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Abstract

This thesis focuses on modeling and measuring pairwise statistics in large galaxy

redshift surveys. The first part focuses on two point correlation function measure-

ments relevant to the Euclid and DESI BGS surveys. Two point measurements in

these surveys will have small statistical errors, so understanding and correcting for

systematic bias is particularly important. We use point processes to build catalogues

with analytically known two point, and for the first time, 3-point correlation func-

tions for use in validating the Euclid clustering pipeline. We build and summarise

a two point correlation function code, 2PCF, and show it successfully recovers the

two point correlation function of a DESI BGS mock catalogue. The second part

of this thesis focuses on work related to the PAU Survey (PAUS), a unique narrow

band wide field imaging survey. We present a mock catalogue for PAUS based on a

physical model of galaxy formation implemented in an N-body simulation, and use

it to quantify the competitiveness of the narrow band imaging for measuring novel

spectral features and galaxy clustering. The mock catalogue agrees well with ob-

served number counts and redshift distributions. We show that galaxy clustering is

recovered within statistical errors on two-halo scales but care must be taken on one

halo scales as sample mixing can bias the result. We present a new method of de-

tecting galaxy groups, Markov clustering (MCL), that detects groups using pairwise

connections. We explain that the widely used friends-of-friends (FOF) algorithm

is a subset of MCL. We show that in real space MCL produces a group catalogue

with higher purity and completeness, and a more accurate cumulative multiplicity

function, than the comparable FOF catalogue. MCL allows for probabilistic con-

nections between galaxies, so is a promising approach for catalogues with mixed

redshift precision such as PAUS, or future surveys such as 4MOST-WAVES.
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Chapter 1

Introduction

1.1 Theoretical models of cosmology

The field of cosmology is the study of the evolution of the Universe. This includes the

beginning of the Universe, the formation and growth of structure, and the eventual

fate of the universe. It is important to understand the rules and laws that govern

this evolution. This section will provide a brief overview of theoretical cosmological

models with a focus on the dominant model, ΛCDM.

The majority of cosmological models assume the cosmological principle. This

states that on large enough scales (typically more than a few hundred Mpc1) the

universe can be considered to be homogeneous (invariant with regards to position)

and isotropic (invariant with regards to direction). This assumption allows for the

temporal evolution of the universe on large scales to be described by a single scale

factor a(t), which increases (decreases) as the universe expands (contracts). The

value of the scale factor at the present time t0 is set to unity. Most models, including

ΛCDM, are specific examples of the big bang cosmological model. In the big bang

model the early Universe had a very small value of a(t) and expanded over the age

of the Universe to the size it is today, and is currently still expanding.

Gravity is the dominant force on large scales in the Universe. Einstein’s equations

11 pc is defined as the distance at which 1 astronomical unit (roughly the distance from the

earth to the Sun) subtends an angle of 1 arcsecond (1/3600th of a degree) on the sky.

1



1.1. Theoretical models of cosmology 2

of general relativity provide accurate predictions for gravitational interaction in the

local solar system. If the universe is homogeneous these equations must hold on

similar scales in similar environments throughout the universe. A viable model of

gravitational interaction on large scales must either be general relativity, or provide

a mechanism to sufficiently recover these equations in environments similar to the

solar system. The ΛCDM model assumes general relativity to be the correct model

of gravitational interaction. Attempts at discovering other viable models of gravity

defines the field of modified gravity (Koyama, 2016).

The CDM in ΛCDM stands for cold dark matter. This model assumes cold dark

matter is the dominant mass contribution in the Universe. Cold dark matter is a

fluid that interacts gravitationally, and only weakly through the other fundamental

forces of nature. The prefix cold means that we are assuming that this fluid is non-

relativistic, i.e. dark matter particles move at speeds significantly slower than the

speed of light. Other models of dark matter can include stronger interactions (Tulin

& Yu, 2018) or warm dark matter (Viel et al., 2013).

The Λ of ΛCDM represents the cosmological constant, which is associated with

a vacuum energy (or dark energy) that attempts to explain the apparent accelerated

expansion of the universe. If we model this dark energy as a perfect fluid, the density

ρ of the fluid is related to the scale factor of the universe a(t) by

ρ ∝ a(t)−3(1+w) , (1.1.1)

where the value of w, the equation of state parameter, will vary depending on the

physical nature of this fluid. A value of w < −1/3 will lead to an accelerated expan-

sion. A true cosmological constant is a special case of this general dark energy model

in which the vacuum pressure and density is invariant with changing scale factor of

the universe (w = −1). The ΛCDM model assumes that dark energy acts as a cos-

mological constant. As the densities of matter (relativistic and non-relativistic) and

spatial curvature fall as the universe expands, Λ will be the dominant contribution

to the energy density at late times in an expanding universe.

While we assume the universe to be homogeneous on large scales, there is rich

structure on small scales. This structure has all formed from small inhomogeneities

in the early universe seeded by inflation (Linde, 2014). Gravity caused the overdense

November 1, 2018



1.2. Observational cosmology 3

regions of the universe to grow and eventually collapse into the first dark matter

halos. Baryonic matter would collect at the centre of these halos due to radiative

cooling. Conservation of angular momentum caused these cooling baryons to form

into disks, and eventually the first stars and galaxies. From here these small struc-

tures began to grow and merge with each other to form larger structures, a process

called hierarchical growth. During this process of structure growth, the complex

physics of galaxy formation produces the wide variety of structure we can see in the

universe. These processes include gas hydrodynamics, star formation and evolution,

feedback from supernova and black holes and the dynamics of galaxy interactions

and mergers. Many of these processes remain poorly understood, so galaxy surveys

like the ones presented here, particularly the Physics of the Accelerating Universe

Survey (PAUS), are needed to understand how galaxy properties are related to their

host halos.

1.2 Observational cosmology

Observational cosmology aims to observe the real universe to place constraints on

the theoretical models of cosmology and the astrophysics of galaxy formation.

1.2.1 Galaxy imaging

Galaxy imaging is typically done using band pass filters. A band pass filter only

allows a certain wavelength range to pass. Figure 1.1 shows the filter response curves

for the broad band filter set (u, g, r, i, z and Y) of the PAU Camera at the William

Herschel Telescope in La Palma (Padilla et al., 2016). This is a very common filter

set, overlapping with the near UV, optical and near infrared parts of the spectrum.

These broad band filters are typically of the order of 1000Å in width.

Different filters can correlate with different properties of galaxies. For example,

redder filters may correlate more with the stellar mass of a galaxy, while bluer filters

may correlate with the population of young stars and therefore the star formation

rate of a galaxy.

Brightness in a particular filter is typically quoted using the magnitude system,
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1.2. Observational cosmology 4

Figure 1.1: The PAUCam broad band (u, g, r, i, z, Y) filter responses as a function

of wavelength. The filter response is defined as the fraction of energy at that wave-

length that reaches the CCDs. The filter response also includes telescope optics and

simulated atmospheric transmission.

November 1, 2018



1.2. Observational cosmology 5

which is logarithmic in flux relative to a reference object. This work will use the

AB magnitude system, which defines the apparent magnitude, mAB, relative to the

flux fν integrated over a filter with quantum efficiency q(ν), as

mAB = −2.5 log10

( ∫
fνq(ν)dν∫

3631Jy q(ν)dν

)
. (1.2.2)

Here the reference object has a spectral flux density of 3631Jy independent of λ,

where 1 Jy = 10−26 W Hz−1 m−2. Different communities will define the flux to use in

equation 1.2.2 in different ways. Often, only the flux lying within a certain angular

radius of the centre of an object is measured. In this work we always use the total

flux as we are dealing with simulations where this quantity is easily known.

1.2.2 Redshift

One of the main challenges in observational cosmology is measuring the distances

to objects in the sky. Without estimates of distance, intrinsic properties such as the

brightness and size of objects are far more difficult to infer. Distance measurements

also allow us to build a three dimensional picture of structure in the universe.

The main tool used to determine how far away distant (beyond the scale where

the local gravitation field make a contribution) objects are is the cosmological red-

shift of their light. The wavelength of light propagating through space is stretched

by the expansion of the Universe such that it is received redder than when it was

emitted. The amount of redshift is related to the scale factor of the Universe at the

time of emission and observation. The redshift of an object is defined as

1 + z ≡ λo
λe

=
a(to)

a(te)
, (1.2.3)

where λ is the wavelength of light, a(t) the scale factor of the universe and the

subscripts e and o signify the quantity at the time of emission and observation

respectively. If we can measure the redshift of an object, we can infer the scale

factor at the time when the light was emitted. For a given cosmological model this

can then be used to infer a distance to the object.
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1.2. Observational cosmology 6

1.2.3 Redshift-distance relations

The expanding nature of the Universe leads to multiple definitions of distance. It is

useful to define a measure of distance that is independent of how the universe has

expanded since the light was emitted and when it was received. For this we define

the comoving distance DC as

DC =

∫ t

te

dt′
c

a(t′)
. (1.2.4)

This value may still change due to the local movements of an object, but will not

change as the scale factor of the universe changes. We would like to express this

equation in terms of an object’s redshift. In order to do this we need to understand

how the scale factor a(t) varies with time, for which we need a cosmological model.

The Friedmann equation is a solution to the equations of general relativity in the

case of a universe described solely by the scale factor a(t) and is given by(
ȧ

a

)2

= H2
0 (Ωr,0a

−4 + Ωm,0a
−3 + Ωk,0a

−2 + ΩΛ,0) , (1.2.5)

where H0 is the Hubble constant, defined as the value of ȧ/a evaluated at the

present day. The values of Ωr,0, Ωm,0, Ωk,0 and ΩΛ,0 are the present day densities of

radiation, matter, curvature and the cosmological constant in units of the critical

density2. The sum of these densities must equal one. The Friedmann equation can

be used to express equation (1.2.4) as

DC = DH

∫ a(t0)

a(te)

da′√
Ωr,0 + Ωm,0a′ + Ωk,0a′2 + ΩΛ,0a′4

, (1.2.6)

where DH is the Hubble distance defined as c/H0. Using the definition that a =

1/(1 + z) gives

DC = DH

∫ z

o

dz′√
Ωr,0(1 + z′)4 + Ωm,0(1 + z′)3 + Ωk,0(1 + z′)2 + ΩΛ,0

≡ DH

∫ z

o

dz′

E(z′)
.

(1.2.7)

The comoving distance is inversely proportional to the value of the Hubble constant

H0. In order to produce results that are independent of the value of the Hubble

2The critical density, ρc, is given by ρc = 3H2
0/8πG.
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1.2. Observational cosmology 7

constant distances are often quoted in h−1Mpc where h = H0/(100kms−1Mpc−1) (∼

0.67 (Planck Collaboration et al., 2018)).

In Euclidean space the energy density of isotropically emitted radiation ρr follows

the inverse square distance law

ρr ∝
1

D2
, (1.2.8)

for euclidean distance D. We would like to be able to use the same law in an

expanding universe for luminosity calculations so we define the luminosity distance

DL as the distance for which this law will hold. The flux received by an observer

goes as a factor of (1 + z)−2, so in order for the inverse square law to hold (in a

flat universe where Ωk,0 = 0) the luminosity distance DL is related to the radial

comoving distance DC by

DL = (1 + z)DC . (1.2.9)

In an intrinsically curved spacetime (Ωk,0 6= 0) the relationship is slightly more

complex, being

DL(z) =



(1+z)DH√
Ωk,0

sinh
(√Ωk,0DC(z)

DH

)
for Ωk,0 > 0

(1 + z)DC(z) for Ωk,0 = 0

(1+z)DH√
|Ωk,0|

sin
(√|Ωk,0|DC(z)

DH

)
for Ωk,0 < 0 .

(1.2.10)

1.2.4 Redshift space

The local (peculiar) velocity, vpec, of an object along the line of sight to the observer

also makes a contribution to the redshift in addition to that from the expansion of

the Universe. This redshift due to the peculiar velocity, zpec, can be given by

zpec =
vpec

c
, (1.2.11)

provided vpec � c. The observed redshift, zobs, is given in terms of zpec and the

redshift due to the expansion of the universe, zH, by

1 + zobs = (1 + zpec)(1 + zH) . (1.2.12)

So if a distance is inferred from a measured redshift, the true position of the object

isn’t recovered, rather, the measurement is in redshift space, which includes the
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1.2. Observational cosmology 8

contribution of the peculiar velocity of the object. A very large galaxy velocity

of 300 kms−1 gives rise to a peculiar redshift of ∼ 0.01. This contribution is sub-

dominant to the cosmological redshift measured in a typical galaxy redshift survey

but still acts to smear galaxy positions along the line of sight. This can bee seen

later on in the introduction in Figure 1.4 or in Chapter 4 in Figure 4.6.

1.2.5 Measuring redshift

In order to measure the redshift of an object we need to be able to identify known

features in its spectrum so we can infer how far they have been reddened compared

to their rest-frame wavelength. These measurements are typically made in two ways,

spectroscopically or photometrically.

Spectroscopic redshift measurements make use of high resolution spectra to iden-

tify specific features in the spectrum of an object, such as emission or absorption

lines. Typically, objects will be identified in an imaging survey then spectra will be

taken for these objects using a fibre fed spectrograph. An example of a redshifted

galaxy spectrum is shown in Figure 1.2 which shows an SDSS spectrum (Smee et al.,

2013) and the identified emission and absorption features. Looking at one line, Hα,

which is emitted at 6563Å, it is found in this spectrum at ∼ 7450Å, giving z = 0.135.

Photometric redshift measurements use multiple flux measurements from imag-

ing bands to infer the most likely redshift for an object. The spectral resolution

of imaging bands is typically far lower than it is for spectrography, so the the pre-

cision of the redshift measurement is usually lower. The narrower the bands, the

larger the number of bands, and the greater the wavelength range they cover, the

better the typical precision of the redshift measurement. Often, a redshift proba-

bility distribution is calculated rather than just the most likely redshift. The main

method for inferring photometric redshifts is template fitting. This involves find-

ing the best fit linear combination of templates and a redshift for a representative

set of rest frame template spectra. These template spectra can be real data from

spectroscopic surveys or taken from models.
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1.2. Observational cosmology 9

Figure 1.2: Example of an SDSS galaxy spectrum and the identified emis-

sion and absorption lines. The redshift of this galaxy is found to be 0.13468.

Source: https://skyserver.sdss.org/dr12/en/tools/explore/Summary.aspx?

id=1237650795683512507
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1.2.6 Absolute magnitude

The apparent brightness of an object will change depending on how far away it is.

For ease of brightness comparison we define the absolute magnitude as the brightness

of an object if it was exactly 10pc away. The absolute magnitude, M , is defined in

terms of the apparent magnitude, m, and the luminosity distance of the object, DL,

as

M = m− 5 log10

(DL

10

)
(1.2.13)

However, the section of the galaxy spectrum that overlaps with a given imaging

filter will change depending on the redshift of the object. The difference between

the measurement had it been made in the rest frame (if it were at z=0) and the

measurement in the observer frame (as it is actually measured) is called the k-

correction. The absolute magnitude calculation can be re-written to include this

k-correction term, k, as

M = m− 5 log10

(DL

10

)
− k , (1.2.14)

where the absolute magnitude is now the value that would be found had the galaxy

been observed at redshift 0. Depending on the data available the k-correction could

be estimated as the same for all objects, inferred from simulations, parameterised

in terms of a object colour (proxy for spectral energy distribution (SED) slope), or

estimated object by object.

1.3 Statistical probes of observational cosmology

and astrophysics

Here we introduce different means used to measure and quantify the galaxy distri-

bution relevant to this thesis. We include the section on the cosmological distance

ladder (section 1.3.1) for its historical context. Some notable probes not included

in this chapter include lensing, CMB measurements, cluster analysis, gravitational

wave detection and statistical descriptions of environment beyond groups such as

structure finding.
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1.3.1 Cosmological distance ladder

We have seen how different cosmological models result in different distances for the

same redshift value. If the measurements of distance by other means can be obtained

then we can place constraints on the cosmological model.

One of the most common methods is through the use of a standard candle. A

standard candle is an object for which the absolute or intrinsic luminosity is believed

to be known, so that the distance to an object can be inferred from the difference in

absolute and apparent magnitudes. Often, these methods require calibration using

their overlap with other methods which are applied at smaller distances, hence the

term “cosmological distance ladder”. Riess et al. (1998) used type 1a supernova

as standard candles to show that the expansion of the universe was accelerating

and that a form of dark energy or cosmological constant was required in any viable

cosmological model.

1.3.2 1-point statistics

1 point statistics encompass statistics based on normalised counts of galaxies as a

function of one or more properties. I will mention three important examples here.

The first example, and the simplest, is number counts. A galaxy imaging survey can

count the number of objects detected in a particular band as a function of apparent

magnitude. Number counts are filter dependent but do not require galaxy redshift

measurements.

The second of these is the luminosity function. The luminosity function gives the

number of galaxies per unit volume as a function of absolute magnitude. It is once

again a filter dependent measurement, but redshift measurement are now required to

infer absolute magnitudes and to assign galaxies to redshift ranges. Figure 1.3 shows

an example of the r band luminosity function for the low redshift GAMA survey

(Driver et al., 2011) galaxies taken from Loveday et al. (2012). The luminosity

function is typically fit by a Schechter function. This function follows a power law

distribution for faint galaxies and falls off exponentially for galaxies brighter than

the free parameter M∗. The luminosity function is well fit by a Schechter function
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Figure 1.3: Low redshift (z < 0.1) r band luminosity function from the GAMA

survey taken from Loveday et al. (2012). Solid symbols and line (Open circles and

dashed line) shows the luminosity function with (without) correction for imaging

completeness. Lines show the best fit Schechter function.
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as the distribution of galaxy luminosities is closely related to the distribution of halo

masses, which is itself well described by a Schechter function (Schechter, 1976).

Lastly, we can infer the stellar mass function. This measures the number of

galaxies per unit volume as a function of the total stellar mass of galaxies. The

stellar mass function should be independent of the filter set used to derive it but

in practice this may not be the case. The stellar mass function can also be fit

by a Schechter function. It is more difficult to measure observationally than the

luminosity function as it requires estimations of the stellar masses of galaxies, which

are rather model dependent and can lead to large systematic uncertainties (Mitchell

et al., 2013). However, the stellar mass function often requires fewer assumptions to

calculate in simulations than the luminosity functions do. This is because the total

stellar mass for a galaxy is often known, whereas the luminosity in a given band

requires calculation given a particular distribution of stars and gas. For example,

the EAGLE simulations (Schaye et al., 2015) are tuned to match the present day

stellar mass function.

1.3.3 2-point statistics

The two point correlation function, ξ(r), is defined as the excess probability of

finding a galaxy at a separation r from another galaxy. The term “two point”

comes from the fact that this is a pairwise statistic rather than counts of single

galaxies as in one point statistics. The average probability, dP , of finding a galaxy

at a separation r from another, can be given in terms of the mean density 〈ρ〉 and

an infinitesimal volume element dV as (Peebles, 1980)

dP = 〈ρ〉 (1 + ξ(r))dV . (1.3.15)

A zero two point correlation function at a particular scale means that pairs at that

scale are randomly distributed. A two point correlation function of greater (less)

than zero implies the pairs are overdense (underdense) compared to random. ξ(r)

has a value between -1 and infinity. The two point correlation function is isotropic

in real space if the cosmological principle holds, and redshift space measurements

provide information about the velocity field.
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The two point correlation function provides two of the primary cosmological

probes through the Baryon Acoustic Oscillation peak (BAO) and Redshift space

distortions (RSD). The BAO peak, first detected in 2dFGRS (Cole et al., 2005)

and SDSS (Eisenstein et al., 2005) galaxy redshift surveys, is an overdensity in

the distribution of matter in the Universe at a particular scale as a result of sound

wave propagation in the early Universe (Eisenstein, 2005). Redshift space distortions

measure the impact of large scale infall on the anisotropy of the two point correlation

function (Kaiser, 1987).

Further, the two point correlation function provides a significant amount of in-

formation on small scales that can be used to infer galaxy formation physics. One

popular family of models are Halo Occupation Distribution (HOD) models (e.g.

Benson, 2001; Scoccimarro et al., 2001; Berlind & Weinberg, 2002; Cooray & Sheth,

2002). HOD models separate the two point correlation function into a “one halo

term”, which models the small separations at which most pairs of galaxies lie within

the same dark matter halo, and a two halo term which models the large scales where

pairs lie between two halos. HOD models provide an estimate of the correlation

function starting from the mean number of galaxies in a halo.

1.3.4 Higher order statistics

Further to two-point statistics, work has also been done to analyse the three-point

galaxy correlation function (e.g. Gaztañaga et al., 2005; Nichol et al., 2006). The

three point correlation function measures the excess probability of finding certain

triangle configurations. The probability of finding a particular triangle configura-

tion, dP , is given by

dP = 〈ρ〉 (1 + ξ(r12) + ξ(r13) + ξ(r23) + ζ(r12, r13, r23))dV , (1.3.16)

where ξ is the two point galaxy correlation function and ζ is the three point function.

The three point function is harder to measure than the two point function in terms

of both computational complexity and the level of statistical noise. The three point

correlation function is zero in any model that looks at the linear growth of small

Gaussian perturbations (Berlind & Weinberg, 2002). It is therefore useful to show
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where the linear model breaks down. This non-linearity makes providing analytic

predictions for the three point function difficult. The form of higher order correlation

functions could prove a useful probe of gravity (Hellwing et al., 2017).

The general N point correlation function would look at different configurations

of N points. Little work has been done to consider values of N greater than 3 as

a function of the different possible configurations as all the issues that face the

three point in terms of difficulty to model and measure only get worse for higher

order functions. Therefore, higher order moments are typically probed through the

“counts-in-cells” methods (e.g. White, 1979), which are easier to implement (Baugh

et al., 1995).

1.3.5 Galaxy groups

A galaxy group is defined as a collection of galaxies that are gravitationally bound

within the same dark matter halo. Galaxies within groups can tell us about galaxy

interactions and how galaxy properties and small scale clustering depend on local

environment (Schneider et al., 2013; Barsanti et al., 2018). One example of the

galaxy formation physics that can be inferred from groups is the quenching of the

star formation in galaxies as they fall into dark matter halos and become satellite

galaxies (Treyer et al., 2018). Galaxy groups, being proxies for dark matter halos,

are also important tracers of large scale structure and are often used in galaxy

clustering (Wang et al., 2008; Berlind et al., 2006a) or lensing analysis (van Uitert

et al., 2017).

1.4 Galaxy surveys

This section gives an overview of past, present and future galaxy surveys, with a

focus on the galaxy redshift surveys relevant to this work.

1.4.1 A brief recent history

Galaxy redshift surveys aim to measure galaxy redshifts for a large number of ho-

mogeneously selected galaxies. Normally they follow up galaxy imaging surveys and
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Figure 1.4: Cone plot of the 2dF galaxy redshift survey. The cosmic web and redshift

space effects can clearly be seen. Source: http://www.2dfgrs.net/Public/Pics/

2dFzcone.gif.

select galaxies for which to measure redshifts based on one or more photometric

properties. Surveys have a finite amount of telescope time so will combine survey

area, survey depth or target completeness to best complete their aims in this finite

time. They typically fall into two categories, large wide shallow surveys and small

narrow deep surveys. The large solid angle surveys can be used for cosmological

purposes by measuring the position of the BAO peak and the shape of the redshift

space distortions, while the small solid angle surveys are used to investigate redshift

evolution and small scale galaxy interactions and environmental effects.

The Two degree Field Galaxy Redshift Survey (2dFGRS) (Colless et al., 2001)

was one of the first galaxy redshift surveys used to measure the BAO peak (Cole

et al., 2005). Figure 1.4 shows a slice of the 2dFGRS lightcone. The cosmic web can

clearly be seen, as can the smearing of structures due to redshift space distortions.

2dFGRS measures redshifts for∼ 250000 galaxies over∼ 1500 square degrees limited

in depth to bj < 19.45.

The Sloan Digital Sky Survey (SDSS) legacy survey (York et al., 2000) is a
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Figure 1.5: Cone plot of the W1 field of the VIPERS survey. The solid angle

is lower and the density is higher than seen for 2dFGRS in Figure 1.4. Source:

http://vipers.inaf.it/rel-pdr1.html.

galaxy redshift survey measuring nearly a million redshifts covering ∼ 7500 square

degrees to a magnitude limit of r < 17.77. The large area also makes SDSS perfect

for cosmology measurements, e.g Eisenstein et al. (2005). The Baryon Oscillation

Spectroscopic Survey (BOSS) (Dawson et al., 2013) is the successor to SDSS and

used a colour cut to select luminous red galaxies at a higher mean redshift than

SDSS primarily for cosmology measurements.

An example of a deeper survey with smaller solid angle is the GAMA survey

(Driver et al., 2011). GAMA surveyed ∼ 250 square degrees of sky to a depth of

roughly r < 19.8. Unique to GAMA amongst large surveys is the high spectroscopic

completeness. Often, only one galaxy of a pair lying very close in angle on the sky

can have a fibre placed on them due to the physical restrictions of placing a fibre on

each object. GAMA reobserved regions multiple times to reach a high completeness

(98%) even in the high density regions. The GAMA survey is good for analysis of

the redshift evolution of galaxies that are the earlier analogues of SDSS galaxies due

to the greater depth of GAMA. Its high completeness makes it ideal for small scale

analysis such as galaxy groups (Robotham et al., 2011).

Figure 1.5 shows one of the two fields of the VIMOS Public Extragalactic Red-

shift Survey (VIPERS) (Guzzo et al., 2014). VIPERS is a survey covering around

25 square degrees of sky to a depth of i < 22.5. A colour cut is used to select galax-

ies above a redshift of ∼ 0.4 and the survey is around 40% complete with random
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targeting of the selected image catalogue. The completeness and colour cuts are

compromises made in order to be able to cover such an area at that depth. The

difference between the VIPERS lightcone in Figure 1.5 and the 2dFGRS lightcone

in Figure 1.4 can easily be seen. VIPERS extends far deeper over a far smaller

area. The science cases of VIPERS are similar to GAMA but at a higher redshift.

The lower completeness makes galaxy environment studies more difficult than for

GAMA.

1.4.2 Euclid & DESI

Two future surveys that fall into the regime of cosmological studies are Euclid

(Laureijs et al., 2011) and the Dark Energy Spectroscopic Instrument (DESI) survey

(DESI Collaboration et al., 2016).

Euclid is a space based mission that will observe up to 15000 deg2 of sky. It will

perform both imaging and spectroscopy. Space based imaging allows very accurate

shape measurements of galaxies, free from atmospheric distortion. This imaging

will allow very accurate lensing measurements to be made. Euclid will also provide

redshift measurements for a subset of these objects using slitless spectroscopy. The

spectrograph is limited in wavelength range, which limits the redshift ranges over

which different emission lines can be seen. These redshift ranges are at a higher

redshifts than previously explored in BOSS so will provide interesting results on the

evolution of the BAO feature. The number of objects with a redshift measurement

(an estimated 30 million (Pozzetti et al., 2016)) and scale of the volume probed will

mean Euclid provides the tightest constraints on the parameters of ΛCDM of any

galaxy survey so far.

DESI is a more traditional galaxy redshift survey than Euclid that will follow

up ground based imaging with ground based spectroscopy. It is split into dark

and bright times (bright time is when the moon is up). The dark time will be

used to observe luminous red galaxies (LRGs), emission line galaxies (ELGs) and

quasars with the primary goal of providing accurate BAO and RSD measurements

over a large redshift range, 0.5 < z < 3.5. The bright time will perform a bright

galaxy survey (BGS) which is a magnitude limited survey of galaxies at a depth
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very comparable to GAMA, r < 20, and a Milky Way star survey.

1.4.3 The PAU Survey (PAUS)

The PAU Survey (PAUS) is a narrow band imaging survey covering up to 100 square

degrees in 40 narrow bands of width 130Å, spaced 100Å apart in the wavelength

range 4500-8500Å. The narrow band imaging is done through forced photometry on

previously detected objects from CFHTLenS (Heymans et al., 2012) so the require-

ment in signal to noise ratio is not as high as is needed for object detection. Narrow

band imaging will allow more accurate photometric redshift measurements than

photometric redshift measurements using traditional broad band surveys, estimated

from simulations to be 0.35% for PAUS vs ∼3% for good broad band photome-

try (Mart́ı et al., 2014a). Current data measurements achieve this accuracy for a

significant fraction of objects to i < 22.5, and will achieve ∼ 1% accuracy for all

objects to that magnitude limit (Eriksen et al. (in prep)). Pipeline revisions cur-

rently underway hope to improve this. This accuracy will be sufficient to perform

galaxy clustering measurements but it will be more difficult to measure and model

redshift space effects. PAUS has similar science goals to VIPERS, being at a similar

depth, but measures a redshift for 100% of objects and covers a larger area. The

high completeness will allow for more complete small scale environment studies than

VIPERS and the larger area and accurate shape measurements from the parent cat-

alogue will allow for a competitive measurement of the intrinsic alignment signal to

be made, which is a common systematic uncertainty of lensing measurements. This

will be particularly relevant to lensing measurements at the precision that Euclid

will provide.

1.5 Cosmological simulations

The work presented in this thesis is mostly using mock galaxy catalogues of the

universe. This section will briefly introduce their construction and explain their

usefulness.
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1.5.1 Dark matter only simulations

In the currently favoured cosmological paradigm, cold dark matter is thought to

be the dominant contribution to mass in the universe, so a good approximation

to large scale structure in the universe can be achieved by examining the case of

a universe made solely of collisionless matter. Simulating such a universe is done

through N-body methods. In the N-body approach, the dark matter in a volume

is quantised into computational particles, and the time evolution of these quantised

elements is followed as they interact gravitationally. The simulations are typically

saved at various snapshots of cosmic time. Given a particle distribution, dark matter

halos can be identified and merger trees calculated. Merger trees track dark matter

halos between snapshots, making it easy to identify which halos merged to form

the current halos. This forms a tree because each halo will branch into its direct

progenitors, and each of those can branch out in turn. Each leaf halo (a halo with

no progenitors) is formed solely from the gravitational collapse.

Springel et al. (2005) ran the Millennium simulation, which simulated the uni-

verse using 21603 particles in a cubic box with side length 500h−1Mpc from redshift

127 to the present day. 64 snapshots were saved and used to form dark matter

halo merger trees. The work in this thesis uses the MR7 simulation (Guo et al.,

2013), this is very similar to the Millennium simulation, but saves 61 snapshots of

a universe with WMAP7 cosmology (Hinshaw et al., 2013).

1.5.2 Galaxy simulations

There are two approaches commonly used to build a physical model of galaxies,

hydrodynamic and semi-analytic modeling. Hydrodynamic simulations are N-body

simulations that include a gas component as well as the dark matter and simulate

the creation of galaxies by attempting to include the physics of the gas particles.

Semi-analytic simulations use physically motivated empirical schemes to populate a

previously calculated catalogue of dark matter halos with galaxies.

