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ABSTRACT 

Road crashes have been one of the major leading causes of deaths and injuries in the 

United States, and also bring huge financial expenses. The general theme of this dissertation is to 

use advanced statistical models to better understand the characteristics of crash frequency in 

Iowa and Nebraska, and identify important factors influencing crash frequency. It is expected 

that the findings of these studies could be utilized in safety improvement programs to improve 

traffic safety in future.  

This dissertation includes three published essays. The first essay explores the spatio-

temporal effects in traffic crash trend analysis under univariate cases at the macro level, where 

spatial and temporal effects are found to be essential in crash frequency analysis. The second 

essay extends the univariate spatio-temporal models into multivariate crash data, where 

multivariate spatio-temporal models are proved to be necessary in multivariate crash frequency 

analysis. The third essay examines the effects of traffic operational and roadway geometric 

factors on three kinds of crash types on urban midblock segments at the micro level, where 

segment-specific effects of these factors are revealed. 
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CHAPTER 1.    GENERAL INTRODUCTION 

Traffic safety has been a concern of this planet since the invention of vehicles. Motor 

crashes have been one of the major sources of fatalities and injuries in the United Stated (US). 

After multiple years’ decline, the fatalities increased in 2015 in US. 35,092 people died on 

highways in motor vehicle traffic crashes in 2015 in US, a 7.2% increase than in 2014. That is, 

nearly 100 people die from vehicle related accidents every day (White House, 2016). Traffic 

safety studies generally can be divided into two categories in terms of research objects: 1) 

Microscopic level: focus on analyzing individual crashes, usually involving in analyzing crash 

occurrence or not, or crash severity; 2) Macroscopic level: focus on analyzing crash frequency 

data, which are usually obtained by summarizing individual crash data over space and time. The 

microscopic crash data are more informative than macroscopic crash data because they provide 

more information to be utilized for crash analysis (Savolainen et al., 2011). However, due to 

privacy concern, incomplete data record, and other reasons, individual crash data are often 

unavailable. Transportation agencies usually only offer crash frequency data of their jurisdictions 

by month or year publicly. That is, in many cases, only crash frequency data are available in 

traffic safety study. The Fatality Analysis Reporting System (FARS) provides individual fatal 

crash data of US from 1994, but not other crash data. Additionally, crash frequency modeling 

could provide very insightful results on the effects of macroscopic factors, such as policy, law, 

weather, economy, infrastructure construction, or highway improvement programs, on traffic 

safety. Thus, crash frequency analysis plays a critical role in traffic safety study. 

Crash frequency data are non-negative integers, thus they are often analyzed with the 

Poisson model (Lord and Mannering, 2010). In addition, they often have some unique features to 

be considered in analysis.  
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 Over-dispersion/Under-dispersion 

Crash frequency data are often over-dispersed, i.e. the variance being larger than the 

mean, where the Quasi-Poisson, negative binomial/Poisson-gamma model, and Poisson-

lognormal model are often used (Lord and Mannering, 2010). Lord and Mannering (2010) also 

discussed the under-dispersion cases, which were much less common for crash frequency data.  

 Zero inflation 

Many crash data are often zero-inflated, i.e. the proportions of zero crashes are larger 

than what it is supposed to be under assumed distributions. Zero inflation is more common for 

severe crashes, such as fatal crashes. Thus, the zero-inflated/hurdle count data models are often 

adopted (Lord and Mannering, 2010; Mannering and Bhat, 2014).  

 Crash-Between Correlation 

Traffic crashes can be divided into multiple classes by different criteria, such as injury 

severity, collision manner, victim, wrecker type, and other indicators (Lord and Mannering, 

2010). For example, crashes are often classified into five categories by injury severity: fatal (K), 

incapacitating injury (A), non-incapacitating injury (B), possible injury (C), and no injury (O), 

i.e. the “KABCO” injury scale (AASHTO, 2009). These different injury severity crashes may 

have some correlations (Lord and Mannering, 2010; Savolainen et al., 2011). It is understandable 

that the locations with many fatal crashes also very likely have many injury crashes. When 

multiple crashes are analyzed at the same time, the multivariate count data models may be more 

desired than univariate ones, since the multivariate analysis could borrow information from each 

other component to get more accurate prediction and estimation results (Savolainen et al., 2011).  
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 Spatial Correlation  

Crash frequency data are always presented with location tags, such as intersection, 

segment, city, county, state, and so on. Tobler’s first law of geography says that “everything is 

related to everything else, but near things are more related than distant things” (Tobler, 1970). It 

also applies to traffic crashes. For example, two adjacent intersections on the same arterial may 

share some common crash features, since they have similar traffic characteristics. Two adjacent 

counties may share some common crash features, since they may have similar terrain, weather, 

culture, population, economy, and laws. Thus, the spatial correlation of traffic crashes may not 

be ignored. 

 Temporal Correlation 

Similar to the spatial correlation, crash frequency data are also presented with time tags, 

such as hour, day, week, month, quarter, or year. Thus, they may also show some time series 

correlation in long term. For example, Iowa always has more crashes in winter months than in 

summer months. Thus, the temporal correlation should also be considered in crash frequency 

modeling. 

Generally speaking, crash frequency data are often presented as multivariate spatio-

temporal count data, with possible over-dispersion and zero-inflation, which should be 

considered in crash frequency modeling. Ignoring these correlations may produce biased and 

less-efficient estimation results (Savolainen et al., 2011).    

This dissertation includes three essays. Chapter 2 starts with the analysis of yearly 

county-level fatal crash frequencies of Iowa from 2006 to 2015. Multiple Bayesian spatio-

temporal Poisson models are built to account for possible correlations of crashes over space and 

time. The integrated nested Laplace approximation (INLA) is introduced to estimate these 
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Bayesian models. Both spatial effects and temporal effects are found to be essential for crash 

frequency analysis, while the spatial effects play a more important role than the temporal effects 

for this case. The counties in the central north and south of Iowa are found to tend to have fewer 

crashes than other counties in space. Multiple temporal models, including the 1st order random 

walk (RW1) model, the 1st order autoregressive (AR1) model, and the linear temporal model, are 

compared. The linear temporal model is found to be superior to other models. Fatal crashes are 

found to show a decreasing trend in Iowa but with varying decreasing rates by counties. In 

addition, it is found that spatial and temporal effects could take zero inflation and over dispersion 

of crashes into account well, and makes it no more need of zero-inflated models. 

Chapter 3 extends the univariate spatio-temporal analysis into multivariate cases, where 

the yearly county-level fatal crashes, major injury crashes, and minor injury crashes of Iowa 

from 2006 to 2015 are analyzed simultaneously. It is found that the multivariate spatio-temporal 

model has a greater performance than the univariate ones. Income and weather are found to have 

insignificant effects on these crashes in long term, while the unemployment rate is found to have 

significant negative effects on major injury and minor injury crashes. Significantly spatial 

correlations are found to exist both for each crash type and across crash types, where the counties 

in the central north and south of Iowa tend to have fewer crashes than other counties in space. 

Each crash type generally shows some decreasing trends over time. However, their temporal 

correlations across crash types are found to be insignificant. In addition, all these crashes are 

found to be positively correlated to each other, but major injury crashes and minor injury crashes 

show a closer relationship than fatal crashes. Based on the estimated results, all the counties are 

ranked by the crash cost rates with the posterior expected rank to identify high-risk counties.  
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Chapter 2 and Chapter 3 focus on analysis of crash frequency by jurisdictions at the 

macro level, while Chapter 4 analyzes the crash frequency by segments at the micro level. Using 

the yearly sideswipe (same direction), rear-end, and other crash frequency data of 1506 segments 

in Lincoln and Omaha from 2003 to 2012. Traffic operation and roadway geometry 

characteristics were investigated to identify significant influencing factors. Due to the concern of 

unobserved heterogeneity produced by correlations across crash types and segments, excess 

zeros, and over dispersion in crash data, the multivariate zero-inflated negative binomial 

regression (MVRPZINB) model is adopted. The MVRPZINB model provides a better fit in 

terms of both deviance information criteria (DIC) and root mean square error (RMSE) values for 

all three crash types than other common models. The model comparison shows that none of the 

four types of unobserved heterogeneities was negligible. The MVRPZINB model reveals 9 out of 

18 covariates to be able to significantly influence crash frequency of the studied midblock 

segments. It is found that number of lanes, AADT per lane, and segment length might have non-

positive effects on crash frequencies for some segments. Thus, it should be careful to use them as 

exposure variables in future studies. The segments with the speed limit of 45 mph tend to have 

fewer crashes than those with lower speed limits, and the segments in Omaha tend to have fewer 

crashes than those in Lincoln. It is also found that the presence of shoulder, presence of on-street 

parking, presence of one-way setting, and lane width do not have significant influences on crash 

frequencies. In addition, the MVRPZINB model makes it possible to identify the segment-

specific effects of various factors on crash frequencies. These findings are informative for 

transportation agencies to take correct and efficient measures to improve traffic safety.  

The dissertation closes with an overall summary of our findings and a general discussion 

of future extensions.  
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CHAPTER 2.    EXPLORING SPATIO-TEMPORAL EFFECTS IN TRAFFIC CRASH 

TREND ANALYSIS 

A paper published on the Analytic Methods in Accident Research 

Abstract 

Unobserved heterogeneity produced by spatial and temporal correlations of crashes often needs 

to be captured in crash frequency modeling. Although many studies have included either spatial 

or temporal effects in crash frequency modeling, only a limited number of studies have 

considered both. This study addresses the limitations of existing studies by exploring multiple 

models that best fit the spatial and temporal correlations. In this study, we used Bayesian spatio-

temporal models to investigate regional crash frequency trends, and explored the effects of 

omitting spatial or temporal trends in spatio-temporal correlated data. The fast Bayesian 

inference approach, integrated nested Laplace approximation, was used to estimate parameters. It 

was found that fatal crashes showed decreasing trends in all Iowa counties from 2006 to 2015, 

but the decreasing rates varied by counties. Among all the covariates investigated, only vehicle 

miles traveled (VMT) was significant. None of the socio-economic or weather indicators were 

found to be significant in the presence of VMT. Both spatial and temporal effects were found to 

be important, and they were responsible for both over dispersion and zero inflation in the crash 

data. In addition, spatial effects played a more important role than did temporal effects in the 

studied dataset, but temporal component selection was still important in spatio-temporal 

modeling.  

Keywords: spatio-temporal modeling, Bayesian, Integrated Nested Laplace Approximation, 

conditional autoregressive, unobserved heterogeneity 
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2.1 Introduction 

Traffic crashes have been one of the major sources of fatalities and injuries in the United 

States. Crash frequency models often are used to identify the factors influencing the propensity 

of traffic crashes. The most common crash frequency model is the Poisson model. When crashes 

show over dispersion, quasi-Poisson, Poisson log-normal model (PLN), and negative binomial 

(NB) models are often adopted. Unobserved heterogeneity is often an issue in crash frequency 

analysis, because many crash-related factors are often not observed by the analyst (Mannering et 

al., 2016). The excess zeros in crash data can be a result of unobserved heterogeneity (Mullahy, 

1997), often causing zero-inflated and hurdle models to be adopted (Lord et al., 2005; Lord and 

Mannering, 2010; Malyshkina and Mannering, 2010; Mannering et al., 2016; Mannering and 

Bhat, 2014). In addition, the zero-state Markov switching model, which allows observations to 

switch between zero and normal-count states over time, has been proven to be a viable 

alternative to zero-inflated models (Malyshkina and Mannering, 2010). Because crash data are 

often aggregated over time and space, spatial and temporal correlations are often also responsible 

for a portion of unobserved heterogeneity, as crashes that occur close in space or time are very 

likely to share some unobserved characteristics (Lord et al., 2005; Lord and Mannering, 2010; 

Mannering et al., 2016; Mannering and Bhat, 2014; Savolainen et al., 2011). However, these 

spatial and temporal correlations are often overlooked in existing studies, and neglecting them 

may produce inefficient or biased estimated results (Mannering et al., 2016; Mannering and 

Bhat, 2014; Savolainen et al., 2011).  

The spatial correlation of traffic crashes may exist on a macro- or microscopic spatial 

scale. At a macroscopic level, factors such as census tract (Wang and Kockelman, 2013), traffic 

analysis zone (Matkan and Mohaymany, 2013), ZIP code level (Ponicki et al., 2013), census 

block group (Noland et al., 2013), census ward (Boulieri et al., 2016; Quddus, 2008), county 
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(Aguero-Valverde and Jovanis, 2006; Eckley and Curtin, 2013; Song et al., 2006), and 

state/province (Erdogan, 2009; Truong et al., 2016), as well as similarity of economic and social 

activities, culture, land use, and enforcements within a given region, may explain the spatial 

correlation in traffic crashes. At a microscopic level, crashes occurring at nearby intersections 

(Abdel-Aty and Wang, 2006; Ahmed and Abdel-Aty, 2015; Guo et al., 2010; Liu et al., 2015; 

Mitra et al., 2007; Pulugurtha and Sambhara, 2011; Wang and Abdel-Aty, 2006; Xie et al., 2014) 

or adjacent road segments (Aguero-Valverde, 2011; Aguero-Valverde and Jovanis, 2008; Jiang 

et al., 2014; Wang et al., 2011, 2009; Zeng and Huang, 2014) may be correlated as a result of 

geometric or traffic flow similarities (Levine et al., 1995). 

Temporal correlation captures the variability of traffic crashes with temporal scales such 

as year (Andrey, 2010; Boulieri et al., 2017; Brijs et al., 2008; El-Basyouny et al., 2014; 

Malyshkina and Mannering, 2010; Matkan and Mohaymany, 2013; Wang et al., 2011; Wang and 

Abdel-Aty, 2006; Yannis et al., 2011), month (Hu et al., 2013; Quddus, 2008), week (Kilamanua 

et al., 2011; Liu et al., 2015; Malyshkina et al., 2009; Sukhai et al., 2011), day (Brijs et al., 

2008), and hour (Kilamanua et al., 2011; Liu et al., 2015). Temporal correlation reflects the 

influence of different traffic-related factors, such as economy, weather, environment, law, and 

travel demand, which often exhibit some temporal trends or periodicities. 

Depending on the study site, one of three scenarios is feasible: (a) the crash data may 

show both spatial and temporal effects, (b) these effects may exist individually, or (c) neither of 

them may exist. When spatial and temporal effects co-exist, their interaction (i.e. spatio-temporal 

effects) also needs to be considered. Although many studies have included either spatial effects 

or temporal effects in crash frequency modeling, only a limited number of studies have 

considered both of them. Miaou et al. (2003) first introduced the spatio-temporal modeling 
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approach to traffic crash modeling in analyzing yearly county-level crash rates in Texas from 

1992 to 1999 using multiple spatio-temporal models. Wang and Abdel-Aty (2006) analyzed 

spatial and temporal correlations for rear-end crashes at signalized intersections in Florida. 

However, they built separate models for spatial effects and temporal effects. Jiang et al. (2014) 

considered both spatial and temporal correlations in analyzing the crashes on urban four-lane 

divided arterial segments in the central Florida area. However, they assumed that the spatial and 

temporal effects followed normal distributions without presenting any data-driven evidence to 

support their assumption. Truong et al. (2016) analyzed yearly crash fatalities of 63 provinces in 

Vietnam from 2012 to 2014 using the conditional autoregressive (CAR) spatio-temporal 

autocorrelation technique. The CAR spatio-temporal model performed better than the random 

effects NB model and random parameters NB model did in terms of both goodness of fit and 

crash prediction. Aguero-Valverde and Jovanis (2006) had similar findings.  

The CAR model (Besag, 1974; Besag et al., 1991) often is used for modeling areal data 

in spatial statistics. Several researchers (Aguero-Valverde and Jovanis, 2006; Boulieri et al., 

2017; Truong et al., 2016; Wang et al., 2011) have used the CAR model to illustrate spatial 

correlations paired with different temporal models. However, they all showed only one temporal 

model, despite the fact that the choice of a particular temporal model was also very important 

(Miaou et al., 2003). In this study, we used the spatio-temporal crash frequency model to identify 

the long-term county-level fatal crash frequency trends in Iowa. Multiple temporal components 

were built and contrasted to choose the most appropriate model. A fast Bayesian estimation tool, 

integrated nested Laplace approximation (INLA), was used to estimate these spatio-temporal 

models.  
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The workflow of the data analysis is as follows:  

 First, we discuss whether crashes have over dispersion and zero inflation.  

 Second, we examine spatial correlations and temporal correlations of crashes.  

 Third, we evaluate the necessity of including the spatial component, temporal 

component, and spatio-temporal component in modeling, and we also discuss the 

temporal component selection.  

 Finally, after determining the final model, the estimation results are discussed.  

The rest of paper is organized as follows. Section 2 comprises a discussion of the traffic 

crash data used for this study. Section 3 presents the statistical models and estimation methods 

used in this study. Section 4 includes the analyses and discussions of the observed results. A 

conclusion and future recommendations are provided in section 5. 

2.2 Data Description 

Traffic crash data for Iowa’s 99 counties from 2006 to 2015 were obtained from the Iowa 

Department of Transportation. Based on their severity, the crashes were divided into five 

categories: fatal, major injury, minor injury, possible injury/unknown, and property damage only. 

Fatal crashes were analyzed for this study, as they usually cause much more severe outcomes 

than do other types of crashes. The vehicle miles traveled (VMT) data for each county in each 

year from 2006 to 2015 were downloaded from the website of the Iowa Department of 

Transportation (2016). In addition, population and unemployment rate data were downloaded 

from the website of Iowa Community Indicators Program (2016), and per capita personal income 

data were downloaded from the website of the U.S. Bureau of Economic Analysis (2016). 

Because weather has been shown to significantly influence crash frequencies in many studies 

(Brijs et al., 2008; Golob and Recker, 2003; Knapp et al., 2000; Maze et al., 2005), rainfall 

amounts, snowfall amounts, and the number of days with a minimum temperature higher than 
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32°F (TH32) were downloaded from the website of the Iowa Environmental Mesonet (2017). 

These data were collected based on the daily climate observations from the National Weather 

Service’s Cooperative Observer Program. A summary of the variables is given in Table 2-1.  

The variance of fatal crashes was larger than the mean, which implied that over-

dispersion was occurring. The proportion of zero crashes, used to preliminarily check whether or 

not zero-inflated models are needed, is shown in the last column of Table 2-1. The zero 

proportion of fatal crashes was 0.113, much larger than 0.034, which was the supposed 

probability value of zero under a Poisson distribution with the mean being 3.383. This implies 

that the zero-inflated model may be considered.  

Table 2-1 Descriptive statistics of collected variables 

Variables Mean Std. Error Median Min. Max. Zero-

proportion 

Fatal crash frequency 3.383 3.818 2.000 0.000 35.000 0.113 

VMT (1,000,000 miles) 0.320 0.487 0.186 0.047 4.215 — 

Population (10,000) 3.076 5.273 1.571 0.380 46.771 — 

Unemployment rate (%) 4.846 1.347 4.600 2.000 10.200 — 

Income ($10,000) 3.877 0.666 3.877 2.247 6.464 — 

Rainfall (inch) 38.390 8.570 38.610 17.850 64.990 — 

Snowfall (inch) 34.560 14.377 35.000 0.000 85.100 — 

TH32 (days) 222.600 15.733 221.000 174.000 272.000 — 

Note: VMT, vehicle miles traveled; TH32, number of days with minimum temperature higher than 

32°F. 

 

Unobserved heterogeneity caused by spatial and temporal correlations of data often can 

be found by visualizing the data and corroborated with statistical methods. The yearly average 

fatal crash frequencies for each county in Iowa is shown in Figure 2-1. As expected, fatal crash 

data revealed a cluster of high numbers of crashes in the central counties around the yellow-

shaded area, where the largest city of Iowa, Des Moines, is located. Fatal crash data also revealed 

a cluster of low numbers of crashes in the northern and southwestern parts of Iowa (deep-shaded 

areas). Next, statistical analysis was performed to investigate the presence of spatial correlations.  
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Figure 2-1 County-level yearly average fatal crash counts of Iowa (2006-2015) 

Moran’s I statistic is commonly used to test spatial correlations in traffic crash analysis 

(Guo et al., 2010; Quddus, 2008; Xie et al., 2014; Zeng and Huang, 2014). The global Moran’s I 

is defined as (Anselin, 1988):  

 𝐼 =
𝑛∑ ∑ 𝜔𝑖𝑗(𝑦𝑖−�̅�)(𝑦𝑗−�̅�)𝑖𝑖

∑ 𝜔𝑖𝑗𝑖≠𝑗 ∑ (𝑦𝑖−�̅�)
2

𝑖
, (2.1) 

where n is the total number of observations, 𝑦𝑖 and 𝑦𝑗 are the values of observation 𝑖 and 

observation 𝑗, �̅� is the average value of observations, and 𝜔𝑖𝑗 is the spatial weight between 

observations 𝑖 and 𝑗.  

Negative Moran’s I values indicate negative spatial autocorrelation, positive values 

indicate positive spatial autocorrelation, and zero indicates no spatial autocorrelation. The z-

score of Moran’s I shows if the spatial autocorrelation is significant.  

The global Moran’s I statistics of fatal crashes in each year from 2006 to 2015 were 

calculated using the “spdep” package (Bivand and Piras, 2015) in the R platform (R Core Team, 

2016) with queen continuity spatial weights, whereby counties with a shared border or vertex 
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were considered as neighbors. When areas were neighbors, the spatial weights were 1; otherwise, 

they were 0. The results are shown in Table 2-2.  

Table 2-2 Global Moran's I statistics of fatal crashes in each year 

Year Moran's I P-value 

2006 1.986 0.024* 

2007 2.091 0.018* 

2008 1.520 0.064 

2009 1.661 0.048* 

2010 2.486 0.006* 

2011 1.919 0.027* 

2012 1.240 0.108 

2013 2.387 0.008* 

2014 1.241 0.107 

2015 2.300 0.011* 

Note: *significant at P = 0.05. 

