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Abstract

The equations of QCD are widely believed to describe the properties of

mesons, baryons and their hadronisation after hard interactions at par-

ticle accelerators such as the LHC. However, the theoretical framework

linking the fundamental Lagrangian of QCD to the mesons and baryons

observed in experiment is still in development. The states observed by

experiments can be investigated using a variety of other theoretical meth-

ods. We consider here two methods, Chiral Perturbation Theory and

carefully considering the poles in a scattering amplitude. In chapters 2

and 3 we apply these methods to determine the composition of the σ(600)

and f0(980) scalar resonances observed in ππ scattering.

In chapter 4 we turn to make the connection between the fundamental

Lagrangian and the observed physics. The first step here is to solve the

Schwinger-Dyson equations for the gluons, ghosts and quarks which de-

scribe how a Green’s function behaves non-perturbatively. We primarily

investigate the coupled gluon and ghost system without quarks. We find

that non–trivial vertices are required to obtain self–consistent solutions

in the simplest truncation and that a solution with a finite ghost dressing

function appears to be preferred.
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A.2. Flatté . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.3. Amplitude Argand Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B. Feynman Rules and Notation 138

B.1. Bare Propagators and Vertices . . . . . . . . . . . . . . . . . . . . . . . . . 138

C. Numerical Procedure 139

C.1. Integrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C.1.1. Volume Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C.1.2. Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . 141

C.2. Numerical Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

C.3. Subleading components in the UV . . . . . . . . . . . . . . . . . . . . . . . 143

C.4. Iterative Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.4.1. Natural Iterative Procedure . . . . . . . . . . . . . . . . . . . . . . 145

C.4.2. Newton-Raphson Iterative Procedure . . . . . . . . . . . . . . . . . 145

Bibliography 149



List of figures

1.1. The octet of pseudoscalars. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. The unitarisation of χPT partial wave amplitudes using the IAM method. 17

2.2. A plot of the two dominant Regge trajectories . . . . . . . . . . . . . . . . 21

2.3. The motion of the σ and ρ poles at O(p4) . . . . . . . . . . . . . . . . . . 22

2.4. The amplitudes ImfIJ as defined in Eq. (2.21) from SU(3) χPT at O(p4). . 24

2.5. ImAtI(s, t = 4m2
π)/s

n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6. The Ratios F IJ
n at O(p4). . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7. The motion of the σ and ρ poles at O(p6). . . . . . . . . . . . . . . . . . . 31

2.8. The amplitudes ImfIJ as defined in Eq. (2.21) from SU(2) χPT at O(p6). . 35

2.9. ImAtI(s, t = 4m2
π)/s

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.10. The Ratios F IJ
n at O(p6). . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1. The ππ S-wave inelasticity η00 . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2. The ππ S-wave inelasticity δ00 . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3. Hadronic Production data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4. The k2 plane with contours of Energy and decay width plotted. . . . . . . 48

3.5. A typical fit to the T12 magnitude data. . . . . . . . . . . . . . . . . . . . . 49

3.6. A typical fit to the η00 parameter in ππ → ππ. . . . . . . . . . . . . . . . . 50

3.7. The value of χ2 as it increases with decreasing |k2| of the second pole. . . . 53

viii



List of figures ix

3.8. The k2 plane with contours of Energy and decay width plotted. . . . . . . 54

3.9. A contour plot of the scanned k2 plane of the second pole. . . . . . . . . . 55

3.10. The k2 plane of the second pole, zoomed. . . . . . . . . . . . . . . . . . . . 56

3.11. The Jost function fit to the ππ → ππ data. . . . . . . . . . . . . . . . . . . 59

3.12. The Jost function fit to the ππ → ππ data in bins. . . . . . . . . . . . . . . 60

3.13. Some of the fits to the ππ → KK data. . . . . . . . . . . . . . . . . . . . . 61

3.14. The fit to the new data from the Babar collaboration. . . . . . . . . . . . . 62

3.15. The fit to the new data from the Babar collaboration. . . . . . . . . . . . . 63
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Chapter 1.

Introduction

In a world primarily informed by human perception the world described by the funda-

mental equations of physics is often counter-intuitive. The developments in 20th Century

physics were nothing but remarkable, starting with the theory of special relativity that

puts space and time, energy and mass, on equal footing and combining this with quantum

mechanics that describes so well the peculiar properties of individual atoms has led to a

single unifying picture capable of describing almost all aspects of nature we are capable

of measuring.

There are four known fundamental forces in nature, the Electromagnetic force, the Weak

force, the Strong force and Gravity, as decribed by Einstein’s General Relativity. The first

three forces are well described by the Standard Model of Particle Physics as a relativistic

quantum field theory that satisfies both the theory of special relativity and generalises

the non-relativistic quantum mechanics of the 1920s and 1930s. The unifying picture

is of matter fields, quarks and leptons, interacting via force-carrying fields for each of

the fundamental forces. The simplest of these is the electromagnetic force, which is well

described by the prototype theory of the standard model, Quantum Electrodynamics, or

QED. In QED we find the theory describes the interaction of charged particles such as

electrons, muons and protons, interacting with the quantum of the electromagnetic field

known as the photon, essentially a ‘particle’ of light if you like. Remarkably, we find

that simple symmetry considerations lead to this description, and the only starting point

required is the Lagrangian for fermionic particles. The symmetry is known as a gauge

symmetry and is a consequence of the absolute phase of the electron or photon being

unobservable; the theory being symmetric with respect to changes in phase.

1



Introduction 2

1.1. Gauge Symmetry

The classical Langrangian density for spin-1/2 particles is found from the Dirac equation

and is given by,

L = ψ (iγµ∂µ −m)ψ (1.1)

where the matrices γµ satisfy the Clifford algebra {γµ, γν} = 2gµν . The symmetry trans-

formation for the matter fields is,

ψ(x)→ ψ′(x) = Uψ(x) = eiφψ(x). (1.2)

The real magic happens when the phase symmetry is promoted from a global symmetry

acting over the whole of space to a local symmetry acting separately at each space-time

point,

ψ(x)→ ψ′(x) = U(x)ψ(x) = eiφ(x)ψ(x). (1.3)

The partial derivative in eq. (1.1) now acts on the phase φ(x) giving rise to a new term

if this symmetry is to be satisfied,

L → L′ = ψ(x) (iγµ∂µ −m)ψ(x) − ψ(x) (γµ∂µφ(x))ψ(x). (1.4)

This new term has the correct Lorentz structure to represent a fermion-photon interaction,

for which we also have to add a kinetic term giving the Lagrangian of QED,

L = ψ (iγµ∂µ −m)ψ + igψγµAµψ −
1

4
F µνFµν , (1.5)

where Fµν = ∂µAν − ∂νAµ, where Aµ is the photon field. The consequences of each

term in this equation can be read off, the first term gives rise to the fermion propagator,

that describes the propagation of fermions between two positions or points in momentum

space. The second term describes a three-point interation between a fermion and photon.

