
Durham E-Theses

Cosmological Simulations with Dark Matter from

beyond the Standard Model

SCHEWTSCHENKO, JASCHA,ALEXANDER

How to cite:

SCHEWTSCHENKO, JASCHA,ALEXANDER (2016) Cosmological Simulations with Dark Matter from

beyond the Standard Model, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/11575/

Use policy

This work is licensed under a Creative Commons Attribution Non-commercial 3.0 (CC
BY-NC)

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/11575/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
http://etheses.dur.ac.uk


Abstract

We study the non-linear structure formation in cosmologies where the collision-
less cold dark matter (CDM) is either replaced by interacting dark matter or (partly)
replaced by a free-streaming non-cold dark matter component. We focus in the first
case on models with a non-vanishing interaction cross-section between dark matter
and radiation in the early Universe, i.e. photons (γCDM) and neutrinos (νCDM).
We study the properties of the dark matter structures that form in the presence of
the collisional damping using N-Body simulations. For their halo shapes, we find
similar effects as for standard thermalized fermionic Warm Dark Matter (WDM).
However, for the abundance of these structures, the interacting DM models are
clearly distinguishable from WDM below the characteristic damping scale. We
also have a closer look at dark matter halos that resemble those hosting the two
main galaxies in our Local Group, the Milky Way (MW) and Andromeda (M31).
By using a high-resolution zoom-simulation of Local Group-like environments, we
reveal how the DM-radiation interactions help to ease certain CDM ”small scale
problems”. Furthermore, the combination of these Local Group simulations with
our previous cosmological simulations allows us to constrain the cross-section in
our model by comparing the abundance of satellite galaxies in our Milky Way with
the predictions for subhaloes. Thanks to the sensitivity of the subhalo abundance
to the suppression of the primordial perturbations, even our most conservative
constraints are orders of magnitude tighter than those previously obtained from
CMB data.

In the case of neutrinos or other non-cold dark matter, we study ways to pre-
dict numerically the evolution of this free-streaming component correctly. We iden-
tify shortcomings in all the previously proposed techniques we encountered in
our studies of various models with massive neutrinos and come up with a new,
adaptive Eulerian technique to treat the neutrino fluid accurately. In particular,
we introduce our implementation called SEPARA. First test results for the code are
presented while full cosmological simulations will be performed in the near future.





Cosmological Simulations with Dark Matter
from beyond the Standard Model

JASCHA ALEXANDER SCHEWTSCHENKO

Durham University
Physics Department

Institute for Computational Cosmology / Institute for Particle Physics
Phenomenology

Supervisors:

Prof. Carlton Baugh
Prof. Silvia Pascoli

DISSERTATION

submitted to the University of Durham
in accordance with the regulations for

admittance to the Degree of

DOCTOR OF PHILOSOPHY

2016





Contents

List of Figures iii

Declaration viii

Acknowledgements xi

I Preamble 1

1 Motivation 3

II Background 7

2 Standard Models - What we (believe to) know 9
2.1 Particle Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Fundamental principles . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Cosmological Stress-Energy-Momentum Tensor . . . . . . . . 19
2.2.4 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.6 Evolution of the matter/radiation distribution . . . . . . . . . 22
2.2.7 Observations / Tests for γCDM . . . . . . . . . . . . . . . . . . 29

III Dark Matter Interactions 33

3 Linear Theory / Background 35
3.1 Motivation - WIMP miracle & candidates . . . . . . . . . . . . . . . . 35
3.2 Modified Boltzmann equations . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Linear solutions for γ/νCDM . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Constraints from CMB . . . . . . . . . . . . . . . . . . . . . . . 42

i



CONTENTS ii

3.3.2 Cosmological parameters . . . . . . . . . . . . . . . . . . . . . 42

4 DM–ν/γ interactions & Large-scale structures 45
4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Halo Abundance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Semi-Analytical Halo Mass Functions . . . . . . . . . . . . . . 48
4.2.2 Simulated Halo Mass Function . . . . . . . . . . . . . . . . . . 49
4.2.3 Halo Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Results: Halo Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Halo Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Density Profile and Concentration . . . . . . . . . . . . . . . . 55
4.3.3 Halo Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 CDM Small-scale problems and constraints in interacting γ/νCDM mod-
els 61
5.1 Small-Scale “Challenges” of CDM . . . . . . . . . . . . . . . . . . . . 62

5.1.1 Missing Satellite Problem . . . . . . . . . . . . . . . . . . . . . 62
5.1.2 Too Big To Fail Problem . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Constraints on the DM interaction cross section . . . . . . . . . . . . . 74
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

IV Neutrinos - The known dark matter 85

6 CνB - relic neutrinos in the Universe 87
6.1 Thermal History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 Neutrinos in Cosmology . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Linear Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Going beyond linear growth . . . . . . . . . . . . . . . . . . . 93
6.3 Measurements/Detection . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.1 Particle Experiments . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.2 Astrophysics/Cosmology . . . . . . . . . . . . . . . . . . . . . 96

7 Neutrinos in structure formation 101
7.1 Simulation techniques & implementation . . . . . . . . . . . . . . . . 101



Contents iii

7.1.1 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.1.2 Thermal velocity distribution . . . . . . . . . . . . . . . . . . . 105
7.1.3 Optimization of neutrino N-body code . . . . . . . . . . . . . 114

7.2 Comparison & Application in current research . . . . . . . . . . . . . 117
7.2.1 Massive neutrinos in ΛCDM . . . . . . . . . . . . . . . . . . . 117
7.2.2 Neutrinos to rescue Einstein-de Sitter . . . . . . . . . . . . . . 121

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 SEPARA - a way to treat neutrinos correctly 125
8.1 Eulerian method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.2 Numerical Methods / Implementation . . . . . . . . . . . . . . . . . . 127

8.2.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2.2 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.2.3 Parallelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.2.4 Cosmological Settings . . . . . . . . . . . . . . . . . . . . . . . 139
8.2.5 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2.6 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

V Epilogue 145

9 Final discussion / Outlook 147

Bibliography 152



Contents iv



List of Figures

1.1 Evidence for Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 DM beyond the SM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . . 10
2.2 Illustration of mass hierarchies of massive neutrino states . . . . . . . 12
2.3 The two tree-level Feynman diagrams for the elastic scattering pro-

cess of charged leptons (l)/ fermions ( f ) and neutrinos for (left) charged
and (right) neutral current . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 The tree-level Feynman diagrams for the charged-current Quasi-elastic
elastic scattering process between charged leptons and neutrinos . . 15

2.5 Composition of the Universe in ΛCDM with minimal neutrino mass 22
2.6 Evolution of the normalized comoving number density around freeze-

out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Tests of ΛCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Comparison of linear matter power spectra for collision-less CDM,
γCDM, νCDM and WDM . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Characteristic mass scales for the suppression of primordial fluctua-
tions by free-streaming (WDM), photon collisional damping (γCDM)
and neutrino collisional damping (νCDM). . . . . . . . . . . . . . . . 41

3.3 Likelihoods of the free cosmological parameters in the γCDM model
with fixed interaction cross-section . . . . . . . . . . . . . . . . . . . . 43

4.1 Simulated distribution of DM at redshift z = 0 for CDM and γCDM . 47
4.2 Real-space and k-space top-hat window functions in Press-Schechter

HMF predictions for γCDM. . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 The HMFs for collision-less CDM, WDM, νCDM and γCDM at red-

shift z = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 The relative halo abundance for γCDM and WDM, with respect to

CDM, at redshift z = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Comparison of linear halo bias for γCDM and CDM . . . . . . . . . . 53

v



LIST OF FIGURES vi

4.6 Sphericity of relaxed DM haloes for CDM, γCDM, νCDM and WDM
at redshift z = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 The concentration–mass relation for γCDM, νCDM and WDM . . . . 57
4.8 The spin–mass relation for γCDM, νCDM and WDM . . . . . . . . . 59

5.1 TBTF problem - Subhaloes from all six Aquarius simulations and Via
Lactea II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Projection of the DM distribution in the DOVE simulation box and
LG ”zoom” re-simulations . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 The simulated distribution of DM in a MW-like halo . . . . . . . . . . 69
5.4 The number of satellite galaxies in a MW-like DM halo as a function

of their maximum circular velocity . . . . . . . . . . . . . . . . . . . . 70
5.5 The “Too big to fail problem” in vanilla CDM . . . . . . . . . . . . . . 72
5.6 Comparison of properties for matched halo pairs in CDM and γCDM 73
5.7 “Too big to fail problem” solved by γCDM: rotation curves and ob-

served half-light radius/stellar velocity dispersion . . . . . . . . . . . 74
5.8 The “Too big to fail problem” solved by γCDM: Vmax-Rmax plot . . . 75
5.9 Reconstruction of the Subhalo-Velocity Function for M31 . . . . . . . 77
5.10 Constraints on the γCDM cross section . . . . . . . . . . . . . . . . . 79

6.1 Timeline of the Standard model of the Universe. . . . . . . . . . . . . 87
6.2 Differential (left hand axis) and cumulative velocity distribution (right

hand axis) at redshifts z = 49 and z = 7 for neutrinos and CDM . . . 90
6.3 Free-streaming scale of cosmic neutrinos . . . . . . . . . . . . . . . . . 91
6.4 Measured and expected fluxes of natural and reactor neutrinos . . . 95
6.5 Impact of the neutrino mass on the early Universe . . . . . . . . . . . 97
6.6 CMB constraints on the sum of neutrino masses . . . . . . . . . . . . 98

7.1 rms neutrino velocities vs. the neutrino density perturbation at z =

13.55 and contour plot of constant particle number in the neutrino
velocity component-overdensity plane . . . . . . . . . . . . . . . . . . 106

7.2 rms neutrino velocities vs. the neutrino density perturbation and
contour plot of constant particle number in the neutrino velocity
component-overdensity plane . . . . . . . . . . . . . . . . . . . . . . . 107

7.3 Illustration of resolution refinement schemes . . . . . . . . . . . . . . 108
7.4 Comparison of power spectra at z = 0 obtained with the different

refinement schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



LIST OF FIGURES vii

7.5 Comparison of power spectra for RS and NRS refinement scheme at
various redshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.6 Comparison of power spectra for RS and AS refinement scheme at
various redshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.7 Force decomposition and force error of the TreePM scheme . . . . . . 114
7.8 Computational costs to run neutrino simulations with and without

optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.9 Power spectra at various redshifts obtained with varying combina-

tions of optimizations for the neutrino component . . . . . . . . . . . 117
7.10 Projected matter density of DM and massive neutrinos in simulation

box at z = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.11 Matter power spectra for N-body simulation of ΛCDM with massive

neutrino background as either linear background or N-body particles. 119
7.12 Results of hydrodynamics simulation of Shanks2014 model . . . . . . 123

8.1 Estimates for the memory requirement for a fully-refined mesh and
best- and worst-case AMR scenarios . . . . . . . . . . . . . . . . . . . 129

8.2 2D Phase-space density around a simulated large-scale dark matter
structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3 Illustration of a 1D Fully Threaded Tree (FFT) data structure used in
RAMSES/SEPARA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.4 Illustration of the semi-lagrangian advection scheme . . . . . . . . . 135
8.5 Domain decomposition in SEPARA: Strategy and Efficiency . . . . . 138
8.6 Scheme to double the velocity boundaries of the phase-space grid. . 141
8.7 2D ICs generated with a TH and FD velocity distribution . . . . . . . 142

9.1 Relative power spectra for various neutrino temperatures . . . . . . . 150



LIST OF FIGURES viii



Declaration

The work described in this thesis was developed between the years 2011 and
2015.

During this time, the author was a postgraduate research student under the su-
pervision of Prof. Carlton M. Baugh in the Institute for Computational Cosmology
(ICC) and Prof. Silvia Pascoli in the Institute for Particle Physics Phenomenology
(IPPP) at the Department of Physics at the University of Durham.

This work has not been submitted for any other degree at the university of
Durham or any other University. All research results and figures presented here
that are not explicitly marked with external references have been produced by this
author. Furthermore, the following content is either already published, submitted
or in preparation to be published:

• The contents of Chapter 4 are based on Schewtschenko et al. (2015b).

• Chapter 3 and 5 contain work by this author that was published in Boehm et
al. (2014) and Schewtschenko et al. (2015a).

• One of the applications given in Chapter 7 originates from work that was
co-authored by this author and was published in Shanks et al. (2014).

• Additionally, both Chapter 5 and 7 contain work that is in preparation to be
published in Schewtschenko (2016) and Schewtschenko et al. (2016).

The copyright of this thesis rests with the author. No quotation from it should
be published without the author’s prior written consent and information derived
from it should be acknowledged.

ix



LIST OF FIGURES x

真正的知识是知道无知的程度。

—孔子 (Confucius)

Augmented Content

This thesis features additional multimedia and inter-
active content. It is embedded in an augmented real-
ity using the open DARO framework for mobile devices.
In order to access the data, a DARO-compatible browser
(http://icc.dur.ac.uk/∼daro) is needed to scan the
DARO QR access code printed here.

quote translation: “Genuine knowledge is to know the extent of one’s ignorance.”
credits for background image: NASA

http://icc.dur.ac.uk/~daro


Acknowledgements

First and foremost, my thanks go to Carlton, Silvia and Celine. Your guidance
as well as patience and expertise helped me so often to stay on track, especially
in those times when results were earned harder than anticipated. I could not have
asked for a better supervision.

I also have to thank to all my colleagues and collaborators for all their assis-
tance they provided for my work, in particular to Ryan Wilkinson who besides his
great scientific skills has proven to be a master of polishing the words of our publi-
cations, to John Helly whose great programs and scripts are valued throughout the
department, to Sabine Schindler and Lindsay Borrero whose administrative skills
had been invaluable for organizing everything from seminar room for small meet-
ings to travel arrangements for conferences, and last but not least to our formidable
ICC IT Team, i.e. Lydia Heck, Allan Lotts and Peter Draper, who seemingly never
slept to keep our workstations and super computer running for our studies and
always had an open door for any questions and problems (even if it was about yet
another raise for my already bloated disk quota).

I would also like to thank my fellow PhD students and especially my office
mates over the years, Michelle, Tamsyn, Alex (I+II), Claudia, Matthieu, Jun, Bruno,
Sergio and Flora for making even the longest work days in our crowded office
enjoyable. My time as a PhD student in Durham would have also not been so much
joy without all the friends at Ustinov College, in particular, Jane & Joonas, Gan,
Polina, Sarah, Tom, Sep, Eric and Yuexian, many of whom are now scattered over
the whole globe. Thank you for all the great times we shared. Thanks to my good
old friends Leena, Zoe, Hans-Christian, Thomas and Annegret back “abroad” who
have been always there for me, even if the physical distance between us definitely
took its toll on the frequency we were able to see each other in the last couple of
years. At this occasion, I also want to thank to my (not yet so old) local friends
here in England, Kieran, Rich, Cat( × 2) & family. Thanks to you, I did not only
have the chance to learn so much more about the nature of dark matter, but also so
much about the friendliness and hospitality of the people here in the North-East as
well as the beauty of this region which we explored on our countless trips together.
These are all cherished memories that I will take with me to wherever my life will

xi



LIST OF FIGURES xii

take me next.
One person, who so far tried to avoid any public acknowledgement of his

great support out of modesty, but definitely deserves every bit of it, is David Creed.
Not only made your generous donation the scholarship for this PhD possible, but
our personal meetings and discussions were always an inspiration for me. So I
cannot get around to express my deepest gratitude to you and your wife Anne for
everything you have done for me.

And finally, VERY special thanks to my family, in particular to my Mum and
Dad. Any attempt to express how much your support over all the years means to
me would only end in a blatant understatement. You have always been there for
me and without you, none of this would have been possible.

This work made use of the DiRAC Data Centric system at Durham University, operated by the
ICC on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded
by BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grant ST/H008519/1,
STFC DiRAC Operations grant ST/K003267/1 and Durham University. DiRAC is part of the Na-
tional E-Infrastructure.



PART I

PREAMBLE

1





CHAPTER 1

Motivation

The study of dark matter (DM) is certainly one of our biggest challenges. It
was proposed as a possible explanation for the anomalies in the dynamics of visible
galaxies and galaxy clusters, where the circular velocities of visible substructures
and stars by far exceed the velocities supported by the gravitational centripetal
forces of a system with the observed matter distribution (Zwicky, 1937; Babcock,
1939; Rubin and Ford, 1970) (cf. Fig.1.1(left)).

FIGURE 1.1: Evidence for Dark Matter: (left) Observed (dots with error bars) rotation curves for
galaxy cluster NGC 3198 and fit (solid lines) based on a two component model with thin exponen-
tial disk and a spherical halo(van Albada et al., 1985); (right) mass reconstruction of galaxy cluster
Abell 2744: total mass distribution obtained from gravitational lensing shown by cyan and gas dis-
tribution by magenta equidensity contours with green contours and red circles marking the centres
of mass respectively(Hoekstra et al., 2013).

In modern surveys similar gravitational anomalies were observed when gravi-
tational lensing was used to ”weigh” galaxies (Hoekstra et al. (2013),Fig.1.1(right)).
In both cases, it was found that a two component model with the visible mat-
ter embedded in an invisible “dark” matter halo of about the 4 times the visible
mass matches the observations (van Albada et al., 1985). The accurate prediction
of other observables such as the Cosmic Microwave Background (CMB) (Bennett
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et al., 2003; Tauber, 2005) supported the validity of the current Standard Model of
Cosmology, ΛCDM, which predicts that the composition of the Universe is dom-
inated by both dark energy (DE) as the driving force of the accelerated expansion
at low redshift and dark matter, leaving the known, visible matter accounting for
less than 5% of the total energy density (cf. Sec. 2.2.5).

There have been attempts to explain the observed mass difference between the
visible and the dynamical/gravitational mass with alternative models to General
Relativity (GR) such as modified Newtonian dynamics (MoND) (Milgrom, 1983)
that agree with GR on the well tested smaller scales, but account for additional
gravitational acceleration on galactic scales and above. But recent observations
such as the offset between the gravitational centre and the centre of visible mass in
certain halo clusters (Clowe et al., 2006) favours the idea that DM is indeed made
up of one or more types of unknown particles in addition to the known ’particle
zoo’ of the otherwise very successful standard model of particle physics rather than
requiring a change to the laws of gravity.

FIGURE 1.2: DM beyond the SM: DM properties and associated Beyond SM (BSM) models

The search for these particles and the determination of their properties in-
volves physicists studying both extreme ends of the scales known to mankind.
Particle physicists search at the smallest length and time scales in their direct and
indirect detection experiments (Cirelli, 2012; Akerib et al., 2014a). The DM candi-
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dates such as axions or neutrinos are among the lightest (predicted) massive parti-
cles. On the other hand, we have the cosmologists and astrophysicists, whose “ex-
periment” is the observable Universe itself and the dynamical scales involved are
naturally the largest ever observed. These also allow for a very sensitive probe for
the properties of DM, which may have a significant, impact on the observable mat-
ter distribution of the Universe and astrophysical processes therein. As the scales
involved do not permit us to physically redo this cosmological experiment or to
control or alter the conditions therein to test different hypotheses about DM, and
even analytical approaches only allow for predictions on the largest scales while
breaking down in the presence of non-linear structure growth, numerical simula-
tions of the Universe and the dark matter are our most powerful tool today. Fig.1.2
shows various properties of DM that go beyond the collision-less, cold fluid, that
DM is assumed to be in the standard model. This thesis focuses on the two big
groups marked in red.

After a summary of the most important theoretical background in part II, I
present in part III my work on using computational cosmology to study potential
effective interaction with photons and neutrinos which affects its distribution very
early in the history of the Universe and the subsequent formation of small-scale
structures we observe in the late Universe. In Chapter 3, the theoretical background
for such interacting dark matter (IDM) is reviewed, whereas Ch. 4 and 5 contain
our predictions for the structures formed in the observable Universe as well as
significantly improved constraints on the interaction cross-section.

In part IV, I discuss how to use simulations to study neutrinos, the only, yet
sub-dominant HDM component, we already identified by confirming that they are
massive. After an introduction to the Cosmic Neutrino Background (CνB) and the
perturbation approach to study its evolution in Chapter 6, I review the various
techniques previously used for simulating their evolving distribution in Chapter 7
and compare results I obtained with them. In Chapter 8, I finally present SEPARA, a
completely new innovative approach to treat neutrinos fully non-linear by tracking
their advection on a grid.
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CHAPTER 2

Standard Models - What we (believe to) know

Here, we briefly introduce aspects of the standard models (SM) of particle
physics and cosmology. For the former we outline the particle zoo and the proper-
ties of neutrinos within the standard model before turning to the results of oscilla-
tion experiments and the implied nature of neutrinos beyond the standard model
(BSM). For the SMoC, we briefly derive the metric of the Universe from the cos-
mological principles and discuss the cosmic evolution with its various epochs of
radiation, matter and dark energy domination. We also identify the contributions
of the particles in the SMoPP to the content of the Universe and their role in both
the linear evolution early Universe as well as non-linear structure formation in the
late Universe.

2.1 Particle Physics

The standard model of Particle physics has proven to be very successful at pre-
dicting the properties not only of known particles correctly, but even of particles
previously unknown such as the top quark, tau neutrino and the Higgs boson (Aad
et al., 2012). It consists of the 48 fermions (6 leptons and 18 ”coloured” quarks plus
their anti-particles), 12 gauge bosons mediating the electro-weak (W+,W−,Z,photon)
and strong interactions (8 “coloured” gluons) and one scalar Higgs bosons as shown
in Fig. 2.1.

In this model neutrinos are massless and all other known particles (and their
composite particles such as hadrons) are charged or unstable or at least interact
strongly enough through either the electro-weak or the strong force to disqualify
them as a candidate for the elusive, dark matter. Thus, the inclusion of dark mat-
ter as well as massive neutrinos require certain extensions or alternatives to this
standard model such as SUSY (Martin, 1998) or νMSM (Asaka et al., 2005).

9
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FIGURE 2.1: Illustration of the Standard Model of Particle Physics (pic)

2.1.1 Neutrinos

Neutrinos are among the most elusive and lightest particles in the whole stan-
dard model. As with their charged lepton partners (electron,muon and tau), they
come in three different flavours. They were first proposed by Pauli (Pauli, 1930) as
an explanation for the missing energy and momentum in the observed products of
a β-decay. But their very weak interactions with other particles (cf. Sec. 2.1.1) made
the first direct detections from reactor sources (Reines and Cowan, 1956) or later
from atmospheric interactions (Achar et al., 1965) a challenge for particle physi-
cists of those times. While the successful detection of the atmospheric and reactor
neutrinos supported the predictions of their existence, the significant detections of
solar neutrinos (Davis et al., 1968) revealed first discrepancies in form of the “Solar
neutrino problem”. A deficit of up to 66% in the detected flux of electron neutrinos
produced as by-products of the fusion processes in the Sun compared to predicted
flux from the solar models was observed. This dogged neutrino physics until the
oscillation of electron neutrinos into the other flavours was confirmed by two in-
dependent groups (Kajita, 1999; McDonald and SNO Collaboration, 1999). This ex-
planation, however, requires that the neutrinos must have massive eigenstates in
contradiction to the standard model. In the following subsections, this and further
properties of neutrinos will be discussed in more detail.
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Neutrino Oscillation / Mass

In the Standard Model of Particle Physics (SMoPP), the three active neutri-
nos are massless as they have no right-handed counterparts for a Dirac mass term.
On the other hand, recent neutrino experiments have revealed that the neutrino
flavour states are actually a non-trivial superposition of the neutrino massive states.
This relation is described by a unitary mixing matrix U:

νL :=

 νeL

νµL

ντL

 = U

 ν1L

ν2L

ν3L

 =: UnL (2.1)

The time evolution of an arbitrary flavour state νa is given by the following solution
of the Schroedinger equation

|ν(t)〉 = exp(−iHt)|νa(0)〉 = ∑
i

exp(−iEit)U∗ai|νi〉 (2.2)

with H = diag(E1, E2, · · · ) and Ei being the energies of the massive states. Since
the flavour states do not correspond to the eigenstates of the Hamiltonian, i.e. the
massive states, they oscillate. In the simplest case of a 2-ν oscillation with a mixing
matrix

U =

(
cos Θ sin Θ
− sin Θ cos Θ

)
(2.3)

where Θ is the mixing angle, and neutrinos being ultra-relativistic, this results in a
transition probability between two flavour states a and b given by

P(νa → νb) = |∑
i

UbiU∗ai exp(−i
∆m2

i1
2E

t)|2 = sin2 2Θ sin2 ∆m2
21

4E
t (2.4)

with ∆m21 being the mass difference between the massive states and E the energy of
the neutrino involved. Such oscillations were observed in numerous experiments
(e.g. Inoue (2004); An et al. (2012)), that allowed determination of the mass differ-
ences ∆mij as well as the mixing angles between the three massive eigenstates. The
latest global results for the parameters of a three-neutrino mixing are listed in Tab.
2.1.

With the non-vanishing mass differences, at least two neutrino eigenstates
have to be massive. The actual mass depends on the hierarchy of states as the oscil-
lation experiments only reveal the relative mass differences between them and do



2.1. PARTICLE PHYSICS 12

parameter best fit ±1σ

∆m2
21[10−5eV2] 7.5 0.19

∆m2
31[10−3eV2] 2.45 0.05
sin2 Θ12 0.304 0.013

sin2 Θ23 (NO) 0.452 0.05
sin2 Θ23 (IO) 0.579 0.06

sin2 Θ13 0.0218 0.0010

TABLE 2.1: Latest global best-fit values for the neutrino oscillation parameters (Bergström et al.,
2015). For sin2 Θ23, values for normal (NO) and inverted ordering (IO) of the neutrino mass hier-
archy are given. For all other parameters, the values are (almost) identical for the different mass
orderings results and well within the given 1σ confindence interval.

not allow us to determine whether they are in the Normal Ordering(NO) or Inverted
Ordering(IO) (see Fig. 2.2).

FIGURE 2.2: Illustration of mass hierarchies of massive neutrino states

This implies that at least two mass eigenstates have to be massive even in the
case where the lowest mass eigenstate has a vanishing mass expectation value and
a lower bound of the sum of these masses is ∼ 0.05 eV for the normal and ∼ 0.1 eV
for the inverted mass hierarchy. At the same time β-decay experiments Fogli et al.
(2008) have determined an upper mass bound for the sum of ∼ 2.2 eV.

The fact, that we observe a neutrino mass at all, is not covered by the Standard
Model. But it is possible to extend the model to allow Dirac and/or Majorana mass
term for the neutrinos:

Dirac mass One way to give neutrinos mass is to introduce right-handed, sterile
neutrinos, νR, similar to the partners of the other fermions in the SM. This al-
lows us to write down a Higgs-Yukawa interaction term for the flavour neu-
trino states νL = (νeL, νµL, ντL) that is consistent with the gauge symmetries
in the SM:

LDirac = −
(v + H)√

2
Yν̄LνR + h.c. (2.5)
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with H being the physical Higgs boson, v the vacuum expectation value (vev)
of the Higgs doublet Φ and Y is a matrix of the coupling constants for the new
Yukawa couplings. The Dirac mass mD for each massive state is thus given by
the product of the components of the diagonalized Yukawa coupling matrix
Yii and the Higgs vev. This is actually the weak point of this theory as the
coupling has to be very small (Y ∼ 10−13) to obtain eV-scale neutrino masses.

Majorana mass Another way to obtain a mass term for neutrinos is to assume that
they are Majorana particles, i.e. their own anti-particles. This allows to write
down a mass term of the form

LMajorana = −1
2

νT
L C+MMνL + h.c. (2.6)

with C being the charge conjugation matrix and MM the Majorana mass and
h.c. denotes the hermitian conjugate of the first term. Such a Majorana term
for the doublet νL fields is ruled out in the SM framework by symmetry as it
leads to a SU(2) scalar triplet. However, the Majorana mass mM

R can contribute
to the sterile, singlet neutrinos.

Writing down the mass matrix of the combined mechanisms, i.e. for an ex-
tended SM with sterile right-handed neutrinos that furthermore obtain a Majorana
mass, yields (

0 mD

mD mM
R

)
. (2.7)

In the limit of very large Majorana masses (i.e. much heavier sterile neutrinos),
diagonalizing this matrix leads to the following masses for the massive eigenstates:

m1 = −
m2

D
mM

R
, (2.8)

m2 ∼ mM
R . (2.9)

This so-called see-saw mechanism hereby suppresses the Dirac mass and allows larger,
more natural Yukawa couplings even for very light neutrinos.

While the actual mechanism that gives neutrinos mass is of lesser importance
for the work presented in this thesis, it is noteworthy that models like the νMSM
which introduces right-handed sterile neutrinos are able to provide valid candi-
dates for Warm dark matter (WDM).
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Neutrino interactions

Possible interactions of the active neutrinos with other (left-handed) fermions
are so far very accurately described in the Standard Model of Particle Physics by
the weak interaction Lagrangian

L(CC)
int =

g√
2

(
q̄U

L VγσqD
L W+

σ + ν̄LγσlLW+
σ

)
+ h.c. (2.10)

for the charged weak current and

L(NC)
int =

1
cosΘw

(
∑

α=L,R
∑

β=U,D
gβ

α q̄β
αγσqβ

αZσ + gν
Lν̄LγσνLZσ + ∑

α=L,R
gl

αlᾱγσlαZσ

)
+h.c.

(2.11)
for the neutral weak current where

qU
α =

 uα

cα

tα

 qD
α =

 dα

sα

bα

 lα =

 eα

µα

τα

 να =

 νeα

νµα

ντα

 (2.12)

are the quarks/charged lepton mass fields and neutrino flavour fields, g is the EW-
coupling constant of the Standard Model and gβ

α are coefficients for the coupling
between the Z bosons and the fermion fields. All trilinear couplings can be com-
bined to obtain the interactions of the neutrinos with the environment as well as
the decay modes for the muons and tauons. Since a comprehensive discussion of all
interactions would exceed the limits of this thesis, I focus here on specific ones that
are of importance for my work and restrict the discussion (mostly) to the tree-level
only:

Elastic Neutrino-charged lepton scattering: Using the weak interaction via the Z-
and the W-boson, (anti)neutrinos can scatter with charged leptons elastically
and exchange momenta. Fig. 2.3 shows the respective tree-level Feynman di-
agrams for this process for neutrinos (in case of anti-neutrinos the charged
t-channel diagram has simply to be replaced by a corresponding s-channel).

In the case of charged current interactions as seen in Fig. 2.3 (left), neutrinos
can only scatter with the charged lepton of the same flavour, while for neutral
currents such restrictions do not exist and neutrinos and anti-neutrinos are
able to interact with any fermion f , i.e. including quarks bound in nuclei.

