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Abstract

Determining the nature of dark matter (DM) remains one of the key challenges in

both particle physics and cosmology. Although we know the approximate

distribution of DM in the Universe, we lack an understanding of its fundamental

properties such as its mass and potential couplings to Standard Model particles. In

the weakly-interacting massive particle (WIMP) paradigm, DM was in thermal

equilibrium in the early Universe and we should expect scattering to have occurred

between DM and Standard Model particles. In this thesis, we first consider the

impact of primordial scattering between DM and radiation (photons or neutrinos).

Such interactions give rise to a modification in the amplitude and position of the

cosmic microwave background (CMB) acoustic peaks and a series of damped

oscillations in the matter power spectrum. We obtain constraints from the Planck

satellite and other CMB experiments, and then derive limits from large-scale

structure (LSS) surveys. By providing forecasts for future experiments, we

illustrate the power of LSS surveys in probing deviations from the standard cold

DM (CDM) model. Then, using high-resolution N -body simulations, we show that

the suppressed matter power spectra in such interacting DM scenarios allows one

to alleviate the small-scale challenges faced by CDM; in particular, the “missing

satellite” and “too big to fail” problems. Finally, we show that the excess of 511

keV gamma-rays from the Galactic centre, which has been observed by numerous

experiments for four decades, cannot be explained via annihilations of light

WIMPs, suggesting an astrophysical or more exotic DM source of the signal.
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FLRW Friedmann–Lemâıtre–Robertson–Walker

GUT Grand Unified Theory

HAWC High Altitude Water Cherenkov experiment

HDM Hot Dark Matter

HESS High Energy Stereoscopic System

HIRES High-Resolution Echelle Spectrometer

HST Hubble Space Telescope

IGM Intergalactic Medium

INTEGRAL International Gamma-Ray Astrophysics Laboratory

LAT Large Area Telescope

LG Local Group

LHC Large Hadron Collider

LPT Linear Perturbation Theory

LRG Luminous Red Galaxy

LSS Large-Scale Structure

LUX Large Underground Xenon detector

MACHO Massive Astrophysical Compact Halo Object

MAGIC Major Atmospheric Gamma Imaging Cherenkov

telescopes

MCMC Monte Carlo Markov Chain

MIKE Magellan–Inamori–Kyocera–Echelle spectrometer

MOND Modified Newtonian Dynamics

MW Milky Way

NB Narrow Bulge

NFW Navarro–Frenk–White

PAMELA Payload for Antimatter Matter Exploration and Light-

nuclei Astrophysics experiment

PArthENoPE Public Algorithm Evaluating the Nucleosynthesis of

Primordial Elements



List of Abbreviations xvi

PDG Particle Data Group

PIXIE Primordial Inflation Explorer

POLARBEAR Polarisation of Background Radiation experiment

QCD Quantum Chromodynamics

QSO Quasi-Stellar Object

sDAO Strong Dark Acoustic Oscillations

SDSS Sloan Digital Sky Survey

SM Standard Model

SPI Spectrometer on INTEGRAL

SPT South Pole Telescope

SZ Sunyaev–Zel’dovich

VERITAS Very Energetic Radiation Imaging Telescope Array

System

WDM Warm Dark Matter

WIMP Weakly-Interacting Massive Particle

WMAP Wilkinson Microwave Anisotropy Probe

XDM Exciting Dark Matter

γCDM ΛCDM with the addition of DM–photon scattering

ΛCDM The “Standard Model” of cosmology

νCDM ΛCDM with the addition of DM–neutrino scattering



Chapter 1

Introduction

The history of astronomy is a history of receding horizons.

— Edwin Hubble

One of the most important results in cosmology is the observation that around 85% of

all matter in the universe is in the form of dark matter (DM) [8–11]. From numerical

simulations, we know that DM plays a fundamental role in structure formation and

the evolution of galaxies. However, despite its implications, direct evidence for the

existence of DM and an understanding of its fundamental properties have remained

elusive. Furthermore, there is no candidate in the Standard Model (SM) of particle

physics that fulfils all the requirements for DM, demonstrating the need for new

physics beyond the SM. The aim of this thesis is to shine light on one aspect of the

DM puzzle: the potential interactions of DM beyond gravity. Namely, we wish to

know if such interactions are allowed, and if so, what are their consequences and

can we use cosmological observations to either constrain or detect them?

In this introductory chapter, we discuss the standard Big Bang cosmological

model and the theoretical and experimental status of DM. In Sec. 1.1, we

summarise the observational evidence for DM. In Sec. 1.2, we explain the

underlying principles of the Big Bang and describe three important events in the

chronology of the universe; namely, Big Bang nucleosynthesis (BBN) [Sec. 1.2.1],

the production of the cosmic microwave background (CMB) [Sec. 1.2.2] and

structure formation [Sec. 1.2.3]. In Sec. 1.3, we explain the important concept of

thermal DM and the motivation for the weakly-interacting massive particle

1



1.1. Observational Evidence for Dark Matter 2

(WIMP) paradigm. In Sec. 1.4, we discuss the current experimental status of DM

from direct [Sec. 1.4.1], indirect [Sec. 1.4.2] and collider [Sec. 1.4.3] searches.

Finally, we provide an outline for the thesis in Sec. 1.5.

1.1 Observational Evidence for Dark Matter

The evidence that DM is required to explain the observed structure of the universe

has been building for over seventy years. In 1933, Fritz Zwicky discovered that the

outer members of the Coma galaxy cluster are moving far too quickly to be merely

following the gravitational potential of the visible matter [12]. He proposed the

existence of non-luminous DM that would provide the necessary additional mass to

explain the motion of the galaxies. Today, equivalent methods are used to weigh

clusters in large-scale X-ray surveys and have consistently confirmed Zwicky’s

results (see e.g. Ref. [13]).

Almost forty years later, Vera Rubin and collaborators discovered that, like the

galaxies of the Coma cluster, stars in the outer regions of spiral galaxies orbit the

centre far more quickly than one would expect if galaxies consisted of only visible

matter. In Fig. 1.1, we present a typical galaxy rotation curve, showing the orbital

velocity Vc of stars as a function of their distance from the Galactic centre r. In

Newtonian gravity, we have the simple relation1

Vc(r) =

√
GM(r)

r
, (1.1.1)

where G is Newton’s gravitational constant, M(r) = 4π
∫
ρ(r) r2 dr is the mass

enclosed within radius r (assuming it is spherically symmetric) and ρ(r) is the mass

density.

It is thought that the flat rotation curves we observe away from the Galactic

centre are a consequence of galaxies being embedded in a centrally-concentrated

DM halo (see the dashed-dotted curve in Fig. 1.1). Using Eq. (1.1.1), a constant

value of Vc implies that DM haloes have densities ρ(r) ∝ r−2 at large radii.

1This result follows from Kepler’s Third Law: P 2 = (4π2/GM) r3, where P = 2πr/Vc is the

orbital period.
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Figure 1.1: A typical rotation curve for a spiral galaxy (solid curve with data points), showing the

orbital velocity of stars Vc as a function of their distance from the Galactic centre [14]. The dashed

and dotted curves show the predicted contribution from the stellar disk and gas components of the

galaxy, respectively. Including a DM halo (dashed-dotted) allows one to explain the discrepancy

between theory and observation.

The existence of DM is also inferred on extragalactic scales. One of the most

successful techniques for studying the large-scale distribution of DM in the universe

has been gravitational lensing (see e.g. Refs. [15, 16]). An important consequence

of General Relativity is that matter and energy curve space-time and deflect passing

rays of light [17]. In particular, the presence of a galaxy cluster causes lensing effects;

shifting, distorting and magnifying the images of background galaxies. By carefully

modelling these effects in simulations, the matter distribution of the foreground

object can be determined and compared to its observed structure. Again, such

studies suggest that a large fraction of the matter is non-luminous [15, 16].

One dramatic example of gravitational lensing is seen in the Bullet Cluster (1E

0657-558), which is thought to have resulted from the collision of two separate galaxy

clusters [18]. Fig. 1.2 shows the distribution of luminous matter in the cluster, in

comparison to the total mass inferred from lensing measurements. One can see

that after the collision, the majority of the mass lies away from the visible matter,

implying an abundance of non-luminous DM with only weak-strength interactions.

Similar results have been found in other merging clusters such as MACSJ0025.4-

1222 [19]. However, the “dark core” observed in Abell 520 [20] (a concentration of
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DM at the cluster’s centre that is devoid of luminous galaxies) remains difficult to

explain in conventional DM models [21].

Figure 1.2: Colour images of the Bullet Cluster from the Magellan optical telescopes (left) and

the Chandra X-ray observatory (right) [22]. The white bars indicate a distance of 200 kpc. The

green contours show the distribution of mass that is inferred from weak lensing measurements. The

luminous matter (illustrated by the coloured regions in the right-hand panel) does not coincide

with the inferred mass distribution, implying a significant fraction of weakly-interacting DM.

Finally, we note that there have been attempts to explain the discrepancy in

mass between prediction and observation using alternative models of gravity such

as modified Newtonian dynamics (MOND) [23–25]. Although MOND can

successfully predict a variety of Galactic phenomena, it cannot eliminate the need

for DM in systems such as the Bullet Cluster [22]. Furthermore, there is extreme

tension between the predictions of modified gravity theories and studies of the

cosmic microwave background (CMB) and large-scale structure (LSS) of the

universe [26]. In contrast, we present further evidence for DM from CMB and LSS

observations in Sec. 1.2.

1.2 The Expanding Universe

In 1929, Edwin Hubble discovered that distant galaxies are receding away from us,

with a velocity that is directly proportional to their distance [27] (see Fig. 1.3). This

observation led to the remarkable conclusion that the universe is expanding and gave

rise to the prevailing Big Bang model, where the universe has evolved from a hot,

dense plasma for around 13.8 billion years [8–11].
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Figure 1.3: The recession velocity v as a function of the distance from Earth d for Type 1a

supernovae (shown by the data points with error bars) [28]. The best-fit is given by the solid

line, satisfying v = H0d, where H0 is the present-day Hubble parameter. The small red region

corresponds to the galaxies studied in the pioneering work of Hubble [27].

One can quantify the relative size of the universe by introducing the cosmological

scale factor a(t), which was smaller in the past and equal to unity today. The rate

at which the universe is expanding is then given by the Hubble parameter

H(t) ≡ ȧ(t)

a(t)
, (1.2.2)

where the overdot denotes the time-derivative. The current value2 of the Hubble

rate, H0, is equal to the gradient of the straight line in Fig. 1.3.

The Hubble parameter is usually expressed in terms of the dimensionless quantity

h(t) ≡ H(t)

100 km s−1 Mpc−1 . (1.2.3)

As distant galaxies recede from us, the wavelength of light they emit λemit is stretched

out or redshifted. The magnitude of the redshift z is related to the scale factor via

1 + z ≡ λobs

λemit

=
1

a
, (1.2.4)

2Note that throughout this thesis, we will denote present-day values of parameters by the

subscript “0”.
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where λobs is the wavelength of light we observe. If the recession velocity of a galaxy

v is much smaller than the speed of light c, the magnitude of its redshift can be

used to infer v, using z ' v/c.

One can also define an effective temperature for the universe. As we will see in

Sec. 1.2.2, the photons that comprise the cosmic microwave background (CMB) have

a temperature today of T0 = 2.7255 ± 0.0006 K [29]. Since the energy of a photon

is inversely proportional to its wavelength, Eq. (1.2.4) implies that the temperature

of the CMB photons evolves with time as

T (t) = T0/a(t) . (1.2.5)

In terms of the total energy density of the universe ρ(t) and the intrinsic curvature

of the universe K, one can express the Hubble parameter using the Friedmann

equation [30]

H2(t) =
8πG

3
ρ(t)− Kc2

a2
, (1.2.6)

where G is Newton’s gravitational constant.

Assuming that the universe is both isotropic and homogeneous on large scales3,

one can describe four-dimensional space-time by the

Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric

ds2 = dt2 − a2(t)

(
dr2

1−Kr2
+ r2 dθ2 + r2 sin2θ dφ2

)
, (1.2.7)

where ds2 is a line element, r is the comoving radial distance, and θ and φ are the

angles in a comoving spherical coordinate system.

The geometry of the universe can be either flat (K = 0), closed (K > 0) or open

(K < 0). Throughout this thesis, we will assume that K = 0, as indicated by the

latest data [8–11]. Then, in the standard cosmological model (ΛCDM), there are

only four components of energy in the universe: DM, baryons (ordinary matter4),

3Isotropic means “the same in all directions”, while homogeneous means “the same in all

locations”. The assumption of isotropy and homogeneity is often called the Cosmological Principle.
4Note that this nomenclature contrasts with the definition of baryons in particle physics; in

particular, it includes electrons.
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radiation (photons and neutrinos), and dark energy5 in the form of a cosmological

constant Λ.

One can determine the dependence of ρ(t) on a by considering 4-momentum

conservation for each of the components (see Sec. 2.1):

ρ̇(t) = −3H(ρ+ P ) , (1.2.8)

where P is the pressure of the fluid (' 0 for matter, ρ/3 for radiation and −ρ for

Λ). Using Eq. (1.2.8), the evolution of the total energy density is then given by6

ρ(t) = ρDM,0 a
−3 + ρb,0 a

−3 + ρr,0 a
−4 + ρΛ,0 . (1.2.9)

Next, one can define the dimensionless density parameter

Ω(t) ≡ ρ(t)

ρcrit(t)
, (1.2.10)

where the critical density

ρcrit(t) ≡
3H2

8πG
. (1.2.11)

From Eq. (1.2.6), it is clear that ρcrit(t) corresponds to the total energy density

required for a flat universe, which is equal to ρcrit,0 ∼ 10−26 kg m−3 today.

Finally, using Eqs. (1.2.9) and (1.2.10), we can rewrite Eq. (1.2.6) as(
h

h0

)2

= ΩDM,0 a
−3 + Ωb,0 a

−3 + Ωr,0 a
−4 + ΩΛ,0 , (1.2.12)

which defines a first-order differential equation in the scale factor a.

Assuming the standard ΛCDM model, the latest determinations of these

parameters are: h0 ∼ 0.68, ΩDM,0 ∼ 0.26, Ωb,0 ∼ 0.05, Ωr,0 ∼ 10−4 and ΩΛ,0 ∼ 0.69

[11]. Thus, there is currently about five times as much DM as ordinary matter,

while the energy density of the universe is dominated by the cosmological constant

component (see Fig. 1.4).

5Dark energy is thought to be responsible for the accelerated expansion of the universe at late

times, which was first observed by two groups studying supernovae in 1998 [31, 32].
6While the energy density of matter simply scales with the expansion, radiation receives an

additional dilution factor as it is redshifted.
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Figure 1.4: The time-evolution of the energy densities ρ(t) in a flat ΛCDM universe for matter

(purple, dashed), radiation (green, dotted), and dark energy in the form of a cosmological constant

Λ (orange, dashed-dotted). The densities are normalised to the present-day critical density ρcrit,0.

The vertical red line corresponds to the epoch of matter-radiation equality, when ρm(t) = ρr(t).

Note that a ≡ 1 today.

The time at which the energy densities of matter (DM plus baryons) and

radiation were equal is known as the epoch of matter-radiation equality, which

occurred at a redshift zeq ∼ 3000 [8–11]. Using Eq. (1.2.6), one can determine that

in the radiation-dominated era (z > zeq), the scale factor evolves with time t as

a(t) ∝ t1/2, while in the matter-dominated era (z < zeq), a(t) ∝ t2/3.

1.2.1 Big Bang Nucleosynthesis

Big Bang nucleosynthesis (BBN) refers to the process in which the first light nuclei

(heavier than the lightest isotope of hydrogen H) were formed7; in particular,

deuterium (D), helium (3He, 4He) and lithium (7Li). BBN is thought to have

occurred in the first few minutes after the Big Bang (z ∼ 108) [33]. Before this

epoch, the universe was extremely hot and dense, and any nuclei that formed were

immediately destroyed by the high-energy photons. As the universe cooled, these

light elements were able to survive.

7Heavier elements were created much later by stellar nucleosynthesis.
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The first BBN calculations were carried out by Ralph Alpher in the 1940s, leading

to a groundbreaking paper that outlined the theory of light-element production in

the early universe [34]. The nuclear processes of BBN primarily lead to 4He, with

a mass fraction Yp of ∼ 25% with respect to hydrogen. For the other nuclei, the

predicted number densities compared to hydrogen are D/H ∼ 3He/H ∼ 10−5 and

7Li/H ∼ 10−10 [35] (see Fig. 1.5).

Figure 1.5: Primordial abundances of the light elements as a function of the baryon density

Ωbh
2 [36]. Yp is the 4He mass fraction, D/H and 7Li/H are the number densities of deuterium and

lithium relative to hydrogen, respectively, and η10 ≡ 1010η, where η is the baryon-to-photon ratio.

The coloured curves show the predictions from BBN (the thickness of the curves represents the

1σ uncertainty on the relevant nuclear reaction rates) [35]. The vertical band shows the allowed

values of Ωbh
2 from Planck 2013 CMB data [10] and the rectangular boxes show the observed

light-element abundances [36].

The light-element abundances depend almost entirely on a single parameter:

the baryon-to-photon ratio η ≡ nb/nγ ∼ 10−10, which in turn can be expressed in

terms of the baryon density Ωbh
2. From Fig. 1.5, one can see that the observed

abundances [36] are generally consistent with BBN predictions8, providing strong

8However, the discrepancy in the 7Li abundance, as shown in Fig. 1.5, has yet to be resolved [37].
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evidence for the hot Big Bang model. This is particularly impressive given that the

abundances span nine orders of magnitude. The extremely accurate measurement

of D/H implies that Ωbh
2 ' 0.022, which is significantly lower than the total matter

density Ωmh
2 ' 0.14 [8–11]. Therefore, BBN provides a compelling argument for a

non-baryonic component of the universe; namely, DM.

1.2.2 The Cosmic Microwave Background

Around 380,000 years after the Big Bang (z ∼ 1100), the temperature of the

universe became low enough to allow electrons and protons to become bound in

hydrogen atoms, in a process known as recombination [38]. Photons were no longer

scattered from free electrons and fell out of thermal equilibrium with them

(thermal decoupling). These photons then travelled from this last-scattering surface

through the universe to constitute what we detect today as the cosmic microwave

background (CMB) radiation.

The CMB was first detected by Penzias and Wilson in the mid-1960s [39]. An

important prediction of the hot Big Bang model is that before recombination, these

photons remained in thermal equilibrium due to frequent scattering with electrons.

Therefore, they should have a blackbody spectrum, with a specific intensity

I(ν, T ) =
2hν3/c2

exp(hν/kBT )− 1
, (1.2.13)

where h is Planck’s constant, kB is Boltzmann’s constant, ν is frequency and T

is temperature. This prediction was confirmed with remarkable precision by the

COBE satellite in the 1990s [40].

The temperature of the CMB is incredibly uniform (with a mean value today of

T̄ = 2.7255±0.0006 K [29]), showing that the early universe was both isotropic and

homogeneous on large scales. However, the CMB spectrum is not completely smooth

due to small density perturbations or anisotropies at the level of 10−5 over a wide

angular scale (see Fig. 1.6). Such density perturbations are thought to originate

from the period of cosmic inflation, where quantum fluctuations were amplified as

the size of the observable universe increased exponentially [41]. As we will see in

Sec. 1.2.3, density perturbations in the early universe were the seeds for the eventual
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formation of large-scale structures such as galaxies and galaxy clusters.

Figure 1.6: The map of CMB temperature fluctuations ∆T/T̄ over the whole sky, as measured

by the Planck satellite [42]. The foreground emission from the Milky Way galaxy and the dipole

component due to the motion of the galaxy relative to the CMB have been removed. The colours

from blue to red indicate the magnitude of underdensity to overdensity.

Since the first detection of CMB anisotropies by COBE [43], there has been

intense activity to map the sky with increasing sensitivity and angular resolution.

The results from WMAP [8, 9] and Planck [10, 11], in addition to data from ACT [44]

and SPT [45] at small angular scales, have led to a remarkable confirmation of the hot

Big Bang model. In combination with other astrophysical data, CMB measurements

have placed stringent constraints on the various cosmological parameters, launching

us into an era of precision cosmology.

Observations of the CMB anisotropies, ∆T/T̄ ≡ (T− T̄ )/T̄ , are usually analysed

using the angular power spectrum C`. Since the temperature of the CMB is a two-

dimensional field (with angular coordinates θ and φ), projected on the surface of a

sphere, it is convenient to expand the CMB temperature distribution over the sky

using spherical harmonics Y`m(θ, φ):

∆T (θ, φ)

T̄
=
∞∑
`=0

∑̀
m=−`

a`m Y`m(θ, φ) , (1.2.14)
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where ` is the total angular wavenumber (or multipole order), m is the azimuthal

wavenumber and a`m are the associated amplitudes. A multipole of order ` is related

to the angular size θ via

θ ' π

`
radians =

180◦

`
. (1.2.15)

The angular power spectrum is then defined as

C` ≡
1

(2`+ 1)

∑̀
m=−`

|a`m|2 , (1.2.16)

where we have averaged over m for each `. The C` is related to the variance in

∆T/T̄ by

D` ≡

〈(
∆T

T̄

)2
〉
`

=
`(`+ 1)

2π
C` , (1.2.17)

which is presented in Fig. 1.7 as a function of ` using the Planck 2015 data [11].

The cosmic variance is the main obstacle for better measurements of the C` on large

scales (small `), as shown by the light-blue shading in Fig. 1.7.

Figure 1.7: The angular power spectrum of CMB temperature fluctuations (TT ) measured by

Planck (blue data points with ± 1σ error bars) [11]. The best-fit ΛCDM model is given by the

solid red curve, which can successfully fit the magnitude and position of the acoustic peaks. The

light-blue shading represents the uncertainty from cosmic variance.

The cosmological parameters affect the CMB anisotropies via the

well-understood physics of linear perturbation theory9 within an FLRW cosmology

9Note that we can use linear perturbation theory at this epoch since the temperature fluctuations

were still small (∆T/T̄ � 1).
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(see Chapter 2). There are now fast, effective Boltzmann codes for computing the

CMB anisotropy spectrum for a given cosmological model, which are considered to

be accurate to at least the 1% level, e.g. cmbfast [46], camb [47] and class [48].

The precise shape of the spectrum can therefore provide us with important

information about the constituents of the universe and how they interact.

We can consider the C` in three regimes:

1. Low ` (` . 100): At large angular scales, CMB photons are gravitationally

redshifted via the Sachs–Wolfe effect [49], which produces small temperature

fluctuations in the spectrum. There are two components to this effect. The

non-integrated Sachs–Wolfe effect is caused by gravitational redshifting at the

surface of last-scattering and is therefore a feature of the primordial CMB

spectrum. The integrated Sachs–Wolfe effect occurs as the photons travel to

the Earth, due to changes in the large-scale gravitational potential as the

universe transitions from radiation- to matter- to Λ-domination.

2. Intermediate ` (100 . ` . 1000): The CMB spectrum shows a series of

acoustic oscillations, which can be understood as follows. Before the epoch of

recombination, the baryons were strongly coupled to the photons, and the

two components behaved as a single baryon–photon fluid. At this time,

perturbations in the gravitational potential (dominated by the DM

component) were steadily evolving. This potential drove oscillations in the

baryon–photon fluid, with the photon pressure providing most of the

restoring force.

3. High ` (` & 1000): At small angular scales, the acoustic peaks are suppressed

due to Silk damping [50]. This is the process in which, during recombination,

photons diffused from overdense to underdense regions, dragging the baryons

along with them, thus making the universe more isotropic. If there was no

DM, Silk damping would be observed at intermediate ` (between the second

and third peaks). Again, this emphasises the necessity of non-baryonic matter

in the universe.
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An important property of the CMB photons is that they are linearly polarised10

via Thomson scattering with electrons11, either at thermal decoupling or during

reionisation (see Sec. 1.2.3). The magnitude of the polarisation is approximately

(1 − 10)% of the temperature anisotropies, depending on the angular scale [11].

Observations of the CMB polarisation are important as they provide a

complementary method to extract the cosmological parameters, and can

independently test the predictions of a wide range of models beyond ΛCDM.

The pattern of linear polarisation can be decomposed in many ways, requiring

two quantities to describe the polarisation state of each pixel on the CMB map.

For instance, linear polarisation is often described by the two Stokes parameters:

Q ≡ 〈E2
x〉 − 〈E2

y〉 and U ≡ 〈E2
a〉 − 〈E2

b 〉, where E is the amplitude of the electric

field, the angular brackets denote the expectation value, and the subscripts refer to

the standard Cartesian basis (x̂, ŷ) and a Cartesian basis rotated by 45◦ (â, b̂) [51].

However, it is more intuitive to separate the polarisation pattern geometrically

into a part with a divergence (the E-mode) and a part with a curl (the B-mode)12.

These modes are independent of the coordinate system and are related to the Q and

U parameters by a non-local transformation [52]. The pattern of E- and B-modes

is illustrated in Fig. 1.8 in the case of an underdensity and an overdensity.

In principle, there are six cross power spectra that can be obtained from data:

Ci,j
` ≡

1

(2`+ 1)

∑̀
m=−`

ai`m a
j ?
`m , (1.2.18)

where {i, j} ∈ {T,E,B}, which will contain the full temperature and polarisation

information. However, from Fig. 1.8, one can see that the pattern of E-modes

has mirror symmetry (a scalar field), while the B-modes are anti-symmetric (a

pseudoscalar field). This implies that CTB
` = CEB

` = 0, leaving four observables:

CTT
` , CEE

` , CBB
` and CTE

` .

10Electromagnetic radiation is linearly polarised if the electric field vector ~E is confined to a

given plane along the direction of propagation.
11The Thomson elastic scattering cross section between free electrons and photons is

temperature-independent and given by σTh = 8π α2/(3m2), where α is the fine-structure constant.
12The E-mode is analogous to the electric field surrounding a charge, while the B-mode resembles

the magnetic field around a current.
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Figure 1.8: A representation of the E-modes (left) and B-modes (right) in the case of an

underdensity (upper row, blue) and an overdensity (lower row, red). One can see that the B-

modes are tilted by 45◦ with respect to the E-modes.

Crucially, density perturbations can only give rise to E-mode polarisation of

the CMB photons, while primordial gravitational waves from inflation can produce

both E- and B-modes [53]. Therefore, precise measurements of the B-mode signal

can allow us to probe various inflationary scenarios (see e.g. Ref. [54]). However,

the contribution from foregrounds and other systematic effects must be carefully

eliminated; in particular, gravitational lensing of the CMB at late times converts a

fraction of the E-mode polarisation into B-mode polarisation [55].

Since the amplitude of the CMB polarisation signal is so small with respect to

the temperature anisotropies, E-mode polarisation was not discovered until 2002

by the DASI experiment [56], while B-modes due to gravitational lensing were first

detected by SPT in 2013 [57]. Currently, there is no convincing evidence of B-modes

from inflation13.

1.2.3 Structure Formation

Between 150 million and one billion years after the Big Bang (6 . z . 20), the first

stars and galaxies began to form due to gravitational collapse of the initially small

13The apparent discovery of such B-modes by the BICEP collaboration is now believed to be

the result of interstellar dust [58].
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density perturbations that were discussed in Sec. 1.2.2. Such objects were energetic

enough to reionise neutral hydrogen via a process called reionisation.

The distribution of matter in the universe is usually described by the matter

power spectrum P (k) (see Fig. 1.9), defined via

〈δ(k)δ(k′)〉 = (2π)3 P (k) δ3(k − k′) , (1.2.19)

where k = 2π/λ is the wavenumber, λ is the spatial scale, δ(k) is the Fourier

transform of the density inhomogeneity δ(x) ≡ [n(x) − n̄]/n̄, the angular brackets

denote the average over the whole distribution, and δ3(k − k′) is the Dirac delta

function. The P (k) represents the variance in the matter distribution; it will be

large if there are a significant number of very underdense and overdense regions,

and small if the distribution is smooth.
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Figure 1.9: The linear matter power spectrum in four distinct models: the Harrison–Zel’dovich

spectrum with P (k) ∝ k (purple, dashed-dotted), CDM (orange, dashed), HDM in the form of SM

neutrinos (red, dotted) and DM in the form of baryons (green, solid).

The underlying principle of structure formation is that initially small density

perturbations are amplified by gravity to form large-scale structure (LSS). On

scales k . 0.2 h Mpc−1, the fluctuations are still small enough (i.e. δ(k) � 1) to

be accurately described by linear perturbation theory14. Scales with higher

14More precisely, linear perturbation theory is valid when the dimensionless power spectrum

∆2(k) ≡ k3P (k)/(2π2) . 1, which corresponds to k . 0.2 h Mpc−1 for realistic models.
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wavenumbers correspond to collapsed objects, which are non-linear (i.e. δ(k) & 1)

and require N -body simulations to follow their evolution (see e.g. Refs. [59–63]).

As a result of inflation, there is no preferred length scale in the very early universe

and the primordial matter power spectrum follows a simple power law: P (k) = Akn,

where A is the amplitude and n is the spectral index. The spectrum in which

n = 1 is called the scale-invariant15 or Harrison–Zel’dovich spectrum [64, 65] (see

the purple, dashed-dotted line in Fig. 1.9). For scalar perturbations (see Chapter 2),

the simplest inflationary models predict a nearly (but not exactly) scale-invariant

spectrum, corresponding to a slowly rolling inflaton field and a slowly varying H(t)

during inflation16. Such a prediction is in agreement with the most recent constraints

from Planck assuming ΛCDM: ns = 0.968±0.006 and As = (2.14±0.06)×10−9 [11].

Note that since ns < 1, the primordial matter power spectrum has less power on

small scales than the Harrison–Zel’dovich spectrum.

The epoch of matter–radiation equality corresponds to the scale at which the

matter power spectrum turns over from the primordial shape and becomes

proportional to k−3. Before this epoch, the radiation density acts as a pressure

that prevents the collapse of perturbations in the matter density (the Mészáros

effect [67]). However, after this time, matter fluctuations not coupled to the

radiation (such as collisionless DM) are able to grow gravitationally. Baryonic

matter remains coupled to photons and resists collapse, resulting in baryon

acoustic oscillations (BAO) in the P (k) at k ∼ 0.1 h Mpc−1 (see Fig. 1.9). Such

oscillations result from the competing forces of gravitational attraction and

radiation pressure in the tightly-coupled baryon–photon fluid. The baryons behave

like a driven harmonic oscillator, with gravity and the photon pressure acting as

the driving and restoring forces, respectively.

15For scale invariance, we require the dimensionless power spectrum ∆2
Φ(k) ∝ k3PΦ(k) (for

fluctuations in the gravitational potential Φ) to be constant. From the Poisson Equation in Fourier

space, k2Φ(k) ∝ δ(k). Then from Eq. (1.2.19), PΦ ∝ Φ(k)2 and P (k) ∝ δ(k)2. Putting all this

together, a scale-invariant spectrum requires P (k) ∝ k∆2
Φ ∝ k, i.e. n = 1.

16In this scenario, the scalar spectral index ns = 1 + 4ε − 2η, where ε and η are the slow-roll

parameters, which depend on the shape of the inflaton potential [66]. Since ε � 1 and |η| � 1,

the scalar perturbations generated in slow-roll inflation are close to scale-invariant.
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During the epoch of recombination, the electrons that were responsible for

scattering the photons become locked up in neutral hydrogen. The mean free path

of the photons increases and they diffuse out of overdense regions, smoothing out

fluctuations in the baryon distribution (Silk damping) [50].

The shape of the matter power spectrum also depends very strongly on the

properties of DM. If DM consisted of baryonic particles, the P (k) would show

oscillations on large scales due to the strong baryon–photon coupling prior to

recombination (see the green, solid curve in Fig. 1.9). Therefore, the absence of

such oscillations in observational data [68] provides further evidence that DM is

non-baryonic.

In the standard cosmological framework, density fluctuations in collisionless

DM are erased or damped by the free-streaming of its particles from overdense to

underdense regions. Quantitatively, the cut-off in the P (k) for a species i with

velocity vi is related to the free-streaming length

lfs ∝
∫ t0

tdec(i)

vi
a

dt ' π max

(
vit

a

)
, (1.2.20)

where “max” denotes the maximum value of the free-streaming scale within the

integration interval [tdec(i), t0] [69].