The final term gives rise to a massless propagator for the photon field.

Following the same principles with enlarged symmetry groups leads to the theory of the

strong interations known as Quantum Chromodynamics and considering a spontaneously

broken gauge symmetry leads to the massive gauge bosons observed in weak interaction

processes at high energies. The method for breaking this gauge symmetry is the Higgs
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mechanism that the LHC at CERN hopes to investigate. The Higgs boson is required

to produce the masses observed for the W and Z weak bosons and is also proposed as

the mechanism of mass generation for all of the massive particles of the Standard Model.

An unfortunate feature of this theory is that none of the fermionic masses, or indeed,

the mass of the Higgs itself are predicted; they are simply free parameters that must be

measured by experiment. Certainly, this is a very exciting time for particle physics and

only now is the LHC beginning to take its first steps into the unknown. It may take many

years to accumulate the data required to reveal the new physics present at the TeV scale.

In order to make theoretical predictions from the fundamental standard model, typically

we must use a special expansion called perturbation theory. This is the only systematic

way to obtain predictions from the fundamental Lagrangian where the errors are under

control. A perturbative expansion can be applied in a number of ways, but the most

generally applicable is to expand in the coupling constant g. This is a parameter that is

usually small and describes the strength of the interactions between the different particles

in the Lagrangian. A series may be constructed of the form # + #g2 + #g4 + ... where

higher powers of g may be neglected if g is small enough. This is highly successful for all

parts of the standard model, except QCD.

In QCD at high energies g is small and the perturbative series works reasonably well,

provided a sufficient number of orders can be calculated for the process of interest. How-

ever as the interaction energy is reduced g becomes large and the perturbative series loses

any meaning since all the terms of the series are of comparable magnitude. Some other

method must then be used to obtain predictions and this will be the primary subject of

this thesis.

1.2. The Quark Model

The discovery of mesons came from the earliest experiments that exposed photographic

plates to cosmic rays. Before long, a whole spectrum of states were discovered that

could be classified in a similar manner to atomic systems with spin, parity and charge-

conjugation quantum numbers, JPC. The lightest observed hadronic particles are the

pseudoscalars with JP = 0−, these are the π’s discovered by Powell and K’s discovered

by Rochester in the 1940s. In the 1960s Gell-Mann and Zweig independently suggested a

method of classification, sometimes referred to as the Eightfold Way. An example of this
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is depicted in fig. 1.1, where we plot the particle positions in a plane defined by specific

combinations of their observable quantum numbers,
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Figure 1.1.: The octet of pseudoscalars. In the centre the we have the combinations π0 =
1√
2

(

uu− dd
)

and η = 1√
6

(

uu+ dd− 2ss
)

. There is also a singlet that forms the

final state in the nonet, η′ = 1√
3

(

uu+ dd+ ss
)

. Note that convention states that

the strange quark has strangeness s = −1.

Similar nonets may be formed for other JPC states, where J is the total spin, P is

parity and C is charge conjugation. An interesting problem occurs for the scalar sector,

JP = 0+, where there appear to be enough resonances for two nonets. Chapters 2 and

3 are dedicated to investigating the particle composition of two of the lightest scalar

resonances observed in QCD.

The arrangement depicted from fig. 1.1 is suggestive of an SU(3) symmetry between a

particle and anti-particle which leads to the decomposition,

3⊗ 3 = 8⊕ 1 (1.6)

where we now understand the left hand side of the equation to represent how three

symmetric light quarks, carrying colour but neglecting mass, u, d, s and their antiparticles

combine to form an octet and singlet of colourless states. The quark model then led to

the theory of Quantum Chromodynamics in the early 1970s as a gauge theory similar

to the U(1) QED theory already in existence, but now based around an SU(3) colour

symmetry, where the quarks themselves interact with a different force-carrier called the

gluon, each carrying a new charge called colour.
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1.3. Quantum Chromodynamics

It is widely believed that Quantum Chromodynamics (QCD) is the correct theory to

describe the strong interactions that give rise to a plethora of particles containing quarks

and gluons ranging in masses from the neutral pion at 135 MeV to bound states containing

b-quarks around and above 10 GeV. Asymptotic states bound by the strong interactions

are observed to be colour-neutral, this is closely related to the confinement of coloured

particles and is a fundamental problem yet to be fully understood. It is closely related to

the running of the coupling between interactions of the fields of the Lagrangian,

L = ψ̄a
(

i /D −m
)

ψa − 1

4
F a
µνF

µν
a −

1

2ξ
(∂µA

µ
a)

2 + (∂µc̄a)D
ab
µ cb (1.7)

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (1.8)

Dµ = ∂µ − igτaAaµ (1.9)

where g is the bare coupling, ψ denotes quark fields, Aµ is the gluon field, τa is a generator

of the SU(3) group in the fundamental representation, c is the Fadeev-Popov ghost field

and ξ is the gauge parameter.

QCD is an SU(3) gauge theory which implies that the ψ and A fields in the above

equations have an additional index, due to the colour quantum number. Colour is always

hidden from experiment by confinement but is crucial in the structure of the theory.

The SU(3) group has two representations that appear in the Lagrangian of QCD, the

matter fields live in the fundamental representation which may be given as the Gell-Mann

matrices, whilst the gluon field lives in the adjoint representation which may be defined

by the antisymmetric structure constant, fabc,

τaij = ifaij (1.10)

where τaij is in the adjoint representation.