Quasi-elastic Neutrino-charged lepton scattering: The charged weak current in-
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W−

l−

νl

νl

l−

Z

f

(−)
νl

f

(−)
νl

FIGURE 2.3: The two tree-level Feynman diagrams for the elastic scattering process of charged lep-
tons (l)/ fermions ( f ) and neutrinos for (left) charged and (right) neutral current

teraction also offers decay modes for charged-leptons, allowing them and the
neutrinos to “change” from one flavour to another as shown in the Feynman
diagram in the example in Fig. 2.4.

W−

νl

l′−

l−

νl′

FIGURE 2.4: The tree-level Feynman diagrams for the charged-current Quasi-elastic elastic scatter-
ing process between the charged leptons l, l′ and the corresponding neutrinos.

In the case that the scattering product is more massive than the particles be-
fore the scattering, these processes are constrained by an energy threshold.
Assuming a scattering process of type

νA + B→ νB + A (2.13)

and assuming B is at rest, that the neutrino masses are negligible and that
mA > mB, the incoming neutrino has to have an energy of at least

Eth
νA

=
m2

A
2mB

− mB

2
. (2.14)
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For example, in case of an inverse muon decay defined by

νµ + e− → νe + µ− , (2.15)

the incoming muon-neutrino has to have a “temperature” of at least Tth
e =

10.92 GeV.

ν + ν̄↔ f + f̄ : Neutrinos can also decay into other fermions and vice versa. This
is done by an exchange of a Z-boson at tree-level (or e.g. photons at 1-loop
level). It should be noted, that the annihilation of neutrinos into other fermions
is severely constrained by the high energy threshold for the production of the
fermion-anti-fermion pairs.

Neutrino-nucleon scattering: Similar to the interaction with charged leptons, neu-
trinos can also interact with quarks (bound in hadrons) via weak interactions.
While elastic scattering allows a momentum transfer, charged-current reac-
tions lead to neutron decay n→ p+ e−+ ν̄e observed at Big Bang Nucleosythe-
sis (BBN), pion decay used in accelerator experiments for the muon-neutrino
production or inverse neutron decay ν̄l + p→ n+ l+ used in neutrino detectors
among others.

2.2 Cosmology

Cosmology as a branch of physics differs in one significant aspect from most
other fields of science. While other fields provide the possibility to study the subject
under laboratory conditions with controlled parameters and from different points
of view and take place on time and length scales that allow us to repeat the ex-
periments multiple times in a feasible amount of time and space, the cosmologists
are stuck in just one position as an observer within the only available realization
of a cosmos. Furthermore, the time scales of current cosmological dynamics of gi-
gayears restrict every observation to study the same snapshot in time of this ”ex-
periment”. Thus, the standard scientific approach of getting several realizations of
the same experiment in order to distinguish significant observed effects from sta-
tistical ones do not work in this field. In fact, without any further assumptions, any
attempt to gain knowledge about the universe would just be in vain, since even
the most obscure hypothesis that matches the observed snapshot (e.g. one that ex-
plains every observed inhomogeneity as a result of different local laws of physics
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or unique primordial structures) cannot be ruled out and is thus as valid as any
other. Therefore, it has been assured that a ”reasonable” modern cosmology has to
rest on some set of fundamental principles:

2.2.1 Fundamental principles

Copernican Principle: We are not at a preferred position in the Universe, i.e. on
sufficiently large scales, the observable properties of the Universe are the
same for all observers no matter where they are.

Isotropy: If averaged over sufficiently large scales, the observed properties of the
Universe are independent of direction.

The first assumption is important because it states that the observable part of
the Universe is a fair sample of the whole one, while the second one says that the
observable properties are not only independent of the position but also of the direc-
tion of the observation. Thus, the universe is assumed to be beyond its large scale
structures homogeneous and isotropic, which is often called the Cosmological principle.
This allows us to get after all a sample set of realizations of specific processes in the
Universe by studying similar objects like galaxies which lie in different directions
and at different distances (and therefore different redshifts) and determine their
statistical properties.

Besides these main principles, another sensible assumption which is widely
accepted and used is that the main force relevant for cosmology is gravity. This is
due to the fact that both strong and weak interactions basically happen on length
scales of elementary particles and the range of electromagnetism is limited by the
shielding of electrically charged particles, even if magnetism can bridge larger
scales than the other forces. The gravitation, on the other hand, is described by
the General Theory of Relativity and thus by Einstein’s famous field equations

Gαβ =
8πG

c2 Tαβ + Λgαβ , (2.16)

where Λ is the cosmological constant. Since the structure of space-time gαβ & Gαβ

determines the motion of matter and energy Tαβ and vice versa, this theory is obvi-
ously non-linear and hard to handle. On large space and time scales we will there-
fore often fall back to Newtonian theory for e.g. calculating specific dynamics.
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2.2.2 Metric

The two fundamental assumptions listed in Sec. 2.2.1 help us furthermore to
derive a quite simple metric for this homogeneous, isotropic Universe. In general, a
metric is given by a (symmetric) 4× 4 tensor gαβ which we have already seen above
in the field equations. For example, isotropy requires that space-time-components
g0i = gi0 vanish in order not to single out a preferred direction in space. Addition-
ally, if we use the the so-called comoving coordinates, which are spatial coordinates
attached to ideal observers following the mean motion of matter and energy in the
universe1 such that dxi = 0, it requires that the eigen time of these observers equal
the coordinate time dt and the eigen time element ds2 = gαβxαxβ becomes

ds2 = c2dt2 = c2(dx0)2 ⇒ g00 = c2 . (2.17)

Incorporating this into the metric tensor, we see that it is now reducible and hence
allows us to decompose space-time into a family of three-dimensional spatial slices.
Introducing a time-dependent spatial scale parameter and considering that isotropy
requires that the spatial subspaces have spherical symmetry, we finally get

ds2 = c2dt2 − a2(t)
[
dr2 + f 2

k (r)dω2
]

, (2.18)

which is called Robertson–Walker metric. r is the radial coordinate, ω the solid-
angle element with dω2 = dΘ2 + sin2 Θdφ2 and fk(r) is a radial function defining
the curvature of the three-dimensional space. While isotropy is fulfilled by con-
struction for any such function, homogeneity now requires that fk(r) has to be
either trigonometric, hyperbolic or linear defining a spherical, hyperbolic or Eu-
clidean space:

fk(r) =


K−

1
2 sin(K

1
2 r) (K > 0)

r (K = 0)
|K|− 1

2 sinh(|K| 12 r) (K < 0)

(2.19)

As we can see, the curvature of space has been directly parametrized by a param-
eter K. The latest constraints show that this curvature parameter K and ΩK respec-

1In fact, only ”free-falling” observers that follow this so-called Hubble flow caused by the expan-
sion/contraction of the Universe perceive the universe to be isotropic. Any motion of the observer
relative to this flow would, for example, result in the light emitted by the ”flowing” matter of the
universe to be seen more redshifted in some directions than in the corresponding opposite one due
to the relativistic Doppler effect.
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tively2 are in fact very very close to zero, i.e. −0.005 < ΩK < 0.005 at a confidence
level of 95% (Planck Collaboration et al., 2015d).

2.2.3 Cosmological Stress-Energy-Momentum Tensor

Before we can derive the dynamics of the system by solving the Einstein field
equation, we have to specify the Stress-Energy Tensor for such a cosmological en-
vironment. We therefore assume that the matter and radiation of the universe on
certain scales can be considered to be distributed homogeneously and isotropically
as in a perfect fluid. This cosmic fluid is thus characterized by the following (co-
variant) stress-energy tensor3

Tαβ = (ρ +
p
c2 )u

αuβ − gαβ p , (2.20)

where ρ and p are the energy density and (isotropic) pressure as measured by an
observer in the rest frame of the fluid and uα is the corresponding fluid 4-velocity.
The density is composed of the contributions of the radiation ρr, the non-relativistic
matter ρm and the vacuum energy ρλ. Since we assumed that we are dealing with a
homogeneous and isotropic fluid, the pressure and the density are simply related
by an equation of state

p = wρ , (2.21)

with w = 1/3 for the radiation / photon fluid, 0 for the collision-less non-relativistic
dust and -1 for the vacuum energy contribution if it is a cosmological constant.

2.2.4 Dynamics

The scale factor a(t) above has been introduced to take the expansion of the
Universe into account when modelling the metric. Observations have shown that
the Universe is in fact expanding and the Einstein equations offer solutions for a
Universe of that form. Using the derived Robertson-Walker metric (Eq. 2.18) and
the stress-energy tensor for the cosmic fluid (Eq. 2.20) to determine the Einstein
tensor Gαβ, we obtain Friedman’s equations, which describe the dynamics of the scale

2In the literature, ΩK = −Kc2

H2
0

is called the curvature density, but since ΩK and K differ only by a

constant factor, we will use the same name for both parameters.
3The full derivation of this tensor can be found e.g. in (Peebles, 1993, Ch.10).
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factor: (
ȧ
a

)2

=
8πG

3
ρ(t) +

Kc2

a2 +
Λ
3
=: H2(t) (2.22)

ä
a

= −4πG
3

(
ρ +

3p
c2

)
+

Λ
3

, (2.23)

where Λ is the cosmological constant seen in Eq. 2.16 and H(t) = ȧ/a is the so-
called Hubble parameter, i.e. the relative expansion rate at time t. The value of H
today is called Hubble constant. By introducing the critical density

ρcrit(t) :=
3H2(t)

8πG
, (2.24)

which is the density of a spatially flat universe (i.e. K = 0). Normalizing the den-
sities of both the relativistic, ”hot” matter/radiation ρr(t) and the non-relativistic,
”cold’ matter ρm(t) yields

Ωr(t) =
ρr(t)

ρcrit(t)
, Ωm(t) =

ρm(t)
ρcrit(t)

. (2.25)

The cosmological constant can be treated in a similar way and is often replaced by

ΩΛ(t) =
Λ

3H(t)
.

While the density ρm(t) of non-relativistic matter evolves as a−3 since the gas is
naturally thinned out by the expansion, radiation dilutes faster as a−4 since its
particles additionally lose energy by being redshifted due to the cosmological ex-
pansion. Inserting these relations into Eq. 2.22, the first Friedman equation finally
becomes

H2(t) = H2
0

[
Ωr0a−4 + Ωm0a−3 + ΩΛ0 + ΩKa−2

]
=: H2

0 E2(a) . (2.26)

This defines a first-order differential equation in a, which determines the evolution
of the cosmological expansion in general. Usually, a(t0) = 1 is chosen as the initial
condition where t0 marks the time today. If we use a scale factor a that satisfies the
ordinary differential equation (ODE) above, the metric in Eq. 2.18 obtained in this
way is called the Friedman-Lemaître-Robertson-Walker (FLRW) metric.



2.2. COSMOLOGY 21

2.2.5 Composition

So far, we have shown how the space-time of the Universe evolves in the pres-
ence of generic matter, radiation and a cosmological constant. The amount and
composition of the visible content of the Universe can be determined by the radia-
tion (visible light, IR, UV) observed by our telescopes and the specific absorption of
emission spectra imprinted on it and shown in the right pie chart in Fig. 2.5. From
observations, we learn that most of the visible mass of the Universe exists in the
form of interstellar gas consisting of hydrogen and helium with traces of heavier
elements (Gnacinski and Krogulec, 2006). A small fraction of that gas has managed
to cool enough over time to collapse into stars. Heavier elements that make up all
the solid matter and could only be created as products of stellar fusion processes or
related supernovae finally account for the smallest part of the baryonic content of
the Universe. That leaves two further components that are known in the standard
model of particle physics, photons and neutrinos. Photons make up the radiation
in the Universe and while there are many sources of photons in the Universe today
(e.g. black body radiation of stars and gas), by far the largest amount originates as
emission from the early stages of the then much hotter Universe dominated by ra-
diation (Lacasa, 2014). After the Universe cooled enough for the Hydrogen atoms
to recombine, the decoupled photons were able to travel (mostly) unscattered and
form the cosmic microwave background (CMB). This is also true for neutrinos, where
the CνB (cf. Chapter. 6) is expected to dominate all other neutrino sources today.
The difference from photons is that we are not able to observe these low-energy
neutrinos and merely deduce their quantity from assumption made about the ther-
mal history of the early Universe. Additionally, depending on their particle mass
and thus the time when they become non-relativistic, they may contribute to the
radiation as well as to the matter content.

As I have already briefly mentioned in the motivation, there is strong evidence
that the visible matter may not be all there is in the Universe. The standard model
of cosmology introduces two additional components, dark energy (DE) and dark
matter (DM) to account for the gravitational anomalies observed on the largest
scales, i.e. the accelerated expansion expressed by the cosmological constant and
the observed stronger gravitational potential inside galaxies and galaxy clusters.
Both these components are not accounted for in the current standard model of
particle physics4, yet are a vital part of the current standard model of Cosmology,

4Quantum field theory predicts the existence of such a vacuum energy, but such predictions are in
disagreement by over 100 orders of magnitude compared to the measured cosmological constant.
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FIGURE 2.5: Composition of the Universe in ΛCDM with minimal neutrino mass

ΛCDM. In the absence of any direct evidence for interactions between DM and
known particles beyond gravitation and lack of knowledge about its particle mass,
DM is generally assumed to exist as a collision-less, cold fluid in the Universe.

2.2.6 Evolution of the matter/radiation distribution

With dark energy serving as a global background, the evolution of the distri-
bution of the other remaining components (DM, baryonic matter, neutrinos and
photons) needs to be determined. From the small Gaussian-like perturbation im-
printed on the CMB, we know how the distribution of then coupled baryons and
photons looked like at a very high redshift (z = 1100) (Planck Collaboration et
al., 2015a). According to our current understanding these primordial perturbations
originate from quantum fluctuations present at the very first moments of the Uni-
verse (Straumann, 2006). Using this information, we can then follow the evolution
of the components of the Universe by solving the Boltzmann equations known
from statistical mechanics:

∂ f
∂xµ

dxµ

dt
+

∂ f
∂Pν

dPν

dt︸ ︷︷ ︸
d f
dt

= C[ f ; { fi}] , (2.27)

This is often dubbed the “vacuum catastrophe” of Cosmology.
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where f and fi are the phase-space distribution functions of specific particle types,
Xµ and Pν are the 4-position and 4-momentum respectively. The LHS is the Liou-
ville term, while the RHS is the collisional integral accounting for particle destruc-
tion and creation. If the RHS vanishes, this equation simply states that the number
of particles in a given (potentially moving) element of phase space does not change
with time.

I will VERY briefly describe the significant importance of this equation in two
different cases5.

Abundance

In the first, simpler case, we are interested in the global evolution of the abun-
dance of a specific particle in an unperturbed FLRW metric (cf. Section 2.2.2). Here,
f only depends on time and physical momentum p, which is related to the conju-
gate momentum by the scale factor a in this unperturbed metric. Using the geodesic
equation, Eq. 2.27 simplifies into:

∂ f (t, p)
∂t

− Hp
∂ f (t, p)

∂p
= C[ f ; fi] . (2.28)

By integrating the momentum out, we now obtain a first-order partial differential
equation describing the evolution of the global number density n =

∫ d3 p
(2π)3 f (t, p)

of each particle species:

∂n
∂t
− 3Hn =

∫ d3p
(2π)3 C[ f ; fi]⇒

1
a3

d(na3)

dt
= C̃[n; {ni}] . (2.29)

Let us assume, that we are interested in a particle species 1 that interacts either
with itself or another particle 2 and results in a pair of particles of type 3 and 4. In
this case, the net particle production and destruction described by the collisional
integral can be simply written as

C̃[n1; {ni}] = −αn1n2 + βn3n4 , (2.30)

where the coefficient α = 〈σv〉 is the thermally averaged interaction cross-section, while
β relates to α as C̃[n1; {ni}] has to vanish in chemical equilibrium for this process.

5A more detailed version of the outlined derivation, can be found in e.g. Dodelson (2003); Ma
and Bertschinger (1994a).
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Thus, we get:
1
a3

d(n1a3)

dt
= −〈σv〉

[
n1n2 −

(
n1n2

n3n4

)
eq

n3n4

]
(2.31)

We now we divide the number densities ni by their entropy density s ∼ a−3 to
obtain the comoving densities instead. Time in the derivation is substituted by the
expansion factor and we introduce the interaction rate for particle 1 given by Γ1 =

n2〈σv〉. Thus, Eq. 2.31 transforms into

1
N1

dN1

da
= −Γ1

H

[
1−

(
N1N2

N3N4

)
eq

(
N1N2

N3N4

)−1
]

, (2.32)

which shows that this interaction of particle species 1 with the other particles
freezes out, when H becomes larger than Γ1. We define the point of freeze-out at
H ∼ Γ.

This result can now be used to derive the relic density of weakly interacting
massive particles such as neutrinos or other dark matter candidates once their in-
teractions with the other components have frozen out as the densities of the matter
and radiation in the expanding Universe is diluted and velocities are redshifted.
Let us assume for example a interaction of the form

χ + χ̄
 l + l̄ , (2.33)

where a massive dark matter particle χ and its antiparticle can annihilate to pro-
duce to essentially massless particles l + l̄. Let us further assume that l and its
antiparticle are still tightly coupled to the cosmic plasma in the early Universe,
which keeps their equilibrium densities fixed (Nl = (Nl)eq) and that there is no
initial asymmetry between the particles and their antiparticles (Nχ = Nχ̄). We also
define the ratio x ≡ Mχ/T between DM particle mass Mχ and the temperature of
the involved components T to replace t as a measure of time. On this scale the dark
matter particles become non-relativistic at xnl ∼ 1 from where on the back reaction
in Eq. 2.33 is kinematically disfavoured and (Nχ)eq ∼ x3/2 exp(−x) drops expo-
nentially until freeze-out takes place at about x f ≈ 10. Finally, by assuming that all
this takes place well within the radiation dominated era (H(a) ∼ T2 ⇒ H(a) =

H(Mχ)x−2) and within a small enough time interval such that the effective number
of degrees of freedom in entropy g?S(T) ∼ s/T3 remains constant, Eq. 2.31 becomes
the following Riccati equation, i.e. a first-order ordinary differential equation that is



2.2. COSMOLOGY 25

quadratic in the unknown function Nχ(x)

dNχ

dx
= − λ

x2

[
N2

χ − (N2
χ)eq

]
, (2.34)

with

λ =
2π2

45
g?s

M3
χ〈σv〉

H(Mχ)
. (2.35)

For a velocity-independent cross-section (s-wave), λ can also to be considered con-
stant in the time frame of interest, but in general that is not the case. A way to
obtain an x-independence, we define λ0 ∼ λ/xp/2 where p is the degree of the
leading order term of the expanded cross-section, i.e. 〈σv〉 ∼ vp. Fig. 2.6 shows a
numerical solution of that equation, i.e. the evolution of the abundance of a dark
matter candidate. Different effective values of λ0 as well as different degrees p of
velocity-dependencies of the interaction result in significantly different relic abun-
dances. While Nχ ≈ (Nχ)eq for very high temperatures x � 1, the final abundance
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FIGURE 2.6: Evolution of the normalized comoving number density around freeze-out x f for vari-
ous choices of λ. The dotted line marks the equilibrium number density, that drops exponentially
as the production of DM is strongly suppressed for m/T > 1. The point of freeze-out for the model
with the solid line is also marked by the arrow.
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can be approximated by

Nfinal
χ ≈

x f

λ
. (2.36)

where x f can be determined from the freeze-out condition H(x f ) ∼ Γ(x f ).

Evolution of local perturbations

Additionally, we are also interested in how small primordial fluctuations in
the matter distribution and therefore in the space-time metric itself are evolving
over time. For that study, we first introduce such minor perturbations in the FLRW
metric (Eq. 2.18) where the components up to first-order are given by6:

g00 = [1 + 2ψ(x, t)] , (2.37)

gij = a2δij[1 + 2φ(x, t)] , (2.38)

where ψ and φ are functions corresponding to the Newtonian potential and a per-
turbation in the spatial curvature respectively.

For cold fluids such as dark matter or baryons before shell-crossing, we can use
the single-stream approximation, where non vanishing velocity dispersions can be
neglected. Considering small perturbations δρ and δp in the local density and pres-
sure respectively, the energy-momentum tensor for a perfect fluid (Eq. 2.20) is then
to linear order given by

T00 = −(ρ̄ + δρ) , (2.39)

T0i = (ρ̄ + p̄)vi , (2.40)

Tij = ( p̄ + δp)δij + Σij , (2.41)

where Σi j is an anisotropic shear perturbation (Σii = 0) for contributions from free-
streaming particles like neutrinos. We define the overdensity δ ≡ δρ/ρ̄ and the
velocity divergence θ ≡ ikjvj in k-space. Applying the energy-momentum conser-
vation (Tµν

;µ = 0) assuming that the initial perturbations are isentropic, i.e. satisfy
the same equation of state as in Eq. 2.21, we obtain for the evolution of δ and θ for
a single, uncoupled fluid in the perturbed metric given in k-space by

δ̇ = −(1 + w)(θ − 3φ̇) , (2.42)

θ̇ = −H(1− 3w)θ − ẇ
1 + w

θ +
w

1 + w
k2δ− k2Θ + k2ψ , (2.43)

6Henceforth, we define c = 1 for simplicity and use w.l.o.g. the conformal Newtonian gauge.
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where Θ ≡ −(kik j/k2 − 1/3δij)(Ti
j − δi

jT
k
k /3).

For a pressure-less, cold perfect fluid (w = Θ = 0) such as CDM, the fluid
equations simply become

δ̇c = −θc + 3φ̇, θ̇c = −Hθc + k2ψ , (2.44)

since all other terms vanish.
In the case of interactions between two fluids as in the case of baryons with

photons before decoupling or dark matter with photons and neutrinos (cf. part III),
momentum is transferred between both fluids which thus affects the evolution of θ

fro each component by adding an additional “source term” (cf. photon distribution
below). For baryons, we thus obtain:

δ̇b = −θb + 3φ̇, θ̇b = −Hθb + c2
s k2δb + k2ψ + κ̇(θγ − θb) . (2.45)

For components such as neutrinos or photons, the phase-space distribution f (xi, Pj, t)
is not longer simply approximated by a discrete peak around the averaged local ve-
locity, but is represented by a wide-spread continuum. In this perturbed metric, the
4-momentum becomes up to first order in the perturbations:

Pµ =

(
E(1− ψ),~p

1− φ

a

)
, (2.46)

where ~q is the physical 3-momentum, E =
√

m2 + p2 and where we exploited the
constraint that P2 = −m2. The energy-momentum tensor in this more general case
is given by

Tµν =
∫

dP1dP2dP3(−g)−
1
2

PµPν

P0 f (xi, Pj, t) . (2.47)

Using Eq. 2.46 to expand the total derivative in Eq. 2.27 up to the first order while
switching to comoving coordinates xi = ri/a, comoving momenta qi = api and
conformal time dτ = dt/a, we get

∂ f
∂τ

+
∂ f
∂xi

dxi

dτ
+

∂ f
∂q

dq
dτ

= C[ f ; { fi}] . (2.48)

The term with dependence on the direction of the momentum p̂i = pi/p is missing
here as it is a second order term in the perturbation.

Using the geodesic equation to expand the time derivative of the momentum
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∂q/∂τ, Eq. 2.48 yields

∂ f
∂τ

+
qi

ε

∂ f
∂xi + q

(
φ̇− εni

∂ψ

∂xi

)
∂ f
∂q

= C[ f ; { fi}] , (2.49)

where ε ≡ E/a is the comoving energy. It is convenient to write the phase-space
density in terms of the unperturbed (zero-th order) distribution f0(q) and a pertur-
bation term Ψ(xi, qi, τ) such that

f (xi, qi, τ) = f0(q)
[
1 + Ψ(xi, qi, τ)

]
. (2.50)

Rewriting Eq. 2.49 this way and Fourier-transforming it to get rid of spatial deriva-
tives, we obtain the following Boltzmann equations in k-space:

∂Ψ
∂τ

+ i
qi

ε
+ q

(
φ̇− ε(~k ·~n)ψ

) d ln f0

d ln q
=

1
f0

C[ f ; { fi}] . (2.51)

Take notice that this equation depends on the (normalized) direction of the mo-
mentum ~n = ~q

q only through its angle with ~k. Thus, assuming that Ψ is initially
axially symmetric, this will not change according to Eq. 2.51. Expanding this angu-
lar dependence of Ψ in a Legendre series, i.e.

Ψ(~k,~n, q, τ) =
∞

∑
l=0

(2l + 1)(−i)lΨl(~k, q, τ)Pl(~k ·~n) , (2.52)

Eq. 2.51 yields the following infinite series of coupled first-order differential equa-
tions, the so-called Boltzmann hierarchy, for the evolution of the coefficients Ψl of
this expansion:

Ψ̇0 = − qk
3ε

Ψ1 + φ̇
d ln f0

d ln q
+

(
f
f0

)
C,0

, (2.53)

Ψ̇1 =
qk
3ε

(
Ψ0 −

2
5

Ψ2

)
− εk

q
ψ

d ln f0

d ln q
+

(
f
f0

)
C,1

, (2.54)

Ψ̇l =
qk
3ε

(
l

2l − 1
Ψl−1 −

l + 1
2l + 3

Ψl+1

)
+

(
f
f0

)
C,l

, l ≥ 2 , (2.55)

where ( f
f0
)C,l are the coefficients of the expansion of the interaction term on the

RHS of Eq. 2.51.
The perturbed energy density, δρ, pressure, p, velocity dispersion, θ, and shear

stress, Θ can be written in this expansion. Due to the symmetry of the terms in the
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Legendre series, this yields

δρ = 4πa−4
∫

q2dqε f0(q)Ψ0 , (2.56)

δp =
4π

3
a−4

∫
q2dq

q2

ε
f0(q)Ψ0 , (2.57)

δθ =
4π

3(ρ̄ + p̄)
ka−4

∫
q2dqq f0(q)Ψ1 , (2.58)

δΘ =
8π

15(ρ̄ + p̄)
a−4

∫
q2dq

q2

ε
f0(q)Ψ2 , (2.59)

(2.60)

In the massless limit as for e.g. photons with ε = q, we can then derive the conser-
vation equations for δγ and θγ by taking the time derivative of Eqs. 2.56-2.59 and
combining the results with Eqs. 2.53-2.55:

δ̇γ = −4
3

θγ + 4φ̇ , (2.61)

θ̇γ = k2
(

1
4

δγ −Θγ

)
+ k2ψ + θ̇(b↔ γ) , (2.62)

(2.63)

where θ̇(b ↔ γ) = κ̇(θb − θγ) is the momentum transfer between photons and
baryons due to Thomson scattering. The direction-independent zero-th momen-
tum of the interaction term vanishes here and κ̇ ∼ neσTh is the interaction rate
between photons and baryons.

2.2.7 Observations / Tests for γCDM

There are multiple windows into the past to test the validity of ΛCDM.

Cosmic Background While there is no direct observation of the postulated singu-
larity i.e. the hot “Big Bang” at the beginning of the Universe, the existence of the
CMB with its black body spectrum is evidence that the universe started in such a
hot, dense state. The analysis of the primordial perturbation imprinted in the CMB
as shown in the angular temperature power spectrum in the top panel of Fig. 2.7
are very accurately predicted by the ΛCDM model once the free parameters are fit-
ted to the observations. The observed relative amplitude and position of the peaks
in the spectrum tell us about the composition of the Universe (e.g. CDM/baryon
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ratio), expansion rate and curvature of the Universe at around the time of recom-
bination (Ade et al., 2014) among other parameters in the model.

Element abundance The measurement of the abundance of the light "elements"
deuterium, helium-3, helium-4, and lithium-7, regions of the Universe where stel-
lar nucleosynthesis, i.e. production of these elements in the fusion process in stars,
is limited not only provides another evidence of a very early hot state of an ex-
panding Universe where BBN could take place, but also gives us for each element
a measurement of the baryon-to-photon ratio at that time. The results for 3He and
4He seem to be in good agreement with an independent measurement of that ratio
using the CMB, while there is a discrepancy for the lithium-7 results, which has yet
to be explained if the standard model is correct (Coc et al., 2004).

Structure formation Finally, the observable structures that formed in the late Uni-
verse provide us with very powerful tests of ΛCDM and its parameters. First of all,
galaxies serve us as (biased) tracers of the large-scale structures in the Universe, i.e.
the linear perturbations described in Sec. 2.2.6 and the weakly non-linear regime
where the smaller perturbations have “condensed” into the filaments, walls and
galaxy cluster halos that form the “so-called” cosmic web. The lower panel in Fig.
2.7 shows a comparison between the matter power spectrum of the LSS as obtained
by the 2dF galaxy survey and the predictions for ΛCDM. The observed redshift po-
sition of the galaxies in such surveys does not only contain the information about
the spatial distribution, but as well about the dynamics, i.e. local gravitational flows
and the Hubble flow. Thus, it is very sensitive not only to the composition of the
Universe, but also to the evolution thereof to test whether dark energy is more
complex than just a cosmological constant. Additionally, the baryonic acoustic oscil-
lations (BAO) that have been imprinted into the matter distribution from the time
before decoupling can be observed on the largest scales of the galaxy distribution
in surveys (Cole et al., 2005) and serve as a ruler to measure the expansion of the
Universe, i.e. the Hubble parameter in the ΛCDM framework, as well as to test
alternative models for dark energy (Shi et al., 2011). On the smaller galactic and
sub-galactic scales, we have the observations of the abundance, distribution and
properties of nearby galaxies such as the Milky Way and Andromeda and their
satellite galaxies as well as the distribution of interstellar gas, that leaves an ab-
sorption spectrum imprinted on the emitted light of distant quasars dubbed the
“Lyman-α forest (Gunn and Peterson, 1965; Lynds, 1971). These are the scales that
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FIGURE 2.7: Tests of ΛCDM: (Top) CMB TT angular power spectrum as observed by Planck and
predicted by ΛCDM with fitted parameters (Planck Collaboration et al., 2015b). The blue dots cor-
respond to measurements made with Planck and their error bars account for measurement errors
as well as for an estimate of the uncertainty due to cosmic variance. The red solid line represents
the best fit of the SMoC while the blue-shaded area around it shows the predictions of all the vari-
ations of the standard model that best agree with the data; (Bottom) Redshift-space) galaxy power
spectrum from the completed 2dF redshift survey (Cole et al., 2005). The dashed line refers to the
input power spectrum for a dark matter model with the listed parameters while the solid line refers
to the same prediction convolved with the window function of the survey catalogue.
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are most affected by the nature of neutrinos and DM and not only enable us to de-
termine parameters such as the neutrino mass (cf. Part IV), but also provide us with
potential evidence that the assumption in ΛCDM that DM is a cold collision-less
fluid may be flawed (cf. Part III).



