
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2018

A computational framework for data-driven
infrastructure engineering using advanced statistical
learning, prediction, and curing
Ikkyun Song
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Civil Engineering Commons, and the Statistics and Probability Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Song, Ikkyun, "A computational framework for data-driven infrastructure engineering using advanced statistical learning, prediction,
and curing" (2018). Graduate Theses and Dissertations. 16671.
https://lib.dr.iastate.edu/etd/16671

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16671&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16671&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=lib.dr.iastate.edu%2Fetd%2F16671&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=lib.dr.iastate.edu%2Fetd%2F16671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16671?utm_source=lib.dr.iastate.edu%2Fetd%2F16671&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


A computational framework for data-driven infrastructure engineering using

advanced statistical learning, prediction, and curing

by

Ikkyun Song

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Civil Engineering (Intelligent Infrastructure Engineering)

Program of Study Committee:
In-Ho Cho, Major Professor

Halil Ceylan
Kristen Cetin

An Chen
Jae-Kwang Kim

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this dissertation. The Graduate College
will ensure this dissertation is globally accessible and will not permit alterations after a degree is

conferred.

Iowa State University

Ames, Iowa

2018

Copyright c© Ikkyun Song, 2018. All rights reserved.



ii

DEDICATION

To my wife, Hwahyun

For your love, patience, and overwhelming support

To my son, Seonu and my daughter, Ellie

For making me happier and stronger



iii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Overview of efforts to prevent runway incursions in the US airports . . . . . . 1
1.1.2 Overview of prediction of earthquake engineering data . . . . . . . . . . . . . 2
1.1.3 Overview of prediction methods for pavement response and performance . . . 2
1.1.4 Overview of an investigation into the impact of imputation on prediction . . 3
1.1.5 Overview of bridge health monitoring systems and efforts to utilize the data

from these systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 2. DATA-DRIVEN PREDICTION OF RUNWAY INCURSIONS WITH UN-
CERTAINTY QUANTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Data extraction and transformation . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Advanced statistical model, GAM . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Metrics for prediction accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Selection of Best GAM Model Using Parallel Computing . . . . . . . . . . . . . . . . 20
2.4 Prediction Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Uncertainty Quantification Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.A Appendix I. Dataset for Current Study . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.B Appendix II. Comparison of GAM and Artificial Neural Network . . . . . . . . . . . 33
2.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



iv

CHAPTER 3. AN ADVANCED STATISTICAL APPROACH TO DATA-DRIVEN EARTH-
QUAKE ENGINEERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Summary of the Generalized Additive Model . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Metrics for Prediction Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Prediction with GAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Constructing a Best GAM with a Given Number of Variables . . . . . . . . . . . . . 49
3.6 Statistical Prediction VS. High-Precision Computer Simulations . . . . . . . . . . . . 52
3.7 Uncertainty Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.8 Difference from Traditional Statistical Methods . . . . . . . . . . . . . . . . . . . . . 57
3.9 Limitation of Statistical Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.10 R Code for Constructing GAM by Cross-Validation . . . . . . . . . . . . . . . . . . . 62
3.11 Remarks on Parallel Processing of R & Rmpi Code . . . . . . . . . . . . . . . . . . . 65
3.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.13 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

CHAPTER 4. EFFICIENT VARIABLE SELECTION METHODS FOR ADVANCED STA-
TISTICAL LEARNING AND PREDICTION OF RIGID PAVEMENT SYSTEMS . . . . 72
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Overview of Generalized Additive Model . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Description of Pavement Databases for Model Development . . . . . . . . . . . . . . 76
4.4 Best Predictor Variables for GAM Prediction . . . . . . . . . . . . . . . . . . . . . . 78
4.5 Relative Importance of Predictor Variables in GAM Prediction . . . . . . . . . . . . 79
4.6 Efficient Variable Selection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6.1 Forward variable selection procedure descriptions . . . . . . . . . . . . . . . . 81
4.6.2 Backward variable selection procedure descriptions . . . . . . . . . . . . . . . 84
4.6.3 Comparison of variable selection methods . . . . . . . . . . . . . . . . . . . . 85

4.7 Impact of Distribution Family on Prediction Performance . . . . . . . . . . . . . . . 86
4.8 Parameter Study: Impact of Spline Base . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.10 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

CHAPTER 5. IMPACTS OF FRACTIONAL HOT-DECK IMPUTATION ON LEARNING
AND PREDICTION OF ENGINEERING DATA . . . . . . . . . . . . . . . . . . . . . . . 92
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Theory: Fractional Hot-Deck Imputation . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Theory: Statistical Learning and Machine Learning Methods . . . . . . . . . . . . . 96

5.3.1 Statistical learning: GAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 Recap and settings of the adopted machine learning methods . . . . . . . . . 98

5.4 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5 Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



v

5.6 Impact of FHDI on Statistical and Machine Learning-Based Regression . . . . . . . 104
5.6.1 Positive role of FHDI on prediction accuracy improvement . . . . . . . . . . . 105
5.6.2 Impact of the categorization number . . . . . . . . . . . . . . . . . . . . . . . 107
5.6.3 Impact of donor numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.6.4 Impact of extreme data missing . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

CHAPTER 6. A COMPUTATIONAL FRAMEWORK FOR STATISTICAL DATA-CURING
AND PREDICTION OF BRIDGE AND TRAFFIC BIG DATA . . . . . . . . . . . . . . 120
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.2 Data extraction and transformation . . . . . . . . . . . . . . . . . . . . . . . 123
6.2.3 Data merging with traffic data . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.4 Data curing: FHDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Statistical Learning and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.1 Summary of generalized additive model . . . . . . . . . . . . . . . . . . . . . 129
6.3.2 Excellent performance of GAM compared to SVM and ERT . . . . . . . . . . 130
6.3.3 Direct search versus correlation-based predictor selection . . . . . . . . . . . 131
6.3.4 Prediction of traffic data using bridge sensor data . . . . . . . . . . . . . . . 134

6.4 Remarks on Various Impacts on Prediction Accuracy . . . . . . . . . . . . . . . . . . 134
6.4.1 Impact of data curing on prediction . . . . . . . . . . . . . . . . . . . . . . . 134
6.4.2 Impact of traffic information on prediction performance . . . . . . . . . . . . 138

6.5 Parallelization Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

CHAPTER 7. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



vi

LIST OF TABLES

Page

Table 2.1 Summary of datasets used in the current study . . . . . . . . . . . . . . . . 15

Table 2.2 Potential impact (mile) visibility criteria based on METAR board . . . . . . 17

Table 2.3 Comparison of prediction performance between direct search algorithm (pro-

posed herein) and PCA-guided variables (all values are CV Eb/CV E) . . . . 22

Table 2.4 Metrics used for best combination of predictor variables (GAM-CRS) . . . . 26

Table A2.1 Dataset used in statistical learning and prediction . . . . . . . . . . . . . . . 34

Table A2.2 Dataset used in statistical learning and prediction(Continued) . . . . . . . . 35

Table B2.1 ANN prediction summary using 10 independent variables . . . . . . . . . . . 36

Table 3.1 Selection of the best combination of variables for GAM using CRS (p-values

in parentheses) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 3.2 Selection of the best combination of variables for GAM using TPRS (p-

values in parentheses) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 3.3 Predictions without WSH series (Fmax is normalized by that from experiment) 61

Table 3.4 Predictions with WSH series (Fmax is normalized by that from experiment) 62

Table 3.5 Description of the stand-alone R code (see Table 3.1 in Appendix) . . . . . 63

Table 3.6 Description of the parallel version of R&Rmpi code (see Table 3.2 in Appendix) 64

Table A3.1 R code for constructing a best GAM using TPRS (3-variable combination) 68

Table A3.2 Rmpi&R code for constructing a best GAM using TPRS (3-variable com-

bination and 3 slaves) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table 4.1 Variable description of concrete overlay and rigid airport pavements data . . 77



vii

Table 4.2 Selection of the best combination of variables for GAM using CRS (p-values

in parentheses) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 5.1 Summary of datasets used in the current study . . . . . . . . . . . . . . . . 103

Table 5.2 Four key steps for FHDI method . . . . . . . . . . . . . . . . . . . . . . . . 105

Table 5.3 Expectation ratio (i.e., expectation E[.] of each attribute in the original full

data set divided by that of cured data set by FHDI) with different missing

rates (10, 30 and 50%). The appliance energy dataset is used. . . . . . . . . 106

Table 5.4 Comparison of RMSE values from predictions using datasets that were pre-

cured by FHDI or a Naive method . . . . . . . . . . . . . . . . . . . . . . . 108

Table 5.5 Impact of donor numbers on prediction using the weather dataset with 50%

response and GAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Table 6.1 Summary of datasets during the transformation process from the raw data

to the final dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Table 6.2 Summary of predictor and response variable for GAM model . . . . . . . . . 132

Table 6.3 Correlation among variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Table 6.4 Best predictors selected by the direct search method . . . . . . . . . . . . . 137



viii

LIST OF FIGURES

Page

Figure 2.1 Scatter plot of variables: (a) runway incursion versus general aviation op-

eration; (b) runway incursion versus general aviation operation and high

visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.2 Workflow of runway incursion (RI) prediction using GAM: raw data is col-

lected from various databases and transformed into suitable forms of dataset,

with which GAM learns and predicts future RI on high performance com-

puting (HPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.3 Example of thin plate spline basis function using 2 covariates . . . . . . . . 19

Figure 2.4 Cyclic allocation of the proposed parallel code of R & Rmpi ; two-variable

case is shown with ”nv” meaning the total number of variables. Height of

box corresponds computation load . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.5 Parallel computing performance of R & Rmpi code for finding the 7-variable

combination out of 3,432 total combinations . . . . . . . . . . . . . . . . . . 23

Figure 2.6 Biplot from principle component analysis (PCA): (a) entire biplot; (b) part

of biplot denoted by dashed box ”b”; (c) by ”c”; and (d) by ”d” . . . . . . . 24

Figure 2.7 Pseudo code for finding the best combination of predictor variables . . . . . 25

Figure 2.8 Comparison of performance between CRS and TPRS on this study: (a) ratio

of CV Eb = CV E; (b) Pearson correlation; (c) coefficient of determination . 26

Figure 2.9 Illustration of cross validation: (a) shows that the first airport’s data is

omitted, a GAM is constructed by learning all other airport data; (b) shows

the same procedure by omitting the second airport data . . . . . . . . . . . 27



ix

Figure 2.10 (a) Q-Q plot of real-world measured data and predicted data; (b) residuals

plot showing that residuals are evenly scattered . . . . . . . . . . . . . . . . 27

Figure 2.11 GCV score with varying smoothing parameter. (λ∗ = automatically opti-

mized value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.12 Confidence interval of smoothing functions of five predictors: (a) the number

of taxi operations; (b) the number of general aviation operations; (c) hour

of high visibility impact; (d) hour of slight visibility impact; (e) hour of sum

of visibility impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.13 Confidence interval for GAM prediction points of 36 airports using (a) GAM

and (b) multivariate linear regression: vertical bar represents 95% confi-

dence interval, circle represents measured (real) RI number, and ”x” mark

represents a median value of bootstrap samples; horizontal axis means air-

port index; table of 36 airport indexes and generated data is presented in

Appendixes 2.A and 2.B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.1 Sparseness and biasness revealed from 470 real experiments of RC shear wall

database (collected from NEESHub, international reports, and literature) . . 40

Figure 3.2 Number of specimens of each type of RCSW (R: rectangular; T: T-shaped;

B: Barbell-shaped; I: I-shaped; B-O: Barbell-shaped with opening; etc.: all

other types) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.3 Change in the interpretability of database with increasing dimensionality:

(a) two-dimensional (2D) scatter plot of standardized fy (steel yield strength

of longitudinal bars) and Fmax (maximum shear force); (b) 3D plot of Fmax,

the standardized fy, and the standardized f
′
c (concrete strength). Some axes

are unitless due to the standardized values . . . . . . . . . . . . . . . . . . . 42

Figure 3.4 Example of one-dimensional regressions of 470 real RC wall data: (a) hb

(thickness of boundary element) versus Fmax; (b) wall height versus Fmax . 44

Figure 3.5 Example of thin plate spline basis function using 2 covariates . . . . . . . . 45



x

Figure 3.6 Illustration of cross validation: left figure represents that first specimen’s

data is ommited. A GAM is constructed by learning all other wall data;

right figure shows the same procedure by omitting the second wall data . . . 47

Figure 3.7 Q-Q plot of real experimental data and the predicted value using (a) GAM(CRS);

(b) GAM(TPRS). Both axes are unitless owing to the standardized values . 49

Figure 3.8 Illustration of cross validation: left figure represents that first specimen’s

data is ommited. A GAM is constructed by learning all other wall data;

right figure shows the same procedure by omitting the second wall data . . . 53

Figure 3.9 Normalized maximum shear force of experiment (E), VEEL (V), and GAM

using TPRS (GT) and CRS (GC) of RW1 and RW2 (Vulcano et al., 1988),

and WSH1 through WSH6 (Orakcal and Wallace, 2006). (Note: The value

of vertical axis represents the maximum shear force normalized by experi-

mental result; thus, ”E” has always one) . . . . . . . . . . . . . . . . . . . . 54

Figure 3.10 Prediction accuracy comparison between high-precision computational sim-

ulation (VEEL) and statistical prediction (GAM) result using WSH series:

(Top 6 panels) experimental results cited from Orakcal and Wallace (2006);

(Bottom 6 panels) prediction results from VEEL, GAM-TPRS, and GAM-

CRS. Note that the maximum force is the comparison target . . . . . . . . . 56

Figure 3.11 95% confidence interval of WSH wall series’ Fmax estimated from GAM pre-

diction using bootstrap method. Circle and ”x” mark represents measured

Fmax and a median value of bootstrap samples, respectively . . . . . . . . . 58

Figure 3.12 Prediction power comparison of GAM against other popular prediction meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 3.13 Scatter plot of rectangular RCSW specimens showing the ranges of database.

WSH wall series occupy the boundary of the database . . . . . . . . . . . . 60



xi

Figure 3.14 Cyclic allocation of the proposed parallel code of R & Rmpi. Two-variable

case is shown with nv meaning the total number of variables. Height of box

corresponds computation load . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 3.15 Parallel computing performance of R & Rmpi code for finding the best 5-

variable combination out of 252 total combinations. ”User code” means the

time spent on execution of user-defined codes while ”Total” means the total

elapsed wall clock time of the parallel code (attained from proc.time() of R . 67

Figure 4.1 The number of predictor variables selected by direct search for the most

accurate prediction of (a) case 1, (b) case 2, (c) case 3, and (d) case 4 of

concrete overlay data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.2 The number of predictor variables selected by direct search for the most

accurate prediction of (a) σ xx top, (b) σ xx bot, (c) σ yy top, and (d)

σ yy bot for case M ; (e) σ xx top, (f) σ xx bot, (g) σ yy top, and (h)

σ yy bot for case TM of rigid airport pavements data . . . . . . . . . . . . 80

Figure 4.3 Prediction performances using different variable selection methods: (a) con-

crete overlay ; (b) rigid airport pavements. DS stands for direct search,

AIC(b) for backward selection using AIC, and p(f,0.05) for forward selection

using p-value of 0.05, etc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 4.4 Prediction performance depending on different distribution families (Gamma,

Gaussian, and Poisson), in which m xx top stands for the maximum tensile

stress in the x direction on the top of the slab with the mechanical loading

condition and tm yy bot stands for the maximum tensile stress in the y

direction on the bottom of the slab with thermal and mechanical loading, etc 87

Figure 4.5 Impact of number of TPRS base (k) on GAM prediction: (a) case 1 ; (b)

case 2 ; (c) case 3 ; (d) case 4 of the concrete overlay data . . . . . . . . . . 88



xii

Figure 5.1 Impact of categorization numbers on prediction (appliance energy data set

is used). 10 to 50% response rates are investigated. . . . . . . . . . . . . . . 110

Figure 5.2 Impact of categorization numbers on prediction (air quality data set is used).

10 to 50% response rates are investigated. . . . . . . . . . . . . . . . . . . . 110

Figure 5.3 Impact of categorization numbers on prediction (phenotype data set is used).

10 to 50% response rates are investigated. . . . . . . . . . . . . . . . . . . . 111

Figure 5.4 Impact of categorization numbers on prediction (weather data set is used).

10 to 50% response rates are investigated. . . . . . . . . . . . . . . . . . . . 111

Figure 5.5 Impact of donor numbers on prediction (appliance energy data set is used).

10 to 50% response rates are investigated. . . . . . . . . . . . . . . . . . . . 112

Figure 5.6 Impact of donor numbers on prediction (air quality data set is used). 10 to

50% response rates are investigated. . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 5.7 Impact of donor numbers on prediction (phenotype data set is used). 10 to

50% response rates are investigated. . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 5.8 Impact of donor numbers on prediction (weather data set is used). 10 to

50% response rates are investigated. . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 5.9 Relationship between coefficient of variance (CV) of RMSE and normalized

RMSE from (a) 10%-dataset and (b) 50%-dataset. . . . . . . . . . . . . . . . 114

Figure 5.10 Impact of extreme missing rates on prediction (appliance energy data set is

used). 10 to 50% missing rates are investigated. . . . . . . . . . . . . . . . . 115

Figure 6.1 Instrumentation plan of sensors of the target bridge . . . . . . . . . . . . . . 123

Figure 6.2 Flow chart showing data-transformation from raw bridge and traffic data to

the final hybrid data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Figure 6.3 Strain history over (a) 10 minutes and (b) 1 minute. Top peak and bottom

peak strains are selected outside the range between +5µ and -5µ from the

median strain value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 6.4 Histogram of peak strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



xiii

Figure 6.5 Example of key procedures for FHDI: (a) entire flow chart; (b) original

dataset in which the NA stands for a missing value; (c) categorized dataset;

(d) cured dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 6.6 Comparison of prediction performance between GAM and other methods.

In vertical axes, the higher value indicates the higher prediction accuracy.

(cited from Song et al. (2018b)) . . . . . . . . . . . . . . . . . . . . . . . . . 130

Figure 6.7 The comparison of the best predictor selection between the algorithm used

in this study and correlation: (a) mean of top peak strains; (b) mean of

bottom peak strains; (c) standard deviation of median strain; (d) minimum

strain value of bottom peak; (e) maximum strain value of top peak; (f) area 135

Figure 6.8 The number of the best predictors of traffic data prediction: traffic of (a)

small car, (b) medium car and (c) large car . . . . . . . . . . . . . . . . . . 136

Figure 6.9 GAM prediction vs. measured value of traffic: (a) small car, (b) medium

car and (c) large car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 6.10 Comparison of GAM prediction performances using the dataset with and

without imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Figure 6.11 Impact of missing rates on prediction accuracy (cited from Song et al. (2018a)139

Figure 6.12 Comparison of GAM prediction performances using the dataset with and

without traffic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Figure 6.13 The impact of the inclusion of traffic data on prediction of the strainMean-

Comp depending on different missing rates . . . . . . . . . . . . . . . . . . . 141

Figure 6.14 Job distribution scheme in the parallel computing system. Jobs are evenly

distributed to slaves and then the master collects results from slaves and

finds the best predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 6.15 Pseudo code for algorithm of the parallel computing to find the best predic-

tor combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Figure 6.16 Speed-up test using parallel computing . . . . . . . . . . . . . . . . . . . . . 143



xiv

ACKNOWLEDGMENTS

I would like to take this opportunity to express my thanks to those who helped me with various

aspects of conducting research and the writing of this dissertation. First and foremost, I am very

grateful to my advisor, Dr. In-Ho Cho for his guidance, patience and support throughout this

research and the writing of this dissertation. His insights and words of encouragement have often

inspired me for completing my doctoral program.

My sincere appreciation also goes to my committee members for their efforts and contributions

to this work: Dr. Halil Ceylan, Dr. Kristen Cetin, Dr. An Chen, and Dr. Jae-Kwang Kim. Their

constructive comments and advices on my research significantly helped me broaden my insights.

Additionally, without their reviews of my dissertation, I would not be able to reach the current

stage. Thanks also go to Dr. Sunghwan Kim for his sincere advice on my research.

I would like to acknowledge the financial supports from the Partnership to Enhance General

Aviation Safety, Accessibility and Sustainability (PEGASAS) Center of Excellence (COE) fellow-

ship program of the Federal Aviation Administration (FAA), the Iowa Highway Research Board

(IHRB), and the Iowa Department of Transportation (IA DOT), the Iowa Department of Trans-

portation, Midwest Transportation Center, U.S. Department of Transportation Office of the Assis-

tant Secretary for Research and Technology, and the research funding of the Department of Civil,

Construction, and Environmental Engineering of Iowa State University (ISU). The work regarding

parallel computing is partially supported by the HPC@ISU equipment at ISU, some of which has

been purchased through funding provided by NSF.

I also would like to express my gratitude to Dr. Halil Ceylan, Dr. Kristen Cetin, Dr. Brent

Phares, Dr. Anuj Sharma, and Dr. Carolyn J Lawrence-Dill for sharing their valuable data.



xv

Lastly, I would like to thank my brother Jaekyun, his wife Sunae, my nephews Sophie and

Kevin, my father Youngchan, and my mother Seokjeom Kang. Without their lovely supports, I

would not have been able to complete this work.



xvi

ABSTRACT

Over the past few decades, in most science and engineering fields, data-driven research has been

becoming a promising next-generation research paradigm due to noticeable advances in computing

power and accumulation of valuable databases. Despite this valuable accomplishment, the leverag-

ing of these databases is still in its infancy. To address this issue, this dissertation investigates the

following studies that use advanced statistical methods.

The first study aims to develop a computational framework for collecting and transforming

data obtained from heterogeneous databases in the Federal Aviation Administration and build a

flexible predictive model using a generalized additive model (GAM) to predict runway incursions

for 15 years in the top major US 36 airports. Results show that GAM is a powerful method for RI

prediction with a high prediction accuracy. A direct search for finding the best predictor variables

appears to be superior over the variable section approach based on a principal component analysis.

The prediction power of GAM turns out to be comparable to that of an artificial neural network

(ANN).

The second study is to build an accurate predictive model based on earthquake engineering

databases. As with the previous study, GAM is adopted as a predictive model. The result shows

a promising predictive power of GAM with application to existing reinforced concrete shear wall

databases.

The primary objective of the third study is to suggest an efficient predictor variable selection

method and provide relative importance among predictor variables using field survey pavement and

simulated airport pavement data. Results show that the direct search method always finds the best

predictor model, but the method takes a long time depending on the size of data and the variables’

dimensions. The results also depict that all variables are not necessary for the best prediction and

identify the relative importance of variables selected for the GAM model.
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The fourth study deals with the impact of fractional hot-deck imputation (FHDI) on statistical

and machine learning and prediction using practical engineering databases. Multiple response rates

and internal parameters (i.e., category number and donor number) are investigated regarding the

behavior and impacts of FHDI on prediction models. GAM, ANN, support vector machine, and

extremely randomized trees are adopted as predictive models. Results show that the FHDI holds a

positive impact on the prediction for engineering-based databases. The optimal internal parameters

are also suggested to achieve a better prediction accuracy.

The last study aims to offer a systematic computational framework including data collection,

transformation, and squashing to develop a prediction model for the structural behavior of the

target bridge. Missing values in the bridge data are cured by using the FHDI method to avoid an

inaccurate data analysis due to biasness and sparseness of data. Results show that the application

of FHDI improves prediction performances.

This dissertation is expected to provide a notable computational framework for data processing,

suggest a seamless data curing method, and offer an advanced statistical predictive model based on

multiple projects. This novel research approach will help researchers to investigate their databases

with a better understanding and build a statistical model with high accuracy according to their

knowledge about the data.
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CHAPTER 1. INTRODUCTION

The primary goal of this study is to develop a computational framework for data-driven infras-

tructure engineering using advanced statistical methods. The research suggests a novel data-driven

approach to several data from survey and simulation results in the infrastructure-related domain.

It also includes the application of an advanced imputation method on engineering databases. This

study is expected to help researchers better explore their databases and build an efficient computa-

tional framework for data analysis. The following sections address the general background, research

objectives, and research contribution.

1.1 General Background

This section briefly addresses previous research on data-driven approach in the civil infrastruc-

ture engineering domain. The following subsections present the research efforts and their limitation

for each research topic. More details can be found in the next manuscript-based chapters.

1.1.1 Overview of efforts to prevent runway incursions in the US airports

A runway incursion (RI) is a major concern in airports because it can cause severe runway

collisions. Much research has been conducted to resolve this issue by developing detection and

alert systems (Ludwig, 2007; Schwab and Rost, 1985; Watnick and Ianniello, 1992; Singh and

Meier, 2004; Jones et al., 2001; Eggert et al., 2006; Squire et al., 2010; Schnefeld and Mller, 2012).

Additionally, some statistical methods have been investigated for RI studies. Wilke et al. (2015)

and Johnson et al. (2016) investigated the impact of the geometry of airports on RI occurrence

using the best regression model to find the optimal variable combination among geometric-related

variables.
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Despite the efforts of developing such detection and warning systems, RI occurrence is reported

to increase continuously (FAA, 2015). This might be because those attempts provide a practical

solution for a specific airport, but such systems seldom identify other possible factors that can cause

RI occurrence and have difficulty finding hidden relationships among the factors. The previous

statistical approaches also deliver meaningful results, but they still lack general applicability and

flexibility. Comprehensive investigations using advanced statistical models are needed to find a

novel RI prediction.

1.1.2 Overview of prediction of earthquake engineering data

Due to dramatic advances in computing power, researchers can obtain valuable knowledge from

data (Fishman, 1995; Caflisch, 1998; Kamdar et al., 2016). NSF has been constructing comprehen-

sive community-level earthquake databases (Hacker et al., 2011; Rathje et al., 2017). However, the

databases have not been actively utilized to improve the predictive ability of earthquake engineer-

ing fields. Moreover, the earthquake engineering community learned about hidden issues they were

previously unaware after severe earthquake disasters (Song et al., 2012; Park and Chen, 2012).

Real world experiments are indispensable because they can provide in-depth quantitative knowl-

edge about factors for earthquake occurrences, but limited financial resources prohibit researchers

from conducting such experiments and elucidating the underlying relationship between salient vari-

ables. Furthermore, after successful experiments, there remain substantial uncertainties, and it

might be infeasible to cover a full range of structural variables. Therefore, the need of a notable

data-driven approach to the existing earthquake databases appears to be indispensable.

