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Rydberg dark states in external
fields

Monsit Tanasittikosol

Abstract
We initially discuss the theory of three-level systems using the dressed

state formalism. One of the dressed states, containing a ground state and
a Rydberg state, does not couple with the probe laser; thus, the medium
becomes transparent to the latter. This phenomenon is known as electro-
magnetically induced transparency (EIT) and this dressed state is known as
a Rydberg dark state. We show that EIT can be used to extract the reduced
dipole matrix element for transitions to a Rydberg state. However, a prob-
lem with three-level Rydberg EIT in a vapour cell is the occurrence of space
charges caused by photoelectric ionisation of Rb metal deposited inside the
cell. To avoid this problem, we consider adding a third laser resonant with
a fourth level. This is to avoid using the laser whose wavelength is less than
the threshold wavelength. In cold atoms, the effect of the third laser is to
split the usual EIT resonance into a doublet. In thermal atoms, we observe
narrow features due to electromagnetically induced absorption and electro-
magnetically induced transparency in the Doppler-free configuration. Next
we consider the action of a far off-resonance radio frequency (rf) field in the
three-level system. We demonstrate the formation of rf-dressed EIT reso-
nances in a thermal Rb vapour and show that such states exhibit enhanced
sensitivity to dc electric fields compared to their bare counterparts. Fitting
the corresponding EIT profile enables precise measurements of the dc field in-
dependent of laser frequency fluctuations. We further investigate the theory
of rf-dressed Rydberg EIT using the Floquet approach in order to understand
the formation of the sideband structure of the Rydberg state. We find that
if the time scale of the rf interaction is much shorter than that of the system
evolution and decoherence, the sideband structure is well resolved. We also
show that the intermediate state exhibits a sideband structure, induced by
the Rydberg state, when the Rabi frequency of coupling laser is larger than
twice the modulation frequency. Finally we consider resonant microwave cou-
pling between the Rydberg states which leads to an Autler-Townes splitting
of the EIT resonance in cold atoms. This splitting can be employed to vary
the group index by ±105 allowing independent control of the absorptive and
dispersive properties of the medium, i.e., one can switch the transparency of
the medium or control the group velocity of a pulse propagation by tuning
on and off the microwave field.
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Chapter 1

Introduction

1.1 Electromagnetically induced transparency

and dark states

The work presented in this thesis is concerned with electromagnetically in-

duced transparency (EIT) [1] involving highly-excited Rydberg states. Its

main focus is on the modification of Rydberg EIT induced by an external

radio frequency (rf) or microwave fields, for example, the generation of EIT

sidebands and the splitting of the EIT feature due to radio frequency (rf)

fields and microwave, respectively.

Electromagnetically induced transparency is the phenomenon in which an

opaque medium, e.g., an atomic vapour, becomes transparent due to the

application of electromagnetic fields [1]. This phenomenon arises due to

destructive interference between two excitation pathways driven by two laser

fields within a three-level atomic system. This results in the cancellation of

the probability amplitudes for the transition from the ground state to the

intermediate state [1–3]. In the dressed state picture, a dark state, i.e., the

dressed state containing a ground state and an excited state, is responsible

for this phenomenon since it does not interact with the intermediate state via

1
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the probe laser [2, 3]. EIT-like effects are also observed in classical systems,

e.g., a system of driven coupled oscillators [4, 5] and in RLC circuits [5]. In

a system of three oscillators connected by two springs, the forces driving the

middle oscillator cancel each other since they are out-of-phase. This leads

to the reduction of the power absorbed by the middle oscillator, and thus

creates an EIT-like profile.

One important application of EIT is to optically control the transmission

[6–8] and the dispersion [8–10] of a probe laser in an atomic ensemble, and

hence, the group velocity of light [11, 12]. The abrupt change in the refractive

index and transmission has been proposed for use as a magnetometer by

Scully et al. [13]. The propagation of light through an EIT medium can

be described in terms of dark state polaritons [14]. By varying the control

field one can reversibly convert between the light and atomic excitations and

thereby implement photon storage [15–19].

Moreover, the three-level EIT system can be modified by adding an on-

resonance electromagnetic field into the system. This results in a modifica-

tion of dispersion; and hence, the dynamics of the dark state. For example,

dressing the system by microwave field switches the group index from positive

to negative, giving rise to “superluminal” propagation [20–22].

1.2 Rydberg EIT

Rydberg atoms with highly excited principal quantum number (n > 10)

[23, 24] present novel applications in precision electrometry [25] and quantum

information [24, 26, 27] due to their extreme polarisability (scaling as n7 for

low orbital angular momentum) and long range interactions. Rydberg atoms

can be created using the technique of charge exchange in which positive ions

collide with ground state atoms, or by electron impact in which the ground

state atoms are excited by a beam of electrons [23]. Optical excitation in
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which one or more lasers are used to excite the atom to a Rydberg state is

also employed by atomic physicists [23, 28, 29]. Recently, adiabatic rapid

passage has been proposed as an efficient way to create a single Rydberg

atom [30].

The application of Rydberg states as electric field sensors has been explored

using a supersonic beam of krypton atoms with principal quantum number

n = 91. By measuring the Stark shifts of highly excited Rydberg states,

the value of the electric field was obtained with a 20 µV cm−1 accuracy

[31]. However, a disadvantage of using Rydberg atoms is that the standard

detection technique of pulsed field ionization means that the measurement

cannot be performed continuously, the electrodes required for ionization may

perturb the field under investigation, and typically the detection system is

relatively large. Recently, the coherent optical detection of Rydberg states

using EIT has been demonstrated in a thermal vapour cell [32], in an atomic

beam [33] and in ultra-cold atoms [34]. This detection technique has the

advantage that it is continuous and can be performed in confined geometries

down to the micron scale [35]. Consequently one can envisage a compact

electrometry device analogous to a chip scale atomic magnetometer [36].

Ladder EIT [3] involving a Rydberg state arises due to the formation of Ry-

dberg dark states, which are coherent superpositions of the ground state and

a Rydberg state. Rydberg dark resonances result in a narrow feature in the

susceptibility, and thereby an enhanced electro-optic effect compared to bare

Rydberg states [37]. Rydberg EIT has been used to study interactions in

cold Rydberg gases [34, 38, 39]. Possible applications of Rydberg dark states

include single-photon entanglement [40], the generation of exotic entangled

states [29] and mesoscopic quantum gates [41]. In addition they are of in-

terest to applications in electrometry [21, 35], owing to their giant dc Kerr

coefficient [37]. However, the sensitivity of a Rydberg dark state electrometer

is limited by laser frequency fluctuations. Since reducing those to a suitable
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level entails a considerable experimental overhead, a technique to measure

electric fields that is insensitive to the absolute laser frequency is desirable.

One of the results from the work presented in this thesis suggests a possible

way to achieve the goal.

Another interesting application of Rydberg EIT is the microwave coupling

of Rydberg states. In such system the probe and coupling lasers perform

the usual two-photon transition to a Rydberg state, and then this Rydberg

state couples to another Rydberg state by a microwave field. The effect of

the microwave coupling is to split the EIT peak of three-level Rydberg EIT

into a doublet EIT. This results in independent control of the absorptive and

dispersive properties of the medium [21]. Moreover, the microwave dressing

leads to the enhanced interactions due to an effective increase in the blockade

radius. In particular, the evidence for the energy shift due to the long range

dipole-dipole interaction between Rydberg states resonantly coupled by the

microwave field has recently been presented [21]. By exploiting this enhanced

long-range interaction by microwave dressing, Bariani et al. [42] proposed a

scheme for the fast entanglement generation in Rydberg ensembles.

1.3 Dressing atoms with rf fields

Historically, the dressing of atomic systems by an rf field has been one of the

most important developments in atomic physics. It was Autler and Townes

[43] who first studied such systems and predicted both the Stark shift and the

formation of a sideband structure in the low-frequency perturbation regime.

These sideband resonances are at even multiples of the rf frequency away

from the central resonance, shifted by the Stark effect, and their heights fall

off as given by Bessel functions [43, 44]. It was later explained by Shirley [45],

using Floquet theory, that the sideband resonances are due to the rf-photon

transition between Floquet states. This feature was first experimentally con-
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firmed by Townes and Merritt [46].

The presence of the sideband structure has been used to investigate atomic

properties, e.g., Floquet spectroscopy of atoms and Rydberg atoms [47–50]

or the dipole-dipole resonances between two Rydberg ensembles due to rf-

photon multitransitions [51, 52]. In addition, the oscillatory behaviour of the

Bessel function has been interpreted as Stückelberg oscillations [51]. Thus

the rf field could be a good candidate for probing the long-range interaction

between Rydberg atoms. Not only does the rf field result in a Stark shift and

sideband resonances, but the characteristic properties of the sidebands, e.g.,

the width and height of the sidebands, are also sensitive to the amplitude and

the frequency of the applied rf field. This sensitivity of the sideband structure

allows one to precisely control the system with high accuracy. The sensitivity

of the rf-dressed system has been utilized in many applications, for example,

in polarisability measurements [53], the control of atomic photoabsorption

[54] and, recently, electrometry using Rydberg atoms [25].

In addition to the atomic systems, the fundamental theory of rf dressing is

applicable to systems found in condensed matter physics such as Cooper-pair

boxes1 and Josephson flux qubits2. For example, Chu et al. theoretically in-

vestigated the combined Josephson junction rf SQUID [66]. They found a

similar manifold structure of the resonances as previously described. How-

ever, the system exhibits no Stark shift in energy and the resonances occur

at multiples of the rf frequency or thereabout, not at even multiples of the

rf frequency as in the atomic system [25]. They also reported a slight shift

in frequency of the resonance position, which was not yet reported by Autler

and Townes [43]. In our work, we report a similar resonance shift in Rydberg

EIT.

1A Cooper-pair box is a man-made two-level system, made from superconducting ma-

terials. Its qubit state is determined by the number of Cooper pairs. [55–62].
2Another example of a man-made two-level system. Its qubit states are determined by

the directions of the current flux. [63–67].
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1.4 Thesis layout

The structure of this thesis is as follows.

• Chapter 2: Using the semi-classical theory, the description of a three-

level atom interacting with two electromagnetic fields is presented. The

resonance structure of the system is discussed in terms of dressed states,

which allows us to gain much physical insight. Some of the phenomena

associated with laser-dressed three-level systems, e.g., EIT, are also

illustrated in this chapter.

• Chapter 3: A theoretical model for Rydberg EIT in 85Rb is developed.

The model takes into account Doppler broadening and the hyperfine

structure of the atoms. We show that by fitting this model to experi-

mental data, we can obtain the reduced dipole matrix element for the

transition between the 5P3/2 state and a Rydberg state.

• Chapter 4: In this chapter, we present a theoretical model of four-level,

three-colour Rydberg EIT. Two configurations for the laser set up are

considered here: The first one is when the propagation directions of all

the three lasers are parallel. The other is when the three lasers form

a Doppler-free configuration, i.e., the three wavevectors cancel each

other.

• Chapter 5: We present the theory of three-level Rydberg EIT dressed

by an rf field. This results in the formation of Floquet states of the

Rydberg states and these are detected as EIT sideband resonances in

the absorption lineshape. By fitting the EIT transmission lineshape

model to experimental data, we can extract the value of a dc field

applied across the vapour cell.

• Chapter 6: We extend the theory of rf-dressed Rydberg state to the

regime where the Floquet formalism breaks down. In this chapter, the
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Floquet formalism is used to explore two- and three-level systems. The

aim of this chapter is to find the conditions for which well-defined EIT

sidebands do no longer exist, and those for which they do exist.

• Chapter 7: We study the effect of a resonant microwave field on three-

level Rydberg EIT. A theoretical modelling of a ten-level system is

developed in order to understand the absorption and dispersion prop-

erty of the cold 87Rb ensemble. A theoretical demonstration of the

possibility of fast light in the system is also presented in this chapter.

• Chapter 8: The conclusions of the thesis and possible future work are

discussed in this chapter.



Chapter 2

Interaction of three-level atoms

with EM fields

In this chapter, we study the interaction between the three-level atom with

two electromagnetic (EM) fields, using semi-classical theory [68, 69], in which

the atomic system is treated quantum mechanically, whereas the EM fields

are treated classically. In particular, we discuss the occurrence of electro-

magnetically induced transparency (EIT) [1] in three-level system and the

adiabatic elimination of the intermediate state [70–72].

2.1 Hamiltonian of the atom-fields system

Consider the cascade (ladder) system shown in Figure 2.1(a), consisting of

three eigenstates of the field-free Hamiltonian — a ground state, |1〉, an

intermediate state, |2〉, and an excited state, |3〉, whose eigenenergies are

~ω1, ~ω2 and ~ω3, respectively. The ground state is metastable, i.e., its

lifetime is so long that this state hardly decays. The other two states possess

finite lifetimes due to spontaneous emission. In this model, the intermediate

state decays with the natural decay rate Γ2 and the excited state decays with

the natural decay rate Γ3. The time-independent Hamiltonian of the bare

8
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(a) (b) 

Figure 2.1: (a) Schematic of a three-level system which consists of a ground

state, |1〉, an intermediate state, |2〉, and an excited state, |3〉. A weak probe

laser whose angular frequency is ωp couples |1〉 with |2〉 and a coupling laser

whose angular frequency is ωc couples |2〉 with |3〉. ∆p and ∆c are the laser

detunings of the probe and coupling lasers, respectively. (b) Schematic show-

ing how the electron and the atom are placed with respect to the co-ordinate

system. The external degree of freedom parameter R is the position vector

of the atom while the internal parameter r is the position of the electron.

The strength of the dipole moment is related to the internal parameter r.

atomic system is thus given by

H0 = ~ω1 |1〉 〈1|+ ~ω2 |2〉 〈2|+ ~ω3 |3〉 〈3| . (2.1)

The system interacts with two classical, monochromatic EM fields, where

the first field is the probe field of frequency ωp/2π (driving the transition

|1〉 ↔ |2〉) and the second field is the coupling field of frequency ωc/2π

(driving the transition |2〉 ↔ |3〉). The electric field at the position of the

electron is given by,

E(R, r, t) =
1

2
Epε̂pei[kp(R+r)−ωpt] +

1

2
Ecε̂ce

i[kc(R+r)−ωct] + c.c. , (2.2)

where ε̂p(c), kp(c), and Ep(c) are the polarisation unit vectors, the wavevec-

tors, the effective field strength [73] of the probe (coupling) electric field and

c.c. denotes the complex conjugate of the first two terms. The position of
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the centre-of-mass (CM) of the atomic system is measured with respect to

the origin of the co-ordinate system (given by position vector R), while the

position of the electron is measured with respect to CM of the system (given

by position vector r), as shown in Figure 2.1(b). Note that we assume an

infinite mass for the nucleus; hence, the CM of the system coincides with

the nucleus of the atom. At this point, a first approximation is made by

considering the scale of the field wavelength and the atomic size. It turns

out that the typical atomic size is much smaller than the wavelengths of the

fields; and thus, the spatial variation of the fields across the atom is neg-

ligible, i.e., exp(ikp(c) · r) ≈ 1. This approximation is known as the dipole

approximation or long-wavelength approximation [69, 74–77]. Furthermore,

since the atom is (instantaneously) stationary, without loss of generality, one

can consider the atom to be located at the origin, i.e., R = 0 [78]. With

these assumptions, the electric field in Equation (2.2) depends on the time

variable only.

The EM fields perturbs the atomic system via the dipole interaction. Thus

the interaction Hamiltonian for a one-electron atom due to the EM fields is

given by,

HI = er · E(t), (2.3)

where e is the magnitude of the electron charge. Rewriting Equation (2.3)

in terms of |1〉, |2〉, and |3〉, the interaction Hamiltonian becomes,

HI =
~Ω

(1,2)
p

2
|1〉 〈2| e−iωpt +

~Ω
(2,1)
p

2
|2〉 〈1| e−iωpt

+
~Ω

(2,3)
c

2
|2〉 〈3| e−iωct +

~Ω
(3,2)
c

2
|3〉 〈2| e−iωct + h.c. , (2.4)

where h.c. denotes the hermitian conjugate of the first four terms, and Ω
(m,n)
p

and Ω
(m,n)
c are given by

~Ω(m,n)
p = eEp 〈m| r · ε̂p |n〉 , (2.5a)

~Ω(m,n)
c = eEc 〈m| r · ε̂c |n〉 . (2.5b)
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The time-dependent dynamics of the system governed by the total Hamilto-

nian H0 +HI contains fast oscillation at the angular frequencies ω1, ω2 and

ω3, as well as at the angular frequencies ωp and ωc. To remove the rapidly-

oscillating contributions, we transform into a representation in which the

phases of the probability amplitudes of |1〉, |2〉 and |3〉 are approximately

stationary [68]. The transformation from the rapidly-oscillating variables to

slowly-oscillating variables is given by U , where,

U = eiω1t |1〉 〈1|+ ei(ω1+ωp)t |2〉 〈2|+ ei(ω1+ωp+ωc)t |3〉 〈3| . (2.6)

Then the total Hamiltonian of the system and the state vector are trans-

formed as [79],

|Ψ〉 → |Ψ〉′ = U |Ψ〉 , (2.7a)

H → H′ = UHU † − i~UU̇ †, (2.7b)

where H = H0 +HI, prime denotes the state vector and Hamiltonian in the

new representation, dagger denotes hermitian conjugate and the dot on U
means the derivative of U with respect to time. Note here that the trans-

formation preserves the norm of the wavevector |Ψ〉 since U is a unitary

operator. Applying the transformation and making the rotating wave ap-

proximation [76], the total Hamiltonian becomes,

H′ = −~∆p |2〉 〈2| − ~∆R |3〉 〈3|

+
~Ωp

2
|2〉 〈1|+ ~Ωc

2
|3〉 〈2|+ h.c. . (2.8)

The rotating wave approximation is to neglect the rapidly-oscillating terms,

i.e., terms with the angular frequencies of 2ωp and 2ωc, are neglected and

h.c. represents the hermitian conjugate of the second row. Here we drop

the superscript (2,1) and (3,2) from Ω
(2,1)
p and Ω

(3,2)
c , i.e., Ωp ≡ Ω

(2,1)
p and

Ωc ≡ Ω
(3,2)
c . The probe and coupling detunings in Equation (2.8) are defined
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as

∆p = ωp − (ω2 − ω1), (2.9a)

∆c = ωc − (ω3 − ω2), (2.9b)

and ∆R = ∆p + ∆c is known as two-photon Raman detuning. The first line

of Equation (2.8) represents the Hamiltonian of the bare atomic states in the

rotating frame (H′0), whereas the second line represents the atom-field inter-

actions (H′I). It is worth noting that, in the absence of the interactions, the

Hamiltonian given by Equation (2.8), is diagonal and the (new) eigenenergies

of |1〉, |2〉 and |3〉 are 0, −∆p and −∆R, respectively. Thus the effect of the

transformation is to shift the energy of the excited state and the intermediate

state such that the excited state and the intermediate state lie lower than the

ground state by the amounts of ∆R and ∆p, respectively. Using Equation

(2.8), the Schrödinger equation of the three-level system then reads

i~
d

dt


u1

u2

u3

 =
~
2


0 Ω∗p 0

Ωp −2∆p Ω∗c

0 Ωc −2∆R



u1

u2

u3

 , (2.10)

where |un|2 is the probability of finding the atom in the state |n〉.

2.2 Dressed state formalism for three-level

system

In this section, we discuss the characteristic properties of the solutions of

Equation (2.10) using two approaches. The first approach is to solve this

equation for the evolution of the system. However, this approach does not

give much physical insight in such issues as the occurrence of resonances. A

better way to look at the system is to study the eigenvalues and eigenvectors

of the atom-field system. This allows us to understand the formation process

of the resonances.
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2.2.1 Dynamical evolution of three-level system

Mathematically, the Schrödinger equation, given by Equation (2.10), is an

homogeneous first order coupled differential equation (CDE). Owing to the

time-independence of the Hamiltonian, one can turn the CDE into the eigen-

value problem [80]

H′ |ψn〉 = En |ψn〉 , (2.11)

where En is an eigenvalue of H′ and |ψn〉 is the corresponding eigenvector of

H′. Having determined the eigenvalues and eigenvectors, the solution of the

Schrödinger equation is given by

|Ψ′(t)〉 = exp

(
− iH′t

~

)
|Ψ′(0)〉 ,

=
3∑

n=1

exp

(
− iEnt

~

)
αn |ψn〉 , (2.12)

where |Ψ′(t)〉 ≡ (u1(t), u2(t), u3(t))T is the solution of the Schrödinger equa-

tion, |Ψ′(0)〉 is the initial state of the system and αn ≡ 〈ψn|Ψ′(0)〉 is the

coefficient of expansion. It is obvious from Equation (2.12) that if the pop-

ulation is prepared in one of the bare states, |1〉, |2〉 and |3〉, the population

would transfer back and forth between the bare states since these bare states

are no longer the eigenstates of the atom-field system. Thus, one may refer

to the bare states as the coupled basis as they are not independent from

one another and the population oscillates among them. In contrast to these

coupled states, the eigenvectors of H′ are stationary and independent of the

atom-field interaction, i.e., if the initial state is prepared to be one of these

eigenstates |ψn〉, there will be no population transfer within the eigenstates.

Thus one may refer to these states (|ψn〉) as the uncoupled basis.

The typical behaviour of Equation (2.12) is oscillatory as shown in Figure 2.2

and Figure 2.3. However, due to the complexity of Equation (2.12), one

cannot predict when the system would exhibit the resonance, i.e., oscillate

with large amplitude. This is when the study of the dressed states becomes

useful, as discussed in the next subsection.
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Figure 2.2: Population dynamics of |1〉 (red solid line), |2〉 (black dashed

line) and |3〉 (blue solid line) for the parameters Ωp/2π = 0.1 MHz,

Ωc/2π = 10 MHz and ∆c/2π = 0 MHz. (a) ∆p/2π = 0 MHz, the interaction

due to the probe laser hardly affects the system since |1〉 is non-degenerate

with |+〉 and |−〉 (see Figure 2.4(a)). Thus there is hardly population trans-

ferred to |2〉 and |3〉. The inset shows the population dynamics of |2〉 and |3〉.
(b) ∆p/2π = 5 MHz, |1〉 is on resonance with |+〉, the populations vigorously

oscillate. Since the dressed state |+〉 contains an equal amount of |2〉 and

|3〉, the population dynamics of |2〉 is exactly the same as that of |3〉. It is

assumed in the calculation that the population of the system is initially in

|1〉 in (a) and (b).

2.2.2 Eigenvalue spectrum of three-level system

The eigenvalues of the system can be obtained by diagonalising the Hamilto-

nian, H′, and the associated eigenvectors are referred to as the dressed states.
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Figure 2.3: The same as Figure 2.2, except that ∆c/2π = −10 MHz. The ini-

tial population is prepared in the ground state, |1〉. When ∆p/2π ≈ 12 MHz,

shown in (a), |1〉 is on resonance with |+〉 (see Figure 2.5(a)). Since |+〉 con-

tains a larger proportion of |3〉 than of |2〉, the population is significantly

transferred to |3〉, resulting in a large amplitude of the oscillation of |3〉. In

(b), |1〉 is on resonance with |−〉, i.e., ∆p/2π ≈ −2 MHz. We observe a large

population transferred from |1〉 to |2〉, i.e., a large amplitude of the popula-

tion dynamics of |2〉. This is because |−〉 contains a larger proportion of |2〉
than of |3〉.

In the most general case, the set of eigenvalues are given by [71, 81, 82]

E1 = −1

6
A+

1

3

√
A2 − 3B cos

(
θ

3

)
, (2.13a)

E2 = −1

6
A− 1

3

√
A2 − 3B cos

(
θ

3
+
π

3

)
, (2.13b)

E2 = −1

6
A− 1

3

√
A2 − 3B cos

(
θ

3
− π

3

)
, (2.13c)
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with

A = 2(2∆p + ∆c), (2.14a)

B = 4∆p(∆p + ∆c)− (|Ωc|2 + |Ωp|2), (2.14b)

C = −2|Ωp|2(∆p + ∆c), (2.14c)

cos θ = −27C + 2A3 − 9AB

2(A2 − 3B)3/2
. (2.14d)

The corresponding (non-normalised) eigenvector is

|ψn〉 = Ω∗p(2∆R + En) |1〉+ (2∆R + En)En |2〉+ ΩcEn |3〉 , (2.15)

where n = 1, 2 or 3.

Clearly, the expressions for the eigenvalues and eigenvectors, given by Equa-

tion (2.13) and Equation (2.15), are complicated. Rather than studying the

general case, we investigate two particular cases in order to gain some insight

on the time-evolution of the three-level system.

Case 1: |Ωp| � |Ωc|.
In this regime where the Rabi frequency of the coupling laser is much stronger

than that of the probe laser, one can treat the weak probe coupling as a per-

turbation to the system. This can be done by first neglecting the weak probe

interaction between |1〉 and |2〉 and only considering the strong coupling be-

tween |2〉 and |3〉 via Ωc. In this picture, a pair of dressed states, |±〉, are

formed from |2〉 and |3〉. Diagonalising the Hamiltonian H′ with Ωp = 0, the

(non-normalised) dressed states are given by

|±〉 = (∆c ±
√

∆2
c + |Ωc|2) |2〉+ Ωc |3〉 , (2.16)

and the associated eigenenergies are

E± = −∆p −
∆c

2
± 1

2

√
∆2

c + |Ωc|2. (2.17)

In view of Equation (2.17), the energy separation between two dressed states

is
√

∆2
c + |Ωc|2, where the centre of the energy gap of the two dressed states



Chapter 2. Interaction of three-level atoms with EM fields 17

with respect to the eigenenergy of |1〉 is at −∆p −∆c/2. After determining

a pair of dressed states, |±〉, we then consider the interaction due to Ωp.

We can distinguish two cases, namely, one in which |1〉 is off-resonance with

any of |+〉 and |−〉, and one in which |1〉 is on-resonance with any of |+〉
and |−〉. When |1〉 is not in the vicinity of any dressed states |±〉, i.e., the

probe laser is off-resonance, the dressed states |±〉, together with |1〉, are

approximately the eigenvectors of the system since the weak probe hardly

perturbs the system [45, 71, 83]. However, when the energy of |1〉 is close to

|+〉 or |−〉, i.e., on resonance, the perturbation Ωp creates avoided crossings at

the locations where E+ or E− is equal to zero [45, 71, 83]. The eigenenergy

of |1〉, and the energy gap at the avoided crossing is then proportional to

〈1| er·ε̂p |±〉 / 〈±|±〉1/2. At the locations of the avoided crossings, the system

is most active, i.e., the population oscillates among |1〉, |2〉 and |3〉, as shown

in Figure 2.2(b) and Figure 2.3.

Figure 2.4(a) shows the eigenenergies as a function of probe detuning, for

Ωp/2π = 0.1 MHz, Ωc/2π = 10 MHz and ∆c/2π = 0 MHz. The eigen-

value spectrum of the system is symmetric around zero probe detuning since

∆c/2π = 0 MHz. The avoided crossings occur at the locations where |1〉 is

degenerate with |+〉 or |−〉. In this case, the resonances are at ∆p = ±5 MHz

and these locations corresponds to the peak of the resonances for the line-

shape of Im[ρs
12] as shown in (b). 1 The heights of the resonances are identi-

cal since |+〉 and |−〉 contain an identical amount of |2〉. However when we

detune the coupling laser to ∆c/2π = −10 MHz, the symmetry of the eigen-

value spectrum is destroyed as shown in Figure 2.5(a). Now |+〉 contain a

smaller amount of |2〉 than |−〉 does. This results in a smaller avoided cross-

ing (see Figure 2.5(a)), and a weaker resonance (see Figure 2.5(b)), located

1ρs
12 is the steady state solution of the coherence element between |1〉 and |2〉 of the

density matrix ρ and its imaginary part is proportional to the absorption coefficient of the

system. More details of density matrix and absorption coefficient are given in Section 2.4,

2.5 and 2.6.
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Figure 2.4: The eigenvalue spectrum of H′ and the lineshape of Im[ρs
12] as

a function of ∆p/2π are shown in (a) and (b), respectively. The parameters

Ωp, Ωc and ∆c are the same as those used in Figure 2.2. For a typical EIT

experiment involving Rb atom, the values of the decay rates used in (b) are

Γ2/2π = 6 MHz, Γ3/2π = 1 MHz and γp/2π = γc/2π = 0.1 MHz [84].

The avoided crossings occur when |1〉 is degenerate with |+〉 and |−〉, i.e., at

∆p/2π = 5 and −5 MHz, respectively. The locations of the avoided crossings,

indicated by the vertical dashed lines, correspond to the resonance locations

of the Im[ρs
12] lineshape in (b). Note that the strengths of both resonances

are identical since |+〉 and |−〉 contain an identical amount of |2〉.

at ∆p/2π ≈ 12 MHz.

Case 2: Two-photon Raman resonance, i.e., ∆p + ∆c = 0

This condition happens when, viewed in the coupled basis, the total excita-

tion is exactly on resonance with the transition from |1〉 to |3〉, regardless
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Figure 2.5: The same as Figure 2.4, except that ∆c/2π = −10 MHz. The

avoided crossings occur when |1〉 is degenerate with |+〉 and |−〉, i.e., at

∆p ≈ 12 MHz and −2 MHz, respectively. The locations of the avoided

crossings, indicated by the vertical dashed lines, correspond to the resonance

locations of the Im[ρs
12] lineshape in (b). Since |+〉 contains a smaller amount

of |2〉 than |−〉 does. The resonance is weaker at ∆p/2π ≈ 12 MHz.

of the position of the eigenenergy of |2〉, i.e., ∆p could have a finite value.

Substituting ∆p +∆c = 0 into Equation (2.13), the eigenvalues of the dressed

states in this case are

E+ =
~
2

(−∆p +
√

∆2
p + |Ωp|2 + |Ωc|2), (2.18a)

E0 = 0, (2.18b)

E+ =
~
2

(−∆p −
√

∆2
p + |Ωp|2 + |Ωc|2), (2.18c)
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and the associated (non-normalised) eigenvectors are

|+〉 = Ω∗p |1〉 − (∆p −
√

∆2
p + |Ωp|2 + |Ωc|2) |2〉+ Ωc |3〉 , (2.19a)

|0〉 = −Ω∗c |1〉+ Ωp |3〉 , (2.19b)

|−〉 = Ω∗p |1〉 − (∆p +
√

∆2
p + |Ωp|2 + |Ωc|2) |2〉+ Ωc |3〉 . (2.19c)

The interesting physics in this case is that |0〉 contains no contribution from

|2〉 in the dressed state picture and its eigenenergy is always zero. Fur-

thermore, the amounts of |1〉 and |3〉 contained in |0〉 can be controlled by

adjusting the ratio |Ω∗c/Ωp|. This can be experimentally implemented by

controlling the intensities of both lasers.

Suppose that state |2〉 has a natural linewidth of Γ2 (for 5P3/2 of Rb atom,

this is 2π × 6 MHz) and we would like to transfer the population from |1〉
to |3〉 without losing any population from the lossy state |2〉. One way to

achieve this is to exploit the property of the state |0〉. Initially, one gradually

increases the intensity of the coupling laser while the probe laser is turned

off. This causes the initial state |1〉 to coincide with the instantaneous |0〉.
Then, the intensity of the probe laser gradually increases while that of the

coupling laser gradually decreases until it is turned off. During this step, |0〉
gradually changes from |1〉 to |3〉 without interacting with |2〉. If the process

occurs slowly enough2, the population is adiabatically transferred from |1〉 to

|3〉. This process in which the population is transferred from the ground state

to the excited state is known as stimulated Raman rapid passage (STIRAP)

[82, 85, 86]. Adiabatic rapid passage has been recently reported to be an

effective way to create a single-atom excitation in a Rydberg ensemble [30].

Moreover, it turns out that |0〉 does not interact with |2〉, i.e., 〈2|H′I |0〉
vanishes, since |0〉 is one of the eigenvectors of the system. This means

that no interaction can drive the transition between |0〉 and |2〉, and the

medium physically becomes transparent to the probe beam when its initial

2Mathematical criterion for the adiabatic population tranfer is
√
|Ωp|2 + |Ωc|2∆τ > 10,

where ∆τ is the period during which the pulses overlap [82].
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state is prepared to be |0〉. This phenomenon is known as electromagnetically

induced transparency (EIT) and |0〉 is referred to as a dark state [1]. There is

a similarity between EIT and ATS (Autler-Townes splitting) [43] phenomena.

However, the main criterion to distinguish EIT from AT is the interference

due to the dark state [87, 88], whereas no such interference is observed in

ATS. Figure 2.4(b) shows the reduction in the absorption of the medium

when ∆p + ∆c = 0 and ∆p = 0 as expected from the dressed states analysis.

One way to prepare such a dark state is to make the Rabi frequency of the

coupling laser larger than that of the probe laser. Under this condition, the

dark state is approximately |1〉 which is the ground state of the system; thus,

we automatically prepare the dark state [3].

2.3 Adiabatic elimination of intermediate state

Suppose that, in the dressed state picture, both lasers are tuned close to

the two-photon Raman transition, i.e., ∆R ≈ 0, while |2〉 is far off-resonance

from both |1〉 and |3〉. One would expect |1〉 and |3〉 effectively to become a

two-level system. This phenomenon is clearly shown in Figure 2.6. If this is

the case, one would be able to excite the atoms from the ground state to the

excited state using two-photon transition. It is said that the intermediate

state is eliminated in this situation and this is known as adiabatic elimina-

tion of the intermediate state [70–72]. The difference between this method

and STIRAP is that, for this method, the atom is excited using the Rabi

oscillation, while for STIRAP, the population is adiabatically transferred to

the excited state by the change in the components of the dark state in which

the Rabi oscillation does not play a role.

For simplicity, it is assumed that Ωp and Ωc are real quantities. Writing
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Figure 2.6: Population dynamics of |1〉 (red solid line), |2〉 (black solid line)

and |3〉 (blue solid line) for various values of ∆p/2π, i.e., ∆p/2π is (a) 10 MHz,

(b) 20 MHz, (c) 30 MHz, (d) 40 MHz, (e) 50 MHz and (f) 60 MHz. In all

plots, Ωp/2π = Ωc/2π = 10 MHz and the system is subject to the two-photon

Raman resonance condition, i.e., ∆p + ∆c = 0. The population of |1〉 and

|3〉 oscillate with angular frequency given by the generalised Rabi frequency

(Ω2
p + Ω2

c)/4∆p which decreases as ∆p increases. It is clear that the larger

the value of ∆p is, the closer the three-level system is to an ideal effective

two-level system. In (f), the green dashed lines represent the predictions of

Equation (2.27).

Equation (2.10) explicitly, we have

du1

dt
= − i

2
Ωpu2, (2.20a)

du2

dt
= − i

2
Ωpu1 + i∆pu2 −

i

2
Ωcu3, (2.20b)

du3

dt
= − i

2
Ωcu2 + i∆Ru3. (2.20c)

One could write a second order differential equation for u2 by, first, differenti-
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ating Equation (2.20b), and then substituting u̇1 and u̇3 into ü2. The result is

ü2 = −1

4
(Ω2

p + Ω2
c)u2 +

1

2
Ωc∆Ru3 + i∆pu̇2. (2.21)

Equation (2.21) still couples with u3; thus, it could not be solved analytically.

However, if the system is subject to two-photon resonance, the differential

equation no longer couples to u3 and the solution, subject to the initial

condition |Ψ(0)〉 = (1, 0, 0)T, is given by

u2(t) = − iΩp√
∆2

p + Ω2
p + Ω2

c

ei∆pt/2 sin

(
1

2
t
√

∆2
p + Ω2

p + Ω2
c

)
. (2.22)

The population of the intermediate state, |2〉, evolves sinusoidally with an

angular frequency of (∆2
p +Ω2

p +Ω2
c)1/2/2 and the amplitude of the oscillation

is Ω2
p/(∆

2
p+Ω2

p+Ω2
c). Now suppose that |2〉 is far from resonance with |1〉 and

|3〉, i.e., ∆p � Ωp,Ωc, then the amplitude of the oscillation approaches zero.

This implies that |2〉 is hardly populated and one could approximate u2(t)

and u̇2(t) to zero. Note that this approximation is also valid when ∆R is close

to zero and ∆p is large (see Figure 2.7). Setting u̇2 = 0 in Equation (2.20b)

and re-arranging for u2, one obtains

u2 =
Ωp

2∆p

u1 +
Ωc

2∆p

u3. (2.23)

Then substituting Equation (2.23) into Equation (2.20a) and Equation (2.20c),

the set of CDE becomes,

i~
d

dt

 u1

u3

 =
~
2

 Ω2
p/2∆p ΩpΩc/2∆p

ΩpΩc/2∆p Ω2
c/2∆p − 2∆R

 u1

u3

 . (2.24)

The reduced CDE is similar to the Schrödinger equation for two-level system

where the Rabi coupling is ΩpΩc/2∆p and the eigenenergies of |1〉 and |3〉 are

shifted by the amounts of Ω2
p/2∆p and Ω2

c/2∆p, respectively. In the picture of

an effective two-level system, the effective detuning, namely, the separation

between |1〉 and |3〉, is given by

∆eff = −
(

∆R +
Ω2

p

2∆p

− Ω2
c

2∆p

)
. (2.25)
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For the special case where ∆R is exactly zero, the expressions for u1 and u3

are given by3

u1(t) =
Ω2

c

Ω2
c + Ω2

p

+
Ω2

p

Ω2
c + Ω2

p

exp

(
− i(Ω2

p + Ω2
c)

4∆p

t

)
, (2.26a)

u3(t) = − ΩpΩc

Ω2
c + Ω2

p

+
ΩpΩc

Ω2
c + Ω2

p

exp

(
− i(Ω2

p + Ω2
c)

4∆p

t

)
, (2.26b)

and the corresponding populations are

P1(t) =
Ω4

c + Ω4
p

(Ω2
p + Ω2

c)2
+ 2

(
ΩcΩp

Ω2
c + Ω2

p

)2

cos

(
Ω2

c + Ω2
p

4∆p

t

)
, (2.27a)

P3(t) =
4Ω2

pΩ2
c

(Ω2
p + Ω2

c)2
sin2

(
Ω2

c + Ω2
p

8∆p

t

)
. (2.27b)

The generalised Rabi frequency, for this special case, is (Ω2
p +Ω2

c)/4∆p. Note

that our derivation for adiabatic elimination is similar to that given in [89].

