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ABSTRACT 

 

 Traffic speed control devices have an important role in transportation systems. Static 

devices, such as speed limit signs, can advocate safe and efficient traffic movements by 

displaying appropriate speed limits. Changeable message signs have many applications in 

adjusting the dynamic nature of a transportation system. These applications include but are 

not limited to variable speed limits based on ambient traffic conditions, work zone 

management, and warnings about severe weather conditions. 

This dissertation evaluated the performance of multiple traffic speed control devices, 

including static speed limit signs and dynamic changeable message signs. By identifying 

existing problems, such as data smoothing, traffic characteristics clustering, and event 

classification, the author proposed some practical engineering solutions for better 

performance. One of the highlighted applications is a text alert system that actively monitors 

50 Iowa work zones, which are equipped with more than 350 roadway sensors, and sends 

multimedia alert texts to district traffic engineers. The application of a variable advisory 

speed limit system that reports severe winter weather conditions was also 

implemented/validated and currently runs in “ghost” mode (without displaying any visible 

messages to the public) until it is approved. 

After conducting a series of analyses in the transportation macroscopic world (data 

collected by roadway traffic sensors), the current dissertation research expanded into the 

microscopic driver speed behavior analysis (data collected by instrumented vehicle sensors). 

A naturalistic driving study focusing on older drivers collected a large amount of detailed 

individual driving data from multiple sources with high resolutions, including timestamped 



x 

 

 

speed, acceleration, deceleration, and geo locations. This abundant dataset enabled the author 

to examine an individual’s driving behavior with respect to different speed limits and other 

factors. 
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CHAPTER 1.   INTRODUCTION 

 

Traffic speed control devices have an important role in modern transportation systems. 

Static devices such as speed limit signs inform drivers about the appropriate speed limit along a 

certain roadway segment. Devices such as changeable message signs, which are extensively 

employed, can better adapt to the dynamic nature of a transportation system. In this chapter, a 

literature review is conducted to address static and dynamic traffic speed control devices. 

 

1.1 Static Traffic Speed Control Device — Speed Limit Sign 

A roadway network is extensively equipped with speed limit signs, which are located at 

the points where the posted speed limit changes. When establishing a speed limit within a speed 

zone, an engineering study should be conducted, and the posted speed limit should be within 5 

mph of the 85th percentile free-flow traffic speed. Speed limits are used to enhance road safety, 

which can be achieved by either a limiting function or a coordinating function (TRB Committee 

for Guidance on Setting and Enforcing Speed Limits, 1998). A limiting function establishes a 

maximum speed limit along roads, which can reduce the likelihood and severity of a crash. A 

coordinating function reduces the speed variance along roads, which produces a more uniform 

traffic flow. 

With regard to speed limit reductions, many studies have demonstrated that lower speeds 

and speed variances can reduce the severity and frequency of crashes (Liu & Popoff, 1997)(Aarts 

& van Schagen, 2006)(Elvik et al., 2004)(Hamzeie et al., 2017). Several strategies, such as 

variable speed limit control (van den Hoogen & Smulders, 1994), dynamic speed display signs 
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(Ullman & Rose, 2005), speed transition zones (Cruzado & Donnell, 2010a), rational speed 

limits (Son et al., 2009), and dynamic curve warning systems (Monsere et al., 2005), have been 

assessed for their effectiveness in reducing the speeds and speed variability of approaching 

vehicles. These studies confirm that arbitrary changes in speed limits have a limited impact on 

drivers’ speed choices and may even lower drivers’ compliance with the posted speed limits. 

Lower driver compliance can potentially increase the speed variance, which creates unsafe 

conditions. Another important trend that was observed in the previously mentioned studies is that 

the actual reduction in driver speed is often lower than the actual reduction in speed limit. The 

extent of this reduction in driver speed can vary depending on the reason for the application. 

 

1.1.1 Safety Study of Speed-Limit Reduction 

In a recent study of 56 high-speed approaches at high-speed signalized intersections 

(HSSIs) in Nebraska, Wu et al. (2013) reported that the effect of a 5 mph speed limit reduction in 

conjunction with advance warning flashers (AWFs) was ambiguous because it reduced the 

frequency of crashes on some intersection approaches but increased the frequency of crashes on 

others. Conversely, a 10 mph reduction in speed limit with AWF unambiguously decreased both 

the accident frequency and the injury severity of crashes. In the presence of potentially 

heterogeneous driver responses to decreased speed limits, this study speculated that reductions in 

variability and actual speeds due to a 5 mph reduction in speed limit was not always sufficient 

for unambiguously decreasing the frequency and severity of crashes. However, reductions in 

variability and actual speed were sufficient for unambiguously decreasing the frequency and 

severity of crashes when the speed limit reduction was 10 mph. This crash study stresses the 
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need for an empirical study investigating the impact of different ranges of speed limit reductions 

on drivers’ speed choices at an HSSI. 

 

1.1.2 Empirical Study of Speed-Limit Reduction 

Wang et al. (2017) extended the research on HSSIs (Wu et al., 2013) and conducted an 

empirical study to investigate the scenario in which the speed limit is reduced near the stop line 

at intersections by a permanent posted speed limit sign. Different speed limit reduction scenarios 

were assessed by analyzing the empirical speed distribution of vehicles as they approached an 

HSSI equipped with AWFs. The study sites consisted of six approaches: two approaches without 

any speed limit reductions, two approaches with a 5 mph reduction (from 60 mph to 55 mph), 

and two approaches with a 10 mph reduction (from 65 mph to 55 mph). For each high-speed 

intersection approach, vehicle speed trajectory data were collected at two locations. The first 

location was near a speed limit sign and ranged from approximately 1,000 to 2,000 ft from the 

intersection stop line. The second location was a downstream data collection point approximately 

500 ft from the intersection. 

After data cleaning and validation, 12,401 free-flow vehicle trajectories were obtained. 

The constant speed limit group had 4,289 observations; the 5 mph speed limit group had 5,503 

observations; and 2,609 trajectories were observed in the 10 mph reduction group. Six speed 

models were separately constructed for each signalized intersection approach. Within each 

model, seven quantiles were reported using quantile regression: 10th, 15th, 25th, 50th, 75th, 85th, 

and 90th. In this empirical speed limit study, the drivers’ observed average speeds hovered in the 

range of 1.1–2.5 mph higher than the regulatory speed limit, which is possibly a comfortable 

speed range, near a signalized intersection. For sites without any speed limit reductions and a 5 
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mph reduction, a speed-limit compliance rate of 30–40% was observed at the near-stop-line 

location. For sites with a 10 mph reduction, a speed limit compliance rate of 40–50% was 

observed at the near-stop-line location. In addition, this study provides another example that the 

ambient condition, rather than speed enforcement, has an important role in drivers’ speed 

choices. If driver behavior were significantly affected by the regulatory speed limit, then the rate 

of compliance rate with the speed limit would tend to be a constant number. 

 

1.2 Dynamic Traffic Speed Control Devices — Changeable Message Sign 

Changeable message signs (CMSs), also known as “dynamic message signs” or “variable 

message signs”, have been installed on U.S. roadways since the 1960s. These signs aim to reduce 

traffic delay, accident risk, or special roadway conditions; postpone or prevent congestion; and 

harmonize traffic flows during peak periods (Bertini et al., 2006)(Mounce et al., 2006). A 

dynamic message may be triggered by an operator in a traffic management center by sensor 

inputs installed in the roadway network or prescheduled message plans. By dynamically adapting 

to complex traffic conditions, these systems can improve lane utilization and provide a calmer 

driving experience due to the measured reductions in crash frequency and severity (Allaby et al., 

2007). 

 

1.2.1 Variable Speed Limit 

Highway agencies spend millions of dollars in an effort to ensure safe and efficient 

travel. Regardless of maintenance investment and activities, other factors, particularly driver 

behavior during non-recurring events (inclement weather or traffic incidents), can significantly 

impact safety. A variable speed limit (VSL) system, which is triggered by atmospheric, surface, 
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and/or traffic conditions is a commonly deployed safety countermeasure for warning drivers 

about imminent risks and suggesting an appropriate speed for existing conditions. 

Bertini et al. (2006) collected lane-based one-minute loop data on a German autobahn 

and extracted information about the speed, count, and density between sensors for their VSL 

logic. Their analysis illustrated a strong correlation between the displayed speed limit and the 

real traffic dynamics and indicated that a reduced speed limit prior to a bottleneck could manage 

dense traffic. Abdel-Aty et al. (2006) investigated the safety effects of VSLs based on 

PARAMICS micro-simulation. In their study, the target area was a 36-mile corridor of Interstate-

4 around the Orlando metropolitan area, and the collected data included average vehicle counts, 

speed, and occupancy collected via loops. Based on the crash likelihood observed in real time, 

the authors provided several recommendations for VSL implementation: gradually changing the 

speed limit over time and abruptly in space, reducing the upstream speed limit while increasing 

the downstream speed limit, and so on. Instead of collecting data from point detector, Kattan et 

al. (2015) presented a VSL control algorithm based on the space mean speeds collected from 

probe vehicles. Their VSL logic was tested using the PARAMICS micro-simulation model and 

demonstrated improved traffic safety conditions. 

 

1.2.2 Variable Speed Limit in Work Zone 

Many researchers have explored the effect and logic of VSLs in work zones. Lin et al. 

(2004) explored the effectiveness of VSL signs on highway work zone operations. They 

proposed two online VSL algorithms to minimize the queues in advance of a work zone and 

maximize the throughput in a work zone area. Different CORSIM simulation models were run 

based on several lane closure configurations with control intervals set to 1 min, 5 min, 10 min, 
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and other intervals. Kang et al. (2004) conducted a similar study using CORSIM-RTE. Their 

online VSL algorithm aimed to maximize the total throughput based on the upstream volume, 

driver compliance rate, and congestion status. The product yielded a lower speed variance and 

delay, and higher throughput and speed along the work zone. In another VSL work zone 

application (Allaby et al., 2007), the control logic varied every minute in 5-mph intervals, using 

90-second measurements of lane-by-lane speed and volume. Researchers calculated the 

maximum speed difference within the work zone during peak hours as a measure of 

effectiveness. The findings showed a 25–35% reduction in the maximum speed differences in the 

work-zone area during the 6:00 to 8:00 a.m. morning peak traffic period and a 7% increase in the 

total throughput volume. 

