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Mapping EvapoTranspiration at high Resolution using Internal Calibration 

(METRIC) is most widely used to quantify evapotranspiration (ET) spatially and 

temporally. It is essential to inspect the model’s response to errors in various parameters 

used in the model. Landsat 5 images from May 30 2009, July 1 2009 and a Landsat 7 

image from September 27 2009 are used in this study.  Fourteen different fields 

composed of Corn, Soybeans, Alfalfa are randomly chosen for each crop type. 

Two kinds of errors are addressed in this study. One, with the errors that are 

transferred and potentially compensated by calibration (Global error) and the other is the 

error that is not passed into the calibration (Local error). For global error, Reflectance at 

the satellite (ρ), transmissivity (τ), surface temperature (Ts), wind speed (u), Reference 

Evapotranspiration (ETr) are chosen. In addition, the sensitivity towards selection of hot 

and cold pixels is also investigated. For local errors, albedo (α), surface temperature (Ts), 

momentum roughness length (Zom), soil heat flux (G), difference between air and surface 

temperature (dT) are considered. 

In this study, we have found that METRIC is able to compensate most of the 

global errors passed through the calibration to give consistent results, when the variables 

considered above has changed to their extremes. ETr should be estimated at a good 



 
 

degree of accuracy to maintain the METRIC’s results to be realistic. Also, selection of 

hot and cold pixels is the most crucial and sensitive process in METRIC. 

In case of local errors: Zom is relatively insensitive to the model. dT is found to be 

the most sensitive variable for bare soils. However, the other parameters are linearly 

proportional to their errors.  
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Chapter 1: Introduction 

 

Accurate estimation of evapotranspiration (ET) is key to various hydrological, 

ecological and agricultural processes. Most of the field measurements like lysimeters, 

Bowen ratio and Eddy covariance techniques are limited to one point and they lack the 

spatial distribution of ET. To overcome this problem, remote sensing (RS) is used to 

estimate spatial and temporal trends of ET using energy balance.  

Various models are developed to quantify ET distribution using remotely sensed 

satellite data (Gowda et al. 2007). Land surface temperature data is not always feasible to 

obtain, which is the main input for most of the models. Surface Energy Balance 

Algorithm (SEBAL) developed by Bastiaanssen et al. (1998) concept of selecting hot and 

cold pixels and calibration of the model makes the process of computation of difference 

in temperature between surface and air (dT) simple by avoiding the need of accurate land 

temperature data.  

Mapping Evapotranspiration with internalized calibration (METRIC) developed 

by Allen et al. (2007a&b) is the successor of SEBAL with few changes (Gowda et 

al.2007). METRIC uses quality weather station data (air temperature, wind speed, solar 

radiation, relative humidity) and satellite radiance data at various bands as inputs for this 

model. The detailed discussion about METRIC is discussed in next section. 

Santos et al. (2007) found that METRIC is useful in estimating ET for irrigation 

efficiency error within 3% for more than 60% of the fields used for study. Tang et al. 

(2009) found METRIC instantaneous ET estimates have just 10% error in estimating and 
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15% error in estimating daily ET.  However, they also concluded that seasonal estimates 

from METRIC ET is overestimated compared to that of flux measurements. Case studies 

done by Allen et.al. (2007b) concluded that METRIC is useful in estimating ET for 

different types of crops in different seasons with error average about 10%.   

Sensitivity analysis done by Bailey and Davies (1981) on aerodynamic resistance 

ra to ET on a soybean crop field using a custom developed energy balance model resulted 

that the  model is insensitive to ra. But ra is more sensitive to surface roughness than to 

the zero plane displacement calculated empirically from leaf area index LAI, crop height. 

Gellens-Meulenberghs (2004) did sensitivity analysis on Radiation Energy 

Balance Systems (REBS) model for sensible heat flux H, Latent heat flux LE, varying  

stability functions ( Hogstrom 1988, Brutsaert 1999, Brutsaert 1982, Grachev et al. 2000) 

and input data (Net radiation Rn, Soil heat flux G obtained empirically, Air temperature 

Ta, Wind speed U). This study concluded that the stability functions are sensitive to low 

wind speed and high temperature because at low wind speeds, the mechanical mixing 

component is less than the buoyancy component. Bias in temperature and wind speed 

enhanced rms of LE and H. Minor deviations in input data mentioned above resulted 

significant rms values in LE and H. 

In addition to the above mentioned sensitivity analyses, Stricker and Brutsaert 

(1978), Goutorbe (1991) conducted sensitivity analyses, but they are limited to ground 

based energy algorithm.  

Crow and Kustas (2005) did a sensitivity analysis on two source model (TSM) 

considering dT, evaporative fraction (EF), aerodynamic resistance (rah) for different 
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vegetative fractions from 50% to 90% (grass, pasture and shrub lands). This study 

revealed that the model’s EF is not sensitive to vegetative fraction, but dT and rah are 

sensitive to vegetative fraction when radiometric surface temperature is estimated using 

different observation look angle and LAI. Results of sensitivity analysis on sensible heat 

flux (H) by Van der Kwast et al. (2009) in SEBS (Surface energy balance system) model, 

confirmed that H is not sensitive to Digital elevation model (DEM), Surface Emissivity, 

NDVI, albedo, relative humidity, height of planetary boundary layer. However, this study 

also confirmed that incoming short wave radiation is not sensitive to most of the cases, 

but only in few cases, it is sensitive in calculating H. The factors that are sensitive in 

calculation of H, are wind speed, air temperature, and air pressure in SEBS. Parameters 

obtained from fields and literature found to be sensitive to surface roughness for 

momentum transport, but not to the zero plane displacement and canopy height in 

calculation of H. 

 Sensitivity analysis done by Tasumi (2003) on an early version of METRIC 

confirmed that doubling or halving the surface roughness parameter did not change ET 

estimates by more than 5% for irrigated agricultural area when incorporated into the 

calibration. Wang et al.( 2009) did a comprehensive sensitivity analysis on SEBAL for 

Pecan Orchards at full canopy cover (78.5%), half canopy cover (50%), sparse canopy 

covers (5%) for difference in temperature between surface and air dT, albedo α, 

roughness length Zom, c (G/Rn), NDVI and selection of wet and dry pixel temperatures. 

The results concluded that the model is sensitive to selection of wet and hot pixel, dT and 

c (more than 35% for deviation in 50% of the base value) and least sensitive to NDVI, 

albedo and roughness length at full canopy cover. At half canopy cover, the model is 
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sensitive to selection of hot and wet pixel selection (more than 100% with 7.5K change in 

selection of cold pixel temperature), roughness length, c, dT and least sensitive to NDVI. 

At sparse canopy cover, the model is sensitive to selection of hot pixel (change in 270% 

in ET estimate with 12.5K change in selection of hot pixel temperature), NDVI and least 

sensitive to cold pixel selection and albedo. 

This study focuses on sensitivity analysis on METRIC at two scales of error, 

Global error, Local error. Global Error: The systematic error is transferred to and 

potentially compensated by the calibration. Local Error: The error that is random and 

locally systematic and is not transferred into and compensated by the calibration. This 

research is conducted for different types of vegetative cover (corn, alfalfa, soybeans) for 

three different types of conditions (May 30, July 1 and September 27). Images from May 

30, July 1, and September 27 represent, early growth, during growing, after growth 

conditions of the crops. The sensitivity of Crop coefficients (Kc or ETrF) are tested in this 

study. Even small change produces considerable amount of errors in terms of percentage 

for Kc. So, the outputs are stated in terms of absolute values of ETrF which is easy to 

understand the behavior of crops under various conditions. 
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Chapter 2: Materials and Methods 

 

2.1 METRIC 

 

The detailed description of Mapping Evapotranspiration with Internalized 

Calibration (METRIC) can be found at Allen et al. (2007a&b).  The brief description of 

METRIC is described here. Evapotranspiration (ET) is calculated as residual energy of 

the surface energy balance equation 

    LE = Rn - G - H    (1) 

Where LE is latent energy consumed by ET; Rn is Net radiation, G is Energy 

consumed by soil and H is sensible heat flux (Energy consumed in heating of air). All the 

units are in W m-2.  

Generally, the accuracy of LE depends on accuracy of calculation of Rn, G, H. 

But, METRIC eliminates all biases by internal calibration of sensible heat flux. 