From Eq. (1.2.20), one can see that the scale at which fluctuations are damped

depends on the velocity of the DM particles. For this reason, DM candidates are

often described as being either hot (HDM), warm (WDM) or cold (CDM), depending

on the cut-off scale that they induce in the P (k). Fig. 1.9 shows examples for two

extreme models: HDM (red, dotted) and collisionless CDM (orange, dashed). For

comparison, the results of N -body simulations for HDM, WDM and CDM are shown

in Fig. 1.10.

An example of HDM is the neutrino, which interacts only via the weak force17

and gravity, and is abundant in the universe. Following the procedure of Sec. 1.3

for a hot relic, the energy density of neutrinos today is given by [70]

Ωνh
2 '

∑
imνi

93.14 eV
, (1.2.21)

17The weak interaction is responsible for radioactive decay and plays an essential role in nuclear

fission.
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Figure 1.10: DM-only N -body simulations of structure formation in the case of HDM (left),

WDM (centre) and CDM (right), where the side of each image corresponds to ∼ 10 Mpc. The

colours represent the local DM density on a logarithmic colour scale from black to purple to yellow.

In HDM, small-scale fluctuations cannot be supported as they are washed out by the rapid motion

of the particles. In WDM and CDM, smaller structures can survive to the current epoch, more

closely resembling what we observe. Simulations by Ben Moore (University of Zurich).

where one sums over the three neutrino species i ∈ {e, µ, τ}.

The most recent CMB measurements constrain the sum of the neutrino masses

to be
∑

imνi . 0.23 eV [11]. Using Eq. (1.2.21), it is clear that neutrinos cannot

provide the required energy density to account for the entire DM relic abundance:

ΩDMh
2 ∼ 0.1 [11]. Furthermore, for a neutrino with mass mν , Eq. (1.2.20) gives

lfs,ν ∼ 1000 Mpc
(mν

eV

)−1

, (1.2.22)

which implies that free-streaming of neutrinos leads to damping on scales larger

than the size of an average galaxy cluster. Therefore, such particles cannot give

rise to the formation and distribution of galaxies that we observe in the universe

today (see the left-hand panel of Fig. 1.10). Since neutrinos are the only electrically

neutral, stable particle in the SM of particle physics, the existence of DM implies

physics beyond the SM.

Candidates for CDM include heavy neutral particles such as the supersymmetric

neutralino18 [72–74] and light particles that are produced non-thermally such as

18Supersymmetry is a proposed space-time symmetry that relates bosons (with integer spin) and

fermions (with half-integer spin), wherein every SM particle has a heavier partner that has yet to

be discovered (see e.g. Ref. [71]).
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the axion [75–77]. Since these particles are non-relativistic at the time of structure

formation, perturbations on almost all scales are preserved (see the right-hand panel

of Fig. 1.10). N -body simulations of LSS in the universe currently favour the CDM

model [78]. However, as we will see in Chapter 5, there are a number of persistent

discrepancies between CDM predictions and observations on small scales [79–81],

which may point towards WDM or physics beyond collisionless CDM.

Finally, WDM has properties intermediate between those of HDM and CDM

(see the centre panel of Fig. 1.10). Candidates for WDM include the gravitino (the

supersymmetric partner of the graviton, a particle that is thought to mediate the

gravitational force) [72–74] and the sterile neutrino (a massive neutrino that, unlike

the SM neutrinos, does not interact via the weak force) [82–85]. The existence of

sterile neutrinos is well-motivated and many experiments are currently searching for

these particles (see e.g. Ref. [86]). Theoretically, their mass could take any value

from ∼ 1 eV to ∼ 1015 GeV [87]. Therefore, if sterile neutrinos are too massive,

they may not be directly observable.

1.3 Thermal Production of Dark Matter

In this thesis, we will generally assume that DM is thermal, i.e. DM was produced

in thermal equilibrium with the other particles in the early universe, sharing a

common temperature with them. DM then chemically decoupled from the thermal

bath of particles when its annihilation rate Γ(t) became smaller than the expansion

rate of the universe H(t), i.e. Γ(t) . H(t). After chemical decoupling, the total

number of DM particles remained fixed, which set the relic density ΩDMh
2 ∼ 0.1

that we observe today.

To properly treat the chemical decoupling or freeze-out, it is necessary to consider

the microscopic evolution of the DM particle’s phase space distribution function

f(E, t). Here we will follow the methodology of Ref. [88], where f(E, t) satisfies the

Boltzmann equation

L̂[f(E, t)] = C[f(E, t)] , (1.3.23)
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where E is energy, p is momentum and t is time. Here

L̂[f ] = E
∂f

∂t
−H p2 ∂f

∂E
, (1.3.24)

is the Liouville operator and C[f ] is the collision operator, describing the evolution

of the phase space volume and the processes of particle destruction/creation,

respectively19.

One can then define the number density n(t) in terms of the phase space density

via

n(t) =
g

(2π)3

∫
d3p f(E, t) , (1.3.25)

where g is the internal number of degrees of freedom for the DM particle.

Integrating the Boltzmann equation in Eq. (1.3.23) over momentum, we have

g

(2π)3

∫
d3p

(
∂f

∂t
−H p2

E

∂f

∂E

)
=

g

(2π)3

∫
d3p

E
C[f ] . (1.3.26)

Next, using Eq. (1.3.25), we can rewrite the left-hand side of Eq. (1.3.26) as

g

(2π)3

∫
d3p

[
∂f

∂t
−H (E2 −m2)

E

∂f

∂E

]
=

∂

∂t

[
g

(2π)3

∫
d3p f

]
−H g

(2π)3

∫
d3p

(E2 −m2)

E

∂f

∂E

=
∂n

∂t
−H g

2π2

∫
dE (E2 −m2)

3/2 ∂f

∂E

=
∂n

∂t
+ 3H

g

2π2

∫
dE E

√
E2 −m2 f

=
∂n

∂t
+ 3H

[
g

(2π)3

∫
d3p f

]
=

∂n

∂t
+ 3Hn =

g

(2π)3

∫
d3p

E
C[f ] . (1.3.27)

where we have integrated by parts over the energy derivative and used the change

of variables d3p = p2 dp dΩ = 4πE
√
E2 −m2 dE.

If one sets the collisional term to zero, Eq. (1.3.27) reduces to ṅ = −3Hn, the

solution of which is n(t) ∝ a−3. As expected, if a species is not interacting, its

number density simply dilutes with the Hubble expansion.

19We assume spatial homogeneity and isotropy, in addition to an FLRW metric [see Eq. (1.2.7)].
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We now turn to the interacting part of the Boltzmann equation; in particular,

we will consider a simple 2→ 2 annihilation process for a stable DM particle20, with

the thermally-averaged annihilation cross section 〈σv〉. In this case, we can rewrite

Eq. (1.3.27) in a very simple form:

dn

dt
= −3Hn− 〈σv〉

(
n2 − n2

eq

)
, (1.3.28)

where n is the average DM number density and neq is the number density assuming

thermal equilibrium. The connection between the collision operator C[f ] and 〈σv〉

is detailed in e.g. Ref. [88]. Eq. (1.3.28) is an example of a Riccati equation21.

One can clearly see that there are two competing processes that determine the

evolution of the DM number density: the expansion rate of the universe and the DM

annihilation rate. DM particles are in chemical equilibrium with the thermal plasma

if 〈σv〉
(
n2 − n2

eq

)
� 3Hn or equivalently, Γ ≡ n〈σv〉 � H. As the annihilation rate

falls below the Hubble rate, DM becomes chemically decoupled from the thermal

bath and subsequently, its number density will scale as a−3.

It is now convenient to consider the evolution of the number density within a

comoving volume to scale out the expansion of the universe. We therefore define

Y ≡ n/s, where s ∝ T 3 is the entropy density, and rewrite Eq. (1.3.28) as

dn

dt
= −HT dn

dT
= −HT

(
s

dY

dT
+

3Y s

T

)
= −3HY s− s2〈σv〉(Y 2 − Y 2

eq) , (1.3.29)

where we have used the result that dT/dt = (dT/da) (da/dt) = −T0 a
−2 ȧ = −HT .

Eq. (1.3.29) then reduces to

dY

dT
=
〈σv〉s
HT

(
Y 2 − Y 2

eq

)
. (1.3.30)

Finally, we introduce the dimensionless quantity x ≡ mDM/T , such that Eq. (1.3.30)

becomes

dY

dx
=

dT

dx

dY

dT
= −mDM

x2

〈σv〉s
HT

(
Y 2 − Y 2

eq

)
=⇒ dY

dx
= − s

xH(x)
〈σv〉

(
Y 2 − Y 2

eq

)
. (1.3.31)

20Bounds on the DM lifetime can be found in e.g. Ref. [89].
21A Riccati equation takes the form y′(x) = a(x) + b(x)y(x) + c(x)y2(x), where a(x) 6= 0 and

c(x) 6= 0.
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We now wish to solve Eq. (1.3.31) to find the time evolution of the comoving number

density Y (x), for a given value of the annihilation cross section 〈σv〉. To do this,

we require expressions for the entropy density s(T ), the Hubble rate H(x) and the

comoving number density of DM particles in thermal equilibrium Yeq. We consider

the case in which freeze-out occurs when the DM particle is non-relativistic (a cold

relic), whereby [88]

s(T ) =
2π2

45
g∗s T

3 , (1.3.32)

H(x) = 1.67 g1/2
?

m2
DM

mPl

x2 , (1.3.33)

Yeq =
45

2π4

(π
8

)1/2 g

g?s
x3/2 e−x , (1.3.34)

where mPl is the Planck mass and we have defined

g?(T ) ≡
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑
i=fermions

gi

(
Ti
T

)4

, (1.3.35)

g?s(T ) ≡
∑

i=bosons

gi

(
Ti
T

)3

+
7

8

∑
i=fermions

gi

(
Ti
T

)3

, (1.3.36)

where the factor of (7/8) accounts for the difference in the statistics between

bosons and fermions. Eqs. (1.3.35) and (1.3.36) count the total number of

effectively massless degrees of freedom, i.e. those species for which m � T . For

example, if T � MeV, only the three neutrino species and the photon contribute

(assuming the ΛCDM model).

In general, the DM annihilation cross section has a velocity dependence 〈σv〉 =

σ0 v
n, where n = 0 corresponds to s-wave annihilation, n = 2 corresponds to p-wave

annihilation, etc. For simplicity, we will consider s-wave (temperature-independent)

annihilation, i.e. 〈σv〉 = σ0.

Putting all this together, Eq. (1.3.31) becomes

dY

dx
= −λx−2(Y 2 − Y 2

eq) , (1.3.37)

where

λ ' 0.264
(
g?s/g

1/2
?

)
mPl mDM σ0 , (1.3.38)

Yeq ' 0.145 (g/g?s) x
3/2 e−x . (1.3.39)
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Eq (1.3.37) can then be solved numerically. However, since mDM and σ0 can vary

by many orders of magnitude, one has a stiff differential equation that is difficult to

integrate22. For illustrative purposes, solutions to Eq (1.3.37) are shown in Fig. 1.11

for different values of σ0.
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Figure 1.11: The evolution of the comoving number density Y (x) for a thermal WIMP. The

solid black curve is the DM abundance in thermal equilibrium Yeq(x), while the coloured curves

show the relic abundance for increasing values of σ0 from top (purple, dashed) to bottom (orange,

dashed-dotted). Figure adapted from Ref. [91].

However, it is possible to find an approximate analytical solution to Eq. (1.3.37).

Since we are interested in the value of Y at late times, Y∞, we can take Y � Yeq:

dY

dx
= −Y 2 λx−2 , (1.3.40)

the solution of which is simply Y∞ = xf/λ, where xf is the value of x at freeze-out.

Using the expression for λ in Eq. (1.3.38), the relic density is then given by

ΩDMh
2 =

s0 Y∞mDM h2

ρcrit,0

=
s0 xf h

2

0.264
(
g?s/g

1/2
?

)
mPl σ0 ρcrit,0

, (1.3.41)

which is importantly independent of the DM mass. One can also see that the

larger the annihilation cross section σ0, the smaller the DM relic density ΩDMh
2 (as

illustrated in Fig. 1.11).

22Nevertheless, efficient numerical techniques have been developed (see e.g. Ref. [90]).
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For realistic values23 of xf ≈ 20 and g? ' g?s ≈ 100 [88], one finds

ΩDMh
2 ' 3× 10−27 cm3 s−1

σ0

. (1.3.42)

By requiring that ΩDMh
2 agrees with the observed value of ∼ 0.1 [11], the necessary

annihilation cross section in the non-relativistic regime is

σ0 ' 3× 10−26 cm3 s−1 . (1.3.43)

The magnitude of this cross section is typical for particles interacting via the weak

force of the SM, leading many to conclude that DM likely consists of

weakly-interacting massive particles (WIMPs). This result is often referred to as

the “WIMP miracle”.

We now apply our analysis to a simple model; namely, DM in the form of a

heavy, stable neutrino species s annihilating through a Z0 boson. In this scenario,

the annihilation cross section is energy-independent (s-wave) and given by

σ0 '
G2

Fm
2
s

2π
, (1.3.44)

where GF is the Fermi constant.

Substituting Eq. (1.3.44) into Eq. (1.3.41) and applying the requirement that

Ωsh
2 . ΩDMh

2 ∼ 0.1, we obtain the so-called Lee–Weinberg bound [92, 93]:

ms & 6 GeV , (1.3.45)

which sets a lower limit on the mass of the DM candidate. However, it is possible

to evade this bound if the annihilation cross section is independent of the DM mass;

for example, with certain configurations involving scalar DM (see e.g. Ref. [94]).

Finally, it is important to note that DM could also be produced via a non-

thermal scenario, in contrast to the freeze-out mechanism described above. One of

the most popular non-thermal DM candidates is the axion, a hypothetical particle

with mass . keV that was postulated to resolve the “strong CP problem” in quantum

23For cold relics, one can see from Fig. 1.11 that the relic density depends very weakly on the

value of x at freeze-out, and that xf ≈ 20.
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chromodynamics (QCD) [75, 76]. Axions are expected to be extremely light (. keV)

but nevertheless, behave as CDM as they would be produced non-relativistically [77].

The correct DM relic density can also be achieved via a freeze-in mechanism [95].

In this scenario, in the early universe, there is a long-lived DM particle, which has

feeble interactions with the thermal plasma and is therefore, decoupled from it. It is

also assumed that the DM abundance at this time is negligibly small. As the universe

evolves, DM particles are produced from collisions or decays of other particles in the

thermal bath. The dominant production will occur at T ∼ mDM, which will fix the

DM abundance, before the interactions cease as T drops below mDM. Increasing the

interaction strength increases the DM relic density, which is the opposite behaviour

to that of thermal freeze-out (cf. Fig. 1.11). The process is referred to as “freeze-in”,

since as T falls below mDM, DM is heading towards (rather than away from) thermal

equilibrium.

1.4 Dark Matter Detection Experiments

In this section, we discuss the three complementary techniques for detecting the

non-gravitational interactions of DM: direct [Sec. 1.4.1], indirect [Sec. 1.4.2] and

collider [Sec. 1.4.3]. Each detection method concerns a particular type of DM–

SM interaction (see Fig. 1.12). We will see in Chapters 3, 4 and 5 that DM–SM

scattering processes can also be constrained, or even discovered, using observations

of the CMB or LSS of the universe.

1.4.1 Direct Detection

Direct detection experiments look for evidence of local DM particles from our

Galactic halo scattering elastically off target nuclei [96]. A variety of detectors

have now been built that are sensitive to the nuclear recoils induced by WIMP

collisions (for a summary, see e.g. Ref. [97]).

The expected number of WIMP–nucleon24 scattering events dN per recoil energy

24A nucleon is a particle that makes up the atomic nucleus, i.e. either a neutron or a proton.
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Figure 1.12: Diagram illustrating the three main DM detection techniques: direct (DM–SM

scattering; top to bottom), indirect (DM annihilation; left to right) and collider (DM production;

right to left).

window dEr is given by [98]

dN

dEr

=
ρDM

2µ2

σ

mDM

F

∫ ∞
vmin(Er)

dv
f(v)

v
, (1.4.46)

where ρDM is the local WIMP density, µ ≡ (mDM × mnuc)/(mDM + mnuc) is the

reduced mass, σ is the WIMP–nucleon elastic scattering cross section, and F is the

nuclear form factor, which takes into account the spatial extent and shape of the

target nuclei. The velocity distribution of WIMPs in the halo is given by f(v), which

is integrated over all velocities larger than the minimum value necessary to produce

a recoil with energy Er.

Direct detection experiments aim to measure (or constrain) dN/dEr directly.

Then, assuming a particular halo model, it is possible to infer a relation between

the cross section σ and the WIMP mass mDM. The most common choice is the

so-called standard halo model [99], which assumes a Maxwell–Boltzmann velocity

distribution25. Alternative halo models are discussed in e.g. Refs. [100–102].

In the literature, the WIMP–nucleon scattering cross section is often expressed26

in terms of: (i) a spin-independent interaction between WIMPs and all nucleons, and

25A Maxwell–Boltzmann distribution takes the form f(v) ∝ exp(−3v2/2v2
rms), where v is velocity

and vrms is the root-mean-square velocity.
26However, for a more comprehensive analysis, see Ref. [103].



1.4. Dark Matter Detection Experiments 28

(ii) a spin-dependent interaction between WIMPs and nucleons with a net spin27 that

depends on the total nuclear spin and the spins of the individual nucleons. Target

nuclei can thus be chosen to optimise an experiment for either spin-independent or

spin-dependent searches.

There are two detector technologies in common use: cryogenic detectors measure

the thermal energy produced when a particle collides with an atom in the detector,

while noble liquid detectors observe the flash of scintillation light released by a

particle collision.

The lack of a DM signal above the background can be interpreted as a

constraint on the WIMP–nucleon elastic scattering cross section. Fig. 1.13 shows

the current limits on the (spin-independent) WIMP–nucleon scattering cross

section. The strongest constraints are currently set by the LUX experiment (a

noble liquid detector) for DM masses mDM & 10 GeV [104], and CDMS (a

cryogenic detector) for mDM ∼ 1 GeV [105].

1.4.2 Indirect Detection

Indirect detection experiments search for the primary or secondary products of

DM annihilations or decays, including photons, neutrinos and charged particles.

Annihilations are expected to be non-negligible today if DM is thermal (see

Sec. 1.3), or non-thermal if there is no matter-antimatter asymmetry in the dark

sector. If the DM mass is relatively large, the annihilation or decay products may

be energetic enough to be detected.

Since the DM density profile is peaked towards the centre (see Sec. 1.1), it

makes sense to look for these particles from the Milky Way Galactic centre, where

the DM concentration is large. However, the background is both complicated and

poorly-understood [107], and the shape of the DM density profile at small radii

remains uncertain (see below) [108]. One can also look for emissions from dwarf

galaxies, which are believed to be DM-dominated with a low background from

27Here, spin refers to the intrinsic type of angular momentum that is carried by particles and

atomic nuclei.
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Figure 1.13: Upper limits on the spin-independent WIMP–nucleon elastic scattering cross section

as a function of the WIMP mass mWIMP at 90% CL from various direct DM experiments. The

solid, black curve shows the most recent result from the LUX experiment, where the green and

yellow bands represent the 1σ and 2σ uncertainties, respectively [106].

baryonic processes (see e.g. Ref. [109]).

It is generally assumed that the density of DM haloes ρ(r) satisfies one of two

profiles (see Fig. 1.14):

1. The Navarro–Frenk–White (NFW) profile has two free parameters (ρ0 and Rs)

[59]:

ρNFW(r) =
ρ0

(r/Rs)[1 + (r/Rs)]
2 , (1.4.47)

where ρ0 ≡ ρ(r = 0) is the central DM density.

2. The Einasto profile has three free parameters (ρ−2, r−2 and n) [110]:

ρEinasto(r) = ρ−2 exp

{
−2n

[(
r

r−2

)1/n

− 1

]}
, (1.4.48)

where r−2 is the radius at which the logarithmic slope of the distribution has

a value of −2, and ρ−2 ≡ ρ(r = r−2).

The NFW and Einasto profiles were derived from numerical simulations of galaxy

formation, assuming collisionless CDM. From Fig. 1.14, one can see that while the
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NFW profile has a central r−1 cusp, the Einasto profile has a logarithmic slope that

becomes shallower as r → 0. Due to the limited resolution of N -body simulations

as r → 0, it is not yet known which of these profiles provides the best description

for the central densities of simulated DM haloes (see e.g. Ref. [111]).
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Figure 1.14: Comparison of the NFW (green, solid) and Einasto (purple, dashed) DM halo

density profiles, using the values of the parameters as adopted in Ref. [112]. The profiles are

normalised to the local DM density ρDM ' 0.3 GeV cm−3 [113].

In the case of gamma-rays (high-energy photons), such particles would travel to

us relatively unimpeded, allowing the source of their production to be identified. In

general, the expected differential gamma-ray flux from WIMP annihilations can be

written as [114]

d2Φ

dE dΩ
=

(∑
f

〈
dσf

dE
v

〉
Nf

)
1

4πm2
DM

∫
Ψ

ρ2(l) dl , (1.4.49)

where E is energy, Ω is the solid angle, the sum runs over all possible final states f

containing photons, v is the WIMP relative velocity, σf and Nf are the annihilation

cross section and number of photons per event in a given annihilation channel, and

ρ(l) is the WIMP mass density at a distance l from the observer. The integral28

runs over the line-of-sight to the source, parameterised by Ψ = (θ, φ).

A smoking-gun signal for WIMP DM would be a monochromatic gamma-ray

line, which is not produced by any standard astrophysical process. Such a line could

28In the literature,
∫

Ψ
ρ2(l) dl is often referred to as the J-factor.
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be produced through DM annihilations directly into photons via a loop process

(although this would be naturally suppressed). In Chapter 6, we will consider a

particular gamma-ray line centred on E ' 511 keV, which has been observed from

the Galactic centre by many experiments for almost four decades [115–120].

In the energy range between ∼ 100 MeV and ∼ 100 GeV, the Fermi Large

Area Telescope (LAT) [121] sets strong constraints on the DM annihilation rate

into gamma-rays. Above 100 GeV, experiments such as HESS [122], MAGIC [123],

VERITAS [124] and most recently, HAWC [125], become more sensitive.

Like gamma-rays, neutrinos preserve spectral information and point back

towards the source, making them ideal for indirect DM searches. Detection of

high-energy neutrinos generally involves observing the Cherenkov light produced

as a neutrino passes through a large volume of water. Three key experiments in

operation today are IceCube [126], ANTARES [127] and Super-Kamiokande [128],

with energy thresholds of ∼ 10 GeV, ∼ 20 GeV and ∼ 5 MeV, respectively.

Finally, the main signature for DM in charged cosmic rays29 are anti-protons

and positrons. These searches can be highly-sensitive due to the low backgrounds

of antimatter produced by known astrophysical processes. However, unlike photons

and neutrinos, it is difficult to determine the source of cosmic rays due to their

diffusion in the galaxy. Current experiments searching for antimatter from DM

annihilation and decay include PAMELA [130] and more recently, AMS-02 [131],

which are sensitive to particle energies of 100 MeV − 100 GeV and 100 MeV − 1

TeV, respectively. It is also worth noting that experiments such as GAPS [132] are

being planned to detect anti-deuteron production.

1.4.3 Collider Searches

Particle accelerators such as the Large Hadron Collider (LHC) are currently

attempting to produce DM in the high-energy collisions of proton beams (see e.g.

Ref. [133]). Since WIMPs have only weak-strength interactions with matter, they

29Cosmic rays are immensely high-energy particles that strike the Earth from space; mainly

originating from outside of the Solar System [129].
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would simply escape the detector. Therefore, the most probable signature of

WIMP production in such experiments is “missing” transverse energy (referring to

the component of the total final-state momentum in the direction perpendicular to

the proton beam), accompanied by a mono-object, such as a photon, Z0 boson or

QCD jet. In other words, if momentum conservation appears to be violated, it is

possible that an invisible, massive particle was created, which did not interact with

the surrounding material of the detector. However, if such a particle were to be

produced, direct detection experiments would need to confirm whether they exist

in sufficient numbers to account for the observed DM relic density.

The unknown interactions between DM and SM particles are usually described

by a set of effective operators in an effective field theory (EFT). However, the EFT

approach is no longer valid when the energy scale probed by the effective operators

becomes smaller than the energy of the particles in the collision [134]. An alternative

method is to characterise DM searches using simplified models, which comprise of

only four parameters: the WIMP mass, the mediator mass, the WIMP–mediator

coupling, and the WIMP–quark coupling [135]. These approaches allow one to

compare constraints from direct detection and collider experiments.

So far, there is no convincing evidence for DM production from searches at the

LHC [136, 137].

1.5 Outline of the Thesis

The main goal of this thesis is to probe the fundamental properties of DM; in

particular, the potential non-gravitational interactions of DM with other particles

and with itself.

In Chapter 2, we begin by deriving the linear perturbation equations for matter

and radiation, which are required to predict the C` and linear P (k) for a given

cosmological model, and therefore form the basis for Boltzmann codes. We also

discuss the tight-coupling equations, which are necessary for describing the

baryon–photon fluid before recombination, and the line-of-sight integration

approach, which significantly speeds up the computation time for the evolution of



1.5. Outline of the Thesis 33

the photon anisotropies. The equations provided in this chapter will be modified

when we introduce DM couplings to SM particles in the later chapters.

In Chapter 3, we explore the impact of DM–photon scattering in the early

universe (hereafter, γCDM) on the C` spectra. Using the latest data from the

Planck satellite in combination with a modified version of the Boltzmann code

class, we derive upper limits on the elastic scattering cross section for both

constant and temperature-dependent cases. Such constraints are importantly

model-independent as one does not need to specify whether DM is annihilating,

decaying or asymmetric. We also highlight the effect on the polarisation and

matter power spectra, showing that forthcoming data from CMB polarisation

experiments and LSS surveys will help to both constrain and characterise the dark

sector.

In Chapter 4, we present analogous constraints for DM–neutrino interactions

(νCDM), using the latest cosmological data from Planck and LSS experiments. We

find that the strongest limits are set by the Lyman-α forest, demonstrating that

one can use the distribution of matter in the universe to probe such “invisible”

interactions. We also show that thermal MeV DM with a constant elastic scattering

cross section naturally predicts a cut-off in the P (k) at the Lyman-α scale, an

enhancement ofH0 and the effective number of neutrino speciesNeff , and the possible

generation of neutrino masses. By providing forecasts for future experiments, we

illustrate the power of LSS surveys in probing deviations from the standard ΛCDM

model.

In Chapter 5, we use high-resolution N -body simulations to show that the

suppressed P (k) predicted in the γCDM and νCDM scenarios can allow one to

alleviate the small-scale challenges faced by CDM; in particular, the “missing

satellite” and “too-big-to-fail” problems. Our results indicate that physics beyond

gravity, which is expected if DM is a thermal WIMP, may be essential to make

accurate predictions of structure formation on small scales. Furthermore, by

comparing the abundance of satellite galaxies in the Milky Way with the

predictions from our interacting DM simulations, we obtain constraints on the

scattering cross section that are around three orders of magnitude tighter than
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those derived from the CMB.

In Chapter 6, we address an excess of 511 keV gamma-rays that has been

observed from the Galactic centre for four decades and is uncorrelated with known

astrophysical sources. DM in the form of light (. 10 MeV) WIMPs annihilating

into electron–positron pairs has been one of the leading hypotheses of the observed

emission. Given the small required cross section, 〈σv〉e+e− ∼ 10−30 cm3 s−1, a

further coupling to lighter particles is required to produce the correct relic density.

We first derive constraints from Planck on light WIMPs that were in equilibrium

with either the neutrino or the electron sector in the early universe. Using these

results, we show that the light WIMP explanation of the 511 keV excess is ruled

out by the latest cosmological data for both NFW and Einasto DM density

profiles, suggesting an astrophysical or more exotic DM source of the signal.

Finally, we provide our conclusions and an outlook for future work in Chapter 7.



Chapter 2

Cosmological Perturbation Theory

The answer to the ancient question “Why is there something rather

than nothing?” would then be that ‘nothing’ is unstable.

— Frank Wilczek

To study the formation and evolution of large-scale structure (LSS) in the universe,

one needs to consider density fluctuations around the homogeneous and isotropic

background. If these fluctuations remain small, they can be treated in perturbation

theory. In this chapter, we derive the linear (first-order) perturbation equations for

both matter and radiation, assuming a flat universe with an FLRW metric. We use

the conformal Newtonian (or longitudinal) gauge [138] and follow the methodology

of Refs. [46, 139] and references therein. In Chapters 3 and 4, we will modify

these evolution equations to introduce DM–photon and DM–neutrino scattering,

respectively.

In Sec. 2.1, we derive the perturbed continuity and Euler equations, which

describe the time-evolution of the density perturbations. In Sec. 2.2, we derive the

Boltzmann hierarchy of equations that are necessary to properly account for the

perturbations of relativistic species; in particular, neutrinos and photons. In

Sec. 2.3, we present the baryon–photon tight-coupling equations, which are

required prior to recombination. Finally, in Sec. 2.4, we discuss the line-of-sight

integration method, which is implemented in numerical codes to reduce the time

required to compute the photon anisotropy spectrum.

35
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Symbol Definition Symbol Definition

a Cosmological scale factor Ψ` The `th Legendre component of Ψ

H Conformal Hubble parameter F` Momentum-averaged Ψ`

τ Conformal time δ Density contrast (= F0)

k Comoving wavenumber θ Divergence of fluid velocity

φ, ψ Metric perturbations σ Shear stress (= F2/2)

P Pressure cs Baryon sound speed (c2s ≡ δPb/δρb)

ρ Energy density κ̇ Thomson rate (≡ a σTh ne)

w Equation of state (= P̄ /ρ̄) ne Free electron number density

f0 Unperturbed phase space dist. func. σTh Thomson scattering cross section

Ψ Perturbation to f0 R Density ratio [≡ (3/4)(ρ̄b/ρ̄γ)]

Pi Conjugate momentum to position xi pi Proper momentum

qi Comoving momentum (≡ a pi) ε Proper energy (=
√
q2 + a2m2)

Gγ ` Photon polarisation component Πµ
ν Anisotropic stress tensor

Θ̇γb Baryon–photon slip (≡ θ̇γ − θ̇b) τc Thomson opacity (≡ κ̇−1)

g Visibility function [≡ κ̇ exp(−κ)] Π Fγ 2 +Gγ 0 +Gγ 2

Table 2.1: List of parameters used in the perturbation equations of Chapter 2.

2.1 Perturbed Continuity and Euler Equations

The various parameters used in this chapter are defined in Table 2.1. Note that

Greek indices α, β, γ etc. run from 0 to 3 (labelling the four space-time coordinates),

while Roman indices i, j, k etc. run from 1 to 3 (labelling the spatial components).

Repeated indices are summed over and the speed of light c is set to unity.

The geometry of space-time in an expanding homogeneous and isotropic universe

can be described by the line element

ds2 = ḡµνx
µxν = a2(τ)

(
dτ 2 − dxidx

i
)
, (2.1.1)

where a(τ) is the conformal scale factor and τ is the conformal time. The metric

tensor ḡµν is both symmetric (i.e. ḡµν = ḡνµ) and diagonal (i.e. ḡµν = 0 for µ 6= ν),

with elements

ḡ00 = a2(τ) , ḡ0i = 0 , ḡij = −a2(τ) δij . (2.1.2)

The evolution of a(τ) is described by the Friedmann equation

H2 =

(
ȧ

a

)2

=
8πG

3
a2ρ , (2.1.3)
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and the acceleration equation

d

dτ

(
ȧ

a

)
= −4πG

3
a2 (ρ+ 3P ) , (2.1.4)

where the overdot denotes a derivative with respect to conformal time, G is Newton’s

gravitational constant, ρ is energy density, P is pressure, and H ≡ ȧ/a is the

conformal Hubble parameter1.

To develop a general-relativistic treatment of cosmological perturbations, we

consider small perturbations δgµν to the FLRW metric ḡµν , i.e.

gµν = ḡµν + δgµν . (2.1.5)

Through the Einstein equations,

Gµν = 8πGTµν , (2.1.6)

perturbations in the metric will be coupled to perturbations in the matter

distribution. Note that Gµν is the Einstein tensor, which describes the curvature

of space-time [17].