Both of these approaches must make approximations to physics that they cannot

resolve. In a hydrodynamical simulation this is done through the sub-grid physics
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model. The sub-grid model will attempt to simulate the aggregate effects of physical

processes that occur below the resolution of the simulation (Crain et al., 2015).

One example is star formation; a simulation will not resolve the collapse of gas

into stars, but instead set conditions for when star particles (representing a stellar

population) are formed from gas particles. In a semi-analytic model, all internal

galaxy processes, and the merging of galaxies, are treated in a sub-grid fashion, as

each galaxy is treated as a single object. In both cases these physically motivated

sub-grid models may have free parameters that can be tuned to try to make the

simulation match selected observations.

Extending an N-body simulation to include baryonic particles and hydrodynam-

ics is difficult and time consuming. A state of the art hydrodynamic simulation,

EAGLE (Schaye et al., 2015), only simulates a volume of 100 Mpc−1, ∼ 320 times

smaller than the Millennium simulation, despite being run over a decade later. A

semi analytic model, such as the Durham GALFORM model (e.g. Lacey et al., 2016;

Gonzalez-Perez et al., 2013; Cole et al., 2000), built on top of N-body simulations

like the Millennium simulation, will take only a fraction of the time needed to run a

hydrodynamical simulation. Semi analytic models are therefore the model of choice

when simulations comparable to the size of large galaxy redshift surveys are needed.

1.5.3 Mock catalogues for galaxy surveys

Simulations of the universe are often saved at snapshots in redshift. This is in con-

trast to the continuous observations of a galaxy survey which could span a significant

fraction of cosmic history. We would like to be able to take galaxy catalogue snap-

shots and mimic a particular galaxy survey. Merson et al. (2013) provide a method

of building mock lightcones from GALFORM snapshots by interpolating the positions

and luminosities of galaxies. Galaxies are interpolated between snapshots to find out

when they cross the observer’s past lightcone and if they lie within the mock survey

sky area. Large survey simulations will often cover volumes much larger than the

N-body simulation used to generate the galaxy catalogue, so the simulation volume

is replicated as many times as is necessary to build a volume large enough to fill

the survey volume. This will mean that in large surveys the same galaxy may be
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replicated multiple times at different redshifts and angles on the sky, which will act

to artificially reduce the cosmic variance in the mock catalogue.

1.6 Thesis outline

This thesis focuses on modeling and measuring pairwise statistics in large galaxy

redshift surveys. Chapter 2 uses point processes to build catalogues with analytically

known two and three point correlation functions. Chapter 3 presents and summarises

the two point correlation function code 2PCF and reports the work of Smith et al.

(2018) who use it to recover the two point correlation function in a DESI BGS mock

galaxy catalogue. Chapter 4 presents a mock galaxy catalogue for the PAU Survey

that is built on an N-body simulation using the semi-analytic galaxy formation model

GALFORM. We use it to quantify the competitiveness of the narrow band imaging

for measuring novel spectral features and galaxy clustering. Chapter 5 presents

and investigates a novel new approach to galaxy group finding, Markov Clustering.

Chapter 6 concludes.

November 1, 2018



Chapter 2

Point processes and clustering

This chapter explores the use of point processes to generate mock catalogues with

known two point correlation functions. This work summarises my contribution to the

two point clustering validation team in the OULE3 work package of the European

Space Agency’s Euclid mission. In particular, this chapter focuses on extending the

known literature results of two common Neyman Scott point processes, the segment

Cox process and the Thomas process, to produce catalogues with known higher

order multipoles of the two point correlation function. These predictions are then

tested and successfully validated. The result for the one cluster term of the N point

correlation function of a generalised Thomas process is derived. This is used to

provide a specific prediction for the three point correlation function of the isotropic

3D Thomas process.

2.1 Introduction

The two point correlation function, ξ, introduced in section 1.3.3, is one of the main

statistical measures of the spatial distribution of galaxies. Through the cosmologi-

cal principle (homogeneity and isotropy of the universe), the two point correlation

function is isotropic in real space, i.e it depends only on |r|. However, we measure

galaxy positions in redshift space, and redshift space distortions make the clustering

of galaxies along the line of sight different to that perpendicular to the line of sight.

As a result, the two point correlation function is often given as a function of the
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transverse and radial separations to the line of sight, rp and π, or as a function of

separation s and the cosine of the angle the separation vector makes with the vector

pointing to the mean position of the galaxies, µ. These quantities are defined in

terms of the two galaxy position vectors, x1 and x2, as

r = x1 − x2 (2.1.1)

s = |r| (2.1.2)

π = r.
( x1 + x2

2|x1 + x2|

)
(2.1.3)

rp =
√
s2 − π2 (2.1.4)

µ = π/s . (2.1.5)

The multipoles of the two point correlation function are then defined as

ξn(s) =
2n+ 1

2

∫ 1

−1

Pn(µ)ξ(s, µ)dµ , (2.1.6)

where the function Pn(µ) is the nth Legendre polynomial. These functions provide

an orthogonal basis with which to express the two point correlation function1. The

functions are orthogonal over the range -1 to 1,∫ 1

−1

Pi(µ)Pj(µ)dµ =
2

2n+ 1
δij , (2.1.7)

where the Kronecker symbol δij is defined as

δij =

1, if i = j

0, otherwise .

(2.1.8)

In the linear regime, coherent infall leaves all multiples above n = 4 unchanged,

(Hamilton, 1992). On non-linear scales, higher order multipoles are not expected to

be zero. Often only the first few multipoles are measured and modeled, e.g. Hawkins

et al. (2003). Higher order multipoles are generally too noisy.

Due to the anisotropic nature of galaxy clustering the correlation function is

often projected onto the transverse axis by integrating along the line of sight,

wp(rp) = 2

∫ πmax

0

ξ(rp, π)dπ . (2.1.9)

1The first three are given by: P0(µ) = 1, P1(µ) = µ, P2(µ) = 0.5(3µ2 − 1).
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where the upper limit of the integral πmax should in theory be infinity, but in practice

must be set to a large finite value because of the finite dimensions of a galaxy

catalogue. Too large a value of πmax and the projected clustering measurement

would become too noisy. In the plane-parallel approximation, and if πmax is large

enough, this statistic is the same if measured in real or redshift space, so provides

a measurement that is independent of redshift space distortions. In the true plane-

parallel approximation, the direction onto which the galaxy separation vector r

should be projected to find the cartesian decomposition rp and π would be the same

for all pairs in the volume. This approximation works in a simulated volume but

clearly fails for galaxy surveys with large solid angles as two pairs of galaxies could

be separated by 90 degrees on the sky. We therefore use the local plane-parallel

approximation, which now states that the two lines joining the observer to a pair of

galaxies are parallel, but the lines to different pairs may not be parallel. In practice,

this approximation means that changes in the radial distance to one or both of the

pair of galaxies only changes π and leaves rp unchanged.

Measuring the two point correlation function for a galaxy survey requires calcu-

lating the distribution of galaxy pair distances, DD(r), and comparing them to the

distributions of Data-Random pairs, DR(r), and Random-Random pairs, RR(r),

for a random catalogue with the same density distribution as the data but without

spatial correlation. The generation of a random catalogue is necessary to estimate

the pair distances of random points in a complicated survey volume. The most

commonly used estimator, also the one adopted throughout this thesis, is defined in

Landy & Szalay (1993a)

ξ(r) =
DD(r)− 2DR(r) +RR(r)

RR(r)
, (2.1.10)

where the pair count distributions should be appropriately normalised.

It can be seen that a naive approach to calculating the pair counts for N points

requires N(N−1)/2 pair calculations. This can be said to scale as O(N2). For mod-

ern galaxy surveys that will potentially measure tens of millions of galaxy redshifts,

such as DESI, (DESI Collaboration et al., 2016), and Euclid, (Laureijs et al., 2011),

a naive approach becomes computationally unfeasible, so methods must be found to

speed up the pair count calculations. At the same time as requiring faster calcula-
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tions, the precision required in order that the errors from the codes are sub-dominant

to the statistical errors of the measurements in these surveys is significantly increas-

ing. I will present my own code to do this in chapter 3.

Further to two-point statistics, work is also often done to analyse the three-point

galaxy correlation function, first introduced in section 1.3.4. This statistic is found

with triplet counts rather than pair counts, which means a naive implementation

now scales as O(N3). Even more so than the two point calculations, this requires im-

proved algorithms to be able to fully explore this statistic, such as the one presented

in Slepian & Eisenstein (2015).

The material in this chapter stems from work I did as part of the Euclid two-

point galaxy clustering validation team, part of the OU-LE3 validation activity. In

order to test the accuracy and precision of the Euclid two-point statistics pipeline

code, a catalogue with analytically known two-point multipoles was required. My

role within the team was to investigate point processes as a means of generating

these catalogues. A point process, or point field, is a series of points that lie in some

mathematical space. A point process is often chosen to model a particular dataset

whose points exhibit some sort of spatial correlation.

In particular, we consider Neyman-Scott processes (Neyman & Scott, 1958).

These have previously been used to model the “one-halo term” in Halo Occupa-

tion Distribution (HOD) models (Benson, 2001; Scoccimarro et al., 2001; Berlind &

Weinberg, 2002; Cooray & Sheth, 2002). We consider two common point processes

in the literature: the segment Cox process (Stoyan et al., 1995), and the Thomas

process (Thomas, 1949), which produce known monopoles and zero higher order

multipoles. The latter are then extended to produce known non-isotropic correla-

tion functions so that non-null higher order multipole results can be validated and

tested. We provide analytic projected correlation function predictions where known.

We also provide analytic calculations for the higher order correlation functions of

a generalised Thomas process for potential use in validating higher order statistics

algorithms.

Section 2.2 provides an overview of isotropic Neyman-Scott processes and pro-

vides comprehensive results and validation for the segment Cox process and the
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Thomas process. Section 2.3 extends the Cox process and Thomas process models

to produce known non-zero higher order multipoles and validates the predictions.

Section 2.4 provides specific predictions for the three point correlation function of

the isotropic Thomas process. Section 2.5 gives the conclusions.

2.2 Isotropic Neyman-Scott processes

A Neyman-Scott point process is a point process that randomly assigns points to

randomly placed clusters which have a known cluster profile. The procedure for this

point process is,

• Place Nc cluster centres randomly in a volume V.

• For Np total points, randomly assign each to a cluster and sample from the

cluster pdf to place the points relative to their cluster centres.

Each cluster will not necessarily contain the same number of points, only an

average of Np/Nc points. The random choice of cluster, then of position in a clus-

ter, makes a Neyman-Scott process a “doubly stochastic” point process. A doubly

stochastic point process is called a Cox point process (Cox, 1955), so a Neyman-

Scott process is a subset of a Cox process. The choice of cluster profile will change

the clustering of the points in the catalogue. The clusters in a Neyman-Scott pro-

cess will sometimes overlap due to the completely random placement of the cluster

centres. Forcing them not to overlap would change the clustering result.

Neyman-Scott processes are useful to describe datasets which exhibit some form

of local clustering. They were first introduced to model the clustering of galaxies but

have applications beyond astrophysics; a particular example is the use of Neyman-

Scott point processes to model observations of whales (Hagen & Schweder, 1995).

I will now outline how to calculate the two point correlation function for Neyman-

Scott process. This expands on the partial derivation presented in Stoyan et al.

(1995). The K-function, K(r), is defined in N dimensions as the average number of

points contained within a hypersphere of radius r from any randomly chosen point
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in the catalogue. It is calculated from the density field ρ(s) of a catalogue by

K(r) =
(∫

V

dNs

∫
|r′|<r

dNr′ρ(s)ρ(s+ r′)
)(∫

V

dNsρ(s)
)−1

. (2.2.11)

For a finite catalogue the denominator is simply equal to the number of points in

the catalogue. The two point correlation function is related to the K-function by

1 + ξ(r) =
(dK(r)random

dr

)−1 dK(r)

dr
, (2.2.12)

where K(r)random is the K-function of a random catalogue lying in the same volume.

In 2D this reduces to,

1 + ξ(r) =
1

2πr 〈ρ〉
dK(r)

dr
, (2.2.13)

and in 3D,

1 + ξ(r) =
1

4πr2 〈ρ〉
dK(r)

dr
, (2.2.14)

where 〈ρ〉 is the average density of the catalogue, defined by 〈ρ〉 = Np/V for V the

volume containing the catalogue and Np is the total number of points.

For a Neyman Scott process with Nc clusters, each with density profile ρc(s), the

density in the volume, ρ(s), is given by

ρ(s) =
Nc∑
i=1

ρc(s− si) . (2.2.15)

Plugging this into equation 2.2.11 for the K-function and choosing N=3 dimensions

gives

K(r) =
1

Np

Nc∑
i=1

Nc∑
j=1

∫
V

d3s

∫
|r′|<r

d3r′ρc(s− si)ρc(s− sj + r′) . (2.2.16)

It can be seen that there are two types of contribution to this sum: one where

i = j, i.e the “one cluster term” which performs a double integral over single cluster

profiles and one where i 6= j, i.e a “two cluster term” which sums over pairs of

points lying in different clusters. There are Nc identical one halo terms which can

be centred on zero without a loss in generality, resulting in

K(r) =
Nc

Np

∫
V

d3s

∫
|r′|<r

d3r′ρc(s)ρc(s+ r′)

+
1

Np

Nc∑
i=1

Nc∑
j 6=i

∫
V

d3s

∫
|r′|<r

d3r′ρc(s− si)ρc(s− sj + r′) .

(2.2.17)
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Points lying in two different clusters are randomly distributed with respect to each

other as the clusters themselves are randomly distributed, so their contribution can

be said to be the same as that of a random catalogue. For large Nc such that the

number of two halo terms (Nc − 1)Nc can be approximated as N2
c , equation 2.2.17

becomes

K(r) =
Nc

Np

∫
V

d3s

∫
|r′|<r

d3r′ρc(s)ρc(s+ r′)

+
4

3
πr3 〈ρ〉 .

(2.2.18)

Plugging this relationship into equation 2.2.14 gives

ξ(r) =
Nc

4πr2Np 〈ρ〉
d

dr

∫
V

d3s

∫
|r′|<r

d3r′ρc(s)ρc(s+ r′) . (2.2.19)

This can be written in terms of the probability density function of the cluster, pc(s),

which is the density of the cluster normalised such that the integral over the whole

cluster profile is unity. It is related to the density of a cluster through

ρc(s) =
Np

Nc

pc(s) , (2.2.20)

giving

ξ(r) =
Np

4πr2Nc 〈ρ〉
d

dr

∫
V

d3s

∫
|r′|<r

d3r′pc(s)pc(s+ r′) . (2.2.21)

Equation 2.2.21 provides a method of calculating the analytic correlation function

of a Neyman-Scott process given a cluster density probability distribution.

2.2.1 Isotropic segment Cox process

The first Neyman-Scott process to look at is the isotropic segment Cox process

(Stoyan et al., 1995). This point process is used for Euclid pipeline validation, and

was the first to be extended to provide known non-zero higher multipoles. Stoyan

et al. (1995) provides a result for the two point correlation function monopole for

this process but no derivation is included, so it is written out here for completeness.

The isotropic segment Cox process sets the cluster profile as lines of fixed length

L with random direction. Figure 2.1 visualises this process in the 2D and 3D cases in

periodic volumes for 30 lines each of length 200 h−1Mpc. The segment Cox process
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Figure 2.1: Visualisation of the 2D (top panel) and 3D (bottom panel) isotropic

segment Cox process for line length of 200 h−1Mpc in periodic volumes of Lbox =

1000 h−1Mpc. Red points are the 30 cluster centres and blue point samplings from

the point process. The mean number of points per cluster is 100.
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cluster density probability distribution is given by

p(r) =
θ(r)θ(L− r)

L
, (2.2.22)

with a length of segment L and the heavyside step function θ(r) defined by

θ(r) =

1, if r ≥ 0

0, otherwise .

(2.2.23)

The K-function for the segment Cox process can then be calculated from equation

2.2.21. The integrals are reduced to one dimension due to the one dimensional nature

of the cluster density profile and the integral over the catalogue volume is reduced

to an integral over the finite size of a cluster. This gives

K(r) =
4

3
πr3 〈ρ〉+

Np

L2Nc

∫ L

0

ds

∫ r

−r
dr′θ(s+ r′)θ(L− s− r′) . (2.2.24)

The integral can be solved graphically (see Figure 2.2) to give

K(r) =


4
3
πr3 〈ρ〉+ Np

Nc

(
2r
L
− r2

L2

)
if r ≤ L

4
3
πr3 〈ρ〉 otherwise .

(2.2.25)

In other than three dimensions the (4/3)πr3 〈ρ〉 terms will change to the average

number of points in a randomly placed hypersphere of radius r rather than in a

three dimensional sphere, other terms are unchanged. This can then be used along

with equation 2.2.12 to give the correlation function in N dimensions. In all cases

the correlation function is zero on scales larger than the line length and non-zero

below it. In two dimensions,

ξ(r) =


1
πλs

(
1
rL
− 1

L2

)
if r ≤ L

0 otherwise ,

(2.2.26)

where λs is the density of clusters in the volume, in this case in 2D, given by

λs = Nc/V for V the volume containing the catalogue. In three dimensions,

ξ(r) =


1

2πλs

(
1
r2L
− 1

rL2

)
if r ≤ L

0 otherwise .

(2.2.27)
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Figure 2.2: Graphical solution to the integral given in equation 2.2.24 for the K

function of the segment Cox process. The area to integrate lies within all dashed

lines. The black and red dashed lines come from the integration limits and the green

and blue lines from the step functions in the integrand.
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On small scales this expression acts like a power law that scales as ∼ r−γ with

γ = 2. Snethlage et al. (2002) showed how this slope can be changed so that γ < 2

through applying random shifts to the point field.

In order to calculate the projected correlation function the monopole result can

be expressed in terms of projected component, rp, and line of sight component, π,

as

ξ(rp, π) =


1

2πλs

(
1

(r2p+π2)L
− 1√

r2p+π2L2

)
if r2

p + π2 ≤ L2

0 otherwise .

(2.2.28)

We can define π0 as the value of π at each rp for which the correlation function drops

to zero. It is given by

π0(rp) =


√
L2 − r2

p if rp ≤ L

0 otherwise .

(2.2.29)

The projected correlation function using equation 2.1.9 becomes

wp(rp) =


2
πλs

(
1
Lrp

arctan(πmax

rp
)− 1

L2 arcsin(πmax

rp
)
)

if rp ≤ L and πmax ≤ π0(rp)

2
πλs

(
1
Lrp

arctan(π0(rp)

rp
)− 1

L2 arcsin(π0(rp)

rp
)
)

if rp ≤ L and πmax > π0(rp)

0 otherwise .

(2.2.30)

Verification of the 2D and 3D segment Cox process monopole results are shown

in Figure 2.3. In each case 104 lines with an average of 100 points per line are used

in a periodic square(2D)/box(3D) with side length 1000 h−1Mpc. We generate a

uniform random catalogue and use the Landay-Szalay estimator (Landy & Szalay,

1993a) for calculating the correlation function as the code used does not support

periodic volumes. The number of randoms is set to ten times the number of data

points. The number of randoms needs to be sufficient that there are enough random

pairs in the smallest bins that the error on the random pair counts in those bins

does not impact the final correlation function measurement. In this case we decide

that ten times is sufficient based on the good agreement between the measured and

theoretical results. For a measurement where the result isn’t predicted beforehand

the result can be retested with a new realisation of the same number of randoms
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Figure 2.3: Measurement (dots) and expectation (lines) for the correlation function

of the 2D (top panel) and 3D (bottom panel) isotropic segment Cox process for

different values of the line length. Details of the test are given in the text.
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Figure 2.4: Ratio of mean of measured correlation function for 1000 Cox process

mocks to Cox process theory, calculated by the Euclid 2 point correlation function

pipeline for validation purposes. The errors shown correspond to errors on the mean

measurement. Plot provided by Viola Allevato.

to assess its robustness. The theoretical prediction lines up well with the measured

correlation function for all tested values of the line length at all scales below the line

lengths.

Figure 2.4 shows validation of the Euclid 2 point correlation function pipeline

using the segment Cox process. The brief mandated that the code was validated to

the sub percent level in 200 linear bins between 0 and 200 h−1Mpc. This plot shows

this is achieved for all bins except those on the smallest scales. This is because the

theoretical function varies quickly over the width of the bin so the approximation

that the average value over the bin will equal the theoretical value at the centre

of the bin breaks down, and because the theoretical expression is divergent as the

separation approaches zero. Integrating the theoretical expression over each bin fixes

the small scale discrepancy in all but the first bin, where the pole at zero makes this

integration impossible. There is a small but significant disagreement on large scales,

where the theoretical result is larger than the estimated one. This bias gets worse as

the separation approaches the line length and the correlation function approaches

zero. The line length should be set to be significantly larger than the largest relevant

separation in order for the estimate to agree well with the theoretical prediction.

Here the line length being 2.5 times larger than the largest separation keeps this bias

November 1, 2018



2.2. Isotropic Neyman-Scott processes 36

below the 1% required accuracy. In order to reach the accuracy shown the mean of

1000 Cox process mocks was calculated. Each of the mocks used 106 lines of 500

h−1Mpc with an average of 100 points per line in a 5000 h−1Mpc per side cubic

box. The large number of points and realisations could be significantly reduced if

different scales could be validated with different mocks.

It is worth mentioning the typical amplitude of these Cox process correlation

functions. The lower the density of the clusters the higher the amplitude of the

correlation function and the higher the signal to noise will be in measuring the

correlation function on one cluster/halo scales. The results in figures 2.3 and 2.4

show results for correlation functions with amplitudes far above what is found in

the real universe in order that the results have little scatter. The Cox process can

produce correlation functions of more realistic amplitudes using higher densities of

clusters but the scatter on the final result will be larger.

2.2.2 Thomas process

The Thomas process sets the cluster profile of the Neyman-Scott process to a Gaus-

sian (Thomas, 1949). This process is investigated because the two point correlation

function in 2D and 3D for an isotropic Gaussian is known from the literature (Stoyan

et al., 1995; Moller & Waagepetersen, 2004). This point process is visualised in Fig-

ure 2.5 in the 2D case in a periodic box with 30 clusters, each with Gaussian standard

deviation of 30 h−1Mpc. The cluster centres are the same as the 2D case in figure

2.1 but the clusters are now theoretically of infinite extent.

In 2 dimensions, for a Gaussian cluster profile with standard deviation σ, the

cluster density is

ρc(r) =
Np

Nc

√
1

(2πσ2)2
exp

(−r2

2σ2

)
, (2.2.31)

and the corresponding correlation function is

ξ(r) =
1

λs

√
1

(4πσ2)2
exp

(−r2

4σ2

)
, (2.2.32)

where λs is the cluster density in either 2D or 3D. In 3D the cluster profile is given
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Figure 2.5: Visualisation of the 2D isotropic Thomas process for 30 Gaussian clusters

with σ = 30 h−1Mpc and an average of 30 points per cluster in a periodic box of

side length 1000 h−1Mpc. Red points show cluster centres and blue points show

samplings from the point process.
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by

ρc(r) =
Np

Nc

√
1

(2πσ2)3
exp

(−r2

2σ2

)
, (2.2.33)

which gives a correlation function of

ξ(r) =
1

λs

√
1

(4πσ2)3
exp

(−r2

4σ2

)
. (2.2.34)

The derivations of these results are special cases of the generalised Thomas pro-

cess derivation that will be given in section 2.3.2. Verification of the 2D and 3D

Thomas process results are shown in Figure 2.6. 104 clusters with an average of 100

points per cluster are used in a periodic square(2D)/box(3D) with side length 1000

h−1Mpc. The number of randoms is set to ten times the number of data points. The

theoretical prediction lines up well with the measured correlation function below ∼

5σ for all cluster sizes tested. The open circles in the plot represent where the value

of ξ(r) falls below 10−2 and does not match well with the expectation. Beyond ∼

5σ, the correlation function moves rapidly toward zero and there are too few two-

halo pairs in this low cluster density catalogue to accurately approximate such a

low amplitude correlation function. The density of clusters could be increased to

combat this, but the scatter in one cluster regime would increase.

2.2.3 Other examples from the literature

The Matern process is included here for completeness as it is a common result from

the literature (Stoyan et al., 1995). Unlike the segment Cox process and the Thomas

process this point process will not be extended to produce a known anisotropy. The

Matern process is a point process in which the cluster profile is given by a sphere

with uniform density. The cluster density probability distribution for a cluster of

radius R with centre sc is given by

p(s) =
3θ(R− |s− sc|)

4πR3
. (2.2.35)

This point process is visualised for 30 clusters of radius 30 h−1Mpc in a periodic

volume in Figure 2.7. The cluster centres are shared with the 2D example in Figure

2.1 and with Figure 2.5. Compared to the Thomas process clusters shown in Figure

2.5 the clusters now have a finite extent.
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Figure 2.6: Measurement (dots) and expectation (dashed lines) for the correlation

function of the 2D (top panel) and 3D (bottom panel) isotropic Thomas process for

different values of the Gaussian cluster size. Open circles represent measurements

in a regime where the measurement does not match the expectation well. Note the

different y-axis scales.
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Figure 2.7: Visualisation of the 2D Matern process for 30 circles of radius 30 h−1Mpc

with an average of 30 points each in a periodic box of side length 1000 h−1Mpc. Red

points are cluster centres and the blue points are the samples drawn from the point

process.
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Figure 2.8: Measurement (dots) and expectation (dashed lines) for the correlation

function of the 2D Matern process for different values of the sphere radius.

The correlation function for the 2D Matern cluster process is given by the ex-

pression (Stoyan et al., 1995),

ξ(r) =


2

π2R2λs

[
arccos

(
r

2R

)
− r

2R

√
1− r2

4R2

]
if r ≤ 2R

0 elsewhere ,

(2.2.36)

with λs the density of clusters in the catalogue.

Verification of this result is shown in Figure 2.8 for the same volume as used in

the isotropic Cox process and Thomas process. 104 clusters with an average of 100

points per cluster were used. The number of randoms was set to be ten times the

number of data points. The theoretical predictions line up well with the measured

correlation function for all tested values of the cluster radius at all scales below twice

the cluster radius, or where a non-zero correlation function is predicted.

See the appendix of Sheth et al. (2001) for analytic solutions to the one halo

correlation function in the case of the cluster profile of a truncated isothermal sphere,
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a Hernquist profile and a truncated NFW profile.

2.3 Extending the models to non-isotropic cases

The models considered so far all produce known monopole correlation functions

but have zero higher order multipoles on all scales. This section will extend the

segment Cox process and the Thomas process so that they can produce known non-

zero anisotropies and provide analytic predictions for the higher order multipoles

of the two point correlation function. Only even multipoles will be non-zero, odd

multipoles are zero through symmetry.

2.3.1 Anisotropic segment cox process

In order to extend the segment Cox process such that it has non-zero higher order

multipoles, the orientation of the lines can be drawn from the desired distribution

of line pair angles rather than completely at random2. Changing the orientation

of the lines has no impact on the radial shape of the correlation function as this is

determined uniquely by pairs lying on single lines, the “one cluster” term. In fact

changing the angle of the lines leaves the monopole correlation function completely

unchanged. This decoupling between the angular and radial components means that

if line angles are drawn from a probability distribution f(µ), which must be greater

than or equal to zero for −1 < µ < 1, then the correlation function ξ(r, µ) is given

simply by

ξ(r, µ) = ξcox(r)f(µ) , (2.3.37)

where ξcox(r) is the monopole correlation of the isotropic segment Cox process (equa-

tions 2.2.26 and 2.2.27 give the 2D and 3D results respectively). The multipoles are

then found by

ξn(r) =
2n+ 1

2

∫ 1

−1

Pn(µ)ξCox(r)f(µ)dµ . (2.3.38)

2Inspiration for drawing the angles of the lines from a known distribution was taken from a

suggestion in Stoyan et al. (1995) that “the line orientations do not need to be random”.
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We validate this prediction by expressing f(µ) as a linear combination of the

Legendre polynomials,

f(µ) =
∞∑
i=0

aiPi(µ) . (2.3.39)

The reason for this choice is the simple expression that arises for the higher order

multipoles due to the definition of ξn(r) and the orthogonality of the Legendre

polynomials,

ξn(r) =
2n+ 1

2

∫ 1

−1

Pn(µ)ξCox(r)
∞∑
i=0

aiPi(µ)dµ =
an
a0

ξcox(r) . (2.3.40)

The higher order multipoles are simply a scalar multiple of the monopole with the

scalar being equal to the coefficient of the corresponding Legendre polynomial used

in the choice of angular distribution of the lines divided by the zeroth coefficient.

In this choice of f(µ) there is a range of values for the coefficients ai such that

f(µ) is greater than zero for all possible values of µ. For the case of only non-zero

monopole and quadrupole, the following condition,

a0 +
a2

2
(3µ2 − 1) ≥ 0 , (2.3.41)

must be true for all values of µ in the range −1 < µ < 1. This leads to constraints

on the coefficients of

a0 ≥
a2

2

a0 ≥ −a2 .

(2.3.42)

The necessary condition becomes more complicated on including more non-zero

multipoles. Graphing f(µ) to check for zero crossings is the easiest solution to

finding acceptable parameters in this situation.

Figure 2.9 visualises this point process in 2D in a concentric circular volume with

a random line orientation (top panel) and then an anisotropic line orientation with

a2/a0 = 2 (bottom panel). The position of the cluster centres is the same in both

panels to aid visualisation of the anisotropy. In the anisotropic case the lines are

more radially distributed than in the random case, as P2(µ) has a max at µ = 1 and

a minimum at µ = 0.

This process is tested in a spherical volume. The angle µ for each line is defined

relative to the origin. The local plane parallel approximation is required for the
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Figure 2.9: Visualisation of the 2D isotropic (top panel) and anisotropic (bottom

panel) segment Cox process with L = 200 h−1Mpc. Line angles in the top panel are

random, while in the bottom panel they are drawn from 1 + 2Pl(µ) (more radially

aligned than random). Red points are cluster centres, equally positioned in both

panels, blue points are accepted points in the catalogue and green points are rejected.

The black circles show the volume of the final catalogue.
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direction from the origin to both ends of a Cox process line to be approximately

equal. In order for this approximation to hold, the distance to the line from the

origin must be significantly longer than the length of the line, so cluster centres

are not generated within a fixed distance from the origin. This leaves a concentric

spherical volume. The volume shown in figure 2.9 is only illustrative, the inner

radius is too small for the local plane-parallel approximation to hold. Care must

also be taken to account for points assigned to clusters that lie near the volume

boundaries that are placed outside the catalogue volume. This is accounted for by

extending the inner and outer radius such that points may scatter into the volume

as frequently as they scatter out of it. The number of cluster centres and points

generated must also be increased so that the average density in the extended volume

will match what was intended originally. The extra volume should be large enough

so that no point attached to a cluster inside the original volume may scatter outside

the extended volume. Points lying outside the original volume are then masked.