Net Radiation (Rn): 

Net radiation is sum of the net short wave radiation and net long wave radiation 

given in the following equation 

   Rn = Rs↓ - α Rs↓ + RL↓ - RL↑ - (1 – ε0) RL↓  (2) 

Where Rs↓   is incoming short wave radiation (W m-2), α is surface albedo (Unit less), RL↓ 

is incoming long wave radiation (W m-2), ε0 is surface thermal emissivity (Unit less) and 

RL↑ is out going long wave radiation (W m-2). The term (1 – ε0) RL↓ represents the 

fraction of reflected incoming long wave radiation. 
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The incoming short wave radiation is calculated as   

      (3) 

Where is Gsc is solar constant (1367 W m-2) , θrel is Sun incident angle, τsw is broad band 

atmospheric Transmissivity, d2 is square of earth-sun relative distance. 

τsw is calculated from the given equation from ASCE – EWRI (2005) as a function of 

atmospheric pressure, water in atmosphere, atmospheric mass and optical path length. 

Cos θrel is calculated equation given by Duffie and Beckman (1991) making use of 

latitude, hour angle, and declination of earth. d2 is calculated as a function of day of year 

of the satellite image given by Duffie and Beckman (1991). 

 

Albedo is calculated as integration of surface reflectivities with weighting 

functions of corresponding bands. For that we have to calculate the reflectance for each 

band using the digital numbers. Digital numbers are converted to radiance (L) using 

satellite constants and reflectance at top of atmosphere (ρt) is calculated as following 

equation.  

        (4) 

Where Lt,b is radiance at top of atmosphere for a band b ESUNb is mean solar 

exoatmospheric radiation at band b. ESUN values are given by Chander and Markham 

(2003) for Landsat 4 and 5, LPSO (2004) for Landsat 7 and Tasumi et al. (2007) for 

MODIS. 

Reflectance at surface (ρs,b) is calculated using ρt by following equation: 
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        (5) 

Where τin,b and τout,b represents narrow band transmittances for incoming solar radiation 

and outgoing solar radiation. ρa,b is path radiance. 

τin,b = 5
4.3

.

.2
exp1 C

hCos

CWC

hCosKt

PairC
C +




 +
−

θθ
    (5a)    

τin,b = 5
1

4.3

1.

.2
exp1 C

CWC

Kt

PairC
C +




 +
−     (5b) 

Where, C1-C5 are constants and can be obtained from Allen et al. (2007a), Kt is 

clearness coefficient, θh is solar zenith angle, Pair is air pressure and W is precipitable 

water in the atmosphere. 

Therefore, albedo is calculated as  

    α = Ʃ[ρs,b wb]     (6) 

 wb weighting functions can be found in Tasumi et al. (2008).   

From (3) and (6) net shortwave radiation can be calculated. 

Outgoing Long wave radiation is calculated by equation (7) 

     RL↑ = ε0σ T4
s    (7) 

Where is surface emissivity which is a function of leaf area index (LAI), is Stefan 

Boltzman constant (5.67 X 10-8 W m-2 K-4) and Ts is surface temperature calculated from 

equation (8) 

ρs,b 
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        (8) 

Where K2, K1 are satellite constants can be found in Allen et al. (2007a), εNB is narrow 

band emissivity calculated as a function of LAI and NDVI (Normalized difference 

vegetative Index) given by Tasumi(2003). Rc is thermal radiance calculated equation 

given by Wukelic et al. (1989). 

Incoming long wave radiation is calculated using the equation provided below 

    RL↓  = εa σ T4
a     (9) 

Where εa is atmospheric transmissivity given by Bastiaanssen (1995) and Allen et al. 

(2000) calculated as  

    εa  =  0.85(-ln τsw)0.09            (10) 

Ta is near surface air temperature. In most of the METRIC applications surface 

temperature at the cold pixel is also used as near surface air temperature in Eq 10. From 

equations (7) and (9) net long wave radiation is calculated.  

To sum up, from Equations (3), (6), (7), (9), net radiation (2) can be achieved. 

Soil Heat flux (G): 

Soil heat flux is energy used up by soil. It is calculated empirically as a ratio to net 

radiation given by Tasumi (2003) as a function of LAI, given by 

   
�

��
 = 0.05 + 0.18 e -0.521 LAI   (For LAI ≥ 0.5) (11a) 

      Ts  =   
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�

��
 = 1.80(Ts – 273.15) /Rn + 0.084   (For LAI < 0.5) (11b) 

Sensible Heat flux (H): 

 Sensible heat flux is energy used in heating of the air and is calculated using the 

following equation  

    H = ρair Cp dT/ rah      (12) 

Where ρair is density of air , Cp is specific heat of air at constant pressure, rah is 

aerodynamic resistance between heights z1 and z2, and dT is difference in temperature 

between heights z1 and z2. Cp is constant (1004 J Kg-1 K-1). To compute rah, Monin-

Obukhov theory is applied in an iterative process considering buoyancy effects until rah is 

stabilized. 

dT is assumed to have a linear relationship with surface temperature Ts and is written as  

    dT = b + aTs      (13) 

To get coefficients a,b and rah,  hot and cold pixels have to be selected from the 

image. Hot pixel should have to be from high temperature, bare agricultural soil and cold 

pixel should have to be from well irrigated highly vegetated surface with low 

temperature. Then sensible heat flux at cold  Hcold and hot pixel Hhot are calculated as 

follows: 

   Hcold = Rn – G – 1.05.λ ETr     (14) 

   Hhot  =  Rn – G – Kc. λ ETr     (15) 
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Where ETr is 0.5 m tall alfalfa based reference evapotranspiration calculated using  

ASCE standardized Penman-Monteith equation (ASCE –EWRI 2004 ) using quality 

weather data from local weather station. Kc is calculated using soil water balance model, 

usually varies from 0.05 to 0.15.  Now dTcold, dThot are calculated using inverse of 

equation (12). Equations (16) (17) and (18) give values for aerodynamic resistance, 

friction velocity, momentum roughness length. 
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Where z2, z1 heights above zero plane displacement of the vegetation, k is von kormans 

constant (0.41), u* is friction velocity, ψhz1 and ψhz2 are stability correction factors for heat 

transport at heights z1, z2, ψm(200) is stability correction factors for momentum transport at 

height 200m, zom is momentum roughness length, ux is wind speed recorded from weather 

station at height zx. Generally, z1 = 0.1 m and z2 = 2.0 m. 

    zom  =  0.12 h      (18) 

Where, h is canopy height near the weather station. Eq 18 is used for calculation of 

momentum roughness length near weather station. 
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Zom is calculated using land use map for rest of the image. dTcold, dThot are 

calculated in secondary model and embedded them into primary METRIC model. Using 

dTcold, dThot intial values of coefficients a, b are obtained through which H is calculated 

for each pixel using (12) and (13). Later Monin Obukhov length L is calculated to 

examine the stability conditions and through which stability factors for momentum and 

heat transport is calculated (Allen et al. 2007a). Later, friction velocity and aerodynamic 

resistance are calculated as a function of stability correction factors. These values are 

then used to calibrate the model again. This process is continued until aerodynamic 

resistance and dT hot are stabilized. The final values of coefficients a, b are the 

calibration constants to the model. And sensible heat flux H is calculated using (12) for 

each pixel. 

Latent heat flux (LE) or Instantaneous ET: 

Latent heat of vaporization is calculated for each pixel using equation (1). 

Instantaneous ET at satellite over pass time   

 ETinst = 3600 LE / λ     (19) 

Where λ is latent heat of vaporization and is given by 

λ= (2.501-0.00236(Ts-273)) X 106 J Kg-1    (20) 

Reference ET fraction or crop coefficient ETrF is calculated as  

    ETrF = ETins / ETr     (21) 

The 24 hour ET is calculated using the following equation 
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    ET24 = ETrF X ETr-24     (22) 

Where ETr-24 is cumulative 24 hour ETr for the day of the image.  The seasonal of 

periodical ET can obtained by interpolating ETrF from one image date to another and by 

cumulative 24 hour ETr for that period. 

The whole model is written and executed in MATLAB environment except the 

selection of hot and cold pixel sensitivity is done manually, using conventional ERDAS 

imagine and spreadsheets. 

2.2 Weather station and site conditions 

 

This study is conducted in South central Nebraska, using Landsat path 29, Row 

32 image. Coordinates for center of the image are roughly 40.33 ºN, 98.04 ºW. The 

automated weather data network (AWDN) station at Clay center (40.57º N, 98.13º W) 

operated by the High Plains Regional climatic center (HPRCC) data is used as input to 

the METRIC model used in this study. The distance between center of the image and 

weather station is roughly 27 km. All the selected croplands are center pivot irrigated and 

soils are silt loam (Soil survey staff, accessed: 2011). 

2009 Landsat TM images from May 30, July 1 and Landsat ETM+ image from 

September 27 is used in this study. All the images are free of clouds and any other 

disturbances. Study area of 1300 X 1300 pixels is chosen near centre of the image which 

has wide variety of land covers, to reduce the run time of each model. 
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Figure 1: Weather station location and study area 

Fourteen fields for each crop type are selected using the National Agricultural 

Statistics Service (NASS) 2009 land cover map. The user’s accuracy of corn, soybeans, 

alfalfa reported by NASS is 98.64%, 97.44% and 89.09%. These selected fields are used 

for analysis from image to image. 