The perturbed metric is also symmetric2 and therefore has 10 independent

components (or degrees of freedom). One can decompose these components into

three sectors according to how they transform under spatial rotations. It can be

shown that there are four scalar, four vector and two tensor degrees of

freedom [140], such that the perturbed line element can be written as

ds2 = a2(τ)
{

(1 + 2ψ) dτ 2 +Bi dx
i dτ − [(1− 2φ) δij +Hij] dxi dxj

}
, (2.1.7)

where Bi ≡ ∂ib + εijk∂
jbk is a vector with three components, and Hij ≡ 2[∂i∂j −

(δij∇2)/3]µ+ (∂iAj + ∂jAi) +HT
ij is a symmetric and traceless matrix (i.e. Tr(H) ≡

H i
i = 0) with five components. The four scalar modes are ψ, φ, b and µ; the two

1The Friedmann and acceleration equations can be derived from the time–time and space–space

components of the Einstein equations [Eq. (2.1.6)], respectively.
2One way to see this is that the inner product of two vectors should not depend on the order of

the vectors: gµνa
µbν = gµνa

νbµ = gνµa
µbν , where in the last step, we have renamed the indices.

Therefore, gµν = gνµ.
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tensor modes comprise the divergence-free part of Hij (i.e. the components for which

∂iHij = 0); the four vector modes are the remaining components of Bi and Hij. The

important point is that the scalar, vector and tensor modes are not coupled in linear

perturbation theory and one can follow their evolution independently.

The metric perturbations in Eq. (2.1.7) are not uniquely defined and depend on

the choice of coordinates or the gauge; if we had chosen an alternative set of space-

time coordinates, we would obtain different values for the perturbation variables.

However, since any physical observation is independent of the coordinate system,

we can simply fix the gauge and then keep track of the perturbations. It can be

shown that two scalar and two vector components are gauge modes, so that each

of the three sectors (scalar, vector and tensor) contain only two physical degrees of

freedom [140].

As a further simplification, we can set the vector and tensor modes to zero.

There are no sources of vector modes in ΛCDM (or the extensions to ΛCDM that

we will be considering), and even if they were initially excited, vector modes would

rapidly decay with the expansion of the universe3. The tensor modes can also be

set to zero as there is no evidence that they are relevant today [58].

In the Newtonian (or longitudinal) gauge, as proposed by Ref. [138], the two

remaining (scalar) degrees of freedom are simply ψ and φ and one sets Bi = Hij = 0

in Eq. (2.1.7). The line element becomes

ds2 = a2(τ)
[
(1 + 2ψ) dτ 2 − (1− 2φ) dxi dx

i
]
, (2.1.8)

such that

g00 = a2(τ) (1 + 2ψ) , g0i = 0 , gij = −a2(τ) (1− 2φ) δij . (2.1.9)

One advantage of working in this gauge is that the perturbed metric is also

diagonal. Additionally, the scalar mode ψ has a simple physical interpretation: it

is the gravitational potential in the Newtonian limit.

3Note that at second-order in perturbation theory, vector modes are generated via gravitational

collapse [141]. Additionally, in models beyond ΛCDM, there could be an active source of vector

modes from cosmic defects such as cosmic strings [142].
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Another popular choice of gauge in the literature is the synchronous

gauge [139]. Here, one degree of freedom is usually removed by setting the

divergence of the DM velocity in k-space, θDM, to zero. However, since we will be

considering scattering between DM and relativistic particles in this thesis, θDM will

be non-zero and the synchronous gauge equations would need to be carefully

reformulated. For simplicity, we therefore adopt the Newtonian gauge throughout

this thesis.

In a homogeneous and isotropic universe, matter behaves as a perfect fluid4 with

the (unperturbed) energy–momentum tensor

T̄ µν = (ρ̄+ P̄ )ŪµŪν − P̄ δµν , (2.1.10)

where Uµ is the four-velocity of the fluid.

As with the metric, we now consider small perturbations to Eq. (2.1.10), i.e.

T µν = T̄ µν + δT µν , (2.1.11)

which leads to

(ρ̄+ δρ+ P̄ + δP )(Ūµ + δUµ)(Ūν + δUν)− (P̄ + δP )δµν

= (ρ̄+ P̄ )ŪµŪν − P̄ δµν + δT µν . (2.1.12)

To first-order, Eq. (2.1.12) implies that

δT µν = (δρ+ δP )ŪµŪν + (ρ̄+ P̄ )(δUµŪν + ŪµδUν)− δPδµν − Πµ
ν . (2.1.13)

The final term in Eq. (2.1.13) is the anisotropic stress tensor Πµ
ν , which characterises

the difference between the perturbed fluid and a perfect fluid. Since the energy–

momentum tensor is symmetric, we have Πµ
ν = Πν

µ. We can choose Πµ
ν to be traceless

(i.e. Πµ
µ = 0), since its trace can be absorbed into a redefinition of the isotropic

pressure δP . We can also choose Πµ
ν to be orthogonal to Uµ (i.e. UµΠµν = 0).

Thus, without loss of generality, we can set Π0
0 = Π0

i = 0 so that we only need to

4A perfect fluid is one that can be completely characterised by its energy density ρ and isotropic

pressure P . It has no heat conduction or viscosity, such that the energy–momentum tensor Tµν is

diagonal.
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consider the spatial part Πi
j = T ij−δijT kk /3, which represents the traceless component

of T ij .

The perturbed four-velocity is given by

Uµ = a−1(1− ψ, vi) , Uµ = a(1 + ψ,−vi) , (2.1.14)

where vi is the three-velocity, which can be treated as a perturbation of the same

order as δρ, δP and the metric perturbations.

Combining Eqs. (2.1.13) and (2.1.14), the components of the perturbed energy–

momentum tensor to linear order can be written as

T 0
0 = ρ̄+ δρ ,

T i0 = (ρ̄+ P̄ )vi ,

T 0
j = −(ρ̄+ P̄ )vj ,

T ij = −(P̄ + δP )δij − Πi
j . (2.1.15)

Next, we require the perturbed connection coefficients

Γµνρ =
gµλ

2
(∂νgλρ + ∂ρgλν − ∂λgνρ) . (2.1.16)

Since the metric in Eq. (2.1.9) is diagonal, we have

g00 = a−2(τ) (1− 2ψ) , g0i = 0 , gij = −a−2(τ) (1 + 2φ) δij . (2.1.17)

Substituting Eqs. (2.1.9) and (2.1.17) into Eq. (2.1.16) gives

Γ0
00 = H + ψ̇ ,

Γ0
0i = ∂iψ ,

Γi00 = δij∂jψ ,

Γ0
ij = Hδij − [φ̇+ 2H(φ+ ψ)]δij ,

Γij0 = (H− φ̇)δij ,

Γijk = −2δi(j∂k)φ+ δjkδ
il∂lφ , (2.1.18)

where δi(j∂k) ≡ (δij∂k + δik∂j)/2.

Assuming energy and momentum conservation, the following condition must be

satisfied:

∇µT
µ
ν = ∂µT

µ
ν + ΓµµαT

α
ν − ΓαµνT

µ
α = 0 . (2.1.19)
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First, considering the ν = 0 component to linear order, we have

∂0T
0
0 + ∂iT

i
0 + Γµµ0T

0
0 − Γ0

00T
0
0 − Γij0T

j
i = 0 . (2.1.20)

Substituting Eqs. (2.1.15) and (2.1.18) for the perturbed energy–momentum tensor

and the connection coefficients, respectively, gives

∂0(ρ̄+ δρ) + ∂i[(ρ̄+ P̄ )vi] + (4H + ψ̇ − 3φ̇)(ρ̄+ δρ)

−(H + ψ̇)(ρ̄+ δρ) + (H− φ̇)δij[(P̄ + δP )δji + Πj
i ] = 0 , (2.1.21)

which reduces to

∂0(ρ̄+ δρ) + ∂i[(ρ̄+ P̄ )vi] + 3H(ρ̄+ δρ)− 3(ρ̄+ P̄ )φ̇+ 3H(P̄ + δP ) = 0 , (2.1.22)

using δii = 3 and Πi
i = 0.

Considering the zeroth-order and first-order terms separately gives

∂0ρ̄ = −3H(ρ̄+ P̄ ) , (2.1.23)

δρ̇ = −3H(δρ+ δP ) + 3φ̇(ρ̄+ P̄ )− (∇ · v)(ρ̄+ P̄ ) , (2.1.24)

where Eq. (2.1.23) encapsulates energy conservation in the homogeneous background

and Eq. (2.1.24) describes the time evolution of the density perturbation.

We now introduce the divergence of the fluid velocity in k-space θ ≡ ∇ · v, the

density contrast δ ≡ δρ/ρ̄ and its time-derivative δ̇ = (ρ̄ δρ̇ − δρ ∂0ρ̄)/ρ̄2, and the

equation of state w = P̄ /ρ̄. Dividing Eq. (2.1.24) by ρ̄ and using Eq. (2.1.23), we

obtain the perturbed general-relativistic continuity equation

δ̇ = −(1 + w)
(
θ − 3φ̇

)
− 3H

(
δP

δρ
− w

)
δ (2.1.25)

The first term on the right-hand side of Eq. (2.1.25) reflects energy density

conservation; the factor (1 + w) appears since it is the energy flux rather than the

matter flux that is important at the relativistic level. The second term is a

damping contribution that appears if w 6= δP/δρ. However, for all the fluids that

we will consider here, w is a constant and therefore, δP/δρ = w + ρ dw/dρ = w,

and this term vanishes.
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Next, considering the ν = i component of Eq. (2.1.19) to linear order, we have

∂0T
0
i + ∂jT

j
i + Γµµ0T

0
i + ΓµµjT

j
i − Γ0

0iT
0
0 − Γ0

jiT
j
0 − Γj0iT

0
j − ΓjkiT

k
j = 0 . (2.1.26)

Substituting Eqs. (2.1.15) and (2.1.18) for the perturbed energy–momentum tensor

and the connection coefficients, respectively, gives

−∂0[(ρ̄+ P̄ )vi]− ∂jΠj
i − ∂j(P̄ + δP )δji − 4H[(ρ̄+ P̄ )vi]

−(∂jψ − 3∂jφ)δji P̄ − ∂iψρ̄−Hδji[(ρ̄+ P̄ )vj] +Hδji [(ρ̄+ P̄ )vj]

−[2δj(i∂k)φ− δkiδjl∂lφ]δkj P̄ = 0 , (2.1.27)

which reduces to

−∂0[(ρ̄+ P̄ )vi]− ∂iδP − 4H[(ρ̄+ P̄ )vi]− (ρ̄+ P̄ )∂iψ − ∂jΠj
i = 0 . (2.1.28)

These terms are all first-order in the perturbation. Using Eq. (2.1.23) and dividing

through by (ρ̄+ P̄ ), we obtain

v̇i = −Hvi −
∂0P̄ vi
ρ̄+ P̄

− ∂iδP

ρ̄+ P̄
− ∂jΠ

j
i

ρ̄+ P̄
− ∂iψ . (2.1.29)

Next, acting on each term with ∂i,

θ̇ = −Hθ − ∂0P̄

ρ̄+ P̄
θ +

k2δP

ρ̄+ P̄
− ∂i∂jΠ

j
i

ρ̄+ P̄
+ k2ψ

= −Hθ − ẇ

1 + w
θ − P̄ ∂0ρ̄

ρ̄2(1 + w)
θ +

k2δP

ρ̄(1 + w)
− ∂i∂j(T

j
i − δ

j
iT

k
k /3)

ρ̄+ P̄
+ k2ψ

= −Hθ − ẇ

1 + w
θ + 3wHθ +

δP/δρ

1 + w
k2δ − 2P̄

3(ρ̄+ P̄ )
k2Π + k2ψ , (2.1.30)

where we have used the relation Πi
j = T ij − δijT

k
k /3 and the result for ∂0ρ̄ in

Eq. (2.1.23).

Finally, to simplify Eq. (2.1.30), we define σ ≡ [2P̄ /3(ρ̄ + P̄ )]Π, which we will

refer to as the shear stress [139] as this term represents the stress arising from shear

viscosity5. Unlike perfect fluids (for which σ = 0), free-streaming, relativistic species

(such as massless neutrinos and photons after recombination) have long mean free

5Shear viscosity is the resistance to shearing flows and occurs when adjacent, parallel layers of

a fluid move at different velocities or have different temperatures [143].
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paths with respect to the other particles and travel much further in the perpendicular

direction of the flow, thus providing a large shear viscosity and non-negligible σ.

We then obtain the perturbed general-relativistic Euler equation

θ̇ = −H(1− 3w)θ − ẇ

1 + w
θ +

δP/δρ

1 + w
k2δ − k2σ + k2ψ (2.1.31)

The third and fifth terms on the right-hand side of Eq. (2.1.31) drive θ̇, representing

the effect of fluid pressure δP and the gravitational potential ψ on the growth of

density perturbations, respectively. The first term is a damping factor due to the

Hubble expansion, which has the effect of reducing the fluid velocity as a−1 for

non-relativistic matter (for which w = 0). The second term will vanish since we

assume w is constant. Finally, the fourth term illustrates the impact of shear stress

in suppressing the growth of perturbations.

The perturbed continuity and Euler equations given in Eqs. (2.1.25) and (2.1.31)

are sufficient for describing the evolution of matter perturbations, i.e. DM and

baryons. However, the equations need to be modified for individual components if

they interact with each other (for example, the coupling of the baryon and photon

fluids before recombination).

Dark Matter

In the standard ΛCDM framework, DM is cold (non-relativistic) and collisionless

(only interacting with other particles via gravity). Therefore, DM can be treated as

a pressureless perfect fluid with wDM = δP/δρ = 0 and σDM = 0, leading to

δ̇DM = −θDM + 3φ̇ , (2.1.32)

θ̇DM = k2ψ −HθDM . (2.1.33)

Baryons

Unlike collisionless DM, the Thomson scattering of baryons and photons prior to

recombination implies a transfer of energy and momentum between the two fluids,

which provides an additional “source term” in the Euler equations. In Sec. 2.2.2,

we derive the corresponding source term for the photon component: “−κ̇(θγ − θb)”,

where κ̇ is the Thomson scattering rate.
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Assuming that the total 4-momentum of the baryon–photon fluid is conserved

in the elastic scattering process, we have

(ρ̄γ + P̄γ) δθγ = −(ρ̄b + P̄b) δθb

=⇒ δθb = −4

3

ρ̄γ
ρ̄b

δθγ , (2.1.34)

where we have used the expression for the momentum density T i0 in Eq. (2.1.15).

Therefore, the source term for baryons is given by “−R−1κ̇(θb−θγ)”, where we have

defined6 R ≡ (3/4)(ρ̄b/ρ̄γ).

In addition, the acoustic term for baryons c2
sk

2δb is non-negligible at large k,

where we have defined the baryon sound speed c2
s ≡ δPb/δρb. Therefore, taking

wb = δP/δρ ' 0 and σb ' 0, one finds

δ̇b = −θb + 3φ̇ , (2.1.35)

θ̇b = k2ψ −Hθb + c2
sk

2δb −R−1κ̇(θb − θγ) . (2.1.36)

2.2 Boltzmann Hierarchy for Relativistic Species

For perturbations in relativistic species, one needs to follow the complete evolution

of the phase space distribution function f(xi, Pj, τ) to linear order. In the general

case, the energy–momentum tensor Tµν can be written in terms of f(xi, Pj, τ) and

the 4-momenta components as [139]

Tµν =

∫ ( 3∏
k=1

dPk

)
[−det(g)]−1/2 PµPν

P 0
f(xi, Pj, τ) , (2.2.37)

where det(g) is the determinant of the metric tensor gµν . In the conformal Newtonian

gauge, the conjugate momenta Pi are related to the proper momenta pi by Pi =

a(1− φ)pi. The time component of the conjugate 4-momentum is P0 = −(1 + ψ)ε,

where ε = a(p2 +m2)
1/2

= (P 2 + a2m2)
1/2

is the proper energy measured by a

comoving observer.

It is then convenient to introduce the comoving 3-momentum qj ≡ apj, which

can be written in terms of its magnitude and direction as qj = qnj, where nini = 1.

6In the literature, an alternative definition is sometimes used: R ≡ (4/3)(ρ̄γ/ρ̄b).
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We can then express the phase space distribution function as a sum of the zeroth-

order unperturbed distribution function f0(q) plus a perturbation in terms of q and

nj:

f(xi, Pj, τ) = f0(q)
[
1 + Ψ(xi, q, nj, τ)

]
. (2.2.38)

The function f0(q) is given by the Fermi–Dirac distribution for fermions (+ sign)

and the Bose–Einstein distribution for bosons (− sign):

f0(q) =
gs
h3

1

exp[ε/(kBT0)± 1]
, (2.2.39)

where gs is the number of spin degrees of freedom, h is Planck’s constant, kB is

Boltzmann’s constant and T0 is the temperature of the particles today.

Using the perturbed metric given in Eq. (2.1.9) and the result that the

determinant of a diagonal matrix is the product of its diagonal elements, we have

[−det(g)]−1/2 = a−4(1 − ψ + 3φ) to linear order. Additionally, we can write∏3
k=1 dPk = (1 − 3φ) q2 dq dΩ, where dΩ is the solid angle associated with the

direction ni. Therefore, Eq. (2.2.37) becomes

Tµν = a−4

∫
q2 dq dΩ (1− ψ)

PµPν
P 0

f0(q)
[
1 + Ψ(xi, q, nj, τ)

]
. (2.2.40)

It then follows that to first-order,

T 0
0 = −a−4

∫
q2dq dΩ

√
q2 +m2a2 f0(q) (1 + Ψ) ,

T 0
i = a−4

∫
q3dq dΩni f0(q) Ψ ,

T ij = a−4

∫
q2dqdΩ

q2ninj√
q2 +m2a2

f0(q) (1 + Ψ) . (2.2.41)

The important point is that we have eliminated the dependence on the metric

perturbations φ and ψ by the redefinition of Pi in terms of q and ni.

The phase space distribution function evolves according to the Boltzmann

equation [Eq. (1.3.23)], which in terms of the variables {xi, q, ni, τ} is given by

Df

dτ
=
∂f

∂τ
+

dxi

dτ

∂f

∂xi
+

dq

dτ

∂f

∂q
+

dni
dτ

∂f

∂ni
=

(
∂f

∂τ

)
C

, (2.2.42)

where the right-hand side is the collisional term, which will be zero or non-zero

depending on the species involved. We can ignore the term (dni/dτ)(∂f/∂ni) since

both contributions are first-order.
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Next, we can use the geodesic equation

P 0 dP µ

dτ
+ Γµαβ P

αP β = 0 , (2.2.43)

and the connection coefficients given in Eq. (2.1.18) to write

dq

dτ
= qφ̇− εni∂iψ . (2.2.44)

Finally, Eq. (2.2.42) in momentum-space becomes

∂Ψ

∂τ
+ i

q

ε
(~k · n̂) Ψ +

d ln(f0)

d ln(q)

[
φ̇− i ε

q
(~k · n̂)ψ

]
=

1

f0

(
∂f

∂τ

)
C

, (2.2.45)

where we have used the expansion in Eq. (2.2.38), ∂i = i(~k · n̂) and dx/x ≡ d In(x).

2.2.1 Massless Neutrinos

In this thesis, for simplicity, we will impose the approximation of massless neutrinos7.

The formalism for implementing massive neutrinos is provided in e.g. Ref. [139].

For relativistic particles, the equation of state w = P̄ /ρ̄ = 1/3. From

Eq. (2.1.15), this implies that ρ̄ = 3P̄ = −T̄ 0
0 = T̄ ii . Using Eq. (2.2.41), the

unperturbed energy density ρ̄ν and pressure P̄ν for neutrinos (with mass mν = 0)

are given by

ρ̄ν = 3P̄ν = a−4

∫
q3 dq dΩ f0(q) , (2.2.46)

while the unperturbed energy flux T̄ 0
i and anisotropic stress Π̄i

j = T̄ ij −δijP̄ν are zero.

Meanwhile, the first-order perturbations to these quantities are

δρν = 3 δPν = a−4

∫
q3 dq dΩ f0(q) Ψ ,

δT 0
i = a−4

∫
q3 dq dΩni f0(q) Ψ ,

Πi
j = a−4

∫
q3 dq dΩ (ninj −

1

3
δij) f0(q) Ψ . (2.2.47)

7We note that neutrinos are expected to have masses ∼ O(0.1) eV [11]. However, unless

explicitly stated otherwise, the approximation of massless neutrinos will not affect the results of

this thesis.
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For massless particles, ε = (q2 + a2m2)
1/2

= q and we can integrate out the

q-dependence in the distribution function8. Furthermore, we expand the angular

dependence of the perturbation in terms of Legendre polynomials P`(k̂ · n̂):

Fν(~k, n̂, τ) ≡
∫
q3 dq f0(q) Ψ∫
q3 dq f0(q)

≡
∞∑
`=0

(−i)` (2`+ 1)Fν `(~k, τ)P`(k̂ · n̂) , (2.2.48)

where the factor (−i)`(2` + 1) is included to simplify the plane wave expansion of

Fν(~k, n̂, τ).

Combining the above equations with Eq. (2.1.15) gives the useful results

δν =
δρν
ρ̄ν

=
1

4π

∫
dΩFν(~k, n̂, τ) = Fν 0 ,

θν =
3i

16π

∫
dΩµFν(~k, n̂, τ) =

3

4
kFν 1 ,

σν = − 3

16π

∫
dΩ

[
µ2 − 1

3

]
Fν(~k, n̂, τ) =

1

2
Fν 2 , (2.2.49)

where we have defined µ ≡ k̂ · n̂ and used
∫

dΩ =
∫ 2π

0
dφ
∫ 1

−1
dµ, P0(µ) = 1,

P1(µ) = µ and P2(µ) = (1/2)(3µ2 − 1).

Next, integrating Eq. (2.2.45) over q3 dq f0(q) and setting the collisional term to

zero gives∫
q3 dq f0

∂Ψ

∂τ
+ ikµ

∫
q3 dq f0 Ψ = −(φ̇− ikµψ)

∫
q3 dq f0

d ln(f0)

d ln(q)
. (2.2.50)

Dividing Eq. (2.2.50) by
∫
q3 dq f0(q) and comparing to Eq. (2.2.48), we obtain the

simple Boltzmann equation for massless neutrinos:

∂Fν
∂τ

+ ikµFν = 4(φ̇− ikµψ) . (2.2.51)

We can then use the orthogonality property of Legendre polynomials∫ 1

−1

dµP`(µ)P`′(µ) =
2

2`+ 1
δ``′ , (2.2.52)

to invert Eq. (2.2.48):

Fν `(~k, τ) = i`
∫ 1

−1

dµ

2
P`(µ)Fν(~k, n̂, τ) . (2.2.53)

8In the case of massive neutrinos, the q-dependence cannot be removed and significantly more

computation time is required to perform the integration of the resulting evolution equations [139].
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Operating with i`
∫ 1

−1
dµP`(µ) on both sides of Eq. (2.2.51), we have

i`
∫ 1

−1

dµP`(µ)Ḟν + i` ik

∫ 1

−1

dµµP`(µ)Fν = 4i`
∫ 1

−1

dµP`(µ) (φ̇− ikµψ) . (2.2.54)

Using the recursion relation (`+ 1)P`+1(µ) = (2`+ 1)µP`(µ)− `P`−1(µ),

i`
∫ 1

−1

dµP`(µ)Ḟν +
ik

2`+ 1
i`
∫ 1

−1

dµ [`P`−1(µ) + (`+ 1)P`+1(µ)]Fν

= 4i`
∫ 1

−1

dµP`(µ) (φ̇− ikµψ) , (2.2.55)

and comparing Eq. (2.2.55) to Eq. (2.2.53), we obtain

Ḟν ` −
k

2`+ 1

[
`Fν (`−1) − (`+ 1)Fν (`+1)

]
= 2i`

∫ 1

−1

dµP`(µ) (φ̇− ikµψ) . (2.2.56)

Finally, considering separately the ` = 0, ` = 1 and ` ≥ 2 modes, and the relations in

Eq. (2.2.49), we obtain the Boltzmann hierarchy of equations for massless neutrinos:

δ̇ν = Ḟν 0 = −4

3
θν + 4φ̇ , (2.2.57)

θ̇ν =
3

4
kḞν 1 = k2ψ + k2

(
1

4
δν − σν

)
, (2.2.58)

Ḟν ` =
k

2`+ 1

[
`Fν (`−1) − (`+ 1)Fν (`+1)

]
, ` ≥ 2 (2.2.59)

where for Eq. (2.2.59), we have used the result that
∫ 1

−1
dµP`(µ)(a + bµ) = 0 for

` ≥ 2, if a and b are constants with respect to µ.

Eqs. (2.2.57) and (2.2.58) are simply the perturbed continuity and Euler

equations derived in Sec. 2.1 for a species with wν = δP/δρ = 1/3 and

non-negligible shear stress σν . Note that a given Fν ` is only coupled to its

neighbouring (`− 1) and (`+ 1) modes.

2.2.2 Photons

The evolution of the phase space distribution function for photons can be treated

in a similar way to massless neutrinos. However, as a result of the tight-coupling

of photons and baryons before recombination, the collisional term (∂f/∂τ)C on

the right-hand side of the Boltzmann equation [Eq. (2.2.45)] is now present and is

dependent on the photon polarisation.
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We consider separately:

1. The momentum-averaged total phase space density perturbation, summed over

the polarisation: Fγ(~k, n̂, τ).

2. The difference between the two linear polarisation components: Gγ(~k, n̂, τ).

To first-order, one finds [144](
∂Fγ
∂τ

)
C

= κ̇

{
−Fγ + Fγ 0 + 4n̂ · ~ve −

1

2
(Fγ 2 +Gγ 0 +Gγ 2)P2(µ)

}
,(

∂Gγ

∂τ

)
C

= κ̇

{
−Gγ +

1

2
(Fγ 2 +Gγ 0 +Gγ 2) [1− P2(µ)]

}
, (2.2.60)

where κ̇ ≡ aneσTh is the Thomson scattering rate, and ne and ~ve are the mean

number density and velocity of the electrons, respectively.

We can now expand the above expressions in a Legendre series as in Eq. (2.2.48):(
∂Fγ
∂τ

)
C

= κ̇

[
4i

k
(θγ − θb)µ+

(
9σγ −

1

2
Gγ 0 −

1

2
Gγ 2

)
P2(µ)

−
∞∑
`≥3

(−i)`(2`+ 1)Fγ `P`(µ)

]
, (2.2.61)(

∂Gγ

∂τ

)
C

= κ̇

{
1

2
(Fγ 2 +Gγ 0 +Gγ 2) [1− P2(µ)]

−
∞∑
`≥0

(−i)`(2`+ 1)Gγ `P`(µ)

}
, (2.2.62)

where we have used the substitution n̂ · ~ve = −(iθb/k)µ, in addition to

δγ = Fγ 0 , θγ =
3

4
kFγ 1 , σγ =

1

2
Fγ 2 , (2.2.63)

as in Eq. (2.2.49).

The left-hand side of the Boltzmann equation is identical to that of massless

neutrinos. Therefore, using Eq. (2.2.56), it follows that

Ḟγ ` =
k

2`+ 1

[
`Fγ (`−1) − (`+ 1)Fγ (`+1)

]
+2i`

∫ 1

−1

dµP`(µ)

[
φ̇− ikµψ +

1

4

(
∂Fγ
∂τ

)
C

]
, (2.2.64)

Ġγ ` =
k

2`+ 1

[
`Gγ (`−1) − (`+ 1)Gγ (`+1)

]
+

1

2
i`
∫ 1

−1

dµP`(µ)

(
∂Gγ

∂τ

)
C

. (2.2.65)
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Finally, considering separately the ` = 0, ` = 1, ` = 2 and ` ≥ 3 modes, and the

relations in Eq. (2.2.63), we obtain the infinite Boltzmann hierarchy of equations for

photons:

δ̇γ = Ḟγ 0 = −4

3
θγ + 4φ̇ , (2.2.66)

θ̇γ =
3

4
kḞγ 1 = k2ψ + k2

(
1

4
δγ − σγ

)
− κ̇(θγ − θb) , (2.2.67)

Ḟγ 2 = 2σ̇γ =
8

15
θγ −

3

5
kFγ 3 −

9

5
κ̇σγ +

1

10
κ̇ (Gγ 0 +Gγ 2) , (2.2.68)

Ḟγ ` =
k

2`+ 1

[
`Fγ (`−1) − (`+ 1)Fγ (`+1)

]
− κ̇Fγ ` , ` ≥ 3 (2.2.69)

Ġγ l =
k

2`+ 1

[
`Gγ (`−1) − (`+ 1)Gγ (`+1)

]
+κ̇

[
−Gγ ` +

1

2
(Fγ 2 +Gγ 0 +Gγ 2)

(
δ`0 +

δ`2
5

)]
, (2.2.70)

where we have used Eq. (2.2.52) to perform the integration over µ for general `.

2.3 Baryon–Photon Tight-Coupling Equations

Before recombination, the baryons and photons are tightly coupled. More precisely,

the reciprocal of the Thomson opacity τc
−1 ≡ κ̇, which quantifies the interaction

rate, is much greater than the Hubble rate H ≡ ȧ/a ∼ τ−1, which describes the

expansion. As a result, the source terms in Eqs. (2.1.36) and (2.2.67) for θ̇b and

θ̇γ are large and the evolution equations become difficult to solve numerically. It is

therefore beneficial to obtain alternative forms of the Euler equations that are valid

in the limit that τc � τ and kτc � 1; an idea that was first proposed in Ref. [145].

We begin by combining Eqs. (2.1.36) and (2.2.67) for θ̇b and θ̇γ to remove the

dependence on κ̇ ≡ τc
−1:

Rθ̇b + θ̇γ = R(−Hθb + c2
sk

2δb) + k2

(
δγ
4
− σγ

)
+ (1 +R)k2ψ , (2.3.71)

where we have used the definition9 R ≡ (3/4)(ρ̄b/ρ̄γ).

We now introduce the quantity Θγb ≡ θγ − θb; the time-derivative of which,

Θ̇γb ≡ θ̇γ− θ̇b, is often referred to as the baryon–photon slip. Then, Eq. (2.3.71) can

9Note that in the literature, the alternative definition R ≡ (4/3)(ρ̄γ/ρ̄b) is sometimes used.
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be written as

θ̇b = − 1

1 +R

[
R(Hθb − c2

sk
2δb)− k2

(
δγ
4
− σγ

)
+ Θ̇γb

]
+ k2ψ , (2.3.72)

and Eq. (2.2.67) becomes

θ̇γ = (1 +R)k2ψ + k2

(
1

4
δγ − σγ

)
−R

(
θ̇b +Hθb − c2

sk
2δb

)
. (2.3.73)

The important point is that only the slip Θ̇γb and the photon shear σγ depend on τc

in Eqs. (2.3.72) and (2.3.73). The next step is to find expressions for these quantities

that are valid at the nth order in τc.

Again, combining Eqs. (2.1.36) and (2.2.67) for θ̇b and θ̇γ, we can obtain a

differential equation for Θγb:

Rτc

[
Θ̇γb −Hθb + k2

(
c2
sδb −

δγ
4

+ σγ

)]
+ (1 +R)Θγb = 0 . (2.3.74)

The time-evolution of the photon shear is given by Eq. (2.2.68):

σ̇γ =
4

15
θγ −

3

10
kFγ 3 −

9

10
κ̇σγ +

1

20
κ̇ (Gγ 0 +Gγ 2) , (2.3.75)

which implies that

σγ =
τc
9

(
8

3
θγ − 3kFγ 3 − 10σ̇γ

)
+

1

18
(Gγ 0 +Gγ 2) . (2.3.76)

For illustrative purposes, we will perturbatively expand Θ̇γb and σγ to linear order

in τc. The second-order expressions can be found in Ref. [146]. Firstly, using

Eq. (2.3.74),

Θγb = − Rτc
1 +R

[
−Hθb + k2

(
c2
sδb −

δγ
4

+ σγ

)]
+O(τc

2) . (2.3.77)

We now need to differentiate this expression with respect to conformal time to obtain

a first-order approximation for the slip. In the literature, the derivative of the term
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in square brackets is often written in a very particular way (see e.g. Ref. [139]):

d

dτ
[...] = −Hθ̇b − Ḣθb + k2

(
ċ2
sδb + c2

s δ̇b −
δ̇γ
4

+ σ̇γ

)

= −2Hθ̇b − (Ḣ +H2)θb + k2

[
(Hc2

s + ċ2
s)δb + c2

s δ̇b −
δ̇γ
4

+ σ̇γ +Hψ

]
+
H
Rτc

Θγb

= 2HΘ̇γb −
ä

a
θb + k2

(
−H

2
δγ + c̄2

sδb + c2
s δ̇b −

δ̇γ
4

+ 2Hσγ + σ̇γ −Hψ

)

+
(1 + 2R)H

Rτc
Θγb , (2.3.78)

where we have defined c̄2
s ≡ (Hc2

s + ċ2
s). Then, using Ṙ = HR, the slip to first-order

in τc is given by

Θ̇γb = − Rτc
1 +R

[
− ä
a
θb + k2

(
−H

2
δγ + c̄2

sδb + c2
s δ̇b −

δ̇γ
4
−Hψ

)]

+

(
τ̇c
τc
− 2HR

1 +R

)
Θγb +O(τc

2) , (2.3.79)

where the terms involving 2HΘ̇γb and (2Hσγ + σ̇γ) are not present to first-order.