 

Significant spatial autocorrelations for fatal crashes existed in 7 out of 10 years at a 95% 

confidence level and at a 90% confidence level for the remaining 3 years. Thus, fatal crashes 

were highly likely to be spatially correlated at the county level in Iowa. These trends may be site 

specific. For example, Aguero-Valverde and Jovanis (2006) found the county-level yearly fatal 

crashes of Pennsylvania to not be significantly correlated. This suggests that the presence and 

type of spatial correlation is site and data sensitive. Therefore, no prior assumptions should be 

made about the presence or absence of spatial correlation, and it is recommended to statistically 

test the presence of spatial correlation prior to modeling.  

Temporal correlation was not directly tested, as there were only 10 time points in this 

dataset. However, as shown in Figure 2-2, the yearly fatal crash counts of Iowa from 2006 to 

2015 revealed a linearly decreasing trend, which needed to be considered when building the 

model. 
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Figure 2-2 Iowa state-level yearly fatal crash counts (2006-2015) 

2.3 Methodology 

2.3.1 Statistical Framework 

The statistical framework uses a Bayesian hierarchical architecture, including both the 

spatial and temporal random effect components. The statistical model is presented in equations 2 

and 3:  

 𝑦𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑡) (2.2) 

 log(𝜆𝑖𝑡) = 𝛼 + 𝛽 ∗ 𝑋𝑖𝑡 + υ𝑖 + 𝜈𝑖 + 𝜑𝑡 + 𝜂𝑖𝑡, (2.3) 

where 𝑖 is the county number, 1,2,… 99; t is the year, 1 (2006), 2 (2007), …,10 (2015); 

𝑦𝑖𝑡 is the crash count of county 𝑖 in year 𝑡; 𝜆𝑖𝑡 is the mean crash frequency of county 𝑖 in year 𝑡; 

𝛼 is the intercept term; 𝛽 is the regression coefficient vector; 𝑋𝑖𝑡 is the covariate vector of county 

𝑖 in year 𝑡; υ𝑖 is the structured spatial random effect of county 𝑖; 𝜈𝑖 is the unstructured spatial 
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random effect of county 𝑖; 𝜑𝑡 is the temporal random effect in year 𝑡; and 𝜂𝑖𝑡 is the spatio-

temporal interaction effect. 

The spatial and temporal components helped us to identify the underlying unobserved 

heterogeneity across county and year. For this study, we analyzed three kinds of spatio-temporal 

models that had the same spatial component but different temporal components. 

2.3.1.1 Spatial Component 

The spatial component, i.e. υ𝑖 + 𝜈𝑖, was assumed to follow the Besag-York-Mollie 

(BYM) model (Besag et al., 1991). The BYM model has been widely used in traffic accident 

analysis (Aguero-Valverde and Jovanis, 2006; Boulieri et al., 2017; Wang et al., 2013; Xie et al., 

2014) and has been recommended for traffic crash analyses (Boulieri et al., 2017). For the BYM 

model, the structured spatial effect, υ𝑖, is modeled using an intrinsic conditional autoregressive 

(ICAR) structure, and the unstructured spatial effect, 𝜈𝑖, follows a normal distribution.  

 υ𝑖|υ𝑗≠𝑖 ~ 𝑁(
∑ υ𝑗𝑗∈𝑁(𝑖)

#𝑁(𝑖)
,
𝜏𝜐
−1

#𝑁(𝑖)
) (2.4) 

 𝜈𝑖~𝑁(0, 𝜏𝜈
−1), (2.5) 

where 𝑁(𝑖) are the neighbors of county 𝑖, #𝑁(𝑖) are the number of neighbors of county 𝑖, 

and 𝜏𝜐 and 𝜏𝜈 are precisions.  

The ICAR part accounts for possible spatial correlations between counties, and the 

unstructured part is responsible for county individual heterogeneity. 

2.3.1.2 Temporal Component 

Three temporal models, including the linear temporal model, the 1st order autoregressive 

(AR1) model, and the 1st order random walk (RW1) model, were considered.  

The linear temporal model is defined in equations 6 and 7 (Bernardinelli et al., 1995):  

 𝜑𝑡 = (𝛽2 + 𝛿𝑖) ∗ 𝑡 (2.6) 
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 𝛿𝑖
𝑖𝑖𝑑
~
𝑁(0, 𝜏𝛿

−1), (2.7) 

where 𝛽2 is the global time trend; 𝛿𝑖 is the interaction between time and county 𝑖, 𝛿𝑖 < 0 

implies that the area-specific trend is smaller than the mean trend, whereas 𝛿𝑖 > 0, implies that 

the area-specific trend is larger than the mean trend; and 𝜏𝛿 is the precision.  

𝛿𝑖 could reflect the degree to which spatial effects and temporal effects have interactions 

(Blangiardo et al., 2013).  

The AR1 model is defined in equations 8, 9, and 10:  

 𝜑𝑡~ {
𝑁 (0, (𝜏𝜑(1 − 𝜌

2))
−1

)                  𝑓𝑜𝑟 𝑡 = 1

𝜌𝜑𝑡−1 + 휀𝑡                            𝑓𝑜𝑟 𝑡 = 2,3, . .10
 (2.8) 

 |𝜌| < 1 (2.9) 

 휀𝑡~𝑁(0, 𝜏
−1), (2.10) 

where 𝜌 is a correlation parameter, 휀𝑡 is the white noise, and 𝜏  is a precision.  

The RW1 model is defined in equations 11 and 12:  

𝜑𝑡+1 = 𝜑𝑡 + 𝛾𝑡 (2.11) 

𝛾𝑡
𝑖𝑖𝑑
~
𝑁(0, 𝜏𝛾

−1), (2.12) 

where 𝛾𝑡 is the white noise and 𝜏𝛾 is a precision. 

2.3.1.3 Spatio-Temporal Component 

The spatio-temporal component, 𝜂𝑖𝑡 , is assumed to follow a zero-mean normal 

distribution.  

 𝜂𝑖𝑡
𝑖𝑖𝑑
~
𝑁(0, 𝜏𝜂

−1). (2.13) 

where 𝜏𝜂 is a precision. 

Due to the presence of 𝜂𝑖𝑡, this statistical model becomes the Poisson log-normal model.  
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In addition, the performance of the best spatio-temporal model, which is the linear 

temporal component model as proven later, is compared against several traditional models 

discussed below.   

2.3.1.4 Other Comparison Models 

2.3.1.4.1 Spatial Effects and Temporal Effects Assessment 

Three models, one with no spatial or temporal effects, one with only spatial effects, and 

one with only temporal effects, were compared against the best spatio-temporal model to assess 

the importance of explicitly accounting for spatial and temporal effects.  

2.3.1.4.2 Poisson Model vs. Zero-Inflated Poisson (ZIP) model 

As shown in Table 2-1, fatal crashes had zero inflation. Thus, the ZIP model was also 

built for comparison. It should be noted that for zero-inflated crash data, the zero-state Markov 

switching model has been shown to be superior to the zero-inflated model (Malyshkina and 

Mannering, 2010). However, the zero-state Markov switching model is not discussed here, as the 

focus is on explaining zero inflation caused by spatial or temporal correlations and hence can be 

explicitly explained using a ZIP model. All combinations of spatial, temporal, and base case 

models explored in this study are listed in Table 2-3.  

Table 2-3 Summary of models developed for fatal crash frequency analysis 

No Model code Spatial effect Temporal effect Spatio-temporal effect Base model 

1 𝑆0𝑇0𝑆𝑇0𝑃 — — — Poisson 

2 𝑆𝐵𝑌𝑀𝑇0𝑆𝑇0𝑃 BYM — — Poisson 

3 𝑆0𝑇𝐿𝑆𝑇0𝑃 — Linear — Poisson 

4 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇0𝑃 BYM Linear — Poisson 

5 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 BYM Linear 𝜂𝑖𝑡 Poisson 

6 𝑆𝐵𝑌𝑀𝑇𝐴𝑅1𝑆𝑇1𝑃 BYM AR1 𝜂𝑖𝑡 Poisson 

7 𝑆𝐵𝑌𝑀𝑇𝑅𝑊1𝑆𝑇1𝑃 BYM RW1 𝜂𝑖𝑡 Poisson 

8 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑍𝐼𝑃 BYM Linear 𝜂𝑖𝑡 ZIP 

Note: 0, component not included; 1, component included; L, linear temporal; BYM, Besag-York-

Mollie; AR1, 1st order autoregressive; RW1, 1st order random walk; ZIP, zero-inflated Poisson; 

“—” means non-existent. 
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2.3.2 Integrated Nested Laplace Approximation (INLA)  

Bayesian models are usually solved with Markov chain Monte Carlo (MCMC) 

simulations. However, when the models are very complex without close-form posterior density 

available, as in this case, the MCMC method can be very time consuming if both spatial and 

temporal effects are included. Rue and Martino (2009) proposed the INLA method to 

numerically approximate the full Bayesian inference for latent Gaussian models. INLA can 

produce much faster results than can the MCMC approach for Bayesian models without 

compromising accuracy (Martins et al., 2013), as it can accurately derive the posterior densities 

by numerical approximation and significantly decrease the MCMC simulation workload.  

Assume 𝑦 is the response vector, 𝜃 is the target parameter vector, and 𝜓 is the hyper-

parameter vector. The posterior probability densities of parameter elements and hyper-parameter 

elements in Bayesian models are (Blangiardo et al., 2013): 

 𝑝(𝜃𝑖|𝑦) = ∫𝑝(𝜓|𝑦)𝑝(𝜃𝑖|𝜓, 𝑦)𝑑𝜓 (2.14) 

 𝑝(𝜓𝑘|𝑦) = ∫𝑝(𝜓|𝑦)𝑑𝜓−𝑘, (2.15) 

where 𝑖 is the 𝑖th observation; 𝜃𝑖 is the 𝑖th parameter; 𝜓𝑘 is the 𝑘th hyper-parameter; and 

𝜓−𝑘 is the complement hyper-parameter set to 𝜓𝑘.  

The INLAs for the posterior densities of interest can be written as (Blangiardo et al., 

2013; Rue et al., 2009):  

 𝑝(𝜓|𝑦) =
𝑝(𝜃,𝜓|𝑦)

𝑝(𝜃|𝜓,𝑦)
∝

𝑝(𝜓)𝑝(𝜃|𝜓)𝑝(𝑦|𝜃)

𝑝(𝜃|𝜓,𝑦)
≈

𝑝(𝜓)𝑝(𝜃|𝜓)𝑝(𝑦|𝜃)

�̃�(𝜃|𝜓,𝑦)
|𝜃=𝜃∗(𝜓) =: 𝑝(𝜓|𝑦) (2.16) 

 𝑝(𝜃𝑖|𝜓, 𝑦) =
𝑝((𝜃𝑖,𝜃−𝑖)|𝜓,𝑦)

𝑝(𝜃−𝑖|𝜃𝑖,𝜓,𝑦)
≈

𝑝(𝜃,𝜓|𝑦)

�̃�(𝜃−𝑖|𝜃𝑖,𝜓,𝑦)
|𝜃−𝑖=𝜃∗−𝑖(𝜃𝑖,𝜓) =: 𝑝(𝜃𝑖|𝜓, 𝑦), (2.17) 

where 𝑝(𝜓|𝑦) is the Gaussian approximation of 𝑝(𝜃|𝜓, 𝑦) and 𝜃∗(𝜓) is its mode and 

𝑝(𝜃−𝑖|𝜃𝑖 , 𝜓, 𝑦) is the simplified Laplace approximation based on the Taylor’s series expansion of 

the Laplace approximation of 𝑝(𝜃𝑖|𝜓, 𝑦).  
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As compared to the Gaussian approximation, the simplified Laplace approximation in 

equation 17 provides a good balance between speed and accuracy.  

INLA first obtains the marginal joint posterior of 𝑝(𝜓|𝑦) to locate the mode by grid 

search. Then, for each 𝜓∗ with the corresponding weight 𝑤𝜓
∗, the conditional posteriors 

𝑝(𝜃𝑖|𝜓
∗, 𝑦) are also obtained by grid search. Finally, the marginal posteriors �̃�(𝜃𝑖|𝑦) are 

obtained by numerical integration:  

 𝑝(𝜃𝑖|𝑦) ≈ ∑ 𝑝(𝜃𝑖|𝜓
∗, 𝑦)�̃�(𝜓∗|𝑦)𝑤𝜓

∗
𝜓∗∈𝐺 . (2.18) 

More details about INLA can be found elsewhere (Blangiardo et al., 2013; Hu et al., 

2013; Martins et al., 2013; Rue et al., 2009). 

All eight models listed in Table 2-3 were implemented in the R environment (R Core 

Team, 2016) using the ‘INLA’ package (Lindgren and Rue, 2015; Martins et al., 2013; Rue et 

al., 2009). The regression coefficients 𝛽 were assigned independent normal distributions 

𝑁(0, 1000). Six hyper-parameters are defined in this study, i.e. the precision parameters 𝜏𝜐, 𝜏𝜈, 

𝜏𝛿, 𝜏 , 𝜏𝛾, and 𝜏𝜂. The logarithm of these values were assigned to follow the log-Gamma 

distribution 𝑙𝑜𝑔𝐺𝑎𝑚𝑚𝑎(1,0.0005) (Blangiardo et al., 2013).  

2.3.3 Model Comparison and Checking 

The deviance information criterion (DIC) was used as a measure of assessing different 

Bayesian models (Spiegelhalter et al., 2002). DIC is defined as 

 𝐷𝐼𝐶 = 𝐷(�̅�) + 2𝑝𝐷 = �̅� + 𝑝𝐷, (2.19) 

where 𝐷(�̅�) is the deviance using the posterior mean values of the estimated parameters 

(�̅�), �̅� is the posterior mean of deviances, and 𝑝𝐷 is the effective number of parameters.  

Similar to Akaike’s information criterion (AIC), DIC considers both the Bayesian 

measure of fit or adequacy and the complexity of the model (Spiegelhalter et al., 2002). Models 
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with smaller DIC values are expected to perform better. Roughly, differences of more than 10 

might definitely rule out the model with the higher DIC, differences between 5 and 10 are 

substantial, and differences less than 5 might mean that the models are not significantly different 

(MRC Biostatistics Unit, 2004).   

However, DIC may under-penalize complex models with many random effects 

(Plummer, 2008), such as CAR models. Thus, the conditional predictive ordinate (CPO) (Pettit, 

1990) and the cross-validated probability integral transform (PIT) (Dawid, 1984) were also 

calculated for model assessment. Both of them are leave-one-out cross validation scores. 

 𝐶𝑃𝑂𝑖 = 𝜋(𝑦𝑖|𝒚−𝑖) (2.20) 

 𝑃𝐼𝑇𝑖 = 𝑝(𝑌𝑖 ≤ 𝑦𝑖|𝒚−𝑖), (2.21) 

where 𝑦𝑖
𝑜𝑏𝑠 is the 𝑖th observation and 𝒚−𝑖 represents all the observations except the 𝑖th one.  

The negative mean logarithmic CPO was calculated as a measure of the predictive quality 

of the model (Gneiting and Raftery, 2007; Roos and Held, 2011).  

 𝐶𝑃𝑂̅̅ ̅̅ ̅̅ = −
1

𝑛
∑ log (𝐶𝑃𝑂𝑖)
𝑛
𝑖  (2.22) 

Stone (1977) proved that the 𝐶𝑃𝑂̅̅ ̅̅ ̅̅  was asymptotically equivalent to AIC. Thus, 𝐶𝑃𝑂̅̅ ̅̅ ̅̅  can 

be used for model choice, and a lower value of 𝐶𝑃𝑂̅̅ ̅̅ ̅̅  indicates a better model.  

A large or small PIT value indicates possible outliers, and the PIT values of a well-

calibrated model should be uniformly distributed. Thus PIT histograms can be used to assess the 

calibration of a model (Czado et al., 2009). For count data, an adjusted PIT should be used 

instead to make the predictive distribution continuous (Czado et al., 2009).  

 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑃𝐼𝑇𝑖 = 𝑃𝐼𝑇𝑖 −
1

2
𝐶𝑃𝑂𝑖 (2.23) 

In addition, root mean square error (RMSE) and mean absolute error (MAE) were also 

calculated to evaluate the adequacy of model fit. 
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 𝑅𝑀𝑆𝐸 = √
1

𝑛0
∑ (𝑂𝑗 − 𝑃𝑗)

2𝑛0
𝑗=1  (2.24) 

 𝑀𝐴𝐸 =
1

𝑛0
∑ |𝑂𝑗 − 𝑃𝑗|
𝑛0
𝑗=1 , (2.25) 

where 𝑂𝑗 is the 𝑗th observation value, 𝑃𝑗 is the predicted 𝑖th value from the model, and 

𝑛0 is the number of observations. 

Similar to DIC, smaller MAE and RMSE values are desired. 

2.3.4 Spatial Fraction Analysis 

For the spatio-temporal analysis, one point of interest was to identify the contribution of 

the structured spatial effects 𝜎𝜐
2 over the total marginal spatial variability 𝜎𝜐

2 + 𝜎𝜈
2 (Boulieri et 

al., 2017). The spatial fraction of interest is given by  

 𝑓𝑟𝑎𝑐𝜐 =
𝜎𝜐

2

𝜎𝜐2+𝜎𝜈2
=

1 𝜏𝜐⁄

1 𝜏𝜐⁄ +1 𝜏𝜈⁄
, (2.26) 

where 𝜎𝜐
2 is the variance of the structured spatial effects, 𝜎𝜈

2 is the variance of the 

unstructured spatial effects, and 𝜏𝜐 and 𝜏𝜈 are the corresponding precisions.  

When the spatial fraction is close to 1, the structured spatial effects explain most of the 

variability of the model. Otherwise, the unstructured spatial random effects play the main role. 

2.4 Results and Discussions 

All eight models listed in Table 2-3 were implemented in INLA. On an Intel(R) Xeon(R) 

CPU at 3.70 GHz with 16 GB random access memory, it took a total of 73.074 sec to run these 

eight models. As a comparison, it took INLA 13.609 sec to estimate the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 model, 

whereas it took OpenBUGS (Sturtz et al., 2005) 1,053 sec to estimate the same model with the 

MCMC simulation settings of three simulation chains, 5,000 burn-in samples, and 5,000 adopted 

samples with a thin interval set at 2. The computation time was greatly reduced using INLA, and 

the computation time is expected to be saved more with the increase of data and parameters.   
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The DIC, 𝐶𝑃𝑂̅̅ ̅̅ ̅̅ , RMSE, and MAE values of the eight models listed in Table 2-3 are 

shown in Table 2-4. These four measures help in identifying the best spatio-temporal model. The 

following observations can be made from data shown in Table 2-4.  

Table 2-4 DIC, 𝐶𝑃𝑂̅̅ ̅̅ ̅̅ , and RMSE, MAE values for all the models 

No Model DIC 𝐶𝑃𝑂̅̅ ̅̅ ̅̅  RMSE MAE 

1 𝑆0𝑇0𝑆𝑇0𝑃 4282.01 2.172 2.652 1.810 

2 𝑆𝐵𝑌𝑀𝑇0𝑆𝑇0𝑃 3791.62 1.920 1.851 1.350 

3 𝑆0𝑇𝐿𝑆𝑇0𝑃 3860.00 1.953 1.987 1.421 

4 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇0𝑃 3749.39 1.896 1.757 1.315 

5 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 3746.13 1.894 1.757 1.314 

6 𝑆𝐵𝑌𝑀𝑇𝐴𝑅1𝑆𝑇1𝑃 3750.60 1.899 1.762 1.316 

7 𝑆𝐵𝑌𝑀𝑇𝑅𝑊1𝑆𝑇1𝑃 3752.33 1.896 1.765 1.319 

8 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑍𝐼𝑃 3749.35 1.895 1.756 1.314 

Note: 0, component not included; 1, component included; L, linear temporal component; BYM, 

Besag-York-Mollie; AR1, 1st order autoregressive; RW1, 1st order random walk; ZIP, zero-

inflated Poisson; “—” means non-existent. 

 

2.4.1 Choice of the Temporal Component 

The DIC values do not show significant differences among the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃, 

𝑆𝐵𝑌𝑀𝑇𝐴𝑅1𝑆𝑇1𝑃, and 𝑆𝐵𝑌𝑀𝑇𝑅𝑊1𝑆𝑇1𝑃 models, but the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 model with the linear temporal 

component had the lowest 𝐶𝑃𝑂̅̅ ̅̅ ̅̅ , RMSE, and MAE values. In addition, the adjusted PIT 

histogram of the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 model is shown in Figure 2-3, where the adjusted PIT values show 

a very good uniform distribution. That is, the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 model was well calibrated for the 

data. Thus, the 𝑆𝐵𝑌𝑀𝑇L𝑆𝑇1𝑃 model was considered as the best fit in this case; that is, fatal crash 

frequencies had some linear changing trend. Although these models did not show large 

differences, the results still implied the necessity of temporal component selection, especially 

considering different models would lead to different interpretations of the data. For example, the 

linear temporal component implies that the number of fatal crashes would change linearly in the 

future, but the same conclusion may not be drawn from the RW1 temporal component.  
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Figure 2-3 Histogram of the adjusted PIT values of the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 model 

 

2.4.2 Necessity of Including Spatial, Temporal, and Spatio-Temporal Effects 

The 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇0𝑃 model performed much better than did the 𝑆0𝑇0𝑆𝑇0𝑃, 𝑆𝐵𝑌𝑀𝑇0𝑆𝑇0, and 

𝑆0𝑇𝐿𝑆𝑇0𝑃 models in terms of all four measures. This means that, in this case, both spatial and 

temporal effects played important roles in unobserved heterogeneity and thus needed to be 

considered. Meanwhile, because the 𝑆𝐵𝑌𝑀𝑇0𝑆𝑇0𝑃 model had much lower DIC, 𝐶𝑃𝑂̅̅ ̅̅ ̅̅ , RMSE, and 

MAE values than did the 𝑆0𝑇𝐿𝑆𝑇0𝑃 model, spatial effects had a greater influence than did 

temporal effects in this case. This finding indicates that fatal crashes have very strong 

correlations across counties in Iowa. Only 10 years of data were used for this study, and it may 

not be a long enough time span for crashes to show a big change over time. If more years of data 

were available or monthly data had been analyzed, the temporal effects may have played a more 
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important role. The 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 model was slightly better than 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇0𝑃 model, which 

meant the spatio-temporal interaction effects were very weak.   

