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Abstract 

In this work, the prototype of a Durham all-sky camera (DAC) was designed 
and constructed for the purpose of monitoring the night sky of Durham. The DAC 
consisted of a Fujinon fish-eye lens coupled to a monochrome 640-by-480-pixel CCD 
camera (DMK-21BF04 model from the ImagingSource) housed in an 8-inch Perspex 
dome. After construction, the images were taken of the night sky in order to 
determine the properties of DAC. The field of view of the DAC was 185˚ at average 
scale of 0.2˚ per pixel. 

 The astrometric characteristics of the camera were investigated by measuring 
the relationship between star positions on the 3-D celestial hemisphere and their 
projected 2-D pixel positions on the DAC CCD images. The derived relationship (the 
mapping) of the stars onto the CCD images achieved an average uncertainty of 1 
pixel. For the reverse process, the uncertainties were 0.2˚ in elevation and 0.7˚ in 
azimuth. The relationship was tested for the robustness and was found to be stable at 
the level of 1 pixel.  

The photometric characteristics of the camera were studied by investigating 
how well the magnitude of a star could be measured by DAC. The results showed 
that, under the sky background condition in Durham, the camera was able to 
determine a 6th magnitude star at zenith within 1 magnitude uncertainty, but a 4th 
magnitude star within the similar uncertainty when the stars were at an elevation of 
30˚. The brightness of the sky background of Durham was determined to be 18 
magnitudes per square arcsecond. Subsequently, the comparison was drawn between 
the sky background in Durham and in Hawaii, thereby estimating that the accuracy of 
measuring a 6th magnitude star would be about 7 times better if the camera was 
deployed under the darker sky background of Hawaii. 
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Chapter 1    

Introduction 

1.1   All-Sky Camera 

An all-sky camera, commonly abbreviated to ASC, is a camera, which has a 
field of view of about 180˚ and is capable of presenting an image of the whole sky on 
a single frame, as indicated by its name. The images, or the all-sky images as being 
normally called, taken by such a camera has a round shape, with the centre coinciding 
at zenith and the edge imaging the horizon.  

Two optical designs are commonly used for all-sky cameras. One uses a fish-
eye lens attached to a camera and the other has a convex mirror with the camera 
suspended above looking downwards. Both types can achieve a field of view of 180˚. 
The comparison drawn between the two shows that the mirror configuration losses the 
sky at zenith since it is blocked by the camera; however, the light losses are relative 
smaller and costs less than the fish-eye lens configuration. For both configurations, a 
CCD sensor is very often used as the imager on today’s all-sky cameras. 
 The primary function of an all-sky camera is being as a sky monitor as a result 
of the special images it can produce. The meteorologists may like to know the 
weather condition without actually going outside themselves, or the star observers 
may feel unpleasant when frequently getting their eyes adapted to the dark to identify 
the stars. These problems can be solved by implementation of an all-sky camera.  
 An all-sky camera is generally capable of presenting the live images of the sky 
while keeping the records of the sky views from the past. It makes the camera 
extremely useful when people want to trace the phenomena, like the meteor showers 
or aurora, or to track the objects, like a star or satellite. Furthermore, it reduces the 
difficulty of quantitative analysis of such a sky phenomenon and makes the 
measurement easier to carry out. An all-sky camera has been widely used in many 
institutes and observatories in the world.  
 Here are some examples. An all-sky camera was implemented to monitor the 
meteor trails at the Cloudbait Observatory in the US①. In Korea, people used it to 
observe the mesospheric waves②. At Michigan Technological University, it was used 
to detect the bright optical transient③. In Finnish Meteorological Institute, three all-
sky cameras were used to study the auroral electrodynamics at mesoscale④.  
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1.2    About The Work of Making An All-Sky Camera 

In the previous section, we have introduced the background of an all-sky 
camera. Based on the functions that such a camera can perform, my work was carried 
out to construct a prototype of the all-sky camera (Chapter 2) and to investigate its 
performance after the real-time operation (Chapter 3 for the real-time operation).  

Two parts of analysis were carried out for the investigation of the performance 
of the camera. The first analysis was done to achieve the mapping between the 3-D 
celestial hemisphere, i.e. the sky dome, and its 2-D image, thereby empirically 
establishing a numerical relation (Chapter 4). The second part of the analysis was to 
investigate how well the brightness of the stars could be measured by the camera 
under the sky background condition in Durham (Chapter 5). In the end, the possible 
methods of making an improvement on the camera’s performance were discussed 
(Chapter 6).    

Since it was made in Durham, the prototype was named DAC to stand for 
Durham all-sky camera. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
①. More information is available at the Cloudbait Observatory website at 
http://www.cloudbait.com/projeccts/allskycamera.html.  
②. Details can be found from Observation of Mesospheric Waves with An All-Sky Camera in Korean 
Peninsula by J-K. Chung, Y. H. Kim and Y-I. Won. The abstract is available at 
http://adsabs.harvard.edu/abs/2003AdSpR..32..825C.  
③. The relevant paper is Transient Detection Using Panoramic All-Sky Cameras by Shamir and Lior. 
A copy of the abstract can be found out at http://www.ingentaconnect.com.     
④. The detailed information is available on the website of the Finnish Meteorological Institute at 
http://www.geo.fmi.fi/MIRACLE/ASC.   
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Chapter 2 

Design and assembly of Durham all-sky 
camera 

2.1   Type of Design 

Taking account of the purpose of utilization, price, ease of construction and 
flexibility of modification, the prototype of the Durham all-sky camera (DAC) was 
designed to be a CCD camera implementing a fish-eye lens. It avoids the obstacle to 
viewing the central sky, in contrast to the mirror configuration (Chapter 1), while the 
central sky is darker and more stars are detectable than the horizon in a city where the 
sky background is contaminated by the streetlights.  

2.2 Lens and Camera 

2.2.1 General information 
The DAC lens was the FUJINON YV2.2✕1.4A-SA2 1/3-inch vari-focal lens. 

The field of view was set to the maximum, i.e. 185˚, after the construction of DAC. 
The lens contains an inner iris driven by the switch of the connected camera, so it 
keeps closed when the camera is set off, thereby protecting the camera sensor from 
exposure to the sunlight when not being put into operation in the daytime.  

The DAC camera was the DMK–21BF04 from IMAGINGSOURCE. It 
implements a Sony CCD sensor (ICX098BL), which is ¼-inch in format and has 640-
by-480-pixel spatial resolution. The operating temperature indicated on the manual is 
between -5˚C and 45˚C, which is suitable for DAC to operate under the 
environmental condition in Durham. The camera is able to produce live monochrome 
images progressively.    

2.2.2   Operating parameters 
The camera has its own operating software, IC Capture 2.0, installed on a 

computer, by which the operating parameters of the camera were set. The parameters 
consist of the camera’s frame rate, exposure time, gain, brightness and gamma.  

The frame rate determines how fast an image is made and the exposure time is 
the time when the sensor is active during each frame. The camera in DAC has the 
exposure time ranging from 1/10,000 to 30 seconds. The gain and brightness 
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parameters are able to intensify the image contrast by multiplying every pixel by a 
constant and by adding a constant to all pixels, respectively, as indicated in the 
program instruction; however, none of them has a unit shown on the program or 
operating instruction. Parameter gamma has nothing to do with the quality of the 
image but it improves the viewing quality of a display by neutralising the nonlinearity 
of the monitor, as explained on the instruction.  

2.2.3   Investigation in dark current 
Dark current is a characteristic feature of a CCD camera. It affects the image 

quality and determines the performance of the sensor. Therefore, the images of dark 
current of the camera of DAC were investigated in order to obtain a general idea 
about quality of the camera we used. 

In Fig. 2.1 shows a 3-D plot of the dark frame, which was made by covering 
the lens with a cap so as to avoid any light coming into the camera. The exposure time 
of the dark frame was set to be 14 seconds while other parameters were set to zero. 
The spikes (Fig. 2.1) indicate the pixels that had signal response. The histogram of the 
pixel values of the frame is shown in Fig. 2.2, on which the peak falls on 0 ADU. The 
pixels of the value 0 ADU indicates they were not affected by the dark current. Such 
pixels were found to have a normalised frequency of 0.995, i.e. being 99.5% of total 
number of pixels on the sensor. It implies the sensor’s performance was reasonable 
since we expect the majority of the pixels not to respond under the dark-frame 
circumstances. From Fig. 2.1, we can see a hot corner of the dark current, being at the 
bottom left of the frame.  

 

 
 
Fig. 2.1     The 3-dimentional plot of a dark frame. The spikes show the image position of the pixels 
that had signal response. A high spike corresponds to a strong signal.  
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Fig. 2.2    The histogram of the pixel values of the dark frame. The normalised frequency of the pixels 
of 0 ADU is about 0.9951. 
 

The subsequent investigation was done into how the number of the pixels of 0 
ADU changes with the camera’s operating time, exposure time, gain and brightness 
parameters, respectively. In Fig. 2.3, the vertical axis, labelled normalised frequency 
of 0 ADU, indicates the percentage of the total number of pixels being 0 ADU, but 
the percentage was expressed in the normalised frequency. In other words, every 
point in a graph of Fig. 2.3 corresponds to a histogram like Fig. 2.2, and only the 
normalised frequency of the pixels of 0 ADU was considered. The result shows, 
during one-hour operation, the normalised frequency of 0 ADU pixels fluctuated 
slightly around 0.995 (Fig. 2.3(a)), which indicates the number of the pixels 
unaffected by the dark currents did not change with the operating time, thereby 
implying the activity of the dark currents on the sensor was independent of the 
camera’s operating time.  
 In Fig. 2.3(b), it shows the number of the pixels unaffected by the dark 
currents fell exponentially with the increase of the exposure time of the camera. It is 
reasonable since the sensor became hotter and hotter during a long exposure, thus 
triggering more and more dark currents. As a result, an exposure time below 20 
seconds was considered to be adequate to use.  
 The result of how the dark currents fluctuating with the gain parameter (Fig. 
2.3(c)) shows the increase of the gain stimulated the growth of the dark currents so 
that the normalised frequency of the unaffected pixels dropped down to about 0.1 
when gain was maximum. Since no instruction of the gain parameter was found, it is 
unclear what the gain really indicates; however, according to the result, the gain 
seems to behave similarly to the intensifier gain①, which produces noise image but 
allows the exposure time to be short. 
 
①. More information is available on the website of Space Physics Research Group, University of 
California, Berkeley, at http://sprg.ssl.berkeley.edu/atmos/sondre.html.   
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Fig. 2.3    The normalised frequency of 0 ADU pixels against (a) the operating time of the camera, (b) 
the exposure time and (c) the gain parameter, respectively. These graphs show how the number of the 
unaffected pixels by the dark currents changed with each setting parameter. 

Similar to gain, the exact indication of the brightness parameter on the 
operating software is also uncertain. In Fig. 2.4 shows the analysed result, on which 
the vertical axis represents the pixels value that has the highest normalised frequency, 
i.e. the counts of the majority of the pixels. From Fig. 2.4, we can see that the counts 
of the majority of the pixels went up with increase of the brightness parameter, which 
implies the activity of the dark currents was intensified. Therefore, we conclude that 
the magnitude of the dark currents increases with the increase of the brightness 
parameter. 

 

 
Fig. 2.4    The increase of the dark currents with respect to the brightness parameter. The vertical axis 
shows the pixel value of which the normalised frequency of the number of pixels is 0.99. 
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Along with the investigation in the dark currents, 7 hot pixels were found. 
Their pixel values rose sharply with the increase of the exposure time, gain or 
brightness parameter. The image positions of the hot pixels were identified to be (368, 
317), (422, 11), (56, 30), (382, 332), (87, 402), (224, 471) and (13, 595).  

In conclusion, for a better image quality, the settings of the exposure time, 
gain and brightness parameter should not exceed or be far beyond 20 seconds, 400 
and 120, respectively. In order to discount the pixel counts of the dark currents, a dark 
frame should be subtracted from the images. 

2.3 Housing and Assembly 

The camera was housed inside an aluminium case on top of which was a Perspex 
dome with a diameter of 8 inches. The case was earthed and a circular rubber mat was 
placed between the dome and case to seal the connection between the two rigid bodies 
so that the water droplets or dusts cannot easily get through.  

The original design of the camera case was attached in Appendix A. Although 
several other designs were made, only this one was accepted on account of ease of 
manufacture. The case was designed with extra inner space for the add-ons to fit in 
since other devices may be needed for the improvement of the camera’s performance. 

The silver box inside the case (Fig. 2.5(a)) was a control box, which was used to 
deliver the signals between the lens, camera and a control site. The signals were 
transmitted to the control set via a FireWire cable. After construction, DAC was fixed 
on the roof of the Physics Department (Fig.2.5 (b)).  
 

 
 

 
 
Fig. 2.5   The pictures of the Durham all-sky camera. In (a), it shows the components inside the case. In 
(b) shows what the camera looks like after construction. 
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Chapter 3    

General implementation 

3.1   Imaging by DAC 

 After camera construction, a set of all-sky images were taken. Three of them 
are shown in Fig. 3.1 below. The white structures, at the bottom right and left of the 
images, are the west and east domes, respectively. The structure between them along 
the edge is a corridor with the entrance to the roof. From these images, we can see 
some parts of an image, being the side view of the sky, were lost. It was the result of 
the size of the image focal point being larger than the CCD sensor. As described in 
Chapter 2, the camera implements a 1/3-inch vari-focal lens but a ¼ -inch sensor. 
However, it does not affect much on an observation. Because the night sky near the 
horizon, as shown on the edges of an image, is illuminated brightly by the streetlights. 
At a long exposure, the pixels on these areas saturate thereby revealing little 
information about the sky views.  

It was found that a long exposure, about 14 or 15 seconds, was essential for 
making a good image when the sky is clear (Fig. 3.1(a)). A trade-off is that this long 
exposure allows more stars at zenith to be detected at the expense of saturating the 
pixels around edge. A short exposure time, 12 seconds, was necessary for an 
observation at a cloudy night (Fig. 3.1(b)). The clouds reflect streetlights, thus 
appearing to be very bright on an image. The even shorter exposure, about 9 or 10 
seconds, was needed for making an image on a night when the moon was in the night 
sky (Fig. 3.1(c)). This shorter exposure was essential to reduce the ghosting and 
scattered light of the moon from dominating the image. The gain and brightness 
parameter were set at 232 and 0, respectively, when taking the images. 
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3.2   Image Features and Factors Causing Defects 

 In Fig. 3.2 shows the enlarged images of several stars from the same frame. 
The position of every star in the figure was arranged according to their relative 
positions on the frame. It implies, as a result of the fish-eye view, the star images 
were distorted along the radial direction, and the distortion became large when a star 
was further away from the zenith.  
 
 

N 

W E 

S 

Fig. 3.1   The all-sky images taken by 
DAC. The images show a clear night, a 
cloudy night and a night when the moon 
was in the sky in (a), (b) and (c), 
respectively. The orientation of the 
images was indicated in (a). The images 
were taken under different exposure 
time. The dark region at the bottom of 
each image shows the sensor area where 
the image focus did not fall on. 
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Fig. 3.2   The enlarged image of stars, of the same frame, distorted as a result of the fish-eye view. It 
seems that each point star was stretched along the radial line through it. The collection of stars shown 
above was from the frame taken at 22.00 on 4 April 2008. 
 
 

 
The image of a hot pixel or dust on a single frame is very likely to be confused 

with the image of a star (Fig. 3.3 & 3.4). However, they do not move, like the stars, 
from frames to frames. Consequently, we can distinguish between a star and a hot 
pixel or dust by checking their positions on the subsequent frames. Another way to 
distinguish them is by the feature of the star images. A star image occupies several 
pixels with the brightest one being around the middle; by contrast, a hot pixel usually 
appears to be a single bright pixel and the image of dust has an irregular shape. 
However, it may cause confusion when a star was partially blocked by the dusts or 
when its image moves near off a hot pixel. 

 Apart from the hot pixels and dusts, it was found that the water vapour 
condensation is another factor causing the image imperfection. After several hours’ 
operation in a winter night, the vapour was condensed on the dome, thus partly 
blocking the sky, scattering the streetlights and making the images brighter. 
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Fig. 3.3   The image of stars and hot pixels. The two hot pixels shown in the figure were at the pixel 
position of (368, 371) and (382, 332), respectively. 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.4   The enlarged image of Plough. The arrows point to the image of the same piece of dust on the 
dome or lens. The two images were made about 1-hour apart. The image on the right was earlier in 
time than the left one. 
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3.3   Conclusions 

 In this Chapter, we have shown some all-sky images produced by DAC and 
described the features of the images while discussed the factors that may affect the 
image quality. We draw the conclusion that the camera performed well and is capable 
of monitoring the night sky of Durham despite slight image loss at horizon. 
 In comparison with the images taken by a different all-sky camera 
implemented at a different observing site, like the one from the Institute for 
Astronomy in the University of Hawaii①, the DAC images presented less stars. 
However, it does not necessarily mean that DAC has a relatively lower resolution 
than the all-sky camera implemented at Hawaii. The depth of the sky or the number of 
the stars that can be detected is subject to the brightness of sky background. In the 
following chapters, we will show the astrometry and photometry analysis of the DAC 
images, exploring the capabilities and function of DAC and demonstrating the reason 
why less stars were seen by DAC.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
①. Their all-sky images can be seen at http://uh22data2.ifa.hawaii.edu/public/allsky.  
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Chapter 4 

Astrometry analysis 

4.1   Purpose and Introduction 

In the astrometry analysis, the mapping of the points between the 3-D celestial 
hemisphere and a 2-D image was carried out. It aimed to predict the image position of 
a star mathematically when its sky position was known, and vice versa. As a result, a 
star can be quickly identified on an image and we are able to predict its image 
position at any time, thus tracking the star whenever necessary. The mapping was 
considered as an essential function of DAC and a primary step to the following 
analysis. In this chapter, we will introduce how the mapping was done empirically 
and show the results in the end. 