1.1.3 Overview of prediction methods for pavement response and performance

The prediction of pavement response and performance is important to establish efficient pave-

ment designs and maintenance plans. Several research efforts have been conducted to find salient

factors for the prediction of pavement response and performance using a variety of methods. Salama

et al. (2006) and Heba and Assaf (2017) used linear regression models to investigate the complex in-
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terplay among variables. The use of machine learning (ML) is also noteworthy. Ceylan et al. (1998,

1999) used an artificial neural network to build a predictive model for the response of a jointed

concrete airport pavement. Gopalakrishnan and Kim (2011) adopted a support vector machine to

predict hot mix asphalt stiffness. Tabatabaee et al. (2013) developed a two-stage predictive strategy

using both neural network and a support vector machine to better predict pavement responses.

Even though ML’s prediction performance is considerable, the causal pathway from input to

output is unclear, prohibiting researchers from clearly interpreting prediction results. On the other

hand, a statistical method can provide a better understanding of the interplay between the input and

output because statistical learning and prediction are based on statistical theories and knowledge.

This advantage helps researchers to clearly interpret prediction results and better build a predictive

model depending on their knowledge about the data. Meanwhile, though a simple linear regression

is handy to use, it is not suitable for complex non-linear data. Therefore, the use of an advanced

and flexible statistical model is needed to improve prediction accuracies and clearly elucidate the

relationship between variables.

1.1.4 Overview of an investigation into the impact of imputation on prediction

Missing data is commonly observed in surveys and experiments. It prohibits researchers from

obtaining a trustworthy conclusion from data analysis due to biasness and sparseness of the data.

Brown and Kros (2003); Roth (1994) showed that the missing data causes an inaccurate data

analysis. An imputation is a popular method to cure missing data. There have been several efforts

to investigate the impact of imputation methods on ML regression and classification (Farhangfar

et al., 2008; Batista and Monard, 2003; Heltshe et al., 2012; Lin et al., 2017; Wang et al., 2016; Su

et al., 2008; Yoo et al., 2017).

However, the impact of fractional hot-deck imputation (FHDI), which is an advanced repeated

imputation method comparable to multiple imputation (Rubin, 1987), on statistical and ML re-

gression has been rarely investigated (see detailed advantages of the FHDI in the section 5.1). This

investigation is strongly needed for the general application of FHDI in the engineering domain.
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1.1.5 Overview of bridge health monitoring systems and efforts to utilize the data

from these systems

Due to advances in bridge health monitoring system (BHM), a variety of sensor-measured data

has been accumulated (Jang et al., 2010; Ko and Ni, 2005; Li et al., 2004; Ntotsios et al., 2009).

Despite this active data collection, the databases have not been actively used to build predictive

models for a better bridge management. Li et al. (2003) used a linear regression model to assess

the fatigue for a specific bridge, but its general application is challenging.

The issue of missing data is also important. Since bridge data is measured by sensors, the

likelihood of missing data appears inevitable due to various causes including sensors malfunctioning

and human-induced mistakes.

Therefore, an advanced data curing method and a predictive model are rigorously needed for

building an accurate predictive model and its general application for the community-level research.

1.2 Research Objectives

The overall objective of this study is to develop a computational framework for infrastructure

databases using advanced statistical methods and parallel computing. The following are specific

objectives of this research.

• Objective 1: Develop a systematic framework for gathering data from various databases and

leverage the generalized additive model (GAM) using parallel computing to predict runway

incursions.

• Objective 2: Build a novel statistical learning and prediction framework using GAM to

predict the maximum shear forces of a rectangular wall database and compare the prediction

performance between simulation, GAM, and other ML methods.

• Objective 3: Find the best predictor variables in pavement databases and their relative

importance in a GAM prediction and offer an alternative efficient approach to find appropriate

predictor variables.
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• Objective 4: Introduce a relatively new imputation method, the fractional hot-deck impu-

tation (FHDI), to a wide range of engineering community, elucidate the impact of FHDI on

statistical and ML regressions, and provide an optimal setting for general application.

• Objective 5: Develop a computational framework for collecting and transforming bridge

sensor and traffic big data, cure the missing data using the FHDI, and investigate the impact

of FHDI on the improvement of GAM prediction accuracy.

1.3 Research Contributions

The primary contributions of this study are systematic computational frameworks for data-

driven infrastructure engineering using advanced statistical methods including GAM and FHDI.

These novel frameworks can help researchers to better investigate their databases and build ap-

propriate predictive models, as well as help stakeholders to make an appropriate decision based on

prediction results. This dissertation provides the following contributions.

First, this study develops a computational framework to leverage an advanced statistical model,

GAM, to resolve runway incursion (RI) issues. The data used are collected from heterogeneous

databases in the Federal Aviation Administration and squeezed into a compact dataset for RI

prediction. The parallel computing to find the best predictor variables can help researchers and

engineers to obtain prediction results and make a decision quickly. This approach can be generally

applicable for the major airports in the United States (US) because the predictive model is built

upon a flexible statistical method and the data covers almost all major airports in the US.

Second, the study develops a novel statistical learning and prediction model using GAM for

reinforced concrete shear wall databases. Results identify the best predictor variables and reveal

the relevant importance of predictor variables in GAM predictions. The prediction performance

comparison between high-precision simulation, GAM, and ML can help researchers to choose a

suitable prediction method depending on their knowledge, data quality, and expectation.

Third, the research identifies the most significant variables of pavement databases for GAM pre-

dictions, which can help the pavement engineering community to understand the complex interplay
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among explanatory and response variables, better carry out pavement designs, and make a main-

tenance plan. The study also offers an efficient variable selection method, enabling stakeholders to

choose a suitable method according to their need.

Next, the study introduces an advanced data curing method, the fractional hot-deck imputa-

tion (FHDI) to infrastructure engineering communities. Missing data can be cured by the FHDI,

enabling researchers to conduct data analysis without biasness and sparseness of data. Optimal

settings, for improving the prediction accuracies after FHDI applications, are investigated using

several databases. As a result, optimum parameters for FHDI implementations are suggested.

Last, the research provides a computational framework for collecting, transforming, and merging

bridge sensor and traffic big data using a parallel computing. Bridge responses are predicted by

using the GAM with a direct search method. The study reveals the prediction power of GAM

for the bridge sensor database. Since this approach is developed in a systematic manner, other

researchers and engineers can utilize this approach for the long-term decision making and strategic

planning.

1.4 Dissertation Organization

This dissertation is organized as follows: Chapter 1 summarizes the background of research

including literature reviews and their limitation. Chapters 2 through 6 present five published and

submitted journal papers. Chapter 7 concludes this dissertation with major findings from each

study and possible future research topics.
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CHAPTER 2. DATA-DRIVEN PREDICTION OF RUNWAY INCURSIONS

WITH UNCERTAINTY QUANTIFICATION

A paper published in Journal of Computing in Civil Engineering, ASCE, (2018)

Ikkyun Song, In-Ho Cho, Tom Tessitore, Tony Gurcsik, and Halil Ceylan

Abstract

In 2015 only, more than 1,500 runway incursions (RIs) occurred at US airports, which could

result in serious runway collisions. Nonlinear interactions among many factors and complex data

structures pose challenges to RI prevention, and reportedly, the annual RI occurrence is gradu-

ally increasing. This study seeks to offer a data-driven solution of advanced statistical learning

and prediction by leveraging the generalized additive model (GAM). The GAM holds a powerful

flexibility with little restriction to many variables over a broad range of modeling distributions.

This study proposes a method to systematically obtain, parse, and transform various factors from

diverse databases to give rise to interpretable datasets. It also presents high-performance com-

putational procedures to automatically select out salient factors to achieve the best GAM with a

strong predictive power. Practical applications to RI of US airports show promising performance.

A combination of GAM and bootstrapping method to build confidence intervals is expounded upon

as a means to quantify underlying uncertainties.

2.1 Introduction

In 2015 alone, 1,507 runway incursions (RIs) happened at airports in the United States (FAA),

which can lead to a runway collision. To resolve this problem, there have been practical efforts to

solve the RI issue: e.g., airport movement area safety system (AMASS) (Watnick and Ianniello,

1992), RI alert system (Jones et al., 2001), and RI prevention system (Schnefeld and Mller, 2012).
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However, despite the efforts, the occurrence of runway incursion is reported to increase almost

every year (FAA, 2015). The attempts in the above literatures provide suitable remedy for the

specific airport, but other possible factors causing RI occurrence and hidden relationship among

them are not presented and the suggested solutions are not easy to applied in other airports since

each airport has many different conditions (e.g., geometry, traffic, weather, and so on) which means

a general prediction model needs to be established. To resolve this issue and reduce RI occurrence,

reliable solution of future prediction of RIs is imperative.

Wilke et al. (2015) investigated the impact of geometry of airport and causal factors on runway

incursion occurrence. Johnson et al. (2016) reported the relationship between geometry of airport

and runway incursion occurrence at 63 airports in the United States. They used best subset

regression to find the best combination among four geometry variables to predict RI and reported

two of them are suitable predictor variables for runway incursion prediction. Their prediction

accuracy was, however, not practical for general application as they stated in the paper. For better

prediction performance, the deployment of several predictor variables on the more flexible and

accurate prediction model is likely to be inevitable.

Several factors have been identified by the previous studies and Federal Aviation Administration

(FAA, 2008): poor weather, low visibility, time of day, miscommunication with air traffic control

(ATC), and so on. Yet, it is hard to elucidate the quantitative relevance of the factors to RI and their

relative importance. Prediction of future RI occurrence is more difficult because of the complex

interrelations among the contributing factors. Simple statistical methods such as linear regression

would be an immediate solution, but typical regression methods appear to be unsuccessful in view

of complex nonlinearity of factors. As shown in Figure 2.1, finding standard relationships among

variables and RI appears considerably difficult. On the other hand, the machine learning-based

approaches would be an eventual candidate for a successful remedy as in other domains (Karlaftis

and Vlahogianni, 2011). However, database of RI is still in its early development phase in terms

of size, data consistency, and quality. It should be noted that if one is interested in individual

airport’s RI at a specific time, a machine learning-based ”classification” will be also successful.
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Figure 2.1: Scatter plot of variables: (a) runway incursion versus general aviation operation; (b)

runway incursion versus general aviation operation and high visibility

But, this study’s focus is on the total number of RI of an airport for 15 years and statistical

investigation, learning, and prediction. Hence, such classification approaches will be another future

work, when sufficient databases become available (i.e., large enough for training, validation and

testing (Baesens, 2014)).

One of the implementational challenges is tied to the dispersed locations of RI databases. Key

data pertaining to primary factors of RI are not located in the same location. We collected the

data from different databases, developed programs to extract required information from raw data

and transform into a suitable form of data for the dataset. Another issue was the computation

cost attributed to a number of factors. Basically, not all of the factors are needed for accurate

prediction. To find the best combination of factors contributing to RI prediction, multiple loop

simulation should be done, leading to expensive computing time. We utilized the parallel strategy

to solve this issue, which shall be addressed in the later section. The overall workflow is shown in

Figure 2.2.

Objectives of this study are to (1) develop a systematic framework for gathering and processing

various databases, (2) leverage the generalized additive model (GAM) to conduct statistical learn-
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Figure 2.2: Workflow of runway incursion (RI) prediction using GAM: raw data is collected from

various databases and transformed into suitable forms of dataset, with which GAM learns and

predicts future RI on high performance computing (HPC)

ing and prediction, (3) introduce and apply GAM to RI prediction, (4) parallelize the suggested

methods, and (5) provide an uncertainty quantification method for the GAM. If interest lies in

an individual airport’s RI at a specific time frame, advanced machine learning algorithms may

be helpful, e.g., a machine learning-based ”classification.” But, the goal of this study is to add a

new dimension by providing an advanced statistical learning and prediction method. Statistical

methods will be helpful to improve interpretability of the prediction model, thereby complementing

machine learning approaches in the future. Such synergistic combinations of statistical and ma-

chine learning will be beneficial to research community. Hence, this study’s focus is on statistical

prediction of the total number of RIs of 36 airports for 15 years.



14

As shall be elaborated later, GAM is a nonparametric statistical model developed by Hastie

and Tibshirani (1990) and is highly flexible, being capable of embracing a large number of variables

with substantial nonlinearity. The GAM can cover a wide range of statistical distributions, and

these favorable attributes of the GAM enable us to learn and predict RI database and to make RI

prediction procedure more comprehensible.

The outline of the paper is as follows: data structures used for building the dataset of RI and

GAM-based predictions are addressed. The central algorithms regarding how to collect, extract,

and transform the raw data tailored for GAM are presented. Cross validationbased procedure

for finding the best combination of predictors (i.e., variables used for learning and prediction) is

presented. A remark on a parallel strategy for the proposed algorithms is summarized. Importantly,

the procedure for uncertainty quantification using bootstrapping and GAM is presented. All the

processed data and prediction results of 36 airports are presented in Appendix 2.A.

2.2 Methodology

2.2.1 Data collection

To facilitate prediction of RIs, the primary data are classified to three categories: (1) geometric

information, (2) operational data, and (3) visibility data. Airport runway is a long stretch of pave-

ment on which an aircraft can take off and land in airport. The FAA aviation safety information

analysis and sharing (ASIAS) system, developed by FAA provides a wide range of data regarding

safety. In this study, spatial and geometric information of the 36 airports was obtained from the

ASIAS system. Using the spatial and geometry data, numbers of runway, intersection between

runways, and intersection between runway and taxiway were obtained by parsing a XML data.

Operation data of aircraft in airport are also important. To collect and extract operation data, we

leveraged the air traffic activity system (ATADS). ATADS provides all activity information related

to air traffic, including airport operation, tower operation, terminal operation, and so on. The data

obtained includes airport name and operation history of air carrier, air taxi, general aviation, and

military for 15 years (from 2001 to 2015) of the major 36 airports. Visibility data was obtained
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from automated surface observing system (ASOS) developed by a joint work done by the National

Weather Service (NWS) that is a component of the National Oceanic and Atmospheric Adminis-

tration (NOAA), the FAA, and the Department of Defense (DoD). The NOAA is a government

agency which provides extensive information about weather, climate, and ocean. ASOS provides

meteorological and climatological observation measure in more than 900 ASOS sites. They cover

all major airports in the United States. Data can be obtained in the form of 1-minute, 5-minute,

1-hour. Visibility has three potential impact factors (i.e., slight, moderate, and high). Hours of

factors were counted for 15 years.

Last, the RI data are obtained from ASIAS. They provide comprehensive information about

RI in the most airports. There are three different types of runway incursion: (1) pilot deviation

(PD), (2) operational incident (OI), and (3) vehicle (driver) deviation (VD). PD is defined by the

incursion committed by a pilot of aircraft (e.g., landing or taking off without clearance from ATC);

OI by ATC (e.g., clearance of an aircraft onto a runway while another aircraft is on the runway);

VD by passing a runway holding mark without ATC clearance (FAA, 2008). Summary of data is

shown in Table 2.1. Here, ”predictors” mean the observed factors (or variables) that are used for

the GAM-based learning and predictions of RI occurrence.

Table 2.1: Summary of datasets used in the current study

Data Predictors Types Sources

Geometric

information

Runway, intersection between runways, and in-

tersection between runway and taxiway

Count (integer) ASIAS

Operation

data

Air carrier, air taxi, general aviation, military

aviation, and total aviation

Count (integer) ATADS

Visibility High impact, moderate impact, and slight im-

pact

Hour (integer) ASOS



16

2.2.2 Data extraction and transformation

Because of the dispersed database locations, this study first investigated multiple heterogeneous

databases to obtain data that are required to build GAM model. We collected several raw data

from different databases, extracted only the required parts, and transformed them into a form

suitable for the GAM.

First, the geometric data is obtained in the form of XML from AVIAS. The XML file contains

polygon information of runway, taxiway, and other structures in an airport and the file consists of

coordinates of points (i.e., x and y coordinates) which are connected each other to make polygon

lines. We counted number of runway, intersection between runways, and intersection between

runway and taxiway based on the number of a keyword in a tag. For example, a tag with <Runway

name=”35L” id=”8”> in the XML file means the polygon information of a new runway would be

within the tag. We searched the keyword Runway and counted it as number of runway whenever

our program found it. Second, the operation information was downloaded from the ATADS in the

form of spread sheet. We directly downloaded operation information of 36 airports for 15 years,

and thanks to various download options of ATADS further parsing process was not necessary.

Third, the visibility information was the most difficult to obtain because it requires multiple

processing steps. A number of raw data files were downloaded from the NOAA file transfer protocol

(FTP) (FAA) server, and then they were transformed into more interpretable form by using the

JAVA program provided by NOAA. It should be noted that the same time frame of the weather

data from NOAA is used for each incursion incidents (the generated dataset will be available

upon request). The transformed data includes the United States Air Force (UASF) codes so that

airports can be identified by the code. The data contains 1-hour information including the visibility

presented in the unit of mile. The program counts hours of slight, moderate, and high visibility

of 36 airports for 15 years based on the meteorological terminal aviation routine weather report

(METAR) board (FAA) (Table 2.2).
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2.2.3 Advanced statistical model, GAM

Compared to traditional regression methods, a generalized additive model (GAM) (Hastie and

Tibshirani, 1990) is relatively new and rarely used in these fields. Thus, it is instructive to touch

upon the key notions of GAM and its strengths, which are important for resolving our target

RI problem. GAM is a sort of generalized linear model, but holds strong flexibility and general

applicability. Rather than relying on pre-defined distributions or parameters, GAM harnesses

unspecified smoothing functions. By virtue of the unspecified smoothing functions, covariates do

not need to have a set of parameters. For predicting RI occurrence of ith airport (denoted by Yi ∈ R

) with n predictors (denoted by xi ∈ Rn), the general form of GAM can be represented as:

g(µi) = f1(x1i) + f2(x2i) + f3(x3i) + · · · , (2.1)

where g is a smooth link function; the expectation of Yi given xi is denoted by µi ≡ E(Yi | xi); Yi

is a target response from an exponential family of distribution (e.g., normal, binomial, or gamma

distribution); fj are smooth functions of covariates xji (Wood, 2006). In our study, Yi would mean

the number of RI of ith airport and xi consists of many factors of the airport including the number

of runways, visibility, etc. In essence, the GAM has non-specified smoothing function per each

predictor, and this fact imparts substantial flexibility to GAM. For brevity of explanation, the

following description involves a normally distributed single variable, but generalization to multiple

variables is straightforward (Wood, 2006). Now, let GAM be E(Y | x) = f(x), and the smoothing

Table 2.2: Potential impact (mile) visibility criteria based on METAR board

Threat Visibility

None ≥ 5.1

Slight 5.1 > X ≥ 3

Moderate 3 > X ≥ 1

High < 1
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function f can be represented as:

f(x) =

k∑
j=1

bj(x)βj (2.2)

where bj(x) is the j basis function and βj is an unknown parameter. Model fitting can be done

by maximizing the corresponding likelihood with a penalty term which is given as λ
∫

[f
′′
(x)]2dx

where λ is smoothing parameter. Too large λ leads to an over-smoothed estimate while too small

λ results in an under-smoothed estimate. The error becomes the largest in the both extreme cases.

The optimized λ value can be chosen in such a way that model can fit accurately by minimizing

generalized cross validation (GCV) score (see (Golub et al., 1979) for detail of GCV). λ is selected

appropriately via the relevant GAM library; thus, in general, there is no need to manually adjust

λ.

A spline basis should be selected for GAM building. There are two types of basis which are

commonly used in GAM: (a) thin plate regression splines (TPRS) (Wood, 2003) and (b) cubic

regression spline (CRS) (Wood, 2006). Cubic spline is a curve formed by connecting a number

of cubic polynomial sections. Those sections are connected each other at ”knot”, a certain point

of which location should be selected in advance for the cubic spline basis. The cubic polynomial

sections are joined in a such way that the entire spline should be continuous up to second derivative.

Although there are many ways to get a basis for cubic spline, a simple basis is offered by (Gu, 2013),

which is given by

b1(x) = 1, b2(x) = x, and bi+2 = R(x, x∗i ) for i = 1, 2, · · · , p− 2 (2.3)

where p is number of rank for basis, x∗i is knot location, and,

R(x, x∗i ) =
[
(x∗i − 1/2)2 − 1/12

][
(x− 1/2)2 − 1/12

]
/4

−
[
(|x− x∗i | − 1/2)4 − 1/2(|x− x∗i | − 1/2)2 + 7/240

]
/24

(2.4)

Thin plate spline (Duchon, 1977) can be used for multiple covariates. Thin plate spline function,

f , can be determined by minimizing ‖y − f‖2 + λJmd(f), where y is the vector of yi data and

f = [f(x1), f(x2), · · · , f(xn)]T . Jmd(f) is a penalty functional measuring the wiggliness of f , and
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Figure 2.3: Example of thin plate spline basis function using 2 covariates

λ is a smoothing parameter, controlling the tradeoff between data fitting and smoothness of f . The

wiggliness penalty is defined as

Jmd =

∫
· · ·
∫
Rd

∑
v1+···+vd

m!

v1! + · · ·+ vd!

(
∂mf

∂xv11 , · · · , ∂x
vd
d

)2

dx1, · · · , dxd. (2.5)

One example of thin plate spline basis function with 2 covariates is shown in Figure 2.3.

In sum, GAM requires no prejudice on relations among parameters and holds little restriction

to the number of variables and nonlinear distribution of variables. Importantly, GAM’s internal

setting always seeks to balance the fitting accuracy and smoothness, in which the generality and

flexibility of GAM is rooted.

2.2.4 Metrics for prediction accuracy

In this study, three metrics are used to compare the GAM-based prediction performance: (1)

CV Eb/CV E = the ratio between base cross validation error (CV Eb) and cross validation error

(CV E); (2) the Pearson correlation, ρ; (3) the coefficient of determination, R2. The CV E and

CV Eb are defined as

CV E =
1

N

N∑
i=1

(yiex − yipr)2; CV Eb =
1

N

N∑
i=1

(yiex − ymean,pr)2, (2.6)

where N is number of data, yiex is the ith real-world measured response, yipr is ith predicted response

in the cross-validation procedure, and ymean,pr is the mean of predicted values. ρ and R2 are defined



20

as

ρ =
COV (ypr, yex)

σypr × σyex
; R2 = 1−

∑N
i=1(yiex − ymean,pr)2∑N

i=1(yiex − yipr)2
(2.7)

The CV Eb/CV E is an indicator of the goodness of model fitting: i.e., CV Eb is a naive prediction

using the mean of predicted values, and thus a high ratio means the good prediction performance.

We use this ratio as auxiliary metric for accuracy of fit following (Kamdar et al., 2016). ρ and

R2 are our primary metrics to measure accuracy of fitted model. ρ indicates the linear correlation

between real-measured and predicted values, and when the model is fitted well, becomes closer

to 1. R2 represents proportion of variance in the response variables that can be predictable from

predictor variables. R2 will be close to 1 if the model fits well. This choice has been made following

the comparable study on machine learning comparisons of (Kamdar et al., 2016). In essence, the

higher metrics, the more accurate predictions.

2.3 Selection of Best GAM Model Using Parallel Computing

The GAM can be built upon arbitrary combinations of many predictors. Among many possi-

bilities, a prudent choice of predictors is critical for accurate GAM prediction. To avoid artificial

bias in the selection of predictors and automatic processing, this framework objectively compares

the aforementioned three metrics of prediction performance (i.e., CV Eb = CV E, ρ and R2) to

determine the best combination of predictors. In total, 14 variables are taken from raw data with-

out any prejudices on relations or a priori knowledge on the relative significance of predictors.

The 14 variables are: runway number, intersection number for runways, intersection number of

runway and taxiway, air carrier operation, air taxi operation, general aviation operation, military

operation, total operation, average visibility, low visibility hours, moderate visibility hours, high

visibility hours, sum of high and moderate visibility hours, and sum of all visibility hours (Tables

2.1 and 2.2). The prediction target response is the total number of RI occurrence per airport. The

proposed approach for the search of the best predictor combination is straightforward, yet com-

putationally expensive: e.g., total combination of seven variables selected from 14 total variables

= 14!/(7!(14 − 7)!) = 3, 432. In a future extension, if dozens or hundreds of predictors are used,



21

Figure 2.4: Cyclic allocation of the proposed parallel code of R & Rmpi ; two-variable case is shown

with ”nv” meaning the total number of variables. Height of box corresponds computation load

parallel computing is essential for practical efficiency. For instance, the serial version’s running

time for the seven-variable case was 217 min on a desktop computer (2.8 GHz dual cores, 8GB

memory), and the statistical library uses R. Such a long running time may be attributed to the

expensive computation cost of the GAM library as mentioned in (Wood, 2006). In particular, the

total run time of 217 min is composed of 1 min for making the dataset, 207 min for estimating

the GAM, and 9 min for predictions and metric calculations. For scalability, this study distributes

the combination search task to available processors. Particularly, a parallel computing algorithm

was developed using Rmpi (Yu, 2002). The Rmpi is controlled by only one master, and a number

of slaves can be spawned. Because the computation load decreases as the size of interwoven loops

decreases (Figure 2.4), the so-called cyclic allocation of tasks is used to ensure load balance on

the slave processors. A successful parallelization can be achieved by cyclically allocating jobs to

available slaves. As the problem size increases, the cyclic allocation scheme approaches the opti-

mal parallel load balancing (Kam et al., 2011). The parallel algorithm was tested and results are

summarized in Figure 2.5. The best speed-up was achieved with 56 slaves.

It is instructive to touch upon other methods that can be alternatives because there exist

efficient methods different from the direct parallel comparison of all possible cases. For instance,
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principal component analysis (PCA) (Jolliffe, 2002) would be a good candidate because PCA is

helpful to identify predictors’ relative contribution to the total variability of raw data and to reveal

intervariable correlations. To briefly show this nature, Figure 2.6 summarizes a biplot from PCA

using the 14 predictor variables of this study using the R package. Indeed, Figure 2.6 confirms that

the positive correlation of visibility variables and their large contribution to the total variability,

which is consistent with the finding from this study (see the section ”Uncertainty Quantification

Procedure”). To examine whether the PCA-guided variable selection is helpful, three cases were

considered according to the PCA results in Figure 2.6: (1) prediction using three variables in the

positive direction, (2) prediction using six variables in the negative direction, and (3) prediction

using nine variables in both directions along the principal axis. With those cases, additional analyses

of GAM and a multiple regression were performed. The PCA-guided variable combinations led to

relatively less prediction accuracy than the direct search algorithm proposed herein (Table 2.3).