The average number of points in a realisation will be equal to what was intended

but each random realisation may contain different numbers of cluster centres and

points. If this extension process is not done, a bias will be introduced into the results

because of the one way scatter of the points.

Figure 2.10 shows the validation of this prediction in 3D in the case of a2/a0

= 2 for 104 lines each with an average of 100 points per line in a spherical volume

with inner radius 1000 h−1Mpc and outer radius 5000 h−1Mpc. Good agreement

with the prediction is seen in the monopole and quadrupole for all scales below the

line length with the exception of the first data point. The first data point contains

two errors, one of the breaking of the approximation that the value of the analytic

function at the centre of the bin is equal to the average value over the bin, and the

other that the binning in µ as well as r requires significantly greater numbers of data

and random points to resolve properly. The test could be rerun with significantly

larger numbers of data and random points but this will take significantly more CPU

time and will still fail to resolve the first issue. It is safer to assume that the first bin

may not agree well with the analytic prediction. The monopole is unchanged from

the isotropic case and the quadrupole values are all simply twice the corresponding
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Figure 2.10: Measurements (dots) and expectations (lines) for the monopole (top

panel) and quadrupole (bottom panel) of the anisotropic segment Cox process for

different values of the line length. Line angles are sampled from 1 + 2Pl(µ), which

results in ξn(r) = 0 for n ≥ 3.
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monopole.

2.3.2 Generalised Thomas process

In order to extend the results of the Thomas process to include non-zero higher

order multipoles of the two point correlation function we first show that the two

point correlation function of a Neyman Scott process depends only on the one cluster

term. The density, ρ(x), of a Neyman-Scott point process can be written as a sum

of Nc randomly placed clusters,

ρ(x) =
Nc∑
i=0

ρi(x) , (2.3.43)

where ρi(x) is defined as the density profile of the ith cluster given by

ρi(x) = ρc(x− xi) , (2.3.44)

for ρc the cluster density profile and xi the centre of the ith cluster in M dimensions.

The two point correlation function can be written,

1 + ξ(x12) =
1

〈ρ〉2 V

∫
V

dMxρ(x− x1)ρ(x− x2) , (2.3.45)

where V is the volume and 〈ρ〉 is the mean density of the catalogue respectively.

Due to homogeneity, ξ is only a function of x12, where xij is the vector separation

between points i and j, given by xj − xi (note xii = 0). Without a loss of generality

the integral can be centred on x1 to give

1 + ξ(x12) =
1

〈ρ〉2 V

∫
V

dMxρ(x)ρ(x− x12) . (2.3.46)

Substituting in equation 2.3.43 for a Neyman-Scott process gives

1 + ξ(x12) =
1

〈ρ〉2 V

Nc∑
i=0

Nc∑
j=0

∫
V

dMxρi(x)ρj(x− x12) . (2.3.47)

The sum of the two halo terms (i 6= j) tends to 1 in the limit of large Nc due to the

random placing of each cluster. This cancels with the 1 one the left hand side and

leaves only the contribution from the one halo term,

ξ(x12) =
1

〈ρ〉2 V

Nc∑
i=0

∫
V

dMxρi(x)ρi(x− x12) . (2.3.48)
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All the Nc one halo terms are identical, so this expression reduces to

ξ(x12) =
Nc

〈ρ〉2 V

∫
V

dMxρi(x)ρi(x− x12) . (2.3.49)

We will calculate the expression for the one cluster term for the N point corre-

lation function in M dimensions, η1H(x12, ..., x1,N), as this will also prove useful for

the three point correlation function of the Thomas process explored in section 2.4.

There are always Nc identical one cluster terms so η1H(x12, ..., x1,N) is given by a

generalisation of equation 2.3.49,

η1H(x12, ..., x1,N) =
Nc

〈ρ〉N V

∫
V

dMx
N∏
i=1

ρc(x− x1i) . (2.3.50)

To apply this to the Thomas process we look at the case where the cluster profile

is given by a generalised Gaussian profile with symmetric covariance matrix A,

ρc(x) =
Np

Nc

√
det(A)

πM
exp(−xTAx) . (2.3.51)

For example, setting

A =

(2σ2)−1 0

0 (2σ2)−1

 (2.3.52)

recovers the expression for a 2D isotropic Gaussian cluster given in equation 2.2.31.

We define λs as the mean density of clusters, given by Nc/V . For this generalised

Gaussian cluster profile equation 2.3.50 becomes

η1H(x12, ..., x1,N)

=
Nc

〈ρ〉N V
NN
p

NN
c

(
det(A)

πM

)N/2 ∫
V

dMx exp(−
N∑
i=1

(x− x1i)
TA(x− x1i))

=
1

λN−1
s

(
det(A)

πM

)N/2 ∫
V

dMx exp(−
N∑
i=1

(x− x1i)
TA(x− x1i))

=
1

λN−1
s

(
det(A)

πM

)N/2 ∫
V

dMx exp(−NxTAx+ 2
N∑
i=1

xT1iAx−
N∑
i=1

xT1iAx1i)

=
1

λN−1
s

(
det(A)

πM

)N/2
exp(−

N∑
i=1

xT1iAx1i)

∫
V

dMx exp(−NxTAx+ 2
N∑
i=1

xT1iAx) .

(2.3.53)

Making a substitution

x =
y
√
N
, (2.3.54)
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leads to

η1H(x12, ..., x1,N)

=
1

λN−1
s NM/2

(
det(A)

πM

)N/2
exp(−

N∑
i=1

xT1iAx1i)

∫
V

dMy exp(−yTAy +
2√
N

N∑
i=1

xT1iAy) .

(2.3.55)

The solution to this integral, a Gaussian integral with linear term, is known. This

gives the final result for the one halo term of the N point correlation function in M

dimensions as

η1H(x12, ..., x1,N)

=
1

λN−1
s NM/2

(
det(A)

πM

)(N−1)/2

exp(−
N∑
i=1

xT1iAx1i) exp(
1

N

N∑
i=1

N∑
j=1

xT1iAx1j) .

(2.3.56)

For the two point correlation function, equation 2.3.56 reduces to (using xii = 0),

ξ(x12) =
1

λs

√
det(A)

(2π)M
exp(−x

T
12Ax12

2
) . (2.3.57)

To test this prediction we look at the isotropic case to see if we recover the

literature result. Using the matrix given in equation 2.3.52 for the 2D isotropic

Thomas process cluster profile, equation 2.3.57 reduces to

ξ(r) =
1

λs

√
1

(4πσ2)2
exp

(−r2

4σ2

)
. (2.3.58)

This is the same result as quoted from the literature in equation 2.2.32. The isotropic

3D Thomas process result is also recovered using the covariance matrix

A =


(2σ2)−1 0 0

0 (2σ2)−1 0

0 0 (2σ2)−1

 . (2.3.59)

To build an anisotropic model the scale length of the Gaussian can be made

larger in one dimension than the other two. This can be taken to be similar to the

astrophysical case of smearing along the radial direction. In 2 dimensions this is

done by setting the Gaussian covariance matrix as

A =

(2σ2
T )−1 0

0 (2σ2
r)
−1

 , (2.3.60)
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where σT is the transverse Gaussian scale and σr the radial scale. We once again

assume that the local plane-parallel approximation holds in that the direction from

the origin to all parts of a cluster is the same. A visualisation of this point process

in the isotropic and the anisotropic 2D case is shown in figure 2.11. Thirty clusters

with a transverse scale of 30 h−1Mpc are shown. In the anisotropic case the cluster

length scale was set to three times longer in the radial direction than in the transverse

direction, so that the smearing of the clusters can be clearly seen. The same volume

and volume extension process is used as with the visualisation of the anisotropic

Cox process. Here the extension is large enough that no part of the original volume

is closer than 5 σ to the edge of the extended volume. This means the probability

of a point attached to a cluster centre inside the original volume has a very low

probability of falling outside the extended volume.

We provide an analytic expression for the 3D case, which is equivalent to setting

the Gaussian covariance matrix to

A =


(2σ2

T )−1 0 0

0 (2σ2
T )−1 0

0 0 (2σ2
r)
−1

 , (2.3.61)

which leads to a simple expression for the correlation function as a function of rp

and π in the local plane-parallel approximation of

ξ(rp, π) =
1

8π3/2σ2
Tσrλs

exp

(
−

r2
p

4σ2
T

− π2

4σ2
r

)
. (2.3.62)

This can also be expressed in terms of r and µ (using r2
p = r2 − π2 and π2 = r2µ2)

by

ξ(r, µ) =
1

8π3/2σ2
Tσrλs

exp

(
− r2

4σ2
T

− r2µ2
( 1

4σ2
r

− 1

4σ2
T

))

=
1

8π3/2σ2
Tσrλs

exp

(
− r2

4σ2
T

)
exp

(
− r2µ2

( 1

4σ2
r

− 1

4σ2
T

))
≡ B(r) exp(α(r)2µ2) ,

(2.3.63)

for B(r) and α(r)2 defined as
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Figure 2.11: Visualisation of the 2D Thomas process for the isotropic case (top

panel) and the anisotropic case (bottom panel). In the anisotropic case the radial

scale is set to be three times larger than the transverse scale. Colour coding and

circles have the same meaning as in figure 2.9. Cluster centre positions are shared

between panels and are the same as in figure 2.9. See text for discussion.
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B(r) ≡ 1

8π3/2σ2
Tσrλs

exp

(
− r2

4σ2
T

)
, (2.3.64)

α(r)2 ≡ −r2

(
1

4σ2
r

− 1

4σ2
T

)
. (2.3.65)

α(r)2 is positive for the case we are interested in (σr > σT ). Analytic expressions

for the multipoles of this point process can then be calculated using

ξn(r) =
2n+ 1

2
B(r)

∫ 1

−1

dµ exp(α(r)2µ2)P (µ) . (2.3.66)

The monopole and quadrupole results are

ξ0(r) =

√
π

2α(r)
B(r)erfi(α(r)) (2.3.67)

ξ2(r) =
5

8α(r)3
B(r)

(
6α(r) exp(α(r)2)−

√
π(3 + 2α(r)2)erfi(α(r))

)
,(2.3.68)

where erfi is the imaginary error function, defined as

erfi(x) =
2√
π

∫ x

0

exp(t2)dt . (2.3.69)

The higher order multipoles are also non-zero but their results are not presented

here.

The projected correlation function for this point process is the same as in the

isotropic case as the transverse projection of the cluster profile is unchanged. It is

given by

wp(rp) =
1

4πσ2
Tλs

exp

(
−

r2
p

4σ2
T

)
. (2.3.70)

These analytic predictions for the monopole and quadrupole are tested for mul-

tiple values of the transverse length scale in figure 2.12 for 104 clusters with an

average of 100 points per cluster in the same concentric spherical volume as the

anisotropic Cox process validation. The radial scale of the cluster is twice the trans-

verse scale. Good agreement is seen in the case of the monopole below 10 times the

transverse Gaussian scale, except for the first point, where similar issues arise as

in the isotropic case. Good agreement is also seen in the quadrupole below scales

of 10 times the transverse length scale, but there is more noise on smaller scales
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than the monopole. This is somewhat to be expected as the quadrupole is typically

more difficult to measure than the monopole. The open circles indicate points where

either the monopole or quadrupole falls below 0.03, which is chosen to mask noisy

points on large scales. This cut fails on small scales in the quadrupole. A further

cut on results that are below half the transverse Gaussian scale is suggested for the

quadrupole for this test. This value could be extended lower if a significantly larger

volume test was used.

2.3.3 Point pair generation

This section summarises another point process that was investigated and validated,

which we name “point pair generation”. This is similar to the scheme first laid out in

Stoyan (1994). This process can produce any correlation function with any chosen

anisotropy by placing individual pairs of points draw from a chosen distribution.

Placing only pairs means all higher order correlation functions of this process are

zero. This process was investigated for potential use in the Euclid validation work

package but was ultimately not used as it was difficult to reach the desired accuracy,

and the Cox process had already proven sufficient. Results are included as they are

relevant to this work. The scheme goes as follows:

• Randomly choose Nc pair centres in the volume.

• For each pair centre place a pair of points a distance r apart oriented such

that the dot product of their separation vector and the line from the origin to

the pair centre is µ. The distance r and value of µ are samples from an input

probability distribution f(r, µ).

In the local plane parallel approximation this scheme produces a correlation

function of

ξ(r, µ) =
f(r, µ)

4πr2λs
, (2.3.71)

where λs is the density of the pairs in the volume equal to Nc/V for Nc the number of

clusters and V the volume of the catalogue. As the function f(r, µ) is a probability

distribution it must be equal to or greater than zero for all values of r and µ. The
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Figure 2.12: Monopole (top panel) and quadrupole (bottom panel) measurements

(dots) and expectations (dashed lines) for the anisotropic Thomas process (σr =

2σT ) for different values of the transverse Gaussian scale. The dotted line shows the

corresponding monopole result for the isotropic case (σr = σT ). Open circles show

points where the value of either multipole falls below 0.03.
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Figure 2.13: Monopole, quadrupole and hexadecapole results for the mean of 500

realisations of the pair generation process tuned to have the same shape correla-

tion functions as the MR7 simulation initial conditions but with larger amplitude.

Dashed lines show the input correlation function and dots the measured results.

function f(r, µ) sets the shape of the correlation function, and the density of pairs

λs sets the normalisation.

We demonstrate this process by choosing f(r, µ) and λs such that the monopole

is similar to the correlation function of SDSS LRGs found in Eisenstein et al. (2005),

and the quadrupole and hexadecapole are simply multiples of this correlation func-

tion. The shape is replicated roughly by using the shape of the correlation function

from the initial conditions of the Millenium MR7 simulation (Guo et al., 2013). Any

values less than zero were set to zero so we could sample from the resulting f(r, µ).

If we call the input monopole correlation function ξ(r)MR7, the choice of f(r, µ) used

was

f(r, µ) = r2ξ(r)MR7g(µ) , (2.3.72)
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where g(µ) is the angular distribution of the lines, and is given by

g(µ) =
1

2
(P0(µ) + 2P2(µ) + 3P4(µ)) , (2.3.73)

where Pl(µ) is the lth Legendre polynomial. This choice of f(r, µ) means ξ0(r) is

proportional to ξ(r)MR7. The multipole ratios are

ξ2(r) = 2ξ0(r)

ξ4(r) = 3ξ0(r) .
(2.3.74)

All higher order multipoles are zero by construction. The density of pairs was then

tuned such that the monopole roughly matched that of Eisenstein et al. (2005).

Figure 2.13 shows the first three multipole results of this process for the mean of

500 runs of 2x106 points in the same concentric spherical volume as the other tests.

500 runs are needed to reach a reasonable signal to noise ratio at a more realistic

amplitude than the other tests. Good agreement is seen between the theory and

the measurements, and even a more complicated feature such as the BAO peak

can be recovered. This process provides more flexibility than the previous models

considered, but it is not particularly realistic due to only a single pair lying in each

cluster.

2.4 Higher order correlation functions

This section will provide an analytic expression for the three point function of the

isotropic 3D Thomas process. Extending analytic predictions to higher order corre-

lation functions is more difficult than for the two point function. Soneira & Peebles

(1978) designed a fractal process that produced an analytic prediction for higher

order correlation functions but so far no analytic prediction exists for any Neyman

Scott process.

We first show that the three point function of a Neyman Scott process, as with

the two point function, only depends on the one cluster term. The three point

correlation function is given by (Bernardeau et al., 2002),

1 + ξ(x12) + ξ(x13) + ξ(x23) + ζ(x12, x13, x23) =

1

〈ρ〉3 V

∫
V

dMxρ(x)ρ(x− x12)ρ(x− x13) ,
(2.4.75)
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with V the volume and 〈ρ〉 the mean density of the catalogue. ρ(x) is the density of

the catalogue at position x. We have centred the integral on x1. We can substitute

the expression for the density of a Neyman Scott process with Nc clusters (equation

2.3.43), to give

1 + ξ(x12) + ξ(x13) + ξ(x23) + ζ(x12, x13, x23) =

1

〈ρ〉3 V

Nc∑
i=0

Nc∑
j=0

Nc∑
k=0

∫
V

dMxρi(x)ρj(x− x12)ρk(x− x13) .
(2.4.76)

The expression on the right hand side now splits into one, two and three cluster

terms, defined as where the three points in the triangle configuration lie between

one, two and three clusters respectively. Similar to the two halo term for the two

point function, the three halo term (i 6= j 6= k 6= i) tends to unity in the limit of

large Nc as the clusters are randomly distributed. Looking at one of the cases of the

two halo term in the limit of large Nc where i = j 6= k,

1

〈ρ〉3 V

Nc∑
i=0

∫
V

dMxρi(x)ρi(x− x12)ρ(x− x13) , (2.4.77)

where the sum over k clusters has been collapsed into the ρ(x − x13) term. This

term can be seen to be equal to multiplying by 〈ρ〉 as it is randomly distributed

relative to the other clusters. This reduces this two halo term to

1

〈ρ〉2 V

Nc∑
i=0

∫
V

dMxρi(x)ρi(x− x12) . (2.4.78)

This term is equal to our definition for ξ(x12) of a Neyman Scott process from

equation 2.3.57. For the two cluster terms where i 6= j = k,

1

〈ρ〉3 V

Nc∑
j=0

∫
V

dMxρ(x)ρj(x− x12)ρj(x− x13) . (2.4.79)

We can recentre this integral so it reads

1

〈ρ〉3 V

Nc∑
j=0

∫
V

dMxρ(x+ x12)ρj(x)ρj(x− x23) . (2.4.80)

The ρ(x + x12) is equivalent to multiplying by 〈ρ〉 as it is randomly distributed

relative to the other clusters, so we are left with

1

〈ρ〉2 V

Nc∑
j=0

∫
V

dMxρj(x)ρj(x− x23) , (2.4.81)
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which is equal to the definition for the two point correlation term ξ(x23). In a similar

way the final two cluster terms (i = k 6= j) can be shown to be equal to ξ(x13) to

leave only the one halo term to contribute to the value of the three point correlation

function,

ζ(x12, x13, x23) =
Nc

〈ρ〉3 V

∫
V

dMxρc(x)ρc(x+ x12)ρc(x+ x13) , (2.4.82)

where ρc(x) is the cluster density profile. It is possible that this generalises such that

the N-point function of a Neyman Scott process only depends on the one cluster

term but this is not investigated.

We can now use the result for the one halo term of the N point correlation

function in M dimensions of a generalised Thomas process (2.3.56), requoted here,

η(x12, ...xN−1,N)

=
1

λN−1
s NM/2

(
det(A)

πM

)(N−1)/2

exp(−
N∑
i=1

xT1iAx1i) exp(
1

N

N∑
i=1

N∑
j=1

xT1iAx1j) ,

(2.4.83)

where λs is the density of clusters defined as Nc/V and A is the symmetric covariance

matrix of the generalised Gaussian cluster profile. Setting N=3 and using that

xii = 0 reduces this to

ζ(x12, x13) =

=
det(A)

λ2
s3
M/2πM

exp(−xT12Ax12) exp(−xT13Ax13) exp(
1

3
(x12 + x13)TA(x12 + x13)) .

(2.4.84)

We look at the simple case of an isotropic Gaussian cluster in three dimensions.

This choice leads to a three point correlation function of

ζ(|x12|, |x13|, θ) =
1

λ2
s3

3/2π38σ6
exp

(
− 1

3σ2
(|x12|2 + |x13|2 − |x12||x13| cos θ)

)
,

(2.4.85)

where θ is the opening angle of the triangle i.e. the angle between x12 and x13. The

reduced three point function is defined as (Bernardeau et al., 2002)

q(|x12|, |x13|, θ) =
ζ(|x12|, |x13|, θ)

ξ(|x12|)ξ(|x13|) + ξ(|x12|)ξ(|x23|) + ξ(|x13|)ξ(|x23|)
, (2.4.86)
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where ξ(|x12|) is the monopole of the corresponding two point correlation function.

For the case here the reduced correlation function is given by

q(|x12|, |x13|, θ) =
8

33/2

exp
(
− 1

3σ2 (|x12|2 + |x13|2 − |x12||x13| cos θ)
)

exp
(
− 1

4σ2 (|x12|2 + |x13|2)
)

+ ...
, (2.4.87)

where the two terms not written in the denominator look the same as the one that

is given but with the other two cyclic permutations of |x12|, |x13|, |x23|. The benefit

of the reduced function that can be seen here is that most of the scale terms at the

front of the expression have cancelled. The reduced three point correlation function

(also known as the third hierarchical amplitude) is also a useful statistic in the real

universe as it is scale independent in the weakly linear regime (Bernardeau et al.,

2002).

We will look at the results for σ = 1 h−1Mpc for the two cases where |x12| = |x13|

and |x12| = 2|x13|. Figure 2.14 plots the reduced three point function in both cases

for multiple values of |x13| as a function of opening angle θ. Results for equilateral

triangles are scale independent, but the reduced three point function falls rapidly

with triangle scale for other configurations. For equilateral triangles, setting |x12| =

|x13| = |x23| and θ = π/3 in equation 2.4.87 results in q(|x12|, |x13|, θ) = 8/3(5/2),

which explains the scale independence of this configuration. For two fixed side

lengths, q has a maximum at a value of θ between 0 and π. This is in contrast to

results for the reduced three point function in the real universe that show that the

value of the three point function for fixed |x12| and |x13| often has a minimum in

that range (McBride et al., 2011). This minimum in the real universe is postulated

to be a result of filamentary structure that boosts the likelihood of finding triplets of

galaxies aligned rather than at other angles to each other. The spherical structure

for which we provide an example above does not boost these aligned triangles in the

same way. Analytic expressions for cylindrically symmetric cluster profiles rather

than spherical could provide an avenue to model the three point function in the

future.
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Figure 2.14: Analytic results for the reduced three point correlation function for the

3D isotropic Thomas process with σ = 1 h−1Mpc. The cases of |x12| = |x13| (top

panel) and |x12| = 2|x13| (bottom panel) are shown for multiple values of |x13| as a

function of the opening angle of the triangle θ. The key applies to both panels.
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2.5 Conclusion

This work extends two common Neyman Scott point processes, the segment Cox

process and the Thomas process, such that their higher order multipoles can be

non-zero and predicted analytically.

This work first summarises and validates the literature results for common point

processes as the current literature in cosmology is sparse. The segment Cox process

(Stoyan et al., 1995), a point process that places points on randomly oriented lines of

fixed length, is derived and successfully validated. The Thomas process (Thomas,

1949), a point process that places points in gaussian clusters of fixed size is also

successfully validated. Results and validation are also presented for the 2D Matern

process (Stoyan et al., 1995).

We present the successful validation of the Euclid two point statistics monopole

pipeline using 1000 segment Cox process mocks. The sub-percent accuracy required

is reached for scales below 200 h−1Mpc.

The segment Cox process is extended to produce a known anisotropy by sampling

the angles of the lines relative to the origin from a non-uniform distribution. This

is validated successfully for the case that the angles of the lines are drawn from lin-

ear combinations of Legendre polynomials, which produces higher order multipoles

proportional to the literature monopole result.

The Thomas process result is extended to the case of a general Gaussian cluster

profile rather than an isotropic one. The result for the one cluster term of the N

point correlation function of this generalised process is derived in M dimensions.

We show that this term is the only contribution to the two point function of a

Neyman Scott process. This result reduces to the literature results for the two point

correlation function by setting N = 2 and M = 2 or 3. Results for the monopole and

quadrupole are presented for the three dimensional case of a Gaussian cluster profile

where the scale is extended in one dimension similar to the smearing of structure

from the random motions of galaxies. The results are validated and scales where

the predictions are reliable for the test done in this work are provided.

We show that, like the two point function, the only contribution to the three point

correlation function of a Neyman Scott process is the one halo term. The result for
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the one cluster term of the N point correlation function of the Thomas process is

then used to give an analytic prediction for the 3D three point and reduced three

point correlation function of an isotropic Gaussian cluster. Unlike results in the real

universe, the reduced three point function of this process is only scale independent

for equilateral triangles and has a maximum for a value of θ between 0 and π for

all configurations. This is the first analytic prediction for a higher order correlation

function of a Neyman Scott process.

The higher order correlation function predictions for the Thomas process are yet

to be validated and could be explored in future work. Future work could also extend

the work done here to look at the results for higher order correlation functions of

a Neyman Scott process with a more realistic cluster profile for use in one halo

term results of HOD modeling. The finite extent of some clusters such as the

truncated NFW profile (Navarro et al., 1996), makes analytic predictions for higher

order correlation functions significantly more difficult to derive than for the Thomas

process. Further, spherically symmetric cluster profiles fail to boost the likelihood of

aligned triangles like is seen in the three point function in the real universe, which

is most likely as a result of filamentary structure (McBride et al., 2011). Using

cylindrically symmetric cluster profiles rather than spherically symmetric ones could

provide an interesting avenue for exploration into analytically modeling the three

point function.
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Chapter 3

Two point correlation function

code 2PCF

This chapter presents the publicly available C++ two point clustering statistics

code 2PCF. The code is similar in scope to CUTE (Alonso, 2012), but includes

more flexible IO, on the fly jackknife calculations, a flexible binning scheme and

implements the pair upweighting scheme of Bianchi & Percival (2017). An extension

to this scheme used to account for realisations of different survey footprint positions

is presented. The scaling performance of the code is presented and the code is shown

to scale nearly ideally on a multi-threaded CPU. The results of Smith et al. (2018)

are presented, who successfully use this implementation of the pair upweighting

scheme to correct for the targeting incompleteness of a mock DESI BGS galaxy

catalogue.

3.1 Introduction

The two point correlation function is an important tool for studying the spatial

distribution of objects in the universe. It can help place constraints on cosmological

models through BAO or RSD measurements and can help infer galaxy physics and

dynamics on small scales. It is important that measurements of this quantity are

accurate, precise and free of systematic biases. Upcoming surveys such as DESI

(DESI Collaboration et al., 2016) and Euclid (Laureijs et al., 2011), that plan to
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measure redshifts for tens of millions of objects, will require very high precision

calculations for the errors in the calculation to be significantly smaller than the

statistical errors from the data.

The most common method of estimating the two point correlation function is

defined in Landy & Szalay (1993a),

ξ(r) =
DD(r)− 2DR(r) +RR(r)

RR(r)
, (3.1.1)

where DD, DR and RR are normalised data-data, data-random and random-random

pair counts, for a random catalogue with the same density distribution as the data

but Poisson distributed. The random catalogue is used to include the effects of

complicated survey geometries. Calculating pair counts is a problem that scales as

O(N2) with N the number of points in the catalogue. With galaxy surveys becoming

larger, the computational requirements are significantly increasing.

Two point correlation function codes must also be easily adaptable to include

new measurement methods. One example of this is the pair upweighting scheme

presented in Bianchi & Percival (2017) used to correct for biases due to missing

observations. Any two point correlation function code implementation must be

precise, fast and flexible.

Publicly available codes exist to estimate the two point correlation function.

CUTE (Alonso, 2012) is a C based code that supports multiple types of output

of the two point correlation function. The code is fast, runs in parallel and is

reasonably intuitive to use. It does however lack some features that could be useful.

It is restricted in IO to solely ASCII files, it only supports linear binning in the rp, π

decomposition, can not automatically calculate resampling errors and has no support

for any specific missing observation correction methods. Attempts at adding in new

features have proven difficult, one reason being the more time consuming nature of

developing C code vs a more modern C++ implementation.

Two other publicly available codes are TreeCorr, first presented in Jarvis et al.

(2004) and the two point correlation function component of CosmoBolognaLib (CBL)

(Marulli et al., 2016). Both of these codes are broader in scope than CUTE. TreeCorr

has the ability to perform two and three point correlation function measurements
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and lensing measurements and CBL aims to provide a common framework for mea-

suring and modeling many common cosmological statistics. Both of these provide

more modern C++ approaches with options to use python wrappers for simpler

interfacing, but TreeCorr still lacks some of the specific two point functionality that

CUTE does. CBL provides much more functionality but still lacks support for the

missing observation correction of Bianchi & Percival (2017). Rather than try to

implement such a scheme on such a large and broad project it was decided it was

easier to write a code of smaller scope from scratch that fulfills the requirements of

being a fast, precise, feature rich and flexible code.

This chapter presents a two point correlation function code, 2PCF, that is pub-

licly available at https://github.com/lstothert/two_pcf. The approach taken

is very similar to that of CUTE (Alonso, 2012) in that it focuses solely on two point

correlation function statistics using nearest neighbour cell searching to speed up

performance, but is written in C++ and provides more user flexibility and features.

This code is used throughout this thesis for two point clustering measurements

and is part of the basis for building a galaxy group detection algorithm in chapter 5.

The code has been used to investigate constraints on f(R) modified gravity models

using marked correlation functions (Hernández-Aguayo et al., 2018). The code im-

plements the pair weighting scheme from Bianchi & Percival (2017), a feature that

is used in Smith et al. (2018) to correct clustering measurements from a simulation

of the DESI Bright Galaxy Survey (BGS) (DESI Collaboration et al., 2016).

Section 3.2 provides a summary of the features of the code. Section 3.3 then

goes into more detail about the implementation of the main features of the code

and section 3.4 summarises the scaling performance of the code. Section 3.5 of this

chapter will then focus on the application of this code in Smith et al. (2018) in

correcting for DESI BGS fibre collision effects. Section 3.6 presents the conclusions.

This chapter will not provide details of how to use the code, this is covered in the

README file included with the code.
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3.2 Feature summary

3.2.1 Output

The code provides estimates of many two point correlation statistics:

• The spherically averaged 2pt correlation function ξ0(r).

• The 2D cartesian decomposition of the 2pt function ξ(rp, π).

• The “spherical” decomposition of the 2pt function ξ(s, µ).

• The angular correlation function, w(θ).

All calculations are exact, i.e no approximations are used. Only the angular correla-

tion function must be run separately the others can be toggled on or off and output

together in a single run. A separate python script is included to calculate the pro-

jected correlation function. See section 3.3.2 for more on the 2D decomposition

calculations. Linear and logarithmic bins are supported in all cases (section 3.3.3).

Shared memory parallelisation is supported (section 3.3.5). The code will automat-

ically calculate jackknife region statistics with little extra computational expense

(section 3.3.4). Individual galaxy weights are supported. The pair upweighting

scheme presented in Bianchi & Percival (2017) is supported (section 3.3.6).

3.2.2 Input

The code calculates two point statistics for any catalogue of galaxies and a cor-

responding catalogue of randoms. Periodic boundary conditions are not currently

supported.

An ASCII parameter file must be provided to set the chosen code options. An

example is provided with the code.

The following data file formats are supported:

• ASCII

• hdf5 1

1The pair upweighting scheme currently only supports hdf5 files.
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The following coordinate systems are supported as input:

• Equatorial (ra, dec, redshift)

• Cartesian (x, y, z)

Currently only a flat ΛCDM cosmology is supported when internally converting from

equatorial to cartesian coordinates; future versions could extend this.