The generators of the group τa are related to the structure constants by the commutation

relation,

[τa, τ b] = ifabcτ c (1.11)



Introduction 6

where a, b and c are the colour indices. The transformation property of ψ with the

operation of the group element U ∈ SU(3),

U = exp(iτaφa) (1.12)

is defined as,

ψ → ψ′ = U ψ . (1.13)

Local gauge invariance is imposed in QCD, as in QED, where gauge invariance is en-

forced at each spacetime point. The term ψ̄ /Dψ is then invariant under SU(3) gauge

transformations.

Using the Lagrangian, we may derive the Feynman rules of the theory which are used to

construct scattering amplitudes. The most straightforward method is to adopt the path

integral approach found in numerous standard references [1–3], we begin by making the

connection with the action S, completely analogous to the classical quantity of the same

name,

S[ψ, ψ̄, A, c, c̄] =

∫

d4x LQCD[ψ, ψ̄, A, c, c̄] . (1.14)

In analogy to statistical mechanics we then write down a partition function Z and add a

source term for each field,

Z[η, η, J, σ, σ] =
∫

D
[

ψ, ψ,A, c, c
]

×

exp

(

i

∫

d4x LQCD[ψ, ψ,A, c, c] + ηψ + ψη + JµAµ + σc+ cσ

)

. (1.15)

The functional derivative with respect to the sources may then be used to derive the

Greens functions, symbolically for a generic source j and a generic propagator ∆(x1−x2)
may be found by performing two functional derivatives,

1

Z[0]

iδ

δj(x1)

iδ

δj(x2)
Z[j] = ∆(x1 − x2) (1.16)

and normalising with 1
Z[0]

. The functional Z[j] generates both connected and disconnected

Green’s functions. In particle theory we are only really interested in the connected Green’s

functions that are required to construct scattering amplitudes, these are simply related
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to Z[j] by,

Z[j] = eiW [j] (1.17)

where W [j] is the generating functional of the connected Green’s functions [4]. It is then

straightforward to derive the Feynman rule for a connected n-point Green’s function by

taking functional derivatives and setting the sources to zero,

Gc
n(x1, ..., xn) = (−i)n−1 ∂nW [j]

∂j(x1)...∂j(xn)

∣

∣

∣

j=0
. (1.18)

The Feynman rules that we apply, in momentum space, are given in appendix B. These

are obtained using a Fourier transform from coordinate space. The Feynman rules are

only of real importance in chapters 4 and 5 where they are used in the derivation of the

integration kernels for the Schwinger–Dyson Equations.

1.4. Outline

First we consider two scalar resonances seen in low-energy QCD, the σ(600) and the

f0(980) using two completely different methods, we investigate the poles and quark com-

position of each with clear conclusions. These methods are phenomenological in that they

are applied to the data in order to understand the physics.

Secondly we consider the Schwinger-Dyson Equations of QCD, which are fundamental

equations from field theory and are a natural first step in deriving observable quantities

in low-energy QCD from the fundamental Lagrangian.



Chapter 2.

The structure of the σ(600) from

Regge Theory and its Nc-dependence

in Chiral Perturbation theory

Understanding the composition of mesons has proven to be a difficult task. Mesons such

as the π’s and the K’s have long been understood as simple bound states of a light quark

and an antiquark. In any hadron however there will be other contributions, particularly

from other strongly interacting particles such as gluons and valence quarks not necessary

in the simple q̄q picture. These quantum effects will no doubt give rise to important

properties that may be observed in production, scattering or decay processes. There are

other resonances whose composition is much less clear. Beginning with a state that spends

most of its time as q̄q such as the lightest spin-1 meson, the, ρ(770) which has JPC = 1−−.

We know that this decays predominantly to ππ and therefore must spend a significant

amount of its time in a q̄qq̄q configuration, which clouds the simple qq picture. A similar

argument must of course be true of all particles that couple strongly to decay channels.

There are many resonances in QCD whose composition is unknown or poorly understood,

a relatively recent example is the X(3872) which lies close to the DD∗ threshold, has a

narrow width, and has no expected candidate from quark potential models. It appears

that the strong coupling to decay channels can pull a bare cc state downwards in mass,

significantly changing its properties in the process [5–9].

A class of particles of particular interest are the light scalar mesons. Whilst the LHC

searches the TeV scale for the long-sought fundamental scalar responsible for breaking

the SU(2) symmetry of the standard model, QCD at strong coupling already breaks the

symmetry of the vacuum at the MeV level through quark and gluon condensates. The

8
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lightest unflavoured scalar mesons, the σ(600) and the f0(980) feel the effects of the

vacuum greater than most since they are unimpeded by an angular momentum factor

between their constituents. The production threshold opens sharply with a cusp that

goes like (1− sth/s)1/2, rather than some higher power if there were angular momentum

present. In the language of quantum mechanics, this would describe a state with a non-

zero wavefunction at the origin which, in the language of quantum mechanics, would

increase the probability of decay over a higher-spin state. The point is that scalars feel

the effects of the vacuum and coupling decay to channels more strongly than their higher-

spin counterparts, and it is this that often makes understanding their composition so

much more challenging.

In this chapter we combine a range of techniques to investigate the composition of the

lightest scalar enchancement in QCD, the σ(600). This meson decays predominantly to ππ

and has a width of similar size to its mass. We first present chiral perturbation theory and

its unitarisation that allows meson scattering amplitudes below 2 GeV2 to be obtained.

The behaviour of these amplitudes, particularly the σ and ρ resonances with increasing

Nc is then presented [10]. Finite Energy Sum Rules are then considered in conjunction

with Regge Theory and Semi-Local Duality and if these are to be satisfied for all Nc then

we find a natural explanation arises at O(p6) in chiral perturbation theory.

2.1. Chiral Perturbation Theory

Chiral perturbation theory (χPT) provides an excellent theoretical description of the

interactions of the π and K mesons in low-energy QCD. It has SU(2) and SU(3) variants

which utilise the small quark masses for u, d and u, d, s quarks respectively, relative to

the hadronic scale, to invoke approximate chiral symmetry. In group theory language,

starting with the massless u, d and s quarks we have SU(3)L × SU(3)R → SU(3)L+R

after spontaneous symmetry breaking, the lightest pseudoscalar mesons correspond to the

pseudo-goldstone bosons of the symmetry breaking. In the limit of vanishing light quark

masses, the low-energy expansion would be exact, instead however, the quark masses are

introduced as a perturbation. This allows an expansion in external momenta, derivatives

and quark masses. The number of terms in the Lagrangian grows order by order, but

the number remains finite and the theory is renormalisable and predictive, at least up to

O(p6).
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At first order in p2, the effective theory depends on just one low-energy constant, fπ, the

pion decay constant. At O(p4) there are 10 additional parameters, but only 8 of these

contribute to scattering processes, denoted Li=1→8. Theoretically these must be fixed at

some renormalisation scale µ, this is usually taken in the region of mρ, we use µ = 770

MeV. The number of parameters grows rapidly order-by-order.