This result suggests that, although PCA is helpful in understanding variability, the PCA-guided

set of variables may be different from the optimal combination with the highest predictive power.

Hence, this study continues to seek a computationally straightforward framework that can explicitly

select out salient predictors from arbitrarily many real-world variables. Such a straightforward

framework is easily made autonomous and parallelizable. Also, the proposed pair of GAM and the

bootstrapping method appears to work well to deal with uncertainty quantification. Hence, the use

of another alternative such as PCA will be a future extension topic.

Table 2.3: Comparison of prediction performance between direct search algorithm (proposed herein)

and PCA-guided variables (all values are CV Eb/CV E)

Number of

variables

5 (direct

search

proposed

herein)

3 in the

positive direc-

tion(PCA)

6 in the

negative direc-

tion(PCA)

9 in both

directions

(PCA)

Multiple

regression
1.31 0.89 0.87 0.78

GAM 3.34 0.03 0.12 0.07
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Figure 2.5: Parallel computing performance of R & Rmpi code for finding the 7-variable combina-

tion out of 3,432 total combinations

As addressed before, a parallel computing algorithm enables consideration of all possible variable

combinations and comparison of the prediction metrics to obtain the ”best” set of predictors (see

Figure 2.7 for algorithm). The best combination identified consists of five predictors: (1) the

number of taxi operations, (2) the number of general operations, (3) hours of high impact visibility,

(4) hours of slight impact visibility, and (5) sum of hours of high, moderate, and slight impact

visibility (Table 2.4). Figure 2.8 shows the prediction quality results using two smoothers of GAM,

i.e., CRS and TPRS. In essence, larger metrics mean better prediction in both summaries. Both

CRS and TPRS identify the same conclusion for the best combination. Particularly for the current

data and the RI prediction problem, CRS appears to perform better than TPRS (Figure 2.8), which

may be attributable to the unique characteristics of RI data. This relative prediction performance

of GAM-CRS and GAM-TPRS may be changed as data quantity and complexity are added in

future extension of this work. Still, the proposed procedure and methodology will be meaningful

because the framework is independent of data-related changes and is readily expandable for more

variables.

2.4 Prediction Results

Per the least requirements of GAM, a logarithmic link function was chosen that can easily

incorporate multiplicative relations of engineering variables. Because all the quantified predictors
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Figure 2.6: Biplot from principle component analysis (PCA): (a) entire biplot; (b) part of biplot

denoted by dashed box ”b”; (c) by ”c”; and (d) by ”d”
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Figure 2.7: Pseudo code for finding the best combination of predictor variables

and response are positive and considered as countable (i.e., integers), the Poisson distribution was

assumed. As recommended by Wood (2006), the parameter k (i.e., the number of basis dimensions

in smooth functions) was set to 6; k is not the number of predictors but is related to how many

bases are used in each smooth function.

For a small data sample as in this case, cross validation can be used instead of using train and

test set separately (Baesens, 2014). To evaluate the prediction capability systematically, the cross-

validation method was applied: (1) exclusion of an airport, (2) construction of a GAM by learning

the remaining airport data, and (3) prediction of the runway incursion of the omitted airport. To

construct the GAM, one of the airports was excluded whereas learning samples (i.e., other airport

data) were used in the cross validation (Figure 2.9). Thereafter, a series of runway incursions of the

excluded airport was predicted using the GAM. These steps were repeated throughout all airport
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(a) (b) (c)

Figure 2.8: Comparison of performance between CRS and TPRS on this study: (a) ratio of CV Eb =

CV E; (b) Pearson correlation; (c) coefficient of determination

Table 2.4: Metrics used for best combination of predictor variables (GAM-CRS)

Number of

variables
CV Eb/CV E Pearson correlation

Coefficient of

determination

2 1.2 0.512 0.1667

3 1.302 0.529 0.232

4 1.952 0.701 0.488

5 3.115 0.835 0.679

6 1.995 0.719 0.499

7 1.818 0.729 0.45

Note: The bold values show the largest value.

data. The difference between the predicted number of RIs from GAM and the original value of RIs

for the excluded airport directly represents the GAM’s prediction quality.

To demonstrate the prediction results, so-called Q-Q plots were drawn to correlate the scaled

response of real measured and predicted value [Figure 2.10a; a linear line means accurate prediction].

Note that all statistical predictions in Figure 2.10 are drawn from the best GAM model that only

uses 5 predictors. Remarkably, the predicted responses exhibit good accuracy compared to the

real-world data even though there was no bias used for statistical learning and prediction. Figure

2.10b shows that residuals are scattered evenly, and thus, the developed statistical model appears
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Figure 2.9: Illustration of cross validation: (a) shows that the first airport’s data is omitted, a

GAM is constructed by learning all other airport data; (b) shows the same procedure by omitting

the second airport data

(a) (b)

Figure 2.10: (a) Q-Q plot of real-world measured data and predicted data; (b) residuals plot showing

that residuals are evenly scattered

to be acceptable. Additionally, Appendix 2.B presents a comparison between an artificial neural

network and GAM, which confirms the GAM’s promising predictive power.

A parameter study on the smoothing parameter, λ, was also conducted to examine whether the

automatically optimized lambda (denoted as λ∗) guarantees the highest prediction accuracy. Figure

2.11 summarizes GCV scores with varying λ. As expected, the optimal λ (denoted as λ∗ = 7.384)

leads to the lowest GCV score, and the GCV score increases as the λ deviates from the optimal

value; thus, this study recommends the automatic optimization of λ. The λ∗ is automatically

optimized by the GAM library. To demonstrate this optimization, this study manually changed
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Figure 2.11: GCV score with varying smoothing parameter. (λ∗ = automatically optimized value)

the lambda values, which can be done by overriding the GAM library using a command such as

”gam(response s(predictor,sp=7.384))” in R terminal.

2.5 Uncertainty Quantification Procedure

Of particular interest is variability of individual predictors. Hence, the confidence bands of

each of five predictors used for the smoothing function of the best GAM were summarized. As

shown in Figure 2.12, the vertical axis (y-axis) represents the centered smoothing function, i.e.,∑n
i=1 s(xi) = 0 for each predictor, where s(xi) is a smoothing function and xi is the predictor under

consideration. The solid line indicates a centered smoothing function fitted, and the dotted line

shows the 95% confidence band. A wider width of the confidence band implies more variability of

the predictor. Hence, comparing confidence bands offers a relative order of variability of predictors.

The variability of the hours of slight visibility impact appears relatively higher than the operation

number based on the range of the confidence bands (e.g., the distance of two dotted line in Figure

2.12a is larger than for the other four cases), which means visibility variables have more influence

on uncertainty in prediction than operation variables.

The prediction interval was investigated because a statistical prediction essentially entails un-

certainty for various reasons. To quantitatively assess the uncertainty of the GAM prediction, the

confidence interval of the predicted RIs of 36 airports is shown. The confidence interval in RI
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(a) (b)

(c) (d)

(e)

Figure 2.12: Confidence interval of smoothing functions of five predictors: (a) the number of taxi

operations; (b) the number of general aviation operations; (c) hour of high visibility impact; (d)

hour of slight visibility impact; (e) hour of sum of visibility impacts
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prediction for 36 airports was generated by the percentile method using bootstrapping (Efron and

Tibshirani, 1994). The detailed procedure to obtain a bootstrapping sample is as follows:

1. Fit a GAM model and obtain the fitted responses ŷi and calculate residuals εi = yi − ŷi (i =

1, · · · , n), where yi is measured response and n is the sample size.

2. Generate a synthetic sample set y∗i = ŷi + ε̂j,centred by resampling centred residuals, where

ε̂j,centred is generated by:

(a) randomly selecting a residual, ε̂j from the set of residuals of step 1 (j is randomly selected

from i = 1, · · · , n with replacement);

(b) subtracting mean value of εj from ε̂j for every i.

3. Re-fit the regression model using the synthetic sample set y∗i .

4. Repeat steps (2) and (3)B times, thenB bootstrapped predicted response samples, ŷ∗1, ŷ
∗
2, · · · , ŷ∗B

are generated.

These B bootstrapped samples are used to develop the confidence interval for the RI prediction in

36 airports by adopting the percentile method (Efron and Hastie, 2016). For example, when we

have B bootstrap samples, the cumulative distribution function of bootstrap samples less than b

can be written as

Ĝ(b) = F{ŷ∗i ≤ b} / B, i = 1, · · · , B, (2.8)

where F represents frequencies of y∗i . We can find a point with a specific percentile (α) using the

inverse function of Ĝ which is given by

ŷ∗(α) = Ĝ−1(α). (2.9)

And then, the 95% confidence interval is obtained as

(
ŷ∗(0.025), ŷ∗(0.975)

)
. (2.10)

The physical meaning of the confidence interval is that the predicted number of RIs of of a spe-

cific airport may fall into the range with 95% probability. To provide a sense of how different
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(a) (b)

Figure 2.13: Confidence interval for GAM prediction points of 36 airports using (a) GAM and

(b) multivariate linear regression: vertical bar represents 95% confidence interval, circle represents

measured (real) RI number, and ”x” mark represents a median value of bootstrap samples; hor-

izontal axis means airport index; table of 36 airport indexes and generated data is presented in

Appendixes 2.A and 2.B

statistical models influence the confidence interval, two case studies using GAM and a multivariate

linear regression (MLR) with the same predictors are juxtaposed in Figure 2.13 (R package was

used). The measured RI number and the median of bootstrap samples are marked by ”o” and ”x,”

respectively. As shown in Figure 2.13, MLR appears to exhibit low predictive power and wider

confidence intervals compared to GAM. In future extensions of this research, more predictors from

diverse databases such as human factors related to the pilots or sophisticated weather information

would help improve the predictive power and shorten the confidence interval. Overall, GAM pre-

diction entails narrow confidence intervals, strengthening the authors’ confidence in these statistical

predictions.

2.6 Conclusions

This study developed a computational framework to leverage an advanced statistical learning

and prediction method to resolve runway incursion (RI) problems in the United States airports.

A systematic procedure for gathering, processing, and creating interpretable datasets from various

data sources has been documented. The framework adopts GAM, which has notable strengths
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in flexibility and expandability. By virtue of the ”additive” nature of GAM’s formulation, GAM

can accommodate any number of predictors in the future extension of this work, which will fa-

cilitate future application or sophistication to airports having comprehensive databases. Practical

applications with GAM to data from the major 36 US airports show a promising predictive power.

Notably, the predictions were made without any prejudice on relations or a priori knowledge of the

raw data. Results suggest that all factors are not always necessary for the best prediction of RI,

and rather, there appear to exist significant relations among a few manageable factors that may

govern RIs. The identified five factors include (1) the number of taxi operations, (2) the number

of general operations, (3) hours of high impact visibility, (4) hours of slight impact visibility, and

(5) sum of hours of high, moderate, and slight impact visibility.

With persistent efforts, researchers will have increasing accessibility to the growing aviation

databases. Thus, in future extensions, the proposed framework will complement the new data-

driven discovery in the aviation field and also facilitate machine learningbased approaches. Some

of the generated datasets are provided herein, and all other relevant data of the 36 target airports

will be available upon request. An airport-specific learning and prediction would be helpful for

improving predictive power. However, because the focus of this work lies in development of a

general-purpose framework that can help investigate the total number of 15 years’ of RIs, the

authors started from common databases that were measured in a consistent manner by relevant

agencies. Such an airport-specific approach will be a future research topic. Furthermore, airplane-

specific classification using machine learningbased or PCA-based approaches would be another

future research topic. Last but not least, the contribution of the proposed statistical prediction

method to the machine learning mainstream is noteworthy. The statistical learning can provide clear

causal pathways between descriptors and targets as well as the relative importance of descriptors

for a given target. This leads to a sort of ”glass box” prediction. Such a statistical glass box

will complement machine learning by facilitating the selection of salient attributes, and will help

stakeholders to devise practical decisions with the clear causal pathways.
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2.A Appendix I. Dataset for Current Study

Note that the target response of this study is the operational incident (OI) incursion shown in

the last column. Dataset used in statistical learning and prediction is summarized in Tables A2.1

and A2.2.

2.B Appendix II. Comparison of GAM and Artificial Neural Network

Although it is not the main scope of this study, to briefly compare the relative performance

trends, an artificial neural network (ANN) was run using the Levenberg-Marquardt algorithm as

the main learning algorithm. In general, on function approximation problems, for networks that

contain up to a few hundred weights, the Levenberg-Marquardt algorithm will have the fastest

convergence. This advantage is especially noticeable if very accurate training is required. In many

cases, the Levenberg-Marquardt algorithm is able to obtain lower mean square errors than any of

the other algorithms tested. In this exploratory study, one hidden layer with a lower number of

hidden neurons (310) has been used, and a learning rate of 0.1 was used.

As shown below (Table B2.1), the case of ANN prediction using 36 airports (30 training and

6 validation) exhibits the best predictive performance, having R2 of 0.66. This confirms that

the proposed statistical method has comparable or slightly better predictive power than ANN

because the GAM-CRS produces R2 of 0.679 (Table 2.4). Still, a generalization of this exploratory

comparison needs in-depth investigation because other sophisticated machine learning approaches

may outperform the current statistical framework (e.g., by larger data inclusion, data-oriented

tuning, outlier removal, etc.).
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Table B2.1: ANN prediction summary using 10 independent variables

Cases
R2

Training Validation

ANN with all dataset (24 training, 12 validation) 0.41 0.64

ANN with all dataset (30 training, 6 validation) 0.31 0.66

ANN without three least significant input parameters

(30 training, 6 validation)
0.27 0.38

Note: The bold value represent the highest value from ANN analysis. It was used to com-
pare the prediction performance between GAM and ANN.
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CHAPTER 3. AN ADVANCED STATISTICAL APPROACH TO

DATA-DRIVEN EARTHQUAKE ENGINEERING

A paper published in Journal of Earthquake Engineering, (2018)

Ikkyun Song, In-Ho Cho, and Raymond K. W. Wong

Abstract

Decades-long experimental databases become accessible in global earthquake engineering com-

munity. Yet, complex interactions of a multitude of variables pose formidable challenges to data-

driven research. We embarked upon developing an advanced statistical learning and prediction

framework with the generalized additive model (GAM). We showed promising performance of GAM

with applications to existing RC shear wall databases. Without any prejudice, GAM can predict

structural responses accurately using raw databases, and also can identify salient attributes. This

study addresses computational implementation and parallel processing, and all codes are made

publicly available to promote data-driven research of earthquake engineering community.

3.1 Introduction

In a broad spectrum of scientific and engineering fields, data-driven research is becoming a

promising next-generation research paradigm. Notable advances in computing power enable re-

searchers to draw valuable knowledge from data (e.g., drug design (Fishman, 1995), seismology

(Caflisch, 1998), and even cosmology (Kamdar et al., 2016b)). In relation to natural hazards, NSF

has been persistent to construct community-level data nexus (e.g., Network for Earthquake Engi-

neering Simulation hub (NEEShub) (Hacker et al., 2011)) and the new NSF Cyber-infrastructure

for natural hazards engineering research (Rathje et al., 2017) that will be important foundations

for future data-driven discovery, particularly in earthquake engineering community.
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Figure 3.1: Sparseness and biasness revealed from 470 real experiments of RC shear wall database

(collected from NEESHub, international reports, and literature)

Hitherto, data have not been actively used to improve the predictive and preventive ability

of the earthquake engineering fields. Often, identification of problematic structural issues occurs

at the post-disaster phase. Indeed, the earthquake engineering communities learned about hid-

den issues they were previously unaware after a natural hazard caused severe societal damage and

claimed many lives. Two apt examples would be the surge of research on brittle steel structures

after the 1994 Northridge earthquake and on the weak performance of reinforced concrete shear

wall (RCSW) structures after the 2010 Chile and 2011 Christchurch earthquakes (Park and Chen,

2012). Real experiments are indispensable since they offer in-depth quantitative understandings

of complex interplay among structural variables (geometric dimensions, materials and mechanical

properties, etc.) and performance variables (load-carrying capacities, crack sizes, degree of crush-

ing and buckling, etc.). But, limited financial resources prohibit real test-based approaches from

unraveling the interdependency among salient variables. After successful real experiments, there

remain considerable uncertainties, and more important, it is nearly infeasible to completely cover

a full range of structural variables. Database quality raises another significant issue. Substantial

biasness, sparseness, and missing values of real tests data pose a formidable challenge (e.g., Figure

3.1).

In the emerging era of data, this paper seeks to aid research community by finding a new remedy

that is driven by and based on database. The novel objective of this paper is to apply an advanced

and flexible non-parametric statistical technique to the well-established earthquake engineering
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Figure 3.2: Number of specimens of each type of RCSW (R: rectangular; T: T-shaped; B: Barbell-

shaped; I: I-shaped; B-O: Barbell-shaped with opening; etc.: all other types)

database: in particular, RC shear wall data. Our target wall type is rectangular walls since they

constitute the majority of existing database (Figure 3.2). But it should be noted that the proposed

methodology can be applied to other types of walls, which will be a future extension of this study.

This paper demonstrates the promising capability of the data-driven approach and how we can

rigorously predict untested structures’ responses and hidden significance of some variables, notably

directly from data. In particular, this paper expounds upon a non-parametric technique called

generalized additive model (GAM), (e.g. (Hastie and Tibshirani, 1990)). As shall be addressed,

the adopted GAM holds excellent accuracy and efficiency, and at the same time, allows remarkable

flexibility in terms of the distributions of the response variable and its relationship to the predictor

variables. Indeed, to tackle the complexity of multiple predictor variables is one of the key objectives

of this study. As shown in Figure 3.3a, a variable may not show clear relationship with a target

response of structures. But as we increase the number variables (Figure 3.3b), there may be a

relationship in a form of curved surface or so. We regard this as the increasing interpretability. But,

as we will show later, the more variables do not necessarily guarantee the increasing interpretability

and/or predictability.

This paper holds notable contributions to research community. First, the use of GAM for data-

driven prediction in earthquake engineering is novel since it is a glass-box approach. Second, it

is of practical importance to systematically document how to harness GAM for selecting salient
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(a) (b)

Figure 3.3: Change in the interpretability of database with increasing dimensionality: (a) two-

dimensional (2D) scatter plot of standardized fy (steel yield strength of longitudinal bars) and

Fmax (maximum shear force); (b) 3D plot of Fmax, the standardized fy, and the standardized f
′
c

(concrete strength). Some axes are unitless due to the standardized values

variables, learning raw data sets of earthquake engineering, and predicting practically important

responses. Third, an introduction to a robust uncertainty estimation method for GAM prediction

is noteworthy. All the developed statistical codes are shared via authors’ research website (Cho, I.,

2017). The earthquake engineering research community will benefit from the novel capabilities of

the proposed statistical approach.

This paper is organized as follows: we introduce GAM and address its strength and theory.

Three metrics for measuring the prediction power of GAM are presented. A cross-validation-

based algorithm for finding the best predictor combination is presented. The prediction accuracy

comparison between statistical prediction and high-precision computer simulation is addressed. The

confidence interval of the response value predicted is presented for uncertainty estimation using a

bootstrap method. A brief comparison of prediction performance of GAM and other statistical

and machine learning methods is presented. Limitations of the proposed statistical prediction

are summarized. The pseudo code is presented to explain the algorithm for the best predictor

combination selection, followed by remarks on parallel computing. Full codes are presented in

Appendix.
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3.2 Summary of the Generalized Additive Model

A generalized additive model (GAM) (Hastie and Tibshirani, 1990) is a non-parametric ex-

tension of the well-known generalized linear model in which covariates enter the model through

unspecified smooth functions. The general form of GAM can be given by:

g(µi) = f1(x1i) + f2(x2i) + f3(x3i) + · · · , (3.1)

where g is a smooth link function; µi ≡ E(Yi | xi); Yi is a response variable and from some

exponential distribution family (e.g., normal, binomial, or gamma distribution); xi is ith vector of

data points comprising multiple variables, xi = {x1i, x2i, · · · }; fj are smooth functions of covariates

xji (Wood, 2006). For instance, Yi would be the maximum shear force of ith RC shear wall specimen

and xi = {lengthi, heighti, AxialForcei, · · · }.

The GAM is a non-parametric regression model, which depends on sum of unspecified smooth

functions rather than pre-specified forms of xi. This leads to the flexible nature of GAM, and

distinguishes GAM from the commonly used linear models. GAM can be constructed to predict

complex data accurately whereas linear models can be only used for data with linear relationship.

To effectively glean the central notion of the GAM, the following descriptions involve one variable

and normal distribution case. Extension to multiple variables and other distributions are straight-

forward, and details can be found in (Wood, 2006). Now, the GAM becomes E(Y | x), and the

smooth function f can be approximated as follows:

f(x) =
k∑
j=1

bj(x)βj (3.2)

where bj(x) is the jth basis function and βj is an unknown parameter. Fitting of the model can

be accomplished by maximizing the corresponding likelihood with a penalty term represented by

λ
∫

[f
′′
(x)]2dx where λ is smoothing parameter. An over smoothed estimate is attributed to too

large λ value while an under smoothed estimate is done by too small λ value. The error between

spline estimate f̂ and true function f is large in the both extreme cases. We can choose λ value

which enables to fit model appropriately by minimizing generalized cross validation (GCV) score
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Figure 3.4: Example of one-dimensional regressions of 470 real RC wall data: (a) hb (thickness of

boundary element) versus Fmax; (b) wall height versus Fmax

(Golub et al., 1979). The smallest GCV score is achieved by selecting an optimum λ value via the

relevant GAM library (Wood, 2001).

A basis for spline should be chosen to construct a GAM. There are two popular types of basis

used in GAM: (a) thin plate regression splines (TPRS) (Wood, 2003) and (b) Cubic regression spline

(CRS) (Wood, 2006). TPRS is suitable for any number of covariates and notably, ”knot-free” (i.e.

requiring no knot location selection). Yet, CRS requires knot location selection and is restricted to

a single variable. In general, TPRS requires more computational cost than CRS. As an illustrative

example, Figure 3.4 compares four regression models (i.e., Black = Linear; Red = Parabolic; Green

= GAM(CRS); Yellow = GAM(TPRS)) with 470 real RC shear wall data. Figure 3.4 presents a

good example of the flexibility of GAM when applied to the complex real-world database.

On one hand, cubic spline is a curve constructed by combining a number of cubic polynomial

sections. Those sections join at a certain point, called knot, of which location should be pre-

selected for the cubic spline basis. The cubic polynomial sections are joined such that the entire

spline becomes continuous up to second derivative. Although somewhat different from the practical

regression splines (see (Wood, 2006)), to help grasp a sense of relevant mathematical forms, some

cubic spline functions (Gu, 2013) are given by

b1(x) = 1, b2(x) = x, and bi+2 = R(x, x∗i ) for i = 1, 2, · · · , p− 2) (3.3)
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Figure 3.5: Example of thin plate spline basis function using 2 covariates

where p is number of rank for basis, x∗i is knot location, and,

R(x, x∗i ) =
[
(x∗i − 1/2)2 − 1/12

][
(x− 1/2)2 − 1/12

]
/4

−
[
(|x− x∗i | − 1/2)4 − 1/2(|x− x∗i | − 1/2)2 + 7/240

]
/24.

(3.4)

One the other hand, thin plate spline (Duchon, 1977) can be used for multiple covariates. Thin

plate spline function, f , can be obtained by minimizing

‖y − f‖2 + λJmd(f), (3.5)

where y is the vector of yi data and f = [f(x1), f(x2), · · · , f(xn)]T . Jmd(f) is a penalty functional

measuring the ’wiggliness’ of f , and λ is a smoothing parameter, controlling the tradeoff between

data fitting and smoothness of f . The wiggliness is related to the degree of flatness. If f is too

wiggled (i.e., overfitted), then the function curve is highly up and down in a short range while the

function curve becomes nearly flat (too smoothed) when f is not wiggled. Both cases lead to poor

prediction. The wiggliness penalty is defined as

Jmd =

∫
· · ·
∫
Rd

∑
v1+···+vd

m!

v1! + · · ·+ vd!

(
∂mf

∂xv11 , · · · , ∂x
vd
d

)2

dx1, · · · , dxd. (3.6)

One example of thin plate spline basis function with 2 covariates is shown in Figure 3.5. In Equation

3.7, f̂ is the function that can minimizes Equation 3.5. As marked in Equation 3.7, the first terms

are related to wiggliness while the second terms are independent of wiggliness.
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f̂x =

n∑
i=1

δiηmd(‖x− xi‖)︸ ︷︷ ︸
wiggly components

+

M∑
i=1

αjφj(x)︸ ︷︷ ︸
zero wiggly terms

(3.7)

where δi and αj are coefficients to be determined, φj are linearly independent polynomials spanning

the null space of Jmd, and the basis functions ηmd are given by

ηmd(h) =


(−1)m+1+d/2

22m−1π
d
2 (m−1)!(m− d

2
)!
h(2m−d)log(h) for d = even

Γ( d
2
−m)

22mπ
d
2 (m−1)!

h(2m−d) for d = odd

(3.8)

Thin plate regression splines seek to find the balance by reducing the wiggly components of

Equation 3.7 and retaining the zero wiggly terms in Equation 3.7. In this fashion, thin plate re-

gression splines are regarded as a powerful approximation method that has little restriction to the

burdensome knot location determination and many variables. Detailed formulations and explana-

tion can be found in relevant literature (e.g., (Wood, 2006)).