3.3 Implementation

3.3.1 Local cell search

As discussed above, a simple estimate of every pair distance for a catalogue of N

points requires N(N − 1)/2 distance calculations, which for large catalogues soon

outstrips computational feasibility. However, for most use cases the scale of the

survey far exceeds the maximum scale for which the user wishes to calculate the

correlation function, so a large majority of pair calculations are unnecessary. To

reduce their number, the code splits the galaxy survey into cells so that for each

galaxy, only galaxies lying in the same or neighboring cells need to be considered,

similar to the scheme used in Alonso (2012). The scaling of the calculation time

with an increase in survey volume at fixed density should now scale as O(N) rather

than O(N2). The scaling with galaxy density at fixed volume is still O(N2). The

measurements and practical limitations of these scalings are given in section 3.4.

The speed of the code could be increased by using a tree method that can place

entire tree branches or leaves into single bins but the development time needed for

the implementation of such a structure was not justified.

The splitting of the catalogue into cells is performed differently for 3D calcula-

tions than for angular pair counts.

3D cells

Galaxies in a 3D catalogue are partitioned into cubic cells each with side length

equal to the maximum required distance. Hence, only galaxies lying in the same or
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Figure 3.1: A partitioning of a 2D density field into cells. For the black dot repre-

senting a galaxy, all pair distances less than smax are found by considering just the

boxes shaded in blue and the cell containing the black dot, rather than an exhaustive

search of the entire grid.

neighbouring cells need to be considered. Figure 3.1 shows this setup in 2D for a

maximum distance smax. In the case of the monopole or the (s, µ) decomposition

the largest distance is simply taken to be the largest radial separation requested, i.e

smax. In the case of the rp− π decomposition the largest radial distance is given by√
r2
p,max + π2

max.

2D Galaxy pixels

To efficiently calculate angular pair counts, galaxies are assigned to pixels on the

sky defined with the HEALPix C++ package2. HEALPix partitions the entire sky

2https://healpix.jpl.nasa.gov/ and http://healpix.sourceforge.net/html/Healpix_

cxx/index.html
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into equal area pixels. The number of pixels is 3(22n) with n being the user set

integer parameter called the HEALPix order. These pixels are used in a slightly

different way to the 3D method, as any HEALPix order can be chosen, and then

only pixel pairs which may contain galaxy pairs within the maximum desired angular

separation are considered. The query_disc function from the HEALPix package

returns all pixels whose centres lie within a given angular distance from a given

pointing on the sky. From the centre of a pixel, all pixels whose centres lie within a

disc of angular radius θquery, where

θquery = θmax + 2θpixel , (3.3.2)

should be considered to guarantee all pairs are found. θmax is maximum angular

scale on which w(θ) is to be estimated and θpixel is the maximum healpix pixel

radius. θpixel is an output of the function max_pixrad from the HEALPix package

and is unique to each choice of HEALPix order. The number of unnecessary galaxy

pair distances calculated is lower for a higher choice of HEALPix order due to the

smaller pixel size. However, a larger choice of HEALPix order will come with a larger

over-head in finding pixel pairs. The optimum value for the HEALPix order will

vary from catalogue to catalogue, with higher density catalogues preferring larger

values of the HEALPix order. The default value in the code is 5, giving a pixel area

of ∼ 13.5 square degrees. For a survey such as the GAMA survey (Driver et al.,

2011) this corresponds to ∼ 13500 galaxies per pixel.

3.3.2 2D decomposition

The separation between pairs of galaxies is often projected into components perpen-

dicular and parallel to the line of sight, labeled rp and π respectively (Figure 3.2).

In the distant observer approximation, only the π component is affected by red-

shift space distortions and redshift uncertainties. This allows for an integration over

this component to produce a projected correlation function which is independent of

redshift space effects,

wp(rp) = 2

∫ πmax

0

ξ(rp, π)dπ (3.3.3)
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Figure 3.2: Diagram showing the definitions of rp and π. π is the component of s

parallel to the line of projection, and rp the component perpendicular to the line of

projection. The two choices of line of sight projection vector are given in equations

3.3.6 and 3.3.7.

The upper limit of the integral πmax should in theory be infinite, but in practice

this cannot be the case due to the finite size of a catalogue volume. Also, choosing

a value of πmax too large will increase the noise of the measurement so that value

should be chosen to be as large as is needed for the result to converge and not

necessarily larger. The value of π is defined using the line of projection p and the

two galaxy vectors x1 and x2 as

π = |p.(x1 − x2)| , (3.3.4)

leaving rp to be defined as

rp =
√

(x1 − x2)2 − π2 . (3.3.5)

A common choice in the literature is to project the pair separation onto the

November 1, 2018



3.3. Implementation 71

direction of the average position of the two galaxies,

p = x̂1 + x2 =
x1 + x2

|x1 + x2|
. (3.3.6)

This definition is not the default choice used in this code. Instead the default choice

is to project onto the direction bisecting the two galaxies on the sky. That is to

project onto the average of the two galaxy unit directions,

p =
x̂1 + x̂2

2
. (3.3.7)

There are two benefits to this definition. The first one is of speed. In the first

definition the value of |x1 + x2| must be recalculated for every pair, a calculation

that includes a square root, a function that requires many CPU instruction cycles.

With the second definition, each galaxy unit direction can be precomputed, reducing

the scaling of the number of norm vector calculations from O(N2) to O(N). This

does come with an increase in memory use, which must be taken into account if

memory usage is an issue for extremely large catalogues. This increase in memory

usage also means fewer CPU cache hits, but this effect is outweighed by the speed

up due to the fewer vector norm calculations.

The second benefit is that this definition of the direction of projection is not

impacted by redshift space effects as it only depends on the angles on the sky.

This may simplify modeling that does not make the plane-parallel approximation.

For comoving distance errors on galaxies 1 and 2 of ε1 and ε2 the plane-parallel

approximation means the error in the radial direction ∆π is given by

∆π = ε1 − ε2 , (3.3.8)

whereas the true change in π when using the definition given in equation 3.3.7 is

∆π =
1

2
(1 + x̂1.x̂2)(ε1 − ε2) . (3.3.9)

If using the standard definition given by equation 3.3.6 the analytic expression for

this quantity is significantly more complicated.

In the code the default definition is given by equation 3.3.7, but the definition

given by 3.3.6 can be used by commenting out the compile time option _ANGULAR_PI_DEF

in the makefile and recompiling.
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Figure 3.3: Visualisation of the naive log binning scheme for 5 bins between 0.1 and

1. Note that the bins do not extend down to zero.

3.3.3 Flexible binning scheme

It is often desirable when calculating correlation functions to use a binning scheme

other than linear. The contrast between the data and random catalogues at larger

scales is smaller than that at small scales, and the variation as a function of scale is

larger at small scales than large scales, so larger bins at larger scales are often used.

Achieving larger bins at larger scales is typically achieved through using a loga-

rithmic binning scheme. A standard implementation of a logarithmic binning scheme

must have a histogram minimum value greater than zero. Equation 3.3.10 shows an

example of a simple logarithmic binning scheme which returns the integer bin value

B given a value x, a minimum xmin, a maximum xmax, and a number of bins N ,

B = int

(
N

ln(x)− ln(xmin)

ln(xmax)− ln(xmin)

)
. (3.3.10)

This is suitable for many cases but not all. For example, in the calculation of the

projected correlation function, the integral of equation 3.3.3 starts at a π value of

zero, so a non-zero choice for the smallest value of π could lead to a biased result.

Figure 3.3 visualises this standard scheme for 5 bins between 0.1 and 1.

Instead this code uses an improved logarithmic binning scheme that allows any

arbitrary limits and allows the user to choose how aggressively the bin sizes will

scale, i.e. how much bigger each subsequent bin will be compared to the previous

one. A scaling factor, the log base b, is introduced, which represents the scaling

factor between the size of one bin and the next. For this scheme, the integer bin

value B is now calculated using

B = int

(
logb

(
1 +

x− xmin
xmax − xmin

(bN − 1)
))

. (3.3.11)
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In order to understand this binning scheme it is useful to examine the term

x− xmin
xmax − xmin

(bN − 1) . (3.3.12)

This term takes on values from 0 to bN -1, 0 where x = xmin, and bN -1 where x =

xmax. This binning scheme therefore first creates a linear binning scheme with bN - 1

bins, and takes the log base b of one plus this linear bin value to map onto a value of

0 to N as required. An instructive example of this is if two bins (N=2) and a value

of b of 2 is chosen. The second bin is twice the size of the first, so three intermediate

linear bins are created (bN - 1 = 3). A pair lying in the first intermediate linear bin

will map onto the first bin and a pair lying in either of the next two intermediate

linear bins will map onto the second bin. This scheme also works for non integer

values of b but this is harder to visualise.

Figure 3.4 shows the bins in this scheme for multiple choices of the log base with

5 bins between 0 and 1. In contrast to the standard binning shown in Figure 3.3

the binning extends down to a value of zero. This plot also shows the flexibility

that this scheme provides, the bins with larger values of the log base scale far more

aggressively in size. It can be seen that linear binning is a subset of this binning

scheme, corresponding to a log base equal to 1, with each bin being equal in size

to the last. However, equation 3.3.11 returns zero for all x for a value of b = 1,

and only actually reduces to linear bins in the limit as b tends to 1. To avoid this,

whenever b < 1.05, the code adopts linear binning instead. In this scheme, bins are

uniquely defined by a min, a max a number of bins and a log base.

In the code, this flexible scheme is available for use with any of the output

options. In the case of 2D decompositions, separate binning schemes can be used

for each dimension. One might choose to use bins closer to linear along the line of

sight than perpendicular to it, as more of the signal is spread out along the line of

sight due to redshift space effects. In the case of binning in s-µ the µ direction is

fixed to linear bins. To help the user with this non-trivial binning scheme the code

output includes each bin centre and each bin width.
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Figure 3.4: Visualisation of the flexible binning scheme for different values of the

log base in the case of 5 bins between 0 and 1. Note in all cases the bins can extend

down to zero and how aggressively the bins scale can be changed by changing the

log base parameter.
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3.3.4 On the fly jackknife calculations

One of the methods of calculating uncertainties on galaxy correlation functions is

the process of jackknifing (Zehavi et al., 2002; Norberg et al., 2009a). The typical

procedure used to do this is outlined below,

• Calculate the galaxy correlation function, ξ, for the entire sample.

• Separate the galaxy survey on the sky into N regions of similar sky area.

• Mask region i and calculate the galaxy correlation function ξi.

• Repeat the process N times each time masking a different region in turn.

• The variance of the correlation function is then calculated using

V ar(ξ) =
N − 1

N

N∑
i=1

(ξi − ξ)2 , (3.3.13)

One method of creating regions of similar sky area is to split the survey with

straight line cuts in RA and Dec such that each region contains the same number of

points in the random catalogue. First split the survey by RA into strips with equal

numbers of randoms, then split each of these strips with cuts in Dec to achieve the

equal area regions. A python script in included with the code to assign regions

using this scheme. This script also contains the option to rotate the survey about

the survey centre before the scheme is applied so that different partionings of equal

area can be tested for robustness. Figure 3.5 shows an example partitioning with

this scheme for a region similar to a GAMA survey equatorial patch for the cases of

no rotation and a rotation by 45 degrees.

The issue with the standard jackknife procedure is that it requires recalcula-

tion of the correlation function when masking each jackknife region, so increases

computation time by a factor of roughly N . For large area surveys many jackknife

regions may be used so this significantly impacts the computational feasibility of

the calculation.

It can be seen with the standard approach that many galaxy pair distances are

unnecessarily recalculated each time the correlation function is recalculated. Pair
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Figure 3.5: An example of an equal-area jack-knife partioning of a region similar to

a GAMA equatorial region using the included python script. The different colours

show the different regions. The bottom panel shows the results when the survey is

rotated by 45 degrees before running and the top when no rotation is performed.
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distances for galaxies that lie in a single jackknife region will be recalculated N - 1

times (Only not in the case where that region is masked), despite their separation

not changing between each run. The approach taken in this code removes the need

for this unnecessary recalculation of galaxy pairs. It also allows the user to calculate

all jackknife region calculations by running the code once rather than multiple times,

redefining the catalogue each time. The improved procedure used in this code for

an example of a single pair count i.e DD of a survey is,

• User specifies the number of jackknife regions N in the parameter file, jackknife

results are not output if N <= 1.

• User specifies a jackknife region for each galaxy with integers running from 0

to N − 1.

• Hold one histogram for the pair count result with the whole catalogue, DD ,

and one sub-histogram for each jackknife region, labeled DDsub,i, for i ranging

from 0 to N − 1, with each containing the number of pairs where at least one

of the pair of galaxies overlaps with the associated jackknife region.

• An individual jackknife pair count DDi found from masking one region is the

calculated from the total pair count and the sub-histograms using

DDi = DD −DDsub,i . (3.3.14)

• The value of the correlation function on masking each jackknife region can now

be calculated from knowing the pair counts found when masking each region,

and equation 3.3.13 can be used as normal to calculate measurement errors.

The performance overhead for this procedure compared to a single run is modest.

The more jackknife regions used, the larger the memory usage will be, but the in-

crease will typically be small compared to the memory needed to hold the catalogue.

When no jackknife errors are needed, the code will still internally follow the above

procedure, i.e no special case is coded for when no resampling errors are needed.

The computational overhead of this implementation does not scale with the number

of jackknife regions as in the standard implementation, so the performance gain in

the case of multiple jackknife regions is significant.

November 1, 2018



3.3. Implementation 78

3.3.5 Parallelisation

A calculation that can be performed in parallel with none of the individual processes

depending on one another is called “embarrassingly parallel”. In the case of count-

ing galaxy pairs, each pair calculation is independent of one another, the only thing

shared being the resultant histogram, so this process is said to be “nearly embarrass-

ingly parallel”. What this means is that the parallelisation, that is, using multiple

CPU threads to accelerate calculation of galaxy pair counts, should be a relatively

simple process. Indeed the splitting of the galaxy catalogue into cells (section 3.3.1),

lends itself to a very simple prescription for splitting the job across multiple threads.

The galaxy cells can be split between the threads such that each thread calculates

the pairs in which the first galaxy in the pair lies within its assigned cells.

This is implemented in the code using the OpenMP C++ API for shared memory

parallel programming3. Shared memory means that some of the job memory can

be accessed by all threads without the need for replication. In this case the galaxy

catalogue and final histogram are shared between threads. OpenMP allows for

scaling across multiple cores on a single CPU but does not support scaling across

multiple CPUs. This limitation could be overcome by simultaneously using the

message passing interface MPI4 but computation times for the catalogues tested in

this work were fast enough solely using OpenMP that extra development time could

not be justified to extend the parallelisation across multiple CPUs.

As the result histogram is shared between the threads, care must be taken so

that two or more threads do not try to simultaneously update the same part of

the histogram, as this can corrupt the result. Two options present themselves for

solving this problem. The first, is to place the histogram incrementation behind an

“atomic” barrier, which is a region of code through which the threads must pass

one at a time. This option was found to significantly decrease multi-core scaling

performance, as each thread must queue and pass the barrier one at a time, a

problem which becomes worse the more threads are used. The second is to create

3http://www.openmp.org/
4https://en.wikipedia.org/wiki/Message_Passing_Interface
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a private histogram for each thread, then combine them after all pair calculations

have finished. This option was found to be significantly faster, and the memory

overhead from holding one histogram for each thread is typically small.

3.3.6 Pair upweighting scheme

In order to correct for missing correlated data the pair upweighting scheme presented

in Bianchi & Percival (2017) is implemented. This scheme gives a weight to pairs

of galaxies equal to the inverse probability that both galaxies were selected during

target selection, pij
5. This increased weight accounts for similar pairs of galaxies

that were not actually targeted. The weight of a pair of galaxies, wij, is given by

wij =
1

pij
. (3.3.15)

It is important to note that pij is only equal to the product of the individual galaxy

selection probabilities, pipj, in the case where the selection of the two galaxies is

uncorrelated. Often, due to limitations in positioning of spectroscopic fibres, only

one of two galaxies in a close pair can be observed, so their targeting probabilities

are highly correlated. In these cases using a weight of

wij =
1

pipj
, (3.3.16)

will lead to a biased result.

It is impractical to estimate and to save a weight for each pair of galaxies, so

binary masks of random realisations of the targeting algorithm are saved instead.

If bi is the vector of binary values of length N (the number of realisations of the

targeting algorithm) with 1 representing when galaxy i was observed in a realisation

and 0 when it wasn’t, equation (3.3.15) can be written

wij =
N

bi.bj
, (3.3.17)

where the denominator is the dot product of the two binary mask vectors.

5By construction this scheme only works if there is a non-zero probability of targeting every

pair of galaxies in the parent sample.
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Figure 3.6: Redshift completeness mask of the 2dF Galaxy Redshift Survey North

Galactic Plane strip. Each 2dF pointing is visible as a circle. Note the variation

in completeness from region to region and the higher average completion in regions

of overlapping pointings. Source: http://magnum.anu.edu.au/~TDFgg/Public/

Release/Masks/

A complication that often must be accounted for in real surveys is the fact that

different regions of the survey have different target selection statistics. Figure 3.6

shows the redshift completeness mask for the North strip of the 2dF Galaxy Redshift

Survey (Colless et al., 2001). Significant variation in completeness can be seen over

the survey. One variation in particular is that regions lying in the overlap of multiple

2dF pointings have, on average, higher completeness. For 2dFGRS, adaptive tiling

was used, i.e. more pointings were done in regions of higher density. This means

that the survey geometry is correlated with the galaxy density field in such a way

that is very difficult to define algorithmically, so the pair upweighting scheme would

most likely fail to recover the correct clustering. DESI BGS tiling on the other hand,

is random with respect to the background density, so this scheme can be used. This

randomness of tiling needs to be taking into account in the scheme. If DESI BGS

starts in a slightly different sky position, galaxies that would have been in a region of

poor completeness could be in regions of high completeness and vice-versa. Smith

et al. (2018) accounted for this in DESI BGS targeting by randomly shifting the

survey before each rerun of the targeting algorithm such that each galaxy had an

equal chance of falling into the various types of overlap region generated by the

structure of the survey.
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Applying this solution to the exact scheme defined in Bianchi & Percival (2017)

will produce a bias if the shifts of the survey are not random each time on the whole

sky. This is because pairs near the edge of the survey will often be missed due to one

or both galaxies not lying in the shifted footprint, i.e. they were never candidates

for observation during some realisations. This would artificially upweight pairs near

the edge of the survey. If the shifting covers the whole sky this excess upweighting

is the same for all pairs in the survey, so the bias disappears. For a large survey

such as DESI BGS, which covers a third of the sky, this may be possible, but for

smaller surveys the vast majority of the targeting realisations would not contain any

galaxies at all. In the latter case case, the number of realisations of the targeting

algorithm will have to be significantly increased to ensure all pair probabilities are

well defined. The solution proposed and implemented in this code is to save a second

vector of binary weights, ci, of length N , in which 1 represents when galaxy i lies

in the shifted footprint and 0 when it doesn’t. This can then be used to account

for when pairs were not candidates for selection by modifying equation (3.3.17) to

become

wij =
ci.cj
bi.bj

(3.3.18)

Previously the maximum value of bi.bj was taken to be N the number of realisa-

tions. If a pair of galaxies was seen in every realisation, then no upweighting was

needed. Now the new maximum value is replaced with the more accurate ci.cj, so

the maximum number of times that a pair could be observed is now the number

of realisations in which that pair was a candidate for targeting. This modification

allows for smaller random shifts between each targeting realisation, which could re-

duce the numbers of realisations needed to accurately apply this scheme to some

surveys by orders of magnitudes.

The angular upweighting suggested by Bianchi & Percival (2017) to lower the

variance of the result is also implemented. This makes the final upweighting scheme

for the data-data pair count

DD(r) =
∑

wij
DDP (θ)

DD(θ)
, (3.3.19)

where the wij weights are defined in equation (3.3.18). DDP (θ) is the angular pair
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count of the parent sample that could have been targeted, and DD(θ) is the angular

pair count of the targeted sample calculated using the pair weights wij defined in

equation (3.3.18). The way to think of this factor is that if the pair upweighting

scheme over (under) estimates the angular correlation function, the weights wij are

on average too large (small) by a factor of DD(θ)/DDP (θ) at a particular angular

separation. Multiplying the weights in the 3D case by the term DDP (θ)/DD(θ)

will slightly downweight (upweight) pairs to try to correct for this.

One caveat to this scheme is that for redshift selected samples of the real data it

is difficult to know the parent sample for calculating DDP (θ). We note that in the

application of Smith et al. (2018) presented in Section 3.5 the correction is exact as

DDP (θ) is perfectly known for the mock sample considered.

3.4 2PCF Performance

In this section we will explore how the performance of the 2PCF code varies with the

volume or density of the catalogue, the maximum scale required and number of cores

used. A common catalogue is used across all sub-sections, 14000 square degrees of

the HOD mock presented in Smith et al. (2017)6. The catalogue is volume limited

Mr − 5 log10 h < −20.5 between 0.15 < z < 0.3 and covers two patches to roughly

mimic the DESI BGS survey area. The catalogue contains ∼ 840 000 galaxies and

in every test ten times the number of random points than data points are used.

When the full catalogue is used around 8.5 million random points are considered.

The random catalogue is generated by randomly sampling from the RA, Dec and

redshift values of the data in each patch, which works as each patch is bounded by

constant values of RA and Dec. One random catalogue is generated that is cut in

the same way as the data catalogue is in each test. The results presented here apply

to the monopole correlation function, and where the results differ for the angular

correlation function it is explicitly stated. When the number of cores is not directly

varied, the code is run in parallel on a 12 core CPU7. All scales given are in h−1Mpc.

6Publically available from the Virgo database at http://virgo.dur.ac.uk/data.php
7Intel X5650 with 60GByte shared memory.
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Figure 3.7: Wall time of the code in seconds for different fractions of the full cata-

logue volume and different maximum scales (in units of h−1Mpc). A 10% catalogue

volume percentage means that only 10% of the solid angle of the full catalogue has

been used. The dots represent the measured values and the lines show the theoretical

O(N) scaling, extrapolated from the smallest volume for each maximum scale.

The run for the entire catalogue when the max scale is set to 150 h−1Mpc takes ∼ 30

hours. This code is therefore capable of dealing with the currently most challenging

catalogues in a reasonable time. If many runs of that size are needed, for example to

estimate covariance matrices, spreading runs over multiple nodes would be necessary

to keep the computation time reasonable.

3.4.1 Volume scaling

The first performance scaling test is to see how the code scales as the volume of

the catalogue changes. Smaller volume catalogues are generated by cutting the two

patches in ra such that only a particular percentage of the full catalogue remains,
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the same cuts are made for the random catalogue. Because of the local cell search

for relevant pairs, presented in section 3.3.1, it is expected that the runtime for the

code will scale linearly with increasing catalogue size, i.e. O(N).

Figure 3.7 shows the runtime of the code in seconds for different volume cuts and

maximum scales, as well as lines of O(N) scaling from the smallest volume of each

maximum scale test. The runtime of the code significantly increases with an increase

in maximum scale. As the maximum scale (cell size) increases, the average number

of points inside each cell increases, which significantly increases computation time.

In fact, the code scales as O(R6
max) with Rmax the maximum scale required.

It can also be seen that the smaller the maximum scale, i.e the smaller the cell

size, the closer the volume scaling is to the theoretical linear case. For larger cell

sizes, the scaling is significantly worse than expected for smaller catalogues, but

tends towards the theoretical O(N) scaling for larger volume catalogues. It is easy

to see why this scaling occurs by considering two extreme cases of the ratio of cell

size to survey size, one a pencil beam survey and large cells, and the other a large

survey with small cells. When the volume of the pencil beam survey is increased,

the survey may at many points still lie within the width of one cell, so rather than

increasing the number of cells, the number of points per cell has mostly increased.

Increasing the number of points per cell is expected to scale as O(N2) rather than

O(N). However in the case of the large survey and small cells, the average number

of points per cell is mostly unchanged, and only the number of cells needed has

changed, so we now recover the O(N) scaling we wanted. The conclusion of this

is that the code will scale as O(N) with catalogue volume if the size of the cells

is significantly smaller than the smallest scale of any cartesian dimension of the

catalogue volume, and will scale as the density scales if the cells are larger than the

survey volume.

3.4.2 Density scaling

The second aspect of performance scaling to investigate is how the code scales with

density. In this case the full catalogue and the randoms are randomly subsampled

to generate the smaller catalogues. It is expected that the code will scale as O(N2)
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Figure 3.8: Wall time of the code in seconds for different catalogue densities and

different maximum scales in units of h−1Mpc. The dots show the measured values

and the lines show the theoretical O(N2) scaling, extrapolated from the lowest

density for each maximum scale.

with changing density as only the number of galaxies per cell is being changed.

Figure 3.8 shows the runtime of the code in seconds for different density subsam-

ples and maximum scales, as well as lines of O(N2) scaling from the lowest density

of each maximum scale test. For the runs with a smaller maximum scale, the results

follow the theoretical scaling prediction well. Runs with high densities and large

maximum scales deviate above the expected scaling. All the catalogues that are

above the theoretical expectation are the runs that had the largest average number

of points per cell. A possible explanation for this deviation is that the cells are now

too large to fit in the CPU cache in one go, so many more memory reads are needed,

slowing down the code. The point at which this may happen will be architecture

dependent. It is postulated that above this value the code will eventually return to
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Figure 3.9: Wall time of the code as a function of the number of cores used. The

dots show the measured results and the line shows the ideal 1/n scaling extrapolated

from the run with a single core. It can be seen the code scales closely to the ideal

case.

O(N2) scaling but this is not explicitly tested.

3.4.3 Multicore scaling

The final aspect of performance scaling to investigate is how the code scales with

increasing the number of cores used. For this the whole catalogue with 1/4 density

and a max scale of 50 h−1Mpc is used. Figure 3.9 shows the experimental results

along with ideal 1/n scaling and the code is seen to perform very close to the ideal

case. This verifies that the parallelisation implementation laid out in section 3.3.5

is efficient and has little overhead compared to the ideal case.
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3.5 Application to mock DESI BGS fibre collision

correction

This section will summarise the application of the code in Smith et al. (2018) to a

mock catalogue for the DESI Bright Galaxy Survey (BGS). This work shows that

the missing observation correction presented in section 3.3.6 successfully recovers

the true galaxy clustering measurement for a BGS mock catalogue that includes the

complicated DESI target selection effects.

3.5.1 DESI BGS

The Dark Energy Spectroscopic Instrument (DESI) (DESI Collaboration et al.,

2016) will be used to conduct a large spectroscopic survey with the primary science

aims of making precision measurements of the baryon acoustic oscillation (BAO)

scale and the large scale redshift space distortion (RSD) of galaxy clustering.

The instrument, which is currently being built and assembled, will be installed

on the 4-m Mayall Telescope at Kitt Peak, Arizona. DESI will consist of dark-time

and bright-time programs. The bright galaxy survey (BGS), part of the bright-time

program, is a low redshift, flux limited survey of ∼ 10 million galaxies with a median

redshift zmed ∼ 0.2. BGS will have two priorities of galaxies, priority 1 (r < 19.5),

and priority 2 (19.5 < r < 20.0). Smith et al. (2018) investigates both samples but

here we look only at a subset of the results from the priority 1 galaxies.

3.5.2 Mock catalogue

The BGS mock catalogue used here is from the Millennium-XXL (MXXL) simu-

lation (Smith et al., 2017). This is a halo occupation distribution (HOD) mock,

which contains galaxies to r = 20 over the same redshift range as the BGS, and is

constructed to reproduce the luminosity function and clustering measurements from

SDSS (Blanton et al., 2003; Zehavi et al., 2011) and GAMA (Loveday et al., 2012;
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Figure 3.10: Footprint of the DESI BGS, which covers 14,800 square degrees.

Colours indicate the 100 jackknife regions. Taken from Smith et al. (2018).

Farrow et al., 2015a).8

Figure 3.10 shows the sky footprint of the mock with different colours highlighting

the 100 jackknife regions used to generate the errors. The sample used for testing

the clustering measurements is a volume limited sample of priority 1 galaxies, 0.09

< z < 0.3, −22 < Mr − 5 log h < −21 that contains ∼ 1.5 million galaxies. The

randoms are generated by randomly sampling from the values of ra, dec and z of

the data and are 8 times more numerous than the data points.

The full DESI BGS targeting algorithm is run over the mock catalogue to gener-

ate a realistic selection. The algorithm is then run a further 2048 times to estimate

the binary mask vectors needed to estimate the inverse pair probabilities.

3.5.3 Clustering correction

This section looks at the correction of the monopole correlation function using dif-

ferent methods of correction. The tested methods of recovery are as follows:

8The MXXL mock is available at http://icc.dur.ac.uk/data/ and https://tao.asvo.org.

au/tao/
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• Pair inverse probability (PIP) - this is the scheme first discussed in Bianchi

& Percival (2017) and implemented in section 3.3.6

• Angular upweighting - galaxy pairs are upweighted by the factor

W (θ) =
1 + w(p)(θ)

1 + w(θ)
, (3.5.20)

where w(p)(θ) is the angular correlation function of the complete, parent sample

of galaxies, and w(θ) is the incomplete, targeted sample. This is the method

used in the 2dFGRS analysis of Hawkins et al. (2003).

• Nearest object - missing galaxies are assigned the redshift of the nearest

targeted object on the sky. This approach is taken in most SDSS survey

analyses, e.g. Zehavi et al. (2005), Berlind et al. (2006b), Zehavi et al. (2011).

• Nearest weight - each galaxy is first given a weight of 1, and the weight

of a missing galaxy is added to the nearest targeted object on the sky. This

method is used in BAO analysis in the BOSS survey (Anderson et al., 2012,

2014a,b). It was implemented in 2dFGRS but the extra weight was spread

over more neighbours (Norberg et al., 2002).

Figure 3.11 shows the monopole result when applying these different methods of

correction, along with the parent clustering and the result using no correction on

the targeted galaxies.

Not performing any corrections produces a correlation function that is too low

on small scales, as pairs of galaxies have been missed due to fibre collisions. The

result is also too large on large scales, but this is not statistically significant. The

nearest redshift method works well on large scales but significantly overestimates

the correlation function on small scales, by up to an order of magnitude. This is

because a large number of the galaxies placed at very small separations to their

nearest angular neighbour will in reality not be close pairs. Nearest weight also

performs well on large scales, but undercorrects the clustering on scales less than ∼ 1

h−1Mpc. The result on those scales is however closer than the nearest redshift result.