The truncated chiral expansion up to second order is valid typically up to around 500

MeV, extrapolation further usually leads to amplitudes that violate unitarity. Explicitly

imposing unitarity as a constraint has recently been used as a method to extend the

range of validity of the chiral expansion above 1 GeV, to great success. Chiral perturbation

theory combined with unitarity is able to predict key features in the low-energy spectrum,

most notably the σ(600), the ρ(770), and the K∗(892).

In ππ scattering only the σ and the ρ are important below KK threshold. The σ is a

scalar resonance, seen in the I = 0 channel. It is very broad spanning the entire region

between the ππ and KK thresholds. The ρ is a vector state seen in I = 1 currents that

is very narrow compared to the σ.

2.1.1. Chiral Lagrangian

Chiral perturbation theory is best described by an effective Lagrangian that is an expan-

sion in powers of momentum. The Lagrangian for SU(3) χPT, where the masses of the

u, d and s quarks are initially assumed massless, is constructed such that is respects the

symmetries of QCD and exact chiral symmetry SU(3)L × SU(3)R is initially assumed

that is spontaneously broken. Since the masses are small they may be introduced as a

perturbation, that also breaks the chiral symmetry. In order to respect the symmetries,

the first order that contributes is O(p2) and only even orders contribute. If we write the

chiral Lagrangian in the form,

L = L(2) + L(4) + L(6) + ... (2.1)

then the first term is,

L(2) =
f 2

4
Tr
(

∂µU∂
µU † +M†U +MU †) (2.2)
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the second term is,

L(4) = L1Tr
(

(

∂µU∂
µU †)2

)

+ L2Tr
(

∂µU∂νU
†)Tr

(

∂µU∂νU †)

+ L3Tr
(

∂µU∂
µU †∂νU∂

νU †)+ L4Tr
(

∂µU∂
µU †)Tr

(

M†U +MU †)

+ L5Tr
(

∂µU∂
µU † (M†U +MU †))+ L6Tr

(

(

M†U +MU †)2
)

+ L7Tr
(

(

U †M−M†U
)2
)

+ L8Tr
(

M†UM†U + U †MU †M
)

(2.3)

where U collects the goldstone fields and is different for the SU(2) and SU(3) variants

of χPT. M is the quark mass matrix, which for SU(2) is given by m2
π1 and f is the

unrenormalised pion decay constant. The Li’s are the unrenormalised Wilson coefficients

for the SU(3) effective theory at O(p4), in χPT these are not at present calculable by

matching to full QCD, so they are determined by fitting to experiment. In χPT the

Wilson coefficients are often referred to as the low-energy constants or LECs. For SU(3)

we have,

U = exp
i
√
2

f











1√
2
π0 + 1√

6
η π+ K+

π− −1√
2
π0 + 1√

6
η K0

K− K̄0 −2√
6
η











(2.4)

where M = diag(m2
0,π, m

2
0,π, 2m

2
0,K − m2

0,π). The π’s, K’s and η’s are the fields in the

chiral theory and their bare masses, which are simply related to their physical masses are

the respective m0,i terms inM. For SU(2) the situation is a little different since there are

only four Wilson coeffecients which are denoted li=1→4, in this case the matrix U becomes,

U = exp
i
√
2

f





1√
2
π0 π+

π− −1√
2
π0



 , (2.5)

the chiral Lagrangian at O(p6) for SU(2) is given ref. [11]. An important test of the

stability of the χPT expansion is that the SU(2) and SU(3) forms give similar predictions

for their regions of validity; this has been verified. In this study we will first use SU(3)

χPT at one-loop [10], O(p4), initially to provide our ππ amplitude and in a coupled

channel system where we must diagonalise,

A =





Aππ AπK

AKπ AKK



 , (2.6)
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when above KK threshold in order to obtain the physical ππ scattering amplitude. The

matrix elements Aij are calculable from standard chiral perturbation theory, as an example

Aππ is given below in eq. (2.7). This and the other components Aij are obtained from

ref. [10]. This mixing matrix is only relevant for the J = 0 channel because we only

consider amplitudes up to 2 GeV2 where no significant decay channels are open for higher

spins. Later we use the SU(2) variant at two-loops O(p6) [11], since this provides a greater

range of validity and digs deeper into the full theory. This is represents the highest order

amplitudes that are currently available in the literature.

2.1.2. The χPT ππ Amplitude at one-loop and two-loop order

There is only one process relevant to ππ scattering below 1 GeV, which has been calculated

most recently at one-loop order by Peláez and Gómez-Nicola [10] in a study that combines

data on many different channels to simultaneously fit the low-energy constants. References

to previous calculations may be found in their paper. The relevant amplitude is π0π0 →
π+π−, which is denoted Aππ(s, t, u), this may be used to construct processes with distinct

isospin using symmetry crossing relations,

Aππ(s, t, u) =
s−M2

π

f 2
π

− µπ
3f 2

πM
2
π

{

4s2 − 4tu− 4sM2
π + 9M4

π

}

− µK
6f 2

πM
2
K

{

s2 − tu+ 2sM2
π

}

− µηM
4
π

9f 2
πM

2
η

+
4

f 4
π

{

(2Lr1 + L3)(s− 2M2
π)

2 + Lr2[(t− 2M2
π)

2 + (u− 2M2
π)

2]
}

+
8M2

π

f 4
π

{

(2Lr4 + Lr5)s+ 2(2Lr6 + Lr8 − 2Lr4 − Lr5)M2
π

}

+
1

576π2f 4
π

{

30(M2
π − s)s+ 21tu− 56M4

π

}

+
1

2f 4
π

{

s2J̄KK(s)

4
+
M4

π J̄ηη(s)

9
+ (s2 −M4

π)J̄ππ(s)

