN (27 kip). 

The single nominal wheel load alternative to UDL and KEL is one 100 kN (22.5 kip) 

wheel placed on a carriageway and uniform distribution over a circular contact area 

assuming an effective pressure of 1.1 N/mm
2
. 

 

Figure 2.8. BS 5400 Live Loading curve HA UDL [2006] 



 

17 

 

 

HB loading defines the minimum number of HB loading units that shall be 

considered, which is 30. This number may be increased up to 45 if so directed by the 

relevant authority. Figure 2.9 below shows the plan and axle arrangement for one unit of 

HB loading. One axle is 10 kN (2.25 kip), i.e. 2.5 kN (0.56 kip) per wheel. The overall 

length of the HB vehicle shall be taken as 10, 15, 20, 25, or 30 m for inner axle spacing 

of 6, 11, 16, 21, or 26 m respectively. The effects of the most severe case shall be 

adopted.  

 

Figure 2.9. Dimensions of HB vehicle. 

 

2.2.5. Eurocode 1 [2002] 

 

The Eurocode 1 Part 2 is applicable to bridges with spans from 5 to 200 m (17 to 

667 ft), and carriageway width up to 42 m (140 ft). It presents four models for 

determining the main vertical loads from traffic: 

 

1) Load Model 1 (LM1) consists of concentrated and uniformly distributed loads 

(Figure 2.10) which cover most of the effects of the traffic of trucks and cars. The 

code specifies live load to be used on each traffic lane, therefore there is no need 

to introduce multilane factors. It is used for general and local verifications.  
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Table 2.3. Characteristic values of load for successive road lanes 

Location Axle load Qik UDL qik 

Lane number 1 300 kN (67.5 kip) 9 kN/m
2
 (0.188 kip/ft

2
) 

Lane number 2 200 kN (45.0 kip) 2.5 kN/m
2
 (0.052 kip/ft

2
) 

Lane number 3 100 kN (22.5 kip) 2.5 kN/m
2
 (0.052 kip/ft

2
) 

Other lanes 0 2.5 kN/m
2
 (0.052 kip/ft

2
) 

Remaining area 0 2.5 kN/m
2
 (0.052 kip/ft

2
) 

 

 

Figure 2.10. Eurocode 1 [2002]. Load Model 1 

 

2) Load Model 2 (LM2) consists of a single axle load of 400 kN, which covers the 

dynamic effects of the normal traffic on short structural members. The distance 

between wheels is 2 m. The contact surface of each wheel should be taken as a 

rectangle of sides 0.35 m and 0.60 m. When relevant, only one wheel of 200 kN 

may be taken into account. 

3) Load Model 3 (LM3) consists of sets of axle loads representing special (carrying 

heavy loads) vehicles, which can travel on routes permitted for abnormal loads. It 

is intended for general and local verifications. 
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4) Load Model 4 (LM4) represents crowd loading of 5.0 kN/m
2
. It is intended only 

for general verifications and it is particularly relevant for bridges in or near town 

areas. 

 

2.2.6. ASCE Loading [1981] 

 

The live load known unofficially as the ASCE Loading is a result of the studies 

performed by Peter G. Buckland, which was recommended for long span bridge by the 

American Society of Civil Engineers Committee on Loads and Forces on Bridges. ASCE 

(1981) specifies three levels of live load for highway bridges depending on the average 

percentage of heavy vehicles in traffic flow: 7.5%, 30%, and 100% heavy vehicles of the 

total vehicle population. "Heavy vehicles" were defined as buses and trucks over 12 000 

lbs. It has been proved that the loading can be represented by a uniform load and a 

concentrated load (Figure 2.11) to give moments and shears with a sufficient degree of 

accuracy. 

 

Figure 2.11. ASCE Loading on Log Scale  

Loaded Length (ft)

50 100 200 400 800 1600 3200 6400

1

0

2

2.74

U
 (

k
/f

t)

P

U(100% HV)

U(30% HV)

U(7.5% HV)

0

56.2

102.4

158.6

P
 (

k
ip

s
)

P U

Loaded Length (ft)

50 100 200 400 800 1600 3200 6400

1

0

2

2.74

U
 (

k
/f

t)

P

U(100% HV)

U(30% HV)

U(7.5% HV)

0

56.2

102.4

158.6

P
 (

k
ip

s
)

P U



 

20 

 

 

2.3. PROVISIONS FOR DYNAMIC LOAD FACTOR 

 

There is considerable variation in the treatment of dynamic load effects by bridge 

design codes in different countries. The most common approach is to apply dynamic 

response as a fraction or multiple of the response that would be obtained if the same 

forces or loads were applied statically. The objective of this simple approach is to not 

increase complexity to the designer. 

The American Association of State Highway and Transportation Officials 

Standard Specifications for Highway Bridges AASHTO LRFD [2007] define that 

dynamic load allowance shall be applied to static load effects of the truck or tandem, as a 

percentage specified in the table below. It shall not be applied to pedestrian loads or to 

the design lane load. 

 

Table 2.4. Dynamic allowance in AASHTO LRFD [2007] 

Component Dynamic allowance, IM 

Deck joints, 

all limit states 
75% 

All other components,  

fatigue and fracture limit states 
15% 

All other components,  

other limit states 
33% 

 

Until recently AASHTO Standard Specifications for Highway Bridges used to 

specify dynamic load effects in terms of an impact factor that is a function of bridge span. 

However relation between dynamic load factor and bridge span is a controversial issue 

between researchers (see Paragraph 7.2.). 

The Canadian Highway Bridge Design Code CAN/CSA-S6-00 [2000] and 

OHBDC [1991] apply dynamic allowance as a percentage to static effects of the CL-W 

Truck for the number of axles considered in the design lane, as shown in the table below. 
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Table 2.5. Dynamic allowance in CAN/CSA-S6-00 

for deck joints 0.50 

1 axle of CL-W Truck 0.40 

2 axles of CL-W Truck 0.30 

3 or more axle of CL-W Truck 0.25 

 

According to British Standard BS 5400 [2006] and the Eurocode  1 [2002] the 

effects of vibration due to live load are not required to be considered. Their effect has 

already been taken into consideration in definition of design loading. 

The ASCE model (1981) does not have any allowance for dynamic load on the 

ground that the worst loading occurs with stationary bumper-to-bumper traffic. 

 

 

2.4. PROVISIONS FOR MULTILANE REDUCTION FACTORS 

 

For multilane bridges, the multiple lane reduction factors are specified in most of 

the codes. The approaches to multilane factors vary significantly. They are shown in 

Table 2.6 and Table 2.7. The British Standard BS 5400 developed the most compound 

procedure of selection of multilane factor, which depend not only on the number of lanes, 

but also on loaded length, number and width of notional lanes (Table 2.7). Eurocode does 

not define multilane reduction factor, but it gives the load values to be applied on 

successive road lanes directly (Table 2.3). The multilane reduction factors are further 

discussed in CHAPTER 6 of this dissertation.  
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Table 2.6. Comparison of Multilane Reduction Factors 

Code 
Number of Lanes 

1 2 3 4 5 6 or more 

AASHTO LRFD (2007) 1.20 1.00 0.85 0.65 0.65 0.65 

OHBDC (1983, 1991) 1.00 0.90 0.80 0.70 0.60 0.55 

CAN/CSA-S6-00 (2000) 1.00 0.90 0.80 0.70 0.60 0.55 

ASCE (1981) 1.00 0.70 0.40 0.40 0.40 0.40 

 

Table 2.7. Multilane Reduction Factors for BS 5400 

 Number of Lanes 

loaded length [m] 1 2 3 4 or more 

0<L≤20 α1 α1 0.6 0.6 α1 

20<L≤40 α2 α2 0.6 0.6 α2 

40<L≤50 1.0 1.0 0.6 0.6 

50<L≤112, N<6 1.0 7.1/√L 0.6 0.6 

50<L≤112, N≥6 1.0 1.0 0.6 0.6 

L>112, N<6 1.0 0.67 0.6 0.6 

L>112, N≥6 1.0 1.0 0.6 0.6 

α1 = 0.274 bL 

α2 = 0.0137{bL(40-L)+3.65(L-20)} 

where bL is the notional lane width 

N is total number of notional lanes on the bridge. For a bridge carrying one-way traffic only, 

the value N shall be multiplied by 2. 
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2.5. COMPARISON OF EQUIVALENT UNIFORMLY DISTRIBUTED LOADS 

 

In this paragraph, the resulting equivalent uniformly distributed loads for a variety 

of design codes and span lengths are plotted and compared. Figure 2.12 and Figure 2.14 

compare the equivalent unfactored uniform loads. More valid comparison is to compare 

factored loads; these are shown in Figure 2.13 and Figure 2.15. For AASHTO LRFD 

(2007) live load factor is 1.75, for OHBDC (1991) it is 1.40, for CAN/CSA-S6-00 it is 

1.70, for BS 5400 it is 1.50, and for Eurocode it is 1.35. ASCE studies made no reference 

to load factors to be used with its recommended loading, but since a factor of 1.80 has 

been used by (Buckland 1991), the same value has been adopted for this comparison. 

Equivalent loads including dynamic loads are shown in Figure 2.14, Figure 2.15, 

and Figure 2.16. The design loads are increased by the dynamic load factor, DLF, which 

has a value as described for each code in the paragraphs above. Since live loadings in 

British Standards and Eurocode include dynamic load, they have been used only for 

comparison of loads including dynamic load. 

Results of the comparison show that variation between the unfactored values of 

live load in different codes is significant. European values double those of North 

America. The application of load factors slightly reduces the differences. The comparison 

of four loaded lanes shows that the differences are reduced even more, Figure 2.16. The 

importance of load factors and multilane factors cannot be underestimated.  

To obtain plots of UDL, the maximum bending moment (Mmax) was calculated for 

simple spans from 400 through 5000 ft. Then, the equivalent uniformly distributed load 

UDL was determined from the following formula:  

2

max /)(8 LMUDL ⋅=  (2.1)

where: L is span length.  

It should be noted that most of the codes are limited to certain lengths of span, 

and they are extrapolated beyond these points partially for interest and partially because 

these codes are also occasionally used for longer spans due to a lack of adequate guides. 
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Figure 2.12. Equivalent Unfactored Loads, w/o IM, w/o multilane factors. 
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Figure 2.13. Equivalent Factored Loads, w/o IM, w/o multilane factors. 

 

Figure 2.14. Equivalent Unfactored Loads, with IM, w/o multilane factors. 
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Figure 2.15. Equivalent Factored Loads, with IM, w/o multilane factors. 

 

Figure 2.16. Equivalent Factored Loads, with IM, with multilane factors  

for 4 traffic lanes. 
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Table 2.8. Values of Equivalent Unfactored Loads, w/o IM, w/o multilane factors. 

 

 

Table 2.9. Values of Equivalent Factored Loads, w/o IM, w/o multilane factors. 

 

 

Table 2.10. Values of Equivalent Unfactored Loads, with IM, w/o multilane factors. 

 

  

length [ft] OHBDC 1991 CAN/CSA-S6-00 HL-93

500 1.151 1.067 0.928

1000 0.918 0.842 0.784

1500 0.841 0.767 0.736

2000 0.802 0.729 0.712

2500 0.779 0.707 0.698

3000 0.763 0.692 0.688

3500 0.752 0.681 0.681

4000 0.744 0.673 0.676

4500 0.737 0.667 0.672

5000 0.732 0.662 0.669

length [ft] OHBDC 1991 CAN/CSA-S6-00 HL-93

500 1.612 1.813 1.624

1000 1.286 1.431 1.372

1500 1.177 1.303 1.288

2000 1.123 1.240 1.246

2500 1.090 1.202 1.221

3000 1.068 1.176 1.204

3500 1.053 1.158 1.192

4000 1.041 1.144 1.183

4500 1.032 1.134 1.176

5000 1.025 1.125 1.170

length [ft] OHBDC 1991 CAN/CSA-S6-00 HL-93 BS 5400

500 1.336 1.179 1.023 1.603 2.120

1000 1.045 0.898 0.832 1.449 1.985

1500 0.948 0.804 0.768 1.375 1.941

2000 0.900 0.757 0.736 1.328 1.918

2500 0.870 0.729 0.717 1.294 1.905

3000 0.851 0.711 0.704 1.268 1.896

3500 0.837 0.697 0.695 1.246 1.889

4000 0.827 0.687 0.688 1.228 1.884

4500 0.819 0.679 0.683 1.212 1.881

5000 0.812 0.673 0.678 1.198 1.878

Eurocode
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Table 2.11. Values of Equivalent Factored Loads, with IM, w/o multilane factors. 

 

 

Table 2.12. Values of Equivalent Factored Loads, with multilane factors for 4 traffic 

lanes. 

 

 

 

  

OHBDC 1991 CAN/CSA-S6-00 HL-93 BS 5400 Eurocode

500 1.871 2.004 1.790 2.404 2.862

1000 1.463 1.526 1.455 2.173 2.680

1500 1.327 1.367 1.343 2.063 2.620

2000 1.259 1.288 1.288 1.993 2.589

2500 1.219 1.240 1.254 1.942 2.571

3000 1.191 1.208 1.232 1.902 2.559

3500 1.172 1.185 1.216 1.869 2.550

4000 1.157 1.168 1.204 1.842 2.544

4500 1.146 1.155 1.194 1.818 2.539

5000 1.137 1.144 1.187 1.797 2.535

length [ft] OHBDC 1991 CAN/CSA-S6-00 HL-93 BS 5400 Eurocode

500 5.238 5.612 4.655 5.771 5.309

1000 4.097 4.274 3.783 5.216 4.945

1500 3.716 3.828 3.493 4.952 4.823

2000 3.526 3.605 3.348 4.782 4.762

2500 3.412 3.471 3.261 4.660 4.726

3000 3.336 3.382 3.202 4.564 4.702

3500 3.282 3.318 3.161 4.486 4.684

4000 3.241 3.271 3.130 4.420 4.671

4500 3.209 3.234 3.106 4.364 4.661

5000 3.184 3.204 3.086 4.314 4.653



 

29 

 

 

CHAPTER 3  

STRUCTURAL RELIABILITY PROCEDURES  

3.1. INTRODUCTION 

 

The structures and their components should be designed to have a desirable level 

of reliability, which would assure their good performance to account for actions applied 

during construction and service. For this purpose civil engineering uses a probabilistic 

evaluation of reliability. The design of new structures as well as the evaluation of existing 

structures requires verification of limit states, which when exceeded lead to structural 

failure (ultimate limit states) or make use of the structure impossible (serviceability limit 

states). 

