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This study presents a multiscale computational model with its verification and validation 

to mechanical behavior predictions of bituminous composites that are subject to fracture 

damage.  Bituminous composites are classical examples of multi-phase composites in 

different length scales.  The understanding of the mechanical behavior of asphaltic media 

has been a challenge to the pavement mechanics community due to multiple complexities 

involved: heterogeneity, anisotropy, nonlinear inelasticity, and damage growth in 

multiple forms.  To account for this problem in an accurate and efficient way, this study 

proposes the use of the two-way coupled multiscale computational modeling technique. 

The two-way coupled multiscale model is based on continuum thermo-mechanics and 

is implemented using a finite element formulation.  Two length scales (global and local) 

are two-way coupled in the model framework by linking a homogenized global scale to a 

heterogeneous local scale representative volume element (RVE).  With the unique 

multiscaling and the use of the finite element technique, it is possible to take into account 



 
 

 

 

the effect of material heterogeneity, inelasticity, and anisotropic damage accumulation in 

the small scale on the overall performance of larger scale structures.   

Along with the theoretical model formulation, several example problems are shown: 

some to verify the model and its benefits through comparisons with analytical solutions 

and single-scale simulation results, and others to validate the applicability of the 

approach to model bituminous composite where material viscoelasticity, mixture 

heterogeneity, and cohesive zone fracture are involved. 
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Chapter 1 

Introduction 

It is well known that the economical development of a country is directly affected by its 

transportation system. Roadways are used to transport people and products from one 

point to another. From an economic perspective, travel time accounts for almost half of 

all costs experienced by highway users. The United States has the largest network of 

roadways of any country with a total length of about 6.5 million kilometers. From that, 

4.2 million kilometers are considered paved roadways, of which 94% are asphalt 

surfaced.  

Even though 65% are considered paved, the majority of U.S. roadways require 

maintenance before reaching their design life. According to the American Association of 

State Highway and Transportation Officials (AASHTO, 2009), 50% of the roads are rated 

as in bad condition, which increase not only the travel time spent by the users on site but 

also the maintenance costs on their vehicles.  

Cumulative distresses, such as permanent deformation, fatigue cracking, raveling, and 

stripping, are visible on the pavement surface layer. The excessive distresses lead to 

major areas of deteriorations like potholes (Figure 1). Those distresses are a result of a 



2 
 

 

 

combination of various factors, i.e., improper choice of material combinations 

(percentage of asphalt binder and aggregates, aggregate’s gradation and source, etc), 

excessive traffic loadings (more or heavier loads than anticipated in design), 

environmental effects (moisture conditions, seasonal climate changes), etc. Thus, 

pavement design methods need to take into consideration those factors in order to obtain 

reliable structures.  

 

Figure 1: Potholes formed due to excessive fatigue cracking and permanent deformation. 

 

The large damaged areas (macrocracks, surface depressions, potholes, etc) observed 

on the pavement surface layer usually arise after the combination of small scale 

phenomena (microcracks, aggregate particles interactions, and mixture constituents 

accommodation). Thus, it is important to understand when, where, and why the 

microscale damage will initiate and propagate. Figure 2 illustrates the formation of 

macrocracks after the coalescence of microcracks at the smaller scale. 
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Figure 2: Macrocracks formation due to microcracks. 

 

Department of roads usually rely on extensive and costly laboratory tests to determine 

whether or not asphalt mixtures would be appropriate for field applications. The results 

from performance tests to access mixture’s moisture resistance and rutting susceptibility 

have been used as pass/fail criteria of asphalt mixtures. Those results can be useful in 

ranking different material combinations; however, the phenomena that occur inside the 

specimens (aggregate and asphalt binder interactions, and crack initiation and 

propagation) that lead to either a successful or a weak blend of materials cannot be fully 

assessed.      

There is a need for mechanistic models that can account for the existing complexities 

of asphaltic composites, e.g., heterogeneity, anisotropy, nonlinear inelasticity, and 

damage growth in multiple forms.  

Some researchers use the so-called continuum damage models to predict the fracture 

behavior of asphalt composites.  The composite overall damage-dependent behavior is 

accounted by the use of internal variables, which are phenomenologically defined after a 
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fitting process of experimental results with the assumed damage evolution model. 

Although this approach is relatively simple to apply, it does not account for the 

interactions among materials constituents and the creation of internal boundaries (such 

microcracks). Besides, it requires extensive laboratory performance tests for every 

combination of materials and applied loading conditions. 

Alternatively, other researchers have been using computational microstructure 

approaches with discrete fracture involved to predict the damage-dependent behavior of 

bituminous composites. In those models, the material heterogeneity can be taken into 

account and crack initiation and growth can be predicted during the analysis. However, 

bituminous mixtures typically contain thousands of irregularly-shaped, randomly-

oriented aggregate particles along with thousands of potential cracking sites. The solution 

for such a problem would require the use of a tremendous amount of computational time 

and effort, which is rarely feasible with the computing power currently available.  

Therefore, there is a pressing need for reliable models that could account for mixture 

complexities yet using a fair computational effort.  

One approach, which has been receiving attention from the mechanics community, is 

that of computational micromechanics multiscale modeling. In this approach, different 

length scales within the macroscopic structure are separately analyzed and then linked 

together. A micromechanics problem is solved at the smaller scale using only basic 

constituent properties, and, when statistical homogeneity on the smaller scale 

representative volume element (RVE) is satisfied, constitutive equations for the larger 

scale can be produced using a homogenization principle. Therefore, the global 



5 
 

 

 

constitutive behavior of heterogeneous materials can be determined by the solution of a 

micromechanical boundary value problem of the smaller scale RVE, reducing 

considerably the computational time required to solve the problem compared to the ones 

in the single scale microstructure models. 

 

1.1 Research Objectives 

The main objective of this dissertation is to model bituminous composites using a 

computational micromechanics model based on two-way coupled multiscale.  Since the 

large scale damage is associated with small scale phenomena, it is fundamental to 

understand not only the interactions among material constituents, but also the initiation 

and propagation of internal boundaries, which may lead to major distresses on asphaltic 

structures. That said, better material combinations and/or sources can be chosen leading 

to more reliable designs.  

More specifically, the research objectives are as follows: 

 Verify the two-way coupled multiscale model by comparing numerical results 

with analytical solutions developed; 

 Develop a procedure to determine representative volume element (RVE) for 

bituminous composites using image analysis techniques; 
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 Obtain fundamental material properties experimentally to be used as input on the 

multiscale model; 

 Validate the two-way couple multiscale model to predict the damage-dependent 

behavior of laboratory-fabricated bituminous mixture; 

 Investigate damage evolution characteristics on bituminous composites.  

 Perform a parametric analysis to verify the influence of important design 

variables on the bituminous composite mechanical response. 

 

1.2. Organization of Dissertation 

Following this introduction, this dissertation is organized as follows. Chapter 2 is 

dedicated to literature review of the main modeling approaches applied to predict 

mechanical behavior of bituminous composites. Chapter 3 consists of the description of 

the two-way coupled multiscale computational model used and verification by means of 

comparisons of closed-form solution problems with numerical results. In Chapter 4 the 

laboratory testing methods required for the model validation are described. Details about 

bituminous composite specimen geometry and material properties, as well as the loading 

conditions used in the bending beam tests for model validation are shown. Furthermore, 

required fundamental material properties for local scale analysis are pointed-out 

altogether with suggested laboratory testing methods to obtain the material parameters.  
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Chapter 5 is focused on the determination of bituminous composite representative 

volume elements through the use of image analysis of bituminous composite internal 

structure as well as the analysis of effective properties of the composite based on finite 

element simulations. Chapter 6 consists of validation-calibration of the model to predict 

damage-dependent behavior of laboratory fabricated asphaltic composites. Comparisons 

of experimental results with numerical results are presented. In Chapter 7, a parametric 

analysis of some design variables to study their impact on the overall bituminous 

composite behavior is performed. Finally, in Chapter 8 the outcomes from this 

dissertation and concluding remarks are drawn.  
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Chapter 2 

Literature Review 

Composite materials have been widely used in many engineering applications, such as in 

aircrafts, tank armors, commercial and residential buildings, bridges, pavement 

structures, and many others. Composites are made of two or more constituent materials, 

and the overall structural performance of the composite when it is subject to mechanical 

loads can be improved by taking advantage of the characteristics of the constituents. 

Understanding the contribution of the constituent phase on the overall behavior of the 

composite is of fundamental importance.  

Bituminous composite is an example of a composite material that is made by 

combining aggregate particles, an asphalt binder, and voids. Additives such as styrene-

butadiene-styrene (SBS), warm mixture additives, hydrated lime, and others can also be 

incorporated into the mixture to enhance other characteristics of the composite. Figure 3 

illustrates a typical cross section of a bituminous specimen fabricated in a laboratory. 
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Figure 3: Typical cross-section area of a laboratory fabricated bituminous specimen. 

 

Understanding the mechanical behavior of bituminous composites has been a 

challenge to the civil engineering community due the existence of multiple complexities: 

heterogeneity, anisotropy, nonlinear inelasticity, and damage growth in multiple forms. 

The role played by each constituent material and its effects on the overall behavior of the 

composite needs to be carefully investigated. 

Many investigative approaches have been developed by the scientific community. 

The two main modeling techniques used to predict damages in asphalt composites are the 

continuum damage technique and the discrete fracture technique that considers the 

microstructure of the composite. Advantages and shortcomings exist in both techniques 

when modeling the bituminous composite.  
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2.1 Continuum Damage Modeling 

The continuum damage models have been commonly used to determine the damage 

behavior of asphaltic composites. In such models, asphalt composites are treated as 

homogenous bodies. In those models, microstructure analysis is not performed, but 

structural degradations in the microstructures are considered in a homogenized way using 

internal state variables.  

The choice of the functional form for the damage evolution function is somewhat 

arbitrary. Generally, damage parameters are phenomenologically determined by matching 

experimental testing results with damage evolution characteristics. Thus, the use of the 

continuum damage approach could be cumbersome because large numbers of 

experimental tests would be required to produce statistically derived empirical functions 

to predict the damage-dependent asphalt behavior. In addition, the damage parameters 

depend on the mixture and loading type, which means that for every analysis of a specific 

mixture and/or loading of interest, another large set of experimental tests would be 

required. 

Even though this approach presents some limitations, many researchers have been 

using it to characterize the structural degradation of asphalt media due its simplicity 

(Schapery, 1990; Park et al., 1996; Lee and Kim, 1998; Lee et al., 2000; Christensen, 

2002; Daniel and Kim, 2002; Chehab et al., 2003; Gibson et al., 2003; Tashman et al., 

2004; Masad et al., 2005).  
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Because the cracks do not need to be explicitly modeled in the continuum damage 

approach, the computational effort is tremendously reduced compared to that required in 

the discrete fracture based models. Thus, the use of continuum damage models can be an 

alternative for asphaltic composite modeling. However, those models do not fully 

account for the fundamental characteristics, particularly the formation of numerous 

cracks on multiple length scales.  

 

2.2. Microstructure Models with Discrete Fracture  

Microstructure models have been receiving attention from the asphalt mechanics 

community. Using this approach, the effects of material heterogeneity is taken into 

account by addressing the mixture constituents separately. Thus, the interactions of 

individual components on the overall behavior of asphalt mixtures with regard to 

heterogeneity and anisotropy can be carefully investigated. Effects of changes in internal 

variables (such as volume fraction, particle size distribution and orientation) on the 

overall composite response can be evaluated without having to perform costly and time-

consuming large-scale mechanical tests.   

Furthermore, the addition of the discrete fracture model into the microstructure 

approach allows the prediction of the formation and growth of internal boundaries 

(cracks) during analysis. One well-known approach to model cracks is the cohesive zone 

model. The cohesive zone model uses mathematical formulations to remove stress 
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singularities ahead of the crack tip. Thus, the fracture behavior of materials can be 

regarded as a gradual phenomenon in which separation takes place across an extended 

crack tip or cohesive zone (also called the fracture process zone), where fracture is 

resisted by cohesive tractions. More details about cohesive zone models will be described 

in section 2.4 of this chapter. 

 

2.3. Micromechanics Multiscale Approach with Discrete 

Fracture 

Although the microstructure models appear to be suitable for prediction of bituminous 

composites behavior, it requires an impractical number of degrees of freedom in order to 

discretize all heterogeneities that typically exist in bituminous mixtures.  

In an attempt to improve the efficiency of microstructure-based models, some 

researchers have been using computational micromechanics multiscale models, as 

demonstrated in many studies (Feyel and Chaboche, 2000; Fish and Wagiman, 1993; Fish 

and Shek, 2000; Ghosh and Raghavan, 2001; Oden et al., 1999; and Haj-Ali and 

Muliana, 2004; Souza and Allen, 2011; Lutif et al., 2010). In the multiscale approach, 

different length scales within the macroscopic structure are analyzed separately and then 

linked together.  
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The main goal of the multiscale modeling is to determine the locally averaged global 

constitutive behavior of a composite by taking into account the phenomena that occur on 

the smaller scales. By applying the two-way coupled multiscale modeling approach to a 

multiple scale problem, the constitutive behavior of the global structure can be obtained 

by the solution of a boundary value problem of the smaller scale RVE. Different length 

scales are linked by applying homogenization principles (Christensen, 1979; Mura, 1987; 

Nemat-Nasser and Hori, 1993; and Allen, 2001). Thus, the role played by each material 

constituent is accounted for at the local scale level, and homogenized tensors are 

transferred back to the larger scale structure. Thus, the heterogeneity is still considered in 

this analysis with no need to discretize all heterogeneities of the global structure.   