 

1.2.3 Variable Speed Limit in Inclement Weather 

In addition to the dynamic nature of work zones, inclement weather is another essential 

factor that contributes to the complexity of a transportation system. Drivers’ behavior during 

non-recurring weather events can significantly impact roadway safety. 

Katz et al. (2012) provided several guidelines for the use of VSL systems in wet weather, 

including displaying changes for a minimum of one minute and establishing a minimum speed 

limit of 30 mph. The authors also reported several VSL projects related to weather and their 

control strategies, based on pavement conditions, weather conditions, and visibility. (Katz et al., 

2012) (Goodwin, 2003). For example, the Alabama Department of Transportation (DOT) 

operates a seven-mile-long corridor with 24 VSL signs along I-10 in Mobile. Based on the 

visibility distance, the speed limits are changed from 35 mph to 65 mph in increments of 10 mph. 

The Washington State DOT has implemented several VSL systems in both urban area and 
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mountainous areas. In urban areas, the speed limit is changed based on speed and occupancy 

sensors, whereas the speed limits in mountainous areas are manually established based on 

weather information. Similar to Alabama, the VSLs in Washington change the speed limits from 

35 mph to 65 mph in 10-mph increments, and the control strategy is based on the visibility 

distance, weather information (rain, heavy rain, fog, and snow), and different pavement 

conditions (dry, wet, and icy). In central Florida, Hassan et al. (2012) conducted a thorough 

survey to investigate driver behavior and preferences for VSL systems in adverse visibility 

conditions. Their modeling results indicated that combining a VSL system with extra changeable 

message signs is the optimum strategy for improving roadway safety during inclement weather. 

 

1.3 Summary 

In this chapter, a literature review was conducted to address topics of static and dynamic 

traffic speed control devices. For static devices such as speed limit signs, in addition to the 

previous researches, two case studies of speed limit reduction were introduced from the author’s 

published work. Then, dynamic speed control devices were discussed with regard to work zones 

and inclement weather. In the next chapter, two applications of dynamic traffic speed control 

devices in Iowa are discussed. One is the dynamic message sign in work zones, and the other is 

variable speed limit in response to severe winter snow storms. 

 

1.4 Dissertation Structure 

Chapter 1 discusses historical research on different types of traffic speed control devices. 

Chapter 2 evaluates the performance of the existing speed control devices in Iowa, including 

DMSs in work zones and variable advisory speed limit in inclement weather. However, their 
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performance was not desirable due to several issues. By addressing identified problems, Chapter 

3 significantly enhances the discussion of the performance of DMSs and variable advisory speed 

limit and provides multiple practical traffic speed control applications.  

In addition to speed patterns in the macroscopic world, which is the focus in the first 

three chapters, this dissertation research explores a new microscopic world of transportation. A 

naturalist driving study is presented in Chapter 4, in which the study evaluates the older 

population’s driving behaviors as a function of speed limit and other related factors. At last, 

Chapter 5 summarizes the research highlights and proposes future research ideas. 
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CHAPTER 2.   PROBLEM STATEMENT 

 

The Iowa Department of Transportation (DOT) maintains more than 500 Wavetronix 

sensors across the state to collect traffic data (speed, occupancy, and timestamp), which can be 

accessed via XML feeds with a refresh rate of 20 seconds. To archive the sensor data 24/7, a 

series of programs were coded to automatically download and parse the XML feeds daily. In 

addition to the traffic sensor data, message data displayed on changeable message signs (CMS) 

are archived by Iowa DOT’s advanced traffic management system (ATMS) software. This 

ATMS software can extract historical message data, including message content and the start and 

end times of the displayed messages.  

After discussion with the Iowa DOT personnel, this dissertation research used three 

criteria as performance measures for the CMS message control algorithm: the total number of 

messages, number of short-duration messages, and number of fluctuating clusters. Although the 

total number of messages may not reflect a complete picture of the real conditions, signs with a 

large number of messages suggest a potential detection fault and need additional attention. 

Messages with durations less than 75 seconds or short-duration messages were likely related to 

high sensor noise. If multiple messages were generated in quick succession within a short 

amount of time (five minutes), these groups of messages were treated as a fluctuating message 

cluster. A high volume of fluctuating message clusters at a certain site can be confusing for 

drivers and demonstrates the instability of the control logic. 

In the following paragraphs, two existing applications that manage highway traffic speed 

in Iowa are examined: 1) a dynamic message sign (DMS) application in a work zone, and 2) a 

variable advisory speed limit system that reports severe winter weather. Both of the applications 



10 

 

collected data based on nearby Wavetronix sensors and were supposed to communicate with 

roadway drivers with reliable traffic information. However, their performance is less than 

desirable and suggests room for improvement. 

 

2.1 Dynamic Message Sign in Work Zone 

The study area was a two-mile work zone near Davenport, Iowa for the repair and 

cleaning of an I-74 bridge (connects Iowa to Illinois). This highway facility has two lanes in each 

direction with a posted speed limit of 55 mph, and only one lane was permitted to be closed 

throughout the entire work area. A permanent side-mounted dynamic message sign was installed 

at the beginning of the work zone to provide traffic information for the southbound traffic. The 

existing message display logic is driven by two nearby Wavetronix sensors: the first sensor is 0.2 

miles south of the DMS, and the second sensor is located one mile downstream. Based on 

different levels of speed, the DMS displays one of three types of messages: “Traffic Delays 

Possible”, “Slow Traffic Ahead”, and “Stopped Traffic Ahead”. Figure 2.1 shows the study area, 

where the white drops represent two Wavetronix sensors and the yellow pin indicates the 

location of the target DMS. 

This task aimed to validate the existing DMS performance by using Sensor #2, which is 

located in the neighborhood of one mile downstream of the DMS, to detect the traffic conditions 

within the work zone. By synchronizing the sensor and DMS message data, the task tested 

whether displayed messages can provide realistic, reliable, and real-time traffic information. 
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Figure 2.1 DMS Study Area (Google Maps, 2017) 

Figure 2.2 illustrates the performance of the current DMS station from late December 

2015 to mid-July 2016. The top chart represents the total number of messages for each day, the 

middle chart shows the daily short messages, and the bottom chart represents the number of 

clusters. According to this figure, all three criteria began to peak during this time, which 

indicates that heavier road work activities began during April. Because the work zone activities 

peaked during mid-April, a single day (April 23, 2016) with the highest criteria was chosen for 

further investigation. 
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Figure 2.2 Existing DMS Performance 

Figure 2.3 illustrates the events at the DMS sign on April 23, 2016, where the upper part 

shows the speed profile as a function of time and the lower part shows the sensor occupancy. 

Wavetronix sensor data are plotted using a black line, whereas the DMS information is 

represented by color-coded blocks — “Traffic Delay Ahead” messages are in yellow, “Slow 

Traffic Ahead” are in red, purple areas represent “Stopped Traffic Ahead”, and no message was 

displayed in areas with no color. 

Several performance issues can be identified from Figure 2.3. First, the current control 

logic generated many short messages, which are displayed when the blocks are very thin. 
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Second, many clustered messages exist, as shown by the alternating colored blocks (for example, 

in the region of 10:00 a.m.). The current DMS control logic did not properly function in some 

situations when it should have displayed a certain message but did not do so. The right side of 

Figure 2.3 is a zoomed-in version between noon and 4:00 p.m., when the speeds were 

significantly slow (around 20 mph) with high traffic occupancy. However, no message was 

displayed at 1:00 and 3:30 p.m. under these congested conditions. This analysis suggests the 

need for continued development in some areas, as proposed in the following section. 

 

Figure 2.3 DMS Displayed Messages, Sensor Speed, and Occupancy 
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2.2 Variable Advisory Speed Limit Sign in Severe Weather 

The second traffic speed control device is a variable advisory speed limit system that 

reports severe winter weather, where the study area was a commuter corridor on Interstate 35 in 

central Iowa. The posted speed limit along this rural highway segment is 70 mph and it was 

evaluated under multiple winter snow conditions. The current system was run in ghost mode 

(operated in background without displaying any visual messages), which enabled researchers to 

rate the messages generated from the logic before deploying them to the public. Three types of 

message were created — Advised 55 mph, Advised 45 mph, and Advised 35 mph — which were 

archived using the Iowa DOT’s Advanced Traffic Management System (ATMS) software. 

The existing system that displays advisory message was not designed to handle the 

complex nature of a transportation system and did not perform as expected or desired. The 

performance of the sign is visualized in Figure 2.4, where the horizontal axis represents the time 

of day and the vertical axis represents the raw Wavetronix sensor speed. The three reference 

speed limits are shown as dashed lines (55 mph, 45 mph, and 35 mph), and the solid red lines 

represent messages that would have been displayed on a dynamic advisory message board. 

Figure 2.4 indicates opportunities for enhancement, especially from 6 a.m. to 8 a.m., when the 

observed traffic speed had already reduced to ~10 mph due to the heavy snow but the existing 

control logic continued to display messages of 55 mph or 45 mph. To address such phenomena 

recognized, this dissertation research proposes a logic that can provide a realistic, reliable, and 

real-time advisory speed limit in response to winter weather conditions. 
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Figure 2.4 Performance of Existing Control Logic 

 

2.3 Problem Statement 

 Figure 2.3 and Figure 2.4 illustrated the performance of the existing changeable message 

sign (CMS) applications in Iowa, which were less than desirable and suggest opportunities for 

improvement. To fully utilize the existing traffic sensor resources and build a data-driven CMS 

application, several problems are specified in the next several paragraphs, including data 

smoothing and labels for traffic incidents. 

 

2.3.1 Data Smoothing 

To identify the prevailing traffic conditions, traffic data quality (in terms of travelling 

speed and volume) is critical; however, sensor readings always have inherent noise. Two 

frequency-based filters — Fourier and wavelet transforms — can be applied to remove data 
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noise. A Fourier transform decomposes the original data into multiple sinusoidal functions, 

whereas a wavelet transform is based on the mother wavelet. By decomposing original data into 

sine/cosine signals, the Fourier transform is a great tool for analyzing stationary signals. 

However, when data are not stationary, a wavelet transform is more useful because the mother 

wavelet enables changes in the property of data over time (Sifuzzaman et al., 2009)  

For this study, a hard threshold that eliminates all coefficients greater than a pre-defined 

threshold (Thompson, 2014) was used to remove noise. The coefficients are given by the 

parameters in equation 1: 

 
𝑥𝑥  

(1) 

where Coefi is the ith coefficient and λ is the hard threshold, which is defined as λ = kσ, with k as 

the scaling parameter. For a given time series with N values using zero indexing, the estimated 

variance can be calculated using the following equation 2 (Thompson, 2014)(Gasser et al.,1986). 