Figure 2.6 shows the population dynamics of the three-level system obtained

using Equation (2.12). Both Rabi frequencies, Ωp/2π and Ωc/2π, are 10 MHz

and the system is subject to two-photon Raman resonance. From (a) to (f),

∆p/2π increases from 10 MHz to 60 MHz at the step of 10 MHz. As we

increase ∆p, |2〉 is further away from both |1〉 and |3〉; and hence, the system

effectively behaves like a two-level system. This results in a decrease in

amplitude of the population of |2〉. Increasing ∆p also decreases the frequency

of the oscillation since the angular frequency of the oscillation is given by

(Ω2
p + Ω2

c)/4∆p. The green dashed lines in (f) are the population dynamics

calculated from Equation (2.27).

Figure 2.7 shows the population dynamics of the three-level system, for

Ωp/2π = 1 MHz, Ωc/2π = 10 MHz and ∆p/2π = 100 MHz. In (a) where

∆p/2π = 0 MHz, the system is subject to two-photon Raman resonance.

However, little amount of the population transfer is observed, as shown in

(a). This is because, in the dressed state picture, the effective detuning be-

tween |1〉 and |3〉 does not vanish since Ωp 6= Ωc. In (b), ∆p is set up such that

3The solutions are subject to the initial condition |Ψ′(0)〉 = (1, 0, 0)T.
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Figure 2.7: Population dynamics of |1〉 (red solid line), |2〉 (black solid

line) and |3〉 (blue solid line) for Ωp/2π = 1 MHz, Ωc/2π = 10 MHz and

∆p/2π = 100 MHz. Since Ωp is not equal to Ωc, |1〉 is now not degenerate

with |3〉 even though the system is subject to two-photon Raman resonance,

i.e., the effective detuning does not vanish. The system then shows an off-

resonance behaviour, i.e., the amplitude of the oscillation is small as shown

in (a). To recover the resonance condition, we set ∆p such that the effec-

tive detuning vanishes. For this case, the effective detuning vanishes when

∆p/2π = −99.7525 MHz. The amplitude of the oscillation, in this case, is

large, as shown in (b). This is because |1〉 and |3〉 are effectively on reso-

nance. Note that the green dashed lines in both (a) and (b) are the solutions

obtained by solving Equation (2.24).
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the effective detuning vanishes, e.g., in this case ∆p/2π = −99.7525 MHz.

The population dynamics show a large oscillation amplitude, namely, there is

a significant population transferred to |3〉. Note that the green dashed lines

in both (a) and (b) are the solutions obtained by solving Equation (2.24).

2.4 Relaxation in three-level system and op-

tical Bloch equations

The description of the three-level system, up to now, has not taken into ac-

count the effect of the relaxation, which would destroy the coherent property

of the system. Thus the Rabi oscillations of the actual system are dampened

and the populations eventually reach a steady state. In order to include

relaxation into the macroscopic description of the system, the density ma-

trix formalism is needed. The optical Bloch equations, namely, the equation

describing the evolution of the system in terms of density matrix, can be

obtained using Linblad master equation

∂ρ′

∂t
= − i

~
[H′, ρ′] +

∑
i

L(ρ′, σi) + Ld(ρ′), (2.28)

where L(ρ′, σi) =
∑

i σiρ
′σ†i − (σ†iσρ

′+ ρ′σ†iσ)/2 is the Linblad superoperator

[90] describing the spontaneous decay, Ld(ρ′) is a dephasing matrix which

accounts for the linewidth of the EM field and ρ′ is the transformed density

matrix, i.e.,

ρ→ ρ′ = UρU †, (2.29)

where U is the unitary transformation given by Equation (2.6). For the three-

level system considered here, in which the excited state |3〉 decays with the

rate of Γ3 to the intermediate state |2〉 and the intermediate state |2〉 decays

with the rate of Γ2 to the ground state |1〉; the natural decays from |2〉
and |3〉 can be included into the optical Bloch equation using the operators

σ1 =
√

Γ2 |2〉 〈1| and σ2 =
√

Γ3 |3〉 〈2|, respectively. Following the argument
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given in [84], the dephasing matrix accounting for the linewidths of the EM

fields is given by

Ld(ρ′) =


0 −γpρ

′
12 −(γp + γc)ρ

′
13

−γpρ
′
21 0 −γcρ

′
23

−(γp + γc)ρ
′
31 −γcρ

′
32 0

 , (2.30)

where γp(c) is the laser linewidth of the probe (coupling) laser.

Using Equation (2.28) and Equation (2.30), the optical Bloch equations for

the three-level system are

ρ̇′11 =Γ2ρ
′
22 +

i

2
(Ωpρ

′
12 − Ω∗pρ

′
21), (2.31a)

ρ̇′22 =− Γ2ρ
′
22 + Γ3ρ

′
33 −

i

2
(Ωpρ

′
12 − Ω∗pρ

′
21) +

i

2
(Ωcρ

′
23 − Ω∗cρ

′
32), (2.31b)

ρ̇′33 =− Γ3ρ
′
33 −

i

2
(Ωcρ

′
23 − Ω∗cρ

′
32), (2.31c)

ρ̇′12 =− (i∆p +
Γ2

2
+ γp)ρ′12 −

iΩ∗p
2

(ρ′22 − ρ′11) +
iΩc

2
ρ′13, (2.31d)

ρ̇′23 =− (i∆c +
Γ2 + Γ3

2
+ γc)ρ

′
23 −

iΩ∗c
2

(ρ′33 − ρ′22)− iΩp

2
ρ′13, (2.31e)

ρ̇′13 =− (i∆R +
Γ3

2
+ γp + γc)ρ

′
13 +

iΩ∗c
2
ρ′12 −

iΩ∗p
2
ρ′23. (2.31f)

To obtain the density matrix, Equation (2.31) together with the constraint

ρ′11 +ρ′22 +ρ′33 = 1 are numerically solved. The solutions of this set of coupled

differential equations contain two different parts. The first part describes the

damped oscillation of the populations of the system. The second represents

the final state the system eventually reaches after being damped. One often

refers to this final state of the system as the steady state solution. To solve for

the steady state solution4, ρs
ij, one sets the derivative of the density matrix to

zero since there is no oscillation after the system reaches the steady state. The

system of coupled differential equations now becomes a system of algebraic

equations and can be solved numerically. However, solving these algebraic

equations analytically for the steady states is still impossible. Figure 2.4(b)

4To avoid double superscript notation the steady state of the transformed density

matrix is denoted as ρs
ij .
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shows the lineshape of Im[ρs
12] when ∆c/2π = 0 MHz and Figure 2.5(b) shows

the same lineshape but ∆c/2π 6= 0, where ρs
12 is obtained numerically.

Although the steady state can be solved numerically, one normally uses the

weak probe condition to obtain an approximate steady state solution. The

weak probe limit makes it possible to reduce the number of coupled algebraic

equations so that one can obtain an expression of ρs
12 analytically.

2.5 Weak probe limit

The weak probe limit is when the intensity of the probe laser is so small

that it hardly drives the transition to the intermediate and excited states.

Mathematically, this approximation means that ρs
11 ≈ 1 while ρs

22 and ρs
33

are zero. Under this approximation, the equations for ρs
12, ρs

13 and ρs
23 read

ρs
12 =

iΩ∗p/2

i∆p + Γ2/2 + γp

+
iΩcρ

s
13/2

i∆p + Γ2/2 + γp

, (2.32a)

ρs
13 = − iΩ∗pρ

s
23/2

i∆R + Γ3/2 + γp + γc

+
iΩ∗cρ

s
12/2

i∆R + Γ3/2 + γp + γc

, (2.32b)

ρs
23 = − iΩpρ

s
13/2

i∆c + (Γ2 + Γ3)/2 + γc

. (2.32c)

Substituting Equation (2.32c) into Equation (2.32b), we have

ρs
13 =− |Ωp|2/4

(i∆R + Γ3/2 + γp + γc)(i∆c + (Γ2 + Γ3)/2 + γc)

+
iΩ∗cρ

s
12/2

i∆R + Γ3/2 + γp + γc

. (2.33)

Suppose that |Ωp|2/4� (Γ3/2+γp +γc)(Γ3/2+Γ2/2+γc). The first term of

Equation (2.33) can then be neglected as it is of second order in |Ωp|2. In the

three-level system which we will deal with later, γp and γc are much smaller

than Γ2 and Γ3. Thus the condition |Ωp|2/4 � (Γ3/2 + γp + γc)(Γ3/2 +

Γ2/2 + γc) reduces to |Ωp|2 � Γ3(Γ3 + Γ2) and we refer to the condition

|Ωp|2 � Γ3(Γ3 + Γ2) as the weak probe condition. Substituting ρs
13 (without
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Figure 2.8: Comparison between the lineshape of Im[ρs
12](Γ2/Ωp) numerically

calculated from Equation (2.31) (solid red line) and that calculated from

Equation (2.34) (blue dashed line) as a function of ∆p/2π. The parameters

used in the plot are Ωp/2π = 1 MHz, Γ2/2π = 5, Γ3/2π = 1 MHz and

γp/2π = γc/2π = 0.1 MHz, which gives Ω2
p/[Γ3(Γ3 + Γ2)] = 1/6. Thus the

weak probe condition holds loosely for these parameters. This results in a

small differences at the peaks of the resonances, regardless of the value of

Ωc/2π, i.e., Ωc/2π = 10 MHz and 50 MHz in (a) and (b), respectively. Note

that increasing Ωc only results in an increase in the separation between two

resonances, whereas the difference between two lineshapes does not reduce.

the first term) into Equation (2.32a) and re-arranging for ρs
12, we then have

ρs
12 =

iΩ∗p
2

[
i∆p +

Γ2

2
+ γp +

|Ωc|2/4
i∆R + Γ3/2 + γp + γc

]−1

. (2.34)

Figure 2.8 compares the lineshape of Im[ρs
12](Γ2/Ωp) numerically calculated

from Equation (2.31) (solid red line) to that calculated from Equation (2.34)
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Figure 2.9: The same as Figure 2.8, except that Γ2/2π = 30 MHz. The weak

probe condition holds strongly as Ω2
p/[Γ3(Γ3 + Γ2)] = 1/31. In this situation,

the results calculated from both methods are in good agreement with each

other as seen in (a) and (b), regardless of the value of Ωc.

(blue dashed line) as a function of ∆p/2π. The parameters used in (a)

and (b) are Ωp/2π = 1 MHz, Γ2/2π = 5 MHz, Γ3/2π = 1 MHz and

γp/2π = γc/2π = 0.1 MHz. For the set of parameters, the weak probe

condition holds loosely since Ω2
p/[Γ3(Γ3 + Γ2)] = 1/6. This results in a small

differences at the peaks of the resonances, regardless of the value of Ωc/2π,

i.e., Ωc/2π = 10 MHz and 50 MHz in (a) and (b), respectively. Note that

increasing Ωc only results in an increase in the separation between the two

resonances, whereas the difference between two lineshapes does not reduce.

Figure 2.9 shows a similar case as those of Figure 2.8, except that

Γ2/2π = 30 MHz. For these parameters, the weak probe condition holds
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strongly since Ω2
p/[Γ3(Γ3 + Γ2)] = 1/31. In this situation, the results calcu-

lated from both methods are in good agreement with each other as seen in

(a) and (b), regardless of the value of Ωc.

2.6 Susceptibility of the system

For an isotropic, linear medium the polarisation density of the system as

a function of probe frequency (or probe detuning) is defined as P(t) =

ε0χ(∆p)Ep(t), where ε0 is the permittivity of free space. After substitut-

ing Ep(t) = (1/2)Epεpe−iωpt+c.c., the polarisation density of the system is

given by

P(t) =
1

2
ε0χ(∆p)Epεpe−iωpt + c.c. . (2.35)

When an ensemble of the atoms is considered, P(t) represents the average

over the ensemble [91]. One can also write the average of the polarisation

density using the density matrix, i.e.,

P(t) = −eNTr[ρr], (2.36)

where N is the number density of the ensemble and er is the dipole operator.

Since we are interested in the transmission of the probe beam, it is sufficient

to include only |1〉 and |2〉 in the expansion of P(t), i.e.,

P(t) = −eN (ρ12r21 + ρ21r12) . (2.37)

Note that Equation (2.35) contains a fast oscillation at the frequency ωp from

the probe laser, whereas in Equation (2.37) this fast oscillation is hidden in

ρ12 and ρ21. To demonstrate this fast oscillating terms, we use Equation

(2.29) to transform the density matrix into the new representation [68, 92].

This gives

ρ12 → ρ′12 = ρ12e−iωpt, (2.38)

and Equation (2.37) becomes,

P(t) = −eN
(
ρ′12r21eiωpt + ρ′21r12e−iωpt

)
. (2.39)
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Comparing Equation (2.35) with Equation (2.39), we have

ε0Epεpχ(∆p) = −2eNρ′21r12. (2.40)

Taking the inner product of Equation (2.40) with er12 on both sides and

re-arranging for χ(∆p), we have, using Equation (2.5a)

χ(∆p) = −2N|d12|2
~ε0Ωp

ρ′21, (2.41)

with d12 ≡ er12 and in the steady state ρ′21 is ρs
21.

The susceptibility is a complex number whose imaginary part is proportional

to the absorption coefficient (α) and whose real part is related to the refrac-

tive index of the medium (nR) [93]:

α = kpIm[χ], (2.42a)

nR = 1 + Re[χ]/2. (2.42b)

2.7 Doppler broadening

The description of the atom-field interaction, up to now, is valid for cold

atoms whose motion is negligible, i.e., when the Doppler width of the atoms

is much smaller than the width of the absorption resonance5. For an ensemble

of thermal atoms, the movement of the atoms results in a broadening of the

lineshape, known as Doppler broadening. To add the effect of atomic motion,

let us consider an atom moving with velocity v towards the laser beam with

angular frequency ω. In the frame in which the atom is at rest, the atom

would “see” the laser beam with angular frequency ω′, where, using Lorentz

transformation [96], the relationship between ω and ω′ is given by

ω′ =

√
1 + v/c

1− v/cω, (2.43)

5Mathematically, the Doppler effect can be neglected when kpu� Γ2 + Γ3, where u is

the most probable speed of the atoms at a temperature, T (see Equation (2.45)) [94, 95].
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where c is the speed of light in vacuum. Typically the atomic velocity at

room temperature is much smaller than the speed of light; thus,

ω′ ≈ ω
(

1 +
v

c

)
. (2.44)

To include the Doppler effect into the model, we consider the system in which

the probe and coupling beams are counter-propagating. Within this set up,

the frequency of the atom moving towards the probe beam is upshifted by an

amount kpv, while that of the coupling beam is downshifted by an amount

kcv. This modifies the susceptibility of the system to

χ(v)dv =
i|d12|2

~ε0

[
γ21 − i∆p − ikpv +

|Ωc|2/4
γ31 − i∆R − i(kp − kc)v

]−1

× N0

u
√
π

exp

(
−v

2

u2

)
dv, (2.45)

with γ21 = Γ2/2 + γp, γ31 = Γ3/2 + γp + γc and u ≡
√

2kBT/m, where

m is the mass of the atom. The term in the second line is the Maxwell-

Boltzman velocity distribution [97] of the atoms. The total susceptibility

can be obtained by performing the integration over the atomic velocities,

i.e.,

χ(∆p,∆c) =

∫ ∞
−∞

χ(v)dv. (2.46)

Though the integrand is complicated, it is still integrable. To integrate

χ(v)dv, we rewrite the integrand, using the method of partial fraction, as

χ(v)dv =
|d12|2N0

2~ε0u
√
πkp

[
d− 1

z − z1

− d+ 1

z − z2

]
e−z

2

dz, (2.47)

where

d =
i

z1 − z2

[
γ21 − i∆p

kpu
− γ31 − i∆R

(kp − kc)u

]
, (2.48a)

z1,2 = − i

2

[
γ21 − i∆p

kpu
+
γ31 − i∆R

(kp − kc)u

]

± i

2

[(
γ21 − i∆p

kpu
− γ31 − i∆R

(kp − kc)u

)2

− |Ωc|2
kp(kp − kc)u2

]1/2

.

(2.48b)
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Using the standard integral∫ ∞
−∞

e−z
2

z − z0

dz = −iπse−z
2
0 [1− s erf(iz0)], (2.49)

where6 s = −sgn[Im(z0)] and erf(z0) is the error function of z0 [98, 99], then

the total susceptibility is given by

χ(∆p,∆c) =
i|d12|2N0

√
π

2~ε0ukp

{
(1− d)s1e−z

2
1 [1− s1 erf(iz1)]

+ (1 + d)s2e−z
2
2 [1− s2 erf(iz2)]

}
. (2.50)

Here s1(2) = −sgn[Im(z1(2))]. Equation (2.50) coincides with a result obtained

by Gea-Banacloche et al. [84].

2.8 Summary

In this chapter, we discussed the theory of three-level system interacting

with two EM fields. Using the dressed state formalism, we can determine

the positions of the resonances of the absorption lineshape. Furthermore,

the dressed state analysis gives us physical insight into various interesting

phenomena, e.g., electromagnetically induced transparency, coherent popu-

lation trapping and stimulated Raman adiabatic passage. We also discussed

the weak probe condition which allowed us to find the steady state solution

of the density matrix analytically. This condition is that |Ωp|2 is much less

than Γ3(Γ3 + Γ2). Finally the effect of the Doppler broadening was taken

into account in order to obtain the total susceptibility of the system.

6sgn(x) is the sign function. Its value is 1 when x > 0, −1 when x < 0 and 0 otherwise.
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Measuring a dipole matrix

element using Rydberg EIT

In this chapter, we present a theoretical model for the electromagnetically

induced transparency (EIT) absorption feature of 85Rb, in which the dark

state is a superposition between the 5S1/2 and 46S1/2 states. We also take into

account the effect of Doppler broadening on the absorption lineshape. The

model is then tested against experimental data (obtained by Bason et al. [92])

and a good agreement between the data and the model is demonstrated. By

fitting the theoretical model with the experimental data, the reduced dipole

matrix element between the 5P3/2 and 46S1/2 states can be extracted.

The measurement of the reduced matrix element has also been reported

by other groups [24, 100]. For example, in the experiment of Deiglmayr

et al. [100], the value of the reduced matrix element for the transition

5P3/2 →45S1/2 was measured using Autler-Townes splitting in cold Rb atoms.

The measured value is in good agreement with the value they calculated. Re-

cently, Piotrowicz et al. [101] used a relatively similar method to obtain the

reduced matrix element for the transition 5P3/2 → nD3/2 (n = 22 and 44).

As a consequence, Rydberg EIT can be used as a tool to obtain the transition

dipole matrix in Rydberg atoms.

35
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Figure 3.1: (a) Schematic of the experimental set up. The probe beam

and coupling beam counter-propagate through a 75 mm-long Rb vapour cell.

The quantisation axis is in the positive z direction. The polarisations of

both fields are also parallel to the quantisation axis; hence, they drive π

transitions within 85Rb. The probe transmission is fixed while the frequency

of the coupling field is scanned through the resonance transition 5P3/2, F ′ =

4 →46S1/2, F ′′ = (2, 3). (b) Simplified level scheme of 85Rb showing the

transitions driven by the probe and coupling fields.

3.1 Experimental set up

Figure 3.1 shows the schematics of the experimental set up with the co-

ordinate axes and the energy levels of 85Rb [102]. The details of the ex-

periment have been discussed by Bason et al. [92]. In a few words, the

experiments are performed on a thermal vapour cell containing a mixtures

of 85Rb and 87Rb. The length of the cell is 75 mm. The weak probe beam

with wavelength of 780 nm and the co-axial counter-propagating beam (cou-

pling beam) with wavelength of 480 nm1 are directed along the positive and

negative x axes, respectively. The polarisations of both beams are parallel

to one another such that both beams drive the linear (π) transition in the

ladder EIT system. The probe beam is stabilised on the resonance transi-

tion between 5S1/2, F = 3 and 5P3/2, F ′ = 4 of 85Rb, while the coupling

1The transition wavelength is obtained from [103].
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beam is scanned through the resonance transition between 5P3/2, F ′ = 4

and 46S1/2, F ′′ = (2, 3) of 85Rb using a commercial frequency doubled diode

laser system (Toptica TA-SHG). The focused probe and coupling beams are

assumed to have a constant 1/e2 radius throughout the length of the vapour

cell respectively of 0.49±0.01 mm and 1.01±0.10 mm. Note that the radius

of the coupling beam is twice of that of the probed beam as this is to ensure

that all atoms within the probe beam are involved in the EIT mechanism.

The transmission of the probe beam at room temperature (approximately

18 ◦C) is recorded using a photodiode. The experiment is then repeated for

various values of coupling powers and a typical EIT transmission lineshape

is shown in Figure 3.2(a). To understand the EIT spectrum we fit the data

with the model presented in the next section.

3.2 Theoretical modelling of EIT

As seen in Figure 3.2(a), the transmission lineshape shows three EIT res-

onances, corresponding to the three sets of EIT transitions in 85Rb. The

main EIT resonance (on the right) corresponds to the transition F = 3 →
F ′ = 4 → F ′′ = 3, the middle resonance corresponds to the transition

F = 3 → F ′ = 3 → F ′′ = (2, 3), and the resonance on the left is from the

transition F = 3→ F ′ = 2→ F ′′ = (2, 3). Obviously, the first transition can

be understood in the framework of a three-level system, whereas the latter

two transitions have the structure of a Y (four-level) system in which the two

Rydberg states are approximately degenerate in energy.

In this section we begin with the discussion of the theory of the Y system,

including the effect of Doppler broadening. Then the susceptibility obtained

from the Y system is used to calculate the total susceptibility of the 85Rb

system.
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Figure 3.2: (a) EIT transmission for a coupling power of 170 mW, corre-

sponding to Ωeff
c /2π of 1.56 MHz, plotted against the coupling detuning.

The vertical dashed lines represent the positions of the EIT resonances cal-

culated from Equation (3.18), taking into account the effect of the wavevector

mismatch in which the resonance position is shifted due to the residue of the

wavevectors. This topic will be discussed in Section 3.3. The red solid line

is the theoretical fit given by the model discussed in Section 3.2. The exper-

imental data and the fitted curve are in good agreement as reflected in small

difference between the calculated transmission and experimental data in (b).

The data were collected by Bason et al. [92].

3.2.1 Y systems

Consider a four-level, Y system as shown in Figure 3.3, consisting of one

ground state (|1〉), one intermediate state (|2〉), and two degenerate Rydberg

states (|3〉 and |4〉). An example of the degenerate Rydberg states is in 85Rb,
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Figure 3.3: Schematic of the level scheme of Y (four-level) system. The

ground state, |1〉, couples to the intermediate state, |2〉, via the weak cou-

pling Ωp. Then the intermediate state, |2〉, couples to the degenerate Rydberg

states, |3〉 and |4〉, via the couplings Ω
(3)
c and Ω

(4)
c , respectively. The detun-

ings ∆p and ∆c are defined as shown in the diagram. The natural linewidth

of |2〉 is Γ2, while the linewidths of the probe and coupling lasers are γp and

γc, respectively.

where the hyperfine splitting between the F ′′ = 2 and 3 levels of 46S1/2

is approximately 0.2×2π MHz [104], which can be neglected. The system

interacts with an EM field given by

E(t) =
1

2
Epẑe−iωpt +

1

2
Ecẑe−iωct + c.c., (3.1)

where the first (second) term represents the probe (coupling) field whose

amplitude and angular frequency are Ep and ωp (Ec and ωc), respectively.

These two fields drive π transitions, where ∆mF = 0, as their polarisations

are parallel to z direction. The notation c.c. means the complex conjugate

of the first two terms. The Hamiltonian of the atom-light interaction for

this system, after applying the rotating-wave approximation and the slowly-

varying variables, is given by H = H0 +HEIT, where

H0 = −~∆p |2〉 〈2| − ~(∆p + ∆c)(|3〉 〈3|+ |4〉 〈4|), (3.2a)

HEIT =
~Ωp

2
|1〉 〈2|+ ~Ω

(3)
c

2
|2〉 〈3|+ ~Ω

(4)
c

2
|2〉 〈4|+ h.c.. (3.2b)
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Here ∆p(c) is the probe (coupling) detuning and h.c. represents the hermitian

conjugate of the first three terms. The Rabi frequencies associated with the

probe and coupling fields (Ωp, Ω
(3)
c and Ω

(4)
c , respectively) are given by

Ωp =
Ep

~
〈2| er · ẑ |1〉 , (3.3a)

Ω(3)
c =

Ec

~
〈3| er · ẑ |2〉 , (3.3b)

Ω(4)
c =

Ec

~
〈4| er · ẑ |2〉 , (3.3c)

where −er is the dipole operator. Having determined the Hamiltonian, the

equations of motion for the density matrix, ρ, are

ρ̇11 = Γ2ρ22 +
iΩp

2
(ρ12 − ρ21) , (3.4a)

ρ̇22 = −Γ2ρ22 −
iΩp

2
(ρ12 − ρ21) +

i

2

4∑
k=3

Ω(k)
c (ρ2k − ρk2) , (3.4b)

ρ̇12 = −
(

Γ2

2
+ γp + i∆p

)
ρ12 +

iΩp

2
(ρ11 − ρ22) +

i

2

4∑
k=3

Ω(k)
c ρ1k, (3.4c)

ρ̇1k = − [γp + γc + i(∆p + ∆c)] ρ1k −
iΩp

2
ρ2k +

iΩ
(k)
c

2
ρ12, (3.4d)

ρ̇2k = −
(

Γ2

2
+ γc + i∆c

)
ρ2k −

iΩp

2
ρ1k

+
iΩ

(k)
c

2
(ρ22 − ρkk)−

iΩ
(j)
c

2
ρjk, (3.4e)

ρ̇ik = − iΩ
(i)
c

2
ρ2k +

iΩ
(k)
c

2
ρi2, (3.4f)

where the index j is j = 7 − k, Γ2 is the linewidth of |2〉 and γp(c) is the

linewidth of the probe (coupling) laser. The linewidths of the Rydberg states

are relatively small; and hence, can be neglected. The steady state solu-

tion of the density matrix, ρs, is obtained by setting ρ̇ = 0 and Equation

(3.4) becomes a set of algebraic equations, which can be solved numerically.

However, the weak probe condition allows us to solve the set of algebraic

equations analytically [84]. This can be done by assuming that ρs
11 ≈ 1, and

ρs
nm ≈ 0 when n 6= 1 and m 6= 1. Under the weak probe condition, a simple
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calculation shows that ρs
21 is given by

ρs
21 =

iΩp

2

[
i∆p −

Γ2

2
− γp

+
(Ω

(3)
c /2)2

i(∆p + ∆c)− γc − γp

+
(Ω

(4)
c /2)2

i(∆p + ∆c)− γc − γp

]−1

, (3.5)

where the second and third terms in the squared bracket represent the EIT

effect caused by the couplings Ω
(3)
c and Ω

(4)
c , respectively. In the general

case where |3〉 and |4〉 are not degenerate in energy, the denominators of

the second and third terms in the bracket would be different, namely, the

coupling detuning in the denominators, ∆c, now changes to ∆
(3)
c and ∆

(4)
c ,

corresponding to the coupling detunings of the transition between |2〉 and |3〉,
and, |2〉 and |4〉, respectively. Note that Equation (3.5) has the same form as

that obtained for an inverted Y system [105]. This is not surprised as both Y

system and inverted Y system have the same topological geometry. In [105],

it has been shown that the inverted Y system produces three absorption

resonances, corresponding to EIT doublet.

In our case, the denominators of the second and third terms in the bracket

are the same; and hence, Equation (3.5) can be written as,

ρs
21 =

iΩp

2

[
i∆p −

Γ2

2
− γp +

(Ωeff/2)2

i(∆p + ∆c)− γc − γp

]−1

, (3.6)

where Ωeff is the effective Rabi frequency and is given by (Ωeff)2 = (Ω
(3)
c )2 +

(Ω
(4)
c )2. Comparing ρs

21 obtained from a Y system and a three-level system,

the two degenerate Rydberg states act as if they were a single state which

couples to |2〉 with the coupling strength equal to the effective Rabi frequency

and the absorption lineshape contains only two absorption resonances. Thus

the symmetry of the Rydberg states reduces one absorption resonance from

the system of non-degenerate Rydberg states [105]. Having determined ρs
21,

the susceptibility of the Y system is given by

χ = − iNd2
21

~ε0

[
i∆p −

Γ2

2
− γp +

(Ωeff/2)2

i(∆p + ∆c)− γc − γp

]−1

, (3.7)
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where N is the total number of 85Rb per unit volume and d21 = 〈2| er · ẑ |1〉
is the dipole matrix element between |2〉 and |1〉.

Note that Equation (3.7) is only valid for non-moving atoms; however, in a

thermal system where the atoms move in all directions with a velocity distri-

bution given by the Maxwell-Boltzmann distribution, the effect of Doppler

broadening must be taken into account. To include this effect we make

changes to ∆p, ∆c and N with the following substitutions:

∆p → ∆p + kpv, (3.8a)

∆c → ∆c − kcv, (3.8b)

N → N0

u
√
π

exp

(
−v

2

u2

)
, (3.8c)

where kp(c) is the wavevector of the probe (coupling) field, v is the atomic

velocity parallel to the propagation axis, u ≡
√

2kBT/m is the most probable

speed of the atoms at a given temperature T and m is the atomic mass of a

85Rb atom. Using the ideal gas equation [106], the total number density of

the system, N0, as a function of temperature is [102]

N0 = 0.7217× p× 133.3223684

kBT
, (3.9)

where the factor 0.7217 is the atomic abundance of 85Rb [102], the factor

133.3223684 is the conversion factor converting the pressure in Torr to Pa

and p is the pressure measured in Torr. It turns out that the pressure is also

a function of temperature [107]:

log10 p = 2.881 + 4.857− 4215

T
. (3.10)

Thus one can control the number density by changing only the temperature

of the vapour cell in the experiment. To obtain the susceptibility of the

system, one averages χ(v) over the entire velocity distribution [84], i.e.,

χD(∆p,∆c) =

∫ ∞
−∞

χ(v)dv

=

(
id2

21

√
πN0

2~ε0ukp

){
(1− d)s1e−z

2
1 [1− s1erf(iz1)]

+ (1 + d)s2e−z
2
2 [1− s2erf(iz2)]

}
, (3.11)
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where s1(2) = −sgn
[
Im(z1(2))

]
, and, d and z1,2 are

d =
i

z1 − z2

[
Γ2 + γp − i∆p

kpu
+
γp + γc − i(∆p + ∆c)

(kp − kc)u

]
, (3.12a)

z1,2 = − i

2

[
Γ2 + γp − i∆p

kpu
+
γp + γc − i(∆p + ∆c)

(kp − kc)u

]

± i

2

[(
Γ2 + γp − i∆p

kpu
− γp + γc − i(∆p + ∆c)

(kp − kc)u

)2

− Ω2
eff

kp(kp − kc)u2

]1/2

.

(3.12b)

Note that to reduce the result to that of three-level system, we simply replace

either Ω
(3)
c or Ω

(4)
c by zero. Thus Equation (3.11) holds for both a three-level

and a Y system and it is the starting point in our calculation of the total

susceptibility of 85Rb.

3.2.2 Modelling the EIT transmission of 85Rb

As mentioned at the beginning of this section, the total susceptibility of 85Rb

is the sum of the susceptibilities of three different transitions. The expression

of the total susceptibility of 85Rb is given by

χTOT(∆p,∆c) =
1

12

{ 3∑
mF=−3

χD(δ1
p, δ

1
c )

+
3∑

mF=−3

χD(δ2
p, δ

2
c ) +

2∑
mF=−2

χD(δ3
p, δ

3
c )

}
, (3.13)

where the factor of 1/12 accounts for the fact that the initial population is

evenly populated among the magnetic sublevels of 5S1/2, F = (2, 3). The

first term in Equation (3.13) represents the susceptibility of the transition

F = 3 → F ′ = 4 → F ′′ = 3, which is composed of seven individual sub-

transitions, corresponding to the magnetic sublevels mF = −3 → 3. Since

∆p and ∆c are measured with respect to F ′ = 4 and F ′′ = 3, δ1
p and δ1

c are

simply ∆p and ∆c, respectively. The susceptibility of the transition F = 3→
F ′ = 3 → F ′′ = (2, 3), shown as the second term in Equation (3.13), is also
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the sum of seven susceptibilities, accounting for seven magnetic sublevels.

The frequency separation between the reference level F ′ = 4 and F ′ = 3

is 120.94×2π MHz. This difference in frequency introduces a shift in both

probe and coupling detunings, i.e., δ2
p = ∆p + (2π × 120.94) MHz and δ2

c =

∆c − (2π × 120.94) MHz. And finally, the susceptibility of the transition

F = 3 → F ′ = 2 → F ′′ = (2, 3) is shown as the third term in Equation

(3.13). In contrast to the previous two transitions, there are no transitions

starting from mF = ±3 as the intermediate state has no mF = ±3 magnetic

sublevels. Thus the index of the summation only runs from −2 to 2. The

frequency difference between F ′ = 4 and F ′ = 2 is 184.36×2π MHz; thus,

δ3
p = ∆p + (2π × 184.36) MHz and δ3

c = ∆c − (2π × 184.36) MHz.

Using the Wigner-Eckart theorem, the dipole matrix element, d21, for the

transition 5S1/2 (F,mF ) to 5P3/2 (F ′,m′F ) is given by

d2
21 = | 〈5P3/2(F ′,m′F )| ez |5S1/2(F,mF )〉 |2

= 4e2(2F + 1)(2F ′ + 1)

 F 1 F ′

mF 0 −m′F

2 3/2 1/2 1

F F ′ 5/2


2

× |〈5P3/2‖r‖5S1/2〉|2 , (3.14)

where 〈5P3/2‖r‖5S1/2〉 is known as a reduced matrix element [108, 109]. For

the transition between 5S1/2 and 5P3/2, 〈5P3/2‖r‖5S1/2〉 is 2.989a0 [110]. And

the effective Rabi frequency between 5P3/2 (F ′,m′F ) and 46S1/2 (F ′′,m′′F ) is

given by

(Ωeff)2 =

(
Ec

~

)2 ∑
F ′′=2,3

| 〈46S1/2(F ′′,m′′F )| ez |5P3/2(F ′,m′F )〉 |2

=
∑

F ′′=2,3

(2F ′′ + 1)(2F ′ + 1)

 F ′ 1 F ′′

m′F 0 −m′′F

2 1/2 3/2 1

F ′ F ′′ 5/2


2

× 4

3
Ω2

c , (3.15)

where the reduced dipole matrix element of the system is absorbed into

Ω2
c, i.e., Ω2

c ≡ (eEc〈46S1/2‖r‖5P3/2〉/~)2. Note that it just happens in this
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case that the reduced matrix element is equal to the radial integral, where

the radial integral between the 46S1/2 and 5P3/2 states, 〈46S1/2|r|5P3/2〉, is

defined as

〈46S1/2|r|5P3/2〉 =

∫ ∞
0

r3R0
46(r)R1

5(r)dr, (3.16)

with RL
n(r) is the radial wavefunction of state n with the orbital angular mo-

mentum L [74].

Putting everything together, the EIT transmission of 85Rb, T, is

T = exp (−LkpIm[χTOT]) , (3.17)

where L is the length of the cell. It is found in the experiment that the

linewidth of the probe laser, γp/2π, is less than 300 kHz, which is much

smaller than the natural linewidth of 5P3/2 (Γ2/2π = 6 MHz); thus, γp can be

neglected in the expression for χTOT. Moreover ∆p = 0 since the probe laser

is on resonance with the transition F = 3→ F ′ = 4. The transmission is then

a function of three parameters, i.e., Ωc, γc and T . We fit the experimental

data against the theoretical calculation predicted using Equation (3.17) for

five values of coupling powers, Pc. The best fit is obtained when the set of

Ωc, γc and T produces minimum chi-squared (χ2). The values of Ωc, γc and

T which produce the best fit for five coupling powers are shown in Table

3.1. Note that the intensity of the coupling beam is assumed to be constant

across the cross-section of the beam while fitting the data. Thus the value of

Ωc obtained from the fit is the effective value, i.e., the average value of the

intensity as if the system were illuminated with a constant intensity2. We

will deal with the problem of a Gaussian beam later when the radial matrix

element is extracted.