Therefore, to accomplish the two-way coupled multiscale modeling with a certain 

degree of accuracy, appropriate representative volume elements (RVEs) must be 

identified, given that the effective properties of a heterogeneous bulk mixture are 

obtained by a homogenization process of a heterogeneous RVE.  An RVE is defined as 

the smallest but sufficiently large volume element that can represent the effective 

properties of the large-scale composite.  Thus, the mechanical analysis of large 

heterogeneous asphalt composite can be reasonably converted into the mechanical 

analysis of much smaller heterogeneous mixtures, since the selected smaller sample 

(RVE) is sufficient to reflect the overall statistically homogeneous behavior of the large-

scale bituminous composite.   

One of primary requirements for an appropriate RVE is statistical homogeneity: in 

other words, the averaged characteristics (mechanical or geometrical) in an RVE should 
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be statistically homogeneous so that the bulk sample characteristics and the RVE 

characteristics are the same.  In the case of complex particulate composites such as 

asphalt composites, where aggregate particles in various shapes and sizes are dispersed 

randomly in the asphalt binder, the identification of an appropriate RVE is not trivial due 

to the significant geometric complexity of the mixture. Several mixture variables need to 

take into consideration during the analyses to properly define the RVE size. 

 

2.4. Cohesive Zone Models 

The modeling of a fracture with discrete cracks is not trivial. The first attempts to predict 

crack growth in a material was attributed to Griffith (1920). In his model, the author 

assumed that a crack initiated whenever the material energy release rate was greater than 

the critical energy release rate, which was a material property. Another important 

assumption in Griffith’s theory was that plastic deformations were negligible. Thus, 

Griffith’s theory was known as the linear elastic fracture mechanics (LEFM).  

However, some materials are extremely ductile and undergo significant nonlinear 

inelastic deformation before reaching complete failure, which is the typical case in 

bituminous composites. To account for the nonlinear constitutive behavior of materials, 

cohesive zone models have been used by many researchers (e.g., Dugdale, 1960; 

Barenblatt, 1962; Needleman, 1987; Schapery, 1975; Tvergaard, 1990; Costanzo and 

Allen, 1993; and Allen and Searcy, 2001).  
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The cohesive zone is defined as the potential damage zone ahead of a crack tip, where 

cohesive tractions are developed to resist fracture. As a result, the initiation and growth of 

internal boundaries (cracks) can be analyzed before the total fracture of the material 

occurs. Figure 4 presents a schematic illustration of the cohesive zone in an object in 

mode I fracture (opening of the crack faces). 

 

Figure 4: Schematic illustration of cohesive zone at the crack tip. 

 

Based on the cohesive zone concept, separation starts when a maximum traction         

( maxT ) is reached. Then, the tractions decrease until they become null, and full separation 

occurs (at the critical cohesive displacement, c ). The constitutive relations,  δT , 

between cohesive tractions and displacements are defined as softening curves. Various 

softening functions have been proposed in the literature and differ mainly in two 

characteristics, i.e., i) the existence of an initial cohesive stiffness and ii) the shape of the 

(t) 



16 
 

 

 

softening curve. Figure 5 illustrates some cohesive zone models with three distinct initial 

stiffness values and shapes used to model the behavior of composite media. 

 

       (a)                       (b)             (c) 

 

Figure 5: Examples of traction-displacement models for cohesive zones; a)Tvergaard 

(1990), b) Camacho and Ortiz (1996), c) Allen and Searcy (2001). 

 

Models that assume an artificial initial stiffness (e.g., Figure 5a) are called intrinsic 

models, while models that assume an initial rigidity (e.g., Figure 5b and c) are called 

extrinsic models. Although the intrinsic models are easier to be implemented in a finite 

element formulation, they can be cumbersome because they require the insertion of 

cohesive elements a priori in the mesh. In the case of extrinsic formulations, the cohesive 

zones are inserted by an adaptive process as the stress initiation criteria are reached, 

which is a more realistic representation of the physical phenomena.  

Regarding the shape of the curves, Figure 5a presents a polynomial softening function 

of the third degree, first described by Needleman (1987) for the pure normal separation 
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and then extended by Tvergaard (1990) for mixed-mode loading. This model is one of the 

most popular cohesive zone models used to predict cracks in ductile materials. A purely 

decreasing linear law, mainly used to predict the behavior of brittle materials, was 

described by Camacho and Ortiz (1996), as shown in Figure 5b. This law assumes 

infinite stiffness in the cohesive zones until the maximum traction is reached. Then, the 

cohesive zone stress starts to decrease linearly until the critical displacement criteria are 

reached. In Figure 5c, a non-linear viscoelastic softening model proposed by Allen and 

Searcy (2001) is presented. In this model, cohesive zone elements are inserted in the body 

if the stress in the material reaches certain level, f , defined as a requisite stress level to 

initiate damage. Then, cohesive elements still present certain strength until the cohesive 

tractions reach a maximum, maxT . After that, the cohesive tractions start to gradually 

decrease until they finally vanish (at the critical cohesive displacement criteria). 

Bituminous composites typically present nonlinear viscoelastic fracture process 

which has been demonstrated by numerous studies (Kim et al., 2007; Kim et al., 2006; 

Souza et. al., 2004; Freitas, 2007). Thus, for this study, the extrinsic non-linear 

viscoelastic traction-displacement model proposed by Allen and Searcy (2001) was 

adopted. More details about this model are presented in the next chapter.  
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Chapter 3 

Multiscale Model 

The multiscale computational model used herein is based on the finite element method. In 

this approach, a two-way coupling strategy is adopted: i) the state of deformation 

observed on the global structure is passed to the boundary of the RVE and ii) once the 

local scale initial boundary value problem is solved for the applied loading (coming from 

the global scale), the homogenized material properties, or homogenized stresses, are 

passed back to the global scale (Souza et al., 2008; Souza, 2009; Souza and Allen, 2010). 

The two-way coupling is especially important when evolving microstructures, such as 

microcracks, are involved because the evolution process could be not only spatially but 

also time dependent.  

Thus, the larger scale structure (global scale) can be idealized as a homogeneous 

material which dramatically reduces the mesh refinement. Consequently, the required 

computational time would be reduced while the smaller scale body (local scale) is 

considered heterogeneous. It is important to note that, from a computational point of 

view, a local scale RVE is attached to each global scale integration point of the selected 

global scale finite element. 
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3.1. Global Scale Initial Boundary Value Problem 

As mentioned earlier, the main goal of the two-way coupled multiscale modeling is to 

determine the locally averaged global constitutive behavior of a composite by taking into 

account the phenomena that occur on the smaller scales. Consider an object of volume V 

and a boundary V, which is divided into two parts, Vt (where the traction boundary 

conditions are known) and Vu (where the displacement boundary conditions are 

specified), as shown in Figure 6.  

 

Figure 6: Multiscale Modeling with Two Scales. 
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The object is statistically homogeneous at the global scale but heterogeneous at the 

local scale RVE.  The primary variables used in the model are the following: the 

displacement vector          , the strain tensor           , and the Cauchy stress 

tensor          , where t and kx are independent variables related to time and spatial 

coordinate, respectively. The superscripts  and +1 are used to denote the global scale 

(problem of interest) and local scale (RVE), respectively. The subscripts are used to 

denote the conventional rectilinear coordinate system. 

The problem is assumed to be quasi-static in both length scales.  Thus, the initial 

boundary value problem (IBVP) for the global scale can be posed as follows: 

3.1.1. Conservation of Linear Momentum 

 011

,     ijji f  in 1V  ( 3. 1 ) 

 

where superscript 1  refers to the global scale,  is the material density, and 1
if

represents the body force per unit mass. 

3.1.2. Kinematics 

Assuming that the deformations are infinitesimal, the strain-displacement relationship can 

be written as:  

  1

,

1

,

1

2

1    ijjiij uu  in 1V  ( 3. 2 ) 
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3.1.3. Constitutive Equations 

      txtx kkl

t

kij ,, 11

0

11 



  


    in 1V  ( 3. 3 ) 

where  is the time scale and  is a functional mapping of the entire history of strain at 

any point in the body. In the case of the global scale,  is determined from the locally 

averaged constitutive behavior of the RVE.  

3.1.4. Initial Conditions 

    00,11  
ki xu  ( 3. 4 ) 

   00,11   kij x  ( 3. 5 ) 

   00,11   kij x  ( 3. 6 ) 

3.1.5. Boundary Conditions 

   iki ttxt ˆ,11    in 1 
tV  ( 3. 7 ) 

   iki utxu ˆ,11    in 1 
uV  ( 3. 8 ) 

 

3.2. Local Scale Initial Boundary Value Problem 

The same set of governing equations used to pose the global scale IBVP can be applied to 

the local scale IBVP. However, some assumptions and simplifications regarding the local 

scale boundary conditions are necessary to produce reasonably accurate predictions 
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through the multiscale process. One of the assumptions is that the global length scale 

needs to be much larger than the local length scale, allowing the use of spatially 

homogeneous boundary conditions (in this study, linear boundary displacements are 

applied to the RVE boundaries) (Mura, 1987): 

  ll 1
 ( 3. 9 )   

The second assumption is that the length scale associated with the cracks is much 

smaller than the local scale length. This assumption is important to guarantee statistical 

homogeneity in the RVE.  

Thus, the local scale IBVP for the local RVE is well posed by uniform initial 

boundary conditions and the following set of governing equations: 

 0,    ijji f  in V  ( 3. 10 ) 

   ijjiij uu ,,
2

1
  in V  ( 3. 11 ) 

       


 ,, 0 kkl

t

kij xtx 

  in V  ( 3. 12 ) 

 
cmm GG   in V  ( 3. 13 ) 

where the subscript   refers to the local scale, 
mG  is the fracture energy release rate at a 

certain position and time, 
cmG  is the critical energy release rate of the material, and the 

subscript m refers to the mode of fracture.  
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The functional mapping     
    is known a priori for all local scale material 

constituents. In this study, the RVE is defined as a composite made of three different 

material phases, i.e., i) aggregates, which are assumed to be linear-elastic; ii) asphalt 

matrix, which is assumed to be linear-viscoelastic; and iii) cohesive zones, whose 

behavior is described by a traction-displacement relationship. The constitutive equations 

for the linear-elastic and linear-viscoelastic materials are described as follows, 

respectively: 

  ),(),( txEtx kklLEkij

     ( 3. 14 ) 

 
  



 



 dtEtx

t

kl

LVEkij  




0

),(  ( 3. 15 ) 

where    
 
 is the linear-elastic modulus tensor, which is not time-dependent; t  is the time 

of interest;      
 

is the time-dependent linear-viscoelastic relaxation modulus tensor; and 

  is the time-history integration variable. 

For the cohesive zones, the following non-linear rate dependent traction-displacement 

relationship developed by Allen and Searcy (2001) is assumed herein: 

 
      
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



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


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
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







 dtEttT

t

czi
f

i

i
i

0
*

1
1

in 
czV  ( 3. 16 ) 

where   
 

 is the traction acting on the cohesive zone boundary;   
 

 is the cohesive zone 

opening displacement;   
  

is the material length parameter, which typically reflects a 

length intrinsic to the scale of the damage zone;       is the internal damage parameter, 
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which represents the time-varying area fraction of the growing voids with respect to the 

cross-sectional area of the idealized cohesive zone;   
  

 is the required stress level to 

initiate damage;    
 

 is the time-dependent relaxation modulus of the cohesive zone; and 

   is the Euclidean norm of the damaged zone opening displacements, and it is given by: 
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
  ( 3. 17 ) 

where subscripts  ,   and   refer to the normal, tangential and radial components of the 

damage zone opening displacements, respectively. 

An internal variable damage evolution law is necessary to complete the cohesive zone 

traction-displacement relationship. Conceptually, when the internal damage parameter 

      reaches unity, the traction vector becomes zero and implies that a free surface is 

created or, equivalently, that a crack has propagated (Souza, 2009). According to Allen 

and Searcy (2001), a simple phenomenological damage law, which is a generalization of 

the continuum damage evolution formulation proposed by Kachanov (1958) and 

Rabotanov (1969), can express the diminishing damage zone volume fraction given by: 

 mA   when 0  and 1  ( 3. 18 ) 

 0  when 0  or 1  ( 3. 19 ) 

where   and   are material parameters. 
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3.3. Homogenization Principles Connecting Different Length 

Scales 

To establish a link between the global and local scales, some mathematical relationships 

that relate stress and strain field variables of the local length scale to those of the global 

length scale are required.  One approach to link both scales is through the use of mean 

field theories. Consider the notational operator for a generic function, f: 

    dVtxf
V

txf

V

ii 







 ,
1

,1  ( 3. 20 ) 

Using the divergence theorem and conservation of linear momentum, the volume 

integral of the stress field can be transformed into a surface integral equation. Therefore, 

if the boundary conditions at the local scale are homogeneous, the homogenized stresses 

at the global scale in terms of the local stresses can be written as follows (Allen, 2001):  

 dV
V

V

ijijij 







 
11  ( 3. 21 ) 

The local scale homogenized strains are described in terms of two components: 

 111   




    


ijij

V

ijij dV
V

 ( 3. 22 ) 
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The first component,    
   

, represents the homogenized strains at the RVE boundary, 

while the second component,    
   

, takes care of the RVE internal boundaries due to 

heterogeneities and cracks. Thus, they can be described as follows: 

  dSnunu
V

ijji

V

ij

E









  




2

111  
( 3. 23 ) 

  dSnunu
V

ijji

V

ij

I









  




2

111  ( 3. 24 ) 

where    
 

 and    
 

 are the external and internal boundaries of the local length scale, 

respectively, and   

 denotes the unit outer normal vector to the volume of the local scale 

body. 