 
𝑥𝑥  

(2) 

where yi is the transformed value of the time series recorded at the time index i; yi-1 is the 

transformed value of the time series recorded at the previous time step; and yi+1 is the 

transformed value of the time series recorded at the subsequent time step. 

For the application of the dynamic messages, real-time noise filtering was performed. 

Therefore, the data were treated as though they had been received in a streaming manner. To 

address this issue, this study employed a sliding window approach for data smoothing, where the 

sliding window applied a small subset of recent historical data (previous 20 minutes). Figure 2.5 

illustrates the raw data (for comparison with the same dataset given in Figure 2.3) and smoothed 

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 =  �𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ,       |𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 | >  𝜆𝜆
0,                𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑜𝑜   



17 

 

sensor data, where the raw sensor data are denoted by a light blue color and the solid black line 

represents the smoothed data based on the Haar wavelet transform.  

 

Figure 2.5 Data Smoothing 

 

2.3.2 Labels for Changeable Messages 

Unsupervised learning algorithms are designed for an unmarked dataset, whereas 

supervised learning algorithms are based on labeled data. Obtaining a labeled dataset is 

expensive and time-consuming. One approach for handling a set of unlabeled data is to apply an 

unsupervised algorithm to identify clustered results and use these results in the subsequent 

supervised classification tasks (Coates & Ng, 2012). Similar to this concept, the author of this 
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study applied k-means clustering to cluster unlabeled traffic sensor data into several groups. The 

k-means clustering results can help experts assign these groups to different changeable messages, 

which can subsequently be used as labels. Based on the preprocessed dataset, a supervised 

learning method was subsequently employed to replicate experts’ engineering judgment, which 

enabled the proposed control logic to automatically map the new data to a proper message for 

display as sensor data was streamed. 

An unsupervised method aims to obtain a function that provides a compact description of 

a dataset. k-means clustering was employed in this paper to cluster traffic sensor data into k 

groups, where the difference within the same group is minimized and the difference between 

groups is maximized (Hastie et al., 2009). The determination of the number k is application-

based. For example, for the DMS in the work zone application, the Iowa DOT had three different 

congestion statuses that were preferred based on the traffic conditions (“Delay”, “Slow Traffic”, 

and “Stopped Traffic”). Therefore, the data can be assumed to be divided into a maximum 

number of four different clusters, where the fourth cluster pertains to no message display. 

Regarding the variable advisory speed limit application during winter snow events, engineers 

recommended three different advisory speed limits based on traffic conditions: 55 mph, 45 mph, 

and 35 mph. As a result, four different clusters were defined for this application, where the 4th 

cluster pertains to the normal traffic condition. 

After identifying the descriptive information from these clusters, experts manually 

assigned a label for each cluster based on their engineering judgment and used these labeled data 

for supervised classification. These labels included “Advised 55 mph Ahead”, “Advised 45 mph 

Ahead”, and “Advised 35 mph Ahead” for the variable advisory speed limit application. For the 
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DMS work zone application, the labels included “Traffic Delays Possible,” “Slow Traffic 

Ahead,” and “Stopped Traffic Ahead”. 

A supervised method is similar to a function approximation, in which the algorithm 

formulates a function f based on a set of training <x, y> pairs. This generalized function f has the 

ability to map a new x as input to a proper output y. In the current application, the modeling input 

x represents smoothed speed (x1) and occupancy (x2), and y represents the proper message label 

associated with <x1, x2>. Engineering judgment is the function f that is used to derive the label y 

from the inputs. This function f, or engineering judgment, is extracted from the historical traffic 

events by the supervised method. 

 

2.4 Summary 

In this chapter, two changeable message signs in Iowa were assessed: the first type of 

CMS is the dynamic message sign in the I-74 work zone, and the second type of CMS is the 

variable advisory speed limit that reports severe winter weather. Due to noisy sensor readings 

and inappropriate message classification, their performance is not desirable. In the next section, 

the author applied data-driven techniques to enhance the performance and developed several 

applications to better manage traffic speeds in a real-time setting. One of the engineering 

solutions has been adopted and implemented by the Iowa Department of Transportation. This 

application monitors Iowa work zones 24/7 and sends out text multimedia messages when traffic 

congestion occurs. 
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CHAPTER 3.   APPLICATIONS 

 

The previous chapter identified several issues that deteriorate the performance of the 

existing traffic speed control applications in Iowa. In this chapter, after introducing the general 

framework of the application pipeline, different traffic speed control solutions are presented. 

 

3.1 Introduction to Application Pipeline  

The application pipeline is shown in Figure 3.1 and contains three modules: (1) real-time 

data processing module, (2) historical data analysis module, and (3) changeable message sign 

(CMS) applications module. The application framework is written in Java with a Weka data 

mining package for message classification (Witten & Frank, 2016), JWave for wavelet data 

smoothing (Scheiblich, 2017), the TransSuite® ATMS web service for posting proper messages 

to field CMS signs, and Twilio REST API for multimedia text message alerts. 

 

3.1.1 Data Processing Module 

To address the problem of noisy sensor reading and identify predominant traffic patterns, 

the sensor raw data must be processed before sending the data to any decision-making stages. 

Iowa DOT monitors more than 500 permanent and temporary Wavetronix radar sensors 

throughout the state, and traffic data can be accessed from these sensors via XML feeds with an 

update rate of 20 seconds. The author developed a series of Java scripts to automatically 

download and parse XML data feeds 24/7, including XPath to quickly extract the target sensor 

information and a DOM parser to aggregate traffic data at certain locations. Once the structured 

data were formatted, real-time data smoothing was conducted using a sliding window. The need 
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for data smoothing was demonstrated in the previous section on the problem statement, and the 

sample smoothing results are illustrated in Figure 2.5 and Figure 3.1. 

 

Figure 3.1 Application Pipeline 

 

3.1.2 Historical Data Analysis Module 

The second identified problem is the lack of labeled datasets for traffic events. This 

problem is addressed in the Historical Data Analysis module, which involves the process of 

analyzing data on past traffic events. Different applications may need a specific traffic dataset for 

support; however, they share the same principle. First, a person needs to pinpoint raw sensor data 

with targeted traffic events and apply a smoothing algorithm to the data. Second, the event data 

need to be clustered to help traffic engineers assign appropriate message labels. Finally, a 

supervised leaning method is applied to model these labeled datasets, and the results are 
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employed for real-time message classification. To demonstrate the application pipeline, the 

succeeding section considers the work zone DMS application as an example. 

Iowa DOT engineers determined that three types of messages would be displayed on field 

DMS signs for different traffic congestion levels: delayed, slowed, and stopped traffic 

conditions. Following their requirement, multiple types of historical traffic event data in Iowa 

work zones were collected, including normal operation, traffic congestion, traffic accident, and 

work zone construction. The author applied unsupervised k-means to cluster work zone data into 

four groups, which helps DOT traffic engineers assign proper labels. Because there are only four 

categories of messages to display, one of the supervised classification methods—the decision 

tree—was chosen to replicate experts’ engineering judgement. Figure 3.2 shows the trained 

results for the DMS work zone application, where the x-axis is the smoothed sensor occupancy 

and the y-axis is the smoothed traffic speed. The domain is color-coded into four different 

regions that represent the DMS region: from top to bottom, normal conditions with no message 

display, “Traffic Delay Possible,” “Slow Traffic Ahead,” and “Stopped Traffic Ahead”. An 

overlay with the labeled data points is shown in the plot on the right. To avoid overfitting and 

achieve better generalization, the accuracy was not 100%, as illustrated by the misclassified 

labeled points in different color regions. 
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Figure 3.2 Labels and Decision Boundaries for DMS in Work Zone 

 

3.2 Application Demo 

Once the classified traffic condition is ready, different applications can be built. In this 

section, several applications are discussed, including 1) DMS in the I-74 bridge repair work 

zone, 2) variable advisory speed limit in snow events, 3) text alert in Iowa work zones, and some 

extensions based on the current research. In addition, a performance comparison between the 

existing system and the proposed application is provided. 

 

3.2.1 DMS in I-74 Bridge Repair Work Zone 

The existing DMS work zone, which displays messages, uses a nearby traffic sensor to 

measure speed or occupancy and some fixed thresholds to post messages that warn drivers of 

traffic congestion. Based on the field observation in Figure 2.3, these simplistic control methods 
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generate a significant number of very short messages, erroneous messages, and clusters of 

messages that continuously alternate among different displays.  

 Figure 3.3 shows the comparison between the proposed DMS control logic (bottom 

graphs) and the existing logic (upper graphs). The raw speed data and smoothed speeds are also 

plotted in light blue and black lines, respectively. In addition, a closer review of the period 

between noon and 4:00 p.m. is plotted on the right. The proposed logic improves the DMS 

performance, as evidenced by the reduction of the displayed short messages and the clustered 

messages. The logic successfully detected the period between noon and 4:00 p.m. by displaying 

desirable and stable messaging. To quantify the enhanced performance, the number of clustered 

messages, short-duration messages, and total displayed messages for the existing logic is 27, 90, 

and 268, respectively. The proposed control logic reduces these criteria to 15, 18, and 91 (for 

clustered, short, and total messages, respectively). 

 

Figure 3.3 Existing Logic and Proposed DMS Control Logic 
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3.2.2 Variable Advisory Speed Limit in Snow Events 

Comparisons between the proposed advised speed limit control logic (black line) and the 

existing logic (red line) for a weather event on December 28, 2015, are shown in Figure 3.4. The 

raw speed data and smoothed speed data using a wavelet transform are also plotted as a light 

blue line and a dark blue line, respectively. For the three performance measures, the proposed 

logic yielded zero clusters, zero short messages, and 15 total messages, compared with 12 

clusters, 27 short messages, and 120 total messages generated by the existing logic.  

A closer review of the period between 6 a.m. and 8 a.m., which experienced a steep speed 

reduction due to a severe snow event, reveals that the advisory messaging was improved using 

the proposed logic. Although most drivers travelled at a speed below 20 mph, the existing logic 

continued to advise a speed limit of 45 or 55 mph. Conversely, the proposed logic correctly 

detected the severe traffic condition and provided a more reasonable advisory speed limit of 35 

mph.  