For the shear stress, Eq. (2.3.76) can be written as

σγ =
8τc
27
θγ +

1

18
(Gγ 0 +Gγ 2) +O(τc

2) , (2.3.80)

where we have used the fact that Fγ 3 = O(τc
2) and Gγ 0 ∼ Gγ 2 ∼ O(τc).

From Eq. (2.2.70), the polarisation multipoles ` = 0 and ` = 2 satisfy

Ġγ 0 = −kGγ 1 + τc
−1

[
σγ +

1

2
(−Gγ 0 +Gγ 2)

]
,

Ġγ 2 =
k

5
(2Gγ 1 − 3Gγ 3) + τc

−1

[
1

10
(2σγ +Gγ 0 − 9Gγ 2)

]
. (2.3.81)

Noting that Gγ 1 ∼ Gγ 3 ∼ O(τc
2), we can obtain a perturbative expansion of

Eq. (2.3.81):

Gγ 0 =
5σγ
2

+O(τc
2) , Gγ 2 =

σγ
2

+O(τc
2) , (2.3.82)

which implies that the photon shear to first-order in τc is simply

σγ =
16τc
45

θγ +O(τc
2) . (2.3.83)
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To summarise, in the baryon–photon tight-coupling regime, the perturbed Euler

equations for the baryon and photon fluids are given by Eqs. (2.3.72) and (2.3.73),

with Θ̇γb given by Eq. (2.3.79) and σγ given by Eq. (2.3.83), to first-order in τc.

These equations will need to be modified when we introduce DM–photon scattering

in Chapter 3.

2.4 Line-of-Sight Integration Approach

In Refs. [46, 147], the authors introduced a novel method for calculating the CMB

anisotropy spectra using a line-of-sight integration approach. Their technique

significantly reduced the computation time compared to solving the photon

Boltzmann hierarchy in the traditional way (as described in Sec. 2.2.2).

Firstly, using Eqs. (2.2.51) and (2.2.60), the Boltzmann evolution equations can

be written as

Ḟγ + ikµFγ = 4(φ̇− ikµψ) + κ̇

{
−Fγ + Fγ 0 + 4n̂ · ~ve −

1

2
P2(µ)Π

}
, (2.4.84)

Ġγ + ikµGγ = κ̇

[
−Gγ +

1

2
[1− P2(µ)] Π

]
, (2.4.85)

where we have defined Π ≡ Fγ 2 +Gγ 0 +Gγ 2.

If we then define the photon temperature and polarisation transfer functions

∆T ≡ (1/4)Fγ and ∆P ≡ (1/4)Gγ, we have:

∆̇T + ikµ∆T = φ̇− ikµψ + κ̇

{
−∆T + ∆T

0 + µvb −
1

8
P2(µ)Π

}
, (2.4.86)

∆̇P + ikµ∆P = κ̇

[
−∆P +

1

8
[1− P2(µ)] Π

]
, (2.4.87)

where we have used the substitution n̂ · ~ve = −(iθb/k)µ = µvb.

One can then expand these equations in multipole moments, which gives rise to

the Boltzmann hierarchy of coupled differential equations as derived in Sec. 2.2.2.

To predict the value of the CMB anisotropy spectrum at a given scale θ, these

equations need to be solved up to a multipole ` ∼ 1/θ. However, if one is interested

in studying small angular scales with high accuracy, a very large system of equations

needs to be evolved and the computation time becomes very long.
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Instead, let us first consider the polarisation transfer function in Eq. (2.4.87) and

multiply each side of the equation by exp(ikµτ − κ):

∆̇Peikµτ−κ + (κ̇+ ikµ)∆Peikµτ−κ =
1

8
κ̇eikµτ−κ [1− P2(µ)] Π , (2.4.88)

where κ(τ) ≡ −
∫ τ0
τ
κ̇(τ)dτ , τ0 is the time today, and we introduce the visibility

function g(τ) ≡ κ̇ exp(−κ). The maximum value of g(τ) defines the epoch of

recombination, when the dominant contribution to the CMB anisotropies arises.

Next, using d(e−κ)/dτ = κ̇e−κ, one can rewrite Eq. (2.4.88) as

d

dτ

(
∆Peikµτ−κ

)
=

1

8
κ̇e−κeikµτ [1− P2(µ)] Π . (2.4.89)

Integrating over conformal time (along the past light-cone), the left-hand side of

Eq. (2.4.89) becomes∫ τ0

0

dτ
d

dτ

(
∆Peikµτ−κ

)
= ∆P(τ = τ0) eikµτ0−κ(τ=τ0) −∆P(τ = 0) e−κ(τ=0)

= ∆P(τ = τ0) eikµτ0 , (2.4.90)

since by definition, κ(τ = τ0) = 0 and κ(τ = 0)→∞.

Next, integrating the right-hand side of Eq. (2.4.89), we have

∆P(τ = τ0) =
1

8

∫ τ0

0

dτ g(τ) eikµ(τ−τ0) [1− P2(µ)] Π

=
3

16

∫ τ0

0

dτ eikµ(τ−τ0) (1− µ2) gΠ , (2.4.91)

where we have used P2(µ) = (1/2)(3µ2 − 1).

Eq. (2.4.91) can be further simplified by eliminating the angle µ in the integrand

via integration by parts. The boundary terms can be dropped since they vanish as

τ → 0 and are unobservable for τ = τ0 (i.e. we have
∫
uv′ = −

∫
u′v). Thus,

∆P(τ = τ0) =
3

16

∫ τ0

0

dτ eikµ(τ−τ0)

[
gΠ− µ2

(ikµ)2

d2

dτ 2
(gΠ)

]
=

3

16

∫ τ0

0

dτ eikµ(τ−τ0)

[
gΠ +

1

k2

d2

dτ 2
(gΠ)

]
. (2.4.92)

Following the same procedure for the temperature transfer function in Eq. (2.4.86),
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one obtains

∆T(τ = τ0) =

∫ τ0

0

dτ eikµ(τ−τ0){
e−κ (φ̇− ikµψ) + g

[
∆T

0 + µvb −
1

16
(3µ2 − 1)Π

]}
=

∫ τ0

0

dτ eikµ(τ−τ0){
e−κφ̇+ g

(
∆T

0 +
Π

16

)
− µ(ikψe−κ + gvb)− 3

16
µ2(gΠ)

}
.(2.4.93)

After integration by parts, Eq. (2.4.93) becomes

∆T(τ = τ0) =

∫ τ0

0

dτ eikµ(τ−τ0) ×
{

e−κφ̇+ g

(
∆T

0 +
Π

16

)
− 1

ik

d

dτ
(ikψe−κ + gvb) +

3

16

1

k2

d2

dτ 2
(gΠ)

}
=

∫ τ0

0

dτ eikµ(τ−τ0) ×
{

e−κφ̇+
g

4

(
δγ +

Π

4

)
+

d

dτ

(
e−κψ

)
+

1

k2

d

dτ
(gθb) +

3

16k2

d2

dτ 2
(gΠ)

}
=

∫ τ0

0

dτ eikµ(τ−τ0) ×
{

e−κφ̇+
g

4

(
δγ +

Π

4

)
+
e−κ

k2

[(
κ̈+ κ̇2

)
θb + κ̇θ̇b

]
+

d

dτ

[
e−κψ +

3

16k2
(ġΠ + gΠ̇)

]}
. (2.4.94)

Next, defining the source functions ST,P(k, τ) via

∆T,P(τ = τ0) =

∫ τ0

0

dτ eikµ(τ−τ0)ST,P(k, τ) , (2.4.95)

one can see that the µ-dependence is confined to the factor eikµ(τ−τ0). Using

Eqs. (2.4.92) and (2.4.94), the source functions are given by

ST(k, τ) = e−κφ̇+
g

4

(
δγ +

Π

4

)
+

e−κ

k2
×
{[
κ̈+ κ̇2

]
θb + κ̇θ̇b

}
+

d

dτ

[
e−κψ +

3

16k2
(ġΠ + gΠ̇)

]
, (2.4.96)

SP(k, τ) =
3

16

[
gΠ +

1

k2

d2

dτ 2
(gΠ)

]
. (2.4.97)

The final step is to expand the plane wave eikµ(τ−τ0) in Eq. (2.4.95) in terms of radial

and angular eigenfunctions (spherical Bessel functions j` and Legendre polynomials
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P`, respectively), i.e.

eikµ(τ−τ0) =
∞∑
`=0

(2`+ 1) i` j`[k(τ0 − τ)]P`(µ) . (2.4.98)

After performing the ensemble average and integrating over the angular variable µ,

Eq. (2.4.95) can be written as

∆T,P
` (k, τ = τ0) =

∫ τ0

0

dτ ST,P(k, τ) j`[k(τ0 − τ)] . (2.4.99)

One can see from Eq. (2.4.99) that the anisotropy has been decomposed into a source

function ST,P, which is independent of the multipole moment `, and a geometrical

term j`, which is independent of the cosmological model. The advantage of this

method is that the latter only needs to be computed once and can be stored for all

subsequent calculations. Meanwhile, the source function is the same for all values

of ` and only requires knowledge of the photon moments up to ` = 4 (for which

one uses the Boltzmann hierarchy of equations given in Sec. 2.2.2). By specifying

the source function as a function of time, one can solve for higher moments using

Eq. (2.4.99), and quickly compute the photon anisotropy spectrum C`.

In Chapter 3, we will modify the source functions in Eqs. (2.4.96) and (2.4.97)

to account for DM–photon scattering.



Chapter 3

Constraints on Dark

Matter–Photon Scattering

Happiness can be found, even in the darkest of times, if one only

remembers to turn on the light.

— Albus Dumbledore

3.1 Introduction

Despite the large number of dedicated experiments, an understanding of the particle

nature of dark matter (DM) and direct evidence for its existence have remained

elusive, questioning our interpretation of this mysterious substance. One of the

most popular theories is that DM consists of weakly-interacting massive particles

(WIMPs; see Sec. 1.3) that are naturally difficult to detect using methods based on

their interactions. As we saw in Sec. 1.4, indirect detection techniques assume that

DM annihilates or decays at late times, while direct detection and collider searches

generally assume a coupling to quarks.

However, such assumptions are not always appropriate; for instance, there are

no significant late-time annihilations in asymmetric DM scenarios that could lead

to a visible signal in Galactic or cosmic microwave background (CMB) data [148].

Additionally, the DM mass may be too small or too large to produce a visible signal

57
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in direct detection experiments due to their limited sensitivity1.

For example, if DM consists of sterile neutrinos (e.g. Refs. [82–85]) with a

significant decay rate, X-ray observations [150–153] would be a more promising

detection method than direct detection. Additionally, if DM is lighter than ∼ 10

GeV [154] with a small annihilation cross section into electron–positron pairs [154,

155], it would be more appropriate to look for evidence in low-energy gamma-ray

data [94], measurements of the electron or muon g–2 [156–159], or the neutrino mass

generation mechanism [160]. However, such searches require one to assume a specific

particle physics model and are therefore not universal. Finally, DM could be much

heavier than a few TeV (e.g. Ref. [161]), posing problems for the usual detection

techniques.

In this chapter, we propose an alternative method to determine how weak DM

interactions with Standard Model particles need to be, independently of the standard

DM assumptions. Our argument holds whether DM decays, annihilates, or is in the

necessary mass range to interact significantly with nuclei. It is only based on the

historical motivation for WIMPs, namely the mandatory absence of Silk damping

(photon diffusion; see Sec. 1.2.2) at large scales [162–165].

To begin with, it is important to note that charge neutrality does not

necessarily rule out DM–photon interactions since they could occur through more

complicated processes involving Standard Model particles2, or magnetic and

electric dipole moments [167–169]. Therefore, in principle, DM could have an

effective coupling to photons with a strength intermediate between those of the

electromagnetic and weak interactions. From a phenomenological point of view,

the prejudice is that the corresponding interaction rates should be relatively

small3. However, since we lack evidence in favour of any particular DM model,

1However, new techniques are now being proposed to probe the lighter mass range, see e.g.

Ref. [149].
2Recent arguments for limited electromagnetic interactions can be found in Ref. [166].
3For example, in Supersymmetry, the neutralino pair annihilation cross section into two photons

〈σv〉γγ is expected to be smaller than 10−38 cm2 [170]. However, in certain conditions, 〈σv〉γγ can

be much larger than 10−34 cm2 [171]. Whether this translates into a large value of the DM–photon

scattering cross section is beyond the scope of this thesis. Here, we will simply assume that there
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deriving constraints from the accumulated cosmological data offers a more robust

method to characterise the dark sector.

In Sec. 1.2.2, we saw that interactions between photons and baryons during

recombination lead to a Silk damping effect [50] that suppresses the CMB angular

power spectra C` at large ` (small scales). In Refs. [162–165], it was shown that

scattering between DM and Standard Model particles prevents DM from clustering

under gravity as effectively and leads to a reduction of small-scale power in analogy

to Silk damping. Such “collisional damping” erases structure with a size smaller

than the collisional damping length

l2cd ∼
∑
i

∫ tdec(DM−i)

0

ρi v
2
i

ρΓi a2
dt , (3.1.1)

where i refers to all species that are coupled to DM, Γi is the total sum of the

interaction rates of i, ρ ≡
∑

i ρi, and tdec(DM−i) refers to the time at which DM

thermally decouples from species i (see Ref. [162] for the derivation). Note that we

neglect the damping contribution from DM self-interactions.

Since the integral in Eq. (3.1.1) is dominated by the contribution at late times,

the collisional damping scale can be approximated by

l2cd ∼
∑
i

(
ρi v

2
i

ρΓi a2
t

)
|tdec(DM−i) ∼

∑
i

(
ρi v

2
i

ρ a2
t2
)
|tdec(DM−i) , (3.1.2)

where we have used Γi(tdec(DM−i)) = H ∼ t−1. The collisional damping effect is

exacerbated when DM couples to photons (since photons were both relativistic and

highly abundant in the early universe). Therefore, one can set strong upper limits on

the DM–photon interaction cross section by examining the resulting CMB spectra.

In fact, a non-zero DM–photon coupling has two specific signatures. Firstly, as

was shown in Ref. [163], large interactions lead to the presence of significant damping

in the C`, which can be constrained using the position and relative amplitude of the

acoustic peaks. Secondly, after DM ceases to interact with photons, the collisional

damping is supplemented by DM free-streaming4; this appears as a translation of the

are realistic DM scenarios in which the scattering cross section is significant.
4Assuming that the DM–photon decoupling happens before the gravitational collapse of such

fluctuations and the DM velocity is not completely negligible at this time.



3.2. Implementation 60

matter power spectrum P (k) and can also be constrained (if the effect is substantial

enough). Therefore, with the latest data from CMB experiments such as the Planck

satellite [10], one can set a limit on DM–photon interactions with unprecedented

precision.

Here we extend the preliminary analysis of Ref. [163] much further and show

that a non-negligible DM–photon coupling also generates distinctive features in the

polarisation power spectra (the E- and B-modes) and the temperature power

spectrum CTT
` at high `. One can use these effects to search for evidence of DM

interactions in CMB data and determine (at least observationally) the strength of

DM–photon interactions that is allowed.

The chapter is organised as follows. In Sec. 3.2, we discuss the implementation of

DM–photon interactions and the qualitative effects on the TT and EE components

of the C`. In Sec. 3.3.1, we constrain these interactions by comparing the spectra

to the latest Planck data, and extract the best-fit cosmological parameters. In

Sec. 3.3.2, we present our predictions for the temperature and polarisation spectra

assuming the maximally allowed value of the elastic scattering cross section that we

obtain. We also examine the impact of DM–photon scattering on the linear P (k) as

motivation for the N -body simulations that we will carry out in Chapter 5. Finally,

we provide our conclusions in Sec. 3.4.

This chapter is based on the work carried out in Ref. [1].

3.2 Implementation

In Sec. 3.2.1, we describe how one can modify the linear perturbation equations to

incorporate DM–photon interactions. In Sec. 3.2.2, we discuss their implementation

in the Boltzmann code class (version 1.7) [48, 146]. Finally, in Sec. 3.2.3, we discuss

their impact on the TT and EE components of the CMB spectrum.
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3.2.1 Modified Boltzmann Equations

In the standard ΛCDM model, the Euler equations for the baryon, photon and DM

fluids in the conformal Newtonian gauge are given by (see Chapter 2):

θ̇b = k2ψ −Hθb + c2
sk

2δb −R−1κ̇(θb − θγ) , (3.2.3)

θ̇γ = k2ψ + k2

(
1

4
δγ − σγ

)
− κ̇(θγ − θb) , (3.2.4)

θ̇DM = k2ψ −HθDM , (3.2.5)

where θb, θγ and θDM are the baryon, photon and DM velocity divergences,

respectively. δγ and σγ are the density fluctuation and anisotropic stress potential

associated with the photon fluid, ψ is the gravitational potential, k is the

comoving wavenumber, H ≡ ȧ/a is the conformal Hubble rate, R ≡ (3/4)(ρb/ργ) is

the ratio of the baryon to photon densities, cs is the baryon sound speed, and

κ̇ ≡ aσTh cne is the Thomson scattering rate (the scale factor a appears since the

derivative is taken with respect to conformal time).

DM–photon scattering can be incorporated in the DM and photon velocity

equations with terms analogous to −κ̇(θγ − θb). The new interaction rate reads

µ̇ ≡ aσDM−γ cnDM, where σDM−γ is the DM–photon elastic scattering cross section,

nDM = ρDM/mDM is the DM number density, ρDM is the DM energy density and

mDM is the DM mass (assuming that DM is non-relativistic)5. Thus, the Euler

equation for photons [Eq. (3.2.4)] receives the additional source term

−µ̇(θγ − θDM).

Assuming that the total 4-momentum of the DM–photon fluid is conserved in

the elastic scattering process, from Eq. (2.1.15), we have

(ργ + Pγ) δθγ = −(ρDM + PDM) δθDM

=⇒ δθDM = −4

3

ργ
ρDM

δθγ . (3.2.6)

Therefore, the source term in the Euler equation for DM has the opposite sign and

is rescaled by a factor S−1 ≡ (4/3)(ργ/ρDM) ∝ a−1.

5Intuitively, one can understand why µ̇ must be proportional to the cross section and the DM

number density; if either the number of DM particles or the cross section is completely negligible,

the photon fluid will not be significantly modified by a DM–photon coupling.
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Thus, the Euler equations become

θ̇b = k2ψ −Hθb + c2
sk

2δb −R−1κ̇(θb − θγ) , (3.2.7)

θ̇γ = k2ψ + k2

(
1

4
δγ − σγ

)
− κ̇(θγ − θb)− µ̇(θγ − θDM) , (3.2.8)

θ̇DM = k2ψ −HθDM − S−1µ̇(θDM − θγ) . (3.2.9)

The DM–photon elastic scattering cross section σDM−γ can be either constant (like

the Thomson scattering between photons and charged particles) or proportional to

the temperature, depending on the DM model that is being considered.

For a constant cross section, since both DM and baryons are non-relativistic

when we begin the integration, the scattering rates µ̇ and κ̇ behave as a−2 at high

redshifts6. Therefore, the ratio of µ̇ and κ̇ is proportional to the dimensionless

quantity

u ≡
[
σDM−γ

σTh

] [ mDM

100 GeV

]−1

, (3.2.10)

which depends on two essential parameters: the DM–photon scattering cross section

σDM−γ and the DM mass mDM. We will use this parameter to quantify the effect of

DM–photon interactions on the evolution of primordial fluctuations. If instead, the

cross section is proportional to the temperature squared (e.g. dipole DM [167–169]

or by analogy to neutrino–electron scattering), we can write u = u0 a
−2, where u0 is

the present-day value.

As the magnitude of the u parameter determines the collisional damping

scale [163], one can see that the efficiency of the damping is simply governed by

the ratio of the interaction cross section to the DM mass.

3.2.2 Incorporation in class

The execution of class begins by using three distinct modules for the background,

thermodynamical and perturbation evolutions. In our study, all necessary

modifications are confined to the thermodynamics and perturbation modules.

6Note that after recombination, κ̇ is strongly suppressed (by a factor ∼ 10−4 [38]) due to the

drastic subsequent drop in the free electron density ne, while µ̇ continues scaling like a−2.
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The standard thermodynamics module solves the recombination equations and

stores an interpolation table for {κ̇, κ̈,
...
κ , exp(−κ)} as a function of the redshift z.

At the same time, we request that the module stores the corresponding values of µ̇

(inferred analytically from u, a, σTh and ρDM), its higher derivatives, and exp(−µ).

It also stores values of the modified visibility function

g(τ) = (κ̇+ µ̇)e−κ−µ , (3.2.11)

along with its first and second time derivatives.

In the perturbation module, we begin by adding the new interaction terms to the

photon and DM Euler equations [see Eqs. (3.2.8) and (3.2.9)] and in the full hierarchy

of Boltzmann equations for photon temperature and polarisation. Apart from the

source term in the photon velocity equation, this amounts to simply replacing all

occurrences of κ̇ with (κ̇ + µ̇). Therefore, the complete Boltzmann hierarchy for

photons (derived in Sec. 2.2) becomes

δ̇γ = −4

3
θγ + 4φ̇ , (3.2.12)

θ̇γ = k2ψ + k2

(
1

4
δγ − σγ

)
− κ̇(θγ − θb)− µ̇(θγ − θDM) , (3.2.13)

Ḟγ 2 =
8

15
θγ −

3

5
kFγ 3 −

9

5
(κ̇+ µ̇)σγ +

1

10
(κ̇+ µ̇) (Gγ 0 +Gγ 2) , (3.2.14)

Ḟγ ` =
k

2`+ 1

[
`Fγ (`−1) − (`+ 1)Fγ (`+1)

]
− (κ̇+ µ̇)Fγ ` , ` ≥ 3 (3.2.15)

Ġγ l =
k

2`+ 1

[
`Gγ (`−1) − (`+ 1)Gγ (`+1)

]
+(κ̇+ µ̇)

[
−Gγ ` +

1

2
(Fγ 2 +Gγ 0 +Gγ 2)

(
δ`0 +

δ`2
5

)]
. (3.2.16)

At early times, the characteristic scale τc ≡ κ̇−1 is extremely small, leading to a

stiff system of equations. Integrating over time remains efficient in the baryon–

photon tight-coupling regime (in which small quantities like Θ̇γb ≡ θ̇γ − θ̇b and σγ

are obtained analytically at order one or two in the expansion parameter), while the

remaining evolution equations become independent of τc (see Sec. 2.3).

To obtain a CMB spectrum compatible with large-scale observations, we can

limit our analysis to the case in which the new interaction rate is smaller than the

Thomson scattering rate, i.e. µ̇ < κ̇. Therefore, there is no need to devise a specific
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DM–photon tight-coupling regime; we need only to correct the baryon–photon tight-

coupling approximation in order to account for the new interactions. This can be

easily achieved by following the step-by-step calculation in Sec. 2.3, including the

additional terms −µ̇(θγ − θDM) and −S−1µ̇(θDM − θγ) in the photon and DM Euler

equations, respectively.

We implemented these modifications to linear order in τc (and even beyond

that order, since we used the approximation scheme called class compromise in

Ref. [146]). The set of tight-coupling equations provided in Sec. 2.3 become:

θ̇b = − 1

1 +R

[
R(Hθb − c2

sk
2δb)− k2

(
δγ
4
− σγ

)
+ Θ̇γb + µ̇(θγ − θDM)

]
+k2ψ , (3.2.17)

θ̇γ = (1 +R)k2ψ + k2

(
1

4
δγ − σγ

)
−R

(
θ̇b +Hθb − c2

sk
2δb

)
−µ̇(θγ − θDM) , (3.2.18)

where to linear order, the baryon–photon slip and the photon shear stress are given

by

Θ̇γb = − Rτc
1 +R

[
− ä
a
θb + k2

(
−H

2
δγ + c̄2

sδb + c2
s δ̇b −

δ̇γ
4
−Hψ

)
+ µ̈(θγ − θDM)

]

+

(
τ̇c
τc
− 2HR

1 +R

)
Θγb +O(τc

2) , (3.2.19)

σγ =
16

45
(κ̇+ µ̇)−1θγ +O(τc

2) . (3.2.20)

We checked the consistency of our approach by varying the time at which the tight-

coupling approximation is switched off in the presence of a non-zero interaction rate

µ̇. As expected, the results are independent of the switching time, unless it gets

too close to recombination (in which case, one would need to introduce a separate

DM–photon tight-coupling regime).

Finally, in order to follow a reduced number of multipoles in the photon

Boltzmann hierarchy, we express the final temperature and polarisation spectra

using a line-of-sight integral (see Sec. 2.4) [46], i.e. we decompose the present-day

temperature and polarisation transfer functions as

∆T,P
` (k, τ = τ0) =

∫ τ0

0

dτ ST,P(k, τ) j`[k(τ0 − τ)] , (3.2.21)
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where τ is conformal time, τ0 is the time today, ST,P(k, τ) is the temperature or

polarisation source function, and the j` are spherical Bessel functions.

The source functions can be obtained by integrating the Boltzmann equation

by parts along a given geodesic. For the scenario at hand, the temperature source

function given in Eq. (2.4.96) becomes7

ST(k, τ) = e−κ−µφ̇+
g

4

(
δγ +

Π

4

)
+
e−κ−µ

k2
×{

[κ̈+ κ̇(κ̇+ µ̇)] θb + κ̇θ̇b + [µ̈+ µ̇(κ̇+ µ̇)] θDM + µ̇θ̇DM

}
+

d

dτ

[
e−κ−µψ +

3

16k2
(ġΠ + gΠ̇)

]
, (3.2.22)

where for our numerical implementation in class, derivatives of perturbations

denoted with a dot are evaluated analytically using the evolution equations, while

the derivative denoted by d/dτ is computed with a finite difference method, after

storing the function between the square brackets.

The expression for the polarisation source function given in Eq. (2.4.97) remains

unchanged:

SP(k, τ) =
3

16

[
gΠ +

1

k2

d2

dτ 2
(gΠ)

]
, (3.2.23)

where the modified visibility function g is given by Eq. (3.2.11). Note that Π is

a linear combination of temperature and polarisation multipoles, corresponding to

(Fγ2 +Gγ0 +Gγ2) in the notation of Ref. [139].

3.2.3 Impact on the CMB spectrum

In Fig. 3.1, we show the effect of introducing DM–photon interactions on the DM

density constant δDM for a small-scale mode with wavenumber k = 40 Mpc−1.

Once the DM perturbation has entered the horizon, rather than growing under

gravitational collapse as in the case of ΛCDM (u = 0), DM experiences collisional

damping. Therefore, at the CMB epoch (a ∼ 10−3) and today (a = 1), δDM is

suppressed and there is a greater level of isotropy on small scales.

7Note that in newer versions of class (from version 2.0), one simply needs to replace κ̇ with

(κ̇+ µ̇) in the expressions for the source functions.
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Figure 3.1: The evolution of the normalised DM density contrast δDM with and without a coupling

to photons, for a small-scale mode with wavenumber k = 40 Mpc−1. The curves correspond to

DM–photon couplings of u = 0 (black), u = 10−6 (purple), and u = 10−4 (green), where u is

defined in Eq. (3.2.10).

Note that for large values of u (u & 10−5), there is a period of undamped

oscillations before damping begins, referred to as the “strong coupling regime” in

Ref. [163]. This occurs when the scattering rate µ̇ is larger than both the expansion

rate of the universeH and the photon oscillation frequency. The photon fluctuations

from the coupled baryon–photon fluid are fully transferred to DM.

The resulting impact on the TT and EE components of the CMB angular power

spectrum is illustrated in Fig. 3.2 for large values of the parameter u. Here we

take the DM–photon scattering cross section to be constant; however, we note that

similar effects are observed for temperature-dependent cross sections. For illustrative

purposes, we consider a flat ΛCDM cosmology, where the energy content of the

universe today is divided between baryons (Ωb = 0.05), DM (ΩDM = 0.25), and

dark energy in the form of a cosmological constant (ΩΛ = 0.7). We select a present-

day value for the Hubble parameter of h0 = 0.7 and the standard value of 3.046 for

the effective number of neutrino species8.

8In addition to the three neutrinos of the Standard Model, the 0.046 accounts for residual

heating provided by electron–positron annihilations after neutrino decoupling [172].
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Figure 3.2: The effect of DM–photon interactions on the TT (top) and EE (bottom) components

of the CMB angular power spectrum, where the interaction strength is characterised by the

parameter u ≡ [σDM−γ/σTh] [mDM/100 GeV]
−1

(u = 0 corresponds to zero DM–photon coupling)

and σDM−γ is constant.

There are two important effects on the relative amplitude and position of the

acoustic peaks with respect to the standard ΛCDM model, both of which can be

used to constrain the DM–photon elastic scattering cross section:

1. The scattering induces collisional damping, thus reducing the magnitude of

the small-scale peaks and effectively cutting off the C` at lower values of `.

For very large cross sections, this effect is enhanced by a delay in the epoch of
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recombination, as the coupling of photons to DM increases the width of the

last-scattering surface.

2. The presence of significant DM–photon interactions decreases the sound speed

of the thermal plasma:

cs =
1√
3

1

(1 +R + S)1/2
, (3.2.24)

rather than [3(1 +R)]−1/2 as in the standard picture [163]. Acoustic

oscillations have a lower frequency, leading to a shift in the position of the

acoustic peaks to larger `.

We note that there is also a slight enhancement of the first acoustic peak with respect

to ΛCDM (∼ 0.1% in CTT
` and ∼ 0.3% in CEE

` for u = 10−4) due to a decrease in

the diffusion length of the photons.

As expected, these effects are enhanced for either a larger cross section or a

smaller DM mass (i.e. a greater number density of DM particles for the same relic

density), corresponding to a larger value of u and a later epoch of DM–photon

decoupling. Therefore, by fitting the CMB spectra to cosmological data, one can

constrain the value of u and thus determine the maximal scattering cross section

that is allowed for a given DM mass.

3.3 Results and Outlook

In Sec. 3.3.1, we present our constraints on the DM–photon elastic scattering cross

section, which is considered to be either constant or proportional to the temperature

squared. In Sec. 3.3.2, we then discuss important features of the CMB and matter

power spectra in the presence of such interactions and outline prospects for future

CMB experiments and large-scale structure (LSS) surveys.

3.3.1 CMB Constraints

To fit our CMB spectra to the data, we vary the parameters of the minimal flat

ΛCDM cosmology, namely: the baryon density Ωbh
2, the DM density ΩDMh

2, the



3.3. Results and Outlook 69

scalar spectral index ns, the primordial spectrum amplitude As, the reduced Hubble

parameter h, and the redshift of reionisation zreio, supplemented by the additional

parameter characterising the DM–photon interaction strength, u.

We assume three active neutrino species; two massless and the other with a

small mass of 0.06 eV, reflecting the lower bound imposed by neutrino oscillation

experiments9 [35]. In addition, we choose the standard value of 3.046 for the effective

number of neutrino speciesNeff [172] (allowingNeff to vary does not have a significant

effect on our conclusions).

To efficiently sample the parameter space, we run the Markov Chain Monte Carlo

(MCMC) code Monte Python [173] combined with the one-year data release from

Planck, provided by the Planck Legacy Archive [174]. In particular, we use the high-`

and low-` temperature data of Planck combined with the low-` WMAP polarisation

data (this corresponds to ‘Planck + WP’ in Ref. [10]). We marginalise over the

nuisance parameters listed in Ref. [10].

The bounds on the various cosmological parameters are displayed in Table 3.1,

and illustrated in Figs. 3.3 and 3.4 for constant and T 2-dependent cross sections,

respectively (we omit the nuisance parameters for clarity).

The posterior probability distribution for the u parameter peaks at u ' 0 showing

that the data does not prefer a significant DM–photon coupling. For a constant

elastic scattering cross section, we derive an upper limit of

σDM−γ ≤ 2× 10−30 (mDM/GeV) cm2 , (3.3.25)

corresponding to u ≤ 3.1×10−4 (at 95% CL). This result constitutes an improvement

by an order of magnitude on the pre-WMAP analysis of Ref. [163], which set a limit

by comparing the CMB anisotropy spectra with ΛCDM predictions.

