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Emerging contaminants have been of importance in recent water 

research.  Wastewater treatment plants (WWTPs) have proved ineffective at 

handling present-day antibiotic loads from hospital and municipal sources.  

Kolpin et al. (2002) performed a study that identified pharmaceuticals in 

numerous waters downstream from effluent discharge.  Though present in trace 

levels, concern has been raised regarding pharmaceutical persistence in natural 

environments.  In the present study, uptake rates were quantified in the 

laboratory for 25 pharmaceutical compounds using Polar Organic Chemical 

Integrative Samplers (POCIS).  Twenty new uptake rates were determined for 

compounds that have no previously reported literature values.  POCIS was also 

used to evaluate the fate of polar organic contaminants in Nebraska surface 

waters impacted by WWTP effluent.  Select pharmaceuticals were observed to 

persist for at least 1300 m downstream.  Carbamazepine and DEET showed 

persistence and the highest average concentrations of 110 and 60 ng/L, 

respectively.  Decay rates were determined for 25 pharmaceuticals in receiving 

waters.  Pharmaceutical loading rates were calculated for each compound using 

the average in-stream concentration and volumetric flow rate.   
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Chapter 1 

Introduction 

Recently there has been increased interest in the occurrence and behavior of 

organic wastewater microconstituents, including pharmaceuticals, personal care 

products, and steroid hormones, in waters across the country.  One of the 

primary sources of these compounds to natural waters is effluent from 

wastewater treatment plants (WWTPs) (Glassmeyer et al. 2005; Lee and 

Rasmussen 2006; Miao et al. 2004). One of the potential concerns about the 

presence of these compounds is that they may be biologically active, with 

negative consequences for aquatic species. There are few published studies of 

the ecotoxicological impacts of chronic low-level exposures of therapeutic or illicit 

pharmaceuticals in aquatic systems (Fent et al. 2006; Pounds et al. 2008), 

though these chemicals may have effects at environmentally-relevant 

concentrations (Raldua et al. 2008; Schreiber and Szewzyk 2008).  Because 

these compounds are biologically-active, both ecotoxicological and human health 

impacts are of potential concern. 

Although the occurrence and concentration of illicit and therapeutic 

pharmaceuticals in natural waters have been documented based on discrete 

sampling events, there are fewer data available regarding the time-weighted 

average concentrations of these compounds in receiving waters downstream of 



9 

 

 

 

WWTP outfalls.  Traditional water sampling approaches, such as grab and 

composite sampling, are effective for documenting the occurrence of 

pharmaceuticals, but these sampling techniques only capture information at the 

time of sample collection, and may miss events such as changes in the flow 

regime, chemical inputs and/or the influence of precipitation (MacLeod et al. 

2007).  Monitoring temporal changes in pharmaceutical concentrations via 

continuous on-line sampling methods may be prohibitively expensive.  One 

device that has been developed for use in sampling trace organic compounds is 

the Polar Organic Chemical Integrative Sampler (POCIS).  This sampling device 

is designed to trap polar organic compounds from water.  Its ease of use and 

apparent resistance to biofouling make it particularly attractive for determining 

time-weighted average (TWA) concentrations of organic compounds in water 

(Alvarez et al. 2004).  POCIS samplers have been used previously for both 

qualitative and quantitative evaluation of pharmaceuticals, pesticides and 

hormones in surface waters (Alvarez et al. 2004, 2007; Arditsoglou and Voutsa 

2008; Harman et al. 2008; Jones-Lepp et al. 2004; MacLeod et al. 2007; Zhang 

et al. 2008). 

The hypothesis of this study is that passive samplers can be used to 

evaluate the occurrence and behavior of pharmaceuticals in surface waters 

impacted by wastewater treatment plant effluent.  The objectives of this research 

project were: (1) to quantify POCIS uptake rates for 25 pharmaceutical 



10 

 

 

 

compounds by conducting a laboratory uptake study, (2) to deploy passive 

samplers to evaluate the fate of polar organic contaminants in surface waters in 

Nebraska impacted by wastewater treatment plant (WWTP) effluent, and (3) to 

determine decay rates for pharmaceuticals in receiving waters. 



11 

 

 

 

Chapter 2 

Literature Review 

Traditional sampling technologies 

Accurate assessments of contaminant concentrations based on traditional 

grab sampling methods are not always possible.  Very large sample volumes are 

required to accurately sample contaminants at low levels and there is often low 

recovery of polar compounds in liquid to liquid extraction techniques.  

Volatilization, adsorption to container walls, and chemical degradation are also of 

concern when using grab sampling techniques.  Due to the short sample 

collection period along with transport and storage implications, discrete sampling 

only provides information on the instantaneous concentration, in contrast to data 

regarding time weighted average (TWA) concentrations provided by integrative 

passive samplers (Greenwood et al. 2009).   

Automated sampling methods give a better indication of average water 

constituents than grab sampling.  Automated samplers are designed to take 

samples at specified intervals, which can provide a clearer indication of variation 

in pollutant concentration over time.  However, this process is also subject to 

high levels of contamination via sampling tubes, valves, and pumps (Greenwood 

et al. 2009).  Contamination by trace level compounds plays an important part in 

the integrity of the sample.  Modeling and assessments drawn from sampling 

studies may be potentially skewed due to excess contamination.   
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  Aquatic organisms have also been used to determine the biological 

relevance associated with the presence of organic microcontaminants.  Often, 

fish have been deployed downstream from wastewater treatment plant (WWTP) 

effluent to assess changes in pollutant concentration via bioaccumulation.  

Variation in body tissue concentration over a given time period is comparable to 

fluctuation in aqueous pollutant concentration.  This approach of measuring 

pollutant concentrations in water also has limitations.   The aquatic organisms 

cannot be exposed to environments where concentrations may exceed toxic 

levels.  Information on background levels of contaminant present in the organism 

prior to deployment presents a problem as well as cost associated with tissue 

sample recovery (Greenwood et al. 2009). Biological indicators also do not 

typically specifically identify the compound present, but rather, identify the 

biological effect resulting from exposure to a compound or other environmental 

stressors.  Passive samplers have been recommended as an approach to 

circumvent potential problems associated with grab sampling, automated 

sampling, and use of biological indicators. 

   

Passive sampling technologies 

Passive diffusion is a transport mechanism in which molecules move from 

an area of high concentration to an area of lower concentration until equilibrium 

conditions are reached.  Unlike active transport, passive diffusion does not 
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require any additional energy or forcing against concentration gradients, which 

provides unbiased results regarding contaminant transport.  Diffusion-based 

passive samplers rely on this method to monitor chemical uptake.  These 

samplers consist of a porous hydrophilic membrane that allow for accumulation 

of certain organic contaminants, while rejecting others.  Fick’s first law of 

diffusion describes the flow of contaminant during passive sampling.  

NA = (DS/L)C   (1) 

where NA is the mass flow rate, C is the analyte concentration, S and L are 

surface area and diffusive length, respectively and D is the analyte diffusive 

coefficient in air (Ballesta et al. 1993).  

Passive samplers have been used in environmental monitoring for over 30 

years. Original passive sampling technologies were developed for air monitoring 

applications.  Ballesta et al. (1993) developed a diffusion-based passive sampler 

to detect toluene present in air.  The sampler contained a Teflon base and cover, 

porous membrane, stainless steel rings and locks for adsorbent media 

compaction.  The adsorbent used for toluene collection was pre-activated 

coconut charcoal.  In addition to quality toluene sampling rates near 50 cm3/min, 

the sampler is reusable and adsorbent exchangeable (Ballesta et al. 1993).  

The Radiello passive sampler was established by Maugeri of Italy, in order 

to sample inorganic and organic pollutants.  These include but are not limited to 

benzene-toluene-xylenes (BTX), VOC, nitrogen dioxide (NO2), sulfur dioxide 
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(SO2), ozone (O3), and other airborne pollutants (Namiesnik et al. 2005).  The 

sampler is named after its radial geometric shape.  It has a cylindrical, diffusive 

membrane with micropores and an adsorbing cartridge for compound 

accumulation (Namiesnik et al. 2005).    

 More recently, passive samplers have been developed to monitor 

pollutant concentrations in water and soil (Greenwood et al. 2009).  The need for 

using passive samplers for contaminant identification has been discussed in the 

literature, primarily due to low levels of contamination present in environmental 

media and the high analyte recovery in passive samplers at low concentrations 

(Alvarez et al. 2004).  