The angular weighting works well on intermediate scales, but overpredicts both on
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Figure 3.11: Monopole of the redshift space galaxy correlation function of the main

volume limited sample, with different corrections defined in the text applied. The

two lower panels show the ratio to the complete parent sample. Shaded regions are

errors estimated from 100 jackknife samples. Taken from Smith et al. (2018).
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small and large scales, with only the small scale overprediction being statistically

significant. The PIP scheme corrects the monopole to within the scatter found by

the jackknife resampling on all scales. This validates the scheme presented in section

3.3.6.

Smith et al. (2018) also go on to show that this PIP correction, as implemented

here, also successfully recovers the higher order multipoles of the correlation function

and the projected correlation function. These results are omitted here for brevity.

3.6 Conclusion

This chapter has introduced a publicly available two point correlation function code,

2PCF, written in C++, that is fast, flexible and contains the features needed for

modern galaxy redshift survey clustering statistics. The code is similar in scope and

approach to CUTE (Alonso, 2012), but adds flexible binning, on the fly jackknife

resampling calculations, more flexible IO and the pairwise upweighting scheme of

Bianchi & Percival (2017). An extension of this pair upweighting scheme to account

for shifting the survey in each run is also explained and implemented.

This code is shown to scale as O(N) with N the number of objects in the

catalogue if the increase is in volume provided the cell size is small compared to

the smallest dimension of the survey. The code is shown to scale as O(N2) with

increasing density, with an extra penalty added if the number of points per cell

exceeds architecture specific cache sizes. The shared memory parallelisation is shown

to have little overhead as the code scales close to ideally when the number of cores

is increased.

The code has been used throughout this thesis for two point statistics and has

formed the base of a galaxy group detection algorithm. The code has been used

to investigate constraints on f(R) modified gravity models using marked correlation

functions in Hernández-Aguayo et al. (2018). The use of the code in Smith et al.

(2018) is summarised, which shows that the implementation of the pair upweighting

scheme here is sufficient to correct the clustering statistics of the DESI BGS for the

complicated target selection effects.
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A list of proposed future developments to the code:

• Periodic box support

• Cross correlation support

• Non-flat cosmology support

• FITS file support

• Automated random catalogue generation
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Chapter 4

A mock catalogue for the PAU

Survey

This chapter presents the results of Stothert et al. (2018) verbatim.

We present a mock catalogue for the Physics of the Accelerating Universe Survey

(PAUS) and use it to quantify the competitiveness of the narrow band imaging for

measuring spectral features and galaxy clustering. The mock agrees with observed

number count and redshift distribution data. We demonstrate the importance of

including emission lines in the narrow band fluxes. We show that PAUCam has

sufficient resolution to measure the strength of the 4000Å break to the nominal

PAUS depth. We predict the evolution of a narrow band luminosity function and

show how this can be affected by the OII emission line. We introduce new rest

frame broad bands (UV and blue) that can be derived directly from the narrow

band fluxes. We use these bands along with D4000 and redshift to define galaxy

samples and provide predictions for galaxy clustering measurements. We show that

systematic errors in the recovery of the projected clustering due to photometric

redshift errors in PAUS are significantly smaller than the expected statistical errors.

The galaxy clustering on two halo scales can be recovered quantitatively without

correction, and all qualitative trends seen in the one halo term are recovered. In

this analysis mixing between samples reduces the expected contrast between the one

halo clustering of red and blue galaxies and demonstrates the importance of a mock
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catalogue for interpreting galaxy clustering results. The mock catalogue is available

on request at https://cosmohub.pic.es/home.

4.1 Introduction

Clustering measurements at low redshifts have been shown to display a dependence

on galaxy properties such as stellar mass, luminosity, and colour, which suggests

that these properties depend on the mass of the host dark matter halo (e.g. Norberg

et al. 2002; Zehavi et al. 2011). Galaxy clustering measurements are therefore not

only useful for constraining the cosmological model but also for developing our

understanding of galaxy formation physics.

The processes that shape how the efficiency of galaxy formation depend on halo

mass may change with redshift, so it is important to extend measurements of galaxy

clustering as a function of intrinsic galaxy properties to higher redshift. One clear

piece of evidence hinting at evolution in the galaxy formation process is the dramatic

change in the amount of star formation activity since z ∼ 1 − 2, with roughly ten

times less star formation globally by the present day (Lilly et al., 1996; Madau et al.,

1996).

The measurement of clustering as a function of galaxy properties poses different

challenges to those faced when using large-scale structure to constrain cosmological

parameters. In the cosmological case, the aim is to maximize the volume probed

whilst maintaining an appropriate number density of galaxies to achieve a moder-

ate signal-to-noise ratio in the power spectrum measurement (e.g. Feldman et al.

1994). The signal-to-noise ratio can be boosted by targeting galaxies with stronger

clustering or a larger bias than the average population; beyond this, the selection

of the galaxies is not that important in the cosmological case. On the other hand,

when using clustering to probe galaxy formation, the desire is for a high number

density of galaxies with a uniform selection covering a wide baseline in the intrinsic

galaxy property of interest.

Progress towards compiling large-scale structure samples for galaxy formation

studies at intermediate redshifts has been made through the Galaxy And Mass
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Assembly Survey (GAMA; Driver et al. 2011), which targets galaxies in the r-band

brighter than r = 19.8, with a median redshift of z ∼ 0.2 over 286 sq deg with high

completeness, and the VIMOS Public Extragalactic Redshift Survey (VIPERS),

which obtained redshifts for 86 7765 galaxies with iAB < 22.5 over 24 deg2 at ∼47%

completeness (Scodeggio et al., 2018). The PRIsm MUlti-object Survey (PRIMUS;

Coil et al. 2011) used slit masks to measure ∼ 2500 redshifts in a single telescope

pointing, recording 130 000 redshifts over 9.1 deg2 to iAB = 23.5, with a redshift

distribution peaking at z ∼ 0.6. These surveys have been used to carry out a

large number of analyses to quantify the galaxy populations and to constrain the

cosmological model. Below we highlight some results from these surveys which

explicitly focus on using galaxy clustering measurements to probe the physics of

galaxy formation. Farrow et al. (2015b) measured galaxy clustering as a function

of luminosity and colour using GAMA. Loveday et al. (2018) inferred the pairwise

velocity distribution using the small scale galaxy clustering measured from GAMA.

In both cases, these observational results were compared to theoretical models of the

sort we will use here. Marulli et al. (2013) used VIPERS to measure the dependence

of galaxy clustering on stellar mass and luminosity for 0.5 < z < 1.1. Coupon

& Arnouts (2015) combined clustering measurements with a gravitational lensing

analysis to constrain the galaxy halo connection. Skibba et al. (2014) measured the

clustering of galaxies in PRIMUS as a function of colour and luminosity, Skibba

et al. (2015) studied the variation of the clustering amplitude with stellar mass and

Bray et al. (2015) examined how the luminosity dependence of clustering depends

on pair separation.

A limitation of spectroscopic surveys is the number of redshifts that can be

measured in a single telescope pointing. This is set by the number of fibres or slits

available to deploy to measure galaxy redshifts in the field of view. The use of

some form of aperture to capture the light from a single galaxy also introduces a

systematic effect on the clustering measured on small scales. The physical size of the

slit or fibre means that in some cases only one member of a pair of galaxies within

a particular angular separation can be targeted for a redshift measurement. This

“fibre collision” effect can be mitigated by repeat observations of the same field or
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by applying a correction to the measured pair counts.

An alternative to using spectroscopy to measure the radial distance to a galaxy

is to use photometry taken in a number of bands. A photometric redshift can be

assigned to a galaxy by, for example, comparing the observed flux in different bands

to that derived from a template spectrum that is shifted in redshift (Beńıtez, 2000;

Bolzonella et al., 2000). The photometric redshift approach has three advantages

over spectroscopy: 1) the galaxy selection is homogeneous down to the flux limit,

without any bias towards a higher success rate of redshift measurement for galaxies

with emission lines (although the precision and catastrophic error rate of photo-

metric redshifts will vary for different populations of galaxies; see e.g. Mart́ı et al.

2014a; Sánchez et al. 2014), 2) there are no ‘fibre collisions’ that can impact galaxy

clustering measurements and 3) there is no requirement to match the surface density

galaxies to the number of slits or fibres within the field of view.

Broad band photometry, in which the typical filter width is ∼ 1000 Å, is limited

to a redshift precision ∆z/(1 + z) (hereafter σz) of ∼3-5%. CFHTLS wide, a broad

band survey observing in u, g, r, i and z which is 80% complete to i < 24.8 reaches

σz ∼ 3% for i < 24 with ∼ 4% catastrophic errors (defined as σz > 15%) (Ilbert,

2012). This level of precision is sufficient to divide galaxies into redshift shells in

which the projected clustering can be measured. The error in the radial distance

estimate in this case is ∼ 100h−1 Mpc at z = 0.7.

The accuracy of photometric redshifts can be improved by using narrower filters

(Wolf et al., 2004). The Advanced Large, Homogeneous Area Medium Band Redshift

Astronomical Survey (ALHAMBRA) Moles et al. (2008), offers a recent example of

this by using 20 medium band filters, each ∼300Å in width, to reach an accuracy

of σz = 1.4% for galaxies with i < 24.5 (Molino et al., 2014). Ilbert et al. (2009)

reached σz = 1.2% for objects with i < 24 over the 2 deg2 COSMOS field using a

combination of broad, medium and narrow bands spanning the ultra-violet to the

mid-infrared.

The Physics of the Accelerating Universe Survey (PAUS) is a narrow band imag-

ing survey using PAUCam, Padilla et al. (2016), which was commissioned in June

2015, on the 4.2 m William Herschel Telescope, and Padilla et al. (In prep). PAUS
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Figure 4.1: Filter response as a function of wavelength for the 40 PAUcam filters

(thin lines) compared to CFHT MegaCam broad band filters g, r, i (thick lines).

Filter response curves include atmospheric transmission, telescope optics and CCD

quantum efficiency.
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will measure narrow band fluxes by using forced photometry on objects previously

detected in overlapping broad band photometric surveys CFHTLenS (Heymans

et al., 2012) and KiDS (Kuijken et al., 2015). PAUS aims to perform forced pho-

tometry measurements in 40 narrow bands over 100 deg2 for objects i < 23, and

reach signal-to-noise of 3 at narrow band magnitude 23. Each of the 40 narrow

band filters have FWHM 130Å and are spaced by 100Å, over the wavelength range

of 4500Å to 8500Å (Mart́ı et al., 2014a). Fig. 4.1 shows the PAUCam narrow band

filters compared to the g, r and i bands from CFHTLS. 40 narrow bands span the

region covered by these three broad band filters. The increased spectral resolution

of PAUS imaging will allow for photometric redshift measurements of σz = 0.35%

for objects i < 23 (Mart́ı et al., 2014b). This represents an improvement of nearly

an order of magnitude compared with typical broad band redshift measurement

uncertainties, and in principle allows the radial distance information to be used in

clustering estimates and to infer membership of galaxy groups.

The spectral features of a galaxy encode information about intrinsic properties

such as its stellar mass, age and metallicity. Using these properties to define sam-

ples for clustering studies can then help us to understand the connection between

galaxy properties and the mass of the host dark matter halo. These features include

emission lines, absorption features, the 4000Å break and the shape of the contin-

uum. Measuring the spectral features of individual galaxies has largely been in the

domain of spectroscopic surveys. Kauffmann et al. (2003) used a combination of

the strength of the 4000Å break and the Hδ absorption feature to constrain the

stellar age, and contribution to stellar mass from recent star formation events, for

a large sample of galaxies drawn from the spectroscopic Sloan Digital Sky Survey.

Kriek et al. (2011) used stacking to measure the average values of spectral features

using the medium band photometry of 3500 galaxies from the NEWFIRM survey

to constrain star formation histories 0.5 < z < 2.0. One of our goals here is to

determine how competitively PAUS can be used to determine spectral features of

galaxies, compared to the use of higher resolution spectra e.g. from zCOSMOS

(Lilly et al., 2007), allowing for any modifications to the definitions of the spectral

features driven by the narrow band photometry and taking into account errors in
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the photometry and in the photometric redshift estimation.

Here we use the galaxy formation model GALFORM combined with a large-volume,

high-resolution N-body simulation to build a mock catalogue for PAUS. Contreras

et al. (2013) demonstrated that semi-analytical models of galaxy formation give

robust predictions for galaxy clustering and, where differences exist between the

models, they can be traced back to choices made in the treatment of galaxy mergers

and the spatial distribution of satellite galaxies (see also Pujol et al. 2017). Farrow

et al. (2015a) used the Gonzalez-Perez et al. (2014a) model to interpret GAMA

clustering measurements as a function of luminosity, stellar mass and redshift.

The layout of this paper is as follows. Section 4.2 introduces the galaxy forma-

tion model and the PAUS mock catalogue, Section 4.3 investigates the use of the

PAUS narrow band filters to measure galaxy spectral features, and Section 4.4 gives

predictions for the narrow band luminosity functions, other characterisations of the

galaxy population in PAUS and galaxy clustering. We conclude with Section 4.5.

4.2 PAUS mock lightcone

Here we describe the N-body simulation and galaxy formation model used (§ 4.2.1),

introduce some basic properties of the mock catalogue constructed (§ 4.2.2), discuss

the modelling of emission lines and their impact on narrow band fluxes (§ 4.2.3) and

set out the treatment of errors in photometry and in photometric redshift errors.

4.2.1 N-body simulation & galaxy formation model

To model the galaxy population observed with PAUS we use the GALFORM semi-

analytic galaxy formation model presented in Gonzalez-Perez et al. (2014a) (here-

after GP14). The GALFORM model (Cole et al., 2000) aims to follow the formation

and evolution of galaxies in dark matter halos by solving a set of differential equa-

tions that describe the transfer of mass and metals between reservoirs of hot gas,

cold gas and stars (see the recent extensive description of the model by Lacey et al.

2016 and the reviews by Baugh 2006 and Benson 2010). Due to the complexity and

uncertainty of galaxy formation physics, many processes are modelled using equa-

November 1, 2018



4.2. PAUS mock lightcone 100

tions which require parameter values to be specified. These are set by requiring the

model to reproduce a selection of observations of the galaxy population, mostly at

low redshift. The model calculates the star formation and merger history for each

galaxy, including all of the resolved progenitors. With an assumption about the stel-

lar initial mass function (IMF) and a choice of stellar populations synthesis (SPS)

model, GALFORM outputs the flux for each galaxy in the PAUS bands using the com-

posite stellar population obtained from the star formation history (Gonzalez-Perez

et al., 2013). This includes a calculation of the attenuation in each band, based on

the optical depth calculated from the metallicity of the gas and the size of the disk

and bulge components of the galaxy (Gonzalez-Perez et al., 2013)

To build a mock catalogue on an observer’s past lightcone with spatial informa-

tion about the model galaxies, it is necessary to implement the galaxy formation

model in an N-body simulation. The dark matter halo merger trees used in the

galaxy formation model are also extracted from the N-body simulation (Jiang et al.,

2014). The GP14 model is implemented in the Millennium WMAP7 N-body simu-

lation (hereafter MR7, Guo et al. 2013). The MR7 run has a halo mass resolution

of 1.86× 1010 h−1 M� (defined by the condition that a halo must consist of at least

20 particles) in a cube of side 500h−1Mpc. The use of the MR7 run means that

the GP14 model is complete to i < 23 for z > 0.2. This is sufficient for our anal-

ysis. GP14 is an update of the model presented in Lagos et al. (2011a) to make it

compatible with the WMAP7 cosmology and includes the improved star formation

treatment implemented by Lagos et al. (2011b).

4.2.2 Mock catalogue on the observer’s past lightcone

The depth of PAUS means that the properties and clustering of galaxies will evolve

appreciably over the redshift range covered. Hence it is necessary to take this into

account when constructing a mock catalogue for PAUS. The starting point is the

galaxy population calculated using GALFORM at each of the N-body simulation out-

puts. Following the lightcone interpolation described in Merson et al. (2013), we

construct a mock catalogue of one contiguous 60 sq deg patch. PAUS will target

multiple fields but this will make little difference to one point statistics and small
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scale clustering results presented here.

It is important to demonstrate that the mock catalogue is in broad agreement

with the currently available observational data. The number counts of the PAUS

mock compare well with large area photometric surveys as shown by Fig. 4.2, which

shows the agreement between the model and the observations from Pan-STARRS

(N. Metcalfe, priv. comm) and the Sloan Digital Sky Survey (York et al., 2000).

The systematic differences between the data points are partly due to the slightly

different i band filters used in each survey. The offset between the mock catalogue

and the data is reasonable when considering the systematic differences between the

data. The low redshift incompleteness due to finite halo mass resolution of the WM7

simulation does not impact this comparison as the total number of faint objects is

dominated by galaxies with z > 0.2, which are well resolved in the model.

Fig. 4.3 shows the redshift distributions for the mock lightcones associated with

five different galaxy surveys, along with data from VIPERS (de la Torre et al.,

2013), and COSMOS photo-z (Ilbert et al., 2009). The choice of the two comparison

datasets was made to test the mocks against surveys with flux limits on either side

of the nominal PAUS i-band magnitude limit, VIPERS i < 22.5 and COSMOS

photo-z with 21.5 < i < 24.5. The model predictions agree reasonably well with

the observations. The disagreement with the lowest redshift COSMOS data point is

due to incompleteness in the model; this will be less important for the PAUS mock

which is shallower than the COSMOS one. There is some disagreement with the

high redshift tail of the VIPERS n(z). This suggests that the model under predicts

the bright end of the i-band luminosity function at higher redshifts. However, as

our analysis is limited to z < 0.9, an investigation into the cause and significance

of this discrepancy is left to a later date. For z < 0.9, the VIPERS mock catalogue

agrees well with the observations.

One current limitation of the mock catalogue is that it cannot be used for valida-

tion of photometric redshift codes. Tests run using the photo-z code embedded in the

PAUS pipeline reveal discreteness in the returned redshifts which are aligned with

MR7 snapshots. This issue arises due to the narrow width of the PAUS filters and

the associated shift in redshift being smaller than the spacing of the N-body outputs
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Figure 4.2: The predicted i-band galaxy number counts in the PAUS mock catalogue

(solid line) compared with various observations (coloured symbols; see legend). The

vertical bars on the solid line show a jackknife estimate of the sample variance on

the number counts. We have omitted the errors on the observational estimates of

the counts as they come from very different solid angle surveys. The vertical blue

dashed line indicates the PAUS magnitude limit i = 23. The inset shows, on a linear

scale, the result of dividing the observed number counts by the lightcone predictions.
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Figure 4.3: The redshift distributions in various mock catalogues (lines) compared

to survey data (circles; see legend). The VIPERS data is taken from de la Torre

et al. (2013), and the VIPERS mock catalogue is a 24 deg2 lightcone to i < 22.5

with a 65% sampling rate. The mock VIPERS n(z) is then statistically corrected for

the colour cut using the empirical relation found in de la Torre et al. The COSMOS

photo-z data is taken from Ilbert et al. (2009), and the COSMOS photo-z mock is a

2 deg2 lightcone retaining galaxies with 21.5 < i < 24.5. The SDSS mock is a 10000

deg2 lightcone with r < 17.77 and the GAMA lightcone covers 180 deg2 to r < 19.8.

These are plotted without an observational comparison to show the relative survey

sizes and depths.
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in redshift. This is not an issue for broad band photometry or when using multiple

adjacent filters for measurements as in this analysis. A catalogue constructed using

the P-Millennium simulation (Baugh et al, in prep), will improve both the mass and

time resolution of our lightcone mock catalogue.

4.2.3 Impact of emission lines on narrow band fluxes

Emission lines are generally thought to make a negligible contribution to the flux

measured in broad band filters, even for high redshift galaxies (Cowley et al., 2017).

However, the narrow width of the PAUCam filters means that it is necessary to

revisit the contribution of emission lines for PAUS.

GALFORM makes a calculation of the emission line luminosity of each galaxy

using the number of Lyman continuum photons, the metallicity of the star-forming

gas and a model for HII regions from Stasińska (1990). Gonzalez-Perez et al. (2017)

give a recent illustration of this functionality presenting predictions for the abun-

dance and clustering of OII emitters.

Fig. 4.4 shows the contribution emission lines can make to the PAUS narrow band

fluxes for a single model galaxy. This illustrates that emission lines can be beneficial

not only for the estimation of photometric redshifts, but suggests that PAUS could

be used to identify and characterise populations of emission line galaxies. This is

particularly relevant for the preparations for upcoming large spectroscopic surveys

such as DESI (DESI Collaboration et al., 2016) and Euclid (Laureijs et al., 2011)

which will build redshift catalogues from emission line galaxies.

Fig. 4.5 shows the fraction of galaxies whose relevant PAUS filter flux changes

by a given percentage due to the contribution of one of the Hα, OII or OIII emission

lines. For this calculation we restrict ourselves to a redshift range over which all lines

are visible in the PAUCam filter wavelength range (see Table 4.1). The curves show

the change in the flux of the filter with peak transmission closest to the observed

emission line. Note that as PAUS filters have a FWHM 130Å, a full width of ∼

135Å, and are spaced by 100Å, in a good fraction of cases a line will also contribute

significantly to a second narrow band flux measurement.

It can be seen from Fig. 4.5 that for 50% of galaxies in this sample that at least
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Figure 4.4: PAUCam filter fluxes for an illustrative star-forming galaxy taken from

the PAUS mock. All 40 PAUCam filters are plotted. Blue (red) crosses show filter

fluxes without (after including) emission lines.
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Figure 4.5: Fraction of model galaxies whose flux in nearest PAUCam filter is af-

fected by the inclusion of a specific emission line (as indicated by the key). Only

galaxies with redshift 0.21 < z < 0.3 and magnitude i < 23 are shown to preserve

a common sample where all lines can be sampled by a PAUCam filter. See section

4.2.3 for a discussion.
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Figure 4.6: The spatial distribution of galaxies in a 1 degree thick slice from the

PAUS mock catalogue. The three panels show the spatial distribution with spectro-

scopic redshift resolution (left), with PAUS-like redshift resolution (centre) and for

typical broad band redshift resolution (right). Red points are galaxies brighter than

the PAUS magnitude limit i = 23, while blue points correspond to GAMA galaxies

(r < 19.8) with the spectroscopic redshift.

one narrow band flux measurement changes by 40% or more due to the inclusion of

emission lines. That fraction falls to 38% for OIII and to 5% for OII, due to the

average lower luminosity in these lines compared to that in the Hα line.

4.2.4 Photometry and redshift errors

Photometric redshift errors and photometry errors are added to the mock catalogue

in post-processing. Two lightcones are produced, one with perfect photometry and

correct redshifts and the other with PAUS-like errors applied. These errors are

defined as Gaussian redshift errors of σz = 0.35% and Gaussian flux errors equivalent

to a signal-to-noise ratio of 3 at magnitude 23 in the narrow band filters. These

redshift errors are a simple approximation to PAUS photo-z measurements which

will be fully explored in Eriksen et al (in prep). No photometry errors are included

in the broad band magnitudes as the sources of the broad band photometry will be

at least one to two magnitudes deeper than the nominal depth of PAUS of i = 23.

Fig. 4.6 shows the spatial distribution of galaxies in the PAUS mock catalogue

and illustrates the impact of different redshift errors on the appearance of the large-

scale structure of the universe traced by galaxies. Also shown in Fig. 4.6 are the

model galaxies that satisfy the selection criterion for the GAMA survey, r < 19.8
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(Driver et al. 2011; plotted at their spectroscopic redshift using blue points). The

left panel of Fig. 4.6 highlights how much richer structures will be in a spectroscopic

PAUS compared with GAMA, due to the deeper flux limit. The middle panel

of Fig. 4.6 shows that a significant amount of radial information is retained once

the redshifts of the mock galaxies are perturbed by the photometric redshift errors

expected for PAUS. At z ∼ 0.3, the expected photometric redshift errors for PAUS,

σz of 0.35%, correspond to a comoving distance error of ∼ 13h−1 Mpc. Hence,

it will be feasible to extract information about group and cluster membership from

PAUS (for an example of group finding in a catalogue with less accurate photometric

redshifts than those expected in PAUS, see Jian et al. 2014a). The right panel shows

how little radial position information is retained when applying the photometric

errors expected for broad band photometry.

4.3 PAUS Galaxy properties

The PAUS narrow band filters cover the wavelength range from 4500-8500Å in which

certain spectral features can be observed. Over the range in which PAUS will make

the greatest contribution to clustering measurements, 0.2 < z < 0.9, the rest frame

wavelengths from 3700Å to 4470Å are always accessible with PAUS photometry.

Table 4.1 lists the spectral features in the PAUS wavelength range that are investi-

gated here. We assess the direct observation of these features given a galaxy with

PAUS-like uncertainties in photometry and redshift. By direct observation, we mean

that we calculate the value of a feature by integrating over the appropriate PAUS

filter fluxes, assuming that a redshift (of appropriate accuracy) has been measured

by the photometric redshift code. An alternative approach would be to extract the

spectral information by integrating over the appropriate range of the best fitting

template spectral energy distribution obtained as part of the photometric redshift

estimation. Using the templates in this way could reduce the statistical error, as

this approach uses information from all of the filters that are available for a given

galaxy. However, this would introduce a systematic error through restricting the

results to be derived from combinations of a limited number of templates. It will in
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fact be best to switch to using templates for measurements whose statistical errors

exceed a certain threshold. The exact threshold is unknown as it depends on the

unquantifiable systematic of template incompleteness, but this analysis can be used

to define the point at which direct measurements become unfit for purpose, i.e when

must we switch to using templates.

We restrict ourselves to features that are measures of the SED. Galaxy properties

such as stellar mass and star formation rate require further modelling. Preliminary

results attempting to recover stellar mass and star formation rate values of the

simulated galaxies showed that without a k band measurement it is difficult to

distinguish which galaxies are intrinsically red and which are red from extinction,

causing a degeneracy in the inferred quantities.

4.3.1 Rest-frame defined broad bands

We define rest frame broad bands to best utilise the narrow band information from

PAUS. These quantities are calculated by integrating the interpolated low resolution

spectrum provided by the narrow bands. This type of direct rest frame measurement

is possible because each of the PAUCam filters is flux calibrated, something which

is often not the case with higher resolution spectra.

As can be seen from Fig. 4.7 and Table 4.1, the PAUS UV band has been chosen

to be blue-wards of the 4000Å break, and hence is sensitive to very young stars

in the composite stellar population of a galaxy. Conversely, the PAUS Blue band

is chosen to be red-wards of the break, and thereby probes somewhat older stellar

content. PAUS UV is chosen to be wider than PAUS Blue to increase its signal-to-

noise ratio. This is important particularly for the UV band due to the typical shape

of an i-band selected galaxy SED meaning that, on average, the UV is fainter than

the Blue. PAUS Blue can only be directly measured up to z = 0.9.

There are several benefits to using these new rest frame broad bands over and

above single narrow bands or traditional broad bands:

• These bands cover multiple narrow band filters, increasing the signal-to-noise

ratio of an individual measurement compared with using a single narrow band.
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Figure 4.7: The definition of new rest frame broad bands, PAUS UV (magenta) and

PAUS Blue (blue). At z = 0.6, PAUS UV overlaps with 9.6 PAUCam filters and

PAUS Blue overlaps with 6.4 PAUCam filters. The curves shown are some of the

SEDs for single age stellar populations that are used in the construction of the mock

catalogue. In all cases these are for one quarter solar metallicity, with ages given in

the key.
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Feature Wavelength Range Å Redshift Range

OII 3727 0.21 - 1.28

OIII 4959/5007 0.0 - 0.70

Hα 6563 0.0 - 0.29

D4000N 3850-3950 , 4000-4100 0.17 - 1.07

D4000W 3750-3950 , 4050-4250 0.20 - 1.00

PAUS UV (Mh
UV) 3050-3650 0.48 - 1.39

PAUS Blue (Mh
B) 4050-4450 0.11 - 0.90

Table 4.1: Wavelength and redshift ranges over which PAUCam filters (4500-8500Å)

are sensitive to some common spectral features. The table is limited to the main

features observable over the redshift range 0.2 < z < 0.9. See Fig. 4.7 for the

definitions of the PAUS UV and PAUS Blue bands and see Fig. 4.9 for the definitions

of D4000. Note that Mh ≡ M - 5log10h.

• They are near direct measurements of galaxy rest frame SEDs and so do not

require average k-corrections that broad band colour selections often require.

• They can be chosen to sample desirable sections of a galaxy SED precisely.

• Similar analyses can be performed on other photometrically calibrated spectra.

• The filter wavelengths are fixed in the observer frame but sample a wavelength

range in the rest frame that shrinks as 1/(1 + z) with increasing redshift. This

means that the rest frame magnitudes we have defined are measured using

filters that become more closely spaced as the redshift of the source increases.

Hence the rest frame magnitudes are better sampled with increasing redshift,

which partly offsets the typical decrease in the signal-to-noise as sources get

fainter.

Fig. 4.8 shows how PAUS redshift and photometry errors propagate into errors

in the PAU UV and PAU Blue magnitudes for a sample of mock galaxies with

redshifts in the range 0.5 < z < 0.63 and i < 23. For 80 % of model galaxies at

i = 23 PAUS Blue can be measured to within ±0.2 mags and PAUS UV to within
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Figure 4.8: Statistical uncertainty in the PAUS UV and PAUS Blue magnitudes

as a function of i-band magnitude for mock galaxies with 0.5 < z < 0.63. The

uncertainty includes redshift and photometry errors as described in Section 4.2.4.

Solid lines show the median error and the dashed lines show the 10−90 percentile

range.

November 1, 2018



4.3. PAUS Galaxy properties 113

±0.25 magnitudes. There is also no bias in the measurement at all values of i-band

magnitude. Other redshift selections give similar errors and also show no bias.

4.3.2 The 4000Å break

The 4000Å break is driven by a combination of CaII absorption lines and CN bands

in the spectra of old stars. The quantity D4000 is the ratio of average flux in one

spectral region at wavelengths just above 4000Å and that in a region just below

in wavelength. The literature defines this quantity in two ways, D4000 narrow

defined in Balogh et al. (1999) and D4000 wide defined in Bruzual (1983). The

two flux bands used are different in each case and are visualised in Fig. 4.9. We

first investigate if PAUCam has high enough resolution in a high signal to noise

scenario to measure D4000 wide and narrow and then separately investigate D4000

measurements of PAUS mock galaxies.

Measuring the 4000Å break strength with PAUCam spectral resolution

In order to test the measurement of the D4000 feature we look at a sample of 4500

SDSS DR12 galaxy spectra, selected around z = 0.1 (Alam et al., 2015; Smee et al.,

2013). We consider SDSS spectra for this test as the SPS used in GALFORM are limited

to 20Å resolution. The SDSS galaxies were each randomly uniformally placed at a

redshift in the range 0.2 < z < 0.9 so that the different ways in which the PAUS filter

can trace the feature are taken into account. The fluxes in the 40 PAUCam narrow

bands were calculated for each galaxy. D4000 was then calculated using both the

full resolution SDSS spectra, and then again by integrating a linear interpolation of

the PAUS filter measurements. Both definitions of D4000 from the literature were

calculated and results are presented with and without PAUS-like redshift errors, as

defined in Section 4.2.4. We do not include photometry errors, as first we want to

check if PAUCam has sufficient resolution to measure D4000 in a high signal to noise

scenario.