2The fact that the probe intensity is not constant is not important in the calculation

since the weak probe limit is assumed throughout the calculation.
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Table 3.1: The values of the three parameters which produce the minimum

χ2. Ωeff
c and γc are expressed in unit of 2π MHz. Note that the uncertainties

of the fitted parameters calculated from χ2 + 1 method are so tiny that they

do not affect the fitted parameters quoted with 3 significant figures.

Pc (mW) Ωeff
c γc T (◦C)

170 1.56 0.19 17.5

140 1.45 0.19 17.5

110 1.29 0.20 17.5

80 1.08 0.21 17.5

50 0.79 0.20 17.5

3.3 Observation of EIT resonances and wavevec-

tor mismatch

The EIT transmission of 85Rb for the coupling power of 170 mW is shown in

Figure 3.2(a) where the red solid line is the theoretical fit. The transmission

encompasses three EIT resonances corresponding to the transitions via 5P3/2,

F ′ = 2, 3 and 4. It is clear that the result calculated from the theoretical

model is in good agreement with the experimental data. The fitting proce-

dure also yields reasonable values of γc and T , i.e., they are approximately

constant for all coupling powers. The main EIT resonance (right peak) is at

∆c/2π = 0 MHz. However, the middle and the left EIT resonances are not lo-

cated at ∆c/2π = −120.94 and −184.36 MHz, respectively. This is because

the wavevectors of both lasers do not totally cancel each other. Thus the

EIT resonances are displaced by the effect of the Doppler broadening. This

wavevector mismatch can be understood by looking at the plot of the absorp-

tion coefficient of 85Rb before average over the velocity distribution, shown

in Figure 3.4(Top). The values of γc/2π and T used in the figure are 0.2 MHz

and 17.5 ◦C, respectively. For the purpose of a clear splitting where the EIT
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resonances are located, we assume Ωc/2π = 21 MHz. The total absorption

can be calculated by integrating the absorption coefficient per unit velocity

over velocity. The EIT resonances occur when the horizontal bright lines are

disconnected since the integral over velocity at these locations are minimum,

shown in Figure 3.4(Bottom). These locations are also where the dark states

exist. From the figure, the horizontal bright lines are at the velocity classes

such that the probe frequency is shifted onto resonance with F ′ = 2, 3 and

4, i.e., ∆p + ∆hfs + kpvEIT = 0, where ∆hfs is the hyperfine splitting between

F ′ = 4 and F ′ = 2 or 3. The predicted velocity classes from this equation

are vEIT = 0, −94.36 and −143.85 m/s. For each of the velocity classes, the

EIT resonance occurs when the coupling frequency is exactly on resonance

between F ′ = (2, 3, 4) and the Rydberg states, i.e., ∆EIT
c −∆hfs−kcvEIT = 0.

This equation is the thin oblique line which cuts through the three horizon-

tal lines in Figure 3.4(Top). Solving these two equations with ∆p = 0, the

location of the EIT resonance is given by

∆EIT
c =

(
kp − kc

kp

)
∆hfs. (3.18)

Using Equation (3.18), the positions of the middle and the left EIT reso-

nances, ∆EIT
c /2π, are −75.47 and −115.05 MHz, respectively, and they are

clearly in agreement with the experimental data as observed in Figure 3.2(a).

3.4 Extracting reduced matrix element

We demonstrate, in this section, that Rydberg EIT can be used to find the re-

duced matrix element (or radial integral) for the transition between 5P3/2 and

the Rydberg state. A complication arises due to the non-homogeneity of the

coupling intensity. However, we overcome the problem of non-homogeneity

by using a Taylor expansion of the absorption coefficient. Thus a linear

relation between coupling power and the fitted parameter (Ωeff
c )2 is achieved.
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Figure 3.4: (Top) Image plot of the absorption coefficient of 85Rb before

average over the velocity for different values of atomic velocities and coupling

detunings. The values of γc/2π and T used in the figure are 0.2 MHz and

17.5 ◦C, respectively, and Ωc/2π is assumed to be 21 MHz in order to produce

a clear splittings of the EIT resonances. (Bottom) The total absorption

calculated by summing the absorption coefficient across the velocity axis

against coupling detuning. The location where the bright horizontal line is

disconnected corresponds to the EIT resonance. These resonances are located

by the vertical dashed lines. Note that the positions of the bright horizontal

lines correspond to the velocity classes such that ∆p + ∆hfs + kpvEIT = 0.

And the positions of the EIT resonances, ∆EIT
c , correspond to the intercept

points of ∆p + ∆hfs + kpvEIT = 0 and ∆EIT
c −∆hfs − kcvEIT = 0.

It is clear from Equation (3.11) that the absorption coefficient3 is also a

function of the intensity of the coupling laser through Ωc. Thus it is, in turn,

a function of the spatial coordinates y and z, i.e., the radial direction along

the cross-section of the beam. Let us consider the output power and the

3The absorption coefficient is αTOT = kpIm[χTOT].



Chapter 3. Measuring a dipole matrix element using Rydberg EIT 49

input intensity of the probe beam in which their relationship is given by4

P f
p = 2π

∫ ∞
0

Ip(xi, r)e
−α(r)Lrdr. (3.19)

Here P f
p is the output probe power, Ip is the probe intensity, xi is the x

position at the entrance of the vapour cell, r is the radius of in the cross-

section plane and it is related to y and z via r2 = y2 + z2. The simplest case

is when α is constant and the integral becomes P f
p = P i

p exp(−αL), where P i
p

is the input probe power and is defined as

P i
p = 2π

∫ ∞
0

Ip(xi, r)rdr. (3.20)

Generally, the integration in Equation (3.19) cannot be performed analyti-

cally due to the complicated form of the absorption coefficient. Alternatively,

we expand the absorption coefficient in terms of Ω2
c as5

α(Ω2
c) = α0 + α1Ω2

c +O(Ω4
c), (3.21)

where α0 and α1 are the coefficients of the expansion and, generally, α1 �
α0. Substituting the first order expansion of α into Equation (3.19) and

assuming6 α1Ω2
c � 1, we have

P f
p = e−α0L × 2π

∫ ∞
0

Ip(xi, r)e
−α1Ω2

c(r)Lrdr

≈ e−α0L
[
P i

p − 2πα1L
∫ ∞

0

Ip(xi, r)Ω
2
c(r)rdr

]
(3.22)

Assuming both probe and coupling beams have a Gaussian intensity profile,

the expressions of Ω2
c and Ip change to

Ω2
c → Ω2

c

(
w0

c

wc(x)

)2

e−2(r/wc(x))2 , (3.23a)

Ip → Ip

(
w0

p

wp(x)

)2

e−2(r/wp(x))2 , (3.23b)

4For simplicity, we drop the subscript TOT from αTOT.
5We want to expand the absorption coefficient in terms of the coupling intensity which

is, in turn, proportional to Ω2
c .

6The geometry component of the Rabi frequency is contained in α1.
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where w0
p(c) is the probe (coupling) beam waist at the centre of the vapour

cell, wp(c)(x) is the probe (coupling) beam waist at the position x, and, Ω2
c

and Ip are constant. Substituting Equation (3.23) into Equation (3.22) and

evaluating the integral, we have

P f
p = e−α0LP i

p

[
1− α1L

4e2〈46S1/2‖r‖5P3/2〉2
~2cε0π[w2

c(xi) + w2
p(xi)]

Pc

]
. (3.24)

Here we have used, for the profile given by Equation (3.23), P i
p = π(w0

p)2Ip/2

and Pc = cε0(w0
c)2πE2

c/4. It is assumed that the beam waists of both probe

and coupling beams are constant throughout the length of the vapour cell

in order to evaluate the integral and the medium is lossless for the coupling

power. Without loss of generality, we apply Equation (3.21) and Equation

(3.22) for the case in which the Rabi coupling is constant, i.e., the Rabi

coupling is the effective Rabi frequency, Ωeff
c , which has been obtained from

the fitting. Thus we have

P f
p = e−α0LP i

p

[
1− α1L(Ωeff

c )2
]
. (3.25)

Comparing Equation (3.24) to Equation (3.25), the relationship between

(Ωeff
c )2 and Pc is given by

(Ωeff
c )2 =

4e2〈46S1/2‖r‖5P3/2〉2
~2cε0π[w2

c(xi) + w2
p(xi)]

Pc. (3.26)

According to Equation (3.26), the reduced matrix element 〈46S1/2‖r‖5P3/2〉,
or the radial integral in this particular case, is proportional to the ratio

between (Ωeff
c )2 and Pc. In other words, the reduced matrix element can

be extracted from the gradient of a plot of (Ωeff
c )2 against Pc. The linear

relationship between (Ωeff
c )2 and Pc is demonstrated in Figure 3.5(a) assuming

a 5% error for the coupling powers, whereas the error for Ωeff
c is too small to

be noticed in the figure7. The data points form a straight line as expected

from Equation (3.26). Using the least-squares method, the regression line is

plotted against the data points. It is clear that the regression line lies within

7The error for Ωeff
c is calculated using χ2 + 1 method, see [111] for more detail.
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Figure 3.5: (a) Plot between (Ωeff
c /2π)2 against coupling power, Pc. Ac-

cording to Equation (3.26), the gradient of the straight line is proportional

to the reduced matrix element. The linear relationship between (Ωeff
c )2 and

Pc is demonstrated with a 5% error for the coupling powers. The error

bars for Ωeff
c are too small to be noticeable. The blue solid line is the re-

gression line calculated from the least-squares method. The reduced matrix

element 〈46S1/2‖r‖5P3/2〉 extracted from the gradient of the straight line is

(1.5± 0.1)× 10−2 a0, which is in good agreement with the values quoted in

[24, 100]. (b) The residuals betweent the fitted line and the experimental

data are relatively small, suggesting that a linear straight line could be a

good fit. However, the residual plot shows that the residuals form a curve

which does not suggest the random distribution. This implies that there

could be a contribution from the higher order terms which have not been

taken into account.

the error bars of the data points. However, the residual plot, shown in Figure

3.5(b), reflects the fact that the higher order corrections should be taken into

account in order to improve the fitting since the residuals are not randonly

distributed. They instead form a curve which is approximately parabola.
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Using Equation (3.26) and taking into account the uncertainty on the waists

of the beams, the reduced matrix element 〈46S1/2‖r‖5P3/2〉 is (1.5 ± 0.1) ×
10−2 a0, where a0 is the Bohr radius. The error of the radial matrix element

are due to the error of the slope obtained from the least-squares method and

the errors from the beam wasits of probe and coupling lasers. The percentage

errors of the slope, the coupling beam waist and the probe beam waist are

1%, 8% and 0.4%, respectively. Thus the total error for the reduced matrix

element is given by the quadrature sum of the individual error components.

Thus the error of the reduced matrix element is 8%, which is 0.1×10−2 a0

(quoted with 2 significant figures). The most significant source of error is

from the measurement of the coupling beam waists which could be reduced

by optimising the set up to decrease the error of the coupling beam waist.

Another way round this problem is to use a shorter vapour cell [112, 113]

in which the variation of the beam across the cell due to the divergence can

be minimised. The value of the reduced matrix element extracted from the

experiment is in agreement with the value of (1.59± 0.16)× 10−2 a0 quoted

in the literature, e.g., [24, 100].

3.5 Summary and conclusions

In this chapter, we presented a theoretical model for a Rydberg EIT system

with the effect of Doppler broadening. A good agreement between the model

and the experimental data was demonstrated. We also showed the well-

known effect of the wavevector mismatch which scales with the distance, in

frequency, between the EIT resonances by a factor of (kp − kc)/kp. This

effect arises from the fact that the vector sum of the wavevectors is not

totally cancelled with each other.

We also demonstrated that, by fitting the theoretical model with the exper-

imental data, the reduced matrix element between the 5P3/2 and the nS1/2
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Rydberg state can be extracted. By expanding the absorption coefficient

up to first order, it was found that (Ωeff
c )2 has a linear relationship with Pc,

and the reduced matrix element can be extracted from the gradient of the

plot (Ωeff
c )2 against Pc. Piotrowicz et al. used a relatively similar method to

exploit the reduced matrix element between the 5P3/2 and the nDJ Rydberg

state [101]. In contrast to our method, Piotrowicz et al. tackled the prob-

lem of inhomogeneous coupling field intensity by numerically calculating the

spatial variation of the absorption image and fitting the calculated results to

the experimental absorption image to obtain the fitting parameters and the

reduced dipole matrix element [101].

It was assumed in our calculation that the cross-section of both beams were

approximately constant throughout the length of the cell. However, there

was a small variation of the cross-section across the length of the cell. To get

around this problem one could do the experiment with a thin cell [112, 113],

where the variation of the beam across the cell is easier to control.



Chapter 4

Rydberg EIT with

three-photon transition

In the previous chapter, Rydberg electromagnetically induced transparency

(EIT) in a thermal vapour cell has been demonstrated with good agreement

between experiment and theory. However, it was found by Bason et al.

[25, 32] that the results were affected by the occurrence of screening charges,

presumably due to the photoelectric ionisation of Rb atoms deposited on

the inside of the vapour cell [114]. This effect produces ions and electrons

inside the vapour cell when the coupling field has a wavelength (∼ 480 nm)

less than the threshold wavelength of Rb metal, i.e., ∼ 550 nm [115]. One

way to get around this problem is to use only lasers whose wavelengths are

longer than 550 nm. This is where the three-photon scheme becomes useful.

Rather than using a 480 nm laser to couple 5P3/2 to Rydberg states, we can

break the transition into two in which the individual transition wavelength

is larger than 550 nm. A possible transition is 5S1/2 →5P3/2 →5D5/2 → nP

or nF Rydberg states. With this configuration the transition from 5P3/2 to

Rydberg states can be, for example, achieved by two lasers whose wavelengths

are 776 nm and 1290 nm [103, 116]. An advantage of this scheme is that one

can configure the set up of the lasers such that all lasers’ wavevectors cancel

54
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each other and the system is in a Doppler-free configuration.

There have been several theoretical [117–119] and experimental [120–122]

works on the three-photon transitions, most of which are with the N system1

as this system provides many interesting results, e.g., electromagnetically

induced absorption (EIA). It has been experimentally demonstrated by many

groups of people that a narrow absorptive resonance can be observed in a

thermal vapour cell of rubidium atoms where all lasers beams are parallel

[117, 121, 122, 128]. The narrow linewidth in N system is the result of two

(out of three) lasers being in a Doppler-free configuration. Contrasting with

our cascade system, we do not observe a narrow absorption resonance when

all lasers are in parallel as the wavevectors do not cancel each other. However,

when we set up the system such that three wavevectors cancel each other,

we theoretically observe a narrow EIT/EIA feature. To our knowledge, EIT

with Doppler-free set up in a cascade system has not yet been seen elsewhere.

In this chapter, we present the theoretical model of three-photon transition

with the effect of Doppler broadening in a cascade system. There are two

laser configurations considered in this chapter — the first one is when the

probe laser counter-propagates with the two coupling lasers (parallel config-

uration) and the latter is the Doppler-free configuration. It turns out that,

for the parallel configuration with Doppler broadening, we can have three

EIT resonances, although these three EIT resonances cannot be achieved in

cold atoms. We also study the transmission and absorption lineshapes for

the Doppler-free configuration.

1There are three types of 4-level systems which have been discussed by various groups

of people, namely, N system [117, 118, 120–122], inverted Y system [105, 123, 124], and

tripod system [125–127].
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(a) (b)  

Figure 4.1: (a) A four-level system consisting of four states, |a〉 , |b〉 , |c〉 and

|d〉 whose eigenfrequencies are ωa/2π, ωb/2π, ωc/2π and ωd/2π respectively.

A weak probe laser whose Rabi frequency is Ωp probes the transition between

the ground and first intermediate states. The coupling lasers whose Rabi

frequencies are Ωc1 and Ωc2 couple |b〉 and |c〉, and, |c〉 and |d〉, respectively.

(b) The configuration of the three lasers is such that the first coupling laser

makes an angle of β to the probe laser and the second coupling laser makes

an angle of α to the probe laser. Note that the colour of the arrows do not

correspond to their frequencies. The parallel configuration is when α and

β are zero and the Doppler-free configuration is when the sum of the three

wavevectors vanishes. The length of the cell is assumed to be 2 mm.
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4.1 Theory of three-photon transition for

cold atoms

We consider the ladder EIT system, composed of a ground state |a〉, a first

intermediate state |b〉, a second intermediate state |c〉, and a Rydberg state

|d〉, whose eigenfrequencies are ωa/2π, ωb/2π, ωc/2π, and ωd/2π, respectively.

The energy level of the system is schematically shown in Figure 4.1(a). The

first coupling laser whose frequency is ωc1/2π couples |b〉 and |c〉, and the

second coupling laser whose frequency is ωc2/2π couples |c〉 and |d〉. The

absorption property of the system is detected by scanning the probe laser, of

frequency ωp/2π, around the resonance transition between |a〉 and |b〉. The

laser detunings are defined as

∆p = ωp − ωba, (4.1a)

∆c1 = ωc1 − ωcb, (4.1b)

∆c2 = ωc2 − ωdc, (4.1c)

where ωij ≡ ωi − ωj. The Hamiltonian of the system, H, after applying the

rotating-wave approximation and slow-varying variables transformations, is

composed of two components: the bare atom Hamiltonian (H0) and the

atom-field interaction Hamiltonian (HL), namely,

H0 = −~∆p − ~(∆p + ∆c1)− ~(∆p + ∆c1 + ∆c2), (4.2a)

HL =
~Ωp

2
|a〉 〈b|+ ~Ωc1

2
|c〉 〈b|+ ~Ωc2

2
|d〉 〈c|+ h.c., (4.2b)

where h.c. denotes the hermitian conjugate of the first three terms and H =

H0 + HL. The strengths of the couplings of the probe, first coupling and

second coupling lasers are proportional to the Rabi frequencies, Ωp, Ωc1 , and

Ωc2 , respectively.

Using the Liouville equation [129], the equations of motion for the density
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matrix ρ of the system are given by

ρ̇aa = Γbρbb +
iΩp

2
(ρab − ρba) , (4.3a)

ρ̇bb = −Γbρbb + Γcρcc +
iΩc1

2
(ρbc − ρcb)−

iΩp

2
(ρab − ρba) , (4.3b)

ρ̇cc = −Γcρcc +
iΩc2

2
(ρcd − ρdc)−

iΩc1

2
(ρbc − ρcb) , (4.3c)

ρ̇ba =

(
i∆p −

Γb
2
− γp

)
ρba +

iΩp

2
(ρbb − ρaa)−

iΩc1

2
ρca, (4.3d)

ρ̇ca =

[
i(∆p + ∆c1)−

Γc
2
− γp − γc1

]
ρca +

iΩp

2
ρcb

− iΩc1

2
ρba −

iΩc2

2
ρda, (4.3e)

ρ̇da = [i(∆p + ∆c1 + ∆c2)− γp − γc1 − γc2 ] ρda +
iΩp

2
ρdb −

iΩc2

2
ρca, (4.3f)

ρ̇cb =

(
i∆c1 −

Γb + Γc
2

− γc1

)
ρcb +

iΩc1

2
(ρcc − ρbb)

+
iΩp

2
ρca −

iΩc2

2
ρdb, (4.3g)

ρ̇db =

[
i(∆c1 + ∆c2)−

Γb
2
− γc1 − γc2

]
ρdb +

iΩp

2
ρda

+
iΩc1

2
ρdc −

iΩc2

2
ρcb, (4.3h)

ρ̇dc =

(
i∆c2 −

Γc
2
− γc2

)
ρdc +

iΩc2

2
(ρdd − ρcc) +

iΩc1

2
ρdb, (4.3i)

where ρaa + ρbb + ρcc + ρdd = 1. It is assumed, in the system, that |b〉 and

|c〉 have the decay linewidths of Γb and Γc, respectively, and, γp, γc1 and γc2

are the linewidths of the probe, first coupling and second coupling lasers,

respectively. The natural linewidth of the Rydberg state |d〉 is so small that

it can be neglected. In the weak probe limit, where it is assumed that the

population always stays in the ground state, the steady state solution ρs is

obtained by setting ρ̇ = 0. Simple calculation shows that the coherence ρs
ba

is given by

ρs
ba =

iΩp

2

[
i∆p −

Γb
2
− γp +

Ω2
c1

4

[
i(∆p + ∆c1)−

Γc
2
− γp − γc1

+
Ω2

c2

4

[
i(∆p + ∆c1 + ∆c2)− γp − γc1 − γc2

]−1
]−1
]−1

. (4.4)
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Figure 4.2: The evolution of the absorption lineshapes of cold atoms for var-

ious values of Ωc2/2π, namely, (a) 0 MHz, (b) 2 MHz, (c) 4 MHz, (d) 6 MHz,

(e) 8 MHz, (f) 10 MHz. The Rabi frequency of the first coupling laser is

Ωc1/2π = 10 MHz, all laser linewidths are 0.5 MHz, and the atomic density

is N = 1.7× 1013 m−3. The natural linewidths Γb/2π and Γc/2π are 6 MHz

and 1 MHz, respectively. The absorption property of the medium at zero

probe detuning is enhanced when the ratio Ωc2/Ωc1 is large since |0〉 contains

a large a mount of |b〉 according to Equation (4.7b). (b) to (f) show that

there exists only two EIT resonances or three absorption resonances in the

spectrum obtained from cold atoms.

The complex susceptibility is related to ρs
ba via

χ = −2Nd2
ba

~ε0Ωp

ρs
ba, (4.5)

where N is the atomic density and dba is the dipole matrix element between

|b〉 and |a〉. Note that Equation (4.4) is independent of the wavevectors;

and hence, the lineshape of the complex susceptibility is independent of the

lasers’ configuration.

Figure 4.2 shows the evolution of the absorption lineshape in cold atoms
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with increasing in Ωc2 . In the figure, it is assumed that Ωc1/2π = 10 MHz

and γp/2π = γc1/2π = γc2/2π = 0.5 MHz. The atomic density is N =

1.7×1013 m−3. The natural linewidths of |b〉 and |c〉 are assumed to be those

for 5P3/2 and 5D5/2, respectively, i.e., Γb/2π = 6 MHz and Γc/2π = 1 MHz

[130, 131]. The first and second coupling lasers are tuned such that they

both are on-resonance with |b〉 and |c〉, and, |c〉 and |d〉, respectively. It is

obvious from the figure that the effect of the second coupling laser is to split

a single EIT resonance (obtained from two-photon transition) into two EIT

resonances or to add an absorption resonance at the zero probe detuning.

Increasing the value of Ωc2 results in a large absorption resonance at zero

probe detuning. To understand the evolution of the lineshapes, we look into

the dressed states formed from |b〉, |c〉 and |d〉. When both coupling lasers

are on resonance, the eigenenergies are

E+ =
~
2

√
Ω2

c1
+ Ω2

c2
, (4.6a)

E0 = 0, (4.6b)

E− = −~
2

√
Ω2

c1
+ Ω2

c2
, (4.6c)

with their associated eigenvectors,

|+〉 =
1√
2

Ωc1√
Ω2

c1
+ Ω2

c2

|b〉+
1√
2
|c〉+

1√
2

Ωc2√
Ω2

c1
+ Ω2

c2

|d〉 , (4.7a)

|0〉 =
Ωc2√

Ω2
c1

+ Ω2
c2

|b〉 − Ωc1√
Ω2

c1
+ Ω2

c2

|d〉 , (4.7b)

|−〉 =
1√
2

Ωc1√
Ω2

c1
+ Ω2

c2

|b〉 − 1√
2
|c〉+

1√
2

Ωc2√
Ω2

c1
+ Ω2

c2

|d〉 . (4.7c)

The resonances in absorption correspond to the interactions between |a〉 with

one of the three dressed states; hence, it predicts three absorption resonances

(and two EIT resonances). The absorption resonance in the middle gradually

increases when the ratio Ωc2/Ωc1 increases. This is because the dipole ma-

trix element 〈a| er |0〉 is proportional to Ωc2/
√

Ω2
c1

+ Ω2
c2

according to Equa-

tion (4.7b). The splitting in energy between the left and the right absorption



Chapter 4. Rydberg EIT with three-photon transition 61

resonances is given by E+−E− = ~
√

Ω2
c1

+ Ω2
c2

, which is consistent with the

results shown in Figure 4.2.

4.2 Theory of three-photon transition with

Doppler broadening

In contrast to the case of cold atoms, Equation (4.4) must be corrected for

the Doppler effect in the case of thermal atoms. This can be done by the

transformations:

∆p → ∆p − kp · v, (4.8a)

∆c1 → ∆c1 − kc1 · v, (4.8b)

∆c2 → ∆c2 − kc2 · v, (4.8c)

where kp, kc1 and kc2 are the wavevectors of the probe, first coupling and

second coupling lasers, respectively, and v is the atomic velocity. The dis-

tribution of the atoms is given by the three-dimensional Maxwell-Boltzmann

distribution,

N → N0

u3π3/2
exp

(
−v

2
x

u2

)
exp

(
−v

2
y

u2

)
exp

(
−v

2
z

u2

)
, (4.9)

where u =
√

2kBT/m is the most probable speed of the atom and N0 is the

total atomic density of the system. Since the Doppler effect is independent

of vz, we can integrate over Equation (4.9) with respect to vz and we have,

N → N0

u2π
exp

(
−v

2
x

u2

)
exp

(
−v

2
y

u2

)
. (4.10)

With the transformations given by Equation (4.8) and Equation (4.10), the

susceptibility of the system becomes,

χ(vx, vy)dvxdvy =
id2
baN0

ε0~πu2
× exp

(
−v

2
x

u2

)
exp

(
−v

2
y

u2

)
dvxdvy×[

A+ ikpvx +
Ω2

c1

4

[
B + i(∆k1)vx +

Ω2
c2

4

[
C + i(∆k2)vx

]−1
]−1
]−1

, (4.11)
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with

A =
Γb
2

+ γp − i∆p, (4.12a)

B =
Γc
2

+ γp + γc1 − i(∆p + ∆c1) + ikc1vy sin β, (4.12b)

C = γp + γc1 + γc2 − i(∆p + ∆c1 + ∆c2)

+ i(kc1 sin β − kc2 sinα)vy, (4.12c)

∆k1 = kp − kc1 cos β, (4.12d)

∆k2 = kp − kc1 cos β − kc2 cosα. (4.12e)

The angles β and α are defined as shown in Figure 4.1(a). It is possible

to analytically integrate Equation (4.11) over vx; however, the subsequent

analytical integration over vy is not possible and numerical integration must

be used to this end.

To evaluate the integral over vx, first, we use the substitution z = vx/u and

rearrange Equation (4.11) as

χ(vx, vy)dvxdvy =
d2
baN0

ε0~πu2kp

(
z2 + pz + q

z3 + λz2 + µz + θ

)
e−z

2

e−v
2
y/u

2

dzdvy, (4.13)

with

p = − i

u

(
B

∆k1

+
C

∆k2

)
, (4.14a)

q = − 1

u2

(
4BC + Ω2

c2

4∆k1∆k2

)
, (4.14b)

λ = − i

u

(
A

kp

+
B

∆k1

+
C

∆k2

)
, (4.14c)

µ = − 1

u2

(
AB

kp∆k1

+
AC

kp∆k2

+
BC

∆k1∆k2

+
Ω2

c2

4∆k1∆k2

+
Ω2

c1

4kp∆k1

)
, (4.14d)

θ =
i

u3

(
4ABC + AΩ2

c2
+ CΩ2

c1

4kp∆k1∆k2

)
. (4.14e)

The denominator of Equation (4.13) has three roots [132], i.e., z1, z2 and z3,
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where

z1 =
1

6
(−2λ+ U + V ), (4.15a)

z2 =
1

12
[−4λ− (1 +

√
3i)U − (1−

√
3i)V ], (4.15b)

z3 =
1

12
[−4λ− (1−

√
3i)U − (1 +

√
3i)V ], (4.15c)

U =
3
√

4(−27θ − 2λ3 + 9λµ+

3
√

81θ2 + 12θλ3 − 54θλµ− 3λ2µ2 + 12µ3)1/3, (4.15d)

V =
4(λ2 − 3µ)

U
. (4.15e)

Thus the integrand (z2 + pz+ q)/(z3 +λz2 +µz+ θ) can be re-written, using

the partial fraction method, as

z2 + pz + q

z3 + λz2 + µz + θ
=

q + pz1 + z2
1

(z1 − z2)(z1 − z3)

1

z − z1

+
q + pz2 + z2

2

(z2 − z1)(z2 − z3)

1

z − z2

+
q + pz3 + z2

3

(z3 − z1)(z3 − z2)

1

z − z3

. (4.16)

Substituting Equation (4.16) back into Equation (4.11) and evaluating the

integration over z [84], we have

χ(vy)dvy = −
(

id2
baN0

ε0~kpu2

)[
q + pz1 + z2

1

(z1 − z2)(z1 − z3)
s1e−z

2
1erfc(is1z1)

+
q + pz2 + z2

2

(z2 − z1)(z2 − z3)
s2e−z

2
2erfc(is2z2)

+
q + pz3 + z2

3

(z3 − z1)(z3 − z2)
s3e−z

2
3erfc(is3z3)

]
e−v

2
y/u

2

dvy, (4.17)

where s1(2,3) = −sgn
[
Im(z1(2,3))

]
and erfc(z) is the complementary error func-

tion [133]. The susceptibility of the system is obtained by numerically inte-

grating Equation (4.17) over vy.

The results simplify into two special cases, which we now consider, namely,

the case where all lasers are parallel to one another and the Doppler-free

configuration.

Case 1. All three lasers are parallel to one another, i.e., α, β = {0,±π}.
In this case the system effectively reduces to one dimension and the analytical
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integration of Equation (4.17) over vy is now possible. Using the standard

Gaussian integral, namely,∫ ∞
−∞

exp

(
−v

2
y

u2

)
dvy = u

√
π, (4.18)

the total susceptibility of the system is given by

χ = −
(

id2
baN0

√
π

ε0~kpu

)[
q + pz1 + z2

1

(z1 − z2)(z1 − z3)
s1e−z

2
1erfc(is1z1)+

q + pz2 + z2
2

(z2 − z1)(z2 − z3)
s2e−z

2
2erfc(is2z2) +

q + pz3 + z2
3

(z3 − z1)(z3 − z2)
s3e−z

2
3erfc(is3z3)

]
.

(4.19)

When both α and β are zero, we refer to this configuration as the parallel

configuration.

Case 2. Doppler-free configuration, i.e., kp + kc1 + kc2 = 0.

When the sum of the wavevectors vanishes, one of the poles of the integrand

in Equation (4.11) disappears. Equation (4.17) reduces to,

χ(vy)dvy = −
(

iN0d
2
ba

2~ε0u2kp

){
(1 + d)e−z

2
1s1 [1− s1erf(iz1)]

+ (1− d)e−z
2
2s2 [1− s2erf(iz2)]

}
e−v

2/u2

dvy, (4.20)

with

z1,2 =
i

2

(
A

ukp

+
B

u∆k

)
± i

2

√(
A

ukp

− B

u∆k

)2

− Ω2
c1

u2kp∆k
, (4.21a)

∆k = kp − kc1 cos β, (4.21b)

A =
Γb
2

+ γp − i∆p, (4.21c)

B =
Γc
2

+ γp + γc1 − i(∆p + ∆c1) + ikc1vy sin β

+
Ω2

c2
/4

γp + γc1 + γc2 − i(∆p + ∆c1 + ∆c2)
, (4.21d)

d =
i

z1 − z2

(
A

ukp

− B

u∆k

)
, (4.21e)

and s1,2 are as previously defined.
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Figure 4.3: The absorption lineshape for thermal atoms with two different

values of Ωc2/2π, namely, 2 MHz (solid blue line) and 4 MHz (red dashed

line). The probe laser is counter-propagating with the other two coupling

lasers and the other parameters are the same as those used in Figure 4.2.

The temperature of the cell is 17 ◦C. In contrast to the lineshape obtained

for cold atoms, for a small value of Ωc2/Ωc1 , the lineshape for thermal atoms

exhibits three EIT resonances. However, for a large value of Ωc2/Ωc1 , we

recover the absorption lineshape with two EIT resonances as the middle EIT

resonance (at zero probe detuning) switches to an absorption resonance in

which the medium becomes significantly more absorptive with respect to the

background absorption.

In the subsequent sections, the absorption (and transmission) properties of

the system will be investigated using Equation (4.19) and Equation (4.20) as

our main equations.
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Figure 4.4: Image plot of the absorption coefficient before velocity average,

kpIm[χ(vx,∆p)], against vx and ∆p. For reasons of clarity, the values of

Ωc1/2π and Ωc2/2π are 100 MHz and 20 MHz, respectively, in which the ratio

Ωc2/Ωc1 is maintained at 0.2 as used for the solid blue line in Figure 4.3.

All the other parameters are kept the same as those used in Figure 4.3.

The small absorption resonance at zero probe detuning before the velocity

average (corresponding to the dark line in the middle of the plot) results in

a small total absorption coefficient after integrating over velocity. This leads

to transparency in the middle of the absorption profile.

4.3 EIT lineshape for the parallel configura-

tion

In contrast to the presence of two EIT resonances in cold atoms, the EIT line-

shape observed in thermal atoms can have either two or three EIT resonances

for the parallel configuration, depending on the strength of the second cou-

pling laser compared to the first coupling lasers as illustrated in Figure 4.3.

The middle EIT resonance is sensitive to the ratio Ωc2/Ωc1 . Namely, this

resonance switches to an absorption resonance when Ωc2/Ωc1 increases, and

the medium becomes significantly more absorptive with respect to the back-
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ground absorption. The presence of the middle EIT feature can be under-

stood by studying the image plot of the absorption coefficient before average

over velocity, kpIm[χ(vx,∆p)] (Figure 4.4). Let us consider the overlap inte-

gral 〈a| er |0〉, which is proportional to Ωc2/
√

Ω2
c2

+ Ω2
c1

as |a〉 only couples

to |b〉. For the case where Ωc2/Ωc1 is small, the overlap integral is negligible.

This results in a small absorption resonance at zero probe detuning. This is

seen in the figure as a dark line with negative gradient in the middle of the

plot. Thus when integrating the absorption coefficient over all velocities, the

total absorption coefficient becomes small, which leads to the transparency

window at ∆p/2π = 0 MHz. However, when the ratio Ωc2/Ωc1 increases,

the overlap integral 〈a| er |0〉, as well as the middle absorption resonance,

becomes large. Thus after averaging over all velocities, the value of the total

absorption is now significant. Note that the transparency in the middle is

not due to the formation of a dark state; it is due to the relatively small

absorption resonance at the middle before the velocity average.

It should be emphasised here that the absorption lineshape for cold atoms

always exhibits two EIT resonances since there are three dressed states in

which |a〉 can be interact with. However, the lineshape for thermal atoms

shows more interesting physics, namely, it can contain either two or three

EIT resonances, depending on the ratio Ωc2/Ωc1 . Note that the extra EIT

resonance does not corresponding to a dark state formation, but it is due to

the weak interaction of Ωc2 at zero probe detuning.

4.4 EIT lineshape for Doppler free configura-

tion

In contrast to the parallel configuration in which the absorption lineshape

does not exhibit a narrow resonance, this (narrow resonance) feature is ob-

served in the Doppler-free configuration in thermal atoms.
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Figure 4.5: The effect of Doppler broadening of the transmission lineshape

for thermal atoms when there is no second coupling laser. The temperature is

now 80 ◦C as we would like to increase the optical depth of the transmission

profile and the angle β is ∼ 35◦. All linewidths are kept the same as those

used in Figure 4.2. The reference profile (black dashed line) is for Ωc1/2π =

0 MHz. Even at Ωc1/2π = 100 MHz (blue solid line), the transmission

profile does not show an EIT resonance as this feature is suppressed by the

positive residual wavevector. For a very large value of Ωc1 , for example,

Ωc1/2π = 400 MHz (red solid line), a broadened EIT resonance is observed

at zero probe detuning.

To understand the absorption (and transmission) for the Doppler-free config-

uration, we first study the lineshape for the case in which the second coupling

is turned off. This is a two-photon transition where the first coupling laser

makes an angle of β with respect to the probe laser. Then we move on to

the Doppler free configuration where all wavevectors cancel each other.
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Figure 4.6: The effect of a finite ∆c1 on the transmission lineshape of the

thermal atoms. The value of Ωc1/2π is 400 MHz and the other parame-

ters are those used in Figure 4.5. One of the absorption resonance can be

moved towards the either positive or negative value of ∆p by changing ∆c1 .

The black solid line, red dashed line and blue dot-dashed line correspond to

∆c1/2π of 0 MHz, −600 MHz and −1200 MHz, respectively.