PART III

DARK MATTER

INTERACTIONS
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CHAPTER 3

Linear Theory / Background

Dark matter (DM) is the most dominant and yet most elusive component of
matter in the Universe. Exploring its nature is therefore one of the greatest chal-
lenges in both cosmology and particle physics today. The usual treatment of DM
in structure formation calculations neglects possible interactions between DM and
other species. Yet if DM is a (thermal) weakly interacting massive particle (WIMP),
interactions (and more precisely, annihilations) are essential to obtain the correct
relic density. It is therefore important to study the impact of DM interactions on
other cosmological observables.

3.1 Motivation - WIMP miracle & candidates

One important motivation to consider DM interaction with other particles in
the SM is to explain the observed relic abundance Ωdmh2 = 0.1199 (Planck Col-
laboration et al., 2015d) today. Assuming such interactions, dark matter was in full
thermal equilibrium with SM particles at sufficiently high temperature T. Thus, the
number density of the still relativistic DM particles would be equal to the other rel-
ativistic components. Once the temperature fell below the DM particle mass, DM
particles became non-relativistic and their number density started dropping expo-
nentially ndm ∼ exp(−mdm/T) as they annihilate. Within the standard model of
Cosmology, this second stage continued until the increasing Hubble expansion rate
H = ȧ/a ∼ T2/MPlanck during the radiation-dominated Universe surpassed the
two-body interaction rate Γdm between DM particles that is responsible for their
annihilation at temperature TF

Γdm =
dndm

dt
= ndm〈σdm→SMvdm〉 , (3.1)

where ndm is the number density of DM particles, σdm→SM is the DM-SM interac-
tion cross-section and vdm the velocity dispersion within the DM particles in their

35
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rest frame. At this point in time, DM decoupled thermally from the SM particles
and the annihilation stopped. After that, the decrease in the DM density was only
driven by the expansion of the Universe that dilutes all the content and scales for
any non-relativistic component as T−3. Assuming that the interaction cross-section
is velocity-independent, i.e. 〈σdm→SMvdm〉 is constant, and that dark matter decou-
pled while already being non-relativistic, we can determine this freeze-out temper-
ature TF and with it the cross-section needed to obtain the observed DM energy
density. Using the relations stated above, this is given in good approximation by:

〈σdm→SMvdm〉 '
10−37cm2 · c

Ωdmh2 ' 2.5 · 10−26 cm3

s
. (3.2)

This is surprisingly close to interaction cross-section expected from interaction via
the weak force in the SM, thus coining the name ”WIMP miracle”. In this sense,
if speaking of ”weak interactions” or ”weakly-interacting” from here-on in this
thesis, we do not refer exclusively to weak-force interactions, but interactions that
are somewhat similar in strength to the weak force and far below stronger scales
such that of the EM force.

It should be noticed that there are various ways beyond the SM to influence
the abundance of DM such as an altered expansion rate around freeze-out or ad-
ditional non-thermal production after decoupling . Thus, the measurement of the
cross-section by other, independent means such as by direct (Marrodán Undagoitia
and Rauch, 2016) or indirect detection (Conrad, 2014) experiments would allow to
probe the very early Universe for such BSM physics.

Common BSM theories provide a variety of ”weakly-interacting” candidates:

Supersymmetry (SUSY) - In the minimal SUSY SM (MSSM), the conservation of
R-parity implies, that the lightest supersymmetric particle has to be stable
and thus qualifies as a candidate for dark matter. Considering that the DM
particles also have to be electrically neutral to be ”dark”, possible MSSM can-
didates are e.g. the neutralino and sneutrino, which both have electroweak
scale interactions (Chung et al., 2005).

Kaluza-Klein (KK) - The compactified extra-dimension(s) in the 5D minimal Uni-
versal extra dimension (mUED) model of the KK theory, a massless 5D scalar
leads to a “tower” of massive vector fields (“modes”) in the effective 4D
space-time we observe. The first excitation mode of the gauge field that is
equivalent to the photon is the lightest KK-particle (LKP). It is stable under
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KK− parity and serves as a DM candidate (Servant and Tait, 2003).

Little Higgs - In the Little Higgs models, the SM is extended by two additional
symmetries - a global one that is broken at the TeV scale, for which the Higgs
plays the role as a pseudo-Goldstone boson, and a second, discrete Z2 sym-
metry known as T-parity, which results in the context of the littlest Higgs Model
with T-parity (Hubisz and Meade, 2005) in four additional gauge bosons , of
which the ”heavy photon” BH is stable, neutral and considered a DM candi-
date.

In our work, we do not pick a specific model, but simply work within an effec-
tive theory. Hence, we assume the existence of an effective interaction term be-
tween some unspecified, otherwise sterile DM particles and our SM particle of
choice, photons and neutrinos in the Lagrangian. Depending on the actual type-
/mass of the mediator in our ”black-box”, this can lead to a momentum/velocity-
dependence of our effective cross-sections, but as in the discussion about the WIMP
miracle, we mainly focus in the following on velocity-independent scenarios.

3.2 Modified Boltzmann equations

In order to study the evolution of the different components that make up the
content of the Universe, one has to solve the Boltzmann equations for each of those
phase-space fluids. When switching from Lagrangian framework which follows
the fluids on their characteristics to the Eulerian fixed in space, we integrate out
the velocity space after multiplying with the momentum, expand to the linear or-
der in the density perturbations δ, ignore the diffusive terms and thus obtain the
following linearised Euler equations in Fourier space (cf. Sec. 2.2.6):

θ̇b = k2ψ−Hθb + c2
s k2δb − R−1κ̇ (θb − θγ) , (3.3)

θ̇γ = k2ψ +

(
1
4

δγ − σγ

)
k2δb − κ̇ (θγ − θb)− Cγ−dm , (3.4)

θ̇dm = k2ψ−Hθdm − Cdm−γ , (3.5)

where ψ is the gravitational potential, H is the conformal Hubble rate and θ and σ

are the velocity divergence and anisotropic stress potential associated with the re-
spective baryon, photon and DM fluid. For the EM interactions in the SM, the first
two equations include the terms with κ̇ ≡ aσThcne being the Thomson scattering
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rate with respect to conformal time and R ≡ (3/4)(ρb/ργ) is a pre-factor to ensure
momentum conservation. Cdm−γ and Cγ−dm = −S−1Cdm−γ are the new interac-
tions term that have to be added to include interactions between dark matter and
the cosmic photon background. Analogous to the EM interaction,

Cdm−γ = µ̇ (θdm − θγ) (3.6)

depends on the new interaction rate µ̇ ≡ aσdm−γcndm, where σdm−γ is the elastic
scattering cross-section between dark matter and photons, and S ≡ (3/4)(ρdm/ργ)

as the scaling of the counter term in the momentum transfer. For the DM-neutrino
interactions that are discussed in this thesis as well, similar modifications can be
added to the Euler equations to include these interactions as well.

These kind of interaction models have been previously extensively studied by
Boehm et al. (2001a) and subsequent papers. Recently, Wilkinson et al. (2014a) pre-
sented an implementation of these modified Euler equation for the CLASS Boltz-
mann solver, which was then used to constrain the allowed cross-sections in such
models using the most recent CMB measurements (cf. Sec. 3.3.1).

3.3 Linear solutions for γ/νCDM

Among all the possible contributions to the collisional damping of DM fluc-
tuations, the largest occurs when DM interacts with photons (γCDM) or neutrinos
(νCDM). There are two reasons for this: (i) photons and neutrinos have the largest
energy density of any standard model particle until matter-radiation equality, (ii)
they are relativistic and therefore tend to drag DM particles out of small mass over-
densities if they are coupled to DM. The damping scale becomes in that case even
for smallest cross-sections significantly large (cf. Eq.3.11).

Photons and neutrinos do not have exactly the same effect on DM fluctua-
tions due to their different thermal histories, with photons staying coupled to the
thermal bath for much longer due to Thomson scattering. Additionally, for large
cross-section we may encounter the effect of mixed damping when neutrinos have
been already decoupled from the rest of the SM sector and stream freely, while DM
remains still coupled to them (Boehm et al., 2001a). Hence, their effect on the matter
power spectrum is also different, as illustrated in Fig. 3.1, where we show the lin-
ear theory matter power spectra for collision- less CDM, γCDM, νCDM and for the
alternative (collision-less) WDM model, which we will include in this discussion
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for comparison.
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FIGURE 3.1: The linear matter power spectra for collision-less CDM (solid, black), γCDM (dashed,
red), νCDM (dotted, blue) and WDM (dashed-dotted, orange) at redshift z = 49. The interaction
cross-sections for γCDM and νCDM and the particle mass for WDM have been selected such that
the initial suppression with respect to CDM is identical (see Table 4.1). The characteristic length
scale, at which the power spectra of all the alternative DM models drop below 1/4 of the CDM
spectrum (represented by horizontal dash-dotted line), is called the half-mode mass, Mhm, is marked
by an arrow and separates regions I and II, which are discussed with reference to Fig. 3.2.

In the case of a thermalized, non-interacting, fermionic WDM particle, the sup-
pression in the matter power spectrum is typically approximated by the transfer
function (Bode et al. 2001)

T(k) =
[
1 + (αk)2µ

]−5/µ
, (3.7)

where

α = 0.048
[mDM

keV

]−1.15
[

ΩDM

0.4

]0.15 [ h
0.65

]1.3 Mpc
h

. (3.8)
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Here, ΩDM is the DM energy density, h is the reduced Hubble parameter and µ '
1.2 is a fitting parameter7. The scale α in Eq. 3.8 encapsulates the effect of free-
streaming, which erases primordial fluctuations below a wavelength given by

λfs =
∫ t0

tdec

v(t)
a(t)

dt ≈ rH(tNR)

[
1 +

1
2

log
(

tEQ

tNR

)]
, (3.9)

where v(t) is the thermal velocity of the WDM particle. In this expression, tdec is
the DM decoupling time, t0 is the time today, a(t) is the cosmological scale factor,
rH(tNR) is the comoving size of the horizon when DM becomes non-relativistic (at
time tNR) and tEQ is the epoch of matter-radiation equality.

A similar transfer function can be used to model the cut-off in the matter
power spectra in γCDM and νCDM (Boehm et al. 2002) with

α̃ = βX

[
σDM−X

σTh

mDM

GeV

]0.48 [ΩDM

0.4

]0.15 [ h
0.65

]1.3 Mpc
h

, (3.10)

where X is γ or ν, βγ ≈ 1.25× 104, βν ≈ 1.04× 104, σDM−X is the DM–radiation
cross-section and σTh is the Thomson cross-section. This transfer function fixes the
half-mode scale for γCDM and νCDM, thus providing a means to compare the
impact of the interactions with respect to WDM, but does not encapsulate the full
suppression of the power spectrum.

Eq. 3.10 corresponds to an analytical calculation of the collisional damping
scale given by8

λ2
cd =

2π2

3

∫ tdec

0

ρX

/ρ
v2

X (1 + ΘX)

a2 ΓX
dt . (3.11)

In this equation, /ρ = ρX + pX, where ρX is the energy density, pX the pressure, vX

is the velocity dispersion and ΓX is the total interaction rate of the DM interaction
partner and ΘX contains the contribution from heat conduction.

As the integral in Eq. (3.11) is dominated by the contribution at late times, the
collisional damping scale can be approximated by

λ2
cd ≈

2π2

3

[
ρX

/ρ
v2

X (1 + ΘX)

a2
t2

αX

] ∣∣∣∣
tdec

, (3.12)

7There is an alternative fit for α and µ that is often used in the literature (e.g. Viel et al. 2005), but
the difference is marginal for our analysis.

8We neglect the possible contributions from self-interactions and mixed damping and simplify
the calculation to a single DM interaction partner.
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using ΓX = H = αX/t at t = tdec, where H is the Hubble rate, αX = 1/2 if tdec <

tEQ and αX = 2/3 otherwise. On scales smaller than λcd, primordial fluctuations
are erased.

We summarise the impact of the damping scales λfs and λcd in linear theory
in Fig. 3.2. To distinguish these quantities from the half-mode mass scale, Mhm, we
present the mass corresponding to the relevant damping scale as a function of the
DM mass (for WDM) and interaction cross-section (for γCDM and νCDM).

FIGURE 3.2: Characteristic mass scales for the suppression of primordial fluctuations by free-
streaming (WDM, top), photon collisional damping (γCDM, middle) and neutrino collisional
damping (νCDM, bottom). The half-mode mass scale, Mhm, is defined by the initial cut-off in the
transfer function and marks the upper boundary of region II, where hierarchical structure formation
(SF) may no longer occur due to a reduced number of low-mass progenitors. Mfs and Mcd are the
masses corresponding to the free-streaming and collisional damping scales respectively and define
the boundary of region III, where structures no longer form. The colour scale shows the absolute
value of the transfer function, T(k), and the vertical red lines correspond to the DM parameters
listed in Table 4.1.

We identify three regions in Fig. 3.2. Regions I and II are already labelled in Fig.
3.1 and there is now an additional region (III) occurring at much higher wavenum-
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bers than are plotted in this figure. In region I, haloes form hierarchically, while in
region III, all primordial perturbations have been erased. In between lies a transi-
tion region (region II), where some primordial density fluctuations may survive to
form structure, but these are already sufficiently suppressed to disfavour a typical
hierarchical structure formation. Region II extends down to much smaller scales
for γCDM and νCDM compared to WDM due to the prominent oscillations in the
matter power spectrum9. The separation between regions I and II is determined
by the half-mode mass scale (as in Fig. 3.1), while the transition between regions II
and III is governed by the free-streaming scale (for WDM) or collisional damping
scale (for γCDM and νCDM).

3.3.1 Constraints from CMB

For large values of the DM–radiation scattering cross-section, the suppression
is prominent in both the CMB temperature and polarization power spectra. A com-
parison between the predicted spectra and the first-year data from Planck (Ade et
al. 2014) using a Monte Carlo-Markov Chain (MCMC) technique gives upper bounds
of 8× 10−31 (mDM/GeV) cm2 and 2× 10−28 (mDM/GeV) cm2 on the γCDM and
νCDM cross-sections respectively, where mDM is the DM particle mass (at 68% CL,
assuming a constant cross-section) (Wilkinson et al. 2014a,b). As mentioned in the
previous section, the linear prediction for the matter distribution slightly differ for
neutrinos and photons interactions. In addition, γCDM has a direct impact on the
CMB, while νCDM only affects the CMB indirectly, and the parameter space for
νCDM suffers from significant degeneracies (see Wilkinson et al. 2014b). This is the
reason why the constraints differ for γCDM and νCDM.

3.3.2 Cosmological parameters

A final topic to discuss in this chapter is the choice of the cosmological pa-
rameters for these extended models. Recent studies hinted that γ/νDM favour
slightly higher values for H0 for cross-section that are still allowed by the CMB
constraints (Wilkinson et al., 2014b). This may ease the tension between the Planck
measurements and other results from other probes (Ade et al., 2014), but would

9We note that oscillations are also expected in the transfer functions for certain WDM models at
small scales (see e.g. Boyanovsky and Wu 2011). However, at these scales, the transfer function is
already strongly suppressed by free-streaming so the regeneration of power from these oscillations
is expected to be much weaker than in γCDM and νCDM.
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also potentially force us to adapt our cosmological parameters to the interaction
cross-section we want to study. As we have shown in Boehm et al. (2014) (cf. Ch.
5), these cross-sections are orders of magnitude smaller than those considered in
Wilkinson et al. (2014b). In order to check whether the choice of the cross-section

FIGURE 3.3: Triangle plot for a fit of the free cosmological parameters in the γCDM model with
fixed interaction cross-section σDM−fl = 2× 10−9 σTh (mDM/GeV) against the 1-year Planck CMB
data. The coloured regions are the 68% and 95% confidence regions for the fit while the dashed line
mark the equivalent regions for a similar fit for the vanilla CDM model.

affects the choice of the cosmological parameters to be consistent with the CMB,
we performed MCMC runs for our γCDM model with the interaction cross-section
fixed to σDM−fl = 2 × 10−9 σTh (mDM/GeV) against the 1-year Planck data. The
triangle plot in Fig. 3.3 shows the resulting coloured 1σ and 2σ confidence regions
for the remaining free parameters. The dashed lines represent the same regions for
a vanilla CDM model. So, while there may exists a degeneracy between the inter-
action cross-section and H0 that becomes significant for larger cross-sections, the
best-fits for all the cosmological parameters of our underlying ΛCDM model are
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not significantly affected for the cross-sections used in our studies. This allows us
to keep them fixed to their SM best-fit values throughout our work.



CHAPTER 4

DM–ν/γ interactions & Large-scale structures

This chapter follows closely Schewtschenko et al. (2015b) and deals with inter-
actions of photons and neutrinos with a WIMP-like DM candidate and explores
the implications on the formation of non-linear cosmic structures studying the
DM distribution and galaxy halo properties. We also show that semi-analytical de-
scriptions of the matter distribution in the non-linear regime fail to reproduce our
numerical results, emphasizing the challenge of predicting structure formation in
models with physics beyond collision-less DM.

Unless explicitly stated otherwise, the values we use throughout this chapter
for the γCDM and νCDM cross-sections and the WDM mass are given in Table 4.1.
These parameters are motivated by the constraints we will obtain in the following
chapter following our previous work (Boehm et al. 2014) and have been selected
such that the scale at which the transfer function is suppressed by a factor of two
with respect to CDM (hence giving a factor of four reduction in power) is identi-
cal. This scale defines the half-mode mass, Mhm, and marks the threshold between
regions I and II in Fig. 3.1. It is in region II, where the power spectra for γCDM,
νCDM and WDM differ significantly from each other which effects we discuss in
this chapters.

4.1 Simulations

To calculate the non-linear evolution of the matter distribution, we run a suite
of high-resolution N-body simulations using the parallel Tree-Particle Mesh code,
GADGET-3 (Springel 2005). To model a wide dynamical range, we perform simula-
tions in large boxes (of side lengths 100 h−1 Mpc and 300 h−1 Mpc) and a small box
(of side length 30 h−1 Mpc), all containing 10243 particles.

The simulations begin at a redshift of z = 49 (the DM–radiation interaction
rate is negligible for z < 49) and use a gravitational softening of 5% of the mean
particle separation. The initial conditions are created with an adapted version of a

45
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(mDM/GeV) (mDM/GeV) (mDM/g)
× σTh × cm2 × cm2

γCDM 2.0× 10−9 1.3× 10−33 7.5× 10−10

νCDM 2.9× 10−9 1.9× 10−33 1.1× 10−9

mDM [keV] α [h−1 Mpc]
WDM 1.2 0.037

TABLE 4.1: The (constant) elastic scattering cross-sections for γCDM and νCDM and the particle
mass for WDM, expressed in various units. σTh is the Thomson cross-section, mDM is the DM mass
and α is defined in Eq. (3.8). Note that the mass of the WDM particle is motivated by the reproduc-
tion of the half-mode mass in the γCDM and νCDM models, as explained in the text.

second-order LPT code (Crocce et al. 2012), using input matter power spectra from
a modified version of the Boltzmann code, CLASS (Lesgourgues 2011).

We use the best-fitting values of the cosmological parameters obtained by the
Planck collaboration in the “Planck + WP” dataset (Ade et al. 2014), assuming a
flat ΛCDM cosmology. In principle, a consistent treatment of an interacting DM
model would require one to study each cross-section within its own best-fitting
cosmology. However, we find that the parameters for ΛCDM lie within one stan-
dard deviation of such best fits. Therefore, we keep the cosmological parameters
fixed for all the models studied here.

Lovell et al. (2014) showed that in the case of WDM, one can safely ignore
thermal velocities, without introducing a significant error on the scales of inter-
est, if the DM particle is heavier than ∼ 1 keV. We confirmed this by performing
simulations with and without a thermal velocity dispersion and obtaining conver-
gence on the scales of interest. Hence, we only consider models in which late-time
free-streaming can be neglected.

Fig. 4.1 shows the projected DM distribution in the 30 h−1 Mpc box for (i)
collision-less CDM and (ii) an extreme γCDM model that is allowed by Planck CMB
data (Wilkinson et al. 2014a). Fewer small structures are present in γCDM as an
immediate result of the suppression of small-scale power shown in Fig. 3.1. The
only exception is found along the filaments, where spurious structures contami-
nate the otherwise smooth environment (Wang and White 2007). Similar results
are obtained for νCDM and WDM. For abundance measurements (Sec. 4.2), DM
haloes are identified using a friends-of-friends group finder (Davis et al. 1985) with a
linking length of 20% of the mean particle separation. For the halo properties (Sec.
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FIGURE 4.1: The simulated distribution of DM at redshift z = 0 in a box of side length 30 h−1 Mpc
for two models: collision-less CDM (left) and γCDM with σDM−γ = 10−7 σTh (mDM/GeV) (right),
which is allowed by Planck CMB data (Wilkinson et al. 2014a). The colours indicate the DM density
on a scale increasing from blue to red. Due to collisional damping, we obtain fewer small-scale
structures in γCDM than are seen in CDM.

4.3), we instead use the AMIGA halo finder (Knollmann and Knebe 2009), where col-
lapsed structures are defined as spherically overdense regions of radius rvir with a
mean density given by

3Mvir

4πr3
vir

= ∆thρcrit . (4.1)

In this expression, Mvir is the virial mass, ρcrit is the critical density and ∆th is the
mean overdensity of a virialized halo with respect to the critical density, according
to the spherical top-hat collapse model.

4.2 Halo Abundance

The suppression of small-scale density fluctuations in the early Universe (cf.
Sec. 3) has a significant effect on the subsequent structure formation. This has been
studied in detail for WDM (e.g. Lovell et al. 2014), where the halo mass function
(HMF) was compared to semi-analytical predictions. In this section, we perform a
similar analysis for γCDM and νCDM by comparing the simulated HMFs with the
Press-Schechter formalism (Press and Schechter 1974) and modifications thereof. In
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addition, we study the spatial distribution of DM haloes on large scales.

4.2.1 Semi-Analytical Halo Mass Functions

The Press-Schechter formalism uses the known primordial perturbations and
their linear growth to calculate the fractional volume of space occupied by viri-
alized objects of a given mass, assuming a spherical collapse model (Press and
Schechter 1974). The halo mass function (HMF) can be written as

dn(M)

dM
= −1

2
f (HMF)(σ2)

ρ̄

M2
d ln σ2(M)

d ln M
, (4.2)

where n(M) is the number density of DM haloes of mass M → M + dM, ρ̄ is
the average matter density of the Universe and σ2(M) is the variance of the linear
density field given by

σ2(M) =
1

2π2

∫ ∞

0
k2P(k)Ŵ2(k, R) dk . (4.3)

The variance is smoothed on a mass-dependent scale R(M), using a suitable win-
dow function W(r, R), which has a Fourier transform Ŵ(k, R) (Jenkins et al. 2001).

The Sheth-Tormen (ST) formalism (Sheth et al. 2001) combines the Press-Schechter
formalism with an ellipsoidal collapse model. In this model, the function f (HMF)(σ2)

in Eq. 4.2 represents the fraction of collapsed haloes and is defined by

f (HMF)
ST (σ2) = A

√
2
π

[
1 + x−2p

]
x exp

[
−x2/2

]
. (4.4)

In this expression, x ≡
√

aδc/σ, where δc is the cosmology-dependent linear over-
density at the time of collapse. The parameters A ≈ 0.3222, p ≈ 0.3 and a ≈ 0.707
were obtained by fitting to simulation results (Sheth et al., 2001).

The window function, W(r, R), is in general, arbitrary. However, certain choices
of window function are advantageous as they allow for both a sensible definition
of the smoothed density field and an semi-analytical solution for the Fourier trans-
form. A real-space top-hat, W(r, R) = Θ(1− |r/R|), has the advantage of a well-
defined smoothing scale, R, defined in terms of the halo mass, M(R), as

R =

(
3M
4πρ̄

)1/3

. (4.5)
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However, recent papers (Schneider et al. 2013; Benson et al. 2013) have shown that
this choice does not reproduce the HMF for cosmologies with a cut-off in the matter
power spectrum at small scales. Instead, the predicted HMF continues to increase
with decreasing M, while the suppression of primordial matter perturbations de-
mands the opposite. The reason for this behaviour is illustrated in Fig. 4.2, where
the Fourier-transformed real-space top-hat and (intermediate) steps of the HMF
calculations are shown by red/dashed lines. For this type of window function, one
obtains significant contributions from a wide range of unsuppressed larger scales,
which dominate the resulting variance and thus, the predicted HMF.

A k-space top-hat window function is only sensitive to local changes in the
matter distribution in k-space and thus reproduces the expected suppression in the
halo abundance for damped power spectra (see Fig. 4.2, blue/solid lines). How-
ever, the mass-smoothing scale relation (M–R) must now be defined without the
simple geometrical justification of Eq. (4.5), which was used in the real-space case.

Here we use the definition of Lacey and Cole (1993), which defines the cut-off
wavenumber, ks, in relation to the mass, M, based on the normalization choice

ks =

(
M

6π2ρ̄

)−1/3

. (4.6)

This corresponds to a correction factor of c ≡ Rks ≈ 2.42 with respect to Eq. 4.5, so
that the semi-analytical HMF matches numerical simulations at large scales10.

Alternatively, Schneider et al. (2012) found that while the r-space top-hat did
not match the results of their N-body simulations, an additional mass-dependent
correction factor,

n(M)

nST(M)
=

(
1 +

Mhm

βM

)−α

, (4.7)

could correct for this, where α and β are free parameters. Schneider et al. (2012) set
β = 1/2 and found a best-fitting value of α = 0.6. As discussed in the next section,
we find better agreement with our simulation results by setting β = 2; we will refer
to this version of Eq. 4.7 as the modified Schneider et al. correction.

4.2.2 Simulated Halo Mass Function

We plot the differential HMFs measured in the collision-less CDM, γCDM,
νCDM and WDM simulations in Fig. 4.3. We also show the predictions obtained

10Note that Schneider et al. (2013) and Benson et al. (2013) follow a very similar approach, but
with slightly different values for c.
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FIGURE 4.2: Real-space and k-space top-hat window functions in Press-Schechter HMF predictions
for γCDM. The upper panel shows the matter power spectrum, while the second panel shows the
Fourier transform of the two window functions (r top-hat and k top-hat). Each window function
is evaluated for two filter masses, M and M + ∆M. The difference between the two filter masses
is highlighted by the shaded region in each case. The third panel shows the result of applying this
differential filter to the matter distribution. Finally, the lower panel shows the integrated result for
both window functions. The red and blue points are the results for the specific filter mass M used
in the middle two panels.

using the semi-analytical approximations described in Sec. 4.2.1.
The mass function proposed by Schneider et al. (2012) predicts fewer haloes

than are seen in collision-less CDM but nevertheless overestimates the abundance
of haloes less massive than ∼ 1010.5 h−1 M�. Using a modified version of the
Schneider et al. correction, with β = 12/ instead of β = 1 extends the repro-
duction of the simulation results down to a halo mass of ∼ 108.6 h−1 M� for
WDM. However, it does not reproduce the abundance of haloes seen in the sim-
ulations of γCDM and νCDM, underestimating the measured abundance of haloes
at 108.6 h−1 M� by a factor of two. The clear upturn observed in the HMF at low
masses in Fig. 4.3 (i.e. below Mvir . 109 h−1 M�) is due to non-physical, spuri-
ous structures (Wang and White 2007). We try to avoid contamination from such
artificial structures by only considering the mass function and halo properties for
objects with masses far above this value.
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FIGURE 4.3: The HMFs for collision-less CDM, WDM, νCDM and γCDM at redshift z = 0. The
HMF measured in models with damped power spectra contains contributions from spurious haloes,
which dominate at the smallest masses and result in the upturn seen at Mvir ∼ 109 h−1 M�. Above
this scale and below the half-mode mass, Mhm (marked by the arrow), the abundance of haloes
in γCDM and νCDM exceeds that seen in WDM. Predictions using the Sheth-Tormen (ST) formal-
ism with a real-space (dashed) or k-space (solid) top-hat window function, as well as the modified
Schneider et al. correction (dotted), are also shown. All the semi-analytical predictions fail to predict
the HMFs for γCDM and νCDM.

A comparison between the simulated abundance of haloes in the four models
and the semi-analytical predictions reveals significant differences. The main fea-
ture, the reduced number of haloes in γCDM, νCDM and WDM, with respect to
CDM, is a consequence of the damping of primordial fluctuations on small-scales.
There is also a larger number of low-mass structures in γCDM and νCDM, relative
to WDM, due to the prominent oscillations in the power spectra of the former mod-
els, at wavenumbers larger than the scales on which fluctuations are suppressed.

A direct comparison between the γCDM and WDM models (see Fig. 4.4) re-
veals that in both cases, the suppression of the HMF follows a universal profile,
if the halo mass is plotted normalized by the half-mode mass, Mhm. An excess
of haloes in γCDM with respect to WDM occurs at Mhm for all the cross-sections
studied in this work. A similar result is found for νCDM.

The higher halo abundance seen in the γCDM and νCDM simulations com-
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FIGURE 4.4: The relative halo abundance expressed in units of the half-mode mass, Mhm, for γCDM
(filled symbols) and WDM (unfilled symbols), with respect to CDM, at redshift z = 0. The suppres-
sion in the HMF is universal with respect to the values of the γCDM cross-section and WDM parti-
cle mass. The result for WDM matches the semi-analytical prediction of a r-space top-hat with the
Schneider et al. correction (dotted line). However, we obtain more haloes in γCDM than in WDM
as a result of the significant oscillations in the matter power spectrum. Hence, the modified Sheth-
Tormen HMF does not provide a good fit to our simulation results. The dashed lines shows a new
correction/fit used e.g. in Moliné et al. (2016) that predicts the HMF for γCDM over the shown
(normalized) mass range much more accurately.

pared to that found in WDM is difficult to explain since the primordial matter
power spectra shown in Fig. 3.1 are very similar down to the wavenumber cor-
responding to the half-mode mass, Mhm. There is a much stronger suppression in
the γCDM and νCDM spectra than in WDM immediately below Mhm. The scales
where the power in γCDM and νCDM exceeds that in WDM correspond to halo
masses that are an order of magnitude smaller than Mhm, marked by the location
of the first oscillation in the halo abundance for γCDM and νCDM, according to
the Sheth-Tormen formalism. Instead of showing a strong reduction in halo abun-
dance below Mhm, the simulated HMFs for γCDM and νCDM seem to bridge the
gap between the primary power cut-off scale and the subsequent increase in the
halo abundance resulting from the oscillating matter power spectra.