The site conditions for three different images are given in table 1. The May image 

is almost full of bare soils on agricultural fields, which is evident from range and average 

NDVI values in May. But few alfalfa fields have vegetation where its maximum NDVI 

went all the way to 0.821, but its average NDVI is 0.521. So, the selected fields for 

alfalfa have wide variety of conditions from full grown vegetation to residual stubble and 

young leaves. Corn and soybeans does not have big variations in surface conditions, 

which can be observed through surface temperatures.  

On July image, the range for NDVI and Ts for corn and alfalfa is minimal, 

whereas, soybeans show variations in Ts, NDVI from minimum 308 K, 0.318 to 
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maximum 315.7 K and 0.647. So, in July, all corn, alfalfa surface conditions are similar, 

but soybeans surface conditions vary from mixed conditions to hot pixel conditions, 

because only 2 fields out of 14 selected fields have NDVI above 0.6. Soybeans might 

have late planted, so, there is little vegetation on July 1st. However, they have reached 

their peak growth in August, which is observed from acquired Landsat 5 image dated 

August 2nd 2009 (Not shown here).  

On September image, the surface conditions for alfalfa are fully vegetated. Even 

though the minimum NDVI value reports 0.505, that is the only field that has NDVI less 

than 0.7. Again the average NDVI for alfalfa is greater than 0.7. Corn and soybeans have 

similar NDVI ranges, but surface temperature is slightly high for soybeans. So, soybeans 

have bare soil conditions for all fields except one field reporting an NDVI of 0.55 which 

is a vegetative pixel. This is because of the late plantation of soybeans in 2009, which is 

evident from the fully vegetated soybean pixels in October 2009 landsat image (not 

shown in this study). Corn fields have bare soil conditions but, with smaller temperatures 

than soybean fields. 
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Table 1: Site conditions and Base values of different parameters, for three different images. Min, Max, Avg represent Minimum, Maximum, Average of fourteen 
selected fields for each crop type.  

 

 

 

 

 

May July September 
Corn Soybeans Alfalfa Corn Soybeans Alfalfa Corn Soybeans Alfalfa 

NDVI 
Min 0.216 0.156 0.237 0.753 0.318 0.657 0.203 0.215 0.505 
Max 0.310 0.266 0.824 0.816 0.647 0.837 0.414 0.555 0.793 
Avg 0.259 0.198 0.521 0.791 0.459 0.784 0.315 0.310 0.736 

Ts (ºK) 
Min 304.9 306.4 300.1 298.5 308.4 299.0 292.4 294.6 290.9 
Max 317.4 317.4 315.2 301.5 315.7 302.2 294.2 297.2 293.0 
Avg 314.5 313.6 309.3 299.8 312.2 300.6 293.0 296.0 291.7 

Albedo 
Min 0.129 0.146 0.158 0.144 0.180 0.158 0.098 0.113 0.129 
Max 0.229 0.237 0.212 0.195 0.207 0.223 0.180 0.177 0.204 
Avg 0.188 0.204 0.179 0.170 0.191 0.192 0.122 0.134 0.179 

ETrF 
Min 0.260 0.280 0.277 0.921 0.384 0.839 0.412 0.383 0.417 
Max 0.845 0.774 1.028 1.028 0.673 0.951 0.739 0.731 0.771 
Avg 0.394 0.426 0.638 0.972 0.516 0.903 0.582 0.576 0.650 

G (Wm-2) 
Min 113.6 114.1 38.9 40.4 61.2 35.4 77.5 76.1 33.6 
Max 126.1 125.22 123.1 54.1 119.7 69.5 84.2 93.4 90.1 
Avg 121.1 118.9 89.5 46.6 94.7 44.6 81.0 84.6 43.4 

ETr(mm/h) 1.0019 0.627 0.798 
U(m/s) 4.63 1.815 7.65 
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Chapter 3: Global Error 

 

3.1 Methodology 

 

For the global scale sensitivity analysis, two different cases are considered. Input 

bias: The errors from input data and Calibration Bias: The errors incurred in process of 

calibration. The variables considered for input bias are: Reflectance at satellite (ρt), 

Transmissivity (τ), Wind speed (u), Incoming Long wave radiation (Rli) and Reference 

Evapotranspiration (ETr).  

For calibration bias, selections of different hot and cold pixels are considered. For 

input bias, variables are changed -50%, -25%,-10%, 0, 10%, 25%, 50% for u, ETr from 

their base values and τ is deviated -25%, -15%, -5%, 0 5%, 15%, 25% from their base 

values because ±25% is too unrealistic. The reflectance values are doubled and halved, 

because the values are small and their deviations will be too small if varied from -50% to 

+50%.  For the calibration bias, colder pixels are selected at -3,-2, -1, -0.5 °K 

(approximately, as it is difficult to find the pixels with exact differences) than the original  

hot pixel and warmer pixels at +3, +2, +1, +0.5 °K are selected than the original cold 

pixel. 

 For input bias, the whole METRIC model is programmed in MATLAB, and cold 

pixel selection is automated such that the pixel has maximum NDVI, and minimum Ts 

match. The hot pixel is also automated in the same way, such that the pixel has minimum 

NDVI and maximum Ts match. In this chapter, the parameter considered, is deviated 
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from the baseline value and the model is run such that the calibration is done for each 

changed value. In other words, the error is passed through the calibration. 

3.2 Results and Discussion 

 All the curves presented in the following sections are average curves of all 14 

fields for each crop type. The error bars in the figures describe the maximum and 

minimum values of ETrF for each crop type. 

3.2.1 Reflectance at satellite (ρ) 

 

Errors in reflectance can cause due to various reasons like transmittance (Stowe et 

al.1997), calibration artifacts (Vogelman et al. 2001), canopy structure shading (Li et 

al.1992; Leblon et al. 1996; Ekstrand 1996) shadows of nearby objects (Teillet et 

al.2001), topography (Levin et al. 2004; Schaepman-strub et al. 2006). Transmittance 

error is dealt separately in the next section.  

Vogelman et al. (2001) reported maximum of 8.4% change in upwelling radiance 

for band2 of Landsat 5 and maximum of 6.0% change in upwelling radiance for band2 of 

Landsat 7 when MODTRAN models are compared with the field measurements. Leblon 

et al. (1996) found that there is more than 50% error in mean reflectance in near infrared 

region (NIR) for grass land and in visible region for bare soil due to various kinds of 

shadows. Moran et al. (1995), got error up to 0.05 in visible region for dark target and up 

to 0.1 in NIR for bright target. Calibration artifacts are due to radiometric errors or 

geometric errors. Geometric errors caused by interfocal plane offsets can cause errors in 

pixel offsetting (Vogelmann et al. 2001) there by affecting the reflectance. 
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Helder et al. (1997) reported that the error due to memory effect (ME) of the 

sensor could be in the order of multiple digital numbers (DN). And Helder et al. (1996) 

reported change in DNs could be less than 1 DN due to scan correlated shift. Coherent 

noise may cause an error upto 0.25 DN (Helder 1999). 

Table 2 shows errors in reflectance caused by deviation of 1 DN for a randomly selected 

vegetative and bare soil pixel on the May 30 2009 image.  

 Change in 

radiance 

for 1 DN 

change 

(W/m2/sr/

µm) 

Change in 

Reflectance  

Reflectance 

at selected 

vegetative 

pixel 

Reflectance 

at selected 

bare soil 

pixel 

% change 

in 

reflectance 

at selected 

vegetative 

pixel 

% change in 

reflectance at 

selected bare 

soil pixel 

TM1 0.76 0.0014 0.095 0.147 1.48 0.95 

TM2 1.44 0.0028 0.081 0.159 3.52 1.79 

TM3 1.04 0.0024 0.053 0.183 4.56 1.32 

TM4 0.87 0.003 0.504 0.28 0.60 1.08 

TM5 0.12 0.002 0.197 0.399 1.02 0.50 

TM7 0.07 0.0029 0.079 0.338 3.70 0.86 

Table 2: Absolute and percentage change in radiance and reflectance for 1 DN change in randomly selected cold and 
hot pixels for Landsat 5. 
 

We can see if 1DN is changed, 4.56 % reflectance is changed for band 3, 3.5% 

change in band2 for cold pixel and 3.7% change in band7 for cold pixels. The hot pixel 
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reflectances are least sensitive to DN change compared to that of a cold pixel. So, error 

caused by ME in reflectance of band 3 alone can exceed 10%.  