2.4.3 Zero-Inflation of Crashes 

The 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 model had nearly the same performance as the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑍𝐼𝑃 model 

did in terms of all four measures. In addition, the zero-inflation probability value, which showed 

the probability of zero crashes being from the zero state, was only 0.0046 for the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑍𝐼𝑃 

model. This means that there was no longer a need to consider zero inflation after including 

spatial and temporal effects, as the zero inflation of fatal crashes could be well explained by 

spatial and temporal effects. This finding provides a new point of view for the explanation of 

where zero inflation comes from in crash data.  

Because the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 model had the best performance of all eight models, it was used 

in the following analysis. The estimated parameters, their standard errors, and 95% credible 

intervals are shown in Table 2-5. As expected, VMT had significant positive effects. However, 

all the other variables were statistically insignificant. It is thought that population, employment 

rate, and income indicators in Iowa had been relatively consistent from 2006 to 2015 because 

Iowa was a typical farming state and there were no significant changes in these variables. Thus, 

these indicators did not show significant influences. In addition, although adverse weather may 

increase the number of crashes in the short term, the results here show that weather may not have 

a big influence on fatal crashes in the long term in Iowa.  

Because only the VMT parameter was significant, the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 model was rebuilt 

using only VMT. The results are shown in Table 2-6.  
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Table 2-5 Estimated parameters of the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 model with all covariates 

Parameter Mean Std. Err. 0.025 quantile 0.975 quantile 

(Intercept) 0.427 0.431 –0.420 1.272 

VMT 0.887 0.082 0.727 1.049 

Population –0.003 0.003 –0.010 0.003 

Income –0.014 0.036 –0.085 0.058 

Unemployment rate 0.013 0.020 –0.027 0.053 

Rainfall –0.002 0.003 –0.007 0.003 

Snowfall 0.000 0.002 –0.003 0.003 

TH32 0.002 0.002 –0.001 0.006 

Year –0.041 0.006 –0.053 –0.029 

Note: VMT, vehicle miles traveled; TH32, number of days with minimum temperature higher 

than 32°F. 

Table 2-6 Estimated parameters of the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 model with only VMT 

 Intercept VMT (𝛽1) Year (𝛽2) 𝜏𝜐 𝜏𝜈 𝜏𝛿 𝑓𝑟𝑎𝑐𝜐 

Mean 0.923  0.887  –0.042  9.919  9.812 16424.166  0.497 

Std. Err. 0.057 0.086 0.006 7.298 3.446 12860.000 — 

0.025 quantile 0.810 0.714 –0.054 2.692 4.807 1926.189 — 

0.975 quantile 1.032 1.046 –0.030 31.290 16.040 55533.450 — 

Note: VMT, vehicle miles traveled; 𝛽1, 𝛽2, regression coefficients; 𝜏𝜐, 𝜏𝜈 , 𝜏𝛿 , precisions;  𝑓𝑟𝑎𝑐𝜐 

= spatial fraction. 

 

2.4.4 Spatial Fraction Results 

For the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 model, the fraction of structured spatial effects was 0.497 (Table 

2-6), which implied that the unstructured and structured spatial effects played nearly the same 

role in this case. That is, the unobserved heterogeneity in space existed both between counties 

and for individual counties. The exponential posterior means of the structured spatial effects of 

each county were shown in Figure 2-4; the counties with exp(υ𝑖) lower than 1 tended to have 

fewer crashes and the counties with exp(υ𝑖) greater than 1 tended to have more crashes. As 

shown in Figure 2-4, the counties located in northern and southwestern Iowa tended to have 

fewer fatal crashes. This finding is generally consistent with the empirically observed fatal crash 

distribution shown in Figure 2-1.  
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Figure 2-4 Exponential posterior means of the structured spatial effect (𝑒𝑥𝑝(𝜐𝑖)) 

Moran’s I statistics of the residuals of the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 model were calculated to see if 

they still had spatial correlations. As shown in Table 2-7, the p-values of residuals were 

significantly larger than 0.05 for any year except 2010, the p-value of which was very close to 

0.05. Thus, the spatial component covered nearly all of unobserved heterogeneity in space. The 

results also verified the effectiveness of the spatial component.  

Table 2-7 Moran's I test results for the residuals of the 𝑆𝐵𝑌𝑀𝑇𝐿𝑆𝑇1𝑃 model 

Year Moran's I statistic p-value 

2006 –1.036 0.850 

2007 –0.156 0.562 

2008 –0.792 0.786 

2009 –0.535 0.704 

2010 1.653 0.049 

2011 0.292 0.385 

2012 0.636 0.262 

2013 0.460 0.323 

2014 –0.876 0.809 

2015 –1.387 0.917 
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2.4.5 Temporal Effects  

The 𝛽2 value of –0.042 with a 95% credible interval of [–0.054, –0.030] means that, on 

average, fatal crashes in Iowa significantly decreased from 2006 to 2015. The signs of 𝛿𝑖 values, 

a positive value meaning that the number of fatal crashes of county 𝑖 decreased slower than the 

state average value and a negative value meaning that the number of fatal crashes of county 𝑖 

decreased faster than the state average value, are shown in Figure 2-5(a). The changing rates of 

fatal crashes for each county, i.e. 𝛽2 + 𝛿𝑖, are shown in Figure 2-5(b). All 𝛽2 + 𝛿𝑖 values were 

negative, which meant that the number of fatal crashes for all the counties showed decreasing 

trends from 2006 to 2015. The 𝛿𝑖 values for 50 out of the total of 99 counties were positive, 

whereas the 𝛿𝑖 values for the remaining 49 counties were negative; that is, the number of fatal 

crashes in 50 counties decreased slower than the mean trend of the whole state, whereas fatal 

crash numbers in the remaining 49 counties decreased faster than the mean trend. Thus, the first 

50 counties should be the focus of future traffic safety improvement programs.  

2.5 Conclusions and Future Research 

Unobserved heterogeneity due to the correlations of crashes in space and time has been 

proven to be a big issue in many studies. However, only a limited number of studies have 

considered both of them in modeling crash frequency. This study explored spatial and temporal 

effects in crash frequency models to account for unobserved heterogeneity and accurately 

identified the long-term regional trends in the change of traffic crash frequencies. Focusing on 

the number of yearly fatal crashes at the county level in Iowa from 2006 to 2015, multiple spatio-

temporal models with the same spatial component but different temporal components were 

developed using the Bayesian framework. INLA, a fast Bayesian model estimation methodology, 

was used to estimate parameters. The model with a linear temporal component was found to be 
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the most appropriate. Numbers of fatal crashes in all Iowa counties were found to show linearly 

decreasing trends but with different rates of decrease by counties. No explanatory factors, except 

VMT, were found to have a significant influence on fatal crash frequencies. Spatial and temporal 

effects were found to be responsible for both over dispersion and zero inflation of crash data, 

whereas spatial effects played a more important role than did temporal effects in this case.  

In future research, the impact of a smaller time scale, such as season or month, should be 

explored, as this may offer more details about crash frequency changing trends and show the 

influences of periodic factors such as weather. Meanwhile, although zero inflation is not a 

problem anymore with the use of the spatio-temporal model for this dataset, this may not be true 

for other datasets. When the spatio-temporal model does not explain excess zeros completely, the 

zero-state Markov switching model may be combined with spatial effects to develop new spatio-

temporal models. The zero-state Markov switching model could account for both zero inflation 

and temporal correlations, and it has been proven to be superior to traditional zero-inflated 

models (Malyshkina and Mannering, 2010). Finally, as Boulieri et al. (2017) has suggested, the 

multivariate space–time model considering factorial space and time interactions can be evaluated 

to better exploit spatial, temporal, and between-variable correlations, but this may need high 

performance computing along with complex modeling structure. 
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Figure 2-5 Iowa county-level fatal crash yearly change trends from 2006 to 2015 
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CHAPTER 3.    USING THE MULTIVARIATE SPATIO-TEMPORAL BAYESIAN 

MODEL TO EXPLORE THE TRAFFIC CRASH FREQUENCY TREND IN LONG 

TERM 

A paper published on the Analytic Methods in Accident Research 

Abstract 

Unobserved heterogeneity across space, time, and crash type is often non-negligible in crash 

frequency modeling. When multiple crash type with spatial and temporal features are analyzed, 

multivariate spaio-temporal Bayesian models should be considered. For this study, we analyzed 

the yearly county-level fatal, major injury, and minor injury crashes in Iowa from 2006 to 2015 

using a multivariate spatio-temporal Bayesian model. The model adopts a multivariate spatial 

structure, a multivariate temporal structure, and a multivariate spatio-temporal interaction 

structure to account for possible correlations across injury severities over space, time, and spatio-

temporal interaction, respectively. Income and weather indicators were found to be significant in 

the presence of vehicle miles traveled and unemployment rate. Both spatial and temporal effects 

were found to be important, and they played nearly the same roles for all three crash types in the 

studied dataset. Counties located in the north and southwest Iowa were found to tend to have 

fewer crashes than the remaining counties. All three crash types generally showed descending 

trends from 2006 to 2015. They also had significantly positive correlations between each other in 

space but not in time. The crude crash rates and the predicted crash rates were generally 

consistent for major injury and minor injury crashes but not for low-count fatal crashes. High-

risk counties were identified using the posterior expected rank by the predicted crash cost rate, 

which was more able to truly represent the underlying traffic status than the rank by the crude 

crash cost rate.  
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3.1 Introduction 

Traffic crashes have been one of the major sources of fatalities and injuries in the United 

States. Crash frequency analysis is often used to identify key factors influencing the propensity 

of crashes, which is important for policymakers as they propose interventions to prevent road 

traffic crashes. However, unobserved heterogeneity is often an issue in crash frequency analysis, 

because many crash-related elements are often unavailable. Neglecting unobserved heterogeneity 

may produce biased and inefficient results (Mannering et al., 2016).  

Unobserved heterogeneity may come from many sources. Crashes are usually classified 

into multiple types by different criteria, and their underlying correlations may produce some 

unobserved heterogeneity across observations when they are analyzed simultaneously 

(Mannering et al., 2016; Mannering and Bhat, 2014). Thus, multivariate models, such as the 

multivariate Poisson log-normal (MVPLN) model, are often adopted (Aguero-Valverde and 

Jovanis, 2010; El-Basyouny et al., 2014; El-Basyouny and Sayed, 2009; Ma et al., 2008; Zhao et 

al., 2017). In addition, crash frequency data are always aggregated over space and time, which 

may also produce unobserved heterogeneity, as crashes that occur close in space or time are very 

likely to share some unobserved characteristics (Lord et al., 2005; Lord and Mannering, 2010; 

Mannering et al., 2016; Mannering and Bhat, 2014; Savolainen et al., 2011). Previous studies 

have shown that spatial correlations of traffic crashes may exist across states/provinces 

(Erdogan, 2009; Truong et al., 2016), counties (Aguero-Valverde and Jovanis, 2006; Eckley and 

Curtin, 2013; Song et al., 2006), census tracts (Wang and Kockelman, 2013), traffic analysis 

zones (Matkan and Mohaymany, 2013), intersections (Ahmed and Abdel-Aty, 2015; Liu et al., 

2015) and segments (Aguero-Valverde, 2011; Aguero-Valverde and Jovanis, 2008; Jiang et al., 
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2014; Wang et al., 2011, 2009; Zeng and Huang, 2014). The similarity of economy, culture, land 

use, weather, traffic laws, and driving behavior within a given region may explain the spatial 

correlations in traffic crashes. When multiple crash types with spatial correlations need to be 

analyzed, multivariate spatial models have been proved to be more powerful than univariate 

spatial models, as multivariate spatial models can account for correlations across crash types in 

space in addition to spatial correlations (Aguero-Valverde, 2013; Aguero-Valverde et al., 2016; 

Barua et al., 2016; Miaou and Song, 2005; Song et al., 2006; Wang and Kockelman, 2013). 

Temporal correlations of traffic crashes may exist across year (Andrey, 2010; Brijs et al., 2008; 

El-Basyouny et al., 2014; Matkan and Mohaymany, 2013; Wang et al., 2011; Wang and Abdel-

Aty, 2006; Yannis et al., 2011), month (Hu et al., 2013; Quddus, 2008b), week (Kilamanua et al., 

2011; Liu et al., 2015; Sukhai et al., 2011), and day (Brijs et al., 2008). Temporal correlations 

occur because many traffic-related factors, such as driver behavior, economy, weather, 

environment, law, and travel demand, often exhibit some temporal features. Similarly, when 

multiple crash types with temporal correlations need to be analyzed, multivariate temporal 

models should be considered, as they can account for correlations across crash types in time in 

addition to temporal correlations (Michalaki et al., 2016; Serhiyenko et al., 2014).  

Crashes often have both spatial and temporal features. When only one crash type is 

analyzed, the univariate spatio-temporal modeling has been proved in some studies to be superior 

(Aguero-Valverde and Jovanis, 2006; Liu and Sharma, 2017; Miaou et al., 2003; Truong et al., 

2016). When multiple crash types need to be analyzed, a multivariate spatio-temporal model may 

be needed. Ma et al. (2017) used the bivariate spatio-temporal model to analyze the daily non-

injury and injury crash rates on 100 roadway segments of I70 in one year at the micro level, and 

Boulieri et al. (2017) used the bivariate spatio-temporal model to analyze the yearly low severity 
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and high severity accidents of 7932 electoral wards in England from 2005-2013 considering only 

vehicle miles traveled (VMT). Both studies showed the superiority of the bivariate spatio-

temporal model to the univariate spatio-temporal model in terms of goodness of fit.  

In this study, we used the multivariate spatio-temporal Bayesian model to analyze the 

yearly county-level fatal, major injury, and minor injury crash frequencies in Iowa. The goal of 

this study was to accurately identify the long-term effects of economy and weather on crash 

frequency in Iowa and to explore the spatial and temporal correlations of crashes. Additionally, 

the counties were ranked to identify high-risk areas for safety improvement programs, as funding 

available for safety improvements are often limited and proper ranking can significantly 

influence the appropriate distribution of safety funding toward areas with more critical needs. 

Raw crash data-based ranking is easy to use but crude and inefficient (Miaou and Song, 2005). In 

Bayesian cases, one statistical ranking method is the posterior expected rank (PER), i.e. the 

posterior mean of the rank by ranking indicators (Miaou and Song, 2005). When rankings are the 

main interest, the PER method is recommended (Shen and Louis, 1998). The most common 

ranking indicator is crash rate, but crash rate considering crash cost by injury severity, called the 

“crash cost rate” in the following analysis, is strongly recommended when injury severity and 

associated costs are the main concerns (Miaou and Song, 2005). Thus, the PER of the crash cost 

rate would be used to rank the studied areas based on the predicted results of the multivariate 

spatio-temporal Bayesian model in this study.         

3.2 Data Description 

Traffic crash data of Iowa’s 99 counties from 2006 to 2015 were obtained from the Iowa 

Department of Transportation. Crashes were divided into five categories by severity: fatal, major 

injury, minor injury, possible injury/unknown, and property damage only. Fatal crashes, major 

injury crashes, and minor injury crashes were analyzed in this study, as these three types of 
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crashes often lead to significant economic loss and casualties. VMT data for each county in each 

year from 2006 to 2015 were downloaded from the website of the Iowa Department of 

Transportation (2016). In addition, unemployment rate data were downloaded from the website 

of Iowa Community Indicators Program (2016), and per capita personal income data were 

downloaded from the website of the U.S. Bureau of Economic Analysis (2016) of the U.S. 

Department of Commerce. Meanwhile, rainfall, snowfall, and the number of days with the 

minimum temperature higher than 32°F were downloaded from the website of the Iowa 

Environmental Mesonet (2017). These weather data are collected based on the daily climate 

observations from the National Weather Service’s Cooperative Observer Program. A summary 

of the variables is given in Table 3-1. All three crash types have over-dispersion, as their 

variances are much larger than their means.  Additionally, the highest correlation among the 

covariates was -0.338 (between snowfall and TH32). Thus, no explanatory variables showed 

strong positive or negative correlations.  

Table 3-1 Descriptive statistics of collected variables 

Variables Min. Median Mean Max. Std. Error 

Fatal crash 0 2 3.383 35 3.818 

Major injury crash 0 8 13.680 245 22.042 

Minor injury crash 1 23 49.060 894 93.742 

VMT (1,000,000 miles) 0.047 0.186 0.320 4.215 0.487 

Unemployment rate (%) 2.000 4.600 4.846 10.200 1.347 

Income ($10,000) 2.247 3.877 3.877 6.464 0.666 

Rainfall (inch) 17.850 38.610 38.390 64.99 8.570 

Snowfall (inch) 0 35 34.560 85.100 14.377 

TH32 (days) 174 221 222.6 272 15.733 

Note: VMT, vehicle miles traveled; TH32, number of days with minimum temperature higher than 

32°F. 

The Pearson correlations of three types of crashes are shown in Table 3-2. All three crash 

types were highly positively correlated. That is, locations where many fatal/major injury/minor 

injury crashes were observed likely also had many crashes of the other two types.  



41 

 

Table 3-2 Pearson correlation matrix of crashes 

 Fatal crash Major injury crash 

Major injury crash 0.837  

Minor injury crash 0.835 0.971 

 

The yearly county-level average fatal, major injury, and minor injury crash counts in 

Iowa are shown in Figure 3-1. A cluster of high fatal crash frequencies can be observed in the 

central counties around the dark red-shaded area, where the largest city in Iowa, Des Moines, is 

located. A cluster of low crash frequencies can be observed in the northern and southwestern 

regions of Iowa (lightly shaded areas). A cluster of comparatively higher numbers of major 

injury crashes can also be observed in the central counties. However, no obvious clustering 

trends can be observed for minor injury crashes. Next, spatial correlations of crashes are 

examined statistically.  

Moran’s I statistic is commonly used to test spatial correlations in traffic crash analyses 

(Guo et al., 2010; Quddus, 2008; Xie et al., 2014; Zeng and Huang, 2014). The global Moran’s I 

is defined as (Anselin, 1988):  

 𝐼 =
𝑛∑ ∑ 𝜔𝑖𝑗(𝑦𝑖−�̅�)(𝑦𝑗−�̅�)𝑖𝑖

∑ 𝜔𝑖𝑗𝑖≠𝑗 ∑ (𝑦𝑖−�̅�)
2

𝑖
 (3.1) 

where n is the total number of observations, 𝑦𝑖 and 𝑦𝑗 are the values of observation 𝑖 and 

observation 𝑗, �̅� is the average value of observations, and 𝜔𝑖𝑗 is the spatial weight between 

observations 𝑖 and 𝑗.  

Negative Moran’s I values indicate negative spatial autocorrelation, positive Moran’s I 

values indicate positive spatial autocorrelation, and zero indicates no spatial autocorrelation. The 

z-score of Moran’s I shows if the spatial autocorrelation is significant.  

The global Moran’s I statistics of crashes in each year from 2006 to 2015 were calculated 

using the “spdep” package (Bivand and Piras, 2015) in the R platform (R Core Team, 2016) with 
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queen continuity spatial weights, where counties with a shared border or vertex were considered 

neighbors. When areas were neighbors, the spatial weights were 1; otherwise, they were 0. The 

results are shown in Table 3-3. 

Fatal crashes and major injury crashes showed significant spatial autocorrelations in 

seven and six out of 10 years, respectively, at a 95% confidence level, but minor injury crashes 

did not show any significant spatial autocorrelations at a 95% confidence level in any year. 

Additionally, the P-values of fatal crashes and major injury crashes were much smaller than 

those for minor injury crashes. Thus, fatal crashes and major injury crashes were highly likely to 

be spatially correlated as compared to minor injury crashes. These trends may be site-specific. 

As an example, Aguero-Valverde and Jovanis (2006) found injury crashes to have a significant 

spatial correlation and fatal crashes to not be significantly correlated in counties of Pennsylvania. 

Although minor injury crashes did not show significant spatial autocorrelations, it does not mean 

the absence of spatial autocorrelation for minor injury crashes; they may still have weak spatial 

correlations. The different strengths of spatial autocorrelations imply that the three crash types 

may have different spatial model parameters.  

The temporal correlation was not directly tested, as there were only 10 time points for 

each crash type. However, as Figure 3-2 shows by the yearly state-level counts of all three 

crashes from 2006 to 2015, they all generally exhibited descending trends, with some dipping 

and heaving, and different descending rates.  
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Figure 3-1 County-level yearly average fatal, major injury, and minor injury crash counts (2006-

2015) 

Table 3-3 Global Moran's I statistics of crash counts in each year 

Year 
Fatal crash Major injury crash Minor injury crash 

Moran's I P-value Moran's I P-value Moran's I P-value 

2006 1.986 0.024* 1.752 0.041* 0.971 0.166 

2007 2.091 0.018* 1.555 0.060 1.141 0.127 

2008 1.520 0.064 0.688 0.246 0.871 0.192 

2009 1.661 0.048* 1.181 0.119 0.764 0.222 

2010 2.486 0.006* 1.586 0.056 1.106 0.134 

2011 1.919 0.027* 1.883 0.031* 1.101 0.136 

2012 1.240 0.108 2.017 0.022* 1.108 0.134 

2013 2.387 0.009* 2.218 0.013* 1.555 0.060 

2014 1.241 0.107 1.877 0.030* 1.252 0.105 

2015 2.300 0.011* 2.770 0.003* 1.468 0.071 

Note: * significant at P = 0.05. 
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Figure 3-2 Iowa state-level yearly crash counts (2006-2015) 

3.3 Methodology 

3.3.1 Statistical Framework 

The statistical framework used a Bayesian hierarchical architecture, including both the 

spatial, temporal, and spatio-temporal interaction components. The statistical model is presented 

in equations (2) and (3) (Ma et al., 2017):  

 𝑦𝑠𝑡𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑠𝑡𝑘) (3.2) 

 log(𝜆𝑠𝑡𝑘) = 𝛼𝑘 + 𝑋𝑠𝑡
𝑇 ∗ 𝛽𝑘 + υ𝑠𝑘 + 𝜈𝑠𝑘 + 𝜑𝑡𝑘 + 𝜃𝑡𝑘 + 𝜂𝑠𝑡𝑘 (3.3) 

where 𝑠 is the space number, i.e. county number in this case, 1,2,… 99; 𝑡 is the time 

point, i.e. year number in this case, 1 (2006), 2 (2007), …, 10 (2015); 𝑘 is the crash injury 

severity number, 1 (fatal crash), 2 (major injury crash), 3 (minor injury crash); 𝑦𝑠𝑡𝑘 is the crash 

count of injury severity 𝑘 of space 𝑠 in time 𝑡; 𝜆𝑠𝑡𝑘 is the mean crash frequency of injury severity 

𝑘 of space 𝑠 in time 𝑡; 𝛼𝑘 is the intercept term of crash type 𝑘; 𝛽𝑘(= 𝛽𝑘1, 𝛽𝑘2, … , 𝛽𝑘𝑚), is the m-

dimensional regression coefficient vector of crash type 𝑘, and 𝑚 is the number of covariates, i.e. 