}

+
1

6f 4
π

{

(t− 4M2
K)(2s+ t− 4M2

π)J̄KK(t)

4

+
[

t(t− u)− 2M2
π(t− 2u+M2

π)
]

J̄ππ(t) + [t↔ u]

}

,

where the Lri terms are the renormalised Wilson coeffecients of the effective theory. The

Ji’s are loop integral results that have a simple algebraic form given by ref. [10], along with

a full description of the construction of the amplitudes and renormalisation procedure.
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The terms s, t, u are the usual Mandelstam variables and the Mi’s are the physical meson

masses. The first term is the tree level, O(p2) contribution, the terms µi, where i = π,K, η

arise due to the renormalisation procedure. They are given by,

µi =
Mi

32π2f 2
π

log
Mi

µ
. (2.7)

The entire amplitude is t↔ u symmetric, which is a useful consistency check. Given the

amplitude A(s, t, u) and a set of renormalised low-energy constants Lri , then the distinct

s-channel isospin processes, AsI , may be constructed as,

As0(s, t, u) = 3A(s, t, u) + A(t, s, u) + A(u, t, s), (2.8)

As1(s, t, u) = A(t, s, u) + A(u, t, s), (2.9)

As2(s, t, u) = A(t, s, u)−A(u, t, s), (2.10)

this alone does not produce any resonances. However, eq. (2.7) can be improved by going

by beyond fixed order in χPT using the unitarity of the S-matrix.

In order to apply the unitarity condition, the partial waves of these must be projected

out, since each partial wave must respect unitarity alone. The partial waves, fIJ can be

obtained via,

[fIJ(s)]
(n) =

1

64π

∫ 1

−1

dxPJ(x)A
I (n)(s, t(x), u(x)) (2.11)

where AI (n) denotes the contribution at the order n in χPT amplitude given in eq. (2.7),

and a factor 1/2 has been included in the normalisation, to account for identical particles

and the PJ(x) are the Legendre polynomials, PJ(x) = 1 , x , 1
2
(3x2 − 1) for J = 1, 2, 3

respectively. The constants fπ and Li are fitted from experiment and critically depend on

Nc. Their leading order Nc behaviour is known and these are the parameters that enable

the large-Nc limit to be investigated.

Above KK threshold, as we will see in chapter 3, the ππ channel couples to KK, par-

ticularly for I = 0, J = 0 where the σ(600) resides. These effects should be included

and the method is outlined in ref. [10]. In addition to the π0π0 → π+π− amplitude, the

ππ → KK and KK → KK amplitudes are also required and the unitarisation procedure

must be generalised to a 2× 2 matrix, where this contribution becomes important. Diag-

onalisation then leads to important contributions due to the mixing from the off-diagonal

components.
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The two-loop O(p6) amplitude is given in ref. [11]. Its unitarisation procedure is described

below.

2.1.3. Unitarity and the Inverse Amplitude Method

Unitarity is a property of the S-matrix, S†S = 1 that is necessary for CPT symmetry to

hold. A simple relation can be derived for a general T-matrix element, which we define

from the S matrix in usual way,

Sij = δij + 2i
√
ρiρj Tij (2.12)

where S is the S-matrix, T is the T -matrix and ρi is a phase space factor that will appear

frequently during this chapter and the next, given by ρi(s) = (1−4m2
i /s)

1/2. The unitarity

of the S-matrix leads to the condition,

ImTij = TikρkT
∗
kj , (2.13)

or alternatively we may write,

Im(T−1)ij = −δijρi (no summation). (2.14)

This is an incredibly useful result that gives us a tight restriction on the behaviour of

T . This result allows us to write down the manifestly real K-matrix to represent our

T -matrix elements, where some K = ReT would be valid for the exact amplitude,

T =

(

1

K
− iρ

)−1

. (2.15)

In QCD at low energies the ρ and σ saturate the unitarity limit well below the scale of

1 GeV where χPT is typically valid. The amplitudes T satisfy unitarity, but only up to

their perturbative order, if we expand T in a perturbative series as in χPT,

T = T (2) + T (4) + T (6) + T (8) + ... (2.16)

then the unitarity condition eq. (2.13) will only be satisfied up to its perturbative order.

Since the unitarity relation eq. 2.13 is linear in T on the left and quadratic on the right
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then,

ImT (2) = 0 (2.17)

ImT (4) = T (2)∗ρT (2) (2.18)

ImT (6) = T (4)∗ρT (2) + T (2)∗ρT (4) . (2.19)

Since the unitarity limit is reached at such low energies in ππ scattering then convergence

can be improved since the imaginary part of the inverse amplitude is known. The Inverse

Amplitude Method (IAM) applied to χPT [10, 12, 13] is essentially a strict enforcement

of eq. (2.15) using the χPT amplitude to give K = ReT . The form was originally derived

by a dispersion relation analysis,

T ≃
(

T (2)
)2

T (2) − T (4)
. (2.20)

A binomial expansion of this expression yields the same series as in eq. (2.16), so they are

equivalent order by order, but the IAM resums the series in such a way that the expansion

goes beyond perturbative unitarity.

Unitarity must be respected for each partial wave so then the expressions that are applied

are, for NLO O(p4),

fIJ ≃

(

[fIJ ]
(2)
)2

[fIJ ]
(2) − [fIJ ]

(4)
(2.21)

and at NNLO O(p6),

fIJ ≃

(

[fIJ ]
(2)
)2

[fIJ ]
(2) − [fIJ ]

(4) − [fIJ ]
(6) +

(

[fIJ ]
(4)
)2

/[fIJ ]
(2)

(2.22)

it is this that is used to unitarise the amplitudes. In ππ scattering below KK threshold

then all of the above equations are just simple scalar equations, above threshold in the

J = 0 channel we diagonalise a 2 × 2 matrix as outlined in [10]. This unitarisation

procedure allows χPT to correctly reproduce the poles required for the ρ and σ resonances

from first principles given a standard set of low-energy constants fixed from scattering

processes.
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After this step the amplitude with distinct isospin in the s-channel may then constructed

by doing the sum to invert the decompostion in eq. (2.11),

ImAsI(s, t) =
∑

J

(2J + 1) ImfIJ(s)PJ(z(s, t)) (2.23)

where,

z(s, t) = 1 +
2t

s− sth
(2.24)

and PJ(z(s, t)) are Legendre polynomials in z. The advantage is that the partial waves

fIJ now respect unitarity exactly, not just perturbatively. The sum may be truncated

for small momenta since only the first few partial waves will contribute. We depict the

unitarisation procedure in fig. 2.1.