Fig. 4.10 shows how well interpolating between the PAUCam filters recovers

the spectroscopic result for both the wide and narrow D4000 definitions from the

literature. Both definitions of D4000 are biased due to the effective smoothing
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Figure 4.9: Definitions of D4000 wide and D4000 narrow overlaid on a randomly

selected, de-redshifted, SDSS DR10 galaxy. The green shaded region represents the

wide definition (3750-3950 and 4050-4250Å) from Bruzual (1983), and the blue the

narrow (3850-3950 and 4000-4100Å) from Balogh et al. (1999).
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Figure 4.10: Relative accuracy with which D4000 can be recovered using PAUCam,

as a function of the strength of D4000, measured using 4500 SDSS spectra observed

at z ∼ 0.1 and redshifted over the interval 0.2 < z < 0.9. D4000 spectroscopic is

measured using the full spectra information while D4000 PAUCam uses the PAUS

filters. The green line shows the result for D4000 wide and the blue for D4000

narrow. Solid lines and error bars (which indicate the 10-90 percentile range) include

a PAUS-like photo-z error while the dotted lines and error bars do not. Dashed lines

are displaced in the x direction by 0.01 to make the error bars visible. The top panel

shows the distributions of D4000 values for the sample.
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of a sharp spectral feature due to the finite width wavelength intervals used to

calculate D4000. D4000n is affected by this bias more than D4000w. The D4000n

bias also scales as a function of the spectroscopic value for D4000 whereas the bias

of D4000w is nearly constant with respect to this ideal. The D4000w measurement

is biased by ∼2%. This bias is not corrected for in later analysis as we will see in

section 4.3.2 that it is small compared to the random errors on PAUS mock galaxies.

Once photometric redshift errors are included the error bars on both measurements

increase only slightly. The error bars on D4000w are also smaller than those of

D4000n, ∼ ±2% and ∼ ±4% respectively. The superior recoverability of D4000w

suggests this 4000Å break definition should be used for PAUS measurements. The

superior bias and noise performance of D4000w is to be expected as it overlaps with

more PAUCam filters than D4000n does at a given redshift.

The redshift dependence of the D4000w measurement bias was investigated, as

at each redshift the filters will trace the break in a different manner. The extreme

scenarios are that the D4000 break lies mid-way across a filter or exactly in between

two filters. It was found that the bias of D4000w varies by less than 1% as a function

of redshift. It is therefore not necessary to model this redshift dependence.

4000Å break strength in PAUS

To investigate the ability of using the PAUS photometry to measure D4000w, this

quantity is measured in both the mock catalogue with no errors and in the one with

redshift and photometric errors introduced in section 4.2.4. Fig. 4.11 shows the

relative error in D4000w for redshift slices as a function of i-band magnitude. 80

percent of galaxies at i = 23 lie within 50% of the true value of D4000w. Photometric

uncertainty is therefore the dominant source of error for PAUS galaxies. Looking at

the population histogram in Fig. 4.10 it can be seen that the majority of galaxies

have values of D4000w between 1.0 and 2.0, with a bimodal distribution peaking

at 1.2 and 1.75. An error of 50% is therefore very large compared to the range

of D4000w . Galaxies with i = 21.5 and z = 0.55, however, are expected to have

just a 15% error in D4000w, showing that direct D4000w measurements for a bright

subset of PAUS objects are feasible. D4000w errors are smaller for higher redshift
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Figure 4.11: Relative percentage difference in D4000w as a function of i-band mag-

nitude for different redshift slices. The relative percentage difference is defined

as 100 × (D4000err − D4000true)/D4000true, where the subscript err(true) refers to

measurements made in the catalogue with(without) PAUS simulated redshift and

photometric errors.
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galaxies at a fixed i-band magnitude as the rest frame defined D4000w bands overlap

with more PAUCam filters in this case than at lower redshifts. Individual studies

will need to define a tolerable error for this quantity. Bimodal population cuts for

example will be able to use a large subset of data and retain completeness and purity,

whereas studies on the ages of individual galaxies may need to use a significantly

restricted subset of the catalogue. One could also stack populations of galaxies and

make a measurement on a mean spectra to reduce statistical error.

4.4 Results

In this section we review various properties of the galaxy population that we ex-

pect PAUS will be able to measure based on the predictions made using our mock

catalogues.

4.4.1 Narrow band luminosity functions

The parameters in the GALFORM model are calibrated to match low redshift obser-

vations, which are mainly one-point statistics such as the luminosity function. One

of the applications of PAUS is to provide improved constraints on the model pa-

rameters by providing measurements of the narrow band luminosity function over a

significant baseline in redshift.

We have seen that individual PAUCam narrow band magnitudes can be signif-

icantly affected by the emission line flux from a galaxy, so here we investigate the

sensitivity of the narrow band luminosity functions to the inclusion of emission lines

in the GP14 model (see Gonzalez-Perez et al. 2017 for a further discussion of model

predictions for OII emitters). Fig. 4.12 shows how a narrow band luminosity func-

tion of PAUCam like filter chosen to overlap in the rest frame with the OII emission

line changes when the flux from the line is included. Measurements are made in the

simulation snapshots. Inference of this quantity from observer frame measurements

would require accurate k-corrections, which will be an output of the photo-z code. It

can be seen that neither redshift evolution nor inclusion of emission line flux change

the faint end slope of the luminosity function in the GP14 model. The value of M∗
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Figure 4.12: Luminosity functions at several snapshot redshifts (as labelled) of a

PAUS filter at rest frame wavelength of 3727Å ± 62.5Å. A different PAUS filter is

used at each redshift, chosen to overlap with the OII emission line. Solid lines show

the prediction including the emission line flux and dashed lines do not. The plotted

curves become fainter when they fall below 95% completeness at i < 23.

(the knee of the luminosity function), however, increases with both redshift, as a

result of the increasing star formation, and also with the inclusion of OII line flux.

The contribution of the stellar continuum to the flux in this band can be estimated

by averaging the flux in bands placed at either side of the band that contains the

OII emission, providing a constraint on the amount of emission line flux and its

evolution with redshift.

4.4.2 Characterisation of the galaxy population

One desirable objective for studying the evolution of the galaxy population is the

ability to separate galaxies by colour in a consistent way across the redshift range
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Figure 4.13: Distribution of galaxies with i < 23 and 0.5 < z < 0.63 in the D4000w

and Mh
UV - Mh

B colour plane, with and without simulated PAUS errors. The con-

tours contain 10, 30, 50, 70 and 90% of the sample. The two histograms, labelled

Φ/D4000w and Φ/mag, are the counts per unit D4000 and per unit Mh
UV - Mh

B re-

spectively. The solid black lines show the distributions for the full sample without

errors and the magenta ones show the full sample with errors. The red (blue) curves

show the distribution of galaxies that are intrinsically red (blue) in each measure

when errors are included.
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sampled by PAUS. This objective can be achieved by using a cut in D4000 at z < 0.5

and a cut in Mh
UV - Mh

B above redshift 0.5. We could define a band further into the

red to make a colour cut at lower redshifts, as Mh
UV cannot be defined below z ∼

0.5, see Table 4.1, but a cut in a different section of a galaxy SED may non-trivially

select galaxies differently than the Mh
UV - Mh

B cut. In particular, the use of a redder

colour selection might mix galaxies with different recent star formation histories,

making clustering comparisons across redshift ranges less informative. The use of

D4000w means that we are making a colour cut centred on the same portion of the

SED as a cut in the colour Mh
UV - Mh

B.

Fig. 4.13 shows the distributions of D4000w and Mh
UV - Mh

B for a redshift range in

which both can be measured. Both quantities show a bimodal distribution, which we

can loosely refer to as ‘red’ and ‘blue’ populations. A cut is made at D4000w = 1.42

and Mh
UV - Mh

B = 1.1. Before photometric errors are added, disagreements in red-blue

classification when using the two measures are at the sub-percent level. That is, very

few galaxies are different classifications according to the two measures, which can be

seen by how little of the black contours lie in the top-left and bottom-right sections

of the plot compared to the other sections. The cut in Mh
UV - Mh

B is appropriate to

split the bimodal population at higher redshifts, as is the cut in D4000w for lower

redshifts. Comparisons carried out using the model rest frame bands show that

these colour cuts are similar to a traditional broad band rest frame cut in u − g.

When including photometric errors, mixing between the red and blue populations

is more severe when using D4000 than with the rest frame magnitudes due to the

larger fractional error in D4000w at a fixed i band magnitude (see Sections 4.3.1

and 4.3.2). Errors on the Mh
UV - Mh

B colour are driven largely by errors in the UV

magnitude.

4.4.3 Galaxy clustering

We select volume limited galaxy samples for clustering measurements based on red-

shift, PAUS blue luminosity and rest frame colour (as defined in Section 4.4.2). We

choose not to split samples based on inferred quantities such as star formation rate

or stellar mass as the inference of these properties from narrow band photometry
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is left to future work. Inferring these properties has also been shown to introduce

biases based on the assumptions made in these inferences (Mitchell et al., 2013).

In the mock including simulated PAUS errors the cuts are made after all sources

of error are included. See Appendix A.1 for clustering definitions, details of the

calculations and open source code links, and Appendix A.2 for more information on

sample selection. All errors in this section are calculated by using a jackknife over

12 regions in the simulated survey, see e.g Norberg et al. (2009b).

We estimate the galaxy bias from the ratio of the projected galaxy clustering

to the projected clustering of the MR7 dark matter at the median redshift of the

sample in question. The values of the correlation function for the MR7 snapshots

were taken from McCullagh et al. (2016). This quantity allows us to separate the

evolution of the dark matter over time from the evolution of the galaxy population.

On large scales this quantity is equal to the linear bias. More specifically we define

projected galaxy bias as

b(rp, z) =

√
wp(rp, z)

wp(rp, z)DM
, (4.4.1)

where wp(rp, z) is the projected correlation function defined in Eqn. 3.3.3.

Impact of photometric uncertainty

Fig. 4.14 shows the bias measured for one mock PAUS sample (-19.5 < Mh
B < −19.0)

in the redshift range 0.5 < z < 0.63, both with and without PAUS magnitude and

photometric redshift errors. The value of πmax used was 100h−1Mpc. Fig. A.1

in the Appendix shows the recovery of the projected correlation as a function of

different photometric redshift errors. A value of πmax of 50h−1Mpc would have been

sufficient for the photometric redshift errors assumed in this work, and would have

slightly reduced the statistical noise, but the real survey will have a distribution of

photometric redshift errors so the conservative value of 100h−1Mpc was chosen.

For the sample selected only on redshift and Mh
B, the black lines in Fig. 4.14,

the projected clustering signal is recovered without systematic error when including

PAUS-like errors. The jackknife statistical errors only slightly increase when com-

pared with the ideal case. This demonstrates that the PAUS photo-z measurements
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Figure 4.14: Projected galaxy bias (Eqn. 4.4.1) for a typical PAUS sample (0.5 <

z < 0.63, −19.5 < Mh
B < −19.0). The full galaxy sample is shown in black and

the results on splitting the sample into red and blue populations are shown in these

colours. Solid lines show the results using the lightcone with redshift and photometry

errors taken into account and the dashed lines the results without including these

uncertainties. Errors were calculated using jackknife resampling.
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are sufficient to calculate the projected galaxy clustering without systematic error.

Table A.1 in the appendix shows that the sample with PAUS-like errors is over 90%

pure and complete. For the same sample with photo-z errors only and no photome-

try error these numbers both rise above 96%, showing that mixing between samples

due to photometric redshift errors is minimal.

Once a colour cut is applied to the full magnitude limited galaxy sample, a

significant difference can be seen in the projected bias measurements for the red

and blue populations. Errors in the photometry introduce mixing between the red

and blue populations which leads to a small reduction in the difference between the

one-halo (∼< 1h−1Mpc) scale projected bias of red and blue galaxies. Nevertheless

the difference between the clustering measurements for these populations remains

significant. Systematics on two-halo scales (∼> 1h−1Mpc) are within the statistical

uncertainties. This confirms that the most significant source of systematic error

in this analysis will be on one-halo scales and come from the misclassification of

galaxies into red or blue sub-samples using these direct rest frame measurements.

This systematic error shows up here as there is a large contrast between the one-halo

clustering of red and blue samples, and PAUS will have small statistical errors on

those scales. Again, statistical colour errors could be reduced by using the best fit

photo-z SED inferred colours for fainter samples, but this is not tested here. This

highlights the importance of understanding sample selection and the role of mock

catalogues in interpreting clustering results.

The redshift evolution of clustering

Fig. 4.15 shows the predicted redshift evolution of projected galaxy bias measured

for samples of red and blue galaxies with −19.5 < Mh
B < −19.0. Our estimate

of the bias naturally takes into account the evolution of the clustering of the dark

matter over this redshift interval. For all redshift bins red galaxies show stronger

clustering than blue galaxies. This difference becomes larger for pair separations

below ∼ 1h−1Mpc corresponding to pairs within common dark matter halos. The

bias also increases with redshift for both red and blue samples. This trend is also seen

in all the other luminosity bins we have explored. This result, the decline in the bias
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Figure 4.15: Projected galaxy bias (Eqn. 4.4.1) inferred from the projected corre-

lation function measured for samples with −19.5 < Mh
B < −19.0, split by colour

and redshift. Solid lines show the results using the lightcone including redshift and

photometry errors and the dashed lines show the results without these uncertainties.

Errors, from jackknife resampling, are only shown for PAUS-like sample.
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as the universe ages, is due to faster growth of the dark matter correlation function

compared with that of the galaxy correlation function over the same period, see

e.g. Baugh et al. (1999). Again the systematic errors on two-halo scales are within

statistical uncertainties. Qualitative trends seen on one-halo scales are preserved

once errors are included, but the contrast between red and blue one-halo clustering

is reduced due to colour mixing.

The luminosity dependence of galaxy clustering

Fig. 4.16 shows the model prediction for the luminosity dependence of galaxy clus-

tering. The split between the red and blue galaxies is once again very evident. As

commented above, the red samples have stronger clustering than their blue counter-

parts. There is little luminosity dependence of the clustering measure for the blue

samples (see also Kim et al. 2009 for a discussion of the luminosity dependence of

clustering in an earlier version of the GALFORM model used here). On the other hand,

the clustering of the red samples shows a moderate dependence on luminosity which

weakens on large scales and does not preserve the same ordering with luminosity

that is displayed on small scales. Once again two-halo scale results are recovered

within statistical errors.

One reason for the inverted trend of clustering decreasing with luminosity seen

on small scales is due to the dominance of satellite galaxies in the lower luminosity

red samples. This can be seen in Fig. 4.17, which shows the satellite fractions of

the clustering samples (Number of galaxies with satellite label in a sample divided

by the total number of galaxies in the sample). Note that measuring this with the

data would require significant modeling work. This figure also illustrates the impact

of colour mixing on the satellite fraction of the samples. The lower luminosity

bins at the lowest redshifts are significantly affected by mixing between central and

satellites. These lower luminosity and redshift samples have the largest difference

in satellite fraction between the red and blue populations and are the most likely to

be misclassified in colour. This mixing error will either need to be modeled using

mocks or we will have to rely instead on inferred colours extracted from an SED

template, allowing for template incompleteness as a systematic error.
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Figure 4.16: Projected galaxy bias (Eqn. 4.4.1) inferred from the projected clustering

measured for samples 0.5 < z < 0.63, split by colour and Mh
B. Line types as in Figure

4.15.
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Figure 4.17: Satellite fraction as function of Mh
B for galaxy samples split by colour

and redshift. Line types as in Figure 4.15.
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4.5 Conclusions

We have introduced a mock catalogue built from a semi-analytical model of galaxy

formation implemented in an N-body simulation for use in conjunction with the

Physics of the Accelerating Universe Survey (PAUS). PAUS is a novel narrow band

imaging survey which is underway on the William Herschel Telescope. The width of

the PAUS filters means that photometric redshifts of unprecedented accuracy will

become available for a homogeneously selected sample of galaxies down to i = 23.

The PAUS mock is built using the GP14 GALFORM model (Gonzalez-Perez et al.,

2014a), which is run on the MR7 N-body simulation (Guo et al., 2013). The galaxy

snapshots produced at the output times of the MR7 run are then used to construct a

mock catalogue on an observer’s past lightcone, which predicts the evolution of the

clustering of galaxies and their properties (Merson et al., 2013). The mock catalogue

is available on request at CosmoHub1 (Carretero et al., 2017).

The resulting mock catalogue agrees with observed galaxy number counts to

within the scatter between different surveys. Over the redshift range in which PAUS

is expected to make the largest impact, 0.2 < z < 0.9, the mock is in good agreement

with the redshift distributions from COSMOS photo-z and VIPERS. There is some

tension at z > 1 where the mock under predicts the VIPERS n(z), but this redshift

range is less relevant for PAUS, and the observational errors are large at these

redshifts (de la Torre et al., 2013).

We include galaxy emission lines in the predicted PAUS measurements and show

that this has a significant effect on PAUS narrow band fluxes. We show how the rest-

frame narrow band luminosity function changes when emission lines are included by

choosing a rest frame narrow band that overlaps with the OII emission line. The

GP14 GALFORM model predicts no change in the faint end slope of the narrow band

luminosity function with or without emission line flux included and as a function of

redshift. It does, however, predict an increase in M* with both redshift and on the

inclusion of emission lines.

We define rest frame broad bands calculated directly from narrow band fluxes

1 https://cosmohub.pic.es/home
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and predict that a PAUS Blue (PAUS UV) flux can be directly measured with an

error of ± 0.15 (±0.25 mags) down to i = 22.5. These provide rest-frame mea-

surements without needing to make any of the assumptions that come with average

k-corrections used with broad band measurements. These rest-frame measurements

are only possible because the PAUS narrow band measurements are flux calibrated.

We show that the PAUCam filter set has sufficient resolution to measure the strength

of the 4000Å break, D4000. We predict that D4000w can be directly measured in

PAUS to better than ± ∼ 10% precision for galaxies with i < 21.5. Providing errors

on these quantities as a function of i-band magnitude will allow the PAUS data

analysis pipeline to decide when to switch from directly measuring a quantity using

the observed PAUCam filters to integrating over the best fitting SED assigned by

a photometric redshift code. The latter incorporates statistical information from

all filters but restricts results to a linear combination of SED templates, and is not

explored here.

We explore galaxy clustering measurements over a redshift range of 0.2 to 0.9 for

multiple luminosities and colours using the rest frame colours, D4000w and redshift.

PAUS will provide a unique sample spanning this redshift range over a larger area

than previously possible, with nearly 100% completeness. No close galaxy pairs are

missed as is often the case in spectroscopic surveys.

We show that systematic errors in projected clustering recovery due to PAUS

photometric redshift errors are significantly smaller than statistical errors. All two-

halo scale projected clustering results are recovered within statistical errors once

PAUS redshift and photometry errors are included. One-halo scale clustering shows

the same qualitative trends as measurements made in the ideal case but there is a

loss of contrast between the one-halo scale clustering of red and blue galaxies caused

by colour misclassification. This demonstrates the importance of a mock catalogue

to interpret galaxy clustering results, particularly in the case of PAUS results on

small scales, where statistical errors are small and any systematics are likely to be

the dominant source of error.

We provide testable predictions for the mock catalogue that the measured galaxy

clustering will evolve more slowly with redshift than the redshift evolution in the
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dark matter, especially for the one-halo term. The mock also predicts that red

galaxies will cluster more strongly than blue galaxies. We also predict that fainter

galaxies will cluster more strongly than brighter galaxies on small scales due to

their larger satellite fraction, and that this trend will be particularly strong for red

galaxies.

This work provides a tantalising illustration of the science that will be possible

with PAUS, particularly with a view to constraining the galaxy - dark matter halo

connection.
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Chapter 5

Galaxy group identification with

Markov Clustering (MCL)

Galaxy groups are the observable counterparts to dark matter halos, so detecting

galaxy groups can help us infer more about the galaxy-halo connection. We intro-

duce a new framework for finding galaxy groups, Markov Clustering (MCL) (Van

Dongen, 2000). We explain that the widely used friends-of-friends (FOF) algorithm

is a subset of MCL. We test the MCL algorithm in real space on a mock galaxy

catalogue constructed from an N-body simulation using the GALFORM semi-analytic

model. With a fixed linking length the FOF algorithm produces the best group cat-

alogues as measured by the variation of information statistic (Meilă, 2003). We use

the local galaxy density to modify the linking length which improves both the FOF

and the MCL group catalogues, with the latter being superior to FOF. The MCL

group catalogue recovers accurately the group multiplicity function (to within 7%)

across all multiplicities. It has better and more consistent purity and completeness

values as a function of multiplicity than the comparable FOF catalogue. MCL al-

lows probabilistic pairwise connection amplitudes which could prove very useful for

galaxy catalogues with mixed redshift precision such as PAUS. We propose a model

to extend this work to redshift space and photometric redshift space and demon-

strate how this method connects galaxy pairs of different separations and position

uncertainties.
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5.1 Introduction

A galaxy group is defined as a collection of galaxies that are gravitationally bound

within the same dark matter halo. Galaxies within groups can tell us about galaxy

interactions and how galaxy properties and small scale clustering depend on local en-

vironment (Schneider et al., 2013; Treyer et al., 2018; Barsanti et al., 2018). Galaxy

groups, being proxies for dark matter halos, are also important tracers of large scale

structure and are often used in galaxy clustering measurements (Wang et al., 2008;

Berlind et al., 2006a) or lensing analysis (van Uitert et al., 2017). If we can esti-

mate the masses of groups, we can investigate the mass to light ratio in different

structures, which can help us to better understand the galaxy-halo connection. We

can also test the limits of our assumptions that the clustering of galaxy halos only

depends on halo mass by searching for a signal of ‘assembly bias’ (e.g. Gao et al.,

2005). Wang et al. (2013) claimed to detect this assembly bias for SDSS galaxy

groups.

Identifying galaxy groups requires estimation of which galaxies lie in the same

dark matter halo. There are multiple ways to do this. Two common methods are the

friends-of-friends (FOF) based approach and the halo based approach. Eke et al.

(2004) constructed a FOF group catalogue (2PIGG) containing 190 000 galaxies

from the 2dF Galaxy Redshift Survey (Colless et al., 2001). Robotham et al. (2011)

constructed a FOF group catalogue (G3Cv3) of ∼45000 galaxies from the GAMA

survey (Driver et al., 2011). Liu et al. (2008) extended the friends of friends method

to galaxies with photometric redshift measurements (pFOF), which was later tested

and applied to the Pan-STARRS1 medium deep surveys (Jian et al., 2014b). Yang

et al. (2005) developed and tested a halo based group finder that was later used to

construct a galaxy group catalogue of SDSS galaxies (Yang et al., 2007).

This chapter frames the FOF approach to galaxy group finding as a particular

solution to the graph clustering problem (Schaeffer, 2007). Graph clustering aims to

find clusters of points given the pairwise connection amplitudes between them. It is

a problem that occurs in many situations, such as detecting communities in social

networks (Liu et al., 2014). We explain that the FOF algorithm is a subset of the

Markov graph clustering algorithm MCL (Van Dongen, 2000) and investigate the
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application of the MCL algorithm to the problem of galaxy group detection. MCL

has been widely used in the field of bioinformatics in detecting groups of proteins

based on their pairwise interactions (Vlasblom & Wodak, 2009).

This work is carried out with a view to constructing a group catalogue using

the PAU Survey data (Castander et al., 2012). A PAUS group catalogue would

be significantly deeper than an SDSS (York et al., 2000) or GAMA (Driver et al.,

2011) group catalogue, and would have a larger area and better completeness in

both sampling and redshift than a group catalogue constructed using similar depth

surveys such as zCOSMOS (Lilly et al., 2007) or VIPERS (Guzzo et al., 2014). A

PAUS group catalogue would therefore better probe the redshift evolution of galaxy

groups and better probe further down the galaxy luminosity function and the halo

mass function at low redshift than has previously been possible. The challenge of

constructing a PAUS group catalogue will be identifying how to deal with the varying

redshift precision of the narrow band photometric redshift measurements. MCL is a

promising approach as it allows probabilistic pairwise connections, something that

could be useful in a PAUS catalogue where it is more natural to frame pairwise

connections as probabilities than as binary links.

While working on Markov Clustering, Tempel et al. (2018) proposed a new

Bayesian group finder based on marked point processes. Both approaches are vastly

different in nature, but might have similar positive properties in the sense that they

can deal with probabilistic spatial information.

Section 5.2 presents the MCL algorithm and explains its relation to the FOF algo-

rithm. Section 5.3 presents the mock catalogue we use to test the algorithm. Section

5.4 summarises the metrics we use to assess group finding performance. Section 5.5

presents the results in real space. Section 5.6 proposes a scheme to extend this work

to redshift space and demonstrates how it works with a toy model. Section 5.7 con-

cludes. Note that in this work we refer to a ‘clustering’ of galaxies interchangeably

with a ‘grouping’ of galaxies. We will refer to the two point correlation function if

we discuss galaxy clustering in the more classical/typical context.
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5.2 Markov clustering algorithm

We briefly introduce the concept of graph clustering (Schaeffer, 2007). A graph is

a structure that gives pairwise connection amplitudes between points. The most

obvious and instructive example of a graph would be people connected on a social

network (Liu et al., 2014). Here users are ‘friends’ with other users. The entire

friendship network can be represented by a symmetric binary matrix, which we will

call the pairwise connection matrix wij, which contains a 1 if two users are friends

and a 0 if they are not. A graph clustering algorithm aims to detect communities

within this structure. We can understand the common friends-of-friends algorithm

(FOF) as an approach to solving this problem that defines communities as containing

users that can be connected in any way at all on the graph. We can also see how

this algorithm is flawed in this context, as it is most likely that the majority of the

network would be connected in a large single group, despite most people in the group

having little connection to most of the other users in the group. Other approaches

have been developed to tackle this problem. One of them is the widely used ‘highly

connected substructure’ (HCS) algorithm (Hartuv & Shamir, 2000), which, as the

name suggests, detects substructure that is highly rather than loosely connected.

In the astrophysical case, we first have a connection criterion that sets the values

of wij. This is normally based on the distance between galaxies, setting wij to 1 if

the galaxies are close to each other and 0 if they are not. The wij matrix is then

typically used along with an FOF algorithm to detect groups, but there is nothing

to stop us using a different graph clustering algorithm once we have decided our

connection criterion.

The Markov clustering algorithm (MCL) was developed by S.Van Dongen as a

fast and scalable approach to graph clustering (Van Dongen, 2000). The code is

publicly available at http://micans.org/mcl/. MCL is an algorithm that takes

wij, as an input, and assigns points to clusters. It does this by simulating a random

walk on the graph using wij as transition probabilities to determine which points

are most bound. A random walk will get temporarily stuck, more so in a structure

that is tightly bound, only rarely jumping between structures. MCL has one free

parameter, inflation (Γ), which is used to trim connections that are used for these
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rare inter-cluster jumps. MCL is an iterative process that repeats matrix operations

on wij until the matrix converges and the clusters can be read off. It is implemented

as follows:

1. Normalise wij column-wise such that the sum of each column is 1.

2. Square the matrix wij
1.

3. Raise every element of wij to the power of Γ and renormalise.

4. Go to step 2 again if wij has yet to converge. (Convergence defined when all

elements of wij have changed by less than a constant factor)

5. Read the groups from the converged wij.

Raising the elements of wij to the power of Γ before renormalising is designed to

boost the more traveled connections and reduce the value of the less traveled inter-

cluster connections. The larger the value of Γ the quicker the fall in the the lower

probability connections and the more that MCL will split structure into smaller

parts. A Γ value of 1 will simulate an infinite random walk, and will join any

structure that has any path connecting it, just as in an FOF algorithm. The FOF

algorithm is therefore a subset of the MCL algorithm corresponding to a Γ of 12. Γ

has no maximum value, but there will be a value of Γ above which the catalogue

stops splitting, as all clusters are fully connected subgraphs, i.e. all points in clusters

are connected to all other points in the same cluster. MCL was chosen for inves-

tigation here because it has a limit of the common FOF algorithm, and because

it supports pairwise connection matrices that contain probabilities rather than just

binary links.

Figure 5.1 shows how the algorithm works on an example graph that contains two

clusters with three fully connected points each, with one link between the clusters3.

A Γ value of less than 1.47 fails to correctly identify the two clusters and instead

1This is not strictly a random walk as the initial matrix is not saved. See Van Dongen (2000)

for a discussion on why this produces a similar result and why this exact procedure was chosen.
2We tested this using MCL and an FOF algorithm and it was found to be correct.
3For the astrophysically minded, one can consider all links to be of equal distance.
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wij =



1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

0 0 1 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1



Figure 5.1: An example graph of two clusters, coloured red and blue, each containing

three fully connected points, with one link connecting the two structures. The

pairwise connection matrix wij represents the binary links between points, colour

coded such that red-red links are red, blue-blue links are blue, and red-blue links

are black (links also shown by connections on the graph). MCL recovers the correct

clustering for a value of Γ > 1.47. For Γ < 1.47, MCL incorrectly connects all points

in one large group, as does an FOF algorithm.
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joins all points in one large cluster, as does an FOF approach. A value of Γ above

1.47 correctly separates the graph into two clusters as the larger value of inflation

has cut the link between points 2 and 3. Larger values of inflation do not further

split the clusters as they are fully connected subgraphs.

A further example is shown in Figure 5.2 that has two fully connected subgraphs

each with five points rather than the three in figure 5.1. The minimum value of

inflation necessary to correctly identify the two clusters has now fallen to 1.28. A

lower value of inflation is needed to split larger clusters because jumps between

clusters on a random walk are less frequent for large clusters than for smaller ones.

A FOF approach still joins all points into a single cluster, despite the clusters being

immediately obvious by eye.

FOF requires that the pairwise joining matrix wij contain binary links, i.e 0

or 1 for the connection amplitude, whereas MCL allows any value of connection

amplitudes. Figure 5.3 shows an example graph that demonstrates the benefit of

having more freedom in choosing the connection amplitudes. Two matrices are

shown; the top one is a binary connection matrix that contains only 1s and 0s, while

the bottom matrix is a possible probabilistic connection matrix, where larger values

represent stronger connections.