Given that the simulations for WDM, γCDM and νCDM use similar initial
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conditions (e.g. identical box size, phases, number of particles), numerical errors
can most likely be excluded as a possible explanation for this deviation. Therefore,
this is a strong hint that the understanding of structure formation in the Sheth-
Tormen formalism, which works so well in the strictly hierarchical case, appears to
fail when there is oscillating power in the initial matter distribution.

4.2.3 Halo Bias

We determine the linear clustering bias of DM haloes, blin(M), using the ratio
between the halo-density cross-correlation and the density-density auto-correlation
on large scales (i.e. at small wavenumbers):

blin(M) = lim
k→0

Phm(M)

Pmm
. (4.8)

Using the cross-correlation of haloes and mass rather than the autocorrelation of
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FIGURE 4.5: Linear halo bias: (top) absolute halo bias for CDM (circles) and γCDM with σDM−γ =

2× 10−7 σTh (mDM/GeV) (stars); (bottom) relative halo bias compared to CDM with analytical pre-
dictions using ST theory with a r top-hat (dashed) and k top-hat (dot-dashed) for comparison.

haloes reduces the impact of shot noise (see Angulo et al. 2008). To ensure that we
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recover the asymptotic value of blin(M), we use the largest simulation box of side
length 300 h−1 Mpc. For large scales (k . 0.1 h−1 Mpc), convergence is reached as
the halo bias becomes constant. Therefore, we can replace the limit in Eq. 4.8 with
the average over all scales larger than k = 0.1 h−1 Mpc to reduce the impact of
statistical fluctuations arising from the small number of high-mass haloes and low-
wavenumber modes in the simulation box. This wavenumber scale corresponds to
the largest mode in the 100 h−1 Mpc box and, as the shot noise fluctuations are less
important for the more abundant low-mass DM haloes, we use the smaller box to
measure the halo bias for masses below 1011 h−1 M�.

We do not find a significant deviation from the bias expected in collision-less
CDM for WDM, γCDM or νCDM, which agrees with the expectations from the
semi-analytical models of halo bias. We therefore conclude that the suppression
of small-scale structure in the matter power spectra in γCDM and νCDM takes
place independently of the linear background in both overdense and underdense
regions. Thus, the clustering properties do not change on the mass scales probed
here (M & 109 h−1 M�).

4.3 Results: Halo Properties

As seen in Sec. 4.2, DM–radiation interactions lead to a reduced abundance
of low-mass DM haloes. In this section, we focus on three key properties of these
haloes: their shape, density profile and spin.

For this analysis, it is important to only consider DM haloes that are dynami-
cally relaxed. We apply the selection criteria presented in Maccio’ et al. (2007) and
Neto et al. (2007). The DM haloes must satisfy the following conditions11:

• Centre-of-mass displacement: The offset, s, between the halo centre-of-mass, rcm,
and the potential centre, rcp, normalized by the virial radius, rvir, satisfies

s = ‖rcp − rcp‖ < 0.07 . (4.9)

• Virial ratio: The total kinetic energy of the halo particles within rvir in the halo
rest frame, T, and their gravitational potential energy, U, satisfies

2T/‖U‖ < 1.35 . (4.10)

11We omit the substructure mass fraction criterion as this is strongly correlated with the centre-
of-mass displacement criterion listed (Neto et al. 2007).
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These criteria reduce the number of haloes in our sample by a factor of two, but also
significantly decrease the scatter as major mergers and their unrelaxed descendants
are removed.

In addition to applying these conditions, our mass-averaged results are re-
stricted to: (i) the subset of haloes with a virial mass smaller than 1011 h−1 M�, i.e.
the mass range that shows a suppression in the halo abundance, and (ii) in order
to avoid resolution problems, larger than 1000 particles, i.e. mass bins larger than
∼ 109.3 h−1 M�. The latter criterion ensures that the estimates for our observables
have converged (Power et al. 2003). This lower limit also minimizes the possibil-
ity of contamination by spurious structures as they form and mainly affect haloes
on small mass scales (M . 109 h−1 M�); this can be checked by studying their
contribution to the HMF plotted in Fig. 4.3.

4.3.1 Halo Shape

To characterize the shape of DM haloes, we study the following quantities
derived from the three eigenvalues (a ≥ b ≥ c) of the inertia tensor, as calculated
by the AMIGA halo finder:

• sphericity: c/a

• elongation: b/a

• triaxiality:
(
a2 − b2) /

(
a2 − c2) .

In Fig. 4.6, we plot the sphericity measured from the sample set of relaxed haloes.
We observe no significant deviation from CDM for WDM, γCDM or νCDM. The
same is true for the elongation and triaxiality, and for different redshifts and in-
teraction cross-sections. Thus, we cannot distinguish these models by the shape of
their DM haloes.

4.3.2 Density Profile and Concentration

To analyse the density profiles of DM haloes, we first average the density in
shells around the centre-of-mass for all haloes in a given mass bin. A comparison
of the results with a fitted NFW profile (Navarro et al. 1997) reveals a sufficiently
good agreement to justify parametrising the halo profiles in this way12. The NFW

12The fit starts at a minimum radius from the halo centre as defined by Power et al. (2003) to
ensure convergence of the density profile.
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FIGURE 4.6: Sphericity of relaxed DM haloes for CDM, γCDM, νCDM and WDM at redshift z = 0.
The symbols show the sphericity in mass bins ranging from 4× 109 h−1 M� to 1011 h−1 M� for
the different models as labelled. The shaded areas indicate the 95% CL on the median, given the
underlying scatter in the halo sample set (small dots), while the error bars mark the 20% to 80%
interval for this distribution. The sphericity of DM haloes measured in WDM, γCDM and νCDM
shows no significant deviation from CDM.

profile is completely characterized by the concentration parameter, cNFW, which is
determined by the halo finder using the approximation presented in Prada et al.
(2012). In Fig. 4.7, we plot the concentration versus mass, cross-section and redshift
relations. We observe a significantly lower median value of cNFW in the mass bins
below the half-mode mass for γCDM and νCDM compared to CDM. This reduc-
tion in concentration with increasing interaction cross-section is similar to the effect
seen in WDM simulations with reducing particle mass, which has been explained
as being due to the delayed formation time of low-mass haloes (Lovell et al., 2012).
At these late times, the interacting DM models become (effectively) non-collisional
for the cross-sections studied here, in the same way that free-streaming in WDM
models becomes negligible at low redshifts. Therefore, it is valid to assume that
this lower concentration also originates from the later collapse of the DM haloes in
these models.

As we increase the interaction cross-section, the deviation from CDM becomes
larger due to an increase in the mass scale of the suppression. Since we have fixed
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FIGURE 4.7: The concentration–mass relation (top) shows a strong mass-dependence for γCDM,
νCDM and WDM, which develops at scales below ∼ 1011 h−1 M�. These models are indistinguish-
able from CDM for more massive haloes. This deviation in the concentration depends strongly on
the interaction cross-section (middle) and becomes slightly smaller at higher redshifts (bottom). The
data points are the median values for the mass bins ranging from 4× 109 h−1 M� to 1011 h−1 M�,
while the shaded regions mark the 95% CL on the median, given the underlying scatter in the halo
sample set (small dots in the top plot). The error bars mark the 20% to 80% interval for this distri-
bution.

the mass interval, the median concentration decreases as a larger number of high-
mass haloes become affected.
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4.3.3 Halo Spin

We quantify the spin of DM haloes using the “classical” definition of Peebles
(1969):

λ =
J|E|1/2

GM5/2
vir

, (4.11)

where J and E are, respectively, the total angular momentum and total energy of
the material within the virial mass, Mvir, of a halo.

In the linear and quasi-linear regime, the halo spin is described reasonably
well using tidal torque theory (hereafter TTT; White 1984) and originates from tidal
interactions between collapsing haloes. In this framework, the angular momentum
of a (proto-)galaxy depends on the mass, but also weakly on the formation time.
However, it should be noted that comparisons with numerical simulations have
revealed that TTT becomes less applicable as haloes approach turn-around and
virialization (Porciani et al. 2002). It is still an open question whether haloes acquire
significant angular momentum due to mergers with other haloes, as well as from
tidal torques (Maller et al. 2002; D’Onghia and Navarro 2007).

In Fig. 4.8, we plot the median halo spin against virial mass for the different
models. We find a similar reduction and evolution of halo spin for γCDM, νCDM
and WDM, compared to CDM. There are various explanations for the difference in
halo spin with respect to CDM. As this effect is seen for haloes consisting of more
than a few thousand particles, we can rule out a numerical convergence problem.
If it originates solely from tidal torques, then the weak dependence of angular mo-
mentum on formation time would yield a smaller spin for the earlier formation
time found. If mergers are responsible for spinning up haloes, then the lack of
smaller progenitors of low-mass haloes and consequently, smoother accretion on
to these haloes in γCDM, νCDM and WDM, would also result in a lower net spin.
The fact that the difference remains constant over time while the absolute value
grows, seems to support the idea that not only the initial tidal torque on the col-
lapsing structure, but also the environment at late times, influences the spin.

4.4 Conclusion

We have shown that even relatively weak DM–radiation interactions can al-
ter structure formation on small cosmic scales. In Boehm et al. (2014) (cf. Ch. 5),
we showed that the number of Milky Way satellites is reduced when DM has
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FIGURE 4.8: The spin–mass relation (top) shows a mass-dependence for γCDM, νCDM and WDM,
which develops at scales below ∼ 1011 h−1 M�. These models are indistinguishable from CDM
for more massive haloes. This spin reduction on small scales depends on the interaction cross-
section (middle) while the relative deviation from collision-less CDM remains constant over time
(bottom). The data points are the median values for the mass bins ranging from 4× 109 h−1 M�
to 1011 h−1 M�, while the shaded regions mark the 95% CL on the median, given the underlying
scatter in the halo sample set (small dots in the top plot). The error bars mark the 20% to 80%
interval for this distribution.

primordial interactions with photons (γCDM) or neutrinos (νCDM) and that the
resulting number of satellites can be used to place constraints on the interaction
cross-section. In this chapter, we have extended our previous analysis to study the
abundance of DM haloes and their internal properties, namely their shape, den-
sity profile and spin. We have also compared different models (γCDM, νCDM and
WDM) in which the power spectrum of density fluctuations is suppressed on small
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scales.
The halo mass functions measured in our simulations show that the γCDM

and νCDM models contain more haloes than WDM around a mass of 109 h−1 M�
for the parameters considered here. This behaviour is not reproduced by various
semi-analytical descriptions of the halo mass function. We note that these mass
scales are an order of magnitude larger than the scale on which spurious haloes are
expected to make a significant contribution (Wang and White, 2007). The source
of this over-abundance of haloes with respect to WDM needs to be addressed but
could be due to the choice of models for the initial conditions in WDM.

Both the NFW concentration parameter in the density profile and the spin
show departures from CDM for low-mass haloes. The halo shape, on the other
hand, is independent of the DM model. The lower halo concentration and angu-
lar momentum may be due to the delayed formation time of low-mass haloes in
γCDM and νCDM and are similar to the trends seen in WDM. However, it should
be noted that these halo properties do not provide a means to distinguish between
γCDM, νCDM and WDM.

Ideally, the next step in this study would be to include baryonic physics in
our simulations, which may have an impact on some of the results reported in
our DM-only simulations. Bryan et al. (2013) have shown that efficient gas cooling
results in an increased halo spin, while AGN feedback counters this trend. The
mass-concentration relation of the haloes is very similar when baryons are included
(Schaller et al., 2015) and the baryons only affect the radial density profile of the
inner core within 5% of the virial radius, producing a contraction. Recent studies
also include a possible coupling of DM with dark radiation (Buckley et al., 2014),
which leads to a similar suppression of initial fluctuations as seen in our models
and, depending on the cross-section, should give rise to similar results as those
discussed in this thesis.



CHAPTER 5

CDM Small-scale problems and constraints in

interacting γ/νCDM models

In the previous chapter we discussed the implications of early-time interac-
tions between DM and photons or neutrinos for the formation and the properties
of DM halos in the Universe. While these results may be potentially testable with
future cosmological observations, in this chapter we turn our focus to our cosmic
neighbourhood, in particular the Milky Way (MW) and Andromeda (M31) DM ha-
los which make up the Local Group (LG) together with a few other smaller galaxies.
While the rather low mass scales and close proximity of structures within the Local
Group and, in particular, within the MW and M31 host halos, render techniques
used for studies of big galaxies and galaxy clusters such as strong gravitational
lensing (Giocoli et al., 2014) much more challenging, the fact that substructures
and even individual halo stars can be resolved and their kinematics be measured
allows us to learn more about the properties of their host halo (Bonaca et al., 2014).
Studies of these small (sub)structures provide us valuable insights since the prop-
erties of the satellite galaxies are much more sensitive to changes in the properties
of dark matter particles which we will demonstrate in this chapter. Indeed, tensions
between LG observations and the predictions from N-Body simulations of CDM,
dubbed the “small scale problems” of CDM, sparked the interest of cosmologists
into alternative dark matter models such as WDM, SIDM or the IDM model we are
working with here13.

This chapter is structured as follows. First, we discuss two of the challenges
to vanilla CDM in Sec.5.1. Then, in Sec.5.2 we introduce the zoom simulations of
the Local Group used to study these small structures before showing in Sec. 5.3
how IDM eases (and potentially even solves) the tensions of these “small scale
problems”. Finally, we use these observables in Sec. 5.4 to constrain the parameter
space for the interacting DM model.

13For a review of the problems of CDM on small scales, see e.g. Weinberg et al. (2013)
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5.1 Small-Scale “Challenges” of CDM

With its hierarchical “bottom-up” structure formation, the standard ΛCDM
model successfully predicts the evolution of the cosmic matter distribution from
the initial smooth state with only small perturbations to the lumpy state we observe
in galaxies and galactic clusters today, while e.g. the “top-down” fragmentation-
driven HDM model (Melott, 1982) fails to do so. But despite this success, simula-
tions based on the standard ΛCDM model seem to diverge from observations in
several potentially problematic ways. In the following subsection we will explore
two of these “challenges” to the standard model and show how the predictions and
observations can be reconciled by using interacting DM instead.

5.1.1 Missing Satellite Problem

In CDM models, galaxies are orbited by smaller satellite galaxies within their
DM halo, upon which they were accreted on. Each of them is sitting in a dark mat-
ter halo of their own. Given the very small intrinsic cut-off scale of CDM for pri-
mordial fluctuations , halos today are expected to be filled with enormous numbers
of subhalos down to earth mass size (Diemand et al., 2005; Springel et al., 2008))
that were seeded by the primordial perturbations, collapsed and survived their in-
fall into larger host halos over sufficiently long time without becoming extensively
tidally disrupted.

Numerical simulations of the CDM model predict a large number of substruc-
tures that by far exceeds the amount of observed satellite galaxies in the two host
galaxies, the Milky Way (MW) and Andromeda (M31), that we are able to study in
detail (Klypin et al., 1999; Moore et al., 1999). Prior to the 21st century, only the nine
“classical” dwarf galaxies were known within the virial radius of the Milky Way
halo besides the Magellanic Clouds and another eleven were found in the neigh-
bouring Andromeda galaxy halo. In contrast, CDM predicts several few orders
of magnitude more dwarf galaxies than are observed under the assumption that
many of the predicted DM subhalos host visible galaxies. This led to naming this
first challenge to the standard model the “Missing Satellite Problem” (MSP). Even
with the discoveries of additional fainter dwarf galaxies inside both the Milky Way
and M31 halos over the last two decades and a better insight into their properties
(e.g. Alam et al. (2015),Kalirai et al. (2010)), this tension between predictions and
observations has only eased slightly, as we will confirm in our analysis for CDM in
Sec. 5.3, but has not vanished altogether.
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5.1.2 Too Big To Fail Problem

Another challenge that comes with the vanilla CDM model is, that we not
only observe fewer of the smaller satellites than predicted, but also that the largest,
brightest ones, i.e. the “classical” MW satellites seem to be less massive and less
concentrated than their simulated counterparts from N-Body DM-only simulations
(Boylan-Kolchin et al., 2011). This tension was dubbed the “Too Big To Fail” (TBTF)
problem. The stellar kinematics observed in the satellite galaxies do not match
those of the most massive predicted subhalos within a Milky Way-sized halo. The
Vmax − Rmax plot of the original publication as shown in Fig. 5.1 and the rotation
curve plots often used in recent literature (e.g. Garrison-Kimmel et al. (2014)) illus-
trate this problem in two different, yet similar ways. In the rotation curve plots, the

FIGURE 5.1: Subhaloes from all six Aquarius simulations (circles) and Via Lactea II (triangles), color-
coded according to Vinfall. The shaded gray region shows the 2σ confidence interval for possible
hosts of the bright MW dwarf spheroidals (Boylan-Kolchin et al., 2011, Fig.2)

stellar circular velocity at the half-light radius Vcirc(r1/2) for the “classical” dwarf
spheroidal (dSph) galaxies in the MW and overplot the rotation curves for the most
massive substructures found in a simulated Milky Way-like DM halo. Even if the
three predicted halos are ignored that deviate the most and associate these with
the Magellanic Clouds and Sagittarius which are outliers in the satellite galaxy
population, there are still too many rotation curves that are not matched by the
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observational data. Hence, the theoretical rotation curves tend to predict too high
a circular velocity at given radius.

An alternative way to visualize this problem (Fig. 5.1) is to use the measured
line-of-sight velocity dispersion, σ?, in order to extrapolate Vmax for the observed
satellites and compare these results to those obtained from the simulations. This,
again, shows that the simulated satellites are having central densities that are too
high to host the bright MW dwarf spheroidals, i.e. we find far too many massive
and concentrated halos in our CDM predictions to match the few observed MW
satellites.

5.2 Simulations

As the source of our first sample set of MW-like halos, we chose to filter the
results of the simulation suite presented in Ch. 4 using two criteria to identify MW
candidates from the identified halos:

mass Motivated by calculations that attempt to reconstruct the MW mass distri-
bution based on the measured kinematics of the observed satellites and stars
(Xue et al., 2008; Boylan-Kolchin et al., 2013; Piffl et al., 2014), we consider DM
haloes to be MW-like if their mass is in the range (0.8− 2.7)× 1012M�.

environment The MW appears to be located in an unremarkable region away from
larger structures such as the Virgo Cluster and the major filaments feeding the
Centaurus Cluster (Courtois et al., 2013). We therefore reject candidates with
larger-mass DM haloes within a radius of 2 Mpc.

Applying these criteria upon our single-resolution simulation suite provides us
with a sample set of 126 halos, that can be used to obtain statistically significant
measurements of the observables we are interested in.

But in our studies of satellites in Milky Way-sized halos, we reach the limits
of what it is currently feasible to resolve with such N-body simulations in a cos-
mologically representative box. We have to keep the box size as large as possible,
so that we do not miss the contribution from the large-scale perturbation modes,
but at the same time we need to resolve the structures of interest with enough
particles to calculate their properties reliably. While the estimate of the virial mass
uses all the particle tracers within a halo and can be considered to be accurate at
the single-digit percentage level for structures containing a few hundred particles,
radial profiles, such as the circular velocity, bin the particles into much smaller
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distance-dependent subsets and thus converge much more slowly (Power et al.,
2003).

A solution to this is to use an alternative technique instead. We first identify
Local Group (LG) candidates in an N-body simulation of a large cosmological vol-
ume such as those in Ch. 4 and then re-simulate the region containing these haloes
at much higher mass resolution. Thus, this allows for a much higher local reso-
lution to be attained while still keeping the larger lower-resolution box as back-
ground.

The Lagrangian regions of higher resolution in the cosmological volume are
chosen by identifying and flagging the structures of interest at the final redshift
and then picking a convex hull around the region they are spread over in the ini-
tial conditions. In this way, we ensure that these structures evolve exclusively in a
high-resolution environment. Additionally, a padding around this region resolved
at intermediate resolutions that become outwards step-wise coarser smooths the
transition between the regions of lowest and highest resolution and provides a
more accurate local background around the region of interest.

For the re-simulations, we chose a subset of the selection of Local Group candi-
dates used in the APOSTLE project (Fattahi et al., 2016; Sawala et al., 2016b). These
candidates shown in Fig.5.2 and listed in Tab. 5.1 were picked from a (100Mpc)3

CDM N-Body simulation from the DOVE simulation suite using a slightly different
set of following criteria than those listed above:

mass There should be a pair of MW and Andromeda mass host haloes, with masses
in the range (0.5− 2.5)× 1012 M�.

dynamics The separation between the two haloes should be 800± 200 kpc, with
relative radial and tangential velocities below 250 km s−1 and 100 km s−1

respectively.

environment There should be no other large structures nearby, i.e. an environment
with an unperturbed Hubble flow out to 4 Mpc.

These criteria are more restrictive than those employed in our earlier work on the
structure of haloes (Schewtschenko et al., 2015b) since they also take into account
the internal kinematics of the LG. We obtain four LG candidates and therefore,
eight MW-like haloes. If we assume that the gravitational interaction between the
LG haloes is limited, the mass, environment and dynamics14 of the haloes would

14The formation process of structures is slightly delayed by the presence of DM interactions.
Therefore, both the separation and the relative velocities may actually lie outside the bound set by



5.2. SIMULATIONS 66

not be significantly different if we had run a γCDM or νCDM version of the DOVE
simulation.

We perform the re-simulations with the GADGET-3 N-body simulation code
(Springel, 2005) assuming the γCDM model, while bearing in mind that the re-
sults for νCDM would be very similar (cf. Ch. 4). We use the same cosmology
(WMAP7)15, random phases and second-order LPT method (Jenkins, 2010) as Sawala
et al. (2016b). We re-simulate the four LG candidates with a particle mass mpart =

7.2 × 105 M� and a comoving softening length lsoft = 216 pc. This corresponds
to a mass resolution that is intermediate between levels 4 and 5 in the Aquarius
simulations of Springel et al. (2008) (level 1 being the highest resolution). We also
re-simulate the two host haloes in one of our LG Candidates (AP-7/AP-8) at an
even higher resolution (mpart = 6 × 104 M�, lsoft = 94 pc; which is comparable
to Aquarius level 3). These simulations (denoted with the suffix -HR) are used to
confirm that our results have converged and allow us to obtain more reliable pre-
dictions for the innermost parts of the halo.

Fig.5.2 shows the projected matter density of the uniform-resolution DOVE

simulation box for CDM and renderings of all four Local Group candidates se-
lected from it which have been re-simulated at higher resolution for both CDM
and γCDM. Since we have two MW/M31-like halos per re-simulated group, this
results in the sample set of 8 MW-like halos that are listed in Tab.5.1 with their re-
spective properties. These complement the lower-resolution, but much larger sam-
ple set obtained from the simulation suite outlined in the previous chapter.

Substructures within the host halos are identified using the AMIGA halo finder
(Knollmann and Knebe, 2009). We also performed halo matching between the vanilla
CDM and our γCDM predictions in both the full cosmological box and our “zoom”
simulation. To do this, we identified particles located at the same position of the
perturbed grid used as the initial conditions and tracked their membership to struc-
tures predicted in the simulation runs at the redshift of interest. If two (sub)halos
share at least half of the most bound particles, we consider this as a match.

the “Dynamics” criterion as the haloes are at a different point in their orbit around each other for
γCDM. However, as long as this delay between CDM and γCDM is not too large, we essentially
have the same dynamical system in both cases and the substructures within the host haloes will be
unaffected.

15The fact that we are using the older WMAP7 cosmology instead of the most recent data is
not a concern since we are only interested in the effects of DM interactions on a selected local
environment.
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FIGURE 5.2: The centre panel shows a projection of the DM distribution in the full (100 Mpc)3

DOVE simulation box, where the circles denote the four regions (with radii 1 h−1 Mpc) that are used
for the “zoom” re-simulations. To the left and right, each of the four Local Group candidates is
rendered with the projected density encoded as brightness, where the colour scheme represents
the local velocity dispersion from low (violet) to high (yellow/white). Each of these four panels is
split in half with the upper and lower halves corresponding to CDM and γCDM with σDM−γ =

2 × 10−9 σTh (mDM/GeV) respectively. The MW-like host haloes are labelled with the identifiers
listed in Tab. 5.1.

ID Mvir Vmax σDM−γ

[1012 M�] [km s−1] [σTh (mDM/GeV)]

AP-1 1.916 200.3
0, 2× 10−9

AP-2 1.273 151.5
AP-3 0.987 157.9

0, 2× 10−9
AP-4 0.991 163.0
AP-5 2.010 167.5

0, 2× 10−9
AP-6 1.934 165.1
AP-7 1.716 163.7 0, 10−10, 10−9,
AP-8 1.558 193.3 2× 10−9, 10−8

TABLE 5.1: Properties of “zoomed” MW-like host halos (in CDM simulation runs). Halo properties
for γCDM runs vary slightly within a few percent for interaction cross-sections listed here used in
this study. The first column specifies the ids for each MW-like halo in our sample set, while the
second and third contain their virial mass and maximal circular velocity respectively. The fourth
column lists the interaction cross-sections covered by our “zoom” simulations for each Local Group
candidate.
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5.3 Results

Coming back to the small-scale problems, we first have a look, how we observe
it in our simulations. While the projected density plot of our simulated MW candi-
date AP-7 in the left panel in Fig. 5.3 visualizes the problematicly high abundance
of smaller structures in the vincinity of the shown MW-like halo, Fig. 5.4 quantifies
this discrepancy between the predictions for CDM (blue) and observations with
a subhalo-velocity-function (SHVF) for the Milky Way16. As we do not know the
mass of the Milky Way (and M31) exactly, the left panel in Fig. 5.4 shows the pre-
dictions for the high mass end of the likely mass range. The right panel does the
same for the low mass end, where the tensions are less prominent, but yet existent.
In the case of the numerical predictions, the maximum circular velocities of sub-
structures used are determined directly from the dynamics of the N-Body tracers
in the simulations. The marked 2σ uncertainty region around the averaged SHVF
is calculated from the spread within the sample of MW-like halos.

For observed satellites, it is not so straightforward to determine their Vmax as
their visible stellar tracers are often not only sparse and lack information about
their tangential velocities, but cannot be found out to the radius Rmax at which the
circular velocity of the halo peaks. For example, for the well-studied Milky Way
dwarf spheroidal satellites listed in Wolf et al. (2010b) and McConnachie (2012),
the median half-light radius of r1/2 ' 300 pc is around a full order of magnitude
smaller than the respective (extrapolated) Rmax ∼ 1000 − 6000 pc. Thus, as the
stellar velocity dispersion data only probes the gravitational potential within the
stellar extent, even under the assumption that the stars trace the underlying DM
distribution perfectly, the extrapolation of the measured circular velocity Vcirc to
estimate the maximum, Vmax, depends sensitively on the actual density profile of
the halo.

If at least the line-of-sight stellar velocity dispersion anisotropy σ? is known,
Wolf et al. (2010b) have shown that under the assumption of a dispersion-supported
profile for the stellar mass distribution, the mass lying within the half-light radius,
r1/2, depends only on the total velocity dispersion σtot(r1/2) at that radius, which
in turn can be approximated by its radius-averaged quantity 〈σ2

tot〉 which is equal

16In Sec. 5.4, we show how to obtain a similar SHVF for Andromeda. But as we used reconstructed
data that potentially underestimates the true SHFV and thus overestimates the tension between the
observations and CDM, we limit our discussion here to Milky Way. Nonetheless, given the similar
stellar mass function found for both host halos, we do not expect the true M31 SHFV to be in
significantly less tension with the numerical predictions than is case for the Milky Way.
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FIGURE 5.3: The simulated distribution of DM in a MW-like halo. The shading represents the pro-
jected DM density, with colours from black to red from lower to higher densities. The panels show
the AP-7-HR MW-like halo in ’zoom’ simulations of different cosmological models: CDM (left) and
γCDM with σDM−γ = 2× 10−9 σTh (mDM/GeV) (right). The large number of subhaloes observed in
the left panel illustrates the MW satellite problem. By replacing CDM with γCDM, the number of
subhaloes is reduced dramatically to the point where it matches observations for a particular value
of the interaction cross-section.

to the known line-of-sight stellar velocity dispersion σ? =
Vcirc(r1/2)√

3
. By definition,

this yields
Vmax ≥

√
3σ? . (5.1)

A common assumption in the literature is that both sides of Eq. 5.1 are equal
(Klypin et al., 1999), which is only true if Rmax is of the same size as r1/2. This
is obviously not the case for the smaller satellites found in the Milky Way. For our
discussion here, this approximation suffices, but for the determination of the cross-
section limit in Sec. 5.4, we keep in mind that we most likely tend to underestimate
Vmax this way.

We also have to take certain limitations of the surveys used to obtain the ob-
served abundance of satellite galaxies into account. As the most massive satellites
in the MW are expected not to fail to form stars efficiently (Boylan-Kolchin et al.,
2011) which results in them being expected to have a high brightness and thus
an easy detectability, we can assume that our observations are complete for the
mass/velocity ranges they lie in. On the other hand, most of the smaller MW sub-
halos (Vmax ≤ 10 km/s) were only detectable by modern, sensitive sky surveys, in
particular, the Sloan Digital Sky Survey (SDSS) (Alam et al., 2015). Since SDSS (DR12)
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FIGURE 5.4: The number of satellite galaxies in a MW-like DM halo as a function of their max-
imum circular velocity: simulation results are shown for CDM and γCDM with σDM−γ = 2 ×
10−9 σTh (mDM/GeV) (yellow) and σDM−γ = 10−8 σTh (mDM/GeV) (red). The lines and shading
show the mean cumulative number counts of MW satellites for a simulated DM halo in the lowest
mass bin MMW = (0.8− 1.1)× 1012M� (right panel) and highest MMW = (2.3− 2.7)× 1012M� (left
panel) respectively with the 1σ uncertainty showing the spread in the sample set. The lines in the
left and right panel refer to the SHVF of the heaviest and lightest MW-like halos in our LG candi-
dates, AP-3 and AP-4, respectively. Also plotted are the observational results (Willman 2010, solid
black lines), which are corrected for the completeness of the Sloan Digital Sky Survey coverage.
The maximum circular velocity, Vmax, is selected as a measure for the mass and is determined di-
rectly from the simulations (for the observations it is derived from the observed stellar line-of-sight
velocity dispersions using the assumption that Vmax =

√
3σ?; Klypin et al. 1999).

does not cover the whole sky, but only 14,555 square degrees, i.e. about a third, of
it, we have to correct the observed number counts accordingly. There is an ongoing
discussion about the anisotropy of the distribution of satellite galaxies within halos
(Ibata et al., 2013; Cautun et al., 2015), but we assume for simplicity that the num-
ber density of substructures in the unobserved areas is about the same as in the
observed ones, thus resulting in a weight of 2.85 for all SDSS satellites. This can be
justified using the results of cosmological N-body simulations that have shown that
preferentially flattened satellite distributions are indeed restricted to the brightest
satellites, and that as fainter and fainter populations are considered, their distri-
butions become increasingly isotropic (Wang et al., 2013). There are further limita-
tions to the detectability of satellites in the SDSS survey, mainly resulting from the
depth of the survey. The SDSS survey can only be considered to be complete for
satellites within the virial radius of the MW halo and with an absolute magnitude
of MV ≥ −6 (Koposov and Belokurov, 2008). This not only limits the minimal dy-
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namical mass for which we can assume completeness, but may also lead to missing
massive satellites in the survey if their brightness is lower due to a lower star for-
mation efficiency. Similarly, the surveys of Andromeda satellites are only complete
for halos containing stellar masses of about 105M� (Sawala et al., 2015). Here, we
ignore such corrections, but keep in mind that the observed satellite counts poten-
tially underestimate the abundance of MW and M31 substructures.