Finally the constitutive relationship between global and local length scales needs to 

be establish. This can be done by the direct substitution of the local scale constitutive 

equation (Equation 3.12) into the volume average of stresses (Equation 3.21). 

Furthermore, in the two-way couple multiscale approach, there is no need to determine 

the global scale constitutive tensor, 
1

ijklC , since it is determined concurrently as the 

analysis is performed by solving the local scale IBVP.  

Souza (2009) and Souza and Allen (2009) introduced a new quantity, the so-called 

localization tensor, 
ijk , which relates the local displacement field to the deformation on 

the external boundary of the RVE. This is the key feature that allows the computation of 

the full homogenized anisotropic tangent constitutive tensor (Souza and Allen, 2010). In 
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the case of viscoelastic materials, the following incremental constitutive relation has been 

obtained as follows (Souza and Allen, 2010; Souza, 2009; and Souza and Allen, 2009): 

 1111  
   ij

R

klijklij C  ( 3. 25 ) 
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  dVC
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




  '

11
 ( 3. 27 ) 

where 
1

ijklC  is the homogenized instantaneous (tangent) constitutive tensor evaluated at 

the previous time step t, which is a time dependent quantity affected by the amount of 

damage accumulated at the local RVE, thus producing a nonlinear behavior at the global 

scale; 
'

ijklC  is the local scale constitutive tensor; and 
1




 ij
R is the so-called homogenized 

history-dependent stress term, which represents the rate-dependence in the material (both 

bulk and cohesive zones) behavior and is recursively computed at each time step.  

 

3.4. Multiscale Algorithm 

The two-way coupled multiscale model used in this research was implemented in a time-

stepwise computational procedure developed by Souza (2009). The code, called 
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MULTIMECH (an acronym for MULTIscale MECHanics), was based on the finite 

element method and written using the C++ programming language.  

To avoid initial compliance to the finite element mesh with the insertion of cohesive 

zone elements prior crack initiation and reduce the maximum bandwidth of the stiffness 

matrix, the computational model adopted herein uses an algorithm to automatically insert 

cohesive zone elements into the finite element mesh at the moment in time at which the 

criterion for cohesive zone initiation is satisfied, called AICZ (Automatic Insertion of 

Cohesive Zones). The Lagrange multipliers technique has been implemented to avoid 

interpenetration of objects, simulating frictionless contact conditions. Lagrange 

multipliers are also used to avoid interpenetration of cohesive zones, especially in 

problems where compressive stresses are highly noticeable.  

Furthermore, the multiscale code used herein has been parallelized. Since the 

multiscale approach assumes that the local scale meshes are interdependent, they can be 

solved simultaneously by different processors. Thus, parallel programming can 

significantly increase the computational power available for the solution of multiscale 

problems. Details about MULTIMECH code implementation, AICZ and parallelization of 

the multiscale code used herein can be found in Souza (2009). 

Basically, the code is operated with seven main steps: i) input data for global and 

local scales; ii) obtain homogenized constitutive tensor for the global scale; iii) obtain 

global scale solution; iv) apply global scale deformation to the local scale problem; v) 

obtain local scale solution; vi) homogenize local scale field variables; and vii) update 
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homogenized results into the global scale problem. Figure 7 illustrates the steps involved 

during the multiscale procedure in a flow chart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Flowchart of Multiscale Model Algorithm. 
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sending this information to its respective local mesh. Thus, for each element of the global 

scale, a local analysis is performed using information from the upper scale. The two-way 

coupled global elements can be selected a priori without requiring the entire structure to 

be multiscaled. In this manner, the amount of computational time to solve the problem 

can be reduced; however, it may introduce some loss in accuracy. 

 

3.5. Two-way coupled Multiscale Code Verification 

To verify the two-way coupled multiscale model, a closed-form solution problem was 

solved. Thus, numerical results were compared to analytical solutions to determine the 

efficiency and accuracy of the model. Because one of the unique features of multiscale 

modeling is the capability of visualizing the component interactions at smaller scale 

lengths, a problem in which a non-homogeneous stress distribution could be observed 

was selected, which gave different local scale responses. Thus, a heterogeneous tapered 

bar problem as presented in Figure 8 was introduced.  

The tapered bar problem was selected because of its inhomogeneous state of stress (as 

a result of its varying cross-section along the bar), which allowed the verification of 

different local scale behaviors. The tapered bar was assumed to be a composite of a 

viscoelastic matrix and elastic particles. Due to the axis of symmetry, only half of the bar 

was modeled, and monotonically increasing displacements were applied at the right end 

of the bar, as shown in Figure 8. The local scale RVE was represented by a unit cell 
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determined by equating the volume fraction and the level of mesh refinement obtained 

from the global scale structure. Table 1 presents the material properties of the matrix and 

the particles. The properties used for this study are arbitrarily assumed for simulation 

purposes only.  

Table 1: Material Properties used for the Model Verification 

Elastic Properties (Inclusions) 

E 55.2GPa 

  
 0.15 

  
Viscoelastic Properties (Matrix) 

Einf 7020kPa  0.35 

E1 245649kPa 1 7.36945kPa.sec 

E2 422264kPa 2 126.680kPa.sec 

E3 399319kPa 3 1197.96kPa.sec 

E4 251828kPa 4 7554.83kPa.sec 

E5 69097kPa 5 20729.1kPa.sec 

E6 22586kPa 6 67757.4kPa.sec 

E7 7817kPa 7 234497kPa.sec 

E8 3460kPa 8 1037880kPa.sec 

Fracture-Damage Parameters (Cohesive Zone ) 

  
   50 mm 

  
  

   50 mm 

    
  

 1500 kPa 

    
  
 1500 kPa 

  
A 10 

  
M 0.5 

  
*Viscoelastic relaxation modulus is the same as that given for the bulk material 

 



32 
 

 

 

The analytical solution for this problem is given by: 
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where the Prony series terms (
cE , c

iE , c

i )  used to represent the composite material 

property, )(tE , were obtained by simulating a relaxation test on the heterogeneous RVE. 

The global and local scale objects were discretized, and the finite element meshes 

were constructed as shown in Figure 8. The finite element mesh (15,437 triangular 

elements) of the global scale object with particles (Figure 8 (a)) was finally developed by 

repeating a mesh refinement process until the finite element numerical solution without 

cracks converged and closed to an analytical solution. To validate the multiscale 

modeling technique, a set of homogeneous global scale meshes in a different level of 

mesh refinement (8 to 56 triangular elements as presented in Figure 8(b-d)) was 

simulated by linking the meshes with the local scale RVE (Figure 8 (e)). 
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(a) Single scale mesh with 15473 elements 

    

(b) Global scale mesh with 8 elements 

    

(c) Global scale mesh with 16 elements 

      

(d) Global scale mesh with 56 elements 

Figure 8: Viscoelastic Tapered Bar Problem. 

 

 
(e)72 local elements 

u (L , t) = 0.1t 

 

L = 10 

h = 1 
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Simulation results from the multiscale model can be compared to the single scale 

simulation results and the analytic solutions. Figure 9 plots the reaction force of the 

tapered bar as loading time increased. Figure 10 and Figure 11 present the elemental 

stresses of the tapered bar for the multiscale and single scale cases without damage, 

respectively, considering the material heterogeneity. 

 

Figure 9: Tapered bar reaction force. 

 

The figure shows that the numerical simulation results are very close to the analytical 

solution, with less than a 5.0% difference among their values. In fact, the multiscale 
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results from the global scale mesh with only 8 elements are almost identical to the single 

scale result considering the material heterogeneity.  

One thing to be noted from the simulations was the computational efficiency of the 

multiscale approach. The simulation time required to finish the single scale case (15,437 

elements) was approximately 19 minutes, while the same level of accuracy could be 

obtained from the multiscale technique in only 37 seconds, i.e., the multiscale model 

solved the problem 31 times faster than the single scale model using an ordinary desktop 

computer with only one processor (2.50 GHz CPU, 4GB RAM memory, and Linux OS).  

 

Figure 10: Longitudinal stresses contours for tapered bar multiscale simulation without 

damage (snapshot at 2.4 seconds). 
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Figure 11: Longitudinal stresses contours for tapered bar single scale simulation without 

damage (snapshot at 2.4 seconds). 

 

The effectiveness of the model for damage-induced problems was verified by 

simulating the tapered bar problem described above and comparing the single scale 

numerical results with the multiscale numerical results. However, different from the 

previous case, cohesive zone elements were allowed to be inserted into the mesh using 

the AICZ algorithm once the traction on the elements reached the cohesive zone critical 

traction, defined a priori as a damage parameter.  
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Before comparing the multiscale results with the single scale results, multiscale mesh 

convergence study for the tapered bar problem was performed, in which cracks were 

allowed to form and propagate in the local microstructure. This is necessary because in 

general more refined meshes are necessary for convergence of problems with damage 

evolution. First, the level of refinement in the local scale was kept constant (with 72 local 

elements), and the three global meshes (Figure 8) were used for simulations. Figure 12 

plots the average longitudinal stress,    , of the tapered bar as loading time increased. 

 

Figure 12: Global mesh convergence study for the tapered bar problem with cracks. 

 

As can be noticed in Figure 12, the level of refinement seen in the global mesh did 

not affect the solution, which implied that 8 global elements were enough to obtain 
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converged solutions for this problem. However, the level of refinement at the local scale 

needed to be verified. Thus, a local mesh convergence study was performed using 8 

global elements, and the level of refinement in the local scale was varied by discretizing 

the local unit cell in 72, 190, and 624 local elements (Figure 13). Figure 14 shows the 

obtained results.  

a)  b)  c)  

Figure 13: Local Meshes with: a) 72L-el, b)190L-el, and c) 624L-el. 

 

 

Figure 14: Local mesh convergence study for the tapered bar problem with cracks. 
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From Figure 14, it can be noticed that, due to the formation of cracks, the average 

stress     deviated from the non-damage numerical solution curve after a certain point. 

Furthermore, it can be observed that the level of refinement in the local scale had a 

significant impact on the results. The convergence was reached using 8 global elements 

and 190 local elements.  

To complete the multiscale analysis, a simulation using the converged global (8 

elements) and local scale (190 elements) meshes and a smaller time step was performed 

to guarantee that the time step used in the simulations (t=0.01s) was appropriate.  

 

Figure 15: Time step convergence study for the tapered bar problem with cracks. 
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when damage induced by cracks was added to the problem was achieved using a global 

mesh with 8 elements linked to a local scale unit cell with 190 local elements, using a 

0.01 s time increment.  

Now, to verify the efficiency of the model compared to the ones where all 

heterogeneities are discretized in a single scale, the converged multiscale solution was 

compared to the converged single scale solution. The converged single scale solution for 

the tapered bar problem with damage induced by cracks was obtained by repeating a 

mesh refinement process until a converged finite element numerical solution was 

obtained.  

 

Figure 16: Single Scale mesh convergence analysis. 
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As illustrated in Figure 16, the single scale converged solution was obtained using 

68383 finite elements. Once more, a higher level of refinement is required to solve 

problems when damage is induced by cracks. Finally, to verify the effectiveness of the 

two-way coupled multiscale model in predicting the damage-dependent behavior of 

composites, the converged multiscale and single scale solutions were compared. Figure 

17 shows the numerical results obtained with both modeling schemes. 

 

Figure 17: Multiscale code verification when damage in the form of cracks is induced to 

the problem. 
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global elements and 190 local elements was considered satisfactory, where a good match 

between their results were obtained until the peak point (around 2 seconds). After that 

point, when a considerable amount of damage was induced by cracks, a macrocrack 

developed at the right-hand side of the bar in the single scale solution, resulting in a rapid 

drop of the longitudinal stresses. In the multiscale solution, on the other hand, since the 

damage was homogenized, a more gradual loss of strength was obtained. Figure 18 and 

Figure 19 present the deformed mesh and elemental longitudinal stresses of the tapered 

bar at the end of the simulation (2.4 seconds) for the multiscale and the reference single 

scale cases, respectively. 

In terms of the computational time required to run this problem, the multiscale 

solution including cracks was obtained 4881 times faster than the single scale solution 

using a Dell workstation with 8 Intel Xeon processors at 3.00 GHz running under Linux 

Fedora 10. Clearly, this example demonstrates the higher computational efficiency of the 

multiscale technique when the object is highly heterogeneous. Table 2 shows a 

comparison regarding the computational time required to solve the tapered bar problem 

using single scale and multiscale models. Furthermore, the increasing on the model 

efficiency when the problem is solved in multiple processors (parallel programming) was 

analyzed. 
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Table 2: Computational time required for single and multiscale numerical converged 

solutions. 