The actions (loads,Q) and structural resistance (capacity, R ) are the variables that 

decisively influence the state of a structure. They include uncertainties coming from 

mechanical material properties, geometry of a structure, loads, etc. Those uncertainties 

can be measured only with the use of probability. Therefore, the design of structures is a 

process in which decisions are made under uncertainty and limits. Their rational 

treatment, and agreement between real-input data and a mathematical model of 

phenomenon, is a concern of structural reliability.  

Unreliability of a structure is a state in which a structure does not fulfill design 

requirements related to its function and desirable performance. It could be a collapse of a 

structure, failure or other deficiency in a structural resistance, unfulfilled service demands 
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of a structure, i.e. excessive deformations, excessive vibrations, etc. Structures usually 

have a number of possible failure scenarios. For most of the structures it is impossible to 

examine all their failure modes. Therefore, representative failure scenarios have to be 

chosen. The analysis usually includes an estimation of structural reliability with respect 

to specified failure modes. All modes must be treated separately. Thus, reliability of a 

structure is the probability that the system will not reach a specified failure mode related 

to a specified limit state during a specified period of time. 

 

3.2. STANDARD VARIABLES AND PROBABILITY DISTRIBUTIONS 

 

The key probabilistic characteristics of a random variable are described in terms 

of mean, variance and standard deviation. A distribution function would complete the 

description of the probabilistic characteristics of random variables, but sometimes it 

remains unknown. There are two types of random variables: discrete and continuous. A 

discrete random variable may take on only discrete values. Its probability is given by the 

probability mass function, )( iX xP . A continuous random variable can take on a 

continuous range of values, and its probability is defined by the probability density 

function (PDF), )(xfX . 

 

Mean 

The mean (expected value) is an average of all observations on a random variable. It is 

also defined as the first moment about the origin. For the continuous random variables, 

the mean ( µ ) can be computed as: 

dxxfx X )(⋅= ∫
+∞

∞−

µ  (3.1)

For the discrete random variables, the mean is given by: 

)(
1

iX

n

i

i xPx ⋅=∑
=

µ  (3.2)

If all n observations are given equal weights ( nxP iX /1)( = ), then the mean for a discrete 

random variable is given by: 
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∑
=

⋅=
n

i

ix
n

X
1

1
 (3.3)

Variance 

The variance ( 2σ ) is the second moment about the mean, and it is computed as follows: 

dxxfx X )()(
22 ⋅−= ∫

+∞

∞−

µσ  (3.4)

For the discrete variable, the variance is computed as: 

)()(
1

22

iX

n

i

i
xPx ⋅−=∑

=

µσ  (3.5)

If all n observations are given equal weights ( nxP
iX

/1)( = ), the variance is as follows: 

∑
=

−⋅
−

=
n

i

i
Xx

n 1

22 )(
1

1
σ  (3.6)

 

Standard Deviation  

The standard deviation ( 2σ ) of a probability distribution is defined as the square root of 

the variance. 

 

Coefficient of Variation 

The coefficient of variation (V ) is a dimensionless quantity defined as: 

µ

σ
=V  

(3.7)

Probability distributions 

There are many types of discrete and continuous distributions. The most commonly used 

are the continuous distributions: uniform, normal, lognormal, exponential, and gamma. In 

this section the normal distribution is presented, because this is the only distribution used 

in this dissertation. Further details about distributions can be found, for instance, in 

Nowak and Collins (2000). 

Normal distribution (Gaussian distribution) is the most widely used probability 

distribution. It has a probability density function given by: 
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])(
2

1
exp[

2

1
)( 2

σ

µ

πσ

−
⋅−⋅

⋅⋅
=

x
xf

X
 

(3.8)

This function is graphically represented as shown in Figure 3.1. 

 

 

Figure 3.1 PDF and CDF of a normal random variable 

 

The standard normal distribution is a special case of Gaussian distribution, with 

parameters 0=Xµ and 0.1=Xσ . Its PDF is denoted as )(zφ , its CDF is denoted as

)(zΦ , and they are defined as follows: 

)()
2

1
exp(

2

1
)( 2 zfzz Z=⋅−⋅

⋅
=

π
φ  (3.9)

∫
∞−

⋅−⋅
⋅

=Φ
z

dzzz )
2

1
exp(

2

1
)( 2

π
 (3.10)

 

Central limit theorem states that the sum of a large number of independent observations, 

without a dominating distribution type, approaches an approximate normal distribution. 

The higher the number of observations the better is the approximation. This theorem is 

one of the most important in probability theory. The sum of variables is often used to 

model total load acting on a structure, which can be approximated as a normal variable. 

random variable X

FX(x)
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Mathematically it can be expressed that the sum of n  random variables, n
XXX ,...,, 21 , 

is equal to function Y  having normal distribution:  

n
XXXY +++= ...21  (3.11)

nXXXY µµµµ +++= ...
21

 (3.12)

2222
...

21 nXXXY σσσσ +++=
 (3.13)

 

3.3. LIMIT STATE FUNCTION 

 

In most design codes, the structural design is based on the concept of limit states. 

The philosophy of limit state design assumes equilibrium between applied loads and 

structural response of the structure (capacity, resistance). Therefore, a specified set of 

load and resistance factors is required for each limit state formulated for different 

possible scenarios of structural behavior during construction as well as service life.  

Three types of limit states are typically used with reference to structural reliability 

analysis: 

 1. Ultimate limit states (ULSs), which represents the loss of structural capacity. 

 2. Serviceability limit states (SLSs), which represents failure due to deterioration 

of functionality. 

 3. Fatigue limit states (FLSs), which represents the loss of strength for a structural 

component under the action of repeated loading. 

 

The limit state defines the boundary between the desired and undesired 

performance of a structure, between situations when the structure is safe (a safety margin 

exists) and the structure is not safe (failure occurs). The probability of the desired 

performance of a structure is equal to the safety margin ( SP ). The probability of an 

undesired performance of a structure is equal to the probability of failure (
f

P ). Failure 

and non-failure states fulfill the entire probabilistic sample space ( Ω ). Therefore, the 

probability of occurrence is 1)( =ΩP , so: 
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1)( =+=Ω
sf

PPP    ⇒    
fs

PP −= 1  (3.14)

Reliability analysis usually begins with the formulation of a limit state function 

(performance function). All loads are being incorporated into one variable (Q) and the 

resistance of the structure is being incorporated into one variable ( R ). In the general case, 

the performance function of a system can be related to any possible failure scenario or 

any limiting state and defined as a function of capacity and demand: 

( ) QRQRg −=,  (3.15)

where R  is capacity representing resistance of a structural system or a structural element, 

and Q  is demand representing load effect in a structure or a structural component. 

Both R  and Q  are continuous random variables having a probability density 

function (PDF). The quantity QR − is also a random variable with its own PDF as shown 

in the Figure 3.2. 

 

Figure 3.2 PDF’s of load, resistance, and safety margin 

 

The performance function usually is a function of capacity and demand variables (

nXXX ,...,, 21 ), and it adopts a format: 

( ) ( )
n

XXXgXg ,...,, 21=  
(3.16)

where iX  is the collection of input parameters. 

Figure  5-8 PDFs of load, resistance, and safety margin.
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From the definition of the performance function, it can be derived that when 

0)( <Xg , it indicates failure and, when 0)( ≥Xg , it indicates acceptable performance. 

The performance defined as 0)( =Xg  is called the failure surface. The corresponding 

probability of failure can be defined as the integral of the joint density function of the 

variables over the negative domain of )(Xg  (Thoft-Christensen and Baker 1982): 

 

∫ ∫
<

⋅⋅=
0)(

121,...,, ...),...,,(....
21

Xg

nnXXXf dxdxxxxfP
n

 
(3.17)

where X
f  is the joint probability density function of  nXXX ,...,, 21   

There is almost never sufficient data to define the joint probability density 

function for all basic variables, thus the equation (3.17) is very difficult to evaluate. Even 

knowing the joint density function, the necessary multi-dimensional integration may be 

extremely time-consuming. In practice, a direct calculation of the probability of failure 

becomes inefficient. Therefore, indirect procedures such as the reliability index are used. 

 

3.4. RELIABILITY INDEX 

 

The evaluation reliability index, also called safety index, is an effective measure 

of the probability of failure. There are several methods to calculate reliability of structural 

components: the first-order reliability methods (FORM), the advanced first-order second-

moment methods (FOSM), simulation techniques, etc. In the late 1960s, the first-order 

second-moment formulation was developed and advanced by Cornell (1967) and Ang 

and Cornell (1974). Further advances in these methods were made by Hasofer and Lind 

(1974) and Rackwitz and Fiessler (1978). The FOSM methods can be used to solve many 

practical problems. The concept of second-moment is often used in practical 

quantification of safety and reliability. It has been extensively used in calibrations of 

structural design codes. The FOSM approach can be put into several categories with 

regard to accuracy of results, required input data, computing cost, or simplicity of 

formulation.  
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In 1974, Hasofer and Lind introduced the definition of the reliability index as the 

shortest distance from the origin to the limit state function in a system of reduced 

variables coordinates (Figure 3.3). Using geometry the reliability index can be calculated 

as: 

22

QR

QR

σσ

µµ
β

+

−
=  (3.18)

 

 

Figure 3.3 Reliability index defined as the shortest distance in the space of reduced 

variables 

 

All the variables should be expressed in non-dimensional forms. Thus, the 

reduced variables (
QR

ZZ , ) have to be introduced: 

Q

Q

Q

R

R

R

R
Z

R
Z

σ

µ

σ

µ

−
=

−
=

 
(3.19)

The resistance ( R ) and the load (Q) can also be expressed in the form of reduced 

variables: 

ZR

ZQ

FAILURE

SAFE

g(ZR,ZQ) = 0

limit state function

µR-µQ

σQ

µR-µQ

σQ

β
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QQQ

RRR

ZQ

ZR

σµ

σµ

⋅+=

⋅+=
 (3.20)

Therefore the limit state function QRQRg −=),(  in terms of reduced variables can be 

rewritten as: 

QQQRRRQR
ZZZZg σµσµ ⋅+−⋅+=),(  

(3.21)

The reliability index recognizes the importance of uncertainty in load effects and 

strength. It incorporates the four key parameters, resistance and load with their mean 

values and standard deviations, 
QR

µµ ,  and 
QR

σσ , , respectively.  

The limit state function used in this dissertation is linear. In case it was nonlinear, 

iteration would be required to find the design point in reduced variable space such that β  

corresponds to the shortest distance. Moreover, the Hasofer-Lind approach evaluates the 

reliability index for uncorrelated random variables. Thus, if the initial variables are 

correlated they must be transformed into uncorrelated random variables. 

The probability of failure can be calculated using the formula (3.22). The 

calculation can give exact results, if the random variables are normally distributed and 

uncorrelated. Otherwise it provides only an approximation. 

)( β−Φ=
f

P  
(3.22)

where Φ  is the standard normal distribution function. 

 

3.5. MONTE CARLO METHOD SIMULATION TECHNIQUE 

 

Simulation is the process of replacing reality with theoretical and experimental 

models. Theoretical simulation is also called numerical or computer experimentation. It is 

a practical tool that allows obtaining data, either instead of or in addition to real-world 

data. Simulating a phenomenon numerically assumes events occur a finite number of 

times. The frequency of occurrence of an event in the entire set of simulations 

approximates its probability of occurrence. This relatively straightforward concept often 

requires complex procedures. The most commonly used simulation technique is the 

Monte Carlo Method (Thoft-Christensen and Baker, 1982; Hart, 1982). Many other 
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simulation techniques work similarly to the Monte Carlo Method. However instead of 

generating a large number of random values for variables, the values are arbitrary and 

selected according to specified rules. 

The Monte Carlo Method is commonly used to predict the behavior of structural 

elements and systems from the probability point of view, and without physical testing. It 

is used to evaluate the probability of structural failure and, indirectly, the reliability 

index. A large amount of random numbers corresponding to random variables is 

numerically generated. This large number of repetitions is particularly valuable in solving 

problems involving rare events, where physical testing could be very expensive. This 

method may be used not only to study performance of a structural system for a prescribed 

set of design variables, but also to measure sensitivity in system performance due to 

variations of some parameters. Therefore, for engineering purpose, it can be used to 

determine optimal design.  

The Monte Carlo simulation method consists of the following steps. In the first 

step a simulation of the uniformly distributed random numbers nuuu ,...,, 21  between 0 

and 1 is performed. They can be generated by computer programs using a built-in option. 

Then, the standard normal random values can be calculated using generated numbers and 

information about the types of distributions and statistical parameters of distributions 

(mean value and standard deviation) of each design variable. The standard normal 

random number iz  is calculated using the equation: 

)(
1

ii uz
−Φ=  (3.23)

where: 

1−Φ  
is the inverse of the standard normal cumulative distribution function 

 

 Using standard random values (mean value X
µ  and standard deviation X

σ ), the 

values xi of sample random numbers can be generated for the random normal variable X

, as: 

XiXi zx σµ ⋅+=  (3.24)
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It is important to simulate an efficient number of sets, such that the variation of 

the design parameters in a single simulation will not influence the solution of the entire 

process of simulations. 

Performed Monte Carlo simulations allow for estimation of the probability of 

failure. The probability of failure is defined as the ratio between the numbers of times the 

criterion for the failure is achieved ( n ), to the total number of simulations ( N ). Each 

simulated value has the same weight.  

)Xg(

)Xg(

N

n
P f

 of ssimulation ofnumber  total

0 when ssimulation ofnumber  total <
==  (3.25)   

where: 

)( Xg  defines the performance function with the limit state 0)( =Xg  

0)( <Xg  defines the state of failure 

 

3.6. NORMAL PROBABILITY PAPER 

 

Normal probability paper is used to present cumulative distribution functions 

(CDF) in a convenient way. Cumulative distribution functions for the normal distribution 

are “S-shape” function. Normal probability paper redefines the vertical scale so that the 

normal CDF can be plotted as a straight line and allows for an easy evaluation of the 

most important statistical parameters as well as type of distribution function. More 

detailed information about normal probability paper can be found in textbooks (Nowak 

and Collins 2000, Benjamin and Cornell 1970). The basic variable is presented on the 

horizontal. The vertical axis, being the standard normal variable, represents the distance 

from the mean value in terms of standard deviations. It can also be implied as the 

corresponding probability of being exceeded. The relationship between the standard 

normal variable and probability is given in Table 3.1.  
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Table 3.1. Relationship between vertical scale on Normal Probability Paper 

and Probability  

Distance from the mean value in terms of 

standard deviations 
Corresponding probability 

4 0.9999683 

3 0.99865 

2 0.9772 

1 0.841 

0 0.5 

-1 0.159 

-2 0.0228 

-3 0.00135 

-4 0.0000317 

 

The shape of the resulting curve representing CDF allows for analysis of the test 

data plotted on the normal probability paper.  

 

The basic properties of the normal probability paper: 

� A straight line represents a normal distribution function. 