We note that including data from the 2500-square degree SPT survey [175]

tightens the constraints on the standard cosmological parameters with respect to

9This is an approximation that is used throughout the literature, including in the Planck

analysis [10]. Since the data is mainly sensitive to the sum of the neutrino masses [70] and it

is faster to run a Boltzmann code with only one massive neutrino, we also use this excellent

approximation.
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σDM−γ constant σDM−γ ∝ T 2

Parameter Best-fit Mean ± σ Best-fit Mean ± σ ‘Planck + WP’

100 Ωbh
2 2.199 2.210+0.029

−0.033 2.200 2.194+0.029
−0.029 2.205+0.028

−0.028

ΩDMh
2 0.1195 0.1201+0.0028

−0.0029 0.1199 0.1199+0.0027
−0.0027 0.1199+0.0027

−0.0027

100h 67.57 67.6+1.2
−1.3 67.38 67.3+1.2

−1.2 67.3+1.2
−1.2

10+9As 2.189 2.201+0.054
−0.060 2.197 2.184+0.053

−0.056 2.196+0.051
−0.060

ns 0.9627 0.9625+0.0076
−0.0080 0.9632 0.9577+0.0081

−0.0078 0.9603+0.0073
−0.0073

zreio 11.02 11.2+1.2
−1.2 11.15 11.0+1.1

−1.1 11.1+1.1
−1.1

10+4 u ' 0
< 1.173 (68% CL)

− − −
< 3.132 (95% CL)

10+14 u0 − − ' 0
< 9.043 (68% CL)

−
< 24.15 (95% CL)

Table 3.1: Best-fit values and minimum credible intervals at 68% CL of the cosmological

parameters set by Planck, with u ≡ [σDM−γ/σTh] [mDM/100 GeV]
−1

as a free parameter. For

comparison, ‘Planck + WP’ are the 68% limits taken from Ref. [10].

‘Planck + WP’ alone, giving best-fit values that are consistent at the 1σ level. We

obtain a slightly weaker limit on u, in addition to a larger value of h = 0.679+0.010
−0.011

and smaller value of zreio = 10.7+1.0
−1.2 (at 68% CL)10.

For a DM candidate that is lighter than a few MeV (see e.g. Refs. [154, 155]),

Eq. (3.3.25) suggests that the particles must have a cross section in the range of

weak interactions: σDM−γ . 10−33 cm2. This result is relevant for scenarios in which

DM cannot annihilate directly into the visible sector (i.e. where indirect detection

techniques are inappropriate). Meanwhile, for a heavy DM particle (mDM ∼ TeV),

we obtain a weaker bound on the scattering cross section: σDM−γ . 10−27 cm2, such

that large DM–photon interactions (with respect to weak interactions) cannot yet

be ruled out by CMB data.

For scenarios in which DM cannot couple directly to photons, Eq. (3.3.25)

translates into an upper bound on the DM coupling to charged particles, including

those of the Standard Model. However, the requirement of a constant cross section

10Note that these results must be considered with care, given the small tension between the

amplitudes of the CMB damping tail in the SPT and Planck data (as reported in Ref. [10], although

the Planck collaboration now has a better understanding of the source of this tension).
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Figure 3.3: Triangle plot showing the one- and two-dimensional posterior distributions of

the cosmological parameters set by Planck, with u ≡ [σDM−γ/σTh] [mDM/100 GeV]
−1

as a free

parameter and constant σDM−γ . The orange and yellow contours correspond to 68% and 95% CL,

respectively.

implies that there is some cancellation that enables one to remove the dependence

on the photon energy, as in the case of Thomson scattering. Scenarios in which the

DM mass is degenerate with the mediator mass may therefore be more

appropriate, provided that the mass degeneracy passes the cuts at the LHC (e.g.

Ref. [176]) or the DM mass is large enough to satisfy the LHC constraints on new

charged particles.
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Figure 3.4: Triangle plot showing the one- and two-dimensional posterior distributions of

the cosmological parameters set by Planck, with u ≡ [σDM−γ/σTh] [mDM/100 GeV]
−1

as a free

parameter and σDM−γ ∝ T 2. The orange and yellow contours correspond to 68% and 95% CL,

respectively.

A constant cross section is also expected in the presence of a Z ′–γ or γ′–γ mixing

(for a review on the limits of such a mixing, see for example, Ref. [177]). In this

case, the cross section is essentially the Thomson cross section (where we replace

the fine structure constant α by its equivalent for the DM-γ′ coupling αDM−γ′ , and

the electron mass by the DM mass) multiplied by the Z ′/γ′ − γ coupling χ to the

power four (i.e. σDM−γ = χ4 σDM−γ′). For MeV DM, Eq. (3.3.25) translates into the
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constraint χ . 10−2 in the limit of a massless Z ′/γ′ and αDM−γ′ ' α. This is to be

compared with the bounds on millicharged particles, which are about two to three

orders of magnitude stronger in the MeV range [178].

If instead, the cross section is proportional to the temperature squared, we obtain

the stringent upper bound of

σDM−γ,0 ≤ 2× 10−39 (mDM/GeV) cm2 , (3.3.26)

for the present-day value of the scattering cross section (at 95% CL), corresponding

to u0 ≤ 2.4× 10−13, which is consistent with Eq. (3.3.25). For epochs much earlier

than the CMB time, this result is clearly not as powerful as the constant cross

section case (since σDM−γ = σDM−γ,0 a
−2), but does apply to all scenarios where the

dependence on the photon energy cannot be alleviated. In the case of dipole DM

models [167–169], this enables one to constrain the DM dipole moment.

3.3.2 Prospects for Future Experiments

As shown in Table 3.1, our best fit to the Planck data for u . 10−4 leads to values

of the cosmological parameters that are consistent with those obtained by Planck at

the 1σ level. However, there are a number of differences with respect to ΛCDM at

high ` due to the impact of DM–photon interactions, which suppress power on very

small scales.

The effect is particularly noticeable if one considers the TT angular power

spectrum for ` & 3000, which has not yet been probed by Planck (see Fig. 3.5).

Indeed, for ` ' 6000, small-scale fluctuations are suppressed by a factor of ∼ 4

with respect to ΛCDM for our maximally allowed cross section. This result could

be promising for CMB experiments such as SPT [175] and ACT [44]; however,

such a large value of ` corresponds to the region where the foregrounds (emission

from extragalactic sources and the thermal Sunyaev–Zel’dovich effect11) are

dominant [179]. Therefore, the detectability of DM–photon interactions in the

11The thermal Sunyaev–Zel’dovich effect is a small spectral distortion of the CMB spectrum

caused by the scattering of CMB photons from the hot thermal distribution of electrons provided

by the intracluster medium of galaxy clusters.
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temperature anisotropy spectrum will depend on the accuracy of foreground

modelling and removal.
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Figure 3.5: A comparison between the TT angular power spectra for the maximally allowed

(constant) DM–photon cross section (orange, dashed), and the 9-year WMAP (green, dotted) [9]

and one-year Planck (black, solid) [10] best-fit data. Also plotted are the full 3-year data from

the SPT (red error bars) and ACT (blue error bars) experiments [180]. In the top panel, we see

a suppression of power with respect to ΛCDM for ` & 3000, and in the bottom panel, we give a

prediction for high `.

The damping with respect to ΛCDM is also evident in the B-mode spectrum (a

consequence of E-mode lensing by LSS; see Sec. 1.2.2), as shown in Fig. 3.6. The
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reduction in power is due to the combined damping of the E-modes (see Fig. 3.2)

and the matter power spectrum (see Fig. 3.7). While the overall effect is small for

u . 10−4, for ` & 500, one can use the B-modes alone combined with the first-season

SPTpol data [57] to effectively rule out u & 5 × 10−3. In fact, future polarisation

data from e.g. SPT [175], POLARBEAR [181] and SPIDER [182] could be sensitive

enough to distinguish u ' 10−5 from ΛCDM.
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Figure 3.6: The effect of DM–photon interactions on the B-modes of the angular power spectrum,

where the strength of the interaction is characterised by u ≡ [σDM−γ/σTh] [mDM/100 GeV]
−1

(with

constant σDM−γ) and we use the ‘Planck + WP’ best-fit parameters from Ref. [10]. We have

assumed that the tensor-to-scalar ratio r = 0. The data points are recent measurements from the

SPTpol experiment [57]. For the maximally allowed DM–photon cross section (u ' 10−4), we see

a deviation from the ΛCDM model for ` & 500 and a significant suppression of power for larger `.

Finally, a careful study of the matter power spectrum P (k) (see Sec. 1.2.3) may

provide us with an even stronger limit on DM–photon interactions (see Fig. 3.7).

The pattern of oscillations together with the suppression of power at small scales,

as noticed already in Ref. [163], could indeed constitute an interesting signature.

The oscillations arise because the DM fluid acquires a non-zero pressure from its

interactions with the thermal bath. Therefore, the oscillations are comparable to

the usual baryon acoustic oscillations (BAO; see Sec. 1.2.3) but at larger k. The

observability of such an effect depends on the non–linear evolution of the matter

power spectrum (for which k & 0.2 h Mpc−1).
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Figure 3.7: The influence of DM–photon interactions on the linear matter power spectrum,

where the strength of the interaction is characterised by u ≡ [σDM−γ/σTh] [mDM/100 GeV]
−1

(with constant σDM−γ) and we use the ‘Planck + WP’ best-fit parameters from Ref. [10]. The

new coupling produces (power-law) damped oscillations at large scales, reducing the number of

small-scale structures, thus enabling the interaction strength to be constrained. For allowed DM–

photon cross sections (u . 10−4), significant damping effects are restricted to the non-linear regime

(k & 0.2 h Mpc−1).

Typically, one would expect the non-linear matter power spectrum to be

somewhat intermediate between cold DM (CDM) and warm DM (WDM) scenarios

at large redshifts, and closer to WDM at small redshifts12, so that the Lyman-α

constraint on WDM models could apply. Using the latest bound on the mass of

WDM candidates [184] together with the proposed transfer function in Ref. [163],

we expect LSS data to set a more stringent limit than our CMB analysis

(potentially by several orders of magnitude) but this would require a thorough

investigation.

In Chapter 5, we run high-resolution N -body simulations assuming such

oscillating P (k), which enable us to study the impact of DM–photon interactions

12We note that acoustic oscillations are also expected in the P (k) for certain WDM models at

small scales (see e.g. Ref. [183]). However, at these scales, the P (k) is already strongly suppressed

by the free-streaming of the WDM particles. Therefore, the regeneration of power from these

oscillations is expected to be much weaker than in our case.



3.4. Conclusion 77

in the non-linear regime and thereby determine the predicted number of

substructures. These results will be particularly useful in light of forthcoming data

from LSS surveys such as Euclid [185] and the Dark Energy Spectroscopic

Instrument (DESI) [186].

Lastly, we note that we have assumed the interacting DM species accounts for

the entire DM component of the universe; if more than one species were responsible

for the observed relic density (e.g. Ref. [187]), larger DM–photon scattering cross

sections would be allowed by both CMB and LSS data (see for example, Fig. 3.8).

3.4 Conclusion

In this chapter, we have studied the effects of introducing an effective coupling

between DM and photons on the evolution of primordial matter fluctuations and in

particular, the CMB temperature and polarisation power spectra. By comparing the

TT and EE components of the C` in the presence of a DM–photon coupling with the

latest data from Planck, we have set a stringent constraint on the elastic scattering

cross section of σDM−γ ≤ 2 × 10−30 (mDM/GeV) cm2 (at 95% CL), assuming it

is constant at late times. This bound is an order of magnitude stronger than the

previous work of Ref. [163], where a limit was placed by comparing the temperature

anisotropy spectrum with ΛCDM predictions (before the experimental results from

WMAP were published).

For a heavy DM particle (mDM ∼ TeV), the maximal cross section is too large to

exclude the possibility that DM has significant interactions with photons, while for

light DM particles (mDM ∼MeV), the cross section is of the order typically expected

for weak interactions. If instead, the cross section is proportional to the temperature

squared, we obtain a significantly tighter present-day bound of σDM−γ,0 ≤ 2 ×

10−39 (mDM/GeV) cm2 (at 95% CL), giving a weaker constraint in the early universe

(since σDM−γ = σDM−γ,0 a
−2, where a is the cosmological scale factor).

For such a limiting cross section, both the B-modes and the small-scale TT

angular power spectrum are suppressed with respect to ΛCDM predictions for ` &

500 and ` & 3000, respectively. Therefore, stronger results could be achieved with
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Figure 3.8: Top: the CMB angular power spectrum in the case that only a given fraction of DM

interacts with photons, where for the interacting DM component, u = 10−2. Bottom: the linear

matter power spectrum in the case that only a given fraction of DM interacts with photons, where

for the interacting DM component, u = 10−4. In each case, we assume σDM−γ is constant and use

the ‘Planck + WP’ best-fit parameters from Ref. [10].

forthcoming B-mode data and measurements of the temperature spectrum at very

high `, provided an excellent knowledge of the foregrounds. However, as we will

show in Chapter 5, these limits are weaker than those that one can derive from the

matter power spectrum and the results from N -body simulations of such scenarios.

Nevertheless, CMB constraints will be important to compare to, since they do not
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depend on the non-linear evolution of the matter fluctuations.

Importantly, in this chapter, we have shown that one can effectively use

cosmological data to restrict the allowed region of parameter space for DM

interactions, independently of any theoretical prejudice. Indeed, any CMB

experiment with the ability to measure the C` spectra at high ` could contribute to

our fundamental understanding of DM. In Chapter 4, we will provide a comparable

analysis for DM–neutrino interactions.



Chapter 4

Constraints on Dark

Matter–Neutrino Scattering

I have done something very bad today by proposing a particle that

cannot be detected; it is something no theorist should ever do.

— Wolfgang Pauli

4.1 Introduction

It is generally assumed that dark matter (DM) consists of collisionless, cold

particles (CDM). However, recent work has shown that small couplings with

Standard Model particles (in particular, neutrinos [162, 164, 165, 188, 189],

photons [163, 167, 190] and baryons [191–193]) cannot yet be ruled out using

cosmological data alone. Additionally, such interactions are expected in the

weakly-interacting massive particle (WIMP) paradigm (see Sec. 1.3) and in several

extensions of the Standard Model (e.g. Refs. [194–196]). It is also possible that

DM interacts with other putative particles in the dark sector [197–200] but we will

not consider this case here.

As we have seen in Chapter 3, interactions of DM beyond gravity lead to a

suppression of the primordial density fluctuations, erasing structure with a size

smaller than the collisional damping scale [162, 165]. This produces noticeable

signatures in the cosmic microwave background (CMB) angular power spectrum C`

80
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and the matter power spectrum P (k), and ultimately impacts on the large-scale

structure (LSS) of the universe that we observe today. The effect is enhanced if

DM scatters off relativistic particles e.g. neutrinos and photons in the

radiation-dominated era, allowing one to set competitive limits on these

interactions in the early universe. Unlike direct [104, 105] and indirect [121–131]

detection experiments, the results obtained from such analyses are importantly

model-independent. Furthermore, any theory that predicts interactions between

DM and the visible sector must satisfy these constraints. In this chapter, we focus

on DM–neutrino interactions, hereafter νCDM (a similar study for DM–photon

interactions can be found in Chapter 3).

While CMB experiments such as Planck allow one to constrain the cosmological

parameters with unprecedented precision [42], extracting the P (k) from Planck or

the next-generation of CMB probes (such as COrE+ [201] or PIXIE [202]) will be

limited by the large uncertainties involved in foreground modelling, which hinder

any analysis of the C` at large `1. Therefore, to unravel the nature of DM, a direct

probe of the P (k) is needed. In this chapter, we show that the next generation of

LSS surveys could provide us with key information on the particle properties of DM,

due to their extremely high precision.

Galaxy clustering surveys [203–209] have already observed the imprint of

Baryon Acoustic Oscillations (BAO), a standard ruler to measure the Hubble

expansion rate H(z) and the angular diameter distance DA(z). Recently, the

Baryon Oscillation Spectroscopic Survey (BOSS) collaboration [210] reported a

separate extraction of H(z) and DA(z) to a precision of 1% [203]. Here we show

that by exploiting all of the information contained in the shape of the full P (k)

(rather than solely the BAO geometrical signature [211–213]), one can test the

validity of the ΛCDM model at scales below ∼ Mpc. We exploit both the current

publicly-available galaxy power spectrum data (in particular, from the WiggleZ

survey [209]) and the expected full-shape power spectrum measurements from the

1An additional difficulty is that the C` are the result of the convolution of the P (k) with a

window (Bessel) function that accounts for the angular scale (see Sec. 2.4), thus preventing one

from detecting small features in the P (k).
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forthcoming Dark Energy Spectroscopic Instrument (DESI) [186].

The chapter is organised as follows. In Sec. 4.2, we present the modified

perturbation equations that we use to incorporate DM–neutrino interactions and

describe their implementation in the Boltzmann code class [48, 146]. In Sec. 4.3,

we present bounds on the scattering cross section from the CMB angular power

spectrum [Sec. 4.3.1] and the LSS matter power spectrum [Sec. 4.3.2]. The

significance of our results for specific DM models is discussed in Sec. 4.4. In

Sec. 4.5, we perform a forecast for the sensitivity of planned experiments such as

COrE+ and DESI to the νCDM framework. Finally, we provide conclusions in

Sec. 4.6.

This chapter is based on the work carried out in Refs. [2, 3].

4.2 Implementation

In analogy to the Thomson scattering terms in the perturbation equations for

baryons and photons (see Chapter 2), in the presence of DM–neutrino interactions,

the perturbation equations in the conformal Newtonian gauge read2 [163, 188]

θ̇DM = k2ψ − HθDM − S−1µ̇(θDM − θν) , (4.2.1)

θ̇ν = k2ψ + k2

(
1

4
δν − σν

)
− µ̇(θν − θDM) , (4.2.2)

Ḟν 2 = 2σ̇ν =
8

15
θν −

3

5
kFν 3 −

9

5
µ̇σν , (4.2.3)

Ḟν` =
k

2`+ 1

[
`Fν(`−1) − (`+ 1)Fν(`+1)

]
− µ̇Fν` , ` ≥ 3 (4.2.4)

where θν and θDM are the neutrino and DM velocity divergences, k is the comoving

wavenumber, ψ is the gravitational potential, δν and σν are the neutrino density

contrast and anisotropic stress potential, Fν` refer to higher (` > 2) neutrino

moments, and H ≡ ȧ/a is the conformal Hubble parameter3.

2All necessary modifications are confined to the thermodynamics and perturbation modules of

class (version 1.7).
3Note that the modified neutrino Boltzmann hierarchy takes exactly the same form as

Eqs. (2.2.67), (2.2.68) and (2.2.69) for the photon hierarchy, without the polarisation components.
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The DM–neutrino interaction rate is given by µ̇ ≡ aσDM−ν cnDM, where σDM−ν is

the elastic scattering cross section, nDM = ρDM/mDM is the DM number density, ρDM

is the DM energy density and mDM is the DM mass. The factor S ≡ (3/4)(ρDM/ρν)

ensures energy conservation and accounts for the momentum transfer in the elastic

scattering process [cf. Eq. (2.1.34)].

Note that unlike in the case of DM–photon interactions (see Sec. 3.2.2), we do

not need to modify the baryon–photon tight-coupling equations or the line-of-sight

integration terms for the photon anisotropies.

To quantify the effect of DM–neutrino interactions on the evolution of primordial

density fluctuations, we introduce the dimensionless quantity

u ≡
[
σDM−ν

σTh

] [ mDM

100 GeV

]−1

, (4.2.5)

where σTh is the Thomson cross section. Since the magnitude of the u parameter

determines the collisional damping scale [163], the efficiency of small-scale

suppression is essentially governed by the ratio of the interaction cross section to

the DM mass.

In the majority of particle physics models, the scattering cross section between

DM and neutrinos σDM−ν will have one of two distinct behaviours: either constant

(i.e. temperature-independent) or proportional to the temperature squared (see

Sec. 4.4 for specific examples). For the case in which σDM−ν ∝ T 2, we can write

u(a) = u0 a
−2, where u0 is the present-day value and a is the cosmological scale

factor, normalised to unity today.

4.3 Consequences for Cosmological Observables

In this section, we derive constraints on the DM–neutrino elastic scattering cross

section from the CMB angular power spectrum [Sec. 4.3.1] and LSS matter power

spectrum [Sec. 4.3.2], using the modified version of class described in Sec. 4.2.
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4.3.1 Cosmic Microwave Background

In Fig. 4.1, we show the effect of introducing DM–neutrino interactions on the

DM density constant δDM for a small-scale mode with wavenumber k = 40 Mpc−1.

Once the DM perturbation has entered the horizon, rather than growing under

gravitational collapse as in the case of collisionless CDM (u = 0), DM experiences

collisional damping. Therefore, at the CMB epoch (a ∼ 10−3) and today (a = 1),

δDM is suppressed and there is a greater level of isotropy on small scales.
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Figure 4.1: The evolution of the normalised DM density contrast δDM with and without a coupling

to neutrinos, for a small-scale mode with wavenumber k = 40 Mpc−1. The curves correspond to

DM–neutrino couplings of u = 0 (black), u = 10−6 (purple), and u = 10−4 (green), where u is

defined in Eq. (4.2.5) and σDM−ν is constant.

The resulting impact of DM–neutrino interactions on the TT , EE and BB

components of the CMB angular power spectrum is illustrated in Fig. 4.2 for

specific values of the parameter u. We consider a flat ΛCDM cosmology (with the

only addition being the DM–neutrino coupling), where the parameters are taken

from the one-year data release of Planck [10]. For simplicity, we show the impact

of a constant cross section in Fig. 4.2; however, we note that similar effects are

obtained for temperature-dependent scenarios.

In the TT (top panel) and EE (middle panel) components of the C`, we see an

increase in the magnitude of the acoustic peaks and a slight shift to larger ` with

respect to collisionless CDM (u = 0). These effects can be understood as follows.
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Figure 4.2: The effect of DM–neutrino interactions on the TT (top), EE (middle)

and BB (bottom) components of the CMB angular power spectrum, where u ≡

[σDM−ν/σTh] [mDM/100 GeV]
−1

. We take σDM−ν to be constant and use the ‘Planck + WP’

best-fit parameters from Ref. [10]. We have assumed that the tensor-to-scalar ratio r = 0. The

data points in the BB spectrum are recent measurements from the SPTpol experiment [57].
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The shape of the CMB spectrum is affected by the gravitational force that acts

on the coupled baryon–photon fluid before recombination. In principle, this force

receives contributions from the distribution of free-streaming neutrinos and from

that of slowly-clustering DM. In fact, when decomposing the solution to the system

of cosmological perturbations into “slow modes” and “fast modes” [214, 215], one

sees that the baryon–photon and neutrino perturbations are described by fast modes,

while the DM perturbations are described by slow modes. This implies that the

baryon–photon fluid only has significant gravitational interactions with the free-

streaming neutrinos.

These interactions are especially important during the radiation-dominated era

and soon after Hubble crossing, when the baryon–photon perturbation receives a

gravitational boost. This boost is attenuated by the fact that neutrinos

free-stream, develop anisotropic stress and cluster less efficiently then e.g. a

relativistic perfect fluid. Modes crossing the Hubble radius during matter

domination do not experience this effect because the gravitational potential is then

constant, while DM perturbations grow in proportion to the scale factor.

However, in the presence of an efficient DM–neutrino interaction term, DM

experiences damped oscillations like the neutrinos, instead of slow gravitational

clustering [188]. Thus, DM perturbations also contribute to the fast modes. At the

same time, neutrinos are bound to DM particles and do not free-stream; their

anisotropic stress is reduced, making them behave more like a relativistic perfect

fluid [189]. Both of these effects contribute to the patterns seen in Fig. 4.2:

1. When perturbations cross the Hubble radius during radiation domination, the

baryon–photon fluid feels the gravitational force from neutrinos with reduced

anisotropic stress and stronger clustering; this increases the gravitational boost

effect. This mechanism can potentially enhance all the peaks but the first one,

although the scale at which this effect is important depends on the time at

which neutrinos decouple from DM.

2. As long as DM and neutrinos are tightly coupled, the sound speed in this

effective fluid is given by c2
DM−ν = [3(1 + 3ρ̄DM/4ρ̄ν)]

−1, instead of c2
b−γ =

[3(1 + 3ρ̄b/4ρ̄γ)]
−1 in the baryon–photon fluid. The ratio ρ̄DM/ρ̄ν is always
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larger than the ratio ρ̄b/ρ̄γ so the DM–neutrino fluid has a smaller sound

speed. Through gravitational interactions and a “DM–neutrino drag” effect,

the frequency of the baryon–photon sound waves is then slightly reduced and

the acoustic peaks in the temperature and polarisation spectra appear at larger

`.

3. When perturbations cross the Hubble radius during matter domination, if

DM is still efficiently coupled to neutrinos, it contributes to the fast mode

solution. Thus, DM is gravitationally coupled to the baryon–photon fluid,

leading to a gravitational boosting effect (unlike in the collisionless CDM model

for which metric fluctuations are frozen during matter domination). This effect

contributes to the enhancement of the first peak.

4. In the temperature spectrum, there is a well-known asymmetry between the

amplitude of the first odd and even peaks, due to the fact that oscillations

in the effective temperature (δT/T + ψ) are centred around the mean value

〈δT/T+ψ〉 ∼ −(3ρ̄b/4ρ̄γ)ψ. If DM is still efficiently coupled to neutrinos at the

time of photon decoupling, the metric fluctuations are strongly suppressed, and

the oscillations are centred on zero. This has the opposite effect to increasing

the baryon density; it slightly enhances even peaks and suppresses odd peaks.

5. Finally, if DM is still efficiently coupled to neutrinos at the time of photon

decoupling, the first peak is further enhanced by a stronger early integrated

Sachs-Wolfe effect (see Sec. 1.2.2). This takes place after photon decoupling

as a consequence of the fact that metric fluctuations vary with time as long as

DM remains efficiently coupled to neutrinos.

Note that among all these effects, the first two can occur even for a small DM–

neutrino cross section, since they only assume that neutrinos are coupled to DM

until some time near the end of radiation domination. The last three effects are

only present for very large cross sections, such that DM is still coupled to neutrinos

at the beginning of matter domination. All five effects can be observed in Fig. 4.2 for

u = 10−3 or larger [corresponding to σDM−ν & 10−29 (mDM/GeV) cm2]. However,

we will see in Sec. 4.3.2 that these values are not compatible with data from the
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Lyman-α forest [216, 217]. For realistic cross sections, the only effects on the CTT
`

and CEE
` spectra are a small enhancement and shifting of the high-` peaks.

To efficiently sample the parameter space and account for any degeneracies, we

run the Markov Chain Monte Carlo (MCMC) code Monte Python [173]

combined with the one-year data release from Planck, provided by the Planck

Legacy Archive [174]. In particular, we use the high-` and low-` temperature data

of Planck combined with the low-` WMAP polarisation data (corresponding to

‘Planck + WP’ in Ref. [10]).

We vary the parameters of the minimal flat ΛCDM cosmology, namely: the

baryon density Ωbh
2, the DM density ΩDMh

2, the reduced Hubble parameter h, the

primordial spectrum amplitude As, the scalar spectral index ns, and the redshift of

reionisation zreio, supplemented by the additional parameter u. In a second run, we

also allow the effective number of neutrino species Neff to vary from the standard

value of 3.046 [172]. For simplicity, we use the approximation of massless neutrinos4.

Finally, we marginalise over the nuisance parameters listed in Ref. [10].

The bounds on the various cosmological parameters are given in Table 4.1 and

illustrated in Figs. 4.3 and 4.4 for constant and T 2-dependent cross sections,

respectively (where we omit the nuisance parameters for clarity).

Fixing Neff = 3.046, we find that the data prefers a DM–neutrino elastic

scattering cross section of

σDM−ν ≤ 3× 10−28 (mDM/GeV) cm2 , (4.3.6)

if it is constant, and

σDM−ν,0 ≤ 4× 10−40 (mDM/GeV) cm2 , (4.3.7)

for the present-day value, if it is proportional to the temperature squared (at 68%

CL).

4This is in contrast to our MCMC in Chapter 3 and the Planck analysis, which assume two

massless and one massive neutrino with mν = 0.06 eV [10]. Such a small neutrino mass only

affects the CMB through a slight shift in the angular diameter distance, which can be exactly

compensated by a decrease in 100h of ∼ 0.6 [10].
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Parameter No interaction σDM−ν constant σDM−ν ∝ T 2

100 Ωbh
2 2.205+0.028

−0.028 2.238+0.041
−0.041 2.225+0.029

−0.033 2.276+0.043
−0.048 2.197+0.028

−0.028 2.262+0.042
−0.046

100 ΩDMh
2 11.99+0.27

−0.27 12.56+0.55
−0.55 12.11+0.27

−0.30 12.99+0.59
−0.61 11.97+0.27

−0.27 13.26+0.65
−0.72

100h 67.3+1.2
−1.2 70.7+3.2

−3.2 69.5+1.2
−1.2 75.0+3.4

−3.7 67.8+1.2
−1.2 75.3+3.6

−4.0

10+9As 2.196+0.051
−0.060 2.251+0.069

−0.085 2.020+0.063
−0.065 2.086+0.068

−0.089 2.167+0.052
−0.059 2.257+0.072

−0.084

ns 0.9603+0.0073
−0.0073 0.977+0.016

−0.016 0.9330+0.0104
−0.0095 0.956+0.017

−0.016 0.9527+0.0086
−0.0085 0.981+0.017

−0.017

zreio 11.1+1.1
−1.1 11.6+1.3

−1.3 10.8+1.1
−1.1 11.6+1.2

−1.3 10.8+1.1
−1.1 11.9+1.3

−1.4

Neff (3.046) 3.51+0.39
−0.39 (3.046) 3.75+0.40

−0.43 (3.046) 4.07+0.46
−0.52

100u − − < 3.99 < 3.27 − −

10+13 u0 − − − − < 0.54 < 2.56

Table 4.1: Mean values and minimum credible intervals at 68% CL of the cosmological parameters

set by the ‘Planck + WP’ dataset for (i) no DM–neutrino interaction, (ii) a constant cross section,

and (iii) a temperature-dependent cross section, where u ≡ [σDM−ν/σTh] [mDM/100 GeV]
−1

. In

each of these models, we consider either Neff = 3.046 (first column) or Neff free to vary (second

column). The collisionless case is shown for comparison, using data from Ref. [10] and the Planck

Explanatory Supplement (https://wiki.cosmos.esa.int/planckpla/). For a fair comparison

of h values between the interacting and non-interacting scenarios, one should subtract 0.6 from

the mean 100h values of the last four columns (as we have used the approximation of massless

neutrinos, see Footnote 4).

The bound on the constant cross section is rather weak due to significant

degeneracies with the other cosmological parameters (in particular: h, As and ns).

By performing additional runs, we found that including constraints on σ8 (the

present linear-theory mass dispersion on a scale of 8h−1 Mpc [218]) from e.g.

Planck SZ clusters [219] and CFHTLens [220] does not help to break the

degeneracies. The reason is that for the allowed models, deviations from ΛCDM

occur at scales smaller than those probed by these experiments.

For ΛCDM, the Planck collaboration found that allowing Neff to vary as a free

parameter does not significantly improve the goodness-of-fit for ‘Planck + WP’ data.

However, it has the remarkable property of enlarging the bounds on h, which relaxes

the tension between Planck and direct measurements of the local Hubble expansion

(without conflicting with BAO data) [10].

This is a result of a well-known parameter degeneracy, involving at least Neff , h

and Ωmh
2. This degeneracy comes from the fact that by simultaneously enhancing
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Figure 4.3: Triangle plot showing the one- and two-dimensional posterior distributions of the

cosmological parameters set by Planck for a constant DM–neutrino cross section, with u and Neff

as free parameters. The orange and yellow contours correspond to 68% and 95% CL, respectively.

the radiation, matter and cosmological constant densities in the universe, one does

not change the characteristic redshifts and distances affecting the CMB spectrum

up to ` ∼ 800. Nevertheless, this direction of degeneracy can be constrained because

additional degrees of freedom in Neff lead to a stronger Silk damping effect, which

is clearly visible for ` & 800. Thus, the varying Neff model is not preferred by

Planck alone, but has the potential to reconcile different cosmological probes that

are otherwise in moderate (∼ 2.5σ) tension.
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Figure 4.4: Triangle plot showing the one- and two-dimensional posterior distributions of the

cosmological parameters set by Planck for a temperature-dependent DM–neutrino cross section,

with u0 and Neff as free parameters. The orange and yellow contours correspond to 68% and 95%

CL, respectively.