Additional before and after comparisons were conducted for different dynamic advisory 

messaging stations along the same study corridor on different dates; the results are listed in Table 

3.1. In addition to the dynamic advisory messaging function, the zero short messages generated 

in the proposed control logic are explained by the display time constraint that was implemented 

(each message was to be displayed for at least two minutes) to avoid short-duration messages. 
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Figure 3.4 Existing Logic and Proposed Control Logic 

 

Table 3.1 Performance Comparisons between Proposed and Existing Logic 

 Proposed/(Existing) 
Station ID, Date Cluster Short Msg. Total 
#1, Dec 24, 2015 1/(6) 0/(13) 23/(35) 
#1, Dec 28, 2015 0/(1) 0/(2) 14/(33) 
#2, Dec 24, 2015 0/(1) 0/(1) 13/(6) 
#2, Dec 28, 2015 1/(1) 0/(1) 22/(30) 
#3, Dec 24, 2015 1/(1) 0/(2) 13/(13) 
#3, Dec 28, 2015 0/(12) 0/(27) 13/(120) 
#4, Dec 24, 2015 0/(0) 0/(0) 3/(5) 
#4, Dec 28, 2015 0/(3) 0/(10) 12/(85) 

 

After assessing the historical snow events in December 2015, the author implemented the 

proposed control logic and tested it in real time. The basic implementation logic followed the 

flow chart shown in Figure 3.1, including sensor XML data feed downloading, XML parsing, 

stream data smoothing, online classification, and sending out the classified message. The Iowa 
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DOT assigned several dummy DMS locations for testing; thus, the proposed advisory messaging 

control continued to run in “ghost” mode until approved. The real-time application was launched 

in winter 2017, during which several snow events occurred. To validate the accuracy of the real-

time implementation, the generated dynamic advisory messages were compared with multiple 

data sources, including the roadway weather information sensor (surface friction), TransSuite 

TIS internal message logging report, roadway camera, and Wavetronix speed sensor. 

 

3.2.2.1 Real-time implementation & validation example #1 

 The first snow event occurred on December 24, 2017, with snowy conditions from 1 a.m. 

to 11 a.m. Figure 3.5 shows the sensor data during the winter snow event near the location of 36th 

St. along I-35. The speed started to decrease at approximately 3 a.m., was approximately 50 mph 

from 5 a.m. to 8 a.m., and gradually returned to normal by noon. The friction conditions 

illustrated a similar pattern — changed from the worst condition of snow warning/ice watch to 

the normal situation (wet and trace moisture, then dry). In the top plot of Figure 3.5, the light 

blue points represent the raw sensor data, and the solid blue line represents the smoothed speed 

that was used to trigger dynamic advisory messages (straight red line). The newly designed 

algorithm successfully displayed the message of “Advised 55 mph” from 3 a.m. to 7 a.m., which 

was verified using the TransSuite TIS Software Report in Figure 3.6. 
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Figure 3.5 Event #1 Speed Profile and Roadway Surface Condition 

 

 

Figure 3.6 Event #1 TransSuite TIS Software Report 
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In addition to the quantitative description from the sensor/report, the author downloaded 

information from a nearby camera for better visualization. Figure 3.7 displays the camera view 

of the roadway surface environment for this location on the same day. From the top left to the 

bottom right, the conditions of snow warning, ice watch, wet, and trace moisture, respectively, 

are shown. The color that borders each camera image can also be related to the friction color 

shading in Figure 3.5, where the red area indicates “snow warning”, the blue block denotes “ice 

watch”, the green block represents “wet” conditions, and the gray block represents “trace 

moisture”.  

 

Figure 3.7 Event #1 Roadway Surface Conditions 
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3.2.2.2 Real-time implementation & validation example #2 

Three days after the first event, another snowstorm occurred at night on December 27, 

2017. This section illustrates the performance for this day. In addition to the winter weather 

advisory messaging, the system was capable of providing alerts for other severe traffic events, 

including traffic crashes. 

Figure 3.8 shows the speed profile at 36th Street, where the red patched region indicates 

the snow warning logged by the roadway friction sensor. Although this snow weather event 

started at approximately 10 p.m., speeds began to decrease prior to this time due to the roadway 

surface conditions (Figure 3.9). The proposed logic detected this reduction in speeds at 10:20 

p.m. (as verified via the TIS report in Figure 3.10) and displayed an advisory 55 mph message. 

One highlight of this example is that the novel dynamic advisory messaging logic also 

correctly reacted to a traffic incident at approximately 3:30 p.m. The traffic conditions during 

this non-recurrent event are indicated on the right of Figure 3.8; the speed plummeted to 20 mph. 

A nearby camera’s imagery data were also retrieved to verify the algorithm’s accuracy, as 

illustrated in Figure 3.11. 

 

Figure 3.8 Event #2 Speed Profile and Roadway Surface Condition 
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Figure 3.9 Event #2 Camera View of Roadway Conditions 

 

 

Figure 3.10 Event # 2 TransSuite TIS Software Report 
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Figure 3.11 Camera View of the Traffic Event on December 27, 2017 

 

3.2.3 Text Alert in Iowa Work Zones 

Providing dynamic messages to all roadway users is difficult and time-consuming due to 

various concerns, such as policy, budget, and right-of-way. Consequently, the variable advisory 

speed limit project continues to run in the background until it is approved. However, disclosing 

this information to a limited number of targeted personnel, such as district traffic engineers, 

operators in traffic management centers, and researchers, is easier. In this section, the application 

of text alerts in Iowa work zones resolves the dilemma faced by the variable advisory speed limit 

project. By continuously monitoring traffic information in real time, this text alert application 

enable DOT engineers to provide better/quicker response to traffic incidents. 

This application takes the classified messages as inputs and sends out multimedia text 

messages to district engineers regarding severe traffic congestion. Figure 3.12 is an example of a 
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traffic congestion event, where the x-axis indicates time of day and the y-axis indicates traffic 

speed. Both the raw data (light gray dots) and the smoothed data (solid black line) are plotted 

with the displayed messages as different color blocks. Data from an entire day are shown in the 

left subplot, and a zoomed-in view of the traffic event is shown in the right subplot. 

 
Figure 3.12 Example of Text Alert Application 

DOT engineers only wanted to be informed of severe traffic situations, which was 

stopped condition traffic in this case, and wanted to limit the number of false calls that they 

received. Thus, this system applies a buffer of five minutes to avoid sending messages about 

abrupt traffic congestion; i.e., the text message is only sent to engineers if traffic is in a stopped 

condition for five continuous minutes. The accuracy of the message was a higher priority than 

the timeliness of the alerts. Two text message alerts were sent out per event: a text message alert 

was sent when a congested event was detected, and a follow-up text message alert was sent when 

the congestion cleared. The text message provided various pertinent information, including the 

timestamp, traffic speed, work zone name, milepost, and most importantly a snapshot from a 

nearby camera. The congestion clearance message included similar information and camera 
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imagery as well as details about the total congestion duration, for instance, 19 minutes in the 

example. 

 In the previously introduced work zone area, only one sensor is monitored. For the work 

zone with multiple sensors deployed, the message was triggered by the sensor with the worst 

traffic conditions. Figure 3.13 demonstrates another work zone operation with six sensors 

installed. Due to the length of the work zone area, some sensors did not experience congested 

traffic at the same time. To treat the system as a whole and notify the dedicated district traffic 

engineer, the program sent out a text message based on the sensor with the worst traffic 

condition (red or gray lines). The example traffic incident occurred during the p.m. peak hours. 

Once a significant speed reduction was observed, a text alert was sent at 4:54 p.m. 51 minutes 

later, at 5:45 p.m., when normal traffic conditions resumed, a follow-up text was generated to 

advise people that the traffic incident had cleared. 

 

Figure 3.13 Example of Text Alert Application with Multiple Sensors 

The text alert application was launched at the beginning of June 2017 with 26 work zones 

and 66 sensors. Starting in May 2018, the operation has been scaled up to monitor 50 work zones 

with 350 sensors across the Iowa highway network. The system is functioning well, and positive 
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feedback has been received from the Iowa DOT. However, several issues have been identified. 

This application is highly dependent on the data quality from roadway sensors. If the sensor is 

not well calibrated, it will not work correctly due to the massive number of missing values, 

biased speed detections, and erroneous reading. 

 

3.3 Extension Applications of the Current Research 

Several other engineering solutions are feasible based on the author’s research findings. 

This section addresses two additional traffic engineering applications: the traffic data feed API 

integrated by the Iowa DOT traffic management center and the annual work zone performance 

report. 

 

3.3.1 Traffic Management Center Data Feed API 

The application pipeline was previously described in Figure 3.1, where the classified 

messages have multiple destinations. In addition to the three previously introduced applications 

(DMS in work zone, variable advisory speed limit reaction to winter snow event, and text alert 

system), the research team in the Iowa InTrans REACTOR lab developed a work zone alert data 

feed (http://reactorfeeds.org/) that continuously logs traffic information. The Iowa Traffic 

Management Center (TMC) subsequently integrated this data feed into their monitoring system 

and displayed the work zone traffic information in real time.  

Figure 3.14 visualized this product, with a holistic view of the TMC room on the left and 

zoomed-in information highlighted on the right. This piece of information is almost the same as 

the information displayed in the text messages, including work zone name, sensor milepost, 

event activation time, and traffic conditions for an event. In contrast to the text message 

http://reactorfeeds.org/
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application, which only focuses on severe traffic events, this TMC solution also tracks less 

severe events, i.e., congestion in Iowa highway work zones. 

 

Figure 3.14 Operations Dashboard with Work Zone Alert Feed (Left Image from 

http://ia.zerofatalities.com/new-technologies-make-iowa-work-zones-safer/) 

 

3.3.2 Work Zone Performance Evaluation 

Work zone construction activities account for the majority of roadway congestion and 

potential sources of traffic accidents in Iowa and other states in the US. The Iowa State 

University REACTOR Lab (https://reactor.ctre.iastate.edu/) provides an independent evaluation 

of work zone performance via the annual report of Traffic Critical Work Zone Evaluation. Prior 

to 2017, a simple fixed threshold of speed was used to identify traffic events in work zones, 

which encountered many false events. For the latest 2017 report, a data-driven approach was 

applied for better abnormal traffic incident detection and this detection technique is based on the 

condition boundaries defined in Figure 3.2. 