4.2   Theory and Method 

Depending on the applied coordinates, the position of a point (artificial) on the 
dome of the sky can be measured in terms of 

! 

RA /

! 

Dec  or 

! 

Az /

! 

El. The former change 
their values with time as the earth rotates but the latter are time-independent 
(

! 

RA /

! 

Dec  are fixed for a particular star but the artificial points on the sky dome were 
considered here). Since the pixel position of every point, in terms of 

! 

(x,y), on an 
image is also time-independent, it is possible to establish a mathematical relationship 
between the values of 

! 

Az /

! 

El and 

! 

(x,y), thereby mapping the points from the 3-D 
celestial hemisphere to the 2-D images. 
 Among all the image points that need to be mapped, i.e. those showing the 
view of the sky, two points are special and can be used as the reference. One is the 
pixel position of the projection of zenith, which indicates the position of the centre of 
an all-sky image; the other is the pixel position of the projection of a zero-azimuth 
point. Theoretically, the projection of the zero azimuth is a line formed by a set of 
zero-azimuth points; however, in practice, the image points are represented by the 
pixel positions, i.e. the integer points, and consequently only the point that gave the 
best accuracy of the position of a zero azimuth was considered. When the pixel 
positions of such two special points are found, the line of the projection of the zero 
azimuth can be determined by joining the two points together. Subsequently, the 
Cartesian coordinates (Fig. 4.1) can be set up for the relevant calculations. 
 The pixel position of zenith can be determined empirically by investigating the 
arithmetic relation between the zenith distance of the points in the sky and the pixel 
distance of their corresponding image positions. The zenith distance, 

! 

Z , of a point is 
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defined to be the smallest curvature of the line joining this point with the point of 
zenith on the celestial hemisphere. It follows 

! 

Z =
"

2
# El     (4.1) 

where 

! 

El is the elevation. The pixel distance, 

! 

P , of the corresponding image point is, 
therefore, the length of the projection of 

! 

Z  and is measured in the unit of pixels. The 
mathematical expression is 

! 

P = x " XZ( )
2

+ y "YZ( )
2     (4.2) 

where 

! 

(x,y) and 

! 

(X
Z
,Y

Z
) are the pixel positions of the point and the zenith, 

respectively. As shown in Eq. (4.2), the pixel distance of a point is dependent upon 
the choice of the image position of zenith. When such a position is properly selected, 
the pixel distance and the zenith distance of those points of high elevations can be 
approximated to have linear relations (Fig. 4.2); however, the relation is at best 
approximation of quadratics or higher power when the points of low elevations are 
added. Such a mathematical relation between the zenith and pixel distances was 
established, as the first step of mapping, by assuming the image position of zenith. 
The image position of zenith is, therefore, best represented by the pixel to which the 
relationship between the zenith and pixel distances holds under the smallest 
uncertainties of the pixel distance, 

! 

"P , and the zenith distance, 

! 

"Z . As a result, we 
can find not only the image position of zenith, but also an equation to convert 
between the zenith and pixel distances.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1    A schematic representation of an 
all-sky image. The white disk at the centre 
represents the image of the sky. The dark dot 
at the centre of the disk represents the pixel 
position of the zenith, 

! 

(X
Z
,Y

Z
). The star-

shaped symbol on the right hand inside of the 
disk represents the image of a star which is at 
the pixel position of 

! 

(X
S
,Y

S
). The bold solid 

line joining the pixel position of zenith with 
the star image indicates the pixel distance of 
the image point. The point, 

! 

(X
0
,Y
0
), 

represents the pixel position of a zero-
azimuth point. The angle 

! 

"  is the between 
the line of the projection of the zero-azimuth 
points and positive 

! 

x
2
–axis. The angle 

! 

"  is 
the calculated azimuth angle of the image 
point. The distances 

! 

"x  and 

! 

"y  represent 
the components of the pixel distance along 

! 

x - and 

! 

y - axis, respectively. The axis 

! 

x
2
 

intersects 

! 

y
2
 at the pixel position of zenith, 

and it is parallel to the 

! 

x -axis which 
intersects 

! 

y  at zero pixel position.  
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Fig. 4.2   The schematic representation of mapping from 3-D celestial hemisphere onto the 2-D image 
plane. The dash lines represent the light rays and the arrows indicate their travelling directions. The 
points A and a represent the sky position and image position of zenith, respectively. The points A, B 
and C locate on the same great circle of the celestial sphere. The points b and c are the image positions 
of B and C, respectively.  
 

 
The pixel position of the best approximate zero-azimuth point can be 

determined by assessing the differences between the actual values of the azimuth, 

! 

Az , 
of a set of points from the values, 

! 

"  (Fig. 4.1), calculated as a result of image 
projection. The image position of a zero-azimuth point is, therefore, the pixel to 
which the two values, 

! 

Az  and 

! 

" , agree well under the minimum uncertainty of 

! 

" . 
The value of the angle 

! 

"  of an image point can be obtained with the help of the pixel 
of the zenith. For example, as shown in Fig. 4.1, the image of a star is at the pixel 
position 

! 

X
S
,Y

S( ) and a randomly chosen pixel, 

! 

X
0
,Y
0( ), is assumed to be the pixel 

position of the best approximate zero-azimuth point. These two points and the pixel 
position of zenith, 

! 

X
Z
,Y

Z( ), form a triangle, and the angle 

! 

"  can be calculated by 
applying the cosine rule. As it is shown, the determination of the pixel position of the 
zero-azimuth point requires the pixel position of zenith to be determined first. As a 
result, the accuracy of the zero-azimuth pixel position, namely 

! 

"# , is dependent upon 
the accuracy of the pixel position of zenith. 

The determination of the pixel position of the zero-azimuth point serves for 
obtaining the value of angle 

! 

"  (Fig. 4.1) which defines the relative position between 
the line of the zero-azimuth points and positive 

! 

x
2
-axis and helps with the conversion 

between the Cartesian coordinates on an image and horizontal coordinates on the 
celestial hemisphere. The size of the angle 

! 

"  is fixed once the pixel position of the 
zero-azimuth point is determined since the other side of the angle is 

! 

x
2
-axis whose 

Celestial 
hemisphere (3-D) 

Image (2-D) 

A  B
B C 

a b c 

A  
B  

C  

D  E 

When 

! 

El is large, we have: 
if 

! 

2AB = AC , 

! 

2AD " AE ; 
hence 

! 

2ab " ac . Therefore, the 
curve 

! 

AC  and the line 

! 

ac  are 
approximately linearly related. 
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position only depends on the pixel position of zenith. Therefore, the angle 

! 

"  has the 
same uncertainty as the angle 

! 

" .  
When 

! 

"  is determined, we can define an angle 

! 

"  as the angle from the 
positive 

! 

x
2
-axis to the line joining the image position of a star with the image position 

of zenith. It follows 

! 

" = 2# $ % $ Az     (4.3) 

Hence, getting the x- and y- components of the pixel distance of the star (Fig. 4.1) by 

! 

"x = P # cos$

"y = P # sin$
     (4.4) 

and finally, the pixel position 

! 

X
S
,Y

S( ) of the star is 

! 

X
S

= X
Z

+ P " cos#

Y
S

=Y
Z

+ P " sin#
    (4.5) 

Therefore, the mapping between 

! 

Az /

! 

El and 

! 

X
S
,Y

S( ) has been achieved. The 
following flow charts summarise the procedure of the conversions. 
 
 
 

! 

El          

! 

Z              

! 

P  
 

! 

Az  

! 

"               

! 

"              

! 

X
S
,Y

S( )  
 

! 

X
Z
,Y

Z( ) 
 
 
 
 

! 

x,y( )    

! 

"                     

! 

x,y( ) 

! 

X
Z
,Y

Z( )       

! 

Az              

! 

P        

! 

Z         

! 

El   

! 

X
R
,Y

Z( )   

! 

"      

! 

X
Z
,Y

Z( ) 
 
 
Fig. 4.3    The flow charts showing the procedure of the conversions (a) from 

! 

Az /

! 

El  to 

! 

x,y( )  and (b) 
from 

! 

x,y( )  to 

! 

Az /

! 

El , respectively. The arrow indicates the flow direction and the content above the 
arrow tells the method used on each step. The 

! 

(X
R
,Y

Z
) denotes a random point on the positive 

! 

x
2
-axis. 

4.3   Mapping Process  

4.3.1   Points sampling 
It is not realistic to investigate all the points in the sky and their corresponding 

image positions so a set of points were sampled for investigation. The relation 
between the sampled points in the sky and their image projections was used to 
approximate the relation for all the points. The sampled points were chosen to be a 
group of stars since their 

! 

Az /

! 

El  and 

! 

x,y( ) were measurable. 

Eq. (4.1) 

Eq. (4.3) Eq. (4.5) 

P = f(Z)  
by analysis 

Z = f(P)  
by analysis Eq. (4.2) Eq. (4.1) 

By cosine 
rule 

(a)  

(b)  

Eq. (4.3) 
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Thirty-one stars were sampled from the all-sky image taken at 22:00 on 4 
April 2008 (Fig. 4.5). The number of the sampled stars, 31, was not particularly 
chosen but it was considered to be sufficient for achieving a reasonable accuracy of 
mapping which was preferred to be within 1 pixel or 1 degree depending on the 
direction of conversion. The stars were sampled over the whole image in order that all 
the image points can be well represented, thus producing a good mapping accuracy. 
Meanwhile, the sampled stars were chosen to be the ones showing a sharp image 
against the sky background so as to easily identify their pixel positions. The choice of 
the all-sky image for sampling was based on the preference of a clear sky image 
where many stars were presented, thereby having more choices of the sampled points.  

As shown in Fig. 3.2 in Chapter 3, the image of a star occupies a certain area, 
which consists of a number of pixels. The pixel position of a star was chosen to be the 
pixel that showed the highest pixel value among all the pixels making up the star’s 
image. The pixel-value centroid position was also considered and was investigated 
separately for a couple of points. It was found that it did not make a difference since 
the brightest pixel was so sharp, hence being heavily weighted, so that the centroid 
star image position fell on the brightest pixel. Regarding the minimum accuracy of a 
star’s image position being practically 1 pixel, the brightest pixel was chosen to be the 
image position of a star for the subsequent analysis. 

 

 
Fig. 4.5      The all-sky image taken by DAC at 22:00 on 4 April 2008. Thirty-one stars on the image 
were sampled to study the relation between the points on the hemisphere and their image positions on 
the image. 
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4.3.2   RA/Dec to Az/El 
 The problem of using the horizontal coordinates for mapping is that the values 
of 

! 

Az /

! 

El of a star was not directly measurable from any reference source. However, 
every star is associated with unique 

! 

RA /

! 

Dec  from which 

! 

Az /

! 

El  of the samples were 
converted. The equations for the conversion are not discussed here but they can be 
found from Astronomy with Your Personal Computer by P.Duffett-Smith. The 
terrestrial position of DAC was also needed for the calculation of 

! 

Az /

! 

El . In Fig. 4.5 
shows a flow chart of the conversion. 
 
 
 
 
 
 
 
 
Fig. 4.5      The flow chart of the process of converting RA / Dec to Az / El. The arrow indicates the 
flow direction. 
 

In the process, the values of 

! 

RA /

! 

Dec  of the sampled stars were read from 
Stellarium 0.9.0. The terrestrial position of the Department of Physics at Durham was 
taken to be 

! 

54°46'1''N  

! 

1°34'59''W , as being suggested by the Astronomy and 
Astrophysics Group of Durham University. 

4.3.3   Computation 
4.3.3.1   Computing the pixel position of zenith 

 As discussed in section 4.2, in order to determine the pixel position of zenith, 
we need to investigate the numerical relation between the zenith distance and pixel 
distance. The zenith distance of every sampled point is independent of the choice of 
the image position of zenith and they were calculated through Eq. (4.1) after 

! 

Az /

! 

El 
were obtained. In contrast, the length of a pixel distance depends on the choice of the 
image position of zenith. Therefore, in the process, a random pixel on the sampled 
image was chosen to be the image position of zenith and the pixel distances of the 
sampled points were calculated subsequently (Eq. (4.2)). To assess if the chosen pixel 
was appropriate to represent the image position of zenith, the pixel distance was 
plotted as a polynomial function of the zenith distance. Applying the least square fits, 
the best fit function of the plot was determined, thereby calculating the predicted 
values of the pixel distance of the samples. The deviations between the measured 
values and predicted values of the pixel distance were calculated subsequently, and so 
was the root mean square (RMS) of the pixel distance, 

! 

"P . This procedure was 
repeated for every pixel on the sampled image. The image position of zenith was at 
best approximate pixel position when the RMS was the minimum. The mathematical 
equation established according to this image point of zenith was, therefore, at best 
approximate description of the relation between the zenith distance and pixel distance. 
 Following a similar procedure, the zenith distance was expressed as a 
polynomial function of the pixel distance. The minimum RMS of the zenith distance, 

! 

"Z , was calculated and the image position of zenith was determined again at the 
minimum 

! 

"Z  to compare with the position determined at the minimum 

! 

"P . The 
polynomial function 

! 

Z  of 

! 

P  was used when converting 

! 

P  to 

! 

Z  while the polynomial 

Universal Time (UT) 

Sidereal Time (ST) Local Sidereal Time (LST) 
Longitude of DAC Latitude of DAC 

RA / Dec 

Az / El 
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function 

! 

Z  of 

! 

P  was for the reverse conversion. The two functions were all at best 
description of the mathematical relation between the zenith distance and pixel 
distance. The reason why two equations were used was because it was troublesome to 
simplify the high degree of polynomial factors when converting each reversely. 

In the process, the uncertainties of the measured values of the zenith and pixel 
distances were presumed to be insignificant and were neglected. It was because the 
uncertainties of 

! 

RA /

! 

Dec  and the uncertainties of other parameters for calculating 

! 

Az /

! 

El were extremely small, thus the uncertainty of the measured zenith distance; 
meanwhile, since the image position of a point was defined to be on a pixel, according 
to Eq. (4.2), it made the measured pixel distance of a star almost definite.  

A computer programme was written in MATLAB to carry out all the 
calculations, finding out the pixel position of zenith while determining the 
coefficients of the function 

! 

P  of 

! 

Z , and vice versa. A flow chart of the functions 
performed by the programme was shown below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 4.6     
The flow 
chart of the 
process of the 
computer 
programme. It  
shows what 
functions the 
programme 
performed 
and what 
output it 
generated. 
The arrows 
indicate the 
process 
direction.  
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4.3.3.2   Computing the pixel position of a zero-azimuth point 
The process of finding the best approximate pixel position of a zero-azimuth 

point was similar to that of finding the pixel position of zenith. However, this time, 
the linear relationship was established between the azimuth angles of the sampled 
stars and the azimuth image projection, i.e. the angle 

! 

"  (Fig. 4.1). The angle 

! 

"  was 
calculated geometrically, by use of the cosine rule, according to the triangle whose 
vertices were made up by the pixel position of zenith, the pixel position of a sampled 
star and the assumed pixel position of the zero-azimuth point.  

The deviation between the azimuth 

! 

Az  and the angle 

! 

"  was calculated for 
each sampled point, and the RMS of 

! 

"  was computed subsequently. The RMS of 

! 

"  
was used to assess the agreement between the two angles. The pixel to which the 
minimum RMS of 

! 

"  appeared was searched so as to determine the pixel position of 
the zero-azimuth point. 

Except the pixel occupied by zenith, every pixel within the all-sky image was 
assumed to be the pixel position of the zero-azimuth point and, one by one, they were 
used to calculate the angle 

! 

" . Another computer program was written to scan the 
points and to execute the calculations. After determining the pixel position of the 
zero-azimuth point, the value of angle 

! 

"  (Fig. 4.1) was calculated. 

4.4   Results 

4.4.1   Pixel position of zenith 
When the minimum RMS of the pixel distance or the one of the zenith distance 

was computed by scanning all the pixels to find the pixel position of the zenith, it was 
found the minimum RMS was also dependent on the value of the degree of 
polynomial. The analysed result of how the minimum RMS changed with respected to 
the degree of polynomial was shown in Fig. 4.6. The figure shows the minimum RMS 
of the pixel distance and the one of the zenith distance all decreased exponentially 
with the increase of the degree of polynomial. In Fig. 4.6(a), the minimum RMS of 
the pixel distance reached bottom and became steady with the increase of the degree 
of polynomial when the degree was three. The degree was four for the minimum RMS 
of the zenith distance, as shown in Fig. 4.6 (b). Despite the small RMS at the degree 
of polynomial 4, 5 and 6, the polynomial function 

! 

P  of 

! 

Z  and 

! 

Z  of 

! 

P  were both 
chosen to be 3 degrees polynomial for the usage of mapping. It was due to the 
concern that the polynomial was not well conditioned when the degree of freedom 
was further reduced. Meanwhile, the value of the minimum RMS of the pixel distance 
or the zenith distance at the 3 degrees did not differ significantly from the value at 4 
degrees. Therefore, the polynomial function with the degree of 3 was considered to be 
good enough for the purpose of mapping. 
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Fig. 4.7     The variation of (a) the minimum RMS of the pixel distance with respect to the degree of 
polynomial and (b) the minimum RMS of the zenith distance with respect to the degree of polynomial. 
In (a), the RMS was calculated when the pixel distance was expressed as a polynomial function of the 
zenith distance while, in (b), the zenith distance was a polynomial function of the pixel distance.   
 