6 in this case; 𝑋𝑠𝑡(= 𝑋𝑠𝑡1, 𝑋𝑠𝑡2, … , 𝑋𝑠𝑡𝑚) is the m-dimensional covariate vector of space 𝑠 in time 

𝑡; υ𝑠𝑘 is the structured spatial random effect of crash type 𝑘 in space 𝑠; 𝜈𝑠𝑘 is the unstructured 
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spatial random effect of crash type 𝑘 in space 𝑠; 𝜑𝑡𝑘 is the structured temporal random effect of 

crash type 𝑘 in time 𝑡; 𝜃𝑡𝑘 is the unstructured temporal random effect of crash type 𝑘 in time 𝑡; 

and 𝜂𝑠𝑡𝑘 is the spatio-temporal interaction effect of crash type 𝑘 in space 𝑠 and time 𝑡.  

The spatial component of each observation was consisted of two parts: υ𝑠𝑘 + 𝜈𝑠𝑘, while 

the temporal component also consisted of two parts: 𝜑𝑡𝑘 + 𝜃𝑡𝑘.  

3.3.1.1 Spatial component 

3.3.1.1.1 Univariate spatial model 

The spatial component of each observation, υ𝑠𝑘 + 𝜈𝑠𝑘, was assumed to follow the Besag-

York-Mollie (BYM) model (Besag et al., 1991). The BYM model has been proved to be 

powerful in traffic crash analysis (Aguero-Valverde and Jovanis, 2006; Boulieri et al., 2017; Ma 

et al., 2017; Wang et al., 2013; Xie et al., 2014). For the BYM model, the structured spatial 

effect, υ𝑠𝑘, is modeled using an intrinsic conditional autoregressive (ICAR) structure, and the 

unstructured spatial effect, 𝜈𝑠𝑘, follows a normal distribution.  

 υ𝑠𝑘|υ−𝑠𝑘 ~ 𝑁(
∑ υ𝑖𝑘𝑖∈𝑁(𝑠)

#𝑁(𝑠)
,
σ2𝜐

𝑘

#𝑁(𝑠)
) (3.4) 

 𝜈𝑠𝑘~𝑁(0, σ
2
𝜈
𝑘
) (3.5) 

where 𝑁(𝑠) are the neighbors of space 𝑠; #𝑁(𝑠) are the number of neighbors of space 𝑠 

and σ2𝜐
𝑘
 and σ2𝜈

𝑘
 are two independent variances of crash injury severity 𝑘 in space.  

Two counties adjacent to each other were considered to be neighbors; otherwise, they 

were not neighbors. The ICAR part accounted for unobserved heterogeneity produced by 

possible spatial correlations between counties, and the unstructured part was responsible for 

county-specific heterogeneity. In the univariate BYM (UBYM) model, both the structured and 

unstructured spatial effects across crash injury severities were assumed to be independent for 

each observation.  
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3.3.1.1.2 Multivariate spatial model 

The multivariate BYM (MBYM) model, shown in equations (6) and (7), is the extension 

of the BYM model in multivariate cases (Boulieri et al., 2017; Ma et al., 2017):  

 υ𝑠.|υ(𝑖≠𝑠). ~ 𝑁(
∑ υ𝑖.𝑖∈𝑁(𝑠)

#𝑁(𝑠)
,
Σ𝜐

#𝑁(𝑠)
)  (3.6) 

 𝜈𝑠.~𝑁(0, Σ𝜈) (3.7) 

where υ𝑠. = (υ𝑠1, υ𝑠2, υ𝑠3) is the 3-dimensional structured spatial random effects of space 

𝑠; 𝜈𝑠. = (𝜈𝑠1, 𝜈𝑠2, 𝜈𝑠3) is the 3-dimensional unstructured spatial random effects of space 𝑠; 𝑁(𝑠) 

are the neighbors of space 𝑠; #𝑁(𝑠) is the number of neighbors of space 𝑠; and Σ𝜐 and Σ𝜈 are 

two independent 3 ∗ 3 variance-covariance matrices in space. 

The MBYM model consisted of a multivariate ICAR component and a multivariate 

normal (MVN) component. Different from the univariate BYM model, both the structured and 

unstructured spatial random effects of each observation are correlated across crash injury 

severities. Thus, they could account for possible unobserved heterogeneity across crash injury 

severities in space for each observation.  

3.3.1.2 Temporal component 

3.3.1.2.1 Univariate temporal Model 

The structured temporal effect of each observation, 𝜑𝑡𝑘, was modeled with the 1st order 

random walk (RW1) structure. The unstructured temporal effect of each observation, 𝜃𝑡𝑘, 

followed a normal distribution. This temporal component was still called the RW1 model in the 

following analysis, although it actually consisted of an RW1 model and a random error term. The 

RW1 model was a special case of applying the ICAR model shown in Equation (3.4) in time. In 

the univariate RW1 model, both the structured and unstructured temporal effects across crash 

injury severities were assumed to be independent for each observation.  
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 𝜑𝑡𝑘|𝜑(−𝑡𝑘)~

{
 
 

 
 𝑁 (𝜑(𝑡+1)𝑘, 𝜎

2
𝜑
𝑘
)                             𝑓𝑜𝑟 𝑡 = 1

𝑁 (
𝜑(𝑡−1)𝑘+𝜑(𝑡+1)𝑘

2
,
𝜎2𝜑

𝑘

2
)                𝑓𝑜𝑟 𝑡 = 2,3, … ,9           

𝑁 (𝜑(𝑡−1)𝑘, 𝜎
2
𝜑
𝑘
)                           𝑓𝑜𝑟 𝑡 = 10

 (3.8) 

 𝜃𝑡𝑘~𝑁(0, σ
2
𝜃
𝑘
), (3.9) 

where σ2𝜑
𝑘
 and σ2𝜃

𝑘
 are two independent variances of crash injury severity 𝑘 in time. 

3.3.1.2.2 Multivariate temporal model 

The multivariate RW1 (MRW1) model is the extension of the RW1 model into 

multivariate cases (Boulieri et al., 2017; Ma et al., 2017) and is defined as: 

𝜑𝑡.|𝜑(−𝑡).~

{
 

 
𝑁(𝜑(𝑡+1)., Σ𝜑)                            𝑓𝑜𝑟 𝑡 = 1

𝑁 (
𝜑(𝑡−1).+𝜑(𝑡+1).

2
,
Σ𝜑

2
)           𝑓𝑜𝑟 𝑡 = 2,3, … ,9           

𝑁(𝜑(𝑡−1)., Σ𝜑)                          𝑓𝑜𝑟 𝑡 = 10

                                  (3.10) 

 𝜃𝑡.~𝑁(0, Σ𝜃) (3.11) 

where φ𝑡. = (φ𝑡1, φ𝑡2, φ𝑡3) is the 3-dimensional structured temporal random effects of 

time t; 𝜃𝑡. = (𝜃𝑡1, 𝜃𝑡2, 𝜃𝑡3) is the 3-dimensional unstructured temporal random effects of time 𝑡; 

and Σ𝜑 and Σ𝜃 are two independent 3 ∗ 3 variance-covariance matrices in time. 

The MRW1 model consists of a multivariate RW1 component and an MVN component. 

Different from the univariate RW1 model, both the structured and unstructured temporal random 

effects of each observation were also correlated across crash injury severities. Thus, they could 

account for possible unobserved heterogeneity across crash injury severities in time for each 

observation.  

3.3.1.3 Spatio-Temporal component 

The spatio-temporal interaction effect of each observation across crash injury severities, 

𝜂(𝑠𝑡)., was used to account for unobserved heterogeneity not explained by other components.  
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 𝜂(𝑠𝑡).~𝑁(0, Σ𝜂) (3.12) 

where 𝜂(𝑠𝑡). = (𝜂𝑠𝑡1, 𝜂𝑠𝑡2, 𝜂𝑠𝑡3) is the 3-dimensional spatial-temporal interaction effect of 

space s in time t; and Σ𝜂 is a 3 ∗ 3 variance-covariance matrix. 

The structure of Σ𝜂 could account for the rest possible correlations across crash injury 

severities for each observation. To select an appropriate model, there were four models built in 

this study, as shown in Table 3-4. 

Table 3-4 Summary of models developed in this study 

No Model 

Spatial component Temporal component 

Spatio-temporal 

component 

1 𝑆𝐵𝑌𝑀𝑇𝑅𝑊1 BYM RW1 MVN 

2 𝑆𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 BYM MRW1 MVN 

3 𝑆𝑀𝐵𝑌𝑀𝑇𝑅𝑊1 MBYM RW1 MVN 

4 𝑆𝑀𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 MBYM MRW1 MVN 

Note: BYM, Besag-York-Mollie; MBYM, multivariate BYM; RW1, 1st order random walk; 

MRW1, multivariate RW1; MVN, multivariate normal. 

 

3.3.2 Priors Settings 

All four models were built within the Bayesian hierarchical structure. The priors of 

parameters were set as:  

 𝛼𝑘~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−∞,+∞) (3.13) 

 β.𝑗 ~ 𝑁(0, Σ𝛽) (3.14) 

 σ2𝜐
𝑘
, σ2𝜈

𝑘
, σ2𝜑

𝑘
, σ2𝜃

𝑘
 
𝑖𝑖𝑑
~
 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 −  𝐺𝑎𝑚𝑚𝑎(1,0.0005) (3.15) 

   Σ𝛽 , Σ𝜐, Σ𝜈 , Σ𝜑 , Σ𝜃, Σ𝜂
𝑖𝑖𝑑
~
𝐼𝑛𝑣𝑒𝑟𝑠𝑒 −𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝐼3, 3) (3.16) 

where 𝑘(= 1,2,3) is the crash injury severity number; j(= 1,2,3,4,5,6) is the covariate 

number; β.𝑗(= (β1𝑗, β2𝑗 , β3𝑗)
𝑇
) is the regression coefficient vector of the 𝑗th covariate across 

crash injury severities;  Σ𝛽 is the variance-covariance matrix of the regression coefficients of 
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covariates across crash injury severities; σ2𝜐
𝑘
, σ2𝜈

𝑘
, σ2𝜑

𝑘
, and σ2𝜃

𝑘
 are independent variances 

of the structured spatial effects, unstructured spatial effects, structured temporal effects, and 

unstructured temporal effects in univariate models of crash injury severity 𝑘, respectively; Σ𝜐,

Σ𝜈 , Σ𝜑 , and Σ𝜃 are independent variance-covariance matrices of the structured spatial effects, 

unstructured spatial effects, structured temporal effects, unstructured temporal effects in 

multivariate models, respectively; Σ𝜂 is the variance-covariance matrix of spatio-temporal 

interaction effects; and 𝐼3 is the 3-dimension identity matrix. 

The regression coefficients (β.𝑗) were given a multivariate normal prior to accommodate 

their possible correlations across crash severities. A flat prior was set for intercept terms (𝛼.) to 

ensure identifiability of the model (MRC Biostatistics Unit, 2004). All the variances were set to 

have a minimally informative prior of an inverse Gamma distribution 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 −

 𝐺𝑎𝑚𝑚𝑎(1,0.0005) (Blangiardo et al., 2013), which also had been proved to be effective in our 

former study (Liu and Sharma, 2017). All the variance-covariance matrices were assigned an 

inverse-Wishart prior with the scale matrix being an identity matrix and the degree of freedom 

being 3 to provide weakly information.   

3.3.3 Initial Values Settings 

OpenBUGS, one popular Bayesian analysis software using Markov chain Monte Carlo 

(MCMC) simulation to estimate posterior distributions of parameters, was used in this study 

(Lunn et al., 2009). To start MCMC simulations, initial values have to be given for each 

unknown parameter and latent variables. Good initial values help MCMC simulation converge 

quickly to the true distributions of parameters, whereas bad initial values may make MCMC 

simulation converge slowly and even become stuck at some data points. When initial values are 

not given, OpenBUGS randomly generates initial values, which usually works after long MCMC 
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iterations. However, that was not the case in this study, as some variances and variance–

covariance matrices of some chains were often stuck at some points using the randomly 

generated initial values of OpenBUGS. Thus, the posterior distributions of parameters did not 

converge well. Finally, we ran the MCMC simulation twice. The results of the first MCMC 

simulation were used as the initial values for the second MCMC simulation, which converged 

very well. Based on the first MCMC simulation result, initial values of the second MCMC 

simulation were set as: σ2𝜐 = (
1

5
,

1

1500
,

1

1500
), σ2𝜈 = (

1

1800
,
1

5
,
1

600
), σ2𝜑 = (

1

2000
,

1

2000
,

1

2000
), 

σ2𝜃 = (
1

2000
,

1

2000
,

1

2000
), Σ𝜐

−1 = [
10 0 0
0 10 0
0 0 10

], Σ𝜈
−1 = [

10 0 0
0 10 0
0 0 10

], Σ𝜑
−1 =

[
11 0 0
0 11 0
0 0 11

], and Σ𝜃
−1 = [

18 0 0
0 18 0
0 0 18

].  

3.3.4 Model Checking and Comparison 

Deviance Information Criteria (DIC) is a generalized version of Akaike Information 

Criterion (AIC) for evaluating hierarchical models (Spiegelhalter et al., 2002). The deviance is 

defined as 𝐷(𝜃) = −2𝑙𝑜𝑔(𝑝(𝑦|𝜃)), where y is the data, 𝜃 is the unknown parameters, and 

𝑝(𝑦|𝜃) is the likelihood function. DIC is defined as (Spiegelhalter et al., 2002): 

 𝐷𝐼𝐶 = 𝐷(�̅�) + 2𝑝𝐷 = �̅� + 𝑝𝐷 (3.17) 

where �̅� is the posterior mean of the parameters; 𝐷(�̅�) is the deviance at the posterior 

mean of the parameters, a measure of data fit; 𝑝𝐷 is the effective number of the model, a 

measure of complexity computed as the difference between �̅� and 𝐷(�̅�); and �̅� is the mean of 

the sampled deviances from MCMC simulations. 

Bayesian models with smaller DIC values are desired. Models with smaller DIC values 

are expected to perform better. Roughly, differences of more than 10 might definitely rule out 
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the model with the higher DIC, differences between 5 and 10 are substantial, and differences less 

than 5 might mean that the models are not significantly different (MRC Biostatistics Unit, 2004).  

Although DIC can be used for model comparison, it cannot evaluate the quality of fit of 

the model and observed data. The posterior predictive density is often used for checking the 

assumptions of a model and its goodness-of-fit. Assume there is a test statistic 𝐷(𝑦, 𝜃), which is 

a summary function. If the model is correct, we can use the posterior predictive distribution to 

generate replicated values 𝑦𝑟𝑒𝑝, which are expected to be close to the observed data 𝑦𝑟𝑒𝑝. The 

test statistic is used to check the assumption under investigation and measure discrepancies 

between the data and the model (Gelman et al., 1996). Based on the posterior predictive 

distribution, the posterior predictive p-value is defined as (Meng, 1994) 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  𝑃(𝐷(𝑦𝑟𝑒𝑝, 𝜃) > 𝐷(𝑦𝑜𝑏𝑠, 𝜃)|𝑦𝑜𝑏𝑠)                          (3.18) 

P-values around 0.5 indicate that the distributions of the replicated and observed data are 

close, whereas values close to zero or one indicate differences between them (Gelman et al., 

1996). In this study, the mean values of crashes would be taken as the test statistic, as mean is the 

major parameter for a Poisson model.  

3.3.5 Random Effects Analysis 

3.3.5.1 Spatial fraction analysis 

For spatial analysis, one point of interest is to identify the contribution of the structured 

spatial effects, 𝜎𝜐
2, over the total marginal spatial variability, 𝜎𝜐

2 + 𝜎𝜈
2 (Boulieri et al., 2017). 

The spatial fraction of interest is given by  

 𝑓𝑟𝑎𝑐𝜐 =
𝜎𝜐

2

𝜎𝜐2+𝜎𝜈2
 (3.19) 

When it is close to 1, the structured spatial effects explain most of the variability of the 

model in space. Otherwise, the unstructured spatial random effects play the main role.  
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3.3.5.2 Temporal fraction analysis 

Similarly, the temporal fraction is defined as the variance of structured temporal effects 

𝜎𝜑
2 over the total marginal temporal variability 𝜎𝜑

2 + 𝜎𝜙
2: 

 𝑓𝑟𝑎𝑐𝜑 =
𝜎𝜑

2

𝜎𝜑2+𝜎𝜃
2
 (3.20) 

When it is close to 1, the structured temporal effects explain most of the variability of the 

model in time. Otherwise, the unstructured temporal random effects play the main role.  

3.3.5.3 Spatial and temporal effects comparison 

When both the spatial and temporal effects exist, it is also of interest to determine their 

relative importance. The relative importance of spatial effects is defined as the variance of spatial 

effects over the marginal variability of spatial and temporal effects:  

 𝑓𝑟𝑎𝑐 𝑆

𝑆+𝑇

=
𝜎𝜐

2+𝜎𝜈
2

𝜎𝜐2+𝜎𝜈2+𝜎𝜑2+𝜎𝜃
2  (3.21) 

3.3.6 PER by Total Crash Cost Rate  

In the “safety improvement candidate location” methods of Iowa (Pawlovich, 2007), the 

costs of fatal, major injury, and minor injury crashes were set as 200, 100, and 10 units, 

respectively. They were adopted to calculate the total crash cost rate as shown in equation (22), 

where crash rate was the crash count per million VMT. The PER using the predicted total crash 

cost rate as well as the crude rank using the crude total crash cost rates would be computed and 

compared, respectively. The county ranked as 1st had the largest total crash cost rate.  

𝑇𝑜𝑡𝑎𝑙 𝑐𝑟𝑎𝑠ℎ 𝑐𝑜𝑠𝑡 𝑟𝑎𝑡𝑒 = 𝐹𝑎𝑡𝑎𝑙 𝑐𝑟𝑎𝑠ℎ 𝑟𝑎𝑡𝑒 ∗ 200 +𝑀𝑎𝑗𝑜𝑟 𝑖𝑛𝑗𝑢𝑟𝑦 𝑐𝑟𝑎𝑠ℎ 𝑟𝑎𝑡𝑒 ∗ 100 +
𝑀𝑖𝑛𝑜𝑟 𝑖𝑛𝑗𝑢𝑟𝑦 𝑐𝑟𝑎𝑠ℎ 𝑟𝑎𝑡𝑒 ∗ 10                                                                             (3.22) 

 

3.4 Results 

All fours models were implemented in OpenBUGS in R (R Core Team, 2016) through 

“R2OpenBUGS” (Sturtz et al., 2005). OpenBUGS uses the Metropolis-Hastings algorithm to 
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sample data. Three simulation chains were run with 50,000 iterations for each chain, the first 

25,000 samples discarded as burn-in and the remaining 25,000 samples retained to get the 

posterior distributions of parameters with a thinning interval of 5. Thus, 5,000 samples were 

recorded per chain. On an Intel(R) Xeon(R) CPU at 3.70 GHz with 16 GB random access 

memory, it took about 3.5 hours to run each model. The trace plots of estimated parameters 

showed that posterior samples converged well after the burn-in iterations. In addition, the 

Gelman and Rubin’s convergence diagnostic, i.e. potential scale reduction factors of variables, 

were also calculated to check the convergence of multiple chains (Gelman and Rubin, 1992). The 

DIC values for the four models listed in Table 3-4 are shown in Table 3-5.  

Table 3-5 DIC values of four models 

No Model DIC 

1 𝑆𝐵𝑌𝑀𝑇𝑅𝑊1 14,330 

2 𝑆𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 8,519 

3 𝑆𝑀𝐵𝑌𝑀𝑇𝑅𝑊1 10,970 

4 𝑆𝑀𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 8,371 

Note: DIC, Deviance Information Criteria. 