� The mean value and standard deviation read directly from the graph. 

� The mean value is at the intersection of the normal CDF and horizontal axis. 

� The standard deviation can also be read as shown in Figure 3.4. 
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Figure 3.4 Normal Distribution Function on the Normal Probability Paper. 
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CHAPTER 4  

TRAFFIC DATA 

4.1. REGULATIONS OF TRUCK TYPES, TRUCK SIZES AND WEIGHT LIMITS 

 

Federal and state regulations limit the weight and dimensions of vehicles on U.S. 

highways. These restrictions have important impacts on highway construction costs, 

maintenance costs, and highway safety issues. Current Federal law includes the following 

limits: 

- 20 000 pounds - maximum gross weight upon any one axle 

- 34 000 pounds - maximum gross weight on tandem axles 

- 80 000 pounds - maximum gross vehicle weight 

- 102 inches - maximum vehicle width 

- 48-feet - minimum vehicle length for a semi-trailer in a truck-tractor/semi-

trailer combination 

- 28 feet - minimum vehicle length for a semi-trailer or trailer operating in a 

truck-tractor/semi-trailer/trailer combination. 

 

The types of the vehicles in use on American roads are classified by FHWA into 13-

categories, as show in Figure 4.1. Classes 1-3 are passenger vehicles, classes 4-7 are 

single unit trucks and buses, classes 8-10 are combination trucks, classes 11-13 are multi-

trailer trucks. 
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Figure 4.1. FHWA 13-category scheme 
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Table 4.1. Conversion chart for vehicles’ class and number of axles 

Vehicle Class 
Average Number of Axles 

per Vehicle 

1 2 

2 2 

3 2 

4 2.2 

5 2 

6 3 

7 4 

8 4 

9 5 

10 6 

11 4 

12 6 

13 7 

 

Several states issue overweight permits and allow higher truck loads. For example 

the state of Michigan, from where some publications on field test results are used in this 

study, allows trucks up to 164,000 pounds. The states which allow various longer 

combination vehicles are presented in Figure 4.3. Types of longer combination vehicles 

(Figure 4.2) are: 

- Rocky Mountain Double (common maximum weight – 105,500 - 137,800 lbs) 

- Turnpike Double (common maximum weight – 105,500 - 129,000 lbs) 

- B-train Double Trailer Combination (common maximum weight – 105,500 - 

147,000 lbs) 

- Triple Trailer Combination (common maximum weight – 105,500 - 131,000 lbs) 
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Figure 4.2. Longer Combination Vehicles (LCV’s) 

 

 

 

Figure 4.3. States allowing various Longer Combination Vehicles 
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Federal size and weight studies were established in 1982, and since then no 

significant changes have been made. However, several proposals to make changes in 

these regulations were presented. The most recent studies are the TRB Special Report 

267 "Regulation of Weights, Lengths, and Widths of Commercial Motor Vehicles" and 

the U.S. Department of Transportation "Comprehensive Truck Size and Weight Study: 

Volume I Summary Report". Both documents discuss existing regulations and give 

recommendations on their improvement. Elimination of the federal 80 000 pounds weight 

limit on Interstate highways is recommended. It is proposed that the gross weight should 

be governed by appropriate axle weight limits and the bridge formula (Figure 4.4). The 

maximum weight (in pounds) carried on a group of two or more consecutive axles would 

not exceed that given by the following formulas: 

- W = 1000*(2L+26)  for L≤24 ft 

- W = 1000*(L/2+62)  for L>24 ft  

 

Figure 4.4. New Bridge Formula - regulation of vehicles' length and weight 
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In the Figure 4.5, the data from the Transportation Statistics Annual Report 

December 2006 of U.S. Department of Transportation is shown. As can be observed, the 

number of trucks has a trend of rapid growth. The number of heavy trucks is growing 

faster than number of light trucks. The number of light trucks (under 10 000 pounds) 

increased 73 percent between 1992 and 2005, and the number of heavy trucks (greater 

than 10 000 pounds) increased 112 percent. In 2005 heavy trucks constituted 8% of the 

volume of trucks, while in the 1990’s they were only 4% of the volume. In 2005, 95.3 

million light trucks traveled 1.060 trillion vehicle-miles, and 8.5 million heavy trucks 

traveled 222.29 billion vehicle-miles. 

 

 

Figure 4.5. Number of trucks by weight (in thousands of trucks). 

Transportation statistics annual report, December 2006. 

 

According to Texas Transportation Institute “Over the next 20 years, truck tonnage is 

expected to increase at a rate more than five times that of population growth.” 
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Figure 4.6. Freight Tonnage Moved by Truck (FHWA) 
 

 

Figure 4.7 presents time variation of total truck weight statistic between the years 

1993 and 2003. The data is expressed as: mean value (µ), 95th percentile (W95, 95 

percent of the trucks weigh less), and maximum observed total truck weight (Max). The 

study was made for the state of New Jersey, which has lower limits than the state of 

Michigan. However, the observed maximum gross vehicle weight is high, and it reaches a 

value of 225 kips (1000 kN). The maximum truck weight shows steady increase at an 

annual growth rate of 1.2%. 
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Figure 4.7. Time variation of total truck weight statistic. 

(Gindy, M., Nassif, H.H., 2006) 

 

 

4.2. DATA COLLECTION METHODOLOGY (WIM) 

 

Weigh in Motion (WIM) Technology had its beginnings in the early 1950s when 

the U.S. Bureau of Public Roads, the Virginia State Department of Highways, and the 

Williams Construction Company installed a load cell WIM system on the Henry G. 

Shirley Memorial Highway. From these early beginnings, WIM technology and 

application continued to advance and spread across the nation. In 1990, the American 

Society for Testing and Materials (ASTM) published the first Standard Specification for 

Highway Weigh-in-Motion (WIM) Systems with User Requirements and Test Methods 

(Designation: E 1318-90). This document was revised in 1994, and again in 2002 to the 

version (Designation: E 1318-02) that is used today. 

ASTM Designation: E 1318-02 defines WIM as “the process of measuring the 

dynamic tire forces of a moving vehicle and estimating the corresponding tire loads of the 
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static vehicle”. In addition to the collection of dynamic tire forces, a variety of ancillary 

traffic data can also be obtained through the use of WIM systems: traffic volume, speed, 

directional distribution, lane distribution, date and time of passage, axle spacing, axle 

weight, and vehicle classification. Of all data collection methodologies, WIM data 

collection requires the most sophisticated technology for data collection sensors, the most 

controlled operating environment (smooth, level pavement), as well as the highest 

equipment set-up and calibration costs. The primary reason for sophistication in 

technology and its high costs comes from a need to determine static weight from a 

dynamic measurement. In standard weigh scale application, vehicles are stopped on a 

static scale and are measured without any interaction between the vehicle and the 

roadway. In WIM applications, a variety of forces are acting on the vehicle, including the 

force of gravity as well as dynamic effects of influences such as: roadway roughness, 

vehicle speed, vehicle acceleration and deceleration, out of balance tires and wheels, tire 

inflation pressure, suspension, aerodynamics and wind; and other dynamic factors.  

Several different technologies are available for WIM data collection systems. The 

most commonly used are: piezoelectric cables, bending plate, load cell, quartz cables, and 

Bridge WIM systems. ASTM Standard Designation: E 1318-02 distinguishes four types 

of WIM systems (Type I, II, III, and IV) based on application and performance 

requirements for data collection. Each type of WIM system has been specified to perform 

its indicated functions within specific tolerances. The piezoelectric sensors, which are the 

most common, offer acceptable accuracy ±15%. Strain based and load cell WIM systems 

are much more expensive, but they provide more accuracy. Recently, piezo-quartz 

sensors were introduced in the United States. They are less sensitive to temperature 

changes and generally more accurate. The majority of WIM data collection is done with 

permanently installed weight sensors, although the data is not always collected 

continuously. 

In order to assure unbiased data, WIM sites should be localized away from weight 

stations and be unknown to truck drivers’. WIM equipment should be subject to a regular 

maintenance and calibration. To limit erroneous data, it is recommended to avoid sites 

with numerous traffic stoppages (speed >10 mph), close to exits, and with rough surfaces. 

 



 

51 

 

Highway agencies have recognized the advantages of having automated data 

collection systems that can provide information on truck weights and truck traffic 

patterns for economic analysis, traffic management and various other purposes. 

Therefore, the quality and quantity of WIM data has greatly improved in recent years, 

and new WIM technologies continue to be developed. Due to the weigh-in-motion 

technologies, unbiased truckloads are being collected at normal highway speeds, in large 

quantity, and without truck driver’s knowledge (Figure 4.8). 

 

 

Figure 4.8. WIM data collection 

 

4.3. WEIGH IN MOTION DATABASE 

 

For the scope of this research, the weigh in motion database was obtained from 

the project NCHRP 12-76 and measurements on the Throggs Neck Bridge in New York. 

The database includes newest (2001-2006) WIM database for a variety of sites: 

California (6), Florida (5), Indiana (6), Mississippi (5), New York (7+2), Oklahoma (16), 
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and Oregon (4). The variety of sites is important, because the truck traffic changes 

depending on the site location: interstate or non-interstate highways, rural or urban areas, 

and state. Traffic data varies also depending on time of day, day of the week, season of 

the year, and direction. Therefore, it is important that the WIM database is collected 

continuously (mostly one-year data), on many traffic lanes and in both directions 

(usually). The database contains date and time, lane, number of axles, spacing between 

axles, axle weight, speed, and vehicle category. A summary of WIM data, including site 

localizations, number of lanes, and types of sensors used is presented in Table 4.2. 

Distribution of vehicles by axles and traffic lanes are presented in Table 4.3 - Table 4.10. 

The statistics is presented for four states selected for simulations: Oregon, Indiana, 

Florida, and New York. Cumulative distribution functions of gross vehicle weights by 

axles (GVW) were plotted in Figure 4.9-Figure 4.11. It can be noticed, that for New York 

I-495, the heaviest vehicles are 6-axles. Those are construction debris, gravel and garbage 

haulers. They often drive overloaded above 150 kips and occasionally above 200 kips, 

while NYSDOT routine permit trucks that are legal up to 120 kips. 

The WIM technology is known to have certain traffic data quality problems. The 

errors are due to physical and software-related failures of equipment and transmission, 

the difference between the dynamic weight measured and the actual static scale weight, 

as well as the effect of tire pressure, size and configuration of the WIM results. 

Therefore, the data quality checks have to be implemented to detect and fix/eliminate 

erroneous data before processing. A standardized procedure to filter out errors is applied 

to WIM data from various sites. According to Traffic Monitoring Guide (2001), 

reasonableness checks were performed on the axle weights and spacing. The limits were 

200 to 20,000 kilograms (0.44 to 4.41 kips) for axle weights and 0.5 to 15 meters (1.6 to 

49.2 feet) for axle spacing. Moreover, all obvious errors such as zero readings for number 

of axles or speed were eliminated. The percentage of filtered out data varies for different 

sites, which depends on condition of equipment, its regular maintenance and 

recalibration.  
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Table 4.2. Summary of WIM Data 

State Site ID Route 
# of Traffic 

Lanes 

# of WIM 

Lanes 
Both Dir WIM Type 

CA 0001 Lodi  
  

 

CA 0003 Antelope  
  

 

CA 0004 Antelope  
  

 

CA 0059 LA710  
  

 

CA 0060 LA710  
  

 

CA 0072 Bowman  
  

 

FL 9916 US-29 4 4 Y P 

FL 9919 I-95 4 4 Y P 

FL 9926 I-75 6 4 Y BP 

FL 9927 SR-546 4 4 Y BP 

FL 9936 I-10 4 4 Y P 

IN 9511 I-65 4 4 Y P 

IN 9512 I-74 4 4 Y SLC 

IN 9532 US-31 4 4 Y P 

IN 9534 I-65 6 6 Y P 

IN 9544 I-80/I-94 6 6 Y P 

IN 9552 US-50 2 2 Y P 

MS 2606 I-55 4 4 Y P 

MS 3015 I-10 4 4 Y P 

MS 4506 I-55 4 4 Y P 

MS 6104 US-49 2 2 Y P 

MS 7900 US-61 4 4 Y P 

NY 8280 I-84 4 4 Y P 

NY 8382 I-84 4 4 Y P 

OR Woodburn I-5 3 2 N SLC 

OR Emigrant Hill I-84 2 1 N SLC 

OR Lowell OR 58 2 2 N SLC 

OR Bend US 97 2 1 N SLC 

NY 9121 I-81 2 2 Y P 

NY 2680 8 4 4 Y P 

NY  I-495   Y  

P – Piezo, BP – Bending Plate, SLC – Single Load Cell 
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Table 4.3. Vehicles by axle in Oregon 

 

 

Table 4.4. Vehicles by traffic lane in Oregon 

 

 

 

 

axles

2 44507 4.6% 36959 6.04% 3333 1.56% 2273 2.48% 1942 3.28%

3 71365 7.3% 42009 6.87% 9242 4.34% 9807 10.70% 10307 17.40%

4 62025 6.4% 31066 5.08% 14728 6.91% 8032 8.76% 8199 13.84%

5 575846 59.0% 350107 57.22% 140520 65.97% 57123 62.30% 28096 47.44%

6 70639 7.2% 46792 7.65% 14441 6.78% 3789 4.13% 5617 9.48%

7 85658 8.8% 58407 9.55% 19003 8.92% 5725 6.24% 2523 4.26%

8 60907 6.2% 43947 7.18% 10041 4.71% 4764 5.20% 2155 3.64%

9 3500 0.4% 2253 0.37% 894 0.42% 131 0.14% 222 0.37%

10 697 0.1% 210 0.03% 404 0.19% 26 0.03% 57 0.10%

11 345 0.0% 46 0.01% 239 0.11% 20 0.02% 40 0.07%

12 277 0.0% 34 0.01% 172 0.08% 6 0.01% 65 0.11%

sum 975766 611830 213017 91696 59223

total I-5 Woodburn (NB) US 97 Bend (NB)OR 58 Lowell (WB)I-84 Emigrant Hill (WB)

lane

1 552388 90.28% 213017 100.00% 51404 56.06% 59223 100.00%

2 59442 9.72% 40292 43.94%

3

4

sum 611830 213017 91696 59223

I-5 Woodburn (NB) I-84 Emigrant Hill (WB) OR 58 Lowell (WB) US 97 Bend (NB)
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Table 4.5. Vehicles by axle in Florida 

 

 

Table 4.6. Vehicles by traffic lane in Florida 

 

 

 

 

axles

2 2400362 25.9% 482051 65.98% 229680 10.11% 1408095 36.45% 127986 19.70% 152550 8.37%