At 3 degrees of the polynomial, the data was plotted and was shown in Fig. 
4.7. The minimum RMS of the pixel distance was 0.8 pixels. It was obtained when the 
pixel position of the zenith was at the pixel (256, 251). Since the image positions of 
sampled stars were defined for certain, the minimum RMS of the pixel distance was 
also the uncertainty of the image position of zenith. The function 

! 

P  in terms of 

! 

Z  
was derived to be 

! 

P = "1.57 #10
"4
$ Z

3
+ 2.43#10

"3
$ Z

2
+ 4.368 $ Z + 0.594   (4.6) 

The minimum RMS of the zenith distance at the polynomial of 3 degrees was 0.3 
degrees. It was also obtained when the pixel position of the zenith was at the pixel 
(256, 251), and the function 

! 

Z  was 

! 

Z =1.34 "10
#6
$ P

3
# 2.94 "10

#4
$ P

2
+ 0.251$ P # 0.627  (4.7) 

Therefore, the pixel position of zenith was determined to be the pixel (256, 251) 
which was used for all the subsequent calculations. 

(a) 

(b) 



 23 

 
Fig. 4.8     The plot of Z versus P when the RMSs of Z and P were minimum. The minimum RMSs of 
Z and P were 0.3 degrees and 0.8 pixels, respectively. The data was fitted by a polynomial function of 
the degree of 3. The pixel position of zenith was at point (256, 251) when the minimum RMS was 
obtained. 

4.4.2   Pixel position of a zero-azimuth point 
The minimum RMS of the angle 

! 

"  was 0.5 degrees and it was obtained when 
the pixel position of the best approximate zero-azimuth point was at the pixel position 
of (254, 196). In Fig. 4.9 shows the plot of the azimuth against the angle 

! 

"  when the 
minimum RMS of 

! 

"  was obtained. The angle 

! 

"  was calculated to be 92.1 degrees. 
As discussed in section 4.2, the uncertainty of the angle 

! 

"  is the same as the one of 
the angle 

! 

" , hence 

! 

" = 92.1± 0.5  degrees. 

 
Fig. 4.9   The plot of azimuth against the angle 

! 

"  at the minimum RMS of 

! 

" . The line was found to 
have the gradient value 1 and the y-intercept -0.006. The pixel position of the zero-azimuth used for the 
plot was (254, 196). 
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4.5   Mapping Tests 

4.5.1   Purpose and process  
There were two tests for mapping, one being aimed to assess the accuracy of 

mapping and the other being to test the mapping robustness. In order to assess the 
accuracy of mapping, the angle 

! 

"  and the equations (4.6) & (4.7) of the mapping 
results were written in a programme by which the conversion between 

! 

Az /

! 

El and 

! 

x,y( ) was carried. The tested points were chosen to be the positions of the same 
sampled stars on the all-sky image that was taken at a later time, 22:49, on the same 
day. As the Earth rotated, each star, except Polaris, moved to a new point which had 
the different values of

! 

Az /

! 

El and 

! 

x,y( ). Therefore, the tested points were unrelated to 
the derivation of the mapping functions and parameters. 

The predicted pixel positions of the tested star points, 

! 

X
S
,Y

S( ), were calculated 
and they were compared with the observed values, 

! 

x,y( ). The deviations of them 
were used to calculate the RMS of the predicted pixel positions along x- and y-axis, 
respectively. From the RMS value, it was able to see how accuracy the mapping was. 
Such a process was repeated when assessing the accuracy of the predicted 

! 

Az /

! 

El. 
When testing the robustness of mapping, a group of stars was sampled from 

another image being taken at 21:46 on 4 April 2008, and the mapping was repeated. 
The consequent functions and angle were used to predict the pixel position of the stars 
on an image. The predicted stars and the image were the same as the ones being used 
for the previous test of mapping accuracy, namely the image taken at 22:49 on 4 April 
2008. As a result, the difference between the predicted pixel positions of the same star 
was analysed to see how well the two predictions agreed. 

4.5.2   Results of testing 
The observed and the predicted pixel positions of every tested point were 

listed in the table shown in Table 4.1. The RMS of the predicted pixel position along 
the x-axis was calculated to be 1 pixels and so was the RMS along the y-axis. 
Therefore, when the azimuth and elevation of a point object in the sky is known, the 
pixel position of the object is likely to be found within 1 pixel of the predicted 
position. 
 The table in Table 4.2 shows the result of the predicted azimuth and elevation 
of the tested points along with the values that were converted from 

! 

RA /

! 

Dec . The 
modulus of the difference between the two sets of the azimuth and elevation were 
listed in the columns titled ∆Az and ∆El, respectively. The RMS of the azimuth was 
0.7 degrees and the RMS of the elevation was calculated to be 0.2 degrees.  
 
Table 4.1    The table of the pixel positions of the stars on the image taken at 22:49 on 4 April 2008. 
The x and y denote the observed pixel positions of the stars along x and y axis, respectively. The Xs 
and Ys are the predicted pixel positions. The deviations between two sets of values are listed under the 
column denoted by Δx and Δy.  

Stars x y Xs Ys Δx Δy 
Vega 41 112 41 112 0 0 

Capella 440 119 439 118 1 1 
Menkalinan 441 152 442 150 1 2 
Alphekka 51 288 51 289 0 1 

Pollux 457 275 457 274 0 1 
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Castor 453 255 454 253 1 2 
Arcturus 97 365 100 365 3 0 

Izar 84 319 86 319 2 0 
Eta Dra 133 154 134 155 1 1 
Polaris 253 98 253 98 0 0 
Seginus 115 283 116 284 1 1 
Edasich 141 186 142 187 1 1 
Pherkad 186 149 185 149 1 0 
Kocab 199 147 199 148 0 1 

Muscida 345 189 345 189 0 0 
Cor Caroli 189 316 190 316 1 0 

Alkaid 166 257 166 257 0 0 
Pi UMA 337 243 338 243 1 0 
Mu UMA 318 300 319 299 1 1 
23 UMA 314 198 315 198 1 0 

Lambda UMA 320 292 322 292 2 0 
Mizar 188 239 190 240 2 1 

Upsilon UMA 313 218 314 219 1 1 
Giausar 255 186 256 187 1 1 
Psi UMA 278 295 279 295 1 0 
Alioth 208 241 209 241 1 0 
Dubhe 272 218 272 218 0 0 

Chi UMA 249 282 250 282 1 0 
Megrez 231 240 232 240 1 0 
Merak 276 241 278 242 2 1 
Phad 244 255 245 256 1 1 

 
Table 4.2   The table of the measured and predicted values of Az/El of the sampled stars at the frame 
taken at 22:49 on 4 April 2008. The values listed under Az and El are obtained by converting RA/Dec. 
The Az(pred) and El(pred) show the predicted values as a result of mapping. Under  ∆Az and ∆El list 
the modulus of the difference between the converted and predicted azimuth and elevation, respectively. 

Stars Az El Az(pred) El(pred) ∆Az   ∆El 
Vega 55.09 23.30 55.02 23.17 0.07 0.13 

Capella 303.93 33.49 303.56 33.31 0.37 0.18 
Menkalinan 296.50 38.09 296.05 38.53 0.45 0.44 
Alphekka 98.30 39.03 98.13 38.99 0.17 0.04 

Pollux 261.51 40.83 261.09 40.75 0.42 0.08 
Castor 267.27 42.20 266.74 42.34 0.53 0.14 

Arcturus 123.89 43.47 123.54 42.74 0.35 0.73 
Izar 109.76 46.25 109.47 45.78 0.29 0.47 

Eta Dra 49.64 53.54 49.64 53.37 0.00 0.17 
Polaris 359.13 54.23 359.02 54.30 0.11 0.07 
Seginus 101.00 56.45 100.69 56.43 0.31 0.02 
Edasich 58.51 59.55 58.42 59.51 0.09 0.04 
Pherkad 32.49 61.28 32.36 61.53 0.13 0.25 
Kocab 26.64 62.92 26.63 62.76 0.01 0.16 

Muscida 302.78 64.94 302.76 65.15 0.02 0.21 
Cor Caroli 132.84 68.83 132.03 68.66 0.81 0.17 

Alkaid 91.82 69.43 91.71 69.39 0.11 0.04 
Pi UMA 273.36 71.30 273.54 71.42 0.18 0.12 
Mu UMA 230.61 71.90 229.58 71.96 1.03 0.06 
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23 UMA 310.06 72.04 310.32 72.07 0.26 0.03 
Lambda UMA 235.96 72.40 235.26 72.66 0.70 0.26 

Mizar 78.44 74.72 77.89 74.25 0.55 0.47 
Upsilon UMA 297.32 75.01 297.97 74.98 0.65 0.03 

Giausar 357.99 75.42 358.78 75.18 0.79 0.24 
Psi UMA 206.10 78.82 204.47 78.83 1.63 0.01 
Alioth 75.90 79.05 76.13 78.87 0.23 0.18 
Dubhe 331.32 81.76 332.03 81.75 0.71 0.01 

Chi UMA 167.84 82.88 165.18 82.90 2.66 0.02 
Megrez 63.19 84.18 64.15 83.96 0.96 0.22 
Merak 291.55 84.76 294.47 84.14 2.92 0.62 
Phad 112.02 87.34 106.33 87.50 5.69 0.16 

 
The result of testing the robustness of the mapping was given in Fig. 4.10. It 

showed it was about 60% likely that the two sets of the predicted pixel positions of 
the stars along x-axis were 1 pixel away from each other. The maximum pixel 
position difference was 2 pixels which was about 10% of the total tested stars.  For 
the predicted pixel position difference along y-axis, it showed that about 65% of the 
two results agreed and the rest differed by 1 pixel.  

The pixel position of the zenith, functions and the angle 

! 

"  obtained by the 
second mapping was slightly different from the first. In Table 4.3 listed the results 
from each mapping.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

Fig. 4.10   Histogram of the difference between the two sets of the predicted pixel positions of the same 
stars. Each set of the predicted result was given by a different mapping. The position differences along 
x- and y-axis were shown in (a) and (b), respectively. 
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Table 4.3   The table of results from the two separate mappings. The results of the first and second 
mapping were shown in the row of Mapping 1 and Mapping 2, respectively. Under the Coeff 1, Coeff 
2, Coeff 3 and Coeff 4 listed the coefficients of the polynomial function P (pixel distance) of Z (zenith 
distance) for Z to the power of 3 to 0, respectively. The (Xz, Yz) showed the pixel position of the 
zenith.  

  Coeff 1 Coeff 2 Coeff 3 Coeff 4 Xz Yz Alpha (degrees) 

Mapping 1 -0.000157 0.00243 4.368 0.594 256 251 92.1 

Mapping 2 -0.000166 0.00379 4.313 1.123 255 251 91.8 

 

4.6   Conclusions and Discussions 

In this chapter, we have determined the image position of zenith is at the pixel 
position of (256,251) within an uncertainty of 0.8 pixels. The best approximate zero-
azimuth image position is at (254,196) and the azimuth angles measured according to 
this point are within an uncertainty of 0.5 degrees. We have demonstrated the image 
positions of stars can be determined to an accuracy of 1 pixel and, for the reverse 
process, the sky positions can be determined to the accuracy of 0.2 degrees in 
elevation and of 0.7 degrees in azimuth. The mapping was tested to be robust. The 
testing result suggests the mapping was stable at the level of 1 pixel. 

In Fig. 4.8, the plot shows the zenith distance against the pixel distance of the 
sampled stars were quite linearly related when the zenith distance was below 50 
degrees which corresponded to the elevations higher than 40 degrees. It agrees with 
the earlier approximation (Fig. 4.2) that the zenith distance and pixel distance could 
be considered to have linear relation when the points were at the high elevations. 
Therefore, it indicates that the data was analysed appropriately and the subsequent 
results were reasonable.   

The predicted pixel position of the zero-azimuth point was lined with the 
predicted pixel position of zenith. The line was found to pass through the pixel nearby 
the image of the star Polaris. It strongly suggests the result of the pixel position of the 
zero-azimuth point was at a correct position relative to the predicted pixel position of 
zenith and other points on an image.  

The 1-pixel uncertainty of the mapping from the points in the sky to the ones on 
an image was small in contrast to the area of a star image that normally occupied 4 to 
25 pixels. According to the method by which the image position of a star was 
sampled, the resulted 1-pixel uncertainty was the uncertainty of the predicted position 
of the brightest pixel that was approximately at the centre of a star image. Therefore, 
the predicted pixel position of a star was almost certain to be at a pixel making up the 
star image.  

In Table 4.1, the x and y were listed in the ascending order of the elevation 
from the top to bottom. It was expected the deviation of the predicted image position 
from the observed image position would decrease with the increase of the elevation 
since the image distortion became stronger and stronger toward the edge. However, as 
shown in Table 4.1, the deviations along x or y-axis fluctuates randomly and keeps 
small even the elevation goes down. The result suggests the accuracy of mapping is 
not affected by the image distortion. 

The RMS of the predicted azimuth of tested points was 0.7 degrees, being 
threefold larger than the RMS of the predicted elevation. The 0.7-degree RMS in 
predicted azimuth is reasonable since it cannot be smaller than the uncertainty of the 
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angle 

! 

" , 0.5 degrees, based on which the prediction was made. Small RMS of the 
predicted elevation was a result of the accurately determined pixel position of zenith.  
 The results of mapping are reasonable and satisfactory. It contributes a useful 
function to DAC’s implementation and provides an essential means for the further 
image analysis when star positioning is required. 
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Chapter 5   

Photometry analysis  

5.1   Purpose and Overall Sky Brightness Condition in Durham 

The photometry analysis was aimed at measuring how well the magnitude of 
the stars could be determined through the DAC’s images. It helps to understand 
quantitatively the sky brightness condition in Durham, and by comparing it with the 
sky brightness from another observatory site, we can estimate how well the magnitude 
of the stars can be measured when DAC is deployed there. 
 Before carrying out any analysis for the task, we first take a look at the overall 
sky brightness condition in Durham to obtain a general idea of how it looks like at 
night. Taking the clear night sky framed at 22:00 on 4th April 2008 as an example, a 
dark frame was subtracted from the image frame to remove the dark current and hot 
pixels, thereafter the 3-D sky flux distribution and the corresponding histogram were 
plotted (Fig. 5.1 & 5.2).  
 In Fig. 5.1, the overall flux distribution of the all-sky image is bowl-shaped 
and the flux of the stars appears to be the spikes sticking out from the bottom. The 
sharp increase of the sky flux from zenith to horizon, i.e. from the middle of the bowl 
to the edge, indicates the sky pollution by the streetlights was marked. In Fig. 5.2, the 
frequency distribution shows three distinct peaks. One is at the saturated value, 255 
ADUs, being as a result of the intense light reflected from the surrounding buildings. 
Another peak is at around 10 ADUs, indicating the sensor area on which the image 
did not focus. The last peak is at the centre of the range, representing the frequency 
distribution of the actual sky flux. The mode value, about 75 ADUs, suggests a 
possible value of the sky background brightness and the tail on the right of the mode 
also implies the sky was contaminated by other light sources. 
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Fig. 5.1    The 3-D plot of the flux of the all-sky image taken at 22:00 on 4 April 2008, from which the 
dark counts were deducted. The plot was inverted along the x-axis due to the default of the MATLAB 
for the 3-D plot. The colour bands, from the blue to red on the plot, indicate the ascending order of the 
pixel values. 
 
 
 

  
Fig. 5.2    The histogram of the flux of the all sky image taken at 22:00 on 4 April 2008. The dark 
counts were subtracted from the total counts before plotting.   
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5.2   General Method of Star Magnitude Measurement 

 The most commonly applied method to calculate a star’s apparent magnitude 
is by finding the star’s flux and putting it into the following equation.  

! 

magnitude = const " 2.5log10( flux)    (5.1) ① 

In this work, we applied this equation in the following analysis. 
 Since the counts of a pixel is proportional to the incident photons, the flux of a 
star, in DAC image analysis, was considered to be the counts of the sum of pixel 
values of the star’s image subtracting the counts of the background of the same area, 
so its unit being ADU or counts. The background counts refer to the pixel values 
produced by the sky brightness and dark current. In Eq. (5.1), 

! 

const  is the zero 
reference constant whose value depends on the flux of the star that has zero apparent 
magnitude. In process, the value of 

! 

const  was not measured literally by finding the 
flux of the star of zero apparent magnitude, because there may not be a zero-
magnitude star in a frame at all times and, if there is one, the flux changes when the 
star moves across the frame as a result of flux reduction by airmass. Regarding the 
convenience and accuracy of the magnitude measurements, the value of 

! 

const  was set 
arbitrarily to be 50 for all the calculations in our analysis when 

! 

const  was used. A 
magnitude calculated by Eq. (5.1) was, therefore, named as instrumental magnitude, 
which was the magnitude being actually measured by reading a star’s flux in terms of 
pixel counts. A star’s apparent magnitude, being the value when 

! 

const  in Eq. (5.1) is 
set according to a zero-magnitude star, was determined when establishing its 
mathematical relation with the instrumental magnitude. This relation was derived 
empirically by means of investigating how the flux of a star changed with the airmass. 
The apparent magnitude of a star is not constantly the same amount larger or smaller 
than the instrumental magnitude of the same star on account of reduction of the flux 
by airmass. A detailed analysis of finding the relation is given in the following section 
where airmass is discussed. Therefore, in the following contents, the magnitude of a 
star refers to the instrumental magnitude unless being specified. 
 The uncertainty of a star’s magnitude can be estimated by use of the signal-to-
noise ratio of the image. The following equations were used in our analysis to 
calculate the signal-to-noise ratio (Eq. (5.2)), star flux (Eq. (5.3)) and magnitude 
uncertainty (Eq. (5.4)), respectively.  

! 

S

N
"

FS

FS /G + n#A

2
+ n#A

2
/ p

    (5.2) ② 

! 