For example, the Ceramic Toximeter was designed to combine an 

integrative passive sampling technique compatible with bioassay analysis for 

groundwater applications (Bopp et al. 2007).  Biosilon, a high surface area 

polystyrene microsphere typically used as a growth support for bacteria, was 

used as the sorbent media to sequester polycyclic aromatic hydrocarbons.  The 

results from the experiment confirmed the ability for passive samplers to remain 

in the linear uptake phase for an extended period of time.  The Ceramic 

Toximeter displayed linear uptake through the 42-day deployment without 

fouling, (i.e. membrane deterioration or hydrodynamic flow).  Discrete samples 

were also taken in duplicates bi-weekly for comparison to validate results from 

the Ceramic Toximeter.  The only limitation was the sampler’s inability to uptake 
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smaller aromatic compounds compared to larger compounds over the same 

period of time (Bopp et al. 2007).   

The passive in-situ concentration-extraction sampler (PISCES) was 

introduced in 1993 (Namiesnik et al. 2005).  The sampler is comprised of a 

metallic t-shaped pipe with hexane as the solvent.  Once sealed, the PISCES is 

suspended in a water column with the membranes facing downward for 

contaminant accumulation.  PISCES was successful for identifying organic 

microconstituents, such as poly-chlorinated biphenyls (PCBs), and has since 

been considered for field studies evaluating the occurrence of other 

contaminants (Namiesnik et al. 2005).      

Semi-permeable membrane devices or SPMDs, were among the first 

passive sampler devices being designed.  From 1990 until the present, over 200 

studies have been completed using SPMDs for environmental monitoring (Vrana 

et al. 2005).  SPMDs are comprised of a flat laying, low-density polyethylene 

(LDPE) tubing filled with a high-molecular weight lipid (Namiesnik et al.2005; 

Vrana et al. 2005).  Synthetic triolein (Glycerine trioleate) is often the filling of 

choice.  LDPE is a non-porous material, so it is selective and only allows fully 

dissolved and unbound molecules to diffuse through the membrane (Vrana et al. 

2005).  Along with the ease of use, their ability to quantify pollutant-aqueous 

phase concentrations,  their flexible field deployment periods and their ability to 



16 

 

 

 

determine TWA concentrations, SPMDs are one the most effective passive 

sampling technologies available (Namiesnik et al. 2005; Zhang et al. 2008).  

 Solid-phase microextraction (SPME) is a passive sampling method, which 

does not require the use of any solvent.  This method is accomplished in two 

distinct ways: Direct, where the extraction fiber of SPME is immersed in media 

and Indirect, where the extraction fiber of SPME is placed in the headspace layer 

at equilibrium with media.  The SPME fiber extracts analytes without collecting a 

sample.  This is accomplished by compound sorption onto the thin film of a 

stationary phase coated on SPME fibers (Namiesnik et al. 2005).  One drawback 

to this technique is that SPME cannot be used for long-term monitoring.  SPME 

data obtained over longer periods of time was only comparable to grab sample 

quality, which excludes changes over time (Namiesnik et al. 2005).     

 

Polar Organic Integrative Samplers (POCIS) 

Polar Organic Chemical Integrative Samplers (POCIS) were designed by 

scientists at United States Geological Survey (USGS) to sequester hydrophilic 

compounds from water.  The POCIS is comprised of a solid sequestration media 

inside a polyethersulfone (PES) membrane, which is held together by stainless 

steel compression rings (Figure 1).   
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The stainless steel screws securing the rings are passively resistant to oxidation 

allowing optimal performance in water.  Two designs of POCIS media exist for 

distinct target analytes.  A copolymer, Oasis HLB (polydivinylbenzene-co-N-

vinylpyrrolidone) is the sorbent media aimed at pharmaceuticals, while Triphasic 

admixture is designed for pesticides (Alvarez et al. 2004).  The sampler has three 

components: the water boundary layer, the diffusive membrane, and the 

receiving phase (Greenwood et al. 2009).  The water boundary layer comprises 

the zone of aqueous solution immediately adjacent to the bulk water 

environment.  The diffusive membrane allows specific contaminants from the 

water boundary layer to reach the receiving phase.  The diffusive membrane is 

derived of PES, with micropores that allow polar compounds to enter, while 

rejecting particulates, colloids, and other microbes.  The receiving phase, 

Figure 1.  POCIS and Deployment Canister 
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comprised of sorbent media, acts an infinite sink for the contaminants by 

maintaining a concentration close to zero.  This results in optimal mass transfer 

by diffusion.  The only limitation for mass transfer is the actual surface area 

available for contaminant transfer (Greenwood et al. 2009). 

The process of compound accumulation on the sorbent media is a first 

order reaction (Alvarez et al. 2004).  First-order kinetic models include an 

integrative phase, curvilinear phase, and equilibrium partitioning phase.  During 

the integrative phase, the sampler acts as an infinite sink for contaminants with 

log-linear uptake, as shown in Figure 2. (Alvarez et al. 2004).  

 

 

 

 

 

 

 

 

 

 

Figure 2.  Time series concentration change illustrating 

First Order (log linear) uptake rate  
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In order to use the POCIS quantitatively, an uptake rate (Rs) must be 

determined experimentally for the compounds of interest (Alvarez et al. 2004).  

The uptake rate can be determined as: 

RS = (Dw/Lw)A       (2) 

 

where the uptake rate Rs is in units of (L/d), Dw is the compound-specific 

aqueous diffusive coefficient  (m2/s), Lw is the aqueous film layer thickness (m), 

and A is the available surface area (m2).  Once an uptake rate has been 

calculated, the time-weighted average water concentration of the contaminant of 

interest can be calculated as: 

Cw = CsMs/ Rst  (3) 

 

where Cw (ng/L) and Cs (ng/g) are the analyte concentration in water and 

sorbent, respectively; Ms (g) is the mass of the sorbent, Rs (L/d) is the uptake rate 

determined from equation above; and t (d) is the exposure time. 

POCIS have the advantage of being able to retain contaminants from the 

initial integrative phase, while still being able to acquire additional contaminants.   

They have the ability to handle large volumes of water over time with the addition 

of evaluating variations in contaminant concentration and flow rates (Alvarez et 

al. 2004).  Though the POCIS has been used in numerous studies investigating 

the occurrence of organic wastewater contaminants (Alvarez et al. 2004; Jones-
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Lepp et al. 2004; MacLeod et al. 2007; Togola and Budzinski 2007), its use for 

estimating concentrations have been limited.  Uptake rates have to be calculated 

for compounds of interest before POCIS can be used quantitatively (Soderstrom 

et al. 2009).  Published sampling rates are available for only a relatively small 

number of pharmaceuticals (Bartelt-Hunt et al. 2009).  In addition, calculated 

uptake rates have been demonstrated to be sensitive to a number of 

environmental factors including salinity, temperature, and pH (Togola and 

Budzinski 2007; Soderstrom et al. 2009).  Variability of uptake rates within a 

factor of 2 to 3 is consistent with variability in contaminant concentrations 

observed in the field based on continuous monitoring over an extended period 

(Togola and Budzinski 2007).  POCIS samplers have been used previously for 

both qualitative and semi-quantitative evaluation of pharmaceuticals, pesticides 

and hormones in surface waters (Alvarez et al. 2004, Jones-Lepp et al. 2004; 

Alvarez et al. 2007; MacLeod et al. 2007; Arditsoglou and Voutsa 2008; Harman 

et al. 2008; Zhang et al. 2008; Sellin et al. 2009). 

 

Occurrence of Pharmaceuticals in WWTP effluents 

More than 70% percent of antibiotics are excreted in their active state 

(Kummerer 2009).  Some antibiotic and pharmaceutical compounds are reduced 

or eliminated in biological wastewater treatment plant processes, while others are 

converted to their biologically active form.  If not eliminated during sewage 
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treatment or purification processes, these pharmaceuticals persist and can be 

discharged in surface water.  These de-conjugated or metabolized byproducts 

have toxicity equal to or exceeding the original compound (Nikolaou et al. 2007).  

Clofibric acid (C10H11ClO3) in the range of 0.80 to 2.0 μg/L was the first 

reported pharmaceutical evidence in wastewater effluent by Garrison in the late 

1970s (Jones-Lepp et al. 2004).  Since that time, numerous studies have 

investigated the occurrence of pharmaceuticals in WWTP effluents.  The 

occurrence of emerging contaminants was investigated by Kolpin et al. (2002) 

study that examined surface waters downstream from areas of urbanization and 

livestock production.  Over a one-year period, samples were collected from over 

100 streams in 30 separate states.  Approximately half of the streams contained 

at least 7 contaminants, one-third had 10 or more different compounds, and a 

maximum of 38 contaminants were identified in one stream (Kolpin et al. 2002).  