Even though different bands have different sensitivities, this paper tests the 

reflectance errors at -50% and +200% (halving and doubling) of the original reflectance 

of all the bands to get better understanding of the effect on final ET product. 

 

Figure 2: Sensitivity to reflectance on May 30 2009 
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Figure 3: Sensitivity to reflectance on July 1 2009 

 

Figure 4: Sensitivity to reflectance on September 27 2009 

The hypothesis is, when reflectance decreases, albedo decreases, outgoing short 

wave radiation decreases so that the available energy for ET increases, and ET should 

increase. ET decreases, with increase in reflectance. Figures 2-4 show the variations of 

ETrF to the bias in reflectance at top of the atmosphere for May, July, September images 
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respectively. For all the images, the final ETrF values agree with our hypothesis, but 

100% increment and 50% decrement did not change the average ETrF values more than 

11% combined of all images, which shows the METRIC’s capability of internalized 

calibration to adjust H, to get ET values in agreement with the weather station’s ET. 11% 

of error is caused due to rounding of digits. The range variations are due to the persistent 

residual error after calibration. However, the input error introduced is +100% and -50%, 

but the deviations in final ETrF values are around 10%. So, the internal calibration 

potential is evident from the above results. 

 ρ∂∂ /FETr  

Image month Corn Soybeans Alfalfa 

May 0.07/150% 0.12/ 150% 0.01/150% 

July 0.01/150% 0.03/150% 0.07/150% 

September 0.04/150% 0.06/150% 0.1/150% 

Table 3: Absolute change in average ETrF when reflectance is changed, for all images considered. 

Table 3 shows the absolute change in average ETrF when reflectance is changed 

from -50% to +100%, for various months and different crop types. 

3.2.2 Transmittance error (τ) 

 

In METRIC, the equation used for Transmissivity is similar to the equation 

proposed by Allen et al. (1998) but by eliminating turbidity co-efficient, making the 

calculations simple. And the Transmissivity calculation is limited to low haze conditions. 

The purpose of testing sensitivity of Transmissivity is to know the behavior of the model 

during hazy atmospheric conditions. The haze can be caused due to smoke emitted by the 
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vicinity of local forest fires, fire accidents, volcanic eruptions and haze created by 

fertilizers, imperceptible clouds. Also due to air pollution, aerosols may have affect on 

atmospheric turbidity (Chameides et al. 1999; Mani et al. 1973).  Mani et.al. (1973) 

noticed doubling of turbidity values in ten years over tropics. 

Also, the ozone layer thickness may get fluctuations in transmittance estimate. 

Ozone layer thickness varies with latitude (Yang et al. 2006). Ozone absorbs infrared 

radiation (Wulf, 1930). Therefore, we can conclude, the places with ozone depleted layer 

may have increased NIR radiation but no significant affect in visible region. 

To make our analysis simple, assumption is made that the transmittance from all 

the bands are equally affected. But in reality, different bands react differently for same 

change in haze or aerosol concentration (Tasumi et al. 2008). 

So, the model is checked for transmittance errors, beyond their workable limits 

even though it is unrealistic: just to check the model capability of blunders in input data. 

The biases are introduced in both narrowband and broadband transmittances. 
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Figure 5: Sensitivity to Transmittance on May 30 2009 

 

 

Figure 6: Sensitivity to Transmittance on July 1 2009 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

-30 -20 -10 0 10 20 30

E
T

rF

% Deviation in transmissivity

Corn

Soybeans

Alfalfa

0

0.2

0.4

0.6

0.8

1

1.2

-30 -20 -10 0 10 20 30

E
T

rF

% Deviation in transmissivity

Corn

Soybeans

Alfalfa



24 
 

 
 

 

Figure 7: Sensitivity to Transmittance on September 27 2009 

Our hypothesis is, when the atmospheric, turbidity decreases and clearness of sky 

increases, transmissivity is decreased. Due to this change, the incoming solar radiation 

increases, and incoming long wave radiation is decreased, because incoming long wave 

radiation is dependent on cloud cover and aerosols and water vapor (SICART et al.1999). 

The affect of net long wave radiation is smaller than incoming solar radiation (Rsi) on net 

radiation during day time because Rsi is dominant. Ideally, when transmissivity increases, 

more energy passes through the atmosphere reflecting more energy to satellite, leading to 

increase in reflectance. But, this change in transmissivity is an error introduced manually. 

So, reflectance at satellite ρsat remains unchanged because, in METRIC, calculation of 

reflectance at satellite is independent of transmissivity of the atmosphere, but dependent 
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decreased and also, incoming short wave radiation is increased, so that energy available 

for ET is increased. The same is true vice versa.  

Figures 5-7 show the sensitivity of model to transmissivity for May, July, 

September images. For all the images, for all crop types, the ETrF curves are flat, 

representing the METRIC’s capability of compensating the systematic errors through 

internal calibration. Appendix A shows the variations of a, b to vary H to provide 

consistent ETrF values for May image. The slight variations in the curves are due to 

rounding off the digits. Even though the range is slightly varying in May image for 

minimum ETrF values, the deviation is minimal.  

 τ∂∂ /FETr  

Image month Corn Soybeans Alfalfa 

May ~0/50% -0.01/ 50% 0.01/50% 

July 0.01/50% 0.02/50% 0.01/50% 

September -0.03/50% 0.02/50% 0.04/50% 

Table 4:  Absolute change in average ETrF when transmissivity is changed, for all images considered. 

 

Table 4 shows the absolute change in average ETrF when transmissivity is 

changed from -25% to +25%, for various months and different crop types. 
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3.2.3 Surface Temperature (Ts) 

 

The errors can be due to the coarse resolution of thermal band in Landsat 5 and 7 

compared to that of remaining bands. Resampling of the thermal band may not represent 

the exact thermal radiance of a land cover, especially in heterogeneous land surface 

types. 

The systematic errors in estimation of surface temperature can be due to the 

combination of surface, atmospheric and instrumental effects (Jacob et al. 2004). Results 

obtained by Nerry et al. (1998), Petitcolin and Vermote (2002) confirmed the accuracy of 

1 K in estimating radiometric temperature through Temperature- Independent Spectral 

Indices of Emissivity (TISIE) algorithm using MODIS data. Jacob et al. (2002) compared 

the ASTER and MODIS sensors for estimating brightness temperature and found that the 

difference is close to 0.5 ºK and emphasized the necessity of using different atmospheric 

profiles when the spatial variability of study area is large.  

Our hypothesis is, change in surface temperature will have direct effect on net 

long wave radiation component and sensible heat flux component. Increase in surface 

temperature decreases the net long wave radiation as the outgoing long wave radiation is 

dominant during day times and increases sensible heat flux H through dT as dT is linearly 

related to surface temperature. Since, sensible heat flux is more significant than the net 

long wave radiation especially at warm pixels, the net energy available to ET decreases. 

On the other hand, if surface temperature decreases, ET increases. 
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Figure 8: Sensitivity of model to Ts  at global scale, on May 30 2009 

 

 

Figure 9: Sensitivity of model to Ts at global scale, on July 1 2009 
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Figure 10: Sensitivity of model to Ts at global scale, on September 27 2009 

Figures 8-10 show the variations in ETrF with change in surface temperature for 

May, July, September images. For all the seasons, irrespective of the crop type, ETrF 

curves are flat contradicting our hypothesis. This is because of the adjustments in 

calibration coefficients to match the ETr at the cold pixel and assignment of fixed ETrF at 

the hot pixel. Appendix A show the variations in calibration coefficients a, b with change 

in ETr for May image. The curves are complementary to each other, to adjust the sensible 

heat flux in order to match the ET values obtained from the model with ETr.  This shows 

the METRIC’s ability to calibrate internally to give consistent results in accordance with 

the weather station cancelling out the minor systematic errors. 

Table 5 shows the absolute change in average ETrF when surface temperature is 

changed globally from -2ºK to +2ºK for various months and different crop types. 
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 TsFETr ∂∂ /  

Image month Corn Soybeans Alfalfa 

May ~0/ºK ~0/ºK ~0/ºK 

July ~0/ºK ~0/ºK ~0/ºK 

September ~0/ºK ~0/ºK ~0/ºK 

Table 5: Absolute change in average ETrF when surface temperature is changed, for all images considered. 