4.4.1 Effect of residual wavevectors in two-photon

transition

In this situation, the EIT resonance due to the two-photon transition

(|a〉 → |b〉 → |c〉) is suppressed by the effect of Doppler broadening since

the residual wavevector kp − kc1 cos β is now positive and in the direction

of probe laser. To recover the transparency to the system we need to work

with a large coupling Ωc1 ; however, the EIT resonance is broadened due to

power broadening as illustrated in Figure 4.5. In the figure, the temperature

is raised to 80 ◦C in order to increase the optical depth of the transmission

profiles. All linewidths are kept the same as those used in the previous sec-

tion and ∆c1/2π = 0 MHz. Even at Ωc1/2π = 100 MHz (blue solid line),

there is no evidence for an EIT resonance as the feature is destroyed by the

positive residual wavevector. The effect of the Doppler broadening, in this
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case, is to cause a small distortion of the transmission profile as compared

with the reference profile where Ωc1/2π = 0 MHz (black dashed line). When

Ωc1/2π = 400 MHz (red solid line), an EIT resonance is observed at zero

probe frequency; however, this resonance is broadened with a full-width at

half maximum of ∼ 250 MHz as shown in Figure 4.6. We can also detune

∆c1 such that one of the absorption resonance moves to an either side of

the transmission dip, depending on the sign of ∆c1 , as shown in Figure 4.6.

The black solid line, red dashed line and blue dot-dashed line correspond to

∆c1/2π of 0 MHz, −600 MHz and −1200 MHz, respectively.

To understand why a positive residual wavevector leads to the suppres-

sion of the EIT resonance, we consider the three-level system with counter-

propagating lasers configuration. Assuming that the probe laser has

the wavelength of 780 nm and the coupling laser has the wavelength of

900 nm, the image plot of the absorption coefficient before velocity aver-

age, kpIm[χ(vx,∆p)], against vx and ∆p is shown in Figure 4.7. Following

the argument given in Chapter 3, the bright line across the diagonal of the

plot corresponds to the values of vx and ∆p for which the probe laser is on

resonance with the transition |a〉 → |b〉, namely, ∆p − 2πvx/(780 nm) = 0.

The asymptotic line which cuts through the bright line corresponds to the

two-photon resonance, namely, ∆p − 2πvx/(780 nm) + 2πvx/(900 nm) = 0.

Note that the bright lines shown in the figure are the loci of the resonances

between the ground state and the dressed states |+〉 and |−〉 (see Chapter 2),

i.e.,

∆p = kpvx −
1

2
kcvx ±

1

2

√
k2

cv
2
x + Ω2

c1
. (4.22)

The asymptotic forms equations of Equation (4.22) for large value of vx are

∆p = kpvx and ∆p = (kp − kc)vx as expected. For the wavelengths used in

the plot, the asymptotic line has a positive gradient (resulting in a positive

residual wavevector) as shown in the figure. This causes two maxima of ab-

sorption as a function of vx. After integrating the integrand over velocity,

the two resonances lead to the suppression of the EIT resonance in the to-
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Figure 4.7: Image plot of the absorption coefficient before velocity average,

kpIm[χ(vx,∆p)], as a function of vx and ∆p for a coupling wavelength of

900 nm. All parameters are the same as those used in Figure 4.5, except

that Ωc1/2π = 10 MHz. For this couping wavelength, the residual wavevec-

tor is positive. This results in the positive gradient of the asymptotic line

which cuts through the thick bright line. At zero probe detuning, there

exists absorption resonances for two different velocity classes, which, after

integrating the integrand over velocity, it leads to the suppression of the EIT

resonance.

tal transmission lineshape. However, when the wavelength of the coupling

laser is 480 nm, the residual wavevector becomes negative. The asymptotic

line then has a negative gradient and kpIm[χ(vx,∆p)] has no peak as a func-

tion of vx, as shown in Figure 4.8. Thus after summing the integrand for

all velocities, the total transmission lineshape shows an EIT resonance at

∆p/2π = 0 MHz.

4.4.2 EIT and EIA with Doppler free configuration

We now turn on the second coupling laser, which leads to a Doppler-free

configuration. The effect of the second coupling laser is to create a sharp and
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Figure 4.8: Image plot of the absorption coefficient before velocity average,

kpIm[χ(vx,∆p)], as a function of vx and ∆p for a coupling wavelength of

480 nm. All parameters are the same as those used in Figure 4.5, except that

Ωc1/2π = 10 MHz. For this coupling wavelength, the residual wavevector is

negative. This results in the negative gradient of the asymptotic line which

cuts through the thick bright line. At zero probe detuning, there exists no

absorption resonances, which, after integrating the integrand over velocity,

it leads to an EIT resonance.

narrow EIT or EIA (Electromagnetically induced absorption2) resonances,

depending on where we tune ∆c1 . To obtain a sharp EIA feature, we set

∆c1 = ∆c2 = 0 MHz. The EIA feature is observed at the zero probe detuning

(where the peak of the EIT resonance is) with a linewidth less than the

natural linewidth of |b〉, i.e., γEIA < Γb. The strength of the EIA resonance

and its FWHM increases with Ωc2 as illustrated in Figure 4.9. In the figure,

the black solid line, red dot-dashed line and blue dashed line represent Ωc2 of

10 MHz, 30 MHz and 50 MHz, respectively. It is worth noting the similarity

of the sharp EIA resonance obtained in our calculation with the previous

work done by many groups with N system [117, 121, 122, 128]. In their set

up, three wavevectors do not cancel with one another as in our set up. Only

2The details of EIA can be found in the literature, for example, [118, 128, 134–136].
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the probe and the first coupling laser in their set up leads to the Doppler

free. The physical origin of this EIA resonance is from the fact that the

transition is enhanced as the three lasers are simultaneously on resonance,

i.e., ∆p = ∆c1 = ∆c2 = 0 MHz [117].

When we detune ∆c1 to a finite value and ∆c2 = 0 MHz, the system can now

be viewed as a two-photon transition in which the first transition is a com-

bination between the probe photon and the first coupling photon. Thus the

system is effectively a three-level system, consisting of |a〉, |c〉 and |d〉. For

such system, an EIT resonance is created at the centre of the small transmis-

sion dip where ∆p = −∆c1 (see Figure 4.6), as shown in Figure 4.10, and the

strength of the EIT resonance and the linewidth, again, increases with Ωc2

[117]. Note that even though all three transitions are not simultaneously on

resonance, the sum of all detunings is still zero. In Figure 4.10, an EIT res-

onance occurs at around ∆p/2π = 1200 MHz as ∆c1/2π = −1200 MHz, and

the sum of the three detunings are zero. The black solid line, red dot-dashed

line and blue dashed line represent Ωc2 = 10 MHz, 30 MHz and 50 MHz,

respectively.

In both cases the width of EIA/EIT is less than the natural linewidth of |b〉,
i.e., γEIA/EIT < Γb for small Ωc2 . This is because, at the three-photon Raman

resonance (∆p + ∆c1 + ∆c2 = 0), the system is free from Doppler effect [128].

4.5 Summary and conclusions

In conclusion, we have studied the system of three-photon transition with

the effect of Doppler broadening. The advantage of the three-photon scheme

is to prevent the creation of electric charges inside the vapour cell due to the

photoelectric effect. To this end, the 480 nm laser considered in Chapter 3

was replaced by two lasers whose wavelengths are 776 nm and 1290 nm.

It was demonstrated that for the case of parallel configuration in which the
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Figure 4.9: The absorption coefficient against probe detuning for various Ωc2 .

The second coupling detuning, ∆c1/2π, is zero and all the other parameters

are the same as those used in Figure 4.6. The black solid line, red dot-dashed

line and blue dashed line represent Ωc2 = 10 MHz, 30 MHz and 50 MHz,

respectively. The strength of the EIA resonance and its FWHM increase

with Ωc2 . The EIA resonance is the result of the enhanced transition of the

simultaneous resonance.

probe laser counter-propagates with respect to the two coupling lasers, the

transmission lineshape of the thermal atom could exhibit an extra EIT res-

onance at zero probe detuning when Ωc2/Ωc1 is small. This extra EIT res-

onance is not observed in the transmission lineshape for cold atoms. For a

large value of Ωc2/Ωc1 , the EIT resonance at zero probe detuning disappears

and the absorption coefficient of the system significantly increases. It turns

out that the existence of the middle EIT resonance is due to the incom-

plete destruction of the EIT resonance, which manifests when averaging the

absorption coefficient over all velocity classes.

In the Doppler-free configuration, one needs to work at a very high Ωc1 as,

in the step of the first two-photon transition, a positive residual wavevector

suppresses the EIT resonance. An EIA resonance can be created when both
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Figure 4.10: The transmission lineshape as a function of probe detuning

for various Ωc2 . The first coupling detuning, ∆c1/2π, is -1200 MHz and all

the other parameters are the same as those used in Figure 4.6. The black

solid line, red dot-dashed line and blue dashed line represent Ωc2 = 10 MHz,

30 MHz and 50 MHz, respectively. The strength of the EIT resonance and

its FWHM increases with Ωc2 .

∆c1 and ∆c2 are zero. This physically corresponds to the enhanced three-

photon transition as the three lasers are simultaneously on resonance. If

one detunes the first coupling laser by a finite amount, the system is now

effectively a three-level system, consisting of |a〉, |c〉 and |d〉. This results in

a displacement of one of the transmission dip to either side of the lineshape,

depending on the sign of ∆c1 , and a creation of an EIT feature at the centre

of the dip.



Chapter 5

Enhanced electric field

sensitivity of rf-dressed

Rydberg dark states

In this chapter, we demonstrate the formation of Rydberg dark states dressed

by a radio frequency (rf) field. Microwave or rf dressing of Rydberg states

has previously been observed using laser excitation and field ionisation of an

atomic beam [47, 50, 53] or of cold atoms [51]. Here, however, the resulting

Floquet states are observed as EIT resonances in the absorption spectrum of

the probe laser beam in a vapour cell. We show that these rf-dressed dark

states have an enhanced sensitivity to dc electric fields. We also show that the

strength of the dc electric field is encoded not only in the overall shift of the

corresponding EIT feature but also in the shape of the transparency window.

As a consequence, and as has been illustrated by an actual measurement [92],

rf dressing may help determine the dc field without absolute knowledge of

the laser frequency. In addition, we show how the lineshape of the dark state

resonance provides information about the electric field inhomogeneity within

the interaction region.

76
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5.1 Theoretical framework

We focus on EIT in the ladder system in which a weak probe laser (wave-

length 780 nm) is scanned through resonance with the transitions from the

ground 5S1/2, F = 2 state to the 5P3/2, F
′ = (2, 3) states of 87Rb, and a

coupling laser (wavelength 480 nm) resonant with the 5P3/2, F
′ = 3 to the

32S1/2, F
′′ = 2 transition. Such a ladder system is ideal as the two compo-

nents of the dark state have a large differential shift in an external field and

there is no additional splitting of the J = 1/2 Rydberg state.

In addition to the laser fields, the system is exposed to both dc and ac

electric fields which mainly perturb the Rydberg state, 32S1/2, due to the

large polarisability [137]. The experiment shows that not only does the effect

of the dc and ac electric fields shift the energy level of 32S1/2 state, but also

creates sideband resonances in the EIT transmission spectrum. The existence

of the sidebands can be understood in the context of phase modulation of

Rydberg state by the weak field, which is the main discussion of this section.

We also describe the model of EIT with Doppler effect for such rf-dressed

Rydberg system.

5.1.1 Phase modulation by a weak field

Consider the atoms which are exposed to the joint action of a static field of

strength Edc and of a parallel oscillating electric field of amplitude Eac. At

any point in the cell, the local applied electric field can be written as

E(t) = Edc + Eac sinωmt . (5.1)

In the experiment, ωm/2π ranges from 10 to 30 MHz, which is much less

than the relevant optical transition frequencies. Ignoring the laser fields and

decoherence for the time being, we can work within the adiabatic approxi-

mation and describe each of the hyperfine components of the 32S1/2 state by
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a time-dependent state vector of the form [43, 138]

|Ψ(t)〉 = exp

(
− i

~

∫ t

E[E(t′)] dt′
)
|ψ[E(t)]〉 . (5.2)

In this expression, |ψ(E)〉 is the Stark state that develops from the field-free

state when a static field is adiabatically turned on from 0 to E , and E(E)

is the corresponding eigenenergy of the Stark Hamiltonian. The dc and ac

fields are sufficiently weak that one can take

E(E) = E(0) − 1

2
αE2 , (5.3)

and

|ψ(E)〉 = |ψ(0)〉+ E|ψ(1)〉 , (5.4)

where α denotes the static dipole polarisability of the Rydberg state [137],

E(0) and |ψ(0)〉 are the energy and state vector in the absence of the field,

and |ψ(1)〉 is the first-order coefficient of the perturbative expansion of the

Stark state |ψ(E)〉 in powers of E . In view of Equation (5.1), we have

E2(t) = E2
dc +

1

2
E2

ac + 2EdcEac sinωmt−
1

2
E2

ac cos 2ωmt . (5.5)

Hence,

exp

(
− i

~

∫ t

E[E(t′)] dt′
)

=

exp

[
− i

~

(
E(0) − α2

2
E2

dc −
α2

4
E2
ac

)
t

]
B(x, y, ωmt) , (5.6)

where

B(x, y, ωmt) = exp{−i[x cosωmt+ y sin 2ωmt]} , (5.7)

with

x = αEdcEac/(~ωm) , (5.8a)

y = αE2
ac/(8~ωm) . (5.8b)

Since the product B(x, y, ωmt)[|ψ(0)〉+ E(t) |ψ(1)〉] oscillates in time with an-

gular frequency ωm, the state vector of the rf-dressed Rydberg state, |Ψ(t)〉,
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can be written in the Floquet-Fourier form

|Ψ(t)〉 = exp(−iε0t/~)
∞∑

N=−∞

exp(−iNωmt)|ψN〉 , (5.9)

where ε0 is known as quasienergy and ψN is the harmonic components of the

Fourier expansion (see Chapter 6 for more details). To obtain the explicit

forms of ε0 and |ψN〉, we expand the function B(x, y, ωmt) in a Fourier series,

as

B(x, y, ωmt) =
∞∑

N=−∞

BN(x, y) exp(−iNωmt) , (5.10)

where the expansion coefficients BN(x, y) are so-called “modified generalised

Bessel functions” [139]. For the problem we are considering, they are best

evaluated in terms of ordinary Bessel functions. Using the Jacobi-Anger

expansion [139],

exp[−ix cosωmt] =
∞∑

n=−∞

inJ−n(x) exp[−inωmt] , (5.11a)

exp[−iy sin 2ωmt] =
∞∑

n=−∞

Jn(y) exp[−2inωmt] , (5.11b)

we obtain

BN(x, y) =
∞∑

M=−∞

iN−2MJ2M−N(x)JM(y) . (5.12)

Thus the expressions for the quasienergy ε0 and for the harmonic components

|ψN〉 can be written down by recasting |Ψ(t)〉, as given by Equation (5.2) and

Equation (5.6), in the form of Equation (5.9):

ε0 = E(0) − α2

2
E2

dc −
α2

4
E2

ac , (5.13a)

|ψN〉 = BN |ψ(0)〉+ CN |ψ(1)〉 , (5.13b)

with BN ≡ BN(x, y) and

CN = BNEdc + (BN+1 −BN−1)
Eac

2i
. (5.14)

Hence, when decoherence is ignored, the ac field creates multiple sidebands:

everything happens as if in the presence of the field each of the two hyperfine
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components of the 32S1/2 state becomes a manifold of infinitely many states

of energies εN = ε0 + N~ωm (N = 0,±1,±2, . . .), whose state vectors are

the respective harmonic components |ψN〉 [47, 50, 51, 53]. The energies εN

are equally spaced and are shifted by εN −E(0) with respect to the zero-field

position of the 32S1/2 state. Seen in a different way, the 5P3/2 state, which

is not significantly perturbed by the field, can couple to the 32S1/2 state by

absorption of one laser photon and of N rf photons (N = 0,±1,±2, . . .). Be-

cause the vectors |ψ(0)〉 and |ψ(1)〉 have opposite parity, |ψ(1)〉 does not couple

to the 5P3/2 state. Therefore, the Rabi frequency for the transition from a

particular hyperfine component of this state to a particular component of

the dressed Rydberg state differs from the corresponding zero-field Rabi fre-

quency only by a factor |BN | (for the transition to the component with energy

εN). The 5S1/2 and 5P3/2 states are also dressed by the applied field, but

their polarisability is too small for any of their Floquet sideband states to be

significantly populated at the ac field amplitudes considered here.

To further examine the effect of the weak-field modulation, we divide the

discussion into three cases.

Case 1 No dc field, i.e., Edc = 0

If the ac field acts alone, then x = 0 and the coefficients BN(x, y) vanish for

odd values of N . Consequently

ε0 = E(0) − α2

4
E2

ac , (5.15)

and, with r = 0,±1,±2, . . .,

|ψN〉 =

 Jr(y) |ψ(0)〉 for N = 2r,

[Jr+1(y)− Jr(y)] Eac |ψ(1)〉 /(2i) for N = 2r + 1.
(5.16)

Although the harmonic components |ψN〉 do not vanish for N odd, there are

no odd-order sidebands when Edc = 0. Indeed, these harmonic components

are all proportional to |ψ(1)〉, which under inversion of space has the parity

opposite to that of |ψ(0)〉; the coupling between the 5P3/2 state and these



Chapter 5. Enhanced electric field sensitivity of rf-dressed Rydberg dark
states 81

harmonic components are thus forbidden by the dipole selection rules. Even-

order sidebands are not forbidden, however; Equation (5.16) predicts that

|ΩN | = |JN(y)Ω(0)|, where Ω(0) is the Rabi frequency in the absence of the

ac-field. Note that |ΩN | does not depend on the sign of N ; the sidebands

predicted are therefore symmetric1.

Case 2 Both dc- and ac-fields are present, i.e., Edc 6= 0 and Eac 6= 0

The case where the dc and ac fields are both present is of particular interest

in the context of this work. We have, from Equation (5.10) and Equation

(5.13a),

|ΩN |2 = |Ω(0)|2 ×
∣∣∣∣∣
∞∑

M=−∞

iN−2MJ2M−N(x)JM(y)

∣∣∣∣∣
2

. (5.17)

In particular, when |x| � 1 and |y| � 1,

|Ω0|2 ≈ |Ω(0)|2[J0(x)J0(y)]2 , (5.18a)

|Ω1|2 ≈ |Ω(0)|2[J1(x)J0(y) + J1(x)J1(y)]2 , (5.18b)

|Ω−1|2 ≈ |Ω(0)|2[J1(x)J0(y)− J1(x)J1(y)]2 , (5.18c)

|Ω2|2 ≈ |Ω(0)|2[J0(x)J1(y)− J2(x)J0(y)]2 , (5.18d)

|Ω−2|2 ≈ |Ω(0)|2[J0(x)J1(y) + J2(x)J0(y)]2 . (5.18e)

In this limit, the blue-detuned first-order sideband (N = +1) can thus be

expected to be more intense than the red-detuned one (N = −1) because of

the plus sign, and the other way round for the second-order sidebands, the

asymmetry growing when Eac increases or ωm decreases2.

Case 3 No ac field, i.e., Eac = 0

1This symmetry is expected to be broken by terms quadratic in E(t) omitted in the

state vector appearing in the right-hand side of Equation (5.2).
2Whereas the EIT profile depends on the matrix elements of the dipole operator through

the squared moduli of the corresponding Rabi frequencies, this dependence is not linear

and therefore the heights of the EIT sidebands and central peak relative to the zero-field

peak may differ from |BN (x, y)|2.
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In the absence of ac field, we simply have

ε0 = E(0) − α2

2
E2

dc , (5.19a)

|ψN〉 = [|ψ(0)〉+ Edc |ψ(1)〉]δN,0 , (5.19b)

and there are no sidebands.

It follows that under the action of the ac field, and provided the relevant

relaxation times are much longer than 2π/ωm, one should expect that the

Rydberg dark states turn into Floquet manifolds of dark states and that

each EIT dip in the absorption spectrum acquires multiple sidebands. That

such Floquet dark states can be obtained in conditions easily accessible to

experiment is one of the results of this work. (In the opposite limit where the

decoherence time is much shorter than the period of modulation, EIT hap-

pens as if the applied electric field is static and the experimental signal is the

time-average of the instantaneous absorption spectrum over the distribution

of values of E(t). The timescale involved will be investigated in Chapter 6.)

5.1.2 EIT modelling

Figure 5.1 schematically shows the structure of the hyperfine magnetic sub-

levels of 5S1/2, F = 2 state, 5P3/2, F ′ = (2, 3) states, and the manifolds of

32S1/2, F ′′ = (1, 2) states. The rf-dressed system interacts with π-polarised

laser fields such that the transitions conserve the magnetic quantum num-

ber mF , i.e., ∆mF = 0. In this set up, we have two distinct sub-systems

for the transition, namely, [1,1,2N + 1] and [1,1,2(2N + 1)], where the nota-

tion [p, q, r] denotes that the system contains p ground states, q intermediate

states, and r excited states. The roles of the probe and coupling lasers of the

first sub-system are to couple 5S1/2, F = 2 state to 5P3/2, F ′ = 3 state and

5P3/2, F ′ = 3 state to 2N + 1 manifold of 32S1/2, F ′′ = 2 state, respectively,

while in the latter sub-system the probe laser couples 5S1/2, F = 2 state to

5P3/2, F ′ = 2 state and the coupling laser couples 5P3/2, F ′ = 2 state to two
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Figure 5.1: Schematic of the energy levels scheme. The probe detuning ∆p

of the probe beam is scanned between 5S1/2, F = 2 and 5P3/2, F ′ = 3.

The coupling beam is resonant with the transition between the intermediate

5P3/2, F
′ = 3 state and the Rydberg nS1/2, F

′′ = (1, 2) state (n = 32). The

hyperfine splitting of F ′′ = 1 and F ′′ = 2 of 32S1/2 is so small that these

two states are effectively degenerate (the splitting shown in the figure is for

the sake of clarity). The transitions due to sub-systems [1,1,2N + 1] and

[1,1,2(2N + 1)] are labelled as 2N + 1 and 2(2N + 1), respectively. An

applied electric field with angular frequency ωm generates a ladder Floquet

state separated by integer multiples of ωm. The first order Floquet dark

states (N = ±1) are particularly sensitive to any dc field.

of 2N + 1 manifolds of 32S1/2, F ′′ = (1, 2) states.

Following the theory of the ladder EIT described in Chapter 3, the complex

susceptibility of the [1,1,2N + 1] system for a particular mF state of 5S1/2,
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assuming weak probe condition and atoms being at rest, is given by

χ2N+1
mF

=
1

8

(
i|dmF |2N

~ε0

)
×[

Γ

2
+ γ1 − i∆p +

N∑
j=−N

|Ωj|2/4
γ1 + γ2 − i(∆p + ∆c + E(0) − εj)

]−1

, (5.20)

where N is the number density of atoms, Γ is the lifetime of 5P3/2 state

(∼ 2π×6 MHz), γ1(2) is the dephasing decay of 5P3/2−5S1/2 (32S1/2−5P3/2),

∆p(c) is the detuning of probe (coupling) laser when the rf-field is not applied

to the system, E(0) − εj is the Stark shift given by Equation (5.13a), and fi-

nally the factor of 1/8 comes from the assumption that all magnetic sublevels

of 5S1/2, F = (1, 2) are evenly populated. The dipole matrix element dmF ,

for the transition 5S1/2 to 5P3/2 is given by,

|dmF |2 = | 〈5P3/2(F ′,m′F )| ez |5S1/2(F,mF )〉 |2

= 4e2(2F + 1)(2F ′ + 1)

 F 1 F ′

mF 0 −m′F

2 3/2 1/2 1

F F ′ 3/2


2

× |〈5P3/2‖r‖5S1/2〉|2 , (5.21)

where 〈5P3/2‖r‖5S1/2〉 is known as a reduced matrix element. For the transi-

tion between 5S1/2 and 5P3/2, 〈5P3/2‖r‖5S1/2〉 is 2.989a0 [110]. This quantity

describes the physical property of the operator and system, and is indepen-

dent of the orientation of quantisation axis [108, 109]. The coupling Rabi

frequencies Ωj, between the 5P3/2 state and the N -th sideband of 32S1/2

F = 2 state, is given by Equation (5.17), where Ω(0) is defined as

|Ω(0)|2 =

(
Ec

~

)2

| 〈32S1/2(F ′′,m′′F )| ez |5P3/2(F ′,m′F )〉 |2

= (2F ′′ + 1)(2F ′ + 1)

 F ′ 1 F ′′

m′F 0 −m′′F

2 1/2 3/2 1

F ′ F ′′ 3/2


2

× 4

3
|Ω(0)

c |2 . (5.22)

The dipole matrix element of the system is absorbed into |Ω(0)
c |2, i.e.,

|Ω(0)
c |2 ≡ eEc|〈32S1/2‖r‖5P3/2〉|2/~. This parameter is one of the free pa-
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rameters determined from the experimental data. Theoretically, the summa-

tions in Equation (5.17) and Equation (5.20) run from −∞ to ∞; however,

in the numerical calculation, the summation of index M in Equation (5.17)

runs from −30 to 30 for a fixed value of N , and the summation of j runs

from −10 to 10, i.e., ten sidebands are included in the calculation. This

approximation is valid since the Bessel functions vanish for large order.

Since the hyperfine splitting between F ′′ = 1 and F ′′ =2 is so small that

the hyperfine states F ′′ = 1 and F ′′ =2 are approximately degenerate, the

complex susceptibility of [1,1,2(2N + 1)] sub-system also has the same form

as that of [1, 1, 2N + 1], given by Equation (5.20), except that the expression

for Ω(0), in Equation (5.22), is now given by

|Ω(0)|2 =

(
Ec

~

)2

{| 〈32S1/2(F ′′ = 2,m′′F )| ez |5P3/2(F ′ = 2,m′F )〉 |2

+| 〈32S1/2(F ′′ = 1,m′′F )| ez |5P3/2(F ′ = 2,m′F )〉 |2}

=
∑

F ′′=1,2

(2F ′′ + 1)

 2 1 F ′′

m′F 0 −m′′F

2 1/2 3/2 1

2 F ′′ 3/2


2

×

20

3
|Ω(0)

c |2, (5.23)

where Ω
(0)
c is as defined above, and the probe and coupling detunings are

replaced by the following substitutions:

∆p → ∆p + (2π × 266.67) MHz, (5.24a)

∆c → ∆c − (2π × 266.67) MHz. (5.24b)

It turns out that the susceptibility χ2N+1
mF

is not in an appropriate form when

dealing with Doppler averaging, as χ2N+1
mF

cannot be integrated analytically.

Thus numerical integration must be used; however, this has the disadvantage

that the time taken by the calculation is excessively long for the needs of an

optimisation scheme. Remember that the susceptibility derived from the

three-level ladder system ([1,1,1]) can be analytically integrated when one

takes into account the effect of Doppler broadening; hence, if we could re-

write χ2N+1
mF

in terms of the sum of many three-level systems, an analytic
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expression for χ2N+1
mF

with Doppler broadening effect can be obtained. To do

this, we consider the Taylor expansion:(
A+

∑
j

Bj

C

)−1

=
1

A

1−
(∑

j

Bj

AC

)
+

(∑
j

Bj

AC

)2

−+ . . .


=

1

A

[
1 +

∑
j

(
1− Bj

AC
+

(
Bj

AC

)2

−+ . . .

)
−
∑
j

(1)

]

+
1

A

[
B0B1

A2C2
+
B0B−1

A2C2
+ . . .

]
≈ 1

A
+
∑
j

(
A+

Bj

C

)−1

−
∑
j

1

A
+

1

A
×O

(
BnBm

A2C2

)
,

(5.25)

where n 6= m. This expansion is valid when the sum of BnBm/(AC)2 is small

and converges, which is the case here as Ωj approaches zero when j increases.

Applying Equation (5.25) to Equation (5.20), we have

χ2N+1
mF

≈ χ(0) +
N∑

j=−N

(χj − χ(0)) , (5.26)

with

χj =
1

8

(
i|dmF |2N

~ε0

)
×[

Γ

2
+ γ1 − i∆p +

|Ωj|2/4
γ1 + γ2 − i(∆p + ∆c + E(0) − εj)

]−1

, (5.27)

and χ(0) is χj evaluated when Ωj = 0. We refer to this approximation as the

incoherent sum approximation and it is valid when the condition

ΩnΩm < 4

(
Γ

2
+ γ1

)
γ2, n 6= m, (5.28)

is fulfilled.

Up to this point we have not yet considered the effect of Doppler broadening.

To include the Doppler effect, we replace ∆p, ∆c and N by the following:

∆p → ∆p + kpv , (5.29a)

∆c → ∆c − kcv , (5.29b)

N → N0

u
√
π

exp

(
−v

2

u2

)
, (5.29c)
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where kp(c) is the wavevector of probe (coupling) field, N0 is the number

density at zero velocity, v is the atomic velocity and u ≡
√

2kBT/m is the

most probable speed of atom at a given temperature T . Thus Equation (5.27)

becomes

χj(v) =
1

8

(
i|dmF |2N
~ε0u
√
π

)
× exp

(
−v

2

u2

)
×
[

Γ

2
+ γ1 − i∆p − ikpv

+
|Ωj|2/4

γ1 + γ2 − i(∆p + ∆c + E(0) − εj)− i(kp − kc)v

]−1

, (5.30)

and the susceptibility with Doppler broadening effect is [84]

χ2N+1
D,mF

=

∫ ∞
−∞

χ2N+1
mF

(v)dv,

= χ
(0)
D +

N∑
j=−N

(
χjD − χ

(0)
D

)
, (5.31)

where χjD =
∫∞
−∞ χ

j(v)dv and χ
(0)
D is χjD when Ωj = 0. The analytical form

of χjD is

χjD =

(
i|dmF |2

√
πN0

16~ε0ukp

){
(1− d)s1e−z

2
1 [1− s1erf(iz1)]

+ (1 + d)s2e−z
2
2 [1− s2erf(iz2)]

}
, (5.32)

where s1(2) = −sgn
[
Im(z1(2))

]
and the quantities d, z1, and z2 are

d =
i

z1 − z2

[
Γ/2 + γ1 − i∆p

kpu
+
γ1 + γ2 − i(∆p + ∆c)

(kp − kc)u

]
, (5.33a)

z1,2 = − i

2

[
Γ/2 + γ1 − i∆p

kpu
+
γ1 + γ2 − i(∆p + ∆c)

(kp − kc)u

]

± i

2

[(
Γ/2 + γ1 − i∆p

kpu
− γ1 + γ2 − i(∆p + ∆c)

(kp − kc)u

)2

− Ω2
j

kp(kp − kc)u2

]1/2

.

(5.33b)

Thus the total susceptibility of 87Rb is

χTOT =
2∑

mF=−2

(
χ2N+1
D,mF

+ χ
2(2N+1)
D,mF

)
, (5.34)
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and the absorption coefficient α is kpIm[χTOT]. The transmission through

the medium is then given by the Beer-Lambert law

T = exp (kpLIm[χTOT]) , (5.35)

where L is the length of the cell.

5.2 Comparison between theory and experi-

ment

A schematic of the experimental set up is shown in Figure 5.23. It is based

on a specially fabricated 11 mm-long Rb vapour cell containing two parallel

plane electrodes running along its whole length and separated by a 5 mm

gap. The probe beam and the co-axial, counter-propagating coupling beam

are directed along the electrode cell axis and are both polarised parallel

to the electrodes. Each beam is focused using 10 cm lenses. The probe

beam has an input power of 300 nW and a 1/e2 radius of 1.7 mm. The

corresponding values for the coupling beam are 40 mW and 1.0 mm. The

latter is stabilized against slow drift using EIT in a reference cell [140]. The

transmission through the electrode cell is monitored as a function of the probe

detuning. To increase the number density of Rb atoms the electrode cell is

heated to about 40 ◦C. The probe beam is split into two with one component

propagating through the electrode cell and the other passing through a longer

room temperature cell (of length 75 mm). By subtracting these two signals,

the Doppler background is removed. Measuring the off-resonant probe beam

power after the electrode cell allows the change in transmission, ∆T, to

be calibrated. The detuning axis is calibrated using saturation/hyperfine

pumping spectroscopy, i.e. the frequency separation between F ′ = 2 and 3.

A comparison between the absorption lineshape calculated using Equa-

3The experiment was performed by Bason et al. [92]
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Figure 5.2: Schematic of the experimental set up. The 780 nm probe beam

(red) and 480 nm coupling beam (blue) counterpropagate through a 11-mm

long Rb cell containing parallel plane electrodes. The dc and the ac fields are

applied by imposing a potential difference across the electrodes. The probe

is also split and fed to a 75-mm long Rb cell and its two-level transmission is

registered. Then the two transmission signals, obtained from both cells, are

subtracted from one another, yielding the change in transmission ∆T. The

advantages of this technique is to get rid of the common mode noise in the

transmission signals and to partly cancel the Doppler background [92].

tion (5.20) with Doppler averaging (red solid line) and the incoherent sum

approximation calculated using Equation (5.31) (black dashed line) is shown

in Figure 5.3(a). The applied ac and dc electric fields are 7.7 and 0.8 V

cm−1, respectively, and the modulation frequency is 26 MHz. For the typical

parameters used in the experiment, given in Table 5.1, the condition given

by Equation (5.28) is satisfied, i.e., Max[ΩnΩm/(4(Γ/2 + γ1)γ2)]≈ 0.2. This

results in good agreement between both absorption lineshapes. The differ-
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Figure 5.3: The top panel compares the absorption coefficent calculated us-

ing the coherent sum model given by Equation (5.20) (red solid line) to

the incoherent sum model given by Equation (5.27) (black dashed line) for

Ω
(0)
c /2π = 13.3 MHz. The parameters used in the calculation are as given

in Table 5.1 and the ac and dc fields are 7.7 V cm−1 and 0.8 V cm−1, re-

spectively. The modulation frequency is 26 MHz. For these parameters, the

approximation yields a good agreement with the actual absorption lineshape,

reflecting in small residuals as seen in the bottom panel. Note that, though

the residual is small, it exhibits the differential lineshape structure due to

a small displacement of the resonances calculated from both methods. This

shift in frequency space of the resonances are similar to those discussed in

Chapter 6.

ence between two lineshapes is shown in the residual plot (Figure 5.3(b)).

Figure 5.4(a) and Figure 5.4(b) shows plots similar to those of Figure 5.3,

but with Ω
(0)
c = 133 MHz, i.e., ten times larger than the previous value.

The condition given by (5.28) is invalid as Max[ΩnΩm/(4(Γ/2 +γ1)γ2)]≈ 24,

which is much larger than unity. The incoherent sum approximation is no

longer a good approximation for the coherent sum model as shown in Fig-
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Figure 5.4: The same as Figure 5.3, except that Ω
(0)
c = 133 MHz. For the

given parameters, the approximation clearly breaks down. This results in

the large residuals as shown in the bottom panel.

ure 5.4(a) and the range variation of the residuals increases by a factor of

two thousand.

A typical EIT spectrum with an applied ac field is shown in Figure 5.5

together with theoretical fits, calculated using the incoherent sum model

with Doppler averaging, for different spatial profiles of the electric field. The

transmission is a function of four parameters that must be derived from the

data, namely, the Rabi frequency Ω
(0)
c , the dephasing rates of the 5P3/2–

5S1/2 and 32S1/2–5P3/2 coherences, and the temperature of the vapour. The

values of these experimental parameters are obtained by a least-square fit of

the theoretical change in transmission, ∆T, to the data and their values are

given in Table 5.1. The fit covers a range of probe detunings encompassing

both the 5P3/2, F
′ = 2 and F ′ = 3 states whereas only latter is shown

in Figure 5.5. The mean separation between the plates is not known with

sufficient precision, and therefore is derived from the data by fitting the Stark

shift of the EIT resonances to Equation (5.13a) for a number of different
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Figure 5.5: Comparison between the observed EIT spectra (black) for an

applied ac electric field, Eac = 7.7 V cm−1, and the theoretical model for the

field calculated for the actual electrode geometry (blue) and for a uniform

field (red). In the theoretical model, it is assumed either that the laser

beams are aligned exactly on the longitudinal axis of the two Stark plates

(left-hand column) or that they are parallel to this axis but are offset by

1 mm towards one of the plates (right-hand column). The corresponding

electric field distributions are shown at the top. In this example, the electric

field frequency is 26 MHz. The theoretical model is calculated using the

incoherent sum model with Doppler averaging. The theoretical results are

in good agreement when the field is assumed to be uniform, resulting in

a smaller residue in the residual plots. Note that the residue signals (for

the uniform field case) show a small differential lineshape structure since

the theoretical model does not include the resonance shift due to the finite

coupling Rabi frequency (see Chapter 6).

values of the applied voltage4 [92].

The spatial profile of the applied electric field along the laser beam axis is

unknown due to the possibility of free charges inside the cell. The evidence of

4The value of the dipole polarisability used here is taken from [137].
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Table 5.1: The values of the four parameters which produce the minimum

residual for the least-square fit. Ω
(0)
c , γ1 and γ2 are expressed in unit of

2π MHz. Note that the uncertainties of the fitted parameters calculated

from χ2 + 1 method are so tiny that they do not affect the fitted parameters

quoted upto 1 decimal place.

Ω
(0)
c γ1 γ2 T (◦C)

13.3 2.4 1.6 39

the free charges were observed by Mohapatra et al. [32]. In their experiment,

an electric field was applied across a whole vapour cell in order to perturb

the EIT signal in ladder system. However, the presence of the space charges

produced by photoelectric effect shields the Rb vapour inside the cell from

the applied electric field; hence, they observed no changes to EIT signal [32].