Now let us see, how the included interactions affect the number of substruc-
tures predicted to be found in Milky Way-like halos. As seen in the “global” abun-
dance studies of small halos (cf. Ch. 4)), the presence of early-time interactions
between DM and neutrinos or photons and the reduction in the power spectrum
below a characteristic scale, (partially) erases the seeds of the substructures lying
below this cut-off and thus reduces the abundance within the host halos. We have
also already shown in Sec. 4.2.3 that this suppression is independent of the envi-
ronment, so it is not surprising that we observe a similar reduction in the subhalo
abundance within the MW-like host halos as well. This can be seen qualitatively
by comparing the two projected density plots for AP-7 (Fig.5.3) and qualitatively
by comparing the SHVF plots for the IDM models (red, yellow) in Fig.5.4 with the
observations.

Having found a way to reduce the abundance of the smaller substructures to
fix the MSP, we now turn to the largest satellites that are troubled by the TBTF prob-
lem. In Chapter 4, we discussed how the concentration of DM halos is affected by
early interactions of DM with photons and neutrinos, which delay the halo forma-
tion time. So we have to confirm if this holds for MW/M31 substructures as well.
For that purpose, we reproduced in Fig. 5.5 the Vmax− Rmax scatter plot of Boylan-
Kolchin et al. (2011) with our own simulation data. To obtain the confidence bands
for the observed MW satellites, we used the measured stellar line-of-sight velocity
dispersion σ? in order to obtain a lower bound on Vmax. Assuming a NFW profile
for the satellites, both sides in Eq. 5.1 are equal if and only if the radius Rmax of
the maximum velocity dispersion coincides with the de-projected half-light radius
r1/2. Otherwise we get a branch in the Vmax − Rmax plane for each of the other two
possible cases of a lower and higher Rmax where Vmax exceeds this lower bound.
Fig.5.5 includes the extrapolated Vmax 1σ confidence region of the brightest dwarf
galaxies in the MW (left panel) as well as M31 (right panel) using observational
data from McConnachie (2012)17. For the MW, the Magellanic Clouds and Sagit-

17For the half-light radius of Ursa Minor, we replace the value in McConnachie (2012) with a fit
found in Wolf et al. (2010b).
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FIGURE 5.5: The “Too big to fail problem” in vanilla CDM: Vmax-Rmax plot with 1σ confidence
interval for the 9 brightest dwarf galaxies of the Milky Way (left panel) and Andromeda (right
panel) derived from the observational data and its uncertainties found in McConnachie (2012). For
comparison, the numerical predictions for our MW-like host halo AP-1 in a vanilla CDM model are
marked with circles while the 2σ confidence interval for all MW dwarfs combined has been marked
by the hatched area.

tarius have been omitted while for Andromeda, M33 is not shown due to its ex-
ceptionally large size. For the MW, we also marked the 2σ combined confidence
region for all these satellites defined by these bands Wolf et al. (2010b). We then in-
cluded the predictions for a MW/M31-like host halo in the standard CDM model
for comparison. For the Milky Way, we can clearly see that a significant fraction of
our simulated subhalos display a peak in circular velocity (Vmax) that is too high
and/or too close to the centre and that in general, we obtain far too many mas-
sive, concentrated subhalos to be populated by the satellites found in the Galaxy.
Even for M31, where there are more massive dwarf spheroidals than in the Milky
Way, we still predict far too many massive subhalos to match them with observed
satellites at such high Vmax.

Reducing now the concentration and mass with IDM as seen in Ch. 4 would
drive Rmax up and thus ease the tension seen in Fig.5.5. In order to study this effect
on single halos and their subhalos more closely, we identify matched halos pairs in
the vanilla CDM and interacting DM simulations and compare their mass parame-
ter. We show the results of this comparison in Fig.5.6, where we plot the respective
properties for the halo pairs found in the full 30 Mpc/h cosmological box run as
well as in the Local Group ’zoom’ re-simulation. While there is a significant scat-
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FIGURE 5.6: Comparison of properties for matched halo pairs in CDM and γCDM (σDM−γ =

10−9 σTh (mDM/GeV)): We show the (sub)halo mass for all halo matches in our 30 Mpc/h “un-
zoomed” box runs (unfilled circles), the matches for subhalos inside MW-like host halos thereof
(red, filled circles) and the matches for the substructures found in our four “zoom” Local Group
re-simulations.

ter, most γCDM sub(halos) within the MW subhalo mass range are lighter (and
less concentrated) than their vanilla CDM counterparts. This is exactly the result
needed to solve the second small scale challenge faced by CDM. The reduced mass
lowers the rotation curves, while the lower concentration moves Rmax out to higher
values, thus lowering the circular velocities for all radii below Rmax. As a result, the
γCDM rotation curves shown in red in Fig. 5.7 (left panel) are now in significantly
better agreement with the observed data compared to the vanilla CDM predictions.

We obtain the same results if we use the Vmax− Rmax values which are directly
measured for our predicted halos instead of their rotation curves. The right panel
in Fig.5.7 shows the results for all 8 “zoom” MW/M31 candidates in the γCDM re-
simulations at a cross-section of σDM−γ = 10−9 σTh (mDM/GeV) on top of the same
2σ confidence interval as seen in Fig.5.5. Significantly fewer simulated subhalos lie
outside the confidence region of the observed “classical” MW dSph satellites. If we
increase the cross-section as shown in Fig.5.8 for AP-7 and AP-8, we can see how
these subhalo properties change. At the same time, we also notice how we actually
run out of candidates to match the observed satellites as the abundance of satellites
is significantly reduced for the most extreme cross-sections studied (cf. 5.1.1).
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FIGURE 5.7: “Too big to fail problem” solved by γ CDM: (left panel) rotation curves and observed
half-light radius/stellar velocity dispersion of the 11 most massive subhalos in AP-7-HR for CDM
(black lines) and γCDM (σDM−γ = 10−9 σTh (mDM/GeV, red lines) combined with a scatter plot
of the half-light radii and circular velocities of the “classical” MW dwarfs (circles) and M31 dwarfs
(squares). The dotted extensions of the rotation curves mark the regions where the circular velocity
can still be measured in the simulation, but convergence cannot be guaranteed (cf. Power et al.
(2003)). For the same models, the Vmax − Rmax plot for all halos in the “zoom” LG candidates also
shows significant less tension as fewer predicted halos can be found outside the 2σ confidence
interval for the MW dwarf galaxies (hatched region).

5.4 Constraints on the DM interaction cross section

We have shown in the previous section, how the small-scale challenges to stan-
dard CDM may be “solved” by including interactions between the dark matter and
standard model particles such as photons or neutrinos. Unfortunately, we cannot
use these results as a proof for the presence of such interaction since other alterna-
tive DM models like SIDM, WDM or feedback in hydro simulations (cf. Sec. 5.5)
have all similar effects on the predicted observables studied here and breaking this
degeneracy is beyond the scope of this thesis. But we can nonetheless learn some-
thing about the nature of dark matter by turning the question around and asking
ourselves instead, whether we can rule out certain areas in the parameter space for
such extended DM models and IDM in particular.

In the case of the satellite abundance, the changes to DM by any of the alter-
native models either reduce the number of predicted DM subhalos (WDM, IDM)
or their efficiency to form stars, thus rendering them too faint to be detectable by
today’s surveys. Thus, while ignoring the effects contributed by those alternative
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FIGURE 5.8: The “Too big to fail problem” solved by γ CDM: Vmax-Rmax plot for AP-7 and AP-8 for
various cross-sections, as labelled, with the hatched region marking the 2σ confidence interval for
the observed MW satellites as introduced in Fig. 5.5

models in our predictions, it is still valid to ask what the maximum cross-section is
that is still allowed to obtain at least the observed satellite galaxies within the MW
host halo.

Tidal Dwarf Galaxies aside, which originate from the fragmentation of gas-rich
tidal streams within the host galaxy (e.g. Bournaud (2010)), the only way for the
observed MW satellite galaxies to form is inside a DM halo of their own. Thus, the
number of (invisible) DM subhalos naturally limits the number of visible, observ-
able galaxies. Before we use this argument to determine the maximal suppression
of the number of substructures allowed before running out of predicted hosts for
observed satellites, we want to extend the observational data set, we already dis-
cussed in Sec. 5.1.1, using the data obtained from our second large host halo with
the Andromeda Galaxy (M31) in its centre.

Unfortunately, for 14 out of the known 33 satellites of M31, a measurement of
the stellar velocity dispersion σ? is not yet available. As we need this information to
compose the complete SHFV, we try to exploit the relation between the dynamical
mass and the measured absolute visual magnitudes Mv of the satellite galaxies
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that can been observed in both the Milky Way and M31 (McConnachie, 2012); the
result for this exercise is plotted in Fig. 5.9(left) combined with a log-linear fit of
the available data for M31.

It has been previously found in studies with semi-analytical models (Font
et al., 2011) as well as hydrodynamical simulations (Sawala et al., 2014), that the
star formation efficiency is mass-dependent with smaller halos being less efficient.
This also affects the log-linear relation between the brightness and dynamical mass
as it reduces the absolute magnitude Mv associated with substructures at smaller
masses. This effect is observable as an asymmetric scatter with data points spread
out further above the fit. For constraints on the cross-section, we only have to
worry about not overestimating the substructure abundance above a certain ve-
locity/mass threshold. Thus, we simply assume that the M31 satellites, for which
we have to reconstruct the dynamical mass, satisfy in the worst-case this relation
within at most a 2σ confidence region around it. Knowing their available half-light
radii, we can then determine a lower bound on their stellar velocity dispersion. By
using Eq.5.1, we finally obtain a lower estimate on Vmax. The cumulative subhalo-
velocity function (SHVF) including the reconstructed satellite data for Andromeda
as well as sky coverage corrections for the Milky Way is shown in the bottom
panel in Fig.5.9. In that figure, we also plot the stellar mass function for compar-
ison, which can be obtained from the absolute magnitude measurements in Mc-
Connachie (2012) by assuming a mass-to-light ratio of 1. According to recent stud-
ies, the Andromeda halo mass (e.g.Sofue (2015)) seems to be at least equal to the
Milky Way mass if not significantly larger. The stellar mass function shown seems
to support this as the cumulative abundance for M31 exceeds the one for the Milky
Way if the latter is corrected for SDSS sky coverage. In order to obtain a SHVF of at
least that magnitude, we would have to push our reconstructed data points for the
dynamical mass in Fig.5.9 (left) well above our measured log-linear relation. While
this potentially underestimated SHVF is still usable for the purpose we need it for,
i.e. a conservative constraint on the interaction cross-section, it is worth to briefly
discuss possible explanation for its occurrence.

• The M31 satellites with measured dynamics already reveal a much larger
spread for even larger dynamical masses compared to those found in the
Milky Way. This could be evidence that at least some subhalos have a signif-
icantly lower star formation efficiency than the known MW satellites, which
would result in a much higher actual dynamical mass for their measured
brightness.
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FIGURE 5.9: Reconstruction of the Subhalo-Velocity Function for M31: (top panel) Absolute
Magnitude-Dynamical Mass relation. All satellites with dynamical information are plotted and are
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that corresponds to the confidence region in the log-linear fit. Additionally the figure contains the
cumulative subhalo-solar mass function.
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• Alternatively, there could be a bias in the measurement of the half-light radius
r1/2 for M31 satellites as the extend of satellites in M31 is more difficult to
determine due to the much higher distance they are observed at and could
lead to to smaller r1/2 as contributions of stars at the edges of the satellite
galaxies are missed. This would affect the calculation of σ? and, consequently,
of Vmax. As the expected dynamical mass is about twice as large as the one
derived from our reconstruction method, this systematic inaccuracy would
have to be significant.

• As discussed, Eq.5.1 only provides a lower estimate for Vmax, only being an
equality if rmax coincides with the measured r1/2. Since we use this approxi-
mation both for the smaller MW satellites as well as for those of M31, those
two sets would have to have significantly different mass profiles to account
for this discrepancy.

• Another possible explanation for the tension between the corrected MW and
M31 SHVF is that the distribution of MW satellites is not isotropic as assumed
for the sky coverage applied here and the regions of the sky not covered by
SDSS contain much fewer satellites than the observed regions. This would
result in a lower corrected cumulative abundance for MW satellite.

While the second explanation can be blamed on systematic measurement errors,
the other two would require an explanation for the fact that their satellites, despite
lying is such similar host halos, would show such different properties.

With our lower bounds for the SHVF, we can now constrain the interaction
cross section by comparing the observed and predicted numbers of substructures.
The uncertainties in the simulation results are derived from the spread in the sam-
ple sets (for each host halo mass bin), while for the observations, the Poisson er-
ror of the counting process is given by the square-root of the total number counts
in both host halos. A model is ruled out if the number of predicted subhaloes is
smaller than the observed number within a combined 2σ uncertainty region of
these observables (see Fig.5.10(left)). We also included our ”zoomed” MW candi-
dates as data points within the according mass bins, but we only consider them for
the constraints in the two mass bins where the two MW candidates AP-7 and AP-8
belong to as those are the only one, for which we have a full set of re-simulations
with varying cross-sections.

As we are potentially underestimating Vmax for observed satellites as well as
their abundance due to some ignored corrections (cf. Sec.5.1.1), these bounds may
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FIGURE 5.10: Constraints on the γCDM cross section. Left panel: the over-abundance of satellites
predicted in the simulations for the Milky Way (dashed line) and combined MW/M31 (solid line)
versus the cross section for the MW/M31 halo mass bin (1.4. − 1.7) × 1012M�, where the blue
hatched and brown shaded bands represent the 2σ uncertainties for the two data sets. The results for
AP-8, which lies in this mass bin, are also shown as well for comparison. Right panel: constraints on
the cross section are plotted with respect to the MW/31 halo mass for the Milky Way alone (dashed
line) and for the combined MW/M31 data set (solid line). For the combined MW/M31 data set, we
assume an identical mass for both halos. The most recent CMB constraint (Wilkinson et al., 2014a)
and selected upper mass bounds for the MW and M31 halo are shown for comparison.
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be even tighter, but definitely not weaker. From this, we conclude that based on the
MW data alone the cross section does not exceed

σMW
DM−γ ≤ 6.0× 10−9 σTh (mDM/GeV) (5.2)

at a 2σ confidence level18, which constitutes an improvement of about 2-3 orders
of magnitude compared to recent CMB constraints (Wilkinson et al., 2014a). If the
Milky Way halo turns out to be lighter than the ’worst-case’ scenario considered
for this result, then the constraints may tighten by a whole order of magnitude as
shown in the compilation of the constraints for all considered halo mass bins in the
right panel of Fig. 5.10.

For the combined Milky Way/Andromeda analysis, we assume that the An-
dromeda halo is of the same mass as the MW halo. This is a valid approach for
obtaining conservative constraints as it simply fixes the maximum mass of the two
host halos and any lower mass for one or the other will reduce the abundance of
predicted subhalos and thus tighten the constraints obtained. We also consider the
same allowed mass range for M31 that we used for the Milky Way before. This is
done account for those mass constraints published in the recent past beyond those
shown in the plot that still allow for such high masses for both halos (e.g. Fardal
et al. (2013)). This gives us an upper bound on the constant DM-photon interaction
cross-section of

σMW+M31
DM−γ ≤ 1.75× 10−8 σTh (mDM/GeV) . (5.3)

It should be noted though that the most recent analysis on the M31 mass constraints
shown in Fig.5.10 (Sofue, 2015) limits Andromeda’s total mass to Mtot,200 ≤ 19.1×
1012M� at a 2σ CL and that of the Milky Way to even lower values (≤ 17.2 ×
1012M�). Using this as an upper mass would bring the maximally allowed cross-
section down to about the cross-section obtained for the Milky Way alone if the full
mass range is considered.

While all of our results are obtained under the assumption of a constant cross-
section between DM and photons, we can use them to obtain constraints for simi-
lar models such as neutrino interactions (νCDM) by identifying “identical” models
by their identical half-mode scale. While Fig.3.1 reveals that the primordial per-
turbations for those models differ on very small scales, our studies in Ch.4 have
shown that both γCDM and νCDM produce very similar halo abundances if the

18This constraint is slightly weaker than that published in Boehm et al. (2014). This deviation
from our previous results mainly arises from the smaller correction factor for SDSS sky coverage
used in this analysis, which takes the newer data releases into account.
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corresponding cross-sections are matched according to their characteristic damp-
ing scale Mh (cf. Ch.3). This relation between the constant interaction cross-section
is fitted by

σDM−ν = (3.21/2.74)1/0.421σDM−γ , (5.4)

which translates into an upper bound for the constant DM-neutrino interaction
cross-section of

σMW+M31
DM−ν ≤ 2.55× 10−8 σTh (mDM/GeV) . (5.5)

It is noteworthy that studies including a treatment of baryonic physics and thus the
brightness of the satellites in their predictions may still reduce these bounds signif-
icantly. They will not have to rely on the reconstruction techniques applied here.
Furthermore, they can enforce additional cuts on the predicted subhalo samples to
account for limitations to the completeness in the surveys.

5.5 Conclusion

We have shown that the interacting DM model has the ability to ease tensions
between the properties of the small structures observed in the Milky Way and M31
and those predicted by N-body simulation of CDM. The ability of the IDM model
to erase primordial perturbations below a cross-section-dependent mass scale and
thus the seeds of the excess subhalos that riddle the CDM predictions allows us to
solve the MSP. The delayed formation time of the surviving halos, helps to reduce
both their concentration as well as their halo mass, which both contributes to easing
the tensions found for the most massive satellites in the Milky Way in the TBTF
problem.

Nonetheless, this success should not be interpreted as direct evidence for the
presence of such dark matter-SM interactions at early times since alternative mod-
els provide similar solutions. We have to acknowledge that the observations of the
satellite population in the Milky Way as well as in M31 are limited for the reasons
stated above and that the actual abundance may be highly underestimated, as the
satellite galaxies used to identify the DM subhalos are either too faint or even may
fail to produce stars and thus lack visible tracers. Recent numerical studies (cf. e.g.
Sawala et al. (2015)) have confirmed that the velocity threshold at which the sub-
halo observations diverge from the predictions is close to the value at which heat-
ing of intergalactic gas by the UV photo-ionizing background should suppress gas
accretion onto halos and may explain why the subhalos remain dark and thus in-
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visible in current surveys. It should be noted, that all theoretical predictions, which
include baryonic physics apply subgrid physics to follow processes which operate
below the resolution scale such as star formation and have to use tuned parame-
ters within these models. Additionally, the huge uncertainties about the mass of the
Milky Way halo, allow us to consider a lighter host halo for our observed satellites
as done in Fig. 5.4(right panel). While this is not enough to make the tension to go
away, it may contribute to a solution. Thus, it would be unrealistic to claim that the
MSP supports a DM model beyond the standard, collision-less CDM such as WDM,
SIDM or our IDM. However, better understanding is needed of the physical con-
straints of those parameters in hydro simulations and semi-analytical models and
of the halo mass of our Galaxy to rule out the possibility of IDM.

As with the MSP, DM interactions are not the only possible “solution” of the
TBTF in CDM. A lower halo mass for our MW candidates also eases the tension.
This can be seen in Fig. 5.8 by comparing the results for the two halos AP-3 and AP-
4, which are among the lightest of our 8 candidates, with those of the other halos.
And again, recent studies with hydro simulations have shown that also the TBTF
problem can be solved in CDM by including baryonic physics in the predictions,
with the gas flattening the density profile in the inner core region (Sawala et al.,
2014). Alternative dark matter models such as SIDM (Vogelsberger et al., 2014) or
WDM (Lovell et al., 2014) also have the potential to solve this problem. WDM faces
a possible “catch-22” dilemma as the particle masses required to solve TBTF in the
thermalized scenario lie below those ruled out by constraints based on the subhalo
abundance (Schneider et al., 2014). So, as for the MSP we cannot consider the exis-
tence of the TBTF problem and its possible solution by interacting DM as evidence
for the existence of such interactions, but we have shown how this alternative DM
model may at least contribute to the necessary corrections.

Finally, we have exploited the fact, that as all those alternative DM / physics
models tend to ease these problems in a similar fashion, we can use the observ-
ables in question, in particular, the abundance of satellite galaxies/substructures
in the Milky Way and Andromeda to place upper bounds on the (constant) inter-
action cross-section in our γCDM model (σDM−γ ≤ 2.66× 10−33 (mDM/GeV) cm2)
by applying the latest upper mass bounds on MW and M31 (Sofue, 2015). We also
derive constraints for νCDM (σDM−ν ≤ 3.86× 10−33 (mDM/GeV) cm2) by exploit-
ing the relation found between the characteristic cut-off scales of both interaction
models. In both cases, it is interesting to note that our upper bounds on the inter-
action cross-section for high-MeV particle masses happen to be of the same order
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of magnitude as the weak interaction cross-section. This agrees with premise of the
WIMP miracle (cf. Ch. 3 and results in the correct relic abundance for the DM after
the interaction has frozen out.
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CHAPTER 6

CνB - relic neutrinos in the Universe

This chapter is dedicated to discussing the properties and role of neutrinos
in the cosmic evolution in detail. This includes a description of their decoupling,
abundance and free-streaming as well as the implications of them being massive.
We present results by solving the linearised Boltzmann equations as an illustration
of how neutrinos affect the evolution of the Universe before the collapse of non-
linear structures.

6.1 Thermal History

6.1.1 Neutrinos in Cosmology

Relic neutrinos, which are an important product of the standard hot Big Bang,
play a significant role in the evolution of the Universe. Fig. 6.1 lists certain ”histor-
ical” events that are important for neutrinos in the context of cosmology and are
discussed in the following sections in detail.

FIGURE 6.1: Timeline of the Standard model of the Universe.
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Early Universe / Thermal history

In the first second of the history of the Universe, at temperatures Tγ of the pri-
mordial plasma of above 1 MeV, neutrinos were in thermal equilibrium through
weak interactions with other particles (see Sec. 2.1.1). Because of the small num-
ber density of nuclei with respect to leptons, interactions with quarks bound in
the nucleons were negligible. Among the leptons, the interactions with electrons
and positrons dominated the interactions of neutrinos with the charged leptons as
many muons and tauons had already decayed through the charged-current chan-
nel of the weak interaction into either charged leptons plus the corresponding (anti-
)neutrinos or, in the case of the heavier tauon, also into hadrons. Thus, of all the
possible interactions, the only ones of interest for the coupling of neutrinos with
the rest of the Universe at that time are the neutral-current annihilation/produc-
tion

ν f + ν f � e+ + e− , (6.1)

with f ∈ {e, ν, τ}, the neutral-current elastic scattering

(−)
ν f + e± �

(−)
ν f + e± , (6.2)

and the charged-current weak elastic scattering

(−)
νe + e± �

(−)
νe + e±. (6.3)

Neutrinos come out of thermal equilibrium with their cosmic environment when
the rate of change of the temperature of the Universe |Ṫγ|/Tγ exceeded their inter-
action rate Γ with the environment, i.e. in this case with the thermalized electrons
and positrons. Since Tγ ∝ a−1, this leads to the freeze-out condition given by (cf. Sec.
2.2.6)

Γ ∼ H ⇒ n〈σv〉 ∝ G2
FT5

γ ∼ H , (6.4)

with n ∝ T3
γ being the relativistic number density, σ ∝ G2

FT2
γ the combined cross-

section of the scattering and annihilation interaction modes in Eq. 6.1, Eq. 6.2 and
Eq. 6.3, GF the Fermi constant and v ∼ 1 is the relativistic neutrino velocity in units
of c. Expressing the expansion rate H at this still radiation-dominated era in terms
of the Planck mass mpl

H ∝
T2

γ

mpl
, (6.5)
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yields an approximate decoupling temperature of

Tν,decoupling
γ ∝ (mplG2

F)
− 1

3 ∼ 1 MeV . (6.6)

While this is a rough approximation, more precise calculations considering the dif-
ferent interactions for electron-neutrinos and the other two flavours (Dolgov, 2002)
lead to

Tνe,decoupling
γ ∼ 1.34 MeV T

ν{τ,µ},decoupling
γ ∼ 1.5 MeV, (6.7)

i.e. a slightly earlier decoupling time for the muon- and tauon-neutrinos as they do
not participate in all the weak interactions.

Once neutrinos are out of thermal equilibrium, they are not reheated at the
point of electron-positron annihilation and therefore end up with a lower temper-
ature than the CMB photons given by

Tν =

(
4

11

)1/3

Tγ . (6.8)

This relation between photon and neutrino temperature also allows us to quan-
tify the neutrino content in the Universe. For any light neutrino (that decouples
while still being relativistic), the present-day number density of neutrinos and anti-
neutrinos is related to the present cosmic background photon density nγ by

nν + nν̄ =
3
2

ζ(3)
π2 (Tν)

3 =
6

11
ζ(3)
π2 (Tγ)

3 =
3
11

nγ ∼ 112 cm−3 , (6.9)

with ζ(·) being Riemann’s Zeta function. Thus, assuming a mass mi for each mas-
sive neutrino state, the present energy density of light massive neutrinos is given
by

Ω0
νh2 =

∑i mi(nν + nν̄)

ρ0
crit

h2 ∼ ∑i mi

94.14 eV
, (6.10)

where ρcrit is the critical density of the Universe today and h is the reduced Hubble
constant.

It should be noted, that neutrinos in the early Universe, while still being rel-
ativistic, contribute as an additional radiation component. This has consequences
not only for the time, teq, of matter-radiation equality, which affects the growth of
density fluctuations and leaves an imprint on the CMB and in structure formation
in the late Universe, but also influences BBN by altering the expansion rate around
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neutron freeze-out. The latter effect is measurable in the neutron-proton-ratio of
the Universe and allows us to make a prediction about the number of neutrino
species Nν (or other additional relativistic components at BBN).

Late Universe / Free-streaming

After decoupling, neutrinos remain relativistic for some time before they are
adiabatically red-shifted to a temperature below the relativistic regime at Tν ≈ Mν

3 .
Their velocity distribution at the decoupling obeys the Fermi-Dirac (FD) distribu-
tion f (p)

f (q) =
1

eq/Tν + 1
, (6.11)

where q is the momentum and Tν the temperature of the neutrinos. This not only
causes many neutrinos to remain in the relativistic regime longer than others, but
also gives rise to slow neutrinos that are available for clustering. Fig. 6.2 shows the
velocity distribution of neutrinos and Cold Dark matter (CDM) obtained from a
simulation at an early and later redshift. It can be seen that the neutrino velocities
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FIGURE 6.2: Differential (P(v)dV) and cumulative (P(< v)) velocity distribution at redshifts z = 49
(solid) and z = 7 (dashed) for neutrinos (red,violet) and CDM (blue) respectively.

exceed by far the velocities of the CDM which are induced by gravitational inter-
actions.

The most important feature of neutrinos is their large streaming scale due to a
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lack of any thing other than a gravitational interaction with their environment
and their high average velocities. The corresponding comoving redshift-dependent
free-streaming wave number is given by

k f s =

√
3
2

H(z)
vth(1 + z)

{
H(z), relativistic, high z
(1 + z)−1/2, non− relativistic

(6.12)

Fig. 6.3 shows the evolution of the free-streaming length. It can be seen that there

FIGURE 6.3: Free-streaming scale of cosmic neutrinos: The upper black line is the comoving neu-
trino free-streaming scale k f s, above which structure formation is suppressed while the lower line
is the comoving Hubble scale, aH. The maximal free-streaming scale knr has been thereby marked
(Hannestad, 2010).

is a minimal free-streaming wave vector knr located at approximately the redshift
where neutrinos become non-relativistic. On scales smaller than k f s neutrinos can-
not cluster due to the free-streaming (except for a smaller number in the low veloc-
ity tail of the FD distribution). While on scales larger than knr neutrino perturba-
tions are not affected by the free-streaming and grow like their CDM counterparts.
This is observable e.g. in the matter power spectrum as it leads to a loss of power
on small scales that depends on the mass of the neutrinos (see Sec. 6.3.2). Taking
our upper (lower) mass bound into account, this gives us a scale range for this ef-
fect of k = 0.002− 0.04 (0.013− 0.57)h/Mpc where the lower bound is given by knr

and the upper bound by present day kfs.
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6.2 Linear Theory

To study the evolution of the linearised phase-space distribution for massive
neutrinos of mass m, we use the results derived in Sec. 2.2.6. These particles are
governed by the linearised collision-less Boltzmann equation given by Eq. 2.51,
where the RHS vanishes for collisionless particles. The unperturbed neutrino dis-
tribution f0 of the particle momenta for the neutrinos is given by the relativistic
form of the Fermi-Dirac distribution as they decouple while being highly relativis-
tic:

f0(q) ∼
1

exp(q/aT(a)) + 1
(6.13)

where T(a) is the temperature of the neutrino fluid at expansion factor a. By sub-

stituting the distribution function with Ψ̃(·) ≡ Ψ(·)
(

d ln f0(q)
d ln q

)−1
, we get the sim-

plified Boltzmann equation

Ψ̃′(~k,~q, x) = −i
q

ε(q, x)
µΨ̃(~k,~q, x)− φ′(k, x) + i

ε(q, x)
q

µψ(k, x) , (6.14)

where µ ≡ ~k ·~q/q is given by the cosine of the angle between the wavenumber~k
and momentum ~q, x ≡ kτ and the prime denotes the derivative ∂/∂x thereof. By
expanding Eq. 6.14 using Legendre polynomials, we obtain the Boltzmann hierar-
chy for Ψ̃ given by

Ψ̃′0(k, q, x) = − q
ε(q, x)

Ψ̃1(k, q, x)− φ′(k, x) , (6.15)

Ψ̃′1(k, q, x) =
q

3ε(q, x)
[
Ψ̃0(k, q, x)− 2Ψ2(k, q, x)

]
− ε(q, x)

3q
ψ(k, x) , (6.16)

Ψ̃′l(k, q, x) =
q

(2l + 1)ε(q, x)
[
lΨ̃l−1(k, q, x)− (l + 1)Ψl+1(k, q, x)

]
(l ≥ 2) .(6.17)

The observable quantities such as the neutrino density and the velocity dispersion
are given by the integrals of the respective equations in this series (cf. Eqs.2.56 &
2.58). While formal analytical solutions to this problem exist, numerical approxi-
mations can be very expensive as they have to deal with the infinite nature of the
sums involved. To overcome this problem, methods like the Fluid Approximation
were proposed (Shoji and Komatsu, 2010), that exploit the fact that for late times
with redshifted momenta and high neutrino masses, the evolution of the l = 0
and l = 1 modes in the Boltzmann hierarchy (Eq.6.17) effectively decouple from
the higher modes. The Ψ̃2 contribution in the evolution of Ψ1 is by far dominated
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by the gravitational potential term as the latter grows rapidly due to the factor
(ε/q)2 with respect to the other terms, once the particles become non-relativistic.
This renders any contributions from higher modes irrelevant for the evolution of
the first two modes and thus allows for a cut-off in the hierarchy at lmax = 1, if
we are only interested in the observables listed above. Shoji and Komatsu (2010)
tested the validity of this approach and confirmed that this method can predict
the linear evolution of the neutrino density at the sub-percent error level for red-
shifts close to zero, high particle masses (mν = 1.0eV) and up to cluster scales
(k ∼ 0.05 h/Mpc), especially if the cut-off mode is increased to lmax = 2 instead
as also is done in Boltzmann solvers such as CAMB (Lewis and Challinor, 2011)
or CLASS(Lesgourgues, 2011) for low-momentum neutrinos. Any predictions of
the neutrino power spectrum at higher redshift or for lower particle masses that
are more in agreement with the newest bounds are not very reliable in predict-
ing the correct neutrino distribution19. However, recent studies (Archidiacono and
Hannestad, 2015) considered even higher cut-offs (lmax = 3), and were able to im-
prove the accuracy for predictions based on the linearised Boltzmann equations
and such an approximation.