Steroids, nonprescription drugs, and detergent metabolites were the most 

frequently detected compounds within the streams analyzed.  Steroids, 

nonprescription drugs, and antibiotics occurred at maximum concentrations of 

18.3, 17.4 and 3.6 μg/L, respectively.   

Nikolaou et al. (2007) conducted a study that compiled effluent 

pharmaceutical occurrence from previously published sources.  Antibiotics, anti-

inflammatory drugs, lipid regulators, steroids, and hormones were identified as 

common pharmaceuticals discharged from hospital and municipal environments.  
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German WWTP effluents and river waters were found to contain 32 different 

pharmaceutical compounds in a moderate ng/L range.  The Hoje River, a 

Swedish river, was found to contain ibuprofen, ketoprofen, naproxen, diclofenac, 

atenolol, metoprolol, propanolol, trimetoprim, sulfamethoxazole, carbamazepine, 

and gemfibrozil in the range of 0.12 to 2.2 μg/L.  Carbamazepine has been 

detected at over 40 American rivers at an average concentration of 60 ng/L.  

Sewage treatment effluent studies in the United Kingdom (UK) identified 

ibuprofen in 86% of all streams surveyed at an average concentration of 3086 

ng/L.  Norwegian WWTP effluents displayed mean concentrations of caffeine, 

triclosan, and ibuprofen of 151, 1.3 and 10 μg/L, respectively.  A study of 

antibiotics in New Mexico hospital effluents revealed sulfamethoxazole, 

trimethoprim, ciprofloxacin, ofloxacin, lincomycin, and penicillin G.  Ibuprofen and 

sulfamethoxazole showed persistence in surface waters assessed in mean 

concentrations of 4.2 and 0.6 μg/L, respectively (Carballa et al. 2004).     

Spongberg and Witter (2008) performed a study on 3 WWTPs located in 

northwestern Ohio.  Influent and effluent concentrations from urban, surburban, 

and rural locations were measured to analyze degradation and persistence.  

Influent concentrations were identified for caffeine, carbamazepine, cotinine, 

sulfadimethoxine, sulfamethazine, and sulfamethoxazole of 2.5, 0.04, 0.20, 

0.003, 0.03 and 0.26, respectively.  The effluent concentrations varied by specific 

compound.  Caffeine was readily degraded over the time period and had minimal 
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residue in the effluent.  Carbamazepine and sulfamethoxazole, however, both 

had effluent concentrations that exceeded influent by a factor of 2.  The 

remaining 3 compounds failed to be detected due to limits of quantification.        

Wu et al. (2009) performed a study around the agricultural area of Lake 

Erie basin.  A total of 18 pharmaceuticals were investigated for occurrence and 

fate in aqueous and soil locations.  Surface waters in the Lake Erie basin do not 

receive wastewater effluent, but are susceptible to agricultural and septic tank 

runoff.  Yearly application of biosolids to sampling area also plays a part in 

microcontaminant transport.  The sampling area was separated into 3 

watersheds, where caffeine was by far the most frequently detected compound 

and found in the largest quantity of 4275 ng L-1.  Erythromycin, lincomycin, 

sulfamethazine, and sulfamethoxazole were the pharmaceuticals with veterinary 

applications, and had lower detection frequencies ranging from 6 to 24 percent.   

These compounds had maximum detected concentrations in ng L-1 of 438, 5, 10, 

and 112, respectively.  Of all sediment samples collected, no pharmaceutical 

compound was present above method detection limits (MDL).  Wu et al. (2009) 

described the pharmaceuticals as polar and hydrophilic, favoring to aqueous 

phase over partitioning into sediment.       

Xu et al. (2009) published a study on agricultural soils, where wastewater 

effluent is used for irrigation purposes.  The following pharmaceutical and 

personal care products (PPCPs): clofibric acid, ibuprofen, naproxen, triclosan, 
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diclofenac, and bisphenol A were observed for degradation and adsorption 

properties.  These particular compounds were selected due to prevalence in 

agricultural runoff studies.  Degradation and adsorption were assessed as 

function of 4 agricultural soil types.  Handford loamy sand (HLS), Arlington sandy 

loam (ASL), Imperial silty clay (ISC), and Palouse silt loam (PSL) were the soils 

tested in experimental portion of study.   1st order exponential decay model and 

Freundlich isotherm were used to determine degradation rate constant and 

adsorption coefficient.  All PPCPs in the four soils exhibited persistence.  The 

half lives of the compounds ranged from 0.8 to 20.4 d for bisphenol A and 

diclofenac, respectively. 

Due to widespread use of antibiotics for disease control and disinfection, 

waters have suffered an unusual loading of contaminants.   Tong et al. (2009) 

discussed available methods in which to rapidly detect these contaminants that 

may harm the environment.  The 13 antibiotics studied are often used in 

veterinary medicines that belong to sulfonamide, fluoroquinolone, tetracycline, 

and chloramphenicol categories.  Grab samples were collected at two pig farm 

waste streams (P1 & P2) during the summer and winter in Hubei, China.  Eight 

distinct samples were collected from the sites, which include groundwater 

summer, groundwater winter, lake water summer, lake water winter, P1 summer, 

P1 winter, P2 summer, and P2 winter.  Fluoroquinolone and tetracycline 

concentrations were considerably higher in the winter months, which may be 
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attributed to decreased microbial activity.  Ciprofloxacin had the highest winter 

lake water concentration spike of 12 ng L-1.  Tetracycline displayed the largest 

summer lake water concentration of 12 ng L-1.  Groundwater samples were not 

as large lake water and were in the range of 1.6 to 8.5 ng L-1.  Large quantities of 

antibiotics were present in P1 and P2 wastewater effluents.  Sulfamerazine had 

the largest P1 summer, P2 summer, and P2 winter concentrations, all exceeding 

10,000 ng L-1.  Ciprofloxacin had the highest treatment system elimination rate of 

approximately 96%, while doxycycline had the lowest of 65%.  Sulfathiazole and 

chlortetracycline were barely detected in the wastewater effluents, which may be 

attributed to adequate treatment removal, biodegradation, sorption, or photolysis 

processes.   

Kuchta et al. (2009) conducted a study, which identified lincomycin in 

snowmelt runoff water after land application of liquid swine manure.  Land 

application of biosolids is a method that provides nutrients to soil, and reduces 

the necessity of land filling or incineration.  A couple of closed basins, ephemeral 

wetlands, and dugouts were sampled in Saskatchewan, Canada during the 

study.   The amount of liquid manure applied to closed basin section of field 1 

and field 2 were 88,000 and 110,000 L ha-1, respectively.  Lincomycin was 

present in all runoff samples acquired from each site location.  There was a 

mean concentration of 0.27 μg L-1 and 0.39 ug L-1 for field 1 and field 2, 

respectively.  Manure was not applied to wetlands, so as expected the mean 
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concentration was a bit lower approximately 0.16 μg L-1.  Lincomycin had a mean 

concentration in the dugout portion of field 1 of 0.12 ug L-1 and field 2 was 0.21 

μg L-1.  Water present in the dugouts may have contributed to antibiotic dilution 

and decrease in concentration.           

Andreu et al. (2009) produced a study that acknowledged a superior 

method for extracting compounds from soil, which was a combination of 

ethylenediamine tetraacetic acid-treated sand, water at a temperature of 70oC, 

followed by SPE cleanup.  CTC, DC, OTC, and TC were the –tetracycline 

compounds evaluated and had recovery rates from soil ranging from 71 to 96%.  

Recovery rates were calculated at 1.2 and 12.5 μg L-1.  Though the magnitude of 

the concentrations varied, the overall trend of each distinct compound was 

comparable.                 

 

Fate of Pharmaceuticals in receiving waters 

There have been a limited number of studies investigating the fate of 

pharmaceuticals in receiving waters.  Pharmaceuticals can be removed from 

environmental systems by a number of processes.  These processes include but 

are not limited to photolysis, sorption, biodegradation, and hydrolysis.  These 

elimination pathways remove some fraction of pharmaceuticals in natural 

systems, but certain pharmaceuticals can likely persist in aquatic systems with 

potentially adverse effects.  One study determined an influent concentration for 
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caffeine of 63.2 μg/L (Miao et al. 2005).  Another study operated under similar 

conditions found a caffeine effluent concentration of 4.5 μg/L that verified 

degradation during treatment (Batt et al. 2006).  Batt et al. (2006) evaluated the 

persistence of additional antibiotics in receiving waters at distances of 10 m, 20 

m, and 100 m from the effluent source, and found that many of these compounds 

persisted for at least 100 m from the source.  Pharmaceutical concentrations 

observed in surface waters were lower than those measured at the WWTP 

outfall, indicating that dilution and/or degradation processes must be occurring 

(Batt et al. 2006).  