3 779456 8.4% 67058 9.18% 124347 5.47% 402640 10.42% 115466 17.77% 69945 4.12%

4 747991 8.1% 24388 3.34% 156406 6.88% 430324 11.14% 74984 11.54% 61889 3.50%

5 5156752 55.6% 148424 20.31% 1720367 75.69% 1554039 40.23% 297593 45.81% 1436329 82.08%

6 143470 1.5% 7011 0.96% 37909 1.67% 56038 1.45% 11271 1.74% 31241 1.76%

7 18988 0.2% 888 0.12% 2847 0.13% 6990 0.18% 6296 0.97% 1967 0.11%

8 8495 0.1% 410 0.06% 867 0.04% 2475 0.06% 4051 0.62% 692 0.03%

9 15755 0.2% 422 0.06% 405 0.02% 2533 0.07% 11977 1.84% 418 0.02%

10

11

12

sum 9271269 730652 2272828 3863134 649624 1755031

total Florida 9916 Florida 9927Florida 9919 Florida 9926 Florida 9936

lane

1 249213 34.11% 915451 40.28% 897806 23.24% 229181 35.28% 818460 46.64%

2 74085 10.14% 237260 10.44% 1119347 28.98% 88830 13.67% 114341 6.52%

3 407354 55.75% 181535 7.99% 0 0.00% 62778 9.66% 112767 6.43%

4 938583 41.30% 0 0.00% 268830 41.38% 709463 40.42%

5 1044850 27.05%

6 801070 20.74%

sum 730652 2272829 3863073 649619 1755031

Florida 9919 Florida 9926Florida 9916 Florida 9927 Florida 9936
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Table 4.7. Vehicles by axle in Indiana 

 

 

Table 4.8. Vehicles by traffic lane in Indiana 

 

 

 

 

 

axles

2 2527382 27.0% 44867 10.11% 16938 8.38% 738274 57.08% 1509944 24.18% 82330 9.91% 135029 37.48%

3 513522 5.5% 15135 3.41% 7400 3.66% 91398 7.07% 353721 5.67% 26523 3.19% 19345 5.37%

4 571231 6.1% 12517 2.82% 3170 1.57% 120486 9.31% 385840 6.18% 26400 3.18% 22818 6.33%

5 5654115 60.3% 364519 82.13% 171368 84.79% 334457 25.86% 3928062 62.91% 675794 81.38% 179915 49.93%

6 95770 1.0% 6534 1.47% 2993 1.48% 7359 0.57% 60292 0.97% 15688 1.89% 2904 0.81%

7 7547 0.1% 193 0.04% 159 0.08% 836 0.06% 3740 0.06% 2381 0.29% 238 0.07%

8 2967 0.0% 59 0.01% 54 0.03% 486 0.04% 1501 0.02% 829 0.10% 38 0.01%

9 945 0.0% 10 0.00% 14 0.01% 100 0.01% 396 0.01% 414 0.05% 11 0.00%

10 355 0.0% 8 0.00% 18 0.01% 46 0.00% 225 0.00% 52 0.01% 6 0.00%

11 131 0.0% 4 0.00% 6 0.00% 20 0.00% 89 0.00% 12 0.00% 0 0.00%

12 88 0.0% 0 0.00% 0 0.00% 21 0.00% 67 0.00% 0.00% 0 0.00%

sum 9374053 443846 202120 1293483 6243877 830423 360304

total Indiana 9534 Indiana 9552Indiana 9544Indiana 9511 Indiana 9532Indiana 9512

lane

1 375357 84.57% 185645 91.85% 823175 63.64% 3232127 51.76% 412695 49.70% 360304 100.00%

2 68489 15.43% 16475 8.15% 470308 36.36% 2657717 42.57% 393046 47.33% 0 0.00%

3 0 0.00% 0 0.00% 354033 5.67% 24682 2.97% 0

4 0 0.00% 0 0.00% 0 0.00% 0

sum 443846 202120 1293483 6243877 830423 360304

Indiana 9511 Indiana 9512 Indiana 9532 Indiana 9534 Indiana 9552Indiana 9544
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Table 4.9. Vehicles by axle in New York 

 

 

Table 4.10. Vehicles by traffic lane in New York 

 

 

axles

2 114115 41.6% 56459 38.58% 57656 45.02% 108563 7.88% 34752 25.34%

3 40359 14.7% 21102 14.42% 19257 15.04% 135919 9.87% 23644 17.24%

4 19297 7.0% 10605 7.25% 8692 6.79% 74822 5.43% 14154 10.32%

5 82959 30.2% 47294 32.32% 35665 27.85% 1010780 73.39% 52845 38.54%

6 17426 6.4% 10716 7.32% 6710 5.24% 44357 3.22% 9720 7.09%

7 217 0.1% 131 0.09% 86 0.07% 1758 0.13% 1113 0.81%

8 27 0.0% 20 0.01% 7 0.01% 542 0.04% 560 0.41%

9 20 0.0% 19 0.01% 1 0.00% 335 0.02% 212 0.15%

10 0 0.0% 0 0.00% 0.00% 182 0.01% 98 0.07%

11 0 0.0% 0.00% 0.00% 18 0.00% 25 0.02%

12 0 0.0% 0.00% 0.00% 8 0.00% 4 0.00%

13 0.0% 0.00% 0.00% 2 0.00% 1 0.00%

sum 274420 146346 128074 1377284 137127

NY 9121 NY 2680total I-495 EB I-495 WB

lane

1 52703 36.01% 43278 33.79% 618289 44.89% 46008 33.55%

2 90625 61.93% 78891 61.60% 88037 6.39% 3148 2.30%

3 3018 2.06% 5905 4.61% 74831 5.43% 8298 6.05%

4 0 0.00% 0.00% 596129 43.28% 79677 58.10%

sum 146346 128074 1377286 137131

NY 9121 NY 2680I-495 EB I-495 WB
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Figure 4.9. CDF's of GVW by axles Oregon I-5 Woodburn 
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Figure 4.10. CDF's of GVW by axles Oregon I-84 Emigrant Hill 
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Figure 4.11. CDF's of GVW by axles NY I-495 EB 
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CHAPTER 5  

DEVELOPMENT OF LIVE LOAD MODEL 

5.1. INTRODUCTION 

 

For long span bridges, the extreme live load is governed by the traffic jam 

scenario. The live load is modeled as the uniformly distributed lane load and additional 

axle load or single truck for deck components. Development of live load model is based 

on three approaches. Two of them can be classified as initial studies. The first of them is 

based on a 5-axle average truck and the second one is based on AASHTO LRFD legal 

load trucks. The third approach is detailed study based on truck WIM Data. 

 

5.2. MODEL BASED ON AVERAGE 5-AXLE TRUCK 

 

For computation of the live load on the most loaded lane, the following traffic model 

has been assumed: 

- Traffic jam situation, Figure 5.1. 

- Left lane loaded only with average trucks. 

- Average trucks are 5-axle trucks, which are the most popular among truck 

types, Figure 5.4 and Figure 5.5. In the FHWA WIM Data, vehicle categories 1-

3 FHWA are omitted, therefore the percentage of 2-axle vehicles is relatively 

low. 
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- An average 5-axle truck: 

- is 45 ft long  

- weights 55 kips, Figure 5.2 and Figure 5.3. 

- Clearance distance is 10 to 15 ft, therefore spacing between the last axle of one 

truck and first axle of the following truck is 20-25 ft. 

 

Live load due to such a combination of vehicles is equal to: 

55 kip / 70 ft = 0.79 kip/ft for clearance distance of 15 ft 

55 kip / 65 ft = 0.85 kip/ft for clearance distance of 10 ft 

 

Figure 5.1. Critical loading. Traffic jam scenario. 

 

Figure 5.2. CDF’s of GVW for 5-axle trucks. New York WIM Data. 
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Figure 5.3. CDF of GVW for 5-axle and 11-axle trucks 

(Nowak, A.S., Laman, J. and Nassif, H., 1994) 

 

 

Figure 5.4. Percentage of vehicles by number of axles. FHWA WIM Data. 
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Figure 5.5. Percentage of vehicles by number of axles. 

(Kim, S-J., Sokolik, A.F., and Nowak, A.S., 1997) 

 

 If we would like to consider all types of trucks, not only 5-axles, the result would 

be similar. The mean value of GVW is above 50 kips, Figure 5.6. 

 

Figure 5.6. CDF’s of GVW for all types of vehicles in Oregon. 
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5.3. MODEL BASED ON LEGAL LOAD TRUCKS 

 

The second approach to model live load is based on vehicles called "legal load 

types", which are developed in AASHTO. Some of the states use them for rating instead 

of the traditional HS-20 load. These vehicles were selected to match the federal bridge 

formula (known as Formula B) for vehicles up to 80 000 lb. While HS-20 was intended 

to be appropriate for all span ranges, three legal AASHTO vehicles (Type 3 Unit, Type 

3S2 Unit, Type 3-3 Unit) are supposed to adequately model short vehicles and a 

combination of vehicles for short, medium and long spans respectively. 

To model traffic jam situations on long span bridge the Type 3-3 Units have been 

placed in a lane with the clearance distance of 10 to 15 ft. Therefore spacing between the 

last axle of one truck and first axle of the following truck is 20-25 ft. Figure 5.7. Gross 

Vehicle Weight of a Type 3-3 Unit is 80 kips and total length of a Type 3-3 Unit is 54 ft, 

therefore: 

80 kips / (54+25) ft = 1.01 kip/ft for clearance distance of 15 ft 

80 kips / (54+20) ft = 1.08 kip/ft for clearance distance of 10 ft 

 

Since the value obtained in this way is based on heavy trucks and it is very 

conservative, its value can be multiplied by factor 0.75. This approach derives from basic 

philosophy used to develop lane load of 0.64 kip/ft. 

0.75 x 1.01 kip/ft = 0.76 kip/ft 

0.75 x 1.08 kip/ft = 0.81 kip/ft 

 

 

Figure 5.7. AASHTO LRFD legal load trucks, Type 3-3 Units. 
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5.4. MODEL BASED ON TRAFFIC JAM SIMULATION USING WIM DATA 

 

The considered WIM data was obtained from NCHRP 12-76, described in 

CHAPTER 4. The available data served as a basis for simulation of a traffic jam 

situation. Starting with the first truck, all consecutive trucks were added with a fixed 

clearance distance between them until the total length reached the span length (Figure 

5.8). Then, the total load of all trucks was calculated and divided by the span length to 

obtain the first value of the average uniformly distributed load. Next, the first truck was 

deleted, and one or more trucks were added so that the total length of trucks covers the 

full span length and the new value of the average uniformly distributed load was 

calculated. The calculations were performed for span lengths 600, 1000, 2000, 3000, 

4000, and 5000 ft. Trucks were kept in actual order, as recorded in the WIM surveys. 

Clearance distance is assumed to be about 15 ft, while spacing between the last axle of 

one truck and first axle of the following truck is 25 ft. Clearance concept is as defined as 

in Figure 5.9, and according to literature it varies between 6 and 21 ft. Spacing between 

the last axle of one truck and first axle of the following truck is clearance plus distance 

from first and last axles to corresponding bumpers, based on the most common 5-axle 

truck WB-20 defined in “AASHTO Geometric Design of Highways and Streets. Only the 

most loaded lane was considered. It was assumed that in a traffic jam situation, light 

vehicles are using faster lanes, therefore, vehicles of the 1-3 FHWA category were 

omitted.  

 

Figure 5.8. Simulation of trucks moving throughout span length 
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Figure 5.9. Clearance - Gap and Spacing - Headway Concepts 

 

 

Figure 5.10. Interstate semitrailer WB-20  

(AASHTO Geometric Design of Highways and Streets) 

 

To perform an extensive number of simulations on the huge databases for each 

site and different span lengths, a numerical procedure based on Visual Basic coding were 

developed. WIM data, such as weight and length of the trucks in actual order, had to be 

inputted to the program. The desired clearance distance was added automatically before 

computation. Running the computation was an extremely time consuming process.  

Results of the simulations were plotted as a cumulative distribution function 

(CDF) of uniformly distributed load for considered span lengths. The CDF’s for all 

simulated data are presented in Appendix A, CDF’s of daily maximum combinations in 

Appendix B, and CDF’s of weekly maximum combination in Appendix C.  

Calculations were performed for one month, three, four, six, nine months or one 

year data depending on localization. Even though it is a long period of time, it is small 

compared to the actual life time of the structure. The uniformly distributed loads 
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corresponding to longer period of time, 75 years, were calculated by extrapolation of 

simulated results. The extrapolated distributions are shown for maximum daily and 

weekly combinations (Appendix B and Appendix C). Let N be the number of truck 

combinations in time period T and assume that the traffic will remain the same. For T = 

75 years, N will be larger 900 times for one month data, 300 times for 3 month, 75 times 

for one year data etc. For example, for a site with 400,000 truck combinations monthly, 

this will result in N = 360 million truck combinations. The probability corresponding to 

N is 1/N. For 360 million, it is 1/360,000,000=2.8x10
-9

, which is 5.83 on the vertical 

scale of CDF plot. Probability corresponding to extrapolated maximum daily truck is 

3.65x10
-5

, and to maximum weekly truck is 2.56x10
-4

. The number of truck combinations 

N, probabilities 1/N, and inverse normal distribution corresponding to 75 years periods 

are shown in Table 5.2. 

From the results of simulations, the statistical parameters of live load were 

obtained. It was noticed that mean value of uniformly distributed load oscillates between 

value 0.50 and 0.75 k/ft (Figure 5.12). The value 0.75 k/ft is close to those obtained in 

two previous models. The mean daily and weekly maximum can be found in Figure 5.12 

and Figure 5.13. For longer spans uniformly distributed load decreases and is closer to 

mean value. This observation confirms that for a long loaded span, one heavily 

overloaded truck does not have significant influence. This is because the load depends on 

a mix of traffic. The bias factors (ratio of mean to nominal) were calculated for the 

heaviest 75-year combination of vehicles. The 75-year uniformly distributed loads were 

derived from extrapolated distributions. In Figure 5.16, it can be noticed that the bias 

factor values for some sites do not exceed 1.25, which is similar as for short and medium 

spans, as shown in the NCHRP Report 368 (1999). It is recommended to use HL-93 also 

for those long spans (Figure 5.11). To keep bias value below 1.0, it would be necessary to 

increase design value of uniformly distributed load to 0.85 k/ft (Figure 5.17). Brides in 

localizations with high ADDT and high percentage of overloaded trucks, such as those in 

New York, will require development of site specific models. For some sites with very 

heavy traffic, the bias factor reaches value 2.0 (Figure 5.16). Therefore, for those bridges 

the uniformly distributed load should be higher. It was found that to not exceed bias 1.25, 

the uniformly distributed load should be 1.2 kip/ft (Figure 5.18). The heaviest truck 
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combinations were observed on I-475, Throggs Neck Bridge in New York. They have 

been presented in Table 5.3. 