3.3 Metrics for Prediction Comparisons

In this study, we adopted several metrics to quantitatively compare the prediction performances:

Ratio between base cross validation error (CV Eb) and cross validation error (CV E), (CV Eb/CV E),

Pearson correlation, ρ, and coefficient of determination, R2 were adopted to measure how accurately

the GAM fits. This choice of metrics is based on the comparable study on machine learning

comparisons (Baesens, 2014; Kamdar et al., 2016,b). The higher CV Eb/CV E, ρ, and R2, the more

accurate prediction. The CV E and CV Eb are defined as,

CV E =
1

N

N∑
i=1

(yiex − yipr)2; CV Eb =
1

N

N∑
i=1

(yiex − ymean,pr)2, (3.9)

where N is number of data, yiex is the ith measured response, yipr is ith predicted response according

to the cross-validation procedure described later in Figure 3.6, and ymean,pr is the mean of predicted

values. ρ and R2 are defined as

ρ =
COV (ypr, yex)

σypr × σyex
; R2 = 1−

∑N
i=1(yiex − ymean,pr)2∑N

i=1(yiex − yipr)2
. (3.10)
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Figure 3.6: Illustration of cross validation: left figure represents that first specimen’s data is om-

mited. A GAM is constructed by learning all other wall data; right figure shows the same procedure

by omitting the second wall data

For comparison among different statistical models, we mainly use CV Eb/CV E, and also used other

metrics as additional reference.

3.4 Prediction with GAM

To demonstrate the strong predictive power of GAM, we used the existing database of RC shear

wall experiments. In particular, GAM seeks to predict the maximum shear force of rectangular

walls. Basic statistical setting is as follows. This study assumes the Gamma distribution in light

of the domain-specific nature of data (i.e., real, positive values in existing values). For the link

function among variables, we chose log since it can easily incorporate multiplicative connections

of engineering variables. For the smooth function-related setting, k (i.e. the number of basis

dimensions in smooth functions), we adopted typical value of 7 throughout the statistical studies

as recommended by literature (e.g. (Wood, 2006)). It should be stressed that this internal setting

k = 7 is not the number of predictors (variables or parameters) of regression, but how many bases

per smooth functions of GAM. It should be noted that smoothing parameter λ is readily optimized

in terms of GCV in the relevant library of R.
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To demonstrate the flexibility and accuracy of the data-driven statistical prediction, we began

with raw data of 10 variables, yet resorted to no prejudices regarding relations or relative significance

of variables. The 10 variables in the existing database are: axial force ratio (denoted by afr),

wall thickness (thickness), boundary element’s thickness (hb) and width (wb), wall height (height),

wall length (length), primary reinforcing bar’s yield strength (fy) and diameter (dia), concrete

compressive strength (fc), and boundary element reinforcement ratio (rrb). Target response is the

rectangular shear wall’s maximum shear resistance, Fmax.

Key steps consist of three tasks: (1) exclusion of a test wall specimen, (2) construction of

a GAM by learning the remaining wall data, and (3) prediction of the test wall’s response. In

the cross validation, one of wall data (so-called test sample) is excluded intentionally while and

other wall data (learning samples) are used to construct the GAM (Figfure 3.6). Thereafter,

the maximum shear force of the omitted wall is predicted using the GAM. These processes are

repeated throughout all wall data. To systematically assess the prediction power, we used the

cross validations. The difference between the predicted Fmax from GAM and the original value of

the omitted wall specimen directly represents how precisely the constructed GAM can predict the

target response.

To systematically present the predicted results, the so-called Q-Q plots were used to compare

the scaled response of real experiment and predicted value (see Figure 3.7). Importantly, although

the statistical models use no prejudices or weighting factors, the predicted responses using two

GAMs show good agreements with real experimental data. The promising accuracy is commonly

found in both GAM(CRS) and GAM(TPRS). It should be noted that all the statistical predictions

in Figure 3.7 are made by the ”best” statistical models that only utilized the raw data. As shall

be described in the next section, in terms of the prediction, all variables are not necessary, and the

combination of too many variables may even decrease the predictive power. Since we departed from

no prejudice regarding which variables should be included or excluded in the GAM construction,

next section shall describe how we can find the ”best” combination of a certain set of variables.
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(a) GAM(CRS) (b) GAM(TPRS)

Figure 3.7: Q-Q plot of real experimental data and the predicted value using (a) GAM(CRS); (b)

GAM(TPRS). Both axes are unitless owing to the standardized values

3.5 Constructing a Best GAM with a Given Number of Variables

Since we don’t resort to any prejudice, the present approach should provide a remedy to how to

construct a successful GAM. Challenge is that we are uncertain which variables should be included

in the GAM. Indeed, GAM can be constructed using an arbitrarily many number of variables, but

prudent selection of variables has a critical impact on GAM. In this study, CV Eb/CV E, Pearson

correlation, and the coefficient of determination were used to evaluate how many variables should be

selected for GAM. In particular, we departed from variables of existing rectangular wall database in

hopes of finding the ”best” GAM model that can accurately predict the maximum shear force. We

first constructed all possible combinations of variables, and in each case we compared CV Eb/CV E

to determine the best combination. In terms of CV Eb/CV E, Table 3.1 and 3.2 summarize the best

combination of given number of variables. For instance, among all possible combinations of two

variables, GAM(CRS) selects height and hb (second row of Table 3.1) as best combination. It should

be noted that these comparisons are focusing on only the prediction accuracy of the given statistical

setting and assumptions. In parentheses, we included the calculated p-value corresponding to the

variable.

Overall, Table 3.1 and Figure 3.8 show that the best combination for GAM(CRS) is the combi-

nation of six variables: i.e., axial force ratio (afr), wall thickness (thickness), thickness of boundary
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Table 3.1: Selection of the best combination of variables for GAM using CRS (p-values in paren-

theses)

Num-
ber of
vari-
ables

Num-
ber of
combi-
nation

Best combination of variables CV Eb

/CV E
Pear-
son

R2

2 45 height(6.24e-11) hb(1.85e-05) 12.24 0.958 0.918

3 120 height(<2e-16) hb(3.71e-11) dia(0.00272) 16.39 0.969 0.939

4 210
height(<2e-16) afr(3.11e-13) hb(5.51e-10)

21.00 0.976 0.952
dia(1.57e-08)

5 252
height(<2e-16) afr(1.73e-13) dia(5.51e-08)

22.46 0.978 0.955
hb(5.59e-06) fc(0.292)

6 210
afr(<2e-16)

thickness(<2e-
16)

hb(1.27e-11)
26.21 0.981 0.962

height(9.51e-08) fy(7.01e-08) dia(3.26e-06)

7 120

afr(<2e-16)
thickness(<2e-
16)

hb(1.76e-11)

25.75 0.981 0.961
height(1.01e-07) fy(2.69e-07) dia(4.00e-06)

fc(0.719))

8 45

afr(<2e-16) height(<2e-16) fy(<2e-16)

24.64 0.980 0.959
wb(3.07e-10) length(6.60e-09)

thickness(1.9e-
08)

dia(7.38e-05) hb(0.163)

9 10

afr(<2e-16) height(<2e-16) fy(<2e-16)

23.61 0.979 0.958
wb(7.85e-10)

thickness(5.37e-
08)

length(1.00e-08)

dia(9.89e-05) hb(0.171) fc(0.707)

10 1

afr(<2e-16) height(<2e-16) fy(1.15e-13)

4.63 0.918 0.784wb(5.63e-08) length(2.58e-07)
thickness(2.0e-
06)

dia(0.00999) hb(0.105) rrb(0.644)

fc(0.726)
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Table 3.2: Selection of the best combination of variables for GAM using TPRS (p-values in paren-

theses)

Num-
ber of
vari-
ables

Num-
ber of
combi-
nation

Best combination of variables CV Eb

/CV E
Pear-
son

R2

2 45 length(5.91e-11) height(1.59e-09) 12.22 0.958 0.918

3 120 length(<2e-16) dia(<2e-16) afr(2.11e-11) 15.70 0.968 0.936

4 210
length(<2e-16) height(<2e-16) afr(1.18e-13)

20.89 0.976 0.952
dia(1.51e-11)

5 252
afr(<2e-16)

thickness(2.06e-
09)

fy(3.24e-07)
23.32 0.978 0.957

rrb(1.43e-06) length(0.00033)

6 210
afr(<2e-16)

thickness(3.76e-
09)

fy(9.12e-07)
22.92 0.978 0.956

rrb(2.17e-06) length(0.00044) fc(0.84103)

7 120

afr(<2e-16) height(4.53e-05) fy(0.000306)

24.33 0.979 0.959thickness(6e-04) dia(0.002263) hb(0.010451)

length(0.211003)

8 45

afr(<2e-16) height(<2e-16) fy(<2e-16)

22.97 0.979 0.956length(1.40e-05) thickness(0.0152) hb(0.1574)

dia(0.232) rrb(0.682)

9 10

afr(<2e-16) length(<2e-16) wb(5.34e-08)

23.93 0.979 0.958fy(1.21e-07) height(9.44e-04) rrb(0.0183)

dia(0.730) thickness(0.768) fc(0.793)

10 1

afr(<2e-16) wb(6.25e-05) height(3.68e-04)

14.88 0.968 0.933
fy(8.65e-04) hb(0.001342) dia(0.248)

length(0.700) thickness(0.771) rrb(0.876)

fc(0.889)
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element (hb), wall height (height), primary reinforcing bar’s yield strength (fy) and diameter (dia).

Likewise, Table 3.2 and Figure 3.8 also show that the best combination for GAM(TPRS) has the

seven variables: i.e., afr, thickness, hb, height, fy, dia, and wall length (length). Interestingly in

both GAM cases, axial force ratio was identified as the statistically important variable. Indeed,

nearly all the best combinations in Tables 3.1 and 3.2 suggest to include the axial force ratio. It

is interesting to notice that this solely data-driven approach also pinpoints the importance of axial

force ratio raised by many researchers’ mechanics-based investigations (Okamura et al., 1975; Qian

et al., 2008). In some cases, reinforcement ratio at boundary element (rrb) and concrete compressive

strength (fc) are identified as important. In the second column of Tables 3.1 and 3.2, the number of

possible combinations was shown by simple calculations: e.g., if 4 variables are to be selected from

10 total variables, the number of total combinations is 10!/4!(10− 4)! = 210. It is noteworthy that

the best combination of variables can be different when another statistical model or new dataset are

used during constructing a statistical prediction model. Still, this study’s method and approach are

meaningful by providing how to harness the accuracy and flexibility of the statistical predictions

for systematic data-driven investigation.

3.6 Statistical Prediction VS. High-Precision Computer Simulations

This section addresses important analogy and difference between the statistical prediction and

high-precision computer simulations in the earthquake engineering. For the several decades, com-

puter simulations have served as a successful tool for ”prediction” of responses of complex RC

structures under seismic loading. Earthquake engineering community has made coordinated efforts

to derive high fidelity computational simulation platform such as OpenSees (McKenna et al., 2000).

Also, many researchers developed various simulation programs (Cho, 2013; Cui et al., 2010;

Orakcal and Wallace, 2006; Sobhaninejad et al., 2011).

On one hand, it is instructive to compare the analogy between predictions by computer sim-

ulations and statistical predictions. Both can be used to reproduce responses of real experiments

to a certain level of errors. They commonly can be used to predict responses of untested speci-
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Figure 3.8: Illustration of cross validation: left figure represents that first specimen’s data is om-

mited. A GAM is constructed by learning all other wall data; right figure shows the same procedure

by omitting the second wall data

mens with varying parameters (e.g., material strengths or features of reinforcements). We adopted

Virtual Earthquake Engineering Laboratory (VEEL) as high-precision computational simulation

(Cho, 2013). Figure 3.9 summarizes prediction errors of high-precision simulations and statistical

predictions. VEEL generally exhibits a stable range of errors regardless of wall specimens. VEEL’s

error ranges are less than 5% for most walls (except for WSH5 of 8% error). On the contrary, the

error ranges of the statistical predictions appear to fluctuate: i.e., the error ranges of WSH1, 2,

and 5 are less than 5% while other three walls are higher than 5%. The higher error rates of the

statistical prediction of WSH wall series may be attributed to the unusual characteristics of the

walls. As shall be addressed in the Limitation of statistical prediction section later, these walls have

relatively unique geometric features compared to typical walls, and thereby the walls are situated

at the boundary of the database. Hence, less data learning was carried out, which appears to cause

large error in statistical prediction.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.9: Normalized maximum shear force of experiment (E), VEEL (V), and GAM using

TPRS (GT) and CRS (GC) of RW1 and RW2 (Vulcano et al., 1988), and WSH1 through WSH6

(Orakcal and Wallace, 2006). (Note: The value of vertical axis represents the maximum shear force

normalized by experimental result; thus, ”E” has always one)
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On the other hand, there exists important difference. Computer simulations are built upon

well-proven engineering principles and relationships among a few parameters. Contrarily, statistical

predictions are rooted in implicit interrelations among parameters (i.e. predictors) and pre-specified

definitions of relationships are unnecessary. Thus, statistical predictions directly focus on the hidden

interrelations of given data. Another difference arises from diversity of prediction results. Computer

simulations can predict various responses spanning macroscopic (global force, displacement, etc.)

and microscopic behaviors (crack sizes, bar buckling, etc.) while statistical predictions are restricted

to observed responses. As seen in Figure 3.10, computer simulations can reproduce continuous

responses while statistical predictions often related to discrete values since the observation data

are discrete. Computational costs are different. High-precision computer simulations often require

expensive computational cost for solving governing equations of the physical problems whereas

statistical predictions need relatively cheap calculations.

Importantly, both methods share the common limitation. Basically, computer simulation is a

general tool capable of analyzing various geometrical, material, and loading conditions. However,

when a new specimen contains substantially innovative materials or structural conditions, computer

simulations may need to update engineering principles and constitutive relationships, requiring

new real tests and validations. Likewise, statistical predictions may not be suitable for predicting

considerably new specimen (i.e., variables are substantially outside the range of existing database).

In statistics, this limitation is well known as extrapolation problem. Thus, both methods essentially

require real experiments to advance their frontiers. To some extent, computational simulations,

statistical predictions, and real experiments should be in a cross-fertilizing relationship for data-

driven earthquake engineering.

3.7 Uncertainty Estimation

Statistical prediction naturally includes uncertainty for several reasons. To briefly explain how

to incorporate the uncertainty behind the proposed statistical prediction, this section evaluates the

”prediction interval” to quantitatively measure uncertainty in GAM prediction. Confidence interval
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Figure 3.10: Prediction accuracy comparison between high-precision computational simulation

(VEEL) and statistical prediction (GAM) result using WSH series: (Top 6 panels) experimental

results cited from Orakcal and Wallace (2006); (Bottom 6 panels) prediction results from VEEL,

GAM-TPRS, and GAM-CRS. Note that the maximum force is the comparison target
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of WSH series’ Fmax, predicted using GAM with the best seven predictor variables, is determined by

using the percentile method with bootstrapping (Efron and Tibshirani, 1994). A synthetic sample

response set, y∗i (i = 1, · · · , sample size), is generated by resampling centred residuals. Another

GAM is learned by using y∗i and bootstrapped predicted responses, y∗j (j = 1, · · · , B) are generated,

where B is the bootstrap size. We used B = 2000 in the current study. The detailed procedure for

bootstrapping can be found in authors’ previous work (Song et al., 2018b). The confidence interval

of WSH series’ Fmax, is estimated from the bootstrap samples by using the percentile method

(Efron and Hastie, 2016). The cumulative distribution function of bootstrap samples, Ĝ, less than

b can be represented as

Ĝ(b) = F{ŷ∗i ≤ b} / B, i = 1, · · · , B, (3.11)

where F is frequencies of y∗i . A point having a specific percentile (α) can be obtained by

ŷ∗(α) = Ĝ−1(α), (3.12)

where Ĝ−1 is the inverse function of Ĝ. The 95% confidence interval is represented by

(
ŷ∗(0.025), ŷ∗(0.975)

)
. (3.13)

The 95% confidence interval of Fmax for WSH series (i.e., WSH 1 through WSH 6) is shown in

Figure 3.11. Circle and x mark depict measured Fmax and a median value of bootstrap sample,

respectively. The measured Fmax values are located within confidence intervals except WSH 6.

The confidence intervals look relatively wide and this may be attributed to unusual features (e.g.,

geometry) of WSH wall series. These wide confidence intervals will be shortened and the predictive

power will be improved when more predictor variables and ample databases are included to GAM

prediction in the future extensions.

3.8 Difference from Traditional Statistical Methods

Various statistical methods have been widely used for researches in earthquake engineering.

Amongst many, regression analyses are one of the popular methods. The notable difference of the
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Figure 3.11: 95% confidence interval of WSH wall series’ Fmax estimated from GAM prediction

using bootstrap method. Circle and ”x” mark represents measured Fmax and a median value of

bootstrap samples, respectively

proposed approach from previous methods is twofold: first, the present statistical prediction allows

unspecified relationships among variables of database, and the learning process is solely based on

the raw data and a flexible additive model assumption. Second, the present statistical learning and

prediction tasks have little restriction to the number of variables.

Traditionally, statistical methods are usually used to confirm a researcher’s pre-defined rela-

tionship of a set of pre-selected variables. In particular, after prudently selecting a few variables,

a researcher seeks to establish a combination of the variables to best match the target response.

For instance, traditional statistical methods are used to confirm a relation describing the maximum

shear strength of reinforced concrete shear wall (denoted as Fmax hereafter). Such relationships

are well reflected in the design codes (e.g., (ASCE, 2010)). However, in this study, we assumed no

previous knowledge on the variables’ relationship and their relative importance on the response. In

essence, for a given response the proposed statistical approach seeks to find the hidden relationship
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Figure 3.12: Prediction power comparison of GAM against other popular prediction methods

of variables and also significance of variables. To some extent, we seek to achieve and examine a

purely data-driven discovery.

In addition to these novel advantages, it is instructive to compare the relative performance of

GAM in relation to other well-known prediction methods. In view of popularity, we selected a

multiple linear regression, extremely randomized trees (ERT) (Geurts et al., 2006), and support

vector machine (SVM) (Cortes and Vapnik, 1995). For the comparison, we used the same dataset

with seven predictor variables, which are selected in the previous section. The relative prediction

power is summarized in Figure 3.12. GAM exhibits comparable predictive power to ERT and

slightly better than SVM. Also, GAM appears to outperform traditional multiple linear regression.

It should be noted that optimization of ERT and SVM may improve their performance, and a

generalization of this comparative study requires due consideration.

3.9 Limitation of Statistical Prediction

As addressed so far, the statistical learning and prediction are solely based on data. Little

relationship is assumed in the learning process. Naturally, the limitation of the statistical prediction

stems from the quality of data. Missing data or corrupted values are critical. In particular, if an
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Figure 3.13: Scatter plot of rectangular RCSW specimens showing the ranges of database. WSH

wall series occupy the boundary of the database

experimental data has no axial force ratio, the specimen cannot be used for the learning process

involving the axial force ratio. It is a substantial loss. Furthermore, if the database has little

information of a certain type of structures, the statistical prediction tends to perform poorly; the

less data to learn, the less reliability of prediction. Thus, special care should be paid when the

statistical prediction is used for predicting a specimen of which attributes are not within the range

of the existing database.

To quantitatively explain this issue, we performed two case studies: (1) Statistical prediction

after excluding WSH 1 through WSH 6; (2) including WSH series. For each case, we used VEEL,

GAM-TPRS and GAM-CRS for predicting the maximum shear strengths Fmax of RW1, RW2,

WSH1 and WSH6. Here, RW1 and RW2 represent typical rectangular RCSW in the database while

WSH1 and WSH 6 represent special wall types residing on the boundary of database. Indeed, some

structural features of WSH series occupy the boundary of existing database of rectangular RCSWs:

e.g., WSH series have the length of 2m and height of 4.56m that are larger than those of a majority

of other 170 walls in the existing database (Figure 3.13).
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Table 3.3 presents responses predicted by VEEL, GAM-TPRS, and GAM-CRS without data of

WSH series. Table 3.4 shows the prediction results after including WSH series data. In Tables 3.3

and 3.4, numbers close to 1.0 imply accurate predictions. As expected, regardless of the inclusion of

WSH series data, the high-precision simulation by VEEL appears to consistently generate accurate

prediction since VEEL is based on engineering principles and physical mechanisms (second rows

in Tables 3.3 and 3.4). Contrarily, in the statistical learning process, the exclusion of WSH series

substantially weakens the accuracy of the statistical prediction (see columns of WSH1 and WSH6

in Table 3.3). Both GAM-TPRS and GAM-CRS exhibit poor prediction of WSH1 and WSH6 with

TPRS being worse. Particularly for this data sets, TPRS appears to severely deteriorate without

the information of WSH series than CRS (i.e., TPRS’s prediction score is 4.50 for WSH1 and 24.44

for WSH6 while CRS’s prediction score is 0.58 and 0.60 for WSH1 and WSH6, respectively). This

case study well describes the extrapolation problem in statistics. However, it should be noted that

the both GAM-TPRS and GAM-CRS accurately predict RW1 and RW2 (see columns of RW1 and

RW2 in Table 3.3) even without learning WSH series data. Since RW1 and RW2 are typical wall

types in the existing database, the statistical prediction is based on successful learning on other

similar wall types. Indeed, when there are ample learning data sets, statistical predictions perform

comparably or slightly better than VEEL simulation (e.g., compare scores of RW1 and RW2 in

Table 3.3).

Table 3.3: Predictions without WSH series (Fmax is normalized by that from experiment)

Without WSH series RW1 RW2 WSH1 WSH6

VEEL/Experiment 1.10 1.01 1.05 0.95

GAM-TPRS/Experiment 1.00 1.00 4.50 24.44

GAM-CRS/Experiment 0.99 0.99 0.58 0.60

After including WSH series data in statistical models (Table 3.4), the accuracy of both statistical

prediction methods (GAM-TPRS and GAM-CRS) is notably improved for WSH series. Especially,

the prediction error substantially decreases in the WSH1 case (compare fourth columns in Tables
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Table 3.4: Predictions with WSH series (Fmax is normalized by that from experiment)

Without WSH series RW1 RW2 WSH1 WSH6

VEEL/Experiment 1.10 1.01 1.05 0.95

GAM-TPRS/Experiment 1.08 0.94 1.01 0.88

GAM-CRS/Experiment 1.08 0.94 1.02 0.87

3.3 and 3.4). However, there appears to be a trade-off. In this case, the statistical models need

to cover wider ranges of database, and thus the prediction error of RW1 and RW2 cases slightly

increases compared to the cases without WSH series. This may be attributed to the fact that TRPS

and CRS are smooth functions rather than a perfectly discrete function. Therefore, it is natural

to see that additional new data points affect the learning process (regressions) built upon previous

data points, albeit slightly.

3.10 R Code for Constructing GAM by Cross-Validation

This section addresses the pseudo R code to construct a best GAM with three variables by

using cross validation. The full code is shown in Appendix. Appendix A contains the stand-alone

version R code and Appendix B contains parallel version of R&Rmpi. A brief explanation of the

codes is as follows.

Note that Parameter 1 is variable name of the first parameter, ColumnNumber 1 is integer

representing column number for the corresponding parameter. In case of four variables, for example,

one more iteration should be added after line 13 and four variables should be included in dataset

in line 5 6.

In Table 3.6, we explained how to make a parallel version of constructing a best combination of

3 variables. In the explanation, we assumed 3 slave processors on a high performance computing

cluster (named Condo cluster) of Iowa State University. To launch and test the provided Rmpi
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Table 3.5: Description of the stand-alone R code (see Table 3.1 in Appendix)

Line Explanation of stand-alone code

1 Import ”mgcv” library to use gam and predict.gam functions

2 Set working directory in which input and output file are located

3 Read input data from the specified working directory

4 Build dataset which is used for constructing GAM

5 Excludes data which has null value in the specified parameter

6 Generates parameter (i.e., covariate) variable name for output file

7 Initiates a matrix to save data from running

8 Initiates a matrix to save a dataset within main loop

9 Total number of predictor variables

10 All possible combination

11 Number of all possible combination

12 Index vector for main loop

13 Changes column name in dataset for each parameter combination

14 Main loop

15-18 Builds dataset for each parameter combination

19 Vector to save max force predicted

20 Iteration for prediction

21 Make dataset for one intentionally omitted data

22 Make dataset using all data except the omitted data

23 Construct GAM

24-26 Generates data frame which is used for prediction

27 Predicts a response value

28 Save the predicted value to the specified vector for output

29 Calculates mean of predicted response value

30 Calculates CVE

31 Calculates CVEb

32 Determine ratio of CVEb and CVE

33 Determine Pearson correlation, ρ

34 Determines coefficient determination, R2

35-36 Make output

37 Write output file into the designated working directory
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Table 3.6: Description of the parallel version of R&Rmpi code (see Table 3.2 in Appendix)

Line Explanation of Rmpi main.R

1-2
Import libraries for parallel R (Rmpi) and for gam and predict.gam functions

(mgcv)

4 Spawn 3 slaves. Note that the current R script is defined on Master processor.

5 Set working directory in which input and output file are located

6-7 Initialize variables on Master processor

8-9 Initialize variables on Slave processors

10 On all slaves, load the user-defined function named ”serial function.R”

11 Get processor id of Master (i.e. 0)

12 Get processor id’s of Slaves (i.e., 1 total slaves)

13 Get total available processors on Master (in this example, 4)

14 Get total available processors on Slaves

15

On all slaves, perform parallel tasks using the user-defined function. Local

arguments passed to slaves (e.g., slave 2 will have id=3 and total proc = 4).

Results are stored at output slaves.

16 User must define their own data gathering command here (e.g., mpi.allgather, etc.)

17 Close all slaves

18 Finalize the parallel tasks

Explanation of serial function.R used in Rmpi main.R

1-3 On each slave, explicitly load Rmpi library and other necessary libraries

4-8 The same as the stand-along version (see corresponding explanation in Table 3.5)

9-10 Initiates vectors to save data from running

11 Get the total number of slaves (e.g., in this example, 3)

12
Create a cyclic index sequence starting from the slave id (e.g., in slave 2, c x3

= [2, 5, 8, · · · ])

13-16
The same loops of the stand-alone version (see corresponding explanation in Table

3.5)

17-18 Cyclic job allocation on the last loop

19- Remainder of the code is the same as the stand-along version (Table 3.5)
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code, one needs to successfully install OpenMPI and Rmpi libraries on their own computing facility

(for installation, see [Yu 2002; http://www.stats.uwo.ca/faculty/yu/Rmpi/]).