 
Model 

Number of 

elements 

Number of 

Processors 

Number of 

solution 

steps 

Computational 

time, T (min.) 
TSS/TMS 

w
/o

 

cr
ac

k
s SS 15437 1 1000 19 - 

MS 

8-global/ 

72-local 1 1000 0.62 31 

w
/ 

cr
ac

k
s 

SS 68383 1 240 895 - 

MS 
8 global/ 

190 local 

1 240 0.62 1451 

2 240 0.37 2440 

4 240 0.22 4130 

8 240 0.18 4881  

*SS - Single Scale Model; MS-Multiscale Model 

 

As illustrated in Table 2, the multiscale approach greatly reduces the computational 

time to solve the problem compared to the solution using a microstructure with discrete 

fracture modeling technique. Moreover, since the local scale meshes are not 

interdependent at each time step, the use of parallel computing increases the multiscale 

model efficiency by allowing the solution of different local meshes simultaneously by 

different processors, which significantly reduces the computational time. This benefit will 

be more noticeable in the modeling of composite materials that show a significant level 

of geometric complexity and material inelasticity.  
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Figure 18: Longitudinal stresses contours for tapered bar multiscale simulation with 

damage (snapshot at 2.4 seconds). 
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Figure 19: Longitudinal stresses contours for tapered bar single scale simulation with 

damage (snapshot at 2.4 seconds). 

 

The bar obviously experienced higher stresses in regions of smaller cross-sections, 

and particles were under higher stresses than the matrix phase, as shown in the single 

scale simulation (Figure 19). The homogenized stresses obtained from the multiscaling 

seemed to be equivalent to the stress state of the single scale case, in which two phases 

(i.e., particle and matrix) clearly presented different levels of stresses.   
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Chapter 4 

Laboratory Tests and Results 

This Chapter presents the materials and procedures employed in the fabrication of 

bituminous composite sample, as well as the three-point bending testing conditions and 

the obtained experimental results. Furthermore, the required tests to obtain local scale 

material properties and outcomes from those tests are presented. To the end, all 

experimentally obtained material properties required for the numerical simulations are 

determined. 

 

4.1. Bituminous Composite Mix Design  

The most widely used local paving materials (aggregates and asphalt binder) were 

selected for fabricating laboratory samples. Because the addition of hydrated lime has 

been recommended for the mixtures produced in Nebraska to reduce moisture effects, it 

was incorporated into the mix design in this study.  

Three local aggregates (two crushed gravels (such as 3ACR and 47B) and screenings) 

were used in the composition of the studied bituminous mixture. Figure 20 presents a 

gradation of aggregate blends used to produce the asphalt mixture. In addition to the 
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bituminous mixture specimen, samples using only aggregate particles less than 0.60 mm 

(asphalt matrix) were fabricated to be used for small scale tests to determined component 

properties, as will be described in the latter sections of this chapter. The asphalt matrix 

gradation was calculated kept with same proportion of aggregates as they had in the blend 

of the bituminous mixture sample. 

 

Figure 20: Gradation curves of the fine aggregate matrix and the global structure 

bituminous composite. 

 

The bituminous mixture was produced by mixing aggregate particles combined with 

10.30% of asphalt binder PG 68-24 and 1.5% of hydrated lime (the percentages are based 

on the total weight of the bituminous composite mixture). The mixture was compacted 

-

20 

40 

60 

80 

100 

120 

0.01 0.10 1.00 10.00

P
er

ce
n
ta

g
e 

P
as

si
n
g
 (

%
)

Sieve Size (mm)

Bituminous Mixture at Global scale

Asphalt Matrix at Local Scale 

0.075 mm 0.60 mm



48 
 

 

 

using a Superpave gyratory compactor to produce cylindrical samples that were 150 mm 

in diameter and 170 mm in height (Figure 21).  

Cylindrical matrix samples were fabricated using aggregates smaller than 0.60 mm 

combined with 13.3% by the weight of the mixture of asphalt binder and 1.5% of 

hydrated lime. The amount of binder used for the matrix phase was calculated by taking 

the total amount of binder used for the bituminous composite and subtracting two 

quantities: i) the amount of effective binder that is used to cover the aggregate particles 

bigger than 0.60 mm, and ii) the amount of binder that is absorbed by the aggregate 

particles bigger than 0.60 mm. The percentage of asphalt binder material remained was, 

then, used to calculate the amount of binder in the matrix mixture. 

 

Figure 21: Superpave Gyratory compacted cylindrical specimen.  
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4.2. 3-Point Bending Beam Test Specimen Geometry 

Several scientific papers (Wagoner et. al., 2005; Kim et al., 2009; Marasteanu et al., 

2002; and others) selected the single-edge notched rectangular beams to study pure mode 

I fracture behavior of asphaltic composites. The authors chose the rectangular beam test 

because its configuration was rather simple and they could have the flexibility to 

investigate other areas such as the mix-mode fracture (offsetting the mechanical notch 

from the rectangular beam centerline) and the sample size effect (by changing the sample 

width, height and/or thickness).   

Considering the reasons above mentioned, this study adopted the rectangular beam 

geometry. However, the specimens used herein were produced without a mechanical 

notch to induce some mode mixity. Mixed-mode fracture is important for the analysis of 

bituminous composites behavior since flexible pavements are subjected to a combination 

of thermal loading (tension) and wheel loading (tension and shear) (Wagoner et. al., 

2005). 

Most of the aforementioned studies used beam compactors to obtain laboratory 

fabricated rectangular beam specimens. Since it was not possible to compact beam 

specimens at the University of Nebraska (UNL) asphalt laboratory, the beam samples 

were extracted from gyratory compacted cylindrical samples. After a coring and cutting 

process, a 150-mm wide beam sample with 40-mm height and 25-mmm thickness could 

be obtained. Figure 22 illustrates the coring and cutting procedure used.  
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Figure 22: Illustration of beam specimen coring and cutting procedure. 

 

4.3. 3-Point Bending Beam Test Experimental Setup and 

Results 

The rectangular beam specimens obtained after the cutting and coring procedure were 

subjected to bending tests. The samples were placed inside a three-point bend fixture and 

loaded by a UTM 25 kN machine at a constant displacement rate (0.83mm/s) until the 

specimens failed completely. Figure 23 shows the experimental setup for a rectangular 

beam specimen. 
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Figure 23: Experimental setup for three-point bending beam test before and after test 

 

Three replicates were tested at 21 C. The results were compared with numerical 

simulations to validate against the two-way coupled multiscale model. Figure 24 presents 

the experimental results obtained. A specimen (after being tested) with a macrocrack that 

developed at the center region is shown in Figure 25.  

 

Figure 24: Experimental results from the rectangular beam bending tests. 
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Figure 25: Beam specimen after test. 

 

4.4. Local Scale Experimental Setup and Results 

For the multiscale model simulations, a local scale heterogeneous mixture (RVE) and its 

mixture constituent properties need to be identified to be linked to the global scale 

mixture performance.  

The RVE structure was determined using an image analysis technique coupled with 

numerical simulations, as will be discussed in the next chapter. Actual images from the 

bituminous composite inner structure were used for this determination. The following 

approach was used to acquire the images: 

 First, gyratory compacted samples (150 mm in diameter and 175 mm in height) 

were produced and cut vertically using a diamond saw; 

 Then, the vertical section was placed on a high resolution scanner from which the 

image was captured by the computer; 
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 The virgin inner structure image was then processed with sequential image 

analysis stages, and the final image, which only captured the center portion (100 mm by 

100 mm) of the specimen, was obtained (Figure 26) 

Figure 26 shows a 100 mm by 100 mm microstructure digitized to 400 by 400 

quadrilateral pixels (total 160,000 pixels). This procedure resulted in a 0.25mm/pixel 

grid, which cannot capture aggregates finer than approximately 0.25 mm (i.e., the 

majority of the aggregates that pass through a No. 50 sieve, which has a 0.30 mm 

opening size) and air voids. This image was used for the image analysis to determine the 

trial RVE values. 

     

      (a) virgin scanned image                     (b) adjusted binary image (black/white) 

Figure 26: Image processing of bituminous composite microstructure. 

 

Other steps were added in the image acquisition process to convert it into a finite 

element mesh. First, the aggregate boundaries needed to be identified to convert them 

into polylines. For that, an image treatment was required which eliminated particles less 
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than 0.60 mm. After that, the image file was converted to a text file, which was imported 

to the mesh generator software used herein (MTOOL, 1997). In MTOOL, material phases 

were identified and, finally, a finite element mesh was generated. 

Thus, for the numerical simulations, the portion of the aggregate gradation finer than 

0.60 mm (eliminated during the image re-treating process) was considered in the matrix 

phase (asphalt matrix) in which linear-viscoelastic properties were experimentally 

obtained. In addition, aggregate particles larger than 0.60 mm were discretized in the 

local scale mesh with their linear-elastic properties experimentally determined. 

Furthermore, non-linear viscoelastic cohesive zones were inserted in the local mesh 

within the matrix phase using the AICZ algorithm.  

A constitutive model was assumed for each phase depending on their behavior. The 

material parameters required as input for each material model were determined based on 

experimental analysis. A set of testing methods were designed and performed as follows:  

 Nano-indentation tests were used to obtain the Young’s modulus of elastic 

aggregate particles; 

 Dynamic frequency-sweep tests were used to obtain the viscoelastic properties of 

the asphalt matrix; 

 Semi-circular bending tests were used to obtain the cohesive zone fracture 

properties. 

In the following sections, the experimental procedures used to obtain the material 

properties are described. 
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4.4.1. Linear-Elastic Properties of Aggregate Particles 

As mentioned in Chapter 3, the linear-elastic constitutive relationship, Equation (3.14), 

was used to model the aggregate particles. 

Linear-elastic Young’s modulus of aggregate particles is within the range of 10 - 80 

GPa depending on the source of aggregate. However, the diverse values within this range 

can result in different composite responses. Aragao et al. (2010) performed a parametric 

analysis using three distinct aggregate moduli (20 GPa, 50.8 GPa, and 60.9 GPa) to 

compare with the dynamic modulus obtained experimentally and numerically. The third 

value, 60.9 GPa, was obtained after performing a series of nano-indentation tests in thin 

slices of asphalt concrete. The authors concluded that, depending on the aggregate 

modulus used, the dynamic modulus varied significantly. Laboratory and numerical 

results were better matched when the laboratory-obtained aggregate modulus was used in 

the simulations. Thus, to determine the Young’s modulus for the specific aggregate used 

in this study, quasi-static nano-indentation tests were performed.   

To perform the nano-indentation test, a hard indenter of known geometry and 

properties was used. The indenter geometry depended on the type of material being 

tested. As shown in Figure 27, a triangular indenter profile was chosen because aggregate 

particles have negligible creep. The indenter was pushed into the material surface in 

which elastic properties were to be determined at a nano-scale depth. Based on the load-

unload curves obtained from the experiment, values of aggregate modulus were 

determined (Karki, 2010). 
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Figure 27: Visualization of loading profile and output curves (source: Karki, 2010). 

 

Karki (2010) performed a series of nano-indentation tests for the mostly used 

aggregates by the UNL research team. Based on testing results, the author determined an 

average aggregate Young’s modulus of 60.9 11.2 GPa (Figure 28), assuming a 

Poisson’s ratio of 0.15 obtained from literature (Barksdale, 1993).  
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Figure 28: Elastic Modulus of aggregates in the asphalt mixture (source: Karki, 2010). 

For this study, the same aggregate source was used as was used by Aragao et al. 

(2010) and described in Karki (2010). Thus, the experimentally determined Young’s 

modulus of 60.9 GPa and the assumed Poisson’s ratio of 0.15 were used in the numerical 

simulations performed herein. 

 

4.4.2. Linear-Viscoelastic Properties of Matrix 

Aside from the aggregates, the RVE also consisted of an asphalt matrix (asphalt binder 

plus aggregate particles smaller than 0.60 mm that could pass through a No. 30 sieve). 

The matrix phase can often be represented by a linear-viscoelastic (LVE) convolution 

integral, as described in Equation (3.15). Thus, the viscoelastic properties of the matrix 

were required to complete the model. 
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The viscoelastic properties of the matrix were experimentally obtained by performing 

dynamic frequency sweep tests. The matrix samples were then subjected to dynamic 

frequency sweep tests. That is, a low torsional strain of 0.0065% (the level of strain 

within the linear viscoelastic range) was applied to the specimens by sweeping the 

oscillatory frequency from 25 Hz to 0.01 Hz at three different temperatures (5 C, 20 C 

and 40 C). In addition, the viscoelastic time-temperature superposition principle was 

used to obtain the master curve at a reference temperature of 21 C (Figure 29). 

 

Figure 29: Master curve of Dynamic shear modulus for the asphalt matrix at 21C. 
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response in the constitutive equations because they precisely fit the experimental data 

(Christensen, 1982): 
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  ( 4. 1) 

where, G , iG , and i  are defined as Prony series coefficients. 