However, in the presence of DM–neutrino interactions, the model with varying

Neff turns out to be even more interesting. As in the standard case, it does not

significantly improve the goodness-of-fit to ‘Planck + WP’ data (the effective χ2

decreases by ∼ two for a constant cross section and ∼ 0.5 for a T 2-dependent cross

section). However, it opens up an even wider degeneracy in parameter space since

the enhancement of the acoustic peaks (shown in Fig. 4.2) can, to some extent,

counteract the effect of a larger value of Neff or h.
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Therefore, as can be seen in Table 4.1, with the addition of DM–neutrino

interactions, the ‘Planck + WP’ data can accommodate rather large values of Neff

(compatible with one additional thermalised species) and h (in excellent agreement

with direct measurements at the 1σ level [221, 222]).

Allowing Neff to vary, we obtain slightly different bounds on the scattering cross

section:

σDM−ν ≤ 2× 10−28 (mDM/GeV) cm2 , (4.3.8)

if it is constant, and

σDM−ν,0 ≤ 2× 10−39 (mDM/GeV) cm2 , (4.3.9)

if it is proportional to the temperature squared (at 68% CL).

Finally, we can also set constraints using the BB spectrum (bottom panel of

Fig. 4.2). The B-modes are significantly suppressed due to the effects of collisional

damping [162, 165]. Using the first-season data from the SPTpol experiment [57]

(shown by the data points), we can already set conservative limits on the cross

section of

σDM−ν . 10−27 (mDM/GeV) cm2 , (4.3.10)

if it is constant, and

σDM−ν,0 . 10−35 (mDM/GeV) cm2 , (4.3.11)

if it is proportional to the temperature squared.

Future polarisation data from e.g. ACTpol [223], POLARBEAR [181] and

SPIDER [182] will improve these results and could provide us with a powerful tool

to study DM interactions in the future.

4.3.2 Large-Scale Structure

The effects of introducing DM–neutrino interactions on the linear matter power

spectrum P (k) are shown in Fig. 4.5 (where for simplicity, we assume that the cross

section is constant). As in the case of DM–photon interactions (cf. Fig. 3.7), we

obtain a series of damped oscillations, which suppress power on small scales [163].
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Figure 4.5: The impact of DM–neutrino interactions on the linear matter power spectrum, where

u ≡ [σDM−ν/σTh] [mDM/100 GeV]
−1

(such that u = 0 corresponds to no coupling). We take

σDM−ν to be constant and use the ‘Planck + WP’ best-fit parameters from Ref. [10]. The grey,

solid curve represents the most recent constraint on warm DM from the Lyman-α forest [184].

The new coupling produces (power-law) damped oscillations, reducing the number of small-scale

structures with respect to ΛCDM [163].

For the cross sections of interest, significant damping effects are restricted to the

non-linear regime (for which k & 0.2 h Mpc−1; see Sec. 1.2.3).

The oscillations arise because the DM fluid acquires a non-zero pressure from

its interactions with the thermal bath, in a similar manner to the baryon–photon

fluid before recombination. Although these oscillations cannot be observed using

current data, they provide a characteristic signature for future experiments and

high-resolution N -body simulations (see Chapter 5).

However, damped oscillations in the P (k) are also expected for certain types of

self-interacting DM [224], late-forming DM [225], atomic DM [226], and DM with a

coupling to dark radiation [227, 228]. Taking all of these possibilities into account,

it would be difficult to determine the specific nature of the DM coupling from this

feature alone. Furthermore, since the oscillations are not as prominent as in the case

of DM–photon interactions (cf. Fig. 3.7) or atomic DM in the sDAO (strong dark

acoustic oscillation) scenario [229], they may not be resolved. In this case, there

could be a degeneracy with both warm DM (WDM) [84] and some axion DM [230]
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models, which predict a sharp cut-off in the P (k) at small scales.

In general, the reduction of small-scale power for a DM candidate is described

by the transfer function T (k), defined by

P (k) = T 2(k) PCDM(k) , (4.3.12)

where PCDM(k) is the equivalent matter power spectrum for collisionless CDM.

For a non-interacting WDM particle, the transfer function can be approximated

by the fitting formula [231]

T (k) = [1 + (αk)2ν ]−5/ν , (4.3.13)

where

α =
0.049

h Mpc−1

(mWDM

keV

)−1.11
(

ΩDM

0.25

)0.11(
h

0.7

)1.22

, (4.3.14)

ν ' 1.12, and mWDM is the mass of the warm thermal relic [84].

From Fig. 4.5, one can see that cosmological models including DM–neutrino

interactions provide an initial reduction of small-scale power in a similar manner to

the exponential cut-off of WDM. The presence of damped oscillations is unimportant

for setting limits since we are only interested in the cut-off of the spectrum and the

power is already significantly reduced by the first oscillation.

Using an analysis of the Lyman-α flux from the HIRES [216] and MIKE

spectrographs [217], Ref. [184] obtained a bound on the free-streaming scale of a

warm thermal relic, corresponding to a particle mass of mWDM ' 3.3 keV (or

equivalently, α ' 0.012). This constraint is represented by the solid grey curve in

Fig. 4.5.

By comparing νCDM and WDM models, we can effectively rule out cross sections

in which the collisional damping scale is larger than the maximally-allowed WDM

free-streaming scale. Taking into account the freedom from the other cosmological

parameters, we obtain the conservative upper bounds:

σDM−ν . 10−33 (mDM/GeV) cm2 , (4.3.15)

if the cross section is constant, and

σDM−ν,0 . 10−45 (mDM/GeV) cm2 , (4.3.16)
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Parameter Lyman-α limit

100 Ωbh
2 2.246+0.039

−0.042

ΩDMh
2 0.1253+0.0053

−0.0056

100 h 71.5+3.0
−3.3

10+9 As 2.254+0.069
−0.082

ns 0.979+0.016
−0.016

zreio 11.7+1.2
−1.3

Neff 3.52+0.36
−0.40

Table 4.2: Best-fit values and minimum credible intervals at 68% CL of the cosmological

parameters set by the ‘Planck + WP’ dataset for a constant DM–neutrino elastic scattering

cross section, where we impose the maximum allowed value obtained in Sec. 4.3.2, i.e. σDM−ν '

10−33 (mDM/GeV) cm2.

if it scales as the temperature squared.

These limits are significantly stronger than those obtained from the CMB

analysis in Sec. 4.3.1 and will improve further with forthcoming data from LSS

surveys such as DESI [186] (see Sec. 4.5.2). However, CMB constraints are useful

as they do not depend on the non-linear evolution of the matter fluctuations.

We now fix the cross section to be the maximum value allowed by these LSS

constraints and redo our CMB analysis. Setting σDM−ν ' 10−33 (mDM/GeV) cm2

for a constant cross section, we obtain the bounds on the cosmological parameters

shown in Table 4.2 and illustrated in Fig. 4.6. These results are similar to the case

of collisionless CDM with Neff free to vary (see Table 4.1), especially after correcting

the central value of 100 h by 0.6 (as explained in Footnote 4). The reason is that

the cross section imposed by the Lyman-α data is small enough to not significantly

modify the CMB spectrum.

4.4 Application to Specific Models

The results from Section 4.3 enable us to constrain DM interactions that cannot

be directly probed at the LHC and provide us with direct access to physics beyond

the Standard Model in the early universe. They are particularly useful for the

models proposed in Refs. [94, 160, 164] where the DM particle is light (∼ MeV) and
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Figure 4.6: Triangle plot showing the one- and two-dimensional posterior distributions of the

cosmological parameters set by Planck for a constant DM–neutrino cross section, where we impose

the maximum allowed value obtained in Sec. 4.3.2, i.e. σDM−ν ' 10−33 (mDM/GeV) cm2. The

orange and yellow contours correspond to 68% and 95% CL, respectively.

interactions with neutrinos can occur through the exchange of a scalar mediator if

DM is fermionic, or a Dirac/Majorana mediator if DM is a scalar. Our limits could

also be applied to the case of fermionic/scalar DM coupled to a light U(1) gauge

boson mediator [94, 160] with the caveat that the coupling of such a mediator to

neutrinos is constrained by neutrino elastic scattering experiments [232, 233].

In Secs. 4.4.1 and 4.4.2 we consider models in which the DM–neutrino elastic
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scattering cross section is constant and T 2-dependent, respectively.

4.4.1 Constant Cross Section

In general, one expects the DM–neutrino elastic scattering cross section to be

temperature-dependent. However, a constant cross section is predicted either when

(i) there is a strong mass degeneracy between the DM particle and the mediator,

or (ii) the mediator is extremely light (which, in the case considered here, would

imply that DM decays into the mediator plus a neutrino, unless the couplings are

very suppressed).

To illustrate point (i), we consider the particular case of a real scalar DM particle

coupled to a Majorana mediator N (in analogy to the sneutrino–neutralino–neutrino

coupling in Supersymmetry) in a low-energy effective theory [94, 160]. We then

assume a strong mass degeneracy between the DM particle andN , i.e. |mN−mDM| .

O(eV) (see e.g. Ref. [234]). In this toy model, the elastic scattering cross section is

simply given by

σDM−ν '
g4

4π

1

m2
DM

' 3× 10−33
( g

0.1

)4 (mDM

GeV

)−2

cm2 , (4.4.17)

where g is the DM–N–neutrino coupling. The corresponding Feynman diagrams are

given in Fig. 4.7.

Figure 4.7: The s-channel (left) and u-channel (right) Feynman diagrams contributing to DM–

neutrino scattering in the case of a real scalar DM particle and a Majorana mediator N , where g

is the DM–N–neutrino coupling.
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Our Lyman-α constraint from Sec. 4.3.2 implies the following upper limit on the

coupling:

g . 0.1
(mDM

GeV

)3/4

. (4.4.18)

An additional feature of this model is the self-annihilation of DM into neutrinos,

with a thermally-averaged annihilation cross section given by

〈σv〉 ' g4

16π

1

m2
DM

× c , (4.4.19)

in the primordial universe [160]. Thus, the annihilation and elastic scattering cross

sections are simply related by

〈σv〉 ' σDM−ν

4
× c , (4.4.20)

which gives 〈σv〉 ' 8×10−24 (mDM/GeV) cm3 s−1 if we apply our Lyman-α bound.

Conversely, if we impose that the DM annihilation cross section into neutrinos

is within the range that is needed to explain the observed DM relic abundance5, we

obtain the prediction that

σDM−ν ' 4× 10−36

(
〈σv〉

3× 10−26 cm3 s−1

)
cm2 , (4.4.21)

which is comparable to our Lyman-α bound for MeV DM.

Therefore, we deduce that a viable model of MeV DM with a coupling to

neutrinos must predict a cut-off in the P (k) at the Lyman-α scale. Note that, in

principle, we should also allow for co-annihilations [235, 236] since we assume a

strong mass degeneracy between the DM particle and the mediator. A

self-annihilation cross section that is ∼ 4 times smaller than the value quoted in

Eq. (4.4.21) would thus give rise to the observed DM relic abundance.

Interestingly, such a scenario also predicts an increase in Neff with respect to the

standard value [237]; typically, one expects Neff ∈ [3.1, 3.8] by combining the most

recent CMB and BBN data [238–241]. This is entirely compatible with the value of

5The assumption of dominant annihilations into neutrinos at MeV energies makes sense since

significant annihilations into charged particles would require new, relatively light (charged) species.

Such particles have not been observed, neither directly at the LHC nor in particle physics

experiments (such as the electron/muon g − 2 [156–159]).
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Neff = 3.5 ± 0.4 obtained in Sec. 4.3.2 when we impose our Lyman-α limit. As a

result, we predict a rather higher value of H0 = 71±3 km s−1 Mpc−1 (see Table 4.2),

in good agreement with direct measurements of the local Hubble parameter6.

Finally, it is worth noting that in this toy model, one expects the (radiative)

generation of small neutrino masses. Assuming O(1) MeV . mN . 10 MeV, one

obtains neutrino masses in the range 0.01 eV . mν . 1 eV provided that the

coupling g satisfies [160]

g ' 10−3

√
mN

10 MeV

(
〈σv〉

3× 10−26 cm3 s−1

)1/4
√

1 +

(
mDM

mN

)2

. (4.4.22)

In the case of a strong mass degeneracy between the DM particle and the mediator,

Eq. (4.4.22) gives

g ' 10−3

√
mN

10 MeV

(
〈σv〉

3× 10−26 cm3 s−1

)1/4

, (4.4.23)

which is compatible with Eq. (4.4.18) for MeV DM.

In summary, for this specific realisation, we expect a cut-off in the P (k) at the

Lyman-α scale, an enhancement in Neff and H0 with respect to the ΛCDM values,

and the possible generation of neutrino masses. Our model assumes a strong mass

degeneracy between the DM particle and the mediator, but this could be suggestive

of an exact symmetry in the invisible sector (such as unbroken Supersymmetry,

without any counterpart in the visible sector). The other requirement is particles in

the MeV mass range. Such properties may be challenging to realise in a theoretical

framework, yet the model building remains to be done.

Expressions for the DM–neutrino elastic scattering cross section with a Dirac or

Majorana DM candidate can be found in Ref. [94]. When there is a strong mass

degeneracy, the cross section is expected to be constant and given by

σDM−ν ∝
g4

m2
DM

, (4.4.24)

6We emphasise that the values obtained for Neff and H0 from our MCMC analysis used the

Planck one-year data release, and would be smaller if we had used the Planck 2015 temperature and

polarisation data, which points to Neff ∼ 3.0 and H0 ∼ 68 km s−1 Mpc−1, assuming ΛCDM [11].
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as in the scalar case. The annihilation cross section is also given by a similar

expression, so again, for specific values of g [analogous to Eq. (4.4.18)], we expect a

cut-off in the P (k) at a relevant cosmological scale and simultaneously, the correct

DM relic abundance.

In all the above scenarios, DM could potentially be produced by neutrinos in

supernovae. However, here we do not consider a coupling to nucleons and the cross

section does not increase with temperature (it remains constant). Therefore, we do

not expect a large impact on supernovae cooling, but this would need to be checked

in a dedicated study.

4.4.2 Temperature-Dependent Cross Section

If one relaxes the hypothesis of a strong mass degeneracy between the DM particle

and the mediator, the DM–neutrino elastic scattering cross section becomes

dominated by a term proportional to T 2 (independently of whether we consider a

scalar or fermionic DM candidate). If we assume that neutrinos are Majorana

particles, we obtain

σDM−ν ∼
g4

π

T 2

m4
N

+ O(T 3) , (4.4.25)

which leads to

σDM−ν,0 ' 10−46 A
( g

0.1

)4 ( mN

MeV

)−4

cm2 , (4.4.26)

where A ∼ O(1) is a numerical factor that depends on the exact nature of the DM

particle.

Therefore, comparing Eq. (4.4.26) to Eq. (4.3.16), one expects a damping in

the P (k) at the Lyman-α scale if the DM mass is in the MeV range and g ∼

0.1× (mN/MeV). For such a configuration, there could be, in addition, a resonance

feature in the diffuse supernovae neutrino background [242].

If neutrinos have only right-handed couplings and we do not impose a very strong

degeneracy between mN and mDM, the cross section remains T 2-dependent. Its value

would be of the same order as the Lyman-α bound, provided that the DM mass is

again in the MeV range and the mass splitting between the mediator and the DM

particle is relatively small (about 10%).
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A T 2-dependent cross section is easier to achieve than the constant cross section

case described in Sec. 4.4.1 since it does not require the mediator and the DM

particle to be mass-degenerate. However, the observed DM abundance would be

difficult to explain in the thermal case as the annihilation cross section would be too

large for g & 0.1 (although solutions exist e.g. asymmetric DM [243]). One would

also lose the relation with the neutrino masses. A similar conclusion is obtained

for a DM candidate that is coupled to a new (weakly-coupled) gauge boson (see

Ref. [94]).

4.5 Constraints and Forecasts

Finally, in this section, we assess how powerful the constraints from future LSS

surveys will be. For comparison, in Sec. 4.5.1, we first derive limits set by current

CMB experiments and galaxy clustering surveys. These will serve as a benchmark

for our forecasts in Sec. 4.5.2.

4.5.1 Current Constraints

In contrast to the analysis described in Sec. 4.3.1 and Refs. [188, 189], here we select

a logarithmic prior distribution for the u parameter, since in principle, it can vary

by many orders of magnitude. We also fix the effective number of neutrino species7

Neff to the standard value of 3.046.

Planck

The current CMB constraints (using Planck 2013 + WMAP polarisation data [10])

are shown in Table 4.3. The corresponding upper limits on the DM–neutrino

scattering cross section (at 95% CL) are

σ
(Planck)
DM−ν . 6× 10−31 (mDM/GeV) cm2 , (4.5.27)

7In Sec. 4.3.1, we verified that allowing Neff to vary has an impact on the value of the Hubble

parameter H0 but does not significantly change the sensitivity to the u parameter.
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σDM−ν = constant σDM−ν ∝ T 2

Parameter Planck 2013 COrE+ Planck 2013 COrE+

Ωbh
2 0.0221± 0.0003 0.02223± 0.00004 0.0221± 0.0003 0.02222± 0.00004

ΩDMh
2 0.120± 0.003 0.1199± 0.0005 0.119± 0.003 0.1197± 0.0005

100h 70.0± 1.2 67.3± 0.2 68.0± 1.2 67.3± 0.2

109As 2.20± 0.06 2.207± 0.010 2.19± 0.06 2.207± 0.010

ns 0.961± 0.008 0.9656± 0.0017 0.961± 0.008 0.9639± 0.0019

τreio 0.090± 0.015 0.0792± 0.0002 0.090± 0.013 0.0790± 0.0002

log10(u0) < −4.04 −4.33 < −13.6 < −14.6

Table 4.3: Marginalised posteriors for constant (left) and T 2-dependent (right) DM–neutrino

scattering cross sections, set by the Planck 2013 data (+ WMAP polarisation) (see Sec. 4.5.1) and

the COrE+ forecast (see Sec. 4.5.2). The errors for the standard ΛCDM parameters represent the

68% CL; the bound on u0 is at the 95% CL.

if constant, and

σ
(Planck)
DM−ν,0 . 2× 10−40 (mDM/GeV) cm2 , (4.5.28)

if T 2-dependent. These results are consistent with those quoted by the authors of

Refs. [188, 189], with the caveat that they did not perform a full MCMC analysis.

WiggleZ

We now repeat the previous analysis adding LSS data on the full shape of the

matter power spectrum. Concretely, we use the galaxy clustering information from

the WiggleZ Dark Energy Survey [209]. The WiggleZ sample consists of ∼ 238, 000

galaxies and covers a region of 1 Gpc3 in redshift space. Our calculations have shown

that comparable results can be obtained from the BOSS DR11 measurements [203].

Following a similar analysis to Ref. [244], we construct the likelihood function as

follows:

−2 log[L(ϑα)] = χ2(ϑα) =
∑
ij

∆iC
−1
ij ∆j , (4.5.29)

where the covariance matrix reads

Cij = 〈P̂halo(ki) P̂halo(kj)〉 − 〈P̂halo(ki)〉 〈P̂halo(kj)〉 , (4.5.30)

and

∆i ≡
[
P̂halo(ki)− Phalo,w(ki, ϑα)

]
. (4.5.31)
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In Eq. (4.5.31), P̂halo(ki) is the measured galaxy power spectrum and Phalo,w(ki, ϑα)

is the theoretical expectation for the set of model parameters ϑα that are varied in

the MCMC. In turn, Phalo,w(ki, ϑα) is a convolution of the computed galaxy power

spectrum with the survey window functions W (ki, kn), and is given by

Phalo,w(ki, ϑα) =
∑
n

W (ki, kn)Phalo(kn/ascl, ϑα)

a3
scl

. (4.5.32)

In this equation, ascl represents the scaling, which takes into account that the

observed galaxy redshift has to be translated into a distance using a fiducial model.

In this case, we use the same values as in Ref. [245]: Ωb = 0.049, Ωm = 0.297,

h = 0.7, ns = 1 and σ8 = 0.8. The scaling factor is given by Refs. [244, 246]:

a3
scl =

D2
A(z)H(z)

D2
A,fid(z)Hfid(z)

, (4.5.33)

where DA(z) is the angular diameter distance, and the subscript “fid” refers to

values in the fiducial model.

The theoretical galaxy power spectrum Phalo(k, ϑα) is related to the matter power

spectrum P (k, ϑα) through the relation

Phalo(k, ϑα) = b2 P (k, ϑα) , (4.5.34)

where b is the bias, which is assumed to be constant. We analytically marginalise

over b as in Ref. [247]:

b2 =

∑
ij Phalo,w(ki, ϑα)C−1

ij P̂halo(kj)∑
ij Phalo,w(ki, ϑα)C−1

ij Phalo,w(kj, ϑα)
. (4.5.35)

In Table 4.4, we present the posterior distributions obtained using the combination

of WiggleZ and CMB data. We perform two separate analyses, including data for

which: (i) k < kmax = 0.12 h Mpc−1 (purely linear regime), and (ii) k < kmax =

0.2 h Mpc−1 (weakly non-linear regime).

In terms of the DM–neutrino scattering cross section (at 95% CL) with kmax =

0.12 h Mpc−1 {kmax = 0.2 h Mpc−1}, we obtain

σ
(WiggleZ )
DM−ν . 4× 10−31 (mDM/GeV) cm2 ;

{ . 2× 10−31 (mDM/GeV) cm2 } , (4.5.36)
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σDM−ν = constant σDM−ν ∝ T 2

Parameter kmax = 0.12 kmax = 0.2 kmax = 0.12 kmax = 0.2

Ωbh
2 0.0220± 0.0003 0.0219± 0.0003 0.0219± 0.0003 0.0218± 0.0003

ΩDMh
2 0.122± 0.002 0.123± 0.003 0.122± 0.002 0.123± 0.002

100h 70.0± 1.1 66.6± 1.0 66.9± 1.1 66.7± 1.0

109As 2.19± 0.05 2.19± 0.05 2.19± 0.05 2.19± 0.05

ns 0.956± 0.007 0.956± 0.006 0.956± 0.007 0.955± 0.007

τreio 0.086± 0.013 0.086± 0.013 0.085± 0.013 0.085± 0.013

log10(u0) < −4.18 −4.57 < −13.7 < −13.9

Table 4.4: Marginalised posteriors for constant (left) and T 2-dependent (right) DM–neutrino

scattering cross sections, set by the combination of WiggleZ full-shape galaxy power spectrum

measurements and Planck 2013 (+ WMAP polarisation) data. The errors for the standard ΛCDM

parameters represent the 68% CL; the bound on u0 is at the 95% CL. The values of kmax are in

units of [h Mpc−1].

for the constant cross section case. As we shall see in the next section, these bounds

are competitive with those resulting from our forecasts for the future CMB mission

COrE+.

Meanwhile, for σDM−ν ∝ T 2, we obtain

σ
(WiggleZ )
DM−ν,0 . 1× 10−40 (mDM/GeV) cm2 ;

{ . 8× 10−41 (mDM/GeV) cm2 } . (4.5.37)

Therefore, including data in the weakly non-linear regime (k < 0.2 h Mpc−1) only

strengthens the constraints by a factor of two (constant) and 1.25 (T 2-dependent)

with respect to those in the purely linear regime (k < 0.12 h Mpc−1). We note that,

in the constant cross section scenario, the bounds are as much as ∼ 3.5 times tighter

than those using only CMB measurements, showing the benefits of utilising the full

shape of the P (k). The improvement is not as significant for the T 2-dependent case

because the suppression appears at larger k (see e.g. Ref. [228]).

4.5.2 Forecasts for Future Experiments

The CMB and LSS analyses in Sec. 4.5.1 allowed us to obtain current constraints

on the DM–neutrino elastic scattering cross section. We will now assess the power
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of future experiments in (i) constraining DM microphysics, and (ii) detecting small

deviations from ΛCDM in the weakly non-linear regime. These two analyses require

slightly different methodologies. In the first case, we construct a mock catalogue

based on the ΛCDM cosmology and compute the strongest possible upper limit on

the u parameter using the expected sensitivity of future experiments. In the second

case, the mock data assumes small but non-negligible DM–neutrino interactions to

assess our ability to detect them and more generally, reconstruct potential deviations

from ΛCDM. In both cases, we use projected sensitivities.

As in the previous section, we first consider CMB observables only and then

include data from LSS surveys. We focus on two planned experiments: (i)

COrE+ [201], a CMB space mission currently proposed for the 2015-2025 ESA call,

and (ii) DESI [186], a multiplexed fibre-fed spectrograph to detect galaxies and

quasars up to redshift z ∼ 2, which is expected to run in the 2018-2022 time frame.

COrE+

We first produce full mock CMB data sets (temperature and E-mode polarisation,

plus lensing). We then compute the fiducial angular power spectra C` using the

best-fit cosmology reported by the Planck 2015 final mission, including the TT, TE

and EE spectra [42]. To these C`, we add a noise component N` consistent with

each COrE+ channel specification and given by

N IJ
` = δIJ σ

IσJ exp

[
` (`+ 1)

θ2

8 ln2

]
, (4.5.38)

where σI,J correspond to the temperature or polarisation errors (i.e. I, J ∈ {T,E})

[201].

Following Ref. [248], the effective χ2 is given by

χ2
eff(ϑα) =

∑
`

(2`+ 1)fsky

(
D

|C̄|
+ ln
|C̄|
|Ĉ|
− 3

)
, (4.5.39)

where D is a certain function of the noised power spectra (see Eq. (3.4) in Ref. [248]).

|C̄| and |Ĉ| represent the determinants of the theoretical and observed covariance

matrices, respectively. Finally, fsky represents the observed fraction of the sky (in

practice, it weights the correlations between multipoles when the map does not cover

the full sky). For this analysis, we use fsky = 0.7 [201].
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The third step in our analysis is to compute a Gaussian likelihood around our

fiducial spectra, tuned to obtain a 0.01% precision on the C` [as in Ref. [248],

according to Eq. (4.5.39) and with a noise given by Eq. (4.5.38)]. Then, assuming

a 4-year sensitivity and using Monte Python to sample the parameter space, we

can predict the sensitivity of COrE+ to the cosmological parameters. Note that, for

simplicity, we only consider the TT, TE and EE observables.

The results are presented in Table 4.3. We infer that the future sensitivity of

COrE+ to a DM–neutrino coupling would be (at 95% CL)

σ
(COrE+)
DM−ν . 3× 10−31 (mDM/GeV) cm2 , (4.5.40)

if the cross section is constant, and

σ
(COrE+)
DM−ν,0 . 2× 10−41 (mDM/GeV) cm2 , (4.5.41)

if σDM−ν ∝ T 2.

While we find that the standard cosmological parameters will be measured to

much higher precision than with Planck, there is only a modest gain in sensitivity to

the DM–neutrino cross section. Furthermore, these limits are slightly weaker than

those obtained after combining Planck observations with current LSS data in the

weakly non-linear regime.

To assess the power of COrE+ to detect and reconstruct the νCDM cosmology

or similar deviations to ΛCDM, we also produce mock data sets with u = 10−4 and

u = 10−5 as fiducial models (assuming a constant cross section). We then attempt

to reconstruct these models by means of the usual MCMC method.

The u = 10−5 case is represented by the magenta contours in Fig. 4.8 (and

similarly for σDM−ν ∝ T 2 with u0 = 10−14). With COrE+–like CMB data, one can

reconstruct a universe with u = 10−4 with a 40% 1σ error. However, the u = 10−5

case would provide us with CMB information entirely consistent with u = 0, in

agreement with Eq. (4.5.40). Therefore, we expect that u & 5 × 10−5 is the best

sensitivity that one could achieve with CMB experiments in the near future.
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DESI

Finally, the DESI survey [186] is expected to provide a wealth of information on

the matter distribution in the universe at relatively small scales and up to redshift

z ∼ 2. To forecast the ability of DESI to discover new physics, we first compute

the expected errors from the DESI instrument, following a Fisher matrix approach,

which is the usual method used to forecast galaxy survey experiments [249].

The Fisher matrix is defined as the expectation value of the second derivative

of the likelihood surface around its maximum. As long as the posterior distribution

for the parameters is well approximated by a multivariate Gaussian function, its

elements are given by [250–252]

Fαβ =
1

2
Tr

[
C−1 ∂C

∂ϑα
C−1 ∂C

∂ϑβ

]
, (4.5.42)

where C = S + N is the total covariance, which consists of signal S and noise N

terms. Once more, we take a fiducial cosmology defined by the parameters that best

fit the Planck 2015 TT, TE, EE + lowP data [11], in the presence of DM–neutrino

interactions with u = 10−5 in the constant σDM−ν scenario and u0 = 10−14 in the

σDM−ν ∝ T 2 scenario.

Assuming a Gaussian likelihood for the DESI band powers, the Fisher matrix

can be written as:

F LSS
αβ =

∫ ~kmax

~kmin

∂ lnPgg(~k)

∂ϑα

∂ lnPgg(~k)

∂ϑβ
Veff(~k)

d~k

2(2π)3
(4.5.43)

=

∫ 1

−1

∫ kmax

kmin

∂ lnPgg(k, µ)

∂ϑα

∂ lnPgg(k, µ)

∂ϑβ
Veff(k, µ)

k2 dk dµ

2(2π)2 , (4.5.44)

where Veff is the effective volume of the survey and given by

Veff(k, µ) =

[
nP (k, µ)

nP (k, µ) + 1

]2

Vsurvey , (4.5.45)

where µ is the cosine of the angle between the vector mode ~k and the vector along the

line of sight, and n is the galaxy number density (which is assumed to be constant

throughout each of the redshift bins).

To perform the analysis, we divide the data in redshift bins of width ∆z = 0.1

and cut the small-scale data at k = 0.25 h Mpc−1 to avoid the highly non-linear
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regime. The lowest wavenumber kmin (i.e. the largest scale) is chosen to be greater

than 2π/∆V 1/3, where ∆V represents the volume of the redshift shell. We note that

using data in the non-linear regime requires numerical simulations of this model (see

Chapter 5).

The real-space linear DM power spectrum PDM is related to the linear redshift-

space galaxy power spectrum Pgg by

Pgg(k) = PDM(k) (b+ β µ2)2 , (4.5.46)

where b is the bias relating galaxy to DM overdensities in real space [as in

Eq. (4.5.34)] and β is the linear growth factor.

DESI is expected to cover 14,000 deg2 of the sky in the redshift range 0.15 <

z < 1.85. We use the values of the bias given in Ref. [253] for the three types of

DESI tracers, namely bELG(z)D(z) = 0.84 for the Emission Line Galaxies (ELGs),

bLRG(z)D(z) = 1.7 for the Luminous Red Galaxies (LRGs), and bQSO(z)D(z) = 1.2

for the high redshift quasars (QSOs). Here, D(z) is the normalised growth factor,

and both the bias and the growth factor are assumed to vary in each redshift bin

accordingly to these expressions. To combine the Fisher matrices from the three

DESI tracers, we use the multi-tracer technique of Ref. [254].

For the constant σDM−ν scenario, we obtain a 1σ error on the u parameter of

δu(DESI) ' 3.7× 10−6 , (4.5.47)

for the fiducial value of u = 10−5. For σDM−ν ∝ T 2, we obtain

δu
(DESI)
0 ' 4.4× 10−15 , (4.5.48)

for the fiducial value of u0 = 10−14. Crucially, DESI will ensure a ∼ 2.5σ detection

of DM–neutrino interactions if the strength of such a coupling is u ' 10−5 (or a

∼ 2σ detection for u0 ' 10−14 if σDM−ν ∝ T 2).

The main results of this section are summarised in Fig. 4.8. We show the DESI

allowed regions in orange (assuming the Planck 2015 fiducial cosmology plus an

interaction strength of u = 10−5 if constant and u0 = 10−14 if T 2-dependent), along

with the current constraints in blue, and the COrE+ reconstruction in purple.
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Figure 4.8: The 68% and 95% CL allowed regions in the (ΩDMh
2,u0) plane for the constant (top)

and T 2-dependent (bottom) scenarios. Blue: current constraints from the combination of WiggleZ

and Planck 2013 data, with kmax = 0.12 h Mpc−1. Magenta: projected sensitivity of the upcoming

COrE+ CMB experiment, assuming u = 10−5 (or u0 = 10−14 if T 2-dependent). Orange: projected

sensitivity of the DESI galaxy survey, again assuming u = 10−5 (or u0 = 10−14 if T 2-dependent),

with kmax = 0.25 h Mpc−1.