Photolysis.  Photolysis is a degradation process, which effects light-

sensitive compounds and serves as a removal method of pharmaceuticals in 

shallow surface waters downstream from WWTP effluent (Kummerer 2009).  

Some antibiotics are sensitive to light, but not all are photodegradable.  

Tetracyclines, sulfa-drugs, and tylosin have all show high photodegradation in 

previous surface waster studies. Photolysis is directly related to light intensity 

and frequency, so it is not a dominant mode of degradation in heavily turbid 

waters (Kummerer 2009).   

Few studies exist, which address pharmaceutically active compounds and 

their interaction with UV light.  A study conducted by Pereira et al. (2007) 

determined photodecomposition of different pharmaceuticals.  Carbamazepine, 
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an anti-convulsant, was found to be minimally affected by light sources.  After 

exposure to light, less 5% of the compounds underwent degradation.  

Carbamazepine and other compounds with similar structures tend to absorb light 

within the lower wavelength range of 200-240 nm, so as expected degradative 

properties without additives, i.e. hydrogen peroxide, barely exist (Periera et al. 

2007).   

Biodegradation. Biodegradation is a biological process of breaking down 

organic contaminants.  It is a natural occurring pathway in which contaminants 

can be eliminated from water.  Biodegradation affects compounds of various 

structures in different ways.  When compounds have low adsorptive properties, 

biodegradation is the primary means of removal (Carballa et al. 2004).  Many 

treatment facilities utilize hydraulic retention times (HRT), which are lower than 

the half-lives of common pharmaceuticals, so adequate degradation does not 

occur (Kinney et al. 2006).   

Loffler et al. (2005) conducted a study on biodegradation, in which an 

experimental set-up with 100 ng/g of spiked pharmaceuticals, which was 

analyzed for a 100-day period.  Samples were taken a 0, 0.25, 1, 2, 7, 14, 28, 56 

and 100 days.  Quality control measures were implemented to maintain a fairly 

constant pH and dissolved oxygen concentration over the specified time period.  

After the 100-day period, 83 percent of the carbamazepine present in the initial 
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spike was recovered.  Carbamazepine displayed resistant behavior to various 

biodegradation processes during soil interactions (Loffler et al. 2005; Kinney et 

al. 2006).  

Sorption.  Sorption is a combination of adsorption and absorption 

processes, and varies given the physio-chemical properties of each compound.  

With particle binding, pH, and partitioning coefficients, assessing the sorption 

behavior of antibiotics is difficult (Kummerer, 2009).  Clofibric acid exhibited high 

persistence and was negligible to sorption under normal conditions in the Loffler 

study that followed the environmental persistence of microcontaminants.  

Tetracylines form complexes and bond with alkaline earth metals, like calcium 

and magnesium (Kummerer, 2009).  Sorption to solid materials (i.e. clay, soil, 

coagulants) is a key factor in the microcontaminant removal.  This process does 

not play a large role in the removal of contaminants with low adsorption 

coefficients.  The study by Carballa et al. (2004) highlighted pharmaceuticals 

resistant to degradation.  Ibuprofen and naproxen have low solid-liquid 

partitioning coefficients, in addition to their acidic structures.  Of the initial 

concentrations observed carbamazepine, ibuprofen, and sulfamethoxazole had 

recoveries of 67, 90, and 75 percent of initial, respectively.  These 

microcontaminants remained in the aqueous phase and were resistant to settling, 

flocculation, and other removal processes (Carballa et al. 2004).  Tolls (2001) 

performed a review on the sorption of veterinary pharmaceuticals in soil.  Various 
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compounds were analyzed and their interaction with soil was quantified.  

Sulfadiazine, fluoroquinolones, and other sulphonamides had prevalent 

elimination by sorption processes to soil.         

Hydrolysis.  Hydrolysis is the decomposition of organic compounds when 

reacted with water.  The compound is separated into two or more distinct parts 

with addition of a hydrogen ion.  As hydrolysis occurs, compounds are broken 

down into smaller compounds, which often produce degradation byproducts with 

unknown toxicity (Nikolaou et al. 2007).  Hydrolysis is a primary elimination 

method for pesticides.  The composition of the pesticide compounds allow for the 

reaction with water enabling removal (EPA 1990).     

Sulphanomides and quinolones are two classes of compounds, which are 

resistant to hydrolysis (Kummerer, 2009).  The stable structure is these organic 

microcontaminants allow are resistant to the breakdown initiated by the 

protonated ion.  Other wastewater contaminants, like some tetracylines, have 

instability and are hydrolyzed when submerged in aqueous environments.     

The four removal processes: biodegradation, photolysis, sorption, and 

hydrolysis all have limitations.  Though not originally designed for current 

municipal and hospital pharmaceutical loads, adequate WWTP removal is 

necessary due to the drawbacks of each process.  Biodegradation is not a factor 

when a compound has high adsorptive properties, photolysis is a minimal factor 
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in turbid waters, sorption is not a factor when compounds fail to form complexes 

with sediment, and hydrolysis is not a factor when hydrophobic behavior persists.    
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Chapter 3  

Materials and Methods 

POCIS samplers. 

POCIS, holders and deployment canisters were obtained from 

Environmental Sampling Technologies (EST Inc, St. Joseph, MO).  For the field 

deployment, each stainless steel canister was fitted with three pharmaceutical 

POCIS filled with Oasis HLB sorbent (Waters Corporation, Milford, MA).  Each 

POCIS had a surface area of 41 cm2 and contained 200 mg of sorbent medium. 

Laboratory Uptake Study 

Uptake rates were measured in the laboratory by submerging a single POCIS 

sampler in a 2L beaker of ultrapure water spiked with the pharmaceuticals of 

interest (Table 1) at an initial concentration of 500 ng/L under flowing conditions.  

The experiment was performed with four replicates.  The water temperature was 

measured to be approximately 250 C throughout the duration of the experiment.  

A negative control experiment was performed in duplicate, which consisted of a 

beaker containing water and POCIS, but excluded any spiked compounds to 

assess the potential for contamination during the experiment.  A positive control 

experiment was performed, consisting of a 2L beaker containing ultrapure water 

spiked with the same concentration of contaminants, but contained no POCIS.  
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The purpose of the positive control was to monitor natural degradation of the 

pharmaceuticals unrelated to POCIS uptake.  The beakers were covered with foil 

and 100 mL water samples were removed from each beaker at 0, 3, 7, 14, and 

30 days.  At the end of the 30-day exposure period, the POCIS was removed.  All 

aqueous samples and the POCIS were stored at -200C until analysis.  The water 

flow rate in the beakers was determined to be approximately 4.5 m/s based on 

travel time around the circumference of the container.      
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Table 1.  Pharmaceuticals evaluated and LC-MS parameters. 

Compound Use CAS No. 

Mol. 

Weight 

(g/mol) 

Retention 

Time (min) 
MRM 

Collision 

Energy (eV) 

Cone 

Voltage (V) 
IDL (ng) 

Non-prescription Drugs         

Acetaminophen 

Analgesic/ 

Anti-pyretic pain 

reliever 

103-90-2 151.16 10.73 152>110 14 30 1.58 

Caffeine Stimulant 58-08-2 194.19 11.94 195>138 18 32 0.33 

1,7-dimethylxanthine 
Caffeine 

metabolite 
611-59-6 180.16 11.25 181>124 20 32 0.61 

Cotinine 
Nicotine 

metabolite 
486-56-6 176.22 10.30 177>78 20 35 0.28 

d-amphetamine Stimulant 51-64-9 135.21 10.90 136>91 16 18 0.70 

DEET Insect repellent 134-62-3 191.27 16.70 192>119 15 25 0.66 

Diphenhydramine Anti-histamine 58-73-1 255.35 12.89 256>167 14 25 0.35 

Ibuprofen Anti-inflammatory 15687-27-1 206.28 18.51 207>161    

Methamphetamine Stimulant 537-46-2 149.23 10.99 150>91 20 20 0.43 

Ractopamine Beta agonist 90274-24-1 301.38 11.09 302>164 18 16 0.18 

Prescription Drugs         

Carbamazepine Anti-convulsive 298-46-4 236.27 15.66 237>194 22 32 0.71 

Veterinary and Human 
        

 