F
S

= P
S
" nP 

A
     (5.3) 

! 

"m # 2.5log(
S + N

N
) #1.0857

N

S
   (5.4) ➂ 

 
 
①.  The derivation of Eq. (5.1) is not discussed here but it can found from most textbooks of star 
magnitude calculation. 
②&➂.  The derivations of the equations (5.2) & (5.4) are beyond the scope of the thesis. A discussion 
of the two equations can be found on Measuring the Signal-to-Noise Ratio S/N of the CCD Image of a 
Star or Nebula by J.H. Simonetti at http://www.phys.vt.edu/~jhs/phys3154/snr20040108.pdf.  
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where 

! 

S  and 

! 

N  are the signal and noise values, respectively, 

! 

F
S
 being the star flux, 

! 

G being the gain of the camera, 

! 

n  being the number of pixels within the aperture that 
samples the star image, 

! 

p  being the number of the pixels on the annulus that samples 
the sky brightness, 

! 

"
A
 being the RMS of the pixel value in annulus, 

! 

P
S
 being the total 

counts within the aperture, 

! 

P 
A
 being the mean pixel value of sky brightness sampled 

by annulus and 

! 

"m  being the instrumental magnitude uncertainty.   
 When applying the above equations to calculate a star’s magnitude and 
uncertainty, we first need to establish a method of sampling the star and background 
flux. We take the image of the star Alioth as an example to show the method that was 
used. The brightest pixel was chosen to be the centre of the star image and a circular 
aperture was drawn. Around it, a circular annulus was defined with the same centre 
(Fig. 5.3(a)).  

When sampling, the aperture’s radius should be large enough for an aperture 
to cover the most star image; meanwhile it should also be small so that there is no 
more than one star image in the aperture. The size of an annulus should be chosen to 
avoid falling itself on the anything other than sky flux, and so the gap between an 
aperture and annulus keeps the annulus away from the tail of a star flux, which is 
normally bell-shaped (Fig. 5.3(b)). Due to this reason, the radii of the aperture, inner 
and outer annulus were initialised to be 4, 6 and 9 pixels long, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.3     The image of star Alioth in (a) and the corresponding 3-D plot in (b). In (a), the star’s image 
is presented in the centre aperture and the grey annulus shows the brightness of sampled sky. The dark 
area, showing zero counts, is the part of the image being taken away when sampling. R1, R2 and R3 
indicate the radii of the aperture, inner and outer annulus, respectively. In (b) shows the flux strength 
on each part of the sample.   
 

As a result, we can calculate the values of 

! 

n  and 

! 

p , which equal the round-off 
integer of the areas of the aperture and annulus, respectively. Knowing 

! 

n  and 

! 

p , the 
values of

! 

P
S
, 

! 

P 
A
 and 

! 

F
S
 can be calculated subsequently. For ease of process, the pixel 

values on an image frame had subtracted the ones on a dark frame before the 
sampling was carried out. It is why there is no term regarding the dark counts in Eq. 
(5.3). The pixel values within the annulus were used to assess the sky brightness 
around the star. The frequency distribution of the values (Fig. 5.4) was analyzed by 

(a) (b) 

R1 

R2 R3 
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Gaussian statistics since the distribution was expected to follow the Gaussian profile, 
providing no strong interference from another light source presented on the annulus. 
The value of 

! 

"
A
 can, therefore, be computed from FWHM of the distribution. 

 
Fig. 5.4     The histogram of the pixel value within the annulus of Alioth. The distribution was 
approximated by Gaussian statistics and the curve indicates the best fit of the approximate Gaussian 
profile. The top of the curve falls on 69.6 ADU and the FWHM is about 2.25 ADU. 
 

Apart from 

! 

G, the values of the parameters in equations (5.2) and (5.3) 
depend exclusively on how the flux is sampled and can be measured directly from the 
image. The gain, 

! 

G, has to be determined through other means. The gain in Eq. (5.2) 
is measured in the unit of number of electrons per ADU. Unfortunately, the same term 
is shared by a setting parameter, which does not have a unit, on the camera’s 
operating software, as described in section 2.2.2. The relation between the two gains 
is unknown. In the following contents of the photometry analysis, the term gain 
means the parameter in Eq. (5.2). In the next section, we will discuss how the gain 
being determined and its significance to the star magnitude uncertainties. 

5.3   The Gain 

5.3.1   Determination of the gain of the camera 
The value of the gain was not given on the manual of the camera. It was 

estimated empirically by investigating the sky background and was calculated by 
assuming the electrons released by the incident photons from the sky obey Poisson 
distribution. The following equation was used. 

! 

µskyG = " skyG( )
2

    (5.5) ① 

 
①. The number of electrons released by the photons from the sky is 

! 

µskyG  and the RMS is 

! 

" skyG  since 
the gain is measured in number of electrons per ADU. Because “all electrons released by incident 
photons obey Poisson statistics” (Measuring the Signal-to-Noise Ratio S/N of the CCD Image of a Star 
or Nebula by J.H. Simonetti), we have 

! 

" skyG = µskyG , thus having Eq. (5.5). 
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where 

! 

G is the gain, 

! 

µsky  and 

! 

" sky  being the mean and RMS of the pixel values of the 
selected patch of an sky image, respectively.  

Dividing the sum of the all the pixel values within the patch of sky by the 
pixel numbers, we calculated the mean pixel value, 

! 

µsky , in ADU or counts. The 
corresponding RMS, 

! 

" sky , was estimated by assessing FWHM of the frequency 
distribution of the pixel values. As we can see, the accuracy of the gain is 
mathematically dependent upon how well the value 

! 

" sky  can be determined. As a 
result, the Gaussian distribution of the pixel values was expected. In order to approach 
it, the patch of the sky was selected to be free from, or weakly contaminated by, the 
any sort of intense light sources, for example, the visible stars, streetlights or clouds.   
 A processing example is shown as the following. The image frame, being 
taken at 22:00 on 4 April 2008, was used to sample the sky background. A circular 
patch of the sky, having its centre at the pixel position (241, 269) and a radius of 20 
pixels, was chosen. The fluctuation of the pixel values within the patch, in Fig. 5.5, 
shows a wavy pattern on which there is no apparent distinctive spike. Therefore, we 
assumed the pixel values from the sampled sky patch were adequate to use for our 
purposes. The result of further analysis of the pixel values was shown in Fig. 5.6, 
from which we can see that the distribution of the pixel values can be approximated 
by the Gaussian statistics. After calculation, the sky flux of the sample was 66.0 ± 0.1 
ADUs, and the corresponding gain was 54.5 electrons/ADU. 
 

 
Fig. 5.5    The 3-D plot of the flux of a patch of the sky. It centred at the pixel position (241, 269) on 
the frame captured at 22:00 on 4 April 2008, and had a radius of 20 pixels, so around 1200 pixels were 
sampled. 
 

Five circular sky patches at the different positions of the same frame were 
investigated. They were all chosen to be the ones whose centre was close to the zenith 
position of the image, because the influence from the streetlights to the sky 
background within this region was relatively weaker than the sky near the horizon, as 
shown in Fig. 5.1. The result from each patch of sky is listed in Table 5.1. 
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Fig. 5.6    Histogram of the normalised frequency of the pixel values within the sampled sky patch. The 
graph shows a mode at 66 ADUs and the FWHM of the distribution is 2.591.  
 
 
Table 5.1    The table listing the results from the sampled five patches of sky. The values at Xc and Yc 

show the pixel positions of the centre of each sky patch. The column R is the radius. The mean flux and 
RMS of flux are 

! 

µsky  and 

! 

" sky , respectively. G shows the gain derived from each patch. 

Xc Yc R (pixels) 
Mean flux 

(ADU/pixel) 
RMS of flux 
(ADU/pixel) G (electrons/ADU) 

241 269 20 66.0 1.1 54.5 

189 290 20 66.8 1.0 66.8 

194 202 20 70.4 1.2 48.9 

335 231 10 66.5 1.0 66.5 

228 225 10 68.0 0.9 84.0 
 

 
The mean and RMS of the gain was calculated subsequently, and the gain was 

empirically estimated to be 64 ± 12 electrons/ADU. Apparently, the error is large; 
however, it does not necessarily mean the error is significant, nor does it mean the 
determined gain value is inadequate for the photometry analysis of the camera. A test 
was carried out afterwards to investigate how well the gain we measured. 

5.3.2   Gain test 
After the gain estimate, we need to assess if the value is reasonable and 

adequate for our measuring purposes. The method of assessment we used was to 
measure the magnitude and uncertainty of the same stars on two adjacent frames. The 
magnitude of a star on one frame was expected to be nearly the same as itself on an 
adjacent frame on account of the fact that the star moved very little across the frame 
after a short time. Therefore, if the estimated gain is adequate, the measurement of the 
same star magnitude on adjacent frames will agree within the uncertainty. 
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To examine the agreement between such two sets of values, we have 

! 

Delta =
mag

1
"mag

2

error
1

2
+ error

2

2

    (5.6) 

where 

! 

mag
1
, 

! 

error
1
 and 

! 

mag
2
, 

! 

error
2
 are the magnitudes and uncertainties of the star 

on two frames, respectively. We expected 

! 

"1# Delta #1 since 

! 

mag
1
"mag

2
# error

1

2
+ error

2

2  when the two sets of magnitudes agree with each 
other. In other words, we expect 

! 

Delta  to be normal distributed with a mean of 0 and 
RMS of 1 if the errors are correctly determined by gain. 
 In the process, the frames were chosen to be the ones taken at 22:00 and 
22:02, respectively, so the frames were two-minute apart. The thirty-one stars used for 
mapping in Chapter 4 were selected again to be the sample for the photometry 
analysis because of their large position variation in the sky. According to Eq. (5.6), a 
value of Delta was computed from every sampled star. The values were then arranged 
in bins and were plotted against its occurring frequency, as shown in Fig. 5.7.  

 

 
Fig. 5.7    The histogram of Delta. Since the values of Delta were not discrete, they were grouped into 9 
bins as shown in the graph. The blue bars indicate the frequency of the occurrence of delta while the 
redline shows the best fit of the Gaussian approximation. The FWHM of the best fit is 2.25 and the 
mean of delta is 0.03. 
 

According to the plot in Fig. 5.7, the mean of the delta was found to be 0.03 
and FWHM of the frequency distribution was about 2.25; therefore, Delta = 0 ± 1, 
which satisfies our early expectation and it suggests that the empirically determined 
value of the gain is adequate for the purpose of photometry analysis of the star 
magnitudes. In Fig. 5.8 shows a comparison of the star magnitudes at the two frames. 
As an extra check of the agreement of the two sets of magnitudes, we found the best 
fit of the data was a straight line with a gradient value of 1. We tried the reduced chi-
square and it was about 0.87, which suggests the gain estimate is reasonable.  
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Fig. 5.8    The plot of the magnitudes of the sampled stars of the two frames, which were taken two-
minute apart. The redline going through the data points shows the best fit of the linearity of the data. It 
has a gradient about 1.01. 

5.3.3   Gain contribution to star magnitude errors 
The previous testing result suggested the determined value of the gain was 

adequate to do photometry analysis for the images though it had a large uncertainty. 
The question that arose from it was why it was so since it might contradict our 
expectation that slight variation of the gain would cause a big change to the signal-to-
noise ratio.  

According to eq (5.2), we see the gain is not the only factor to determine the 
signal-to-noise ratio. There are another two terms on the denominator, being 

! 

n"
A

2  and 

! 

n"A

2
/ p, respectively. The contribution of each term to the denominator and so to the 

signal-to-noise ratio was investigated. The results are listed in Table 5.2. 
On the table, the column under 1st, 2nd and 3rd term refers to 

! 

F
S
/G , 

! 

n"
A

2  and 

! 

n"A

2
/ p on the denominator of the Eq. (5.2), respectively, and the column under ‘mag 

error’ shows the magnitude error of each star. From the table, we can see the value of 
the second term is about a few ten or hundred times greater than the each 
corresponding 1st term. Therefore, it was the second term that dominated the signal-
to-noise ratio and so the magnitude error of the stars. It explains why the seemingly 
inaccurate value of gain succeeded the previous test. When reducing the gain to 14 
electrons per ADU, which is far less than the measured value of gain, we see from the 
table the second term still dominating the signal-to-noise ratio and the magnitude 
error of the stars being almost unchanged. 
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Table 5.2    A table of stars and their magnitude errors, etc from the frame taken at 22:00. The 1st term, 
2nd term and 3rd term in the table refer to 

! 

F
S
/G , 

! 

n"
b

2 and 

! 

n"A

2
/ p, respectively, which were given in 

the Eq. (5.2). The ‘mag error’ refers to the magnitude uncertainty of the stars. Here are listed two sets 
of the first term and magnitude errors, each of which was calculated under a different gain value, i.e. 64 
and 14 electrons / ADU. Since only the 1st term and magnitude error were gain dependent, the values 
of the 2nd and 3rd terms keep unchanged and are not listed when the gain is 14 electrons / ADU. 

G = 64 electrons / ADU G = 14 electrons / ADU Stars 
1st term 2nd term 3rd term mag error 1st term mag error 

Vega 6.40 4930.40 35.73 0.20 29.27 0.20 
Alphekka 1.65 274.79 1.99 0.15 7.52 0.15 
Arcturus 17.34 10572.00 76.61 0.16 79.25 0.16 

Izar 2.68 95.98 0.70 0.07 12.25 0.08 
Capella 16.18 191.18 1.39 0.01 73.97 0.02 

Menkalinan 4.41 73.56 0.53 0.04 20.14 0.04 
Pollux 7.92 84.30 0.61 0.02 36.20 0.02 

Eta Dra 2.03 153.39 1.11 0.11 9.30 0.11 

Castor 4.73 80.58 0.58 0.03 21.62 0.03 
Seginus 1.28 92.84 0.67 0.18 5.84 0.18 
Edasich 1.16 110.67 0.80 0.14 5.29 0.15 
Polaris 3.59 154.34 1.12 0.06 16.43 0.06 

Pherkad 1.97 72.69 0.53 0.09 9.00 0.09 
Kocab 4.98 81.40 0.59 0.03 22.78 0.03 
Alkaid 4.96 51.45 0.37 0.03 22.67 0.03 

Cor Caroli 1.86 53.34 0.39 0.06 8.52 0.06 
Mizar 5.40 66.55 0.48 0.03 24.67 0.03 

Muscida 1.35 38.05 0.28 0.08 6.15 0.08 
Alioth 6.23 52.07 0.38 0.02 28.47 0.02 

Giausar 1.32 50.23 0.36 0.08 6.02 0.08 
Mu UMA 2.50 334.97 2.43 0.14 11.43 0.14 

Lambda UMA 1.27 732.42 5.31 0.36 5.79 0.36 
23 UMA 1.15 38.29 0.28 0.11 5.24 0.11 
Megrez 1.08 127.58 0.92 0.08 4.93 0.09 

Pi UMA 2.34 42.46 0.31 0.05 10.68 0.06 

Chi UMA 1.13 41.72 0.30 0.09 5.17 0.10 
Psi UMA 1.97 50.79 0.37 0.06 8.98 0.06 

Phad 3.50 317.37 2.30 0.08 16.01 0.09 
Upsilon UMA 0.76 75.35 0.55 0.15 3.48 0.16 

Dubhe 5.74 52.20 0.38 0.02 26.22 0.02 
Merak 3.23 44.11 0.32 0.04 14.78 0.04 

 
 
Since the second term is related to the fluctuation of sky brightness, an 

interpretation to such a result is the background sky noise being the dominant source 
of magnitude errors under the sky condition of Durham. If the camera was moved to a 
dark sky observatory where the stars were the main source of the brightness of sky 
background, the gain would be more likely to dominate the star magnitude errors. In 
that case, a better gain value is needed. After all, the determined value of gain is good 
enough for measurement of the star magnitudes when the camera is used under the 
sky condition like Durham.  
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5.4   Magnitude Calibration 
 In order to assess how good the applied method is for measuring the star 
magnitudes, the measured magnitudes of previously sampled stars were calibrated by 
the readings from GAIA – Graphical Astronomy and Image Analysis Tool ①.   
 When taking the readings from GAIA on the same frame, the semi-major axis 
of the aperture, annulus inner and outer scale were set to be 4, 1.5 and 2.2, 
respectively, so as to produce about the same size of the aperture and annulus as the 
ones used in the previous measurements. The options of mean flux of sky background 
and sky variance in GAIA settings were ticked in order that the star flux and 
background flux in GAIA mean the same as the ones in our method.  

The result is shown below (Fig. 5.9). We can see the line of best fit, indicated 
by the red line on the graph, goes through almost all the points. The gradient of the 
line of the best fit was calculated to be 1. Therefore, in conclusion, the two sets of 
data are consistent with each other and the applied method is adequate for the 
measurement of the star magnitudes.  

 

  
Fig. 5.9    The plot of the instrumental magnitudes measured by our method against the ones by GAIA. 
The red line, being the best fit of the data, has gradient value of 1. The zero reference constant in GAIA 
for magnitude calculation was set to be 50, being the same as the value used in our method. 

 

 

 

 
 
①. More information about GAIA is available on the astronomy teaching website of Durham 
University at http://astro.dur.ac.uk/~pdraper/gaia/gaia.html.  
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5.5 Airmass and Star Magnitude Measurement 

5.5.1  General theory 
A star‘s flux is absorbed as it travels through the Earth’s atmosphere. The 

amount of absorbed flux depends on the length of the atmosphere it travels through. 
The airmass is commonly used to measure such a length and it was defined as  

! 

airmass =1/cos(
"

2
# El)    (5.7) 

where 

! 