 

3.2.4 Reference Evapotranspiration and wind speed (ETr & u) 

 

These are the key input data from a weather station required for calibration of the 

model. One should check the quality of these data to be good enough to obtain accurate 

spatial ET trends (Gowda et al. 2008).  Instead of considering all parameters from 

weather station individually, sensitivity of ETr is checked to compensate rest of the 

variables, as they contribute to the calculation of ETr. Wind speed is considered 

separately because it affects the sensible heat flux. Errors can be from poor quality of 

weather data, poor instrumentation (Allen et al. 2005) and from user misinterpretation 

and miscalculations. To maintain consistency in the analysis, all the parameters are 

pushed up to ±50% of their original value to check the sensitivity of the model. 
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Figure 11: Impact of wind speed variations on the model for May 30 2009  

 

Figure 12: Impact of wind speed variations on the model for July 1 2009  
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Figure 13: Impact of wind speed variations on the model for September 27 2009 image 

The hypothesis is, when wind speed increases, the mixing of air increases, thereby 

decreasing the resistance to heat transfer. Consequently, sensible heat increases and the 

energy for ET decreases. Applying the same argument, ET increases, with decrease in 

wind speed. Figures 11-13 depict the variations in ETrF for errors in wind speed for May, 

July, September images. 

For all of the images, the results are as hypothesized, irrespective of the crop type, 

except for September image. For September (Figure 16), the model resulted in consistent 

ETrF values, at higher wind speeds. The consistency is observed up to 75% of the 

original wind speed and deviation is witnessed from that point. Also, for May image, the 

ETrF values at 50% u are unavailable because of the numerical instability obtained 

because of lower wind speeds. Allen et al. (2009) found that the numerical instability 
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200m to be 4 m/s.  
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 uFETr ∂∂ /  

Image month Corn Soybeans Alfalfa 

May 0.06/75% 0.05/75% 0.06/75% 

July 0.01/100% 0.06/100% 0.03/100% 

September 0.04/100% 0.04/100% 0.04/100% 

Table 6: Absolute change in average ETrF when wind speed is changed, for all images considered. 

Table 6 shows the absolute change in average ETrF when wind speed is changed 

from -50% to +50% for various months and different crop types. 

 

Figure 14: Model sensitivity to Reference evapotranspiration on May 30 2009 
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Figure 15: Model sensitivity to Reference evapotranspiration on July 1 2009 

 

Figure 16: Model sensitivity to Reference evapotranspiration on September 27 2009 

 Instantaneous ET, suppose to decrease, when ETr decreases. This is because of 

the calibration of model using ETr obtained using Penman–Monteith equation and local 

weather station data. Figures 14-16 show the variation of ETrF with change in reference 

0

0.2

0.4

0.6

0.8

1

1.2

-60 -40 -20 0 20 40

E
T

rF

% Error in ETr

Corn

Soybeans

Alfalfa

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-60 -40 -20 0 20 40 60

E
T

rF

% Error in ETr

Corn

Soybeans

Alfalfa



34 
 

 
 

evapotranspiration (ETr) for May, July, September images. The characteristics of curves 

are different for different images.  

 

Figure 17: Instantaneous ET variations for May 30 2009 image 

For the may image (figure 14), Alfalfa curve is different from corn and soybeans. 

Since, crop coefficient Kc at cold pixel is higher than Kc at hot pixel; the response to the 

variations of ETr is significant at cold pixels and less significant at hot pixels. Because, at 

hot pixel, H is independent of ETr, in ideal conditions. So, any change in ETr, affects the 

ETrF at hot pixel lower than at the cold pixel. So, the sensitivity to change in ETr at cold 

pixels is almost proportional. So, for all the images, the crop fields having the vegetation 

have their curves almost flat. In May image (Figure 14), even though many of alfalfa 

fields have vegetation, the curve is not flat because of the presence of dry fields in the 

selected 14 fields. Corn and Soybeans bare soil conditions for almost all of the fields. So, 

the curves are parallel, but not flat. The curve slope depends on the field conditions. The 

field conditions, close to the cold pixel’s field conditions have flat curves and sloped 
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curves for pixels having different cold pixel temperature.  However, the instantaneous ET 

is proportional to the ETr, for any season, for any land surface type, which is evident 

from figures 17-19. Figue 17 shows the response of average ETins of 14 fields for each 

crop type with variations in ETr. Again, the slope of ETins curve depends on surface 

temperature. 

 

Figure 18: Instantaneous ET variations for July 1 2009 image 

For July image (figure 15), the curves are almost horizontal for corn fields which 

have full vegetation for almost all of the 14 fields selected. The different slopes between 

corn and alfalfa is due to the surface temperature (See table 1) differences between corn 

and alfalfa, even though the NDVI for both crops is similar. Due to low surface 

temperatures, H is negative and moreover, Zom impacts, the low H values in case of corn. 

The soybean curve is different from corn, because of the bare soil conditions having high 

surface temperatures and low NDVI values. Figure 18 shows average ETins variations for 

July image. We can see the nice straight lines of corn and soybeans parallel to each other, 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-60 -40 -20 0 20 40

E
T

in
s

% Deviation in ETr

Corn

Soybeans

Alfalfa



36 
 

 
 

but different slope for the soybean curve. Since the change in ETins is proportional to 

change in ETr, we see almost flat ETrF curves (Figure 15) for all crop types. 

At +50% of the ETr, the ETrF and ETins values are not reported, because of the 

numerical instability caused during calibration by exponential increase of calibration 

coefficients a,b due to excess increment of ETr, giving strong negative H values and large 

stability corrections.  

 

Figure 19: Instantaneous ET variations for September 27 2009 image 

For September image (Figure 16), the curves are flat for soybeans and alfalfa. But 

for corn, the curve is not linear. Figure 19 shows the variations of average ETins for 

September. Alfalfa fields have the conditions close to that of the cold pixel. So, ETins is 

proportional to the ETr. Even though the ETins curve for soybeans and corn is linear, they 

are not parallel to alfalfa, because the slope is proportional to ETrF. So, the hypothesis is, 

with slightly different slope than alfalfa, the ETrF curves shall be horizontal just like May 

and July images. Contradicting our hypothesis, the ETrF curve for corn is not linear, and 
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unexpected rise in ETrF is found at -50% for both corn and soybeans. This sudden rise is 

because of the proportion of change in ET at warm pixels is lower than the cold pixels 

because of instability conditions raised for heat and momentum transport such that H 

increases and ET, drops down. So, when ETr is reduced by 50%, the ETins at corn (warm 

pixels) decreases, such that it falls close to that of ETr, which is evident from figure 19. 

So, ETrF values rises all the way up to Kc cold.  

    The strange behavior of corn curve is due to the fact that corn fields are filled with 

the stalks and stubble with low vegetation, and all the fields have low surface temperature 

close to the cold pixel. This may be due to harvesting or senescence.   

 In fully vegetated conditions, irrespective of the crop type, the ETrF is insensitive 

to ETr. The change is less than 1% even though the change is 50%. But ETrF is found to 

be relatively sensitive to the bare soil conditions and can give unexpected values having 

biases up to 22% when ETr is changed by 50%. But, ETins is sensitive to ETr at vegetative 

fields, and the average error is found to be linear with error in ETr and ETins is relatively 

insensitive to ETr at bare soil fields. We can conclude that at full vegetated conditions, 

the ETrF values are consistent irrespective of the crop type and relatively sensitive at bare 

soil fields with changes in ETr. 

 rr ETFET ∂∂ /
 

Image month Corn Soybeans Alfalfa 

May 0.08/100% 0.05/100% 0.12/100% 

July ~0.00/75% ~0.00/75% 0.06/75% 

September 0.23/100% 0.07/100% 0.01/100% 

Table 7: Absolute change in average ETrF when reference ET is changed, for all images considered. 
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Table 7 shows the absolute change in average ETrF when reference ET is 

changed globally from -50% to +50% for various months and different crop types. 

 

3.2.5 Sensitivity towards Selecting Hot and Cold Pixels 

 

Selecting the boundary pixels for model calibration is utmost important and 

highly sensitive and differs from user to user. In a sensitivity analysis on SEBAL by 

Wang et al. (2009), they found that selecting different hot and cold pixels leads to large 

deviations in final ET. So, in our analysis, different cold anchor pixels are selected such 

that they are warmer than the original cold pixel. In the same way, different hot anchor 

pixels are selected such that they are cooler than the original hot pixel. Our emphasis is 

on the temperature and land surface type primarily.   

All the curves in this section are attained using, ETrF obtained at 15 randomly 

chosen pixels across the image, whose Ts varied from cold pixel temperature to hot pixel 

temperature, irrespective of the surface cover type. However, no water bodies are 

selected in this process. 
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Figure 20: Sensitivity of the model to selection of cold pixels on May 30 2009.  C1= 0.502K, C2= 

1.002K, C3 = 1.996K, C4 = 3.005 K, ETrF is base ETrF with no change in original cold pixel 

temperature 

 

Figure 21: Sensitivity of the model to selection of cold pixels on July 1 2009.  C1= 0.506K, C2= 

1.010K, C3 = 2.012K, C4 = 3.006 K, ETrF is base ETrF with no change in original cold pixel 

temperature 
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Figure 22: Sensitivity of the model to selection of cold pixels on September 27 2009.  C1= 

0.409K, C2= 1.047K, C3 = 2.085K, C4 = 2.866 K, ETrF is base ETrF with no change in original 

cold pixel temperature 

Figures 20-22 show the sensitivity of ETrF to the wide selection of different cold 

pixels for May, July, September images. C1, C2, C3, C4 represent the corresponding 

increase in temperature from the original cold pixel temperature. All the figures show 

ETrF changes near the cold pixels and the curves converge towards the hot pixel side. 