3
4 
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Antibiotics 

Azithromycin Antibiotic 83905-01-5 748.98 12.63 750>592 25 40 2.79 

Erythromycin Antibiotic 114-07-8 733.93 14.8 734>576 32 22 0.57 

Lincomycin Antibiotic 154-21-2 406.54 10.73 407>359 38 20 0.28 

Monensin Antibiotic 17090-79-2 406.54 20.54 688>635 22 17 0.025 

Sulfachloropyridazine Antibiotic 280-32-0 284.72 12.20 285>156 15 24 0.60 

Sulfamethazine 
 

Antibiotic 
57-68-1 278.33 12.03 279>156 30 18 0.19 

Sulfamethazole 
 

Antibiotic 
144-82-1 270.33 11.33 271>156 24 13 0.29 

Sulfadimethoxine Antibiotic 
 

122-11-2 
310.33 13.24 311>156 20 28 0.76 

Sulfamethiazole Antibiotic 
 

144-82-1 
270.33 11.68 271>156 13 24 0.17 

Sulfamethoxazole Antibiotic 723-46-6 
 

253.28 
12.20 254>156 15 23 0.34 

Sulfamerazine Antibiotic 127-79-7 264.30 11.51 265>156 16 28 0.24 

Sulfathiazole Antibiotic 72-14-0 255.32 10.99 256>156 14 25 0.46 

Thiabendazole Anthelmintic 148-79-8 
 

201.25 

12.38 202>175 24 35 
0.17 

 

3
5
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Tiamulin Antibiotic 55297-95-5 493.74 14.56 494>192 32 24 0.44 

Tylosin Antibiotic 1401-69-0 916.10 14.44 916>772 55 32 0.041 

Virginiamycin Antibiotic 21411-53-0 525.59 16.35 526>355 16 25 0.78 

Internal Standards         

phenyl-
13

C6 –

sulfamethazine 
 57-68-1 284.1 11.95 285>124 25 30  

d9-methamphetamine  537-46-2 158.1 10.99 159>93 18 20  

13
C3-caffeine  58-08-2 197.1 11.87 198>140 18 32  

 

3
6 



37 

 

 

 

Sampling Rate Calculations 

 Values of Rs were determined by fitting experimental uptake data to equation 3. 

Data were fit for each set of sequential sampling events, and an average Rs was 

calculated for the overall experiment.  Some of the compounds had significant 

decreases in aqueous concentration over time in the positive control experiments.  

Evaporation of all solutions produced increases in concentrations for some compounds. 

Dissipation data from the positive control experiments was used to correct aqueous 

concentration data observed in the experimental reactors by subtracting mass losses 

due to dissipation and not POCIS uptake.  Varying degrees of uptake were observed for 

carbamazepine, DEET, diphenylhydramine, erythromycin, ibuprofen, ractopamine, 

sulfadimethoxine, sulfamerazine, thiabendazole, tylosin, azithromycin, and 

sulfacholorpyridazine.  Lincomycin and tiamulin experienced rapid uptake, so 

experimental uptake rates could only be determined from data present between 0 and 3 

days.  The Rs values for these two compounds are significantly higher than others and 

include no standard error because data was only obtained from one time period.   

 Field Deployment 

Two field sites were chosen to investigate pharmaceutical fate in receiving water: 

Salt Creek, downstream from the Theresa St. WWTP in Lincoln, Nebraska and the west 

fork of the Big Blue River, which receives discharge from the WWTP at Hastings, 

Nebraska.  Additional information about the two field sites may be found in Table 2.  At 

each location, POCIS were placed in the effluent prior to discharge, in stream within the 
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effluent mixing zone, at a location approximately 500 m downstream from the effluent 

discharge, and at a location approximately 1500 m downstream from the effluent 

discharge.  POCIS were deployed in triplicate in a steel canister and secured in place 

using a metal stake to avoid displacement of the samplers.  POCIS were deployed on 

May 5, 2009 and retrieved on May 28, 2009, for a 23-day exposure period.  At the end 

of the exposure period, POCIS were retrieved, rinsed gently with DI water, and stored at 

-20˚C until analysis.  Data on the ng of each compound recovered from the POCIS 

samplers were converted to aqueous concentrations using the laboratory uptake rates 

determined in this study.   

          Table 2.  Wastewater Treatment Facilities sampled in Nebraska. 

Facility 

Location 

Receiving 

Water 

Body 

Community 

Population 

(2008) 

Secondary 

Treatment 

Technique 

Average 

Daily Flow 

(MGD) 

Hastings, NE 

West Fork 

of the Big 

Blue River 

25,394 
Trickling 

Filter 
4.0 

Lincoln, NE Salt Creek 251,624 

Activated 

Sludge and 

Trickling 

Filter 

18 

 

Determination of pharmaceutical decay rates 

 To determine decay rates for pharmaceuticals in receiving waters, the 

experimental data was fit to the following equation: 

Ct/Co= exp (-kt)    (4) 
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where Ct (ng/L) is the concentration at a specific time t, Co (ng/L) is the initial 

concentration at time zero, k (d-1) is the decay rate coefficient, and t (d) is duration of 

time.  

The sampling locations (m) were converted to a time dividing by the velocity in each 

channel.  Channel velocities were determined by dividing the volumetric flow rate by the 

cross-sectional area of the channel.  At Hastings, flow in the channel is entirely effluent, 

so volumetric flow rates were determined from plant discharge data.  At Lincoln, flow in 

Salt Creek was determined from the Salt Creek at Lincoln, NE gauging station located 

at 40 50 48N, 96 40 54W.  The depth and width of the channel at Hastings were 

measured at the time of deployment.  The depth in Salt Creek was measured at the 

time of deployment, and the width at the sampling point was estimated based on the 

size of channel. 

Decay rate coefficients (k) were determined by minimizing the root mean square error 

(RMSE) of the model using the Solver function in Excel.  The equation for the root mean 

square error is defined in equation 5. 

 

RMSE = [(y1 – y0)
2 / n] 1/2         (5) 

 

Where n is the number of points analyzed, y1 (ng/L) is the value of the measured 

concentration, and y0 (ng/L) is value of the modeled concentration. 
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Analytical Methods 

Solvents and Internal Standards.  Reference materials, metabolites and labeled 

standards, including 13C3-caffeine and d9-methamphetamine, were obtained from 

Sigma-Aldrich (St. Louis, MO). Phenyl-13C8-sulfamethazine was purchased from 

Cambridge Isotopes (Andover, MA).  Solvents used in sample preparation were high 

purity grade (OPTIMA, Fisher Scientific, St. Louis, MO).  

Extraction Methodology.  Handling and elution of POCIS followed procedures described 

previously (Alvarez 2004; Jones-Lepp et al. 2004).  After the exposure period, each 

individual POCIS device was removed from its deployment canister, briefly rinsed with 

water if needed to remove debris and opened.  The contents of the POCIS were 

transferred using approximately 20 mL of high-purity methanol directly into silane-

treated vials. Vials containing the methanol and sorbent were held at -20oC until they 

could be processed for analysis.    

 

Target compounds were eluted by passing 50 mL of high-purity methanol through 

silane-treated glass gravity flow chromatography columns into 120 mL evaporation 

tubes (RapidVAP, Labconco, Kansas City, MO).  Approximately 1 ng of d9-

methamphetamine, 13C3-caffeine, and phenyl-13C8-sulfamethazine internal standards 

were added to the eluate and used for quantification.  Extracts were evaporated under 

nitrogen to approximately 1 mL, and quantitatively transferred to autosampler vials for 

analysis by liquid chromatography tandem mass spectrometry (LC/MS/MS). Standards 

and spiking solutions were prepared from stock solutions (5 μg/μL) in methanol. 
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Calibration solutions (2, 5, 12.5, 25 and 50 pg/μL) were prepared in 50:50 methanol and 

water. All standards and extracts were stored in amber vials at -20˚C. 