Assuming a Poisson’s ratio of 0.35 for linear-viscoelastic materials, which is also 

considered time-independent, the frequency domain master curve was converted to the 

time domain relaxation modulus (Equations 4.2 and 4.3), because the linear-viscoelastic 

constitution [Equation (3.15)] is represented as a function of the time domain stress 

relaxation modulus.  

   1)(2)( tGtE  ( 4. 2) 
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where   is the linear-viscoelastic Poisson’s ratio, and the coefficients E and iE  

represent the relaxation modulus Prony series terms. 

Table 3 shows the Prony series coefficients obtained after the fitting process and used 

for the numerical simulations of the asphalt matrix. 
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Table 3: Asphalt matrix linear-viscoelastic properties 

Linear-Viscoelastic Properties (Asphalt Matrix) 

Einf 1.22E+07 Pa     

 0.35 

  
E1 3.03E+09 Pa 1 8.00E-05 

E2 1.48E+09 Pa 2 8.00E-04 

E3 1.33E+09 Pa 3 8.00E-03 

E4 4.35E+08 Pa 4 8.00E-02 

E5 1.60E+08 Pa 5 8.00E-01 

E6 5.00E+07 Pa 6 8.00E+00 

E7 1.79E+07 Pa 7 8.00E+01 

E8 3.02E+06 Pa 8 8.00E+02 

 

4.4.3. Fracture Properties of the Cohesive Zone 

The third material phase included in the composite constitution for the bituminous 

composite in this study was the cohesive zone. The cohesive zone is a damage zone in 

which cracks can potentially initiate and grow. There are many models in the literature 

that attempt to predict the damage evolution due to cracks, the corresponding material 

softening, and the eventual fracture failure of composite materials. The model selected in 

this study is based on the non-linear rate-dependent viscoelastic damage evolution law 

developed by Allen and Searcy (2001), mathematically represented by Equation (3.16). 

The model requires a set of fracture parameters that could not be easily obtained in the 

laboratory. Thus, a simple method was proposed herein to obtain those parameters. The 

method was divided in two steps: 1) a calibration process of a semi-circular bend fracture 

test to obtain mode I fracture parameters and 2) a comparison of the fracture energy 
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obtained analytically for pure mode I and pure mode II conditions to obtain mode II 

fracture parameters. 

The calibration process to obtain mode I fracture parameters consisted of two parts 

(Figure 30). First, SCB matrix samples (with only aggregate particles smaller than 0.60 

mm) were subjected to pure mode I laboratory bending tests. Secondly, the pure mode I 

bending test was modeled using a single scale finite element model. The energy 

dissipation due to viscoelasticity was accounted by considering the SCB as a 

homogeneous linear-viscoelastic body with experimentally determined viscoelastic 

properties obtained for the matrix phase (Table 3). The energy dissipation due to the 

opening of cracks was added to the problem by using the cohesive zone model.  

 

Figure 30: Calibration Process to determine mode I fracture parameters. 
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The semi-circular bend fracture test was originally performed to access the fracture 

behavior of rocks (Chong and Kuruppu, 1984). Recently, this testing procedure has been 

used to investigate the fracture mechanisms in bituminous materials (Aragão et al. 2010, 

Li and Marasteanu, 2010) due its simplicity. This procedure allows a large number of 

semi-circular bend (SCB) replicate samples to be obtained from one single cylindrical 

sample fabricated in a laboratory after coring and cutting, which reduces the time 

required for sample fabrication. In addition, the test can be easily performed by placing 

the sample on two bottom supports.  

Thus, this testing configuration was adopted herein to calibrate the mode I fracture 

parameters required for the traction-displacement model of the cohesive zone. Figure 31 

shows the SCB test set-up.  

 

Figure 31: Semi-circular bend (SCB) test set-up. 
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As shown in the figure, the SCB specimen was a semi-circle with a radius of 75 mm 

containing a 25 mm long edge notch. This research used this test configuration to 

indirectly determine the fracture parameters associated with the normal opening of the 

cohesive zone (mode I) throughout the calibration process. The specimen was obtained 

using the following steps. 1) Superpave gyratory samples with a diameter of 150 mm and 

a height of 110 mm were compacted; 2) the samples were cut into 25 mm thick slices; 3) 

each slice was cut into two identical semicircles; and 4) a 25 mm notch was made using a 

2 mm blade along the axis of symmetry. Figure 32 illustrates the overall sample 

fabrication procedure. 

 

 

 

Figure 32: Illustration of SCB specimen coring and cutting procedure. 

 

Two samples were tested and their results were compared with the numerical solution 

(Figure 33). The samples were placed inside a universal tester machine (UTM 25kN) and 

loaded up to failure at 0.83 mm/s at 21C. 
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Figure 33: Laboratory results for SCB bending tests. 

 

To determine the mode I cohesive zone fracture parameters, a trial-and-error 

calibration process was used by varying the parameters until a good match between the 

curves for the experimental and numerical reaction force versus time was obtained. Since 

the level of refinement plays an important role in numerical analysis, especially when 

damage is involved, two cases varying the element size in the center region were 

simulated.  

Figure 34 shows the best match found after the calibration process was performed. 

Figure 35 presents the longitudinal stress contour at two selected loading stages. 
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Figure 34: Mode I fracture parameter’s calibration. 

 

(a) t=2.6 s (peak load)        (b) t=8.0 s (failure) 

Figure 35: SCB simulation snapshots at different loading times. 

As illustrated in Figure 34, numerical and experimental results are matching well. 

Regarding the mesh refinement, the magnitude of the peak force and the shape of the 

curve did not change significantly considering the two levels of refinement used. A small 

difference in the softening curve could be observed between the two numerical results, 
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but they are within the experimental bias.  Thus, one could obtain the mode I fracture 

parameters.  

Finally, one needs to obtain mode II fracture parameters. Ban et al. (2011) performed 

a series of semi-circular bending tests varying the supporting condition to examine the 

fracture behavior of bituminous composites. The authors performed 3-point bending tests 

at a constant displacement rate of 0.17mm/s on SCB samples with an inclined notch at 

21C. Depending on the distance of the supports, they observed different fracture 

behavior of the sample, i.e., pure mode I, mode mixity and pure mode II fracture. They 

concluded that, considering their testing conditions, the fracture energy required to a 

complete rupture of a sample in pure mode II was approximately three times the fracture 

energy required to break a sample in pure mode I. Also, the magnitude of the peak force 

obtained in pure mode II was about three times the one obtained in pure mode I testing 

conditions. 

Based on their observations, mode II parameters were obtained for the present study. 

Thus, using Equation 3.16, mode II parameters were determined by varying the 

magnitude of   
   and f

s until the fracture energy (the area under the curve traction vs. 

cohesive displacements) and the maximum traction for a pure mode II fracture were 

found to be approximately three times the ones required for pure mode I fracture, as 

shown in Figure 36. 
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Figure 36: Traction vs. cohesive zone displacement curves for both pure mode I and pure 

mode II fracture process. 

 

As noticed in Figure 36, the fracture energy and maximum traction in pure mode I 

were approximately three times the ones in pure mode II.  Table 4 summarizes the 

fracture damage parameters obtained with the methodology employed herein. 

Table 4: Fracture damage parameters for cohesive zone model simulations. 

Fracture-Damage Parameters (Cohesive Zone ) 

  
    

   mm, mm

    
  
  

 
 2.2E+06 Pa, 1.37E+07 Pa

  
A 1.00E+06 

  
m 2.5 

  
*Viscoelastic relaxation modulus is the same as that given for the asphalt matrix 
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Chapter 5 

Representative Volume Element - RVE 

An RVE is defined as the smallest but sufficiently large volume element that can 

represent the effective properties of the large-scale composite.  Thus, the mechanical 

analysis of a large heterogeneous asphalt composite can be reasonably converted into the 

mechanical analysis of much smaller heterogeneous mixtures, since the selected smaller 

sample (RVE) is sufficient to reflect the overall statistically homogeneous behavior of the 

large-scale bituminous mixture.  RVEs have significant benefits, since they can be the 

objects of measurement in laboratory tests. 

Another clear benefit of defining RVEs is related to the mechanistic modeling of 

bituminous composites.  One of approaches currently receiving increasing attention from 

the asphalt mechanics community is computational micromechanics modeling.  This 

approach is probably the best way to account for the effects of individual mixture 

constituents and their interactions on the overall behavior of asphalt mixtures with regard 

to heterogeneity, anisotropy, nonlinear inelasticity, and even damage growth.  To perform 

micromechanics modeling, appropriate RVEs must be identified, because a 

micromechanics model requires the effective properties of a heterogeneous bulk mixture 

obtained by a homogenization process dealing with a heterogeneous RVE.  The beauty of 

micromechanics is therefore highlighted through the concept of RVEs. 
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In spite of the significance and potential benefits of RVEs, thus far, there have not 

been many attempts to determine appropriate RVE dimensions in asphalt mixtures.  

Traditional RVE conditions are specified in ASTM D-3497 (2003) which defines proper 

dimensions of specimens with two primary requirements: 1) the ratio of specimen 

diameter (D) to maximum aggregate size should be 4:1, and 2) the minimum ratio of 

specimen height (H) to specimen diameter (D) should be 2:1.  For a better understanding 

of RVEs in asphalt concrete mixtures, several studies have been conducted by researchers 

(Weissman et al., 1999; Harvey et al., 2000; Witczak et al., 2000; Chehab et al., 2000; 

Romero and Masad, 2001; Wen and Kim, 2002; Kim and Wen, 2002; Wagoner and 

Buttlar, 2007).  Table 5 briefly summarizes each study with its research methods and key 

findings.  As is evident from the table, most studies were based on experimental 

approaches by repeating mechanical tests with different specimen dimensions.   

A common observation from these studies is that the RVE size of asphalt mixtures is 

clearly dependent on the maximum aggregate size in the mixtures, and a larger RVE is 

necessary when the test involves damage.  Stiffness characteristics of mixtures without 

damage can be identified from a smaller RVE, because the spatial heterogeneity of the 

mixtures is mostly due to aggregate structure which does not likely change during the 

test.  However, performance tests, which are associated with damage, need a larger RVE, 

since they are subjected to the additional mixture heterogeneities such as cracks, 

localized yielding, and possibly aggregate movements.   
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       Table 5: Summary of Some Studies to Better Understand Asphalt Concrete RVEs 

Literature Research Method Significant Findings 

Weissman et al. 

(1999) 

Finite Element Simulations, 

Laboratory Tests (restricted triaxial 

test, RSST-CH
1
) 

Restricted triaxial test: 125 mm D and 

350 mm H, 

RSST-CH: length-to-height ratio at 

least 3.   

Harvey et al. 

(2000) 

Laboratory Test (RSST-CH) The sizes of specimens are not 

sufficiently large to evaluate 

specimen shape. 

Witczak et al. 

(2000) 

Laboratory Tests (uniaxial 

compression test, constant height 

shear test) 

Uniaxial compression test: 70 mm D 

with a minimum H/D ratio of 1.5 for 

undamaged tests and 100 mm D by 

150 mm H is adequate for mixtures 

with damage, 

Constant height shear test: 

mechanical responses were dependent 

on specimen size; RVE could not be 

defined. 

Chehab et al. 

(2000) 

 

Laboratory Tests (uniaxial tensile 

tests with and without damage) 

75 mm D and 150 mm H meets RVE 

requirements for mixtures with 

maximum aggregate sizes up to 19 

mm, 

100 mm D and 150 mm H geometry 

is more appropriate for larger-size 

aggregate mixes. 

Romero and 

Masad (2001) 

Laboratory Tests (image analysis, 

Superpave shear tester) 

For an Superpave shear tester 

specimen (150 mm D and 50 mm H), 

the nominal maximum aggregate size 

of the mixture should be smaller than 

25 mm. 

Wen and Kim 

(2002) 

Kim and Wen 

(2002) 

Laboratory Tests (DIC
2
 for IDT

3
 

specimens), 3-D Finite Element 

Simulations 

The 50 mm gauge length on a 100 

mm diameter IDT specimen is 

adequate for creep and strength tests 

at intermediate temperature. 

Wagoner and 

Buttlar (2007) 

Laboratory Test (disk-shaped 

compact tension test) 

Specimen size affects fracture energy, 

which is typically observed from 

quasi-brittle materials. 

Note. RSST-CH
1
: repeated simple shear test at constant height, DIC

2
: digital image 

correlation, IDT
3
: indirect tensile test. 
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As is well demonstrated in the study (Romero and Masad, 2001), the use of the image 

analysis technique for the asphalt concrete inner structure may be a sound alternative to 

the costly laboratory performance tests for an identification of the RVE particularly for 

the cases without damage, because the microstructure image analysis can provide actual 

information of geometric heterogeneity of the mixture.  For the cases with significant 

damage, the use of a digital image correlation (DIC) technique can be recommended, 

since DIC can capture real-time and continuous variations in three-dimensional 

deformation and strain of mixture components with high-resolution cameras (Seo et al., 

2002; Seo et al.,2004; Birgison et al., 2007).        

 

5.1. Requirement of RVE: Statistical Homogeneity 

One of primary requirements for an appropriate RVE is statistical homogeneity: in other 

words, the averaged characteristics (mechanical or geometrical) in an RVE should be 

statistically homogeneous so that the bulk sample characteristics and the RVE 

characteristics are the same.  In the case of complex particulate composites such as 

asphalt concrete mixtures where aggregate particles in various shapes and sizes are 

dispersed randomly in the asphalt binder, the identification of an appropriate RVE is not 

trivial due to the significant geometric complexity of the mixture. 