One can clearly see the improvement in the extraction of a DM–neutrino

coupling that will be provided by the next-generation LSS surveys. Furthermore,

our analysis indicates that planned galaxy clustering surveys will provide an

extremely powerful tool (competitive or even better than future CMB

experiments) to test the fundamental properties of DM.

Since the main impact of νCDM is the damping of structure on small scales,
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one of the largest effects will be a reduction in the number of satellites around

galaxies such as the Milky Way. Until now, the only way to study interactions at

these scales has been via N -body simulations, which show that for DM–radiation

couplings greater than u ' 10−5, the number of satellites in the Milky Way would

be much smaller than observed (see Chapter 5). Therefore, with the sensitivity of

u ' 3.7×10−6 expected from DESI, we would have a handle on alternative scenarios

to ΛCDM that modify our cosmic neighbourhood, independently of the assumptions

that go into N -body simulations.

One potential caveat is that we have assumed the interacting DM species

accounts for the entire DM component of the universe; if more than one species

were responsible for the observed relic density (see e.g. Ref. [187]), larger

DM–neutrino scattering cross sections would be allowed by both CMB and LSS

data (see for example, Fig. 4.9).

Aside: Mixed Damping

For DM–neutrino scattering, there is a further potential source of small-scale

suppression from “mixed damping”, in which DM is coupled to free-streaming

neutrinos [162]. The corresponding mixed damping length is given by

l2md ∝
∫ tdec(DM−ν)

tdec(ν)

ρν c
2

ρH a2
dt ∼

(
c t

a

)2

|tdec(DM−ν) , (4.5.49)

which requires that tdec(DM−ν) > tdec(ν), or equivalently, Tdec(ν) > Tdec(DM−ν) (see

Ref. [162] for the derivation). If one also imposes that neutrinos decouple at O(1)

MeV, as in the standard scenario, the condition for mixed damping becomes:

Tdec(ν−DM) > O(1) MeV > Tdec(DM−ν).

Noting that Γν−DM ' σν−DM c nDM and ΓDM−ν ' σν−DM c (T/mDM)nν [163–165],

one obtains

Tdec(ν−DM) '
0.02

u
eV , Tdec(DM−ν) '

0.3√
u

eV , (4.5.50)

assuming a constant DM–neutrino scattering cross section.

Since mixed damping can only take place after the neutrinos have fully decoupled,

the relevant temperature range is

O(1) MeV & T &
0.3√
u

eV , (4.5.51)
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Figure 4.9: Top: the CMB angular power spectrum in the case that only a given fraction of DM

interacts with neutrinos, where for the interacting DM component, u = 10−2. Bottom: the linear

matter power spectrum in the case that only a given fraction of DM interacts with neutrinos, where

for the interacting DM component, u = 10−4. In each case, we assume σDM−ν is constant and use

the ‘Planck + WP’ best-fit parameters from Ref. [10].

and the requirement for mixed damping is

9× 10−14 . u . 2× 10−8 , (4.5.52)

as summarised in Fig. 4.10. Work is ongoing to determine the importance of mixed

damping when one introduces a DM–neutrino coupling. However, a comprehensive

Boltzmann code implementation will be required (see e.g. Ref. [255]).
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correspond to the neutrino–DM (purple, dashed), DM–neutrino (green, dotted), and neutrino–

electron (orange, dashed-dotted) decoupling temperatures. Mixed damping is only possible if

9 × 10−14 . u . 2 × 10−8. The upper limit arises from the requirement that neutrinos fully

decouple at O(1) MeV, while for small values of u, DM decouples from neutrinos before the latter

are free-streaming.

4.6 Conclusion

Cosmology provides a promising tool to measure the particle properties of dark

matter (DM). A DM coupling to visible or dark radiation (including neutrinos,

axions, dark photons or any other light uncharged particle) can lead to strong

departures from ΛCDM, and produce visible signatures for cosmic microwave

background (CMB) experiments and large-scale structure (LSS) surveys.

In the specific case of DM–neutrino scattering, one obtains an enhancement of

the CMB acoustic peaks due to the fact that DM is strongly coupled to neutrinos and

vice versa, which delays the neutrino free-streaming epoch and alters DM clustering

with respect to ΛCDM. However, the largest impact is imprinted as a damping in

the matter power spectrum, which is surveyed by LSS galaxy surveys.

In this chapter, we have looked for the optimal method to measure such small

departures from ΛCDM. As cosmological data may constitute the only tool

available to detect such effects, it is crucial to study the potential sensitivity of
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future experiments. We have shown that with current CMB measurements from

Planck, one can probe constant and T 2-dependent DM–neutrino cross sections of

σDM−ν . 6 × 10−31 (mDM/GeV) cm2 and σDM−ν,0 . 2 × 10−40 (mDM/GeV) cm2,

respectively8 (at 95% CL). By simulating a next-generation CMB experiment (i.e.

a COrE+-like mission) by means of a Markov Chain Monte Carlo (MCMC)

analysis, we found that one could only weakly improve on the current sensitivity.

Such constraints are importantly model-independent and can be applied to any

theory beyond the Standard Model that predicts a coupling between DM and

neutrinos. In particular, we found that models involving thermal MeV DM and a

constant scattering cross section can accommodate larger values of Neff and H0

with respect to ΛCDM, produce a cut-off in the matter power spectrum at the

Lyman-α scale, and at the same time, generate small neutrino masses.

The prospects for both constraints and detection are far better for future

galaxy surveys, such as the DESI or Euclid experiments. Already, current LSS

data, combined with Planck CMB measurements, provide competitive constraints

to those forecast for a future CMB experiment such as COrE+. Future data from

the DESI experiment alone could improve the current sensitivity limit by an order

of magnitude, and provide an accurate (percent-level) measurement of the

scattering cross section for values above that limit.

An interesting question is whether future LSS data would be able to distinguish

the P (k) for DM–neutrino scattering (Fig. 4.5) and DM–photon scattering (Fig. 3.7).

In particular, the greater number of oscillations for DM–photon scattering could

be used to discriminate between the two types of interaction. However, because

the power is already significantly reduced with respect to ΛCDM by the second

oscillation (by at least two orders of magnitude), the difference in LSS data would

be marginal.

In this chapter, we have shown that galaxy clustering surveys are an excellent

probe to detect physics beyond ΛCDM. Remarkably, future LSS experiments will be

sensitive to effects that until now have only been accessible via N -body simulations.

8Note that these Planck CMB constraints are about 3 and 10 times stronger than those obtained

in Chapter 3 for DM–photon scattering, for constant and T 2-dependent cross sections, respectively.



Chapter 5

Interacting Dark Matter and

Structure Formation

There are only two problems with ΛCDM: Λ and CDM.

— Tom Shanks

5.1 Introduction

As we saw in Chapter 1, the cold dark matter (CDM) model has been remarkably

successful at explaining a wide range of observations, from the cosmic microwave

background (CMB) radiation to the large-scale structure (LSS) of the

universe [256]. However, in its simplest form, the model faces persistent challenges

on small scales; the most pressing of which are the “missing satellite” [79, 80] and

“too big to fail” [81] problems1. These discrepancies may indicate the need to

consider a richer physics phenomenology in the dark sector (although they were

first stated without the inclusion of baryonic physics).

In the standard cosmological picture, galaxies such as the Milky Way (MW) and

Andromeda (M31) are embedded in DM haloes that extend far beyond the extent

of their visible matter. Such galaxies are typically orbited by smaller “satellite”

1DM halo profiles for dwarf galaxies are also less cuspy than predicted by the standard CDM

model (the so-called “cusp vs. core” problem [257]), although this is still under debate [78].
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galaxies, each residing in their own DM subhaloes. This comparison between theory

and observation requires a connection to be made between subhaloes and galaxies;

in the absence of a good model for galaxy formation, this is most readily done using

the halo orbital or “circular” velocity.

The “missing satellite” problem refers to the overabundance of DM subhaloes in

numerical simulations of MW-like haloes, compared to the observed number of MW

satellite galaxies (see Fig. 5.1). The problem persists even with the recent discoveries

of additional fainter satellite galaxies within the MW halo (see e.g. Refs. [258, 259]).

However, subsequent simulations that have taken into account baryonic physics

suggest that a reduction in the efficiency of galaxy formation in low-mass DM haloes

results in many of the excess subhaloes containing either no galaxy at all or a galaxy

that is too faint to be observed [260–263].
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Figure 5.1: The observed abundance of MW satellite galaxies (green, solid curve with data

points), compared to the number of subhaloes in numerical simulations of collisionless CDM (red,

dashed curve) [79]. The abundance is plotted as a function of the circular velocity vc, divided by

the circular velocity of the parent halo Vglobal. Taken at face value, CDM simulations predict a

significant overabundance of subhaloes, with respect to the observed number of MW satellites.

As the resolution of numerical simulations continued to improve, the “too big to

fail” problem emerged [81] (see Fig. 5.2). This concerns the largest subhaloes, which

should be sufficiently massive that their ability to form a galaxy is not hampered by

heating of the intergalactic medium via photoionisation, or heating of the interstellar
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medium via supernovae. However, in simulations of collisionless CDM, the largest

subhaloes are denser and more massive than is inferred from measurements of the

MW satellite rotation curves.
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Figure 5.2: The maximum circular velocity Vmax ≡ max[(GM/R)
1/2

] for the nine luminous

MW dwarf spheroidal galaxies (green error bars), compared to the most massive subhaloes from

numerical simulations of collisionless CDM (red circles), as a function of the absolute visual

magnitude MV [264]. Neglecting the impact of baryonic physics, the simulated subhaloes are

generally more massive (i.e. have larger values of Vmax) than the observed dwarf spheroidal galaxies.

It is important to note that the severity of the small-scale problems can be

reduced if one considers the mass of the MW, which impacts the selection of MW-

like haloes in the simulations but remains difficult to determine [265–268].

A range of alternatives to collisionless CDM have also been proposed e.g. warm

DM (WDM) [269], interacting DM [162–165, 226, 270], self-interacting DM [229,

271–273], decaying DM [274], and late-forming DM [275]. These “beyond CDM”

models generally exhibit a cut-off in the linear matter power spectrum P (k) at small

scales (high wavenumbers) that translates into a reduced number of low-mass DM

haloes, with respect to collisionless CDM, at late times.

In the WDM scenario, one allows a small (but non-negligible) amount of

free-streaming, which can greatly reduce the expected number of small-scale

structures with respect to CDM [276]. Given that the free-streaming scale for a

DM particle is typically governed by its mass and velocity distribution [see

Eq. (1.2.20)], the proposed WDM models require very light (∼ keV) particles.
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However, recent work suggests that such light particles cannot simultaneously

solve the small-scale problems of CDM and satisfy the mass constraints from the

Lyman-α forest and other observations [184, 277].

Most numerical efforts so far to check whether such beyond CDM models can

solve the small-scale problems have focussed on either WDM or self-interacting DM.

However, it is also possible that DM scattered elastically with Standard Model (SM)

particles in the early universe; for example, with photons (γCDM) (see Chapter 3),

neutrinos (νCDM) (see Chapter 4), and baryons [191–193].

Such elastic scattering processes are intimately related to the DM annihilation

mechanism in the early universe and are thus directly connected to the DM relic

abundance in scenarios where DM is a thermal weakly-interacting massive particle

(WIMP; see Sec. 1.3). Therefore, rather than being viewed as exotica, interactions

between DM and SM particles should be considered as a more realistic realisation

of the CDM model. Indeed, instead of assuming that CDM has no interactions

beyond gravity, one can actually test this assumption by determining their impact

on the P (k) and ruling out values of the cross section that are in contradiction with

observations. However, it should be noted that the strength of the scattering and

annihilation cross sections can differ by several orders of magnitude, depending on

the particle physics model.

While the CDM matter power spectrum predicts the existence of structures at all

scales (down to earth mass haloes [278, 279]), the γCDM and νCDM scenarios are

characterised by the collisional damping of primordial fluctuations, which can lead

to a suppression of small-scale power at late times. The collisional damping scale

is determined by a single model-independent parameter: the ratio of the scattering

cross section to the DM mass. The larger the ratio, the larger the suppression of

the P (k). For allowed models, the suppression occurs for haloes with masses below

108 − 109 M� (see Chapters 3 and 4).

For simplicity, we focus here on the γCDM model with a constant (temperature-

independent) elastic scattering cross section, bearing in mind that similar results

are expected for νCDM and temperature-dependent scenarios. We also assume that

the interacting DM species accounts for the entire observed relic abundance.
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The formalism discussed in Chapter 3 provides an accurate estimate of the

collisional damping scale for DM–photon interactions [162, 165]:

l2cd,γ ∼
∫ tdec(DM−γ)

0

ργ v
2
γ

ρΓγ a2
dt , (5.1.1)

where ργ and vγ are the photon energy density and velocity, respectively, ρ is the

total energy density, Γγ is the total photon interaction rate (including all species in

thermal equilibrium with photons) and a is the cosmological scale factor.

Eq. (5.1.1) illustrates why interactions with photons can lead to the suppression

of power that is needed to tackle the small-scale problems of CDM. In the early

universe, photons constituted a large fraction of the energy density, and one can set

vγ = c. Hence, the numerator in Eq. (5.1.1) is large and fluctuations can be erased

on the scale of small galaxies.

In Chapter 3, we computed the consequences of DM interactions with photons

in the linear regime. The P (k) for γCDM is damped relative to that of collisionless

CDM beyond a scale that depends on the interaction cross section (see Fig. 5.3).

This is similar to the damping seen in WDM, except that in this case, instead of

an exponential suppression, one obtains a series of oscillations with a power law

modulation in their amplitude [163]. We can directly compare the predictions of

WDM and γCDM by selecting particle masses mWDM and interaction cross sections

σDM−γ that produce damping at a similar wavenumber, relative to collisionless CDM

(see the green, dotted curve and the orange, dashed curve in Fig. 5.3).

For γCDM, the comparison with CMB data from Planck [10] gave a constraint

on the elastic scattering cross section of σDM−γ . 10−6 σTh (mDM/GeV) at 95% CL,

where σTh is the Thomson cross section and mDM is the DM mass. However, this

linear approach breaks down once the fluctuations become large, preventing one from

studying the effects of weak-strength interactions on DM haloes and in particular,

on small-scale objects. We therefore turn to N -body simulations to examine the

impact of γCDM in the non-linear regime. We will show that interacting DM can

alleviate both the missing satellite and too big to fail problems2.

2Recently, it was also demonstrated that one can simultaneously alleviate the small-scale

problems of CDM by including interactions between DM and dark radiation in the linear P (k)
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Figure 5.3: The linear matter power spectra for collisionless CDM (black, solid), γCDM with

σDM−γ = 2 × 10−9 σTh (mDM/GeV) (orange, dashed), WDM with mWDM = 1.24 keV (green,

dotted) and γCDM’ with σDM−γ = 10−7 σTh (mDM/GeV) (red, dashed-dotted). The γCDM and

WDM models have been selected to have the same initial cut-off in the P (k) with respect to CDM.

We take σDM−γ to be constant and use the best-fitting cosmological parameters from Planck [10].

The chapter is organised as follows. In Sec. 5.2, we describe the simulations

that we use to study the missing satellite problem, and derive constraints from the

observed abundance of MW satellite galaxies. In Sec. 5.3, we investigate whether

interacting DM can alleviate the too big to fail problem by considering the largest

subhaloes. Finally, we provide conclusions in Sec. 5.4.

This chapter is based on the work carried out in Refs. [4–6].

5.2 Missing Satellite Problem and Constraints

5.2.1 Simulation Details

To study the impact of DM–photon interactions on the abundance of small

structures, we begin our N -body calculations at a sufficiently early epoch (redshift

z = 49), where the effect of γCDM is fully described by linear perturbation theory

(LPT). We note that the DM–photon interaction rate is negligible for z < 49. The

and DM self-interactions during non-linear structure formation [280, 281].
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initial matter power spectra for CDM, γCDM, WDM and γCDM’ (shown in

Fig. 5.3) are obtained from the modified version of the Boltzmann code class [48],

as described in Sec. 3.2.2, using the best-fitting cosmological parameters from

Planck3 [10]. Initial conditions are created using an adapted version of a

second-order LPT code.

To make predictions in the non-linear regime, we run a suite of high-resolution

N -body simulations using the code gadget-3 [282]. To provide a suitable

dynamical range, we perform simulations in both a large box (100 h−1 Mpc, 5123

particles) and a high-resolution small box (30 h−1 Mpc, 10243 particles). A subset

of simulations is re-run in a high-resolution large box (100 h−1 Mpc, 10243

particles) to confirm the convergence scale. By comparing the results from

different runs, we find that our calculations are reliable for subhaloes with

Vmax ≡ max[(GM/R)1/2] & 8 km s−1. Gravitational softening is set to 5% of the

mean particle separation. For WDM particles with masses larger than ∼ keV, the

thermal velocities are sufficiently small that one can safely neglect free-streaming

in the non-linear regime without introducing a significant error on the scales of

interest [283].

To quantify the impact of γCDM on the satellite abundance of a MW-like galaxy,

one needs to define criteria to select haloes that could host the MW. The most

crucial condition is the DM halo mass. Motivated by calculations that attempt to

reconstruct the MW mass distribution based on the measured kinematics of the

observed satellites and stars [267, 284, 285], we consider DM haloes to be MW-like

if their mass is in the range (0.8− 2.7)× 1012M�.

The second criterion we apply is based on the environment. The MW appears to

be located in an unremarkable region away from larger structures such as the Virgo

Cluster and the major filaments feeding the Centaurus Cluster [286]. We therefore

reject candidates with similar-sized haloes4 within a distance of 2 Mpc. The resulting

3In principle, one would require each value of the cross section to be studied within its own

best-fitting cosmology; however, we find that the ΛCDM parameters lie within 1σ of such best fits.

For simplicity, we therefore keep the cosmological parameters fixed for all the models studied here.
4This criterion prevents us from obtaining a MW-like candidate that is itself a satellite of a
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sample of MW-like haloes is then divided into several subsets based on their virial

halo mass. Haloes are identified using a friends-of-friends group finder [256] with

a linking length of 20% of the mean particle separation. Finally, subhaloes are

identified using subfind [287].

5.2.2 Results

Fig. 5.4 shows the simulated distribution of DM in a MW-sized DM halo. For

collisionless CDM (top-left panel), there is an overabundance of subhaloes within

the DM halo, which illustrates the MW satellite problem (if one associates each

of the subhaloes with a satellite galaxy). The bottom-left panel shows the same

halo in a simulation of γCDM, in which the interaction cross section is σDM−γ =

2 × 10−9 σTh (mDM/GeV). Such a cross section should satisfy the constraints from

the Lyman-α forest [184]. One can see that the subhalo population is significantly

smaller for this model compared to CDM.

However, the suppression of subhaloes is too strong if we consider γCDM’ with

σDM−γ = 10−7 σTh (mDM/GeV) (bottom-right panel), which satisfies the CMB limits

from Chapter 3. Therefore, by adjusting the magnitude of the scattering cross

section, not only is there scope to address the MW satellite problem, but we can

also place a more stringent constraint on the γCDM interaction strength.

For the model of γCDM with σDM−γ = 2×10−9 σTh (mDM/GeV), the distribution

of density fluctuations in the linear regime is comparable to that of a WDM particle

with a mass of 1.24 keV (top-right panel). However, the suppression of small-scale

power in γCDM is less extreme than in generic WDM models due to the presence

of oscillations in the linear P (k) (see Fig. 5.3), which may offer a way to distinguish

these two scenarios.

For more quantitative estimates, the cumulative number of MW satellite

galaxies N>Vmax,sat is plotted in Fig. 5.5 as a function of the maximal circular

velocity Vmax,sat ≡ max[(GM/R)1/2], which is selected as a measure for the mass

larger cluster, which is not the case for the MW. At the same time, it does not rule out slightly

smaller galaxies in the vicinity of the candidate, such as an Andromeda-like companion.
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Figure 5.4: The simulated distribution of DM in a MW-like halo. The shading represents the DM

density, with brighter colours indicating higher densities. The panels show the halo in simulations

of different cosmological models: collisionless CDM (top left), γCDM (CDM plus DM–photon

scattering) with σDM−γ = 2× 10−9 σTh (mDM/GeV) (bottom left), the equivalent model of WDM

with mWDM = 1.24 keV (top right), and γCDM’ with σDM−γ = 10−7 σTh (mDM/GeV) (bottom

right).

and is determined directly from the simulations5. The simulation results are

obtained by averaging over the haloes that satisfy the selection criteria outlined in

Sec. 5.2.1. The number of selected MW-like haloes are 11, 13 and 3 for CDM,

γCDM and γCDM’, respectively.

The left-hand panel shows predictions for the collisionless CDM model, in which

the number of subhaloes of a given maximum circular velocity greatly exceeds the

observed number of MW satellites. The centre panel shows the results for γCDM

5Vmax,sat is derived from the observed stellar line-of-sight velocity dispersion σ? using the

assumption that Vmax =
√

3σ? [80].
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with σDM−γ = 2×10−9 σTh (mDM/GeV), where there is a good match to the observed

number of satellites. Thus, we see that γCDM with a relatively small cross section

can alleviate the MW satellite problem. Finally, the right-hand panel of Fig. 5.5

shows the γCDM’ model with σDM−γ = 10−7 σTh (mDM/GeV). In this case, too

many of the small structures have been erased. Note that the reduced scatter for

γCDM’ is simply a result of the limited statistics in this extreme model.

Figure 5.5: The cumulative number of satellite galaxies in a MW-like DM halo as a function

of the maximal circular velocity for collisionless CDM (left), γCDM with σDM−γ = 2 ×

10−9 σTh (mDM/GeV) (centre) and γCDM’ with σDM−γ = 10−7 σTh (mDM/GeV) (right). The

lines and shading show the mean cumulative number counts of MW satellites for a simulated DM

halo in the mass bin (2.3− 2.7)× 1012M� and the 1σ uncertainty, respectively. Also plotted are

the observational results [288] (black, solid lines with data points), which are then corrected for

the completeness of the Sloan Digital Sky Survey (SDSS) coverage (dashed lines).

We can also set constraints on the interaction cross section by comparing the

observed and predicted numbers of substructures as follows. The uncertainties in

the simulation results are derived from the spread in the sample set (for each host

halo mass bin). A given model is ruled out if the number of predicted subhaloes

is smaller than the observed number, within the combined uncertainties of these

observables (see Fig. 5.6, left-hand panel). From this, we conclude that the DM–

photon elastic scattering cross section cannot exceed

σDM−γ ' 5.5× 10−9 σTh (mDM/GeV)

' 4× 10−33 (mDM/GeV) cm2 , (5.2.2)

at 95% CL. Here we have used the highest mass bin (2.3 − 2.7) × 1012M�, which

provides us with the most conservative limit. Lower MW-like halo masses (see
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Fig. 5.6, right-hand panel) result in stronger upper bounds on the cross section as

these haloes host fewer satellites.

It should be noted that the observed value of Vmax may be underestimated by

our approach of directly calculating it from the stellar velocity dispersion [289].

Combined with an expected increase in the number of satellites from additional

completeness corrections, this would lead to even stricter constraints on the

interaction cross section.
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Figure 5.6: Constraints on the DM–photon elastic scattering cross section σDM−γ . Left-hand

panel: the over/underabundance of satellites versus the scattering cross section for the MW halo

mass bin (2.3− 2.7)× 1012M�, where the coloured bands represent the 1σ and 2σ uncertainties.

Right-hand panel: constraints on the cross section are plotted with respect to the MW halo mass.

The most recent CMB constraint from Planck (see Chapter 3) and selected upper mass bounds for

the MW DM halo [267, 284, 285] are shown for comparison.
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5.3 Too Big To Fail Problem

5.3.1 Simulation Details

To reach the resolution required to model the dynamics of DM subhaloes within

MW-like DM haloes, we first identify Local Group (LG) candidates6 in an N -body

simulation of a large cosmological volume. We then resimulate the region containing

these haloes at much higher mass resolution in a “zoom” resimulation. We use the

DOVE cosmological simulation to identify haloes for resimulation (the criteria used to

select the haloes are listed below) [262]. The DOVE simulation follows the hierarchical

clustering of the mass within a periodic cube of side length 100 Mpc, using particles

of mass 8.8× 106 M� and assuming a WMAP7 cosmology7.

Following the APOSTLE project [290], which also uses the DOVE CDM simulation

to identify LG candidates for study at higher resolution, we impose the following

three criteria to select candidates for resimulation:

1. Mass: there should be a pair of host haloes with masses comparable to the

MW and M31, i.e. within the range (0.5− 2.5)× 1012M�.

2. Environment: there should be no other large structures nearby, i.e. an

environment with an unperturbed Hubble flow out to 4 Mpc.

3. Dynamics: the separation between the two haloes should be 800± 200 kpc,

with relative radial and tangential velocities below 250 km s−1 and 100 km

s−1, respectively.

These criteria are more restrictive than those employed in Sec. 5.2 as they also take

into account the internal kinematics of the LG. After applying the above criteria, we

obtain four LG candidates and therefore, eight MW-like haloes (see Table 5.1). If

we assume that the gravitational interaction between the LG haloes is limited, the

6Here, the Local Group refers to the collection of galaxies that includes the MW, Andromeda

(M31) and a large number of smaller dwarf galaxies.
7Using an older dataset here is not a concern since we are only interested in the impact of

DM–photon interactions on a selected local environment.
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ID
Mvir Vmax σDM−γ

[1012 M�] [km s−1] [σTh (mDM/GeV)]

AP-1 1.916 200.3
0, 2× 10−9

AP-2 1.273 151.5

AP-3 0.987 157.9
0, 2× 10−9

AP-4 0.991 163.0

AP-5 2.010 167.5
0, 2× 10−9

AP-6 1.934 165.1

AP-7 1.716 163.7 0, 10−10, 10−9,

AP-8 1.558 193.3 2× 10−9, 10−8

Table 5.1: Key properties of the MW-like haloes in the zoom resimulations (see Section 5.3.1).

The first column specifies the APOSTLE identifier (ID) for each MW-like halo, while the second and

third columns list the virial mass Mvir and maximum circular velocity Vmax, respectively (for the

CDM model, although halo properties for γCDM only vary by a few percent with respect to CDM).

The fourth column lists the various DM–photon interaction cross sections σDM−γ used in the zoom

resimulations for each LG candidate, where σTh is the Thomson cross section and σDM−γ = 0

corresponds to collisionless CDM.

mass, environment and dynamics of the haloes would not be significantly different

if we had run a separate γCDM version of the DOVE simulation.

We run resimulations for collisionless CDM (with zero interaction cross section)

and for a selection of DM–photon interaction cross sections, as listed in Table 5.1.

We note that the γCDM model with σDM−γ = 2× 10−9 σTh (mDM/GeV) was shown

to solve the missing satellite problem in Sec. 5.2, in the absence of baryonic physics

effects. For the γCDM model, we perform resimulations using the N -body code

P-Gadget3 [282], using the same cosmology (WMAP7), random phases and second-

order LPT method [291] as Ref. [262]. We resimulate the four LG candidates with a

particle mass mpart = 7.2× 105 M� and a comoving softening length lsoft = 216 pc.

In addition, we resimulate the two host haloes for one of our LG candidates (AP-

7/AP-8) at an even higher resolution (mpart = 6 × 104 M�, lsoft = 94 pc). These

simulations (denoted with the suffix -HR) are used to confirm that our results have

converged and allow us to obtain more reliable predictions for the innermost region

of the haloes. Finally, substructures within the host haloes are identified using the
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AMIGA halo finder [292].

5.3.2 Results

The too big to fail problem is illustrated in the top panel of Fig. 5.7. Here the

rotation curves of the 11 most massive subhaloes8 in the CDM resimulation of the

halo AP-7-HR (grey curves) clearly lie above the measurements of the MW dwarf

spheroidal satellites [293] (black data points). In general, one can see that the largest

subhaloes in CDM simulations have a higher circular velocity Vcirc, and therefore

more enclosed DM, than is observed at a given radius. Meanwhile, for γCDM

with σDM−γ = 2 × 10−9 σTh (mDM/GeV) (red curves), the rotation curves of the

most massive satellites are shifted to lower circular velocities with respect to CDM,

indicating that there is less DM enclosed within a given radius. One can interpret

this as a lower central density of DM for γCDM haloes (as observed in Ref. [5]).

Note that the circular velocity profiles displayed in the top panel of Fig. 5.7 are

plotted using different line styles. The transition occurs at the scale determined by

the convergence criteria devised in Ref. [294]. At smaller radii (dashed lines), the

velocity profiles are not guaranteed to have converged. However, the key point here

is that the CDM and γCDM resimulations have the same resolution and yet show a

clear difference at all radii plotted, with a shift to lower circular velocities for γCDM

haloes.

The bottom panel of Fig. 5.7 presents a related view of the too big to fail problem;

this time showing the peak velocity in the rotation curve Vmax ≡ max[(GM/R)1/2] as

a function of the radius at which this occurs Rmax. The hatched region indicates the

2σ uncertainty for the observed MW satellites, assuming that the haloes are DM-

dominated and have NFW density profiles [295]. We allow the halo concentration

parameter to vary, following the same technique and assumptions as described in

Ref. [80].

8We have included three more simulated subhaloes than the observed number of dwarf satellites

since the most massive subhaloes are considered statistical outliers like the Magellanic clouds, which

have been omitted in this study.
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Figure 5.7: Top panel: the circular velocity Vcirc versus radius r for the eleven most massive

subhaloes in AP-7-HR, for collisionless CDM (grey curves) and γCDM with σDM−γ = 2 ×

10−9 σTh (mDM/GeV) (red curves). The dashed lines indicate where Vcirc can still be extracted

from the simulations but convergence cannot be guaranteed, according to the criteria suggested

in Ref. [294]. The black data points correspond to the observed MW satellites with 1σ error

bars [293]. Bottom panel: the Vmax versus Rmax results for all eight MW-like haloes, with the

same scattering cross sections as in the top panel. The hatched region marks the 2σ confidence

interval for the observed MW satellites. Here, Vmax is derived from the observed stellar line-of-sight

velocity dispersion σ? using the assumption that Vmax =
√

3σ? [80].
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In general, the collisionless CDM model predicts satellites that lie outside the 2σ

range compatible with observations. Additionally, for CDM, there are many more

subhaloes within the range of Vmax–Rmax plotted than there are observed satellites.

The abundance of massive, concentrated subhaloes varies depending on the mass

and formation history of the host halo; however, for all of the MW-like candidates,

CDM exhibits a too big to fail problem, which is reduced if one includes DM–photon

interactions.

In Fig. 5.8, we present the results for AP-7 and AP-8 for a range of

DM–photon scattering cross sections. As the cross section is increased, the

predicted Vmax values decrease and shift to larger Rmax. This brings the model

predictions well within the region compatible with the observational results and

also reduces the number of satellites with such rotation curves. Therefore, one can

clearly see that interacting DM can alleviate the too big to fail problem with a

cross section σDM−γ ' 10−9 σTh (mDM/GeV) that we showed in Sec. 5.2 can also

solve the missing satellite problem.
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Figure 5.8: The Vmax versus Rmax results for the AP-7 (circles) and AP-8 (squares) haloes for a

range of DM–photon interaction cross sections. As in Fig. 5.7, the hatched region marks the 2σ

confidence interval for the observed MW satellites, following the methodology of Ref. [80].
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5.4 Conclusion

There are a multitude of solutions that have been proposed to overcome the

small-scale “failures” of cold dark matter (CDM); namely, the “missing satellite”

and “too big to fail” problems. Within the collisionless CDM model, these

explanations generally either: i) invoke baryonic physics to reduce the efficiency of

galaxy formation in low-mass DM haloes [262, 296], or ii) exploit the uncertainty

in the mass of the Milky Way (MW) DM halo [265]. Both problems can be

diminished if one accounts for one or both of these possibilities.

However, solutions in which the DM properties are varied have also been

explored. Ref. [276] showed that replacing CDM by a warm DM (WDM) particle

of mass ∼ 1.5 keV leads to a reduction in the abundance of subhaloes in MW-like

haloes. In addition, massive subhaloes are less concentrated than their CDM

counterparts, matching observations of the internal dynamics of the MW satellites.

Ref. [273] investigated the impact of self-interacting DM on the properties of

satellite galaxies, finding little change in the global properties of the galaxies but

variation in their structure.