 

Liquid Chromatography-Tandem Mass Spectrometry.  POCIS extracts were analyzed 

for twenty-five pharmaceuticals and metabolites, as listed in Table 1.  Standards and 

extracts were analyzed on a Quattro Micro triple quadrupole with a Waters 2695 high 

pressure liquid chromatography (HPLC) and autosampler.  Electrospray ionization in 

positive ion mode was used for detection of target compounds by multiple reaction 

monitoring (MRM) with argon collision gas. A Thermo (Bellefonte, PA) Betabasic-18 

column (250x2.1 mm, 5 um, 50°C) was used for separation at a flow rate of 0.2 ml/min 

with a gradient of methanol with 0.1% formic acid in water.  Mass spectrometer 

operational parameters were optimized by infusing each compound separately (Table 

2). The source conditions were: capillary 2.5 kV, extractor 2 V, RF lens 0.8 V, source 

temp 90°C, desolvation temp 400°C, cone gas flow at 30 L/hr, and desolvation gas flow 

at 700 L/hr. Compound retention times, ionization modes and MRM transitions are listed 

in Table 2.  A five point internal standard calibration curve was used for quantification of 

each analyte.  Methamphetamine-d3 was used as the internal standard for 

methamphetamine and D(extro)-amphetamine, phenyl-13C8-sulfamethazine was used 

for sulfa antibiotics and 13C3-caffeine was used as the internal standard for all other 

target compounds. Based on the variability of the lowest standard (2 pg/μL), the 

estimated detection limits for most compounds are less than 1 pg/μL, corresponding to 

1 ng recovered from the POCIS.  Recovery of target compounds was checked by 
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analysis of fortified blanks spiked with known amounts of each compound and averaged 

123 ± 30%.  Two laboratory reagent blanks were processed with the POCIS samples, 

with all compounds below instrument detection limits listed in Table 1.  Additional 

information on the analytical methods is included in Appendix C and further referenced 

in Bartelt-Hunt et al. (2009). 
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Chapter 4 

 

Results 

 

Results from Laboratory uptake experiments for 25 pharmaceuticals are presented in Figure 3 through 8.  In each 

figure, the average concentration observed in beakers containing POCIS samplers and the average concentration 

observed in the positive controls (beakers with pharmaceuticals but no POCIS).  The error bars represent the 

standard error of the mean.  Calculated uptake rates are presented in Table 3.  

 

 

 

 

 

 

 

 

Figure 3. Laboratory Uptake Data 4
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Figure 5. Laboratory Uptake Data 
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Figure 6. Laboratory Uptake Data 
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Figure 7. Laboratory Uptake Data 
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Figure 8. Laboratory Uptake Data 
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Table 3. Calculated Rs values and comparisons to literature data. 
 

Target Compounds  
Experimental 
Flowing, Rs 

(Lday-1) 

Standard 
Error 

(Unitless) 

Reported 
Flowing, 
Rs (Lday-

1) 

Source 

1,7 dimethylxanthine 0.078 0.022     

Caffeine 0.2 0.097 0.1 (Togola and Budzinski 2007) 

Acetaminophen 0.268 0.185     

Carbamazepine 0.227 0.045 0.31, 0.3 
(MacLeod et al. 2007; 

Togola and Budzinski 2007) 

d-Amphetamine 0.154 0.067     

DEET 0.21 0.0043     

Diphenylhydramine 0.376 0.066     

Erythromycin 0.146 0.039     

Ibuprofen 0.27 0.05     

Lincomycin 0.666 -     

Methamphetamine 0.283 0.158 0.089 (Alvarez et al. 2007) 

Monensin 0.24 0.07     

Ractopamine 0.261 0.063     

Sulfadimethoxine 0.227 0.05     

Sulfamerazine 0.201 0.06     

Sulfamethazole 0.16 0.075     

Sulfamethoxazole 0.146 0.056     

Sulfathiazole 0.237 0.113     

Thiabendazole 0.33 0.091     

Tiamulin 0.664 -     

Tylosin 0.379 0.074     

Azithromycin 0.157 0.041 0.27 (Alvarez et al. 2007) 

Cotinine 0.105 0.029     

Sulfachloropyridazine 0.203 0.058     

Sulfamethazine 0.228 0.054 0.1 (MacLeod et al. 2007) 
1 Values represent experimental data reported for 41 cm2 POCIS under flowing 
conditions. 

(-) indicated no standard error due to rapid uptake over one sampling period 
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The data obtained from the field deployment is presented in Figures 9 through 

18.  In each plot, the average in-stream concentration for each of the two 

sampling locations, Hastings, NE and Lincoln, NE is presented for each 

pharmaceutical compound.   

D-amphetamine, erythromycin, sulfachloropyridazine, sulfathiazole, tiamulin, and 

tylosin were not detected in the field POCIS at either location. 

 

Figure 9. Field Deployment Data 
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Figure 10. Field Deployment Data 
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Figure 11. Field Deployment Data 
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Figure 12. Field Deployment Data 
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Figure 13. Field Deployment Data 

 



55 

 

 

 

 

 

Figure 14. Field Deployment Data 
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Figure 15. Field Deployment Data 
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Figure 16. Field Deployment Data 
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Figure 17. Field Deployment Data 
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Figure 18. Field Deployment Data 
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Table 4. Calculated Decay Coefficients and RMSE values. 

 Hastings  Lincoln  

Target Compounds  
Decay Coefficient, 

k (day-1) 
RMSE 

Decay 
Coefficient, k 

(day-1) 
RMSE 

1,7 dimethylxanthine 0.260 1.757 0 1.169 

Caffeine 0.773 4.607 0 1.249 

Acetaminophen 53687091 0.701 19.8 0.261 

Carbamazepine 0.695 7.731 2.63 1.437 

d-Amphetamine Not Determined - Not Determined - 

DEET 0.791 37.897 6.236 7.317 

Diphenhydramine 0.027 6.043 3.211 1.143 

Erythromycin Not Determined - Not Determined - 

Ibuprofen 1.479 16.01 Not Determined - 

Lincomycin 0.072 0.827 31.2 0.12 

Methamphetamine 0 0.906 1.052 0.099 

Monensin 0.807 0.169 5.408 0.108 

Ractopamine 0.222 0.398 0 0.191 

Sulfadimethoxine 0.208 0.069 4.805 0.214 

Sulfamerazine 2.407 0.034 9.175 0.0298 

Sulfamethazole 0 0 9.175 0.0298 

Sulfamethoxazole 0.051 1.68 5.11 5.46 

Sulfathiazole Not Determined - Not Determined - 

Thiabendazole 0.901 0.36 7.18 0.107 

Tiamulin Not Determined - Not Determined - 

Tylosin Not Determined - Not Determined - 

Azithromycin Not Determined - 0 1.443 

Cotinine 53687091 0 Not Determined - 

Sulfachloropyridazine Not Determined - Not Determined - 

Sulfamethazine 0.867 0.778 11.41 0.045 
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Chapter 5 

Discussion 

Laboratory Uptake Experiments 

The experimental Rs values determined for the pharmaceutical 

compounds evaluated in this study are comparable to published uptake rates 

under similar flowing conditions (Table 3).  For example, previously-published Rs 

values for carbamazepine were 0.31 and 0.3 L/day, respectively (MacLeod et al. 

2007; Togola and Budzinski 2007).  This compares well with the value for 

carbamazepine of 0.227 L/day calculated in this study.  Similarly, the 

experimental Rs value determined for caffeine in this study is 0.2 L/day, which is 

comparable to a value of 0.1 determined by Togola and Budzinski (2007).  

Alvarez et al. (2007) reported an uptake rate for azithromycin of 0.27 L/day, while 

the experimentally-determined uptake rate for azithromycin is 0.157 L/day.  

MacLeod et al. (2007) reported an Rs value of 0.1 L/day for sulfamethazine, while 

the current study calculated an uptake rate 0.228 L/day.  Methamphetamine had 

experimental Rs of 0.283 L/day, while Alvarez et al. (2007) reported an Rs of 

0.089 L/day under comparable flowing conditions.  In addition to these five 

compounds with previously-published uptake rates, experimental uptake rates 

were determined for 20 additional compounds with no previously reported values.  

Lincomycin and tiamulin had the highest rates of uptake during the laboratory 

study.  Similar to other compounds analyzed, between days 0 and 3 there was 

sharp decrease in contaminant concentration.  This was originally assumed to be 

extensive uptake, but was later determined to be dry POCIS saturation in water 
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and evaporation.  The negative control confirmed that contamination was limited 

during the experiment.  The raw data for this control and others is provided in 

Appendix C.  The positive controls also exhibited inconsistencies throughout the 

30-day observation period.  Often pharmaceutical concentration values exceeded 

the initial spike amount at day 0.  This was attributed to evaporation and/or 

contamination during methods of recovery.  A correction factor was utilized to 

correct all pharmaceutical concentrations larger than initial sample concentration 

taken at time 0.              

During this study, all pharmaceuticals were analyzed at relatively low 

concentrations, so some degree of analytical error may be present.  Standard 

error provided further validity to the data reported.  The agreement between the 

experimental uptake rates and those reported in other studies provides good 

evidence that organic compound quantification using POCIS is reproducible, at 

least over the range of environmental conditions employed in our study and 

previously-published studies.   