 

Compared to the SBYMTRW1 model, the DIC values of both the SMBYMTRW1 and the 

SBYMTMRW1 models were much smaller. In addition, the DIC value of the SMBYMTMRW1 model 

was much smaller than that for the SMBYMTRW1 and the SBYMTMRW1 models. This implied that 

unobserved heterogeneity across crash injury severities existed in both space and time, thus the 

SMBYMTMRW1 model was preferred for this study. In addition, the posterior p-values of the mean 

values of fatal, major injury, and minor injury crashes were 0.500, 0.497, and 0.495, 

respectively, close to 0.5, which meant that the SMBYMTMRW1 model matched the data well. Mean 

and 95% credible interval (CI) values of estimated parameters of the SMBYMTMRW1 model are 

shown in Table 3-6.  
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Table 3-6 Estimated parameters of the 𝑆𝑀𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 model with all covariates 

Variables 

Fatal crash Major injury crash Minor injury crash 

Mean 95% CI Mean 95% CI Mean 95% CI 

Intercept 0.168 (–1.591, 1.630) 2.185* (1.212, 3.095) 3.028* (2.505, 3.611) 

Income 0.081 (–0.054, 0.228) –0.036 (–0.119, 0.053) 0.018 (–0.052, 0.085) 

Unemployment  

rate 0.037 (–0.029, 0.102) –0.055* (–0.103, –0.009) –0.062* (–0.092, –0.033) 

Rainfall –0.005 (–0.013, 0.003) 0.001 (–0.004, 0.006) 0.002 (–0.002, 0.005) 

Snowfall –0.002 (–0.006, 0.003) –0.001 (–0.004, 0.002) 0.000 (–0.002, 0.001) 

TH32 0.001 (–0.005, 0.008) 0.000 (–0.004, 0.004) 0.000 (–0.002, 0.002) 

VMT 0.732* (0.538, 0.903) 0.970* (0.746, 1.160) 1.132* (0.893, 1.301) 

𝜎2𝜐 0.305 (0.103, 0.644) 0.412 (0.116, 0.903) 0.491 (0.136, 1.088) 

𝜎2𝜈 0.124 (0.067, 0.203) 0.188 (0.100, 0.299) 0.231 (0.124, 0.362) 

𝑓𝑟𝑎𝑐𝜐 0.681 (0.383, 0.890) 0.651 (0.314, 0.889) 0.643 (0.305, 0.887) 

𝜎2𝜑 0.261 (0.081, 0.759) 0.253 (0.078, 0.708) 0.246 (0.078, 0.698) 

𝜎2𝜃 0.229 (0.074, 0.634) 0.214 (0.071, 0.576) 0.218 (0.072, 0.589) 

𝑓𝑟𝑎𝑐𝜑 0.527 (0.219, 0.816) 0.533 (0.228, 0.820) 0.525 (0.226, 0.809) 

𝑓𝑟𝑎𝑐 𝑆
𝑆+𝑇

 
0.487 (0.235, 0.718) 0.573 (0.314, 0.792) 0.618 (0.368, 0.813) 

𝜎2𝜂 0.047 (0.031, 0.067) 0.029 (0.022, 0.037) 0.018 (0.014, 0.022) 

Note: CI, credible interval; TH32, number of days with minimum temperature higher than 32°F; 

VMT, vehicle miles traveled; 𝜎2𝜐, 𝜎2𝜈, 𝜎2𝜑, 𝜎2𝜃, and 𝜎2𝜂 are variances; 𝑓𝑟𝑎𝑐𝜐 is the spatial 

fraction; 𝑓𝑟𝑎𝑐𝜑 is the temporal fraction; 𝑓𝑟𝑎𝑐 𝑆

𝑆+𝑇

 is the relative importance of spatial effects; 

*covariates significant at the 95% credible interval.  

 

3.4.1 Regression Coefficients Results 

The intercept term was insignificant for fatal crashes but was significant for major injury 

and minor injury crashes. As expected, VMT showed significant positive effects for all three 

crash types. In addition, both intercept and VMT coefficients increased as crash injury severity 

decreased, which was consistent with the magnitude of crash counts. 

Income was statistically insignificant for all three crash types, although income had 

generally increased for counties in Iowa from 2006 to 2015. Unemployment rate did not have 

significant effects on fatal crash counts but did have significantly negative effects on major 

injury and minor injury crash counts; that is, the number of major and minor injury crashes 

decreased as the unemployment rate increased. The unemployment rate has been thought to have 
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mixed effects on traffic crash frequencies (Leigh and Waldon, 1991; Wagenaar, 1983). On one 

hand, high unemployment is associated with more mental stress in the population, related to both 

job loss and fear of job loss, which could lead to more aggressive driving patterns and more 

traffic crashes (Wagenaar, 1983). On the other hand, high unemployment also brings with it less 

driving and thus fewer traffic crashes (Leigh and Waldon, 1991; Wagenaar, 1983). The latter 

seemed to predominate in Iowa, which was consistent with what was found in Michigan, where 

unemployment had negative effects on crash counts (Wagenaar, 1983).  

Rainfall, snowfall, and TH32 did not show significant effects on any crash type. 

Although these weather indicators had great variability within the time span studied, they were 

not related to traffic safety problems in the long term. Adverse weather, such as snowstorms and 

flooding, may result in more crashes in the short term but may also reduce people’s travel in the 

following time, leading to lower crash numbers. The two opposite effects seemed to offset each 

other.  

It should be noted that all regression coefficients were assumed to be fixed for this study 

as shown in equation (3). That is, the effects of covariates on crash frequencies were thought to 

be homogeneous over space and time. However, these effects might be heterogeneous in practice 

in the presence of spatial instability and temporal instability, where fixed parameters models 

might produce biased coefficient estimates and incorrect inferences (Mannering, 2018; 

Mannering et al., 2016). For example, snowfall might affect crash frequencies differently in rural 

areas and urban areas due to different travel demands and travel modes. Thus, spatio-temporal-

varying parameter models might be considered to get more accurate results in future studies.      

Because most covariates are found to be insignificant, the 𝑆𝑀𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 model is re-run 

with only significant variables, and the results were shown in Table 3-7. The posterior p-values 
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of the mean values of fatal, major injury, and minor injury crashes for the new model are 0.493, 

0.495, and 0.500 respectively, which meant it fitted the data well. Mean and 95% CI values of 

estimated parameters were found to be generally consistent with those shown in Table 3-6. 

Table 3-7 Estimated parameters of the 𝑆𝑀𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 model with significant covariates 

Variables 
Fatal crash Major injury crash Minor injury crash 

Mean 95% CI Mean 95% CI Mean 95% CI 

Intercept 0.685* (0.395, 0.983) 2.073* (1.726, 2.430) 3.153* (2.850, 3.468) 

Unemployment rate – – 

–

0.051* 

(–0.095, –

0.006) –0.060* (–0.092, –0.030) 

VMT 0.794* (0.594, 0.978) 1.039* (0.798, 1.251) 1.222* (0.954, 1.452) 

𝜎2𝜐 0.281 (0.098, 0.591) 0.366 (0.118, 0.847) 0.431 (0.136, 1.039) 

𝜎2𝜈 0.127 (0.070, 0.203) 0.192 (0.105, 0.297) 0.234 (0.130, 0.358) 

𝑓𝑟𝑎𝑐𝜐 0.662 (0.373, 0.878) 0.622 (0.322, 0.878) 0.614 (0.311, 0.878) 

𝜎2𝜑 0.248 (0.079, 0.695) 0.246 (0.078, 0.682) 0.244 (0.076, 0.707) 

𝜎2𝜃 0.213 (0.072, 0.565) 0.209 (0.071, 0.554) 0.200 (0.070, 0.519) 

𝑓𝑟𝑎𝑐𝜑 0.530 (0.225, 0.817) 0.533 (0.232, 0.818) 0.538 (0.241, 0.818) 

𝑓𝑟𝑎𝑐 𝑆
𝑆+𝑇

 
0.487 (0.246, 0.715) 0.563 (0.311, 0.781) 0.609 (0.356, 0.809) 

𝜎2𝜂 0.047 (0.031, 0.067) 0.029 (0.022, 0.037) 0.018 (0.014, 0.022) 

Note: CI, credible interval; VMT, vehicle miles traveled; 𝜎2𝜐, 𝜎2𝜈, 𝜎2𝜑, 𝜎2𝜃, and 𝜎2𝜂 are 

variances; 𝑓𝑟𝑎𝑐𝜐 is the spatial fraction; 𝑓𝑟𝑎𝑐𝜑 is the temporal fraction; 𝑓𝑟𝑎𝑐 𝑆

𝑆+𝑇

 is the relative 

importance of spatial effects; *covariates significant at the 95% credible interval.  

 

3.4.1 Random Effects Analysis 

3.4.1.1 Spatial random effects analysis 

For the 𝑆𝑀𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 model, the spatial fraction values of fatal, major injury, and minor 

injury crashes were 0.662, 0.622, and 0.614, respectively. This means that, for all three crash 

types, unobserved heterogeneity in space existed both between counties and within individual 

counties and the structured spatial effects played slightly more important roles than did the 

unstructured spatial effects. Shown in Figure 3-3 are the exponential posterior means of the 

structured spatial effects (exp(υ𝑠𝑘)) of each county for all three crash types; counties with 

exp(υ𝑠𝑘) lower than 1 tended to have fewer crashes and counties with exp(υ𝑠𝑘) greater than 1 
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tended to have more crashes. It is found that the counties located in the north and southwest 

regions of Iowa tended to have fewer fatal, major injury, and minor injury crashes. For fatal 

crashes, this finding is generally consistent with the empirically observed fatal crash distribution 

shown in Figure 3-1 (a). However, for major injury and minor injury crashes, it is not obvious to 

see these trends in Figure 3-1 (a) and (b). This finding is a good example showing that one main 

benefit of spatial analysis is to the identification of the underlying spatial clustering of crashes.  

 

Figure 3-3 Exponential posterior means of the structured spatial effect (𝑒𝑥𝑝(𝜐𝑠𝑘)) of crashes in 

Iowa 
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Moran’s I statistics of residuals of the 𝑆𝑀𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 model were calculated to see if they 

still had spatial correlations. As shown in Table 3-8, the residuals of fatal and major injury 

crashes did not show any significant spatial correlation at a 5% significance level for any year. In 

addition, the p-values were considerably larger than those shown in Table 3-3, which meant that 

unobserved heterogeneity in space was nearly completely covered by the spatial component. The 

P-values of Moran’s I test for the residuals of minor injury crashes also increased considerably in 

most years, which meant that the weak spatial autocorrelations of minor injury crashes were also 

eliminated. However, there were some exceptions in 2006, 2007, and 2011 for minor injury 

crashes, when the raw crash data did not show significant spatial autocorrelations, whereas their 

residuals showed significant spatial autocorrelations. It is thought that minor injury crashes 

might have trivial spatial autocorrelation in these three years but did have non-trivial spatial 

correlations in other years. However, because the 𝑆𝑀𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 model assigned fixed spatial 

random effects to the data for each year, the residuals would also have spatial effects as the 

complement in these three years. This needs further investigation to determine the true reason. 

This finding implies the importance of checking the necessity of adopting spatial models is crash 

analysis. We suggest making spatial tests before and after spatial analysis to justify the 

utilization of spatial models. In general, the spatial component covered nearly all unobserved 

heterogeneity of crashes in space. The results also generally verified the effectiveness of the 

spatial model. 
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Table 3-8 Moran's I test results for the residuals of the 𝑆𝑀𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 model 

Year 
Fatal crash Major injury crash Minor injury crash 

Moran's I P-value Moran's I P-value Moran's I P-value 

2006 -1.285 0.901 0.003 0.499 1.835 0.033* 

2007 -0.195 0.577 -0.944 0.828 3.434 0.000* 

2008 -0.912 0.819 -0.130 0.552 1.174 0.120 

2009 -0.647 0.741 0.865 0.194 0.096 0.462 

2010 0.660 0.255 1.323 0.093 -0.407 0.658 

2011 0.099 0.461 0.489 0.313 3.586 0.000* 

2012 0.232 0.408 -0.171 0.568 -0.789 0.785 

2013 0.495 0.310 -0.021 0.508 -1.019 0.846 

2014 -0.430 0.666 0.355 0.361 -0.669 0.748 

2015 -1.409 0.921 -0.285 0.612 -1.579 0.943 

Note: * significant at P = 0.05. 

 

3.4.1.2 Temporal random effects analysis 

For the 𝑆𝑀𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 model, the temporal fractional values of fatal, major injury, and 

minor injury crashes were 0.530, 0.533, and 0.538, respectively. The structured temporal effects 

and the unstructured temporal effects played nearly the same roles for all three crashes. Thus, 

unobserved heterogeneity in time existed both between years and in individual years. Shown in 

Figure 3-4 are the exponential posterior means of the structured temporal effects (exp(φ𝑡𝑘)) in 

each year for all three crash types. All three crash types generally showed descending trends 

from 2006 to 2015, whereas major injury and minor injury crashes had some fluctuations.  
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Figure 3-4 Exponential posterior means of the structured temporal effects (𝑒𝑥𝑝(𝜑𝑡𝑘)) of the 

𝑆𝑀𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 model 

3.4.1.3 Spatial and temporal random effects comparison 

The 𝑓𝑟𝑎𝑐 𝑆

𝑆+𝑇

 values of fatal, major injury, and minor injury crashes were 0.487, 0.563, 

and 0.609, respectively. This means that the temporal effects played slightly more important 

roles for fatal crashes, whereas spatial effects played slightly more important roles for major 

injury and minor injury crashes. That is, the relative importance of spatial effects and temporal 

effects varied slightly by crash injury severity.  

3.4.1.4 Unobserved heterogeneity across crash injury severities 

The estimated variance-covariance matrices for all the random effects and the 

corresponding 95% credible intervals of the 𝑆𝑀𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 model are shown in Table 3-9.  
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Table 3-9 Estimated covariance matrices of the 𝑆𝑀𝐵𝑌𝑀𝑇𝑀𝑅𝑊1 model 

Structured spatial effects (υ𝑠.) 
Σ𝜐 Fatal crash Major injury crash Minor injury crash 

Fatal crash 0.281 (0.098, 0.591)   

Major injury crash 0.235 (0.035, 0.594) 0.366 (0.118, 0.847)  

Minor injury crash 0.253 (0.035, 0.661) 0.322 (0.063, 0.850) 0.431 (0.136, 1.039) 

Unstructured spatial effects (𝜈𝑠.) 
Σ𝜈 Fatal crash Major injury crash Minor injury crash 

Fatal crash 0.127 (0.070, 0.203)   

Major injury crash 0.110 (0.046, 0.190) 0.192 (0.105, 0.297)  

Minor injury crash 0.121 (0.051, 0.207) 0.173 (0.082, 0.279) 0.234 (0.130, 0.358) 

Structured temporal effects (𝜑𝑡.) 
Σ𝜑 Fatal crash Major injury crash Minor injury crash 

Fatal crash 0.248 (0.079, 0.695)   

Major injury crash 0.001 (-0.223, 0.231) 0.246 (0.078, 0.682)  

Minor injury crash -0.003 (-0.235, 0.227) -0.009 (-0.257, 0.208) 0.244 (0.076, 0.707) 

Unstructured temporal effects (𝜃𝑡.) 
Σ𝜃 Fatal crash Major injury crash Minor injury crash 

Fatal crash 0.213 (0.072, 0.565)   

Major injury crash -0.002 (-0.193, 0.191) 0.209 (0.071, 0.554)  

Minor injury crash -0.003 (-0.182, 0.173) -0.007 (-0.186, 0.159) 0.200 (0.070, 0.519) 

Spatio-temporal interaction effects (𝜂(𝑠𝑡).) 

Σ𝜂 Fatal crash Major injury crash Minor injury crash 

Fatal crash 0.047 (0.031, 0.067)   

Major injury crash 0.002 (-0.007, 0.010) 0.029 (0.022, 0.037)  

Minor injury crash 0.000 (-0.005, 0.006) 0.006 (0.002, 0.010) 0.018 (0.014, 0.022) 
Note: values shown are the posterior mean with the 95% credible interval in parentheses; Σ𝜐, Σ𝜈 , Σ𝜑 , Σ𝜃 , Σ𝜂 are 

variance–covariance matrices of structured spatial effects, unstructured spatial effects, structured temporal effects, 

unstructured temporal effects, and spatio-temporal interaction effects, respectively.  

 

For the SMBYMTMRW1 model, unobserved heterogeneity across crash injury severities had 

three sources: space, time, and spatio-temporal interaction. All the off-diagonal elements of Σ𝜐 

and Σ𝜈 were significantly positive, which meant there were strong positive correlations across 

crash injury severities for both structured and unstructured spatial effects. That is, with the 

increase of fatal crash counts in one county, the major injury and minor injury crash counts of 

this county, and the fatal, major injury, and minor injury crash counts of its neighboring counties 

were also expected to increase. This proves the necessity of using multivariate spatial models 
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from another viewpoint. However, none of the off-diagonal elements of Σ𝜑 and Σ𝜃 were 

significantly different from zero, which implied that there were no strong correlations across 

crash injury severities for either structured or unstructured temporal effects. However, the DIC 

value of the SMBYMTMRW1 model was still much smaller than that for the SMBYMTRW1 model 

(shown in Table 3-5). This implies that, although crashes may not show strong correlations in 

time, their correlations may still not be ignored, as weak correlations may still explain some 

variability in the data. For the spatio-temporal interaction effects, major injury crashes showed 

significantly positive correlations with minor injury crashes, but fatal crashes did not show 

significant correlations with the other two crash types.   

For each observation, because Σ𝜐, Σ𝜈 , Σ𝜑, Σ𝜃 , 𝑎𝑛𝑑 Σ𝜂 are independent, the Pearson’s 

correlation coefficients of random effects across crash injury severities can be calculated as 

follows:  
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where 𝜌12 is the Pearson correlation coefficient of random effects between fatal and 

major injury crashes, 𝜌13 is the Pearson correlation coefficient of random effects between fatal 

and minor injury crashes, and 𝜌23 is the Pearson correlation coefficient of random effects 

between major injury and minor injury crashes. 

The posterior means and 90% credible intervals of Pearson correlation coefficients of 

random effects are shown in Table 3-10. The Pearson correlation coefficient between any two 
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crash types was significantly positive at a 90% credible interval, but the Pearson correlation 

coefficient between major injury and minor injury crashes was generally larger than the other 

two values. That is, major injury and minor injury crashes had a stronger correlation compared to 

fatal crashes, which was consistent with the Pearson correlation coefficients of crash counts 

shown in Table 3-2.  

Table 3-10 Pearson’s correlation coefficients of random effects across crash injury severities 

Pearson correlation Mean 90% CI 

𝜌12 0.357 (0.047, 0.605) 

𝜌13 0.366 (0.066, 0.605) 

𝜌23 0.453 (0.145, 0.689) 

Note: CI, credible interval; 𝜌12, 𝜌13, 𝜌23, Pearson correlation coefficients between fatal and 

major injury crashes, between fatal and minor injury crashes, and between major injury and 

minor injury crashes, respectively. 

 

 

3.4.2 Site Ranking Results Analysis 

The crude crash rates and the predicted crash rates for all three crash types, which were 

calculated by dividing the crash counts by VMT, are shown in Figure 3-5. A linear regression 

model was built to check their correlation.  

The 𝑅2 value was 0.929, which means that the crude crash rates were generally consistent 

with the predicted crash rates. Specifically, for major injury and minor injury crashes, these two 

rates were very consistent, but for fatal crashes, they were inconsistent. Major injury and minor 

injury crash counts were very large, but fatal crash counts were very small, as shown in Table 

3-1. Thus, occurrences of fatal crashes were more stochastic than major injury and minor injury 

crashes. It is thought that the multivariate structure could borrow information from major injury 

and minor injury crashes to estimate fatal crashes stably (Boulieri et al., 2017). Thus, the 

predicted data from the SMBYMTMRW1 model are expected to be smoother for unstable low-
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frequency fatal crashes, and could represent the underlying true distribution of fatal crashes 

better than the crude data could.  

The crash cost rates directly influenced the ranking results shown in Figure 3-6, where x-

axis showed the crude rank by the crude crash cost rate and y-axis showed the PER by the 

predicted crash cost rate. The two ranking methods produced consistent results for major injury 

and minor injury crashes but had large differences for fatal crashes, which led to different 

ranking results for total crashes. 

The top 10 risky counties using the two ranking methods are shown in Figure 3-7. Of the 

counties ranked by these two methods, seven appeared in the top 10 for both methods, whereas 

three counties appeared only in the top 10 of one or the other method; Lyon, Hamilton, and 

Mahaska Counties were in the top 10 list using the predicted crash cost rate PER but not in the 

crude crash cost rate ranking. Moreover, the rank orders of the seven counties appearing in both 

top 10 lists were also very different. For example, the highest ranked county by the crude crash 

cost rate, Marion County, was ranked only eighth by the PER of the predicted crash cost rate. 

The big differences between the two ranking methods show the importance of the multivariate 

spatio-temporal Bayesian model, which is expected to better identify the underlying true status 

quo of traffic safety. The top 10 risky counties shown in Figure 3-7 (b) should be the focus of 

future safety improvement programs. 
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Figure 3-5 Crude crash rate versus predicted crash rate of fatal, major injury, and minor injury 

crashes 

 

Figure 3-6 County rank by the crude crash cost rate versus county posterior expected rank by the 

predicted crash cost rate in 2015 
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Figure 3-7 Counties with the 10 highest crash cost rates using the two ranking methods 

 

3.5 Conclusions and Discussions 

Unobserved heterogeneity of crashes over space and time is often a big issue in crash 

frequency analysis. When multiple crashes are analyzed, correlations across crash types may also 

produce unobserved heterogeneity, which may exist in space, time, and space–time interactions. 

In this study, we used the multivariate spatio-temporal Bayesian model to analyze the yearly 
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county-level fatal, major injury, and minor injury crash counts in Iowa from 2006 to 2015. 

Income, rainfall, snowfall, and temperature did not have significant influences on the frequencies 

of any of the three crash types, whereas unemployment rate showed significantly negative 

influences on major injury and minor injury crash counts, and VMT showed significantly 

positive influences on all three crash types.  

All three crash types showed very strong spatial correlations. The counties located in 

northern and southwestern Iowa tended to have fewer crashes, whereas the remaining counties 

tended to have more crashes. All three crash types generally showed descending trends from 

2006 to 2015. Both spatial and temporal effects were non-negligible, and they played nearly the 

same roles for all three crash types with slight differences. In addition, all three crash types 

showed significantly positive correlations between each other across space but not across time. 

The crude data and the predicted data were generally consistent for major injury and minor 

injury crashes but were very different for fatal crashes, the crude data of which were more 

stochastic due to the low counts. The predicted data from the multivariate spatio-temporal model 

were smoother than were the crude data. The crash cost rates were calculated based on crash 

rates and crash costs by injury severity and were used as ranking indicators. Two ranking 

methods, crude rank by the crude crash cost rate and PER by the predicted crash cost rate, were 

presented to identify the counties with higher risks for traffic safety. The two methods produced 

very different ranking results, and the latter method was thought to be able to better represent the 

true status quo of traffic safety. The ranking results would be helpful for transportation agencies 

drawing up traffic safety improvement programs in the future.  

In future research, the data may be analyzed using smaller space and time scales, which 

would produce more targeted and practical findings. In addition, as shown in Table 3-3, the 
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spatial correlations of all three crashes were different in different years. That is, the spatial 

correlations may evolve dynamically over time. Similar situations may also appear in temporal 

correlations, whereby the descending rates of crashes in different counties may be different. 