3.11 Remarks on Parallel Processing of R & Rmpi Code

As seen in the code in Appendix, finding the best combination of an unknown set of variables

is computationally intensive. For a large number of variables, the computational cost may pose a

challenge. Therefore, we developed an algorithm-oriented parallel computing algorithm using Rmpi

(Yu, 2002).

Rmpi is a general wrapper that enables R codes to utilize message passing interface over multiple

processors. Since Rmpi only provides a general environment, this study developed a problem-

oriented parallel computing algorithm for the proposed statistical learning and prediction. To

ensure effective load balancing, we used the so-called cyclic allocation of the task throughout the

slave processors. In particular, this study proposes an algorithm that allows one master processor

that can flexibly spawn a number of slave processors. The master processor controls the entire work

(e.g., distribution of tasks and collection of results) while the slaves do an assigned work and return

outputs to the master. In light of the decreasing computational loads (Figure 3.14), a successful

parallelization scheme would be a cyclic job allocation over the slaves. As the problem size increases,

this cyclic allocation approaches the optimal parallel load balancing (Cho and Hall, 2012). Figure

3.15 shows a summary of parallel computing performance of the proposed parallel algorithm. The

parallel algorithm appears to achieve the reasonable scalability up to 4 slaves, with 3 slaves being

the best. But, study revealed that with more than 4 slaves, the parallel performance began to

deteriorate due to internal communication overhead and load imbalance. Further elaboration on

the present problem-optimized parallel algorithm will be carried out in the future researches.

3.12 Conclusions

In this paper, we expounded upon an advanced statistical approach that can facilitate data-

driven researches in the earthquake engineering fields. In particular, the generalized additive model

http://www.stats.uwo.ca/faculty/yu/Rmpi/
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Figure 3.14: Cyclic allocation of the proposed parallel code of R & Rmpi. Two-variable case is

shown with nv meaning the total number of variables. Height of box corresponds computation load

(GAM) has been studied and applied to RC shear wall database. Two popular smoothing functions,

thin plate regression spline (TPRS) and cubic regression spline (CRS), are systematically examined.

Validations and applications to real-world earthquake engineering database revealed a promising

capability of the statistical prediction. Compared to the high-precision computer simulation re-

sults, the statistical prediction appears to hold reasonable accuracy in reproducing responses of a

wide range of RC shear wall specimens. Computationally, the statistical approach appears to be

superior over high-precision computer simulations. Notably, those predictions were made without

pre-specified relationships among variables of database. Results suggest that as far as statistical

prediction accuracy is concerned, not all variables (i.e. structural attributes) are necessary, which

implies there may exist relative significances among some attributes. The currently suggested pre-

diction model can be improved with inclusion of more predictor variables and databases, which

will be available as a web-based framework to the earthquake engineering community in the near

future, and this will help researchers and engineers obtain prediction result with an acceptable

accuracy within a short time. Detailed code and parallel computing algorithm are presented. As

community-level database continues to evolve, the proposed statistical learning and prediction ap-

proaches will shed light on the new data-driven discovery in earthquake engineering fields. All the
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Figure 3.15: Parallel computing performance of R & Rmpi code for finding the best 5-variable

combination out of 252 total combinations. ”User code” means the time spent on execution of user-

defined codes while ”Total” means the total elapsed wall clock time of the parallel code (attained

from proc.time() of R

developed codes will be shared upon request to the authors. All the statistical (R and Rmpi) codes

developed in this work are made publicly available at (Cho, I., 2017).

3.A Appendix

R codes are shown in Tables A3.1 and A3.2.
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Table A3.1: R code for constructing a best GAM using TPRS (3-variable combination)

1 library(mgcv)
2 setwd(”WorkingDirectory”)
3 import = read.csv(file=”InputDataName.csv”, head=TRUE, sep=”,”)

4
dataset = data.frame(Parameter 1=import[,ColumnNumber 1],
Parameter 2=import[,ColumnNumber 2], Parameter 3=import[,ColumnNumber 3])

5
dataset = subset(dataset, dataset[ColumnNumber 1] != ”NA” &
dataset[ColumnNumber 2] != ”NA” & dataset[ColumnNumber 3] != ”NA”)

6 label.x = c(”ParameterName 1”, ”ParameterName 2”, ”ParameterName 3)
7 output=NULL
8 dataset combi = NULL
9 nPredictor = length(dataset)-1
10 combination = combn(nPredictor, nCombi)
11 lenCombi = length(combination)/nCombi
12 index = as.integer(seq(1, lenCombi))
13 char = c(”x1”,”x2”,”x3”,”x4”,”x5”,”x6”,”x7”,”x8”,”x9”,”x10”)
14 for (x in index)
15 dataset combi = data.frame(dataset[ncol(dataset)])
16 colnames(dataset combi)[1] = ”y1”
17 for (y in 1:nCombi)
18 dataset combi[,char[y]] = dataset[combination[y,x]]
19 maxforce pred=vector()
20 for(z in 1:nrow(dataset combi))
21 dataset1 = dataset combi[c(z),]
22 dataset2 = dataset combi[-c(z),]

23
fit = gam(y1 s(x1, k=7)+s(x2, k=7)+s(x3, k=7), data=dataset2,
family=Gamma(link=log))

24 dataset pred = data.frame(dataset1[1])
25 for (w in 1:nCombi)
26 dataset pred[,char[w]] = dataset1[w+1]
27 predicted = predict.gam(fit, newdata=dataset pred, type=”response”,se=TRUE)
28 maxforce pred[z] = predicted$fit
29 mean pred = mean(maxforce pred)
30 cve = sum((maxforce pred-dataset combi$y1)2̂/length(maxforce pred))
31 cveb = sum((dataset combi$y1-mean pred)2̂)/nrow(dataset combi)
32 cveb cve = cveb/cve
33 pearson = cov(maxforce pred, dataset combi$y1)/sd(maxforce pred)/sd(dataset combi$y1)
34 R2 = 1-cve/cveb
35 predictor = paste(label x[combination[,x]],collapse=’ ’)
36 output = rbind(output, data.frame(predictor,cveb cve, pearson, R2))
37 write.csv(output,file=”FileName.csv”)
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Table A3.2: Rmpi&R code for constructing a best GAM using TPRS (3-variable combination and 3 slaves)

Rmpi main.R

1 library(Rmpi)
2 library(nlme)
3 mode = ”TPRS”
4 setwd(”WorkingDirectory”)
5 mpi.spawn.Rslaves(nslaves = 3)
6 mpi.bcast.cmd(source(”serial function.R”)
7 id=mpi.comm.rank()
8 mpi.bcast.cmd(id=mpi.comm.rank())
9 nSlaves=mpi.comm.size()-1
10 mpi.bcast.cmd(nSlavesm̄pi.comm.size()-1)
11 mpi.bcast.cmd(output slave=serial function(2, mode,id,nSlaves))
12 mpi.bcast.cmd(output slave=serial function(3, mode,id,nSlaves))
13 output master1 = NULL
14 output master2 = NULL
15 for (x in 1:nSlave)
16 result1=mpi.recv.Robj(x,1)
17 result2=mpi.recv.Robj(x,2)
18 output master1 = rbind(output master1,result1)
19 output master2 = rbind(output master2,result2)
20 write.csv(output master1,file=” FileName1.csv”)
21 write.csv(output master2,file=” FileName2.csv”)
22 mpi.bcast.cmd(q(”no”))
23 mpi.quit()

serial function.R

1 library(mgcv)

2
dataset = data.frame(Parameter 1=import[,ColumnNumber 1],
Parameter 2=import[,ColumnNumber 2], Parameter 3=import[,ColumnNumber 3])

3
dataset = subset(dataset, dataset[ColumnNumber 1] != ”NA” &
dataset[ColumnNumber 2] != ”NA” & dataset[ColumnNumber 3] != ”NA”)

4 label x = c(”ParameterName 1”, ”ParameterName 2”, ”ParameterName 3”)
5 output=NULL
6 dataset combi = NULL
7 nPredictor = length(dataset)-1
8 combination = combn(nPredictor, nCombi)
9 lenCombi = length(combination)/nCombi
10 each = as.integer(lenCombi / nSlaves)
11 if (id==nSlaves) index = as.integer(seq(1+each*(id-1), lenCombi))
12 else index = as.integer(seq(1+each*(id-1), each*id))
13 #use the same code as the serial R code in Table 3.1 of Appendix from line 13 to line 36
14 return (output)
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CHAPTER 4. EFFICIENT VARIABLE SELECTION METHODS FOR
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PAVEMENT SYSTEMS
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Ikkyun Song, Sunghwan Kim, Halil Ceylan, and In-Ho Cho

Abstract

Since the pavement conditions are closely related to the driving conditions and serious accidents,

accurate prediction of pavement responses has been an important research area for pavement de-

sign and management plan. Advanced statistical prediction can deal with non-linear, multivariate

data offering meaningful statistical information such as relative importance of variables. Given

an advanced statistical model, variable selection (VS) task is often used to identify the optimal

combination of some variables which enables the prediction model to achieve its best performance.

However, VS for multivariate, large data sets is computationally challenging. This study seeks to

investigate efficient VS methods that can swiftly lead to the best prediction performance of the

generalized additive model (GAM). Recently, GAM is recognized as advanced statistical models

due to its non-parametric, flexible, and unspecified multivariate-friendly smooth functions. We

investigated several VS (i.e., backward, forward, and direct) methods for GAM using two practi-

cal pavement data sets (i.e., pavement internal stress and overlay data). Results suggest that a

backward selection using Akaike information criterion appears to hold similar efficiency as the ex-

haustive direct VS, being order of magnitude fast. As anticipated, resultant p-values help elucidate

the relative importance of selected variables in the prediction.
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4.1 Introduction

As of 2016, there are public roads of 4,140,108 miles and vehicle miles of travel are over 3

trillion in the United States (FHWA, 2017). Most of the public roads are paved for safety, driving

quality, maintenance, etc. The performance of pavement is directly related to the safety of drivers

and passengers because a poor condition of pavements such as distresses could induce an abnormal

driving condition, leading to major transportation fatalities and serious injuries. Proper pavement

design and management plan are indispensable to prevent these accidents.

To achieve this goal, the prediction of pavement responses and performances is important be-

cause it helps engineers to understand the underlying relationship between explanatory variables

and responses and better establish a plan for a pavement design and maintenance. There have

been many efforts to predict pavement responses and performances using statistical methods. For

example, Salama et al. (2006) used single and multiple linear regression to investigate the impact

of truck-related parameters, such as axle and truck types, on pavement responses. Heba and Assaf

(2017) used a Bayesian linear regression method to predict missing part of historical data for a

pavement performance model.

There also have been machine learning (ML) approaches. Ceylan et al. (1998, 1999) developed

an artificial neural network (ANN) model for a jointed concrete airfield pavement to investigated

pavement responses such as stresses and deflections. Gopalakrishnan and Kim (2011) used a support

vector machine (SVM) to predict hot mix asphalt stiffness. They found that the stiffness prediction

performance of SVM with less controlling parameters for optimizations was comparable to the ANN.

Tabatabaee et al. (2013) developed two-stage pavement performance prediction strategy. They used

a support vector classifier first and a recurrent neural network in the next stage to increase the

prediction accuracy.

ML methods are convenient to use and provide decent prediction performance; however, the

pathway between input and output in ML is unclear, which makes researchers feel difficulty inter-

preting prediction results. On the other hand, prediction of statistical models is based on statistical

theories and methodologies, which helps researchers better understand the relationship between in-
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put and output and build a better predictive model based on their knowledge about the data

(Cho et al., 2018). Another advantage of statistical methods is that they can identify the relative

importance of predictor variables in predictive models. Although simple or multiple linear regres-

sion methods are handy, but their prediction performance becomes worse when predicting highly

non-linear data.

To tackle this issue, we adopted an advanced statistical model, generalized additive model

(GAM) (Hastie and Tibshirani, 1990), to predict pavement responses and performances accurately,

elucidate the best predictor variables, and provide the relative importance of predictor variables.

GAM is a non-parametric statistical method in which covariates enter the model without any

prejudices or assumptions on variables. GAM covers a wide range of statistical distributions,

enabling to accurately predict complex pavement data with substantial nonlinearity whereas a

simple linear model can be used only for data with a linear relationship. The noticeable prediction

performance of GAM was demonstrated by (Song et al., 2017, 2018c,b). The detailed theory and

advantages of GAM shall be explained in the later section.

Objectives of this study are to (1) introduce an advanced statistical method, GAM to the

pavement research community and apply GAM to predict pavement responses (i.e., stresses) and

performances (i.e., International Roughness Index (IRI)), (2) investigate efficient variable selection

methods for the best statistical prediction, (3) elucidate the relative importance of the best predictor

variables, and (4) suggest the optimal GAM setting.

This paper is organized as follows: we introduce the GAM and describe its central notion

and strength. Practical data sets used for GAM prediction are briefly explained. Several variable

selection strategies are addressed, and their relative prediction performances are compared to the

direct search method. An optimized number of spline bases for accurate GAM prediction is also

investigated.
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4.2 Overview of Generalized Additive Model

Generalized additive model (GAM) (Hastie and Tibshirani, 1990) is a generalized linear model,

holding substantial flexibility and general applicability. Rather than using predefined parameters or

distributions, GAM leverages unspecified smooth functions. By the flexible feature of unspecified

smooth functions, covariates do not need to have a set of fixed parameters. The general form of

GAM can be given by:

g(µi) = f1(x1i) + f2(x2i) + f3(x3i) + · · · , (4.1)

where g is a smooth link function; the expectation µi ≡ E(Yi | xi); Yi is from some exponential

family of distribution (e.g., normal, binomial, or gamma distribution); fj are smooth functions of

covariates xji (Wood, 2006). For example, Yi would be the maximum tensile stress of ith pavement

sample and xi could be thickness, modulus, etc. In essence, the GAM can have multiple unspecified

smooth functions and each smooth function have one covariate. For a concise explanation of the

central notion of the GAM, the following description only involve a single covariate. Extension to

the multivariate case is straightforward, and details can be found in (Wood, 2006). Let the GAM

be E(Y | x), and the smoothing function f can be given by:

f(x) =
k∑
j=1

bj(x)βj (4.2)

where bj(x) is the jth basis function and βj is an unknown parameter. Model fitting can be done

by maximizing the corresponding likelihood with a penalty term which is represented as:

λ

∫
[f
′′
(x)]2dx (4.3)

where λ is smoothing parameter. λ is internally optimized by GAM to balance smoothness of

regression and accuracy of prediction. The optimum λ value can be chosen in such a way that the

model fits accurately by minimizing the generalized cross-validation (GCV) score (Golub et al.,

1979). There are two popular spline bases for smooth functions of GAM: (a) thin plate regression

spline (TPRS) and (b) cubic regression spline (CRS). For details of TPRS and CRS, one can refer

to (Wood, 2006). For implementing GAM, a publicly opened R library, mgcv (Wood, 2011) is used.
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4.3 Description of Pavement Databases for Model Development

Two pavement databases utilized in this study, namely as concrete overlay and rigid airport

pavements, were retrieved from authors’ recently completed Iowa Highway Research Board (IHRB)

Project TR-698 ”Concrete Overlay Performance on Iowa’s Roadways” (Gross et al., 2017) and

from authors’ on-going project Federal Aviation Administration (FAA) Project ”Implementing a

Multiple-Slab Response Model for Top-Down Cracking Mode in Rigid Airport Pavements” (Kaya

et al., 2018; Rezaei-Tarahomi et al., 2018), respectively. These databases were used to find the best

predictor variables for accurate predictions and identify the relevant importance of best predictor

variables in GAM. While the detailed descriptions on concrete overlay database are found in (Gross

et al., 2017) and the detailed descriptions on rigid airport pavements database are found in (Kaya

et al., 2018; Rezaei-Tarahomi et al., 2018), the information related to GAM developments for both

databases is summarized herein.

The concrete overlay database is Iowa concrete overlay historical database (Gross et al., 2017)

having about 1,130 data records including information of concrete overlay type, distress, pavement

age, climatic related data, and IRI for about 380 concrete overlay projects totaling about 1,490

miles in Iowa. 25 explanatory variables are used as predictor variables and IRI is predicted using

GAM. Depending on variable combinations, we investigate four different cases: (1) case 1 (all

variables), (2) case 2 (variables without climatic related variable), (3) case 3 (variables without

distress variables), and (4) case 4 (variables without distress and climatic related variables). The

best predictor variables for these four cases will be identified using GAM.

The rigid airport pavements database is rigid airport structure and response synthetic database

obtained by using a 3D-FE computer program called Finite Element Analysis-FAA (FEAFAA) to

develop a surrogate computational response model or procedure suitable for implementation next

generation of airport pavement design procedures under on-going project FAA Project ”Implement-

ing a Multiple-Slab Response Model for Top-Down Cracking Mode in Rigid Airport Pavements”

(Kaya et al., 2018; Rezaei-Tarahomi et al., 2018). The rigid airport pavements database includes

information of rigid airport pavement structures, materials, mechanical and thermal loading condi-
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Table 4.1: Variable description of concrete overlay and rigid airport pavements data

Data (No.
of sample)

Variable (abbreviation)

Concrete
overlay
(1,133)

Low severity transverse cracks (TRANS L)
High severity right wheel path faulting
(RT FT SEV3)

Moderate severity transverse cracks (TRANS M)
Very high severity right wheel path faulting
(RT FT SEV4)

High severity transverse cracks (TRANS H) Overlay type (TYPE)
Moderate severity D-cracks (DCRACK M) Overlay thickness (THICK)
High severity D-cracks (DCRACK H) Joint spacing (JT SP)
Moderate severity joint spalls (JSPALL M) Age (AGE)
High severity joint spalls (JSPALL H) Traffic (TRAFFIC)
Low severity left wheel path faulting (LT FT SEV1) Annual average temperature (AAT)
Moderate severity left wheel path faulting
(LT FT SEV2)

Annual average wind speed (AAWS)

High severity left wheel path faulting (LT FT SEV3) Annual average sun shine (AAS)
Very high severity left wheel path faulting
(LT FT SEV4)

Annual average precipitation (AAP)

Low severity right wheel path faulting
(RT FT SEV1)

Annual average relative humidity (AARH)

Moderate severity right wheel path faulting
(RT FT SEV2)

International roughness index (IRI)*

Rigid
airport
pavements
(2,000)

slab modulus (PS MOD) Slab depth (Y)
PCC slab thickness (PS THICK) Loading position in the x directin (X OFFSET)
PCC slab Poisson ratio (PS POISS) Loading position in the y directin (Y OFFSET)
Subbase 1 modulus (SB1 MOD) Loading angle (ANGLE)
Subbase 2 thickness (SB1 THICK) Joint stiffness (JOINT SX)
Subbase 3 Poisson ratio (SB1 POISS) Temperature gradient (TEMP GRAD)**
Subbase 1 modulus (SB2 MOD) Thermal coefficient (THERM COEF)**

Subbase 2 thickness (SB2 THICK)
Maximum tensile stress on the surface in the x
direction (σ xx top)*

Subbase 3 Poisson ratio (SB2 POISS)
Maximum tensile stress on the surface in the y
direction (σ yy top)*

Subgrade modulus (SG MOD)
Maximum tensile stress on the bottom in the x
direction (σ xx bot)*

Subgrade Poisson ratio (SG POISS)
Maximum tensile stress on the bottom in the y
direction (σ yy bot)*

Slab width (X)

∗: prediction target variable
∗∗: variable only for the case TM

tions, and rigid pavement responses (i.e., maximum tensile stresses on top and bottom of portland

cement concrete (PCC) slab). About 2,000 simulation data are obtained using mechanical or simul-

taneous thermal and mechanical loadings. The mechanical loading is set to be imposed by Boeing

B777 aircraft. Case M and case TM refer to the simulation data obtained by using only mechani-

cal loading and simultaneous thermal and mechanical loadings, respectively. 17 (19) variables for

the case M (case TM ) are used as predictor variables and maximum tensile stresses on the top

and bottom of PCC slabs are predicted using GAM. The detailed descriptions of variables of both

concrete overlay and rigid airport pavements databases are summarized in Table 4.1.
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4.4 Best Predictor Variables for GAM Prediction

In this section, we investigate the best predictor variables for the case 1 through 4 of concrete

overlay and the case M and case TM of rigid airport pavements data. To find the best predictor

variables for the concrete overlay and rigid airport pavements data, all possible variable combi-

nations are investigated using TPRS and CRS by implementing a parallel program (see details in

(Song et al., 2018b)). Hereafter, this approach is referred to direct search.

Figure 4.1 shows the number of best predictor variables of four cases of concrete overlay data

with TPRS and CRS bases. It turned out that the use of all predictor variables does not always

result in the highest prediction accuracy. In Figures 4.1a and 4.1b, R2 value drops sharply when

using all predictor variables. The numbers of predictor variables for the most accurate GAM

prediction are 15, 11, 8, and 5 for case 1 through 4. TPRS led to a better prediction performance

than CRS for all cases.

It seems that the distress information plays a significant role in IRI prediction. Case 1 and 2

includes distress variables unlike case 3 and 4, and R2 values from GAM predictions using case

1 and 2 (i.e., 0.654 and 0.650) are fairly higher than those using case 3 and 4 (i.e, 0.526 and

0.497). On the other hand, climatic related variables attribute to a better prediction when distress

variables are not included in the predictors. In Figure 4.1, when changing from case 4 (without

climatic and distress variables) to case 3 (without distress variables), R2 changes from 0.497 to

0.526 while R2 slightly increases from 0.650 to 0.654 when changing from case 2 (without climatic

variables) to case 1 (all variables).

Figure 4.2 shows the number of best predictor variables of four cases of rigid airport pavements

data with TPRS and CRS bases. These results also show the use of all variables does not lead to

the highest accuracy of GAM prediction, but compared to the concrete overlay cases, the drop of

R2 when using all variables is not sharp. The numbers of predictor variables for the most accurate

GAM prediction are 11, 14, 13, and 13 for 4 response variables of case M and 6, 12, 7, and 11

for those of case TM. When including two variables regarding thermal loading in predictors, GAM

requires fewer predictor variables to produce the best prediction performance.
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(a) (b)

(c) (d)

Figure 4.1: The number of predictor variables selected by direct search for the most accurate

prediction of (a) case 1, (b) case 2, (c) case 3, and (d) case 4 of concrete overlay data

Interestingly, both TPRS and CRS led to almost the same prediction performance for all cases.

This might be because the rigid airport pavements is simulation data generated by the FEA pro-

gram, so there might be no high non-linearity between predictor variables, resulting in no difference

of prediction performance between TPRS and CRS.

4.5 Relative Importance of Predictor Variables in GAM Prediction

One of the attractive advantages of statistical models than machine learning is interpretability.

Like other statistical models, GAM also provides p-value of each variable in the fitted model to

present the relative importance of predictor variables in prediction. Table 4.2 shows the best

predictor variables selected by the direct search and their p-values for each data. Variables are
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2: The number of predictor variables selected by direct search for the most accurate

prediction of (a) σ xx top, (b) σ xx bot, (c) σ yy top, and (d) σ yy bot for case M ; (e) σ xx top,

(f) σ xx bot, (g) σ yy top, and (h) σ yy bot for case TM of rigid airport pavements data
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listed in ascending order by p-value and the variables with smaller p-values represent relatively

important variables in GAM prediction.

For the concrete overlay data, AGE, THICK, JT SP, and TYPE seem to be the most important

variables for all cases. TRAFFIC is only included in case 3 and 4, which means it might not be

relatively important in GAM prediction when distress variables are included in predictors.

For the case M of rigid airport pavements data, thickness and modulus variables of the slab

seem to play an important role in GAM prediction. It turned out that TEMP GRAD is the most

important predictor variable for all target responses of case TM. THERM COEF plays a significant

role in GAM prediction of the maximum tensile stresses on the top of the slab than the bottom of

the slab.

4.6 Efficient Variable Selection Strategy

For accurate prediction, including appropriate variables into a predictive model is important.

The use of all explanatory variables does not always guarantee the best prediction performance

(Song et al., 2018c,b). The direct search examines all possible variable combinations, but it requires

a high computing demand depending on the size of data and number of variables.

We investigate several variable selection methods to find the best predictor variables in an

efficient manner. We compare the forward and backward methods (Efroymson, 1960) with Akaike

information criterion (AIC) and p-value being the criteria. AIC is an estimator to measure the

quality of statistical models and a smaller AIC value means a better model. A coefficient of

determination, R2 is used as the criterion to measure prediction accuracies.