In the performance report, a work zone event is defined as the traffic in slow or stop 

conditions. After processing all Wavetronix data during work zone seasons (March to October, 

2017), 3,843 events were identified across 51 different work zones. Figure 3.15 is the map 

https://reactor.ctre.iastate.edu/
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visualization of these work zones. Once the list of identified events is ready, different work zone 

performance metrics are calculated based on the event start/end times, including congested hour 

and delay. 

 

Figure 3.15 2017 Iowa Work Zone Map 

 

Figure 3.16 utilizes the box plot to visualize the work zone performance in terms of event 

duration in minutes (y-axis). Work zone ID 6l-WB is highlighted (circled in Figure 3.15), with 

an average event time of approximately 1.5 hours. This work zone is the same work zone 

mentioned in the first DMS application for the I-74 bridge repair in Chapter 3. 
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Figure 3.16 2017 Iowa Work Zone Event Duration Boxplot 

 

3.4 Summary 

This chapter discussed three applications of changeable messages to better manage traffic 

speeds along an Iowa highway network. The discussion begins with dynamic message signs in 

the I-74 work zone, which is a proof of concept application based on a historical dataset. Then, 

the variable advisory speed limit was implemented in real time and successfully validated against 

other snow events in subsequent years. Due to various concerns, this application continues to run 

background without displaying any messages to the public. The text alert solution addressed the 

dilemma faced by dynamic advisory messaging, by exposing messages to dedicated personnel. 

This application continuously monitors 50 work zones in Iowa and sends out text messages with 
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a scene of the congested traffic incident. Based on the author’s current research results, two more 

applications have been developed by other members in the REACTOR lab. 

So far, this dissertation research describes traffic speeds from a macroscopic viewpoint. 

However, how individual drivers react to traffic control devices cannot be sufficiently answered. 

In the following chapter, the author changes the angle to a smaller world and attempts to 

understand an individual’s driving behaviors. 
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CHAPTER 4.   OLDER DRIVERS NATURALISTIC DRIVING STUDY 

 

The previously discussed traffic speed analyses and applications were based on data 

collected by roadway sensors. Sensors comprise a valuable data source for monitoring traffic 

conditions in a highway network. However, these sensors collect data at fixed locations and 

cannot provide detailed individual-level driving information. With the development of sensor 

technology, additional instrumented vehicle data were collected using a different data source that 

enabled a driver’s speed to be evaluated from a micro perspective. In this chapter, the author 

conducts a naturalistic driving study to point out the driving patterns of older adults.  

 

4.1 Introduction 

Traditional traffic speed studies are based on the data collected by different types of 

roadway sensors, including but not limited to loop detectors, microwave sensors, inferred 

sensors, and ultrasonic sensors. Analyses based on these data describe the traffic characteristics 

from a macroscopic level. However, questions such as how an individual driver performs cannot 

be adequately answered. With the development of sensor technology, additional data on an 

individual level were collected. For example, Second Strategic Highway Research Program 

Naturalistic Driving Study (SHRP 2 NDS), which is led by the Virginia Tech Transportation 

Institute (VTTI) (Dingus et al., 2016), recruited more than 3,500 drivers and recorded a massive 

amount of continuous naturalistic driving data over three years. A 400-car naturalistic driving 

study from Australia (Regan et al., 2013) aims to understand interactions among drivers, 

vehicles, other road users, and roadway infrastructures. The University of Iowa targeted 100 

older adult drivers (72 years old, on average) with the objective of building predictive models of 
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driver safety for older drivers (Dawson et al., 2010) (Emerson et al., 2012). In addition to various 

instrumented vehicle data, this older driver research provided a comprehensive list of personal-

level predictors, including drivers’ motor function measures, visual perception assessments, and 

cognitive measures. 

As an important component of a naturalistic driving study, an instrumented vehicle 

sensor system is an interdisciplinary field that consists of many other technologies, including 

telecommunications, roadway transportation, roadway safety, and sensor engineering. The 

system generated rich driving data (multiple in-vehicle sensors, dashboard camera videos, and 

GPS) that empowers many driver behavior studies. This type of study can improve roadway 

safety by identifying high-risk driving behaviors and different driving styles. For example, the 

VTTI built a probabilistic model to model crash probability based on SHRP 2 NDS data (Dingus 

et al., 2016). The model revealed a notable finding: drivers who were distracted more than 50% 

of the time were exposed to a much higher crash risk. Transportation safety can be significantly 

improved (4 million less crashes in the U.S.) if distractions to driving can be avoided. To detect 

the deviations from normal driving, Papazikou et al. (2017) analyzed the SHRP 2 data. They 

investigated multiple indicators, including braking, longitudinal/lateral acceleration, and time to 

collision, and validated the threshold for each indicator. They suggested several potential 

indicators for better performance, such as traffic conditions, driver demographics, and yaw rates. 

In another driving style classification research, Vaitkus et al. (2014) used a k-nearest neighbors 

algorithm to classify aggressive driving and normal operations. Multiple features were tested, 

and the research indicated that the use of only the mean and median of the longitudinal and 

vertical acceleration can achieve reasonable classification results. 
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Naturalistic driving data are a great source for identifying different drivers due to their 

many practical applications, such as driving assistance devices and insurance pricing. SenseFleet 

is a platform that can identify different risky driving maneuvers and provide immediate feedback 

(Castignani et al., 2015). The system utilized fuzzy logic to obtain dynamic thresholds for 

detecting events such as over-speed, acceleration braking, and vehicle steering. In addition to the 

data on vehicle dynamics, SenseFleet further integrated weather data for better driver behavior 

scoring. Van Ly et al. (2013) applied inertial sensor data to evaluate people’s driving styles. 

After analyzing multiple vehicle maneuvers, they determined that features of braking and turning 

movements were significant features for classifying different drivers. Another driver 

identification study was conducted based on a single turn (Hallac et al., 2017). The study entailed 

a classification problem, in which the classifier can identify which individual driver was driving 

the car after a turning movement. They extracted data from 12 different in-vehicle sensors every 

0.1 seconds and generated 12 features for each sensor reading. To reduce the dimensionality and 

avoid overfitting, a principle component analysis and random forest classifier were implemented. 

In the personal auto insurance industry, the current premium calculation models are general and 

are not customized for each individual driver (Husnjak et al., 2015). Vehicle telematics can 

identify different driving patterns, which enables usage-based insurance or a pay-as-you drive 

billing model. For example, the auto insurance carrier Progressive has adopted the SnapShot® 

device to collect driving behavior data for better/effective pricing.  

 

4.2 Data Sources 

This paper focuses on older adults’ driving behaviors that are associated with different 

roadway characteristics in Nebraska. To better understand various patterns of driving habits, the 
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author needs to integrate multiple data sources from in-vehicle sensor data, the Nebraska 

roadway information database, and drivers’ information. 

 

4.2.1 Instrumented Vehicle Sensors 

The University of Nebraska Medical Center (UNMC) manages a naturalistic driving 

study to identify patterns of driving behaviors of old adults. This study recruited drivers aged 65 

to 92 years old (µ = 75 years old) and recorded their daily driving behaviors over three months. 

The dataset is comprehensive and uses multiple data sources: 

• Global Positioning System (GPS) data: 5 Hz data, including longitude, latitude, GPS 

speed, heading, and satellite reception.  

• On-Board Diagnostics (OBD) data: 5 Hz dataset containing the vehicle’s odometer 

reading, engine throttle, and engine revolutions per minute.  

• Inertial Measurement Unit (IMU) data: 100 Hz dataset with three-axis accelerations 

(lateral, longitudinal, and vertical), yaw, roll, and pitch. Figure 4.1 shows the 

accelerometer data axes collected by the IMU. 

 

Figure 4.1 Image for Accelerometer Data Collected by IMU 
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• Dashboard cameras: a frontal view and cabin view combined video with 25 frames per 

second. 

This large-scale dataset with 400 GB of structured text files (GPS, OBD, and IMU) and 7 

TB of unstructured video files that can evaluate senior citizens’ driving behavior in many 

aspects. Figure 4.2 provides a map of the driving routes of the participants during the period of 

study; a variety of colors represent the different subject drivers. All trips were centered in 

Omaha, Nebraska, because the recruited drivers live in this city. However, their travel 

destinations were not limited to the Midwest; one participant even travelled to Canada. Due to 

the time constraints and the availability of roadway information files, this paper focuses on the 

GPS and IMU datasets for travel in Nebraska and uses other data sources for validation. 

 

Figure 4.2 Driving Routes Visualization of UNMC Old Driver Study 
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4.2.2 Nebraska Geographic Information System Database 

Although every study vehicle was equipped with a frontal view dashboard camera, with 

numerous driving environment information available (roadway type, lane incursion, traffic signs, 

and weather), the deep learning objective detection model remains under development. Thus, this 

research enriched the GPS and IMU data with roadway information based on the Nebraska 

Geographic Information System (GIS) database, which logs data such as roadway functional 

classification, speed limit, roadway surface type, average daily traffic, and number of lanes. 

Figure 4.3 displays the Nebraska GIS shapefile with 355,138 polylines.  

 

Figure 4.3 GIS Polyline Shapefile of Nebraska 

 

4.2.3 Driver’s Information 

The overarching goal of this naturalistic driving research led by UNMC is to measure 

real-life driving performance with respect to age-related cognitive dysfunction. Each driver was 

required to take a series of comprehensive examinations, and numerous predictors of driving 

behaviors of older drivers (Emerson et al., 2012) were collected: 

• Demographic information: Age, gender, marriage status, and years of education.  
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• Cognitive assessment:  

o COGSTAT: This score quantifies general cognition, which is a composite of 

several cognitive measures. 

o Useful Filed of View (UFOV): UFOV was collected using personal computer 

touch screen to measure people’s processing speed, divided attention, and 

selective attention. 

• Basic vision: Scores to quantify individual’s far visual acuity and contrast sensitivity.  

• Movement ability:  

o Get-up and go: the time in milliseconds required for a seated participant to stand 

up, walk 10 feet, turn around, and return to their seat (a smaller value suggests 

better performance). 

o Functional reach: a clinical measure of balance that measures the starting position 

of a participant before he/she reaches forward (a larger value indicates better 

movement function). 

• Speeding ticket record: The historical (two years before the driving study) speeding ticket 

record for each participant. 