To perform the two-way coupled multiscale modeling, a local scale RVE is required. 

Thus, one of the objectives of this research is to identify a proper RVE dimension of a 
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bituminous composite. As demonstrated by Kim et al. (2009), the use of image analysis 

technique coupled with numerical simulations can be a potentially efficient approach to 

define the RVE of asphalt mixtures with much less time and efforts.  

In this study, geometric analyses of aggregate particles and finite element numerical 

simulations of effective property of bituminous specimens were performed and compared 

to each other to reach general findings.   

 

5.2. Image Analysis of Asphalt Mixture Geometrical 

Characteristics 

To investigate the geometrical characteristics of heterogeneous bituminous mixture 

samples, mixture RVEs were sought through the image analysis technique.  Various 

geometrical factors such as area fraction, gradation, orientation, and the spatial 

distribution of aggregate particles in the mixtures were considered altogether using two-

dimensional actual images of the studied bituminous mixture inner structures produced 

by digital image processing. Thus, one could define, based on geometrical averaged 

characteristics, the minimum sample size of an asphalt specimen in order to represent the 

asphalt mixture overall behavior.   

Small subsections (referred to as trial representative volume elements: TRVEs in this 

study) with increasing sizes were obtained using the image described in the earlier 

chapter (Figure 26 b). The adjusted binary image of the bituminous specimen was divided 
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into only two distinct phases: white aggregate particles and a black asphalt matrix phase 

(that is a composite of asphalt binder, fine aggregates passing through sieve No. 50, 

mineral fillers, and entrained air voids).  

The RVE size was identified by comparing the mixture characteristics obtained from 

several TRVE sections.  Various mixture characteristics obtained from each TRVE were 

plotted against the TRVE size.  Then, the geometrical size at which all the mixture 

characteristics were not significantly dependent on the TRVE size, indicating 

convergence, was determined as the appropriate RVE size, as illustrated in Figure 37.      

As mentioned earlier, various geometrical factors were considered.  All geometrical 

analyses for each digital image (TRVE) of each mixture were accomplished by using an 

image analysis software, ImageTool (University of Texas, 1997).  The volume fraction 

(or area fraction in the case of two-dimensional objects such as the one herein) of 

aggregates in each TRVE was first monitored, since the area fraction is a primary 

variable associated with RVE in classical micromechanics (Hashin, 1983; Romero and 

Masad, 2001).   
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Figure 37: Conceptual process for determining RVE geometry. 

 

Although the area fraction clearly provides important geometric characteristics of an 

asphalt mixture, it is not sufficient to identify the RVEs, because it cannot account for the 

size distribution of the aggregate particles in the mixture.  Thus, there is a need to 

investigate the aggregate size distribution in a mixture in order to monitor the existence 

of any concentration of specific particle sizes.  In an attempt to account for the particle 

size distribution properly, the percentage of each particle size in the image was 

accounted. The percentages of each particle size obtained from the image analysis of each 

TRVE were plotted against the TRVE size.  This process attempted to quantify the 

gradation characteristics as a number for more efficient comparison among TRVE 
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sections.  As the TRVE size increases, the gradation variation between subsequent TRVE 

sections will be smaller, indicating that the TRVE is closer to the RVE.     

After the area fractions and the gradation characteristics were studied, each TRVE 

was sub-divided into four quadrants, as illustrated in Figure 38, to calculate the total 

number of particles in each sub-quadrant.  This was conducted as a parallel step to the 

assessment of the gradation characteristics (particle size distribution) since spatial 

inhomogeneity could still have existed, even if the TRVE satisfied both the area fraction 

and gradation criteria.  In order to completely satisfy the condition for spatial 

homogeneity, the aggregate particles must be well dispersed in the mixture, i.e., all 

quadrants must show a similar number of particles and approximately the same mean 

area.  This implied that aggregates of different sizes must be equally and randomly 

distributed in the whole sample.  The coefficients of variation (ratio of the standard 

deviation to the mean value in the quadrants) in each TRVE were calculated and 

compared.  

 

Figure 38: Aggregate distribution analysis on the quadrants. 
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Another important geometrical factor to be considered is the aggregate orientation, 

which is determined by measuring the angle between the major axis of an aggregate and a 

horizontal line on the scanned image.  To quantify the aggregate orientation, the vector 

magnitude () was calculated using Equation 4.1.  The vector magnitude has been proved 

in numerous studies to be a useful indicator to quantify the directional measurements of 

aggregates (Masad et al., 1999; Muhunthan et al., 2000).  The value of the vector 

magnitude varies from 0 to 100%: a value closer to 0% indicates that the aggregates are 

more randomly oriented.  

 
     22

2cos2sin
100

  ii
n

  ( 4. 4 ) 

where n refers to the total number of particles and    represents the minor angle of 

orientation of each particle . 

 

5.3. Finite Element Simulation of an Asphalt Mixture Effective 

Property 

Effective material properties of selected TRVE sizes were obtained and compared to 

check if the effective material properties observed from the potential RVE were 
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representative with respect to the bulk bituminous mixture specimen.  In this study, the 

effective property considered was the linear viscoelastic relaxation modulus. The choice 

of relaxation modulus as a parameter of interest could be explained by its relevance in the 

multiscale models. The stiffness tensor is a key quantity that is homogenized at the local 

scale and transferred back to the global scale.  

To accomplish that, finite element meshes of each TRVE were constructed, and 

the relaxation modulus testing was simulated by imposing the boundary conditions on 

each selected TRVE, as illustrated in Figure 39.   

 

  

 

Figure 39: A TRVE and its finite element mesh including boundary conditions. 

 

The material properties of each mixture component (elastic properties of aggregates 

and viscoelastic properties of matrix phase) used for the RVE study numerical 

simulations were the ones determined in the previous chapter.  State variables (stress and 

FEM 

y 

x 
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strain) produced from the simulation were then averaged for homogenization, and the 

homogenized moduli among the TRVE sections were compared to validate the RVE 

defined from the geometrical estimation.   

 

5.4. Analysis Results 

Five specimens were used for this study. A total of seven TRVE sections (window sizes 

ranging from 2.5 mm to 100 mm) were generated and compared for each mixture.  

Analysis results considering all five specimens in the form of mean values of each 

geometric factor and its standard deviation, which is represented by an error bar, to the 

mean with increasing TRVE sizes were plotted.  

The first factor analyzed was the aggregate area fraction. As can be seen in the Figure 

40, the variation in the aggregate area fraction of all mixtures was not significantly 

different as the TRVE window size was larger than 15 mm.  Based on this observation, if 

the area fraction was the only factor considered to judge the RVE size, the RVE could be 

defined at a window size of around 15 mm; this however, may not be true for the other 

factors considered.  
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Figure 40: Aggregate area fraction vs. TRVE window size. 

 

A similar plot is shown in Figure 41 for the gradation characteristics.  The percentage 

of each particle size representing the aggregate gradation characteristics was calculated 

for each TRVE and then plotted in the figure with increasing TRVE sizes.  Note that the 

scan used to digitalize the specimens sections could not capture particle sizes smaller 

than 0.25 mm. Thus, the minimum sieve size captured was the sieve no. 50. Clearly, with 

a larger TRVE size, the gradation variation between subsequent TRVE sections tends to 

decrease, indicating that the TRVE approaches the RVE.  The RVE could be defined at 

around or even less than a 15 mm window size.    
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Figure 41: Percentage of particles in each sieve size vs. TRVE window size. 

 

Figure 42 presents the coefficients of variation among quadrants in each TRVE as the 

window size of TRVE varies.  As mentioned earlier, two factors (i.e., the number of 

aggregate particles and the mean area of aggregates) in each quadrant were obtained and 

the coefficients of variation of these factors among quadrants were calculated.  If the 

coefficient of variation is close to zero, the difference among quadrants is negligible.  As 

a parallel step to the assessment of the gradation characteristics, this analysis is useful to 

monitor any potential existence of spatial inhomogeneity due to poor particle distribution.   
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(a) the number of aggregate particles 

 
(b) mean area of aggregate particles 

Figure 42: Coefficient of Variation on the quadrants considering: a) Number of Particles, 

and b) Average Particle Area. 

 

As can be noticed from Figure 42, the larger was the TRVE, the less was the variation 

in the number of particles and the mean aggregate area among quadrants.  If a coefficient 
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of variation of 10% is arbitrarily taken as the limit to establish the RVE, a TRVE of 30 

mm could be considered as the RVE in terms of both the number of particles and the 

mean area of the aggregates.   

As for the other geometrical factors, the vector magnitude, used to characterize 

aggregate orientation, showed converging trends as the TRVE size increased, as 

demonstrated in Figure 43.  Based on this criterion, a TRVE of 15 mm could be defined 

as the RVE for the studied bituminous mixture.   

 

Figure 43: Vector magnitude vs. TRVE window size. 

 

Based on the results of the analysis based on various geometrical factors, it can be 

inferred that the RVE size of the studied bituminous mixture ranged from 15 mm to 30 

mm window size, depending on the geometrical factor analyzed.  
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Finite element simulations of relaxation modulus test for three TRVE sizes (10 mm, 15 

mm, and 30 mm) were performed. Although the geometrical analysis showed that the 

RVE for the studied mixture would be in the range of 15 mm to 30 mm, the 10 mm 

TRVE size was also added to the analysis. This decision was taken based on the fact that 

even though convergence of mixture characteristics was found for TRVE size equal or 

greater than 15 mm, the difference on the analysis results from the converged value to the 

10 mm TRVE size might not be significant, being 10 mm TRVE size still acceptable with 

certain level of accuracy.   

The three selected TRVE images for the numerical analysis were converted to a finite 

element mesh. Finite element simulations of the relaxation modulus were performed. The 

homogenized relaxation modulus was obtained by dividing the averaged value of stresses 

(simulation outputs) by the averaged value of strains (simulation input).  Figure 44 shows 

the three TRVE meshes used for the simulations.  

 

Figure 44: Finite element meshes for TRVE size 10 mm (3274 elements), 15 mm (8372 

elements), and 30 mm (16026 elements). 
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Figure 45: Averaged percent differences among subsequent TRVE sections. 

 

Clearly, the relaxation moduli of the three selected TRVE sizes were not significantly 

different. In fact, the difference between the relaxation modulus of the TRVE of 10mm 

and the TRVE of 30mm (RVE based on geometric analysis) were only 2%. Regarding 

the level of refinement, the finite element mesh required to discretize all heterogeneities 

in the TRVE of 30mm was around five times the one required to discretize the 

heterogeneities in the TRVE of 10mm. That would vastly increase the computational 

time in the multiscale simulations. Thus, the TRVE with 10 mm length size was selected 

as the RVE microstructure for the model validation.   
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Chapter 6 

Validation-Calibration of the Multiscale 

Model 

In reality, asphalt roadways are subjected to wheel loads, which results on compressive 

stresses on the pavement structure surface and tensile stresses at the bottom of the 

asphaltic layer.  Subsequently, high tensile strains could be developed and initiate crack 

at the bottom of the asphalt layer, where the tensile stress is the highest, to the top of the 

asphalt layer (this type of crack is called the bottom-up crack).  

To better assess this phenomenon, the simply supported bending test was conducted 

to validate and calibrate the two-way coupled model due to its attractive loading mode 

along the sample, i.e., compression on the top and tension at the bottom of the specimen. 

Moreover, the bending test setup was easily implemented with the testing machines and 

supporting tools available at the UNL asphalt laboratory. Three-point bending tests of 

bituminous composite specimens were performed at 21 °C, and test results were 

compared to simulation results from multiscale modeling. Figure 46 shows the overall 

methodology employed to validate the model used herein. 
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Figure 46: Research methodology employed for the model validation. 

 

6.2. Local Scale Mesh Convergence Study 

Prior to performing multiscale simulations, a mesh convergence study was performed to 

ensure that the level of refinement in the local mesh resulted in converged solutions. The 

RVE studies performed in Chapter 5 used digital images from an actual bituminous 

sample produced with the same mixture proportions as those used for the rectangular 

beam samples.  

Thus, for the local scale mesh convergence study, the selected 10 × 10 mm RVE 

structure was discretized. As shown in Figure 47, local finite element meshes with 

triangular elements were produced with sizes varying from 0.5 mm to 0.175 mm. An 
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arbitrary constant displacement rate of 0.05 mm/s was applied at the top of the RVE, and 

the vertical displacements at the bottom were fixed. The particles were assumed to be 

linear-elastic, and the surrounding matrix was assumed to be linear-viscoelastic.  

a)  b)  

c)  

Figure 47: Finite element meshes used for the local mesh convergence study: a) RVE-1 

(1252 elements), b) RVE-2 (3890 elements), c) RVE-3 (7572 elements) 

 

The mesh convergence study was performed for two distinct cases: i) no damage due 

to cracks was allowed, i.e., the automatic insertion of cohesive zone was turned off 

during the simulations, and ii) damage due to cracks was added to the problem by 

allowing cohesive zone elements to be inserted in the mesh as required. Figure 48 shows 
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the average vertical stresses history in the RVE for the different trial meshes for both 

cases.  