4.6.1 Forward variable selection procedure descriptions

Forward variable selection method begins to build a regression model with no variables. One

variable is added one by one until a criterion is satisfied. The selection steps based on p-value

are as follows: Given the universal set of predictor variables, U = {x1, x2, · · · , xn}, where n is the

number of total predictor variables,
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Table 4.2: Selection of the best combination of variables for GAM using CRS (p-values in paren-

theses)

Data
Target
response

Predictor variable (p-value) R2

concrete
overlay
(case1)

IRI

AGE (< 2e-16) THICK (<2e-16) JT SP (4.58e-12)

0.654
TYPE (5.64e-06) AARH (1.04e-04)

RT FT SEV2
(1.80e-04)

AAP (0.00839) TRANS M (0.00899) JSPALL H (0.00913)
LT FT SEV4 (0.0722) JSPALL M (0.190) TRANS H (0.206)
RT FT SEV3 (0.566) LT FT SEV1 (0.649) LT FT SEV4 (0.764)

concrete
overlay
(case2)

IRI

AGE (<2e-16) THICK (<2e-16) JT SP (1.83e-12)

0.650TYPE (1.17e-05)
RT FT SEV2
(6.17e-06)

JSPALL H (0.00106)

TRANS M (0.00389) LT FT SEV4 (0.142) TRANS H (0.287)
RT FT SEV3 (0.294) RT FT SEV4 (0.801)

concrete
overlay
(case3)

IRI
AGE (<2e-16) THICK (2.13e-14) JT SP (3.64e-08)

0.526TYPE (0.000130) AAWS (0.000171) AARH (0.00215)
AAP (0.0175) TRAFFIC (0.118)

concrete
overlay
(case4)

IRI
AGE (<2e-16) THICK (3.78e-15) JT SP (1.51e-09)

0.497
TYPE (5.09e-04) TRAFFIC (0.0803)

Rigid airport
pavements
(case M )

σ xx top

SB1 THICK (<2e-16) SB2 THICK (<2e-16) PS THICK (<2e-16)

0.779
X OFFSET (<2e-16) PS MOD (<2e-16) SB1 MOD (<2e-16)
SB2 MOD (<2e-16) Y OFFSET (<2e-16) SG MOD (3.44e-10)
Y(1.57e-08) JOINT SX (0.0103)

σ xx bot

PS THICK (<2e-16) SG MOD (<2e-16) SB1 THICK (<2e-16)

0.866
PS MOD (<2e-16) SB1 MOD (<2e-16) ANGLE (<2e-16)
X OFFSET (<2e-16) SB2 MOD (<2e-16) X (5.55E-12)
SB2 THICK
(2.56e-10)

Y (2.79e-04) PS POISS (0.00163)

SG POISS (0.0231) SB2 POISS (0.899)

σ yy top

SB1 THICK (<2e-16) PS THICK (<2e-16)
SB2 THICK
(2.56e-10)

0.784
X OFFSET (<2e-16) SB2 MOD (<2e-16) PS MOD (<2e-16)
SB1 MOD (<2e-16) X (<2e-16) Y OFFSET (1.99e-14)
SG MOD (8.92e-12) Y (3.51e-07) SG POISS (4.26e-07)
JOINT SX (4.84e-02)

σ yy bot

PS THICK (<2e-16) SG MOD (<2e-16) SB1 THICK (<2e-16)

0.864
PS MOD (<2e-16) SB1 MOD (<2e-16) ANGLE (<2e-16)
SB2 MOD (<2e-16) Y OFFSET (<2e-16) X (3.82E-13)
SB2 THICK
(3.91e-10)

Y (1.64e-03) PS POISS (0.0045)

SG POISS (0.0359)

Rigid airport
pavements
(case TM )

σ xx top
TEMP GRAD
(<2e-16)

PS MOD (<2e-16)
THERM COEF(<2e-
16) 0.848

X OFFSET (0.00268) Y OFFSET (0.0378) SB2 THICK (0.0442)

σ xx bot

TEMP GRAD
(<2e-16)

PS THICK (<2e-16) PS MOD (<2e-16)

0.776X OFFSET (<2e-16) SG MOD (<2e-16) SB1 THICK (<2e-16)
ANGLE (<2e-16) SB1 MOD (1.97e-10) X (3.23e-09)
THERM COEF
(0.0105)

SG POISS (0.113) JOINT SX (0.630)

σ yy top

TEMP GRAD
(<2e-16)

PS MOD (<2e-16)
THERM COEF(<2e-
16)

0.846
Y (0.0439) SB2 THICK (0.0675) Y OFFSET (0.0735)
SB1 POISS (0.207)

σ yy bot

TEMP GRAD
(<2e-16)

PS THICK (<2e-16) PS MOD (<2e-16)

0.784SG MOD (<2e-16) Y OFFSET (<2e-16) ANGLE (<2e-16)

SB1 THICK (<2e-16) SB1 MOD (5.76e-11)
THERM COEF
(0.0236)

Y (0.0329) X OFFSET (0.311)



83

1. Start with no variables in the regression model (X
(t=0)
best = ∅). Define a candidate set of

variables as

X
(t)
cand ≡

{
x | x ∈ U , x /∈X

(t)
best

}
2. For each variable in X

(t)
cand, check their p-value, p(x) when the variable enters the regression

model. The set of these p-values is defined as

P
(t)
cand ≡

{
p(x) | x ∈X

(t)
cand

}
3. Find and keep the variable which results in the lowest p-value in the current model from the

step 2,

X
(t+1)
best = X

(t)
best ∪ {xbest}, where xbest ≡ argmin

x∈X(t)
cand

(p(x))

4. Continues above steps until min(P
(t)
cand) < αcrit, where αcrit is the criterion p-value (e.g.,

0.05).

Similarly, the forward selection based on AIC is as follows: Given the universal set of predictor

variables, U = {x1, x2, · · · , xn},

1. Start with no variables in the regression model (X
(t=0)
best = ∅). Define a candidate set of

variables as

X
(t)
cand ≡

{
x | x ∈ U , x /∈X

(t)
best

}
2. For each variable in X

(t)
cand, check the AIC value of the model, AIC(x) when the variable is

included in the regression model. The set of these AIC values is defined as

AIC
(t)
cand ≡

{
AIC(x) | x ∈X

(t)
cand

}
3. Find and keep the variable which results in the smallest AIC in the current model from the

step 2,

X
(t+1)
best = X

(t)
best ∪ {xbest}, where xbest ≡ argmin

x∈X(t)
cand

(AIC(x))

4. Continues above steps until min(AIC
(t+1)
cand ) < min(AIC

(t)
cand).
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4.6.2 Backward variable selection procedure descriptions

Backward variable selection method begins to build a regression model with all variables. One

variable is excluded from the regression model one by one until a criterion is satisfied. The

selection steps based on p-value are as follows: Given the universal set of predictor variables,

U = {x1, x2, · · · , xn},

1. Start with all variables in the regression model (X
(t=0)
best = U).

2. From X
(t)
best, exclude a variable whose p-value is the largest in the regression model,

X
(t+1)
best = X

(t)
best − {xworst}, where xworst ≡ argmax

x∈X(t)
best

(p(x))

3. Fit the model again with X
(t+1)
best and goto the step 2.

4. Continues above steps until max
x∈X(t+1)

best

< αcrit.

The backward selection based on AIC is similar to the case of p-value, which is as follows: Given

the universal set of predictor variables, U = {x1, x2, · · · , xn},

1. Start with all variables in the regression model (X
(t=0)
best = U). Define a candidate set of

variables as

X
(t)
cand ≡

{
x | x ∈X

(t)
best

}
2. For all variables in X

(t)
cand, check the AIC value, AIC(x) when each variable is removed from

the regression model. The set of these AIC values is defined as

AIC
(t)
cand ≡

{
AIC(x) | x ∈X

(t)
cand

}
3. From the model, exclude a variable which results in the smallest AIC value when the variable

is removed from the regression model,

X
(t+1)
best = X

(t)
best − {xworst}, where xworst ≡ argmin

x∈X(t)
cand

(AIC(x))

4. Fit the model again with X
(t+1)
best and goto the step 2.

5. Continues above steps until min(AIC
(t+1)
cand ) < min(AIC

(t)
cand).
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(a) (b)

Figure 4.3: Prediction performances using different variable selection methods: (a) concrete overlay ;

(b) rigid airport pavements. DS stands for direct search, AIC(b) for backward selection using AIC,

and p(f,0.05) for forward selection using p-value of 0.05, etc

4.6.3 Comparison of variable selection methods

Figure 4.3 shows the comparison of prediction performance between the direct search, forward

and backward methods. As expected, the direct search always finds the best predictor variable

combination and leads to the highest R2 value.

For the concrete overlay data, the direct search led to the highest prediction accuracy and the

backward selection using AIC results in the second highest. Among the variable selection methods

using the p-value, the forward selection using the p-value of 0.05 produces the highest.

For the rigid airport pavements data, the direct search and the forward and backward selection

methods using the p-value of 0.05 led to the highest p-value. In addition, the backward selection

method using the AIC resulted in the next highest p-value. However, the difference of R2 values

between all methods is not significantly large. This might be because the rigid airport pavements

data were obtained from the FEA simulation results which are produced by engineering-based

principles; therefore, there is seldom uncertainty in the model, which makes almost the same

prediction results between different variable selection methods.

In terms of computing time, when using the direct search, it took about 7 days and 5 days for

the concrete overlay and rigid airport pavements data while the forward and backward selection
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methods took less than 1 hour. Therefore, the direct search is recommended in the case that the

highest prediction accuracy is necessary regardless of computing time while the backward selection

using AIC is encouraged to use if an adequate prediction accuracy is acceptable and short computing

time is allowed.

4.7 Impact of Distribution Family on Prediction Performance

In this section, the impact of distribution family of the response variable on the prediction

performance. Multiple GAM models for the rigid airport pavements data are built using Gamma,

Gaussian, and Poisson distributions and their relative prediction performances are compared. Fig-

ure 4.4 shows the best prediction results for each target response of the case M and case TM.

It seems that Gamma distribution produces better prediction performances in most cases than

Gaussian distribution. Meanwhile, Poisson distribution turns out to produce higher R2 values than

Gamma distribution. This might be because when using Poisson distribution, the response variable

is considered as an integer which is rounded from actual values. This simplification may lead to

better prediction results, but the predicted responses are values with different digits; therefore,

Gamma distribution is recommended to use.

4.8 Parameter Study: Impact of Spline Base

In GAM, the number of spline base (k) should be specified. We investigate the impact of k on

the GAM prediction of the concrete overlay data using TPRS. Figure 5 shows the results of the

case 1 through 4. The k values to produce the highest R2 are 11, 10, 73 and 28 for case 1 through

4. In general, k of 10 appears to be an appropriate choice with acceptable accuracy because, for

the case 1, 3, and 4, the R2 values from the prediction using 10 spline bases are very similar to the

highest R2 of each case. Wood (Wood, 2006) also recommends 10 as a suitable k value.
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Figure 4.4: Prediction performance depending on different distribution families (Gamma, Gaussian,

and Poisson), in which m xx top stands for the maximum tensile stress in the x direction on the top

of the slab with the mechanical loading condition and tm yy bot stands for the maximum tensile

stress in the y direction on the bottom of the slab with thermal and mechanical loading, etc

4.9 Conclusions

This study investigated the efficient variable selection methods and elucidate the relative im-

portance of predictor variables for GAM prediction using field survey pavement data, concrete

overlay and simulated airport pavement data, rigid airport pavements. In particular, the GAM is a

flexible and non-parametric statistical method which enables to predict complex data with highly

non-linearity.

Several variable selection methods, including the direct search and forward and backward se-

lection based on p-value and AIC, are compared to investigate an efficient way to find the best

predictor variables in GAM prediction. Results show that the direct search appears to always

produce the best prediction results while the backward selection method using AIC produces ac-

ceptable prediction results; however, the computing time of backward selection was much smaller

than that of the direct search method. Unless the highest prediction accuracy is the only goal

regardless of the computing time, the backward selection using AIC would be a better choice as an

efficient way to find the best predictor variables.
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(a) (b)

(c) (d)

Figure 4.5: Impact of number of TPRS base (k) on GAM prediction: (a) case 1 ; (b) case 2 ; (c)

case 3 ; (d) case 4 of the concrete overlay data

The relative importance of variables in GAM prediction also has been investigated. For the

concrete overlay database, age, thickness, joint spacing, and overlay type variables turn out to

be important than others. Traffic variable appears to be only useful when distress variables are

not included in GAM prediction. For the rigid airport pavements data, variables of thickness and

modulus of pavement turn out to play a significant role in GAM prediction for the mechanical

loading case. Temperature gradient appears to be the most important predictor variable for the

simultaneous thermal and mechanical loading case.

The optimal GAM setting for accurate prediction has been addressed. Several distribution

families are compared in terms of prediction accuracy depending on the distribution selection.
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Results show the Gamma distribution is suitable for pavement data. The recommended number of

spline base is also investigated and 10 is recommended as the suitable number of spline base.

The advanced statistical learning and prediction using GAM can suggest the best predictor

variables with efficient variable selection methods as well as the relative importance of predictor

variables in the predictive model. This feature will help the pavement engineering community un-

derstand the relationship between predictor and response variables, and help stakeholders establish

a pavement management plan based on the knowledge obtained from GAM prediction results.
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CHAPTER 5. IMPACTS OF FRACTIONAL HOT-DECK IMPUTATION

ON LEARNING AND PREDICTION OF ENGINEERING DATA

A paper submitted and under review for publication in IEEE Transactions on Knowledge and

Data Engineering, (2018)

Ikkyun Song, Tong Tong, Jongho Im, Halil Ceylan, and In-Ho Cho

Abstract

In the broad engineering fields, missing data is a common issue which often causes undesired

bias and sparseness impeding rigorous data analyses. To tackle this problem, many imputation

theories have been proposed and widely used. However, prior methods often require distributional

assumptions and/or prior knowledge regarding data which may cause some difficulty to routine

engineering research. Essentially, the fractional hot-deck imputation (FHDI) is an assumption-free

imputation method, holding a broad applicability in the engineering domains. FHDI’s internal

parameters and impact on statistical and machine learning methods, however, have been rarely

understood. Thus, this study investigates the behavior and impacts of FHDI on prediction methods

including generalized additive model, support vector machine, extremely randomized trees, and

artificial neural network, for which four practical datasets (appliance energy, air quality, phenotypes,

and weather) are used. Results show that FHDI performs better for improving the prediction

accuracy compared to a simple naive method which cures missing data using the mean value

of attributes, and FHDI has a gradually positive effect on prediction accuracy with decreasing

response rates. Regarding an optimal setting, 30 to 35 is recommended for the FHDI’s internal

categorization number while 5 is recommended for the FHDI’s randomly selected donors numbers,

which is interestingly aligned with Rubin’s recommendation to other comparable methods.
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5.1 Introduction

Data missing is widely observed in surveys and experiments. It prevents researchers from

obtaining a reliable conclusion from data analysis due to biasness and sparseness. For example,

Brown and Kros (2003) and Roth (1994) highlighted how missing data causes wrong data analysis.

To overcome this problem, a suitable remedy is required in research involving data mining and

analysis.

Imputation is one of the most popular methods for handling incomplete data. It fills in miss-

ing data with plausible values to create complete data. Depending on the imputation size, the

imputation can be classified into single imputations and repeated imputations. A single value is

imputed to each missing value in single imputations, whereas each missing value is replaced with

several values in repeated imputations. Although single imputation is a convenient method, it has

a weakness that uncertainty due to missing data may not be reflected in imputation processes. This

issue can be handled by repeated imputation methods.

There are two repeated imputation methods: multiple imputation and fractional hot-deck im-

putation. Multiple imputation (MI) (Rubin, 1976) fills in missing data using multiple plausible

values, leading to better consideration of the uncertainty of missing data. Fractional imputation

(Kalton and Kish, 1984) is another notable imputation method and it can further reduce imputa-

tion variances and provides consistent variance estimations compared to MI. Fractional hot-deck

imputation (FHDI) is a fractional imputation taking two advantages of the hot-deck imputation:

First, imputed values are built upon observed responses, not artificial values, thereby preserving

the distribution features of the original data; Second, a strong model assumption is not necessary

for imputation (Yang and Kim, 2016). This study uses the FHDI (Kim and Fuller, 2004) as an

imputation method.

There have been numerous studies addressing the impact of imputation on machine learning

(ML) approach. Farhangfar et al. (2008) studied the impact of imputation on the classification er-

ror reduction. Six imputation methods and six classifiers were used to measure how an imputation

of missing data decreases classification errors. They concluded that there does not exist a universal
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imputation method which can ensure the largest error reduction for any classification, and so the

choice of imputation method depends on classification types. Batista and Monard (2003) investi-

gated the influence of four imputation methods (i.e., k-nearest neighbor, mean of mode imputation,

internal methods in C4.5 and CN2) on ML performance. They concluded that the k-nearest neigh-

bor outperforms other imputation methods. Heltshe et al. (2012) examined multiple imputation

methods to improve the prediction power of the pesticide use. Lin et al. (2017) adopted the MI

to impute missing data for sensitivity analysis and obtained regression coefficients similar to those

from a complete dataset without missing values. Wang et al. (2016) also used the nearest neighbor

scheme for sensitivity analysis to investigate the effect of missing data on travel time predictions.

They found that prediction performances become worse when missing rates increase. Su et al.

(2008) utilized multiple ML classifiers to resolve the data sparsity of a dataset for collaborative fil-

tering. They found that the collaborative filtering using an imputation outperforms the traditional

collaborative filtering. Yoo et al. (2017) used the MI to cure missing data for a better prediction of

graft survivals after kidney transplants. They found that MI improves prediction accuracies. How-

ever, the impacts of FHDI on statistical and ML regression have been rarely investigated, which is

strongly needed in view of promising applicability of FHDI.

This study aims to (i) introduce a relatively new FHDI to a wide array of engineering community,

(ii) elucidate the impact of FHDI on statistical learning (SL) and ML prediction performance, and

(iii) identify optimal settings and conditions of FHDI by performing a comprehensive sensitivity

analysis covering different response rates, initial categorization numbers, and donor numbers with

multiple datasets that have a large number of instances and attributes.

The outline of the paper is as follows: we briefly summarize the theory and default settings of

FHDI, an advanced SL method (i.e., generalized additive model (GAM)), and three ML methods

(i.e., support vector machine (SVM), extremely randomized trees (ERT), and artificial neural net-

work (ANN)). After a brief explanation of four practical engineering datasets used in this study,

key imputation procedures of FHDI are presented. Finally, several aspects of the impact of FHDI
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on SL and ML prediction performance are addressed, and the results of detailed sensitivity analyses

and recommendation for FHDI are presented.

5.2 Theory: Fractional Hot-Deck Imputation

This section summarizes the central notion of the FHDI, and one is referred to Im et al. (2015)

for details. Suppose that we have p-dimensional variable y = {y1, y2, ..., yp} from a finite population

U . Let A be the index set of possible samples from U and δpi be a response indicator function

for ypi, where i ∈ A. The function δpi takes a value 1 when ypi is observed and zero otherwise.

Let AR and AM be the subsets of respondents and nonrespondents respectively, where AR = {i ∈

A; δ1iδ2i · · · δpi = 1} and AM = {i ∈ A; δ1iδ2i · · · δpi = 0}. Denote nR and nM be the size of AR

and AM . Let yi,obs and yi,mis be respectively the observed and missing parts of yi. Let z be

the discretized values of y, and zi,obs and zi,mis be categorical variables corresponding to yi,obs

and yi,mis respectively. For example, assume that there is a sample, yi = {7, 2, NA, 5, NA}, then

yi,obs = {7, 2, 5} and yi,mis = {NA,NA}, where NA denotes a missing value.

Note that z plays imputation cells in the implementation of the hot-deck imputation. Let

Di = {z∗(1)
i,mis, . . . , z

∗(M)
i,mis} be the set of all possible zi,mis values, where M is the number of donors

on a recipient i. Here, recipients are the subset of nonrespondents who have at least one missing

item and donors are the subset of respondents whose observed values are used to fill in missing

values of the recipients.

Using a finite mixture model, under the missing at random condition, the conditional distribu-

tion of f(yi,mis | yi,obs) is approximated by

f(yi,mis | yi,obs) ∼=
Mi∑
s=1

p(z
∗(s)
i,mis | zi,obs)f(yi,mis | zi,obs, z

∗(s)
i,mis), (5.1)

where p(z
∗(s)
i,mis | zi,obs) is a conditional cell probability. The conditional cell probability is generally

unknown, and thus it should be estimated properly. We use the EM algorithm for that purpose

(see Im et al. (2015) for details). When the estimated conditional cell probability is defined as

π̂s|g = p̂(zg,obs, z
∗(s)
g,mis)/

Mi∑
s=1

p̂(zg,obs, z
∗(s)
g,mis), (5.2)
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where p̂ represents an estimated probability, then, the FEFI estimator of Yp =
∑N

i=1 ypi is defined

as

Ŷp,FEFI =
∑
i∈A

ωi

δpiypi +

G∑
g=1

(1− δpi)aig
Mi∑
s=1

π̂s|gµ̂gs

 , (5.3)

where aig =
∑Mi

s=1 aigs, aigs = 1 when (zi,obs, zi,mis) = (zi,obs, z
∗(s)
i,mis) and 0 otherwise. Assume

that ω∗ij,FEFI =
∑G

g=1 aig
∑Mi

s=1 π̂s|g{ωjδjaigs/
∑

l∈A ωlδlalgs}, and

µ̂gs =

∑
j∈A ωjδjajgsypj∑
j∈A ωjδjajgs

. (5.4)

Then, Equation 5.3 can be changed to

Ŷi,FEFI =
∑
i∈A

ωi

δpiypi + (1− δpi)
∑
j∈A

ω∗ij,FEFIypi

 . (5.5)

M donors can be selected by using systematic probability proportional to size (PPS) sampling

procedure, and then, the fractional hot-deck imputation (FHDI) estimator of Yp is defined as

Ŷp,FHDI =
∑
i∈A

ωi

δpiypi +

G∑
g=1

(1− δpi)aig
Mi∑
s=1

π̂s|gȳ
∗
pi


=
∑
i∈A

ωi

δpiypi + (1− δpi)
∑
j∈A

ω∗ij ȳ
∗(j)
pi

 ,

(5.6)

where ȳ
∗(j)
pi is the jth donor of ypi, ȳ

∗
pi = M−1

∑M
j=1 y

∗(i)
pi , and ω∗ij = M−1

i . Equation 5.6 can be

expressed using the FEFI estimator:

Ŷp,FHDI = Ŷp,FEFI + (Ŷp,FHDI − Ŷp,FEFI)

= Ŷp,FEFI +
∑
i∈A

ωi(ȳ
∗
pi − µ̂),

(5.7)

where µ̂ =
∑

i∈A ωiyi/
∑

i∈A ωi.

5.3 Theory: Statistical Learning and Machine Learning Methods

5.3.1 Statistical learning: GAM

GAM (Hastie and Tibshirani, 1990) is a generalized linear modal. Compared to other statis-

tical methods with predefined distribution and parameters, GAM has more flexibility and general
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applicability because of undefined smooth functions (Wood, 2006). The superior prediction power

of GAM has been recently investigated in engineering domains (Song et al., 2018a,b,c). A general

form of GAM can be represented as:

g(µi) = f1 (x1i) + f2 (x2i) + f3 (x3i) + · · ·+ fj (xki) , (5.8)

where g is a link function, µi ≡ E(Yi) , Yi is a response variable from an exponential family of

distribution, fj is a smooth function of a single or multiple covariates. This non-specified smooth

function gives GAM flexibility in complex datasets. For brevity of explanation, the following

description involves a normally distributed single variable, but generalization to multiple variables

is straightforward (Wood, 2006). A smoothing function can be represented as

f(x) =
k∑
j=1

bj (x)βj , (5.9)

where bj(x) is the jth basis function and βj is an unknown parameter.

The model fitting can be achieved by maximizing the corresponding likelihood with a penalty

term λ
∫

[f”(x)]2dx, where λ is a smoothing parameter. When λ value is too large, an over-smoothed

estimate is made; oppositely, it leads to an under-smoothed estimate with a too small λ value. The

error becomes the largest in the both extreme cases. The appropriate selection of λ can be achieved

by minimizing generalized cross validation (GCV) score. This GCV score-based optimization of

lambda is automatically done by the library of mgcv, a GAM package in R (Wood, 2011).

For constructing GAM, proper bases need to be selected. Cubic regression spline (CRS) (Wood,

2006) and thin plate regression spline (TPRS) (Wood, 2006) are two popular bases. In this study,

TPRS is selected as a base function owing to its generality and flexibility for multivariate data

sets. TPRS (Duchon, 1977) can be used for multiple covariates and be determined by minimizing

||y − f ||2 + λJmd(f), where y is the vector of yi data and the set of smoothness functions f =

[f(x1), f(x2), · · · , f(xn)]T , Jmd(f) is a penalty functional measuring the ’wiggliness’ of f . The

trade-off between data fitting and smoothness of f can be adjusted by λJmd(f). The wiggliness
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penalty is defined as

Jmd =

∫
· · ·
∫
Rd

∑
v1+···+vd

m!

v1! · · · vd!
(

∂mf

∂xv11 · · · ∂x
vd
d

)2dx1 · · · dxd (5.10)

In this study, GAM is adopted as the advanced statistical regression method to measure pre-

diction accuracies after FHDI imputation. λ is automatically optimized according to GCV scores

by the R library, and the number of bases is set as 10, which is the default setting.

5.3.2 Recap and settings of the adopted machine learning methods

ML is a popular field in computer science which mainly deals with learning and predicting the

relationship between inputs and outputs of a given dataset. Amongst many popular ML methods,

this study selected three methods that are widely used in a broad engineering domain.

5.3.2.1 Extremely randomized tree

Extremely randomized tree (ERT) (Geurts et al., 2006) is a tree-based ensemble method for

supervised classification and regression problem, which selects splits, attributes and cut-points

totally or partially at random. Compared to other tree-based methods, ERT splits nodes by

choosing cut-points fully at random and using whole learning samples to grow the trees. Learning

samples and test samples are used for building models and computing its accuracy, respectively.

The algorithm are run a number of times (e.g. 10 times) on each dataset and mean square-errors

are estimated for regression. The brief explanation on key processing steps for ERT is as follows:

For the total input size K (1 ≤ K ≤ N ),

1. Input vector X = (X1,X2, · · · ,XK) is randomly selected, where X is the input data which

is used to predict the target data.

2. For each selected input vector Xi, calculate its minimum and maximum value to be its

interval [Xmin
i ,Xmax

i ]. From the interval, a few cut-points, Xc are randomly selected, and then,

splits are selected which are less than the cut-points.



99

3. Select the best splits by using the Score(s, S). S is the subset of the input. For regression

problems (Kamdar et al., 2016),

Score(s, S) =
var (y | S)− |Sl|

|S| var (y | Sl)− |Sr|
|S| var (y | Sr)

var (y | S)
, (5.11)

where Sl and Sr are two subsets from sample S, var(y|S ) is the variance of the output y in the

sample S. Absolute values of Sl or Sr are lower than nmin which denotes the minimum sample size

for splitting a node.

4. Check the conditions of process listed above: (1) all description data are constant in the

absolute value of S which is a subset of input; (2) the boolean output is constant in the absolute

value of S; (3) |S| is lower than nmin which denotes the minimum sample size for splitting a node.

If the result are all satisfied the conditions listed above, the model will stop splitting. Otherwise,

the model needs to be re-built by repeating the entire process until it is satisfied.

ERT has advantages over other tree-based methods. As reported (Geurts et al., 2006), ERT

may have more accuracy and have a larger number of leaves and deeper level of tree, which will

speed up the training process.

In this study, the ERT is used as an advanced machine learning-based regression method to

compare prediction performances after curing data by using FEFI and FHDI. The basic default

settings of the adopted ERT program were used without tuning. The R package, extraTrees

(Simm et al., 2014), is used for the implementation of ERT. The number of tree used in this study

is five hundred; the node size is set as one; the number of random cuts for each input data is set as

one; the number of input data tried at each node is set as K/3.