The dataset is sufficient for analyzing people’s driving behavior from a detailed 

perspective compared with roadway sensors. However, processing this dataset is challenging 

because the data are collected from different sensors and there is no universal key to merge them. 

In the next segment, different data wrangling techniques, including merging data from difference 

sources and filtering out noisy data points, are discussed. 
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4.3 Data Pre-Processing 

GPS data and IMU data were merged based on timestamps. To handle the different 

sampling rates, 100 Hz IMU data are aggregated based on a 5 Hz GPS time. At GPS time t, the 

accelerometer data from IMU are averaged from t ± 0.1 seconds. Once the GPS data are merged, 

the longitude/latitude location can serve as the key to fuse with the Nebraska GIS database using 

Python’s geospatial package (GeoPandas). Drivers’ information was attached using the subject 

ID. 

This paper aims to study old drivers’ driving behaviors with respect to different speed 

limits and other roadway features. Thus, drivers’ daily driving activities were divided into 

continuous three-minute trips for better visualization and analysis. Due to the complexity of 

driving environments, some trips’ data were not included in the final model, For example, 

• Drivers made left/right/U-turn movements or stopped at intersections. When these 

driving maneuvers occurred, a sudden reduction in speed can be observed from the speed 

trajectory. Since this paper focuses on driving behaviors with respect to different 

roadway characteristics (primarily speed limit), these driving scenarios were not desired. 

Figure 4.4 provides one example of a driver making a right turn at an intersection. The 

subplot on the top is the speed profile, and subplot on the bottom indicates the trip 

location on the map. The speed of a driver significantly decreased when the driver 

approached an intersection and intended to make a right turn. Once the driver finished the 

turning movement, the speed profile gradually reflected normal conditions. 



48 

 

 

Figure 4.4 Undesired Trips Example — Making Right Turn at an Intersection 

• Trips that involved traffic congestion, work zone activities, traffic accidents, etc. These 

speed trajectories were often observed along high-speed roadways, where vehicles travel 

extremely slowly. Figure 4.5 displays a time series speed profile along a rural highway 

segment. Although the posted speed limit is 65 mph, the driver was travelling below 20 

mph. By checking the dashboard camera, a traffic accident with a lane closure and police 

enforcement was identified. 



49 

 

 

Figure 4.5 Undesired Trips Example — Traffic Accident 

Manually obtaining the desired trips is extremely time-consuming. A data-driven 

approach was developed in this paper to filter out undesirable speed trajectories. First, the author 

manually labelled 342 trips; half of the trips are good trips, and half of the trips are undesired 

speed trajectories. Second, several features were extracted from the time series speed trajectories, 

including Wavelet transform parameters, difference between travelling speed and speed limit, 

and GPS satellite reception. Finally, the binary logistic classification was trained and fine-tuned 

using Python’s GridSearchCV to identify the best combination of hyper-parameters. Figure 4.6 

illustrates the filtering result with two different speed limits (65 mph and 55 mph). The raw 

speed trajectories plot on the left contain many stopped or slowing-down trips, whereas the data 

quality (on the right) is significantly improved after applying the trained classifier. 
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Figure 4.6 Data Filtering Examples 

In summary, the entire data pre-processing pipeline follows the flowchart in Figure 4.7. 

The author merged the raw instrumented vehicle sensor data and GIS database and divided daily 

trip trajectories into multiple three-minute chunks. The goal of this paper is to determine older 

adults’ driving behavior with respect to different speed limits and other roadway characteristics. 

Trips that were affected by turning movements, intersection signals, accidents, and traffic 

congestion, were not desired and were excluded from the final modeling dataset. 
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Figure 4.7 Data Pre-Processing Flow Chart 

 

4.4 Descriptive Statistics 

Previous sections discussed the data merging techniques for various sources of data, and 

different types of keys were employed, including timestamp, geolocation, and subject ID. To 

gain meaningful insights into driving behavior with respect to roadway characteristics (such as 

speed limit), data quality is very critical. Thus, a data-driven filter was developed to remove 

undesired driving trajectories. In the succeeding sections, different statistical analyses are 

discussed. 

 

4.4.1 Driver’s Information 

Chapter 4.2.3 discussed several predictors of driving behaviors for older drivers, which 

are subsequently included as modeling features. Table 4.1 provides a summary of driver’s 

characteristics (continuous variables) for 36 males and 33 female drivers. Of the 69 participants, 

42 participants are married, and 27 participants indicate other marital status (separated, divorced, 
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and single). The speeding ticket history might be an indicator to measure driver’s aggressiveness 

and there are 6 participants violated the speed limit regulation within past two years. 

Table 4.1 Summary of Statistics for Drivers 

Category Variable Names Min Max Mean Description 

Demographic 
age 65 92 75.2 Age 

education 10 18 15 Years of education 

Cognitive 
Assessment 

cogstat 245.6 467.5 362.4 Measure of cognition 
higher is better 

ufov_speed 9.00 26.60 22.18 Processing speed 
lower is better 

ufov_divided 16.6 236.6 49.9 Divided attention 
lower is better 

ufov_selective 53.2 416.4 160.1 Selective attention 
lower is better 

Basic Visual  
fva -0.20 0.42 0.07 Far visual acuity 

lower is better 

cs 0.22 0.92 0.51 Contrast sensitivity 
lower is better 

Movement 
Ability 

getupgo 5040 17059 9398 Get up and Go 
lower is better 

funcreach 4.62 16.5 9.95 Functional reach 
higher is better 

 

Figure 4.8 shows a parallel coordinate plot to visualize the multivariate data. Each 

polyline represents driver’s characteristics, and the vertical axes show different features listed in 

Table 4.1. For example, the first column on the left indicates driver’s age, where the higher is the 

position, the older is the driver. The highlighted polyline represents one subject’s information, 

with all feature values and the max/min listed. Figure 4.9 displays a pairwise scatter plot of the 

drivers’ information, with their correlations listed on the top right. Generally, visual clusters are 

not identified among recruited subjects, which provides a representation of the older driver 

population. 
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Figure 4.8 Parallel Coordinate Plot of Driver Information 
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Figure 4.9 Pair Wised Scatter Plot of Driver Information 

 

4.4.2 Modeling Dataset 

As previously introduced, the GPS data are collected with a sampling rate of 5 Hz, and 

the GIS roadway information is stored in the unit of polyline. Thus, many GPS data points were 

matched with a single GIS polyline (depending on the length of polyline, this number varies). To 

better utilize the GIS roadway information, the processed speed trajectories were further 
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aggregated into the GIS polyline level. To aggregate point data into a polyline unit, several 

issues had to be considered, including IMU accelerometer reading, timestamp information, and 

GPS speed records. 

The IMU sensor collects acceleration in three directions; two directions are employed in 

this paper: longitudinal direction (vehicle heading direction) and lateral direction (vehicle side-

by-side direction). To aggregate these timestamped acceleration data points into a GIS polyline 

unit, two descriptive statistics were calculated: the mean and the standard deviation of absolute 

acceleration value. 

For the timestamp information for each data point, two types of features were extracted. 

The first feature is the day of the week factor, which was further binned into two categories: 

weekday or weekend. The second feature is time of day, which was grouped into a binary value: 

daytime or nighttime. Due to the spatial and temporal distribution of data points, a fixed time 

threshold (for example, 7 a.m. or p.m. as the cutoff time) to determine daytime or nighttime is 

not sufficiently accurate. Instead, the author calculated the times of sunrise and sunset via the 

date and geo-location. Based on these two calculated time points, a daytime category is assigned 

when a timestamped data point falls within the period between sunrise (t1) and sunset (t2). Any 

data points located beyond the period of (t1, t2) are treated as driving at night. 

Several concerns need to be addressed when aggregating GPS speed data points because 

they will be treated as target variables in the subsequent models. This paper aims to evaluate 

older drivers’ operational speed selection for different roadway conditions. For this reason, one 

of the target variables is the speed difference compared with the speed limit, which enables 

meaningful analysis across various sites with different posted speed limits (Simons-Morton et al., 

2005). For example, if a person is driving at 68.6 mph along a highway segment with a 65 mph 
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posted speed limit, the speed difference for this person is 3.6 mph. These speed differences were 

averaged when fusing to the GIS polyline unit. 

In addition to speed selection, safety is crucial when analyzing driving behaviors. In a 

teenager driving study (Simons-Morton et al., 2005), a high-risk driving condition was defined as 

travelling 15 mph or more above the posted speed limit. Speed is only one aspect of risky driving 

behavior; traffic accident rates increase with a greater speed variance and may not necessarily 

increase with a higher average speed (Garber & Gadirau, 1988). One of the most famous speed 

dispersion studies conducted by Solomon (1964) revealed that the greater is the difference 

between the driving speed and the traffic average speed is, the higher the probability of an 

accident is. This study revealed the relationship between travel speed and crash involvement rate 

and suggested that drivers have an increased rate of accident involvement if travelling with a 

speed that is higher or lower than 6 mph near the average traffic speed (Aarts & van Schagen, 

2006) (Solomon, 1964). 

Considering the safety aspects for older drivers, this paper defined a speed zone as 5 mph 

within the posted speed limit as a relative safer speed selection. If a participant was travelling 

either too fast (≥ 5 mph above the speed limit) or too slow (≥ 5 mph below the speed limit), the 

author assumes that such driver has a relatively higher risk. To assess this multinomial driving 

environment, a paired-t test was conducted between GPS speed and the speed limit associated 

with the GIS polyline based on the following formulas. 

 𝐷𝐷𝑖𝑖 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜𝐺𝐺𝑖𝑖 − 𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜𝐺𝐺𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑡𝑡𝑖𝑖 (3) 

 𝑡𝑡 =  
𝐷𝐷� − 𝜇𝜇𝑑𝑑
𝐺𝐺𝐷𝐷/√𝑛𝑛

 (4) 

 



57 

 

where,  

• 𝐷𝐷𝑖𝑖 is the difference between GPS speed and posted speed limit for ith pair 

• 𝐷𝐷� is the mean difference between paired GPS speed and GIS speed limit 

• 𝜇𝜇𝑑𝑑 is the hypothesized population mean difference (5 mph or –5 mph under the current 

paper assumptions) 

• 𝐺𝐺𝐷𝐷 is the standard deviation of paired speed difference. 