El is the elevation. Therefore, the airmass has the minimum value of 1 to the 
direction of zenith and increases its value with the decrease of the elevation.  

As a result of light reduction by the airmass, a star can be observed with 
changing brightness when it moves across the sky. Ideally, we assume the earth’s 
atmosphere is homogenous, and so the reduction on the magnitude of a star is 
approximated to be proportional to the airmass. Therefore, we have 

! 

"mag = a # Airmass+ b    (5.8) 

where 

! 

"mag is the reduction on the magnitude of a star, 

! 

a  and 

! 

b being the 
coefficients of the function. Since  

! 

"mag = Mag(obs) #Mag(cat)   (5.9) 

where 

! 

Mag(obs)  represents the instrumental magnitude of a star measured on earth 
and 

! 

Mag(cat)  the catalogue value of the star’s apparent magnitude when the 
atmosphere is absent, hence 

! 

Mag(obs) "Mag(cat) = a # Airmass+ b   (5.10) 

It means, by studying the change in magnitude with airmass, we establish a function, 
by which the magnitude category that an image star falls on can be estimated in terms 
of catalogue magnitude; meanwhile, the instrumental magnitude of a star of any 
magnitude category, at any sky position within the scope, can be predicted, and 
consequently, the flux of the star is also predicable by reversing the equation (5.1).  

5.5.2   Change in magnitude with airmass 
To empirically determine the function of the change in star magnitude with 

respect to airmass (Eq. (5.10)), the instrumental magnitudes of the previously sampled 
stars for magnitude calibration were used and their catalogue magnitude values were 
read from the Astronomical Almanac for the year 2007. Thus, we can determine the 
left hand side of the Eq. (5.10). The airmass of each star was calculated from the 
corresponding elevation (Eq. (5.7)) that had been obtained in the previous chapter of 
astrometry. When analysing, the sampled star Vega having an airmass greater than 2, 
which is less than 30˚ in elevation, was not used on account of the heavy background 
light pollution near the horizon. The result is shown below.  
 



 41 

 
Fig. 5.10    The plot of the change in star magnitude with respect to airmass. The red line represents the 
best fit of the linear relation of the data points. The y-label shows Mag(obs) minus Mag(cat), i.e. the 
left hand side of Eq. (5.10). 
 

 
In Fig. 5.10, the line of the best fit of the data points was found to have a 

gradient of 1.05 magnitudes per airmass and the reduced chi-square is 17.8, which 
indicates the pattern of the resulting points seems not reveal any correlation between 
the two axes.  

Further investigation was done to understand the reason for such a result. We 
first examined the term of the reduced chi-square of every sampled star to find the 
ones that contributed most to value. Such stars whose rows were shaded are listed in 
Table 5.3. 
 
 
Table 5.3    The table of the sampled stars with the corresponding value contributing to the reduced chi-
square for the data in Fig. 5.10. The stars were listed in descend order of their airmass. The Mag_obs, 
Error_obs, Mag_cat (V) and Mag_diff refer to the instrumental magnitude, uncertainty of the 
instrumental magnitude, catalogue magnitude and difference between the instrumental and catalogue 
magnitude, respectively. The shaded rows show the stars whose reduced chi-square terms are large. 

Stars 
Reduced chi-
square term 

Mag_obs Error_obs Mag_cat (V) Mag_diff 

Alphekka 0.0042 44.87 0.15 2.23 42.64 
Arcturus 0.0586 42.51 0.16 -0.04 42.55 

Izar 2.2456 44.42 0.07 2.7 41.72 
Capella 2.5975 42.46 0.01 0.08 42.38 

Menkalinan 0.4199 43.86 0.04 1.9 41.96 
Pollux 0.2144 43.22 0.02 1.14 42.08 

Eta Dra 0.0062 44.70 0.11 2.74 41.96 
Castor 1.0409 43.80 0.03 1.98 41.82 
Seginus 0.2277 45.48 0.18 3.03 42.45 
Edasich 0.0008 45.22 0.14 3.29 41.93 
Polaris 0.3476 44.11 0.06 2.02 42.09 

Pherkad 0.0206 44.83 0.09 3.05 41.78 
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Kocab 0.3072 43.81 0.03 2.08 41.73 
Alkaid 0.8302 43.79 0.03 1.86 41.93 

Cor Caroli 0.1080 44.79 0.06 2.9 41.89 
Mizar 5.7738 43.66 0.03 2.27 41.39 

Muscida 0.0439 45.17 0.08 3.37 41.80 
Alioth 0.0113 43.49 0.02 1.77 41.72 

Giausar 1.1201 45.08 0.08 3.84 41.24 
Mu UMA 0.0426 44.58 0.14 3.05 41.53 

Lambda UMA 0.0035 45.25 0.36 3.45 41.80 
23 UMA 0.0967 45.53 0.11 3.67 41.86 
Megrez 0.0087 45.03 0.08 3.31 41.72 
Pi UMA 0.2852 44.69 0.05 3.17 41.52 

Chi UMA 0.0062 45.34 0.09 3.71 41.63 
Psi UMA 0.0020 44.70 0.06 3.01 41.69 

Phad 0.0066 44.15 0.08 2.44 41.71 
Upsilon UMA 0.0390 45.63 0.15 3.8 41.83 

Dubhe 0.1483 43.50 0.02 1.8 41.70 
Merak 0.5903 44.18 0.04 2.37 41.81 

 
 

The table shows the stars that were far off the line of the best fit in Fig. 5.10, 
thus having a large reduced chi-square term, are Izar, Capella, Menkalinan, Castor, 
Mizar, Giausar and Merak. Most of them are not a single star, Izar, Castor and Mizar 
being the binary stars, Capella consisting of four stars in two binary pairs, and 
Menkalinan being a triple star. It suggests that the magnitude catalogue values of 
these stars should be reconsidered to take account of the flux contribution from the 
constituted stars. It is reasonable since the aperture for flux collection has a certain 
size of 4 pixels in radius, which is about 0.8 degrees. Therefore, their catalogue values 
were re-collected from the SKY2000 Catalog Version 4 (Myers+ 2002) on SIMBAD 
database. The new catalogue magnitudes, 

! 

Mag(cat) , being used in our analysis, were 
calculated by adding the flux of the constituted stars in a star system, as shown by the 
equations below. 

! 

flux
i

" =10
#0.4mag

1 +10
#0.4mag

2 + ...+10
#0.4magi    (5.11) 

! 

Mag(cat) = 0 " 2.5log10( flux# )     (5.12) 

where 

! 

magi  represents the catalogue magnitude of a constituted star.  
When reading the catalogue magnitude of the binary star Castor from the 

SKY2000, we found that the two values were given to be 1.580 and 2.880. It was 
different from what we got from other reference sources, like the Astronomical 
Almanac for the year 2007 or the teaching contents① in astronomy on the web of the 
University of Illinois, which indicated one of the two stars or the brighter one had a 
value of around 1.95 or 1.98. The magnitude 1.580 was more likely to be the value of 
the binary star system of Castor since we got 1.587 after combining the 1.98 and 2.88. 
However, we were still not sure if 1.580 was a mistake though it was very likely to 
be. As a result, the star Castor was eliminated in the subsequent analysis.  
 
 
① It was written by J. B. Kaler and can be found at  http://www.astro.uiuc.edu/~jkaler/sow/castor.html. 
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No suggestion was found to explain the reason why the star Merak had a large 
reduced chi-square term. However, for star Giausar, “there is some indication that it 
changes brightness erratically by about a tenth of the magnitude”① – by Prof. Kaler 
from the University of Illinois. Therefore, Giausar was also removed from the 
following analysis.   

After changing the catalogue magnitudes of the stars, the graph of magnitude 
change against airmass was plotted again (Fig. 5.11). The new graph shows the 
gradient of the best fit to be 1.11 magnitudes per airmass and 

! 

˜ " 2 = 3.5. Thus, the 
result was largely improved but it is still unsatisfactory as we expect 

! 

˜ " 2 ≤ 1. Another 
possible source that could affect the result is the quantum efficiency of the CCD 
sensor of DAC when detecting the lights with different wavelengths, so the colour 
terms were investigated. 
 

 
Fig. 5.11    The new plot of the change in star magnitude with respect to airmass. The red line 
represents the best fit of the data.  

5.5.3   Investigation in colour terms 
The investigation of the colour terms aimed at finding out if the CCD sensor of DAC 
is biased toward blue or visual band of frequencies. As we know, a star emits light of 
a broad band of frequencies. A hot star predominately radiates blue light and so has a 
low B-V around 0, whereas a cool star gives off more red light and has a large B-V 
about 1. The catalogue magnitudes that were collected from the Astronomical 
Almanac or SKY2000 were the V-band magnitudes. Therefore, if the sensor is biased 
toward red light, the change in magnitude, i.e. 

! 

Mag(obs) "Mag(cat), of the stars that 
emits more blue light is expected to be consistently larger than the predicted change, 
i.e. above the line of the best fit in Fig. 5.11. The analysed result is shown in Fig. 
5.12, of which the vertical axis is the difference between the measured and predicted 
change in magnitude. 
 
 
① The contents can be found on the teaching web in astronomy from the University of Illinois at 
http://www.astro.uiuc.edu/~jkaler/sow/giausar.html. 



 44 

 
Fig. 5.12    The plot of the deviation in magnitude change against B-V colour term. In the label of 
vertical axis, DeltaMag represents the measured change in the magnitude of a star and Mag(pred) is the 
predicted change value that is on the line of the best fit in Fig. 5.11. The B-V of the sampled stars were 
collected from the Astronomical Almanac for the year 2007 and SKY2000.  
 

In Fig. 5.12, the points seem to equally distribute around the points (0, 0) and 
(1, 0). The gradient of the line of the best fit is -0.08 and 

! 

˜ " 2 = 3.3. It does not matter 
how well the data points follow such a line of best fit; however, what the small 
gradient and seemingly equal point distribution around (0, 0) and (1, 0) suggest is the 
sensor of the camera was not biased toward red or blue colour. Thus, the effect of the 
colour term on the magnitude analysis can be discounted.  

5.5.4 Result and discussion 
The previous analysis shows that the colour terms do not affect the result in 

Fig. 5.11. If Fig. 5.11 shows the best result that could be obtained by the current 
analysing technique, the gradient of the line of the best fit in Fig. 5.11 would be about 
5 times greater than the expected value since the rate of change in V-band magnitude 
with respect to airmass is approximately 0.2 magnitudes per airmass①. The large 
gradient implies the magnitude deduction of the stars at a low elevation is 
significantly large. There are four possible causes, which could result a large gradient. 

First, the image of a star, which was at a low elevation, was largely distorted 
along the radial direction as a result of fisheye view. The aperture that was used to 
take the flux measurements had a constant size, i.e. not changing with the elevation. 
Consequently, the measured flux was partly lost when the distorted image spread out 
of the area of the aperture. The reason why we cannot use bigger aperture to solve this 
problem is because it introduces more noises and produces distinct large error bars.   
 
 
 
① More information about the change in magnitude with respect to airmass is available on Magnitude 
Corrections for Atmospheric Extinction, written by Daniel. W. E. Green. A copy can be found at 
http://www.cfa.harvard.edu/icq/ICQExtinct.html. 
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 The second possible reason that the gradient is large is because the fisheye 
lens absorbs or reflects more light away from the optical axis, i.e. when light coming 
through the lens from the edge. To test it, we can use a laser beam scanning from the 
top to the edge and find out the light loss. The third possibility could be the 
nonlinearity of the CCD chip on which the quantum efficiency varies from pixel to 
pixel. The fourth possibility is, after a long time operation, the Perspex dome was 
partly covered with condensed water vapour or dusts, which scattered the light away 
before they entered camera. 
 The large reduced chi-square is likely to be the result of such a change in 
magnitude being significantly large at small elevations. After all, it is the best result 
we could achieve at this stage so, from the plot in Fig. 51.4, we obtain 

! 

Mag(obs) "Mag(cat) =1.11# Airmass+ 40.63  (5.13) 

by which the instrumental and catalogue magnitude of a star are predicable and 
derivable from each other when the star’s sky position is known.  

5.6   Magnitude Accuracy Determined by DAC under Durham Sky Condition 

By use of Eq. (5.13), we can estimate the magnitude category that an image 
star falls on. The degree of accuracy of the estimation determines how well the DAC 
can perform in the measurement of photometry. To outline such a degree of accuracy 
for the stars of different magnitude categories and at different image position, the 
following investigation was done. 
 The brightness of sky background and its RMS, on the area of about zenith 
position and 30˚ elevation, were measured, in the unit of ADU per pixel, by the same 
method described in section 5.3.1. The results are listed in Table 5.4(a). Thereafter the 
instrumental magnitudes of the stars of a range of catalogue magnitudes representing 
1st to 6th magnitude were calculated by Eq. (5.13), and so were corresponding flux 
(Eq. (5.1)). Substituting the results of the background RMS and star flux for 

! 

F
S
 and 

! 

"
A
, respectively, into the Eq. (5.2), we get the signal-to-noise ratios and, 

subsequently, the magnitude uncertainties by Eq. (5.4). Therefore, as shown in Table 
5.4(b), the DAC is capable of determining the brightness of 6th magnitude stars within 
1 magnitude accuracy when the stars are near zenith position; whereas only the 4th 
magnitude stars can be determined within the same accuracy when the stars move 
down to 30˚ in elevation. 
 The degree of accuracy that a magnitude can be measured is subject to the 
condition of the sky background brightness, i.e. the value of RMS listed in Table 
5.4(a). In Fig. 5.14 shows the analysed fluctuation of the RMS of sky brightness 
against the azimuth position at airmass = 2. Thus, the RMS at airmass = 2 listed in 
Table 5.4(a) is only a special case where the sky was lightly contaminated by the 
streetlights. The degree of accuracy that the DAC can measure could be even worse 
when a star is observed at another azimuth position. As a result, in Table 5.4(b) lists 
the best accuracy of each magnitude category that can be determined by DAC under 
the sky brightness condition in Durham.  
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Table 5.4     The table of, (a), the sky brightness and its RMS in Durham, and (b), the best magnitude 
accuracy, that can be determined by DAC, under the sky condition in Durham, for different categories 
of star magnitude. 

         
 
 
              (a)  

 
 

(b) 
  

 
 
 
 

 
Fig. 5.13     The plot of magnitude uncertainty versus the catalogue magnitude from Table 5.4(b).  
 
 
 
 
 
 
 
 
 
 

Position 
Sky brightness 
(ADU per pixel) 

RMS (ADU 
per pixel) 

At zenith (airmass = 1) 66 1.06 

At El = 30 degrees 
(airmass = 2) 

83 1.65 

Catalogue magnitude 1.00 2.00 3.00 4.0 5.0 6 

Magnitude uncertainty 
at zentith 

0.01 0.03 0.06 0.16 0.4 1 

Magnitude uncertainty 
at El = 30 degrees  

0.04 0.11 0.27 0.7 1.7 4 
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5.7   Durham Sky Brightness Compared with Hawaii 

After determining the best degree of accuracy that can be measured by DAC 
under the Durham sky condition, it is interesting to know what the measurement 
accuracy would be when the DAC is implemented elsewhere, for example, an 
observatory on Hawaii island. Since the magnitude accuracy is subject to the sky 

➀ 

➀ 

Fig. 5.14    An all-sky image, (a), 
and the plot of the fluctuation of 
the RMS of brightness of the sky 
background against azimuth at 
airmass = 2, (b). The markers ➀ 
to ➄ show the positions where 
large RMS was produced. It was 
caused by the reflected streetlights 
from: 
➀ & ➁. east dome, 
➂. the DAC dome (double 
reflection), 
➃. cloud, 
➄. west dome. 
The markers ➅ & ➆ show these 
areas had a scope less than 
airmass = 2, so the RMS was not 
plotted for these area in (b). 
 

➁ 

➂ 
➃ 

➄ 

➅ 

➆ 

➁ 

➂ 
➃ 

➄ 

➅ 

➆ 

(a) 

(b) 
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(a) 

(b) 

brightness, we need to know how bright the Durham sky is comparing with the sky 
brightness in Hawaii. 

The V-band sky brightness in Hawaii was found to be 21.5 magnitudes per 
square arcsecond ➀. For comparison, we need to find the Durham sky brightness in 
the same unit. Thus, the angular size of a pixel needs to be determined primarily. In 
the process, the zenith distance per pixel was used to approximate the angular size and 
it was estimated to be about 0.2 degrees. For an angular size with a good accuracy, we 
need to take account of image distortion, which results in a scale variation of 4% from 
centre to edge. However, for our purpose, the 0.2 degrees estimate is adequate. The 
sky brightness was then calculated in counts per square arcsecond and was converted 
into catalogue magnitude per square arcsecond by Eq. (5.1 & 5.13). 
  As a result, the Durham sky brightness was roughly 18 magnitudes per square 
arcsecond, which was 25 times brighter than the sky in Hawaii. 

5.8   Magnitude Accuracy Determined by DAC in Hawaii 

 To estimate a star’s magnitude accuracy in Hawaii, the error of magnitude of 
the Hawaii sky brightness is needed. Since the sky brightness in Hawaii was 25 times 
fainter than in Durham, the detected sky pixel counts there would also be 25 times 
smaller than the sky counts in Durham. Then we can calculate the sky counts in 
Hawaii and put it into the Eq. (5.5) to find out the error of magnitude. The results are 
shown in Table 5.5 and Fig. 5.15. 
 
 
Table 5.5     The table of, (a), the sky brightness and its RMS in Hawaii after being converted to pixel 
counts, and (b), the magnitude accuracy, that can be determined by DAC, under the sky condition in 
Hawaii. 