Thus, dynamic spatio-temporal models should be considered in future studies. Meanwhile, in this 

study, only random effects were thought to be correlated in space and time, but regression 

coefficients might also be correlated in space and time. Thus, future researchers may want to 

consider spatio-temporal-varying coefficient models. It is suggested that the review by 

Mannering (2018) about temporal instability in accident analysis be consulted for more ideas. All 

the above-mentioned directions would need more data or more complex statistical models, so 

computation may be a big concern, especially when using MCMC simulation to estimate 

Bayesian models. Some emerging fast Bayesian estimation tools, such as integrated nested 

Laplace approximation (Rue et al., 2009), should be considered. As was shown in this study, care 

should also be taken in the selection of appropriate priors and initial values for MCMC 

simulations. Finally, for this study we adopted two common spatial and temporal models; 

however, there are many other spatial and temporal models available. Future researchers may 

also explore the effectiveness of other models in crash frequency analysis.  
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CHAPTER 4.    MULTIVARIATE RANDOM PARAMETERS ZERO-INFLATED 

NEGATIVE BINOMIAL REGRESSION FOR ANALYZING URBAN MIDBLOCK 

CRASHES 

A paper published on the Analytic Methods in Accident Research 

Abstract 

Urban midblock crashes are influenced mainly by traffic operation and roadway geometric 

features. In this paper, 10-year crash data from 1,506 urban midblock segments in Nebraska were 

analyzed using the multivariate random parameters zero-inflated negative binomial model to 

account for unobserved heterogeneity produced by correlations across segments, correlations 

across crash collision types, excessive zero crashes, and over dispersion. The multivariate 

random parameters zero-inflated negative binomial model was superior to many common crash 

frequency models in terms of both goodness of fit and prediction accuracy. Compared with the 

multivariate fixed parameters zero-inflated negative binomial model, the multivariate random 

parameters zero-inflated negative binomial model identified fewer key influencing factors and 

revealed segment-specific effects of these factors on different crash types. It also showed that the 

number of lanes, annual average daily traffic per lane, and segment length might have negative 

effects on crash frequencies. Segments with a speed limit of 45 mph had fewer crashes than did 

those with lower speed limits, and there were fewer crashes on the segments in Omaha than on 

those in Lincoln. It was also found that neither the presence of a shoulder, on-street parking, or 

one-way traffic, nor lane width had significant influences on crash frequencies. These findings 

are informative for transportation agencies to take correct and efficient measures to 

accommodate diverse transportation demands without reducing traffic safety.  

Keywords: unobserved heterogeneity, multivariate random parameters zero-inflated negative 

binomial model, crash frequency, urban midblock segments, Bayesian 
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4.1 Introduction 

Traffic crashes can be divided into junction crashes and non-junction crashes based on 

where they occur (National Center for Statistics and Analysis, 2017). Non-junction crashes, also 

referred to as midblock crashes, are crashes that occur on roadway segments. In 2015, they 

accounted for 41.7% of the total number of crashes and 63.3% of fatal crashes in the United 

States (National Center for Statistics and Analysis, 2017). Thus, reducing midblock crashes is 

critical for improving traffic safety. Although midblock crashes are usually not directly 

influenced by junctions, they are greatly influenced by traffic operation and roadway geometric 

factors, which are much more complex on urban roadways than on rural roadways. On one hand, 

urban roadway segments usually have large traffic volumes and face diverse traffic demands, 

which might increase crash opportunities; for example, an increase in the number of crosswalks 

might increase the frequency of pedestrian crashes. On the other hand, urban development might 

limit or even reduce available roadway space, which might also increase crash risk; for example, 

vehicle lanes may be narrowed to make room for biking lanes and on-street parking. This 

predicament requires transportation agencies to determine what traffic operation and roadway 

geometric factors really influence the frequency of urban midblock crashes so that they can take 

effective measures to accommodate traffic demands without reducing traffic safety.  

Previous studies have shown that important traffic operation and roadway geometric 

factors influencing midblock crashes include traffic volume (Bonneson and Mccoy, 1997; 

Dumbaugh, 2006; Ferreira and Couto, 2015; Greibe, 2003; Manuel et al., 2014; Zhang et al., 

2012), speed limit (Dumbaugh, 2006; Greibe, 2003; Pande et al., 2010), on-street parking 

(Bonneson and Mccoy, 1997; Greibe, 2003), lane width (Greibe, 2003; Manuel et al., 2014), 

median type (Bonneson and Mccoy, 1997; Sawalha and Sayed, 2001), median width 

(Dumbaugh, 2006), number of lanes (Dumbaugh, 2006; Greibe, 2003; Sawalha and Sayed, 
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2001), land use (Bonneson and Mccoy, 1997; Greibe, 2003; Sawalha and Sayed, 2001), 

pavement condition (Usman et al., 2010; Xiong et al., 2014; Zeng and Huang, 2014), access 

points (Lee et al., 2011; Zeng and Huang, 2014), and so on. However, studies’ findings have 

often been inconsistent, that is, some factors might have had different effects in different studies. 

For example, speed limit was found to be not significant for midblock crash frequencies on a 27-

mile urban arterial in Florida Department of Transportation District 5 (Dumbaugh, 2006), 

whereas it was the most important variable for midblock crash frequencies on a 19.659-mile 

corridor of U.S. Route 19 in Pasco County, Florida (Pande et al., 2010). This inconsistency 

implies that, in practice, the effects of some factors on crashes might be location specific. 

Ignoring this unobserved heterogeneity might produce biased and inefficient estimated 

parameters, leading to erroneous inferences and predictions (Mannering et al., 2016).  

One solution is to adopt random parameters count data models (Alarifi et al., 2017; Barua 

et al., 2016, 2015; Bhat et al., 2017; Chen and Tarko, 2014; Chen et al., 2017; Coruh et al., 2015; 

Lord and Mannering, 2010; Rista et al., 2017; Venkataraman et al., 2014). Compared to fixed 

parameters models assuming the same effects of factors on all observations, random parameters 

models can capture the observation-specific effects of factors on crash frequency and have also 

been widely applied in crash injury severity analyses (Anderson and Hernandez, 2017; Behnood 

and Mannering, 2017a, 2017b, 2016; Fountas and Anastasopoulos, 2017; Naik et al., 2016; 

Russo et al., 2014; Seraneeprakarn et al., 2017; Zhao and Khattak, 2017, 2015) and crash rate 

analyses (Anastasopoulos, 2016). Especially, for the data where one entity has multiple 

observations, such as panel data, group-specific random parameters models may be adopted to 

account for heterogeneity among groups (Sarwar et al., 2017; Wu et al., 2013). More details 

about random parameters formulations can be seen in the study by Mannering et al. (2016). 
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Crash data usually can be divided into multiple types based on different criteria. For 

example, midblock crashes can be divided based on the type of collision: rear-end crashes, right-

angle crashes, side-swipe (same direction) crashes, single-vehicle crashes, overturn crashes, and 

so on. A single factor might be expected to have different effects on different collision types, 

causing different outcomes. Thus, identifying the specific significant factor for each collision 

type is important for transportation agencies so they can take accurate countermeasures to reduce 

specific types of collision. When these crashes are jointly analyzed, multivariate count data 

models are necessary, as univariate models may produce biased and inefficient results because 

the unobserved heterogeneity often present across crash types is ignored (Dong et al., 2014a; 

Huang et al., 2008; Mannering et al., 2016). Most multivariate count data models in literature 

were derived from the multivariate Poisson log-normal (MVPLN) model (Aguero-Valverde and 

Jovanis, 2010; Barua et al., 2014; El-Basyouny and Sayed, 2009; Huang et al., 2017; Ma et al., 

2008; Osama and Sayed, 2017; Serhiyenko et al., 2016; Wang et al., 2018; Zhan et al., 2015; 

Zhao et al., 2017), which is flexible enough to accommodate various correlations among crash 

types, but it does not work well for crash data with excess zeros (Dong et al., 2014a). In addition 

to the multivariate Poisson log-normal model, the natural extensions of the Poisson and negative 

binomial (NB) models to multivariate data, i.e., the multivariate Poisson (MVP) model (Johnson 

et al., 1997; Ma and Kockelman, 2006) and the multivariate negative binomial (MVNB) model 

(Anastasopoulos et al., 2012; Chen et al., 2017), also have been used in some studies. The 

multivariate Poisson/negative binomial models assume positive correlations across crash types, 

but they cannot deal with crash data with excess zeros either, as the marginal distribution per 

crash type is still a Poisson/negative binomial model.  
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The zero-inflated models are often adopted for univariate count data with excess zeros 

(Lambert, 1992; Lord et al., 2005). The excess zeros in crash frequency data can be explained in 

two ways for zero-inflated models. One explanation is that there is a two-state crash-generating 

process: (i) a normal count state and (ii) an accident-free state, which can be thought of as a 

nearly safe state, with accidents occurring extremely rarely (Malyshkina and Mannering, 2010). 

The other explanation is that there is a two-state crash-reporting process: (i) one in which 

accidents did occur, but they were not reported for some reason, such as for minor crashes, 

which were not necessary to report, or hit-and-run crashes, i.e., a crash-underreporting state, and 

(ii) one in which all accidents that occurred were reported, i.e., a normal crash reporting state. 

This explanation applies to many scenarios, as crash underreporting has been found to be 

common in practice (Elvik and Mysen, 1999; Hauer and Hakkert, 1988; Lord and Mannering, 

2010; Yamamoto et al., 2008; Yannis et al., 2014). Both explanations may justify the application 

of zero-inflated models in our case, although it is difficult to determine what the truth is by 

observing the data. In cases for which crash observations at each level of classification are 

characterized with a significant number of zero occurrences, the zero-inflated versions of the 

multivariate Poisson and negative binomial models, i.e., the multivariate zero-inflated Poisson 

(MVZIP) model (Li et al., 1999) and the multivariate zero-inflated negative binomial (MVZINB) 

model, are recommended. In traffic safety studies, the multivariate zero-inflated Poisson model 

was first used to examine the crash frequency at signalized intersections in Tennessee, and it was 

found to perform better than the univariate zero-inflated Poisson (UZIP) and multivariate 

Poisson log-normal models in terms of goodness of fit and prediction accuracy (Dong et al., 

2014b). To account for over dispersion and unobserved heterogeneity across individual sites, 

Dong et al. (2014a) used the multivariate random parameters zero-inflated negative binomial 
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(MVRPZINB) model in another crash frequency study, for which random parameters were 

assumed for the count part. Later, Anastasopoulos (2016) also adopted the multivariate random 

parameters zero-inflated negative binomial model in a crash frequency analysis, for which 

random parameters were assumed for both the count part and the zero-state part. Thus, the model 

is more flexible. In both studies, it was found that random parameter models were superior to 

fixed parameter models in terms of goodness of fit and prediction accuracy.  

This paper presents the multivariate random parameters zero-inflated negative binomial 

model for analyzing urban midblock crashes by collision type. Here, midblock crashes refer to 

non-junction crashes that occurred on urban midblock segments bounded by signalized 

intersections. The objectives of this study were: (i) to identify important traffic operation and 

roadway geometric factors influencing urban midblock crash frequencies by collision type and 

(ii) to conduct a thorough review of the performance of the multivariate random parameters zero-

inflated negative binomial model in accounting for unobserved heterogeneity produced by 

correlations across crash types, correlations across sites, excess zeros, and over dispersion. The 

results demonstrate the superiority of the multivariate random parameters zero-inflated negative 

binomial model to many common crash frequency analysis models.  

 

4.2 Methodology 

4.2.1 The Multivariate Zero-Inflated Negative Binomial Model 

For an m-dimensional observation, 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑚), the MVNB model is defined as 

(Dong et al., 2014a):  

 {

𝑌1 = 𝑍1 + 𝑈
𝑌2 = 𝑍2 + 𝑈…
𝑌𝑚 = 𝑍𝑚 + 𝑈

      (4.1) 
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where 𝑚 is dimension of 𝑌, 𝑍1, 𝑍2,…, 𝑍𝑚 and 𝑈 are independent NB variables with 

respective means 𝜆10, 𝜆20, …, 𝜆𝑚0 and 𝜆00.  

An m-dimensional multivariate negative binomial model was constructed with (𝑚 + 1) 

independent negative binomial variables. The elements of 𝑌 are positively correlated with each 

other due to the presence of 𝑈, which is called the common negative binomial part in the 

following analysis. It can be proved that any marginal distribution of 𝑗 variables of 𝑌, where 𝑗 <

𝑚, is still a 𝑗-dimensional multivariate negative binomial model.  

The multivariate zero-inflated negative binomial model is an extension of the 

multivariate negative binomial model for multivariate zero-inflated data (Dong et al., 2014a; Li 

et al., 1999):  

 

(𝑌1, 𝑌2, … , 𝑌𝑚)

~(0,0, … ,0)  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦          𝑝0
~(𝑁𝐵(𝜆1),0, … ,0)  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦        𝑝1
~(0,𝑁𝐵(𝜆2),… ,0)  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦        𝑝2

⋮
~(0,0, … ,𝑁𝐵(𝜆𝑚))  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦        𝑝𝑚

~𝑀𝑉𝑁𝐵(𝜆10, 𝜆20, … , 𝜆𝑚0, 𝜆00)  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦       𝑝11

  (4.2) 

where 𝑝0 + 𝑝1 + 𝑝2 +⋯+ 𝑝11 = 1, 𝜆𝑗 = 𝜆𝑗0 + 𝜆00 for 𝑗 = 1,… ,𝑚, and the MVNB 

model has the same definition as in Equation (1).  

When Y follows the multivariate zero-inflated negative binomial distribution, the 

marginal distribution of 𝑌𝑗 is a univariate zero-inflated negative binomial model:   

𝑝(𝑌𝑗) = {

𝜋𝑗 + (1 − 𝜋𝑗)𝑒
−𝜆𝑗 ,   𝑌𝑗 = 0 

(1 − 𝜋𝑗)
𝜆𝑗
𝑦𝑗𝑒

−𝜆𝑗

𝑦𝑗!
,    𝑌𝑗 = 𝑦𝑗    

                                    (4.3) 

where 𝜋𝑗 = 1 − 𝑝𝑗 − 𝑝11, is the probability of extra zeros, and 𝜆𝑗 = 𝜆𝑗0 + 𝜆00, is the 

mean of the NB part.  
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4.2.2 The Multivariate Random Parameters Zero-Inflated Negative Binomial Regression 

Model 

A regression model was estimated to explore the influences of various factors on crash 

frequency. Since 10 years’ of data were collected for each segment, a segment-specific random 

parameters model was adopted to account for possible unobserved heterogeneity across segments 

due to the panel structure. For the 𝑖th observation, 𝜆𝑖 = (𝜆𝑖10, 𝜆𝑖20, … , 𝜆𝑖𝑚0, 𝜆𝑖00), the random 

parameters regression model is defined as:  

 𝜆𝑖𝑗0 = exp(𝛽𝑚𝑖𝑑𝑏𝑙𝑜𝑐𝑘[𝑖]𝑗𝑋𝑖) ∗ exp (휀𝑖𝑗) (4.4) 

 𝛽𝑚𝑖𝑑𝑏𝑙𝑜𝑐𝑘[𝑖]𝑗 = 𝛽𝑗 + 𝛿𝑚𝑖𝑑𝑏𝑙𝑜𝑐𝑘[𝑖] (4.5) 

 𝑝𝑖𝑗 =
exp (𝛾𝑗∗𝑋𝑖)

1+∑ exp (𝛾𝑗∗𝑋𝑖)
𝑚
𝑗=0

  (4.6) 

 p𝑖11 = 1 − ∑ 𝑝𝑖𝑗
𝑚
𝑗=0  (4.7) 

where 𝑛 is the number of data records; 𝑖 = 1,… , 𝑛; 𝑚 is the number of crash types; 𝑗 =

0,1, … ,𝑚; 𝑚𝑖𝑑𝑏𝑙𝑜𝑐𝑘[𝑖] = 1,… , 𝑛𝑔𝑟𝑜𝑢𝑝; 𝑛𝑔𝑟𝑜𝑢𝑝 is the number of midblock segments; 𝐾 is the 

number of covariates, 𝑘 = 1,… , 𝐾; β𝑗(= β𝑗0, β𝑗1, … , β𝑗𝐾) is the coefficient vector in the count 

part of crash type 𝑗; 𝛿𝑚𝑖𝑑𝑏𝑙𝑜𝑐𝑘[𝑖](= 𝛿𝑚𝑖𝑑𝑏𝑙𝑜𝑐𝑘[𝑖]0, 𝛿𝑚𝑖𝑑𝑏𝑙𝑜𝑐𝑘[𝑖]1, … , 𝛿𝑚𝑖𝑑𝑏𝑙𝑜𝑐𝑘[𝑖]𝐾) is the random 

distributed error vector of regression coefficients in the count part of each segment; X𝑖(=

1, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐾)
′ is the covariate vector of the 𝑖th observation; exp(휀𝑖𝑗) is a gamma-distributed 

error term; 𝛾𝑗(= 𝛾𝑗0, 𝛾j1, … , 𝛾𝑗𝐾) is the regression coefficient vector of the zero-inflation part of 

crash type 𝑗; and p𝑖(= p𝑖0, p𝑖1, … , p𝑖𝑚, p𝑖11) is the probability vector of the 𝑖th observation. 

In this study, the parameters of the zero-inflation part are still assumed to be fixed, 

whereas the parameters of the zero-inflation part are still assumed to be fixed. 
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4.2.3 Model Estimation 

The multivariate random parameters zero-inflated negative binomial model was 

estimated under the Bayesian framework with Markov-chain Monte Carlo (MCMC) simulation 

in JAGS (Just Another Gibbs Sampler) (Plummer, 2003). When conjugate priors were available, 

Gibbs sampling was used in JAGS. Otherwise, slicing sampling was used. R is a free 

programming language and software environment for statistical computing and graphics (R Core 

Team, 2016). JAGS was run in R using the ‘runjags’ package (Denwood, 2016), by which the 

parallel computation could be easily realized.  

4.2.3.1 Prior distribution setting 

Bayesian estimation requires prior distributions for the targeted unknown parameters, i.e. 

β𝑗’s, 𝛿𝑚𝑖𝑑𝑏𝑙𝑜𝑐𝑘[𝑖]’s, and 𝛾𝑗 ’s in this case. In this study, the priors were set as:  

 β𝑗 ~ 𝑀𝑉𝑁(0, Σ𝛽
𝑗
) (4.8) 

 𝛿𝑚𝑖𝑑𝑏𝑙𝑜𝑐𝑘[𝑖] ~ 𝑀𝑉𝑁(0, Σ𝛿) (4.9) 

  exp(휀𝑖𝑗)
𝑖𝑖𝑑
~
𝐺𝑎𝑚𝑚𝑎(1/𝑎𝑖𝑗, 1/𝑎𝑖𝑗) (4.10) 

 𝑎𝑖𝑗 ~ 𝐺𝑎𝑚𝑚𝑎(1000, 1000) (4.11) 

  γ𝑗 ~ 𝑀𝑉𝑁(0, Σ𝛾
𝑗
)  (4.12) 

 Σ𝛽
𝑗
, Σ𝛿 , Σ𝛾

𝑗
 
𝑖𝑖𝑑
~
 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 −  𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝐼𝐾+1, 𝐾 + 1) (4.13) 

where Σ𝛽
𝑗
, Σ𝛿 , Σ𝛾

𝑗
 are variance–covariance matrices, 𝐼 is the identify matrix, and exp(휀𝑖𝑗) is set to 

have the same shape and rate parameter. This made the prediction easy, because the mean of 

exp(휀𝑖𝑗) was now one. 

4.2.3.2 MCMC setting 

Theoretically, the accuracy of estimated parameters would increase with the increase of 

sampling data, but the computing time would also increase. As a trade-off, three simulation 

chains were used with 35,000 iterations for each chain. The first 10,000 iterations were discarded 
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as warmup, and the next 25,000 iterations were used for parameter estimation with a thin interval 

of 5. Thus, 5,000 samples were produced for each chain. The initial values were randomly 

produced by JAGS. The trace plots and potential scale reduction factors of estimated parameters 

were checked to judge whether the posterior samples converged well. In addition, parallel 

computation was used to accelerate the MCMC process.  

4.2.4 Model Checking and Comparison 

4.2.4.1 Goodness of fit 

Deviance information criteria (DIC) is a generalized version of Akaike Information 

Criterion (AIC) for evaluating hierarchical models (Spiegelhalter et al., 2002). Deviance is 

defined as 𝐷(𝜃) = −2𝑙𝑜𝑔(𝑝(𝑦|𝜃)), where y is the data, 𝜃 represents unknown parameters, and 

𝑝(𝑦|𝜃) is the likelihood function. DIC in JAGS was defined as (Plummer, 2002): 

 𝐷𝐼𝐶 = �̅� + 𝑝𝐷 (4.14) 

𝑝𝐷 = 𝐸 [𝐸𝑌𝑟𝑒𝑝|𝜃0 [𝑙𝑜𝑔 {
𝑝(𝑌𝑟𝑒𝑝|𝜃

0)

𝑝(𝑌𝑟𝑒𝑝|𝜃1)
}]]                                           (4.15) 

where �̅� is the mean of the sampled deviances from simulations, 𝑝𝐷 is the effective 

number of parameters, 𝜃0 and 𝜃1 are two independent samples from the posterior distribution of 

𝜃, 𝑌𝑟𝑒𝑝 is an independent replicate data set derived from the same data-generating mechanism as 

the observed data. The definition of 𝑝𝐷 in JAGS (Plummer, 2002) is slightly different from the 

one from Spiegelhalter et al. (2002), where 𝑝𝐷 = �̅� − 𝐷(�̅�), and �̅� is the expectation of 𝜃.  

�̅� is a measure of how well the model fits the data, whereby a smaller �̅� value means the 

model fits the data better. 𝑝𝐷 shows the diffusion of posterior samples (Plummer, 2002). The 

larger the 𝑝𝐷, the more diffuse the posterior samples. It is a measure of model complexity, 

whereby a smaller 𝑝𝐷 value means the model is less complex. Thus, DIC is a generalized 

penalized expected deviance of Akaike Information Criteria in Bayesian analysis. Bayesian 
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models with smaller DIC values are desired. Roughly, differences of more than 10 might 

definitely rule out the model with the higher DIC, differences between 5 and 10 are substantial, 

and differences less than 5 might mean that the models are not  

4.2.4.2 Prediction accuracy 

Although DIC could be used for model comparison, it cannot evaluate the quality of fit of 

the model to the observed data. Root mean square error (RMSE) of prediction was used to 

evaluate the prediction accuracy of models. Similar to DIC, smaller RMSE values are desired.  