The coefficient of variation is calculated from the slope of transformed CDF. 

Figure 5.19 and Figure 5.20 present coefficient of variation of daily and weekly 

maximum uniformly distributed load. Daily maximum uniformly distributed load has 

more variation due to weekends. Lighter traffic during weekends can be observed in 

lower tail of CDF’s. Estimated coefficients of variation were derived from weekly 

maximum values, excluding sites from Yew York. Calculated statistical parameters for 

uniformly distributed load are summarized in Table 5.1. 

 

Figure 5.11. HL-93 proposed for long span bridges 

 

Table 5.1. Statistical parameter for proposed uniformly distributes live load 

span length Bias CoV 

600 – 1000 ft 1.25 0.10 

> 1000 ft 1.20 0.08 
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Table 5.2. Summary of simulated data 

State Site ID Route Number of truck 

combinations 

Time 

period 

75-years 

probability 

FL 9916 US-29 247,449 1 year 5.39x10-8 

FL 9919 I-95 222,368 3 months 1.50x10-8 

FL 9927 SR-546 225,868 1 year 5.90x10-8 

FL 9936 I-10 188,990 1 year 7.05x10-8 

IN 9512 I-74 167,630 1 month 6.63x10-9 

IN 9534 I-65 266,333 1 month 4.17x10-9 

IN 9544 I-80/I-94 406,418 1 month 2.73x10-9 

OR Woodburn I-5 552,390 4 months 8.04x10-9 

OR Emigrant Hill I-84 213,019 4 months 2.09x10-8 

OR Lowell OR 58 51,406 4 months 8.65x10-8 

OR Bend US 97 59,225 3 months 7.50x10-8 

NY  9121 I-81 300,500 6 months 2.22x10-8 

NY  2680 8 45,030 9 months 2.23x10-7 

NY  I-495WB 43,200 1 month 2.57x10-8 

NY  I-495EB 52,618 1 month 2.11x10-8 

 sum 3,042,444  
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Table 5.3. Heaviest truck combinations for 600 ft on I-495 WB 

 

 

 

number 

of axles
W L W L W L W L W L W

Total 

length
GVW

 [kip]  [ft]  [kip]  [ft]  [kip]  [ft]  [kip]  [ft]  [kip]  [ft]  [kip]  [ft]  [kip]

5 20.04 17.39 41.41 4.27 35.68 22.31 38.77 4.27 37.44 0.00 0.00 73.3 173.3

2 27.97 19.69 32.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 44.7 60.8

5 33.26 17.72 36.12 4.27 33.04 23.62 25.11 3.94 28.41 0.00 0.00 74.6 155.9

3 30.40 16.08 26.87 4.27 27.75 0.00 0.00 0.00 0.00 0.00 0.00 45.4 85.0

2 28.19 22.97 42.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.0 70.9

5 35.68 15.42 37.44 4.27 38.55 34.45 33.04 3.94 32.38 0.00 0.00 83.2 177.1

5 33.48 12.14 43.83 3.94 38.99 28.87 43.61 3.94 39.87 0.00 0.00 74.0 199.8

5 38.11 13.12 25.33 4.27 20.48 31.50 19.60 3.94 23.57 0.00 0.00 77.9 127.1

2 33.26 15.75 39.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 40.8 73.1

561.9 1123.1 2.00 k/ft

2 11.23 18.70 21.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 43.7 32.4

5 20.04 17.39 41.41 4.27 35.68 22.31 38.77 4.27 37.44 0.00 0.00 73.3 173.3

2 27.97 19.69 32.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 44.7 60.8

5 33.26 17.72 36.12 4.27 33.04 23.62 25.11 3.94 28.41 0.00 0.00 74.6 155.9

3 30.40 16.08 26.87 4.27 27.75 0.00 0.00 0.00 0.00 0.00 0.00 45.4 85.0

2 28.19 22.97 42.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.0 70.9

5 35.68 15.42 37.44 4.27 38.55 34.45 33.04 3.94 32.38 0.00 0.00 83.2 177.1

5 33.48 12.14 43.83 3.94 38.99 28.87 43.61 3.94 39.87 0.00 0.00 74.0 199.8

5 38.11 13.12 25.33 4.27 20.48 31.50 19.60 3.94 23.57 0.00 0.00 77.9 127.1

564.9 1082.4 1.92 k/ft

5 38.99 14.11 35.68 4.27 31.94 17.39 28.85 3.94 31.28 0.00 0.00 64.8 166.7

5 37.00 12.14 40.09 4.27 33.04 32.48 30.84 3.94 37.22 0.00 0.00 77.9 178.2

5 37.67 10.50 22.47 4.27 24.01 26.57 15.42 10.17 18.28 0.00 0.00 76.6 117.8

2 29.07 16.08 38.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 41.1 67.2

3 43.61 18.70 21.37 4.59 27.53 0.00 0.00 0.00 0.00 0.00 0.00 48.3 92.5

2 34.14 21.33 26.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 46.4 60.4

5 40.75 13.45 30.62 4.27 25.33 30.51 22.03 3.94 22.47 0.00 0.00 77.3 141.2

5 35.46 10.50 22.03 4.27 20.70 22.64 20.04 4.27 20.48 0.00 0.00 66.7 118.7

3 36.56 19.69 37.00 4.27 31.06 0.00 0.00 0.00 0.00 0.00 0.00 49.0 104.6

548.1 1047.4 1.91 k/ft
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Figure 5.12. Mean value of uniformly distributed load 

 

 

Figure 5.13. Daily maximum mean value of uniformly distributed load 
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Figure 5.14. Weekly maximum mean value of uniformly distributed load 

 

 

Figure 5.15. Bias (mean max 75 year to nominal value of UDL) 
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Figure 5.16. Bias (mean max 75 year to nominal value of UDL) 

 

 

Figure 5.17. Bias (mean max 75 year to nominal value of UDL)  

assumed designed UDL of 0.85 k/ft 
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Figure 5.18. Bias for heavily loaded localizations, assumed designed UDL of 1.25 k/ft 

 

 

 

Figure 5.19. Coefficient of variation of daily maximum uniformly distributed load 
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Figure 5.20. Coefficient of variation of weekly maximum uniformly distributed load 

 

 

Figure 5.21. Proposed coefficient of variation of uniformly distributed load 
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CHAPTER 6  

MULTIPLE PRESENCE 

6.1. INTRODUCTION 

 

Determination of live loading for multiple traffic lanes is very important for 

appropriate bridge design. Each traffic lane can be loaded with different live load. The 

more traffic lanes the more difference in distribution of loading. Trucks tend to use right 

lanes loading them heavily, while passenger cars use faster left lanes. Structural 

components are strongly influenced by the location of trucks on the bridge. Those 

carrying the right lane of traffic are usually subjected to more load cycles and fatigue 

than the components closer the left lane. However, it has to be remembered that traffic 

can be deviated and truck can be directed to left lanes, for example during maintenance 

works on bridge. Presence of truck on multiple traffic lanes at the same time is critical 

from the bridge design point of view. 

In this chapter, a short review of current studies on presence of multiple trucks, 

study of video recording of traffic jam situations, and discussion on different approaches 

to multilane reduction factors are presented. Multiple presence factors applied in 

international codes are discussed in CHAPTER 2. 
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6.2. STUDIES ON PRESENCE OF MULTIPLE TRUCKS 

 

In 1993 Andrzej S. Nowak, Hani Nassif, and Leo DeFrain performed a study on 

the occupation of road lanes and presence of multiple truck. For the study, the database of 

over 600 000 trucks on two lanes in each direction was collected using weigh-in-motion 

equipment. It was found that 70-90% of trucks use the right lane (Table 6.1), and 65-70 

percent of trucks are 5-axle trucks. The researchers had also found out that less than 2% 

of trucks appear simultaneously with another truck in the lane, 4-8% side by side in 

tandem or behind, with distance between front axles less than 50 ft (Table 6.1). 

 

Table 6.1. Presence of multiple trucks and their location on the road lanes 

tandem behind tandem behind

I-94 1582 151 14 28 48 2073 349 14 86 93

91,3% 8,7% 0,8% 1,6% 2,8% 85,6% 14,4% 0,6% 3,6% 3,8%

U.S.-23 1685 371 24 40 76 1247 601 2 38 34

82,0% 18,0% 1,2% 1,9% 3,7% 67,5% 32,5% 0,1% 2,1% 1,8%

side by side
right left

Interstate 

highway

Eastbound Westbound

right leftin lane
side by side

in lane

 

 

The results were later confirmed by the investigation by Gindy and Nassif (2006). 

Data used in this study was collected over an 11-year period between 1993 and 2003 by 

the New Jersey Department of Transportation. The study gives detailed analysis of the 

relation between multiple presences of trucks and four parameters: truck volume, area 

type, road type, and bridge span length. An increase in truck volume results in an increase 

of all multiple presence cases and a decrease in the frequency of single loading events 

(Figure 6.2). The area (urban or rural) and vicinity of industry affect the frequency of 

multiple truck presence. Heavier volume sites tend to be located in urban areas, and as a 

consequence more cases of multiple trucks can be observed. Increasing bridge spans also 

gives more opportunities for trucks to occur simultaneously (Figure 6.3). The frequency 

of staggered events increases faster for shorter spans and at a steadier pace for longer 

spans. Span length has almost no influence on the frequency of side-by-side trucks. 
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Assumptions of traffic patterns made for multiple presence analysis following 

(see Figure 6.1): 

- single – only one truck is present on the bridge 

- following – two trucks on the same lane with a varying clearance distance 

- side-by-side – two trucks in adjacent lanes with an overlap at least one-half the body 

length of the leading truck 

- staggered – two trucks in adjacent lanes with an overlap at less than one-half the body 

length of the leading truck 

 

 

Figure 6.1. Traffic loading pattern used for multiple truck presence statistics. 

 

Comparing results of the study made by Andrzej S. Nowak, Hani Nassif, and Leo 

DeFrain in 1993 and the study made by Mayrai Gindy and Hani H. Nassif in 2006, some 

divergences can be observed. Some of them can be caused by the differences in the 

definition of “side-by-side” and “staggered” cases. Trucks which are considered 

“staggered” in one case can be considered as “side by side” in the other. However, 

joining those two cases and making a sum of those two values, we obtain relatively close 

results, 7.3 % for the study from 1993 and 6% for study from 2006. Regarding the 

occurrence of following trucks, values obtained in 1993 vary between 0.1 and 1.2%, and 

values obtained in 2006 vary between 1 and 8%. Those values cannot be compared 
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because of differences in the assumptions and definition of “following” trucks. 

Furthermore, the bridges taken into consideration in the study from 2006 were longer, 

which increases the probability of this occurring. The probability that the trucks will 

occur as following trucks increases with the span length.  

In the report NCHRP 12-76 (2008), it is stated that multi-presence probabilities 

for permit trucks are different from those for normal traffic. The likelihood of permit 

trucks exceeding the authorized weight as well as the likelihood of the presence of 

multiple permit trucks is reduced. 

 

 

Figure 6.2. Variation of multiple truck presence statistics with respect to truck volume. 

Gindy and Nassif (2006). 
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Figure 6.3. Variation of multiple truck presence statistics with respect to bridge span 

length. Gindy and Nassif (2006). 

 

6.3. MULTIPLE PRESENCE OF TRUCKS BASED ON THE VIDEO FILES OF 

TRAFFIC  

 

FHWA has provided a DVD including video files monitoring seven traffic 

situations in different sites, at different times and days of the week. The localization of 

the sites was not specified. Total time of all sixteen video recordings is 2 hours 6 minutes 

and 30 seconds. The list of video recordings is following: 

- (1) 05.30.2008, Friday, 12.17 pm (33min44sec) 

- (2) 05.29.2008, Thursday, 6.08pm (4min43sec) 
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- (3)  05.22.2008, Thursday, 11.22am (0min22sec) 

- (4)  05.22.2008, Thursday, 11.20am (0min22sec) 

- (5) 05.14.2008, Wednesday, 12.52pm (4min51sec) 

- (6)  05.14.2008, Wednesday, 12.50pm (2min26sec) 

- (7)  05.14.2008, Wednesday, 12.48pm (1min47sec) 

- (8) 05.14.2008, Wednesday, 12.44pm (3min59sec) 

- (9)  05.06.2008, Tuesday, 7.59am (3min49sec) 

- (10) 05.01.2008, Thursday, 12.20pm (1min04sec) 

- (11) 04.04.2008, Friday, 4.42pm (9min28sec) 

- (12) 04.04.2008, Friday, 4.43pm (8min54sec) 

- (13) 04.04.2008, Friday, 4.43pm (0min36sec) 

- (14) 04.04.2008, Friday, 4.43pm (19min26sec) 

- (15) 04.04.2008, Friday, 4.43pm (22min53sec) 

- (16) 04.04.2008, Friday, 4.43pm (8min06sec) 

 

 The recordings show dense traffic jam situations, some of them being the result of 

traffic accidents. They allow for making some observations and conclusions regarding 

traffic patterns and the presence of multiple trucks moving at a crawling speed. This is 

the critical case from the point of view of live loading on bridges. Despite the fact the 

recordings are taken on highways, the recorded situations can be related to bridges as 

well. One of the most important observations is that even in very dense traffic it is very 

common to observe cars or pick-up among heavy vehicles (Figure 6.4). 
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Figure 6.4. Video 10, time: 00:00:58 

 

The video file number 1 contains the longest and the most interesting material. It 

has a registered traffic accident on a highway having four lanes in one direction. The 

accident takes place on the second lane (counting from the external side). The second and 

the third lanes remain completely stopped by crushed cars and emergency vehicles for 

approximately half an hour. Passing cars are using the first and the fourth lanes. For a 

short period of time three lanes are blocked, and the passing cars can use only the fourth 

lane, that intensifies jam-packed traffic. For the majority of time we can observe that the 

moving lanes contain a mixture of trucks and cars. However, we can also observe some 

situations with multiple-presence of trucks occupying three or four lanes at the same time 

(Figure 6.5 and Figure 6.6). We can also observe a situation when one lane is almost 

exclusive occupied by trucks (Figure 6.6). Those cases should also be taken into 

consideration during the evaluation of design live load. There is no information about 

trucks’ weight. However, it can be assumed that only a limited number of the trucks are 

correlated, and while some of them are fully loaded some percentage of them can be 

empty.  
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Figure 6.5. Video 1, time: 00:05:28 

 

 

Figure 6.6. Video 1, time: 00:18:36 
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Some of the video files show traffic jam situations at roads junction that cannot be 

representative. The number of cars among trucks is increased because some of them are 

entering or exiting the highway (Figure 6.7 and Figure 6.8). This observation calls our 

attention to the importance of the appropriate selection of sites.  