The field produced by the Stark plates, calculated using difference method

[141], drops significantly at their edges (see the top panels of Figure 5.5). If

we assume that the field experienced by the atoms exposed to the laser beams

varies accordingly, the resulting theoretical EIT profile is asymmetric and

inconsistent with the data (see the middle and bottom panels of Figure 5.5).

The theoretical results are found to be in good agreement with the data if

the field is assumed to be uniform. This would occur if the free charges

inside the cell equalise the electric field in the interaction region. We note in

this respect that charges can be created by the photoelectric effect where the

coupling laser intersects the thin layer of the Rb metal on the inner surface of

the cell, the photoelectrons being ejected from the surface. The thin layer of

Rb metal adhered on the inner surface of the cell are produced from the Rb

vapour which condenses into the metal phase. A net positive charge of 106e

on each window distributed over the waist of the coupling laser is sufficient to

produce a total field with a spatial profile consistent with the experimentally

observed lineshape. We cannot exclude a misalignment of the laser beams
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with respect to the centre of the plates, but the resulting offset would be less

than 1 mm and even at 1 mm from the axis the field produced by the plates

is more inhomogeneous than is compatible with the data (see the right-hand

column of Figure 5.5).

5.3 Observation of Floquet dark states

Following the analysis in the previous section we assume that the electric

field experienced by the atoms is homogeneous, and measure spectra for dif-

ferent combinations of ac and dc applied fields (Edc and Eac). The results are

presented in Figure 5.6. The theoretical spectra are calculated assuming that

the Rydberg state is described by the Floquet state vector (Equation (5.9))

and that the four experimental parameters (Ω0
c, γ1, γ2, and T ) mentioned in

Section 5.2 have the same values as in the zero-field case.

In Figure 5.6(b), we consider a case where only a pure ac field is applied. As

compared to Figure 5.6(a) where no electric field is applied, the main EIT

peak is shifted by the ac Stark effect and the EIT profile acquires sidebands

at the second harmonics of the modulation frequency. The spacing between

the sidebands and the carrier in the transmission spectrum is smaller than

2ωm/(2π) by a factor 480/780 due to the Doppler mismatch. In view of the

good agreement between theory and the measured data, we attribute the

observed sidebands to the formation of Floquet dark states. Note that the

sidebands are symmetric as predicted in Section 5.1

There are no odd-order sidebands in the absence of a dc field since BN = 0

for odd values of N when Edc = 0. Their absence is consistent with the

dipole selection rules, which forbid transitions from a P state to an S state

by exchange of one laser photon and an odd number of rf photons. The effect

of adding a weak dc offset is shown in Figure 5.6(c). The spectrum acquires

first order sidebands, since |ψ(0)〉 contributes to every |ψN〉 when Edc 6= 0. As
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Figure 5.6: The effect of ac and dc electric fields on the Rydberg EIT spec-

trum. The thick curves are theoretical predictions based on the solution of

the steady state optical Bloch equations. (a) Spectrum with no applied field.

(b) Spectrum with an rf field with a frequency of 26 MHz (Eac = 7.7 V cm−1).

(c) and (d) Spectrum with the rf field plus a dc field; Edc = 0.4 V cm−1 in

(c) and 0.8 V cm−1 in (d).

can be seen by comparing Figure 5.6(c) and Figure 5.6(d), increasing the dc

field modifies the EIT spectrum in several ways. The largest change occurs on

the +1 sideband as predicted in Section 5.1. In contrast, the additional Stark

shift in the position of the central peak, which would be the only effect of the

increase in the dc field in the absence of the modulation, is almost invisible

on the scale of the figure. The comparison demonstrates the enhanced dc

field sensitivity of rf-dressed Rydberg dark states.

5.4 Enhanced electric field sensitivity of Flo-

quet dark states

To further illustrate this enhancement effect, we now show that adding an

ac modulation helps deduce the dc component of the electric field from the
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Figure 5.7: The dc field signal obtained by turning the dc field on and off at

50 kHz and using lock-in detection. The same vertical scale is used in (a) and

in (b). (a) The difference signal measured for Eac = 0 and Edc = 1.37 V cm−1.

Ten data sets are presented; the results shown are not corrected for the

frequency fluctuations of the probe laser. (b) The difference signal measured

for Eac = 7.14 V cm−1 and Edc = 1.37 V cm−1. The modulation frequency is

15 MHz. As in (a), ten data sets are presented, but here they are corrected

for the frequency fluctuations of the probe laser using the Floquet model.

The thick curve shows the Floquet EIT result calculated for a value of Edc

ensuring an optimal fit between the model and one of the data sets.

EIT resonance. The difference between transmission spectra measured with

and without applying a dc field are shown in Figure 5.7. Here a double

modulation technique, where the dc field is switched on and off at a frequency

of 50 kHz, i.e., much less than the modulation frequency, was employed

[92]. The effect of the dc field was then extracted using lock-in detection

resulting in a derivative lineshape. To generate the theoretical difference

signal lineshape, we first calculate the theoretical transmission lineshapes,

when the ac field is turned on and off, using Equation (5.34) and neglecting

the transition via 5P3/2, F ′ = 2. The theoretical difference signal is then

obtained by subtracting the two transmission lineshapes with each other.
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Each thin black line represented in Figure 5.7 gives the difference signal

averaged over four consecutive scans. Figure 5.7(a) shows the difference

spectrum in the absence of ac field for 10 individual data sets. The spread

in the data reflects the instability of the probe laser. Deriving Edc from these

results is hindered by the fact that only the position of the EIT feature on the

frequency axis, and not its shape, varies significantly with the strength of the

dc field. Due to the experimental uncertainty in the probe frequency, a value

of Edc cannot be obtained by fitting the model to the data from Figure 5.7(a).

However, the fit is possible when these data are augmented by the difference

EIT signal arising from the 5P3/2, F
′ = 2 state and by frequency calibration

data obtained by saturation spectroscopy of F ′ = 2 and 3. The theoretical

difference signal is calculated using the same procedure described above, but

this time we include the theoretical signal from 5P3/2, F ′ = 2. The values

of the Rabi frequency, dephasing rates and temperature are fixed as given

in Table 5.1. We treat Edc as an unknown parameter. For comparison with

the theory, we correct the experimental results for random variations in the

calibration of the probe frequency and of the signal by rescaling and shifting

the origins of the respective axes. The corresponding offsets and scaling

factors are found for each individual data set, together with Edc, by fitting

the rescaled experimental difference signal to the model. From the 10 values

of Edc obtained in this way, we find that Edc = 1.6±0.4 V cm−1. This value is

in agreement with that derived from the dc voltage applied to the electrodes,

1.37± 0.02 V cm−1, but it has a larger uncertainty.

A constant ac field is then added and the lineshape extracted once more,

Figure 5.7(b). The lock-in detection still only detects changes in signal due

to the dc field. In this case, for the same dc field, the difference signal is larger

and contains more features. As the details of these features depend on Edc,

the change in the spectrum due to the dc field is readily separated from the

frequency fluctuations of the probe laser. Measuring Edc is thus easier. The

theoretical difference signal is calculated in the same way as in the absence
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of the rf field. We assume for Eac the value derived from the voltage applied

to the electrodes. From the 10 values of Edc obtained by fitting the data

from Figure 5.7(b) to the model, we find that Edc = 1.36± 0.04 V cm−1 (or

1.40 ± 0.03 V cm−1 when the saturation spectroscopy data and the signal

from 5P3/2, F
′ = 2 state are also taken into account). For these parameters,

introducing an ac modulation thus reduces the uncertainty in the dc field

measurement by one order of magnitude.

In the case considered in Figure 5.7, the application of the ac field also in-

creases the amplitude of the difference signal by about 50%. As shown in

Figure 5.8, larger enhancements5 (of up to about 3) can be obtained for other

combinations of dc fields and modulation frequencies, e.g., ωm = 10 MHz and

Edc = 1.37 V cm−1 (black solid line). The sudden changes in the theoretical

curves occur at zeroes of the Bessel functions appearing in Equation (5.12).

Figure 5.9 shows the theoretical prediction for the enhancement as a func-

tion of the dc electric field for various combination of the ac electric fields. It

is clear that the enhancement decreases when the dc electric field increases.

Furthermore the smaller the modulation frequency is, the larger the enhance-

ment. Thus to achieve the maximum enhancement, one needs to work in the

regime where the dc electric field and the modulation frequency are small.

Note that increasing the ac electric field does not always increase the en-

hancement, as can be seen from Figures 5.8 and Figure 5.9(a).

5.5 Summary and conclusions

In summary, we have demonstrated the formation of Floquet dark states

induced by the application of an ac field to a ladder system involving a

highly-polarised Rydberg state. Bason et al. [25] have shown that these

states display enhanced sensitivity to dc electric fields and provide infor-

5We define the enhancement as Enhancement = (Maximum range of the difference

signal when Eac 6= 0)/(Maximum range of the difference signal when Eac = 0).
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Figure 5.8: The increase in the amplitude of the dc electrometry sig-

nal as a function of Eac, (a) for a modulation frequency of 10 MHz and

Edc = 0.78 V cm−1, (b) for a modulation frequency of 15 MHz and

Edc = 1.37 V cm−1. The points are experimental data and the lines are

the theoretical predictions of the model presented in the text. The sud-

den changes in the theoretical curves occur at zeroes of the Bessel functions

appearing in Equation (5.12).

mation on the strength of the dc field independent of the laser frequency.

Potentially, an ac modulation may thus facilitate the measurement of the

local electric field inside a vapour cell, which is a relevant issue in the control

of Rydberg-Rydberg interactions. The simple theory outlined above can be

generalised to the case where the field splits the Rydberg state into several

Stark components, thereby opening the possibility of using ac modulation to

enhance the sensitivity of measurements based on the D states or on states

of higher angular momentum. We have shown that charge imbalances in an

enclosed vapour cell could probably cancel the spatial inhomogeneities of the

field. Therefore for local field measurements the interaction region may need

to be limited to a small volume. This would be the case, for instance, in the

3-photon Doppler-free excitation scheme considered in Chapter 4.
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Figure 5.9: The theoretical prediction of the enhancement as a function of

Edc for various combinations of the electric fields: (a) the modulation fre-

quency is 10 MHz; (b) the modulation frequency is 15 MHz. It is clear

that the enhancement decreases when both dc electric field and modulation

frequency increase. Note that increasing the ac electric field does not al-

ways increase the enhancement because once the enhancement reaches its

maximum value, increasing the ac electric field further will decrease the en-

hancement, as shown in (a). The insets of (a) and (b) are the values of the

ac fields.



Chapter 6

Sidebands shifts and induced

sidebands in rf-dressed

Rydberg systems

The theory presented in Chapter 5, in which the transmission lineshape of

Rydberg atoms dressed by a radio frequency (rf) field was investigated, pre-

dicts that Rydberg states may exhibit a manifold structure of independent

quasienergy (or Floquet) states due to the rf field. The presence of these

Floquet states can be observed as EIT caused by the dark states, in the cas-

cade systems. This feature has been experimentally confirmed and shown to

be in good agreement with the theory [25]. However, the model breaks down

for large Stark shift caused by a large rf field compared to the modulation

frequency.

In this chapter, we theoretically investigate the formation of the sideband

structure in two- and three-level systems using the Floquet formalism. This

method allows us to view the rf-dressed system as an N -level system in

which the excited state manifold, composed of independent, stationary Flo-

quet states, interacts with the ground and intermediate states via the external

oscillating fields [25, 47, 51, 53, 142]. Using an N -level approximation, the

101



Chapter 6. Sidebands shifts and induced sidebands in rf-dressed Rydberg
systems 102

dynamics of the rf-dressed atomic system, e.g., the formation of the dark

states, can be easily understood [25]. The aim of this chapter is to find, if

it exists, the regime where the well-defined sideband structure due to the rf

field disappears and the approximation of representing the dressed atom as

a N -level system breaks down. For the case in which the sideband structure

is well-defined, we will also study how well the N -level approximation rep-

resents the rf-dressed system. To our knowledge, these questions have not

been investigated previously.

This chapter is organised as follows. We begin with the set up of the systems

and the relevant set of equations of motion in Section 6.1. Then in Section 6.2

we discuss two-level rf-dressed subsystems. In this section, we solve the

equations of motion in the framework of Floquet formalism where the effect

of the rf field turns the excited state into the manifold. The properties of

the quasienergy and the N -level approximation are given in Subsections 6.2.2

and 6.2.3. The dressed state dynamics is described in Section 6.3. Then we

move on to the description of rf-dressed three-level systems in Section 6.4.

The first two subsections describe the Floquet formalism of the system, as

well as the N -level approximation. This includes the resonance structure

of the absorption lineshape. The new effect, i.e., the induced sidebands

of the intermediate state for large Rabi frequency of the coupling field, is

investigated in Subsection 6.4.3. Then we use the N -level approximation to

explain the formation of the dark states EIT for both cold atomic ensembles

and thermal vapour in Subsection 6.4.4. Finally we end the chapter with

conclusions, in Section 6.5.

6.1 Equations of motion

We consider the isolated three-level system composed of the ground state

|a〉, the intermediate state |b〉, and the excited state |c〉, whose eigenfrequen-
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cies are ωa/2π, ωb/2π, and ωc/2π, respectively. This system is a ladder (or

cascade)-typed system and it is schematically shown in Figure 6.1(a). Two

laser fields, whose angular frequencies are ωp and ωc, interact with the sys-

tem: the first field, whose Rabi frequency is Ωp, couples |a〉 to |b〉, whereas

the second field couples |b〉 to |c〉 with the Rabi frequency of Ωc. The letters

p and c are short for probe and coupling as the first laser is used to probe the

properties of the system, e.g., absorption lineshape, while the second laser

couples the eigenstates of the atom. In typical experiments, one works in

the weak probe regime where Ωp is much weaker than Ωc [3, 25, 92, 143].

The detunings of both lasers are ∆p ≡ ωp − ωba and ∆c ≡ ωc − ωcb, where

ωij is the transition frequency from |i〉 to |j〉. (The letters i and j always

denote the states a, b and c throughout the chapter, if not stated otherwise.)

This system is dressed by an rf field, whose frequency is ωrf, which has a

significant effect on |c〉 as it is assumed that this state has a large polaris-

ability, while its effect on |a〉 and |b〉 is negligible. An example of this system

is Rydberg atoms, where the polarisability is proportional to the seventh

power of the principal quantum number [23]. Since Rydberg atoms will be

discussed throughout the context of three-level system, the word Rydberg

state interchangeably refers to the excited state.

The Hamiltonian of the system is built from three components: the bare atom

(Ĥ0), two laser fields interaction (ĤL), and the rf-field interaction (Ĥrf). Since

the effect of rf field is mainly on the Rydberg state and ωrf � ωba, ωcb, then

the eigenvalue equations for the bare atomic Hamiltonian and the rf-field

Hamiltonian are given by [144],

(Ĥ0 + Ĥrf) |a〉 = ~ωa |a〉 , (6.1a)

(Ĥ0 + Ĥrf) |b〉 = ~ωb |b〉 , (6.1b)

(Ĥ0 + Ĥrf) |c〉 = ~(ωc +
1

2
αE2

rf sin2 ωrft) |c〉 , (6.1c)

where α is the polarisability of |c〉, and Erf is the amplitude of the rf field

whose form is Erf sinωrft. The Hamiltonian of the interaction with the laser
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Figure 6.1: A schematic of the rf-dressed three-level (Rydberg) system is

shown in (a). The probe laser, whose angular frequency is ωp, couples |a〉
with |b〉, while the coupling laser, whose angular frequency is ωc, couples

|b〉 to |c〉. The detunings of the probe and coupling lasers from the atomic

transition are ∆p and ∆c, respectively, and the transition (angular) frequency

is ωij = ωi − ωj, where i and j represent the states a, b and c. This system

also interacts with the rf field, whose angular frequency is ωrf. The manifolds

of the intermediate and excited (or Rydberg) states are shown in (b). The

separation in frequency between any adjacent Floquet states is 2ωrf. The

effect of the rf field also shifts the energy of |c〉 by Σ; thus the coupling

detuning, ∆c, changes to ∆c − Σ. The N -level approximation is composed

of |a′, 0〉, |b′, 0〉 and the manifold of the Rydberg state. The prime notation

denotes that we are working in the basis where the excited state manifold

is diagonalised. However, this picture breaks down for large value of Ωc. In

this limit, the intermediate state also shows the manifold structure and this

manifold, as well as the Rydberg state manifold, must be taken into account

in the calculation.

fields, neglecting the counter-rotating terms, is

ĤL =
~Ωp

2
|b〉 〈a| exp(−iωpt) +

~Ωc

2
|c〉 〈b| exp(−iωct) + h.c., (6.2)
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where h.c. means the hermitian conjugate of the first two terms. Using

Equation (6.1) and (6.2), and following the method given in Chapter 2, the

time-dependent Schrödinger equation is

d

dt


ua

ub

uc

 =


0 −iΩp/2 0

−iΩp/2 i∆p −iΩc/2

0 −iΩc/2 i[∆R − 2Σ sin2 ωrft]



ua

ub

uc

 , (6.3)

where Σ ≡ αE2
rf/4~ denotes the Stark shift, |ui|2 is the population of |i〉, and

∆R ≡ ∆p +∆c is known as the two-photon Raman detuning. Thus the effect

of the rf-field is to introduce a temporal modulation of the coupling detuning,

∆c, with a frequency of 2ωrf. Note that for a very large value of modulation

frequency, i.e., when the time scale of the rf modulation is much smaller than

the coherence time of the system, the rf field oscillates so fast that the system

connot respond to the rf field in a short period of time. Hence, the system

responds to the average effect of the rf field, rather than its instantaneous

value. In this limit, the change in ∆c due to the rf field can be replaced by

the time-averaged value of 2Σ sin2 ωrft, i.e., Σ, which is effectively equivalent

to a dc Stark shift [74, 144, 145].

The general solution of Equation (6.3) has an oscillatory form whose fre-

quency components are characterised by the so called characteristic frequency

(the frequency at which the population oscillates as if there were no rf interac-

tion) and the harmonic of 2ωrf, i.e., the frequency of the driving rf field (more

details of this can be found in Subsection 6.3.1). In the actual system, how-

ever, the oscillatory solution is dampened by relaxation (or decay) processes.

To include the latter into the model, we assume that the intermediate and

Rydberg states have the decay linewidths of Γb and Γc, respectively, and the

laser linewidths of probe and coupling lasers are γp and γc, respectively [84].
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The equations of motion then are

ρ̇aa =Γbρbb +
iΩp

2
(ρab − ρba), (6.4a)

ρ̇bb =− Γbρbb + Γcρcc −
iΩp

2
(ρab − ρba) +

iΩc

2
(ρbc − ρcb), (6.4b)

ρ̇cc =− Γcρcc −
iΩc

2
(ρbc − ρcb), (6.4c)

ρ̇ab =− (i∆p +
Γb
2

+ γp)ρab −
iΩp

2
(ρbb − ρaa) +

iΩc

2
ρac, (6.4d)

ρ̇bc =− (i∆c − 2iΣ sin2 ωrft+
Γb + Γc

2
+ γc)ρbc

− iΩc

2
(ρcc − ρbb)−

iΩp

2
ρac, (6.4e)

ρ̇ac =− (i∆R − 2iΣ sin2 ωrft+
Γc
2

+ γp + γc)ρac +
iΩc

2
ρab −

iΩp

2
ρbc, (6.4f)

where ρij is the element of the density operator. The decay mechanism damp-

ens the dynamical evolution of the system until the oscillation is purely driven

by the rf field, in which the oscillation contains purely the frequency of the

harmonic of 2ωrf. The physical quantities observed in the experiment, e.g.,

the absorption coefficient or population transferred, are the averages of the

harmonic solutions over one period of the oscillation. This is mathematically

defined as,

〈ρij(∞)〉 =
1

T
lim
t→∞

∫ t+T

t

ρij(t
′)dt′, (6.5)

where T is the period of the oscillation. For example, the absorption coeffi-

cient of the system is proportional to Im[〈ρab(∞)〉].

In the zero rf field limit (Σ = 0), Equation (6.3) and (6.4) are the equations of

motion for the usual three-level system, in which, for the weak probe regime,

the coupling field dresses the bare states |b〉 and |c〉 to form dressed states

and the resonances occur when the ground state |a〉 and one of these dressed

states are degenerate [132]. The transmission lineshape of the resonances is

known as an Autler-Townes doublet [43].

Since the dressed states formation is important to the way the resonance

lineshapes of the system are constructed, it is useful to study the dressed state

formation between states |b〉 and |c〉. Later in Section 6.4, the description of
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these dressed states is used to study the case in which the rf field is turned

on for the three-level system. To understand the formation of dressed states,

we investigate the equations of motion for the subsystem containing only |b〉
and |c〉. It is assumed that the ground state, |a〉, is excluded from the system

and the intermediate state, |b〉, is treated as a metastable state with a long

life time, i.e., we assume no decay from this state. Setting ∆p and Ωp to

zero, the time-dependent Schrödinger equation is

d

dt

ub
uc

 =

 0 −iΩc/2

−iΩc/2 i[∆c − 2Σ sin2 ωrft]

ub
uc

 . (6.6)

In the zero rf field limit, Equation (6.6) is the equation of motion for a two-

level system, whose solution is the Rabi oscillation, and the system is on

resonance when ∆c = 0. Similarly, for large ωrf, the system feels the average

rf field and the excited state is shifted by Σ [74, 144, 145].

The equations of motion, describing the dynamical evolution with the relax-

ation process, are

ρ̇bb =Γcρcc +
iΩc

2
(ρbc − ρcb), (6.7a)

ρ̇cc =− Γcρcc +
iΩc

2
(ρcb − ρbc), (6.7b)

ρ̇bc =−
{

Γc

2
+ γc + i

[
∆c − 2Σ sin2 ωrft

]}
ρbc +

iΩc

2
(ρbb − ρcc). (6.7c)

The physical quantities extracted from these equations are obtained in a

similar way as given by Equation (6.5), for example, the population lineshape

is 〈ρcc(∞)〉.

We could numerically solve Equation (6.3) and (6.4) for a three-level sys-

tem, as well as Equation (6.6) and (6.7) for the two-level subsystem, for the

dynamical evolution. However, the disadvantage of this method is that the

physics of the resonance formation, as well as the sideband structure, cannot

be understood and explained in this framework. The better way to view

such systems is to look at their eigenenergy spectrum and solutions in the

framework of Floquet formalism, which is described in the next section.
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6.2 Floquet formalism of rf-dressed two-level

subsystems

In this section we investigate the formation of resonance structures using the

Floquet-Fourier formalism. Exploiting the symmetry of the Hamiltonian, we

introduce a new approximation, a so called iteration method, to estimate the

positions of the resonances to a good accuracy, compared to the perturbation

method. Furthermore the differences between the Floquet-Fourier method

and the N -level approximation are discussed.

6.2.1 Floquet Hamiltonian

Equation (6.6) is a linear ordinary differential equation (ODE) with peri-

odic Hamiltonian matrix. Such ODEs can be solved by the Floquet-Fourier

method [45, 66, 146, 147]. The benefit of this method is to turn the time-

dependent ODE problem into a time-independent eigenvalue problem. As

the Hamiltonian is periodic in time, the solution can be written as the prod-

uct between the phase factor exp(iεkt) and a time-periodic function, which

can be expanded in a Fourier series1. Thus the form of the solution is,

|u(t)〉 = e−iεkt

∞∑
n=−∞

e−2inωrft |Fn(εk)〉 , (6.8)

where |u(t)〉 represent the column vector of ub(c), |Fn(εk)〉 = (bn, cn)T is the

n-th harmonic component of the Fourier expansion associated with |b〉 and

|c〉, and (~)εk is quasienergy2. Substituting Equation (6.8) into equation (6.6)

and using the Trigonometric identity

sin2 θ =
1

4
[2− exp(2iθ)− exp(−2iθ)] , (6.9)

1c.f. Bloch’s theorem for the periodic Hamiltonian in space [148].
2We will set ~ = 1 throughout the chapter from this point.
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the ODE turns into the coupled difference equations,

Ωc

2
cn − 2nωrfbn = εkbn, (6.10a)

(Σ−∆c − 2nωrf)cn +
Ωc

2
bn −

Σ

2
(cn−1 + cn+1) = εkcn, (6.10b)

which can be written in the matrix form as

Ĥ2F |Ψ〉k = εk |Ψ〉k , (6.11)

where |Ψ〉k is the infinite column vector whose components are the harmonic

components bn and cn, i.e., |Ψ〉k = (. . . , b−1, b0, b+1, . . . , c−1, c0, c+1, . . .)
T.

Ĥ2F , known as Floquet Hamiltonian, is an infinite Hermitian matrix. If

we define the Floquet state, |φ, n〉, where φ represents the atomic states and

n is the harmonic component of Fourier expansion, then the state vector |Ψ〉k
is

|Ψ〉k =
∞∑

m=−∞

(am |a,m〉+ bm |b,m〉) , (6.12)

where φm is the coefficient of |φ,m〉.

In this basis the matrix representation of Ĥ2F is

H2F =



. . .
...

...
...

...
...

...
...

· · · 2ωrf 0 0 · · · Ωc/2 0 0 · · ·

· · · 0 0 0 · · · 0 Ωc/2 0 · · ·

· · · 0 0 −2ωrf · · · 0 0 Ωc/2 · · ·

· · ·
...

...
... · · ·

...
...

... · · ·

· · · Ωc/2 0 0 · · · Σ − ∆c + 2ωrf −Σ/2 0 · · ·

· · · 0 Ωc/2 0 · · · −Σ/2 Σ − ∆c −Σ/2 · · ·

· · · 0 0 Ωc/2 · · · 0 −Σ/2 Σ − ∆c − 2ωrf · · ·

...
...

...
...

...
...

...
. . .



.

(6.13)

H2F can be partitioned into four block matrices: the two different block

matrices along the diagonal of and the two similar block (and diagonal)
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2ωrfΣ

∆c − Σ

(a) (b)

2ωrf

|b�, 0�
|b�,−1�

|b�,+2�

|b�,−2�

|b�,+1�

|c�,−2�
|c�,−1�
|c�, 0�
|c�,+1�
|c�,+2�

|b�, 0�

|c�,−2�
|c�,−1�
|c�, 0�
|c�,+1�
|c�,+2�

Σ

∆c − Σ

Figure 6.2: A schematic of the manifolds of the rf-dressed two-level sub-

system is shown in (a). Only the manifolds of the intermediate and excited

states are taken into account. It is also assumed that the intermediate state

is metastable, i.e., Γb = 0. The N -level approximation, containing only the

excited state manifold and the zeroth harmonic Floquet state from the in-

termediate state manifold, is shown in (b).

matrices on the off-diagonal of H2F . The block matrix on the top left of the

diagonal, Hb, is diagonal and represents the manifold of the ground state,

while that of the lower right, Hc, represents the manifold of the excited state.

The off diagonal block matrix couples the manifold of |b〉 to that of |c〉. Note

that the whole excited manifold is shifted by Σ in the frequency space with

respect to the zero rf field. The energy interval between any adjacent Floquet

states within the same manifold is 2ωrf, which is consistent with the frequency

of the driving term in Equation (6.6). While Hb is already diagonalised, Hc

is not; the rf field couples |c, n〉 to |c, n± 1〉 with the interaction strength Σ.

Mathematically, this means that the basis vector |c, n〉 is not an eigenvector

of the operator Ĥc as

Ĥc |c, n〉 = −Σ

2
|c, n− 1〉+ (Σ−∆c − 2nωrf) |c, n〉 −

Σ

2
|c, n+ 1〉 . (6.14)

Due to the rf field, each Floquet state in the ground state manifold is effec-

tively connected to all Floquet states in the excited state manifold.
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Without the rf field, i.e., Σ = 0, the system would reduce to an infinite num-

ber of independent (non-interacting) two-level systems, whose quasienergies

are

ε±,n = −∆c

2
± 1

2

√
∆2

c + Ω2
c ± 2nωrf, (6.15)

and the eigenvectors of the system are

|Ψ〉+,n = sin θ |b, n〉+ cos θ |c, n〉 , (6.16a)

|Ψ〉−,n = cos θ |b, n〉 − sin θ |c, n〉 , (6.16b)

where ± represents the two dressed states formed by the laser interaction

and tan 2θ = −Ωc/∆c [68]. Substituting Equation (6.15) and (6.16) into

Equation (6.8), the result is identical to the usual Rabi oscillation for two-

level system. It is possible to work in the basis such that Ĥc is diagonalised

by using the basis transformation

|c′, n〉 =
∞∑

k=−∞

Jn−k

(
Σ

2ωrf

)
|c, k〉 , (6.17)

where Jµ(x) is the µ-th order Bessel function of the first kind (see Appendix

B for further details). The eigenvalues of the system are obtained by acting

Ĥc on |c′, n〉:

Ĥc |c′, n〉 =
∞∑

k=−∞

Jn−k

[
−Σ

2
|c, k − 1〉 − Σ

2
|c, k + 1〉+ (Σ−∆c − 2kωrf) |c, k〉

]

=
∞∑

k=−∞

[
−Σ

2
Jn−k |c, k − 1〉 − Σ

2
Jn−k |c, k + 1〉+ (Σ−∆c − 2kωrf)Jn−k |c, k〉

]

=
∞∑

k=−∞

[
−Σ

2
Jn−k−1 |c, k〉 −

Σ

2
Jn−k+1 |c, k〉+ (Σ−∆c − 2kωrf)Jn−k |c, k〉

]

=
∞∑

k=−∞

[
−Σ

2
(Jn−k−1 + Jn−k+1) + (Σ−∆c − 2kωrf)Jn−k

]
|c, k〉

=
∞∑

k=−∞

[
2kωrf − 2nωrf + Σ−∆c − 2kωrf

]
Jn−k |c, k〉

= (Σ−∆c − 2nωrf)
∞∑

k=−∞

Jn−k |c, k〉

= (Σ−∆c − 2nωrf) |c′, n〉 , (6.18)
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where we have used the recurrence relation [133]

Jn−k−1 + Jn−k+1 =
4ωrf(n− k)

Σ
Jn−k, (6.19)

and Jn ≡ Jn(Σ/2ωrf). Thus |c′, n〉 is indeed an eigenvector of Ĥc and the

corresponding quasienergy (eigenvalue) is

ε′n = Σ−∆c − 2nωrf. (6.20)

According to Equation (6.17), the effect of the rf field is to mix the old

Floquet states, |c, n〉, to form the new Floquet states, |c′, n〉, where the coef-

ficients are given by Bessel functions. The energy spacing between the adja-

cent Floquet states remains unchanged, i.e., 2ωrf as shown by Equation (6.20).

This manifold structure is schematically shown in Figure 6.2(a). This result

is the same as in Chapter 5 and in previous work, in which the rf field turns

the excited state into the manifold and the probability of each element to be

found is given by the squared Bessel function [25, 43, 47, 50, 51, 53, 138].

Under this transformation the element of Ĥc in the matrix representation is

〈c′, n| Ĥc |c′,m〉 = (Σ−∆c − 2mωrf) 〈c′, n| c′,m〉

= (Σ−∆c − 2mωrf)
∑
p,q

Jn−pJm−q 〈c, p| c, q〉

= (Σ−∆c − 2mωrf)
∑
p,q

Jn−pJm−qδp,q

= (Σ−∆c − 2mωrf)
∑
p,q

Jn−pJm−p

= (Σ−∆c − 2mωrf)Jn−m(0)

= (Σ−∆c − 2mωrf)δn,m, (6.21)

where we have used the addition theorem [133]

Jn(u± v) =
∞∑

k=−∞

Jn∓k(u)Jk(v). (6.22)
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The coupling terms of Ĥ2F also transform to

〈b′, n| Ĥ2F |c′,m〉 =
∑
k

Jm−k 〈b, n| Ĥ2F |c, k〉

=
∑
k

Jm−k

(
Ωc

2
δn,k

)
=

Ωc

2
Jm−n, (6.23)

and

〈c′, n| Ĥ2F |b′,m〉 =
∑
k

Jn−k 〈c, k| Ĥ2F |b,m〉

=
∑
k

Jn−k

(
Ωc

2
δm,k

)
=

Ωc

2
Jn−m. (6.24)

Thus, the Floquet Hamiltonian, in the new basis set, is

H′2F =



. . .
...

...
...

...
...

...
...

· · · 2ωrf 0 0 · · · ΩcJ0/2 ΩcJ+1/2 ΩcJ+2/2 · · ·

· · · 0 0 0 · · · ΩcJ−1/2 ΩcJ0/2 ΩcJ+1/2 · · ·

· · · 0 0 −2ωrf · · · ΩcJ−2/2 ΩcJ−1/2 ΩcJ0/2 · · ·

· · ·
...

...
... · · ·

...
...

... · · ·

· · · ΩcJ0/2 ΩcJ−1/2 ΩcJ−2/2 · · · Σ − ∆c + 2ωrf 0 0 · · ·

· · · ΩcJ+1/2 ΩcJ0/2 ΩcJ−1/2 · · · 0 Σ − ∆c 0 · · ·

· · · ΩcJ+2/2 ΩcJ+1/2 ΩcJ0/2 · · · 0 0 Σ − ∆c − 2ωrf · · ·

...
...

...
...

...
...

...
. . .



.

(6.25)

Now the whole interaction block matrices are filled by Rabi frequencies scaled

by Jn; and hence, any two Floquet states between the two manifolds couple to

each other, i.e., |b′, n〉 couples to |c′,m〉, via ΩcJm−n. This picture turns the

n-photon interaction into a one-photon interaction whose coupling strength
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is scaled by the Bessel function. For example, |b′, 0〉 couples to |c′, 3〉 via

one-photon transition, whose strength is ΩcJ+3.

The structure of Floquet Hamiltonian and the vanishing of the Bessel func-

tions for large order suggests that the rf-dressed system could be viewed as

an isolated system of a ground state |b′, 0〉 interacting with the Floquet states

of the excited state manifold, |c′, n〉, via one-photon interaction. We refer to

this picture as the N -level approximation. This N -level picture is very useful

in practical calculations and it has been used in Chapter 5 and in previous

work to explain the physics of rf-dressed systems [25, 47, 51, 53, 142]. How-

ever, we have found that this picture is only applicable in certain conditions.

In order to obtain the conditions in which it is valid, we further examine the

eigenspectrum of the Floquet Hamiltonian.

6.2.2 Quasienergy spectrum

Because of the infinite dimension of the Floquet Hamiltonian, one would

expect H′2F (or H2F ) to have an infinite number of quasienergies. How-

ever, as the Hamiltonian is periodic and the system contains two levels, the

quasienergy has a structure of double combs, where the set of quasienergies

in each comb is associated with each atomic state. Diagonalising H′2F (or

H2F ) and letting ε′′b,n and ε′′c,n be the new quasienergies of the n-th harmonic

of the new Floquet state (the dressed Floquet state), |b′′, n〉 and |c′′, n〉, then

the quasienergies of H′2F are

ε′′b,n = ε′′b,0 + 2nωrf, (6.26a)

ε′′c,n = ε′′c,0 + 2nωrf, (6.26b)

where ε′′b,0 and ε′′c,0 are the zeroth harmonic quasienergies. The repeated

structure of the quasienergy spectrum, given by Equation (6.26), is shown in

Figure 6.3(a), where the dark red lines represent the excited state manifold

and the light blue are the ground state manifold.
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To approximate the quasienergy, we, first, consider the off-diagonal block

Toeplitz matrices [149] of Equation (6.25), V, in which the elements on the

same diagonal are identical. The size of the elements of the matrix of the n-th

diagonal away from the main diagonal (n = 0), ΩcJn/2, couple the Floquet

states |b′,m〉 with |c′, n+m〉. Moreover, this Toeplitz matrix is symmetric

(neglecting the plus and minus signs). Supposing that the argument of the

Bessel function is small, i.e., Σ/2ωrf � 1, the value of the Bessel function

decreases when its order increases; and thus V is approximately a diagonal

matrix whose diagonal elements are ΩcJ0/2. With this approximation, the

quasienergies of the zeroth harmonic are,

ε
′′(1)
b,0 =

1

2
(Σ−∆c)−

1

2

√
(Σ−∆c)2 + Ω2

cJ
2
0 , (6.27a)

ε
′′(1)
c,0 =

1

2
(Σ−∆c) +

1

2

√
(Σ−∆c)2 + Ω2

cJ
2
0 . (6.27b)

The superscript 1 means the first iteration of the quasienergy. This interac-

tion lifts up the degeneracy between |b′, n〉 and |c′, n〉 and causes the avoided-

crossing at ∆c = Σ as shown in Figure 6.3(a). It is clear that if there is no

rf field, i.e., Σ = 0, then Equation (6.27) is identical to Equation (6.15) and

the effect of Stark shift disappears.