 𝑅𝑀𝑆𝐸 = √
1

𝑛0
∑ (𝑂𝑗 − 𝑃𝑗)

2𝑛0
𝑗=1  (4.16) 

where 𝑂𝑗 is the 𝑗th observation value, 𝑃𝑗 is the predicted 𝑖th value from the model, and 

𝑛0 is the number of observations.  

4.3 Data Description 

Yearly crash frequency data per direction for 1,506 urban midblock segments in Lincoln 

and Omaha, Nebraska from 2003 to 2012 were collected from the Nebraska Department of 

Roads. Originally, these midblock segments were selected by a technical committee from the 

Nebraska Department of Roads to investigate the effects of narrow lane width on urban roadway 

safety (Sharma et al., 2015), for which researchers focused mainly on regular vehicle crashes, 

and thus excluded animal crashes, alcohol-related crashes, crashes caused by road surface 

conditions, and heavy vehicle crashes. Sideswipe (same direction) and rear-end crashes made up 

18.9% and 57.5% of the crash data, respectively, whereas most of the remaining crashes were 

recorded as not applicable. Thus, crashes were classified into three major types: sideswipe (same 

direction) crashes, rear-end crashes, and other crashes. The first two crash types were the focus 

of this study, but other crashes were still used in the modeling analysis, as it was believed that 

they might have some underlying correlations to the first two crash types, and could be utilized 
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to better explore the characteristics of sideswipe (same direction) and rear-end crashes in 

multivariate models.  

In addition to crash data, many traffic operation and roadway geometric data were also 

collected by field study and measurements in Google Earth. A summary of collected variables is 

given in Table 4-1. Each midblock segment was homogenous with respect to annual average 

daily traffic per lane, number of through lanes, median type, left-turn treatment, and other key 

factors. The annual average daily traffic per lane per direction for each segment was obtained 

from the Nebraska Department of Roads. The lane widths of these segments included 9-ft, 10-ft, 

11-ft, and 12-ft widths, and 12-ft width was used as the baseline lane width in modeling. The 

speed limits for these segments included 25 mph, 35 mph, 40 mph, and 45 mph, and 25 mph was 

used as the baseline speed limit in modeling. These segments were also classified into four 

groups by the National Functional Classification (NFC) system (Federal Highway 

Administration, 2013): NFC-14, urban principal arterial–other connecting link; NFC-15, urban 

principal arterial–other non-connecting link; NFC-16, urban minor arterial; and NFC-17, urban 

collector. NFC-17 was used as the baseline roadway class in modeling.  

Variances of all three crash types were larger than their means (Table 4-1), implying 

over-dispersion existed for all of them. The percentages of zero values of sideswipe (same 

direction), rear-end, and other crashes were 81.4%, 65.2%, and 77.6%, respectively, larger than 

the expected probabilities of zero values (78.7%, 48.5%, and 74.1%) of Poisson distributions 

with the means 0.240, 0.724, and 0.300, respectively. This indicated that excess zeros existed for 

all three crash types, which also could be visualized in the histograms of crash data in Figure 4-1.      
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Table 4-1 Descriptive statistics of collected variables 

Name Description Mean Std. err. Min. Max. Zero-proportion 

Response variables  

Sideswipe (same 

direction) 

Number of sideswipe (same 

direction) crashes per direction 

per segment per year 

0.240 0.568 0 9 

81.4% 

Rear-end 

Number of rear-end crashes 

per direction per segment per 

year 

0.724 1.576 0 43 

65.2% 

Others 
Number of rest crashes per 

direction per segment per year 
0.300 0.641 0 8 

77.6% 

Independent variables      

Number of lanes Number of through lanes 1.929 0.005 1 6  

Annual average 

daily traffic per lane 
1,000 vehicles 5.668 0.019 0.100 

13.97

5 

 

Segment length Miles 0.363 0.002 0.025 2.003  

Shoulder indicator 1, shoulder exists (25.4%); 0, no shoulder (74.6%) 

Median indicator 1, median exists (79.5%); 0, no median (20.5%)  

On-street parking 

indicator 
1, on-street parking exists (5.6%); 0, no on-street parking (94.4%) 

Central business 

district indicator  

1, in central business district (6.1%); 0, out of central business 

district (93.9%) 

 

One-way road 

indicator 
1, roadway is one-way (3.7%); 0, roadway is two-way (96.3%) 

 

Lane width Feet (ft): 9 ft (3.1%); 10 ft (15.5%); 11 ft (29.8%); 12 ft (51.6%)   

Lane width – 9 ft 

indicator 
1, lane width is 9 ft; 0, otherwise 

Lane width – 10 ft 

indicator  
1, lane width is 10 ft; 0, otherwise 

 

Lane width – 11 ft 

indicator 
1, lane width is 11 ft; 0, otherwise 

 

Speed limit Mph: 25 (6.0%); 35 (32.6%); 40 (30.7%); 45 (30.7%)  

Speed limit – 35 

mph indicator 
1, speed limit is 35 mph; 0, otherwise 

 

Speed limit – 40 

mph indicator 
1, speed limit is 40 mph; 0, otherwise 

 

Speed limit – 45 

mph indicator 
1, speed limit is 45 mph; 0, otherwise 

 

National functional 

classification (NFC) 

NFC-14: urban principal arterial–other connecting link, 13.9%; 

NFC-15: urban principal arterial–other non-connecting link, 37.6%; 

NFC-16: urban minor arterial, 41.2%; 

NFC-17: major collector, 7.3%. 

 

NFC-14 indicator 1, segment belongs to NFC-14; 0, otherwise  

NFC-15 indicator 1, segment belongs to NFC-15; 0, otherwise  

NFC-16 indicator 1, segment belongs to NFC-16; 0, otherwise  

City indicator 1, Omaha (68.3%); 0, Lincoln (31.7%)  



86 

 

 

 

Figure 4-1 Histogram of sideswipe (same direction), rear-end, and other crashes from 2003 to 

2012 

 

4.4 Results and Discussions 

Out of the 10 years of data, data from 2003 to 2011 were used for the model estimation, 

and the 2012 data were used for prediction.  

4.4.1 Model Comparison 

In addition to the multivariate random parameters zero-inflated negative binomial model, 

the multivariate Poisson log-normal model, the univariate random parameters zero-inflated 

Poisson model, the univariate random parameters zero-inflated negative binomial model, the 
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multivariate zero-inflated Poisson model, the multivariate zero-inflated negative binomial model, 

and the multivariate random parameters zero-inflated Poisson model were also estimated for 

comparison. The DIC and RMSE values of these models are shown in Table 4-2.  

Table 4-2 DIC and RMSE values of all the estimated models 

Model 

  

DIC  

RMSE 

�̅� 𝑝𝐷 

Sideswipe (same 

direction) 

Rear-

end Other 

MVPLN 51,939 6,480 58,419 0.500 1.345 0.582 

MVP 66,342 1,870 68,212 0.507 1.336 0.583 

MVNB 51,114 10,210 61,324 0.498 1.338 0.575 

MVZIP 61,020 64 61,084 0.487 1.311 0.564 

MVZINB 50,293 2,468 52,761 0.487 1.307 0.573 

URPZIP 49,375 14,706 64,081 0.474 1.146 0.551 

URPZINB 45,775 12,608 58,383 0.473 1.147 0.550 

MVRPZIP 53,855 912 54,767 0.472 1.147 0.553 

MVRPZINB 46,821 2,937 49,758 0.471 1.138 0.552 

Note: DIC, Deviance information criteria; RMSE, root mean square error; �̅�, mean of the sampled 

deviances from Markov-chain Monte Carlo simulations; 𝑝𝐷, effective number of parameters in 

the model; MVPLN, multivariate Poisson log-normal; MVP, multivariate Poisson; MVNB, 

multivariate negative binomial; MVZIP, multivariate zero-inflated Poisson; MVZINB, 

multivariate zero-inflated negative binomial; URPZIP, univariate random parameters zero-inflated 

Poisson; URPZINB, univariate random parameters zero-inflated negative binomial; MVRPZIP, 

multivariate random parameters zero-inflated Poisson; MVRPZINB, multivariate random 

parameters zero-inflated negative binomial. 

 

 

From Table 4-2, the following observations can be made:  
 

1. DIC and RMSE values of the multivariate random parameters zero-inflated negative 

binomial model were generally much lower than those of all the other models, showing its 

superiority. 

2. Compared to the multivariate Poisson/negative binomial models, the multivariate zero-

inflated Poisson/negative binomial models had much smaller DIC and RMSE values, 

respectively, which shows the superiority of multivariate zero-inflated models for analyzing the 

multivariate crash data with excess zeros.  
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3. Compared to the multivariate zero-inflated Poisson/negative binomial models, the 

multivariate random parameters zero-inflated Poisson/negative binomial models showed much 

better performance in terms of DIC and RMSE. Although the multivariate zero-inflated 

Poisson/negative binomial models had lower 𝑝𝐷 values, their �̅� values were much higher. This 

means that the multivariate random parameters zero-inflated Poisson/negative binomial models 

are more complex but fit the data much better. The result is straightforward, as the random 

parameters models allow estimated parameters to vary across segments to account for 

unobserved heterogeneity. This flexibility improves the model’s ability to fit the data. This 

finding reiterates that the unobserved heterogeneity across observations in crash analyses may 

not be ignored (Mannering et al., 2016).  

4. The RMSE values of the univariate random parameters zero-inflated Poisson/negative 

binomial models and the multivariate random parameters zero-inflated Poisson/negative 

binomial models were similar, but the latter models had much lower DIC values. The univariate 

random parameters zero-inflated Poisson/negative binomial models had relatively lower �̅� but 

much higher 𝑝𝐷 values, which indicated that they fit the data better but were more complex. As 

mentioned above, the multivariate models could account for unobserved heterogeneity across 

crash types. By borrowing from the strength of between-crash correlations, multivariate models 

could estimate parameters more accurately than univariate models. This result shows the 

importance of multivariate modeling in analysis of multiple crash types. 

5. All the negative binomial models had much lower DIC values than did their 

corresponding Poisson models, but their RMSE values were very close, such as the multivariate 

random parameters zero-inflated Poisson model versus the multivariate random parameters zero-

inflated negative binomial model. Considering that the only difference between the negative 
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binomial models and their Poisson counterparts was that the negative binomial models had 

dispersion parameters but the Poisson models did not, the results suggest that the estimated 

parameters of the Poisson and negative binomial models were similar except for the dispersion 

parameters. The negative binomial models fit the data much better, as they could account for 

over dispersion of crash data. The results highlight that, although random parameters and zero-

inflated models can also account for over dispersion to some degree, they might not cover all of 

it. It may be still necessary to specifically take over dispersion into account in crash frequency 

analyses.  

6. The most popular multivariate count data model, the multivariate Poisson log-normal 

model, performed worse than the multivariate zero-inflated negative binomial model did in terms 

of both DIC and RMSE. Because Dong et al. (2014b) showed that the multivariate zero-inflated 

Poisson model was superior to the multivariate Poisson log-normal model for their dataset, it was 

believed that the multivariate zero-inflated count data models were competitive alternatives to 

the multivariate Poisson log-normal model for analyzing the multivariate zero-inflated data. 

In general, as shown in Table 4-2, unobserved heterogeneity stemmed from the 

correlations across crash types, the correlations across segments, excess zeros, and over 

dispersion for the studied dataset, and none of them can be ignored. The multivariate random 

parameters zero-inflated negative binomial model was superior to other models as it could 

account for various unobserved heterogeneities.  

Because many independent variables were found to be not significant for the multivariate 

random parameters zero-inflated negative binomial model, it was re-run after removing those 

nonsignificant variables, and the results are discussed in the following analysis. 
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4.4.2 Parameter Interpretation 

The means and 95% credible intervals of the estimated parameters of sideswipe (same 

direction), rear-end, and other crashes count parts of the multivariate random parameters zero-

inflated negative binomial model and the multivariate zero-inflated negative binomial models are 

shown in Table 4-3 and Table 4-4, respectively. For the multivariate random parameters zero-

inflated negative binomial model, if the standard deviation of parameter density function is 

statistically not significant, that parameter would be fixed. Probabilities of estimated parameters 

being negative and average marginal effects of the multivariate random parameters zero-inflated 

negative binomial model are shown in Table 4-5 and Table 4-6, respectively. Only significant 

variables are shown in these tables, and only the variables with both means and standard 

deviations significant were considered to be significant.    

Number of lanes showed significant effects only for sideswipe (same direction) crashes. 

When the number of lanes increased, 89.6% of segments had more sideswipe (same direction) 

crashes, and on average, the number of sideswipe (same direction) crashes increased 40.9% with 

a one lane increase. This finding is reasonable, as with more lanes, vehicles have more 

opportunities to travel parallel to each other on segments. In addition, 10.4% of segments tended 

to have fewer sideswipe (same direction) crashes with an increase in the number of lanes. 

Number of lanes did not show significant effects on rear-end or other crash types. Although more 

lanes might bring more traffic, drivers also have more space to maneuver to avoid crashes and 

they may also drive more carefully. Thus, these effects might offset each other.  
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Table 4-3 Posterior summary (means and 95% credible intervals) of estimated parameters of the 

count part of the multivariate random parameters zero-inflated negative binomial model  

Variables 
Sideswipe (same 

direction) crashes 
Rear-end crashes Other crashes 

Number of lanes 0.343 (0.063, 0.623) - - 

SD 0.272 (0.203, 0.349) - - 

Annual average daily 

traffic per lane 0.070 (0.012, 0.121) 0.210 (0.169, 0.256) - 

SD 0.147 (0.122, 0.171) 0.145 (0.120, 0.171) - 

Median indicator 
–0.356 (–0.530, –

0.146) - 

–0.339 (–0.518, -

0.203) 

SD 0.368 (0.255, 0.520) - 0.381 (0.264, 0.536) 

Speed limit – 45 mph 

indicator 

–0.735 (–0.943, –

0.506) 

–0.417 (–0.573, –

0.200) 

–0.414 (–0.579, –

0.252) 

SD 0.388 (0.248, 0.511) 0.437 (0.305, 0.579) 0.382 (0.271, 0.528) 

NFC-15 indicator 
–0.276 (–0.464, –

0.099) 

–0.229 (–0.462, –

0.027) 

- 

SD 0.348 (0.216, 0.500) 0.471 (0.285, 0.649) - 

NFC-16 indicator 
–0.543 (–0.715, –

0.366) 

–0.269 (–0.411, -

0.097) 

- 

SD 0.367 (0.259, 0.501) 0.341 (0.257, 0.426) - 

City indicator 
–0.564 (–0.728, –

0.378 

–0.816 (–0.971, –

0.681) 

–0.632 (–0.778, –

0.481) 

SD 0.348 (0.249, 0.459) 0.457 (0.301, 0.579) 0.394 (0.275, 0.509) 

Constant 
–1.635 (–2.269, –

0.889) 

–1.183 (–1.783, –

0.597) 

–0.553 (–0.889, –

0.538) 

SD 0.426 (0.245, 0.600) 0.455 (0.253, 0.699) 0.403 (0.272, 0.582) 

# of significant 

variables 8 6 4 

Note: SD: standard deviation of parameter density function; NFC, national functional 

classification; values are the posterior means; values in parentheses show the 95% credible 

intervals; “-”, insignificant variables at the 95% credible level; shoulder indicator, on-street 

parking indicator, central business district indicator, segment length, one-way indicator, lane width 

(9 ft, 10 ft, and 11 ft) indicators, speed limit - 35 mph indicator, speed limit - 40 mph indicator, 

and NFC-14 indicator were not significant variables at the 95% credible level for any crash type. 

 

Annual average daily traffic has been widely found to have a positive effect on crash 

frequency when it is assumed to have a fixed effect (Bonneson and Mccoy, 1997; Dong et al., 

2014a, 2014b; Ferreira and Couto, 2015; Greibe, 2003; Zhang et al., 2012); however, this may 

not always be true. In this study, annual average daily traffic per lane showed a significant 

influence on the number of sideswipe (same direction) and rear-end crashes. The estimated 
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parameters were normally distributed with a mean of 0.070 (standard deviation of parameter 

density function = 0.147) for the sideswipe (same direction) crash and a mean of 0.210 (standard 

deviation of parameter density function = 0.145) for the rear-end crash. On average, the numbers 

of sideswipe (same direction) and rear-end crashes increased by 7.3% and 23.4%, respectively, 

as annual average daily traffic per lane increased by 1,000 vehicles. Even though the number of 

sideswipe (same direction) and rear-end crashes increased for most segments with an increase of 

annual average daily traffic per lane, these numbers decreased for 31.7% and 7.4% of segments, 

respectively. Although an increase in annual average daily traffic per lane increases crash 

opportunities, it could also provide some underlying safety effects, such as more cautious 

driving, intensive traffic enforcement, and advanced traffic control devices, which could offset 

the increased crash risk. Thus, the increase in annual average daily traffic per lane did not 

necessarily increase the number of crashes. However, this does not mean that crash frequencies 

would not increase or even decrease with a continuing increase of annual average daily traffic 

per lane. A summary of annual average daily traffic per lane by crash types and signs of 

estimated regression coefficients is shown in Table 4-7. The segments with positive coefficients 

for annual average daily traffic per lane generally had much higher annual average daily traffic 

per lane than did those with non-positive coefficients. That is, for segments already with very 

high annual average daily traffic per lane, the crash frequency was more likely to increase with 

an increase of annual average daily traffic per lane. In addition, it should be noted that segments 

with non-positive coefficients of annual average daily traffic per lane for all three crash types 

had a mean annual average daily traffic per lane value of around 5.5, which seemed an important 

threshold. Mannering et al. (2016) proposed that there might be heterogeneous linear or non-

linear relationships between traffic volume and accident likelihood, which is proved somewhat 
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by this study. Anastasopoulos (2016) also showed that, using the multivariate random parameters 

zero-inflated negative binomial model, annual average daily traffic had inconsistent influences 

on crash frequencies for roadway segments in Indiana.  

Table 4-4 Posterior summary (means and 95% credible intervals) of estimated parameters of the 

count part of the multivariate zero-inflated negative binomial model 

Variables 
Sideswipe (same 

direction) crashes 
Rear-end crashes Other crashes 

Number of lanes 0.732 (0.618, 0.834) 0.637 (0.568, 0.714) –0.128 (–0.208, –0.052) 

Annual average daily 

traffic per lane 0.128 (0.099, 0.158) 0.290 (0.270, 0.312) 0.030 (0.005, 0.056) 

Shoulder indicator - 0.131 (0.039, 0.227) - 

Median indicator –0.208 (–0.352, –0.070) - –0.148 (–0.269, –0.032) 

On-street parking 

indicator - 

- 

0.491 (0.230, 0.739) 

Central business 

district indicator –0.519 (–0.900, –0.209) –0.553 (–0.845, –0.345) - 

Segment length 0.985 (0.630, 1.326) 0.895 (0.672, 1.083) 1.727 (1.479, 2.009) 

One-way road 

indicator - –0.581 (–0.982, –0.077) 

- 

Lane width – 9 ft 

indicator –0.416 (–0.697, –0.150) –0.361 (–0.562, –0.176) 

- 

Lane width – 11 ft 

indicator –0.149 (–0.277, –0.029) 

- - 

Speed limit – 40 mph 

indicator –0.248 (–0.423, –0.040) –0.468 (–0.566, –0.374) 

- 

Speed limit – 45 mph 

indicator –0.634 (–0.825, –0.474) –0.391 (–0.506, –0.291) –0.628 (–0.782, –0.467) 

NFC-14 indicator –0.420 (–0.691, –0.172) - 0.272 (0.032, 0.509) 

NFC-15 indicator –0.311 (–0.615, –0.063) - 0.264 (0.006, 0.507) 

NFC-16 indicator –0.569 (–0.838, –0.292) - - 

City indicator –0.293 (–0.409, –0.180) –0.409 (–0.494, –0.330) –0.140 (–0.239, –0.040) 

Constant –2.527 (–2.977, –2.014) –2.696 (–3.167, –2.302) –1.292 (–1.567, –1.051) 

# of significant 

variables 14 11 10 

Note: NFC, national functional classification; values are the posterior means; values in parentheses 

show the 95% credible intervals; “-”, insignificant variables at the 95% credible level; lane width 

– 10ft indicator and speed limit – 35 mph indicator were not significant variables at the 95% 

credible level for any crash type. 

 

Segment length did not show a significant influence on any crash type. Most segments 

studied were very short, the average segment length being 0.363 mile and 75.6% of segments 
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being shorter than 0.5 mile. It is thought that these segment lengths might not be different 

enough to show significant effects.  

Table 4-5 Probabilities of the estimated parameters being negative for the count part of the 

multivariate random parameters zero-inflated negative binomial model 

Variables 

Sideswipe (same direction) 

crashes 

Rear-end 

crashes 

Other 

crashes 

Number of lanes 0.104 - - 

Annual average daily traffic 

per lane 0.317 

0.074 - 

Median indicator 0.833 - 0.813 

Speed limit – 45 mph 

indicator 0.971 0.830 0.861 

NFC-15 indicator 0.786 0.687 - 

NFC-16 indicator 0.931 0.785 - 

City indicator 0.947 0.963 0.946 

Note: NFC, national functional classification; “-”, insignificant variables at the 95% credible level; 

shoulder indicator, on-street parking indicator, central business district indicator, segment length, 

one-way indicator, lane width (9 ft, 10 ft, and 11 ft) indicators, speed limit – 35 mph indicator, 

speed limit – 40 mph indicator, and NFC-14 indicator were not significant variables at the 95% 

credible level for any crash type. 