• n is the sample size (the number of paired speed difference within each polyline) 

After calculating this one-way paired t-test, if the testing results are not significant based 

on the ± 5 mph buffer, they are treated as the baseline group. A label of speeding is assigned to 

the observations who travelled at least 5 mph faster than the posted speed limit; otherwise, a 

slowing label is created for the entries who drove at least 5 mph slower than the speed limit. To 

assess this multinomial driving environment, a logistic regression was chosen to quantify the risk 

probability. 

 

Figure 4.10 Modeling Pipeline 
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Figure 4.10 summarizes the modeling pipeline in this paper; it starts with the pre-

processed pointwise speed dataset and aggregates the points into the GIS polyline unit. Table 4.2 

and Table 4.3 provide a summary of the statistics of the categorical and continuous variables 

after the data aggregation. 

Depended on the modeling interests, different aggregation summaries were calculated, 

such as the difference between travelling speed and speed limit; and a linear regression was used 

to handle this continuous target variable. The other dependent variable is multinomial driving 

condition, which was modeled by logistic regression. In the next sections, a mixed effect 

modeling framework is discussed, followed by the modeling results. 

Table 4.2 Summary of Statistics for Categorical Variables 

Variable Category Count 

Speed Limit 

25 mph 248 
35 mph 104 
40 mph 10 
45 mph 17 
50 mph 1 
55 mph 389 
60 mph 5,358 
65 mph 2,292 
75 mph 2,568 

Rural 
Rural 6,129 
Urban 4,858 

Roadway Type 
Others 5,100 

Interstate 5,887 

Surface Type 
Others 4,149 

Concrete 6,838 

Time of Day 
Day 9,229 

Night 1,758 

Day of Week 
Weekday 8,151 
Weekend 2,836 
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Table 4.3 Summary of Statistics for Continuous Variables 

Variable Min Max Mean 
Lane Number 1 5 2.4 
Lane Width 9 18 12.3 

Annual Average Daily Traffic 145 173,480 54,709 
|Longitudinal Acceleration|_Mean 0.2 8.9 1.1 
|Longitudinal Acceleration|_Std 0.2 4.0 0.6 

|Lateral Acceleration|_Mean 0.2 6.2 1.4 
|Lateral Acceleration|_Std 0.1 3.5 0.6 

 

4.5 Statistical Method 

Different people have diverse driving behaviors. To incorporate the driver-specific 

correlations, mixed-effect models were employed. The Virginia Tech Transportation Institute 

SHRP 2 project applied a mixed logistic regression to model crash probability (Dingus et al., 

2016) and found that crash risk is highly related to distracted driving. Hamzeie et al. (2017) 

conducted a driver speed selection research using SHRP 2 data. Multiple mixed-effect models 

were employed to assess average speed, speed variation, and crash probability. In addition to 

driver-specific correlations, a mixed-effect framework can be applied for site-specific 

considerations. For speed choice in highway transition zone research (Cruzado & Donnell, 

2010), a mixed-effect approach was adopted to consider the site-specific effects. After analyzing 

data collected from 20 different locations, they determined that the posted speed limit reduction 

and other roadway characteristics in transition zones increased the traffic speed reduction. 

The general form of linear mixed models in matrix notation is listed in the following 

equation (UCLA: Statistical Consulting Group, 2018): 

 𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 +  𝜺𝜺 (5) 
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where y is the target variable with size N × 1; X is a N × p matrix with p predictors; 𝑿𝑿 is 

the fixed-effect coefficients with size p × 1; Z is the random complement to the fixed X with size 

N × q and u is a q × 1 column vector of the random effects. 𝜺𝜺 is the residuals vector that 

accounts for the randomness that cannot be explained by 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁. In this study, the driver-

specific correlations need to be considered. The final modeling dataset has 69 drivers (q = 69) 

after data pre-processing and aggregation (N = 10,987). 

 In the next part, two models are fitted and discussed. The first model is the linear 

regression with a mixed effect, and the second is logistic regression with a mixed effect. 

 

4.6 Modeling Results 

The R package lme4 (Bates et al., 2015) is used for fitting a linear mixed-effects model 

via the lmer function. To model the multinomial logistic regression under the mixed-effect 

framework, the brms package (Burkner, 2015) is applied. This section discusses the modeling 

result of the speed difference and the likelihood of driving in a less safe environment. 

 

4.6.1 Mixed-effect Linear Regression 

Table 4.4 summarizes the modeling results of mixed effect linear regression with the 

target variable of speed difference against posted speed limit. In addition, the continuous 

variables like age, education, cognitive scores, etc. were centered to their mean value for better 

and easier interpretation of modeling result. All listed variables are significant at the 5% alpha 

level.  
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Table 4.4 Mixed Effect Linear Regression 

Predictor Estimate Std. Error P-Value 
Intercept 4.26 0.46 < 0.001 

Speed Limit < 60 Baseline     
Speed Limit 60 -1.45 0.20 < 0.001 
Speed Limit 65 -2.72 0.21 < 0.001 
Speed Limit 75 -6.11 0.29 < 0.001 

Rural Baseline     
Urban -1.89 0.13 < 0.001 

SurfaceType Concrete Baseline     
SurfaceType Other 0.22 0.10 0.031 

Roadway Type Interstate Baseline     
Roadway Type Other -1.27 0.19 < 0.001 

Lane Number 0.63 0.06 < 0.001 
Lane Width -0.39 0.03 < 0.001 

Day Baseline     
Night -0.66 0.10 < 0.001 

DMV Citation 2.75 1.21 0.026 
|Lateral Accel|_Std. -2.82 0.20 < 0.001 

|Lateral Accel|_Mean -0.40 0.08 < 0.001 
|Longitudinal Accel|_Std. 1.39 0.14 < 0.001 

Education 0.78 0.29 0.009 
 

 As listed in Table 4.2, the data were not evenly distributed across all speed limit bins, 

with a larger number of samples for higher speed limits and fewer data points for lower speed 

limits (25 mph ~ 55 mph). When travelling along roads with lower speed limits, drivers were 

affected by intersections, turning movements, and traffic lights. Therefore, four categories were 

fitted in the model, with speed limits less than 60 mph as the baseline level. All categories are 

significant, with negative coefficients, which suggest that older citizens tended to drive slower 

on high-speed roads. This slowing-down effect increases as the speed limit increases.  
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 The speeds of drivers in the vicinity of urban areas were slower than the speeds of drivers 

in rural areas. This finding makes sense to the author because the driving environment is more 

complex in the urban area due to a larger number of cars, weaving areas, and intersections. 

 Due to access control, travelers drive more freely on an interstate at higher speeds. When 

driving on other roadways, they have to react to additional objects, such as traffic signals, 

pedestrians, cyclists, and dedicated turning lanes. 

 The concrete roadways are more expensive to build and have a longer life cycle, the 

significant coefficient here suggests that old people drive slower when travel on concrete 

roadways. 

The number of lanes has a positive coefficient, which indicates that older drivers 

travelled faster on roads with a higher number of lanes. A higher number of lanes usually 

indicates a better/faster roadway facility, which might cause people to drive faster. As for the 

lane width, the negative coefficient suggests that with a wider lane presented, drivers would 

adopt a lower speed. 

 As previously discussed, roadway geometrics are critical to drivers’ speed selection. 

However, this dissertation research also explores to find other important insights that affect 

speed. With the help of instrumented vehicle sensors, more micro level data were available to 

analyze driving behavior. 

 The sensor’s timestamp information helps categorize whether driving occurs during 

daytime or nighttime. At night, people’s vision is affected, especially that of older people. The 

negative coefficient reveals that older people tend to drive slower during nighttime. 
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 The speeding ticket history might be an indicator to reflect driver’s aggressiveness and 

the estimated modeling coefficient further validates such assumption — people with a historical 

ticket record of speeding violation tend to be more aggressive and drive faster.  

 The acceleration data collected by the IMU sensor are also important factors for speed 

choice. First, the variation of longitudinal acceleration has a positive relationship with a driver’s 

speed because it is the direction of a vehicle’s heading and higher positive acceleration causes 

higher speed. Second, lateral acceleration is the direction along a vehicle’s side-by-side, which 

may reflect a driver’s lane-changing maneuver. As a result, the negative sign suggests that an 

increase in lane-changing activities will decrease travel speeds. 

 Finally, all of the driver specific features listed in Table 4.1 were tested in the model. The 

interaction between age and COGSTAT score was also tested because this project wants to 

identify age-related cognitive dysfunction in the safety-critical, real-world task of driving for 

older adults. However, after stepwise feature selection, only education level has a significant 

impact on drivers’ speed selection — people with a higher education background tend to drive 

faster. 

 People’s speed selection is an essential aspect of driving behavior; safety is also critical. 

In the following section, a logistic regression is discussed to quantify a driver’s risk in different 

driving environments. 
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4.6.2 Mixed-effect Multinomial Logistic Regression 

Table 4.5 and Table 4.6 list the results of multinomial logistic regression with mixed-

effect to model the likelihood that drivers travelled at a speed 5 mph above or below the posted 

speed limit. The baseline group are the cases travelling at a speed within ± 5 mph around speed 

limit, which are compared with the other two less safe driving conditions. Among all the 10,987 

observations, about 16% are in the speeding situation and 10% are travelling at a speed at least 5 

mph lower than the post speed limit. 