Position 
Sky brightness 

(counts per pixel) 

RMS (counts 
per pixel) 

At zenith (airmass = 1) 2.64 0.20 

At El = 30 degrees 
(airmass = 2) 

3.32 0.23 

 
Catalogue magnitude 1.0 2.0 3.0 4.0 5.0 6.0 

Magnitude 
uncertainty at zentith 

0.005 0.009 0.016 0.04 0.08 0.19 

Magnitude 
uncertainty at el = 

30 degrees  
0.01 0.02 0.04 0.1 0.24 0.6 

 
 
 
 
 
➀. The value of the sky brightness in Hawaii was found on Further Measurements of Extinction and 
Sky Brightness on the Island of Hawaii, by K. Krisciunas. 
   



 49 

 
Fig. 5.15     The plot of magnitude accuracy of the stars of 1st to 6th magnitude determined in Hawaii in 
contrast to in Durham.  

 
As the result shows, DAC can determine the 6th magnitude stars within about 

0.2 magnitudes accuracy at zenith position and within 0.6 magnitudes at the elevation 
of 30˚ in Hawaii, which are 7 to 10 times better than the result in Durham. 

5.9   Conclusions 

In this Chapter we investigated the photometry characteristics of DAC. We 
empirically determined the value of gain of the camera to be 64 ± 12 electrons per 
ADU, and demonstrated it was not the gain that dominated the error of a star’s 
magnitude but the sky background. We proved that the method we used to sample a 
star’s flux was reasonable and adequate.  

The rate of change of a star’s magnitude with airmass was determined to be 1.11 
magnitude per airmass. We discussed the reasons why the result was unexpectedly 
large and gave suggestion for testing. We discussed how to determine a star’s 
apparent magnitude in terms of the instrumental value and established a mathematical 
relation between them (Eq. (5.13)).  

In the end, as a result of all the work that was done previously, it was calculated 
that, within 1 magnitude of uncertainty, DAC could determine a 6th magnitude star at 
zenith, a 4th at 30˚ elevation. We demonstrated the performance of DAC would be 
much better if it was implemented in a darker place like Hawaii where the sky 
brightness was estimated to be 25 times dimmer than the sky brightness, 18 
magnitudes per airmass, in Durham. It may answer the question that raised in Chapter 
3 about the reason why less stars being shown on the DAC’s image of a clear sky 
(Fig. 3.1). 
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Chapter 6 

Summary and Future Work 

6.1   Summary 

Throughout the thesis, various points have been discussed and a number of 
characteristic features of DAC have been determined. They were summarised as the 
followings. 

1. The reason why the fish-eye lens configuration was preferred as the design 
of DAC rather than a convex mirror was because the camera suspended above the 
mirror would block the central area of the sky. According to Durham sky background 
condition, the central sky area was least contaminated by the streetlights and so an 
observation at this area was more desirable.  

2. The dark currents of the DAC sensor was found to be independent of the 
camera’s operating time but rose exponentially with the increase of the exposure time. 
The dark currents also rose with the increase of the gain and brightness parameter 
settings. The analysed results suggest that the exposure time, gain and brightness 
parameter should be set below 20 seconds, 400 and 120, respectively, in order to 
achieve a good quality image with acceptable noise characteristics. 

3. The gain and brightness parameter on the camera setting program were not 
clearly defined by the instruction. Further investigation was necessary to understand 
how they were related to the camera gain that was measured in the unit of the number 
of electrons per ADU.  

4. A hot corner of the sensor was found but it was outside the area covered by 
the night sky. 

5. Seven hot pixels were found. They were at the pixel positions of (368, 317), 
(422, 11), (56, 30), (382, 332), (87, 402), (224, 471) and (13, 595), respectively. 

6. Although the DAC CCD images did not cover all the night sky hemisphere, 
the area lost was at low elevation where the light pollution from bright street lights 
saturated the pixels. 

7. For a better image, different exposure times, 14, 12 and 10 seconds, were 
set for imaging at a clear night, a cloudy night, and a night when the moon was in the 
sky, respectively. 

8. The star images distorted along the radial direction of an all-sky image. The 
distortion was large when a star approached horizon. 

9. The image of dusts or hot pixels could cause confusion over stars 
identification, especially, when a star’s image moved close to them. 

10. The image position of zenith was determined to be at (256, 251). The 
uncertainty was 0.8 pixels. 
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11. The mapping between the celestial hemisphere and an image was achieved 
empirically. It was tested that the uncertainty was 1 pixel when mapping a celestial 
point onto an image. The tested results of the reverse process, i.e. from an image point 
to a celestial point, showed the uncertainties were within 0.2˚ in elevation and 0.7˚ in 
azimuth. 

12. The robustness of mapping was tested. The result showed the mapping was 
stable at the level of 1 pixel. 

13. The gain of the camera was empirically determined to be 64 ± 12 electrons 
per ADU. It was found the gain was not a dominant source of error of the 
instrumental magnitudes. 

14. The brightness of the sky background in Durham was found to dominate 
the error of the magnitudes measured by DAC. 

15. The rate of change of star magnitudes with respect to the airmass was 
empirically determined to be 1.11 magnitudes per airmass. Various reasons have been 
discussed in section 5.5.4. For example, the attenuation of the star flux by the camera 
lens biased toward the large incident angles. 

16. It was found, under the sky background condition of Durham, DAC was 
able to measure a 6th magnitude star at zenith within 1 magnitude of uncertainty. 
Within the same uncertainty, DAC was only able to measure a 4th magnitude star 
when the star’s elevation was 30˚. 

17. The brightness of sky background of Durham was estimated to be 18 
magnitudes per square arcsecond, which was about 25 times brighter than the sky 
background in Hawaii. 

18. It was estimated that if DAC was deployed under the darker sky conditions 
of Hawaii, stars of 6th magnitude could be measured to an uncertainty of 0.19 
magnitudes at the zenith.  

6.2   Future Exploitation 

The work of investigating or exploiting the prototype of DAC did not finish 
with the end of the photometry analysis. As a consequence of the previous analyses, 
there have been many things we can do to maximise the DAC’s functions. Below 
shows two examples, which I felt interesting. 
 First, we can use DAC to measure the apparent magnitude of a stars simply by 
knowing its name. What we need to achieve it is basically a combination of the results 
of the astrometry and photometry analysis written in a computer program for 
execution. The only thing we need to do manually, apart from writing the programme, 
is to set up a database for keeping the names of stars and their corresponding 

! 

RA /Dec . Therefore, after indicating the name of a star, a computer can read the 
corresponding 

! 

RA /Dec  to find out the star on an image, then calculating the flux and 
airmass and finally determining the magnitude. 
 The reason why this is interesting is not because we can obtain the apparent 
magnitude of a star by a straightforward operation, since it would be much easier if 
we search the star on the websites. What it suggests is, as a result of the 
straightforward measurement and by comparing the measured magnitude with the 
catalogue value, we can monitor the environmental condition around DAC almost 
instantly. Since it may not be always noticeable when thin clouds drifting across the 
sky or the water vapours being condensed on the dome, but if the measured 
magnitude is unexpectedly high, i.e. low in flux, it would suggest their existence. The 
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following shows an example, which can also be used to test the result of the 
photometry analysis. 
 The stars, Kappa UMA and Procyon, were framed at 20:57 on 4 April 2008, 
and we would like to know their apparent magnitude measured by DAC. Instead of 
writing a new program to combine the astrometry and photometry results for analysis, 
we simply executed two previously used programs for each part of calculation. The 

! 

RA /Dec  of each star were typed into the code, and consequently the image positions 
of the stars were found and marked by the program (Fig. 6.1). After running another 
program, we obtained the results listed in Table 6.1. 
 As determined in section 5.6, DAC is able to measure a 3rd magnitude star 
within 0.06-magnitude uncertainty when the airmass is 1. Therefore, the measured 
magnitude of Kappa UMA is consistent with the catalogue value. However, the 
measured magnitude of Procyon is significantly higher than the expected value, 0.4 
magnitudes, if we consider DAC can determine a 0th magnitude star within an 
uncertainty similar to the one when determining a 1st magnitude star, as suggested by 
Fig. 5.13. When using the annulus RMS to calculate the magnitude uncertainty of 
Procyon, we got 0.02 magnitudes. This uncertainty is reasonable in comparison with 
0.04 magnitudes for a 1st magnitude star (Table 5.4). However, it makes the 
magnitude of Procyon even more significant. As a result, it suggests there was an 
unexpected transmission loss of the flux of Procyon though nothing can be seen from 
the image. After playing a sequence of the frames, from this one to the one at 22:15, it 
showed something was drifting around the area of Procyon and a cloud was formed 
on that area after an hour of time (Fig. 6.2). It may not be the true reason why the 
Procyon was significantly dim but astro-physically it is unlikely that Procyon would 
change in brightness and hence dimming by clouds is a very likely cause.  

Another interesting application of DAC is to help the users to identify the stars 
by drawing the constellation lines. An example is shown in Fig. 6.3. The mapping 
functions were applied and the 

! 

RA /Dec  database described previously was also 
essential to perform the task. The function of plotting the constellation lines on an all-
sky image was considered to be particularly useful for the first year undergraduate 
students to study the positions of stars.  
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Fig. 6.1   The part of an all-sky image showing the stars of Kappa UMA and Procyon. The image was 
taken at 20:57 on 4 April 2008. Kappa UMA and Procyon were not previously sampled for the 
analysis. 
 
 
 
 
 
 
 
 
Table 6.1   The table lists the measured and catalogue values of the apparent magnitude of the stars. 
When sampling the flux, different aperture size was used for each star to take account of the image 
distortion. The catalogue values were found from SKY2000 Catalog, Version 4, from VizieR at 
http://vizier.u-strasbg.fr/viz-bin/VizieR-4.   
 

Stars Airmass Measured Magnitude Catalogue value 
Kappa UMA 1.02 3.3 3.58 

Procyon 1.77 0.58 0.4 
 
 
 
 
 

Procyon 

Kappa UMA 
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Fig. 6.2   The images showing the formation of a cloud. The arrows point to foggy area, which seemed 
to be floating when the image were played progressively. All six frames were taken on the same day as 
Fig. 6.1. The time when they were taken are shown on the top right of each image. 
 
 
 

 
Fig. 6.3   The all-sky image on which the constellation lines were drawn as a result of mapping. The 
letters on the line are the results of coding. They do not represent anything on the image.   
 

   22:00     21:59 21:58 

21:57 21:56 21:55 
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6.3   Further Improvements 

There are at least four aspects of DAC that would warrant further 
investigations. Firstly, the amount of light intensity attenuated by the lens from all 
possible incident angles should be investigated. It helps to understand the reason why 
the rate of change of the magnitudes with respect to airmass (section 5.5) had a large 
experimental result. As already been suggested in section 5.5.4, a laser beam can be 
used to scan the lens and find out the light losses.  

Secondly, the DAC’s operation needs to be automated and a webpage should 
be set up for viewing the live all-sky images. The automation is our final goal for a 
completed all-sky camera. However, I do not suggest it to be done at last since it 
would be rather difficult when more and more facilities, like filter, heater, etc., are 
added to DAC for a new feature. The program that runs DAC would be easily 
modified for a new feature if the automation is done at an early stage.  Setting the 
webpage and watching the images online are good for monitoring the performance of 
DAC. Meanwhile, we can collect the ideas from other users for the DAC’s further 
developments. 

Thirdly a heater could be added to DAC to prevent the water vapour 
condensations on the dome or lens. It has been discovered that the heat generated by 
camera itself was not sufficient to prevent the condensation and the condensed water 
vapour was clearly observable on a DAC image after 2-hour operation in a wet cold 
night. When the case of DAC was designed, it was left the space for putting a heater 
and fan inside. A fan helps to circulate the air inside DAC. We can also use 
something like a duvet to wrap the case inside or outside to trap the hot air.  

Fourthly reducing the influence of the streetlights to DAC during an 
observation is essential for the improvement of the DAC images. We have 
demonstrated that the dominant source of error of the instrumental magnitudes of 
stars in Durham was the brightness of sky background. In Durham, the sky 
background is marked illuminated by the streetlights, which are the sodium light 
predominantly emitting a spectral of the wavelength from 589.0 to 589.9 nm when the 
lamp is at low pressure. Therefore, the filters or other optical elements should be 
added to the camera to attenuate the streetlights. An example of the light pollution 
filter is Lumicon Deep Sky Filter①, which is able to block all high and low pressure 
Mercury and Sodium light. 

In addition, the maintenance work of the housing should also be carried. The 
spider nets have been frequently found inside case of DAC. 

 
 
 
 
 
 
 
 
 
 

 
  
①. The details are available from the website of Rother Valley Optics Ltd at 
http://www.rothevalleyoptics.co.uk/lumicon-deep-sky-filter-fits-all-1-25-eyepices_d907.html. 
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Appendix A 
 
Design and dimensions of the case of DAC 
 
 
 

 
The following diagrams are the original plots of the design and dimensioning 

of the components of the DAC case. According to the order of layout, they are the 
post, the camera stand, the ring that connects with the dome on the top of the case and 
the base, respectively. The last figure shows the relative position of the components. 
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Height: 
      148 
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This figure gives a general indication of the 
3D looking of the camera stand. The ratio of 
any two sides shown here may be not 
accurate.  
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The relative position of the components. 
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Appendix B 
 
Some computer programs used for the analysis 
 

When analysing the data, more than 20 programs were written in MATLAB or 
python for computation. Below shows two important ones written for the astrometry 
and photometry analysis, respectively. 
 
B.1   The Program for Mapping 
clear all; 
disp(' '); 
disp('*****************'); 
%First part is to get Julian day number and hence ST. 
x = load('x6.txt'); %load the pixel positions of stars 
y = load('y6.txt'); 
RA_hrs = load('RA_hrs.txt'); %load sky positions 
RA_mins = load('RA_mins.txt'); 
RA_secs = load('RA_secs.txt'); 
Dec_hrs = load('Dec_hrs.txt'); 
Dec_mins = load('Dec_mins.txt'); 
Dec_secs = load('Dec_secs.txt'); 
disp('Input a new date and time?'); 
temp = input('y or n: ','s'); 
if temp == 'n' 
    Y = 2008; 
    M = 4; 
    D = 4; 
    ut_hours = 21 + 46/60 + 0/3600;  
elseif temp == 'y' 
    Y = input('Year (i.e. 2007) = '); 
    M = input('Month = '); 
    D = input('Day = '); 
    H = input('Hour (i.e. 16) = '); 
    Min = input('Minute = '); 
    %ut_hours = H + Min/60 + 30/3600; 
    ut_hours = H + Min/60 + 0/3600; 
end 
if M <= 2 
    Y = Y-1; 
    M = M+12; 
end 
a = floor(Y/100); 
b = 2 - a + floor(a/4); 
if Y < 0 
    c = floor(365.25*Y - 0.75); 
else 
    c = floor(365.25*Y); 
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end 
d = floor(30.6001*(M+1)); 
jd = b + c + d + D + 1720994.5; 
t = (jd - 2451545)/36525; 
t0 = 6.697374558 + (2400.051336*t) + (0.000025862*(t*t)); 
t0 = (t0 - floor(t0/24)*24); 
if t0 < 0 
    t0 = t0+24; 
end 
ut = 1.002737909*ut_hours; 
tmp = floor((ut + t0)/24); 
gst = ut + t0 - tmp*24; 
gst_hour = floor(gst); 
gst_min = floor((gst - gst_hour)*60); 
gst_sec = floor((gst - gst_hour - gst_min/60)*3600); 
disp(' '); 
disp(['ST = ',num2str(gst_hour),' hrs']); 
disp(['     ',num2str(gst_min),' mins']); 
disp(['     ',num2str(gst_sec),' secs']); 
%% 
%This 2nd part is for getting LST. 
Durham_Long_Deg = 1.583; 
Durham_Lat_Deg = 54.767; 
LST = gst - Durham_Long_Deg/15; 
if LST > 24 
    LST = LST - 24; 
end 
if LST < 0 
    LST = LST + 24; 
end 
disp(' '); 
disp(['LST = ',num2str(LST),' hrs']); 
%% 
%This 3rd part is doing the conversion from RA/Dec to Az/El 
disp(' '); 
phi = Durham_Lat_Deg; 
disp('Use the imported RA/Dec?'); 
temp = input('y or n: ','s'); 
if temp == 'n' 
    disp('Input the RA/Dec of the star:'); 
    RA_hrs_Single = input('  RA hrs = '); 
    RA_mins_S = input('  RA mins = '); 
    RA_secs_S = input('  RA secs = '); 
    Dec_hrs_Single = input('  Dec hrs = '); 
    Dec_mins_S = input('  Dec mins = '); 
    Dec_secs_S = input('  Dec secs ='); 
    RA_S = RA_hrs_Single + RA_mins_S/60 + RA_secs_S/3600; 
    ha_S = LST - RA_S; 
    Dec_S = Dec_hrs_Single + Dec_mins_S/60 + Dec_secs_S/3600; 
    ha_S = 15*ha_S; 
    sh = sind(ha_S); 
    ch = cosd(ha_S); 
    sd = sind(Dec_S); 
    cd = cosd(Dec_S); 
    sp = sind(phi); 
    cp = cosd(phi); 
    x_factor = -1*ch*cd*sp + sd*cp; 
    y_factor = -1*sh*cd; 
    z_factor = ch*cd*cp + sd*sp; 
    r = sqrt(x_factor.^2 + y_factor.^2); 
    if r == 0 
        a = 0; 
    else 
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        a = atan2(y_factor,x_factor) * 180/pi; 
    end 
    if a < 0 
        a = a + 360; 
    end 
    az_S = a; 
    el_S = atan2(z_factor,r) * 180/pi; 
    disp(' '); 
    disp(['az = ',num2str(az_S),' degrees']); 
    disp(['el = ',num2str(el_S),' degrees']); 
elseif temp == 'y' 
    disp(' '); 
    disp('No.  x,   y, 
RA_hrs,RA_mins,RA_secs,Dec_hrs,Dec_mins,Dec_secs'); 
    for i = 1:length(RA_hrs) 
        disp([num2str(i),'   ',num2str(x(i)),'  ',num2str(y(i)), ... 
            '    ',num2str(RA_hrs(i)),'     ',num2str(RA_mins(i)),... 
            '    ',num2str(RA_secs(i)),'     
',num2str(Dec_hrs(i)),... 
            '       ',num2str(Dec_mins(i)),'      
',num2str(Dec_secs(i))]); 
    end 
    disp(' '); 
    disp('No.   x      y    Az(degrees)     El(degrees)'); 
    RA = RA_hrs + RA_mins/60 + RA_secs/3600; 
    ha = LST - RA; 
    Dec = Dec_hrs + Dec_mins/60 + Dec_secs/3600; 
    ha = 15*ha; 
    sh = sind(ha); 
    ch = cosd(ha); 
    sd = sind(Dec); 
    cd = cosd(Dec); 
    sp = sind(phi); 
    cp = cosd(phi); 
    x_factor = -1*ch.*cd.*sp + sd.*cp; 
    y_factor = -1*sh.*cd; 
    z_factor = ch.*cd.*cp + sd.*sp; 
    r = sqrt(x_factor.^2 + y_factor.^2); 
    if r == 0 
        a = 0; 
    else 
        a = atan2(y_factor,x_factor) * 180/pi; 
    end 
    for i = 1:length(a) 
        if a(i) < 0 
            a(i) = a(i) + 360; 
        end 
    end 
    az = a; 
    el = atan2(z_factor,r) * 180/pi; 
    for i = 1:length(RA_hrs) 
        disp([num2str(i),'    ',num2str(x(i)),'    ',num2str(y(i)), 
... 
            '    ',num2str(az(i)),'       ',num2str(el(i))]); 
    end 
end 
disp(' '); 
clear x_factor y_factor z_factor r sh ch sd cd sp cp a ha_S el_S az_S 
Dec_S Dec_hrs_Single Dec_mins_S Dec_secs_S RA_hrs_Single RA_mins_S 
RA_secs_S RA_S b c d temp tmp phi t t0 ut_hours gst gst_hour gst_min 
gst_sec ut Dec RA ha i x4 y4 Y M D; 
  