2.2. Local Duality, Regge Theory and Finite Energy Sum

Rules

Local Duality is a feature observed in many experimental scattering processes that as

energy increases from threshold distinct narrow resonances appear first as sharp peaks

close to threshold, which the higher energy partners become increasingly wider until a

smooth Regge behaviour is observed far from threshold. The low-energy region behaves

much like a sum of narrow resonances, with a background, whilst the large phase space

for higher poles results in increasing decay widths until they begin to overlap and are

indistinguishable from each other, and the background. This smooth behaviour of the

scattering amplitude far from threshold may be thought of as a sum of many resonances

in the direct (s-) channel but is most readily described by a small number of crossed (t-)

channel exchanges [14, 15]. Semi-local duality [16, 17] is the observation that whilst the

smooth Regge behaviour closely matches the amplitude at higher energies, it also matches

at low energies towards the threshold region if a local average is considered.

Regge exchanges must also be built from the quarks and gluons described by QCD; there

must be qq and multiquark components present. In the isospin-2 channel in ππ scattering

there are no regular qq resonances so any exchanges in this channel must be of a more

complicated nature. From experiment it is known that at Nc = 3, qq exchanges dominate.
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χPT

f
(n)
IJ =

1

64π

∫ −1

−1

dxPJ(x)A
sI (n) (s, t(x), u(x))

A = A(2) + A(4) + A(6) A =

(

Aππ AπK

AKπ AKK

)

(See Eqs. (2.8-2.10))

AsI = AsI (2) +AsI (4) +AsI (6)

Do partial wave projection on each component

Unitarise partial waves

Do Isospin Sums in the s-channel

SU(3)SU(2)

For SU(3), fIJ =
f
(2)
IJ

f
(2)
IJ − f

(4)
IJ

Reassemble Amplitude from partial waves

AsIu (s, t) =
∑

J (2J + 1)fIJ(s)PJ(z(s, t))

Figure 2.1.: The unitarisation of χPT partial wave amplitudes using the IAM method. AsIu
denotes the unitarised version of AsI which is a ππ amplitude with distinct isospin
I in the s-channel.
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In the process π+π− → π−π+ which is an isospin-2 process in the t-channel then the low-

energy resonances must have contributions that, on the average, cancel [18].

In ππ scattering there are two resonances at low-energies that have been observed by

experiment and have been readily reproduced by the χPT amplitudes given above. The

ρ(770) is the narrow vector state and has I = J = 1, whilst the σ(600) is a broad scalar

state with I = J = 0. The contributions of these components in π+π− scattering do cancel

when averaged over a suitable region defined with the Finite Energy Sum Rules (FESR),

which we describe below for the I = 2 t−channel process. How this relation is upheld with

increasing Nc may not be immediately obvious since the σ is believed to be a multiquark

state that we expect to disappear with increasing Nc, whilst the ρ is expected to remain

due to its predominantly qq composition, it tends to a δ-function for large-Nc. If the σ

melts away completely then there is nothing for the ρ to cancel against, which would lead

to the conclusion that semi-local duality and the Regge behaviour of scattering amplitudes

can only be a feature of the physical world with Nc = 3. However, theoretically this is not

what is expected since multiquark Regge exchanges should be increasingly suppressed

with increasing Nc. This apparent contradiction will be investigated using FESR and

χPT and we show that an answer may be found at O(p6) in χPT, when we consider the

amplitudes up to 2 GeV2.

2.2.1. The t-channel Amplitudes

The unitarised s-channel ππ scattering amplitudes with definite isospin are referred to now

as AsI(s, t) dropping the u from fig 2.1, we may relate these to the t-channel exchange

with definite isospin using crossing relations,

At0(s, t) =
1

3
As0(s, t) + As1(s, t) +

5

3
As2(s, t), (2.25)

At1(s, t) =
1

3
As0(s, t) +

1

2
As1(s, t)− 5

6
As2(s, t), (2.26)

At2(s, t) =
1

3
As0(s, t)− 1

2
As1(s, t) +

1

6
As2(s, t). (2.27)

The inputs AsI for these are calculable from unitarised χPT as sums of partial waves as

defined by eq. (2.11), and outlined above. At fixed t and large ν the imaginary parts of
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these amplitudes are related to their Regge counterparts,

ImAtI(ν, t) =
∑

R

βR(t) [α
′(ν − νth)]αR(t)

, (2.28)

where αR(t) is the Regge trajectory, βR(t) is the Regge coupling and α′ is the universal

gradient of qq trajectories, βR(t) ≃ 0.9 GeV−2, and νth = (sth + t)/2.

The local average used for the semi-local duality between Regge amplitudes and the

resonance region may be expressed as a FESR,

∫ ν2

ν1

dν ν−nImAtIres(ν, t) ≃
∫ ν2

ν1

dν ν−nImAtIRegge(ν, t) (2.29)

where ν = (s − u)/2 is used due to the symmetry of the amplitudes under s → u,

ν = s = −u along the line t = tth = 4m2
π. The region over which these are matched

should be some integer multiple of the separation of resonances which is conveniently

given by 1/α′. We consider two ranges, from threshold, νth to ν = 1 GeV2 and from νth

to ν = 2 GeV2, where νth = (sth + t)/2.

2.2.2. Comparing the FESR relation with experiment

In order to understand how well the relation eq. (2.29) is satisfied at higher values of Nc

it is important to understand how well it works for the physical amplitudes at Nc = 3.

In order to represent physical reality we use a partial wave parameterisation given by

Kaminski, Peláez and Yndurain [19]. This represents the results of a thorough analysis

of the available ππ scattering data up to 2 GeV2 covering the S, P and D partial waves.