 

 

Figure 6.7. Video 2, time: 00:00:15 

 



 

86 

 

 

Figure 6.8. Video 8, time: 00:00:16 

 

Video recordings from 11 to 16 show traffic situation caused by the same 

accident. Three lanes are blocked and the moving vehicles are using only one lane. 

However, warning signs posted adequately ahead result in the vehicles forming one lane 

and do not cause multilane traffic jam situation in the vicinity of the place of the accident. 

An ordered one lane of traffic is a mixture of trucks and cars. This situation does not 

allow for the observation of multiple truck presence situations.  

 

6.4. APPROACHES TO MULTILANE REDUCTION FACTORS 

 

There are many approaches to multilane reduction factors. International codes 

vary significantly in this matter (see CHAPTER 2), and all of them are much more 

simplified than actual situation. 

Most of the design codes decrease the value of uniformly distributed load as the 

number of traffic lanes increases. The load value is the same on all traffic lanes, Figure 

6.9.  
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Figure 6.9. Multilane load in design codes AASHTO LRFD Code (2007), 

OHBDC (1991), CAN/CSA-S6-00 [2000], and ASCE (1981). 

 

According to the Eurocode one of the lanes is loaded more than the others, Figure 

6.10.  

 

 

Figure 6.10. Multilane load in Eurocode 1. 

 

The observations indicate that the actual traffic is distributed differently for each 

lane of traffic, Figure 6.11. 

 

Figure 6.11. Multilane load in actual observation. 
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To reflect actual traffic situation would be very difficult and time consuming for 

designers. Therefore, the approach applied in the Eurocode seems the most practical one. 

Each of the lanes should be considered as the most loaded one, while the other lanes carry 

equal loading. 

 

6.5. CONCLUSIONS 

 

Presence of multiple trucks depend on factors such as: truck volume (light, 

average, heavy) area type (urban/rural), road type (major/minor), bridge span length, law 

enforcement, and traffic flow control, which can cause heavy truck queues. Therefore, 

multilane reduction factors could be very site specific. 

Based on video recordings of traffic it was confirmed that for the majority of time 

we can observe that the moving lanes contain a mixture of trucks and cars. However, 

situations when one lane is almost exclusively occupied by trucks or trucks occupy three 

or four lanes at the same time are also possible. Multiple reduction factors for design live 

load should account for those the most critical loading cases.  

In the available WIM database, the vehicles of 1-3 categories have not been 

registered. Therefore, it does not allow for simulations and derivation of multilane factors 

for all traffic lanes. Simulation of the traffic on the most loaded lane was possible with 

assumption, that it is occupied exclusively by trucks. In the traffic jam situations, the 

passenger vehicles are assumed to move to faster lanes. 

It was concluded that the multilane reduction factors have to be an object of 

additional extensive studies. They have to account for intensive traffic jam situations, as 

those registered in the video recordings. As well, different distribution of loading on 

multiple traffic lanes has to be considered. 

Since no new multilane reduction factors were proposed, those from the current 

AASHTO Code are used in this dissertation.  
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CHAPTER 7  

DYNAMIC FACTOR 

7.1. INTRODUCTION 

 

The scope of this chapter is studying the origin and adequacy of the application of the 

dynamic load factor in bridge design. There is considerable variation in the treatment of 

dynamic load effects by bridge design codes in different countries (see CHAPTER 2). The 

most common approach is to apply dynamic response as a fraction or multiple of the 

response that would be obtained if the same forces or loads were applied statically. The 

objective of this simple approach is to not increase complexity for the designer. This is the 

approach specified in the current AASHTO Code. The live load model itself does not 

account for dynamics, but the dynamic amplification is added additionally as a percentage to 

static effects.  

In this chapter there is a short review of the research studies. As well, a developed 

exemplary vehicle-bridge interaction model and the derivation of dynamic factor is 

presented. In the modeling a finite element software ABAQUS was used. Three-axle 

AASHTO truck HS-20 travelling over a 120 ft steel girder bridge is modeled. The truck is 

assumed to travel with the velocity of 40 miles per hour and with the crawling speed. The 

final result is comparison of the static the dynamic deflections, and derivation of dynamic 

factor for this specific case.  

  



 

90 

 

7.2. STUDIES ON PARAMETERS AFFECTING DYNAMIC BRIDGE RESPONSE 

 

The dynamic response of a bridge to a crossing vehicle is a complex problem affected 

by the dynamic characteristics of the bridge, the vehicle, and by the bridge surface 

conditions. Many of the parameters interact with one another, further complicating the issue. 

Consequently, many research studies have reported seemingly conflicting conclusions. Based 

on the review of past research, the effects of various parameters on the dynamic response of 

bridges to vehicular loading are discussed in this paragraph. 

 

Bridge Fundamental Frequency 

 

The fundamental frequency of vibration for a bridge due to vertical loading has a 

significant effect on the dynamic response. If the frequencies of the bridge and vehicle 

converge, the dynamic response induced may be large. A majority of the fundamental 

frequencies for typical bridges are in the range of 2 to 5 Hz (Figure 7.1), which corresponds 

to the body bounce response frequency range of a truck.  

 

Figure 7.1. Distribution of fundamental bridge frequencies 

(Cantieni 1984) 
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Field measurements and values obtained from analytical modeling show relation 

between frequencies and bridge span (Figure 7.2 and Figure 7.3). 

 

Figure 7.2. Fundamental frequency versus span length 

(Cantieni 1984) 

 

Figure 7.3. Fundamental frequency versus span length 

(Paultre 1992) 
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Bridge Damping 

 

From basic dynamic principles, higher levels of damping reduce the dynamic 

response in bridges and low levels of damping in a bridge are expected to result in high 

dynamic amplification. However, damping affects impact differently at different locations 

within the bridge as a result of varying modal contributions (Huang, Wang, and Shahawy, 

1992). Damping values for bridges obtained from field testing can also vary considerably 

based on the method of testing, level of loading, and different methods used for evaluating 

damping. Reported values of damping for different types of bridges are as follows: 

- concrete bridges - 2 to 10 % (Tilly, 1978)  

- steel bridges - 2 to 6 %( Tilly, 1978), 0.4 to 1.3 % (Billing, 1984) 

- composite steel-concrete bridges - 5 to 10 % (Tilly, 1978)  

- prestressed concrete bridges - 1 to 2.2 % (Billing, 1984) 

- timber bridges - 3 to 4 % (Ritter, 1995) 

 

Roadway Roughness and Approach Condition 

 

The bridge approaches and roughness of the roadway surface have a significant 

influence on the magnitude of the dynamic response. Not only do the impact forces increase 

for increased roughness, but also vehicle speed affects the influence of roughness. The faster 

vehicle speed has greater impact on rougher surfaces than on better maintained ones. The 

results of the study by Wang, Shahawy, and Huang (1993) can be seen in Figure 7.4. 
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Figure 7.4. Impact factor versus vehicle speed and road surface condition 

(Wang, Shahawy, and Huang 1993) 

 

Experimental tests have also shown that the most severe wheel impact forces are 

likely to occur adjacent to the bridge approaches, i.e., shortly after a vehicle enters the bridge 

(Tilly 1978). In many experimental investigations, wooden planks were placed in the path of 

the test vehicle. It was supposed to represent surface irregularities such as dropped objects or 

packed snow on the roadway. Dynamic response was higher with the planks and the planks 

were exciting wheel hop in the test vehicles, although excitation of the higher vibration mode 

associated with wheel hop is also speed dependent. 

 

Vehicle Speed 

 

For most heavy trucks, natural frequencies of the vehicle typically occur in two 

frequency ranges: between approximately 2 and 5 Hz for the "body bounce" response and 

between approximately 10 and 15 Hz for the "wheel hop" response. However, depending on 

vehicle speed, roadway surface irregularities may be effective in exciting both modes of 

response (Cantieni 1983).  
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Weight of Vehicles 

 

Many studies have shown that as the weight of the crossing vehicle increases, the 

magnitude of the dynamic response expressed as a percentage of the static load decreases. 

The explanation of this fact is that when the dynamic forces increase with increasing 

vehicle weight, the static load increases more rapidly with increasing weight. Thus, the 

impact ratio of dynamic force to live load decreases with increasing vehicle weight and 

impact factors obtained from the measured dynamic response of lightly loaded vehicles 

will be relatively large. 

 

Number of Vehicles 

 

The dynamic load factors associated with multiple vehicles are lower than those for 

single vehicles. This is most likely because the total static load is larger (similar to having a 

heavier vehicle) compared to the associated dynamic load, and the dynamic responses from 

the two individual vehicles are likely to be at least somewhat out of phase with each other. 

 

Vehicle suspension 

 

The vehicle frequency ranges are a function of the suspension systems. The body 

bounce frequencies in vehicles with air suspensions are lower than those for steel leaf-spring 

suspensions, with measured frequencies in the 1.5 to 2 Hz range. Worn dampers in the 

suspension systems also dramatically increased the dynamic wheel forces. 

 

In Figure 7.5 the influence of suspension is presented. On one deflection trace the 

vehicle had its normal suspension characteristics, in the other the springs were blocked so 

that the truck rode directly on the axles. The increase in response is evident for the unsprung 

condition. 
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Figure 7.5. Effects of vehicle suspension on the measured bridge response 

(Biggs and Suer 1955) 

 

Bridge Span 

 

There are conflicting opinions regarding dynamic response and bridge span. While 

some investigations have shown a general trend of decreasing impact in conjunction with 

increasing span (Figure 7.6, Fleming and Romualdi 1961), other investigations have 

concluded that considerable scatter exists in the results and there is poor correlation of impact 

and span (Figure 7.7, Cantieni 1983). Some researchers have concluded that impact is not a 

function of bridge span (Coussy et al. 1989). However, it should be concluded that as span 

length influences bridge fundamental frequency, it also indirectly influences bridge 

dynamics. 
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Figure 7.6. Impact versus span length (Fleming and Romualdi 1961) 

 

 

Figure 7.7. Impact versus span length (Cantieni 1984) 
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Bridge Type and Geometry 

 

Most of the studies on dynamic response were performed on simple-span multi-girder 

bridges. The investigations concluded that the total number of girders has little influence on 

the maximum impact factors for each girder and that the impact at the interior supports was 

larger than at external locations. The dynamic response of simple-span bridges is higher than 

that for similar continuous bridges.  

 

Cable-stayed and suspension bridges are more complicated to assess than for 

beam/girder bridges, mostly due to the influence of cables’ dynamics. Dynamic response 

quantities are sensitive to damping, which is difficult to determinate in these types of bridges, 

and may be different for different vibration modes. In analytical investigations it was found 

that, with a good road surface, impact factors were generally less than 0.20. However, for 

rough surfaces, impact forces increased dramatically. (Khalifa 1992) 

 

Dynamic response of continuous and cantilever thin-walled box girder bridges under 

multi-vehicle loading was analytically investigated by Wang, Huang, and Shahawy (1996) 

and Huang, Wang, and Shahawy (1995a). It was found that the vibration characteristics of 

the continuous and cantilever box girder bridges are quite different. For cantilever bridges, 

the most important factor affecting impact is the vehicle speed, and they are much more 

susceptible to vibration than continuous bridges. This is due to the abrupt change in loading 

due to span discontinuities, when no support exists between cantilevers. For continuous 

bridges, both vehicle speed and surface roughness are significant. End diaphragms were 

found to provide lateral support and significantly reduce the response of the box girder 

bridges. The beneficial effect of a midspan diaphragm is relatively small. 

 

Dynamic behavior depends on curvature of the bridge. It was found that the dynamic 

response in horizontally curved bridges is influenced by centrifugal accelerations, thus, 

vehicle speed is particularly important. Impact forces are higher in the outer elements of the 

curved bridges. Impact forces are insensitive to curvature for radii greater than 4 000 ft (1219 
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m) and markedly influenced by curvature for radii less than 800 ft (244 m). Research done by 

Galdos et al. (1993) and Schilling et al. (1992) and Huang, Wang, and Shahawy (1995b). 

 

7.1. BRIDGE-VEHICLE INTERACTION MODEL AND DERIVATION OF 

DYNAMIC FACTOR 

 

7.1.1. Bridge and Vehicle Model 

 

To study vehicle-bridge interaction, with the use of ABAQUS 6.6.1 software a finite 

element model of bridge and vehicle has been developed.  

 

The bridge chosen for the analysis is a 120 ft steel girder bridge. It is modeled with 3D shell 

elements: 

Steel girders: 

- five steel W40x264 (profile properties: area A = 77.60 in2, depth of the section 

d=40 in, web thickness: tw = 0.96 in, flange width bf = 11.93 in, flange thickness 

tf =: 1.73 in, moment of inertia Ix-x=19400 in4) 

- spaced 64 in 

- fy = 60 ksi 

- steel diaphragms every 30 ft 

- 2360 elements, 2715 nodes 

Concrete slab: 

- thickness: 7.5 in 

- width:312 in 

- fc’=:8 ksi 

- 4464 elements, 4640 nodes 

Supports: 

- left support - pinned 

- right support - roller 

Connection between girders and slab: tied (compatibility of all degrees of freedom) 

Bridge model meshed with S4R elements is shown in Figure 7.8. 
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Figure 7.8. Meshed model of the bridge 

 

A vehicle model was developed based on three-axle AASHTO HS-20 truck, which is 

the design vehicle in the AASHTO Specifications. Two cases are considered, the truck HS-

20 is assumed to travel with the velocity of 40 miles per hour and with the crawling speed. 

Figure 7.9, shows FEM model of moving masses. To simplify the analysis each wheel is 

modeled with one DOF in the vertical direction. Detailed model would include a seven 

degree of freedom system. Tractor and semitrailer would have individually assigned two 

DOFs corresponding to: vertical displacement (yi) and rotation about the transverse axis (θi). 

Moreover each wheel-axle set would be provided with one DOF in the vertical direction (yi). 

Five sprung masses would be: the tractor, semitrailer, steer wheel-axle set, tractor wheel-axle 

set, and trailer wheel axle set. A more detailed model could include rotations about 

longitudinal axis (Φi).In this case the total independent DOFs would be eleven.  

 

Figure 7.9. Truck model in FEM 
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7.1.1. Bridge-Vehicle Interaction Model 

 

There are two main sources of vibrations induced by the vehicle into the bridge. One 

of them is the settling of the approach slab of the bridge. The bump at the bridge entrance 

causes so called “wheel hop” that could be approximated by impulse loading. A vehicle 

vibrates with a frequency between 10 and 15 Hz. Transmitted force is significant, however it 

fades relatively fast converging into “body bounce” that occurs at lower frequencies. The 

other source of vibrations is an undulating roadway surface. The condition of driving a 

vehicle over an undulating roadway surface can be approximately idealized as an SDOF 

system under harmonic loading provided the roadway varies as a sine wave. These kinds of 

vibrations are called “body bounce” and usually occur at frequencies between 2 and 5 Hz. 