This confirms the error in selection of cold pixel temperature effects most on the cold 

pixels and the effect diminishes as the temperature of pixels increases. Most change in 

ETrF is noted at the coldest pixel and at maximum change in temperature, for all the 

images.  
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Figure 23: Sensitivity of the model to selection of hot pixels for May 30 2009.  H1=- 0.427K, 

H2= -1.28K, H3 = -2.138K, H4 =- 3.029 K, ETrF is base ETrF with no change in original hot pixel 

temperature 

 

Figure 24: Sensitivity of the model to selection of hot pixels for July 1 2009.  H1= -0.445K, H2= 

-0.886K, H3 = -1.771K, H4 = -3.11K, ETrF is base ETrF with no change in original hot pixel 

temperature 
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Figure 25: Sensitivity of the model to selection of hot pixels for September 27 2009.  H1= -

0.977K, H2= -0.995K, H3 =-1.958K, H4 = -2.962K, ETrF is base ETrF with no change in original 

hot pixel temperature 

Figures 23- 25 show the fluctuations in ETrF with selecting different hot pixels 

with different land surface temperature for May, July, September images. H1, H2, H3, 

H4 represent the corresponding decrement of hot pixel temperature from the original hot 

pixel temperature. Selecting cooler pixels than the original hot pixel results in disturbance 

of calibration coefficients, resulting in changes in ET. From the above figures it is evident 

that the ET values remains unchanged at cold pixels and maximum change at the hottest 

pixel and medium range pixels deviated medium. All the curves converge towards the 

cold pixel. Difference between H1 and H2 is less for September curves. So, they 

appeared to be overlapping. The author is unable to find the 0.5K difference in 

temperature pixels on the image. So, two pixels with minor difference in temperature are 

selected as H1, H2. From the above results, it is evident that the selection of hot pixels 
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has direct impact on ET assessment for bare soils or for water stressed areas and not 

sensitive to well watered vegetated surfaces.  

 TFETr ∂∂ /  

 Sensitivity of cold pixel selection Sensitivity of hot pixel selection 

May 4%/K -38%/K 

July 3%/K -54%/K 

September 6%/K -111%/K 

Table 8: Maximum relative change in ETrF, when different hot and cold pixel temperatures are selected 

  

Table 8 shows the maximum relative change in ETrF, when different hot and cold 

pixel temperatures are selected for May, July, September images. 
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Chapter 4: Local error 

 

The estimation of ET through METRIC gave consistent results (from previous 

chapter) even bias exists in the input data. This chapter is mainly intended for behavior of 

the model to the local systematic errors which do not pass through the calibration. For 

this study, the parameters estimated empirically are considered. Even though the biases in 

input data and other empirically estimated parameters may affect the output ET, the scope 

of this study is limited only to albedo α, soil heat flux G, Momentum roughness length 

Zom, Surface temperature Ts, Difference between air and surface temperature dT. These 

are primary parameters affecting the copmutation of ET in METRIC and generally have 

the greatest uncertainty in estimation for specific land cover or vegetation type or 

amount. 

4.1 Methodology 

 

In local error, the error is not mitigated through calibration. Sensitivity of albedo, 

soil heat flux, Difference between air and surface temperature to the final ETrF estimates 

is done by varying the respective variables at a range of -50% to +50%. Surface 

temperature is varied from -2K to + 2K and momentum roughness length is doubled and 

halved (Tasumi 2003).  Absolute values are used for surface temperature and momentum 

roughness length and relative values are used for the remaining parameters. Ts is varied 

as : Ts-2, Ts-1, Ts-0.5, Ts, Ts+1, Ts+2, Ts+3. Zom is varied as: 2 *Zom and 0.5* Zom. Where 

Ts , Zom are the base values of surface temperature and momentum roughness length. 

Whereas for remaining parameters their base values are deviated as: 1.5X, 1.25X, 1.05X, 

0.95X, 0.75X, 0.5X. Where X is the respective base values. These changes were made to 
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all pixels in the image, but after calibration of METRIC to the image.  The changes 

represent deviations or uncertainties in estimates for parameters that might occur for 

specific pixels or land covers that are not globally systematic and accounted for during 

calibration of the overall image. 

4.2 Results and Discussions 

 All the curves presented in the following sections are average curves of all 14 

fields for each crop type. The error bars in the figures describe the maximum and 

minimum values of ETrF for each crop type. 

 

4.2.1 Albedo (α) 

 

In METRIC, albedo is calculated using the following equation. 

   ∑
=

=

=
6

1

.
b

b

bb wρα     

Where ρb is reflectance at surface at band b and wb is weighting coefficient at band b. 

These weighting coefficients are obtained by the ratio of at surface hemispherical solar 

radiation at that particular band to the at surface hemispherical solar radiation over the 

entire solar spectrum (0.3-4.0 µm) (Starks et al. 1991) and  band 6, in this equation is 

Landsat’s band 7.  The weighting coefficients proposed are for low haze atmospheric 

conditions by Tasumi et al. (2008). The coefficients differ slightly for extremely 

transparent atmosphere and low transmittant atmosphere. Albedo comparisons were done 

with the work done by Liang (2000) and observed a random deviation for extremely 

bright surfaces.  
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Canopy structure shading (Li et al. 1992; Leblon et al. 1996; Ekstrand 1996), 

shadows casted by the nearby objects (Teillet et al. 2001; Starks et al. 1991) can cause 

errors in reflectance by directly affecting the albedo. In addition, the near nadir-view of 

Landsat can cause albedo of tall crops like corn or crops with vertical leaf structure like 

wheat to be estimated lower than the true hemispherical albedo due to impacts of 

shadows deep in the canopies that are viewed by nadir and that carry too much weight in 

the albedo estimation (Allen et al. 2011, pers. Commun. (paper in preparation)).   When 

the sun and sensor angles match, canopy reflectance can be large (hotspot). These 

hotspots can overestimate albedo by 20%. Conversely, when solar angle is substantially 

different from the sensor view angle, albedo can be less than hemispherical albedo.  This 

phenomenon is known as bidirectional reflectance distribution function (BRDF) and is 

corrected for in MODIS-based albedo retrievals (Gao et al. 2005, Salomon et al. 2006) 

but not for Landsat. Also, the extrapolation of reflectance to the nearby bands can also be 

possible source of error in estimating albedo (Starks et al. 1991). The effects of various 

tillage practices on albedo are considerable. Typical tillage systems decreases the albedo 

up to 25% when soil is moist and about 12% when soil is dry (Oguntunde et al. 2006). 

Even though the weighting coefficients proposed by Tasumi et al. (2008) are optimized 

for Landsat images, this study is done to observe the behavior of METRIC model to 

biases in estimating albedo. 
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Figure 26: METRIC's local sensitivity to albedo for May image 

 

 

Figure 27: METRIC's local sensitivity to albedo for July image 
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Figure 28: METRIC's local sensitivity to albedo for September image 

  α∂∂ /FETr  

Image date Corn Soybeans Alfalfa 

May -0.24/100% -0.26/100% -0.22/100% 

July -0.33/100% -0.36/100% -0.38/100% 

September -0.14/100% -0.16/100% -0.21/100% 

Table 9: Maximum absolute change in average ETrF when albedo is changed 

Figures 26- 28 show the model’s local sensitivity to albedo. For all the seasons 

and for all crop types, ETrF increased, with decrease in albedo and decreased with 

increase in albedo. With increase in albedo the outgoing shortwave radiation increases 

and the net radiation decreases, through which the available energy for evapotranspiration 

decreases, so decreased ETrF values and vice versa. 

For only September image, the corn curve has different slope than the other 

curves. This is because of low albedo for corn, so that the change in albedo was smaller 
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and therefore impact on ETrF is less. The average albedos for September image are 0.178 

and 0.122 for alfalfa and corn respectively. At 50% change in albedo, variations in alfalfa 

are large compared to that of corn. So, large deviations are seen for alfalfa in September 

than the other images where the differences in average albedos are small (Table 1). 

Above Figures show the average ETrF values for 14 different fields of each crop 

type. The error bars for each plot indicate the minimum and maximum values of all the 

fourteen fields. 