5.3.2.2 Artificial neural networks

Artificial neural networks (ANN) (McCulloch and Pitts, 1943) is a mathematical representation

and may be regarded as a generalizations of existing statistical models. In 1943, a neuron network

model in human brains began to be used in computer science area. Since then, it has been widely

used in broad areas, including social network, speech recognition, and computer vision (Ghasemi,

2017).



100

ANN is built from perceptrons which are the most basic form of a neural network and do

the same role of neuron in model. The perceptrons are combined in each layer, but the layer of

perceptrons are independent to the other layers. In the input layer, each perceptron stands for one

variable. The perceptron in the hidden layer is received from the input layer. One perceptron in

output layer stands for each response variable and received input from the perceptrons in the final

hidden layer. Between input and output layers, there are non-linear functions which can transfer

and modify the data from input layer to the output layer. The weight, Wij , is the connection

between perceptrons, which controls the influence of input and adjusts the output error. i and j

represent different layers of perceptrons. The weighted perceptron composes a linear function and a

threshold is added to change the linear function to non-linear function for better training. To briefly

explain the key notion of ANN, a well-known ANN algorithm (Jang et al., 1997) is summarized

below:

For an input (X1, X2,· · · , XK) and an output (Y1, Y2,· · · , YK), The input in neuron j in preview

layer, Oj , can be expressed as follows,

Oj = f

(∑
i

WijOi

)
, (5.12)

where Oi is an output from neuron i, f is the activation function which can be given by f (x ) =

1/(1+e−x). The mean square error (denoted as E ) of output Oj is

E =
1

2
(Tj −Oj)2 , (5.13)

where Tj is a target value. Based on the gradient descent method, the adapted weight ∆Wij can

be defined as

∆Wij = − ∂E

∂Oj

∂Oi
∂Wij

= δjgOi, (5.14)

where δj is the error signal which equals -∂E/∂Oj , g is an adaptation gain. If j is in the output

layer,

δj = (Tj −Oj)(1−Oj)Oj , (5.15)
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If j is not in the output layer which may be in the hidden layer,

δj = (1−Oj)
∑
k

δkWjk. (5.16)

According to previous calculation Equations 5.15 and 5.16, the modified gradient descent update

weight is

∆W (m) = −δjgOi + α∆W (m− 1), (5.17)

where m is the number of iteration to calculate the weight.

For ANN-based predictions, this study adopted the R package, neuralnet (Fritsch and Guen-

ther, 2016). A logistic activation function and a gradient descent algorithm were used for imple-

mentation. The hidden layer is set as one and the number of perceptrons is set at ten, which are

default settings in neuralnet.

5.3.2.3 Support vector machines

Support vector machines (SVM) (Cortes and Vapnik, 1995) is a supervised learning method

which can learn independent dimensional feature space. It texts categorization by high dimensional

input spaces, uses few irrelevant features and sparse document vectors. SVM creates a linear

separating hyperplane in a higher-dimensional space and constructs a maximum margin separator

using a kernel trick. The linear separating hyperplane line is described as

g(~x) = ~wT~x+ b, (5.18)

where ~w =
∑

i αiyi ~xi that is a weight vector for the linear combination of training points, αi is

a Lagrange multiplier, and xi and yi are descriptive data T (xi,yi). The b controls the distance

between training points and a hyperplane. The maximum margin can be determined as

minw,b
1

2
‖ ~w ‖2 (5.19)

subject to yiw
T ≤ 1.
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SVM can be used for regressions to deal with continuous variables. SVM tries to find a relative

flat hyperplane for a better regression. A formula of SVM is:

Minimize
1

2

N∑
i=1

w2
i + C

n∑
i=1

(εk + ε∗k) (5.20)

subject to

yk − wTϕ(xk)− b ≤ ε+ ε∗k (5.21)

wTϕ(xk) + b− yk ≤ ε+ ε∗k (5.22)

ε, εk, ε
∗
k ≥ 0, (5.23)

where, εk and ε∗k are slack variables; C is a positive constant that controls the trade-off between

the penalty and margin; ϕ is kernel function.

SVM adds support vectors to maximize margins for minimizing prediction errors. Meanwhile, it

is similar with a neural network in two aspects: first, SVM has a universal approximation property;

second, SVM uses any of the rule extraction methods for making it more comprehensible and

accurate. For SVM-based prediction, we used an R package, e1071 (Meyer et al., 2017). After

a preliminary study, we found that the radial basis relatively performed well for our data sets.

Thus, throughout the predictions in this study, the radial bases is used as a kernel function. The

parameter for all kernels is set to 1/(data dimension), and the cost of constraints violation is set

as one.

5.4 Materials

For investigating the impact of FHDI on regression, we choose four datasets that mainly have

9 to 14 attributes and varying number of instances (i.e., 6,000 - 42,000) and attributes’ values are

continuous. The summary of datasets is shown in Table 5.1. Datasets of appliance energy and air

quality are obtained from UC Irvine machine learning repository (Bache and Lichman, 2013).
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Table 5.1: Summary of datasets used in the current study

Name Instances Attributes Description

Appliance

energy

19,735 14 Appliance energy use in

houses

Air quality 41,757 9 Air quality in Beijing

Phenotype 5,931 13 Effect of genotype on maize

hybrid yield

Weather 36,220 13 Ozone in the United States

5.5 Imputation

To implement FHDI, we used FHDI package in R (Im et al., 2018). Because the four datasets

don’t have missing values, we intentionally created multiple incomplete datasets to be imputed.

For each original dataset, five datasets that have different total response rates (i.e., 10% to 50%

with 10% interval) are produced to investigate the impact of FHDI imputation on SL and ML

prediction with varying response rates. Total response rate means the proportion of fully observed

samples (i.e., samples without missing values). In the case of 10% total response, for example,

10% of samples don’t have missing values and 90% of samples have missing values. The reason for

using total response rates instead of missing rates is that the FHDI method requires fully observed

samples for imputation. Hereafter, N%-dataset refers to the cured dataset using N % total response,

where N = {10, 20, ..., 50}.

Since missing of some attributes’ value is inconceivable (e.g., date), missing values are not

generated for those attributes. 14 attributes of the appliance energy dataset are assumed not to

have missing values to make full samples under the missing at completely at random condition.

FHDI’s key imputation procedure consists of 4 steps: (1) cell construction with categorization;

(2) estimation of cell probabilities; (3) construction of fractional weights; (4) imputation. These

steps are briefly explained in Table 5.2. First, in the cell construction step, variables are divided

into several categories so that a recipient has enough donors for imputation. In the cell probability
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estimation step, the joint cell probability for each attribute is estimated using a modified EM

algorithm (Im et al., 2015). Next, fractional weights are calculated using the estimated joint cell

probabilities. Finally, missing values cured by being filled with the observed values of donors.

FHDI uses partial donors while FEFI employs all available donors for imputation. In the

later sections, particular categorization numbers and donor numbers are recommended for reducing

prediction errors from parameter studies.

We can check whether FHDI imputations are conducted appropriately by comparing mean

values of attributes between the original and cured datasets. The mean values should be similar

each other when imputations are conducted correctly. It should be noteworthy to provide an

example of FHDI implementation result to show the performance of FHDI. Using the appliance

dataset, we generated three datasets that have a different missing rate (i.e., 10, 30, and 50%). The

datasets were cured by using the FHDI with the categorization number of 35 and the donor number

of 5. The results are shown in Table 5.3. The ratio of an attribute’s mean value in the original

dataset to that in the cured dataset by FHDI is used to exhibit the performance of FHDI. The

mean ratios are 1.001, 1.0037, and 1.0081 for 10, 30 and 50% missing rates, respectively. This result

indicates that the FHDI works appropriately because the ratios are very close to 1.0. Meanwhile,

the largest ratio is 1.1058 for the attribute ’2’ and 50% missing rate.

5.6 Impact of FHDI on Statistical and Machine Learning-Based Regression

Our goal is to investigate the impact of FHDI on the prediction performance. To examine this

impact, we use the normalized root mean square error (denoted as nRMSE), i.e., the ratio of the

RMSE from a prediction using cured datasets to the RMSE using original datasets. This measures

how much errors are increased from the prediction models using the cured datasets compared to

the prediction models using original datasets. Hereafter, for brevity nRMSEimputation,dataset ,method

denotes a nRMSE from a prediction using a method after an application of imputation to a dataset,

where imputation = {ori, FEFI, FHDI} and ori stands for original which means an imputation

is not applied; dataset = {app, air, phe, wea} and app, air, phe, and wea stand for appliance
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Table 5.2: Four key steps for FHDI method

Step Description

Cell construction Attribute values are transformed to a categorization

number, k, to make a cell. The available range of k is

1 to 35 in the current version of FHDI package.

Cell probability

estimation

Probability for each unique observed cell pattern is

estimated by EM algorithms. Sum of all cell probabil-

ities is 0.

Fractional weights

construction

A fractional weight for each donor is determined to fill

a missing part with imputed values.

Imputation Missing values are imputed by donors. FHDI uses

some selected donors while FEFI uses all possible

donors.

energy, air quality, phenotype, and weather, respectively; method = {GAM,SVM,ERT,ANN}.

For example, nRMSEori ,phe,GAM represents the nRMSE from a prediction using GAM with the

original phenotype dataset and nRMSEFEFI ,wea,SVM denotes the nRMSE from a prediction using

SVM with the weather dataset cured by FEFI. Note that each subscript can be used separately

(e.g., nRMSEori).

5.6.1 Positive role of FHDI on prediction accuracy improvement

To briefly touch upon the positive role of FHDI on prediction accuracy improvement, we cured

various datasets with different missing rates by using FHDI and a naive methods. Then, the

target response of each dataset is predicted using the four regression methods (i.e., GAM, SVM,

ERT, and ANN). Here, the naive method means curing missing values using the mean value of the

corresponding variable. For example, suppose that 10 of 100 instances of a variable are missing

and the mean value of 90 instances is 2.0. Then, the 10 missing values are filled with the value

of 2.0. For the FHDI, we used maximum values of k and M without prejudice (i.e., k=35 and

M =n). Table 5.4 presents the comparison of prediction results after curing by FHDI and the naive

method. Almost all prediction results using the FHDI method are better than those using the naive
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Table 5.3: Expectation ratio (i.e., expectation E[.] of each attribute in the original full data set

divided by that of cured data set by FHDI) with different missing rates (10, 30 and 50%). The

appliance energy dataset is used.

Attribute
E[Y ]/E[YFHDI ]

Attribute
E[Y ]/E[YFHDI ]

10% 30% 50% 10% 30% 50%

1 1.0023 0.9993 1.0116 8 1.0000 0.9998 0.9998

2 1.0105 1.0583 1.1058 9 0.9994 0.9964 0.9945

3 1.0000 1.0002 1.0002 10 1.0000 0.9999 1.0000

4 1.0000 1.0003 1.0001 11 1.0006 1.0022 1.0020

5 1.0000 0.9998 0.9997 12 0.9987 0.9959 0.9991

6 1.0002 1.0005 1.0010 13 1.0003 0.9986 1.0001

7 1.0000 0.9998 1.0000 14 1.0021 1.0015 1.0002

method in terms of prediction error. The difference of prediction error between the FHDI and naive

method is especially remarkable in the result using the phenotype dataset. The nRMSE from the

prediction using the naive method is 17 times larger than that using FHDI in the 50%-response

rate case. These results show that the FHDI outperforms the simple naive method in terms of

prediction accuracy.

Figures 5.1-5.8 show the influence of different response rates on prediction performances. The

value of the vertical axis represents nRMSE. For example, 1.05 represents that nRMSEFEFI is 5%

larger than nRMSEori . Most cases exhibit that the higher response rate, the lower RMSE. This

shows the sensitivity of missing values to prediction performances. The maximum increment of

nRMSE was 5 (Figure 5.2a).

In Figure 5.2a, nRMSEFEFI ,phe,GAM appears to be larger than that for other datasets. In Table

5.4, the RMSE from the GAM prediction with phenotype is remarkably smaller than that with

other datasets. To investigate the reason behind this salient trend, the coefficient of variance (CV)

of RMSE (i.e., the ratio between RMSE and the mean of target response) is used. In Figure 5.9,

CV of RMSE values are not changed significantly as the missing rate is changed from 10% to
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50%. The nRMSEFEFI ,phe,GAM , however, reduces sharply as the missing rate increases while that

for other datasets is not changed considerably. This implies that the CV of RMSE may influence

the impact of a response rate on prediction performances. In particular, the CV of RMSE from

phenotype prediction is notably smaller than that of others, resulting in a dramatic drop of the

nRMSEFEFI ,phe,GAM . This shows that the impact of response rates may become significant for a

prediction where the CV of RMSE is substantially small.

5.6.2 Impact of the categorization number

We investigate the impact of the initial categorization number (k) on the prediction performance

using GAM, SVM, ERT, and ANN with 4 datasets. The maximum value of k is 35 in the current

version of FHDI program (Im et al., 2018). Seven different k values (i.e., 5 to 35 with 5 interval) are

used for imputation to examine the influence of k value on prediction performances. Overall, the

nRMSE appears to decrease as k value increases. It is noticeable in the trends in the air quality and

phenotype datasets, (see Figures 5.2 and 5.3). Also, from the regression by GAM of the phenotype

dataset using 10% response rate, RMSE decreases from 7.2 to 6.1 as k increases from 5 to 35. Based

on these parametric study results, 30 and 35 are recommended for the initial categorization number

of FHDI. It should be noted that the current limit of 35 stems from the coarse-size categorization

of continuous variables in the FHDI R package’s CellMake function that uses 35 letters (0 to 9,

and a to z) internally. This limit will be extended in the future upgrade of the FHDI R package.

It should be noteworthy to explain why large k values result in better imputation results. Let

X be a random variable and {x}ni=1 be observed samples of X. The imputation can be implemented

when we know the distribution of X because FHDI is a hot deck imputation. The distribution

of X can be approximated by the distribution of Z, where Z is the categorized variable of X and

Z={1, ..., k}. The empirical distribution function of X and Z, F̂n(x) and F̂k(zx) are given by

F̂n(x) =
1

n

n∑
i=1

1xi≤x, (5.24)
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F̂k(zx) =
1

n

n∑
i=1

1zi≤zx , (5.25)

where 1 is an indicator function; zi is a converted value of x. We want to minimize supx |F̂k(zx)−

F̂n(x)|. For some constant c and all x ∈ R, |F̂k(zx)−F̂n(x)| ≤ c|k−1−n−1|, and |k−1−n−1| converges

to zero as k → n, and n→∞. Therefore, this implies that we may have better imputation results

when using large k value.

5.6.3 Impact of donor numbers

FHDI does not use all available donors to maximize computational efficiency. Instead, FHDI

uses M donors selected by PPS sampling. In the case that the number of all available donors is less

than specified M value, all available donors are used. The FHDI has additional variance than FEFI

due to the selection of donors and the variance is shown in the second term in Equation 5.7. When

M is large enough, the FHDI result is asymtotically close to the FEFI result. Table 5.5 summarizes

the impact of M on the prediction accuracy. The nRMSE are almost constant as M increase, which

means M of five is large enough for FHDI. Figure 5.5-5.8 show the change in M value is not likely to

significantly affect the prediction performance because M of 5 is large enough. This result is in line

with the recommendation from Rubin (1976) in which 2 to 10 is recommended as a donor number

and M of 5 is a default value in the relevant library, mice (Buuren and Groothuis-Oudshoorn,

2011)

Table 5.5: Impact of donor numbers on prediction using the weather dataset with 50% response

and GAM

M 5 15 25 35 45 55

nRMSE 1.0932 1.0933 1.0932 1.0932 1.0932 1.0930
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(a) GAM (b) SVM

(c) ERT (d) ANN

Figure 5.1: Impact of categorization numbers on prediction (appliance energy data set is used). 10

to 50% response rates are investigated.

(a) GAM (b) SVM

(c) ERT (d) ANN

Figure 5.2: Impact of categorization numbers on prediction (air quality data set is used). 10 to

50% response rates are investigated.
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(a) GAM (b) SVM

(c) ERT (d) ANN

Figure 5.3: Impact of categorization numbers on prediction (phenotype data set is used). 10 to

50% response rates are investigated.

(a) GAM (b) SVM

(c) ERT (d) ANN

Figure 5.4: Impact of categorization numbers on prediction (weather data set is used). 10 to 50%

response rates are investigated.
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(a) GAM (b) SVM

(c) ERT (d) ANN

Figure 5.5: Impact of donor numbers on prediction (appliance energy data set is used). 10 to 50%

response rates are investigated.

(a) GAM (b) SVM

(c) ERT (d) ANN

Figure 5.6: Impact of donor numbers on prediction (air quality data set is used). 10 to 50% response

rates are investigated.
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(a) GAM (b) SVM

(c) ERT (d) ANN

Figure 5.7: Impact of donor numbers on prediction (phenotype data set is used). 10 to 50% response

rates are investigated.

(a) GAM (b) SVM

(c) ERT (d) ANN

Figure 5.8: Impact of donor numbers on prediction (weather data set is used). 10 to 50% response

rates are investigated.
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(a) (b)

Figure 5.9: Relationship between coefficient of variance (CV) of RMSE and normalized RMSE from

(a) 10%-dataset and (b) 50%-dataset.

5.6.4 Impact of extreme data missing

In this section, we investigate the impact of an extreme data missing on prediction performances.

multiple datasets, having 10% to 50% missing rates with 10% interval, are intentionally generated

using the appliance energy data set. It should be noted that 10% of instances of the original

dataset is left without missing values since both FEFI and FHDI require fully observed instances

for imputation. The other 90% data are used to introduce missing values. For example, suppose

that we have 100 instances in an original dataset. 10 instances are left without any changes while

missing values are made at other 90 instances. The datasets generated from the original dataset

are cured by FHDI and the target response (i.e., appliance energy data set) is predicted using four

regression methods. Figure 5.10 represents the prediction result. The percentage in Figure 5.10

represents missing rates, not response rates. As the missing rate changed from 10% to 50%, the

minimum and maximum increment rates of RMSE are about 4% and 29% when using SVM and

ERT, respectively. Also, as the missing rate changed from 10% to 50%, RMSE increases are about

11% and 5.5% when using GAM and ANN, respectively. This result suggests that depending upon

data type the impact of high missing rate may be substantially large.
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(a) GAM (b) SVM

(c) ERT (d) ANN

Figure 5.10: Impact of extreme missing rates on prediction (appliance energy data set is used). 10

to 50% missing rates are investigated.

5.7 Conclusions

This study investigated behaviors and impacts of FHDI on prediction performance of statistical

and machine learning methods. We explored and examined various cases using four different practi-

cal engineering datasets under response rates ranging from 10% to 50% and a wide range of FHDI’s

two internal parameters (i.e., categorization numbers k and the number of donors M ). Amongst

popular statistical and machine learning methods, we adopted GAM, SVM, ERT, and ANN to

understand the quantitative impacts of FHDI on the regression prediction. With the normalized

RMSE (nRMSE) being a metric for prediction accuracy, results show that the FHDI outperforms

the simple naive method which fills in missing data using mean values of attributes, and also con-

firm the gradually increasing positive influence of FHDI on improving prediction performance as

the response rates increase. Detailed case studies for k and M suggest that k within 30 and 35

and M value around 5 are recommendable for general engineering data. This recommendation
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appears to be in line with the recommended donor number of the Rubin’s multiple imputation. An

investigation into the extreme missing data cases shows that the prediction accuracy is significantly

affected, e.g., the maximum increment of nRMSE was about 30% as the missing rate is increased

to 50% from 10%. The research results presented herein will benefit a broad audience of engineer-

ing domains. Particularly, general engineering missing data can be tackled by an assumption-free,

easy-to-use imputation method like FHDI, with which subsequent data analyses can be facilitated

with a better statistical rigor.
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CHAPTER 6. A COMPUTATIONAL FRAMEWORK FOR STATISTICAL

DATA-CURING AND PREDICTION OF BRIDGE AND TRAFFIC BIG

DATA

A technical report published in the Midwest Transportation Center

Ikkyun Song, In-Ho Cho, Brent Phares, and Anuj Sharma

Abstract

Systematic accumulation of bridge and traffic big data has been successful by virtue of advanced

structural health monitoring systems and automated sensing technologies. Still, active use of data

for long-term decision-making and strategic planning is in its infancy owing to big data-rooted chal-

lenges including severe data complexity, high dimensionality, intrinsic missing data, lack of powerful

learning and prediction methods, etc. This study sought to develop a computational framework

that can transform, merge, and importantly cure bridge and traffic big data to improve statistical

learning and prediction. We produced a hybrid big data by merging bridge and traffic data for

which we introduced an assumption-free multivariate imputation method for curing intrinsic miss-

ing data. A parallel computing algorithm was implemented for scalability. Validations focused on

years-long structural and traffic sensor data collected from a target bridge in Iowa. Results show

that the proposed framework appear to help improve statistical quality and prediction accuracy.

6.1 Introduction

Recently, data-driven research has been essential in the engineering fields, enabling researchers

to gain valuable knowledge from data. Examples can be found in broader engineering domains.

For instance, Lv et al. (2015) developed a traffic flow model using a deep learning method while

Perera and Mo (2016) used a similar deep learning approach to generate a condensed database
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regarding ship performances and navigation information for a general use. Le and Jeong (2017)

developed a methodology for integrating heterogeneous construction engineering terminologies into

representative terms by using a neural network.

Growing community-level databases are also noteworthy. Due to advances in strain measure-

ment technologies, bridge health monitoring (BHM) systems using various types of sensors were

developed to systematically accumulate relevant data (e.g., (Jang et al., 2010; Ko and Ni, 2005; Li

et al., 2004; Ntotsios et al., 2009)). Despite this active collection, the databases have been rarely

used to build prediction models for data-driven bridge managements. Li et al. (2003) proposed a

statistical model to represent a specific daily cycle for fatigue assessment of a specific bridge using

multiple linear regressions. Yet, the general use of such a specific model is challenging because the

daily strain history pattern and the pulse size do not remain constant. Rather, they may fluctuate

depending on other factors such as ambient temperature and real-world traffic flows. Therefore,

generalized predictive models for bridge strain data need to be developed for general use.

Another significant problem is missing data. In the BHM system, missing data issue appears

inevitable due to many causes including human-induced accidents or mistakes, mechanical mal-

functions, or environmental disruptions. The dataset from a real-world target bridge used in this

study also has substantial missing values at some timeframes due to sensor malfunctions, irregular

measurement times, traffic closure for maintenance, etc. To overcome the missing data issue with

a statistical rigor, this study adopted one of the most flexible and general statistical imputation

methods, the so-called fractional hot-deck imputation (FHDI) method. As shall be presented in de-

tail, all the missing values of bridge big data have been cured by FHDI prior to building a statistical

prediction model.

To achieve a higher predictive power and generality of the proposed framework, this study

adopted the generalized additive model (GAM) (Hastie and Tibshirani, 1990). GAM has been

mainly used to develop a general and flexible prediction core for strain behavior of bridges. GAM

is a flexible, nonparametric statistical model which has little restrictions on the number of variables
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and complex distributions of large data. GAM’s high prediction accuracy and flexibility have been

well demonstrated by authors’ prior works (Song et al., 2017, 2018b,c).

Objectives of this study are to (1) develop a systematic computational framework for collecting,

transforming and merging bridge and traffic data, (2) create a hybrid bridge-traffic dataset, (3)

apply an advanced data-curing method to the hybrid dataset, (4) develop a statistical prediction

model with the best combination of predictors based on a direct search algorithm, and (5) investigate

impacts of data-curing and inclusion of hybrid data on the prediction accuracy improvement. It

should be noted that the target responses are long-term behavior prediction rather than real-time

fluctuation prediction, for which a future extension will be developed.

The outline of this paper is as follows. The central procedure of data collection, transformation,

and the fusion of bridge sensors and traffic flow data will be addressed. The statistical theories of

a data-curing method (i.e. FHDI) and statistical prediction of GAM will be summarized. A direct

search algorithm in conjunction with GAM analyses will be presented to explain how to find the

best variable combination. A comparison against a correlation-based variable selection approach

will follow. The impact of data-curing and the hybrid data on prediction accuracy improvement

will be addressed. Before conclusion, a parallel computing strategy tailored for the algorithms of

this study will be provided.

6.2 Methodology

6.2.1 Data collection

The target bridge is located in the eastbound I-80 over Sugar Creek in Iowa. 71 sensors are

installed in multiple locations of the bridge (i.e., 53 on the bottom and 18 on the top) to measure

strains on the top and bottom flanges, and temperatures of steel, concrete, and air. The detailed

instrumental plan is shown in Figure 6.1.

Each sensor measures strains and temperatures at its location with the frequency of 250 Hz.

A raw data file was generated for every minute from June 2014 to October 2016, and a single file

includes all the data (i.e., date, time, temperature, and strain) measured by all sensors. Such all



123

Figure 6.1: Instrumentation plan of sensors of the target bridge

data in short time intervals are not appropriate for the long-term prediction; therefore the raw data

needs to be squeezed and converted to an interpretable form to facilitate the subsequent statistical

analyses. The procedure of extraction and transformation of data shall be described in the following

section.

6.2.2 Data extraction and transformation

The raw data files are text-based files, and thus size is too large (6 terabytes) to be directly

used in statistical inferences such as variable selection using multiple GAM analyses. Therefore,

we processed the raw files to extract the only information we want and generated compact binary

files using high-performance computing (HPC) techniques. The information related to peak strains

is extracted from raw data and stored in binary files while other information, such as strain values

between peak strains, are discarded. From this step, the data size reduces from 6 terabytes to 1
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Figure 6.2: Flow chart showing data-transformation from raw bridge and traffic data to the final

hybrid data set

gigabyte. The parallel strategy for this procedure shall be addressed in the latter section. The

entire workflow of these procedures is shown in Figure 6.2.

First, we transformed text-based files into binary files that include peak strains in pulses (see

Figure 6.3a). The top and bottom peak strains are determined such that strains more than 5µ

(hereafter, µ stands for 10−6) away from the median strain value. Peak strains adjacent to the

median value of strains (i.e., less than 5µ strain from the median) are considered as noises. Here,

the reason for selecting the 5µ as a threshold is that there exist a number of peak strains within

5µ and so, considering that the yield strain of steel is 0.002, those strains might not be significant

compared to peak strains outside the 5µ range (see Figure 6.3b). Note that since median strain

values are changed over time, peak strains are determined based on the median strain over 1 minute.