The loading is characterized by the roughness amplitude, roughness wavelength, and vehicle 

speed. If the shock-absorbing elements of the vehicle suspension system are worn, then the 

vehicle's damping is fairly low and the response is quite large. Under such conditions, nearly 

resonant response can develop. 

 

Since the truck model is simplified and the scope of the project requires comparison 

of the deflections in the middle of the span, the interaction model includes only “body 

bounce”, which depends on the relation between suspension system and the truck. Tire 

stiffness and “wheel hop” response are neglected. 

 The vertical interaction force acting on a bridge consists of the static interaction force 

Fw and the variation of the interaction force ∆Fw. 

Fb = Fw + ∆Fw. 

Fw = M g 

))()(()
)(

( 1

1 tytyk
dt

dy

dt

tdy
cF ii −⋅+−⋅=∆  

 

The interaction force is approximated by a sinusoidal shape, as shown in the 

Figure 7.10. The force Fw transmitted by the rear wheels is 16 kips and its variation ∆Fw is 

equal to ±10%. The front wheels carrying 4 kips each are also assumed to produce force 

variation ±10%. The effects of damping are small, and they will be neglected in the analysis. 
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Figure 7.10. Vehicle-bridge interacting force. 

 

Figure 7.11 is a plot from ABAQUS that shows forces being applied to the bridge versus 

time. It can be noticed when the following truck axes are entering and leaving the bridge. 

Their amplitudes are interfering and adding to each other. Those forces could also be 

canceling each other. Such a situation of adding amplitudes was simulated on purpose, to 

obtain the maximum dynamic deflections in the middle span. 

 

Figure 7.11. Force due to moving truck versus time. Plot from ABAQUS. 
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7.1.1. Results of analysis 

 

Mode shapes obtained in the analysis are shown in Figure 7.12 (bending modes) and 

Figure 7.13 (torsion modes). The natural frequencies are following:  

- first bending mode 2.12 Hz 

- second bending mode: 8.19 Hz 

- third bending mode: 17.10 Hz 

- first torsion mode: 3.17 Hz 

- second torsion modes: 9.09 Hz 

 

 

Figure 7.12. Bending modes 

 

 

Figure 7.13. Torsion modes. 
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The deflection due to dead load, weight of the concrete slab and the steel profiles, is 2.74 in. 

Maximal deflection due to moving truck is 0.69 in (Figure 7.14). It corresponds to the truck 

being located almost, but not in the span center. 

 

 

Figure 7.14. Maximal deflection due to moving truck 

 

Figure 7.15 and Figure 7.16 show deflections in the middle of the span due to 

moving and stationary trucks. Maximum deflection due to moving truck (0.69 in) versus 

maximum deflection due to stationary truck (0.65 in) shows 6% difference. 
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Figure 7.15. Deflection due to a truck moving 40mil/hr versus time. 

 

 

Figure 7.16. Deflection due to a truck moving at crawling speed versus time. 
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7.2. CONCLUSIONS 

 

The study of the topic and the developed FEM model allowed for estimating the 

magnitude of the dynamic load factor and to draw some conclusions. It was concluded that 

the current dynamic load factor of 0.33 is too high for bridges with longer spans. It may be 

applicable in short bridges, when vibration due to “wheel hop” on the approach slab is 

significant. However, for longer bridges where the influence of the approach slab decreases 

and vibrations of many vehicles interfere with each other, the dynamic load factor could be 

smaller. Even for the exemplary case of medium span bridge presented in this thesis the 

dynamic load factor is only 6%. The FEM model was built using ABAQUS 6.6.1 software. 

Finite element problem modeling, including moving load and defined interaction between 

surfaces, are non linear and very time demanding. To be adequate and draw more 

conclusions further studies should be performed, including a wide range of bridge types, 

spans and roadway conditions. Also, a more elaborate truck model should be performed, 

accounting for both “body bounce” as well as “wheel hop”. Moreover, analytical studies 

should be confirmed with field tests on the representative structures. 

In this dissertation, a traffic jam situation was assumed to develop the live load 

model. Therefore there is no allowance for dynamic. However, to not introduce confusion 

among designers it is recommended do keep dynamic factor as it is for short and medium 

span bridges, which results in very small value for long span bridges. 
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CHAPTER 8  

RELIABILTY ANALYSIS OF SUSPENSION BRIDGE 

8.1. RELIABILITY ANALYSIS PROCEDURE 

 

Reliability analysis was performed to verify the live load model for long span 

bridges. The reliability procedure includes the following steps: 

 

1. Selection of a representative bridge and its component 

A representative suspension bridge and the structural element that is the most 

influenced by live load were selected. 

2. Limit state function  

The limit state function was defined as the exceeding of the ultimate bending 

moment capacity by the cross-section and Strength I combination. 

3. Nominal resistance model 

In order to find nominal resistance, software for the tower cross section was 

developed.  

4. Reliability resistance models 

The material, fabrication and professional factors were established. Evaluation 

of material, fabrication and professional factors was based on the database 

available in the literature of and described by Nowak et al. (2008) and 

Ellingwood et al. (1980). Based on the developed software for nominal 
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resistance and the Monte Carlo simulation method, the statistical parameters 

for resistance were obtained. 

5. Load model  

The three-dimensional FEM model of a bridge was created using Robot 

Millennium software. The model was based on the actual Cooper Bridge 

design made by PB World. Cross sectional axial force and bending moment 

along the tower height due to dead load and live load were derived. The 

statistical models for load components are defined. 

6. Reliability Indices 

Reliability indices were calculated in order to assess how they are influenced 

by the increase in the values of live load. Reliability analysis was performed 

for the several forces possible and moment in the bridge tower due to live load 

cases. 

 

8.2. SELECTION OF REPRESENTATIVE STRUCTURE, ELEMENT AND 

LIMIT STATE FUNCTION 

 

The Cooper River Bridge in South Carolina was chosen to be a representative 

long span bridge for this analysis. It is a suspension bridge designed by PB Word in 2001.  

For long span bridges dead load is the main loading. Dead load is also critical for 

most of the structural components, such as the deck and cables. For the scope of this 

dissertation, the bridge component that is the most influenced by live loading had to be 

selected. The bridge tower was chosen to be such an element. Live load from all spans is 

transferred through cables to the bridge tower. When not all spans are loaded evenly, the 

bending moment due to live load is much higher than the bending moment due to dead 

load. The bending moment due to dead load of opposite spans almost negate each other. 

The limit state function was defined as the exceeding of the ultimate bending 

moment capacity by the cross-section. The tower cross-section just above the deck level 

was selected. 
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8.3. NOMINAL RESISTANCE 

 

The nominal resistance can be represented by interaction diagram of force and 

moment for the eccentric loaded bridge tower. To plot interaction diagram, representing 

all possible cases of force and bending moment combinations, a MathCad software was 

used. The mathematical description of the behavior for the exemplary bridge tower was 

developed based on procedure for columns described by Lutomirski (2009). The 

assumptions are based on linear strains in a distribution over the cross section and the 

mechanical behavior of reinforcement. The procedure takes into account the geometry of 

the tower, all layers of the reinforcement in the cross-section and the characteristics of the 

materials (steel and concrete).  

The first step in the procedure is the calculation of the initial compression block. 

The initial compression block represents the compression over the full cross-section and 

the lowest layer of the reinforcement yields due to compression. It means that strains in 

concrete at the top of cross section reach value of 003.0=mε , while the strains in the 

lowest reinforcement bar represent yielding strains due to compression in steel 

00207.0==
ys

εε (Figure 8.2). The position of the neutral axis can be calculated based 

on the linear strain distribution and strain compatibility assumptions. As a result of the 

first step the size of the compression block is much bigger than the size of the cross-

section. The size of the initial compression block can be calculated as follows:  

ym

Im

I

d
a

εε

ε
β

−

⋅
= 1

 (8.1) 

where: 

dI is the distance of the lowest layer of the reinforcement to the top of the cross-section. 

 

The position of the neutral axis in the initial step can be calculated from: 

1β
I

I

a
c =  (8.2) 
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Figure 8.1 Distribution of strains for the pure axial loading 

 

The characteristic point of end of compression control zone and beginning of 

tension control zone call balance failure point can be derived. It happens when the strains 

in the bottom layer of reinforcement reaches the yielding strains for the steel εs=εy 

(Figure 8.2). The size of the compression block in balance failure is represented: 

ym

Im
B

d
a

εε

ε
β

+

⋅
= 1  (8.3) 

 

 

Figure 8.2 Distribution of strains distribution for the balance failure point B, the end of 

the compression control zone 
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The entire force and moment interaction diagram is calculated using the 

decreasing size of the compression block of concrete, from the initial I
a  up to the point 

when the compression block does not exist ( 0=a ). For each reinforcement layer and for 

each size of the compression block the strains in reinforcement are computed from the 

equation: 









−⋅=

)(
1),(

ac

d
ai i

ms εε  (8.4) 

where:  

i   number of i
th

 reinforcement bar in cross-section 

a   size of compression block of concrete 

mε   extreme compressive strain in concrete equal to 0.003 

id   distance of i
th
 reinforcement layer for the top of cross-section  

)(ac   position of neutral axis due to changing size of compression block 

 

In the procedure, four characteristic cases there can be distinguished. The first 

case is when the position of neutral axis is outside of the cross section (Figure 8.1). The 

second case is when the end of compression block of concrete is in the bottom flange of 

the cross section (Figure 8.3). Two next cases correspond to the end of compression 

block of concrete localized in the webs and in the top flange (Figure 8.4 and Figure 8.5). 

 

Figure 8.3 End of compression block of concrete in the bottom flange 

β

ε
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Figure 8.4 End of compression block of concrete in the web. 

 

Figure 8.5 End of compression block of concrete in the top flange. 

 

Figure 8.6 shows material behavior of reinforcing steel, and it is described by the 

following equation: 
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where:  
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Figure 8.6 Stress - Strain Relationship for Reinforcing Steel 

 

Having calculated strains in every reinforcement bar, it is possible to evaluate 

forces for each reinforcement layer.  
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where:  

i  number of i
th

 reinforcement bar in cross-section 

a size of compression block of concrete 

 

The resultant reinforcement force is calculated using: 

( ) ( )∑=
i

steel aiPaP ,  (8.8) 

 

The force in concrete is based on the size of compression block of concrete.  

( ) ')(85.0 cC faAaP ⋅⋅=  (8.9) 

 

For each size of the compression block, the resistance force of the cross section is 

expressed by the sum of all forces acting in the cross-section: 

)(),()( aPaiPaP c

i

Total +=∑  (8.10) 



 

113 

 

For each size of the compression block, the bending moment resistance is equal to 

sum of all the forces in the section multiplied by the corresponding force arm to the 

centroid of the cross-section: 

)(')(85.0
2

),()( aYfaAd
h

aiPaM Cc

i

iTotal ⋅⋅⋅+















−⋅=∑  (8.11) 

 

 

8.4. LOAD MODEL 

 

For the scope of this dissertation Cooper River Bridge was modeled using Robot 

Millennium software. The three dimensional model was based on the actual design made 

by PB World. Shell elements were used to model concrete slab in the bridge. 840 3-D 

beam elements were used - with 12 degrees of freedom u1x , u1y , u1z , φ1x , φ1y , φ1z , u2x 

, u2y , u2z , φ2x , φ2y , φ2z  - to represent all others members: towers leg, tower, girders and 

the diaphragms. The cables elements were used to model suspension cables. 

 

Total length of the structure is 3296 ft. Main span is 1546 ft long, two spans are 

650 ft and two spans are 225 ft long. Geometry of the bridge is shown in Figure 8.7. 

Bridge towers are 568 ft high, both of them have 368 ft above deck level. 
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Figure 8.7. Geometry of Cooper River Bridge  

 

In the analysis all loading cases have been considered. For five spans, there are 31 

loading combinations. They are shown in Figure 8.8.  

 

 

All of the live load combinations were used to calculate load effect on the bridge 

tower. The 31 combinations were used four times; for the different value of loading: 0.64 

k/ft, 0.80 k/ft, 1.00 k/ft and 1.20 k/ft as a value of lane live load loading.  

The resulting envelopes of bending moments due to various combinations of live 

load for bridge tower are shown in Figure 8.9 - Figure 8.12. 
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Figure 8.8. Load combinations 
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Figure 8.9. Envelope of bending moments for bridge tower for w=0.64k/ft 
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Figure 8.10. Envelope of bending moments for bridge tower for w=0.80 k/ft 
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Figure 8.11. Envelope of bending moments for bridge tower for w=1.00 k/ft 
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Figure 8.12. Envelope of bending moments for bridge tower for w=1.20 k/ft 
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8.5. RELIABILITY RESISTANCE MODELS  

 

Due to various categories of uncertainties, the resistance of a structural 

component R , can be considered as a random variable being a product of nominal 

resistance nR  and three factors: the materials factor, fabrication factor and professional 

factor:  

PFMRR n=  (8.12) 

 The materials factor represents material properties, in particular strength and 

modulus of elasticity. The fabrication factor represents the dimensions and geometry of 

the component, including cross-sectional area, moment of inertia, and section modulus. 

The professional factor represents the approximations involved in the structural analysis 

and idealized stress/strain distribution models. The professional factor is defined as the 

ratio of the test capacity to analytically predicted capacity (the actual in-situ performance 

to the model used in calculations). 

 The statistical parameters for material factors used in this dissertation were based 

on the project "Reliability-Based Calibration for Structural Concrete" (Nowak A.S. et al., 

2008). Because the quality of materials such as reinforcing steel and concrete has 

improved over the years, the materials factors have been updated based on a new test 

database. There is no new information regarding two other factors, F  and P . Therefore, 

in most cases, statistical parameters for F and P are taken from the previous study 

(Ellingwood et al. 1980). 

 

8.5.1. Material Factor 

 

The material factors for concrete were based on the study within the project 

"Reliability-Based Calibration for Structural Concrete" (Nowak A.S. et al., 2008). Figure 

8.13 and Figure 8.14 show the bias factor and coefficients of variation for all types of 

concrete and all nominal compressive strengths of concrete. In both figures there is a 

trend line of changing parameter with respect to concrete compressive strength 'cf . 
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Recommended values are summarized in Table 8.1. In this dissertation, the concrete 

compressive strength of bridge tower is 7000 psi. Statistical parameters assumed are: bias 

factor λ = 1.13 and coefficient of variation V = 0.12.  