 

Figure 48: Simulation results for the RVE mesh convergence study. 

 

For a better comparison between the results, the stresses were normalized with 

respect to the vertical stresses obtained using the finer mesh (Figure 47 c). Figure 49 

shows the normalized vertical stresses (at any time) as a function of number of elements 

for the case where damage due to cracks was not considered. In the case where damage 

was induced by cracks, the results for the RVE-1 and RVE-2 compared to the reference 

case (RVE-3) became bigger as the loading time increased, as can be seen in Figure 50.  
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Figure 49: RVE mesh convergence analysis w/o cracks. 

 

Figure 50: RVE mesh convergence analysis w/ cracks. 
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Based on the results, a slight difference in the stress values was observed as the level 

of refinement decreased. For simulations without cracks, the differences in the vertical 

stress values for RVE-1 and RVE-2 with respect to the finer mesh (RVE-3) were 3.0% 

and less than 1.0%, respectively. Even though the convergence was reached for RVE-2, 

the error obtained using RVE-1 was still acceptable for the purpose of this study. Thus, 

RVE-1 was selected for the multiscale simulations without damage due to cracks to save 

computational time. 

For the simulations with cracks (Figure 50), the results of each studied RVE mesh 

were not considerably different up to 1.2 seconds, at which no cracks were formed. After 

this point, the difference between the results of RVE-1 and RVE-2 with respect to RVE-3 

became more significant and reached 29% at 1.8 seconds. Using the RVE-2, the 

difference in the results compared to the finer RVE was reduced to 5%. Since the 

computational time using a finer RVE (e.g. RVE-3) would be impractical, RVE-2 was 

selected for the multiscale simulations with damage. Table 6 shows the required time to 

solve each RVE mesh in Dell workstation using a single Intel Xeon processor at 3.00 

GHz running under Linux Fedora 10. Vertical stresses contour plots at 1.8 seconds are 

shown in Figure 51. 
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Table 6: Different RVE simulations and computational time 

  Mesh 
Number of 

elements 

Number of solution 

steps 

Computational time 

(hour) 

w
/o

 c
ra

ck
s 

RVE-1 1252 500 0.02 

RVE-2 3890 500 0.08 

RVE-3 7572 500 0.14 

w
/ 

cr
ac

k
s RVE-1 1252 304 0.54 

RVE-2 3890 304 16.02 

RVE-3 7572 304 44.22 

 

a)    b)  

c)  

Figure 51: Snapshots at 1.8 seconds for: a) RVE-1, b) RVE-2, c) RVE-3 

 

It can be seen in Figure 51 that the level of refinement in the microstructure affected 

significantly the crack initiation and propagation in the composite. Even though the 
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averaged stresses were not greatly different, as shown in Figure 48, the crack path found 

for RVE-1 was completely different from the other two cases.  

 

6.3. Two-way Coupled Multiscale Simulations 

The multiscale simulations were accomplished by linking the local scale RVE (10.0 mm 

× 10.0 mm square), which was modeled with elastic aggregates and viscoelastic 

bituminous matrix subjected to fracture, to the global scale bending beam performance. 

Consequently, the global scale bending performance was modeled as a damage-induced, 

non-linear viscoelastic continuum by a two-way coupling strategy. For the modeling, the 

load configuration was simulated in the same manner as the test setup. Figure 52 

illustrates the overall conditions (load, geometry and boundary conditions) assumed in 

the multiscale modeling of the bending problems. 

The modeling of the three-point bending test was divided in two steps: i) Multiscale 

simulations without cracks, and ii) Multiscale simulations w/ cracks. Since damage 

induced by cracks were not considered in the global scale structure, a multiscale mesh 

convergence study without considering damage at any length scale of analysis was 

performed to determine the global mesh refinement. Subsequently, using the converged 

global mesh, a two-way coupled multiscale analysis with damage was performed. The 

local meshes used in both simulations were the ones determined in the section 6.2 of this 

Chapter. 
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Figure 52: Overall conditions applied in the two-way coupled multiscale modeling of the 

bending tests. 

 

6.3.1. Global Scale Mesh Convergence Study 

The global finite element mesh was determined by performing multiscale simulations 

without damage. Different global meshes were linked to the local scale RVE (Figure 47a) 

until the finite element numerical solution converged to an analytical solution.  A set of 

homogeneous global scale meshes in a different level of mesh refinement (10mm to 

2.5mm triangular elements as presented in Figure 53) was evaluated. Figure 54 shows the 

normalized force with respect to the finer mesh (3928 global elements).  
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(a) Global 10mm-el size - 144 global elements 

 
(b)  Global 5mm-el size - 466 global elements 

 
(c)  Global 3.5mm-el size - 1088 global elements 

 
(d) Global 2.5mm-el size - 1998 global elements 

Figure 53: Global mesh convergence study for rectangular bending beam problem. 
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The analytical solution for this problem is given by: 
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where P is the reaction force due to the applied displacement rate, L is the beam width, I 

is the inertial moment,    is the applied displacement increment, and       is the 

composite relaxation modulus, which is given in a prony series representation. The prony 

series coefficients for       were obtained by simulating a relaxation test on the 

heterogeneous RVE. 

 

Figure 54: Global scale mesh convergence study for the rectangular beam bending 

problem. 
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A convergence trend was observed. However, it should be mentioned that the 

computation time varied tremendously depending on the number of global elements 

considered in the two-way coupled analysis. The computation time to solve the 

multiscale problem (with no damage involved at this point) for the global meshes using 

10 mm, 5 mm, 3.5 mm and 2.5 mm triangular elements was 2 hours, 7 hours, 14 hours, 

and 23 hours, respectively, using 8 Intel Xeon processors from a Dell workstation (3.00 

GHz CPU, and Linux OS) . Thus, a balance between the level of accuracy desired and the 

computational time spent should be well thought-out when defining the finite mesh 

density. To proceed with the model validation with damage involved, the mesh using 5 

mm global triangular elements [Figure 53 (b)] was selected. A comparison of the 

numerical (without damage at this point), analytical, and experimental results is shown in 

Figure 55.  

 

Figure 55: Comparisons among analytical, numerical and experimental results of 3-point 

bending beam test. 
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Simulation results showed good agreement with analytical solutions, which once 

more verified the two-way coupled multiscale model used herein. Because the material 

heterogeneity was accounted for in the simulation but not for the closed-form solution, a 

small deviation from the analytical solution was expected, as shown in the figure. 

Furthermore, the numerical results seemed to follow the experimental curve nicely up to 

1.2 seconds, with some energy being dissipated due to the material viscoelasticity. After 

that point, due to damage, the experimental results curvature started to deviate from 

numerical results. Thus, at this point, one can say that the model can satisfactorily capture 

the composite response when damage is not induced.  

Aside from the efficiency of the multiscale model, another benefit is the possibility to 

visualize the small-scale phenomena. Figure 56 shows a snapshot of the deformed mesh 

and elemental longitudinal stresses at 3.2 seconds for the multiscale simulation without 

damage due to cracks. 
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Figure 56: Snapshots Multiscale w/o cracks at 3.2 seconds. 

 

Note that the physics of the problem was captured by the model, as seen by the 

different stress responses in the selected microstructures. The microstructure linked to the 

global element 21 (Local 21) showed the highest tensile stress compared to the other 
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elements. This result was expected because higher tensile strains developed at the bottom 

of the beam based on experimental observations. Similarly, higher compressive stresses 

were observed in the local microstructure linked to the global element 451.  

6.3.2. Validation of Rectangular Beam Bending Test with Damage 

The complexity of the problem increased when damage was included in the analysis. To 

investigate the initiation and propagation of cracks in bituminous composites, it was 

necessary to include a damage evolution law in the model. As mentioned earlier, the rate-

dependent viscoelastic traction-displacement damage model developed by Allen and 

Searcy (2001) was used. Figure 57 shows a comparison among numerical simulations 

with and without damage along with experimental results. 

 

Figure 57: Two-way coupled multiscale simulations with and without damage-induced by 

cracks and comparisons with experimental results 
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As can be seen in Figure 57, the initial slope from numerical simulations matched 

well with the experimental results, which demonstrates that, along with the appropriate 

constitutive model, the linear-viscoelastic matrix and linear-elastic aggregate material 

properties used were well determined. Moreover, due to the formation of cohesive zones 

followed by cracks, it can be noticed in that the average stress deviates from the non-

damage (linear viscoelastic) curve. However, the rate of damage propagation seemed to 

be underestimated, as can be noticed by the simulation with cracks, where the curve is 

dropping only after 4 seconds. A calibration of damage parameters related to rate of 

damage propagation is required in order to obtain numerical results closer to the 

experimental ones. Before performing the calibration of damage parameters, a more 

detailed analysis of the obtained results was done. 

Six local structures were selected for the analysis. They were named according with 

the global element they were linked. The deformed mesh and elemental stress at both 

global and local scale structures at selected loading times can be visualized in Figure 58-

Figure 62. The global elements selected for local analysis are marked in the global 

structure snapshots.    
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Figure 58: Multiscale simulation with damage-induced - Snapshot at 0.3 seconds. 
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Figure 59: Multiscale simulation with damage-induced - Snapshot at 0.8seconds. 



103 
 

 

 

 

Figure 60: Multiscale simulation with damage-induced - Snapshot at 3.2seconds. 
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Figure 61: Multiscale simulation with damage-induced - Snapshot at 3.63 seconds. 
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Figure 62: Multiscale simulation with damage-induced - Snapshot at 4.2 seconds. 

 

Initially, at 0.3 seconds (Figure 58), the first cohesive zone elements (represented by 

the black lines in the local scale figures) were inserted in the Local-21, the microstructure 

linked to the global element that experiences higher strains. Also, some compressive 
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stresses are developed at Local-451, the microstructure linked to the global element 

located in the region where the load was applied. 

At 0.8 seconds (Figure 59), the number of cohesive zone elements became more 

significant at Local-21. Furthermore, the damage at this time propagated to other global 

elements, as shown in the Local-97 snapshot.  

Then, at 3.2 second (Figure 60), the level of damage in the microstructure linked to 

the global elements from the region of higher stresses was notably pronounced and 

cohesive elements began to connect to each other, indicating possible formation of 

microcracks. In the case of the Local-249, which was far away from the loading zone, no 

significant damage was involved in the microstructure, as can be seen from the figure. 

At 3.63 seconds (Figure 61), new surfaces were created (due to microcracks) which 

caused the stress concentration at the local microstructures to vanish, as visualized in 

Local-21. It is important to mention that statistical inhomogeneity could be introduced by 

the formation of cracks because they produce discontinuities in the field variables (Souza, 

2009). At this point, the precision of the model starts to decrease. 

At 4.2 seconds (Figure 62), a macrocrack was formed. Once the localization 

phenomena occurred (macrocrack formation), statistical homogeneity at the local scale 

and the subsequent accuracy of the model could no longer be guaranteed.  From the 

computational point of view, simulations can be still performed after localization, and the 

user should decide to continue or stop the simulation. However, the user should be aware 

that, even though the physical trend can be still observed, the numerical results may be 
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inaccurate (Souza, 2009). A recent study (Souza and Allen, 2011) has improved the 

multiscale model used herein to account for the transition of a cloud of microcracks into a 

macro-crack in the global scale finite element mesh, using advanced techniques such as 

the eXtended Finite Element Method (X-FEM). However, this is beyond the scope of the 

present study. 

Figure 63 shows the elemental longitudinal stresses of the deformed global structures 

for the cases with and without damage induced by cracks.  

 

Figure 63: Deformed global beam structures at selected loading times without cracks (left 

side) and with cracks (right side). 
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A significant conclusion could be drawn based on the deformed meshes shown in 

Figure 63. That is, as cohesive zone elements (which eventually became cracks) evolved 

the stress concentrations on the center of the beam decreased as a result of stiffness 

degradation. Since the global stiffness was updated for every solution step at each global 

element, as cracks were initiated and grown in the microstructures, damage-induced 

anisotropy in the bituminous composite was more pronounced.  Therefore, the stiffness 

update is an important characteristic of two-way coupled multiscale model. Figure 64 and 

Figure 65 show the overall global scale homogenized tangent constitutive tensor history, 

      , obtained by averaging the tangent constitutive tensor of all global elements.  

 

Figure 64: Beam averaged global components       and       of homogenized 

constitutive tensor as a function of time. 
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Figure 65: Beam averaged global components       of homogenized constitutive tensor 

as a function of time. 

 

As seen in Figure 64 and Figure 65, the total stiffness of the global beam was 

reduced. The values of       ,      , and      , decreased by 13.7%, 5.2%, and 13.6%, 

respectively, from their original value at the final captured loading time.  

The loss of stiffness at different spatial coordinates along the beam could also be 

observed. For that, the longitudinal stiffness modulus was plotted as a function of the x 

coordinate at the bottom of the beam (y=0m), as shown in (Figure 66), and as a function 

of the y coordinate at the center of the beam (x=0.075m), as shown in Figure 67. 
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Figure 66: Global longitudinal modulus degradation (due to cracks) at the bottom of the 

beam as a function of the x position. 

 

Figure 67: Global longitudinal modulus degradation (due to cracks) at the center of the 

beam as a function of the y position. 