Next, the binary files are transformed to 1-hour csv-formatted datasets in which one instance

contains 8 digits of date (e.g., 20161115), month, day, hour, day of week, steel temperature, concrete

temperature, air temperature, median strain, number of measurement and frequencies of peak

strain. Peak strains have the bin size of 5µ and the range is between −100µ and 100µ. An example

of the histogram of peak strains, measured by one sensor over 1 year, is shown in Figure 6.4. The

noticeable range of peak strains appears to be between −20µ and −20µ, but this range varies

depending on sensor locations. The summary of datasets during these transformation steps is

shown in Table 6.1.
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(a)
(b)

Figure 6.3: Strain history over (a) 10 minutes and (b) 1 minute. Top peak and bottom peak strains

are selected outside the range between +5µ and -5µ from the median strain value

6.2.3 Data merging with traffic data

Traffic is directly related to strain behavior in bridges. Heavy traffic generates a large number of

strain fluctuations and traffic by large vehicles (i.e., truck) produces large strain peak values while

small vehicles generate small strain peak values. Traffic information, therefore, may significantly

impact on the prediction of bridge strain response. To investigate this impact, traffic data measured

from a location near the target bridge is merged into the bridge strain dataset for investigation.

The traffic is measured per five minutes and it has three categories: i.e., small-, medium-, and

large-sized vehicle.

6.2.4 Data curing: FHDI

FHDI (Kim and Fuller, 2004) is one of the advanced statistical methods to cure missing data. It

has little need of statistical assumption and prior knowledge about the original data because FHDI

takes an advantage of hot-deck imputation in which imputed values are only taken from observed

samples. FHDI also provide a consistent variance estimation while the multiple imputation (Rubin,

1987) estimates a variance inconsistently. These features make reasonable and reliable data curing.
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Figure 6.4: Histogram of peak strains

FHDI generates donors to be used to fill in missing values. Here, donors are sample sets that

have imputed values and are calculated using the imputation estimators. For curing one missing

value, multiple donors are used. Depending on how to select donors, there are two imputation

estimators: (1) fully efficient fractional imputation (FEFI) estimator and (2) FHDI estimator. FEFI

uses all donors for curing missing values while FHDI uses some selected donors. The imputation

estimators are shown in Equations 6.1 and 6.2.

ŶFEFI =
C∑
c=1

∑
i∈Ac

ωi

δiyi + (1− δi)
∑
j∈A

ω∗ij,FEFIyj

 . (6.1)

where c is index for partitioned groups where it takes values on {1, 2, · · · , C}; A is the index set of

all samples and is partitioned into C groups; Ac is index set of a group; ωi is sampling weight of ith

recipient; yi is the ith recipient; δi = 1 when yi is observed, otherwise δi = 0; ω∗ij,FEFI is fractional

weight for the FEFI estimator.

ŶFHDI =
C∑
c=1

∑
i∈Ac

ωi

δiyi + (1− δi)
M∑
j∈A

ω∗ijy
(j)
i

 . (6.2)
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Table 6.1: Summary of datasets during the transformation process from the raw data to the final

dataset

Dataset name (data
format)

Attribute Description

Raw data
(text-based format)

Date, time, temperature, strain
Raw data measured with 250 Hz
by sensors installed in the bridge

Binary data (binary
format)

Date, time, average temperature, peak strain,
number of measurement

A single instance contains
information for 1 minute

1-hour dataset (csv
format)

Date, time, day of week, average temperature,
number of measurement and median of strain
over 1 hour, strain frequencies

A single instance contains
information for 1 hour

1-hour dataset with
traffic (csv format)

Date, time, day of week, average temperature,
number of measurement and median of strain
over 1 hour, strain frequencies, traffic

Final hybrid dataset merged with
traffic data

where ω∗ijy
(j)
i is the fractional weight for the FHDI estimator; y

(j)
i is the ith imputed value of yi; M

is number of donors.

For the implementation of FHDI, the R package named by FHDI (Im et al., 2018) is used. Figure

6.5 shows four steps for the implementation and Figures 6.5b through 6.5d show the change of the

dataset throughout the steps. First, all samples are partitioned into multiple sets of groups to secure

enough number of donors for imputation. Here, the initial number of groups, k and donors, M are

set by users. If donors are not enough, some groups are combined to secure enough donors (Figure

6.5c). At least two donors are required for imputation. The impacts of k and M are investigated

in (Song et al., 2018a). Once groups for variables are determined appropriately, joint probabilities

of donors are calculated for each recipient. Here, the modified Expectation-Maximization (EM)

algorithm is used to estimate joint probabilities. An EM algorithm is an iterative method to find

the maximum likelihood estimate of a parameter which is a joint probability in this study. In the

first E-step, the initial conditional probabilities are computed and then the conditional probabilities

are updated to maximize the likelihood in the M-step. The updated probabilities enter the E-step.

These procedures continue until it converges. Lastly, with selected donors, the missing values are

filled using the conditional probabilities. Variance is estimated using a jackknife method (see (Im

et al., 2015, 2018) for detail).
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(a)

(b)

(c) (d)

Figure 6.5: Example of key procedures for FHDI: (a) entire flow chart; (b) original dataset in which

the NA stands for a missing value; (c) categorized dataset; (d) cured dataset
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6.3 Statistical Learning and Prediction

6.3.1 Summary of generalized additive model

Generalized additive model (Hastie and Tibshirani, 1990) is a generalized linear model, holding

strong flexibility and general applicability. It uses an unspecific smoothing function rather than

relying on predefined distributions or parameters. By virtue of the unspecified smoothing function,

the predictors do not need to have a set of parameters, where predictors mean independent variables

in regression models. GAM is formulated by predicting target of ith sample (denoted by Yi ∈ R)

with n predictors (denoted by xij ∈ Rn where 1 ≤ j ≤ n). The general form of GAM can be

represented as:

Yi = g(µi) =
∑
j

fj(xij), (6.3)

where g is a smooth link function; the expectation of Yi conditional on xi (E(Yi | xi)) is denoted

by µi; Yi is a target response from an exponential family of distribution (e.g., normal, binomial, or

gamma distribution); fj are smooth functions of covariates xji (Wood, 2006). Essentially, GAM has

a non-parametric smooth function for each covariate. Simply explaining, the following description

includes a single variable, but generalization for multiple variables is straightforward (Wood, 2006).

Let GAM be E(Y | x) = f(x), and the smoothing function f can be represented as:

f(x) =
k∑
j=1

bj(x)βj (6.4)

where bj is the jth basis function and βj is an unknown parameter. The model can be fit by

maximizing the corresponding likelihood. A penalty term is given as λ
∫

[f
′′
(x)]2dx where λ is

smoothing parameter. If λ is too large, it is an over-smoothed estimated while it is under-smoothed

estimated if λ is too small. This error is getting greater in both directions. The λ value is optimized

by minimizing generalized cross-validation score (Golub et al., 1979) and selected appropriately via

the relevant GAM library. Therefore, there is little need to manually adjust the λ value (Song

et al., 2018c).

In sum, GAM requires no prejudice on relations among parameters and holds little restriction

to the number of variables and nonlinear distribution of variables. Importantly, GAM’s internal
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Figure 6.6: Comparison of prediction performance between GAM and other methods. In vertical

axes, the higher value indicates the higher prediction accuracy. (cited from Song et al. (2018b))

setting always seeks to balance the fitting accuracy and smoothness, in which the generality and

flexibility of GAM are rooted.

6.3.2 Excellent performance of GAM compared to SVM and ERT

In addition to the flexibility of GAM owing to unspecified smooth functions, GAM also performs

well in terms of prediction accuracy. In the previous work (Song et al., 2018c), the GAM showed

a better performance compared to well-known multiple linear regression and two popular machine

learning algorithms (i.e., support vector machine (SVM) and extremely randomized trees (ERT)).

The comparison result is shown in Figure 6.6 in which three metric values are normalized by the

values of GAM: CV Eb/CV E is the ratio of base cross-validation error (CV Eb) to cross-validation

error (CV E), Pearson is the Pearson correlation coefficient, and R2 is the coefficient of determina-

tion (Song et al., 2018b). The result shows GAM outperforms than multiple regression and slightly

performs better than SVM and ERT.
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Another advantage of GAM compared to ML is that because GAM is a statistical regression

model, a prediction result by GAM can be clearly explained based on statistical theories and

methodologies while, for ML methods, the pathway from predictors to a response is likely to

be unclear due to the arbitrary nature and randomness of ML methods. This advantage of the

statistical model makes the prediction process interpretable and allows researchers to build a better

predictive model according to their statistical knowledge.

6.3.3 Direct search versus correlation-based predictor selection

To find the best predictors, GAM models are built using multiple predictor combinations. 13

variables are used as predictors and 7 variables are used as responses. The summary of predictor

and response variables is shown in Table 6.2. The best predictor combinations are selected using

two different approaches: the correlation method and the direct search algorithm suggested by

authors (Song et al., 2018b).

For the correlation method, best predictors are selected based on correlation values (Table

6.3). For instance, if a GAM model is built using three predictors, three predictors with the top 3

correlation values are selected. For the direct search method, all possible combinations are examined

without any prejudice on relations among predictors and responses or any statistical inference. For

example, when 7 predictor variables are used for finding the best predictor combination, there are

total 1, 716 (i.e. [13!/7!(13−7)!]) combinations to be examined. The computation cost, therefore, is

very expensive, and so the serial computing will require a long running time. A parallel computing

algorithm is developed using Rmpi (Yu, 2002) to distribute assigned searching tasks. Rmpi is a

library for parallelization. The detailed parallel strategy shall be explained in the later section.

The comparison of the prediction performance of GAM model between the two different ap-

proaches is shown in Figure 6.7. Root Mean Squared Error (RMSE) values are normalized by the

highest RMSE value. When a small number of predictors are selected, the prediction performance

using the direct search algorithm is better than that using correlation, and the predictors selected

by each method are different. For instance, when 2 predictors are used, the predictors selected are
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Table 6.2: Summary of predictor and response variable for GAM model

Role Vriable Types Description

Predictor

Date
Integer
(continuous)

8-digit number of date (e.g., 20150723)

Month
Integer
(categorical)

Categorical number for month (e.g., 1 and 12 indicate
January and December)

Day
Integer
(categorical)

Categorical number indicating day (i.e., 1 through 31)

DOW
Integer
(categorical)

Categorical number indicating day of week (e.g., 0 and
6 indicate Sunday and Saturday)

Hour
Integer
(categorical)

Categorical number indicating hour (i.e., 0 through 23)

steelTemp
Float
(continuous)

Steel temperature (◦F) for 1 hour

concTemp
Float
(continuous)

Concrete temperature (◦F) for 1 hour

airTemp
Float
(continuous)

Air temperature (◦F) for 1 hour

strainMedian
Float
(continuous)

Median strain value for 1 hour (µ)

nMeasure-
ment

Integer
(continuous)

Count of strain measurement for 1 hour

smallCar
Integer
(continuous)

Traffic count by small size of vehicle for 1 hour

mediumCar
Integer
(continuous)

Traffic count by medium size of vehicle for 1 hour

largeCar
Integer
(continuous)

Traffic count by large size of vehicle for 1 hour

Response

strainMean-
Bottom

Float
(continuous)

Expected value of the bottom peak strains for 1 hour

strainMean-
Top

Float
(continuous)

Expected value of the top peak strains for 1 hour

strainMin
Integer
(continuous)

Minimum peak strain value for 1 hour (µ)

strainMax
Integer
(continuous)

Maximum peak strain value for 1 hour (µ)

strainSTD
Float
(continuous)

Standard deviation of peak strain (µ)

area
Integer
(continuous)

Area under strain distribution
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’hour’ and ’air temperature’, and ’hour’ and ’small car traffic’ from the direct search algorithm and

the correlation method, respectively. This result shows how the selection of predictors is different

between the two methods and the direct search method is better than the correlation method.

6.3.4 Prediction of traffic data using bridge sensor data

In the preceding section, the direct search method was investigated to find the best predictor

combination for 6 target responses. The same approach is applied to investigate the application of

bridge sensor data to the prediction of traffic data. Here, the previous 6 target responses related

to strain are considered as predictors and three traffic variables (i.e., traffic of small, medium and

large size of car) are treated as target responses. Best predictors for 3 target responses of the traffic

data are shown in Figure 6.8. Usually, the more predictors, the higher prediction accuracy, but

the highest accuracy is not always guaranteed when using all predictors. The numbers of the best

predictor variables for the small, medium and large size of cars turned out to be 15, 13 and 14

among 16 variables. Those selected predictors are listed in Table 6.4.

Figure 6.9 presents comparisons between measured values and GAM prediction results for three

traffic groups. The more points adjacent to the red diagonal line (i.e., line of equality), the better

prediction performance. The prediction accuracy of three traffic groups does not seem to be signif-

icantly high because a number of points are spread out from the red line. However, this result is

still noteworthy because, in the case that traffic is not available, this approach enables researchers

to estimate traffic from the proposed prediction model using bridge sensor data.

6.4 Remarks on Various Impacts on Prediction Accuracy

6.4.1 Impact of data curing on prediction

Data measured by sensors typically have missing values due to various reasons such as human-

made mistakes, measurement errors, malfunctions of sensors, etc. Missing data may result in low

accuracy in statistical inference and machine learning prediction. FHDI has been adopted in this

study to cure missing values in the hybrid data set. The original dataset has 10% of missing
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Figure 6.7: The comparison of the best predictor selection between the algorithm used in this

study and correlation: (a) mean of top peak strains; (b) mean of bottom peak strains; (c) standard

deviation of median strain; (d) minimum strain value of bottom peak; (e) maximum strain value

of top peak; (f) area
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Figure 6.8: The number of the best predictors of traffic data prediction: traffic of (a) small car, (b)

medium car and (c) large car

Figure 6.9: GAM prediction vs. measured value of traffic: (a) small car, (b) medium car and (c)

large car
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Table 6.4: Best predictors selected by the direct search method

Prediction
target

# of
variable

Predictor (p-value)

strainMean
Top

10

Month(4.91e-9) Hour(<2e-16) concTemp(1.09e-6)

airTemp(4.80e-7) strainMedian(4.22e-5) nMeasurement(<2e-16)

smallCar(9.15e-11) mediumCar(0.106) largeCar(3.24e-15)

Date(2.26e-11)

strainMean
Bottom

12

Month(<2e-16) Day(0.02626) Hour(<2e-16)

DOW(<2e-16) steelTemp(<2e-16) concTemp(3.06e-12)

airTemp(<2e-16) strainMedian(<2e-16) nMeasurement(<2e-16)

smallCar(2.63e-9) mediumCar(0.00224) Date(<2e-16)

strainSTD 10

Month(4.32e-9) Hour(<2e-16) concTemp(3.05e-7)

airTemp(2.89e-7) strainMedian(2.92e-5) nMeasurement(<2e-16)

smallCar(3.41e-13) mediumCar(0.191) largeCar(9.10e-12)

Date(2.39e-10)

strainMax 11

Month(5.52e-11) Hour(<2e-16) DOW(9.81e-15)

concTemp(1.39e-6) airTemp(2.49e-6) strainMedian(2.46e-5)

nMeasurement(<2e-16) smallCar(8.14e-10) mediumCar(0.27)

largeCar(2.34e-10) Date(3.78e-10)

strainMin 12

Month(5.42e-6) Day(0.364342) Hour(<2e-16)

DOW(<2e-16) steelTemp(1.22e-12) concTemp(0.000649)

airTemp(8.12e-7) nMeasurement(<2e-16) smallCar(0.072332)

mediumCar(0.025373) largeCar(0.007920) Date(<2e-16)

area 12

Month(<2e-16) Day(5.05e-4) Hour(<2e-16)

DOW(<2e-16) concTemp(<2e-16) airTemp(2.41e-15)

strainMedian(3.73e-10) nMeasurement(<2e-16) smallCar(1.06e-8)

mediumCar(0.00458) largeCar(<2e-16) Date(6.98e-13)

small car
traffic

15

Month(<2e-16) Day(4.46e-13) Hour(<2e-16)

DOW(<2e-16) steelTemp(9.69e-7) concTemp(3.75e-5)

airTemp(8.95e-7) strainMedian(4.19e-4) Date(<2e-16)

Area(5.41e-13) strainMax(1.27e-4) strainMeanBottom(1.04e-4)

strainMeanTop(2.50e-15) strainMin(1.96e-7 ) strainSTD(4.71e-16)

medium
car traffic

13

Month(<2e-16) Day(<2e-16) Hour(<2e-16)

DOW(<2e-16) steelTemp(3.17e-12) concTemp(2.39e-12)

airTemp(<2e-16) strainMedian(<2e-16) nMeasurement(0.2495)

Date(<2e-16) Area(9.07e-7) strainMax(0.0122)

strainSTD(7.70e-8)

large car
traffic

14

Month(<2e-16) Day(<2e-16) Hour(<2e-16)

DOW(<2e-16) steelTemp(3.40e-9) concTemp(1.14e-7)

airTemp(2.46e-14) strainMedian <2e-16) nMeasurement(<2e-16)

Date(<2e-16) Area(<2e-16) strainMeanTop (6.24e-7)

strainMin(0.78) strainSTD(1.62e-12)
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values. The six target responses in Table 2 are predicted using datasets with and without data

curing, respectively, and their prediction performances are compared to investigate the impact of

imputation on prediction. Figure 6.10 shows the comparison result. RMSE values, normalized

by the values using imputed datasets, are used as the performance metric. The prediction errors

are decreased for all 6 cases when using the imputed dataset. Although the amount of prediction

accuracy improvement is not significantly large, the improvement is confirmed for all 6 target

responses (Figure 6.9). FHDI cures missing values only using observed values and tries to preserve

the joint probability of all variables in the original population (Im et al., 2015). In light of the

underlying theory of FHDI, the data structure and predictor-target variables’ relation may affect

how much data-curing improves the prediction accuracy. For instance, data-curing may significantly

improve the data-prediction when a dataset has a high missing rate. This study performed another

case study with a dataset which has 9,357 samples in 13 variables. We intentionally made three

datasets that have different missing rates and then cured the missing values using FHDI. A target

response was predicted using GAM. Figure 6.11 shows the case when the data-curing holds a

substantial impact on data-prediction. In Figure 6.10, we can confirm the higher missing rates, the

larger RMSE.

6.4.2 Impact of traffic information on prediction performance

Another prediction analysis is conducted to see the impact of traffic data on prediction per-

formance. The same target responses are predicted using the datasets with and without traffic

information, respectively. The effect of inclusion of traffic data on prediction is investigated by

comparing prediction performances. Figure 6.12 presents the comparison result, in which the

RMSE values are normalized by the values obtained from prediction using the dataset including

traffic. Once again, the lower RMSE indicates the better prediction performance. The result shows

the inclusion of traffic data invariably improves the prediction performance for all 6 cases. Al-

though the accuracy improvements may not look significant in the current dataset, the inclusion

of traffic data apparently holds positive influence on the data-prediction. This means that for the
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Figure 6.10: Comparison of GAM prediction performances using the dataset with and without

imputation

Figure 6.11: Impact of missing rates on prediction accuracy (cited from Song et al. (2018a)
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Figure 6.12: Comparison of GAM prediction performances using the dataset with and without

traffic data

current dataset the traffic data provide additional meaningful information to bridge sensor data,

underpinning the consistent merge of bridge and traffic big data over a longer time period.

Figure 6.13 shows the influence of the inclusion of traffic data on prediction performance de-

pending on different missing rates, in which the target response is strainMeanComp. In the case

of 40% of missing rate, the normalized RMSE is about 1.06 while that is about 1.00 in the case of

10%, which indicates the inclusion of traffic data has a high impact on the prediction performance

in a dataset with a high missing rate.

6.5 Parallelization Strategy

Figure 6.14 shows the job distribution and collection scheme for the parallel computing for

the best predictor selection. The master processor only manages whole computing processes (i.e.,

distributes searching tasks to slave processors and collect the searching results from them).

Slave processors build multiple GAM models using their assigned predictor combinations, pre-

dict the target responses, calculate the prediction accuracies using RMSE, and return the RMSE

values and the corresponding predictor combinations to the master processor. Finally, the master
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Figure 6.13: The impact of the inclusion of traffic data on prediction of the strainMeanComp

depending on different missing rates

Figure 6.14: Job distribution scheme in the parallel computing system. Jobs are evenly distributed

to slaves and then the master collects results from slaves and finds the best predictors
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Figure 6.15: Pseudo code for algorithm of the parallel computing to find the best predictor combi-

nation

processor selects the best predictor combination based on the collected results from slaves. The

pseudo code of this parallel computing procedure is shown in Figure 6.15. Figure 6.16 shows a

speed-up test result in which Tn/T1 represents the ratio of running time using n slave processors

to that using 1 processor. The parallel computing appears to achieve a reasonable scalability.

6.6 Conclusions

In order to promote the active use of bridge and traffic big data for long-term decision-making

and strategic planning, this study developed a computational framework that is capable of tackling

severe complexity, high dimensionality, missing data problems, and the lack of powerful learning
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Figure 6.16: Speed-up test using parallel computing

and prediction methods. The developed framework can transform, merge, and squash bridge and

traffic big data to improve data-learning and prediction process. The framework adopted a direct

search algorithm for a superior predictive power and the fractional hot-deck imputation method

for data curing. The framework created a hybrid big data by merging bridge and traffic data

and parallel computing algorithms were implemented for scalability and expandability. By using

three-year strains and traffic data collected from a target bridge, this study asserts that the direct

search algorithm appears to outperform the correlation-based approach in model selection and

data prediction. Also, results underpin that data curing and the hybrid big data appear to hold

positive impact on improving statistical learning quality and prediction accuracy. All the developed

programs will be made publicly available to maximize broader impacts of research community.
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CHAPTER 7. CONCLUSIONS

This dissertation focuses on developing a systematic computational framework for infrastructure

databases using advanced statistical methods, such as the generalized additive model (GAM) and

fractional hot-deck imputation(FHDI), and parallel computing technology. The GAM is a flexible

non-linear statistical model due to its unspecified smooth function in which covariates enter the

model without any prejudice or assumption of variables. All manuscripts provided herein used this

novel statistical model for accurate prediction. The speed-up test results demonstrate the parallel

computing is useful for a large amount of data and remarkably reduces the computing time. FHDI

shows its reliable ability of prediction accuracy improvement. The following paragraphs discuss the

detailed findings of the studies.

The first study developed a computational framework to utilize GAM to accurately predict

runway incursion (RI) in the major US airports. Relevant information, such as the geometric

information of airports, operational data, and visibility data were collected from heterogeneous

databases in the Federal Aviation Administration. The data collected are transformed into a concise

dataset for data analysis. Using the GAM with a direct search (DS) algorithm, the best predictor

variables were identified for RI prediction. Results show that all variables are not always necessary

for accurate prediction and five variables were selected: (1) the number of taxi operations, (2) the

number of general operations, (3) hours of high impact visibility, (4) hours of slight impact visibility,

and (5) sum of hours of high, moderate, and slight impact visibility. The principal component

analysis (PCA) method was compared to the DS and it turned out that DS outperforms the PCA-

based variable selection. The comparison between GAM and ANN also illustrates the superior

prediction power of GAM. This study reveals the clear causal pathway between salient variables

and provides the relevant importance of predictor variables, which will help stakeholders to arrive

at a practical decision.
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The second study expounded upon GAM that can facilitate a data-driven approach in the

earthquake engineering field. Particularly, reinforced concrete (RC) shear wall data are used for

statistical learning and prediction. The important variables are selected by using the DS method.

Validations to real-world earthquake engineering data exhibit a promising capability of GAM. The

prediction performances of GAM are compared to the high-precision simulation results. Results

show that the statistical prediction holds a reasonable level of accuracy. In terms of running times,

the statistical approach appears to be superior to the simulation approach.

The third study investigated efficient variable selection methods and identified the relative

importance of predictor variables for GAM prediction using field survey pavement and simulated

airport pavement data. The direct search method can find the best predictor variables, but it

takes a long time depending on the size of data and number of predictor variables. However, the

backward selection based on AIC can provide acceptable prediction accuracy with a much smaller

amount of time than that of the direct search approach. Age, thickness, joint spacing, and overlay

type variables turn out to be relatively significant for GAM prediction in the field survey data,

and variables of thickness and modulus of pavement turn out to play an important role in the

simulated airport pavement data. The impact of family distribution on GAM prediction was also

investigated. The results show that Gamma distribution appears to be reliable for most cases.

The fourth study examined the impact of FHDI on statistical learning and ML regressions

using four engineering databases. To this end, the different response rates from 10% to 50% and

a wide range of FHDI’s two parameters have been examined. Multiple regression methods are

adopted including GAM, SVM, ERT, and ANN to investigate the quantitative impacts of FHDI

on the regression prediction. Normalized RMSE is used to measure the prediction accuracy of each

case. Results show that FHDI outperforms a simple naive method in terms of prediction accuracy

improvement. According to the parametric study, it turned out k of 30 or 35 and M of 5 are optimal

parameter setting for FHDI implementation using general engineering data.

The fifth study developed a systematic computational framework for collecting, transforming,

and squashing bridge sensor and traffic big data. Advanced statistical methods, the FHDI and
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GAM, are adopted for seamless data curing and accurate prediction. Three-year strain, temperature

data, measured by sensors installed in the target bridge, are used to predict the bridge’s structural

behaviors. Results show that the direct search method is superior to the correlation-based variable

selection approach, and that the hybrid data, combining bridge and traffic data, hold a positive

impact on the prediction accuracy improvement.

By virtue of the ”additive” nature of GAM, the prediction accuracy will be able to be improved

as community-level databases continue to evolve, which will enable researchers and stakeholders

to better understand the underlying relationship among variables in databases and devise a better

decision based on the improved results. The investigation of more sophisticated methods for efficient

variable selection can be a topic for further research. The current version of FHDI program is

serial. For a small dataset with a few variables, this program can complete the implementation in a

reasonable time; however, this time will exponentially increase as the data size become bigger and

the dimensions of variables increases. Hence, the development of a parallel version of FHDI can be

the next research topic.
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