The sets of quasienergies built from Equation (6.27) produce the level-

crossings on both sides of the zeroth order avoided-crossing. The degen-

eracy of these level-crossings is lifted by the interaction ΩcJ±1, which couples

|b′, n〉 with |c′, n± 1〉. The improved quasienergies, obtained by calculating

the shift in energy due to the interaction of ΩJ±1 at the level-crossings, are

ε
′′(2)
b,n =

1

2
(ε
′′(1)
b,0 + ε

′′(1)
c,0 − 2ωrf) +

1

2

√
(ε
′′(1)
b,0 − ε

′′(1)
c,0 + 2ωrf)2 + Ω2

cJ
2
1 + 2nωrf,

(6.28a)

ε′′(2)
c,n =

1

2
(ε
′′(1)
b,0 + ε

′′(1)
c,0 − 2ωrf)−

1

2

√
(ε
′′(1)
b,0 − ε

′′(1)
c,0 + 2ωrf)2 + Ω2

cJ
2
1 + 2(n+ 1)ωrf.

(6.28b)

This is the second iteration of the quasienergy (as labelled by superscript 2).

If one wants to include (n − 1)-th interaction, one has to iterate the
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quasienergy n times. We refer to this method as the iteration method.

The principle of this method is based on the periodic structure of the

quasienergy spectrum and the Toeplitz structure of the matrix, V. The

quasienergy calculated from Equation (6.28a) (shown as the crossed line) for

Ωc = Σ = ωrf = 2π × 10 MHz is plotted in Figure 6.3(a), whereas the actual

quasienergy calculated by numerically diagonalising H′2F is shown in Figure

6.3(b).

We could also use perturbation theory to calculate the quasienergy of the

system. For an interval of ∆c around the (m− n)-th resonance where |b′, n〉
is nearly degenerate with |c′,m〉, the interaction around the avoided crossing

is given by a 2× 2 matrix−2nωrf − ζm−n ΩcJm−n/2

ΩcJm−n/2 Σ−∆c − 2mωrf + ζm−n

 , (6.29)

where ζm−n is the correction due to the interaction between |b′, n〉 (and

|c′,m〉) and the other states through ΩcJk/2, except for the interaction be-

tween |b′, n〉 and |c′,m〉 themselves, i.e., k 6= m− n. ζm−n is calculated using

perturbation theory with the result

ζm−n =
∑

k 6=m−n

(ΩcJk/2)2

Σ−∆c − 2kωrf

. (6.30)

Thus the quasienergies are the eigenvalues of Equation (6.29) and they are

given by

ε′′b,n =
1

2
(Σ−∆c − 2(n+m)ωrf) +

1

2

{
[Σ−∆c − 2(n+m)ωrf ]

2 + Ω2
cJ

2
m−n

+ 4(2nωrf + ζm−n)(Σ−∆c − 2mωrf + ζm−n)
}1/2

, (6.31a)

ε′′c,m =
1

2
(Σ−∆c − 2(n+m)ωrf)−

1

2

{
[Σ−∆c − 2(n+m)ωrf ]

2 + Ω2
cJ

2
m−n

+ 4(2nωrf + ζm−n)(Σ−∆c − 2mωrf + ζm−n)
}1/2

. (6.31b)

The disadvantage of the perturbation method is that it is only correct around

the avoided-crossing between |b′, n〉 and |c′,m〉, while it fails at all the other
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Figure 6.3: The quasienergy spectrum of H′2F and 〈ρbb(∞)〉 are shown in

(a) and (c) (dark pink line), respectively, whereas the similar plots in (b)

and (c) (light purple) are calculated from H2N . We have taken N upto 4.

The parameters used in this figure are Ωc = Σ = ωrf = 2π × 10 MHz and

Γc = 2π×1 MHz. In plot (a), the eigenspectrum shows the repeated structure

with the period of 2ωrf. The crossed line represents the quasienergy calculated

from Equation (6.28). The Stark shift of the zeroth order resonance and the

higher order sidebands are clearly shown in (c). The positions of the n-th

avoided-crossings calculated from H2N are half of those calculated from H′2F .

This is clearly illustrated in (c). This half-reduction of the shift comes from

the symmetry breaking the H2N . Since |ΩcJ0/2ωrf| ≈ 0.5, which is relatively

large, the agreement between the two lineshapes is not perfect.
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Figure 6.4: (solid lines) The quasienergy calculated using the iteration

method. (dashed lines) The quasienergy calculated using the perturbation

method in which the interaction around the zeroth avoided-crossing is of

interest. The parameters used in this figure are the same as those used in

Figure 6.3. The quasienergies calculated from the perturbation method are

in good agreement with those calculated using the iteration method for ∆c

around the zeroth avoided crossing. The poles of ζ0 result in the glitches in

the quasienergies around n = ±1, shown in the figure.

avoided-crossings due to the poles Σ−2kωrf in Equation (6.30). On the other

hand, the iteration method is valid for both degenerate and non-degenerate

cases as there are no poles presented in Equation (6.27) and (6.28).

Figure 6.4 shows the quasienergies calculated from Equation (6.28) (solid

lines) around the zeroth avoided-crossing and those calculated from Equa-

tion (6.31) (dashed lines). The parameters used in the figure are the same

as those used in Figure 6.3. The results from both methods are clearly in

good agreement only when ∆c is around zeroth order avoided-crossing. The

glitches of the quasienergies at n = ±1, illustrated in the figure, are caused

by the poles of ζ0.

According to Figure 6.3(a), the position of the first order avoided-crossings

are not exactly at ∆c = ±2ωrf, which is the energy separation between the



Chapter 6. Sidebands shifts and induced sidebands in rf-dressed Rydberg
systems 119

adjacent Floquet states. But they are slightly shifted towards the zeroth

order avoided-crossing due to the effect of the finite Rabi coupling Ωc. Thus

the Floquet formalism predicts a slight shift in frequency which has not been

discussed in previous works [43, 46–51, 53]. The position of the first order

avoided-crossings can be determined by searching for the level-crossings of

the quasienergies given by Equation (6.27), and this gives

∆±1
c = Σ∓

√
4ω2

rf − Ω2
cJ

2
0 . (6.32)

Note that Equation (6.32) can be obtained by setting the terms in the bracket

under the square root of Equation (6.28) to zero, as, at this detuning, the

quasienergy changes its curvature, which corresponds to an avoided-crossing

[45]. Using Equation (6.32), the first order approximation of the first avoided-

crossing is ∆±1
c ≈ Σ∓ 2ωrf ± δ, where δ = ΩcJ

2
0/4ωrf.

One could obtain the the first order resonance position using perturbation

theory by considering the interaction between |b′, 0〉 and |c′,−1〉. The 2× 2

matrix which represents this interaction is −ζ−1 ΩcJ−1/2

ΩcJ−1/2 Σ−∆c + 2ωrf + ζ−1

 , (6.33)

with

ζ−1 =
∑
k 6=−1

(ΩcJk/2)2

Σ−∆c − 2kωrf

. (6.34)

The resonance occurs when the elements on the diagonal are degenerate, i.e.,

Σ − ∆c + 2ωrf + ζ−1 = −ζ−1. Assuming that the first resonance occurs at
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∆c = Σ + 2ωrf − δ, then we have

δ = −2ζ−1

=
∑
k 6=−1

2(ΩcJk/2)2

2kωrf + 2ωrf − δ

=
∑
k 6=−1

2(ΩcJk/2)2

2(k + 1)ωrf

(
1− δ

2ωrf(k + 1)

)−1

=
∑
k 6=−1

2(ΩcJk/2)2

2(k + 1)ωrf

[
1 +O

(
δ

2ωrf(k + 1)

)]
≈
∑
k 6=−1

(ΩcJk/2)2

(k + 1)ωrf

, (6.35)

in which the leading term of the expansion yields the same result as that

obtained using the iteration method.

Consider the zeroth order avoided-crossing (∆0
c = Σ), the energy gap between

the n-th dressed Floquet states, i.e., |b′′, n〉 and |c′′, n〉, is given by ΩcJ0 from

Equation (6.27). Thus, for small Ωc compared to ωrf, the energy separation

between the adjacent pairs of the dressed Floquet states is larger than the

energy gap of the dressed Floquet state. The mathematical equivalent of this

statement is ∣∣∣∣ΩcJ0

2ωrf

∣∣∣∣� 1. (6.36)

This means that each pair of the dressed Floquet states can approximately

be treated independently from one another. In addition, |c′′, n− 1〉 and

|b′′, n+ 1〉 asymptotically approach |c′, n− 1〉 and |c′, n+ 1〉 respectively.

The system is, now, similar to the case in which the ground state |b′, 0〉
interacts with the manifold of excited state with the coupling ΩcJn, i.e., the

N -level approximation. When |ΩcJ0|≥ 2ωrf, the pair of the dressed Floquet

states overlap with the next and causes the failures of the iteration method,

as well as of the N -level approximation. This will be discussed in Subsec-

tion 6.2.3. We can obtain Equation (6.36) by noting that the argument of

the square root of Equation (6.32) must be positive in order to make the

square root meaningful, i.e., a real number.
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The condition Σ/2ωrf � 1, imposed previously, is now no longer required as

long as Equation (6.36) is satisfied. This is because Σ/2ωrf is included as the

argument of the Bessel function in Equation (6.36). Figure 6.6(b) shows the

lineshape calculated for Σ/2ωrf = 2. The lineshape shows the strong evidence

of the sideband resonances even though Σ/2ωrf > 1. Note that for a large

value of Σ/2ωrf, the avoided-crossings (as well as the sideband resonances)

disappear because the Bessel function vanishes for large argument.

6.2.3 N-level approximation

If we are in the regime where Equation (6.36) is satisfied, the N -level picture

is a good approximation for the rf-dressed system. The diagram shown in

Figure 6.1(b) describes the N -level picture. It is composed of a ground

state, |b′, 0〉, the manifold of the excited state, |c′, n〉 and the Rabi coupling

between |b′, 0〉 and |c′, n〉, given by ΩcJn from H′2F ; thus, the matrix form of

the Hamiltonian of N -level system, H2N , is

H2N =



0 · · · ΩcJ−1/2 ΩcJ0/2 ΩcJ+1/2 · · ·
...

. . .
...

...
... · · ·

ΩcJ−1/2 · · · Σ−∆c + 2ωrf 0 0 · · ·
ΩcJ0/2 · · · 0 Σ−∆c 0 · · ·

ΩcJ+1/2 · · · 0 0 Σ−∆c − 2ωrf · · ·
...

...
...

...
...

. . .


.

(6.37)

This N -level picture has been confirmed as a good approximation of the

rf-dressed system (under the condition given by Equation (6.36)) in many

experiments [25, 43, 47]. The locations of the n-th order avoided-crossings

were reported to occur at Σ± 2nωrf, without frequency shift. However, this

is only true when |ΩcJ0| is much smaller than 2ωrf. As we shall see later, the

leading term of the frequency shift is minute and can be neglected. For a

comparatively large value of Ωc, but subject to the Equation (6.36), the n-th
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order avoided-crossings are not exactly located at Σ±2nωrf. In fact they are

slightly shifted towards the zeroth order avoided-crossing due to the effect of

the Rabi coupling. Using perturbation theory 3, the interaction at the n-th

avoided-crossing is approximated by the 2× 2 matrix −ζn ΩcJn/2

ΩcJn/2 Σ−∆c − 2nωrf

 , (6.38)

where ζn is defined in Equation (6.34) and the shift of the n-th avoided-

crossing, δn, is approximately given by

δn ≈
∑
k 6=n

(ΩcJk/2)2

2ωrf(n− k)
, (6.39)

(δn is defined by the equation ∆n
c = Σ − 2nωrf + δn). Note that for n = 0,

Equation (6.39) gives zero shift in frequency, i.e., the resonance of the zeroth

order resonance is equal to the Stark shift. It turns out that the shift cal-

culated from Equation (6.39) is always half of that calculated using the full

Floquet Hamiltonian. For example, the shift of the first sideband is given

by Ω2
cJ

2
0/8ωrf calculated from H2N (Equation (6.39)), which is half of that

calculated from H′2F (Equation (6.32)). The reason is that H′2F takes into

account the shift of both the ground state and the excited state manifolds

whereas H2N only takes into account the shift of the excited state manifold.

The effect of this half-reduction of the frequency shift is illustrated in Fig-

ure 6.3(a) and (b), in which the position of the avoided-crossing calculated

from H2N is at half the distance of that calculated from H′2F . (This effect will

be observed clearly in the resonances of the population lineshape in Figure

6.3(c).)

Thus, rather than having Σ−∆c−2nωrf along the diagonal of Equation (6.37),

we need to compensate the half-reduction shift to the energy level. After

the frequency shift compensation, the elements of Equation (6.37) along the

3The iteration method is not effective in this case. The better approach is to use

perturbation theory.
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diagonal are

[H2N ]nn ≈ Σ−∆c − 2mωrf +
∑
k 6=n

(ΩcJk/2)2

2ωrf(n− k)
. (6.40)

Until now we have only discussed the eigenspectrum of the full Floquet

Hamiltonian and the N -level Hamiltonian, without concern for the relax-

ation process, which is, in fact, important in the real atomic system. We will

see in the next subsection that the relaxation process, as well as the condition

given by Equation (6.36), will control the visibility of the resonance structure

in the actual system.

6.3 Dressed state dynamics of rf-dressed two-

level subsystems

The system evolution and the resonance structure of the transferred popula-

tion lineshape can be understood in the framework of the dressed (Floquet)

states. Also the effect of the relaxation process will be discussed in this

subsection.

6.3.1 Dynamics of Floquet Hamiltonian

The solution of the population dynamics, without the relaxation process, can

be obtained by searching for the eigenvalues and eigenvectors of H′2F (or H2F )

and the general solution is given by Equation (6.8). Generally, the values

of the Fourier coefficients, an and bn, for large n, are minute and can be

neglected. Thus the solutions have an oscillatory form with frequency mode

composed of the characteristic frequency, Ω̃, and the harmonics of the rf

frequency in the form of Ω̃± 2nωrf. From Equation (6.27), the characteristic

frequency is approximately
√

(Σ−∆c)2 + Ω2
cJ

2
0/2.

Numerically solving Equation (6.7), the population transferred, defined by
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Equation (6.5), against the detuning, ∆c/2π, is shown in Figure 6.3(c)

(dark pink curve). The positions of the resonances correspond to that of

the avoided-crossings since the system is most interactive at the avoided-

crossings.

The physics around the avoided-crossings is very interesting and important

because, in this region, the bare states strongly interact with one another to

form the dressed states, containing both bare states. For example, consider

Equation (6.16) when ∆c = 0, the dressed states contain exactly an equal

amount of |b, n〉 and |c, n〉. Hence, the ground state, |b, n〉 is also a super-

position of the dressed states with equal probability. And this causes the

population to widely oscillate in time between the ground and excited states

as |b, n〉 is no longer an eigenstate of the system. This corresponds to a large

population transferred in the lineshape, i.e., a resonance. For large ∆c, the

dressed states asymptotically approach the bare states. Thus if the system

is prepared in the ground state, there would be no population oscillation.

This argument based on dressed states can also be applied to the eigenspec-

trum of the Floquet Hamiltonian. In the regime where Equation (6.36) is

applied, at the zeroth avoided-crossing, the dressed Floquet states of the n-

th two-level system in the manifold are formed from |b′, n〉 and |c′, n〉, with

little amount from other harmonic Floquet states. Because the energy sep-

aration between the pair of these dressed states to the next is larger than

the energy gap, we can assume that there is no interaction between the n-

th two-level system and the others. Furthermore, the distance between the

zeroth avoided-crossing to the first avoided-crossing on the right (and left)

is so large (∼ 2ωrf) that the dressed Floquet states, |b′′, n+ 1〉 and |c′′, n〉
(and |b′′, n〉 and |c′′, n− 1〉) are approximately equal to |c′, n+ 1〉 and |b′, n〉
(and |b′, n〉 and |c′, n− 1〉), respectively. These two dressed states interact

with each other at the first avoided-crossing with the interaction strength

of |ΩcJ+1|. It is now clear that the interaction at each avoided-crossing can
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be approximated as a two-level like interaction. Thus the height of the n-th

resonance, hn, can be approximate by the two-level model and it is given

by[68, 76]

hn =
Ω2

cJ
2
n/2

γ⊥Γc + Ω2
cJ

2
n

, (6.41)

where γ⊥ = Γc/2 + γc. According to Equation (6.41), the height of the reso-

nance is scaled by the Bessel function. For large n, the Bessel function tends

to zero and the higher order resonances disappear. For the parameters given

in Figure 6.3, the height of the zeroth, first and second resonances, calculated

from Equation (6.41), are 0.50, 0.46 and 0.08, respectively. These values are

in agreement with the numerical result calculated from Equation (6.7) as

shown in Figure 6.3(c).

The sideband resonances are evidence that the excited state is turned into

a manifold and the resonances occur when each Floquet state within the

manifold is on-resonance with the ground state. The system is, now, well-

described by the N -level approximation. As mentioned in Subsection 6.2.2,

increasing Ωc results in the break down of the N -level picture as the n-th two-

level system starts interacting with the others in the manifold via the rf field.

In addition, the resonance sidebands become closer to the zeroth resonance,

and eventually, overlap and disappear inside the zeroth resonance. In this

case, the dressed Floquet states are formed from |b′, n〉, |c′, n〉, |b′, n+ 1〉 and

|c′, n− 1〉 and the interaction at the avoided-crossing is no longer a two-level

like interaction.

Not only is Equation (6.36) related to the formation of the dressed Floquet

states, it is also related to the time scale in which the system evolves. When

|ΩcJ0| � 2ωrf (the time scale (or period) of the rf field is much shorter

than that of the Rabi oscillation), the interaction due to the rf field is much

faster than the interaction due to the laser field. This causes the formation

of the Floquet states. In other words, the laser field interacts with the

atomic system as if the excited state of the atoms were a manifold of Floquet
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Figure 6.5: The plots in the first three rows show the instantaneous lineshape

of ρbb, evolving in time, whereas the plots in the last row show the time-

averaged lineshape over one period. For column (a) ωrf/2π = 0.01 MHz and

for column (b) ωrf/2π = 5 MHz. The values of Ωc/2π, Σ/2π and Γc/2π are

0.1 MHz, 20 MHz and 10 MHz, respectively. In column (a), the time scale of

the rf field is much longer than the Rabi oscillation of the system. Thus the

system experiences constant rf field at any instantaneous of time, resulting

in a slow oscillation of the lineshape with a separation in frequency of Σ.

The opposite case is shown in column (b), where the time scale of the rf

field is much shorter than the Rabi oscillation of the system. This causes the

excited state to exhibit a manifold structure due to the rf interaction, which

is clearly seen as a wiggly instantaneous lineshape. The laser interaction then

couples the ground state to the manifold. Note that ωrf is half of Γc in this

case which is why the resonances are just resolved.
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Figure 6.6: The plots in the first three rows show the instantaneous lineshape

of ρbb, evolving in time, whereas the plots in the last row show the time-

averaged lineshape over one period. For column (a) Γc/2π = 10 MHz and

for column (b) Γc/2π = 1 MHz. The values of Ωc/2π, Σ/2π and ωrf/2π are

0.1 MHz, 20 MHz and 5 MHz, respectively. Column (a) is the same as in

Figure 6.5(b). In column (b), Γc is much less than 2ωrf , which implies that

the coherent time of the system (determined by Γc) is much longer than the

time scale of the rf interaction, i.e., the system has some time to interact with

the rf field before its coherence is destroyed. This results in non-overlapping

resonances. The instantaneous lineshapes show strong evidence of the excited

state manifold.



Chapter 6. Sidebands shifts and induced sidebands in rf-dressed Rydberg
systems 128

−20 0 20 40 60
0

0.4

0.8
(a)

−20 0 20 40 60
0

0.4

0.8

Probe Detuning (MHz)

0

0.4

0.8
(b)

0

0.4

0.8

ρ
b
b
(t

)/
10
−

4

−20 0 20 40 60
0

0.4

0.8

Probe Detuning (MHz)

0

0.4

0.8

ρ
b
b
(t

)/
10
−

4

−20 0 20 40 60
0

0.4

0.8

Probe Detuning (MHz)

ρ
b
b
(∞

)/
10
−

4

−20 0 20 40 60
0

0.4

0.8.

Probe Detuning (MHz)

ρ
b
b
(∞

)/
10
−

4

×0.025

×0.025

×0.025

×0.025 ×104

×104

×104

×104

Figure 6.7: The plots in the first three rows show the instantaneous lineshape

of ρbb, evolving in time, whereas the plots in the last row show the time-

averaged lineshape over one period. For column (a) Ωc/2π = 0.1 MHz and

for column (b) Ωc/2π = 20 MHz. The values of Γc/2π, Σ/2π and ωrf/2π

are 1 MHz, 20 MHz and 5 MHz, respectively. Column (a) is the same as in

Figure 6.6(b). In column (b), the Rabi frequency is twice as large as 2ωrf ;

however, the condition ΩcJ0/2ωrf � 1 still loosely holds. This results in tiny

sideband resonances. Note that the first sidebands are no longer visible as

they are destroyed by power broadening of the zeroth resonance; thus, the

N -level picture is no longer a good description of this system.
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states. In the opposite situation, where the time scale of the rf field is much

longer than that of the Rabi oscillation, the rf field changes adiabatically

and the atom feels the constant rf field at any instantaneous time step. In

this case the excited state does not become a manifold, and the detuning,

∆c, undergoes an adiabatic oscillation at frequency of 2ωrf. The population

transferred lineshape oscillates back and forth in time, with the separation in

frequency space determined by the Stark shift Σ. This situation is illustrated

in column (a) of Figure 6.5.

It turns out that the time scale of the relaxation is another important factor

which governs the sideband structure of the population transferred lineshape.

If the time over which the system decays, Γ−1
c , is shorter than the interac-

tion time of the rf field, the coherence of the system is destroyed before the

manifold develops. Thus in order to observe the sideband, it is required that

Γc � 2ωrf. (6.42)

In the language of spectral linewidth, it is required that the linewidth Γc

of the resonance is less than the distance between the adjacent resonances

(∼ 2ωrf) so there is no overlap feature between the resonances. Figure 6.6

column (a) shows the case where the decay width just equals to 2ωrf. The

system exhibits a sideband structure for the instantaneous lineshapes in the

first three row of column (a). Whereas the sidebands of the time-averaged

lineshape in the fourth row are not clearly observed as they just become

resolved. In column (b), we fix ωrf at 2π×5 MHz as in (a), but reduce Γc to

2π×1 MHz to prevent the overlap between the sidebands. In this situation,

the rf interaction is much faster than the system evolution and the decay; thus

the sidebands are clearly observed in both the instantaneous and the time-

averaged lineshapes. Note that, for the parameters in column (b), Σ/2ωrf is

larger than 1. However, the resonance and the manifold structure are clearly

observed from the lineshape as Equation (6.36) is satisfied.

In column (b) of Figure 6.7, we have Ωc = 2π × 20 MHz while Ωrf = 2π × 5
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MHz. In this case the Rabi frequency is twice as large as that of 2ωrf ;

however, the condition ΩcJ0/2ωrf � 1 is still loosely hold. This results in

tiny sideband resonances. Note that the first sidebands are no longer visible

as they are destroyed by power broadening of the zeroth resonance; thus, the

Floquet picture is no longer a good description of this system.

6.3.2 Dynamics in the N-level approximation

The dressed state dynamics in the N -level approximation is much simpler

than that of the full Floquet Hamiltonian because the ground state contains

only one eigenstate |b′, 0〉. The main interaction, caused by ΩcJ0, leads to the

zeroth avoided-crossing in the middle. The dressed states, |±〉, are formed

from |b′, 0〉 and |c′, 0〉. Then the first order avoided-crossing on the right

(left) is caused by the interaction between |+〉 and |c′, 1〉 (|−〉 and |c′,−1〉)
where the interaction strength is |ΩcJ+1|. Suppose that Ωc is so small that

the dressed states, |±〉, asymptotically equal |b′, 0〉. The interactions at the

first avoided-crossings, now, are that between |b′, 0〉 and |c′, 1〉 (|c′,−1〉). It

is clear from the view point of the dressed state that the N -level picture is a

good approximation of the rf-dressed system.

To obtain the population transferred lineshape, we look for the time-

dependent solution of H2N . The equations of motion for this Hamiltonian

are

ρ̇bb =
N∑

k=−N

Γcρkk −
iΩc

2

N∑
k=−N

Jk(ρkb − ρbk), (6.43a)

ρ̇bk = −
[

Γc
2

+ γc − i(Σ−∆c − 2kωrf)

]
ρbk

− iΩcJk
2

(ρkk − ρbb)−
iΩc

2

N∑
m=−N
m 6=k

Jkρmk, (6.43b)

ρ̇jk = − [Γc − 2i(j − k)ωrf ] ρjk +
iΩcJk

2
ρjb −

iΩcJj
2

ρak, (6.43c)

where b is |b′, 0〉 and the numbers j(k) represent the states |c′, j(k)〉. The
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steady state solutions of Equation (6.43) are constant as there is no driving

terms present in the Hamiltonian; thus 〈ρbb(∞)〉 = ρbb(∞).

Figure 6.3(c) shows the population transferred lineshape (plotted in light pur-

ple) calculated using the N -level model. The figure clearly shows the effect of

the half-reduction of the frequency shift as discussed in Subsection 6.2.3. In

the figure, the ratio of Ωc and 2ωrf is about 0.5, which is relatively large. This

results in the deviation between the two lineshapes. However, the agreement

can be improved if one calibrates the frequency shift using Equation (6.40).

In the next section, the full three-level system will be studied by the use

of the two-level subsystem which has been discussed until now. We also

consider the absorption lineshape for the case of thermal vapour at the end

of the three-level system discussion.

6.4 RF-dressed three-level systems

With the rf field, as known from the two-level rf-dressed system, we expect

the system to exhibit a manifold structure; thus an infinite number of dressed

states are formed, resulting in a rich pattern of EIT structure. Furthermore,

the coupling gives rise to infinitely many dark states which are formed be-

tween the ground state and the manifold of the excited state. These are the

topics which will be discussed in the subsequent sections.

6.4.1 Floquet formalism

The manifold structure of the rf-dressed system is described in the Floquet

formalism, using the procedure given in Subsection 6.2.1. The Floquet Hamil-
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tonian, H3F , of Equation (6.3), is

H3F =


A Ωp 0

Ω†p B Ωc

0 Ω†c C

 , (6.44)

where,

A = diag(. . . , 2ωrf, 0,−2ωrf, . . .),

B = diag(. . . ,−∆p + 2ωrf,−∆p,−∆p − 2ωrf, . . .),

Ωp = diag(. . . ,
Ωp

2
,
Ωp

2
,
Ωp

2
, . . .),

Ωc = diag(. . . ,
Ωc

2
,
Ωc

2
,
Ωc

2
, . . .),

and

C =



. . .
...

Σ−∆R + 2ωrf −Σ/2 0

· · · −Σ/2 Σ−∆R −Σ/2 · · ·
0 −Σ/2 Σ−∆R − 2ωrf

...
. . .


.

The notation diag(. . . , i, j, k, . . .) represents the infinite dimensional, diagonal

matrix whose diagonal components are . . . , i, j, k, . . ..

From the structure of the matrix H3F , the manifolds of the intermediate

and excited states, which have governed by the block matrix containing B,

C and Ωc (and their hermitian conjugates), is similar to that of two-level

rf-dressed system. Note that the detuning between |b, n〉 and |c, n〉 is kept

constant at Σ−∆c in this situation. The complication of three-level system

arises because the n-th harmonic Floquet state from the intermediate state

manifold couples to the n-th harmonic Floquet state of the ground state

manifold via the coupling Ωp. This effectively means that |a, n〉 can couple

to any Floquet states of the excited state manifold via |b, n〉; for example,

|a, 0〉 couples with |c, 2〉 by making four transitions; namely, the two-photon

transition (|a, 0〉 → |b, 0〉 → |c, 0〉) from the laser fields and the two-photon
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transition (|c, 0〉 → |c, 2〉) from the rf field. For zero rf-field, the system

reduces to an infinite number of three-level systems, which are independent

of one another. Thus, in the zero-field limit, we obtain an infinite set of

identical solutions from an infinite set of three-level systems. This means

that the solution can be obtained by solving just one of these infinite systems.

In the basis where C is diagonalized, C and Ωc, change to,

C′ =



. . .
...

Σ−∆R + 2ωrf 0 0

· · · 0 Σ−∆R 0 · · ·
0 0 Σ−∆R − 2ωrf

...
. . .


, (6.45a)

Ω′
c =



. . .
...

ΩcJ0/2 ΩcJ−1/2 ΩcJ−2/2

· · · ΩcJ+1/2 ΩcJ0/2 ΩcJ−1/2 · · ·
ΩcJ+2/2 ΩcJ+1/2 ΩcJ0/2

...
. . .


, (6.45b)

where the structure of the new Floquet Hamiltonian, H′3F , is the same as H3F ,

given by Equation (6.44). We denote the Floquet states and quasienergies

associated with H′3F as |i′, n〉 and ε′i,n, respectively. Thus we could solve

this system as if |a′, 0〉 interacts with |b′, 0〉 via the coupling Ωp, and |b′, 0〉
interacts with |c′, n〉 via the coupling ΩcJn. This is the N -level approximation

of the system; it will be discussed in Subsection 6.4.2.

The eigenvalue (quasienergy) spectrum of H3F (or H′3F ) is typically compli-

cated, and has no general expression. However, we can try to understand the

structure of the eigenvalue from the view point of perturbation theory and the

property of the Floquet Hamiltonian. The first feature of the quasienergy is

the repetition in frequency space due to the periodic Hamiltonian. There are

three quasienergy combs associated with the three atomic states of the sys-

tem. Let ε′′a,n, ε′′b,n and ε′′c,n be the quasienergies of the n-th harmonic dressed
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Floquet states |a′′, n〉, |b′′, n〉 and |c′′, n〉. (The double prime means that the

Floquet states and quasienergies are the eigenvectors and eigenvalues of H3F

or H′3F once their matrices have been diagonalised.) If the quasienergies of

the zeroth harmonic components are known, then

ε′′a,n = ε′′a,0 + 2nωrf, (6.46a)

ε′′b,n = ε′′b,0 + 2nωrf, (6.46b)

ε′′c,n = ε′′c,0 + 2nωrf. (6.46c)

This is shown in Figure 6.8(a), which is a plot of the eigenspectrum of H3F

(or H′3F ) against probe detuning, ∆p/2π. The ground state manifold is shown

as horizontal lines at the level of 2nωrf. The intermediate state manifold is

the group formed by the crossed line and its harmonics, while those of the

excited state manifold are labelled by circled lines. For small Ωp and the

system satisfies Equation (6.36) and (6.42), the intermediate and excited

states manifolds are approximately an isolated system; and hence, using

perturbation theory, the quasienergies of |b′′, 0〉 and |c′′, 0〉 are

ε′′b,0 = −
∞∑

n=−∞

(ΩcJn/2)2

(Σ−∆c − 2nωrf)
, (6.47a)

ε′′c,0 = Σ−∆c +
∞∑

n=−∞

(ΩcJn/2)2

(Σ−∆c − 2nωrf)
. (6.47b)

Note that Equation (6.47) is only valid when |Σ−∆c± 2nωrf| � |ΩcJn|, i.e.,

no degeneracy occurs between these two manifolds. For the degenerate case,

we can obtain ε′′b,0 and ε′′c,0 from Equation (6.27) and (6.28). The quasienergies

of |b′′, n〉 and |c′′, n〉 are

ε′′b,n = −∆p + ε′′b,0 + 2nωrf, (6.48a)

ε′′c,n = −∆p + ε′′c,0 + 2nωrf. (6.48b)

The quasienergy of |b′′, 0〉, calculated from Equation (6.48), is shown as the

crossed line in Figure 6.8(a), while those of |c′′, 0〉 and |c′′,±1〉 are shown as

the circled lines in the same figure. The positions of the resonances occur
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Figure 6.8: The quasienergy spectrum and the Im[〈ρab(∞)〉] lineshape calculated

from H′3F are shown in (a) and (c) (thick blue line), while the corresponding results

calculated from H3N are shown in (b) and (c) (thin pink line), where the sideband

is taken upto N = 4. The parameters used in this figure are Ωp = 2π × 1 MHz,

Ωc = 2π× 8 MHz, Σ = 2π× 35 MHz, ∆c = 0 MHz, ωrf = 2π× 25 MHz, Γb = 2π× 6

MHz, Γc = 2π × 0.01 MHz and γp = γc = 2π × 0.1 MHz. The crossed and circled

lines in (a), calculated from Equation (6.48), shows the quasienergies of |b′′, 0〉,
|c′′, 0〉 and |c′′,±1〉, respectively. The eigenspectrum of the N -level approximation

is shown in plot (b). The locations of the resonances (or avoided crossings) in (b)

are different from (a) due to the symmetry breaking of the intermediate manifold.

The vertical dot-dashed lines show the position of the resonances calculated from

Equation (6.47).
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where these lines from the intermediate and excited states manifolds cross the

quasienergy of the ground state level. This is shown as the avoided-crossing

in Figure 6.8(a). These avoided-crossings are at

∆p(b′′, n) = ε′′b,0 + 2nωrf, (6.49a)

∆p(c′′, n) = ε′′c,0 + 2nωrf. (6.49b)

Figure 6.8(c) shows the resonance structure of the average of Im[ρab] (propor-

tional to the absorption coefficient) against probe detuning, ∆p/2π. Though

a quantitative description of these resonances would be excessively difficult,

we can understand the formation of these resonances qualitatively. When

the ground state manifold is far off-resonance with the intermediate and ex-

cited state manifolds, the dressed states of the ground state manifold are

asymptotically equal to |a′, n〉, while the dressed states of the intermediate

and excited state manifolds are approximately superposition of |b′, n〉 and

|c′, n〉. The mixing angle of these dressed states are determined by Ωc and

Σ−∆c. Let us consider the mixing between |a′, 0〉, |b′, 0〉, |c′, 0〉 and |c′,±1〉
as these states are shown in Figure 6.8(a). Since |b′, 0〉, |c′, 0〉 and |c′,±1〉 are

far-detuned from one another, the dressed states are asymptotically equal

to their own bare states, i.e., |i′′, n〉 → |i′, n〉, with a little amount of the

other bare states mixed in. When ∆p is tuned such that one of these dressed

states approaches |a′′, 0〉, they start coupling to each other in the same way

like two-level interaction with the effective Rabi coupling [71, 72]. Since

|b′′, 0〉 contains a large percentage of |b′, 0〉, this results in the widest reso-

nance (∼ Γb) close to the zero detuning. While the resonance of |c′′, 0〉 with

|a′′, 0〉 is smaller in height and narrower in its width (∼ Γc). The generation

of the next sidebands are due to the interaction between |c′′,±1〉 and |a′′, 0〉,
where the physics is the same. However, the heights of these sidebands can

be very small compared to those of |b′′, 0〉 and |c′′, 0〉. This is because Ωc is

scaled by the first order Bessel function, whose value is less than 1. In addi-

tion to Ωc, the detuning between |b′, 0〉 and |c′, n〉 has a significant effect to
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the effective Rabi coupling as it inversely proportional to the detuning. Both

ΩcJ+1 and large detuning cause the dramatic suppression of |c′′, 1〉 resonance.

The dashed-dotted vertical lines shows the resonance position predicted from

Equation (6.49).

In Figure 6.8(a), there is a line crossing the ground state level at ∆p ≈ 50

MHz. This line represents the Floquet state from the intermediate state

manifold, |b′′, 1〉. However no resonance is observed at this position in Fig-

ure 6.8(c). This is because the Floquet sidebands from the intermediate state

are so weak that they do not exhibit the resonance structure. The existence

of these sidebands will become important when Ωc is large such that the

sideband of the intermediate state is induced by the sideband of the excited

state. This will be discussed in Subsection 6.4.2.

From the results shown in this subsection, it is clear that if the system satisfies

the same conditions as imposed in the rf-dressed two-level system, we would

be able to reduce this infinite system with the N -level approximation, where

we only concern the manifold of the excited state.

6.4.2 N-level approximation

If Inequalities (6.36) and (6.42) are fulfilled, the Floquet states in the excited

state manifold do not overlap with one another, i.e., the Floquet states are

well-defined in frequency space; and hence the N -level approximation is a

good description of the rf-dressed three-level system. Results for this N -level

system are shown in Figure 6.8(b), where Ωp couples |a′, 0〉 with |b′, 0〉, and
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ΩcJn couples |b′, 0〉 to |c′, n〉. The Hamiltonian of the system is

H3N =



0 Ωp/2 · · · 0 0 0 · · ·

Ωp/2 −∆p · · · ΩcJ−1/2 ΩcJ0/2 ΩcJ+1/2 · · ·

0
...

. . .
...

...
... · · ·

0 ΩcJ−1/2 · · · Σ−∆R + 2ωrf 0 0 · · ·

0 ΩcJ0/2 · · · 0 Σ−∆R 0 · · ·

0 ΩcJ+1/2 · · · 0 0 Σ−∆R − 2ωrf · · ·
...

...
...

...
...

...
. . .



.