 

 

Figure 8.13 Bias factor for compressive strength of concrete  

(Nowak A.S. et al., 2008) 
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Figure 8.14 Coefficient of variation for compressive strength of concrete 

(Nowak A.S. et al., 2008) 

 

Table 8.1 Recommended Statistical Parameters for Compressive Strength, 'cf
 

(Nowak A.S. et al., 2008) 

Concrete Grade 

fc' (psi) 

'cf  

λ V 

4000 1.24 0.15 

6000 1.15 0.125 

8000 1.11 0.11 

12,000 1.08 0.11 
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M.M., et al., 2008). Data included the yield strength for the reinforcing steel bars with the 

nominal yield strength of 60 ksi, and different bar sizes from No.3 to No.14. The 

recommended values of statistical parameters are: bias factor λ = 1.13 and coefficient of 

variation V = 0.03. Those recommended values have been used in this dissertation for the 

bar sizes No.9 and No.11, which were used in the calculations. Plots of the cumulative 

distribution functions (CDF) of yield strength of every reinforcement size and 

recommended parameters are shown in Figure 8.15 and Figure 8.16.  

 

 

Figure 8.15 CDF’s of yield strength for Reinforcing Steel Bars, Grade 60 ksi 

(Nowak A.S. et al., 2008) 
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Figure 8.16 Recommended material parameters for reinforcing steel bars, Grade 60 ksi 

(Nowak A.S. et al., 2008) 

 

8.5.1. Fabrication Factor 

 

The statistical parameters of fabrication factor are based on previous studies by 
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Table 8.2 Statistical Parameters of Fabrication Factor. 
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8.5.1. Professional Factor 

 

The statistical parameters of professional factor are based on the previous study 

performed by Ellingwood et al. (1980). The bridge tower behaves as an eccentrically 

loaded column. Therefore, the statistical parameters of professional factors for columns 

were used in this dissertation. The professional factors were chosen for tied columns: bias 

factor is λ � 1.00 and coefficient of variation is V=0.08.  

 

8.5.1. Statistical Parameters of Resistance 

 

Statistical parameters of resistance were obtained by 10000 Monte Carlo 

Simulation: coefficient of variation V=0.16 and bias factor λ=1.17. 

 

 

Figure 8.17 Statistical Parameters of Resistance 
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8.6. LOAD MODEL 

 

The case considered in this study is combination Strength I, which is combination 

of dead load and live load. This combination has the highest load factor for live load.  

For time varying loads two random variables for arbitrary-point-in-time and 

maximum 50-year load components can be considered. In this study live load is the only 

varying load and it is assumed to reach the maximum 50-year load value. Therefore there 

is no need to use Turkstra’s rule. 

Variation in the dead load, which is caused by variation of the weight of materials 

(concrete and steel), variation of dimensions, and idealization of analytical models affects 

statistical parameters of resistance. The assumed statistical parameters for dead load are 

based on the data available in literature (Ellingwood et al. 1980; Nowak 1999). They 

include for cast-in-place concrete elements a bias factor of 1.05 and coefficient of 

variation of 0.10.  

Variation of live load is derived in Paragraph 5.4 of this dissertation. 

 

8.7. RELIABILITY ANALYSIS 

 

Reliability analysis was performed for the considered bridge. The element 

selected for the analysis was the bridge tower subjected to the bending moment and the 

axial force. The bridge was design by the PB World for the design live load specified in 

AASHTO LRFD CODE. The limit state function was selected as the Strength I load 

combination according to AASHTO LRFD Code. There are only two major load 

components: dead load and live load. However, on the real structure in a specific 

localization other loads, such as wind load, influence the bridge behavior, the selected 

limits state was chosen to demonstrate the sensitivity of reliability index on long span 

bridges due to change of live load. 

Reliability indexes were calculated for bridge loaded with AASHTO design live 

load 0.64 k/f t and three other possible load cases of 0.80, 1.00 and 1.20 k/ft. For every 

value of lane load the 31 load cases were analyzed according to paragraph 8.4. Each load 

case, Figure 8.8, generates separate loading case to the bridge tower with different 
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eccentricity condition. The results vary depending on eccentricity. None of them exceeds 

the balance failure zone, Figure 8.18 . It means that all the cases are in the compression 

control and the strength reduction factor is φ=0.75, specified in AASHTO LRFD Section 

5. 

 

Figure 8.18 Force and Moment results on the bridge tower for different live loads 
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Figure 8.19 Reliability indexes due to different live load 
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CHAPTER 9  

SUMMARY & CONCLUSIONS  

In the study, a live load model for long span structures was derived. The live load 

model is valid for spans between 600 ft and 5000 ft and it is intended to reflect current 

traffic patterns, quantities of trucks and their weights. The developed live load model is 

recommended to be taken into consideration in the bridge design code.  

Preliminary study was performed by reviewing previous research and current 

provisions of international codes on the topic. Equivalent uniformly distributed load is 

calculated and compared. The new live load was developed based on three models: an 

average 5-axle truck, legal load trucks and simulation of a traffic jam using WIM data. 

The newest available traffic database from a variety of sites within many different states 

was obtained. The magnitude of the database has to be underlined, because such an 

extensive actual weigh in motion database has never been used in the derivation of live 

load for any kind bridges. A numerical procedure was developed to filtered out WIM data 

from erroneous readings and to simulate traffic jam situations. From the simulation the 

values of uniformly distributed load were derived for a variety of span lengths and site 

localizations. In the developed procedure, starting with the first truck, all consecutive 

trucks were added with a fixed clearance distance between them until the total length 

reached the span length. Then, the total load of all trucks was calculated and divided by 

the span length to obtain the first value of the average uniformly distributed load. Next, 

the first truck was deleted, and one or more trucks were added so that the total length of 

trucks covers the full span length and the new value of the average uniformly distributed 
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load was calculated. Trucks were kept in actual order, as recorded in the WIM surveys. 

Results of the simulations were plotted as a cumulative distribution function of uniformly 

distributed load for considered span lengths. The obtained mean value oscillates between 

values of 0.50 and 0.75 k/ft. Cumulative distribution functions were also plotted for 

maximum daily and maximum weekly combinations of trucks. For longer spans, 

uniformly distributed load decreases and is closer to the mean value. This observation 

confirms that for a long loaded span, one heavily overloaded truck does not have 

significant influence. This is because the load depends on a mix of traffic. The bias 

factors (ratio of mean to nominal) were calculated for the heaviest 75-year combination 

of vehicles. The 75-year uniformly distributed loads were derived from extrapolated 

distributions. It was noticed that the bias factor values for most of the sites do not exceed 

1.25, which is similar as in short and medium spans, as shown in the NCHRP Report 368 

(1999). It is recommended to use HL-93 also for those long spans. Two other models, an 

average 5-axle truck and a legal load trucks model led to similar conclusion. It was 

noticed that for some sites, with very heavy traffic, the bias factor reaches a value of 2.0. 

Those sites are characterized by high ADTT (usually over 3000) or increased percentage 

of overloaded loaded vehicles (over about 10%). Bridges located in such sites require 

special attention and application of increased design live load. The value of the design 

load should be agreed with the owner of the structure. For some bridges considered, for 

example in the area of New York, it was found that the uniformly distributed load should 

be 1.25 kip/ft in order to obtain bias lower than 1.25. Statistical parameters for live load 

are: for spans 600-1000 ft bias 1.25 and coefficient of variation 0.10, for spans longer 

than 1000 ft bias 1.20 and coefficient of variation 0.08.  

In this dissertation, the problem of multilane reduction factors was discussed. 

Multilane factors were found to be very site specific, as with the live load. Video 

recordings of traffic confirmed that for the majority of the time we can observe that the 

moving lanes contain a mixture of trucks and cars. However, situations when one lane is 

almost exclusively occupied by trucks or trucks occupy three or four lanes at the same 

time are also possible. Multiple reduction factors for design live load should account for 

those most critical loading cases. In the WIM database available, the vehicles of 1-3 

categories 1-3 have not been registered. Therefore, it did not allow for simulations and 
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derivation of multilane factors for all traffic lanes. Simulation of the traffic on the most 

loaded lane was possible with an assumption, that in traffic jam situations passenger 

vehicles merge to the left and the right lane remains occupied exclusively by trucks. It 

was stated that equal reduction of load on all traffic lane does not reflect the actual 

situation. At least one of the lanes should be loaded more than the others. It was 

concluded that the multilane reduction factors have to be an objective of additional 

extensive studies.  

The study of dynamic factor was performed for the research. It was concluded that 

the current dynamic load factor of 0.33 is too high for bridges with longer spans. It may be 

applicable in short bridges, when vibration due to “wheel hop” on the approach slab is 

significant. For longer bridges, where the influence of the approach slab decreases and 

vibrations of many vehicles interfere with each other, the dynamic load factor could be 

smaller. The assumption of a traffic jam situation to develop live load model induces no 

dynamic allowance. However, to not introduce confusion among designers it is 

recommended do keep dynamic factor as it is for short and medium span bridges, which 

results in very small value for long span bridges. 
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CHAPTER 10  

RECCOMENDATIONS 

1. The developed live load model is valid for long spans between 600 ft and 5000 ft. 

2. For long spans it is recommended to use HL-93 load, specified in AASHTO 

LRFD Code (2007), uniformly distributed load of 0.64 k/ft plus design truck or 

tandem. The bias factor calculated for the heaviest 75-year combination of 

vehicles did not exceed 1.25, which is similar as in short and medium spans, as 

shown in the NCHRP Report 368 (1999). 

3. For some sites characterized by high ADTT or increased percentage of 

overloaded vehicles (over 10%) bias factor reaches a value of 2.0. Those bridges 

require application of increased site specific design live load, which should be 

agreed with the owner of the structure. 

4. It was proposed to use dynamic factor as specified in AASHTO LRFD Code 

(2007). Developed live load model assumes traffic jam situation and does not 

allow for dynamic. However, to not introduce confusion among designers it is 

recommended do keep dynamic factor as it is for short and medium span bridges, 

which results in very small value for long span bridges. 

5. It was proposed to use multilane reduction factors as specified in AASHTO 

LRFD Code (2007). It is recommended to perform further studies in this field. 

 

 

 



 

133 

 

6. Statistical parameters for live load are:  

- for spans 600-1000 ft: bias 1.25 and coefficient of variation 0.10,  

- for spans longer than 1000 ft: bias 1.20 and coefficient of variation 0.08. 

 

The developed live load model is recommended to be taken into consideration in the 

AASHTO LRFD Bridge Design Specifications. 
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APPENDIX A  

CDF OF UDL FOR ALL TRUCK COMBINATIONS 

 

Figure A.1. CDF of UDL for Oregon I-5 Woodburn, lane 1 
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Figure A.2. CDF of UDL for Oregon I-84 Emigrant Hill, lane 1 

 

Figure A.3. CDF of UDL for Oregon OR 58 Lowell, lane 1 
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Figure A.4. CDF of UDL for Oregon OR 58 Lowell, lane 2 

 

Figure A.5. CDF of UDL for Oregon US 97 Bend, lane 1 
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Figure A.6. CDF of UDL for Florida 9916, lane 1 

 

Figure A.7. CDF of UDL for Florida 9919, lane 1 
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Figure A.8. CDF of UDL for Florida 9927, lane 1 

 

Figure A.9. CDF of UDL for Florida 9936, lane 1 
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Figure A.10. CDF of UDL for Indiana 9534, lane 1 

 

Figure A.11. CDF of UDL for Indiana 9534, lane 2 
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Figure A.12. CDF of UDL for Indiana 9534, lane 3 

 

Figure A.13. CDF of UDL for Indiana 9544, lane 1 
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Figure A.14. CDF of UDL for Indiana 9512, lane 1 

 

Figure A.15. CDF of UDL for New York 9121, lane 1 
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Figure A.16. CDF of UDL for New York 9121, lane 4 

 

Figure A.17. CDF of UDL for New York 2680, lane 1 
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Figure A.18. CDF of UDL for New York 2680, lane 4 

 

Figure A.19. CDF of UDL for New York I-495 EB, lane 1 
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Figure A.20. CDF of UDL for New York I-495 EB, lane 2 

 

Figure A.21. CDF of UDL for New York I-495 EB, lane 3 
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Figure A.22. CDF of UDL for New York I-495 WB, lane 1 

 

Figure A.23. CDF of UDL for New York I-495 WB, lane 2  
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APPENDIX B  

CDF OF MAXIMUM DAILY UDL 

 

Figure B.1. CDF of maximum daily UDL for Oregon I-5 Woodburn, lane 1 
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Figure B.2. CDF of maximum daily UDL for Oregon I-84 Emigrant Hill, lane 1 

 

Figure B.3. CDF of maximum daily UDL for Oregon OR 58 Lowell, lane 1 
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Figure B.4. CDF of maximum daily UDL for Oregon US 97 Bend, lane 1 

 

Figure B.5. CDF of maximum daily UDL for Florida 9916, lane 1 
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Figure B.6. CDF of maximum daily UDL for Florida 9919, lane 1 

 

Figure B.7. CDF of maximum daily UDL for Florida 9927, lane 1 
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Figure B.8. CDF of maximum daily UDL for Florida 9936, lane 1 

 

Figure B.9. CDF of maximum daily UDL for Indiana 9534, lane 1 
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Figure B.10. CDF of maximum daily UDL for Indiana 9544, lane 1 

 

Figure B.11. CDF of maximum daily UDL for Indiana 9512, lane 1 
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Figure B.12. CDF of maximum daily UDL for New York 9121, lane 1 

 

Figure B.13. CDF of maximum daily UDL for New York 2680, lane 1 
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Figure B.14. CDF of maximum daily UDL for New York I-495 EB, lane 1 

 

Figure B.15. CDF of maximum daily UDL for New York I-495 WB, lane 1 
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APPENDIX C  

CDF OF MAXIMUM WEEKLY UDL 

 

Figure C.1. CDF of maximum weekly UDL for Oregon I-5 Woodburn, lane 1 
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Figure C.2. CDF of maximum weekly UDL for Oregon I-84 Emigrant Hill, lane 1 

 

Figure C.3. CDF of maximum weekly UDL for Oregon OR 58 Lowell, lane 1 
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Figure C.4. CDF of maximum weekly UDL for Oregon US 97 Bend, lane 1 

 

Figure C.5. CDF of maximum weekly UDL for Florida 9916, lane 1 
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Figure C.6. CDF of maximum weekly UDL for Florida 9919, lane 1 

 

Figure C.7. CDF of maximum weekly UDL for Florida 9927, lane 1 
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Figure C.8. CDF of maximum weekly UDL for Florida 9936, lane 1 

 

Figure C.9.CDF of maximum weekly UDL for New York 9121, lane 1 
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Figure C.10. CDF of maximum weekly UDL for New York 2680, lane 1 
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