Using the binary connection matrix, FOF once again fails to identify the clusters

correctly. A value of inflation below 1.28 finds one cluster, above 1.28 but below

2.7 correctly identifies the two clusters, but the points incorrectly get placed into 4

clusters if Γ > 2.7. For the larger values of Γ, the 4 clusters found are points 0 and 1,

points 4 and 5, and 2 and 3 are clusters by themselves. This shows the hierarchical

nature of MCL when Γ is increased. To find more than two clusters, one might

think that finding three clusters where 2 and 3 are connected is a sensible answer,

but points 2 and 3 have already been disconnected for values of Γ large enough to

find two clusters, and they cannot be reconnected if it is increased further. We can

explain why the cut is made at the link between galaxies 2 and 3 first by considering

a random walk on the graph that starts with equal weight at all points. Weight

at the centre will spread out in both directions but weight at the ends will spread

towards the centre in one direction only. So links near the ends of the chain are used
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wij =



1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1



Figure 5.2: An example graph of two clusters, coloured red and blue, each containing

five fully connected points, with one link connecting the two structures. The pairwise

connection matrix wij represents the binary links between points colour coded as

in Figure 5.1 (also shown by the lines on the graph). MCL recovers the correct

clustering for a value of Γ > 1.28. For Γ < 1.28, MCL incorrectly connects all

points in one large group, as does an FOF algorithm.
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wij =



1 1 0 0 0 0

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

0 0 0 0 1 1



wij =



1 1 0.7 0.1 0 0

1 1 1 0.2 0 0

0.7 1 1 1 0.2 0.1

0.1 0.2 1 1 1 0.7

0 0 0.2 1 1 1

0 0 0.1 0.7 1 1



Figure 5.3: An example graph of two clusters, coloured red and blue, each con-

taining three points. The top matrix shows a possible binary connection matrix

for the graph, also shown with the links on the graph. The bottom matrix is a

possible probabilistic connection matrix, with larger values representing stronger

connections. The matrix colour coding is the same as in Figure 5.1 Using the bi-

nary matrix, MCL recovers the correct clustering for 1.28 < Γ < 2.7, but using the

probabilistic matrix increases the range of values for which the correct clustering is

found to 1.69 < Γ < 8. FOF again connects all the points in a single cluster.
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more so than the ones near the centre after a few iterations. This means MCL will

always try to split chains down the middle first. In this case this splits the clusters

correctly, but if there were three clusters in a chain end on end the middle cluster

would be split incorrectly.

Using the probabilistic connection matrix increases the range of inflation values

for which the correct clustering is found to 1.69 < Γ < 8. The minimum value of

Γ has increased slightly compared to the binary case. This is because compared to

the binary connection matrix, the probabilistic matrix has changed some zero values

to values between 0 and 1, increasing the overall connectedness of the points, so a

slightly larger inflation value is needed to split the points. Forcing the matrix to be

binary results in a loss of information that the MCL algorithm in this case could

use to determine the correct clustering.

5.3 Mock catalogue

To test this novel approach to galaxy group finding we apply it to a realistic mock

galaxy catalogue. We use the z = 0 snapshot of a GALFORM mock catalogue, specif-

ically the model presented in Gonzalez-Perez et al. (2017), built on top of the 125

h−1Mpc per side MilliGas simulation cube. We note that this simulation has the

same cosmology and number of snapshots as the 500h−1Mpc MR7 simulation (Guo

et al., 2013). The MilliGas simulation also has runs with many more snapshots,

so would be ideal to use for lightcone generation. Even if the smaller simulation is

unlikely to contain any structures as large as the largest found in the MR7 simula-

tion, we use a smaller N-body simulation to speed up the calculations, as deciding

between methods of linking galaxies and optimisation of free parameters will require

running the group finder many times. The scaling with volume would be linear, so

running MCL on the larger simulation would take roughly 64 times longer per run

than of the smaller one. Each run only takes a few minutes for the MilliGas mock

catalogue, but performing grid searches requires hundreds of runs. The scaling with

density is quadratic, as it scales with the number of pairwise connections on small

scales. We could have chosen to do the tests on a lightcone mock catalogue, such
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as the one presented in Chapter 4 for the PAU Survey, but this work can also be

applied more generally than for one specific survey, with a lightcone catalogue in-

troducing unnecessary complications such as changing number density4. We use the

halos identified using the particles in the simulation as the ‘truth’ to which we will

compare our galaxy group finders. There are multiple ways to identify halos from

simulation particles but the disagreements between these methods will be negligible

when compared to the errors we introduce when using galaxies as tracers, as the

simulation particles are far more numerous than our galaxy catalogue.

Figure 5.4 shows a 25 h−1Mpc thick slice of the mock catalogue at z = 0. The

catalogue is limited in rest frame SDSS r band magnitude to Mr − 5 log h < −20.0

and contains∼ 20000 objects, corresponding to a galaxy density of 10−2 (h−1Mpc)−3.

The catalogue has comparable density to galaxies in the GAMA survey at z ∼ 0.15.

The catalogue is continued periodically on each side such that we do not have to deal

with any edge effects, as the code used to produce the pairwise connection matrix

does not support periodic boundaries as it is built from the 2PCF code presented

in Chapter 3. MCL takes a sparse matrix as input. A sparse matrix format is one

which lists the value and location of the non-zero elements of the matrix. This saves

a lot of memory in this example, as most of the pairwise connections in a galaxy

catalogue will be zero. Extending the simulation periodically will mean all relevant

pairs are included in this sparse matrix at least once, but will also produce some

repeated pairwise connnections. The MCL algorithm provides a preprocessing step

to deal with repeated entries in multiple ways. In our case taking the maximum

value of repeated entries is the correct approach.

5.4 “Goodness of clustering” measures

We require a method of quantifying the quality of a galaxy grouping. To do this we

need to quantify how similar a galaxy grouping, G, is to the underlying halos, H,

4One must also consider the limitations in the construction of the lightcone. The interpolation

scheme is unlikely to perfectly place galaxies where they would have been found if a snapshot of

the simulation had been taken at that point.

November 1, 2018



5.4. “Goodness of clustering” measures 143

Figure 5.4: A 25 h−1Mpc thick slice of the mock catalogue in real space. The

catalogue is periodically extended by 5 h−1Mpc on each side (much larger than any

link between galaxies in real space). The red box encloses the original catalogue

before periodic extension.
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to which the galaxies belong. In the astrophysics literature, this is typically done

through the measures of completeness and purity, although their definition varies

drastically between works. Many metrics exist to decide the goodness of a clustering.

See Wagner & Wagner (2007) for an overview of the most common metrics used in

the mathematics and computer science communities.

5.4.1 Completeness and purity

We provide general expressions for the ‘one way’ matching completeness and purity.

They are one way because by these definitions pure groups do not need to correspond

to complete halos and vice versa. One could place constraints that a pure group

can only be counted as pure if its corresponding group is complete, which would

be a ‘two way’ or ‘bijective’ match. We use purity and completeness as tools to

understand a particular grouping, and not as optimisation criteria, and therefore

consider the more intuitive one way matching. See Gerke et al. (2005) and Knobel

et al. (2009, 2012) for detailed discussion on one and two way matching.

The completeness quantifies the extent to which galaxies in the same halos are

placed in the same galaxy groups. We define it using weight functions f and g as

C∗(f, g) =
1∑NH

j=1 f(nΣj)g(nΣj)

NH∑
j=1

f(nΣj)g(maxinij) . (5.4.1)

The purity quantifies the extent to which galaxies in the same groups are actually

in the same halo, defined as

P ∗(f, g) =
1∑NG

i=1 f(niΣ)g(niΣ)

NG∑
i=1

f(niΣ)g(maxjnij) . (5.4.2)

nΣj is the number of galaxies in halo Hj, niΣ is the number of galaxies in group Gi

and nΣΣ is the total number of galaxies. These are calculated from the number of
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H1 H2 ... Hj ... HNH
Σ

G1 n11 n12 ... n1j ... n1NH
n1Σ

G2 n21 n22 ... n2j ... n2NH
n2Σ

. . . ... ... ... . .

Gi ni1 ni2 ... nij ... niNH
niΣ

. . . ... ... ... . .

GNG
nNG1 nNG2 ... nNGj ... nNGNH

nNGΣ

Σ nΣ1 nΣ2 ... nΣj ... nΣNh
nΣΣ

Table 5.1: Contingency matrix for a clustering of nΣΣ points into NG groups, G1 to

GNG
, that attempt to identify the NH halos, H1 to HNH

. A perfect group catalogue

would result in a diagonal matrix, representing perfect agreement between the groups

and the halos. We can write galaxy group statistics as a function of all or parts of

this contingency matrix.

galaxies in group Gi and halo Hj, nij, using

nΣj =

NG∑
i=1

nij (5.4.3)

niΣ =

NH∑
j=1

nij (5.4.4)

nΣΣ =

NG∑
i=1

NH∑
j=1

nij , (5.4.5)

where NG and NH are the number of groups and halos respectively. This informa-

tion can be summarised neatly in the contingency matrix shown in table 5.1.This

matrix can be written generally for any clustering problem and quantifies the over-

lap between NH true halos and NG identified galaxy groups. A perfect clustering

should appear as a diagonal matrix.

The weight functions f and g can be used to change the weightings of groups

or halos of different multiplicities, i.e different numbers of members. The function

f can be changed so the statistic only looks at the quality of halos or groups of a

particular multiplicity. The function g is a weighting function that can be used to

change the penalty for incorrect groupings. For example, say we have chosen f so
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as to only look at the completeness of halos of a specific multiplicity, the function

g will decide how much the completeness will fall on missing a certain number of

galaxies. Here we will always set g(n) = n, so the purity and completeness will

fall linearly with the number of incorrectly placed galaxies. Another sensible choice

might be a step function such that a halo is considered as being complete if more

than half of its members are placed into the same group. This is the choice used in

Eke et al. (2004).

We will look at cases where f(n) is a step function that sets the minimum group

or halo multiplicity considered:

f(n) =

1, if n ≥ N

0, otherwise .

(5.4.6)

We define P(≥N) and C(≥N) as the purity P ∗(f, g) and completeness C∗(f, g) in

the case g(n) = n and f(n) is given by equation (5.4.6). Hence P(≥N) is the purity

of groups whose multiplicity is at least N, and C(≥N) is the completeness of halos

whose multiplicity is at least N. It is important to note with these measures that

we talk about the purity of groups and the completeness of halos. We will only

consider values of P(≥N) and C(≥N) for N ≥ 2, as single groups are always pure

and single halos are always complete, resulting in the statistics P(≥1) and C(≥1)

being dominated by P(=1) = 1 and C(=1) = 1.

5.4.2 Optimisation metric

In order to optimise the parameters of a given method a single statistic is required

to decide which clustering is most adequate. Unfortunately, there is no definite

answer as to how to decide if one clustering is better than another. If solving a

particular problem, one might want to design a bespoke statistic to find an optimal

group finding model. For example, one of the science cases for the PAU Survey

group catalogue is to identify Milky Way analogues for spectroscopic follow up. In

this case, we may wish to maximise the probability that spectroscopically observed

groups are actually Milky Way analogues. The issue with this is that it would

require a new group catalogue to be built for each science case, which might not be
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practical.

Here we would like a problem agnostic measure to build a generally ‘optimal’

group catalogue. Most astrophysical applications use combinations of bijective mea-

sures of completeness and purity to define such a quantity (Gerke et al., 2005;

Robotham et al., 2011; Knobel et al., 2012; Jian et al., 2014b). We follow to the

work of Wu et al. (2009) who tested multiple goodness of fit metrics and choose to

use the variation of information (Meilă, 2003).

The variation of information, also called the shared information distance, quan-

tifies the distance between two clusterings by looking at the amount of information

in each clustering that cannot be inferred by the other clustering. Figure 5.5 visu-

alises this for halos with entropy E(H), and a detected group catalgoue with entropy

E(G)5. These are calculated as

E(H) = −
NH∑
j=1

pΣj ln(pΣj) (5.4.7)

E(G) = −
NG∑
i=1

piΣ ln(piΣ) , (5.4.8)

where pxy = nxy/nΣΣ for any x or y, with the values of the nxy taken from the

contingency matrix shown in Table 5.1. We can see the similarity with the standard

definition of entropy from statistical physics which is proportional to
∑

i pi ln pi. The

overlap of the two clusterings, the ‘mutual information’, is given by I(H, G), which

is calculated as

I(H,G) =

NG∑
i=1

NH∑
j=1

pij ln

(
pij

piΣpΣj

)
. (5.4.9)

The variation of information is given by the information contained in the parts of

the Venn diagram that do not overlap. This can be calculated as

V I(H,G) =
(
E(H)− I(H,G)

)
+
(
E(G)− I(H,G)

)
= E(H) + E(G)− 2I(H,G) .

(5.4.10)

5We note the entropy is typically given by H in the graph clustering literature, but we use E so

as to avoid confusion with our halo catalogue.
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For perfect overlap, the mutual information and the entropy of both clusterings will

be equal, and the variation of information will fall to zero. The VI is therefore given

by

V I(H,G) =−
NH∑
j=1

pΣj ln(pΣj)−
NG∑
i=1

piΣ ln(piΣ)

− 2

NG∑
i=1

NH∑
j=1

pij ln

(
pij

piΣpΣj

)
.

(5.4.11)

Figure 5.6 shows the variation of information and three values of P(≥N) and

C(≥N) as a function of the linking length for a FOF group algorithm run on the

mock catalogue. This is a simple FOF approach that uses the same linking length

for all pairs of galaxies. We can see that the minimum value of VI produces a

catalogue that is well balanced between completeness and purity. The minimum

value of VI also agrees with the value of the linking length relative to the mean

galaxy separation found in Eke et al. (2004). This shows that the mock catalogue

and choice of minimisation statistic are sensible, and produce results comparable to

those found in previous work.

5.5 Testing the Markov Clustering method

This section will test the Markov clustering algorithm on the mock catalogue, using

multiple methods of assigning pairwise connection amplitudes, to see if it provides

improvements over a FOF approach. In choosing the best model, we must also

consider the insensitivity of the model to changes in the free parameters. If we add

complexity to the model and find a new minimum in VI, but in doing so significantly

narrow the parameter space for which we find reasonable results, we should not

necessarily consider the model as an improvement. The mock catalogue on which

the model is tuned is unlikely to be perfectly representative of the real Universe,

so finding a robust model is as important as finding the minimum value of VI. All

measurements made in this section use the catalogue described in section 5.3.
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Figure 5.5: Schematic explaining the meaning of the variation of information mea-

sure. The entropy of the halos E(H) and of the groups E(G) represent the total

information in each full circle. The VI is given by the total area, excluding the over-

lap region of mutual information I(H, G). The more the circles overlap, the larger

the mutual information will be, and the smaller the value of VI will be. This plot

was adapted from a similar plot in Meilă (2003).
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Figure 5.6: Variation of information (top panel), purity and completeness (bottom

panel) as a function of linking length in a pure FOF approach to galaxy group

finding for three values of minimum group or halo multiplicity, N. The best fitting

value of linking length relative to the mean galaxy separation found in Eke et al.

(2004) (b ∼ 0.13) corresponds to a linking length of 0.6 h−1Mpc in this catalogue,

which roughly agrees with our minimum variation of information value.
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5.5.1 Constant linking length

The simplest method of creating pairwise connection amplitudes is to create binary

connections between galaxies that are 1 if the separation is less than a constant

linking length L and 0 if not. That is

wij =

1, if rij ≤ L

0, otherwise ,

(5.5.12)

for the pairwise separation, rij, between galaxies i and j.

The linking length L and the value of inflation Γ are varied. When the inflation

value is set to 1, MCL acts like an FOF algorithm, but also takes many more

iterations of the random walk to converge, so the lowest value of inflation used here

is 1.01 to avoid such CPU intensive runs. A value of 1.01 produces clusterings very

similar to, and in most cases identical to, those found in a standard FOF run.

Figure 5.7 shows the values of VI as a function of linking length and inflation

in the case of wij as specified by Equation (5.5.12). It is clear that the best value

of VI is found as Γ tends towards 1, the value where the MCL algorithm mimics an

FOF approach. Figure 5.8 visualises why this is the case. It shows the cumulative

multiplicity function T(≥N) for the true halos, and for three group catalogues using

the same linking length but different values of inflation. T(≥N) gives the number

of halos of multiplicity greater than or equal to N. In the FOF approach with this

simple joining scheme there are too many low multiplicity groups, many of which

will be spurious, and too few large groups. The low multiplicity groups are not

very pure, and the large groups are not very complete, which was seen in Figure

5.6. Increasing the value of the inflation parameter only makes this problem worse,

as it is less likely to split small tightly bound structures and more likely to further

split loosely connected large groups. So when inflation is increased there are even

more low multiplicity groups and even fewer high multiplicity groups compared to

the FOF case.
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Figure 5.7: VI contours as a function of the linking length L and the value of

inflation Γ for wij as given by Equation (5.5.12). The minimum value of VI is found

as the inflation value approaches 1, which is the value where MCL acts like a FOF

algorithm.
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Figure 5.8: The cumulative multiplicity function, T(≥N), for halos, and for three

groups catalogues with different values of inflation as labeled. The top panel shows

the multiplicity function and the bottom panel normalises the results by the mul-

tiplicity function of the underlying halos T(≥N)H . All group catalogues use the

optimal linking length for a pure FOF approach. The FOF approach produces too

many small halos and too few large halos. Increasing the inflation parameter makes

this problem worse.
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5.5.2 Local density enhancement

In order to reduce the variation in purity and completeness with group multiplicity

we propose to vary the linking length based on the local density. As larger groups

have poor completeness when using a constant linking length we would like the

linking length to be larger in overdense regions and smaller in underdense regions.

There is a precedent for this in the literature, with both Eke et al. (2004) and

Robotham et al. (2011) modifying the linking length based on the local density and

finding that it improves the group identification.

We calculate the local galaxy density in real space, ρi, at the position of galaxy

i using a 3D Gaussian kernel with σ = 1h−1Mpc truncated at 4σ. Other reasonable

values of the smoothing scale were tested and no significant improvement over this

value was found. The connection scheme becomes,

wij =

1, if rij ≤ Lij

0, otherwise ,

(5.5.13)

with the linking length L0 modified by the geometric mean of the local densities of

the two galaxies, giving

Lij = L0

( √
ρiρj

〈ρ〉 (rij)

)β

. (5.5.14)

L0 and β are free parameters and 〈ρ〉 (r) is the mean value of the geometric mean

of the pairwise local densities at a separation r, calculated as

〈ρ〉 (r) ≡
∑

i

∑
j ∆(|rij|)

√
ρiρj∑

i

∑
j ∆(|rij|)

, (5.5.15)

where the sums are over all galaxies and ∆ is a function that is unity if the value

of rij lies in the same bin as the value of r. In doing this, we are extending the

linking length if the pair lies in an overdense region relative to other pairs of similar

separation. This is important because for a pair of galaxies with small separation

the product of the galaxy local densities will on average be larger than for galaxies of

larger separations. This is because the local density of each galaxy will include some

contribution from the other galaxy in the pair, and because of the clustered nature of

galaxies. The simple scheme used in section 5.5.1 is recovered when β = 0. Eke et al.
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Figure 5.9: VI contours as a function of linking length L0 and density power β for

the case of Γ = 1.6 (Solid lines) and Γ = 1.01 (Translucent lines). Both cases show

that density enhancement can be used to produce a catalogue with a lower value

of VI than one built using a simple connection scheme, which was ∼ 0.21. The

minimum value of VI of ∼ 0.144 lies at L0 = 1.1 h−1Mpc, β = 0.6 and Γ = 1.6.

(2004) and Robotham et al. (2011) normalise the density using a free parameter,

but the present method provides a means to measure the local density normalisation

from the data. It is important to try to reduce the number of free parameters in

case the mock does not perfectly represent the real Universe. If extending this to

real observations, the density at each galaxy would have to first be normalised by

the density of a random catalogue at the same point measured using the same kernel

to account for the selection function. We also tested measuring the local density at

the centre of each pair of galaxies but it provided no measurable improvement in

results and was computationally far more challenging than this scheme.

Figure 5.9 shows VI contours as a function of linking length L0 and density power
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β for the case of an inflation value Γ of close to unity, the FOF case (translucent

lines), and for an inflation value of 1.6 (solid lines). For the FOF with density

enhancement a new minimum of VI is found for a value of β of ∼ 0.6. This tells

us that even in the FOF case, the density enhancement has helped to improve the

galaxy group catalogue. The best fit value of the linking length with this value of β

has increased from ∼ 0.55 h−1Mpc to ∼ 0.9 h−1Mpc. When inflation is allowed to

vary, the minimum value is found when Γ ∼ 1.6. Therefore, when the linking length

is allowed to vary with the local density, the FOF algorithm is no longer the optimal

choice. The best fitting value of L0 in this case is larger than in the FOF case,

which shows that the Markov algorithm is working as expected, in allowing more

galaxy pairs to be connected before poorly connected structure is split apart. The

optimal linking length further increases for values of Γ above 1.6 but the minimum

value of VI also increases. The larger the value of Γ, the more galaxy pairs must be

connected to compensate for inflation splitting apart more structure.

Figure 5.10 shows why the density enhancement helps improve group finding. It

shows the fraction of pairs at a particular separation and pairwise density that lie

within the same halo in the catalogue. We can recast the linking criterion so we can

include it on this plot. Pairs of galaxies are connected if their separation rij meets

the condition

log10(rij) < log10(L0) + β log10(
√
ρiρj/ 〈ρ〉 (rij)) . (5.5.16)

The cuts that the best fit simple FOF, FOF with density enhancement and MCL

with density enhancement make are shown by the black lines. Pairs to the left of each

of the lines are connected by those schemes. It is clear by eye that both algorithms

that vary the linking length with density better split the pairs that do or do not lie

in the same halo compared with the simple FOF approach. The roughly straight

line split on this diagram in fact helped motivate the power law form of the density

enhancement. This plot also shows why L0 is larger with density enhancement,

because it allows the scheme to avoid incorrectly connecting underdense pairs, which

can be seen to happen with a fixed linking length. The MCL best fit catalogue

connects more galaxy pairs than its FOF counterpart because it then splits poorly

connected structure using the inflation parameter.
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Figure 5.10: Fraction of pairs that lie in the same halo as a function of pair separation

and normalised pairwise density. The lines show the cuts made by the best fit

schemes of simple FOF (solid), FOF with density enhancement (dashed) and MCL

with density enhancement (dotted). The region to the left of each line would be

connected in each scheme. The simple FOF scheme can only yield a vertical cut,

which is likely to poorly separate pairs that do and do not lie in the same halo. The

cuts with density enhanced linking lengths make more sensible cuts.
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Figure 5.11: Purity, P(≥N) (left panel), and completeness, C(≥N) (right panel),

as a function of minimum multiplicity, N, for the catalogue defined by the best

fit simple FOF (dotted), FOF with density enhancement (dashed) and MCL with

density enhancement group catalogues (solid). The purity and completeness of the

MCL group catalogue is the most consistent as a function of multiplicity, and clearly

has the best completeness.
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Figure 5.11 shows the values of P(≥N) and C(≥N) as a function of N for the

catalogues defined by the best fit simple FOF, FOF with density enhancement and

MCL with density enhancement. As mentioned before, the simple FOF case has

low purity for small groups (P(≥2) ∼ 0.8) and poor completeness for large groups

(C(≥2) ∼ 0.78). The FOF with density enhancement is significantly better, but still

overjoins some of the larger groups, as the purity falls with multiplicity. The MCL

algorithm improves on both aspects, and produces a purity and completeness that

is largely independent of the multiplicity. A catalogue with purity and completeness

that vary little with multiplicity is preferred over one in which they vary a lot. It

also produces a catalogue that has better purity and completeness for all multiplic-

ities tested here than the FOF catalogue with density enhancement. The purity

of high multiplicity groups is larger for the simple FOF case, but only because the

completeness is so poor.

Figure 5.12 shows cumulative multiplicity function, T(≥N), for the halos and

three group catalogues. The three group catalogues are the best fit simple FOF, FOF

with density enhancement and MCL with density enhancement. It can be seen that

using density enhancement to improve the FOF algorithm significantly improves the

estimation of the number of small groups, but it still underestimates the number of

large groups. The MCL algorithm with density enhancement impressively recovers

the correct numbers of groups at all multiplicities tested here to better than 7%, and

most to better than 3%, compared to the best FOF algorithm which underestimates

the number of halos by as much as 25% at N >= 5 and ∼15% for most multiplicities.

It is worth once again noting that these results were not used to tune the catalogues,

which were solely tuned using VI.

These results show that the MCL algorithm can address the problem of bridges

connecting large structure in an FOF algorithm. An FOF approach must be more

cautious about the connection criterion as there is a large penalty if even one link is

found between two large structures, whereas the MCL algorithm reduces this penalty

by using inflation to break these bridges. These links cause the underestimation in

the number of high multiplicity groups found by the FOF algorithm that can be

seen in Figure 5.12, and the corresponding poor purity values for these groups seen
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Figure 5.12: The cumulative multiplicity function, T(≥N), as a function of the

multiplicity, N, for halos and three groups catalogues as labeled. The top panel

shows the multiplicity function and the bottom panel shows the ratio to the true

halo measurement T(≥N)H . The three group catalogues (green lines) are the best

fitting simple FOF (dotted), FOF with density enhancement (dashed) and MCL

with density enhancement (solid).
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in Figure 5.11. Both of these are improved when using the MCL algorithm.

5.5.3 Fractional connection amplitudes

This section briefly mentions tests done with a scheme that produces fractional

pairwise connection amplitudes. This is done to test if providing MCL with more

information about the actual pairwise separations can provide any improvement.

This connection scheme sets values of the connection matrix as,

wij =
(

1 +
( rij
Lij

)α)−1

, (5.5.17)

for a free parameter α and a linking length modified by the local density as in

Equation (5.5.14). This form of wij tends to 1 for close pairs and to 0 for distant

pairs. The larger the value of α, the sharper this transition becomes around the

linking length Lij. This tends towards a binary connection scheme in the limit

of α tending towards infinity. Tests found no better values of VI, and the best

fitting values were for values of α such that this scheme was indistinguishable from

a binary connection scheme. So for the real space scenarios considered so far, the

MCL algorithm works best if the matrix wij contains binary links.

5.6 Extension to redshift space and photometric

redshifts

This section proposes a method of extending this work to catalogues with mixed

redshift precision.

5.6.1 Model

The pFOF scheme laid out in Liu et al. (2008) uses the full redshift probability

distribution of the galaxies to extend the FOF model to catalogues including pho-

tometric redshifts. We will use this scheme as a starting point. The pFOF scheme

connects two galaxies if the probability that they lie within the linking length of each

other is greater than a free parameter, the threshold probability pthresh. Galaxies i
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and j with redshift probability distributions pi(z) and pj(z) are connected if∫
dz1

∫
dz2 pi(z1)pj(z2)wij(r1, r2) > pthresh , (5.6.18)

where wij(r1, r2) ( hereafter wij), is the pairwise connection condition, which is a

function of the relative positions of the two galaxies, and will change as the two

integration variables change. This could be a binary condition like the one given

by Equation (5.5.13) or a smooth function as given in Equation (5.5.17). We have

seen examples in real space where wij varied with the total separation of the two

galaxies, but in redshift space the projected separation is usually treated differently

to the line of sight separation. The linking length along the line of sight is made

to be longer than the projected linking length such as to recover structure that

has been spread out by redshift space distortions. This scheme has the attractive

property that in the limit where all redshift measurements are exact, i.e. all redshift

probability distributions are given by delta functions, this scheme mimics a typical

FOF approach to group finding.

There is nothing to stop the binary links defined in this scheme being used with

the MCL algorithm. As we have shown in real space, even with binary connection

matrices the MCL algorithm can provide a significant improvement over a FOF

approach. However, as MCL allows probabilistic connections we can define the

connection matrix as simply

〈wij〉 =

∫
dz1

∫
dz2pi(z1)pj(z2)wij . (5.6.19)

This has removed the free parameter pthresh from the pFOF scheme, but MCL adds

a free parameter in inflation (Γ) as part of the MCL pipeline.

In this scheme, we still require the linking length along the line of sight to be

longer than in projection. We extend the linking length to deal with smearing of

structure, and only need to do so because of the clustered nature of galaxies. We

propose here an extension to the model that uses the clustering signal of galaxies as

a means to recover the lost signal due to redshift space distortions and redshift space

uncertainties. The two point correlation function is defined as the excess probability

of finding two galaxies at a particular separation from each other, so we define the
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average connection matrix between a pair of galaxies i and j as

〈wij〉 =

∫
dz1

∫
dz2pi(z1)pj(z2)(1 + ξij(r12))wij∫

dz1

∫
dz2pi(z1)pj(z2)(1 + ξij(r12))

, (5.6.20)

where ξij is the auto/cross correlation function between galaxies i and j6. In practice

this could be the real or redshift space correlation function, that choice is discussed

later in section 5.6.3. If redshift measurements are exact and in real space, this

scheme recovers the deterministic value of wij, i.e. 〈wij〉 = wij.

We explore and justify this scheme with a thought experiment. Suppose we

know the position of one galaxy exactly in real space. Then, suppose that another

galaxy is close by in projection, but its redshift probability distribution is binary,

such that it is 50% likely to lie next to the first galaxy and 50% likely to be very far

away. For any reasonable line of sight linking length and a binary form of wij, the

pFOF scheme of Equation (5.6.18) will always give a probability of the two galaxies

being connected as 0.5, because according to that scheme there is a 50% chance

that the galaxies are close enough to be connected. However, intuition tells us that

this number should be higher. It is more likely that a galaxy in a group has had

50% of its redshift probability placed at a random point in the field, rather than a

randomly placed field galaxy having had 50% of its redshift probability measured

to be directly next to another galaxy. The clustering weighting scheme of equation

(5.6.20) will find a probability of connection of greater than 0.5 if the two galaxies

come from a clustered galaxy sample as the nearby separation will have its weight

increased by a factor of (1 + ξij). If value of ξij was ∼ 100 when at the nearby

separation and near 0 at the distant separation the probability of connection would

in fact be ∼ 0.99.

We can extend this thought experiment further by considering two scenarios,

one where both galaxies are red, and one where both galaxies are blue. Using the

cross correlation function between different samples allows the two scenarios to have

two different connection probabilities. The connection probability in the red case

will be larger. The amplitude of the correlation function on one halo scales for

6Typically the sample is split into one or several samples, and ξij is the auto/cross correlation

function of the samples containing galaxies i and j respectively.

November 1, 2018



5.6. Extension to redshift space and photometric redshifts 164

red galaxies is higher than for blue galaxies, as red galaxies are more likely to be

satellite galaxies than blue galaxies. This scheme therefore treats the recovery of the

connection amplitudes differently for galaxies with different properties in a manner

that is data driven. One way to think of this is that we are replacing lost line of

sight information with the average information about that type of pair of galaxies.