6.2.1 Going beyond linear growth

While it is rather straightforward to extend a linear theory for a non-free-
streaming component such as CDM or baryons to higher orders of perturbation
theory, such an attempt is much more complicated if neutrinos are included as their
free-streaming violates the single-stream approximation (i.e. v ≡ v(x)) used in the
linear theory. For (almost) cold fluids such as CDM, stellar matter and even gas,
this is valid up to the point of shell-crossing, when the now spatially overlapping
phase-space sheets of matter collapse into the non-linear structures we observe to-
day. Works such as (Wong, 2008) and (Saito et al., 2009) extended the calculation of
the evolution of the CDM and baryon distribution (and in some cases the contribu-
tions from the neutrinos coupling to that matter) to a more accurate higher-order
perturbation theory, while leaving the neutrinos at linear order. A similar approach
has been implemented recently in Archidiacono and Hannestad (2015), where the
gravitational background for the still “linear” neutrinos has been calculated based

19It should be noted that the larger deviation of the neutrino density predictions for lower masses
are countered by the smaller contribution that these play in the total matter distribution. Thus, such
predictions can be still sufficiently good for LSS surveys as these are used to probe the overall matter
distribution.
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on semi-analytical models of the non-linear growth of the dark matter and baryon
perturbations, which seems to reproduce the neutrino densities found in N-Body
simulations (cf. Ch. 7) very well.

One approximation to overcome the violation of the single-stream approxima-
tion by free-streaming components such like neutrinos was presented by Dupuy
and Bernardeau (2014). There the neutrino phase-space fluid is split up into multi-
ple “streams”. Each of these streams can then be solved in a similar way as a cold
fluid like DM, but require us to deal with a large number of components that may
even be coupled at high redshift or the presence of an interaction with the dark
sector.

6.3 Measurements/Detection

Considering all the assumptions that were used to obtain the current standard
model for the relic neutrinos of the cosmic neutrino background (CνB) described
in the previous sections of this chapter, an experimental confirmation of the pre-
dicted observables such as their relic energy density Ων or their temperature Tν

would provide valuable evidence for the correctness of our understanding of the
processes in the early Universe and the very nature of neutrinos themselves.

6.3.1 Particle Experiments

The detection of neutrinos and measurement of their properties has been one
of the major challenges in modern particle physics. Nowadays a growing number
of particle experiments have managed to detect solar and atmospheric neutrinos
more and more reliably (e.g. Inoue (2004); IceCube Collaboration et al. (2006)) and
allow us to study the nature of their oscillations and thus to determine a lower
bound on their particle mass among other properties. But the much lower energy
of the relic neutrinos (cf. Fig.6.4) eludes direct direction in these experiments as the
natural energy threshold for the inverse β-decay in the radiochemical (e.g. Ham-
pel (1997)) or liquid scintillator techniques (e.g. Inoue (2004)) for the target ma-
terials used is still in the low MeV/high keV range and thus many orders above
the expected energy range of the CνB today. In the case of neutral-current (and in
’same-flavoured’ partners charged-current) elastic charged lepton-neutrino scatter-
ing, there is no such minimum energy required in the process, but the sensitivity
of the experiments is limited by minimum energy of the scattered charged target
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particle that can be then detected e.g. by emission of Cherenkov radiation while trav-
elling through the detector medium and such events can be distinguished from
background noise. A method to specifically detect the low-energy relic neutrinos

FIGURE 6.4: Measured and expected fluxes of natural and reactor neutrinos [source: IceCube]

that overcomes these problems is to use the so-called neutrino-induced β-decay. This
was first proposed by Weinberg (1962) and recently picked up as the proposal
for the PTOLEMY experiment (Betts et al., 2013). Here, a tritium target undergo-
ing β-decay is studied and the energy of the emitted electron is measured with
an energy resolution finer than the neutrino mass. In case of a ”normal” β-decay
(3H → 3He + e− + ν̄e), the energy of the electrons is a continuous spectrum with a
maximal energy limit given by the Q value of the process minus the rest mass of
the electron anti-neutrino produced. The induced β-decay (3H + νe → 3He + e−)
on the other hand produces an energy spectrum with a minimum energy at the Q
value of the β-decay plus the rest mass of the absorbed electron neutrino. Given
that the width of this spectrum is equivalent to the kinetic energy of the involved
neutrino, this results in a rather narrow peak in the energy spectrum about two
neutrino rest masses above the “normal” spectrum. A major challenge in such an
experiment besides the energy resolution is the rare occurrence of such neutrino-
induced events as with current estimates of the local relic neutrino-overdensity,
the half-life of tritium and the cross-section for such an event, only about 9.5× 102

event/(year × gram Tritium) are expected to occur. But if successful, this experi-
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ment would not only allow us to determine the (electron) neutrino mass (cf. Sec-
tion 2.1.1), but would also confirm the predicted presence of such a low-energy
relic neutrino background for the first time. Unfortunately even with the proposed
energy resolution, the experiment would not allow us to study the momentum dis-
persion of the relic neutrinos involved in the induced decays and thus can not tell
us anything further about the properties and history of the CνB.

6.3.2 Astrophysics/Cosmology

With even proposed next-generation particle experiments not being able to
measure the properties of the CνB, the interest of neutrino physicists turned to-
wards the largest experiment available, the observable Universe itself. While the
neutrino relic density, mass and interaction cross section may be small compared
to those of many other particles making up the Universe, the huge time and length
scales involved here allow us to study the impact these particles have on the trace-
able matter. In Section 6.2 we discussed how to predict the matter distribution
in the Universe based on linear perturbation theory. These predictions have been
compared to observation of actual density perturbations in the early Universe (Ben-
nett et al., 2003; Tauber, 2005) that are imprinted in the CMB as well as at late times
where galaxy and galaxy clusters (Weinberg, 1992; Tegmark et al., 2004) or lens-
ing (Simon, 2012) can be used to trace the large-scale density perturbations in the
linear regime. In the standard 6-parameter ΛCDM model, neutrinos are treated as
thermal fermionic relic with a mass fixed to the lower bound given by oscillation
experiments, i.e. ∑ mν = 0.06eV for the normal hierarchy. Also their temperature is
fixed relative to the CMB temperature (Eq.6.8). In a minimal extension as used e.g.
in (Planck Collaboration et al., 2015d), the neutrino mass is included as a free pa-
rameter. Fig.6.5 compares the total matter (angular) power spectra in the predicted
with linear theory for a sum of the masses of the neutrino eigenstates ∑ mν = 0.2eV
with a model containing the same amount of matter, but without massive neu-
trinos. As the neutrinos stream out of small primordial perturbations, growth on
these scales is suppressed. This can be seen as a suppression below the maximum
free-streaming length in the matter power spectrum at around k = 10−2h/Mpc. As
the free-streaming neutrinos cause a larger decay in the gravitational potential on
scales below the free-streaming scale, this drives acoustic oscillation in the baryon-
photon fluid more strongly and results in the slightly higher amplitudes of the
second and higher peaks in the angular power spectrum in the middle panel. Addi-
tionally, a delay in the matter-radiation equality enhances the early integrated Sachs-
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FIGURE 6.5: Impact of the neutrino mass on the early Universe: The (left panel) matter power spec-
trum and (right panel) angular power spectrum for a Λ-CDM universe with (orange/solid line) and
without massive neutrinos (black/dashed line).

Wolfe effect which boosts the power on scales larger than the first acoustic peak and
thus shifts the resulting peak further to larger scales. The overall shift in all the
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peaks can be additionally explained by the change in the non-relativistic matter
density at late times that occurs when the neutrinos become fully non-relativistic
after decoupling. This has an impact on the angular diameter distance to the last
scattering surface and thus the position of the features in the spectrum (cf. Ichikawa
et al. (2005); Lesgourgues and Pastor (2014)).

FIGURE 6.6: CMB constraints on the sum of neutrino masses ∑ mν using the combined Planck,
WMAP polarization and high-resolution data.

Fig. 6.6 shows the relative likelihood for the sum of the neutrino masses, ∑ mν,
using this method with the first-year Planck data together with WMAP polariza-
tion and CMB-high resolution data (Ade et al., 2014). While there is no signal for a
specific non-zero neutrino mass in these results, at least an upper bound of 0.66eV
can be determined with 95% confidence. Including BAO, external H0 as well as full
Planck polarization and lensing data, these constraints can be tightened further to

∑ mν ≤ 0.23eV (2σCL) (Planck Collaboration et al., 2015c) within this extended
ΛCDM framework. Alternatively, we can also try to determine other properties
like the neutrino temperature that way by allowing for more free parameters.

In Chapter 7 and 8, we also discuss how to predict the non-linear evolution
of the cosmic neutrino content using very different techniques and the resulting
impact on late-time structure formation using simulations. This becomes very im-
portant when we have to take non-linear contributions into account for the very
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accurate predictions needed for future galaxy surveys (e.g. Tereno et al. (2015))
which will provide us with much more sensitivity at the measurements of the neu-
trino mass (Hamann et al., 2012).
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CHAPTER 7

Neutrinos in structure formation

As discussed in Chapter 6, it is rather easy to solve the Boltzmann equations
for neutrinos in linear order, but very challenging to obtain a solution beyond that.
In this chapter, it is discussed how linear solutions can be used to study the non-
linear evolution of the other components in the Universe. Neutrinos may play an
important role in the evolution of the Universe at late times and therefore must
not be neglected in numerical cosmological simulations in order to accurately pre-
dict the formation of the structures found in the Universe today. In this Chapter I
present two techniques that have been introduced before and used in the research
I was involved in, in particular in Shanks et al. (2014), which is presented as an
example in the final section.

7.1 Simulation techniques & implementation

Linear Background technique The simplest approach to include massive neu-
trinos in numerical simulations it to treat them as a background that follows a
strictly linear evolution of the primordial matter perturbations. This has been first
proposed in Brandbyge and Hannestad (2009) and also been used by us as a sim-
ple approach to study the contributions of free-streaming neutrinos on the struc-
ture formation in the Universe. For the implementation of the neutrinos as a linear
background in the GADGET Springel (2005) N-body simulation code, we use a very
similar approach to what has been previously done in Brandbyge and Hannestad
(2009). First we calculate the transfer function in linear theory with a numerical
Boltzmann solver (Lewis and Challinor, 2011) for a set of redshifts between our
initial conditions and today with a sufficiently fine redshift spacing to accurately
interpolate the solutions for the redshifts in-between. We use a logarithmic spacing
in redshift in order to get equal spacing in time in the simulation. With this knowl-
edge, we can interpolate the neutrino transfer function/power spectrum for ev-
ery redshift in-between. As a next step, we now have to (re)construct a realization

101
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of the Universe with exactly these 2-point statistics. As for our initial conditions,
we need to determine the phases and amplitudes of the Gaussian perturbation
in the neutrino density for each of the discrete grid points ~k = {2π~j/LBox‖j ∈
Ngrid × Ngrid × Ngrid} in Fourier space. To obtain the observable configuration-
space distribution, we would then have to Fourier-transform these results back.
Fortunately, due to the way Gadget’s Poisson solver is designed, this last step is
not necessary. In the code, the DM/baryon density field is reconstructed from the
N-body tracers, before being Fourier-transformed itself to solve the Poisson PDE
much more conveniently in Fourier-space. Thus, we can simply add the contri-
bution of the neutrinos directly to the complex Fourier-transformed DM/baryon
density field:

δ̂(~k, t) =
1

(2π)3

∫
δ(~x, t) exp(i(~k ·~x))d3x

+C ·
√
− ln(Aν(~k))Pν(‖k‖, t)(cos(φ(~k)) + i · sin(φ(~k))) (7.1)

where C =
√

2πLBox)3Ωνρcrit is a global constant, Pν(k, t) is the power spectrum
at time t and A and φ are the amplitudes and phases. For each realization A and
φ have to be randomly picked for each of our grid points in Fourier space. Fortu-
nately we can avoid storing these two scalar fields by exploiting the fact that the
pseudo-random number generator we used for them is completely deterministic
for a given seed. Thus, by ensuring that these pseudo-random variables are picked
by the same random generator (algorithm) in the same order for both the initial
conditions and the realizations for each time step, we can reduce the storage re-
quirements to a single number while ensuring that both DM and neutrinos start
off with the same adiabatic initial fluctuations.

Neutrinos as N-body particles The linear neutrino background provides the means
to include their behaviour according to linear perturbation theory, but misses com-
pletely the possibility of neutrinos interacting freely with the forming collapsed
structures in the non-linear regime. As an alternative, we introduce here most com-
mon numerical technique to predict the non-linear evolution of the matter distribu-
tion in the late Universe, Lagrangian N-body simulations and discuss the possibil-
ity and challenges of representing neutrinos as particle tracers in such N-body sim-
ulations. In the Lagrangian approach, the continuous phase-space fluids that make
up the Universe are represented by a finite number of phase-space tracers with
their own discrete position and velocities. These tracers are then used to reconstruct
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the local density field, to calculate the gravitational interactions and propagation of
the matter content governed by Newtonian mechanics and the Poisson equation.

Here, we use the GADGET-2 (Springel, 2005) N-body code with the following
optimizations based on the proposals made in Viel et al. (2010):

1. As we are expecting to encounter high velocities for the neutrino fluid trac-
ers due to the assigned thermal velocities, we keep the neutrinos off the
tree in the TreePM method that GADGET uses to calculate gravitational short-
range interactions. This should not introduce a significant error since we
do not expect any neutrino clustering on scales smaller than the overlying
mesh, on which we calculate their long-range gravitational interactions. This
has the advantage that it avoids significant computational costs as the tree-
calculation for fast neutrinos would force a small time step and a lot of expen-
sive tree-reconstruction as the tracers quickly traverse the simulation box.

2. Another way to reduce the costs of the simulation at the cost of minor inac-
curacies is to modify the rules that determine the step size in the simulation.
There are certain rules that limit the step size of the time integration also
based on the drift velocity of the particles. If applied to neutrinos, they lead
to very small time steps and therefore much higher computational costs. For
neutrinos we therefore relax these rules to avoid these costs in exchange for a
reduced accuracy.

The detailed benchmarks for these modifications of the code are discussed in Sec.
7.1.3. They allow us to obtain results with almost the same accuracy as the vanilla
version for the total matter distribution.

7.1.1 Initial conditions

The first step in every numerical cosmological simulation is to set up the ini-
tial conditions (IC). These have to represent the state of the Universe at the starting
redshift zi in a discrete way that can be handled by the numerical code, i.e. by
assigning the right properties to a set of particles whose evolution is then calcu-
lated numerically from that point in time onwards. The choice of zi depends on the
subject of the study. In Section 7.1.2 a way to calculate non-linear effects on the neu-
trino velocity distribution starting as early as zi ∼ 109 is discussed, but, in general,
simulations for cosmological structure formation usually start at a redshift much
later than the era of recombination and just before non-linear effects in structure
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formation become relevant. Thus, zi can range from redshifts of about 100 down to
redshifts as late as 5-7.

Zel’dovic Approximation / Individual transfer functions

A standard way to obtain the initial discrete phase-space positions for the par-
ticles of a simulation is to use the Zel’dovich approximation (Zel’dovich, 1970)
based on linear perturbation theory. It gives a prescription to assign displacements
and velocities to the particles that are initially distributed unperturbed on some
regular grid- or glass-like pattern (cf. e.g. L’Huillier et al. (2014)). An initial Gaus-
sian density field δ(x) is generated in Fourier space and convoluted with a linear
power spectrum that is obtained from a given transfer function. This provides the
displacements S(q) in position space for the particles according to

x = q + D(a)S(q) , (7.2)

where q is the initial, unperturbed Lagrangian position, D(z) the linear growth
factor at redshift z and x the resulting Eulerian position of the particle at z. The
comoving initial velocities are obtained by using

vcom = Ḋ(z)S(q) . (7.3)

There is a problem with this approach when it comes to neutrinos when using the
N-body technique for them. First of all, it assumes that the growth factor is scale-
independent. For neutrinos, this is obviously not the case since the damping due
to free-streaming is both scale- and redshift-dependent. The displacements can still
be obtained by simply using the transfer function at the redshift of the IC instead of
using those at z = 0. But for the velocities, we cannot use that trick as we are facing
the time derivative of the growth factor. To overcome this I followed an approxima-
tion that has been also already used by other groups in this situation (Brandbyge et
al., 2008). Instead of using Eq. 7.3, I modified the publicly available 2LPTic (Crocce
et al., 2012) code to create the initial conditions such that it calculates displacements
at redshifts close to zi and uses the difference in the displacements for a small time
step around zi to determine the velocities. This way, initial conditions for arbitrary
cosmologies and particle types can be obtained as long as the transfer functions
around the initial redshift are provided by a Boltzmann solver.
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7.1.2 Thermal velocity distribution

An important problem in N-body simulations is to model free streaming prop-
erly. In the case of CDM this is negligible as the total velocity of a particle is by far
dominated by the velocity of the gravitational flows and not by the thermal veloc-
ity of the individual particles. But the latter may be sub-dominant and even domi-
nant in case of gas, warm dark matter (WDM) and hot dark matter (HDM) like the
light standard neutrinos. While particles of CDM effectively sample only the three-
dimensional positions space as their initial velocity is uniquely determined by the
flow defined in Eq. 7.3, gas, WDM and HDM particles not only have to represent
a finite mass element and (bounded) three-dimensional part of position space, but
additionally the unbounded continuum of thermal velocities within each of these
mass elements.

There are two ways to tackle this problem - the thermal velocities can be rep-
resented implicitly or explicitly. In the first case, each mass element comes with an
additional set of parameters that describe the velocity distribution. In the case of
thermalized bosons and fermions, their energy and therefore thermal velocities are
distributed according to the Maxwell-Boltzmann or Fermi-Dirac statistics (cf. Section
6.1.1) which is completely determined by the temperature (if we neglect the chemi-
cal potential). This information is attached to each particle and can then be used to
calculate additional interactions besides the pure gravitation that account for the
effect of free-streaming. This was used e.g. in the νSPH approach (Hannestad et al.,
2012).

The other possibility is to model the thermal velocities explicitly by initially as-
signing one to each N-body particle of the simulation by drawing it from the correct
velocity distribution. It is essential to notice that we do not identify these N-body
particles with discrete mass or volume elements, but simply as tracers of random
points in phase-space, which we follow along their trajectories at each step in the
simulation. By choosing an initial sampling of these tracers that reflects the local
phase-space densities of the neutrino fluid, we can then reconstruct the density
field as before by counting the particles in a given spatial volume and normalize
the result to obtain the correct total mass.

Naively, one would assume that the neutrino momenta would simply follow
the Fermi-Dirac statistics (cf. Eq. 6.11) with a globally uniform neutrino tempera-
ture Tν (cf. Eq. 6.8). But Ma and Bertschinger (1994b) have shown that non-linear
contributions to the evolution of the neutrinos between their early decoupling and
the time of usual initial conditions seem to result in a globally non-constant thermal
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velocity distribution. By evolving neutrinos from redshift z ∼ 109 as tracer parti-
cles along their geodesics in the perturbed cosmological background, they could
compare the resulting local thermal velocities at z ∼ 13.55 to those obtained by
simply assuming a global velocity distribution (see Fig. 7.1).

FIGURE 7.1: (left) rms neutrino velocities vs. the neutrino density perturbation at z = 13.55. The
solid line is the result of the geodesic equation integration, the dashed line for a set of ZA ini-
tial conditions with thermal velocities sampled from a global Fermi-Dirac distribution (Ma and
Bertschinger, 1994b, Fig.6). (right) Contour plot of constant particle number in the neutrino velocity
component-overdensity plane with contour lines for 10,100,1000,104 and 105 neutrinos per bin of
height ∆(dx

dt ) = 40km/s and width ∆δHDM = 0.02 ((Ma and Bertschinger, 1994b, Fig.9)).

By ruling out gravitational flows as a simple explanation for the observed
higher rms neutrino velocities in denser regions, Ma and Bertschinger (1994b) con-
cluded that there is a local increase in the thermal velocities that depends on the
local over-density of the neutrino content and that thus, the assumption of a global
Fermi-Dirac distribution is not accurate. While there was a comparison in Ma and
Bertschinger (1994b), subsequent publications did not address this any more. In
order to verify whether the approximation made using ICs obtained from a global
Fermi-Dirac distribution follow instead the geodesic equation integration, we stud-
ied whether a similar effect can be observed within the redshift range usually used
for ICs. We therefore created initial conditions at a high redshift (z ∼ 49) assum-
ing a global Fermi-Dirac distribution and evolved them in a N-body simulation
until z ∼ 7 where we compared the results with ICs created at this redshift, again
assuming a Fermi-Dirac distribution that is only perturbed by the local gravita-
tional flows. The final redshift was chosen well within the regime, where the DM
background is still close to linear with only minor higher-order non-linear contri-
butions. The neutrino over-density for each particle was calculated using a grid
with a CIC assignment scheme. For this work we used a “vanilla” GADGET-2 ver-
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sion without any optimizations (cf. Sec. 7.1.3) that could cause the loss of those
small non-linear contributions. The results of this run are shown in Fig. 7.2 in form
of plots similar to those of Ma and Bertschinger (1994b).
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FIGURE 7.2: (left) rms neutrino velocities vs. the neutrino density perturbation at z = 7. The solid
line is the result of the N-body simulation, the dashed line for a linear fit of this data. (right) Contour
plot of constant particle number in the neutrino velocity component-overdensity plane for evolu-
tion of neutrinos from redshift zi = 49 to z = 7 with contour lines for 10,100,1000,104 and 105

neutrinos per bin of height ∆(dx
dt ) = 100km/s and width ∆δHDM = 0.0055.

In these results, we could not observe a non-linear contribution that is sim-
ilar to what was observed in Ma and Bertschinger (1994b). The linear fit in the
left plot did not reveal any statically significant non-vanishing slope and the only
visible asymmetry in the contour plot is most probably caused by the particle
counts which are by construction higher in over-densities leading to the observ-
able stretching along this axis, but no correlation between the over-density and
the velocities. It has to be noted that Ma and Bertschinger (1994b) used a rather
high mass for the active neutrinos of 7 eV which resulted in much smaller ther-
mal velocities which could lead to stronger non-linear effects. For all of our studies
we ignore the possibility of such early non-linear contributions and use in all of
our initial conditions a simple Fermi-Dirac distribution on top of the gravitational
flows.

Sampling of phase space

While Sec. 7.1.2 dealt with the distribution of thermal velocities, another valid
concern arises from the sparse sampling of the phase-space by the finite amount of
N-body particles in the simulation. As particles represent a macroscopic sample set
for the underlying phase-space distribution, it is not obvious how to represent the
microscopic property of thermal motion properly. Explicitly assigning thermal ve-
locities to each single mass elements in a simulation would imply huge local flows
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of neutrinos at the resolution scale that do no exist for natural thermal velocities
as the thermal motion is already averaged out on any macroscopic scale. To ad-
dress this concern, we performed and analysed a series of pure N-body simulation
runs with initial conditions that were especially designed for this purpose as fol-
lows. Starting with 1283 perturbed grid for both the CDM and the neutrinos in a
128 Mpc/h box, we refined the phase-space sampling by doubling the grid size in
each dimension while re-sampling the momentum/velocity-space in the following
three different ways (cf. Fig. 7.3 (left)):

FIGURE 7.3: (Left) Illustration of resolution refinement schemes at first level of refinement (r2) in
two dimensions. (Right) 2d-projection of the space-space onto one position and one momentum
axis for the second refinement level (r4).

re-sampling (RS) For this refinement of the resolution in position space, the mass
elements of the original particles are now represented by 23 smaller particles.
While the new particle at the original position keeps the same thermal veloc-
ity, the others obtain new ones drawn again from the corresponding velocity
distribution.

non re-sampling (NRS) Each of the 8 new “refined“ particles keeps the same ther-
mal velocity of the original ”parent” particle.

discrete re-sampling (DRS) Similar to the first method, but the new thermal ve-
locities are only drawn from the set of already existing samples.

alternative sampling (AS) Similar to the first method, but all thermal velocities
are drawn anew.
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Hence, we obtain 2563 N-body particles sampling the neutrino fluid for the
first refinement level (r2) and 5123 for the second refinement (r4).

It is obvious that even the global velocity distribution in the NRS and DRS case
is no longer the original one since the probability for obtaining identical velocities
in so many cases is very low. The NRS refinement is used to study the impact of
changes in position-space resolution while keeping the local velocities the same.
This ensures that the refined particles are still close neighbours in the phase-space
as seen in Fig.7.3(right). The DRS results are used to probe the effect of using this
altered global velocity distribution, that is on a global level identical to that of NRS.
This is needed to quantify contributions arising from this altered distribution for
comparing the NRS and RS schemes. Finally, the AS scheme allows us to study
how much the results vary by choosing an alternative realization of the phase-
space sampling.

We tested these different refinements using GADGET-2 with the discussed op-
timizations for the neutrino N-body particles. Especially with the higher numbers
of neutrinos at the higher refinement levels (i.e. higher resolutions), the advantage
of the modifications made to the GADGET code pay off as they save valuable com-
putation time and make these simulation runs feasible. The induced error in the
neutrino spectrum is thereby only a minor concern as we compare relative differ-
ences in results obtained by the same code and we are mostly interested in the
accuracy of the total matter power spectra.

Each setup was run from an early starting redshift(zi = 49)20. Fig. 7.4 shows
the results for each scheme at z = 0.

It can be seen that the deviation in the neutrino power spectrum introduced by
the DRS scheme are in fact very small for all refinement levels and stays within the
marked 1% error bounds with only a few exception going out as far as 1.5-2%. The
power spectrum coincides with that of the more accurate (RS) scheme and differs
from one refinement level to another only in the decrease of the shot-noise level
at small scales that results from the increased number of particles. This small error
could be explained by the fact that the 1283 samples of thermal velocities drawn
before the refinement (r1) already represent the underlying distribution quite well.
In contrast, the results of the NRS scheme show a totally different behaviour. While
they still more or less coincide on large scales with those of the other schemes, their

20Additionally, we also ran simulations with a late starting redshift (zi = 7). Those produced
similar results with only minor differences between the power spectra at early redshifts, that are
probably due to early shot-noise. Due to this agreement, we will only present the results for zi = 49
here.
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FIGURE 7.4: Power spectra at z = 0 obtained from ICs created at zi = 49 with the different refine-
ment schemes. The bottom part in each panel shows the relative difference with respect to the RS
scheme: (Top panel) all matter content (Bottom panel) neutrinos only

power spectra seem to trace that with no refinement and only start to approach the
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lower shot-noise levels that correspond to their particle numbers on very small
scales. This is indeed the effect that was intended by construction. As refined par-
ticles that are obtained from the same parent remain close neighbours in the initial
phase-space in the NRS scheme and only interact weakly with the environment,
they experience very similar evolutions. Those, despite refining the position space
sampling, mass elements of the size of the unrefined mass elements stay together
and behave like the parent. Only on smallest scales one could see signals of a break
up as the power spectra start to decrease towards the shot-noise levels of the other
refinement schemes with the same number of particles. But despite these differ-
ences, the discrepancies between the corresponding total matter power spectrum
at z = 0 as shown in the left plot of Fig. 7.4 are smaller than 1.2% over all scales.

In order to study whether these small errors are only limited to late redshifts
where non-linear structure growth may have already eradicated differences be-
tween the schemes, We also compared the results for RS and NRS obtained at ear-
lier redshifts in Fig. 7.5 for the second refinement level (r4).

While the NRS scheme does indeed result in significant errors at very early
times and on scales where its neutrino power spectrum traces the one for the un-
refined ICs, this could be explained by the fact that the total matter spectrum at
z = 24 is still very sensitive to the high level of shot-noise in the neutrinos for NRS.
Thus, the error of several percent can simply be caused by the difference in the
shot-noise levels in the neutrino power spectra and their contributions to the total
matter spectrum. Beside this outlier, the errors stay well below 1 % for all redshifts
lower than z = 7 studied here.

Finally, we also tried to examine the effect of choosing an alternative sample
set for the thermal velocities drawn from the velocity distribution. This is useful to
quantify the dependency of the final results on the random selection of the initial
velocities. In Fig. 7.6, the results for ICs with both the original (RS) and the alter-
native velocity samples (AS) at lowest and highest refinement level are shown and
compared.