%% 
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%To put El in order 
disp(' '); 
disp('Arrange El in ascending order:'); 
disp(' '); 
temp = 0; 
tempx = 0; 
tempy = 0; 
n = length(el) - 1; 
for j = 1:n 
    for i = 1:n 
        if el(i) > el(i+1) 
            temp = el(i); 
            tempx = x(i); 
            tempy = y(i); 
            tempAz = az(i); 
            tempRA_hrs = RA_hrs(i); 
            tempRA_mins = RA_mins(i); 
            tempRA_secs = RA_secs(i); 
            tempDec_hrs = Dec_hrs(i); 
            tempDec_mins = Dec_mins(i); 
            tempDec_secs = Dec_secs(i); 
            el(i) = el(i+1); 
            x(i) = x(i+1); 
            y(i) = y(i+1); 
            az(i) = az(i+1); 
            RA_hrs(i) = RA_hrs(i+1); 
            RA_mins(i) = RA_mins(i+1); 
            RA_secs(i) = RA_secs(i+1); 
            Dec_hrs(i) = Dec_hrs(i+1); 
            Dec_mins(i) = Dec_mins(i+1); 
            Dec_secs(i) = Dec_secs(i+1); 
            el(i+1) = temp; 
            x(i+1) = tempx; 
            y(i+1) = tempy; 
            az(i+1) = tempAz; 
            RA_hrs(i+1) = tempRA_hrs; 
            RA_mins(i+1) = tempRA_mins; 
            RA_secs(i+1) = tempRA_secs; 
            Dec_hrs(i+1) = tempDec_hrs; 
            Dec_mins(i+1) = tempDec_mins; 
            Dec_secs(i+1) = tempDec_secs; 
        end 
    end 
end 
disp(' '); 
disp('No.   x      y    Az(degrees)     El(degrees)'); 
for i = 1:length(el) 
    disp([num2str(i),'    ',num2str(x(i)),'    ',num2str(y(i)), ... 
    '    ',num2str(az(i)),'       ',num2str(el(i))]); 
end 
clear n i j temp tempx tempy tempAz tempDec_hrs tempDec_mins 
tempDec_secs tempRA_hrs tempRA_mins tempRA_secs 
 
%% 
for NextStage = 1:1 
    disp(' '); 
    disp('Do you want to continue the program?'); 
    ProgramContinue = input('Type "n" for no: ','s'); 
    if ProgramContinue == 'n' 
        break; 
    end 
%% 
%Finding out the pixel position of zenith: 
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    Z = 90 - el; 
    %*** 1.1. INPUT 
    disp(' '); 
    disp('START ***********************'); 
    Xcinput = input('Centre X =  ');  
    %Xcinput is the assumed centre pixel value of x. 
    Xi = input('Increment value of X =  ');  
    %Xi is minimum step of movement of centre along +ve x direction. 
    if Xi == 0 
        n = 1; %return n = 1 not 0 is for the loop below 
    else  
        n = input('Number of increments of Xi =  '); 
        %n is the number of steps, i.e. number of Xi or Yi. 
        if n == 0 
            n = 1; 
        end 
    end 
    XcFirst = Xcinput; 
    Yc = input('Centre Y =  '); %assumed centre pixel value of y. 
    Yi = input('Increment value of Y =  '); 
    if Yi == 0 
        ny = 1; %ny = 1 is for the loop used below 
    else 
        ny = input('Number of increments of Yi =  '); 
        if ny == 0 
            ny = 1; 
        end 
    end 
    YcFirst = Yc; 
    dop = input('Degree of polyfit =  '); 
    %*** 1.2. DETERMINE SUBPLOT'S COLUMN & ROW(k) NUMBER 
    for k = 1:100 
        if k >= n/5 
            break; 
        end 
    end 
    row = k; 
    if k == 1 
        column = n; 
    else 
        column = 5; 
    end 
    %k gives the number of rows for a subplot used below. 
    %*** 1.3. DETERMINE IF DISPLAY EACH RMS 
    disp(' '); 
    disp('Press "2" to display the RMS of zenith distance of all 
figures;'); 
    disp('press "1" to display the RMS of pixel distance of all 
figures;'); 
    disp('press "0" to get the smallest RMS for both directly, .'); 
    disprms = input('Your choice: '); 
    for temp  = 1:50 
        if (disprms == 2 || disprms == 1 || disprms == 0) 
            break; 
        else 
            disp(' '); 
            disp('Press "2" to display all the RMS of zenith 
distance;'); 
            disp('press "1" to display all the RMS of pixel distance 
;'); 
            disp('press "0" to get the smallest RMS for both 
directly, .'); 
            disprms = input('Your choice: '); 
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        end 
    end 
    %*** 1.4. DETERMINE IF PLOT THE GRAPHS 
    disp(' '); 
    disp('Do you want to have the graphs plotted?');  
    dispfig = input('Input "1" for yes, "0" for no: '); 
    for temp  = 1:50 
        if (dispfig == 1 || dispfig == 0) 
            break; 
        else 
            dispfig = input('Input "1" for yes, "0" for no: '); 
        end 
    end 
    %*** 2. START CACULATIONS  
    %*** 2.1. LOOP j FOR CHANGE OF Yc 
    for j = 1 : ny 
        if (disprms == 1 || disprms == 2) 
            disp(' '); 
            disp(num2str(Yc)); 
        end 
        if dispfig == 1 
            figure;  
        end  
        Xc = Xcinput;  
        %Below for scanning the all points with the determined pixel 
range. 
        %*** 2.2. LOOP i FOR CHANGE OF Xc 
        for i = 1 : n 
            %*** 2.3. PIXEL DIST CALCULATION 
            dx = x - Xc;  
            %Having been imported, x is the stars'  
            %pixel positions along x-axis. 
            dy = y - Yc; 
            %y along y-axis. 
            P = sqrt(dx.^2 + dy.^2); %P is the Pixel distance. 
            %*** 2.4. RMS OF PIXEL DIST CALCULATION 
            %rms calcuation begins 
            f = polyfit(P,Z,dop);  
            g = polyfit(Z,P,dop); 
            %*** RMS of Pixel Distance 
            dopInLoop = dop; 
            Pb = 0;  %Initialise Pb 
            for temp = 1 : (dopInLoop+1) 
                PbTerm = g(temp)*Z.^(dopInLoop); 
                Pb = PbTerm + Pb; 
                dopInLoop = dopInLoop - 1; 
            end 
            % 
            Pd = Pb - P; % Pd = deviation of pixel dist 
            SumPdSquared = 0; 
            for h = 1:length(Pd) 
                SumPdSquared = Pd(h).^2+SumPdSquared; 
                %Pvariance = SumPdSquared/length(Pd); %variance for P 
            end 
            Prms = sqrt(SumPdSquared/(length(Pd)-(dop+1))); %RMS for 
P 
            if disprms == 1 
                disp(['Prms =  ',num2str(Prms), ' pixels']); 
            end 
            %*** RMS of Zenith Distance 
            
            %***test begins 
            dopInLoop = dop; 
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            Zb = 0; %initialise Zb 
            for temp = 1 : (dopInLoop+1) 
                ZbTerm = f(temp)*P.^(dopInLoop); 
                Zb = ZbTerm + Zb; 
                dopInLoop = dopInLoop - 1; 
            end 
            %***test ends 
            Zd = Zb - Z; % Zd = deviation of zenith dist 
            SumZdSquared = 0; 
            for h = 1:length(Zd) 
                SumZdSquared = Zd(h).^2+SumZdSquared; 
                %Zvariance = SumZdSquared/length(Zd); %variance for Z 
            end 
            Zrms = sqrt(SumZdSquared/(length(Zd)-(dop+1))); %RMS for 
Z 
            if disprms == 2 
                disp(['Zrms =  ',num2str(Zrms), ' degrees']); 
            end 
            %rms ends 
            %*** 2.5.FIND THE SMASLLEST RMS OF EACH FIGURE AND OF ALL 
            %compare begins 
            %*** Prms comparison for finding the smallest. 
            if i > 1; 
                compareP = Psmaller - Prms; 
                if compareP > 0 
                    Psmaller = Prms; 
                        %% what if compare = 0?????????/ 
                    XspInGroup = Xc; 
                    YspInGroup = Yc; 
                    PPolyCoeffofGroup = g; %Pixel distance is on y 
axis. 
                end 
            else 
                Psmaller = Prms; 
                XspInGroup = Xc; 
                YspInGroup = Yc; 
                PPolyCoeffofGroup = g; 
            end 
            if j > 1; 
                FindSmallestPrms = Psmallest - Prms; 
                if FindSmallestPrms > 0 
                    Psmallest = Prms; 
                    Xsp = Xc; 
                    Ysp = Yc; 
                    PPolyCoeff = g; 
                end 
            else 
                Psmallest = Psmaller; 
                Xsp = XspInGroup; 
                Ysp = YspInGroup; 
                PPolyCoeff = PPolyCoeffofGroup; 
            end 
            %*** Zrms comparison for finding the smallest. 
            if i > 1; 
                compareZ = Zsmaller - Zrms; 
                if compareZ > 0 
                    Zsmaller = Zrms; 
                    XszInGroup = Xc; 
                    YszInGroup = Yc; 
                    ZPolyCoeffofGroup = f; 
                end 
            else 
                Zsmaller = Zrms; 
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                XszInGroup = Xc; 
                YszInGroup = Yc; 
                ZPolyCoeffofGroup = f; 
            end 
            if j > 1; 
                FindSmallestZrms = Zsmallest - Zrms; 
                if FindSmallestZrms > 0 
                    Zsmallest = Zrms; 
                    Xsz = Xc; 
                    Ysz = Yc; 
                    ZPolyCoeff = f; 
                end 
            else 
                Zsmallest = Zsmaller; 
                Xsz = XszInGroup; 
                Ysz = YszInGroup; 
                ZPolyCoeff = ZPolyCoeffofGroup; 
            end 
            %*** 2.6.PLOT THE GRAPHS 
            if dispfig == 1 
                if n <= 25  
                    subplot(row,column,i); %******for subplot 
                    plot (P,Z,'-xr');  
                    ylabel('Zenith distance (degrees)'); 
                    xlabel('Pixel distance   (pixels)'); 
                    title({['Centre (', num2str(Xc), ', ', 
num2str(Yc),... 
                        '); no of points: ',num2str(length(Z))];...  
                    ['Prms = ',num2str(Prms), ' pixels'];... 
                    ['Zrms = ',num2str(Zrms),' degrees.'];... 
                    ['degree of Polynomial: ',num2str(dop),')']}); 
                    grid on; 
                    axis([0 300 0 80]); 
                    set(gca, ... 
                         'XTick',0:50:300, ... 
                         'YTick',0:20:80, ... 
                         'XMinorTick', 'on', ... 
                         'YMinorTick', 'on', ... 
                         'XMinorGrid', 'on', ... 
                         'YMinorGrid', 'on', ... 
                         'GridLineStyle','-',... 
                         'MinorGridLineStyle','--') 
        
                end     
            end  
            XcLast = Xc;     
            Xc = Xc + Xi; 
        end %END OF PIXEL DISTANCE 
        %*** 2.7. DISPLAY SMALLEST RMS OF EACH FIGURE 
        if (n ~= 1 && disprms == 1) 
            disp(['The smallest Prms of figure [',num2str(j),'] = 
',... 
                num2str(Psmaller),' pixels,']); 
            disp(['of which the centre is (',num2str(XspInGroup),... 
                ', ',num2str(YspInGroup),').']); 
            disp(['The smallest Prms of all figures= 
',num2str(Psmallest),... 
                ' pixels.']); 
            disp(['end of ',num2str(Yc)]); 
            disp(' ')  
        end  
        if (n ~= 1 && disprms == 2) 
            disp(['The smallest Zrms of figure [',num2str(j),'] = 



 70 

',... 
                num2str(Zsmaller),' degrees,']); 
            disp(['of which the centre is (',num2str(XszInGroup),... 
                ', ',num2str(YszInGroup),').']); 
            disp(['The smallest Zrms of all figures= 
',num2str(Zsmallest),... 
                ' degrees.']); 
            disp(['end of ',num2str(Yc)]); 
            disp(' ')  
        end  
        %*** BACK TO Yc 
        YcLast = Yc; 
        Yc = Yc + Yi; 
    end %END OF ZENITH PROJECTION DETERMINATION  
    %*** 3. OUTPUT 
    disp(' '); 
    disp(' '); 
    disp('>>>Summary'); 
    disp('>>>The scanning range of the centre points (in pixels): '); 
    disp(['     Xc from ', num2str(XcFirst),' to ',num2str(XcLast)]); 
    disp(['   increment: ',num2str(Xi)]); 
    disp(['     Yc from ', num2str(YcFirst),' to ',num2str(YcLast)]); 
    disp(['   increment: ',num2str(Yi)]); 
    disp(['>>>The smallest Prms = ',num2str(Psmallest), ' pixels 
which']); 
    disp(['   appears at the centre (',num2str(Xsp),', 
',num2str(Ysp),').']); 
    disp(['>>>The smallest Zrms = ',num2str(Zsmallest), ' degrees 
which']); 
    disp(['   appears at the centre (',num2str(Xsz),', 
',num2str(Ysz),').']); 
    disp(['>>>Degree of polynomial: ',num2str(dop)]); 
    disp(['   Number of sampled points(stars): 
',num2str(length(Z))]); 
    disp(' --When Zenith distance is the variable,');%Assumed that 
variables  
                                            %have uncertainties too 
small to be 
                                            %considered. 
    disp('   at smallest Prms, the polynommial coefficients are:');  
    disp(' '); 
    disp(num2str(PPolyCoeff)); 
    disp(' '); 
    disp(' --When Pixel distance is the variable,'); 
    disp('   at smallest Zrms, the polynommial coefficients are:');  
    disp(' '); 
    disp(num2str(ZPolyCoeff)); 
    disp(' '); 
    disp(['>>>Yc = ',num2str(Yc)]); %test value; should be deleted in 
the end. 
    disp(' '); 
    clear FindSmallestPrms FindSmallestZrms PPolyCoeffofGroup; 
    clear Pb PbTerm Pd Prms Psmaller SumPdSquared SumZdSquared; 
    clear XcFirst XcLast Xcinput Xi Xc XspInGroup ZPolyCoeffofGroup 
Zb Zd ZbTerm Zrms Zsmaller column compareP compareZ dispfig disprms 
dopInLoop dx dy f g h i j k n ny row temp Yc YcFirst YcLast Yi 
YspInGroup YszInGroup Zb Zd ZbTerm Zrms Zsmaller XszInGroup; 
 