We investigate the ratio,

RI
n =

∫ ν2
ν1
dν ν−nImAtI(ν, t)

∫ ν3
ν1
dν ν−nImAtI(ν, t)

(2.30)

where we consider the first two regions that are valid, with ν1 = νth and up to ν2 = 1 GeV2

and ν3 = 2 GeV2, eq. (2.29) is well satisfied when the ratio RI
n ≃ 1. We consider only the

leading Regge behaviour because then the coupling βR cancels in this ratio. For ImAt0

the Pomeron Regge trajectory gives the dominant contribution, and for ImAt1 it is the

ρ(770) that gives the dominant contribution, the leading contribution to these amplitudes
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from Regge theory may be given as,

ImAt0Regge = 1.08 + 0.25t (2.31)

ImAt1Regge = 0.47 + 0.89t (2.32)

where eq. (2.32) is calculated by fitting the linear trajectory through the ρ(770) and

ρ3(1680) resonances listed in the PDG data tables [20], when plotted as in figure 2.2.

This Regge trajectory is degenerate with another given by the f2(1270) and f4(2050), also

shown in figure 2.2. The pomeron trajectory is obtained from ref. [21]. Using eq. (2.30)

we find the results given in table 2.1. The amplitudes from χPT are represented by a sum

of the lowest partial waves, it is important also to check the range of validity. For higher

values of n in eq. (2.30) then the lowest partial waves should dominate since this adds

extra weight to the low-energy region. Higher waves are suppressed close to the threshold

by factors of (1− sth/s)2J+1, so for increasing J , they are increasingly suppressed. Hence,

a sum of the first few partial waves should be sufficient, however it is important to check

whether it is appropriate to include upto J=1, 2 or 3. Using the KPY parameterisation

of the experimental data this is straightforward.

We conclude that from table 2.1, we should include up to the D wave in order to obtain a

good agreement and that for n = 0, eq. (2.30) does not give good agreement, presumably

higher partial waves are responsible. So we restrict our investigation to 1 ≤ n ≤ 3 and

include the S, P and D partial waves in the sum. Higher values of n put too much

emphasis on the region close to threshold which is far from the poles of these resonances

so is not a measure of the cancellation between σ(600) and ρ(770) which we intend to

investigate.

2.3. Nc Dependence and resonance structure

The physical world in which our experiments are performed is restricted to QCD with

three colours. Since we have the fundamental theory we can of course vary Nc and

calculate various quantities with Nc 6= 3. It is useful to consider Nc > 3 since this can

elucidate some of the inner workings of the mesons χPT is capable of producing [22, 23].

Increasing Nc results in a reduced coupling of qq states to decay channels and hence

their widths decrease. The same effect also causes states made of four quarks or exotic

combinations of quarks and gluons to become increasingly wide, thus their poles move
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Figure 2.2.: A plot of the two dominant Regge trajectories used for isospin−0 and isospin−1
in the t−channel.

RI=0

n
RI=1

n

n t = tth t = 0 t = tth t = 0

Regge

0 0.213 0.226 0.324 0.351

1 0.403 0.436 0.586 0.647

2 0.678 0.743 0.856 0.919

3 0.902 0.951 0.974 0.993

KPY
S, P , D
waves

0 0.337 ± 0.093 0.342 ± 0.083 0.479 ± 0.213 0.492 ± 0.191

1 0.567 ± 0.095 0.582 ± 0.082 0.725 ± 0.157 0.741 ± 0.131

2 0.788 ± 0.061 0.815 ± 0.047 0.894 ± 0.072 0.911 ± 0.052

3 0.927 ± 0.023 0.953 ± 0.013 0.971 ± 0.022 0.982 ± 0.011

KPY
S and P
waves

0 0.615 ± 0.169 0.572 ± 0.133 0.743 ± 0.187 0.709 ± 0.103

1 0.796 ± 0.145 0.771 ± 0.120 0.874 ± 0.123 0.861 ± 0.064

2 0.912 ± 0.088 0.909 ± 0.068 0.950 ± 0.062 0.950 ± 0.026

3 0.971 ± 0.038 0.977 ± 0.021 0.984 ± 0.023 0.989 ± 0.006

Table 2.1.: The RIn ratios from Regge Theory and the KPY parameterisation of ππ scattering,
with and without D-waves.
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away from the real axis in the E Argand plane, and the resonances disappear into the

background. These behaviours are seen in low-energy unitarised χPT; the ρ becomes

narrower and the σ enhancement subsides, as shown in the fig. 2.4 for the case given by

SU(3) O(p4) χPT. The precise behaviour depends on the LECs that are used, in this case

we use the LECs given by ref. [24] and reproduced in table 2.2. These LECs give a ρ

mass that moves to very slowly to lower energies with increasing Nc, for other choices the

ρ mass can move to higher energies. The behaviour of the imaginary part of the pole in

E however is always the same; with increasing Nc the imaginary part becomes smaller.

Conversely, the opposite happens for the σ, as Nc increases, the imaginary part becomes

larger until no obvious structure is visible. The behaviour of the dominant pole in E on

the unphysical sheet is shown in figure 2.3, the position of the pole in E is related to the

mass and width by,

E =M − iΓ/2 (2.33)

where M corresponds to the particle mass and Γ to its width. In figure 2.4 we plot the

ππ amplitude from SU(3) χPT for a range of values of Nc.
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Figure 2.3.: The motion of the σ and ρ poles at O(p4), from [25–27].
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Coeff. Nc = 3 Value [24] O(Nc) scaling [28]

fπ(Nc) 92.4 MeV
√

Nc/3fπ(Nc = 3)

L1(Nc) (0.60± 0.09)× 10−3 L1(Nc = 3)− 1
2
(L2(Nc)− L2(Nc = 3))

L2(Nc) (1.22± 0.08)× 10−3 (Nc/3)L2(Nc = 3)

L3(Nc) (−3.02± 0.06)× 10−3 (Nc/3)L3(Nc = 3)

L4(Nc) 0 (fixed) L4(Nc = 3)

L5(Nc) (1.90± 0.03)× 10−3 (Nc/3) L5(Nc = 3)

L6(Nc) (−0.07± 0.20)× 10−3 L6(Nc = 3)

L7(Nc) (−0.25± 0.18)× 10−3 L7(Nc = 3)

L8(Nc) (0.84± 0.23)× 10−3 (Nc/3) L8(Nc = 3)