(6.50)

Having determined the Hamiltonian, the equations of motion for this N -level

system are

ρ̇aa = Γbρbb +
iΩp

2
(ρab − ρba), (6.51a)

ρ̇bb = −Γbρbb +
N∑

k=−N

Γcρkk −
iΩp

2
(ρab − ρba)

+
iΩc

2

N∑
k=−N

Jk(ρbk − ρkb), (6.51b)

ρ̇ab = −
(

Γb
2

+ γb + i∆p

)
ρab +

iΩp

2
(ρaa − ρbb) +

iΩc

2

N∑
k=−N

Jkρak, (6.51c)

ρ̇ak = −
[

Γc
2

+ γb + γc + i(∆p + ∆c − Σ + 2kωrf)

]
ρak

− iΩp

2
ρbk +

iΩcJk
2

ρab, (6.51d)

ρ̇bk = −
[

Γb + Γc
2

+ γc + i(∆c − Σ + 2kωrf)

]
ρbk +

iΩcJk
2

(ρbb − ρkk)

− iΩc

2

N∑
j=−N
j 6=k

Jjρjk −
iΩp

2
ρak, (6.51e)

ρ̇jk = −(Γc − 2i(j − k)ωrf)ρjk −
iΩcJj

2
ρbk +

iΩcJk
2

ρjb, (6.51f)

where a ≡ |a′, 0〉, b ≡ |b′, 0〉, and j(k) ≡ |c′, j(k)〉. The lineshape of

Im[ρab(∞)] is obtained when the system reaches the steady state solution.
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Figure 6.8(c) shows the absorption lineshape (thin pink line) obtained using

the N -level model, and the eigenspectrum is plotted in Figure 6.8(b). The

similar structure of both lineshape and eigenspectrum with the correct results

suggests that the N -level model is a good approximation. However, the res-

onance positions are slightly different due to the absence of the intermediate

sideband. In this N -level system, the resonant peaks are at,

∆N
p (b′′, 0) = −

∞∑
n=−∞

(ΩcJn/2)2

(Σ−∆c − 2nωrf)
, (6.52a)

∆N
c (c′′, n) = Σ−∆c − 2nωrf

+
(ΩcJn/2)2

(Σ−∆c − 2nωrf)
. (6.52b)

These equations are valid for small Ωp and no degeneracy is found in the

system. It is clear that the main resonance of |b′′, 0〉, obtained from Equa-

tion (6.52a), occurs at the same position as that of the actual result. However,

the N -level approximation does not correctly predict the resonance positions

of the sidebands of the excited state manifold as the contribution from the

intermediate state manifold is neglected. To correct this we need to compen-

sate the difference of the quasienergies of |c′, n〉, i.e., the diagonal elements

of the excited state manifold of H3N as described in Subsection 6.2.3. After

frequency compensation, the diagonal elements of the Rydberg manifold are

[H3N ]nn ≈ Σ−∆R − 2nωrf +
∑
k 6=n

(ΩcJk/2)2

Σ−∆c − 2kωrf

. (6.53)

The dressed state dynamics of this system can be understood as follows. The

dressed state |b′′, 0〉, formed by |a′, 0〉, |b′, 0〉 and |c′, n〉, approximately equal

to |b′, 0〉 when |b′, 0〉 is far-off resonance with |a′, 0〉 and |c′, n〉. Using similar

argument, |a′′, 0〉 is approximately by |a′, 0〉 and |c′′, n〉 is approximately by

|c′, n〉. However when any two of these dressed states become close to each

other, the effective Rabi coupling couples them and forms a two-level like

interaction. This leads to the resonances observed in the lineshape, shown in

Figure 6.8(c). It should be noted that the heights of the sideband resonances
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produced from the N -level approximation are slightly different from those

of the actual result. This effect is, however, insignificant when we work in

the real atomic system as the dephasing decay is typically 2π× (1− 2) MHz

[25]. At this values of the dephasing decay, the sideband resonances are

suppressed and the deviation between the N -level model and the actual result

becomes negligible. However, it is very interesting to study the origin of this

deviation and it turns out that the origin of this difference in height comes

from the fact that the Floquet states of the intermediate manifold are not

taken into account. This is one of the important features for the presence

of the intermediate state manifold. Thus, to some extent, the intermediate

manifold is important to the system and cannot be neglected. This presence

of the sidebands of intermediate state will be discussed in the next subsection.

6.4.3 Strong coupling field

Until now, we have discussed the properties of the rf-dressed three-level sys-

tem in the regime where Equation (6.36) and (6.42) are satisfied. Recall that

these conditions physically mean that the time scale on which the system

evolves must be longer than that of the rf field and the Floquet states do not

overlap due to the natural linewidths of the system. However, Ωc, which we

have used in the condition throughout the discussion so far, does not actu-

ally represent the time scale of the system evolution. This means that there

should be another criterion for the rf-dressed three-level system to exhibit

the manifold feature.

Suppose that we increase Ωc so that it becomes larger than 2ωrf, i.e., the

condition of Equation (6.36) breaks down, it turns out that we still be able

to observe a manifold structure until a certain value has been reached. This

value is associated with the effective Rabi oscillation, i.e., the actual time

scale over which the system evolves. The approximate effective Rabi fre-
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quency is given by ΩpΩc/2Σ [71, 72]; and hence the criterion is

ΩpΩc

2Σ
� 2ωrf. (6.54)

When the condition given by Equation (6.54) fails, the system exhibits no

manifold structure and becomes a usual three-level system, whose excited

state oscillates adiabatically due to the rf field. In term of the lineshape

of Im[〈ρab(∞)〉], we observe the oscillation of the sharp resonance from |c〉.
Thus, when we are in the regime which lies within the conditions set by

Equation (6.36) and (6.54), the N -level approximation, described in the pre-

vious subsection, is invalid. This is because the sidebands in the excited state

manifold overlap with one another, i.e., the sidebands are hidden inside the

zeroth resonance. The break down of N -level approximation is illustrated

in Figure 6.9, where Ωc = 2π × 30 MHz in (a) and Ωc = 2π × 60 MHz in

(b). It is clear that, when Ωc approaches 2ωrf, the deviation between the

results from N -level approximation (pink solid line) and the actual results

from Equation (6.4) (green solid line) becomes significant and the lineshape

structure changes in both the positions and the heights of the resonances. In

(a), since Ωc is still less than 2ωrf, the resonance patterns from both results

are not much different. The main resonances due to the interaction with

intermediate state from both results are approximately the same. However,

when Ωc goes beyond 2ωrf, in (b), the actual result becomes more compli-

cated and the pattern of the actual result is completely different from that

of the N -level approximation.

Not only does the N -level fail to predict the positions of the resonances, it

also fails to predict the existence of the resonances due to the intermediate

manifold. In the actual lineshape, the sidebands due to the intermediate

manifold are visible, as shown in Figure 6.9(a) and (b). In (a), one of the

sideband from intermediate manifold is shown as a small resonance (labelled

by 1), just next to the right of the sideband of the Rydberg state (labelled

by 2). The separation between the sidebands from the intermediate manifold
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Figure 6.9: Comparison of three resonance lineshapes - the correct result

calculated from Equation (6.4) (pink solid line), the N -level approximation

(green solid line), and the (N +N)-level approximation result (black dashed

line), in which the sidebands from the intermediate level are taken into ac-

count. The set of parameters used in the plot are the same as those used in

Figure 6.8, except that Ωc = 2π × 30 MHz in (a) and Ωc = 2π × 60 MHz in

(b). For large Ωc, compared to 2ωrf, the N -level approximation clearly breaks

down as shown in the figure. The N -level approximation fails to predicts both

positions and heights of the resonances. To recover the N -level approxima-

tion, the sidebands from the intermediate level need to be included; thus we

refer to the new model as the (N + N)-level approximation. The sideband

resonances from the intermediate level are clearly observed in the results (la-

belled by 1 in the figure), as well as the sideband resonances from the excited

(Rydberg) state (labelled by 2).
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is exactly 2ωrf = 2π × 50 MHz as expected from Floquet theory. In (b), the

sideband of the intermediate manifold (labelled by 1) is clearly observed since

it does not overlap with the sideband from the Rydberg manifold (labelled

by 2) as observed in the case shown in (a). The resonance structure of the

system, now, becomes more profound due to the manifold from the interme-

diate state. Again the frequency separation between the adjacent resonances

in the same manifold is exactly 2ωrf as in (a).

The appearance of the resonances due to the intermediate manifold suggests

that, in order to recover the validity of the N -level approximation, we need

to include the sidebands from the intermediate state into the model. Since

this effect happens when Ωc is larger than 2ωrf, and it appears as if the

intermediate state forms the manifold structure due to the excited state

manifold, we refer to this effect as the induced sidebands effect. Note that

this effect is not due to the intermediate state’s interaction with the rf field

to form the manifold, as the Stark shift of the intermediate state cannot be

observed. When the intermediate sidebands are taken into account, we refer

to the resulting model as the (N+N)-level approximation. The results of this

new approximation are shown in Figure 6.9 as black dashed line. Since the

manifold of the intermediate state is kept in the approximation, the symmetry

between the intermediate and Rydberg manifolds are not broken. And the

positions of the resonances obtained from this new approximation are exactly

the same as those of the actual results. Not only does the (N + N)-level

approximation predict the correct resonance positions, the height mismatch

feature, encountered in the N -level approximation, also disappears.

In the next section, we will use the N - and (N +N)-level approximations to

explain the formation of the Rydberg darks states and compare the results

with the actual results.



Chapter 6. Sidebands shifts and induced sidebands in rf-dressed Rydberg
systems 144

6.4.4 Electromagnetically induced transparency

Another important feature of the ladder system is the formation of dark

states which do not contain the intermediate state of the system and the

accompanying occurrence of EIT [3, 71]. In this subsection, we study EIT in

both cold atomic ensembles and thermal vapour.

Cold atomic ensembles

In cold atomic ensembles, the atomic velocity is approximately zero, i.e., all

atoms are approximately at rest4. Thus the resonance lineshape is given by

Im[〈ρij(∞)〉]. The typical lineshape for EIT is the absorption lineshape as

this lineshape gives the information about the transparency of the ensembles.

For Ωc small compared to 2ωrf, the system is well described by the N -level

approximation. With this approximation the formation of the dark states is

understood as follows. The dark states, in this system, are the states that

do not contain the intermediate state |b′, 0〉. To form the dark state, any

three bare states, i.e., |a′, 0〉, |b′, 0〉 and |c′, n〉, must be nearly on-resonance

with one another at the same time as it is a three-level interaction. For

the configuration in Figure 6.8(c), we cannot observe the dark state EIT

in the resonance lineshape as the intermediate state, |b′, 0〉, is always off

resonance with the Floquet states in the Rydberg state manifold, |c′, n〉. In

order to create a three-level interaction, we scan the coupling detuning (∆c),

rather than that of the probe laser, and we tune the probe detuning to zero

(∆p = 0). With this configuration, the ground state of the system is always

on-resonance with the intermediate state. The dark state is formed when ∆c

is scanned such that, the ground, intermediate and one of the Floquet states

are on-resonance at the same time. The EIT result of N -level approximation,

for Ωc = 2π × 8 MHz, is shown in Figure 6.10(a) as the red solid line. In

the figure, the zeroth order resonances at Σ corresponds to the dark state,

4For the discussion on this topic, see Chapter 2.
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Figure 6.10: Im[〈ρab(∞)〉] against ∆c/2π for (a) Ωc/2π = 8 MHz, (b)

Ωc/2π = 30 MHz and (c) Ωc/2π = 60 MHz. The set of parameters used

in the calculation are the same as in Figure 6.8, except that ∆c is scanned

instead of ∆p. The probe detuning is set to zero, as to make the ground

state on resonance with the intermediate state. In (a), the dark states are

observed as EIT features. The detunings at which the resonances occur are

slightly shifted from the two-photon Raman condition by δn, given by Equa-

tion (6.56). In (b), the EIT resonances are broadened due to power broaden-

ing and the shifts δn increase as Ωc increases. In (c), the EIT resonances are

so broadened that they saturate and the flat background absorption in (a)

becomes EIA resonances. The red curves show the results from the N -level

approximation, while those in black are the actual results. The dashed blue

lines refer to the case where the system contains only three levels, i.e., the

ground, the intermediate and the Rydberg state. For large Ωc, the N -level

approximation clearly breaks down.
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formed from |c′, 0〉, and the next two resonances are formed from |c′,±1〉 and

so on. The actual EIT result calculated from Equation (6.4) is shown as the

black solid line in Figure 6.10(a). The blue dashed line is the EIT lineshape

calculated from the three-level system, containing |a′, 0〉, |b′, 0〉 and |c′, 0〉.

Note that the positions of the n-th sideband resonances, from the exact re-

sults (black solid line), do not occur at ∆c = Σ − 2nωrf as predicted from

the N -level approximation. In fact there is a slight shift in frequency which

displaces the sidebands towards the zeroth order resonance. Using pertur-

bation theory, the three-level interaction of the n-th resonance is given by a

3× 3 matrix 
0 Ωp/2 0

Ωp/2 −δn ΩcJn/2

0 ΩcJn/2 Σ−∆c − 2ωrf + δn

 , (6.55)

with

δn =
∑
k 6=n

(ΩcJk/2)2

2ωrf(n− k)
. (6.56)

The EIT resonance occurs when Σ−∆c−2ωrf +δn = 0, i.e., ∆n
c = Σ−2nωrf +

δn. However, the N -level approximation gives the resonance positions at

∆n
c = Σ−2nωrf. This is because there are no perturbation to |c′, n〉 from the

sidebands of the intermediate state. Another difference between the actual

and N -level approximation results is the depth of the sidebands, which is too

large in theN -level approximation. This is because the effect of the sidebands

from the intermediate state is not included as discussed in Subsection 6.4.3

It is interesting to note that for a large value of Ωc, the Im[〈ρab(∞)〉] line-

shape shows the effect of enhanced absorption instead of enhanced trans-

mission. This effect can be explained as follows. Increasing Ωc results in

two components, namely, the power broadening of the dark state resonances

and the increase in the shift δn, as seen in Figure 6.10(b). If one further

increases Ωc, the dark state resonances are so much broadened that they

saturate and become a background of the lineshape. On the other hand,
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the flat background in (a) is enhanced and becomes absorption resonances

as shown in Figure 6.10(c). These enhanced absorption peaks occur when

the ground state interacts with the manifold of the dressed states formed by

the intermediate and Rydberg states. This is a two-level like interaction. If

there were no rf fields, the zeroth order resonance would be broadened and

become the background of the lineshape, without any enhanced absorption

feature as shown by the blue dashed line in Figure 6.10(a) to (c).

Thermal atomic ensemble

In thermal vapours, the atomic velocity in the system is distributed according

to the Maxwell-Boltzmann distribution, which is given by Maxwell-Boltzman

distribution, namely, Equation (3.8c). Hence each atom in the system sees

different values of probe and coupling frequencies due to the Doppler shift

effect. The total lineshape is the velocity average of the atomic velocity in

the system.

To calculate the total lineshape, we assume that the probe and coupling lasers

are set in counter-propagating direction in one dimension. Suppose that an

atom moving with the speed v in the direction towards the probe laser, it

sees the frequency of the probe laser is upshifted by kpv, where kp = 2π/λp

and λp is the wavelength of the probe laser. Thus the probe detuning is also

upshifted to ∆p + kpv. Similarly, the coupling detuning is downshifted to

∆c − kcv, where kc = 2π/λc and λc is the wavelength of the coupling laser.

Then the total lineshape is given by solving the equations of motion with the

replacement of ∆p and ∆c by ∆p + kpv and ∆c − kcv, respectively, and then

averaging ρij over the velocity space [84]. This is,

〈ρij(∆p,∆c,∞)〉 =

∫ ∞
−∞

f(v)〈ρij(∆p + kpv,∆c − kcv,∞)〉dv, (6.57)

where 〈ρij(∆p + kpv,∆c − kcv,∞)〉 is defined as in Equation (6.5).

Figure 6.11 shows the EIT lineshapes calculated using the N -level approxi-
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Figure 6.11: Figures (a) and (b) shows the EIT lineshapes calculated us-

ing N -level approximation (dotted lines) and the actual lineshape calculated

from Equation (6.4) with Doppler averaging (solid lines) for Ωc = 2π × 8

and 2π × 30 MHz, respectively. The lineshapes are calculated for 85Rb at

the temperature 40 ◦C, and the probe and coupling lasers are in the counter-

propagating configuration. The wavelengths of the probe and coupling lasers

are 780 and 480 nm, respectively. The other parameters are the same as

used in Figure 6.10. In figure (a), both results are in good agreement as

the frequency shift is approximately 100 MHz. However, the frequency shift

becomes significant for large value of Ωc. This is illustrated in figure (b).

mation (dotted lines) and the actual lineshape calculated from Equation (6.4)

(solid lines) for different Ωc, while the other parameters are the same as those

used in Figure 6.8. We assume that λp = 780 nm and λc = 480 nm. The

thermal cell contains atoms of 85Rb at the temperature of 40 oC. In figure (a)

where Ωc = 2π×8 MHz, the N -level approximation is a good approximation

for the actual lineshape. Note that the frequency separation between adja-

cent EIT resonances is not 2ωrf as the distance is scaled by a factor of kp/kc
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due to the Doppler averaging. To understand the shifting mechanism of the

resonance, we need to use that fact that each EIT resonance corresponds to

the velocity class such that ∆p +kpv = 0 and ∆c−kcv−Σ+2nωrf = 0 at the

same time. Thus, for a fixed value of ∆c, the probe detuning which satisfies

these conditions is,

∆n
p =

kp

kc

(Σ−∆c − 2nωrf). (6.58)

From Equation (6.58), it is clear that the separation between any adjacent

EIT dips is 2ωrfkp/kc. Note that Equation (6.58) is for the results calculated

using the N -level approximation. For the actual results calculated from

Equation (6.4), the condition for ∆c changes to ∆c−kcv−Σ+2nωrf−δn = 0,

where δn is given by Equation (6.56). Thus Equation (6.58) changes to

∆n
p =

kp

kc

(Σ−∆c − 2nωrf + δn). (6.59)

However, the change in frequency between Equation (6.58) and (6.59) is

small. For the typical parameters used in Figure 6.11(a), the change is ap-

proximately 100 kHz. Though the change is tiny, this shifting in frequency

can be observed in the differential lineshape, i.e., the difference between the

actual and the calculated EIT lineshapes as shown in Figure 5.5 in Chapter 5.

For large value of Ωc, the N -level approximation breaks down as shown in

Figure 6.11(b), where Ωc = 2π × 30 MHz. There is a clear difference in

resonance positions between the actual lineshape (solid line) and the N -level

approximation lineshape (dashed line). Moreover, the EIT resonances are

broadened and have large widths because of the power broadening effect. The

validity of N -level approximation can be recovered if we include the sidebands

of the intermediate state into the model and the result is in agreement with

the actual result (not shown in the figure).
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6.5 Conclusions

In this chapter, we have characterised the conditions for which the effect of

the rf field is to turn the eigenstate of the atom into a manifold of quasienergy

states. It was shown that the manifold structure is well-defined when the rf

interaction is much faster than that of the system evolution; this gives the

condition in Equation (6.36). In the Floquet states picture, this means that

there are no overlaps among these Floquet states; and hence, we observe the

well-defined resonance sidebands in the population transferred lineshape of

the two-level system. This picture of stationary, well-defined Floquet states

has been known from the previous work [25, 47, 51, 53, 142]. We also found

the resonance shift, similar to Bloch-Siegart shift [144], which is the result

of the interaction between the well-defined sidebands. This effect does not

appear to have yet been discussed elsewhere. When the condition (given

by Inequality (6.36)) breaks down, the sidebands start overlapping with the

zeroth resonance, and the sideband resonances disappear. In addition, the

coherence property of the system must be maintained during the rf interac-

tion; this is the requirement set by Equation (6.42). This condition prevents

the overlap between the sidebands due to the their width being too large.

When the coupling Rabi frequency becomes larger such that Equation (6.36)

breaks down, the N -level approximation is no longer a good approximation

for the actual system. However, the effect of the manifold structure of the

excited state is still observed in the absorption lineshape as shown in Fig-

ure 6.9. In the limit where Ωc is larger than that determined by Equation

(6.36) but less than that determined by Equation (6.54), the N + N -level

approximation is a good approximation to the actual system. In the N +N -

level approximation, we include the manifold of the intermediate state into

the model. It appears as if the intermediate state forms the manifold struc-

ture due to the excited state manifold when Ωc is larger than 2ωrf . We refer

to this effect as the induced sidebands effect. Not only does the inclusion
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of the intermediate sidebands improve the absorption lineshapes, but the

heights of the resonances are, also, corrected.



Chapter 7

Microwave dressing of Rydberg

dark states

In the previous two chapters, we have shown that Rydberg states can effec-

tively turn into a manifold when they interact with a far-off resonance radio

frequency (rf) field. The manifold structure of the Rydberg states can be

useful in the context of precision measurement of electric field [25]. In this

chapter we study the effect of resonant microwave fields on electromagnet-

ically induced transparency (EIT) involving highly excited Rydberg states.

As shall be seen, by adding the microwave into the system, more than one

dark resonance can be created. We also show that the number of the dark

resonances can be controlled by the interference effect of the microwave cou-

plings. This interference occurs at particular ratios between the microwave

Rabi frequencies for the transition between the relevant states. By modelling

the experimental data we show that adding a microwave coupling between

Rydberg states can switch the group index of the sample by ±105. We also

illustrate the appearance of superluminal pulse propagation when the group

index of the medium becomes negative.

152
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Figure 7.1: (a) Schematic of the experimental setup. The probe beam

(driving σ+ transition) and coupling beams (driving σ− transition) counter-

propagate through a cold 87Rb cloud. Microwaves, whose polarisation are in

the x direction, are applied from a perpendicular direction. Since the quan-

tisation axis is pointed in the positive z direction, the microwave field can be

decomposed into σ+ and σ− transitions, as shown in Figure 7.2. The probe

transmission is measured using a single-photon avalanche detector (SPAD).

(b) Simplified level scheme showing microwave coupling between the 46S1/2

and 45P1/2 Rydberg states.

7.1 Experimental set up

Schematics of the experimental set up and of the energy levels scheme are

shown in Figure 7.1. Pritchard et al. performed the experiment on a cloud of

laser-cooled 87Rb atoms using the experimental setup described in [21, 39].

The atoms are loaded into a magneto-optical trap in 1 s and then prepared in

the state 5s 2S1/2 |F = 2,mF = 2〉 by optical pumping. The weak probe beam

(with σ+ polarisation) and the co-axial, counter-propagating beam (with σ−

polarisation) are directed along the +z and −z axes, respectively. The fo-

cused probe beam has a 1/e2 radius of 12 µm at the centre of the MOT. The

corresponding value for the coupling beam is 66 µm. The latter is stabilised

to the 5p 2P3/2 (F ′ = 3) → 46s 2S1/2 (F ′′) transition using an EIT locking
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scheme [140]. The two beams are set up as to perform EIT spectroscopy be-

tween the 5s 2S1/2(F = 2) and 46s 2S1/2(F ′′ = 2) states. Then the additional

microwave field is applied orthogonal to the probe laser axis and its polarisa-

tion is in the x direction. This microwave field is to drive the transition 46s

2S1/2(F ′′ = 2) → 45p 2P1/2(F ′′′ = 1, 2) transition. Such configuration of the

beams and the microwave field leads to microwave coupling of the multiple-

magnetic sublevels, shown as the W-shaped transition in Figure 7.2. The

microwave transition frequency between Rydberg states was calculated us-

ing quantum defects1 from Li et al. [104] and is 44.559 GHz for 46S1/2 →
45P1/2. The weak probe beam is scanned through the 5s 2S1/2(F = 2) and

5p 2P3/2 (F ′ = 3) transition using acousto-optic modulation. The transmis-

sion through the MOT is monitored as a function of probe detuning using

single photon avalanche photodiode (SPAD). For each dataset, the transmis-

sion is repeated over 100 times and the averaged transmission is calculated.

The EIT transmission is then recorded for various microwave powers.

Figure 7.3 shows the evolution of the EIT signal with increasing microwave

power. As the strength of the microwave coupling is increased the EIT peak

undergoes an Autler-Townes splitting due to the dressing of the Rydberg

state. To understand the evolution of the spectra with increasing microwave

power the data is fitted using the model described in Section 7.2. The fits

obtained from the model are also shown in Figure 7.3.

7.2 Theoretical modelling of EIT lineshapes

The experiment is modelled by the ten-level system shown in Figure 7.2

interacting with an EM field given by

E(t) =
1√
2
Epε̂+e−iωpt +

1√
2
Ecε̂−e−iωct +

1

2
Eµx̂e−iωµt + c.c. , (7.1)

1Quantum defect gives the correction to the atomic energy calculated using Rydberg

formula [23].



Chapter 7. Microwave dressing of Rydberg dark states 155

|3|6

2

2

33
5P3/2 (F = 3)

5S1/2 (F = 2)

45P1/2 (F = 1,2)

46S1/2 (F = 1,2)

|1

|2

|4
|5

|7

|8
|9

|10

1

12

1

2 1

Figure 7.2: Schematic of the level scheme used to model the system. Given

the quantisation axis, the microwave field is a superposition of σ±, leading

to the W-shaped couplings, shown by the green dashed lines. The probe

and coupling lasers have the polarisation of σ+ and σ−, respectively. The

hyperfine levels of both 46S1/2 and 45P1/2 are assumed to be degenerate.

where ε̂± are the polarisation unit vectors representing σ± transitions and

x̂ is the polarisation unit vector in the x direction. The first term in Equa-

tion (7.1) represents the probe field, whose amplitude and angular frequency

are Ep and ωp, respectively. The second term represents the coupling field

with amplitude Ec and angular frequency ωc. The third term is the microwave

field with amplitude Eµ and angular frequency ωµ and it propagates in the−y
direction. Setting the quantization axis along +z, the linearly-polarised mi-

crowave field is described as the superposition of ε̂±, i.e., x̂ = (ε̂−− ε̂+)/
√

2,

leading to a W-shaped coupling between the Rydberg states (green dotted

lines in Figure 7.2). The hyperfine splitting between the F ′′ = 1 and 2 Ryd-

berg states is neglected, i.e., states |3〉, |6〉, |7〉 and |10〉, and, |4〉, |5〉, |8〉 and

|9〉, are assumed to be degenerate. This is justified as the typical Rabi fre-

quency of the microwave transition (∼ 10 MHz) is significantly larger than

the hyperfine splitting of the Rydberg levels (about 400 × 2π kHz for 46s

2S1/2 and even less for 45p 2P1/2 [104]).

Applying the rotating-wave approximation and the slowly-varying variables
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transformation, the Hamiltonian of the system is given by H = H0 +HEIT +

Hµ, where

H0 = −∆1 |2〉 〈2| −∆2(|3〉 〈3|+ |6〉 〈6|+ |7〉 〈7|+ |10〉 〈10|)

−∆3(|4〉 〈4|+ |5〉 〈5|+ |8〉 〈8|+ |9〉 〈9|), (7.2a)

HEIT =
~Ωp

2
|1〉 〈2|+ ~Ωc

2
|2〉 〈3|+ h.c., (7.2b)

Hµ =
∑

i={3,5,7,9}

~Ω
(i,i+1)
µ

2
|i〉 〈i+ 1|+

8∑
i=3

~Ω
(i,i+2)
µ

2
|i〉 〈i+ 2|

+
∑

i={4,6}

~Ω
(i,i+3)
µ

2
|i〉 〈i+ 3|+ h.c.. (7.2c)

Here ∆1 ≡ ~∆p, ∆2 ≡ ~(∆p + ∆c), ∆3 ≡ ~(∆p + ∆c − ∆µ) and, ∆p,

∆c and ∆µ are the detunings of the probe, coupling and microwave fields,

respectively. The Rabi frequencies associated with the probe, coupling and

microwave fields, Ωp, Ωc and Ω
(n,m)
µ respectively, are given by

Ωp =

√
2Ep

~
〈2| er · ε̂+ |1〉 , (7.3a)

Ωc =

√
2Ec

~
〈3| er · ε̂− |2〉 , (7.3b)

Ω(i,j)
µ =

Eµ√
2~

(〈i| er · ε̂− |j〉 − 〈i| er · ε̂+ |j〉), (7.3c)

where er is the dipole operator, and, i and j correspond to the magnetic

sublevels of 46S1/2 and 45P1/2. Using the Wigner-Eckart theorem, the Rabi

frequency of the microwave field reduces to

Ω(i,j)
µ = Ωr

µ × (−1)m
i
F

√
(2F i + 1)(2F j + 1)

×

 J i J j 1

F j F i 3/2


 Li Lj 1

J j J i 1/2


 Lj 1 Li

0 0 0


×

 F j 1 F i

mj
F −1 −mi

F

−
 F j 1 F i

mj
F 1 −mi

F

 , (7.4)

where Ωr
µ =

√
6Eµ/~ × 〈46S1/2|er|45P1/2〉 contains the radial integral as

defined in Chapter 3. Note that Ωr
µ is one of the free parameters whose value

is determined by the minimum residuals fit.
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The equation of motion for the density matrix ρ of the ten-level system is

given by
∂ρ

∂t
= − i

~
[H, ρ] + L(ρ) + Ld(ρ), (7.5)

where L(ρ) =
∑

i ciρc
†
i − (c†iciρ + ρc†ici)/2 is the Lindblad superoperator

[90] describing spontaneous decay and Ld(ρ) is a dephasing matrix which

accounts for the linewidth of the EM fields. The natural decay linewidths of

the 46S1/2 and 45P1/2 states are approximately 2 kHz and can be neglected,

so only the decay from 5P3/2 to 5S1/2 at a rate Γ/2π = 6 MHz is included,

using the operator c =
√

Γ |1〉〈2|. In addition to spontaneous emission, the

dephasing due to the finite linewidth of the probe and coupling fields (giving

rise to dephasing rates γp and γc, respectively) is included, as well as the

dephasing of the Rydberg states with respect to the other states (rate γRy).

The latter is most likely due to fluctuating electric and magnetic stray fields.

The linewidth of the microwave source is negligible. For EIT the important

linewidth is the relative linewidth γrel of the two-photon transition between

the probe and coupling laser, typically taken equal to γp + γc [84]. However,

for the EIT locking scheme used to stabilise the coupling laser transition

[140], γrel is actually less than the linewidth of either laser. The resulting

dephasing matrix Ld(ρ) is given by

Ld(ρ) = −
∑
i,j

γijρij |i〉 〈j| , (7.6)

where the laser-induced dephasing rates γij are obtained from summing over

the linewidth of all fields coupling |i〉 to |j〉. Replacing γp + γc by γrel for the

reason above, the total dephasing rates are given by the following equation:
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)
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The steady state solution of Equation (7.5) is found by setting ∂ρ/∂t = 0.

Within the semiclassical theory described in Chapter 2, the susceptibility of

the system, χ(∆p), is proportional to the steady state coherence, ρs
21, between

the intermediate and ground states, i.e.,

χ(∆p) = −2Nd2
21

~ε0Ωp

ρs
21 , (7.8)

where N is the atomic density, d21 = 〈2| er · ε̂+ |1〉 = 1/
√

3× 5.177 ea0 [110]

is the dipole matrix element for the probe transition and the superscript s

denotes the steady state solution. The transmission through the medium, T,

is then given by the Beer-Lambert law

T = exp

(
2NLd2

21kp

~ε0Ωp

Im[ρs
21]

)
, (7.9)

where L is the length of the atomic cloud and kp = 2π/λp is the wavenumber

of probe laser. At the relatively low probe powers considered in this work, ρs
21

is independent of γc; instead it is only through γrel that the linewidth of the

coupling laser enters. Setting the column density, CD≡ NL and assuming the

weak probe limit, the transmission becomes a function of eight parameters,

i.e., Ωc,Ω
r
µ,∆c,∆µ, γp, γrel, γRy, and CD which can be determined from fitting

experimental data.

We begin by fitting Equation (7.9) to data using the probe laser only, re-

ducing the system to two-levels to obtain CD and γp/2π (1.5×1013 m−2 and

0.33 MHz, respectively). Subsequently, we fit the three-level EIT transmis-

sion, which determines the quantities Ωc/2π, ∆c/2π and γrel/2π (5.5 MHz,

−1.9 MHz and 0.14 MHz, respectively). Finally the remaining three vari-

ables, related to the microwave dressing, Ωr
µ, ∆µ and γRy are determined

using the ten-level model. Ωr
µ scales proportional to the applied microwave

field as expected, ∆µ/2π fluctuates between −0.2 and 0 MHz and γRy/2π is

0.3 MHz.

Using this method we obtain excellent agreement between the theoretical

prediction (red solid curve) and the experimental data (black solid curve)
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Figure 7.3: EIT spectra with increasing microwave coupling. The microwave

Rabi frequencies, Ωr
µ from the fit parameters, are (a) 0, (b) 2.2, (c) 3.6,

(d) 6.8 (e) 12.2, and (f) 21.0×2π MHz; these values match the scaling of the

microwave power in the experiment, although the microwave electric field

cannot be measured. Adding microwave fields into the system causes the

dark resonance (EIT resonance) to split to two, similar to the Autler-Townes

splitting [43], and the separation of the EIT resonances increase with the

strength of the microwave coupling.

for each microwave power, as shown in Figure 7.3. The calculated lineshape

is sensitive to the number of levels included in the model. Removing the

states of 5s 2S1/2 F
′′ = 1 and 5p 2P1/2 F

′′′ = 1 breaks down the symmetry of

the microwave couplings, leading to anomalous resonances, i.e., a single EIT

resonance in the three-level system splits into five EIT resonances, which are

not observed in the experiment. In fact, for the ten-level system, one would

expect the ground state, |1〉, to interact with the nine dressed states, which

are formed from |2〉 , |3〉 , . . . , |8〉 and |9〉; and hence, eight EIT resonances (or
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δ1
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Ωba

Ω1Ω2

Ω3Ω4

|b

|e

|c|d

Figure 7.4: Schematic of the level scheme used in the five-level toy-model

systems. The ground state, |a〉, couples to the intermediate state, |b〉, via

the weak coupling Ωba. There are two pathways with which |b〉 can couple to

|e〉: either via |c〉 or |d〉, in which the energies of |c〉 and |d〉 are degenerate.

The Rabi frequencies for the coupling between |b〉, |c〉, |d〉 and |e〉 are Ωj,

where j =, 1, 2, 3, 4 and their orders are shown in the diagram. The detunings

δ1, δ2 and δ3 are also defined as shown in the diagram. The natural linewidths

of |b〉, |c〉 (|d〉), and |e〉 are Γ1, Γ2, and Γ3, respectively.

nine absorption resonances) are expected to be observed. However, due to the

destructive interference of the microwave couplings, only two EIT resonances

are predicted from the theory and this is consistent with the experimental

data. This destructive interference is the main subject of the next section.
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7.3 Destructive interference of the microwave

couplings

As mentioned in the previous section, due to the destructive interference

between the microwave couplings, we observe only two EIT resonances in

the experiment, not eight as expected using the dressed state formalism.

The suppression of the EIT resonances is caused by the interference between

different microwave coupling paths. For example, in the ten-level model

|3〉 couples to |6〉 via either |4〉 or |5〉. To understand this phenomenon, we

consider the simpler five-level system shown in Figure 7.4. The ground state,

|a〉, couples to the intermediate state, |b〉, via the Rabi frequency Ωba. The

energy levels of |b〉, |c〉, |d〉 and |e〉 form a diamond-shaped configuration,

and |c〉 and |d〉 are degenerate in energy. From the intermediate state, |b〉,
there exist two paths in which |b〉 can couple to |e〉: |b〉 Ω1−→ |c〉 Ω3−→ |e〉 and

|b〉 Ω2−→ |d〉 Ω4−→ |e〉. The Rabi frequencies, Ωj (j = 1, 2, 3, 4), represents the

strength of the coupling between the corresponding states. The Hamiltonian

of this system is given by H5L = H0 +Hint, where

H0 = −~δ1 |b〉 〈b| − ~ (δ1 + δ2) (|c〉 〈c|+ |d〉 〈d|)

− ~(δ1 + δ2 + δ3) |e〉 〈e| , (7.10a)

Hint =
~Ωba

2
|a〉 〈b|+ ~Ω1

2
|b〉 〈c|+ ~Ω2

2
|b〉 〈d|

+
~Ω3

2
|c〉 〈e|+ ~Ω4

2
|d〉 〈e|+ h.c.. (7.10b)

δ1, δ2 and δ3 are the detunings defined as shown in Figure 7.4. For simplicity,

assuming that Γ2 = Γ3 = 0 MHz and all dephasing decays are zero, the

equations of motion for the system is obtained by applying Equation (7.5)

to the Hamiltonian H5L with c =
√

Γ1 |a〉 〈b|, representing the natural decay

from |b〉. In the weak probe limit, the steady state of ρab, ρac, ρad, and ρae
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Table 7.1: The expressions for the dressed states and their associated

eigenenergies when Ω∗2Ω3 = Ω∗1Ω4. The parameter, β, is defined as β =√
|Ω1|2 + |Ω2|2 + |Ω3|2 + |Ω4|2.