%% 
    disp(' '); %Asking if continue for zero-azimuth analysis. 
    disp('Do you want to continue the program?');   
    ProgramContinue = input('Type "n" for n: ','s'); 
    if ProgramContinue == 'n' 
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        break; 
    end 
    %To put the data in the accending order of Az. 
    disp(' '); 
    disp('Arrange Az in ascending order:'); 
    disp(' '); 
    Az = az; 
    temp = 0; 
    tempx = 0; 
    tempy = 0; 
    n = length(Az) - 1; 
    for j = 1:n 
        for i = 1:n 
            if Az(i) > Az(i+1)             
                temp = el(i); 
                tempx = x(i); 
                tempy = y(i); 
                tempAz = Az(i); 
                tempRA_hrs = RA_hrs(i); 
                tempRA_mins = RA_mins(i); 
                tempRA_secs = RA_secs(i); 
                tempDec_hrs = Dec_hrs(i); 
                tempDec_mins = Dec_mins(i); 
                tempDec_secs = Dec_secs(i); 
                el(i) = el(i+1); 
                x(i) = x(i+1); 
                y(i) = y(i+1); 
                Az(i) = Az(i+1); 
                RA_hrs(i) = RA_hrs(i+1); 
                RA_mins(i) = RA_mins(i+1); 
                RA_secs(i) = RA_secs(i+1); 
                Dec_hrs(i) = Dec_hrs(i+1); 
                Dec_mins(i) = Dec_mins(i+1); 
                Dec_secs(i) = Dec_secs(i+1); 
                el(i+1) = temp; 
                x(i+1) = tempx; 
                y(i+1) = tempy; 
                Az(i+1) = tempAz; 
                RA_hrs(i+1) = tempRA_hrs; 
                RA_mins(i+1) = tempRA_mins; 
                RA_secs(i+1) = tempRA_secs; 
                Dec_hrs(i+1) = tempDec_hrs; 
                Dec_mins(i+1) = tempDec_mins; 
                Dec_secs(i+1) = tempDec_secs; 
            end 
        end 
    end 
    disp(' '); 
    disp('No.   x      y    Az(degrees)     El(degrees)'); 
    for i = 1:length(el) 
        disp([num2str(i),'    ',num2str(x(i)),'    ',num2str(y(i)), 
... 
        '    ',num2str(Az(i)),'       ',num2str(el(i))]); 
    end 
    disp('end'); 
    clear n i j temp tempx tempy tempAz tempDec_hrs tempDec_mins 
tempDec_secs tempRA_hrs tempRA_mins tempRA_secs 
%%     
    if ProgramContinue == '1' 
        break; 
    end 
%% 
    % Finding the best approximate zero-azimuth point.   
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    disp(' '); 
    disp('**********'); 
    Xofirst = input('Xo first = '); 
    Xolast = input('Xo last = '); 
    Yofirst = input('Yo first = '); 
    Yolast = input('Yo last = '); 
    disp(' '); 
    disp('Type "2" for g = polyfit(Az,theta,1);'); 
    disp('     "1" for f;'); 
    fit = input('Your choice: '); 
    for temp  = 1:50 
        if (fit == 2 || fit == 1) 
            break; 
        else 
            disp(' '); 
            disp('Type "2" for g'); 
            disp('     "1" f;'); 
            fit = input('Your choice: '); 
        end 
    end 
    disp(' '); 
    disp('Type "1" to display RMS for each set of data;'); 
    disp('     "0" to ignore;'); 
    disprms = input('Your choice: '); 
    for temp  = 1:50 
        if (disprms == 0 || disprms == 1) 
            break; 
        else 
            disp(' '); 
            disp('Type "1" to display all RMS;'); 
            disp('     "0" to ignore;'); 
            disprms = input('Your choice: '); 
        end 
    end 
    disp(' '); 
    disp('Type "1" to display graphs;'); 
    disp('     "0" to ignore;'); 
    dispfig = input('Your choice: '); 
    for temp  = 1:50 
        if (dispfig == 0 || dispfig == 1) 
            break; 
        else 
            disp(' '); 
            disp('Type "1" to display graphs;'); 
            disp('     "0" to ignore;'); 
            dispfig = input('Your choice: '); 
        end 
    end 
    Xc = Xsp; 
    Yc = Ysp; 
    theta = x - x; 
    %*** 1.2. DETERMINE SUBPLOT'S COLUMN & ROW(k) NUMBER 
    n = Xolast - Xofirst + 1; 
    for k = 1:100 
        if k >= n/5 
            break; 
        end 
    end 
    row = k; 
    if k == 1 
        column = n; 
    else 
        column = 5; 
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    end 
    %k gives the number of rows for a subplot used below. 
    for Yo = Yofirst:1:Yolast 
        if disprms == 1 
            disp(' '); 
            disp(num2str(Yo)); 
        end 
        if dispfig == 1 
            figure; 
        end 
        j = 0; %j is used for subplot 
        for Xo = Xofirst:1:Xolast 
            j = j + 1; %j for subplot 
            a = sqrt((Xo - Xc).^2+(Yo - Yc).^2); 
            b = sqrt((x - Xc).^2+(y - Yc).^2);    
            c = sqrt((x - Xo).^2+(y - Yo).^2);    
            for i = 1:length(b); 
                EachTheta = acosd((a.^2+b(i).^2-c(i).^2)/(2*a*b(i))); 
                if Az(i) > 180 
                    EachTheta = 360 - EachTheta; 
                end 
                theta(i) = EachTheta; 
            end 
            %*** Finding the RMS of theta 
            thetaD = Az - theta; 
            Sum = 0; 
            for temp = 1:length(thetaD) 
                Sum = thetaD(temp).^2+Sum; 
            end 
            thetaRMS = sqrt(Sum/(length(thetaD)-2)); %RMS for theta 
            if disprms == 1 
                disp(['RMS(theta) =  ',num2str(thetaRMS), ' 
degrees']); 
            end 
            if Xo > Xofirst 
                if (SmallerRMS - thetaRMS > 0) 
                    SmallerRMS = thetaRMS; 
                    XoInGroup = Xo; 
                    YoInGroup = Yo; 
                end 
            else 
                SmallerRMS = thetaRMS; 
                XoInGroup = Xo; 
                YoInGroup = Yo; 
            end 
            if Yo > Yofirst 
                if (SmallestRMS - thetaRMS > 0) 
                    SmallestRMS = thetaRMS; 
                    Xos = Xo; 
                    Yos = Yo; 
                end 
            else 
                SmallestRMS = SmallerRMS; 
                Xos = XoInGroup; 
                Yos = YoInGroup; 
            end 
            if dispfig == 1 
                subplot(row,column,j); 
                plot (theta,Az,'-ro');  
                ylabel('Azimuth (degrees)'); 
                xlabel('Theta (degrees)'); 
                title({['Reference (', num2str(Xo), ', ', 
num2str(Yo),... 
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                    '); no of points: ',num2str(length(Az))];...  
                ['RMS(theta) = ',num2str(thetaRMS), ' degrees']}); 
                grid on; 
                axis([0 360 0 360]); 
                set(gca, ... 
                     'XTick',0:40:360, ... 
                     'YTick',0:40:360, ... 
                     'XMinorTick', 'on', ... 
                     'YMinorTick', 'on', ... 
                     'XMinorGrid', 'on', ... 
                     'YMinorGrid', 'on', ... 
                     'GridLineStyle','-',... 
                     'MinorGridLineStyle','--')   
            end  
        end 
        if disprms == 1 
            disp(['>>> The smallest of Group = 
',num2str(SmallerRMS),... 
                ' degrees']); 
            disp(['    when the point at 
(',num2str(XoInGroup),',',... 
                num2str(YoInGroup),').']); 
            disp(['>>> The smallest RMS = ',num2str(SmallestRMS),' 
degrees']); 
            disp(['    when the point at (',num2str(Xos),',',... 
                num2str(Yos),').']); 
        end 
    end 
    disp(' '); 
    disp(' '); 
    disp('>>> SUMMARY'); 
    disp('>>> The range of scan: '); 
    disp(['   Xo from ',num2str(Xofirst),' to ',num2str(Xolast)]); 
    disp(['   Yo from ',num2str(Yofirst),' to ',num2str(Yolast)]); 
    disp(['>>> The smallest RMS = ',num2str(SmallestRMS),' 
degrees']); 
    disp(['    when the point at 
(',num2str(Xos),',',num2str(Yos),').']); 
    disp(' ') 
    Ya = Ysp; 
    sum = 0; 
    count = 0; 
    Xa = 300; 
        a = sqrt((Xos - Xc).^2+(Yos - Yc).^2);  
        b = sqrt((Xa - Xc).^2+(Ya - Yc).^2);     
        c = sqrt((Xa - Xos).^2+(Ya - Yos).^2);    
        angle = acosd((a.^2+b.^2-c.^2)/(2*a*b)); 
    mean = sum/count; 
    disp(' '); 
    disp(['Mean angle = ',num2str(angle),' degrees']); 
end 
disp('end'); 
disp(' '); 
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B.2  The Program for Measuring The Instrumental Magnitude of A Star 
clear all; 
disp('***********'); 
disp(' '); %load the frame 
a = imread('sky20080404_2200.fits'); 
a = double(a);%load the dark frame 
b = imread('sky20080501_1342.fits'); 
b = double(b); 
c = a - b; %substract dark frame from all-sky image. 
G = 64; 
const = 50; 
Xc = 180; %Image position of star 'Alioth' 
Yc = 231; 
mag_obs = Xc - Xc; 
error_mag = Xc - Xc; 
error_mag2 = Xc - Xc; 
R = input('Radius of the aperture = '); 
r_inner = input('Inner radius of the annulus = '); 
r_outer = input('Outer radius of the annulus = '); 
for loop = 1:length(Xc) 
    x = Xc(loop) - R; 
    count = 0; 
    for sub_x = 1:2*R 
        y = Yc(loop) - R; 
        for sub_y = 1:2*R  
            if (x-Xc(loop))^2 + (y-Yc(loop))^2 <= R^2 
                subframe(sub_y,sub_x) = c(y,x); 
                count = count + 1; 
                star(count) = c(y,x); 
            else 
                subframe(sub_y,sub_x) = 0; 
            end 
            y = y + 1; 
        end 
        x = x + 1; 
    end 
    %% 
    %Annulus 
    x = Xc(loop) - r_outer; 
    count = 0; 
    for sub_x = 1:2*r_outer 
        y = Yc(loop) - r_outer; 
        for sub_y = 1:2*r_outer 
            if (x-Xc(loop))^2 + (y-Yc(loop))^2 > r_inner^2 && (x-
Xc(loop))^2 + (y-Yc(loop))^2 <= r_outer^2 
                annulus(sub_y,sub_x) = c(y,x); 
                whole_sample(sub_y,sub_x) = c(y,x); 
                count = count + 1; 
                base(count) = c(y,x); 
            else 
                annulus(sub_y,sub_x) = 0; 
                if (x-Xc(loop))^2 + (y-Yc(loop))^2 < R^2 
                    whole_sample(sub_y,sub_x) = c(y,x); 
                else 
                    whole_sample(sub_y,sub_x) = 0; 
                end 
            end 
            y = y + 1; 
        end 
        x = x + 1; 
    end 
    lincount = count; 
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    [mu_annulus,sigma_annulus] = normfit(base,0); 
    disp(' '); 
    disp(['mu(annulus) = ',num2str(mu_annulus),', sigma(annulus) = 
',... 
        num2str(sigma_annulus),' ADUs']); 
    disp(' '); 
%% 
    figure; 
    mesh(whole_sample); 
    xlabel({'Pixel number';'along x-axis'}); 
    ylabel({'Pixel number';'along y-axis'}); 
    zlabel('Pixel value (ADUs)'); 
    axis tight; 
    figure; 
    image(whole_sample/2.5); 
    colormap('gray'); 
    xlabel('Pixel number along x-axis'); 
    ylabel('Pixel number along y-axis'); 
%% 
    %count the frequency of every pixel value of the star. 
    count = 0; 
    k = 0; 
    star_pixel_number = length(star); 
    total_star_pv = 0; 
    for j = 1:length(star) 
        total_star_pv = total_star_pv + star(j); 
        newvalue = 0; 
        count = count + 1; 
        if count > 1 
            for k = 1:count-1 
                if star(j) == star_pv(k); 
                    star_freq(k) = star_freq(k) + 1; 
                    count = count - 1; 
                    newvalue = 1; 
                    break; 
                end 
            end 
            if newvalue == 0 
                star_freq(count) = 1; 
                star_pv(count) = star(j); 
            end 
        else 
            star_freq(count) = 1; 
            star_pv(count) = star(j);          
        end 
    end 
  
    %% 
    %disp(' '); 
    %disp('Sampled star'); 
    %disp(['Star pixel number = ',num2str(star_pixel_number)]); 
    %disp(['frequency =   ',num2str(star_freq)]); 
    %disp(['pixel value = ',num2str(star_pv)]); 
    %% 
    star_norm_freq = star_freq - star_freq; 
    for temp = 1: length(star_freq) 
        star_norm_freq(temp) = star_freq(temp)/star_pixel_number; 
    end 
    %disp(['norm_freq   = ',num2str(star_norm_freq)]); 
    %figure; 
    %bar(star_pv,star_norm_freq); 
    %title({'Star histogram';' '}); 
    %xlabel('Pixel value (ADUs)'); 
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    %ylabel('Normalised frequency'); 
%% 
    %Annulus histogram 
    count = 0; 
    k = 0; 
    annulus_pixel_number = length(base); 
    total_annulus_pv = 0; 
    for j = 1:length(base) 
        total_annulus_pv = total_annulus_pv + base(j); 
        newvalue = 0; 
        count = count + 1; 
        if count > 1 
            for k = 1:count-1 
                if base(j) == annulus_pv(k); 
                    annulus_freq(k) = annulus_freq(k) + 1; 
                    count = count - 1; 
                    newvalue = 1; 
                    break; 
                end 
            end 
            if newvalue == 0 
                annulus_freq(count) = 1; 
                annulus_pv(count) = base(j); 
            end 
        else 
            annulus_freq(count) = 1; 
            annulus_pv(count) = base(j);          
        end 
    end 
  
    figure; 
    histfit(base,length(annulus_freq)); 
    %title('annulus pv'); 
    xlabel('Pixel value (ADU)'); 
    ylabel('Frequency'); 
    %disp(' '); 
    %disp(['Annulus pixel number = ',num2str(annulus_pixel_number)]); 
    %disp(['annulus frequency =   ',num2str(annulus_freq)]); 
    %disp(['annulus pixel value = ',num2str(annulus_pv)]); 
  
    annulus_norm_freq = annulus_freq - annulus_freq; 
    for temp = 1: length(annulus_freq) 
        annulus_norm_freq(temp) = 
annulus_freq(temp)/annulus_pixel_number; 
    end 
    %disp(['annulus norm_freq   = ',num2str(annulus_norm_freq)]); 
    figure; 
    bar(annulus_pv,annulus_norm_freq); 
    title({'Annulus histogram';' '}); 
    xlabel('Pixel value (ADUs)'); 
    ylabel('Normalised frequency'); 
  
%% 
    %mean_background 
    mean_background = total_annulus_pv/annulus_pixel_number; 
  
    disp(' '); 
    disp(['Mean background flux = ',num2str(mean_background),' 
ADU']); 
  
    %% 
    %FWHM of sky background 
    n = length(annulus_freq) - 1; 
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    for i = 1:n %Range annulus_freq in descending order 
        for j = 1:n 
            if annulus_freq(j) < annulus_freq(j+1) 
                temp = annulus_freq(j); 
                temp2 = annulus_pv(j); 
                annulus_freq(j) = annulus_freq(j+1); 
                annulus_pv(j) = annulus_pv(j+1); 
                annulus_freq(j+1) = temp; 
                annulus_pv(j+1) = temp2; 
            end 
        end 
    end 
    mode = annulus_pv(1); 
    disp(['mode = ',num2str(mode),' ADU']); %mode 
%% 
    %star flux 
    star_flux = total_star_pv - mean_background*star_pixel_number; 
    disp(['Star flux = ',num2str(star_flux),' ADU']); 
    HM = annulus_freq(1)/2; 
    n = length(annulus_freq) - 1; 
    for i = 1:n %Range annulus_pv in ascending order 
        for j = 1:n 
            if annulus_pv(j) > annulus_pv(j+1) 
                temp = annulus_freq(j); 
                temp2 = annulus_pv(j); 
                annulus_freq(j) = annulus_freq(j+1); 
                annulus_pv(j) = annulus_pv(j+1); 
                annulus_freq(j+1) = temp; 
                annulus_pv(j+1) = temp2; 
            end 
        end 
    end 
    count = 0; 
    for i = 1:length(annulus_freq) 
        if annulus_freq(i) >= HM 
            count = count + 1; 
            width(count) = annulus_pv(i); 
        end 
    end 
    FWHM = width(count) - width(1); 
    disp(['FWHM = ',num2str(FWHM),' ADU']); 
%% 
    %uncertainty of magnitude 
    denominator = sqrt(star_flux/G + 
star_pixel_number*sigma_annulus^2 + 
star_pixel_number*sigma_annulus^2/annulus_pixel_number); 
    ratio_SignalToNoise = star_flux/denominator; 
    error_mag(loop) = 1.0857/ratio_SignalToNoise; 
    mag_obs(loop) = const - 2.5*log10(star_flux); 
end 
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Notations and abbreviations 
 
 
ASC   All-sky camera 

DAC   Durham all-sky camera 
ADU   Analogue-to-digital unit 

RMS   Root mean square 
ST   Sidereal Time 

LST   Local Sidereal Time 
UT   Universal Time 

! 

RA /Dec   Right ascension and Declination 

! 

Az /El   Azimuth and Elevation 

! 

Z    Zenith distance 

! 

P    Pixel distance 

! 

"Z    RMS of the zenith distance 

! 

"P    RMS of the pixel distance 

! 

(x,y)   Observed pixel position of a star 

! 

(X
S
,Y

S
)  Calculated pixel position of a star 

! 

(X
Z
,Y

Z
)  Pixel position of zenith 

! 

(X
0
,Y
0
)  Pixel position of zero-azimuth 

! 

"    Azimuth angle of a star measured an the image   

! 

G   The gain of DAC 

! 

F
S
   Flux of a star 

! 

n    The number of the pixels within an aperture 

! 

p    The number of the pixels within an annulus 

! 

Mag(cat)   Catalogue value of the apparent magnitude of a star 

! 

Mag(obs)   Instrumental magnitude of a star 

 