5.6.2 Testing with a toy model

We will look at what probabilities equation (5.6.20) assigns to galaxy pairs of dif-

ferent line of sight and projected separations for different values of positional uncer-

tainty and correlation function amplitude. We will look at the situation where both

galaxies have the same Gaussian position uncertainties, σ, with different peak posi-

tions, and both belong to a sample with a power law two-point correlation function

of the form

ξ(r) =

(
r

r0

)−γ
, (5.6.21)

for separation r and free parameters γ and r0. This setup is visualised in Figure

5.13. The larger the uncertainty σ, or the smaller the peak separation π, the greater

the overlap between the two distributions along the line of sight. Setting r0 = 0

corresponds to the case of zero correlation function.

Figure 5.14 shows the probability of connection as a function of the line of sight

separation of the peaks of the two Gaussian distributions, π, and their width, σ,

for the case of a zero correlation function. The value of the projected separation is

fixed at 0.4 h−1Mpc. At low values of σ, the scheme approaches the deterministic

cut shown by the black dashed line. For larger values of σ, the transition becomes

broader and the maximum possible probability (at small values of π) falls. The top

right hand part of the contours extend beyond the black dashed line, which shows

that this scheme can give a chance of connection even when the median separation

of the galaxies along the line of sight is greater than
√
L2 − r2

p, although in this

scheme those probabilities are small. If we look across at a value of σ = 10h−1Mpc

(roughly the error on two well measured PAUS galaxies at low redshift) we can see

the problem if no correlation function is included, as the galaxies would have a very
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Figure 5.13: Schematic drawing showing the toy model of a pair of galaxies, both

with line of sight position pdfs given by Gaussian distributions of width σ. The

galaxies are separated by rp in projection and the peak of their line of sight distri-

butions are separated by π. In the distant observer approximation rp is unchanged

by changes in redshift of the two galaxies.
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Figure 5.14: Contours of average connection probability given by Equation (5.6.20)

for a pair of galaxies in the setup as shown in Figure 5.13 as a function of Gaussian

width σ and line of sight peak separation π for the case of no correlation function.

The contours have values every 0.1, with the innermost and outermost contours are

labeled. The black dashed line shows the maximum line of sight separation that

would result in a connection if σ = 0, given by
√
L2 − r2

p. All length scales are in

units of h−1Mpc.
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Figure 5.15: Same plot as in Figure 5.14 but for two values of rp (left and right

panels) and a power law correlation function. The contours are labeled in the right

panel and have the same values in both panels. All length scales are in units of

h−1Mpc.

low probability of connection, even in the case where their median positions are

exactly the same along the line of sight.

Figure 5.15 shows the impact of including the correlation function weighting,

using a power law correlation function with r0 = 5h−1Mpc and γ = 1.8. We show this

for two values of rp, 0.1 h−1Mpc (left panel) and 0.8 h−1Mpc (right panel). When the

value of σ tends towards zero, we once again tend towards a deterministic connection

scheme. Now, compared with not including correlation function weighting as in

Figure 5.14, the fall in connection probability at small values of π as σ increases is

significantly slower. This fall happens faster in the case of larger projected separation

compared with smaller projected separations, as the galaxies need to be closer to

each other along the line of sight to be connected when their projected separations

are larger. We can now see that pairs with large uncertainties and large line of sight

separations that would be disconnected without correlation function weighting can

now have a significant connection amplitude, which is larger for smaller projected

separations. Now PAUS like galaxies may have significant chance of connection.
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Figure 5.16: Average connection probability given by Equation (5.6.20) for a pair

of galaxies in the setup shown in Figure 5.13 with σ = 10 as a function of the

line of sight peak separation π for different values of correlation function amplitude

r0 and two values of rp (left and right panels). The black dashed lines show the

maximum line of sight separations that would result in a connection if σ = 0, given

by
√
L2 − r2

p. All length scales are in units of h−1Mpc.
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Figure 5.16 shows the values of wij as a function of line of sight peak separation

π for two galaxies with σ = 10 h−1Mpc for different value of the correlation function

amplitude r0, and for two values of projected separation rp. γ is fixed at 1.8. The

uncertainty of σ = 10 h−1Mpc is chosen to roughly mimic two well measured PAUS

galaxies at low redshift. We can see that the connection probabilities are nearly

step functions as a function of π. The transition of this step function is sharper

with larger correlation function amplitudes. Larger correlation function amplitudes

lead to larger peak heights and larger scales at which the probability falls toward

zero. Smaller projected separations lead to smaller peak connection probabilities

and larger scales at which the probabilities fall to zero. The dotted black lines show

the maximum line of sight separation for which the two galaxies would be connected

if σ = 0. It is clear from these plots how this scheme has provided an effective

extension to the connection criterion along the line of sight in a data driven manner.

This effective extension is larger in the case where the two galaxies are from highly

clustered samples.

5.6.3 Discussion

So far we have not addressed the issue of redshift space, as we have only shown

demonstrative tests in real space to avoid this complication. There are two ways

in which we suggest dealing with redshift space effects, an anisotropic connection

criterion, or treating redshift space effects as further position uncertainties.

First the case of an anisotropic connection criterion. This is similar to previous

literature approaches and would extend the linking length along the line of sight

to deal with redshift space effects. The scheme laid out in Equation (5.6.20) would

in this case only deal with uncertainties in the redshift space measurement, and

would use the redshift space correlation function in its probability calculations.

In a survey with larger redshift uncertainties, such as PAUS, the redshift space

correlation function may prove difficult to estimate accurately, so we would need

to use measurements from a spectroscopic survey such as VIPERS. Requiring a

spectroscopic survey as deep as the photometric survey seems to defeat the point

but a measurement of the correlation function can be made with sparse sampling,
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as in VIPERS, whereas groups are far more sensitive to survey completeness. This

measurement could also be made in a smaller solid angle survey such as zCOSMOS.

The weighting is sensitive to the clustering but the dominant effect comes from

moving from no clustering at all to some realistic clustering values. This means the

clustering result used may not need to be exactly the same as for the galaxies in

PAUS to still give a reasonable result.

The second method would be to treat redshift space effects as further line of

sight position uncertainties. The probability distributions in Equation 5.6.20 would

now attempt to estimate the line of sight position distribution of a galaxy in real

space in a statistical manner. One way to do this would be to convolve the redshift

space pdf, pmeasured(z), with a distribution that statistically represents our lack of

knowledge of the galaxy velocity, pv. This would define p(z) as

p(z) =

∫
dz′pmeasured(z′)pv(z

′ − z) . (5.6.22)

This means the connection criterion can now be isotropic, but would require using

the real space correlation function in Equation 5.6.20. The real space auto/cross

correlation function of two samples can be estimated by deprojecting the projected

auto/cross correlation function (Arnalte-Mur et al., 2009). A sensible choice for pv

would be one derived from a Gaussian velocity distribution, with velocity dispersion

σv. σv could be a constant free parameter for all galaxies or depend on the local

density or type of galaxy. It could also change depending on the mass of halo a

galaxy lives in, which would require an iterative approach similar to the one in Yang

et al. (2005).

One complication we have not addressed is the calculation of the local density.

We have seen section 5.5.2 that the local density can be used to modify the linking

length and significantly improve group finding. One could try to extend this scheme

for the pairwise density calculations or simply extend the density kernel along the

line of sight as was done in Eke et al. (2004) and Robotham et al. (2011).
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5.7 Conclusion

This chapter explains that the well known FOF algorithm is a subset of the more

general MCL graph clustering algorithm (Van Dongen, 2000). MCL has one free

parameter, inflation (Γ), which when set to 1 produces the same results as for an

FOF algorithm. Working in real space we use MCL to detect galaxy groups in a

realistic galaxy mock catalogue constructed from an N-body simulation using the

GALFORM semi analytic model.

We use the variation of information (VI) (Meilă, 2003) to compare group cat-

alogues to the real halos. A smaller value of VI produces a better clustering. We

validate this choice by showing that the minimum value of VI for a simple FOF

approach is found at linking lengths that agree with previous best fit parameters,

such as those found in Eke et al. (2004).

When we allow Γ to vary away from 1, we find that for a simple constant linking

length the FOF algorithm produces the best group catalogue. This is because the

FOF algorithm produces too many spurious small groups and too few large groups

and increasing inflation only acts to make this discrepancy worse.

We vary the linking length as a function of the local density of the two galaxies

in a pair to try to address the multiplicity dependency of the results. This local

density enhancement is normalised in such a way that can be measured from the

real data and requires no free parameter. This scheme significantly improves the

results of both the FOF and MCL approaches. Using this scheme the MCL algorithm

produces the catalogue with the minimum value of VI.

The MCL group catalogue with density enhancement is shown to be have better

completeness and purity than the comparable FOF catalogues, and in particular a

completeness and purity that is more constant as a function of multiplicity. The

MCL catalogue also best estimates the number of groups at a given multiplicity.

Compared to the best FOF approach, it significantly improves the purity of, and

the estimate of the number of, high multiplicity groups. This is most likely because

it helps address the problem of bridges linking large structures together in FOF

approaches.

MCL allows pairwise connection amplitudes that are not just ones and zeros,

November 1, 2018



5.7. Conclusion 172

which may prove very useful in catalogues with mixed redshift measurement pre-

cision, such as will be produced by the PAU Survey. Even in real space, where

pairwise connections are not probabilistic, we have shown MCL can produce better

group catalogues than an FOF approach. We have proposed a scheme to extend this

work to catalgoues with uncertain galaxy positions in a way that is driven by the

data. To do this we use the two point correlation function to replace lost line of sight

information about a galaxy pair with average information about that type of pair

of galaxies. We have shown this scheme produces sensible results when considering

a single pair of galaxies with Gaussian position uncertainties. Future work will test

this scheme on an appropriate mock catalogue.
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Chapter 6

Conclusions and future work

This chapter summarises the work presented in this thesis, provides insight into

ongoing work, and explains the avenues open for future work.

6.1 Point processes and Euclid

Chapter 2 uses point processes to provide catalogues that can be used to validate

the clustering pipelines of the Euclid survey (Laureijs et al., 2011). In particular, it

provides a means to build catalogues with analytically known higher order moments

of the two point function using two common point processes, the segment Cox

process (Stoyan et al., 1995) and the Thomas process (Thomas, 1949). We also

provide predictions for the three point correlation function of the isotropic Thomas

process.

The three point function predictions for the Thomas process are yet to be vali-

dated and could be explored in future work. Future work could also extend the work

done here to look at the results for higher order correlation functions of a Neyman

Scott process with a more realistic cluster profile for use in interpreting the one

halo term results of HOD modelling. Furthermore, spherically symmetric cluster

profiles fail to boost the likelihood of aligned triangles as is seen in the three point

function in the real Universe. Using cylindrically symmetric cluster profiles rather

than spherically symmetric ones could provide an interesting avenue for exploration

into modeling the three point function analytically.
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The Euclid two point correlation function pipeline has passed the strict validation

tests using the segment Cox process and is now undergoing validation using realistic

mock catalgoues, but the three point function has yet to be validated at all. This

work has provided a viable method for the three point correlation function pipeline

to be tested against an analytic prediction.

6.2 Galaxy clustering measurements, 2PCF, and

DESI

Chapter 3 introduced a publicly available two point correlation function code, 2PCF,

written in C++, that is fast, flexible and contains the features needed for modern

galaxy redshift survey clustering statistics. The code is similar in scope and approach

to CUTE (Alonso, 2012), but adds flexible binning, on the fly jackknife resampling

calculations, more flexible IO and the pairwise upweighting scheme of Bianchi &

Percival (2017). An extension of this pair upweighting scheme to account for shifting

the survey in each run is also explained and implemented. We tested the performance

scaling of this code. Under the right circumstances, it scales linearly with volume,

quadratically with density, and close to ideally with increasing numbers of CPU

cores.

The code has been used to investigate constraints on f(R) modified gravity models

using marked correlation functions in Hernández-Aguayo et al. (2018). The use of

the code in Smith et al. (2018) is summarised, which shows that the implementation

of the pair upweighting scheme here is sufficient to correct the clustering statistics of

the DESI BGS (DESI Collaboration et al., 2016) for the complicated target selection

effects.

Immediate future developments will focus on including cross correlation function

calculations, as this may prove particularly useful for the redshift space pairwise

connection scheme proposed in Chapter 5 to help with galaxy group detection.

Providing support for periodic boxes has also been a highly requested feature, so

will be high on the list of priorities.

The survey strategy of DESI BGS is still under revision, partly due to uncer-
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tainty surrounding the assumptions of what will be possible observationally in bright

time. It is possible that a revised Moon model will reduce the capability of the sur-

vey. Smith et al. (2018) provided results that will be very useful in modifying

survey strategy in this circumstance, as it has shown that large scale cosmology

measurements can be made with similar precision with only one pass as with the

currently planned three passes. This will have to be weighed against small scale and

environment science cases which may prefer a drop in area rather than a drop in

completeness.

The natural extension of the work of Smith et al. (2018) is to test the recovery

of the three point correlation function in DESI BGS using the scheme of Bianchi &

Percival (2017). Testing the three point function will be significantly more difficult

than for the two point. While the pair upweighting scheme of Bianchi & Percival

(2017) extends naturally to triplet counts, it is difficult to extend to work with

algorithms that allow faster three point calculations such as the one presented in

Slepian & Eisenstein (2015).

6.3 PAUS

Chapter 4 presents a mock catalogue for the Physics of the Accelerating Universe

Survey (PAUS) (Castander et al., 2012) built from the N-body MR7 simulation

(Guo et al., 2013) using the GALFORM semi analytic model presented in Gonzalez-

Perez et al. (2014b). We use it to quantify the competitiveness of the narrow band

imaging for measuring spectral features and galaxy clustering. This mock catalogue

agrees well with observed number counts and redshift distributions. We demonstrate

the importance of including emission lines in the narrow band fluxes. We show that

PAUCam has sufficient resolution to measure the strength of the 4000Å break to

the nominal PAUS depth. We predict the evolution of a narrow band luminosity

function and show how this can be affected by the OII emission line. We use new rest

frame broad bands (UV and blue) along with D4000 and redshift to define galaxy

samples and provide predictions for galaxy clustering measurements. We show that

systematic errors in the recovery of the projected clustering due to photometric
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redshift errors in PAUS are significantly smaller than the expected statistical errors.

The galaxy clustering on two halo scales can be recovered quantitatively without

correction, and all qualitative trends seen in the one halo term are recovered. In

this analysis mixing between samples reduces the expected contrast between the one

halo clustering of red and blue galaxies and demonstrates the importance of a mock

catalogue for interpreting galaxy clustering results.

There are two points to be addressed in the next version of the catalogue. The

first is that the catalogue cannot currently be used for photometric redshift code

validation as the interpolation scheme gives rise to a discreteness in the observed

redshifts. Figure 6.1 shows this effect. It shows the lightcone redshift label zspec vs

the inferred redshift using the PAUS photoz pipeline zphoto. zspec is continuous but

the zphoto shows significant discreteness that lines up with the snapshots of the N

body simulation used to build the mock catalogue. This is because the flux in a

band is found by interpolating the values in that band from the adjacent snapshots.

In the case of broad bands this change is small, so provides a good approximation,

but this is not the case with narrow bands. This is because the spacing between

snapshots moves the observer frame by more than the width of a single filter.

The second point to address is one of resolution. The MR7 simulation has a

minimum halo mass of 2×1010M�, which translates to a minimum flux in a particular

band for which the catalogue will be highly complete. For a magnitude limited

galaxy survey this sets a minimum redshift where the mock is highly complete.

For a PAUS mock catalogue limited by i < 23 this will lie somewhere between

0.1 < z < 0.2. This means that a mock catalogue that will be used to calibrate a

galaxy group finder should use an N body simulation with higher resolution.

A mock catalogue built using the pMillennium N body simulation (Baugh et al.,

2018), which has 4x the number of snapshots and around an order of magnitude

better mass resolution, should address both of these points.
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Figure 6.1: Scatter plot of redshift as labeled in the PAUS lightcone, zspec, and

measured photometric redshift using the 40 simulated PAUS narrow bands and the

PAUS photo z pipeline, zphoto. The blue dots show the galaxies and the large red

dots show the redshift locations of the snapshots of the MR7 N-body simulation

used to build the mock catalogue. Plot provided by Alex Alarcon.
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6.4 Galaxy groups and MCL

Chapter 5 introduces the Markov clustering algorithm MCL (Van Dongen, 2000)

as a viable galaxy group finding algorithm. We show that the well known FOF

algorithm is a subset of the MCL graph clustering algorithm. We test multiple

models and each time optimise any free parameters by minimising the variation of

information measure (Meilă, 2003). The variation of information measure is a single

statistic that we use to find the best catalogue with a reasonable balance between

purity and completeness. We show that in real space MCL produces a catalogue

with better purity and completeness than the comparable FOF catalogue, and a

more accurate cumulative multiplicity function. MCL allows probabilistic pairwise

connections which may be useful in surveys with mixed redshift precision such as

PAUS. We suggest a possible method of extending this to redshift space that uses

the two point correlation function to replace lost line of sight information.

Work is ongoing to test this scheme of finding connection probabilities in a cat-

alogue with line of sight position uncertainties. It uses the same mock catalogue as

the real space work but in redshift space with Gaussian errors representing roughly

the photometric redshift errors of galaxies from the PAU Survey. There are some

computational challenges that are introduced with this. First, the code currently

being used to produce the pairwise connection probabilities was built using the two

point correlation function code 2PCF. This code uses a local cell search to speed up

calculations. In real space, the cell size does not need to be particularly large to

encompass all realistically connected galaxies, but once galaxies have large position

errors the size of cells must be significantly increased, and the number of considered

pairs increases dramatically, increasing the runtime. Further, each pair of galaxies

considered now requires a double integral over the two position pdfs. A Gaussian

truncated at 3σ may stretch over more than 60 h−1Mpc in a PAUS-like mock cata-

logue, so many points are required to resolve sub-Mpc pairwise separations, and the

code scales with the resolution squared. Nevertheless, early results trying to use the

scheme in a way to help recover the local density have proved promising.

Future work will complete this testing for a sample with PAUS-like uncertainties.

This work can be used to help produce a galaxy group catalogue using the PAU
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Survey data. Such a group catalogue would allow us to probe further down the

halo mass function than ever before and provide insight into how galaxy groups

have evolved over redshift. Such a group catalogue would provide the best picture

of the galaxy-halo connection at low halo masses and medium redshifts (z ∼0.5)

until 4MOST WAVES-Deep (Driver et al., 2016) produces a spectroscopic catalogue

of similar scope to PAUS, starting in 2023. WAVES-Wide will produce a large

solid angle survey of similar depth but will use a photometric redshift cut to select

galaxies with z < 0.2. Connections to higher redshifts (z ∼ 1) will be possible with

the MOONS survey in 2021 (Cirasuolo & MOONS Consortium, 2016).

This author believes communities who use a FOF scheme for galaxy group de-

tection should strongly consider switching to the MCL algorithm for future work.

The extra free parameter, inflation, Γ, provides additional flexibility that can be

used to better tune a group finder to a specific use case, or simply improve results,

as has been evidenced in specific circumstances considered in Chapter 5.
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Appendix A

Appendix to chapter 4

A.1 Galaxy clustering statistics and code

We calculate galaxy clustering using the appropriately normalised Landay-Szalay

estimator (Landy & Szalay, 1993b)

ξ(rp, π) =
DD(rp, π)− 2DR(rp, π) +RR(rp, π)

RR(rp, π)
, (A.1.1)

DD, DR and RR are normalised Data-Data, Data-Random and Random-Random

pair counts. The number of randoms set is always ten times the number of galaxies

in a sample, and they are uniformly distributed in the comoving volumes of the sam-

ples. rp and π are, respectively, the galaxy pair separations transverse and parallel

to the line of sight. These separations are defined in terms of the pair of galaxy

vectors x1 and x2

π =

∣∣∣∣∣(x1 − x2).(x1 + x2)

|x1 + x2|

∣∣∣∣∣, (A.1.2)

rp =
√

(x1 − x2)2 − π2. (A.1.3)

In this analysis we consider only projected galaxy clustering to minimise the

impact of the PAUS redshift error. The projected correlation function is given by

wp(rp) = 2

∫ πmax

0

ξ(rp, π)dπ, (A.1.4)
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where the value of πmax is a parameter to be set.

Fig. A.1 shows the systematic loss of signal in the projected galaxy clustering

for samples with different values of photometric redshift errors relevant to PAUS

for two different values of πmax. The sample used was (-19.5 < Mh
B < −19.0) in

the redshift range 0.5 < z < 0.63. The real PAUS data will have a distribution of

photometric redshift errors rather than the single Gaussian error assumed here so

this plot can inform us on the systematic errors we may introduce for different error

distributions. The larger value of πmax recovers more of the signal but at the cost of

increasing the statistical noise. The difference in spectroscopic result between πmax

= 50 and 100h−1Mpc is less than 2%. A value of πmax of 100 h−1Mpc would allow us

to use galaxies in the sample with three times the nominal PAUS redshift error and

recover the projected clustering within the statistical errors. See Arnalte-Mur et al.

2009 and Arnalte-Mur et al. 2014 for further discussion on projected correlation

recovery in photometric redshift surveys.

All clustering results are calculated using a two point clustering code which is

publicly available on github 1. This is an OpenMP accelerated code which has the

ability to calculate monopole and 2D decompositions of the correlation function

with flexible linear or logarithmic binning, multiple input/output types and on-the-

fly jackknife errors at the expense of very little extra computing time.

The galaxy pairs were binned logarithmically in both rp and π, which can help

reduce the increase in statistical error for large values of πmax.

A.2 Clustering samples

Fig. A.2 shows the volume limited cuts used to create galaxy clustering samples. The

faint limit in Mh
B at each redshift was chosen such that the faintest samples were

over 99% complete in a catalogue i ¡ 23 without errors. The scatter in the colour

term between the observed i-band and Mh
B is responsible for any small amount of

incompleteness. The high completeness of the samples can be seen from Fig. A.2

by noting that the bottom right corners of the faintest boxes do not overlap with

1 https://github.com/lstothert/two_pcf

November 1, 2018

https://github.com/lstothert/two_pcf
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Figure A.1: The recovery of the projected galaxy clustering for samples of different

Gaussian photometric redshift errors and different values of πmax. Each curve is

normalised by the spectroscopic result integrated to the same πmax. The error bars

represent the jackknife errors on the spectroscopic result.

November 1, 2018



A.2. Clustering samples 192

galaxies with mean i band magnitude of 23. These samples are therefore the samples

we would choose if we had perfect photometry, and we then deduce the recoverability

of the results when realistic errors are included. The cuts at lower redshift must have

a more conservative limit in Mh
B than at higher redshift as the scatter between PAUS

Blue and the apparent i band magnitude is larger at lower redshift. This is because

at the lowest redshift the wavelength difference between the two bands is maximised

in the PAUS redshift range so the colour term, and the corresponding colour scatter,

is the largest.

All samples selected along with their completeness and purity once errors are

included are listed in Tables A.1 and A.2. The definitions of the completeness and

purity in those tables can be written as follows. Define Nij as the number of galaxies

that lie in sample i in the catalogue without errors and in sample j in the catalogue

including errors. Define Ni∗ as the number of galaxies in sample i in the catalogue

without errors. Define N∗j as the number of galaxies in sample j in the catalogue

with errors. The completeness of sample i can now be defined as Nii / Ni∗ and the

purity as Nii / N∗i. Satellite fraction and median halo mass are galaxy weighted

quantities. A halo with many satellites may therefore make multiple contributions

to the number of satellites and halo masses in a sample. The samples here were split

in uniform redshift steps but future work may choose to make the lower redshift bins

larger than the higher redshift bins to match the sizes of the volumes probed.

There is high completeness and purity amongst samples split only by redshift

and Mh
B seen in table A.1, which drops when samples are further split by colour in

table A.2. This shows that the driving source of sample mixing in this work is the

colour split. In a fixed luminosity bin the completeness and purity falls with redshift

as the photometry errors are larger for apparently fainter samples. This also holds

once galaxies are split by colour.

The number density of the brightest galaxies increases with increasing redshift

as the star formation rate of the universe, and therefore the amplitude of the Mh
B

luminosity function, increases with redshift. These trends are also seen in fainter

samples but aren’t as clear once errors are included. Brighter galaxies live in larger

halos and this trend is particularly strong for red galaxies. These red galaxies also
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Figure A.2: Rest-frame Mh
B vs redshift, colour coded by mean i-band magnitude for

a PAUS mock built to i ¡ 25 without including redshift or photometry errors. The

lightcone was built deeper than nominal PAUS depth so as to be certain about the

completeness values of the samples. The plot stops at i¡ 23.5 so the colour gradient

through the boxes is more obvious to the reader. The boxes show the sample limits

used in the galaxy clustering analysis, chosen to be 99% complete to i < 23 in this

lightcone. Note the boxes do not touch the i = 23 coloured squares.

on average live in significantly larger halos than their blue counterparts with the

same luminosity and redshift. At fixed colour and luminosity the median halo mass

increases with decreasing redshift as the dark matter growth rate is large on small

non-linear scales over this redshift range.

November 1, 2018



A
.2

.
C

lu
ste

rin
g

sa
m

p
le

s
1
9
4

z-min z-max Mh
B bright Mh

B faint Comp (%) Purity (%) n Sat frac Median Mhalo

Volume (106h−3Mpc−3) (10−3h−3Mpc−3) (1011h−1M�)

0.24 0.37 -18.5 -18.0 89.6 88.6 7.51 0.273 2.43

4.626 -19.0 -18.5 92.4 91.9 6.22 0.259 3.58

-19.5 -19.0 94.6 93.5 4.89 0.221 4.58

-20.0 -19.5 95.4 94.7 3.41 0.153 5.48

-20.5 -20.0 96.2 95.4 1.8 0.1 6.22

None -20.5 97.3 96.2 1.02 0.073 8.66

0.37 0.5 -18.5 -18.0 81.9 81.7 8.14 0.291 2.34

8.262 -19.0 -18.5 87.5 86.9 6.73 0.275 3.53

-19.5 -19.0 90.8 90.8 5.44 0.242 4.6

-20.0 -19.5 93.2 92.9 3.88 0.179 5.36

-20.5 -20.0 94.1 94.2 2.1 0.113 6.05

None -20.5 96.1 96.1 1.22 0.079 8.79

0.5 0.63 -19.0 -18.5 81.2 82.0 6.22 0.273 3.31

12.22 -19.5 -19.0 87.0 86.2 5.31 0.234 4.28

-20.0 -19.5 90.2 89.9 3.91 0.174 5.03

-20.5 -20.0 92.2 91.7 2.15 0.117 5.78
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None -20.5 95.2 95.0 1.25 0.076 8.26

0.63 0.76 -19.5 -19.0 82.2 83.7 4.96 0.232 4.09

16.177 -20.0 -19.5 86.9 86.7 3.91 0.177 4.85

-20.5 -20.0 89.9 89.6 2.23 0.118 5.5

None -20.5 94.1 93.9 1.3 0.08 8.08

0.76 0.89 -20.5 -20.0 87.9 87.4 2.62 0.129 5.42

19.922 None -20.5 93.1 92.9 1.53 0.083 7.99

Table A.1: Table of galaxy clustering samples used in

this analysis. Completeness, purity and satellite fraction

are defined in the text. n is the number density of the

sample.

z-min z-max Colour Mh
B bright Mh

B faint Comp (%) Purity (%) n Sat frac Median Mhalo

Volume (106h−3Mpc−3) (10−3h−3Mpc−3) (1011h−1M�)

0.24 0.37 red -18.5 -18.0 73.9 63.9 3.43 0.481 13.3

4.626 -19.0 -18.5 85.8 80.2 3.11 0.47 19.4

-19.5 -19.0 92.2 88.2 2.52 0.401 20.4

-20.0 -19.5 93.5 91.6 1.68 0.286 20.9

-20.5 -20.0 94.9 92.8 0.788 0.193 23.2
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None -20.5 96.6 94.6 0.454 0.13 64.7

blue -18.5 -18.0 71.7 78.3 4.08 0.097 1.91

-19.0 -18.5 81.8 86.2 3.11 0.048 2.36

-19.5 -19.0 88.9 91.0 2.37 0.029 2.89

-20.0 -19.5 92.2 92.6 1.73 0.023 3.63

-20.5 -20.0 94.0 94.3 1.01 0.026 4.69

None -20.5 95.9 95.5 0.571 0.028 6.37

0.37 0.5 red -18.5 -18.0 56.3 46.3 3.94 0.412 6.61

8.262 -19.0 -18.5 69.5 63.6 3.4 0.426 12.2

-19.5 -19.0 81.1 76.9 2.88 0.401 16.7

-20.0 -19.5 88.2 84.0 2 0.31 17.9

-20.5 -20.0 91.2 88.5 0.964 0.212 22.2

None -20.5 94.1 93.9 0.571 0.136 50.7

blue -18.5 -18.0 55.2 64.2 4.2 0.178 1.95

-19.0 -18.5 66.3 71.1 3.33 0.12 2.4

-19.5 -19.0 76.3 81.0 2.55 0.062 2.88

-20.0 -19.5 84.5 88.3 1.88 0.04 3.51

-20.5 -20.0 89.3 91.7 1.14 0.029 4.41

None -20.5 94.2 94.4 0.651 0.028 6.02
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0.5 0.63 red -19.0 -18.5 64.2 61.0 2.94 0.448 12.7

12.22 -19.5 -19.0 74.9 73.5 2.58 0.4 14.9

-20.0 -19.5 83.9 82.8 1.86 0.316 16.6

-20.5 -20.0 88.8 87.7 0.94 0.219 18.1

None -20.5 93.4 93.5 0.579 0.129 36.4

blue -19.0 -18.5 65.2 69.5 3.27 0.114 2.29

-19.5 -19.0 75.6 75.7 2.73 0.076 2.8

-20.0 -19.5 84.1 84.8 2.05 0.044 3.35

-20.5 -20.0 89.5 89.5 1.21 0.038 4.17

None -20.5 94.1 93.7 0.67 0.03 5.78

0.63 0.76 red -19.5 -19.0 66.5 65.2 2.42 0.378 11.6

16.177 -20.0 -19.5 76.1 73.6 1.88 0.302 12.9

-20.5 -20.0 83.4 81.4 0.989 0.214 14.8

None -20.5 91.3 91.3 0.61 0.132 27.7

blue -19.5 -19.0 67.0 70.6 2.54 0.093 2.77

-20.0 -19.5 76.2 78.3 2.02 0.06 3.32

-20.5 -20.0 84.4 85.5 1.25 0.041 4.01

None -20.5 91.7 91.5 0.686 0.034 5.56

0.76 0.89 red -20.5 -20.0 77.8 74.7 1.22 0.214 12.1
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19.922 None -20.5 88.7 87.9 0.735 0.129 22.6

blue -20.5 -20.0 78.5 80.4 1.41 0.054 3.88

None -20.5 88.5 88.9 0.795 0.041 5.39

Table A.2: Table of galaxy clustering samples used in

this analysis including colour splits. Completeness, pu-

rity and satellite fraction are defined in the text. n is the

number density of the sample.
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