 

Field Deployment Data 

Pharmaceuticals were detected receiving waters downstream of the 

wastewater treatment plant outfall at both sampling locations.  At Hastings 1,7-

dimethylxanthine, caffeine, carbamazepine, DEET, diphenylhydramine, 

ibuprofen, lincomycin, methamphetamine, monensin, ractopamine, 

sulfadimethoxine, sulfamerazine, sulfamethazine, sulfamethazole, 

sulfamethoxazole, and thiabendazole were detected at every point downstream 
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from the WWTP.  In Lincoln 1,7-dimethylxanthine, caffeine, carbamazepine, deet, 

diphenylhydramine, lincomycin, methamphetamine, monensin, ractopamine, and 

sulfadimethoxine sulfamerazine, sulfamethazine, sulfamethazole, 

sulfamethoxazole, and thiabendazole were all detected in the field study.  All 

pharmaceuticals detected in the Lincoln WWTP effluent were also present in the 

Hastings effluent with the exception of ibuprofen.  It appears that antibiotics, 

specifically the sulfa –based compounds, showed high levels of persistence in 

wastewater effluents.   DEET and carbamazepine had the highest average 

effluent concentrations of 110 and 60 ng/L, respectively.  Both also showed 

persistence at both sites surveyed.   At Lincoln, azithromycin originally showed 

no occurrence in the wastewater effluent, but a spike of 2.2 ng/L appeared 

approximately 1000m downstream effluent discharge point.  This may be due to 

desorption from sediment or additional runoff from surroundings non-point 

sources.  Although tiamulin was observed to undergo rapid uptake in the 

laboratory uptake study, we observed persistence of this compound at both at 

the Hastings and Lincoln locations.  This may be due to enhanced persistence in 

the natural environment due to association with aquatic sediment.   

Some of the compounds appeared in the wastewater effluent, but 

dissipated after discharge to the receiving water.   At Hastings, acetaminophen, 

cotinine, and sulfathiazole were degraded in-stream.  At Lincoln, acetaminophen, 

azithromycin, and sulfathiazole were degraded in stream.  Acetaminophen and 

cotinine are non-prescription drugs that appear to be easily eliminated at trace 

levels.  Sulfathiazole, a prescription antibiotic, showed substantial degradation 
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over deployment period.  This may be attributed to a smaller molecular weight 

than other sulfa compounds studied.  Compound stability may also be of 

concern, as well.     

Decay coefficients were determined from the collected field data as 

described previously, and are presented in Table 4.  Sulfamethazole was not 

degraded at the Lincoln location in the study, therefore the decay coefficient and 

RMSE (Table 4) for this compound was 0.  Due to no effluent occurrence, decay 

coefficients were not determined for sulfachloropyridazine, azithromycin, tylosin, 

tiamulin, sulfathiazole, erythromycin, and d-amphetamine at Hastings.  Decay 

coefficients were not determined for sulfachloropyridazine, sulfathiazole, tylosin, 

tiamulin, ibuprofen, erythromycin, and d-amphetamine at the Lincoln field site.   

Acetaminophen and cotinine had very high decay coefficients, due to high initial 

spikes and immediate dissipation.  The very high dissipation rates made it 

difficult to determine RMSE, due to only one non-zero data point.  The opposite 

was apparent for a few compounds in Lincoln with continuous occurrence.  

Decay coefficients of 0 were calculated for 1,7-dimethylxanthine, caffeine, and 

ractopamine at Lincoln.  This was due to persistence along each POCIS 

sampling site and minimal to no degradation.  First-order decay models using the 

calculated decay coefficients were fit to experimental data as presented in 

Appendix A. 

Various pharmaceutical compounds investigated in this study were 

present in effluents and appeared to be resistant to WWTP removal and 

degradation processes.  Bartelt-Hunt et al. (2009) performed a field study at the 
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same Nebraska sampling locations, with the exception of Columbus, Grand 

Island, and Omaha, where similar compounds were analyzed.  A laboratory 

uptake experiment was not conducted, so Rs values were estimated using 

Equation 2.  Though estimations were used, various data exists in this study that 

is comparable to previous work by published Bartelt-Hunt et al. (2009).  The 

experimental sampling rates for the sulfa-based drugs in this study were 

approximately 0 to 0.5 units from values theoretically derived a few years prior.  

Bartelt-Hunt et al. (2009) reported calculated flowing rates for 

sulfachloropyridazine, sulfamethazine, sulfadimethoxine, sulfamethazole, 

sulfamethoxazole, sulfamerazine, and sulfathiazole of 0.20, 0.18, 0.17, 0.21, 

0.21, 0.20, and 0.22 L/day, respectively.  In this study experimental flowing rates 

of 0.203, 0.228, 0.227, 0.16, 0.146, 0.201, and 0.237 L/day were determined for 

the same compounds, respectively.  Acetaminophen, carbamazepine, DEET, 

and methamphetamine were comparable as well with Rs values of 0.3 and 0.268, 

0.20 and 0.227, 0.19 and 0.21, 0.22 and 0.283, L/day respectively.  Both studies 

failed to detect d-amphetamine and sulfathiazole at any point downstream from 

either effluent discharge.  Though previously detected, virginiamycin was not 

analyzed in our current study.   

In addition to sampling rates, Bartelt-Hunt et al. (2009) reported field 

occurrence data that was comparable to data generated in this study.  

Sulfamethoxazole had reported values downstream from the Lincoln and 

Hastings effluent of 343 and 173 ng/L.  This was approximately one order larger 

than the mean concentration detected in this study of 35 ng/L.  Ibuprofen 
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displayed persistence at one location in this study, in contrast to the prior study.  

A mean concentration of 60 ng/L was identified in the Hastings effluent.  Bartelt-

Hunt et al. (2009) detected DEET concentrations of 181 and 1616 ng/L 

downstream from Lincoln and Hastings, respectively.  This study had DEET 

Lincoln and Hastings concentration values of 55 and 155 ng/L, respectively.  

Though the amount compound detected varied, a strong correlation is apparent 

in the persistence and degradation of specific polar organic microcontaminants.       
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Chapter 6  

Conclusions and Future Directions 

The objectives set forth in this study were accomplished.  Uptake rates 

were quantified for 25 pharmaceutical compounds by conducting a laboratory 

uptake study, using POCIS.  20 additional uptake rates were calculated for 

specified pharmaceuticals no previously documented values.  Acetaminophen, 

carbamazepine, methamphetamine, azithromycin, and sulfamethazine all 

displayed uptake rates that compared to reported literature values.  POCIS was 

also used to evaluate the fate of polar organic contaminants in Nebraska surface 

waters impacted by WWTP effluent.  The field deployment data provided a 

distinction between compounds that persist and those that degrade.  We 

concluded that select pharmaceuticals can persist for at least 1300 m 

downstream.  Batt et al. (2006) conducted a similar study but only at maximum 

distance of 100m downstream from effluent.  The first documented decay rates 

were determined for 25 pharmaceuticals in receiving waters.  Decay rates were 

determined by minimizing RMSE and a combination of all loses which include: 

biodegradation, hydrolysis, photolysis, and sorption.   

The hypothesis that POCIS can evaluate occurrence and behavior of 

pharmaceuticals in WWTP effluent was confirmed by data collected throughout 

this study.  This passive sampling technology performed efficiently at replicating 

continuous exposure conditions, while be resistant to fouling.  The data collected 

here is reproducible and comparable to other studies conducted under similar 

conditions and methods.  Pharmaceutical loading rates, included in Appendix B, 
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were calculated for each compound that displayed persistence using the average 

in-stream concentration and volumetric flow rate.  This gave a quantitative 

description of daily microcontaminant mass discharged downstream       

Future work may be conducted on both the laboratory uptake and field 

deployment studies.  Lincomycin and tiamulin had similar behavior under 

controlled conditions, but differed in the natural environment.  Lincomycin was 

observed to persist in the field setting; however, it underwent rapid uptake in the 

laboratory experiments. Tiamulin displayed rapid uptake in the laboratory, but 

was not detected in the field study.  Strategies to eliminate evaporation during 

uptake study should also be explored.  Evaporation played a large role in the 

fluctuation of contaminant concentration during the laboratory uptake study.  