Table 4-6 Average marginal effects of the count part of the multivariate random parameters 

zero-inflated negative binomial model 

Variables 
Sideswipe (same direction) 

crashes 

Rear-end 

crashes 
Other crashes 

Number of lanes 0.409 - - 

Annual average daily traffic 

per lane 0.073 0.234 - 

Median indicator –0.300 - 0.288 

Speed limit – 45 mph 

indicator –0.520 –0.341 –0.339 

NFC-15 indicator –0.241 –0.205 - 

NFC-16 indicator –0.419 –0.236 - 

City indicator –0.431 –0.558 –0.468 

Note: NFC, national functional classification; “-”, nonsignificant variables at the 95% credible 

level shoulder indicator, on-street parking indicator, central business district indicator, segment 

length, one-way indicator, lane width (9 ft, 10 ft, and 11 ft) indicators, speed limit – 35 mph 

indicator, speed limit – 40 mph indicator, and NFC-14 indicator were not significant variables at 

the 95% credible level for any crash type. 
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Table 4-7 Summary of annual average daily traffic per lane by crash types and signs of 

regression coefficients 

Crash type Coefficient  
Annual average daily traffic per lane (1,000 vehicles)  

Min Mean Median 

Crash type Coefficient  
AADT per lane (1,000 vehicles)  

Min Mean Median 

Sideswipe (same 

direction) 

Positive 5.759 9.290 9.481 

Non-positive 0.100 5.602 5.700 

Rear-end 
Positive 2.781 7.724 7.625 

Non-positive 0.100 5.214 5.250 

Others 
Positive - - - 

Non-positive 0.100 5.617 5.713 

Note: “-”, unavailable.  

 

It should be noted that crash frequency is usually assumed to increase with an increase in 

the number of lanes, annual average daily traffic, and segment length; thus, many studies have 

used these variables as exposure variables (Boulieri et al., 2017; Miaou et al., 2003; Miaou and 

Song, 2005). As presented in Table 4-4, the estimated parameters of the multivariate zero-

inflated negative binomial model are generally consistent with these beliefs, whereby number of 

lanes, annual average daily traffic per lane, and segment length showed positive effects on all 

crash types, except for number of lanes for other crash types. The inconsistent findings of the 

multivariate zero-inflated negative binomial model and the multivariate random parameters zero-

inflated negative binomial models show the advantage of random parameter models that they can 

capture the segment-specific effects, which are unavailable in fixed parameter models but very 

important, especially when opposite segment-specific effects exist. This also suggests that 

researchers should be very careful in using these variables as exposure variables, as the 

precondition might be violated.  

The presence of a shoulder had no significant influence on any crash type. For freeways 

or rural highways, the shoulder is very important in the event of emergency or breakdown. 

However, on urban arterials, these events may not interrupt traffic seriously due to lower travel 
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speeds, better roadway lighting, and more access points for leaving the roadway. Thus, the lack 

of a shoulder may not have influenced traffic safety for the studied roadways. The results are 

consistent with the study by Zhao et al. (2017), who found that a shoulder did not have 

significant effects on crash frequencies of urban signalized intersection approaches in either 

Lincoln or Omaha, Nebraska.  

However, the presence of a median had a significant influence on the number of 

sideswipe (same direction) crashes with a mean of –0.356 (standard deviation of parameter 

density function = 0.368), and other crashes with a mean of –0.339 (standard deviation of 

parameter density function = 0.381). When a median was present, 83.3% and 81.3% of segments 

had fewer sideswipe (same direction) and other crash types, respectively. On average, the 

number of sideswipe (same direction) and other crash types decreased by 30.0% and 28.8%, 

respectively. When a road median is present, left-turn and U-turn traffic is expected to decrease, 

leading to fewer sideswipe (same direction) collisions. This could also reduce sideswipe 

(opposite direction) crashes, angle crashes, and so on, which may explain why the number of 

other crash types decreased for most segments. However, the number of vehicle collisions with 

medians may increase; thus, some segments might have more crashes. 

The presence of on-street parking, being in a central business district, or one-way traffic 

did not show significant influence on the number of any crash type. The speed limit 

characteristics of segments with on-street parking, in a central business district, or with one-way 

traffic are shown in Table 4-8. Most of these segments had speed limits of 25 mph or 35 mph. 

Under such low-speed environments, these factors would not be expected to pose significant 

threats to traffic safety. 
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Table 4-8 Speed limits of segments with on-street parking, segments in central business district, 

and one-way traffic 

 Speed Limit (mph) 

Segment Description 25 35 40 45 Sum 

Segments with on-street 

parking 

71.8% 27.1% 1.1% 0 100% 

Segments in central business 

district 

64.1% 35.9% 0 0 100% 

One-way segments 49.1% 50.9% 0 0 100% 

 

Narrow lanes are often needed in cities to accommodate parking, bike lanes, sidewalks, 

drainage, and utilities. Although it is intuitive that providing some buffer space might prevent the 

occurrences of crashes, past studies evaluating the impact of narrower lane width on urban 

roadway safety have revealed inconsistent results: negative effects (Harwood, 1990), non-linear 

effects (Lee et al., 2015; Park and Abdel-Aty, 2016), and no effects (Potts et al., 2007). The 

multivariate random parameters zero-inflated negative binomial model showed that lane width 

did not have a significant influence on any crash type in this dataset. Although narrow lanes 

might increase the opportunities for some collision types, such as sideswipe (same direction) 

crashes, they might also have lower speed limits, less traffic, and less aggressive driving. The net 

effect of these opposite forces determines the impact of narrow lanes on crash frequency. The 

findings of this study suggest that, for the studied roadways, safety might not be a concern if 

lanes need to be made narrower to accommodate other street elements.  

Compared with a 25-mph speed limit, 35-mph and 40-mph speed limits did not show 

significant influences on midblock crash frequencies, but a 45-mph speed limit did show 

significant effects. For the 45-mph speed limit, the estimated normally distributed parameters 

had a mean of –0.735 (standard deviation of parameter density function = 0.388) for sideswipe 

(same direction) crashes, a mean of –0.417 (standard deviation of parameter density function = 

0.437) for rear-end crashes, and a mean of –0.414 (standard deviation of parameter density 
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function = 0.382) for other crash types. That is, 97.1%, 83.0%, and 86.1% of the segments 

tended to have fewer sideswipe (same direction), rear-end, and other crashes, respectively, with a 

45-mph speed limit than with lower speed limits. Simultaneously, only 2.9%, 17.0%, and 13.9% 

of segments tended to have more sideswipe (same direction), rear-end, and other crash types, 

respectively. Intuitively, it would seem that higher speed limits would increase the probability of 

crashes occurring, but roadways with high speed limits usually have fewer access roads and 

better designed facilities. Thus, it appears that the advantages of high speed limits outweighed 

the disadvantages for most segments. On average, sideswipe (same direction), rear-end, and 

other crash types decreased by 52.0%, 34.1%, and 33.9%, respectively, on segments with a 45-

mph speed limit compared with those with lower speed limits. This study’s findings suggest that 

45 mph is an important threshold in determining speed limits for urban arterials. For the 

multivariate zero-inflated negative binomial model, the speed limit was also found to have 

negative effects on all crashes. However, although an increased speed limit might reduce the 

number of crashes and increase capacity for most segments, it might also increase the severity of 

crash damage and injuries (Malyshkina and Mannering, 2008; Renski et al., 1999), as the 

outcomes of high-speed object collisions are more serious. Thus, speed limit increases should be 

carefully studied before implementation.  

Compared with major collectors (NFC-17), urban principal arterial–other non-connecting 

link (NFC-15) and urban minor arterial (NFC-16) showed significant influences on the number 

of sideswipe (same direction) and rear-end crashes. Compared to NFC-17 segments, 78.6% and 

86.7% of NFC-15 segments had fewer sideswipe (same direction) and rear-end crashes, 

respectively, and 93.1% and 78.5% of NFC-16 segments had fewer sideswipe (same direction) 

and rear-end crashes, respectively. Speed limit compositions, as well as mean and median annual 
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average daily traffic values of segments by functional classification, are shown in Table 4-9. The 

mean speed limits of NFC-15 and NFC-16 segments were higher than those of NFC-17 

segments, and it was proved above that the number of crashes tended to decrease with higher 

speed limits. Thus, this might explain why most NFC-15 and NFC-16 segments tended to have 

fewer crashes. However, urban principal arterial–other connecting link (NFC-14) segments did 

not show significant influences on any crash type, although they had the highest speed limits. A 

possible explanation is that the NFC-14 segments also had very large annual average daily traffic 

values, which probably led to the occurrence of more crashes. These factors might play different 

roles for segments by functional classification, leading to different results. In addition, speed 

limit and annual average daily traffic reflect the mobility function of roadways, whereas 

accessibility is another function in determining NFC levels for roadways (Federal Highway 

Administration, 2013). Although accessibility information was unavailable in this dataset, it may 

also influence crash frequencies.  

Table 4-9 Speed limit compositions, and mean and median annual average daily traffic values of 

segments by national function classification  

National 

Functional 

Classification 

Speed Limit (mph) Annual average daily 

traffic (1,000 vehicles) 

25 35 40 45 Mean Median 

NFC-14 0 22.9% 30.5% 46.7% 15.4 14.7 

NFC-15 0.7% 30.2% 25.0% 44.1% 12.6 12.2 

NFC-16 3.9% 38.2% 41.0% 16.9% 8.91 8.43 

NFC-17 56.9% 32.1% 1.8% 9.2% 4.11 3.63 

Note: NFC, national functional classification. 

 

The city indicator (Lincoln vs. Omaha) showed a significant influence on all crash types. 

The estimated normally distributed parameters had a mean of –0.564 (standard deviation of 

parameter density function = 0.348) for sideswipe (same direction) crashes, a mean of –0.816 

(standard deviation of parameter density function = 0.457) for rear-end crashes, and a mean of –
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0.632 (standard deviation of parameter density function = 0.394) for other crash types. The 

probabilities of the city variable being negative were 86.3%, 95.1%, and 90.7% for the three 

crash types, respectively. The number of sideswipe (same direction), rear-end, and other crashes 

for segments in Omaha were lower than those in Lincoln by an average of 25.4%, 33.6%, and 

13.1%, respectively, when other characteristics were same. It should be noted that signalized 

intersection approaches in Omaha were also found to have fewer crashes than did those in 

Lincoln (Zhao et al., 2017). Considering that Lincoln and Omaha are only 45-min driving time 

apart, driving behaviors in the two cities are expected to be similar. Thus, some other features, 

such as traffic enforcement, land use, and terrain, might be responsible for this difference. 

Further studies are needed to investigate the true reasons, which would be very helpful for 

transportation agencies in formulating accurate countermeasures to improve traffic safety in 

Lincoln.  

The estimated parameters of the zero-inflation part of the multivariate random parameters 

zero-inflated negative binomial model and the multivariate zero-inflated negative binomial 

models are shown in Table 4-10 and Table 4-11, respectively. Although both models adopted 

fixed parameters for the zero-inflation part, their significant variables were very different due to 

different count part models. This indicates that, for zero-inflated models, the count parts and 

zero-inflated parts were highly correlated and that a modeling framework change in one part 

would greatly influence the result of the other part. For both models, the number of lanes, annual 

average daily traffic per lane, and segment length showed significantly negative effects on the 

number of some crash types, which means that with the increase of the values of these 

covariates, these crash types were less likely to have zero values. That is, the expected crash 

frequencies would increase. It is reasonable to infer, as has been proved, that for most segments, 
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these covariates have positive effects on crash frequencies. In addition, a 45-mph speed limit 

showed significant positive effect on the number of sideswipe (same direction) crashes for the 

multivariate random parameters zero-inflated negative binomial model, which means that zero 

crashes were more likely to appear under the 45-mph speed limit. This result is also consistent 

with the results of the count part of the multivariate random parameters zero-inflated negative 

binomial model.  

Table 4-10 Posterior summary (means and 95% credible intervals) of estimated parameters of 

the zero-inflation part of the multivariate random parameters zero-inflated negative binomial 

model 

Variables 
Sideswipe (same 

direction) crashes 
Rear–end crashes Other crashes 

Number of lanes 
- - 

–5.823 (-8.643, –

3.684) 

Annual average daily 

traffic per lane –1.192 (–1.664, –0.719) - 

–0.331 (–0.571, –

0.091) 

Median indicator 
- 

1.990 (0.039, 

5.466) - 

Central business 

district indicator - 

–7.451 (–13.851, -

1.680) - 

Segment length 
–13.512 (–18.672, –8.768) 

–17.910 (–26.774, 

–10.887) - 

Speed limit – 45 mph 

indicator 2.647 (1.007, 4.272) - - 

NFC-15 indicator 
- - 

–2.727 (–5.703, –

0.047) 

NFC-16 indicator 
5.419 (1.154, 12.108) 

2.730 (0.121, 

6.440) 

–4.615 (–7.680, –

2.202) 

City indicator –5.874 (–10.602, –1.451) - - 

Constant 
- - 

7.696 (5.119, 

10.595) 

# of significant 

variables 6 4 5 

Note: NFC, national functional classification; values shown are posterior means; values in 

parentheses show the 95% credible intervals; “-”, nonsignificant variables at the 95% credible 

level. Shoulder indicator, on-street parking indicator, one-way indicator, lane width (9ft, 10ft, and 

11ft) indicators, speed limit – 35mph indicator, speed limit – 40mph indicator, and NFC-14 

indicator were not significant variables at the 95% credible level for any crash type.  
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Table 4-11 Posterior summary (means and 95% credible intervals) of estimated parameters of 

the zero-inflation part of the multivariate zero-inflated negative binomial model 

Variables 
Sideswipe (same direction) 

crashes 
Rear–end crashes Other crashes 

Number of lanes - - - 

Annual average daily 

traffic per lane -0.846 (-2.997, -0.099) 

-0.811 (-3.176, 

0.407) 

-1.264 (-1.651, -

0.835) 

Shoulder indicator - - 1.641 (0.838, 2.499) 

Median indicator 2.858 (1.103, 4.912) - - 

Segment length -7.934 (-11.899, -0.064) - - 

Lane width – 10 ft 

indicator - - 1.152 (0.128, 2.179) 

NFC - 16 indicator 
- - 

-1.744 (-2.933, -

0.550) 

# of significant 

variables 4 1 4 

Variables 
Sideswipe (same direction) 

crashes 
Rear–end crashes Other crashes 

Number of lanes - - - 

Annual average daily 

traffic per lane -0.846 (-2.997, -0.099) 

-0.811 (-3.176, 

0.407) 

-1.264 (-1.651, -

0.835) 

Shoulder indicator - - 1.641 (0.838, 2.499) 

Median indicator 2.858 (1.103, 4.912) - - 

Segment length -7.934 (-11.899, -0.064) - - 

Lane width – 10 ft 

indicator - - 1.152 (0.128, 2.179) 

NFC - 16 indicator 
- - 

-1.744 (-2.933, -

0.550) 

# of significant 

variables 4 1 4 

Note: NFC, national functional classification; values shown are posterior means; values in 

parentheses show the 95% credible intervals; “-”, nonsignificant variables at the 95% credible 

level. On-street parking indicator, central business district indicator, one-way indicator, lane width 

– 9ft indicator, lane width – 11ft indicator, speed limit (35mph, 40mph, and 45mph) indicators, 

NFC-14 indicator, and NFC-15 indicator, city indicator, and number of lanes were not significant 

variables at the 95% credible level for any crash type.   

 

Out of total 18 covariates, 9 and 16 covariates were found to be significant (at least in 

either the count part or the zero-inflation part) for the multivariate random parameters zero-

inflated negative binomial model and the multivariate zero-inflated negative binomial model, 

respectively. That is, the multivariate random parameters zero-inflated negative binomial model 
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showed a much better performance with fewer variables than did the multivariate zero-inflated 

negative binomial model in this case, which was helpful for identifying critical crash-influencing 

factors. However, this may not be true in other cases, as in the study by Dong et al. (2014a), the 

multivariate random parameters zero-inflated negative binomial model identified more 

significant factors than did the multivariate zero-inflated negative binomial model. 

4.5 Conclusions 

In this study, we analyzed sideswipe (same direction), rear-end, and other crash types 

over 10 years (2003–2012) on 1,506 urban midblock segments in Lincoln and Omaha, Nebraska. 

Traffic operation and roadway geometry characteristics were investigated to identify significant 

influencing factors. Due to the concern of unobserved heterogeneity produced by correlations 

across crash types and segments, excess zeros, and over dispersion in crash data, the multivariate 

random parameters zero-inflated negative binomial model was used to simultaneously analyze 

these crashes. Compared to the multivariate Poisson log-normal, univariate random parameters 

zero-inflated Poisson, univariate random parameters zero-inflated negative binomial, 

multivariate zero-inflated Poisson, multivariate zero-inflated negative binomial and multivariate 

random parameters zero-inflated Poisson models, the multivariate random parameters zero-

inflated negative binomial model provided a better fit in terms of both DIC and RMSE values for 

all three crash types. The model comparison showed that none of the four types of unobserved 

heterogeneities was negligible. The results proved the necessity and importance of using the 

multivariate random parameters zero-inflated negative binomial model to analyze multivariate 

panel crash data with excess zeros.  

The multivariate random parameters zero-inflated negative binomial model revealed 9 

out of 18 covariates as significantly influencing crash frequency for the studied midblock 

segments. The multivariate random parameters zero-inflated negative binomial model showed 
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that number of lanes, annual average daily traffic per lane, and segment length might have non-

positive effects on crash frequencies for some segments. Thus, in future studies, care should be 

taken in using them as exposure variables. Segments with a speed limit of 45 mph tended to have 

fewer crashes than did those with lower speed limits, and the segments in Omaha tended to have 

fewer crashes than did those in Lincoln. It was also found that the presence of a shoulder, central 

business district, on-street parking, and one-way traffic, as well as lane width, did not have 

significant influences on crash frequencies. The multivariate random parameters zero-inflated 

negative binomial model also made it possible to explore influencing factors for individual 

segments. These findings are informative for transportation agencies as they seek to take correct 

and efficient measures to improve traffic safety. By contrast, the multivariate zero-inflated 

negative binomial model produced results consistent with intuition, but the results may be 

insufficient to provide actionable recommendations. The multivariate random parameters zero-

inflated negative binomial model found fewer significant factors than did the multivariate zero-

inflated negative binomial model, which was helpful for identifying key factors.  

Several aspects of this study could be further improved in future studies. First, the 

multivariate random parameters zero-inflated negative binomial model were estimated using 

MCMC, which was time consuming and required a large capacity to store MCMC samples. With 

an increase in the amount and dimensions of data, MCMC would become even more 

cumbersome. Thus, Bayesian approximation methods, such as Integrated Nested Laplace 

Approximation and Variational Bayes, should be explored to improve computing efficiency. 

Second, the complexity of the multivariate random parameters zero-inflated negative binomial 

model makes the results less interpretable. For example, the rear-end crash frequencies 

marginally followed the zero-inflated negative binomial distribution in the multivariate zero-
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inflated negative binomial model. However, it would be very difficult to calculate the marginal 

effects of annual average daily traffic per lane on rear-end crash frequencies in the multivariate 

zero-inflated negative binomial model, as this involved both the count part and the zero-inflation 

part. It would be even more difficult for the random parameters models. Sensitivity analysis and 

easy-to-understand visualization tools might be good solutions for showing the intricate 

correlations between covariates and response variables. Third, as an alternative to traditional 

zero-inflated models, the zero-state Markov switching count data model could distinguish zero-

accident state and normal-count state in a straightforward manner and, as well, could capture the 

state change over time (Malyshkina and Mannering, 2010; Malyshkina et al., 2009); however, it 

has never been used in multivariate or random parameters scenarios. Future studies may explore 

the performance of the multivariate random parameters zero-state Markov switching count data 

model in analyzing similar crash data. Finally, crash frequency data are aggregated over time and 

space. Thus, they may have some spatial and temporal correlations (Boulieri et al., 2017; Liu et 

al., 2015; Liu and Sharma, 2018, 2017; Ma et al., 2017), and the effects of explanatory variables 

may also be instable over space and time (Mannering, 2018), which should be considered in 

future studies. In addition, the dataset did not include information about pavement conditions and 

access points, which have been proved to be very important for segment crash frequencies in 

many studies (Lee et al., 2011; Usman et al., 2010; Xiong et al., 2014; Zeng and Huang, 2014). 

Future studies should collect these data to produce more accurate results.  
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CHAPTER 5.    GENERAL CONCLUSIONS 

This dissertation consists of three studies that focus on crash frequency analysis at the 

macro and micro levels respectively. The first study shows the necessity and importance of 

including spatial and temporal effects in crash frequency analysis, the second study extends the 

spatio-temporal analysis into multivariate cases, and the third study explores the heterogeneous 

effects of various factors on crash frequency by crash types. These three studies show how to use 

appropriate statistical models to deal with the common issues of crash frequency data, i.e. over 

dispersion, zero inflation, spatial correlations, temporal correlations, crash-between correlations, 

and unobserved heterogeneity.   

While this study has made important contributions to the literature, future research may 

continue in many aspects of both the methodology and the studied objects. Firstly, as is shown in 

Table 3-3, the spatial correlations of crashes might evolve over time. Similarly, it is expected that 

the temporal correlations of crashes might evolve over space, which is partly proved by the 

superiority of the linear temporal component in Chapter 2. Thus, it implies that crashes might 

have dynamic spatio-temporal correlations, while this study assumes these correlations are static. 

Future studies may further explore the dynamic spatio-temporal analysis of crashes.   

Secondly, the existing studies of spatial analysis of crashes mainly focus on utilizing the 

areal spatial statistics models as crash frequency data are usually collected over jurisdictions. 

However, the aggregation of crash data over space would inevitably lose important location 

information of each crash, which is critical for transportation agencies to identify the clustering 

trends of crashes in each area, as there is no reason to believe crashes would occur equally in 

each area. When individual crash geographical information is available, the spatial point process 

analysis is a good choice for crash analysis. Common spatial point data, such as crime and wide 
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file, might occur over the whole studied areas, i.e. the polygon spatial point data, while crashes 

actually only occur on the roadway network, i.e. the line spatial point data. This difference brings 

the new challenge that most existing spatial point pattern analysis, which is developed for 

polygon spatial point data, might not work well for crashes. Thus, researchers may focus on 

developing new spatial point process models for the line spatial point data like crashes.  

Thirdly, besides traffic safety, traffic operation is another cornerstone of transportation 

research. Most studies often analyze them separately, however, it might produce more beneficial 

findings if they are analyzed at the same time. For example, if the travel speed data on segments 

are also available in Chapter 4, speed and crash may be analyzed simultaneously. Thus, we can 

get a full picture of the effects of roadway geometric characteristics on the transportation system.   

 


	2018
	Three essays on crash frequency analysis
	Chenhui Liu
	Recommended Citation


	tmp.1528995973.pdf.yzgT0