Table 9 shows the maximum absolute change in average ETrF when albedo is 

changed at a local scale from -50% to +50% for various months and different crop types. 

4.2.2 Soil heat flux (G) 

 

Soil heat flux is a complex phenomenon, which depends upon various factors like 

soil type, moisture content, cracking, delamination, mineral content etc. It is difficult to 

get an accurate estimate, particularly in regional scale. Choudhury et al. (1987) 

emphasized on accurate estimation of G and its relation in estimation of ET. 

De Bruin and Holtslag (1982) used G/Rn ratio as 0.1 for short grass land cover 

type and found the bias in G up to 50% of the calculated value. Clothier et al. (1986) 

observed a standard error of 21.6% in estimating mean G/Rn ratio for alfalfa when 

related to height of the alfalfa crop. Kustas and Daughtry (1990) confirmed the results of 

Clothier et al. (1986) with slight deviation caused by different soil conditions and 

different vegetation types. Choudhury et al. (1987) related G/Rn with LAI and reported 

correlation coefficient of 0.97 for nine days combined. 
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In METRIC soil heat flux G is calculated using empirical equation proposed by 

Tasumi (2003), G/Rn as a function of leaf area index (LAI) for vegetated surfaces and 

function of surface temperature for bare soils (but these equations may not be applicable 

to non agricultural soils). LAI varies with canopy structure and plant row width (Wall et 

al. 1990). For two different crops having same NDVI, may not have same LAI, which 

may result bias in estimating LAI and G. LAI is calculated empirically from soil adjusted 

vegetation index (SAVI).  Allen et al. (2007a) proposed, to compute SAVI using local 

calibration.  

If  SAVI for a pixel is miscalculated as 0.65 instead of 0.7, then the percentage 

error in calculation of LAI is around 20%, because  LAI= 11( SAVI3) if SAVI<0.817. 

This 20% error in LAI can lead up to 16% error in estimating G. Apart from empirical 

relations, due to errors in the satellite input data (see previous chapter) might have biases 

in estimating Rn through G. Even though the contribution of global systematic error in G 

has little effect on the final ET values (Allen et al. 2007a), this study is done to observe 

the effect of local systematic error in G on final ET product. 
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Figure 29: Model response to variations in G for May image 

 

 

Figure 30: Model response to variations in G for July image 
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Figure 31: Model response to variations in G for September image 

 GFETr ∂∂ /  

Image date Corn Soybeans Alfalfa 

May 0.18/100% 0.18/100% 0.13/100% 

July 0.11/100% 0.23/100% 0.11/100% 

September 0.15/100% 0.16/100% 0.08/100% 

Table 10: Maximum absolute change in average ETrF when soil heat flux is changed 

Figures 29- 31 show the variations in ETrF with change in soil heat flux G for 

May, July and September images. Our hypothesis is, increase in soil heat flux leads to 

decrease in ET because the available energy decreases, as Rn, H remains constant for this 

local error in G. The same discussion applies vice versa. For all the image dates, and all 

the crop types, the results are as hypothesized.  

The slopes for each crop type are different for different images. This is because, 

of different field conditions. For bare soil conditions, G is more than that of vegetative 
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conditions. Because the deviations are applied on base values, the deviations are more 

pronounced in bare soil or less vegetative conditions. So, the fields having bare soil 

conditions have more slope than the vegetative conditions, whose slope is relatively 

small. 

The site conditions in May, for Corn and Soybeans are similar. The maximum 

NDVI of corn and soybeans are 0.31 and 0.27 respectively. And the surface temperature 

is same. All the corn and soybean fields are bare soil in nature in May. The selected 

alfalfa fields have wide variety of vegetative conditions in May. The minimum, 

maximum and average NDVI of alfalfa fields are 0.23, 0.82 and 0.52. So, the behavior of 

alfalfa curve in May is slightly different from corn and soybeans.  

In July image, the soybean fields have a maximum NDVI of 0.64. So, soybean 

fields have less vegetation, whereas, corn and alfalfa has more vegetative cover. So, the 

curves of corn and alfalfa have less slope than soybeans. In September, except alfalfa, the 

remaining two crop types have more exposed bare soil in general (From NDVI values of 

table 1). So, the soybeans and corn curves are parallel and have steeper slopes than slope 

of alfalfa. 

 Table 10 shows the maximum absolute change in average ETrF when soil 

heat flux is changed at a local scale from -50% to +50% for various months and different 

crop types. 
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4.2.3 Momentum roughness length Zom 

 

At height of d+Zom the wind speed extrapolates to zero. Where d is zero plane 

displacement. Momentum roughness length is a measure of roughness of the layer that 

interacts with the surface. The more the Zom, the rougher is the surface and vice versa. 

Brutsaert (1982) empirically related Zom to the crop height. Tasumi (2003) related Zom 

with LAI as          

Zom = 0.018 x LAI 

Verhoef et al. (1997) compared Raupach (1992), Raupach (1994) models with the 

literature values for sparse canopies and found the later model gave better results with 

simple equation. Tian at al. (2011) tested four models (Choudhury & Monteith, 1988; 

Raupach 1994; Schaudt & Dickinson 2000; Nakai et al. 2008) and found Schaudt & 

Dickinson model which uses LAI and FAI (frontal area index), gave a better estimate of 

Zom.   

In METRIC, Zom is calculated using land use map. For non agricultural areas, Zom 

is assigned the values given by Tasumi (2003). For agricultural areas, Zom is calculated 

using above equation. When land use map is not available, Zom is a function of NDVI 

(Bastiaanssen, 2000) or NDVI and albedo (Allen, 2002) or as a constant value for some 

landuses.  Current METRIC applications use Perrier (1977) function to estimate 

roughness for trees (METRIC user manual 2011). In this study sensitivity analysis is 

done on Zom calculated using land use map. 
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Figure 32: Change in ET with variations in Zom for May image 

 

 

Figure 33: Change in ET with variations in Zom for July image 
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Figure 34: Change in ET with variations in Zom for September image 

According to our hypothesis, as the momentum roughness length increases, 

friction velocity increases through which resistance to heat transport decreases and 

thereby increase in H and decrement in ET can be observed. Applying this argument in 

reverse way, the ET increases, with decrease in momentum roughness length. 

 Figures 32-34 show the change in ETrF with variations in Zom. As, hypothesized, 

for all crop types and for all image dates, the ETrF increased, with decrease in Zom, and 

decreased with increase in Zom. But, the increments and decrements are not significant 

because, numerically, Zom is very less than the blending height 200 metres. Even 

doubling the original Zom does not have significant affect in calculation of friction 

velocity and resistance to heat transport rah. So, relative change in ET is insignificant. The 

maximum change in average ETrF is 0.04, for 150% change in Zom (table 11). 
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 )(/ ZomFETr ∂∂  

Image date Corn Soybeans Alfalfa 

May 0.03/150% 0.02/150% 0.01/150% 

July 0.04/150% 0.03/150% 0.04/150% 

September 0.01/150% 0.02/150% 0.01/150% 

Table 11:  Maximum absolute change in average ETrF when momentum roughness length is changed 

Table 11 shows the maximum absolute change in average ETrF when momentum 

roughness length is changed at a local scale from -50% to +100% for various months and 

different crop types. 

4.2.4 Near surface temperature difference dT 

 

dT is the temperature difference at heights z1, z2.  In METRIC z1 is 0.1m and z2 is 

2 m. However, temperature data at heights z1, z2 is unknown for each pixel. The 

individual temperatures at 0.1m and 2m are not necessary, because dT alone is needed for 

computation of sensible heat flux H. Previous research results showed that dT is linearly 

related to radiometric surface temperature (Wang et al. 1995, Jacob et al. 2002). In 

METRIC, dT is related to surface temperature as:  dT= aTs + b 

Where a and b are correlation coefficients obtained by selecting hot and cold pixels on 

the image, and by iteration process, until rah and dT are stabilized at the hot pixel (See 

previous chapter).   

Watts et al. (2000) used Chehbouni et al. (1996, 1997) equation of relating the 

difference of aerodynamic surface temperature and air temperature with radiometric 

surface temperature and air temperature with an empirical function of LAI and found an 
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r2 value of 0.9 when comparison was made between simulated and eddy flux calculated 

sensible heat flux. Xu et al. (2008) found large deviations in calculation of sensible heat 

flux when air temperature is treated as constant, obtained from nearest weather station. 

Marx et al. (2008) computed the maximum relative uncertainty of estimating  sensible 

heat flux using SEBAL (Bastiaanssen et al. 1998) as 20% over savannah environment. 