The refinement for both have been obtained using the same RS scheme but
with different random seeds. The difference in the total power spectra is again
within the 1% boundaries being slightly smaller at z = 2 than at z = 0 and at r4
compared to the r1 level. While both these results could indicate that there is in-
deed an error induced by assigning macroscopic thermal velocities besides that one
caused by early shot-noise, it is well within the accuracy of 1% in the total matter
power spectrum. For the neutrino content, choosing an alternative sampling does
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result in a power spectrum that ”scatters“ around the original one. The amplitude
of these relative deviations are hereby surprisingly large at large scales while it
converge towards 1% at smaller scales.

7.1.3 Optimization of neutrino N-body code

In the ”explicit“ approach with explicit thermal velocities, neutrinos are sim-
ply treated in the N-body simulation as an additional particle species that interact
only via gravitation with the CDM and, if present, gas and stellar matter. The ther-
mal velocities are added to the peculiar gravitational flow of each particle in the
ICs. For the simulations we use the GADGET-2 Springel (2005) N-body code, where
the original code has been modified based on the two optimization listed above.

The first optimization is motivated by the observation that the free-streaming
scale of neutrinos (Eq.6.12) is rather large compared to the resolution of the PM
grid that is usually used in cosmological simulation with GADGET to calculate the
long-distance forces. To be more precise, this scale is larger than the spatial scale rs

of the force split and the tree-force cut-off distance rcut in the TreePM calculations
in GADGET (cf. Fig. 7.7).

FIGURE 7.7: Force decomposition and force error of the TreePM scheme. The plot illustrates the size
of the short-range (dot- dashed) and long-range force (solid) as a function of distance in a periodic
box. The spatial scale rs of the split is marked with a vertical dashed line (Springel, 2005, Fig.2).

Both lengths are defined by a constant parameter times the size of the PM
grid resulting in rs = 1.25 Mpc/h and rcut = 4.5 Mpc/h for the 128 Mpc Box size
and 1283 grid points used in most of the test simulations here. Thus, to a very
good approximation, it is possible to neglect the neutrinos in the tree-based short-
range force calculations and let them only contribute to the long-range PM forces.
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This is achieved by omitting all neutrino particles each time the force-tree is con-
structed. Additionally it would be possible to additionally decrease rs for this par-
ticle species to compensate for the missing short-range forces close to that scale.
I checked the impact of such a modification and, as expected from the fact that
the free-streaming stays mostly even above rcut, and thus error due to this cut-off
should be negligible. Furthermore by skipping the force calculations in the leafs
of the tree, we avoid any undesired artificial two-body relaxation that may lead
to artificial large-angle scattering caused by close encounters of particles21. This
first modification improved the performance of the code significantly for larger
numbers of neutrinos as it gets rid of the costly O(n log n) tree force calculations
for these particles and uses only the much less expensive grid-based Fast Fourier
transform (FFT) force calculations instead (O(n)+costs depending only on PM grid
size). This can be seen in Fig. 7.8 as a decrease of the computational costs by at fac-
tor of 4 with nearly the same number of time steps.

Our second improvement of the code is to modify the rules that determine the
step size in the simulation. GADGET-2 uses a leap-frog integration scheme with an
adaptive timestep set according to ∆t ∝ 1/

√
|a|with a being the acceleration of the

last time step and uses separates short- and long-range time stepping. Addition-
ally, it usually limits the maximal step size such that each particle does not drift
further per step than a predefined distance within the simulation box. While this
restriction ensures that particles do not ”accidentally“ drift through locally concen-
trated inhomogeneities in the case of one large time step obtained by the first rule,
the large velocities of neutrino particles significantly lower the maximally allowed
step size. This leads to an enormous increase in computation time as seen in Fig.
7.8 by comparing simulations runs with and without neutrino thermal velocities. It
also reveals that most of this computational costs are spent at high redshift (z > 7)
due to the higher neutrino velocities at these times where not many large-scale
structures have formed yet. By ignoring the maximal drift criterion, the number of
steps and therefore the computation times are extremely reduced by a factor of 10.
In combinations, both optimizations almost bring the computational costs down to
the level where they would be without thermal velocities.

To check if my modifications do not compromise the accuracy of GADGET-2,
I ran a set of simulations with 2563 N-body particles for each DM and neutrinos
and a starting redshift of zi = 49. Fig. 7.9 compares the results obtained for each

21Alternatively, we would have to use large softening for neutrinos to smooth out these artificial
effects.
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FIGURE 7.8: Computational costs to run neutrino simulations with and without optimization: (left)
number of time steps (right) computation time. The results for a simulation without thermal veloc-
ities has been added for comparison. The coloured bars show the costs to run the simulation from
the starting redshift of zi = 49 to z f = 0 while the hatched bars refer to the costs until z = 7 is
reached.

modification and their combination.
The variation in the total power spectrum does not exceed 0.5% here. The er-

rors induced by each modification are thereby not cumulative. At some scales and
times, the tree modification, for example, results in a larger relative error than both
optimizations combined. The tree modification, on the other hand, has a significant
impact on the neutrino distribution, in particular around around the resolution of
the PM. The observed loss in power may result from missed non-linear feed-back
from the CDM in the simulation as it tends to become larger at later times. This
could become a problem for studies of neutrino distributions at smaller scales. The
best way to minimize this error is to ensure that the spatial resolution on PM grid is
always smaller than the largest structures most neutrinos can still free-stream out
off. Otherwise the results for the neutrino power spectrum with the optimization
would highly underestimate the structure formation on those scales.
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7.2 Comparison & Application in current research

7.2.1 Massive neutrinos in ΛCDM

To compare the two described techniques described in Sec. 7.1, we tested them
in a standard ΛCDM model (Planck1 cosmology) with massive neutrinos (∑ mν =

0.5eV) in a simulation box with a size of 512 Mpc/h and starting at a redshift of
zi = 49. Softening was chosen at 2% of the mean separation of the 2563 N-body
tracer particles of CDM and in case of the N-body technique for neutrinos as well.
The transfer functions for the CDM and neutrino components in the initial condi-
tions as well as for the 128 explicitly calculated neutrino backgrounds have been
calculated by the CAMB Boltzmann solver. The redshifts for the pre-calculated neu-
trinos backgrounds are equally spaced in time and are used for interpolation of the
background for intermediate redshifts. We additionally performed a third simula-
tion where we use a single cold collision-less fluid with the identical total matter
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power spectrum at zi for comparison22. In Fig. 7.10, we show the absolute projected
DM density and difference in neutrino densities found in the simulation volume
for the two techniques, while in Fig. 7.11 the total, DM and neutrino matter power
spectrum are plotted.

FIGURE 7.10: Projected matter density of DM and massive neutrinos in simulation box at z = 0: (top
panel) DM matter density from using N-body technique for neutrinos with a logarithmic density
scale with darker regions marking a higher density; (bottom panels) massive neutrino distribu-
tion in N-body (left) and linear background technique (right) with a logarithmic density scale with
darker regions marking a higher density.

First, the obvious difference in the distribution of the neutrino fluid can be no-
ticed. The neutrino power spectrum for the particle approach shows a significant
excess with respect to that for the linear neutrino background on small scales. In re-
sults shown in Fig. 7.11 we can distinguish between two between two regimes each

22This should not be confused with the scenario of massless neutrinos, i.e. ∑ mν = 0.
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dominated by a different cause for this excess. On scales larger than k = 0.4 h/Mpc,
the power of the perturbations in the neutrino component still decreases with in-
creasing wave-number k, but shows an increasing excess towards the linear neu-
trino power spectrum. Below this threshold, the non-linear neutrino power spec-
trum obtained from the simulation levels out leading to an even sharper rise of
the excess towards smaller scales. The excess in the first case can be explained by
non-linear corrections to the neutrino distribution which stem from neutrinos be-
ing able to ”feel“ the collapsed CDM structures, i.e. galaxy and galaxy cluster halos
that formed on these scales where those neutrinos with lower momenta may be ac-
creted and further boost the growth of those structures. This can be seen in Fig.
7.10 where the neutrino density is visibly higher around the clusters. Below the
threshold, the so-called shot-noise becomes the dominant contribution to the mea-
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sured non-linear power spectrum. This is a purely numerical error resulting from
finite number of neutrinos available to reconstruct the neutrino density field. We al-
ready encountered this effect when discussing the sampling of the neutrinos by the
discrete tracer particles in Sec. 7.1.2. By starting of a grid or glass in the initial con-
ditions, this shot-noise may be avoided initially, but as the neutrinos stream freely
through the simulation volume, this ”randomness“ propagates to larger scales as
well until we get the constant shot-noise ”floor” that can be seen in Fig. 7.11. At late
times, this shot-noise in the neutrino component is no concern since it contributes
only little to the total matter perturbations on those scales which are by far dom-
inated by the grown DM structures. But at high redshift, these DM structures are
still relatively small and the shot-noise can have a larger contribution to the total
power spectrum and these random fluctuations in the density field can dominate
genuine perturbations in the DM distribution and thus slow down growth.

Like previous publications (Brandbyge and Hannestad, 2009; Villaescusa-Navarro
et al., 2013), we also observed a difference in power when comparing the N-body
approach with the linear background technique, which peaks around k = 0.1− 1
h/Mpc with a maximum excess in power for the N-body technique of about 1%. By
comparing the DM power spectra in Fig. 7.11, one can see that these non-linear cor-
rections to total matter power spectrum not only stem from the neutrinos interact-
ing with the non-linear CDM structures, which are missed in linear theory, but also
from a boost in the growth of DM structures due to the non-linear treatment of the
neutrinos. The corrections to the total matter spectrum are of similar size to what
is expected by the relation (∑ mν/0.54eV)2 reported in Brandbyge and Hannestad
(2009). This shows that for light neutrinos with ∑ mν < 0.5eV, one may use the
computationally less expensive linear background technique if the interest is only
on the overall matter distribution and not in particular on that of the neutrinos,
which is obviously incorrect, and still remains within a sub-percentage difference
relative to the full non-linear treatment with neutrino N-body tracers. For cosmolo-
gies with more massive neutrinos as presented in Sec. 7.2.2, not only becomes the
neutrino component a larger share of the total matter and thus the differences in
the neutrino distribution contributes more to the total matter power spectrum, but
additionally the free-streaming velocities are smaller for heavier neutrinos, thus al-
lowing a greater share of the neutrinos to cluster on smaller structures and boost
the structure growth there. The combination of both effects leads to the relation of
the corrections shown above and thus to error due to missing non-linear contribu-
tions that exceed the often desired 1% accuracy for the total matter power spectrum
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by far.
Finally, the simulation without no free-streaming component (’no ν’) possesses

significantly more power on small scales, which is expected as all matter is cold
and contributes to the perturbation growth on those scales unlike in the two tech-
niques that include the free-streaming. The excess for our choice of neutrino masses
amounts to about 15% excess in the total matter power spectrum at k = 1 h/Mpc.
This simply emphasizes how significant the impact of free-streaming of neutrinos
is on the structure formation process in the simulations and must not be ignored.

7.2.2 Neutrinos to rescue Einstein-de Sitter

One example of how neutrinos can play a vital role in a cosmological model
was recently explored in Shanks et al. (2014). This work was motivated by the lack
of any successful detection of both dark matter and dark energy which form the
core of ΛCDM. The only exception is the massive neutrino, which accounts at least
for a fraction of the DM present in the Universe.

Originally, Shanks (1985) argued that an Einstein-de Sitter model with a low
H0 would address several problems with a baryon-only model. Unfortunately, the
low Hubble constant combined with Ωb = 1 predicts a first acoustic peak in the
CMB angular power spectrum at significantly smaller scales than observed. Two
proposals have been made to move the first peak by smoothing it. Shanks (2007)
attempted to attribute this to lensing by foreground galaxy groups and clusters
which might smooth the peak enough to shift and damp the peaks in the bary-
onic model to fit the peaks seen in the CMB data on slightly larger scale and with
lower amplitudes, but found that the amplitude of foreground clustering had to be
10 larger than expected from observations Sawangwit and Shanks (2010) took an-
other approach by arguing that the WMAP beam for the CMB measurements could
have a significant smoothing effect on the peaks in the spectrum which seemed to
be supported by studies of radio sources suggesting a wider WMAP beam than
previously expected. All these attempts profited from the fact that the power spec-
trum in the WMAP era was only measured accurately up to the first peaks and
beyond that became less constraint. In the era of the more accurate Planck CMB
survey, it becomes impossible to fit such a Ωb = 1 model to the available data.

In Section 6.3.2, we discussed how the presence of neutrinos affects the ob-
servable CMB spectra. Their inclusion in the model introduces another degree of
freedom that allows for more accurate fits to the CMB. Shanks et al. (2014) stud-
ied this possibility and came up with a best-fit for an Einstein-de Sitter cosmology
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(Ω0 = 1), where neutrinos not only make up a fraction of the energy density in
the Universe today like in ΛCDM, but contain very high masses at the very upper
bound of what is not ruled out by particle experiments (cf. Sec. 2.1.1) that result for
thermal neutrino relics in a energy density that dominates the baryons even today,
i.e. Ων,0 � Ωb,0.

In Fig. 7.12, we present the results for the simulations, we ran for the publica-
tion. We used GADGET-2 with a very simply hydrodynamics model (no feedback
or star formation) for the 2563 baryons SPH particles in the periodic simulation box
with a side length of 150Mpc/h. ∑ mν = 15eV. The neutrinos with a sum of masses
of ∑ mν = 15 eV have been represented by 2563 N-body tracers with the thermal
velocities according to their particle mass. As we discussed in Sec. 7.2.1, using the
linear background would lead to huge missed non-linear corrections for such high
neutrino masses and thus disqualifies it for being used here. To avoid the impact
of the neutrino shot-noise, which could significantly affect the structure growth in
the baryonic component on small scales, as much as possible, we decided to start
at a rather low redshift of z = 7. The results may not look very encouraging for the
best-fitting reference model with a normalization of σ8 = 0.2. The initial strong cut-
off in the total matter power spectrum due to the free-streaming of the neutrinos,
leaves next to no perturbations on small scales to support an hierarchical growth of
the baryonic structures. Shot-noise is still an issue on smaller scales at early times
in the simulation, but propagates much slower towards larger scales due to the
much smaller free-streaming scale of the numerical tracers compared to the simu-
lations discussed for the ΛCDM model in Sec. 7.2.1. Without the supporting DM
fluctuations or collapsed DM structures on small scales, the gas in the simulations
collapses very late and at far too small numbers. This is why the it has been argued
that alternative seeds for galaxy formation such as primordial magnetic fields (PMF)
(Peebles, 1980) may exist and compensate for that shortcoming.

7.3 Conclusion

In our studies of the N-body technique with explicit thermal velocities, it can
be concluded that the errors made by assigning microscopic thermal motion ex-
plicitly on a macroscopic level as described in this section seem to be limited to the
desired accuracy of about 1% in the total power spectrum.

We have further tested in the two examples how to include neutrinos as a
linear background for N-body simulation of DM and a simplified SPH approach
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FIGURE 7.12: Results of hydrodynamics simulation of Shanks2014 model (∑ mν = 15eV): Matter
power spectrum with errors (shaded regions) for simulation with reference normalisation of σ8 =
0.2 (blue) and the alternative normalisations of σ8 = 0.4 (green), σ8 = 0.6 (red) and σ8 = 0.8 (light
blue). The linear matter power spectrum for the ΛCDM model is shown for comparison (solid line)
(Shanks et al., 2014).

with baryons.
The study of the ΛCDM model with massive neutrinos has confirmed previ-

ous results by other groups that for low mass neutrinos, the linear neutrino back-
ground provides an inexpensive way to predict the total matter distribution with
only a sub-percentage deviation from the results obtained by giving the neutri-
nos the more expensive full non-linear treatment with the N-body technique. The
results are more accurate for neutrinos with a very low mass, which stay mostly
linear. On the other hand, the linear neutrino background fails to predict the neu-
trino distribution correctly, as it not only neglects any potential non-linear collapse
in the neutrino component, but even misses any boost in linear growth neutrino
perturbations may get from the collapse of DM structures and the resulting deeper
potential wells. In Section 6.2.1 we discussed how to counter this analytically by
using higher-order theories for CDM which then couple to the linear theory for
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neutrinos. Ali-Haïmoud and Bird (2013) came up with a similar approach where
the linear growth of neutrinos is calculated in the non-linear background of CDM
obtained on-the-fly from an N-body simulation rather than the linear predictions
for CDM used to pre-calculate the neutrino evolution in our calculation in advance.
The result serves then in return as a background for the next time step in the N-
body simulation of DM. For the mass neutrino masses that are currently favoured
by cosmological observations, this semi-linear method seems to improve the re-
sults significantly at very low additional computational costs.

For models as presented in our second example however, that contain more
massive neutrinos and do not have a dominant non-linear background as in the
case of ΛCDM, the error due to missed non-linear growth in the neutrino sector is
larger while the correction in the feedback from the non-linear background have
far less impact on the gravitationally dominating neutrino fluid. In models like
this, even the improved approach in Ali-Haïmoud and Bird (2013) would most
likely fail as it misses the non-linear growth in the neutrino component, which
could help to form neutrino halos above the free-streaming scale for the baryons
to be accreted upon to form galaxies. This leaves us with the N-body technique,
which we used to produced the results shown here.

There was also a proposal in Brandbyge and Hannestad (2010) to combine
the linear and particle method by splitting the neutrino fluid into different com-
ponents based on their absolute momenta, where each of those components was
treated linearly on the grid until its average momentum was redshifted below a
certain threshold. At that point, this component was converted into particle trac-
ers. While this method was a major improvement over both the pure linear and
particle method, it was much more complicated to implement and to use and addi-
tionally faces problems with mass conservation along the split between the linear
and non-linear neutrino components.

In conclusion, we have seen that each of the techniques discussed in this chap-
ter has its shortcomings when trying predict the evolution of the distribution of
the neutrino content accurately. This motivated the development of our new grid-
based approach that we present in Chapter 8.



CHAPTER 8

SEPARA - a way to treat neutrinos correctly

In the previous chapter we pointed out the difficulties faced when represent-
ing neutrinos as tracer particles or a background in our numerical simulations. In
this chapter we introduce as an alternative an Eulerian 6D phase-space approach.
We briefly discuss the technique used and its implementation, called SEPARA. We
then compare the efficiency of the code and results with those obtained using the
alternative methods.

8.1 Eulerian method

One major drawback of the N-body technique is the sparse sampling of the
6-dimensional phase-space with the finite number of tracers. There is the problem
of reconstructing the three-dimensional matter density field to calculate the correct
gravitational force-field or the neutrino velocity field which are subject to the in-
trinsic shot noise due to the sparse, random sampling. But additionally, two-body
relaxation at close encounters of two tracers may lead to erroneous results for in-
teractions on smaller scales. The latter was only avoided in our simulations with
neutrino particles by limiting the force calculations for neutrinos to the PM grid
(see Sec. 7.1.3). This grid is static and we have to find a trade-off for each simula-
tion we run to make it small enough to avoid neutrinos missing interactions with
smaller structures while at the same time keeping it as large as possible in order
to not lose the advantages of the tree for the force-calculations of the CDM in the
simulation.

We have already seen that the issue with shot noise was not present for the
linear background technique, where we reconstructed the local density from the
integration of the linearised Boltzmann equation and the stored initial perturba-
tions (phases and amplitudes). In order to get the same advantage for a full non-
linear treatment of the evolution of the neutrino distribution, we have to switch
from the Lagrangian paradigm, where we track the trajectories of a sample set of
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tracers to a Eulerian method, where the neutrino fluid is treated as a continuum that
is parametrized by values at fixed position in (phase-)space. Usually regular grids
such as cartesian grids are used to store this parametrisation of the fluid proper-
ties. This unfortunately breaks the Galilean invariance as it has certain preferred
directions. In the case of collisionless, free-streaming matter such as neutrinos, the
only property we need to keep track of is the phase-space density field. At each
fixed position, we can determine the evolution of the local phase-space density by
solving the Boltzmann equation (Eq. 2.27), that is known in its collision-less form
as the Vlasov equation23:

∂ f
∂~x

d~x
dt

+
∂ f
∂~v
∇ρ = 0 , (8.1)

We used here, that the only momentum transfer that changes the velocities of the
particles originates from the local gravitational forces. These are given by the local
gradient of the gravitational potential φ, which itself can be determined by solving
Poisson’s equation

∇2φ = 4πGδρ(x, t) (8.2)

where G is the gravitational constant and δρ(x, t) = (ρ(x, t) − ρ̄)/ρ is the local
overdensity in the spatial density fluctuations ρ(x, t) =

∫
f (x, v, t)dv.

There have been attempts before to solve these coupled Vlasov-Poisson equa-
tions on a discrete Eulerian grid rather than with Lagrangian particles. Yoshikawa
et al. (2013) presented a first test for a six-dimensional phase-space code on a regu-
lar grid that aimed at simulating a neutrino fluid. These authors adopted numeri-
cal techniques that have been previously used in numerical simulations of plasma
physics (Filbet et al., 2001). A major problem of their approach was however, that
their grid had a globally fixed resolution. While this allows for very simple and ef-
ficient data structures to store the necessary information about the neutrino fluid,
there is no way to increase the resolution in regions of interest without doing so
on the whole grid. As we show in Sec. 8.2, the high dimensionality of phase-space
makes such increases of the resolution computationally highly expensive as the
costs scale to the sixth power. So the maximal resolution that would be achievable
with such a technique for such box sizes as used in e.g. Sec. 7.2, could well be larger
than e.g. Milky Way-sized galaxies or even small clusters which we are interested
in studying. This is why we eventually had to come up with an improved tech-
nique that addresses this issue and which is presented in the following sections.

23We reduced the four vectors by the respective three-vectors by applying the same identities as
in Sec. 2.2.6
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8.2 Numerical Methods / Implementation

Our implementation is based on the RAMSES AMR code (Teyssier, 2002) and
is called SEPARA24. It is designed as a patch to make use of CDM and baryonic
physics solvers that already implemented in the RAMSES framework25.

The techniques used to implement our neutrino solver can be split up into 4
categories: Discretization of the neutrino phase-space fluid, solving the Boltzmann-
Vlasov equation, initial conditions and the cosmological setup. But before we dive
into the discussion of those topics, we want to establish a certain nomenclature.
First of all, without loss of generality, we will limit most of the following dis-
cussions to the case with one dimension in both spatial and velocity coordinates
(1+1D). This allows for a much simpler visualization, but can easily generalized
to the 3+3D case we are aiming to solve. The spatial coordinates with be denoted
by x and the velocity coordinates with v. When discussing dimensionality depen-
dent issues, we denote as ndim = {1, 2, 3} the dimensionality of the position space,
hence the full phase-space has 2ndim dimensions according to this definition.

8.2.1 Discretization

Mesh / Approximation of phase-space distribution

As a discrete representation of the six-dimensional phase-space fluid, we chose
a finite volume approximation approach, where we store the volume averaged value
of the phase-space density field f (~x,~v, t) on a Cartesian mesh of cells, i.e.

fi,j(t) =
1

∆x∆v

∫ x
i+ 1

2

x
i− 1

2

∫ v
j+ 1

2

v
j− 1

2

f (x, v, t)dxdv , (8.3)

where xi± 1
2

and xi± 1
2

are the coordinates at the cell boundaries in the respective
dimensions with ∆x = xi+ 1

2
− xi− 1

2
, ∆v = vj+ 1

2
− vj− 1

2
being the cell size and thus

defining the resolution of our mesh. By convention, the first index of our mesh
points will numerate the mesh points in position space and the second one in ve-
locity.

The phase-density for points within the cells i.e. at coordinates (x, v) = [xi− 1
2
, xi+ 1

2
]×

24Acronym for Simulations d’Espace des Phases Avec un Réseau Adaptatif (French; “phase-
space simulations with an adaptive mesh”)

25SEPARA can also be used in parallel with a huge variety of additional patches that add addi-
tional physics so long as they do not modify certain key parts of the source code. For more details
refer to the README file in the patch folder of the source code.
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[vj− 1
2
, vj+ 1

2
] is approximated by interpolating between our stored cell-centred val-

ues fi,j with slope-limited Lagrange polynomials in each dimension, i.e.

f̃ (x, v, t) = P(m)({ fk,j}, x, v, t)P(n)({ fi,k}, x, v, t) , (8.4)

where n,m is the order of those polynomials based on the stencils { fi,k} and { fk,j}
respectively. The symmetry of the Lagrange polynomials preserves the cell average
identified with the cell-centred values fi,j. In the current implementation, we use
a simple second-order-accurate approximation, thus obtaining a piecewise linear
reconstruction of the phase-space density.

The slope limiters that are available for the reconstruction/interpolation of the
phase-space density are the same as those used by the hydro solver in RAMSES, i.e.
a simple MinMod scheme, a Monotonized Central slope scheme and an unlimited
Central slope scheme.

Adaptive Mesh Refinement

So far, our discussion has only considered a regular mesh with a given resolu-
tion of ∆x and ∆v in position and velocity space respectively. Implementations of
such regular phase-space mesh exist (Yoshikawa et al., 2013), but are riddled with
the infeasible costs that come with a fully refined six-dimensional mesh as for each
increase of the overall resolution by a factor of two, the computational costs rise
by a factor of 26 = 64. This becomes a concern mostly with respect to the amount
of memory needed to store the data. Even if only a single double-precision float
per cell is stored, even rather low-resolution meshes dividing each dimension into
only 128 equally spaced divisions already result in a memory requirement of about
32 TB26. Fig. 8.1 illustrates this problem by plotting the memory requirements de-
pending on the dimensionality and level of refinement as solid lines. The grey hori-
zontal dashed line marks the feasibility limit on the local COSMA-5 supercomputer
with respect to the memory requirements. The mere two orders of magnitude in
resolution possible are hardly sufficient in the context of cosmological simulations
which have to cover both velocity and spatial scales stretching over a much wider
dynamic range. On the other hand, if we look at the density plot shown in Fig. 8.2
for a typical phase-space distribution of neutrinos, we can see that many regions
do not reveal any complex structures and so do not require a highly-resolved mesh

26For comparison, the total amount of memory (RAM) of the COSMA-4 and COSMA-5 supercom-
puters in Durham are 14 TB and 52 TB respectively.
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FIGURE 8.1: Estimates for the memory requirement for a fully-refined mesh (circles) and best- and
worst-case AMR scenarios (squares). For the fully refined mesh, these estimates only include the
actual costs per cell to store the local value fi as one double-precision float, while for the AMR case
they already more accurately include the total costs including temporary buffers and overheads
from the AMR tree structure. The hatched region marks the range between the best- and worst-case
scenario, while the dashed line marks approximately the feasibility limit. The biggest simulation
run in Yoshikawa et al. (2013) is highlighted in green for comparison.

for a good approximation. These are in particular the regions that have a low mat-
ter density in position space without any strong gradients, but also the regions of
high-velocity in which the low-density phase-space fluid streams freely through
even the largest non-linear structures. Forcing these regions into a high resolution
mesh wastes precious resources that could be better spent on the high-density re-
gions of interest where high resolution is crucial to follow the highly non-linear
flows. Thus, to overcome the strict limitations, we apply an Adaptive Mesh Refine-
ment where we start with a regular minimally-resolved coarse mesh and then only
refine those cells further that meet certain user-defined refinement criteria. Like in
RAMSES, we use a dyadic refinement strategy, i.e. upon refinement each cell is split
into cells of half the original side length in each dimension. This group of 22ndim

siblings of the refined father cell (or so-called split-cell) is organized in a so-called
grid as the fundamental data structure. Thus, we obtain a Fully Threaded Tree (FTT)
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FIGURE 8.2: 2D Phase-space density around a simulated large-scale dark matter structure.

structure as shown in Fig. 8.3 where defined relations between those grids and its
group of sub-cells, their associated father cells and their neighbour cell as well as a
double-linked list structure on all grids allow an efficient organization and access
to the cells at the different levels of refinement. Traversing the tree from split-cells
to their grids and sibling cells, we eventually reach a level of a locally maximal re-
finement. The cells on this level are not associated with grids any more and mark
the leafs of the 22ndim-tree and hence are called leaf cells. Our phase-space tree exists

FIGURE 8.3: Illustration of a 1D Fully Threaded Tree (FFT) data structure used in RAMSES/SEPARA.
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alongside the ndim-dimensional tree of the original RAMSES code which is used for
the hydrodynamics and Particle-Mesh solver. The only interaction between our col-
lisionless phase-space fluid and the “standard” components is via gravity, which
itself only depends on the gradients of the spatial matter density of all components
combined. Modifications of the phase-space tree structure are done in the same,
efficient way as in RAMSES using using the same double-linked list to navigate and
modify the tree.

Besides adapting the relations between phase-space grids/cells to the 2ndim

dimensions of the full phase-space, we also introduce a new relation between each
phase-space cell and its so-called shadow cell in the PM/Hydro tree, i.e. the cells
covering the identical volume in position space. If no such cell exists, a refinement
is forced in the PM/Hydro tree until the requirement is satisfied. These pure shadow
cells are masked and thus invisible to the PM/Hydro solvers, but are essential to
calculate the correct local gravitational accelerations.

In total, the organization in the AMR trees requires 80 pointers per grid, or
equivalently 1.25 per cell. Additionally, each grid stores the values for the local av-
eraged phase-space density fi as well as certain buffers for flagging and the phase-
space solvers.

Computing the density field / Solving Poisson Equation

The existence of a defined relation between each phase-space cell and its shadow
cell, simplifies the calculation of the resulting gravitational forces within the simula-
tion. In the original RAMSES code, the matter density field on each refinement level
is reconstructed using a multipole-cloud-in-cell (CIC) or -triangular-shaped cloud (TSC)
assignment scheme within each PM/Hydro cell. We use an identical approach
where we calculate the multipoles in 2ndim dimensions and then add them to the
density field stored in the shadow cells using the same assignment scheme. In the
case of either pure shadow cells or PM/Hydro cells that are not shadow cells them-
selves, we interpolate the respective missing contributions from the coarser father
cells down to the finest leafs.