Dressed state Eigenvalue Non-normalised Eigenvector

|D1〉 −δ1 (0,Ω∗4,−Ω∗3, 0)

|D2〉 −δ1 (Ω3, 0, 0,−Ω∗1)

|D3〉 −β/2− δ1 (|Ω1|2 + |Ω2|2,−βΩ∗1,−βΩ∗2,Ω
∗
1Ω∗3 + Ω∗2Ω∗4)

|D4〉 β/2− δ1 (|Ω1|2 + |Ω2|2, βΩ∗1, βΩ∗2,Ω
∗
1Ω∗3 + Ω∗2Ω∗4)

are determined from the set of equations given by(
Γ1

2
+ iδ1

)
ρs
ab =

iΩ∗1
2
ρs
ac +

iΩ∗2
2
ρs
ad +

iΩba

2
, (7.11a)

i (δ1 + δ2) ρs
ac =

iΩ1

2
ρs
ab +

iΩ∗3
2
ρs
ae, (7.11b)

i (δ1 + δ2) ρs
ad =

iΩ2

2
ρs
ab +

iΩ∗4
2
ρs
ae, (7.11c)

i (δ1 + δ2 + δ3) ρs
ae =

iΩ3

2
ρs
ac +

iΩ4

2
ρs
ad. (7.11d)

In this approximation, we assume that ρs
aa ≈ 1 and the other density matrix

elements are approximately zero in their steady state. To further simplify

the problem, we assume that δ2 = δ3 = 0; thus, ρs
ab is given by

ρs
ab = −2Ωbaδ1

(
|Ω3|2 + |Ω4|2 − 4δ2

1

)
×
1

(Ω∗2Ω3 − Ω∗1Ω4)2 − 4δ2
1 (|Ω1|2 + |Ω2|2) + 2iδ1 (Γ + 2iδ1) (|Ω3|2 + |Ω4|2 − 4δ2

1)
.

(7.12)

The first term in the denominator, (Ω∗2Ω3 − Ω∗1Ω4)2 represents the interfer-

ence between the microwave couplings in the diamond configuration. Ac-

cording to Equation (7.12), we can categorise the symmetry of the system

into three cases.

Case 1: No symmetry, i.e., Ω∗2Ω3 6= Ω∗1Ω4

In this case, the absorption lineshape of the system contains four resonances
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(corresponding to three EIT resonances) since ρs
ab has four poles as a function

of δ1.The corresponding dressed state picture is that |b〉, |c〉, |d〉 and |e〉 form

dressed states |Dn〉 due to the interactions represented by the Rabi frequen-

cies Ωj’s. All of these dressed states contain |b〉 so that the overlap integral

between each of these dressed states and the ground state, 〈a| er |Dn〉, does

not vanish. The absorption resonances occur when δ1 is tuned such that one

of these dressed states is on resonance with the ground state; in this vicinity

the dressed state couples strongly to the ground state with the interaction

strength given by kbΩba, where |kb|2 is the probability of finding |b〉 in the

dressed state.

Case 2: Ω∗2Ω3 = Ω∗1Ω4

In this situation, Equation (7.12) reduces to

ρs
ab =

Ωba (|Ω3|2 + |Ω4|2 − 4δ2
1)

2δ1 (|Ω1|2 + |Ω2|2)− i (Γ + 2iδ1) (|Ω3|2 + |Ω4|2 − 4δ2
1)
, (7.13)

in which the denominator contains three poles in δ1. This indicates that

the symmetry of the coupling frequencies destroy one resonance from the

absorption lineshape (as well as the EIT resonance). According to the dressed

state formalism, the three resonances correspond to the interactions between

the ground state with the three dressed states which contain |b〉 in their

superpositions, i.e., |D2〉, |D3〉 and |D4〉 as shown in Table 7.1. (The explicit

expressions for the dressed states and their associated energies are shown in

Table 7.1.) The resonances occur where their eigenvalues collapse to zero,

i.e., δ1 = 0 or ±β/2.

Case 3 The hidden symmetry, i.e., Ω2 = ∓Ω1 and Ω4 = ±Ω3

In this situation, Equation (7.12) reduces to

ρs
ab = − Ωbaδ1

Ω2
1 + iδ1 (Γ + 2iδ1)

, (7.14)

in which the denominator contains only two poles in δ1, corresponding to

the two absorption resonances (and hence one EIT resonance). Though the

system has no obvious symmetry of Ω∗2Ω3 = Ω∗1Ω4, the system behaves as
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Table 7.2: The expressions for the dressed states and their associated eigenen-

ergies when Ω2 = ∓Ω1 and Ω4 = ±Ω3.

Dressed state Eigenvalue Normalised Eigenvector

|D1〉 −Ω1/
√

2− δ1 (±
√

2,∓1, 1, 0)/2

|D2〉 Ω1/
√

2− δ1 (∓
√

2,±1, 1, 0)/2

|D3〉 −Ω3/
√

2− δ1 (0,−1,∓1,
√

2)/2

|D4〉 Ω3/
√

2− δ1 (0, 1,±1,
√

2)/2

if it were four-level system containing |a〉, |b〉, |c〉 and |d〉 (since |D1〉 and

|D2〉 contain both |c〉 and |d〉) when the conditions Ω2 = −Ω1 and Ω4 = Ω3

or Ω2 = Ω1 and Ω4 = −Ω3 are fulfilled. Thus we refer to this symmetry as

hidden symmetry. This is illustrated in Figure 7.5(c). From the perspective

of the dressed state picture, the two absorption resonances correspond to the

interaction between the ground state and |D1〉 and |D2〉 (whose components

are shown in Table 7.2) and the positions of the resonances are at ±Ω1/2.

The effect of the interference of the absorption lineshapes (proportional to

Im[ρs
ba]) are illustrated in Figure 7.5, where (a) corresponds to Case 1 with

Ω1 = −Ω3 = 2 × 2π MHz and Ω2 = Ω4 = 3 × 2π MHz, (b) corresponds

to Case 2 with Ω1 = Ω3 = 2 × 2π MHz and Ω2 = Ω4 = 3 × 2π MHz,

and (c) corresponds to Case 3 with Ω1 = −Ω2 = 2 × 2π MHz and Ω3 =

Ω4 = 3× 2π MHz. The weak probe Rabi frequency (Ωba) and the linewidth

of |b〉 are 0.01×2π and 6 × 2π MHz, respectively. By adjusting the values

of the Rabi couplings, Ωj, one can switch from an opaque medium to a

transparent medium, as well as, increasing (or decreasing) the numbers of

dark resonances. Switching from Case 1 to Case 2, we destroy the dark

resonance and the photon is blocked by the medium at δ1 = 0, this effect is

referred to as photon inhibition [150–152]. Note that not only can we adjust

the magnitude of the Rabi frequencies in order to switch among the three

cases, but we are also able to control their phases for the same purpose if
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Figure 7.5: Im[ρs
ba] are plotted against probe detuning, δ1, for various set

of parameters corresponding to three cases: (a) Ω1 = −Ω3 = 2 × 2π MHz

and Ω2 = Ω4 = 3 × 2π MHz (Case 1), (b) Ω1 = Ω3 = 2 × 2π MHz and

Ω2 = Ω4 = 3 × 2π MHz (Case 2), and (c) Ω1 = −Ω2 = 2 × 2π MHz and

Ω3 = Ω4 = 3× 2π MHz (Case 3). The weak probe Rabi frequency (Ωba) and

the linewidth of |b〉 are 0.01×2π and 6 × 2π MHz. The illustration begins

with the case in which there is no symmetry in the system (figure (a)),

where we obtain two narrow feature of EIT resonances. When the condition

Ω∗2Ω3 = Ω∗1Ω4 is realised, the two narrow EIT resonances disappear, while

the central broadened EIT splits into two EIT resonances (figure (b)). This

process is referred to as photon inhibition, in which the medium switches

from being transparent to being absorptive at δ1 = 0. Finally when the

hidden symmetry condition is fulfilled, the system reduces to an effective

three-level system as shown in (c).

we have an independent control of each field. For example, if the phase of

one of the Rabi frequencies changes from the value it must have for having

Ω∗2Ω3 = Ω∗1Ω4, the condition is no longer valid and we recover the three EIT



Chapter 7. Microwave dressing of Rydberg dark states 167

resonances.

From the perspective of path interference, the destructive interference of the

resonances in Case 2 and 3 is the result from the quantum interference be-

tween different pathways for the |a〉 → |b〉 transition. To explicitly show the

pathways coupling |a〉 and |b〉, we extend Equation (7.12) to the case where

neither δ2 and δ3 are assumed to vanish and Γ2 and Γ3 are not neglected.

This gives

ρs
ab =

iΩba

2G1

{
1− Ω2

1

4G1G2 + Ω2
1

− 4G1G2Ω2
2

(4G1G2 + Ω2
1)(4G1G2 + Ω2

1 + Ω2
2)

+
4G1G2(Ω1Ω3 + Ω2Ω4)2/(4G1G2 + Ω2

1 + Ω2
2)

(Ω2Ω3 − Ω1Ω4)2 + 4G2G3(Ω2
1 + Ω2

2) + 4G1G2(4G2G3 + Ω2
3 + Ω2

4)

}
,

(7.15)

with

G1 =
Γ1

2
+ iδ1, (7.16a)

G2 =
Γ2

2
+ i(δ1 + δ2), (7.16b)

G3 =
Γ3

2
+ i(δ1 + δ2 + δ3). (7.16c)

Here, Γ2 and Γ3 are the natural linewidths of |c〉 (|d〉) and |e〉, respectively.

They are included in order to prevent singularity in Equation (7.15) when

δ1 = δ2 = δ3 = 0. We also assume that all Rabi frequencies are real for

simplicity. The first term in Equation (7.15) represents the effect of the two-

level absorption (|a〉 → |b〉). The correction to the absorption lineshape due

to the perturbation from Ω1 is given in the second term in which |a〉, |b〉 and

|c〉 form a cascade three-level system [84]. The coupling Ω2 plays a role via the

third term in the equation which represents the correction to the lineshape

in a Y-system. The signature of the interference between the couplings, Ωj,

is given in the fourth term, in which (Ω2Ω3 − Ω1Ω4)2 is explicitly shown in

the denominator. Expanding the fourth term of Equation (7.15) (considering

only the terms involving (Ω2Ω3 − Ω1Ω4)2) and setting δ1 = δ2 = δ3 = 0, the
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leading terms of the expansion are

− iΩba

2Γ2
1Γ4

2Γ2
3

(Ω2
1Ω2

2Ω4
3 − 2Ω3

1Ω2Ω3
3Ω4 + 2Ω1Ω3

2Ω3
3Ω4 + Ω4

1Ω2
3Ω2

4 − 4Ω2
1Ω2

2Ω2
3Ω2

4

+ Ω4
2Ω2

3Ω2
4 + 2Ω3

1Ω2Ω3Ω3
4 − Ω1Ω3

2Ω3Ω3
4 + Ω2

1Ω2
2Ω4

4)

+
iΩba

2Γ3
1Γ5

2Γ2
3

(Ω4
1Ω2

2Ω4
3 + Ω2

1Ω4
2Ω4

3 − 2Ω5
1Ω2Ω3

3Ω4 + 2Ω1Ω5
2Ω3

3Ω4 + Ω6
1Ω2

3Ω2
4

− 3Ω4
1Ω2

2Ω2
3Ω2

4 − 3Ω2
1Ω4

2Ω2
3Ω2

4 + Ω6
2Ω2

3Ω2
4 + 2Ω5

1Ω2Ω3Ω3
4

− 2Ω1Ω5
2Ω3Ω3

4 + Ω4
1Ω2

2Ω4
4 + Ω2

1Ω4
2Ω4

4). (7.17)

According to Equation (7.17), the interference between the couplings comes

from nine- and eleven-photon transition. Following the argument given

in [153], each term in the bracket represents a transition pathway from

|a〉 to |b〉. For example, iΩbaΩ
2
1Ω2

2Ω4
3/2Γ2

1Γ4
2Γ2

3 represents the transition

|a〉 → |b〉 → |c〉 → |e〉 → |c〉 → |e〉 → |c〉 → |b〉 → |d〉 → |b〉. Under

the condition given by Case 2, the nine pathways of the nine-photon transi-

tions (first bracket) interfere with one another, while twelve pathways in the

eleven-photon transition (second bracket) also destructively interferes with

one another. In the hidden symmetry case, the destructive interference of

the pathways in the nine-photon transition and the pathways in the eleven-

photon transition is at their maximum, i.e., the sum in each bracket are

exactly zero. Note that the second and third terms of Equation (7.15) al-

ways tend to reduce the absorption due to the minus sign while the sign of

the last term is not positive definite, but it depends on the condition of the

couplings. For example, when Ω2Ω3 = Ω1Ω4 the last term is positive and

it helps increasing the absorption (Figure 7.5(b)). On the other hand the

last term vanishes when the system is subject to the condition given by the

hidden symmetry, thus the absorption decreases as a result of the second and

third terms (Figure 7.5(c)).

In the ten-level model, the system is subject to the condition described in

Case 2. For example, the Rabi couplings of |4〉, |5〉, |6〉 and |7〉 form a

diamond-shaped configuration: |4〉 −Ωrµ/
√

12−−−−−→ |6〉 −Ωrµ/
√

6−−−−−→ |5〉 and |4〉 Ωrµ/
√

12−−−−→



Chapter 7. Microwave dressing of Rydberg dark states 169

|7〉 Ωrµ/
√

6−−−−→ |5〉. Thus the condition Ω2Ω3 = Ω1Ω4 is fulfilled and the EIT

lineshape shows two EIT resonances, c.f. Figure 7.5(b).

7.4 Group index, dispersion and pulse prop-

agation

One attractive aspect of EIT is the possibility of obtaining a very high group

index resulting in slow light [11]. By varying the group index one can change

the mixing angle between the light and matter components of dark state po-

laritons [14] and thereby implement photon storage [15, 16]. The large group

index arises from the rapid variation of the refractive index with probe fre-

quency due to the presence of the coupling laser. An interesting feature of

microwave dressing is the ability to modify the dispersion and hence the dy-

namics of the Rydberg dark state polaritons [154]. Furthermore, microwave

dressing can switch the group index to negative sign, giving rise to “super-

luminal” propagation or fast light [20, 155].

We begin this section with a discussion of how microwave dressing changes

the group index of the system. Then the propagation of a Gaussian pulse

through the system is theoretically investigated.

7.4.1 Switching signs of group index

The group index of the system, ngr, is given by [93]

ngr = nph + ωp
∂nph

∂ωp

, (7.18)

where ωp is the frequency of the probe laser and nph = 1 + Re[χ]/2 is the

refractive index. According to Equation (7.18), the group index depends on

how the refractive index varies as a function of frequency, i.e. ∂nph/∂ωp.

In three-level systems, the dark resonance causes a sudden variation in the
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refractive index of the medium, resulting in a large (positive) ∂nph/∂ωp; and

hence, a large group index. Hau et al. [11] has shown that the group velocity

of a pulse can reduce to 17 m/s in the medium. On the other hand, if the

dispersion of the medium is large and anomalous, i.e., ∂nph/∂ωp < 0, the

group index and group velocity become negative, leading to “superluminal”

propagation or fast light. This means that the maximum of the outgoing

pulse may be generated out of the medium before the maximum of the inci-

dent pulse has arrived at the medium. Note that this phenomenon does not

violate the principle of relativity as the group velocity is not the velocity at

which the information travels [155–157].

In our system, the group index can be switched between positive and negative

values by turning on and off the microwave field. To illustrate the potential

of microwave dressing to modify the dispersion we extract the real part of the

susceptibility from the ten-level model and use this to calculate the group

index which is plotted in Figure 7.6. We see that on resonance, the microwave

field allows independent control of the group index and absorption which

could be useful in controlling the interaction between dark state polaritons.

At a probe detuning of ∆p/2π = 1 MHz without and with the microwave

field the group index is switched from approximately +5×104 (Figure 7.6(e))

to −105 (Figure 7.6(f)) within the transparency window. The negative group

index corresponds to “superluminal” or backwards propagation [158], albeit

with increased dissipation. The term backwards propagation comes from the

fact that the pulse travels backwards within the medium with negative group

index. However, in contrast to the simple probe-only case (Figure 7.6(a)),

with microwave dressing one can vary both the microwave and coupling laser

powers to trade-off between pulse speed, bandwidth and transparency.
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Figure 7.6: Transmission and calculated group index, ngr, for two-level ab-

sorption (a,d), EIT (b,e) and EIT with microwave dressing (c,f). This il-

lustrates how the coupling and microwave fields can be used to control the

transparency and pulse propagation speed of the medium. At a probe de-

tuning of ∆p/2π = 1 MHz without and with the microwave field the group

index is switched from approximately +5× 104 (Figure 7.6(e)) to −105 (Fig-

ure 7.6(f)) within the transparency window.

7.4.2 Gaussian pulse propagation

Consider a Gaussian pulse at z = 0 whose temporal form is given by

E(0, t) = e−t
2/(2τ2)e−iωt, (7.19)

where ω/2π is the carrier frequency and the full width at half maximum

(FWHM) of the electric field2 is ∆t = τ
√

8 ln 2. To describe the propagation

of the Gaussian pulse through the medium, we consider the one-dimensional

2The FWHM of the intensity profile is given by ∆tI = 2τ
√

ln 2.
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wave equation in the medium: [93, 159–161](
∂2

∂z2
− 1

c2

∂2

∂t2

)
E(z, t) = µ0

∂2

∂t2
P(z, t), (7.20)

where c = 1/
√
ε0µ0, ε0 is the permittivity of free space, µ0 is the permeability

of free space and P(z, t) is the polarisation of the medium. Taking the Fourier

transform of Equation (7.20), the wave equation, in the frequency space,

becomes, (
∂2

∂z2
+
ω2

c2

)
Ẽ(z, ω) = −µ0ω

2P̃(z, ω), (7.21)

where Ẽ(z, ω) and P̃(z, ω) are the Fourier transform of the electric field and

the polarisation, respectively. They are defined as [91, 93, 159]

Ẽ(z, ω) =
1√
2π

∫ ∞
−∞
E(z, t)eiωtdt, (7.22a)

P̃(z, ω) = ε0χ(ω)Ẽ(z, ω), (7.22b)

with

χ(ω) =

∫ ∞
−∞

χ(t′)eiωt′dt′. (7.23)

Substituting Equation (7.22b) into Equation (7.21) and rearranging, the wave

equation becomes [
∂2

∂z2
+
ω2

c2
n2(ω)

]
Ẽ(z, ω) = 0, (7.24)

where n(ω) is the complex refractive index,

n2(ω) = 1 + χ(ω). (7.25)

The solution of Equation (7.24) for an electric field propagating in the +z

direction is given by

Ẽ(z, ω) = Ẽ(0, ω)eiωnz/c. (7.26)

Then the temporal variation of the electric field at z is given by the inverse

Fourier transform of Equation (7.26), i.e.,

E(z, t) =
1√
2π

∫ ∞
−∞
Ẽ(0, ω)ei[ωn(ω)z/c−ωt]dω, (7.27)
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with

Ẽ(0, ω) = τe−τ
2(ω−ω)2/2. (7.28)

This equation is the starting point for the investigation of pulse propaga-

tion. It implies that if one knows the initial temporal variation of the pulse,

then the temporal variation of the pulse at any point in space is the sum of

the plane wave components whose phases accumulate the additional phase

through the distance travelled, z, given by exp(iωnz/c). This is known as

the re-phasing mechanism [162, 163]. In the case of superluminal pulse prop-

agation, the phases of the Fourier components of the input pulse are altered

by the re-phasing term, exp(iωnz/c), such that the Fourier components at

the front of the medium (in the case of negative group index) constructively

interfere with one another to create the output pulse before the input pulse

arrives at the medium [162, 164]. Note that the effect of absorption is im-

plicitly included in the complex refractive index as Im[n] is proportional to

Im[χ], and hence, to the absorption coefficient.

Figure 7.7 and 7.8 illustrate the propagation of a pulse through a medium

of length approximately 0.5 mm for two pulse widths of 0.5 and 0.05 µs,

respectively. The corresponding FWHMs in frequency of the pulses are 0.75

and 7.5 MHz, respectively. The carrier frequency is centred at approximately

∆p/2π =1 MHz3, corresponding to a group velocity around −4× 103 m/s or

a group index of −7.5 × 104 (see Figure 7.6). For the pulse in Figure 7.7,

the dispersion of the medium is approximately linear; and hence, the pulse

propagation shows no effect of pulse broadening and pulse distortion due to

the contributions of second and higher order in ω to the dispersion. Never-

theless, the pulse suffers from the loss of energy due to absorption as shown

by the red solid line in Figure 7.7. The time delay of the pulse is given by

td =
L

vgr

. (7.29)

3The carrier frequency is given in term of probe detuning and their relationship is

∆p = ω−ω0, where ω0 is the transition frequency between 5S1/2 (F=2) and 5P3/2 (F=3).
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Figure 7.7: A pulse whose width is 0.5 µs is propagated through the medium

of width 0.5 mm. The carrier frequency of the pulse is approximately at

∆p/2π = 1 MHz. The advancement of the output pulse from the medium

(red solid line) is clearly illustrated in the figure when compared to the output

pulse which is propagated in the free space with the same distance (black

solid line). The time delay of the output pulse is −0.1 µs, which corresponds

to the group velocity of −4×103 m/s as expected from Figure 7.6. Note that

the output pulse does not suffer from distortion as the linear approximation

of the dispersion is a good approximation for the range of the frequency

covered by the input pulse.

The time delay of the pulse shown in Figure 7.7 is td = 0.5 × 10−3/(−4 ×
103) = −0.1 µs. The negative value in the time delay means that the pulse

arrives early. This value is consistent with the numerical result. When the

frequency of the pulse covers the region where the dispersion relation is not

linear in frequency space, not only does the output pulse suffer from the

loss in energy due to absorption, the effect of pulse distortion is also clearly

observed, i.e., the input pulse splits into many pulses (shown as red solid line

in Figure 7.8). This distortion effect is entirely caused by the third and higher

order terms in ω in the dispersion relation and is not due to the absorption as
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Figure 7.8: A pulse whose width is 0.05 µs is propagated through the medium

of width 0.5 mm. The carrier frequency of the pulse is approximately at

∆p/2π = 1 MHz. Since the FWHM of the input pulse is large, the linear

expansion of the dispersion is now not valid, i.e., the higher order terms in the

expansion must be included. This causes the output pulse (red solid line) to

suffer from distortion, namely, the input pulse splits into many output pulses

as shown in the figure. Even in a lossless medium, the pulse distortion is still

observable for the output pulse (dashed blue line). The black solid line is the

output pulse which propagates in free space over the same distance. Note

that the main output pulse (with the largest area) clearly shows the effect of

superluminal propagation.

discussed in [163]. The blue dashed line in Figure 7.8 shows the output pulse

in the situation in which the medium is lossless4. There is no absorption,

but yet this output pulse still suffers from distortion. Note that the main

output pulse (with the largest area) still exhibits superluminal propagation.

In particular, the blue dashed signal is higher than the black signal around

−0.15 µs due to the different interference between Fourier components in the

4The absorption coefficient vanishes in the lossless medium, i.e., α = 0.
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two cases.

7.5 Conclusions and Outlook

In conclusion, we demonstrated microwave dressing of electromagnetically in-

duced transparency involving highly excited Rydberg states. The microwave

field splits the EIT peak allowing us to tune the probe laser to such that the

absorption is relatively small while the slope of the dispersion remains steep

and negative. This results in the superluminal propagation. One can switch

from transparent medium to an opaque medium by turning on and off the

microwave field. Consequently a microwave field could be used to control the

interaction time between Rydberg polaritons. Switching the group index to

a negative value, we showed that the output pulse can lead the reference by

about 0.1 µs, which is relatively large compared to the work by Wang et al.

[165]. We also discussed the interference of the microwave couplings in the

simpler case of a five-level system. Based on the symmetry of the microwave

couplings, one can reduce the five-level system to four- and three-level sys-

tems for particular combination of Rabi frequencies. In our ten-level model,

the system is such that only two EIT resonances are observed.

An interesting application of microwave dressing is the enhancement of the

long-range dipole-dipole interactions due to an effective increase in the block-

ade radius. As demonstrated in [21], the long-range dipole-dipole interaction

shifts the energy between Rydberg states. Such microwave tuning of the

non-linear optical response of the blockaded ensemble could be useful in the

realisation of single photon phase gates [40]. It is also interesting to extend

this system to the case of thermal atoms.



Chapter 8

Conclusions

In this thesis, we have investigated how Rydberg dark states interact with

external applied fields and studied some of the applications of their inter-

actions. The thesis began with a discussion of the general problem of a

three-level system interacting with two electromagnetic fields. The use of

the dressed state formalism makes it possible to thoroughly understand the

physics of the three-level system, in particular in regards to, e.g., electro-

magnetically induced transparency, coherent population trapping and stimu-

lated Raman adiabatic passage. We also discussed the weak probe condition

(Ω2
p � Γ3(Γ3 + Γ2)) under which the steady state solution of the optical

Bloch equation can be found analytically.

We then developed a theoretical model of Rydberg EIT systems with Doppler

broadening using the theory presented in Chapter 2. This theoretical model

was fitted against EIT data measured by Bason et al. in 85Rb [92] and a good

agreement between the model and the experimental data was demonstrated.

We also showed the effect of the wavevector mismatch which scales the fre-

quency distance between the EIT resonances by a factor of (kp−kc)/kp. This

effect arises from the fact that the wavevector of the two lasers do not exactly

cancel each other. We further demonstrated that the reduced dipole matrix

elements for the transition between the 5P3/2 state and nS1/2 Rydberg states

177
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can be obtained by fitting the theoretical model to the experimental data.

A rather similar method has recently been used by Piotrowicz et al., who

developed a sophisticated model to tackle the problem of inhomogeneity of

the coupling field and to fit the EIT signal in order to obtain the reduced

matrix element between the 5P3/2 state and nDJ Rydberg states [101].

A problem with using a two-photon transition as in Chapter 3 is the presence

of screening charges [25, 32], produced by the photoionisation of Rb atoms

deposited on the inside of the vapour cell [114]. This is because the wave-

length of the blue laser (∼ 480 nm) is less than the threshold wavelength of

Rb metal (∼ 550 nm) [115]. To avoid this problem, in Chapter 4 the 480

nm laser was replaced by two lasers whose wavelengths are 776 nm and 1290

nm. We showed that an effect of the third laser is to cause Autler-Townes

splitting of the EIT resonance in cold atoms. In addition to the case of cold

atoms, we further investigated the absorption profiles of thermal atoms. We

demonstrated that for the case of parallel configuration in which the probe

laser counter-propagates with respect to the two coupling lasers (c1 and c2),

the transmission lineshape of the thermal atom exhibits an extra EIT res-

onance at zero probe detuning when the ratio of Rabi frequencies Ωc2/Ωc1

is small. This extra EIT resonance is not observed in the transmission line-

shape for cold atoms. For a large value of Ωc2/Ωc1 , the EIT resonance at zero

probe detuning also disappears and the absorption coefficient of the system

significantly increases. It turns out that the existence of the middle EIT

resonance is due to the incomplete destruction of the EIT resonance, which

manifests when averaging the absorption coefficient over all velocity classes.

For the Doppler-free configuration, one needs to work at a very high Ωc1 as,

in the step of the first two-photon transition, a positive residual wavevector

suppresses the EIT resonance. An EIA resonance can be created when the

detunings ∆c1 and ∆c2 are both zero; this physically corresponds to an en-

hanced three-photon transition when the three lasers are simultaneously on

resonance [117]. If one detunes the first coupling laser by a finite amount, the
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system is now effectively a three-level system. This results in a displacement

of one of the transmission dip to either side of the lineshape, depending on

the sign of ∆c1 , and in EIT at the centre of the dip. The next step of this

work on three-photon transitions would be to apply the theory to an actual

atomic system where the hyperfine structure is taken into account.

Following this discussion of Rydberg EIT, we developed a theory of EIT

in the presence of an external radio frequency (rf) field. The frequency of

this rf field is far off-resonance from any atomic transition. In this limit, we

demonstrated the formation of Floquet dark states induced by the application

of an ac field to a ladder system involving a highly-polarised Rydberg state.

By fitting the theoretical model to the experimental data of Bason et al. [25],

we obtained the value of the dc electric field applied across the vapour cell in

the experiment. We showed that the information on the strength of the dc

field is encoded into the relative frequency distance between sidebands and

their relative heights; and hence, it is independent of the laser frequency. We

have shown that charge imbalances in an enclosed vapour cell can cancel the

spatial inhomogeneities of the field. Therefore for local field measurements

the interaction region may need to be limited to a small volume. This would

be the case, for instance, in the three-photon Doppler-free excitation scheme

considered in Chapter 4, in which the two pump and the probe laser beams

intersect at appropriate angles within a restricted volume.

In Chapter 6, we extended the theory of the Rydberg dark state dressed by

an rf field to cover the case when the Floquet sideband breaks down. The

conditions for which the effect of the rf field yields stable Floquet states

were investigated. We showed that the latter have a well-defined manifold

structure when the rf modulation is faster than the rf-free dynamics of the

system. In the Floquet states picture, this means that there are no overlaps

among these Floquet states; and hence, we observe well-defined resonance

sidebands in the variation with probe frequency of the population transferred
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to the upper state. This picture of stationary, well-defined Floquet states

obtained in this thesis is similar to that discussed in previous works [25, 47,

51, 53, 142]. Furthermore, we demonstrated a resonance shift, similar to a

Bloch-Siegert shift, due to the interaction between well-defined sidebands.

We are not aware that this effect had been discussed previously in an atomic

physics context of rf dressing; however, it has been reported in condensed

matter physics [66]. In addition, the coherence property of the system must

be maintained during the rf interaction. In terms of the spectral lineshape,

this condition means that the linewidth of the resonance must be smaller

than the frequency distance between two adjacent resonances so that EIT

sidebands are resolved. When the system exhibits well-defined sidebands, we

showed that an N -level model, consisting of a ground state and a manifold

of N excited states, is a good approximation of the rf-dressed system. In

the case of a three-level system, the N -level model breaks down when Ωc is

larger than 2ωrf . We found that in order to reconcile the model with the

actual rf-dressed system, the manifold of intermediate state sidebands must

be included into the model. We called this effect the formation of induced

sidebands and the new model the N +N -level approximation. The focus of

future work could be the investigation of the system when a three-photon

transition is introduced in order to alleviate the problem of space charges as

mentioned above, or/and when a dc field is added to the system.

In Chapter 7, Rydberg EIT in a cold atoms ensemble was dressed by a mi-

crowave field which resonantly couples two Rydberg states. In this case the

transmission lineshape of the probe beam shows a splitting of the EIT peak,

with the distance between the components being proportional to the strength

of the microwave field. This allows us to control the absorptive and disper-

sive properties of the medium by adjusting the strength of the microwave

field. For example, one can also switch from a transparent medium to an

opaque medium by turning on and off the microwave field. Switching the

group index to a negative value, we showed that, for parameters typical to
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experiments done in Durham [21], the output pulse of width 0.5 µs can pre-

cede the reference pulse by about 0.13 µs, which is relatively large compared

to the shift found by Wang et al. [165]. We also discussed the interference

of the microwave couplings in the simpler case of a five-level system. Based

on the symmetry of the microwave couplings, one can reduce the five-level

system to four- and three-level systems for particular combination of Rabi

frequencies. In our full ten-level model, the system is such that only two EIT

resonances are observed. It would be interesting to extend this system to the

case of thermal atoms.



Appendix A

Factorising the dipole matrix

element

We have seen that the dipole matrix element is one of the key quantities

discussed throughout the thesis. Suppose that a laser couples a lower state

|a〉 and a higher state |b〉. The dipole matrix element is given by 〈b| erq |a〉,
where rq is the component of the position operator written in the spherical

basis [74]. For a real atomic system in which the states |a〉 and |b〉 are

represented by the hyperfine states |F,mF 〉 and |F ′,m′F 〉, respectively, the

dipole matrix element is then 〈F ′,m′F | erq |F,mF 〉. One can separate the

geometrical component out from the dipole matrix element using the Wigner-

Eckart theorem [108, 109], that is

〈F ′,m′F | erq |F,mF 〉 = 〈F ′‖er‖F 〉(−1)F−1+m′F

 F 1 F ′

mF q −m′F

√2F ′ + 1,

(A.1)

where the bracket containing six elements is known as a 3j symbol and

〈F ′‖er‖F 〉 is the reduced matrix element [108, 109]. The reduced matrix

element only depends on the states F and F ′, but not on mF , m′F and q, i.e.,

it is free from the choices of the orientation of the reference frame [109].
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It is unusual to write the reduced matrix element in terms of F and F ′ states

as the radial wavefunction of the atomic system depends on the principal

quantum number n and the orbital angular momentum quantum number L.

To express the reduced matrix element in terms of L and L′, we use [108]

〈F ′‖er‖F 〉 = 〈J ′‖er‖J〉(−1)I+J
′+F+1

√
(2F + 1)(2J ′ + 1)

 J ′ J 1

F F ′ I

 ,

(A.2)

and

〈J ′‖er‖J〉 = 〈L′‖er‖L〉(−1)J+L′+S+1
√

(2J + 1)(2L′ + 1)

 L′ L 1

J J ′ S

 ,

(A.3)

to re-write 〈F ′‖er‖F 〉. Thus the dipole matrix element is given by

〈F ′,m′F | erq |F,mF 〉 =
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)(2L′ + 1)

×

 F 1 F ′

mF q −m′F

 J ′ J 1

F F ′ I


 L′ L 1

J J ′ S


× (−1)I+L

′+S+m′F+1〈L′‖er‖L〉. (A.4)

Here I is the nuclear spin of the atom, S is the spin of the electron and the

curly bracket containing six elements is known as a 6j symbol.
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Diagonalising the matrix Hc

We follow the method given in [66]. The eigenvalue equation of the tridiago-

nal matrix Hc can be obtained by using the Floquet-Fourier transformation

of the ODE, given by

h(t)φ(t) = i
∂

∂t
φ(t), (B.1)

with

h(t) = b+ 2a cos(2ωt), (B.2)

where a and b are constant. Since h(t) is time-periodic, the solution of this

type of equation can be written using Floquet-Fourier theorem as

φ(t) = exp(−iλt)ψ(t), (B.3)

where λ is the quasi-eigenvalue of the ODE and the function ψ(t) is periodic

in time with the angular frequency of 2ω, i.e., the same as that of h(t).

Substituting (B.3) into (B.1), the differential equation (B.1) becomes,[
h(t)− i

∂

∂t

]
ψ(t) = λψ(t). (B.4)

It is now clear that Equation (B.1) takes the form of an eigenvalue equation

with the eigenvalue λ and the eigenvector ψ(t). Since ψ(t) is periodic, it can

be expanded using Fourier series:

ψ(t) =
∞∑

k=−∞

αk exp (−2iωkt) , (B.5)

184



Appendix B. Diagonalising the matrix Hc 185

where αk is the coefficient of expansion. Substituting Equation (B.5) into

(B.4), Equation (B.4) becomes the infinite sum of the algebraic recurrence

equation,∑
(bαk + aαk+1 + aαk−1− 2ωkαk) exp−2iωkt =

∑
λαk exp−2iωkt. (B.6)

This recurrence relation can be transformed into coupled equations, namely

(b− 2kω)αk + aαk+1 + aαk−1 = λαk, (B.7)

which, in turn, can be re-written in the matrix eigenvalue equation as

. . .
...

...
...

· · · b+ 2ω a 0 · · ·
· · · a b a · · ·
· · · 0 a b− 2ω · · ·

...
...

...
. . .





...

α−1

α0

α+1

...


= λ



...

α−1

α0

α+1

...


. (B.8)

Note that the form of the matrix in Equation (B.8) is actually the same as

that of Hc; thus if one can solve Equation (B.4) for ψ(t), then the eigenvalue

problem of Hc is simultaneously solved.

It turns out that a trivial solution of Equation (B.4) is

ψ(t) = exp
[
−i
a

ω
sin(2ωt)

]
, (B.9)

with the associated eigenvalue of b. This can be confirmed by substituting

the ansatz into (B.4):[
h(t)− i

∂

∂t

]
ψ(t) = [b+ 2a cos(2ωt)] exp

[
−i
a

ω
sin(2ωt)

]
− i

∂

∂t
exp

[
−i
a

ω
sin(2ωt)

]
= [b+ 2a cos(2ωt)] exp

[
−i
a

ω
sin(2ωt)

]
− 2a cos(2ωt) exp

[
−i
a

ω
sin(2ωt)

]
= b exp

[
−i
a

ω
sin(2ωt)

]
= λ exp

[
−i
a

ω
sin(2ωt)

]
. (B.10)
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Thus Equation (B.9) is indeed the eigen-solution of Equation (B.4). Using

the Jacobi-Anger expansion [139], Equation (B.9) then becomes,

ψ(t) =
∞∑

k=−∞

J−k

(
− a
ω

)
exp(−2ikωt). (B.11)

According to the Floquet-Fourier theorem, we expect a manifold of quasi-

eiegenenergies whose energy separation is 2ω. Thus the whole set of the

quasi-eigenenergy is

λn = b− 2nω, (B.12)

where n is the set of integers. For the quasi-eigenvalue λn, the associated

eigenvector is given by the product of exp(−2inωt) with ψ(t)1:

ψn(t) = exp(−2inωt) exp
[
−i
a

ω
sin(2ωt)

]
= exp(−2inωt)

∞∑
k=−∞

J−k

(
− a
ω

)
exp(−2ikωt)

=
∞∑

k=−∞

Jn−k

(
− a
ω

)
exp(−2ikωt). (B.13)

In our case, a = −Σ/2 and b = Σ −∆c; thus the eigenvector of Hc is given

by

|c′, n〉 =
∞∑

k=−∞

Jn−k

(
Σ

2ωrf

)
|c, k〉 . (B.14)

1c.f. Bloch’s theorem [148].
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