There were frequent spikes where analyte concentration exceeded the original 

spiked amount at time 0.  Because the experiment was operated under controlled 

conditions, it was concluded that evaporation was the reason for increase in 

concentration.  Though polar compounds have low volatility, measures should be 

implemented to seal beakers.  The sulfa-based compounds, DEET, and 

carbamazepine showed the highest level of persistence, so their behavior and 

potential effects on the environment should be further investigated. 
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Appendix A  

Model Fits for all 25 compounds analyzed at Hastings and Lincoln locations. 
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Appendix B – Table of Loading Rates 

Target Compounds  
Hastings loading rates 

(kg*day-1) 
Lincoln loading rates 

(kg*day-1) 

1,7-dimethylxanthine 1.75E-04 1.44E-04 

Caffeine nd nd 

Acetaminophen 3.75E-04 4.40E-04 

Carbamazepine 4.62E-04 5.81E-03 

d-Amphetamine nd nd 

DEET 2.24E-03 4.31E-03 

Diphenhydramine 6.56E-05 1.17E-03 

Erythromycin nd nd 

Ibuprofen 7.08E-04 nd 

Lincomycin 2.91E-05 8.99E-06 

Methamphetamine 1.46E-05 8.09E-05 

Monensin 1.02E-05 1.80E-05 

Ractopamine 1.17E-05 2.70E-05 

Sulfadimethoxine 5.83E-06 8.99E-05 

Sulfamerazine nd nd 

Sulfamethazole 1.46E-06 nd 

Sulfamethoxazole 4.85E-04 2.29E-03 

Sulfathiazole nd nd 

Thiabendazole 7.29E-06 6.29E-05 

Tiamulin nd nd 

Tylosin nd nd 

Azithromycin nd 2.25E-04 

Cotinine nd nd 

Sulfachloropyridazine nd nd 

Sulfamethazine 6.27E-05 8.99E-06 

 

nd – not detected throughout field deployment period 
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Appendix C – Analytical Methods QA/QC 

Pharmaceutical Analysis of Water Samples  

Extraction and analysis of pharmaceuticals in the aqueous samples was based 

on previous methods (Snow  et al. 2003; Batt et al. 2006) and modified to permit 

the use of automated solid phase extraction (SPE) with detection by liquid 

chromatography-tandem mass spectrometry. A Spark Holland Symbiosys 

Environ (Spark Holland, Emmen, The Netherlands) on-line solid phase extraction 

system was used with detection by electrospray ionization liquid chromatography 

tandem mass spectrometry (LC/MS/MS. Up to twenty-five milliliter subsamples 

water were weighed into 40-mL amber glass vials along with 10µL of reagent 

grade formic acid.  Each sample was spiked at 0.500 ng/mL (ppb) of 

sulfamethazine-phenyl-13C6 (internal standard), 13C3 -caffeine and 

demeclocyline (surrogate).  Samples and standards were automatically extracted 

using Prospekt 2/Symbiosis 2.0 x 10mm Oasis HLB solid phase extraction 

cartridges and immediately eluted for LC/MS/MS analysis using a Quattro Micro 

triple quadrupole mass spectrometer.  A stepwise gradient separation was 

performed using a Waters 2695 high pressure liquid chromatograph (HPLC). A 

Thermo HyPurity C18 5um, 2x250mm column was used with a mobile phase 

comprised of 97:3 water/methanol (A) and 3:97 methanol/water (B) each 

containing 0.1% (v/v) formic acid.  Elution and separation began with 95:5 A to B 

for 2 min, changing to a linear gradient of 50:50 A to B to 25:75 A to B at 8 

minutes, to 100% B for 18 minutes.  Mobile phase composition was returned to 

starting conditions until the end of the run.  
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LC/MS/MS conditions and transitions were determined and optimized in positive 

electrospray (ESI +) by infusing with concentrated standards and similar to those 

shown in Table 1. A capillary voltage of 4.0 kV, an extractor of 3 V and an RF 

lens of 0.1 V was used.  The source temperature was 120°C and the desolvation 

temperature was 500°C.  The nebulizer flow rate was 700 L/hr in the desolvator 

and 30 L/hr in the cone.  Resolutions were set at 14 across the board and ion 

energy 1 was 0.8 and ion energy 2 was 1.5.  Instrument calibration was 

performed using a five-point calibration curve over a concentration range from 10 

to 1000 ng/L. 
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Batch Analysis Date

09-863 PHARM1 94 257 598 833 2330 10 1284 494 896 2018 1668 482 4818 511 293 16 3323 1045 2117 859 1999 651 1289 2222 15 810 2124 1939 W09046 4/3/2009

09-864 PHARM2 237 375 319 724 2301 6 1241 223 688 1116 1522 830 4541 881 216 8 4832 819 1958 418 1715 549 1241 1643 9 459 787 795 W09046 4/3/2009

09-865 PHARM3 165 332 779 669 2252 6 1197 557 957 2095 3602 743 6348 1111 261 8 3282 1071 2125 586 2027 848 1388 1955 11 704 1519 1962 W09046 4/3/2009

09-866 PHARM4 143 345 1031 783 2408 13 1425 812 971 1830 3414 341 7928 1068 268 13 2964 1514 1988 804 2456 1414 1251 1616 26 528 1948 2455 W09046 4/3/2009

09-867 N1 6 1 1 3 10 10 3 1 1 3 12 3 5 2 3 2 2 2 4 1 W09046 4/3/2009

09-1599 H-1-1 98 746 1053 80 4694 290 2857 85 22 31 10 1 200 1 405 96 38 W09140 6/19/2009

09-1600 H-1-2 148 43 1137 1281 5992 299 3629 113 30 33 11 2 236 2 578 114 62 W09140 6/19/2009

09-1601 H-1-3 204 26 898 913 5025 208 2500 91 32 21 9 2 137 2 710 114 31 W09140 6/19/2009

09-1602 H-2-1 197 701 876 4034 674 1725 28 21 30 10 2 121 3 762 65 26 W09140 6/19/2009

09-1603 H-2-2 109 632 484 2103 1199 1158 40 52 15 64 6 1 212 1 368 87 27 W09140 6/19/2009

09-1604 H-2-3 182 800 914 4095 200 1924 94 55 23 29 9 3 129 3 589 82 122 W09140 6/19/2009

09-1605 H-3-1 200 757 738 3579 104 1327 16 20 23 13 8 1 126 2 723 32 24 W09140 6/19/2009

09-1606 H-3-2 18 31 157 845 204 799 6 6 7 3 48 3 66 11 5 W09140 6/19/2009

09-1607 H-3-3 203 755 794 3969 90 1376 34 21 19 12 9 2 122 1 735 41 32 W09140 6/19/2009

09-1608 H-4-1 19 211 230 1071 151 427 6 13 6 14 4 0 41 0 168 7 7 W09140 6/19/2009

09-1609 H-4-2 138 623 1343 6373 164 2869 418 58 25 27 15 1 182 3 778 119 23 W09140 6/19/2009

09-1610 H-4-3 166 972 912 3705 271 1227 37 27 26 30 10 2 117 2 732 50 25 W09140 6/19/2009

09-1611 L-1-1 26 71 3572 3535 994 100 48 13 62 3 21 4 960 151 73 W09140 6/19/2009

09-1612 L-1-2 29 59 2574 2172 1093 84 41 8 48 4 23 3 633 141 68 W09140 6/19/2009

09-1613 L-1-3 15 71 833 504 209 2 20 14 4 14 2 4 1 437 8 25 W09140 6/19/2009

09-1614 L-2-1 20 27 102 2494 2015 900 30 42 64 4 17 2 745 54 59 W09140 6/19/2009

09-1615 L-2-2 18 69 1521 783 615 7 20 11 7 25 2 5 2 669 25 28 W09140 6/19/2009

09-1616 L-2-3 16 44 91 2816 2184 652 38 44 8 41 3 18 3 638 57 35 W09140 6/19/2009

09-1617 L-3-1 14 78 1868 1085 283 5 26 5 4 12 0 4 1 303 50 2 W09140 6/19/2009

09-1618 L-3-2 12 91 1673 902 514 6 35 15 5 16 1 4 357 15 16 W09140 6/19/2009

09-1619 L-3-3 9 50 2643 2068 945 59 55 9 48 3 22 2 536 74 79 W09140 6/19/2009

09-1620 L-4-1 18 27 61 1173 923 294 2 16 4 8 18 2 361 7 11 W09140 6/19/2009

09-1621 L-4-2 26 110 185 2981 2490 921 9 43 10 22 39 442 11 35 W09140 6/19/2009

09-1622 L-4-3 97 907 57 473 10 25 7 24 4 483 9 31 W09140 6/19/2009
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