 

Figure 35: Changes in ETrF with error in dT for May image
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Figure 36: Changes in ETrF with error in dT for July image 

 

Figure 37: Changes in ETrF with error in dT for September image 
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the range of dT falls in the region of cold pixels. Since, the change in dT for cold pixels is 

less, the change in ETrF is also less. The range variations can be observed only for the 

crops having the mixed field conditions. 

In May, alfalfa fields have more vegetation than corn and soybean fields. So, the 

response ET curves have smaller slope than corn and soybeans. The average surface 

temperature of corn is slightly higher than soybeans (see the table). So, the ET curve for 

corn is slightly different from soybean curve. As discussed earlier, the range of dT 

decreased, as dT is decreased, so, the ETrF values coincide each other for corn and 

alfalfa. For July image, the corn and alfalfa are parallel to each other, with no range 

variations; this is because all the fields of corn and soybeans have vegetation and 

soybeans have mixed field conditions, so range variations can be observed. 

 In the September image, for alfalfa, the ETrF curve is relatively flatter than the 

other curves, because most of the alfalfa fields have full vegetation cover and low surface 

temperatures. The soybean curves have higher slope than that of corn because the 

soybean fields have higher surface temperatures than corn. Corn has bare soil conditions, 

but with lesser temperature than soybeans. So, the slope of the corn curves is more than 

that of alfalfa and less than that of soybeans. It is noted that these ranges in error for dT 

(±50%) are unreasonable since it is recognized that the calibration of METRIC will 

nearly always be much less than 50% from the proper values (unless a major coding error 

occurs).  Therefore, the dT vs. Ts function will estimate dT for any specific pixel well 

within 50% of the true value of dT required to accurately estimate H. 
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 )(/ dTFETr ∂∂  

Image date Corn Soybeans Alfalfa 

May 0.30/100% 0.25/100% 0.14/100% 

July 0.52/100% 0.75/100% 0.54/100% 

September 0.09/100% 0.26/100% 0.04/100% 

Table 12: Maximum absolute change in average ETrF when dT is changed 

 Table 12 shows the maximum absolute change in average ETrF when dT 

is changed at a local scale from -50% to +50% for various months and different crop 

types. 

4.2.5 Surface temperature Ts 

 

Surface temperature in METRIC follows the plank equation where the correction 

to thermal radiance is calculated using Wukelic et al. (1989). Li et al. (2004) found mean 

absolute difference in estimating surface temperature for Landsat 7 is 0.98 K, Landsat 5 

is 1.47 K when compared with tower measurements. Gillespie et al. (1998) with proper 

atmospheric correction attained the accuracies in temperature estimation about ± 1.5 K.  

The spatial resolution of thermal band in Landsat TM/ETM, errors in image geo 

referencing (Li et al. 2004), improper atmospheric correction (Li et al. 2004 & Gillespie 

et al. 1998), precision, calibration, empirical relationships, (Gillespie et al. 1998) are the 

sources of errors in estimating the radiometric surface temperature.  
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 Figure 38: Model's response to change in local Ts for May image 

 

 

Figure 39: Model's response to change in local Ts for July image 

 

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3

E
T

rF

Change in surface temperature in degree Kelvin

Corn

Soybeans

Alfalfa

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3

E
T

rF

Change in surface Temperature in degree Kelvin

Corn

Soybeans

Alfalfa



63 
 

 
 

 

Figure 40: Model's response to change in local Ts for September image 
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crop type. Since, the change in surface temperature is absolute, the response for all crop 

types are similar for each image. If relative change is made, the hot pixels like bare soil 

areas would have more slope than the cold pixels like vegetative surfaces. 

 TsFETr ∂∂ /  

Image date Corn Soybeans Alfalfa 

May 0.18/4ºK 0.17/4ºK 0.17/4ºK 

July 0.10/4ºK 0.11/4ºK 0.10/4ºK 

September 0.24/4ºK 0.26/4ºK 0.28/4ºK 

Table 13: Maximum absolute change in average ETrF when surface temperature is changed at local scale 

 

 Table 13 shows the maximum absolute change in average ETrF when 

surface temperature is changed at a local scale from -50% to +50% for various months 

and different crop types. 
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Chapter 5: Conclusions 

 

Calibration is the most crucial part in this model. METRIC has the capability of 

producing consistent results if calibration is done well. METRIC produces stable results 

even though the input data has large deviations. On the other hand, model is sensitive to 

input parameters if calibration process goes wrong. Maximum error observed due to 

±50% deviation in reflectance, incoming long wave radiation, reference 

evapotranspiration, wind speed is 16%, 46%, 60%, 11% of the original ETrF. 

 )(/% parameterETrF ∂∂  

% Error May July September 

Variables Corn Soybeans Alfalfa Corn Soybeans Alfalfa Corn Soybeans Alfalfa 

ρ 9 17 1 0.6 3 5 3 7 6 

τ 1 1 1 1 4 2 3 2 3 

Ts 0.6 0.6 0.3 0.2 0.6 0.2 0.8 0.2 0.3 

ETr 13 8 11 0.5 4 5 22 8 2 

u 8 7 5 0.9 7 2 4 6 3 

Cold 

Pixel 

selection 

13 12 18 

Hot pixel 

Selection 
115 163 335 

Table 14: Percentage change in ETrF when each parameter is changed to its extreme limit on one side for 
May, July, September images: Global Error. 

Table 14 shows the maximum average error in ETrF to each parameter, when it is 

changed to its extreme limit on one side, for each image, for each crop type. From above 
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table and figures, we can conclude that the variables reflectance, transmittance, surface 

temperature, wind speed are less sensitive than the other parameters as the errors lie 

within 10% even though the base values are changed up to  ±50%.  Wind speed accuracy 

should be maintained, as wind speed below a certain limit can cause numerical instability 

in METRIC for calibration. Errors induced by deviation in ETr are within 5% if the 

surface has vegetation at full extent. The error can vary up to 22% for bare soil conditions 

when ETr is reduced by 50% of its base value. Also, over estimate of ETr can cause errors 

due to numerical instability in calibration process. So, care should be taken to ensure the 

quality of weather station is good.   

Selection of hot and cold pixels is most prone to errors (J Wang et al., 2009) and 

is not currently automated. Variations in ET are high at warm pixels when selecting 

different hot pixels and variations are seen at cool pixels when selecting different cold 

pixels. So, from the table we can conclude that selection of hot cold pixels is highly 

sensitive to the final product of the model. 

The local error analysis is performed on albedo, soil heat flux, surface 

temperature, Difference between surface and air temperature and momentum roughness 

length for May (Landsat 5), July (Landsat 5), September (Landsat 7) images. For this 

analysis, the model is pre calibrated and the calibration constants a, b are not changed for 

each model’s run. The constants a, b are obtained when the images were run on natural 

conditions without altering any variable.  

The maximum change in average of 14 fields ETrF for May, June, September 

images for various parameters at their extreme limits are given in the following table 15. 
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 )(/% parameterETrF ∂∂  

% Error May July September 

Variables Corn Soybeans Alfalfa Corn Soybeans Alfalfa Corn Soybeans Alfalfa 

α 30.2 30.2 17.2 17.2 35 21 9.7 14.5 13.3 

G 23 20.8 10.4 5.82 22.2 6 10 14.5 5.1 

Ts 22.9 20.3 13.2 5.3 11.2 5.8 16.2 23.8 18 

dT 40.7 31.67 11.5 30 82.5 33.3 6.2 24.5 2.5 

Zom 3.6 2.6 1.1 2.6 3.4 3 0.8 2.5 0.7 

Table 15: Percentage change in ETrF when each parameter is changed to its extreme limit on one side for 
May, July, September images: Local Error 

From the table 15, we can conclude that care has to be taken while calculating dT, 

especially when hot pixels are dominating the image. For May, September images, alfalfa 

fields have more vegetation than corn and Soybeans whereas corn and soybeans have 

almost bare soil conditions.  So, except for albedo, variations in the remaining parameters 

show the maximum deviation in corn and soybeans than that of alfalfa. In July Corn has 

more vegetative fields and low average temperature than that of alfalfa. So, minimum 

errors are observed in corn and alfalfa than in soybeans which has most of the fields with 

bare soil conditions. From this we can conclude that the model is relatively insensitive to 

vegetated surfaces, than the bare soil conditions for local errors. 

More comprehensive research has to be done on various unconsidered parameters 

and interactive affects of multiple parameters, to observe the models response. Also, 

selection of hot and cold pixels should be automated, to get consistent results, from user 

to user. 
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Appendix A:   Variations in calibration coefficients a,b when transmissivity is 

changed. These two complement each other to adjust sensible heat flux H, to match 

output ET with the weather station’s ET. 
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Figure A.2 Variations in a,b with change in ETr for May image 

         Figure A.1 Variations in a,b with change in Transmissivity for May image 
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