In this chapter, we have investigated the impact of interactions between DM

and radiation on the abundance and structure of the MW satellite galaxies. Such

interactions are well-motivated and may have helped to set the abundance of DM

inferred in the universe today [94, 297]. As well as its physical basis, this model has

the attraction that it is as simple to simulate as CDM. The interactions took place

in the early universe when the densities of DM and radiation were much higher, and

are negligible over the time period covered by the simulation. The DM particles are

still cold, so there are no issues relating to particle velocity distributions, as would

arise in high-resolution simulations of WDM, particularly for lighter candidates.

The only change compared to a CDM simulation is the modification to the matter

power spectrum in linear perturbation theory, i.e. DM–radiation interactions give

rise to a series of damped oscillations on small scales.

By performing the first accurate cosmological simulations of DM interactions

with radiation (in this case, photons), we find a new means to reduce the population

of MW subhaloes, without the need to abandon CDM. The resulting constraints on
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the interaction strength between DM and photons are orders of magnitude stronger

than is possible from linear perturbation theory considerations.

We have also shown the impact of DM–radiation interactions on the structure of

massive subhaloes. Increasing the interaction cross section reduces the mass enclosed

within a given radius in the subhaloes, which alleviates the too big to fail problem.

When combined with the reduction in the number of MW subhaloes, we find that a

model with an elastic scattering cross section of σDM−γ ' 1×10−33 (mDM/GeV) cm2

can solve both of the small-scale problems of CDM. We also note that similar results

are expected in the case of DM–neutrino interactions.

The next step will be to include baryonic physics. Indeed, recent simulations with

both DM and baryons have shown that such processes can alter the appearance of the

subhalo mass function [263]. A definitive calculation would include the full impact

of these effects; in particular, supernovae feedback and photoionisation heating of

the interstellar medium. This would not alter the qualitative conclusions of this

chapter, but would further tighten the constraints on the DM–radiation scattering

cross section.



Chapter 6

Light WIMPs and the Galactic

511 keV Line

It doesn’t matter how beautiful your theory is, it doesn’t matter how

smart you are. If it doesn’t agree with experiment, it’s wrong.

— Richard Feynman

6.1 Introduction

The emission of a 511 keV gamma-ray line from a spherically symmetric region

around the Galactic centre has been observed by many experiments over more than

four decades [115–120] (see Fig. 6.1). By 2003, INTEGRAL/SPI observations had

demonstrated that this line originates from the decay of positronium atoms into two

photons [298–301]. While this is indicative of an injection of low-energy positrons

in the inner kiloparsec of the Milky Way, the signal is uncorrelated with known

astrophysical sources. In addition to the “bulge”, an extended disk-like structure is

also seen. However, it is likely associated with radioactive β-decay of heavy elements

produced in stars of the Milky Way disk.

Recently, an analysis of the 11-year data from INTEGRAL/SPI was carried out

[302]. After a decade of exposure, the significance of the bulge signal has risen to

56σ, while the disk significance is now 12σ in a maximum likelihood fit. New data

allow the collaboration to distinguish a broad bulge (BB) and an off-centre narrow

132
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Figure 6.1: Differential photon spectrum measured from the Milky Way Galactic centre in the

vicinity of 511 keV by a balloon-borne germanium gamma-ray telescope in 1978 [115]. The solid

curve is a least-squares fit to the data (solid points with error bars). In this initial observation,

the excess was centred on an energy of 510.7± 0.5 keV, with a flux of (1.22± 0.22)× 10−3 photons

cm−2 s−1 at the top of the atmosphere.

bulge (NB). There is also significant evidence (5σ) of a point source at the location

of the Sgr A* black hole near the Galactic centre, with a line intensity that is about

10% of the total bulge (BB + NB) flux. Interestingly, greater exposure of the disk

has revealed lower surface-brightness regions, leading to a more modest bulge-to-

disk ratio of B/D ∼ 0.59, compared with previous results that indicated B/D ∼

1–3.

Low mass X-ray binaries [303], pulsars and radioactive isotopes produced from

stars, novae and supernovae [304] can yield positrons in the correct energy range

for the bulge signal. However, these processes should yield a 511 keV morphology

that is correlated with their progenitors’ location. For instance, the β+ decay of 26Al

produced in massive stars also yields a line at 1809 keV, which has been measured

by INTEGRAL/SPI [305]. As expected, this line is not at all correlated with the

Galactic centre 511 keV emission, although it allows up to 70% of the positronium

formation in the Galactic disk to be explained [306]. Additionally, estimates of

production and escape rates in stars and supernovae suggest that 44Ti and 56Ni β-

decay can account for most of the remaining emissivity in the disk [299, 304]. Finally,
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higher energy sources such as pulsars, magnetars and cosmic ray processes produce

electron–positron (e±) pairs in the bulge at relativistic energies. However, this would

leave a distinct spectral shape above 511 keV, in conflict with the observed spectrum

[304]. The fact therefore remains that the high luminosity of the total bulge emission

is not explained by known mechanisms.

The similarity between the spherically symmetric, cuspy shape of the central

bulge emission and the expected Galactic DM distribution is highly suggestive of

a DM origin. Consequently, an interpretation in terms of self-annihilation of DM

has been favoured for some time1 [154, 155, 306–309]. The thermal production of

DM through annihilation (as in the WIMP paradigm; see Sec. 1.3) implies ongoing

self-annihilation today.

Light DM particles (with a mass mDM . 7 MeV) can produce electron-positron

pairs at low enough energies to explain the positronium annihilation signal, while

avoiding the overproduction of gamma-rays [307, 310, 311]. Initial studies could

also reproduce the spatial shape of the excess with the standard NFW profile

[Eq. (1.4.47)]. Later, it was shown that the less cuspy Einasto DM profile

[Eq. (1.4.48)] yields a significantly better fit to the 511 keV line morphology. In

fact, the Einasto shape gives a better fit to the 8-year data than the NB+BB

model, with fewer free parameters [306].

The velocity-averaged annihilation cross section into e± pairs required to explain

the observed 511 keV flux is 〈σv〉e+e− ∼ 10−30 cm3 s−1. However, a thermally-

produced DM particle requires a cross section at freeze-out 〈σv〉 ' 3 × 10−26 cm3

s−1. The two scenarios that satisfy both requirements are:

1. Neutrino (ν) sector: a dominant annihilation cross section into neutrinos

〈σv〉νν ' 3× 10−26 cm3 s−1 at freeze-out.

2. Electron (e±) sector: a velocity-dependent (p-wave) annihilation cross

section into electrons 〈σv〉e+e− = a+ bv2, where the term bv2 ' 3× 10−26 cm3

s−1 dominates at freeze-out.

1The spatial morphology disfavours a decaying DM origin [306, 307].
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In this chapter, we show that these scenarios are strongly disfavoured by available

cosmological data. We begin by presenting their respective impacts on cosmological

observables in Secs. 6.2 and 6.3, from the epochs of BBN, recombination and the

dark ages. In Sec. 6.4, we show that the latest CMB data and determinations of

the primordial abundances rule out the light WIMP explanation of the 511 keV line

for both NFW and Einasto DM density profiles. Finally, we provide conclusions in

Sec. 6.5.

This chapter is based on the work carried out in Ref. [7].

6.2 Neutrino Sector Thermal Production

Thermal freeze-out requires annihilation into species with smaller masses than the

DM particles. In the case of light DM (below the muon mass), this leaves three

channels: electrons, photons or neutrinos. Annihilations into electrons and photons

are highly constrained by gamma-ray [154] and CMB [312–326] observations. We

therefore first consider the scenario in which the relic density originates via the

neutrino channel and the subdominant annihilation rate into e± explains the 511

keV line.

6.2.1 BBN and Recombination

DM annihilations into neutrinos can increase the entropy in the neutrino sector if the

DM particles are lighter than ∼ 15 MeV and annihilate after the standard neutrino

decoupling at Tdec,ν ' 2.3 MeV [237–239, 327–329]. This increased energy density

is parameterised in terms of the effective number of neutrino species Neff . A larger

neutrino energy density increases the expansion rate of the universe. If this occurs

during BBN, the neutron-to-proton ratio freezes out earlier, leading to an increase

in the primordial helium abundance YP and deuterium-to-hydrogen ratio D/H (see

Sec. 1.2.1).

The same mechanism also results in additional energy in the radiation sector

during recombination, again parameterised via Neff . At such low temperatures (T �
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mDM), one can write

NEquil,ν
eff ' 3.046

[
1 +

gDM

2

F (yν |Tdec,ν )
3.046

]4/3

, (6.2.1)

where

F (y) =
30

7π4

∫ ∞
y

dξ
(4ξ2 − y2)

√
ξ2 − y2

eξ ± 1
, (6.2.2)

gDM is the number of internal degrees of freedom for DM and yν |Tdec,ν ≡ mDM/Tdec,ν

[239]. The +,− sign in Eq. (6.2.2) pertains to fermions and bosons, respectively.

The dependence of Neff on the DM mass for two specific types of DM particle

[real scalar (gDM = 1) and Dirac fermion (gDM = 4)] is illustrated in Fig. 6.2. The

increase in Neff enhances the effect of Silk damping and compounds the impact of a

higher YP in reducing power in the tail of the CMB angular power spectrum.

N
e
ff

mDM [MeV]

ν sector

e
±
 sector

Planck + lensing

Dirac Fermion

Real Scalar

 1

 2

 3

 4

 5

 6

 0.5  1  10  100

Figure 6.2: The number of relativistic degrees of freedom Neff at the CMB epoch as a function

of the DM mass mDM for a real scalar (orange, dotted) and a Dirac fermion (green, dashed).

For neutrino sector thermal production, the enhancement of Neff is a result of DM annihilations

reheating the neutrino sector, as described by Eq. (6.2.1). For electron sector production, the

suppression of Neff is due to DM annihilations into e+e− reheating the photon sector, as described

by Eq. (6.3.5). The solid black line corresponds to the standard value of 3.046. Also shown is the

95% CL favoured region of Neff from the ‘Planck + lensing’ dataset (grey band) assuming ΛCDM,

i.e. Neff = 2.94± 0.38 [11]. Note that a complete MCMC analysis is required to derive constraints

from such modifications to Neff as there are well-known degeneracies with the other cosmological

parameters.
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Furthermore, DM–neutrino scattering during recombination can erase

perturbations on small scales due to collisional damping [162–165]. It also prevents

the neutrinos from free-streaming as efficiently, thus enhancing the CMB acoustic

peaks (see Chapter 4). To account for DM–neutrino scattering, the coupled Euler

equations that govern the evolution of the DM and neutrino fluid perturbations

δDM/ν and their gradients θDM/ν must be modified to include interaction terms

∝ σDM−ν (θDM − θν), where σDM−ν is the elastic scattering cross section. The shear

σν and higher multipole perturbations Fν,` of the neutrino fluid also acquire terms

proportional to σDM−ν . The corresponding equations and the formalism to modify

the Boltzmann code class [48] are described in Chapter 4.

6.2.2 The Dark Ages

Independently of the neutrino sector, the subdominant s-wave annihilations into

e+e− that are required to produce the Galactic 511 keV signal also have strong,

observable consequences during the dark ages between the epochs of recombination

and reionisation. These effects are measurable in the CMB angular power spectrum.

At a given redshift z, electromagnetic energy E is injected into the intergalactic

medium (IGM) at a rate per unit volume V :

dE

dt dV
= feff(mDM) ρ2

crit (1 + z)6 Ω2
DM ζ

〈σv〉e+e−
mDM

, (6.2.3)

where ρcrit is the critical density, ζ = 1 when the DM and its antiparticle are

identical, and 1/2 otherwise, and feff(mDM) is the effective efficiency of energy

deposition into heating and ionisation, weighted over redshift.

Fig. 6.3 shows the energy deposition efficiency feff(mDM) as a function of mDM.

At the low masses relevant to the 511 keV signal, energy absorption in the IGM

actually becomes quite inefficient, leading to weaker constraints than for heavier

WIMPs. This is because much of the energy lost by electrons to inverse Compton

scattering in this energy range ends up in photons that are below the 10.2 eV

threshold to excite neutral hydrogen. These photons thus stream freely, leading

to distortions of the CMB blackbody spectrum but no measurable effect on the

ionisation of the IGM [330].
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Figure 6.3: The effective energy deposition fraction for the smooth DM background component

feff versus the DM mass mDM for the e+e− annihilation channel. The points are taken from

nebel.rc.fas.harvard.edu/epsilon [325].

Constraints on Eq. (6.2.3) are usually quoted in terms of the redshift-independent

quantity

pann ≡ feff(mDM)
〈σv〉e+e−
mDM

. (6.2.4)

The effect of DM annihilations on the TT , EE and BB components of the CMB

angular power spectrum is shown in Fig. 6.4 for large values of pann. Such features

can be explained if one considers the impact of DM annihilations on the evolution

of the free electron fraction xe from the early recombination era (z ∼ 1100) to the

reionisation epoch at late times (z . 10), see Fig. 6.5.

Firstly, extra electromagnetic energy from DM annihilations ionises the IGM.

This ionisation rescatters CMB photons, leading to a broader last-scattering surface

and a delay in recombination at z ∼ 1100. In turn, this enhances xe during the dark

ages, with respect to the non-annihilating scenario (see Fig. 6.5). This increases the

optical depth τreio of the CMB photons as they travel from the last-scattering surface

to us so that the visibility function g(z) = κ̇ e−κ, which describes the probability

that a scattering process occurs, extends to smaller redshifts. As one can see from

Fig. 6.4, there are two main effects on the CMB spectra: (i) a shift in the position

of the acoustic peaks to lower `, and (ii) an overall suppression of the spectra due

to the broadening of the last-scattering surface [322].

http://nebel.rc.fas.harvard.edu/epsilon


6.2. Neutrino Sector Thermal Production 139

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  500  1000  1500  2000

[l
(l
+

1
) 

C
lT

T
 /
 2

π
] 
(µ

K
2
)

l

pann = 10
-4

pann = 10
-5

pann = 10
-6

pann = 0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  500  1000  1500  2000  2500

[l
(l
+

1
) 

C
lE

E
 /
 2

π
] 
(µ

K
2
)

l

pann = 10
-4

pann = 10
-5

pann = 10
-6

pann = 0

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  500  1000  1500  2000  2500  3000

[l
(l
+

1
) 

C
lB

B
 /
 2

π
] 
(µ

K
2
)

l

pann = 10
-4

pann = 10
-5

pann = 10
-6

pann = 0

Figure 6.4: The effect of DM annihilations on the TT (top), EE (centre) and BB (bottom)

components of the CMB angular power spectrum, where the annihilations are characterised by

the parameter pann ≡ feff 〈σv〉/mDM in units of [m3 s−1 kg−1] (pann = 0 corresponds to no DM

annihilations). For the standard cosmological parameters, we use the ‘Planck + lensing’ best-fit

values from Ref. [11].
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The latest CMB measurements from the Planck satellite set the strongest

constraints on energy-injection from DM to date: pann ≤ 1.9× 10−7 m3 s−1 kg−1 at

95% CL (‘Planck + lensing’) [11].
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Figure 6.5: The effect of DM annihilations on the free electron fraction xe, where the annihilations

are characterised by the pann ≡ feff 〈σv〉/mDM in units of [m3 s−1 kg−1] (pann = 0 corresponds to

no DM annihilations). For the standard cosmological parameters, we use the ‘Planck + lensing’

best-fit values from Ref. [11].

6.3 Electron Sector Thermal Production

Given the strong constraints in the neutrino sector, it makes sense to examine the

alternative scenario of thermal production entirely through e+e− annihilation. To

accomplish this, the annihilation cross section must be suppressed at late times. A

p-wave term, which can be obtained by e.g. the exchange of a Z ′ mediator [154], can

lead to such a suppression, proportional to the velocity squared: 〈σv〉e+e− = a+ bv2.

Assuming bv2 ' 3× 10−26 cm3 s−1 at freeze-out, the velocity-suppressed p-wave

term is too low by over an order of magnitude to reproduce the 511 keV signal.

This means that the constant a ∼ 10−30 cm3 s−1 term is still required. The dark

age constraints on the neutrino sector scenario therefore also apply directly to a.

However, at present, CMB limits cannot say anything about b due to the low thermal

velocities after recombination [324].
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Rather than increasing the energy density in the neutrino sector as it becomes

non-relativistic, a coupling to electrons leads light DM to transfer entropy into the

visible sector [331]. Fixing ργ to the observed value, this translates to an effective

decrease of entropy in the neutrino sector and thus a lower Neff . In contrast with

the previous case, this gives rise to an increase in YP but to a lower D/H, owing

to the different evolution of the baryon-to-photon ratio η [240]. Analogously to Eq.

(6.2.1), the value of Neff at recombination (T � mDM) becomes:

NEquil,e
eff ' 3.046

[
1 +

gDM

2

7

22
F (yν |Tdec,ν )

]−4/3

, (6.3.5)

where F (y) is given in Eq. (6.2.2). Thus, one obtains a reduction in the relative

energy density of the neutrino sector, leaving an overall lower radiation component

of the universe. Once again, this is illustrated in Fig. 6.2.

We neglect DM–electron scattering during recombination as the scattering cross

section would need to be significantly larger than the annihilation cross section to

have a noticeable effect on the CMB acoustic peaks [191, 192].

6.4 New Constraints on Light WIMPs

In order to self-consistently evaluate the effects of each of these scenarios and

predict the resulting CMB angular power spectra, the physics described in

Secs. 6.2 and 6.3 must be embedded into a CMB code that also accounts for a full

recombination calculation. Measurements of the temperature and polarisation

angular power spectra from Planck already constrain extra ionisation, damping,

and modifications of the universe’s radiation content to unprecedented accuracy in

the ΛCDM model. We thus confront the results of the Boltzmann code class with

the data from Planck, where we include DM–neutrino scattering (where

applicable), in addition to the changes in Neff as a function of the DM mass, and

the effect of energy injection in the dark ages due to ongoing DM self-annihilation.

To account for changes in the BBN era, we include in class the modified YP due

to light DM. To this end, we modify the PArthENoPE [332] code to compute YP

and D/H for arbitrary {mDM, Ωbh
2} pairs. We also update the d(p, γ)3He, d(d, n)3He
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and d(d, p)3H reaction rates in PArthENoPE with more precise determinations

[333], and take a fixed neutron lifetime τn = 880.3 s [334]. The effects of hydrogen

ionisation and photoionisation are included in the code but we disregard the impact

of helium ionisation since it has a negligible impact on the CMB anisotropies [318].

For each scenario, we perform a Markov Chain Monte Carlo (MCMC) search

using the Monte Python [173] code. This is in contrast with Refs. [240, 328, 329],

who compared predicted changes in Neff directly with derived ΛCDM parameters

from Planck. By recomputing the full recombination history and comparing directly

with the measured angular power spectra, we are able to fully account for the effect

of degeneracies between cosmological parameters.

The MCMC searches include the six base ΛCDM parameters (H0, ΩDMh
2, Ωbh

2,

As, ns, τreio). In the neutrino sector scenario, we add the DM mass mDM, the energy

injection rate pann [see Eq. (6.2.4)] and a parameterisation of the DM–neutrino

scattering cross section

u ≡
[
σDM−ν

σTh

] [ mDM

100 GeV

]−1

, (6.4.6)

where σTh is the Thomson cross section. The scattering term u must be marginalised

(integrated) over, along with the ΛCDM parameters. In the electron sector case,

the additional parameters are simply mDM and pann. Since both u and pann can vary

by many orders of magnitude, we adopt logarithmic prior distributions: log(u) ∈

{−6, 0} and log(pann) ∈ {−8,−2}. For simplicity, we use the approximation of

massless neutrinos.

For our CMB analysis, we use the “Planck + lensing” 2015 dataset, which

includes the latest TT, TE,EE and low-` polarisation data [42]. The addition of

BAO, supernovae data and an H0 HST prior do not significantly change our

posterior distributions. As explained in Ref. [11], this is due to degeneracies with

the other cosmological parameters such as As and ns at high multipoles.

Before turning to our main results, we first follow the approach of

Refs. [238–240, 328, 329] and show constraints from direct measurements of YP and

D/H based on changes during BBN. To this end, we employ the recommended
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PDG determinations [334]:

D/H = (2.53± 0.04)× 10−5 ; (6.4.7)

YP = 0.2465± 0.0097 . (6.4.8)

We include a 2% theory error on our D/H calculation, while the experimental error

on YP is dominant [333]. We note that previous studies have used a higher

determination of YP = 0.254 ± 0.003 [335]. This value is incompatible with the

best-fit ΛCDM parameters obtained by the Planck experiment at more than 3σ.

However, when it is combined with our CMB analysis, it has very little effect on

our mass bounds. We thus use the recommended PDG value given above.

The 68% and 95% CL allowed regions are shown as blue bands in Fig. 6.6.

Horizontal bands show the allowed 68% and 95% CL posterior regions for Ωbh
2

from Planck data for a real scalar WIMP (orange) and a Dirac fermion WIMP

(green). The other possibilities (complex scalar, Majorana fermion or vector) would

be more constrained than the real scalar case. For clarity, we do not show them.

In each case, only the overlapping regions shown in grey are allowed. Therefore,

mDM & 8 MeV is required for Dirac DM, in conflict with the spectral constraints

(mDM . 7 MeV) from INTEGRAL/SPI observations [307, 310, 311]. In the real

scalar case, this restriction is relaxed to mDM & 4 MeV (electron sector) and mDM &

0.8 MeV (neutrino sector).

The contours in Fig. 6.6 are in general agreement with those presented in Refs.

[240, 328, 329] for a Majorana fermion DM particle, bearing in mind the updated

BBN and CMB data used in our analysis. While Fig. 6.6 gives an indication of

the combined power of CMB and BBN constraints, our MCMC scan using CMB

observables alone provides the most robust exclusions, especially given the significant

differences between primordial abundance measurements. We therefore turn to these

results.

Fig. 6.7 shows the marginalised posterior limits from our MCMC for each

scenario, compared with the cross section required to explain the 511 keV line with

an annihilating WIMP. The hatched bands show the values of 〈σv〉e+e− (= a in the

electron sector case) that fit the 511 keV intensity and morphology, including the
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Figure 6.6: Constraints on the baryon content Ωbh
2 versus the light DM mass mDM for the

four considered scenarios. In orange/green, 68% and 95% CL regions allowed by Planck; in blue,

68% and 95% CL allowed regions from direct measurements of YP and D/H. Only overlapping

regions shown in grey are compatible with both datasets. BBN requirements on a Dirac fermion

are in tension with the restriction that mDM . 7 MeV to avoid overproduction of bremsstrahlung

gamma-rays [307, 310, 311]. An extensive MCMC analysis of CMB data is necessary to firmly rule

out all possibilities (see Fig. 6.7).

±2σ uncertainty from the DM flux, halo shape and stellar disk component [306].

The upper black band shows the best-fit region for an Einasto DM profile; the

corresponding band for an NFW profile, which gives a significantly worse fit to the

signal’s morphology, is shown below it, in blue.

The grey contours show the 68% and 95% CL constraints on 〈σv〉e+e− alone, due

to ionisation of the IGM as described in Eq. (6.2.3). Their shape is due to the

mass-dependence of feff (see Fig. 6.3), leading to the requirement that mDM . 1.5

MeV (Einasto) and mDM . 5 MeV (NFW) at 95% CL to explain the signal.
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Figure 6.7: The DM annihilation cross section into e+e− as a function of the mass of a DM

particle that was thermally produced via the neutrino sector (top) and the electron sector (bottom).

Hatched bands show the values of 〈σv〉e+e− vs. mDM that are necessary to explain the 511 keV

line for Einasto (black, upper) and NFW (blue, lower) DM density profiles, including the ±2σ

uncertainty from the DM flux, halo shape and stellar disk component [306]. In both panels, values

of 〈σv〉e+e− above the grey regions are excluded by Planck CMB limits on energy injection in

the dark ages [42]. The coloured contours correspond to the 68% and 95% CL regions that are

allowed by Planck CMB data for a real scalar WIMP (orange) and a Dirac fermion WIMP (green).

Bounds on the DM mass from the entropy transfer [Eqs. (6.2.1) and (6.3.5)] constrain the coloured

regions from the left, while bounds from late-time energy injection on 〈σv〉e+e− constrain them

from above. The combination of these effects allows us to rule out the DM mass range that is

required to explain the 511 keV line.
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This constraint is compatible with the most recent limit on pann given by the

Planck collaboration [11]. These bounds are independent of the relic density

requirement, which we apply next, and therefore, directly constrain both thermal

and non-thermal DM.

In both the neutrino and electron scenarios, the regions allowed by Planck CMB

observations (shown in orange and green) lie at DM masses and cross sections into

e± that are respectively too heavy and too weak to reproduce the INTEGRAL/SPI

signal. In all cases, the required annihilation rate to produce the positronium signal

is outside the 99% CL (3σ) containment region.

In the neutrino sector case, the lower bound2 at 95% CL on the WIMP mass

between 4 and 10 MeV (for gDM ∈ {1, 4}) is mainly due to the high sensitivity of

Planck at larger multipoles to changes in Neff and YP. In the electron sector, these

effects yield an even stronger bound, between 7 and 11 MeV at 95% CL. Combined

with the constraints on pann which limit the allowed regions from above, our results

show that a light self-annihilating WIMP cannot be responsible for the 511 keV

Galactic line without severe disagreement with CMB data.

6.5 Conclusion

The WIMP hypothesis requires an origin of the relic density of DM via thermal

freeze-out in the early universe. To simultaneously reproduce the Galactic 511 keV

line from positronium annihilation, the remaining branching fraction must be

“hidden” from Galactic and cosmological constraints. We have shown that the two

methods of accomplishing this are insufficient: i) thermal production via the

neutrino sector which, although invisible today, leads to a radiation component

that is too large for early universe observables; or ii) p-wave (velocity-suppressed)

production via the electromagnetic sector, giving too large of a reduction in the

universe’s radiation content.

2Note that these constraints would be slightly stronger if we had not marginalised over the

DM–neutrino scattering parameter u.
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More exotic scenarios exist; for example, eXciting dark matter (XDM) has been

explored in depth (see e.g. Refs. [336, 337]) as an alternative mechanism to evade

the suppressed self-annihilation cross sections. As pointed out by Ref. [338], our

dark ages constraints can also be applied to XDM; indeed, their forecasts show that

Planck should rule out XDM models with a mass splitting larger than ∼ 1.5 MeV.

Smaller splittings are possible but require tuning of the DM model.

We also note that one can mitigate the effects of entropy transfer and late-time

energy injection by adding an extra component of dark radiation, or an extra

source of photons or neutrinos between the epochs of neutrino decoupling and

recombination. Such a coincidence would weaken our constraints; however, this

type of model-building goes beyond the scope of our analysis.

In summary, the favoured DM explanation of the Galactic 511 keV line – an

anomaly that has endured for over four decades – is thus in fundamental

disagreement with the latest cosmological data. As the origin of the positrons in

the Galactic bulge remains unknown, an alternative DM model may yet be

responsible; however, the light WIMP hypothesis is no longer viable.



Chapter 7

Conclusion

The most incomprehensible thing about the world is that it is

comprehensible.

— Albert Einstein

The aim of this thesis was to study the potential interactions of dark matter (DM)

beyond gravity, to hopefully provide a step towards understanding its fundamental

properties. In particular, we have focussed on the scattering of DM with radiation,

i.e. photons (γCDM) and neutrinos (νCDM), and annihilations of DM in the weakly-

interacting massive particle (WIMP) paradigm. In Table 7.1, we summarise the

main constraints obtained in this thesis for the γCDM and νCDM scenarios using

observations of the cosmic microwave background (CMB) and large-scale structure

(LSS) of the universe.

Cosmological Observation γCDM [(mDM/GeV) cm2] νCDM [(mDM/GeV) cm2]

CMB . 2× 10−30 [Eq. (3.3.25)] . 6× 10−31 [Eq. (4.5.27)]

Large-Scale Structure . 4× 10−33 [Eq. (5.2.2)] . O(10−33) [Eq. (4.3.15)]

Table 7.1: A summary of the constraints derived in this thesis on the DM–photon (γCDM)

and DM–neutrino (νCDM) elastic scattering cross sections, in the case that they are constant

(temperature-independent), at 95% CL. The top row corresponds to the constraints set by Planck

CMB data [10]. The second row corresponds to constraints from LSS observations (the Milky Way

satellite abundance [288] in the case of γCDM and the Lyman-α forest [184] in the case of νCDM).

148
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In Chapter 3, we explored the impact of primordial DM–photon interactions on

the evolution of density perturbations and in particular, the CMB angular power

spectrum C`. Using the latest data from Planck, in combination with a modified

version of the Boltzmann code class, we derived upper limits on the elastic

scattering cross section for both constant and T 2-dependent scenarios:

σDM−γ . 2 × 10−30 (mDM/GeV) cm2 and σDM−γ,0 . 2 × 10−39 (mDM/GeV) cm2,

respectively (at 95% CL). These constraints are importantly model-independent as

one does not need to specify whether DM is annihilating, decaying or asymmetric.

We also highlighted the effect on the polarisation spectra and matter power

spectrum P (k), showing that forthcoming data from CMB polarisation

experiments (provided an excellent knowledge of the foregrounds) and LSS surveys

will help to both constrain and characterise the dark sector.

In Chapter 4, we presented analogous constraints for DM–neutrino interactions.

We showed that Planck data limits the DM–neutrino scattering cross section to be:

σDM−ν . 6 × 10−31 (mDM/GeV) cm2 and σDM−ν,0 . 2 × 10−40 (mDM/GeV) cm2,

for the constant and T 2-dependent cases, respectively (at 95% CL). By simulating

a next-generation CMB experiment, we found that one could only weakly improve

on the current sensitivity. The strongest limits are currently set by observations

of the Lyman-α forest, demonstrating the power of LSS surveys in probing such

“invisible” interactions. Restricting ourselves to the mildly non-linear regime, future

data from the DESI experiment alone could improve the current Planck limits by an

order of magnitude and provide a percent-level measurement of the cross section for

values above that limit. Finally, we showed that thermal MeV DM with a constant

scattering cross section naturally predicts (i) a cut-off in the P (k) at the Lyman-

α scale, (ii) an enhancement of the Hubble rate H0 and the effective number of

neutrino species Neff , and (iii) the possible generation of neutrino masses.

In Chapter 5, we investigated the impact of DM–radiation interactions on the

abundance and structure of the Milky Way (MW) satellite galaxies. By performing

the first accurate cosmological simulations of such scenarios, we found a new means

to reduce the population of MW subhaloes and thus solve the “missing satellite”

problem, without the need to abandon CDM. Furthermore, the resulting constraints
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on the DM–photon scattering cross section are orders of magnitude stronger than is

possible from linear perturbation theory considerations. We also showed the impact

of DM–radiation interactions on the structure of massive subhaloes. Increasing the

interaction cross section reduces the mass enclosed within a given radius in the

subhaloes, which alleviates the “too big to fail” problem. When combined with the

reduction in the number of MW subhaloes, we found that a model of γCDM with

a (constant) elastic scattering cross section of σDM−γ ' 1× 10−33 (mDM/GeV) cm2

can simultaneously solve both of these small-scale problems.

Finally, in Chapter 6, we addressed an excess of 511 keV gamma-rays that has

been observed from the Galactic centre of the MW for four decades and is

uncorrelated with known astrophysical sources. DM in the form of light (. 10

MeV) WIMPs annihilating into electron–positron pairs has been one of the leading

hypotheses of the observed emission. However, given the small required cross

section, ∼ 10−30 cm3 s−1, a further coupling to lighter particles is required to

produce the correct relic density. We showed that the two methods of

accomplishing this are insufficient: i) thermal production via the neutrino sector

which, although invisible today, leads to a radiation component that is too large

for early universe observables; ii) p-wave (velocity-suppressed) production via the

electromagnetic sector gives too large of a reduction in the universe’s radiation

content. Using these results, we showed that the light WIMP explanation of the

511 keV excess is ruled out by the latest cosmological data for both

Navarro–Frenk–White (NFW) and Einasto DM density profiles, suggesting an

astrophysical or more exotic DM source of the signal.

Our results have shown that one can effectively use cosmological observations to

probe the intrinsic properties of DM. Furthermore, interactions beyond gravity may

be essential to make predictions of DM in simulations of structure formation. The

DM puzzle remains one of the key challenges faced by both the particle physics and

cosmology communities; however, knowledge of its nature will undoubtedly provide

us with new and exciting realms of physics in the future.
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