The Poisson equation (Eq. 8.2) is then solved on each level in the “standard”
RAMSES fashion using either a multi-grid or conjugate-gradient method with a mod-
ification to also consider the pure shadow cells in the calculations. The resulting
forces are stored within each shadow to be used in the time integration.
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8.2.2 Time Integration

Upon advection schemes for the neutrino fluid, we would like to impose the
desirable requirement of strict mass conservation. As this is a fundamental prop-
erty, we want to preserve it as well as possible when calculating the advections
through phase-space. In its integral and unsplit form, this conservation law is writ-
ten as ∫ x

i+ 1
2

x
i− 1

2

∫ v
j+ 1

2

v
j− 1

2

∫ t(n+1)

t(n)
(∂t f + v∂x f + a∂v f )dxdvdt = 0 . (8.5)

As in RAMSES, an important requirement in our coupled N-body and phase-
space grid code is the possibility to deal with variable time steps and the stability
conditions for the time step size is given by the Courant Friedrich Levy (CFL) con-
dition, which can vary over time. For the time integration of Eq. 8.1, a second-order
mid-point scheme is used, which reduces exactly to the standard second-order
leapfrog scheme (Hockney and Eastwood, 1981) for constant time steps, i.e. the
advection equations (Eq. 8.1) are split up into separate updates along the velocity
direction (”kick”)

∂ f
∂τ
−

ndim

∑
i=1
∇φ

∂ f
∂v i

= 0 (8.6)

and along spatial dimensions (”drift”)

∂ f
∂τ
−

ndim

∑
i=1

vi
∂ f
∂x i

= 0 . (8.7)

We use the kick-drift-kick (KDK) leapfrog scheme with a predictor “kick” half-step
followed by a full “drift” step and a corrector ”kick” half-step that uses the new
forces obtained by solving the Poisson equation for the updated spatial matter dis-
tribution.

Drift - Single-Mesh Godunov solver To solve the advection in spatial directions
(“drifts”, Eq. 8.7), we decided to use a similar solver as RAMSES uses in its hydrody-
namics solver, namely a conservative, second-order, unsplit MUSCL-HANCOCK
scheme. This scheme offers us certain advantages, while the inherent limitations in
this scheme are already accounted for in the design of our AMR approach copied
from RAMSES.

For our volume-averaged phase-space density, Eq.8.7 for a finite time step ∆t
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reads
f (n+1)
i,j − f (n)i,j

∆t
+ vi f̄ (n+

1
2 )

i+ 1
2 ,j
− f̄ (n+

1
2 )

(i− 1
2 ),j

∆x = 0 (8.8)

where

f̄ n+ 1
2

i± 1
2 ,j

=
1
∆

t
∫ tn+1

tn
f̃ (xi± 1

2
, t) (8.9)

is the time-averaged phase-space density at the spatial cell borders, where f̃ (·) is
the reconstruction of the phase-space density using the cells in the upwind direc-
tion of the advection27. This method is an unsplit corner transport upwind (CTU)
method for simulations in more than one dimension which allows us to perform
the whole advection in position space in one cell update, thus avoiding the nu-
merical diffusion we would get from performing the advection for each dimension
separately.

Starting with leaf cells on the highest level of refinement, the resulting fluxes
within refined boundaries are then propagated using constriction operations to the
coarser father cells. Fluxes at refinement boundaries are computed on the finer
level. This scheme is very memory-efficient as we only have to store the resulting
total flux per cell. Everything else is only relevant within the 6ndim stencil, i.e. the
grid containing the cells and 2 ghost cells on each side for our second-order solver,
used to calculate the fluxes and only has to be stored for the time each grid is
processed. Thus, this approach has a complexity ofO(N) in both time and memory,
but comes at the cost of a strict maximal time step limit given by the necessary
Courant-Friedrichs-Levy (CFL) condition for such CTU-like schemes under which
the scheme becomes stable:

∆tCFL = max(Ci, i ∈ {1, ndim}) < CCFL , (8.10)

where Ci in our case with vanishing sound speed is given simply by

Ci = maxj∈cells

(
∆xi

j

‖∆vi
j‖

)
for each of the ndim dimensions.

Kick - Semi-Lagrangian PCF solver The second half-kick in our second-order
symplectic “leap-frog” integrator requires knowledge about the gravitational ac-
celerations resulting from the density field at the end of this time step. For N-body
methods and the usual single-stream solvers, this is not a problem as the local

27We do not have to average the orthogonal velocity-dependence of f̃ since we average over the
full size of the cell and our symmetric reconstruction scheme with Lagrange Polynomials ensures
that we can simply use f̃ interpolated in spatial direction alone.
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velocity/momentum is just a quantity and the gravitational interaction a simple
source term that can be easily added and subtracted as used for the correction of
the second half-kick for both the particles and the baryonic matter and impose no
direct limitation on the time-stepping. For our phase-space mesh approach, this is
no longer the case. First of all, kicks are here advections of phase-space fluid in
the velocity hyperplanes orthogonal to the spatial dimensions in which the forces
are calculated. Such density updates cannot be reverted to be corrected due to the
numerical diffusion of such operations. Secondly, the stability of certain advection
solvers such as the scheme used for the spatial advection depends on time-stepping
conditions that themselves require the knowledge of the advection velocity. But, as
mentioned, we do not have any knowledge about the advection speed for the sec-
ond half-kick without performing the first half-kick and the drift, which we cannot
perform without knowing the maximal allowed time-step size. A way to avoid this
dilemma is to use a scheme that does not depend on such a strict time-stepping
condition. Thus, in SEPARA, the kicks are performed using the semi-lagrangian (SL)
positive,flux-conservative (PCF) scheme as introduced in Filbet et al. (2001) which
is conservative by construction. The difference between such SL techniques and
the Eulerian methods to numerically solve PDEs on a mesh is that they use the
characteristics of the advection equations along with an interpolation method to
calculate the updates for cells even in the case that the source cells are not adjacent
to the target cell. Fig. 8.4 (left) illustrates this for an advection in 2D where the new
value for the target cell at timestep n + 1 is constructed from the content of the
volume covered by the cell i at the previous time-step if traced back in time along
the characteristics X(t, t(n+1), vi) using the fact that the content of such a volume is
conserved along characteristics.

For one dimension, this can be written as:

f (n+1)
i,j =

∫ v
j+ 1

2

v
j− 1

2

f̃ (xi, v, t(n+1))dv =
∫ X(t(n),t(n+1),v

j+ 1
2
)

X(t(n),t(n+1),v
j− 1

2
)

f̃ (xi, v, t(n))dv . (8.11)

We can rewrite this equation by setting

Φi,j+ 1
2
(t(n)) =

∫ v
j+ 1

2

X(t(n),t(n+1),v
j− 1

2
)

f̃ (xi, v, t(n))dv , (8.12)

to obtain the conservative scheme

f (n+1)
i,j = f (n)i,j + Φi,j− 1

2
(t(n))−Φi,j+ 1

2
(t(n)) . (8.13)
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FIGURE 8.4: Illustration of the semi-lagrangian advection scheme. (left panel) Trajectories with ar-
row heads pointing backward in time and identification of source cells for a 2D advection in the
velocity plane. (right panel) In AMR, mass conservation may be violated if the same advection ve-
locity is not used for all refinement levels. The net force on the refinement level of the big red cell
is zero while it is non-zero for the small green cell at the same location but on a higher refinement
level. Thus, the part of the content of the red cells marked in orange is used more than once as a
source in the advection. As a solution, coarser target cells (big green cell) have to be “sliced up”
along the spatial dimensions to match the finest local refinement level.

This form looks very similar to our Godunov scheme, but instead of the fluxes from
adjacent source cells, we calculate the fluxes through the cell boundaries based on
the phase-space fluid that flows through our target cell during the time-step. The
calculation of the characteristics becomes trivial as our advection field does not
depend on the local velocity and trajectories in each time step are therefore simply
straight lines defined by their point of origin at the cell corner of the target cell and
the local advection velocity vector~a(~x), i.e.

X(t, t(n+1), v) = v− ∆t · a(t(n+ 1
2 )) (8.14)

and perform the following steps:

(1) Backtrack the corners of target cell along the characteristics and identify the
source cells that lie within the backtracked volume, V.

(2) Reconstruction of the phase-space density, f̃ , in the source cells.

(3) Calculate the new cell average at the target cell by integrating f̃ over V in all
the source cells.



8.2. NUMERICAL METHODS / IMPLEMENTATION 136

Before we discuss our adaptation of this scheme for AMR, we use, for the sake
of simplicity, a piecewise constant reconstruction of the advection field~a(~x) based
on the cell-centred value found by our Poisson solver for each cell. This results in
discontinuities in the advection flow as the cell corners now have different charac-
teristics for each adjacent cell, but it also reduces the calculation costs significantly
as we only have to consider 2ndim corners instead of the 22ndim .

We now want to adapt this SL scheme for our non-regular mesh. Fig. 8.4 (right)
illustrates we would violate mass conservation by simply using the advection ve-
locity for each cell at its refinement level. While the net acceleration in the red cell
is assumed to be zero and thus the content of the cell consists of the old content,
there may be a non-zero gravitational acceleration at finer levels, which can lead
to cells at those levels (green) to also source their new content from the red cell
and thus duplicate the content of that (orange) intersection and as a result break-
ing the mass conservation. A solution to this problem is to slice up each target cell
along the spatial dimension until it matches the finest local resolution for the forces.
The fluxes are then calculated based on the source volumes for each of these slices
using the same advection velocity for local contributions to target cells over all re-
finement levels. Unfortunately, this forces us to use a single time step scheme for
our refinement levels instead of the potentially cheaper alternative adaptive time
step scheme with sub-steps on finer levels that RAMSES offers.

8.2.3 Parallelisation

Most problems in modern numerical cosmology are by far too big to be treated
by a single processing core/node, either due to time or memory limits. Thus, the
simulation code has to provide parallelisation techniques to allow to split up the
workload on multiple processing nodes. In SEPARA code, we use the existing frame-
work found in RAMSES which we modified to suit our requirements. RAMSES in its
current version uses a purely MPI-based parallelisation, where each CPU works on
its own process/memory and communicates through the MPI framework with the
other processes involved in the simulation. The workload is divided among these
processes by splitting up the cells in the simulation into domains. Their bound-
aries are determined by a geometrical algorithm that decomposes the position
space while trying to balance the workload among those domains. RAMSES pro-
vides two strategies to do this: linearisation of the position space with a Peano-
Hilbert curve to reduce the higher-dimensional decomposition problem into a one-
dimensional one, or, bisection splitting, where the domains are cuboidal partitions
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obtained by orthogonal recursive bisection28. The computational costs are pre-
dicted by a weighted counting of both the N-Body particles and the leaf cells in
the cell-tree in each domain to balance out the processing time as well as the mem-
ory requirement between the processes. Each domain then contains both its own
cells/grids as well as so-called virtual grids. The latter are those grids adjacent
to the domain that belong to other processes, but whose properties are needed in
the calculations (e.g. for restriction operations or flows across domain boundaries).
They usually consist of the grid siblings of each domain cell and its father grid/cell
and their stored values are updated to those on their host process via MPI commu-
nication when needed.

In RAMSES, this decomposition is limited to the ndim space the code is working
on. For SEPARA, we have to generalize this for our 2ndim phase-space. Due to our
choice of integration schemes, we are very limited on how to decompose phase-
space if we want to minimize the amount cross-domain communication and buffer
cells (=virtual grids). Thanks to our second-order reconstruction scheme and Up-
wind method used for advection in position space, drift calculations only require
knowledge about the immediate neighbourhood of each cell (→ 6ndim stencil). On
the other hand, our Semi-Lagrangian advection scheme for the ”kicks” may re-
quire knowledge about source cells at distances that are pre-determined in veloc-
ity space. Thus, the only way to save the very efficient and simple way of using
virtual grids as cross-domain communication buffers, is either to ensure that either
the source cells are known to the process hosting the target cell or that all source
cell reside on the host of the target cell by construction. Sharing all possible source
cells between processes would be highly inefficient as it would force us to limit the
decomposition along the cell borders at our finest, still fully refined level, which
would be in the worst-case levelmin. Hence, in SEPARA we have chosen to go
for the second, very simple option and we end up with a domain decomposition
{Di} that operates on the ndim spatial sub-manifold of the phase-space and trivially
extends it into the the velocity space as illustrated in Fig. 8.5:

Di = Dpos
i × [vmin, vmax]

ndim . (8.15)

28While this methods is very cheap to perform, it may result in long, thin domains with large sur-
faces with a resulting large amount of inter-process communication and virtual buffer grids. Since
this method is part of the original RAMSES code, we decided to adapt and include it in SEPARA as
well, but we are not actually using it in any of the test cases so far due to these potential shortcom-
ings.
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FIGURE 8.5: Domain decomposition in SEPARA: (left) Illustration of (1+1)D domain decomposition.
Red borders mark the “active” grids that belong to the central domain while grids with blue borders
are “virtual” grids that are needed to communicate inter-domain flows (right) Memory efficiency
vs the number of domains/nodes measured in SEPARA (using fully refined meshes). The efficiency
per domain is given by the ratio between the number of grids belonging to each process and the
total number of grids (i.e. including virtual buffer grids). Ideally, i.e. without the need of any virtual
grids for communication, the efficiency in each domain would be 1. This case is marked by the
dotted line.

This choice comes, of course, with certain potential disadvantages. First of all,
load-balancing may be suboptimal in cases where a lot of work in phase-space is
spatially localized as this kind of decomposition does not allow for splitting up the
velocity “stacks”. In reality, this scenario is not very likely as the different spatial
advection speeds in the same stack naturally disperse such alignments quickly.
Secondly, these velocity “stacks” come with very large surface covering the whole
of velocity space between bordering domains. Thus, in general, each process has
to share a large amount of virtual cells along these boundaries with the processes
owning the neighbouring domains.

The right panel in Fig. 8.5 illustrates this problem by plotting the memory effi-
ciency, which we define as the ratio between the number of “active” grids belong-
ing to the domains and the total numbers of grids including the shared “virtual”
grids, against the number of domains. This shows that for a worst-case scenario
with a fully-refined mesh, our parallelisation strategy eventually lead to a very
inefficient use of memory for a large amount of domains. This could become a se-
rious issue for planning simulations with a very high resolution which naturally
require the use of more nodes and thus, more domains. Assuming that we double
the number of domains, then the number of “active” grids decreases by the same
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factor while the number of grids on the 22 dim−1 dimensional domain surface only
decreases by approximately a factor of 22/3. This means that in the likely case, that
we run our nodes at maximum memory capacity, we may reach the point where
we waste most of the memory that we gain by adding new nodes on the communi-
cation buffers instead of spending it on an actual improvement in the simulation.

For the HDM scenarios we want to study, high refinement levels are mainly
located in low-velocity bins. Because of that, large boundary surfaces are far less
problematic as they are mostly only populated by very few coarse grids. If we
assume e.g. a typical refinement found for a Fermi-Dirac distribution in velocity
space, we end up with domain surface whose number of grids now scale roughly as
2lvl·(ndim−1) log(2lvl·ndim) instead of 2lvl·(2ndim−1) in the worst-case scenario described
above, where lvl denotes the maximum level of refinement. This minimizes the
penalty we receive from our choice of domain decomposition strategy significantly.

When it comes to estimating of the computational costs for the optimal domain
decomposition, we have to note that due to the way we advect the neutrino phase-
space density in velocity space where we “slice” target cells, the computation time
does not simply depend on the number of phase-space cells, but also on the maxi-
mal local spatial refinement which determines the resolution of the force-field. At
the moment we ignore this when determining the optimal domain decomposition
since it is not trivial to predict these costs in advance. We instead rely on a weighted
counting of the leaf cells which not only provides a decent estimate of the memory
load, but also of the work load needed for the spatial advection with the Godunov
solver in the “drift” step.

8.2.4 Cosmological Settings

For our studies of neutrinos, we are interested in performing our simulations
in a cosmological context, i.e. in an expanding space-time environment. To take this
into account we have to solve the Vlasov-Poisson equations (Eq.8.1) for a expand-
ing Universe. Following the implementation of the N-body and hydrodynamics
solver in RAMSES, we use the same supercomoving coordinate scheme (Martel and
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Shapiro, 1998) with the following substitutions:

dt̃ = H0
dt
a2 (conformal time) (8.16)

x̃ =
x

aL
and ṽ =

a(v− Hr)
H0L

(8.17)

f̃ =
H3

0 L3

Ω0ρc,0
f ⇒ ρ̃ =

∫
f̃ dṽ =

a3

Ω0ρc,0
ρ (8.18)

φ̃ =
a2

L2H2
0

Φ− aΩ0x̃2

4
(8.19)

where H0 is the Hubble constant. Ω0 and ρc,0 are the total matter density parameter
and critical matter density today. The length units are normalized to the side length
L of the simulation volume, while the densities are normalized to the average mat-
ter density. φ̃ is the supercomoving equivalent of the peculiar gravitational poten-
tial φ, which we obtain by subtracting the contributions from the homogeneous
background cosmic matter distribution. Note that under these substitutions, the
Vlasov equation (Eq.8.1) remains invariant, while the Poisson equation becomes:

∇x̃φ̃ =
3
2

aΩ0

[
(
∫

f̃ d3ṽ + ρ̃CDM + ρ̃b)− 1
]

. (8.20)

With this set of units, we do not have to worry about the expansion of the Universe
at all. Both the spatial expansion and the redshifting of velocities are intrinsically
taken care of.

While this is ideal for neutrinos at high redshifts, since they start off at signif-
icantly high velocities, this choice of coordinate system may become an issue once
we reach low redshifts where the maximum physical velocities allowed within the
boundaries of the phase-space volume have been redshifted to the point where
non-linear flows no longer fit within the boundaries. Yoshikawa et al. (2013) avoided
this scenario by choosing instead to use peculiar velocities to provide a fixed phys-
ical velocity range over all redshifts. This suits cold phase-space fluids well, but
forces an additional advection in the velocity dimensions even in the case of a com-
pletely homogeneous Universe. We have chosen to avoid this and the numerical
diffusion that comes along with it and keep the mesh in comoving coordinates. To
address the issue with the shrinking physical velocity range, we introduce a new
parameter v_minmax to set the minimal maximal peculiar velocity. This should be
chosen to be smaller than the maximal velocity dispersion in the expected struc-



8.2. NUMERICAL METHODS / IMPLEMENTATION 141

tures in the simulation, which scales with

σ ∼

√
GMvir

Rvir
, (8.21)

for virialized structures of radius Rvir and mass Mvir. Once the velocity boundaries
of our mesh redshift enough to cross this threshold, we immediately decrease the
coarse velocity resolution by a factor of 2 before the next coarse time step. This
particular scale factor allows us to embed the existing grid easily into the new big-
ger one as illustrated in Fig. 8.6 by simply interpolating along the spatial direction.
This would greatly increase the number of grids. But many of the cells such as the

FIGURE 8.6: Scheme to double the velocity boundaries of the phase-space grid. The green and yel-
low cell are copied into the 2ndim target cell on the new grid, where the density for each cell is
determined by interpolation in the spatial dimensions. The purple cells both end up in the single
big hatched cell as this target cell does not meet the criteria to justify a further refinement.

purple one in Fig. 8.6 do not actually need to be refined at the higher level. So by
performing this transformation on a grid by grid basis and applying our refine-
ment criterion right away like we do for our velocity convection, the amount of
additional grids can be reduced to a minimum while the numerical diffusion in
this step in the velocity direction is limited in low density regions.

8.2.5 Initial Conditions

While SEPARA has the ability to read in fully 2ndim-dimensional initial con-
ditions created in the grafic format (Bertschinger, 2001), the main focus in the
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development of the code was on cosmological simulations where the initial veloc-
ity distribution is known and thus the full phase-space density distribution can be
reconstructed from the ndim projected matter density map. In order to obtain ini-
tial conditions for our cosmological runs, we first compute the spatial distribution
of our phase-space components (e.g. neutrinos) using the already available tools
like MUSIC (Hahn and Abel, 2013) used for the dark and baryonic matter, rename
the outputs accordingly and then use the internal mechanisms within SEPARA the
extrapolate the distribution in full phase-space as described below. Besides using
pre-calculated initial spatial matter distributions, SEPARA allows the user to choose
an initial simple spatially homogeneous distribution for a given matter energy den-
sity (rhomean_ps).

FIGURE 8.7: 2D ICs generated with a top-hat (left) and Fermi-Dirac (right) velocity distribution. For
the phase-space density (PSD) we use a logarithmic color scale running from blue to red for the
highest density. For the refinement plot (LVL), the different colours encode the refinement level for
each cell (dark blue=2, red=7).

Initial Velocity Dispersion If no full 2ndim-dimensional IC conditions are pro-
vided, SEPARA let the user choose between pre-defined analytical profiles for the
initial velocity distribution (vel_profile_ps) for which a set of parameters
(vel_profile_param) has to be provided. At the moment, there are two kinds
of such profiles defined: Spherical top-hat (’TH’) with a single parameter specifying
the maximal velocity and a Fermi-Dirac (’FD’) profile with another parameter for
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the average velocity. The latter is used for all simulations with neutrinos. Examples
for both of those initial conditions can be found in Fig. 8.7.

8.2.6 Distribution

SEPARA is distributed as open source software under the CeCILL license29.
The latest version of the source code can be downloaded from our git repository
using the following command30:

1 $ g i t c lone ht tps :// b i t b u c k e t . org/jschewts/separa

In order to obtain the binaries, simply adapt the special SEPARA Makefiles31 ac-
cording to your computation environment and compile the code using the pro-
vided scripts:

1 $ cd bin
$ ./ compile_separa . sh
$ ./ compile_separa_MPI . sh

For further information on how to compile and run SEPARA, check the README
file in the phspace/ folder.

8.3 Conclusions

In this chapter, we have presented a new method that allows us to predict
the fully non-linear evolution of the cosmic neutrino distribution while avoiding
the problems that beset the N-body particle technique.This comes at the price of
a more complex code. Where the N-body particle technique discussed in Chapter
7 only demanded that we modify the code used to create the initial conditions, so
that it assigns thermal velocities to the neutrino tracers and to optimize the N-body
simulation code slightly to improve the computational costs, this AMR approach
required the implementation of an extended data structure together with the new
Vlasov solvers on top of the existing RAMSES framework. The reward is a highly
flexible code, which can be used for light neutrinos as well as for heavier ones
without any loss of accuracy. Despite the improvements we made by adopting this

29see http://www.cecill.info for more details
30All instructions are given for a bash shell environment with all necessary libraries assumed to

be installed.
31bin/Makefile.separa for single process or bin/Makefile.separa.MPI for the paral-

lelised version
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AMR technique, the computational costs, however, still represent a disadvantage.
While future benchmarks still have to show how the code performs in a full cos-
mological setup, the code is still demanding compared to the two other techniques
used in this thesis, especially when it comes to memory requirements.

A proper cosmological simulation also provides a much more representative
scenario to test our memory efficiency and scaling properties for the parallelisation.
We also still lack the proper convergence test that prove that our code meets the
second-order accuracy in both phase-space and time that it should have by our
choice of solvers. This all will be part of the future publication about our code
(Schewtschenko et al., 2016), that is still in preparation.
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CHAPTER 9

Final discussion / Outlook

In this final chapter, we want to have a final look at the two main topics dis-
cussed in the thesis, i.e. interacting DM and neutrinos in simulations, and how the
results may be used or open questions that may motivate future work.

We have seen how DM interactions with photons and neutrinos in the early
Universe may affect the formation of the DM structures that originate from pri-
mordial perturbations. Even for cross-sections as small as the weak cross-section
and below, the sensitivity of the formation process and resulting DM halo prop-
erties to alterations in these initial fluctuations in the matter distribution allowed
us to show how these models can be potentially distinguished from CDM as well
as alternative DM models such as WDM. Finally, we have shown how observa-
tions of substructures in our local cosmic neighbourhood can be used to rule out
cross-section in this models that lie above a certain threshold.

All the work on dark matter interactions in this thesis was based on simula-
tions that ignored the impact of baryons and their feedback. With modern models
for baryonic physics in GADGET such as those developed for the EAGLE project
(Schaye et al. (2015)), the next step could be to include this vital component into
the numerical predictions. Due to the observed degeneracy between the impact
of baryonic physics and of DM interactions on the observables, this could signifi-
cantly improve the constraints on the physical parameters of the DM model. Ad-
ditionally it would eliminate the need for certain assumptions we had to make to
translate our predictions for the dark matter to the observables based on the gas
and stars that visible in surveys. First, it would be interesting to see if the predicted
changes of e.g. the DM halo spin could be also observed somehow in the angular
momentum of the stars or gas that populate the halos. Equally interesting would
be to use simulations with baryons to obtain the luminosity of the galaxies that
form in the halos. This would not only allow us translate the limitations of our
galaxy survey like limits to the apparent magnitude of observable satellite galaxies
to the predictions in our simulations in a direct way, but could also avoid all the
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problems we had with the reconstruction of Andromeda’s SHVF by comparing the
stellar mass functions instead. This would most likely lead to tighter constraints on
the cross section for two reasons. First, the number of predicted galaxies is lower
than the number of DM halos since especially many smaller halos fail to form stars
and remain below the threshold of the brightness filter. Secondly, the stellar mass
function for Andromeda is much higher than expected from the reconstructed sub-
halo mass function and comparison with the Milky Way. Combining these two
effects could move the current upper bound on the interaction cross section to sig-
nificantly smaller values.

With all these possible advantages that the inclusion of baryons in the simu-
lations may provide, there is one big caveat here that needs to be addressed. The
subgrid models for all the baryonic physics (e.g. SN and AGN feedback) in the
simulations contain a lot of parameters that are not fixed by astrophysical mea-
surements, but rather are fine-tuned such that the simulation results are in agree-
ment with selected observations in the Universe (Schaye et al., 2015). Therefore,
claims that baryons already solve all previously observed tensions between CDM
simulations and observations (cf. Sawala et al. (2016a)) and thus strongly support
standard collision-less CDM as the favourite model for DM have to be taken with
more than just a grain of salt. We have to remind ourselves, that this is only true
under the belief that the fine-tuned model truly reproduces the actual baryonic
physics in the Universe.

Thus, after taking the naive approach of constraining the interacting DM model
parameters in simulations with such a baryonic physics model tuned to standard
CDM, it would be of immense interest to see to what extent it would be possible
to retune the model for alternative DM models. It has to be checked whether we
can reproduce similarly good agreement with observations that way which would
debunk the aforementioned claims and at what point we eventually break the de-
generacy between the impact of baryons and non-standard DM. By failing to find a
tuning for a specific kind of non-standard DM, it would then allow for the first time
to determine constraints on DM properties that are based on completely consistent
simulations with both CDM and baryons, yet remain independent of any arbitrary
calibration of fudge factor therein.

With regard to our work on neutrinos, there also remains a lot to be done.
With the SEPARA code finished, a lot more tests need to be performed in the near
future to confirm the accuracy and convergence, that the code should have by
construction. This includes simple tests such as the collapse of over-densities into



149

Zel’dovich Pancakes and test of neutrinos clustering on galactic halos. Once these
tests are done, we can finally run the first full cosmological simulations. This will al-
low us to compare our new adaptive 6D mesh approach with the other techniques
mentioned in the thesis.

Since SEPARA was explicitly designed to work along side the state-of-the-art
hydrodynamics and other physics solvers implemented in the RAMSES itself or ex-
tensions such as e.g. ECOSMOG (Li et al., 2012) for modified gravity, the next step
will be to run simulations with DM, neutrinos and baryons. Like in the case of
IDM, the inclusion of baryons is essential to the correct prediction of structure for-
mation of neutrinos as well as for the matter in general. While small structures
are less interesting for studies of neutrino clustering as their free-streaming allows
most of them to escape any halo smaller than the mass of about the Milky Way,
studies like Schaller et al. (2015) have shown that the presence of baryons in the
simulation reduces the mass and affects the density profiles of halos that are even
orders of magnitude bigger than this threshold. Thus, if we are interested to pre-
dict e.g. the local CνB density in MW-like halos correctly, we need these kind of
corrections. Furthermore, like in the case of interacting DM, baryons provide us
with predictions that are directly comparable to observables found in astronomi-
cal and cosmological observations without the need to trust fitted semi-analytical
techniques to derive these results from DM-only data.

There are two very interesting future neutrino studies where the flexibility of
SEPARA can be used. In Sec. 6.3, we discussed how future terrestrial experiments
are potentially able to detect the CνB. To estimate the expected signal rate for such
an experiment, we need to know the local non-linear relic neutrino density. The
ability to simulate the neutrino distribution accurately even down to smaller scales
is essential for such predictions and can be performed by our new code.

Another subject for future studies is the temperature of the relic neutrinos.
We have seen in Sec. 6.1.1, that in the standard model of Cosmology, neutrinos
are a thermal relic and their temperature differs from that of the CMB by a con-
stant factor due to the reheating by positron-electron annihilation, the latter went
through after neutrinos thermally decoupled from the cosmic thermal bath. Studies
like Steigman (2013) proposed that annihilation of BSM particles in the dark sector
may lead to an additional reheating of either the CMB or CνB which would result
in a different relation between those two components than commonly used. This
is important because cosmological observations are mostly sensitive to the offset
in the power spectrum, i.e. to the neutrino energy density and not to the neutrino
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FIGURE 9.1: Relative total matter power spectra for neutrinos with ∑ mν = 0.2 eV and different
neutrino temperatures with constant Neff compared to reference models with standard temperature
and same Ων (⇒ ∑ mν varies).

mass directly as the published mass bounds may suggest. Thus, it would be very
interesting to see if we can break the degeneracy between Ων and ∑ mν in our pre-
dictions, which would not only allow us to provide less model-dependent bounds
on the neutrino mass, but also would let us probe the early Universe for such BSM
physics.

Fig. 9.1 shows a comparison of linear power spectra for such a BSM scenario
with the power spectra for reference models with a SM temperature. In the BSM
case, we deal here with three massive neutrino species that are cooler than ex-
pected by the SM, i.e. their contribution to the effective number of relativistic de-
grees of freedom nν is smaller at around recombination as a larger share of neutri-
nos already turned non-relativistic. As recent BBN and CMB measurements tend
to favour an effective number of relativistic degrees of freedom Neff ≈ 3, we keep it
fixed by assuming the presence of additional dark radiation as e.g. expected from
DM candidates like light sterile neutrinos. We can note in this comparison, that the
degeneracy between Ων, which is kept constant here, and ∑ mν and the neutrino
temperature Tν can be broken. The signal in the linear power spectrum may be
very small, but one may hope for an amplification of such differences in the non-
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linear structure formation where the reduced free-streaming scale results in growth
boosts at the galaxy cluster-sized scales of the peak in Fig. 9.1.

Finally, as a combination of all aforementioned proposals here, we could use
the new, more accurate constraints on the BSM nature of DM and on the neu-
trino temperature obtained that way to revise previous constrains on the neutrino
masses32 to obtain results that truly take into account how much we still do not
know (yet) about dark matter and the Universe.

32In the case of neutrinos, the tightest bounds on their energy density/mass have been obtained
by comparing the predicted and observed distribution of intergalactic gas (Palanque-Delabrouille
et al., 2015).
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