 

Table 4.5 Mixed Effect Multinomial Logistic Regression — Slowing 

GPS Speed < Speed Limit - 5 mph   10.2 % Obs. 
Predictor Estimate Std. Error l-95% CI u-95% CI Odds Ratio 
(Intercept) -5.39 0.59 -6.55 -4.29   

Speed Limit < 60 Baseline         
Speed Limit 60 1.37 0.25 0.89 1.87 3.9 
Speed Limit 65 1.96 0.28 1.42 2.51 7.1 
Speed Limit 75 3.78 0.38 3.07 4.56 43.8 

Rural Baseline       
 

Urban 1.14 0.14 0.86 1.41 3.1 
Surface Type_Concrete Baseline       

 

Surface Type_Other -0.23 0.11 -0.45 -0.02 0.8 
Lane Number -0.55 0.11 -0.77 -0.33 0.6 
Lane Width 0.25 0.03 0.2 0.3 1.3 

|Lateral Accel|_Std. 1.75 0.24 1.29 2.22 5.8 
|Longitudinal Accel|_Std. -1.69 0.3 -2.29 -1.1 0.2 
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Table 4.6 Mixed Effect Multinomial Logistic Regression — Speeding 

GPS Speed > Speed Limit + 5 mph  15.8 % Obs. 
Predictor Estimate Std. Error l-95% CI u-95% CI Odds Ratio 
(Intercept) -0.6 0.76 -2.09 0.89   

Speed Limit < 60 Baseline         
Speed Limit 60 -0.21 0.21 -0.63 0.19 0.8 
Speed Limit 65 -0.77 0.22 -1.22 -0.33 0.5 
Speed Limit 75 -2.71 0.35 -3.41 -2.05 0.1 

Rural Baseline         
Urban -0.91 0.17 -1.25 -0.59 0.4 

Road Type Interstate Baseline         
Road Type Other -1.2 0.22 -1.64 -0.78 0.3 

Day Baseline         
Night -0.66 0.1 -0.86 -0.46 0.5 

Lane Number 0.3 0.05 0.19 0.4 1.3 
Lane Width -0.07 0.04 -0.14 0.01 0.9 

|Lateral Accel.|_Std. -0.82 0.17 -1.15 -0.49 0.4 
|Lateral Accel.|_Mean -0.22 0.07 -0.36 -0.09 0.8 

|Longitudinal Accel.|_Std. 0.54 0.14 0.28 0.81 1.7 
Education 0.35 0.17 0.03 0.69 1.4 

 

A “shifting effect” can be identified from these two tables — the estimated coefficients 

are having opposite signals for two different driving conditions. Factors that increase the 

likelihood of slowing conditions will reduce the likelihood of speeding behaviors. In addition, 

since the parameters were estimated using Bayesian inference, the upper and lower boundaries of 

credibility intervals (CI) are provided in the table. Only the significant variables are provided, 

with their CIs not covering the value of 0. 

Speed limit indicators were binned into four categories to balance the number of 

observations in each group, all of which are significant except the 60 mph for speeding 

condition. For the slowing situation in Table 4.5, compared to roadway segments with lower 

speed limits (< 60 mph), the positive parameters suggest that older people are more likely to be 
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involved in a higher risk driving environment; i.e., they travelled at a speed at least 5 mph below 

the speed limit. When the speed dispersion increases, the risk of being involved in an accident is 

also getting higher. This finding is consistent with the results from the previous speed model 

(Table 4.4), since older drivers tend to select a slower speed at high-speed roadways. On the 

other hand, while the factor of higher speed limit increase the likelihood for slowing conditions, 

it will reduce the likelihood of speeding behaviors, as evidenced by the negative coefficients in 

Table 4.6.  

When travelling in urban areas, he/she needs to pay more attention to other roadway 

users and roadway facilities. Therefore, the speed dispersion is expected to be larger than the 

speed dispersion in rural areas. The positive signal in Table 4.5 suggests a higher risk to drivers 

in urban areas, because older drivers were choosing a slower speed. As for the counterpart 

situation in Table 4.6, the likelihood for speeding in the urban area is reduced. 

Both of the lane number feature and lane width feature have significant impacts on 

driving situations, with a “shifting effect”. With more lanes presented, the likelihood is reduced 

for driving too slow, but increased for the speeding situation. As for the lane width factor, with a 

wider lane in front of drivers, they tend to choose a much slower speed; hence the likelihood for 

slowing is increased and decreased for speeding behaviors. 

The reasons for driving too fast or too slow are different and some other roadway features 

are significant for different driving situations. For the slowing condition, the likelihood is 

increased when travelling along the concrete roadways. On the contrary, another two features 

have strong influences for the speeding behaviors, including roadway type and time of day. 

Roadways rather than interstate have a slower speed limit, which has a negative coefficient in 

Table 4.6. This finding suggests that probability to exceed 5 mph above the speed limit is higher 
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when travelling along the interstate. The time indicator is also significant, indicating that the 

likelihood for driving 5 mph above the speed limit is reduced at night. 

Some meaningful insights were discovered from the acceleration information. First, the 

standard deviation of the absolute longitudinal acceleration (direction of vehicle heading) is 

positively related to speeding driving behaviors. With a greater variation, drivers might reach to 

a higher speed; thus the likelihood for speeding is increased and reduced for the slowing cases. 

Second, the lateral acceleration may reflect a driver’s lane changing activities and older drivers 

attempt to reduce their speeds by making additional side-by-side movements. As a result, more 

lane changing maneuvers will increase the likelihood for the slowing condition and decrease the 

probability for travelling too fast. 

For a driver’s characteristics information, only the education background has the 

significant impact on drivers’ speeding behavior. The finding from Table 4.6 is consistent with 

the speed modeling result in Table 4.4, which indicates that people with higher education 

background tend to drive faster. Therefore, the chance for travelling at least 5 mph above the 

speed limit is also increased. 

 

4.7 Discussion 

This older adult naturalistic driving study analyzed their driving behaviors from two 

aspects. The first aspect comprises the speed operational patterns, which target a driver’s speed 

selection based on various conditions. The second aspect focuses on the travel safety analysis of 

speed choice, with the goal of better understanding the risk associated with driving at different 

speeds. In general, older drivers’ speed selection and their risks associated with driving are 

related to many factors, including roadway geometric features and time of day, as well as 
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education background, and their vehicle controlling habits measured by acceleration. Several 

features are summarized as follows: 

Speed limits are important for both speed selection and driving risk. When travelling 

along high speed roadways, older people tend to drive slower than the average traffic speed, 

which increases their risks to be involved in an accident. 

Urban areas are critical environments that should be considered with regard to older 

drivers. The data reveal that senior drivers tend to drive slower with a greater speed dispersion, 

and as a result, they have a higher risk of accident involvement. 

Drivers’ vehicle control performance (measured by absolute acceleration values) can 

reflect their driving behaviors. If he/she pushes the gas pedal too often, a greater speed will be 

attained due to the longitudinal acceleration. Excessive use of the gas or brake pedal will 

increase the variability of vehicle speed and generate a higher risk involvement rate due to the 

greater speed dispersion. In addition to longitudinal acceleration, a vehicle’s side-by-side 

acceleration also affects speed and the associated risk. A higher lateral acceleration suggests 

additional lane-changing actions, which reduces the speed. Drivers may also attempt to follow 

the average traffic by adjusting a vehicle’s side-by-side positions more often; therefore, a proper 

vehicle control would create a lower risk driving environment.  

In addition to these roadway features and instrumented vehicle data, this paper also aimed 

to measure older people’s real-life driving performance with respect to age-related cognitive 

dysfunction. Multiple personal level factors were evaluated in the model, of which the education 

background is the most significant feature. Older people with a higher education background 

tended to drive faster reasonably, which created a lower risk driving environment. 
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4.8 Summary 

The first three chapters focused on people’s driving patterns from a macroscopic 

viewpoint, with data collect by roadway sensors. In this chapter, the author switched to another 

angle with a substantially smaller scope: a naturalistic driving study based on instrumented 

vehicle data. To study people’s driving speed behaviors, various factors were collected and 

evaluated, including speed limits, roadway geometric features, vehicle control habits measured 

by IMU, and age-related cognitive functionality. The next chapter summarizes the author’s 

current research. 
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CHAPTER 5.   CONCLUSIONS 

 

This dissertation research analyzed traffic speed from two different perspectives. The first 

three chapters evaluated traffic speeds from a macroscopic viewpoint, followed by several 

application solutions adopted by the Iowa DOT. Chapter 4 changed the research angle to a 

smaller scope and conducted a naturalistic driving study that targets older people’s driving 

behaviors in Nebraska. This final chapter summarizes the research highlights and proposes some 

future ideas. 

 

5.1 Research Highlight 

One of the goals of this dissertation research was to analyze traffic speeds in a highway 

network, identify existing problems, and provide practical engineering solutions. The Iowa DOT 

has deployed an impressive layout of traffic sensor infrastructures across the state highway 

network, with thousands of roadway sensors installed to continuously monitor traffic 

information. However, the performance of some traffic speed control devices was not desirable. 

For example, the dynamic message signs in the I-74 work zone and the variable advisory speed 

limit boards respond to snowstorms. 

 After analyzing multiple historical traffic events, two problems were identified as the 

bottleneck for better performance: noisy sensor reading and unmarked datasets. Several 

techniques were applied to address these two issues, including a sliding window approach to 

smooth sensor streaming data using a wavelet transformation, k-mean clustering to identify 

reasonable traffic event labels, and a supervised decision tree algorithm for future unknown 

traffic event classification. 
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 A significant number of simulations and evaluations were conducted to test the feasibility 

and accuracy of the proposed control logics. As one of the highlights in this dissertation research, 

the author implemented these conceptual theories into real-life engineering products, which were 

employed by the Iowa DOT for better traffic speed management.  

The variable advisory speed limit project was successfully tested and validated in real 

time for two succeeding winters in 2016 and 2017. For multiple reasons, this project continues to 

run background without displaying any actual messages to the public. To address the concerns 

faced by the advisory speed limit project (budgets, policy, and safety), the author worked with 

research team programmers and developed another product. This text alert application has been 

launched in the real world since summer 2017, and traffic congestion information is only sent to 

dedicated personnel. 

 In addition to the previously listed practical engineering solutions, the author also 

conducted a naturalistic driving study that focused on older people’s driving behavior with 

respect to different speed limits and other factors. The significant findings from this research 

may be valuable for in-vehicle driving assistant devices and personal auto insurance pricing. 

 

5.2 Future Research 

Several engineering applications were developed in this dissertation research. However, 

they are highly dependent on the data quality from roadway Wavetronix sensors. Since only one 

source of traffic data exists in the current research, few false alarms were identified. When the 

Wavetronix sensor was not well calibrated, they will generate massive missing values, biased 

speed detection, and erroneous traffic data. To increase the system reliability, the integration of 
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multiple data sources, including INRIX probe vehicle data, social media Waze data, and CCTV 

camera view, is recommended. 

For the naturalistic driving study, although every vehicle was equipped with a frontal 

view dashboard camera, with numerous driving environment information available, the deep 

learning model remains under development. Thus, this research enriched the data with roadway 

information based on the Nebraska GIS database, which logs data such as roadway functional 

classification, speed limit, roadway surface type, average daily traffic, and number of lanes. 

However, the drivers travelled in many other states and their GIS data is not available now. This 

issue can be addressed once the deep learning objective detection model is ready. With the 

abundant information provided by videos, numerous live driving information can be extracted to 

discover more significant insights, including data of traffic signs, lane incursion, surrounding 

vehicles, cell phone usage, and distracted driving status. 
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