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

0.000 0.025 0.050 0.075 0.100 0.125 0.150

G
lo

b
al

 L
o

n
g
it

u
d

in
al

 M
o

d
u
lu

s,

C
1
1
1
1
 (

P
a)

Global Position, X (m)

Time 0.01s

Time 0.3s

Time 0.8s

Time 3.2s

Time 3.63s

Time 4.20s

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

0.0000.0100.0200.0300.040

G
lo

b
al

 L
o
n
g
it

u
d
in

al
 M

o
d
u
lu

s,

C
1
1
1
1
 (

P
a)

Global Position, Y (m)

Time 0.01s

Time 0.3s

Time 0.8s

Time 3.2s

Time 3.63s

Time 4.20s

93% Degradation 

92% Degradation 



111 
 

 

 

As illustrated in the figures, the longitudinal stiffness modulus (     ) was drastically 

reduced at the center of the beam, where it was subjected to higher longitudinal stresses. 

Clearly, the amount of accumulated damage at the local microstructures affected the 

global structure performance.  

Figure 68 compares the longitudinal stresses in the simulations with and without 

damage for the local microstructure linked to the global element 21.  

 

 

 

 

 

 

Figure 68: Longitudinal stresses for the local structure linked to the global element no. 

21. 
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Key stages related to formation and propagation of cracks during the loading period 

were evaluated using the two-way coupled multiscale technique, as presented in Figure 

68. The insertion of cohesive zone elements, which was eventually converted to a crack, 

reduced the stresses on the sample compared to the case with no damage. With the unique 

model capability to visualize the smaller length scales, crack evolution could be analyzed 

in a more detail manner, leading to better predictions of failure of the bituminous 

composites. 

6.3.3. Calibration of Rectangular Beam Bending Test with Damage 

From the model validation, valuable information could be obtained regarding the physical 

phenomena occurring in the bituminous sample subjected to bending. The model was 

able to capture different local scale responses depending on the spatial position of the 

microstructure, and key stages during the loading time could be identified. However, the 

numerical results did not match very well with the experimental data after 1.5 seconds, 

when the reaction force obtained experimentally started to gradually decrease due to 

significant damage. Therefore, a calibration of the parameters associated to damage was 

required to obtain better predictions of the overall composite response. 

In the phenomenological damage law (Equation 3.18) used herein, the two parameters 

associated with the damage evolution function were A and m. Since the damage 

parameter m significantly changes the damage evolution rate, its value was reduced in 

72%, resulting in a faster degradation of the composite. All other material characteristics 

were kept the same as the ones used in the validation showed in Figure 57. The 
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calibration results are shown in Figure 69 along with numerical results without cracks 

and experimental results. 

 

Figure 69: Calibration results for numerical simulation with cracks. 

  

As seen in Figure 69, by increasing the rate of damage propagation, the numerical 

results obtained using the two-way coupled multiscale showed a better prediction of the 

damage-dependent behavior of the bituminous composite specimen used herein. The 

deformed mesh and elemental stress at both global and local scale structures at 2 seconds 

(peak load) and 2.5 seconds (after peak dropping point) can be visualized in Figure 70 

and Figure 71. 
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Figure 70: Multiscale calibration results with damage-induced - Snapshot at 2 seconds. 

 

From the snapshots, it can be noticed by the stresses contours that microcracks are 

formed at 2 seconds at Local-21 (cohesive zone tractions vanish, as shown by the zero 

stress green contours zones). 
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Figure 71: Multiscale calibration results with damage-induced - Snapshot at 2.5 seconds. 

 

At 2.5 seconds, the bearing capacity of the global elements located at the center 

region is almost gone, and macrocracks are visible in the contour plots. After that point, 

the accuracy of the model is not guaranteed anymore and, therefore, the simulation was 

manually aborted.  
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Chapter 7 

Parametric Analysis of the Model 

The bituminous composite mix design process involved the selection of proper material 

sources and combinations. A wide range of parameters, such as material properties, 

volume fraction, and/or particle gradation, can be varied to study the impact of those 

changes on the overall composite performance. Different from continuum damage 

models, the use of a micromechanical model allows us to change important design 

variables without the need to perform new sets of experiments. To demonstrate that, this 

chapter details the parametric analysis of the two-way coupled multiscale model that was 

previously proposed. 

To keep the same local RVE structure that was determined in the previous chapters, 

no changes were made regarding the RVE geometric constitution (the volume fraction, 

the particle size distribution and orientation). Thus, the bituminous composite material 

properties were selected for the parametric analysis. Because damage in bituminous 

composites initiates within the matrix phase, a parametric analysis of the material 

properties associated with this phase was performed by varying the magnitude of the 

linear viscoelastic properties and the cohesive zone parameters. To reduce the 

computational time required to solve this problem, only 30 elements were selected to be 

multiscaled, as shown in Figure 72. 
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Figure 72: Rectangular beam highlighting the multiscaled element for parametric 

analysis. 

 

Before changing the material properties, the bending beam problem (with 30 global 

elements multiscaled) was simulated using the properties obtained in the laboratory. This 

simulation was performed with two main purposes, i.e., i) to examine the efficiency of 

the model when not all elements were multiscaled, and ii) to serve as a reference case for 

comparisons with other simulations that varied the material properties.  

Figure 73 presents the numerical results for simulations with all elements multiscaled 

and with only 30 selected global elements multiscaled. Also, experimental results were 

plotted for further discussions. 

Global multiscaled elements  
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Figure 73: Simulation results varying the number of multiscaled elements and 

comparison to experimental results from bending beam test results. 

 

As seen in Figure 73, the simulation accuracy decreased as the total number of 

multiscaled elements was reduced, and the specimen became more resistant to damage 

This is obvious because the less number of global scale elements involved in the 

multiscale modeling implies less consideration of overall damage process occurring in 

the specimen.  

On the other hand, the computational time required to solve the problem multiscaling 

all global elements was about 360 hours, while the same problem multiscaling 30 

elements took 72 hours in Dell workstation using eight Intel Xeon processors at 3.00 

GHz running under Linux Fedora 10. Clearly, the number of multiscaled elements 
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affected not only the accuracy of the model by also the computational efficiency. Thus, 

the user should carefully decide the elements to be multiscaled in order to optimize the 

accuracy/efficiency relation. The amount of computational power utilized in this study 

may be considered impractical, but it is important to note that the computer resource 

available at the time of this research was very limited. The computation time can be 

drastically decreased if one uses powerful supercomputers which have in general more 

than hundred processors. 

Now, to study the effect of material properties on the overall composite performance, 

three cases were simulated and compared: 1) PA-1, the reference case, in which the 

material properties were kept the same as the ones used for model validation; 2) PA-2, to 

observe the effect the stiffness change, in which the linear-viscoelastic matrix properties 

were reduced by 50%, and 3) PA-3, to see the rate of damage propagation effect on the 

composite response by reducing the damage parameter m in 80%. Figure 74 shows a 

comparison of numerical results using original and changed material properties. 
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Figure 74: Parametric analysis results. 

 

From Figure 74, it can be noticed that the lower stiffness of the matrix phase affected 

the overall stiffness of the bituminous composite. When the viscoelastic properties of the 

matrix were reduced by 50% from its original value, the overall composite stiffness was 

reduced, which was evidenced by the initial slope change in the force versus time curve. 

Regarding damage propagation, the rate of crack growth in the microstructure was 

increased when the parameter m was reduced, resulting in a faster degradation of the 

specimen compared to the reference case. Figure 75 shows the longitudinal stresses for 

the Local-21 microstructure. 
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Figure 75: Local scale parametric for the local structure linked to the global element no. 

21. 

 

As seen in Figure 75, the overall microstructure stiffness was reduced by decreasing 

the linear-viscoelastic matrix properties. With that, the maximum stresses supported by 

the microstructure were also reduced. As mentioned before, the change in the damage 

parameter m affected the microstructure response. By reducing the magnitude of this 

parameter in 80%, the damage evolved faster compared to the one observed in the 

reference case. 

For a better visualization of the physical phenomena described above, the deformed 

configuration of the global beam and the selected microstructure are shown at two 

selected loading times (Figure 76 and Figure 77). The contour plots represent the 

longitudinal stress responses in the composite. 
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Figure 76: Parametric analysis snapshots at 2.0 seconds. 

 

Figure 77: Parametric analysis snapshots at 3.3 seconds. 
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The beauty of the two-way coupled multiscale modeling is demonstrated herein, 

where one could verify the effect of component material properties on the overall 

composite performance without the need to perform new sets of time-consuming and 

costly experimental tests. That said, the two-way coupled multiscale model can allow 

engineers to better understand the mechanical effects of material-specific design variables 

on the overall damage-related responses and performance characteristics of structures.  

Moreover, once the RVE has been determined for a particular bituminous mixture, it 

can be used to model a wide range of testing experiments, such as bending beam tests, 

indirect tension tests, fatigue tests, and even for pavement modeling. So, one could even 

generate a data basis with RVE for mixtures that are commonly used in practice, so 

engineers can design their mixtures without the need to perform experiments on the local 

scale constituents, and drastically reducing the number of tests to evaluate the 

performance of the mixture. 

That said, the better understanding of small-scale design variables can help engineers 

to select mixture constituents in a more appropriate way and advance the current 

volumetric mix-design concepts, materials models, and performance models. 
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Chapter 8 

Concluding Remarks 

A two-way coupled multiscale computational model for predicting the damage-dependent 

mechanical behavior of bituminous composites was presented. The model accountted for 

composite heterogeneities, inelasticity, and anisotropic damage accumulation in the small 

scale on the overall performance of larger scale structures by taking into account 

individual mixture constituents through the unique scale-linking technique: a local scale 

in the form of the heterogeneous RVE and a global scale that was homogenized from the 

local scale responses. The model was implemented using the finite element formulation, 

to properly handle the geometric complexities and material inelasticity without a 

significant loss in accuracy.  

 The non-linear rate dependent fracture behavior of bituminous composites was 

considered by employing a micromechanically based non-linear rate-dependent 

viscoelastic damage model.  

 The model was verified by solving problems with closed-form solutions, and 

numerical results were compared with analytical results. In addition, comparing to single 

scale computational modeling of heterogeneous objects, the multiscale model 
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demonstrated much higher computational efficiency by reducing simulation time based 

on the homogenization process to link scales which highlight the benefit of multiscale 

modeling approach.  

 Unique consideration was taken to determine the representative volume element 

(RVE). Important geometrical variables were considered in the analysis throughout the 

use of image analysis techniques. Constitutive properties were also evaluated for different 

trial RVE’s sizes by performing finite element simulations of the relaxation modulus. 

 To validate the model, bending tests were simulated. The evolution of microcrack 

was evaluated by analyzing the local scale microstructure response. As a consequence, 

the model was capable of considering damage-induced anisotropy due to the distribution 

and orientation of cracks.  

 To the end, a parametric study was carried out to verify the impact of the material 

properties on the overall composite performance. It is expected that a successfully 

developed multiscale computational model, such as the one presented herein, can be an 

efficient analysis-design-prediction tool for various types of mixtures and structures 

including bituminous mixtures targeted in this study. 

 

8.1. Significance and Impacts of the this Study 

The use of multiscale technique can be a significant tool to predict bituminous 

composites damage-dependent behavior, taking into account the material characteristics 
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in different length scales. The model can account for essential characteristics of 

bituminous composites such as nonlinear inelastic constitutive behavior, mixture 

heterogeneity, material anisotropy and multiscale damage development. Significant 

benefits and potential impact of this study can be listed as follows: 

 Since the multiscale model is based on micromechanics concepts, mechanical 

effects of bituminous composite constituents (volume fraction of matrix, aggregate 

particle distribution, binder properties, etc) can be evaluated. Thus, with clear assessment 

of those variables, pavement engineers and practitioners can make better decisions 

regarding materials’ selection and mixture constituents’ proportions;     

 The use of multiscale technique gives a significant reduction in computational 

effort compared to single scale models, where a high level of refinement is required to 

account for the explicit heterogeneities, resulting in costly simulations.  

 Using the unique two-scale coupled technique, small scale phenomena can be 

carefully assessed, and, therefore, damage associated responses of bulk composites can 

be predicted in a more detailed way; 

 The clear understanding of the small scale phenomena will then be guidelines to 

select composite constituents in a more appropriate way and to improve current asphalt 

mixture design methodology so that better-performing and longer-lasting roadway 

mixtures can be produced; 
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 Since only small scale material properties are required in the model, this approach 

can reduce the amount of laboratory testing required, thereby providing substantial 

additional cost savings; 

 Even though the multiscale model was applied herein for prediction of damage-

dependent behavior of bituminous materials, it can be applied for other types of 

composite media, such as portland cement concrete mixtures, geologic media, and other 

complex structures by simply incorporating appropriate constitutive and damage 

functions into the model. 

 

8.2. Future Research Work 

Future research work includes: 

 Validate the model for other types of laboratory test conditions as well as for 

other type of composite media; 

 Consider cracks at the global length scale using the new developments in the 

MULTIMECH code based on eXtended Finite Element (XFEM) 

 Verify and calibrate the model for problems in three dimensions; 

 Perform a RVE study in three dimensions; 

 Perform a rigorous study to determine fracture properties based on experimental 

observations of fracture tests; 

 Verify the proposed methodology to determine fracture parameters using other 

types of mixture combinations and loading conditions;   
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