Table 2.2.: The Wilson coefficients and their leading order Nc behaviour. These are renor-
malised at the scale µ = 770MeV ≃ mρ. Note that the combination 2L1(Nc) −
L2(Nc) is assumed constant for all Nc, which implies the L1 behaviour above. An
alternative is to assume Nc/3 scaling for L1 as for the other Nc dependent Li’s.
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Figure 2.4.: The amplitudes ImfIJ as defined in Eq. (2.21) from SU(3) χPT at O(p4). Top:
The σ enhancement as a function of Nc. Middle: The ρ resonance as a function of
Nc. Bottom: The I = 2 scalar channel as a function of Nc (Nc=[3(Black, Solid),
6(Red, Dashed), 9(Green, Dot-dashed), 12(Blue, Dotted)]).
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2.4. Chiral Perturbation Theory at O(p4) and

Semi-Local Duality

Now that we have verified that semi-local duality between resonances and Regge exchange

is satisfied at Nc = 3 we intend to investigate what happens when this is increased. As

visible in fig. 2.4, increasing Nc has the effect of making qq resonances narrower as they

decouple from their decay channels, whilst four-quark or exotic states subside into the

vacuum. For Imf 0
0 we note that the σ(600) appears to fade away at O(p4), whilst in Imf 1

1

the ρ(770) becomes narrower.

In this section we consider the partial wave amplitudes represented in figure 2.4 and

combine them in the appropriate ways given in eqs. (2.25–2.27) in order to obtain the

AtI amplitudes for I = 0, 1 and 2. The I = 2 channel is of particular importance because

no qq states exist there.

To quantify the Nc-dependence at different orders in χPT and with different choices of

LECs, we calculate the value of Finite Energy Sum Rules ratios,

F (t, Nc)
I I′

n =

∫ νmax

νth
dν Im AtI(ν, t, Nc)/ν

n

∫ νmax

νth
dν Im AtI′(ν, t, Nc)/νn

, (2.34)

for different values of n = 0−3, Nc < 12, t, νmax, and isospin t-channels I, I ′. The ratio F 10

compares the amplitude given by ρ Regge-exchange with that controlled by the Pomeron,

while the ratio F 21 compares the ‘exotic’ four quark exchange with qq ρ-exchange.

We show the results in Table 2.3, and plot the data in fig. 2.6. The integrands used to

calculate the ratios plotted in fig. 2.6 are themselves plotted in fig. 2.5. If the Regge

expectations were valid at one-loop order, we would expect F 10 to tend to 0.66 and for

F 21 to be very small in magnitude, just as they are at Nc = 3, particularly for a cutoff

of 2 GeV2. However, as Nc increases we find that the ratio F 10 tends to 0.5, while that

for F 21 tends to −1. This is in accord with the n = 1, 2 sum rules becoming increasingly

dominated by the ρ with very little scalar contribution. This difference is a consequence

of the apparent four quark nature of the σ being incompatible with Regge expectations.

The t-channel amplitudes for ImAtI with I = 1 and I = 2 from O(p4) χPT including the

first three partial waves are plotted in figure 2.5, including the weights with s−n. These

form the integrands for the FESR.
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Figure 2.5.: The ImAtI(s, t = 4m2
π)/s

n amplitudes which form the integrands for the FESR.
Black, solid curve Nc = 3. Red, Dashed curve Nc = 6, Green, Dot-dashed curve
Nc = 9. Blue, Dotted Nc = 12



The structure of the σ(600) using χPT 27

Figure 2.6.: The Ratios F IJn at O(p4). Black squares: νmax = 1, t = 4m2
π. Red up-triangles:

νmax = 1, t = 0. Green down-triangles: νmax = 2, t = 4m2
π. Blue circles:

νmax = 2, t = 0
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1-loop SU(3) χPT IAM

t = 4m2

π t = 0

n Nc νmax=1 GeV2 νmax=2 GeV2 νmax=1 GeV2 νmax=2 GeV2

F10

0

3 0.503 ± 0.008 0.385 ± 0.023 0.500 ± 0.010 0.364 ± 0.027

6 0.527 ± 0.013 0.475 ± 0.033 0.534 ± 0.017 0.468 ± 0.038

9 0.528 ± 0.015 0.522 ± 0.039 0.537 ± 0.020 0.524 ± 0.046

12 0.524 ± 0.015 0.545 ± 0.042 0.533 ± 0.021 0.552 ± 0.050

1

3 0.521 ± 0.008 0.457 ± 0.016 0.526 ± 0.011 0.452 ± 0.019

6 0.529 ± 0.011 0.506 ± 0.022 0.538 ± 0.015 0.507 ± 0.026

9 0.525 ± 0.013 0.525 ± 0.024 0.532 ± 0.016 0.530 ± 0.029

12 0.520 ± 0.012 0.531 ± 0.027 0.526 ± 0.016 0.538 ± 0.030

2

3 0.551 ± 0.011 0.522 ± 0.013 0.575 ± 0.013 0.544 ± 0.016

6 0.536 ± 0.012 0.526 ± 0.016 0.550 ± 0.015 0.538 ± 0.019

9 0.525 ± 0.011 0.525 ± 0.016 0.534 ± 0.015 0.533 ± 0.020

12 0.517 ± 0.010 0.523 ± 0.016 0.524 ± 0.013 0.529 ± 0.019

3

3 0.599 ± 0.015 0.588 ± 0.015 0.654 ± 0.017 0.645 ± 0.017

6 0.551 ± 0.014 0.547 ± 0.015 0.579 ± 0.017 0.575 ± 0.018

9 0.530 ± 0.012 0.530 ± 0.014 0.547 ± 0.016 0.547 ± 0.017

12 0.519 ± 0.010 0.521 ± 0.012 0.530 ± 0.013 0.532 ± 0.015

F21

0

3 -0.441 ± 0.021 -0.220 ± 0.045 -0.312 ± 0.029 -0.073 ± 0.058

6 -0.415 ± 0.050 0.012 ± 0.057 -0.259 ± 0.057 0.180 ± 0.059

9 -0.479 ± 0.068 0.059 ± 0.083 -0.319 ± 0.080 0.230 ± 0.079

12 -0.552 ± 0.074 0.047 ± 0.105 -0.399 ± 0.073 0.221 ± 0.097

1

3 -0.355 ± 0.021 -0.269 ± 0.021 -0.193 ± 0.022 -0.104 ± 0.023

6 -0.438 ± 0.047 -0.228 ± 0.052 -0.284 ± 0.051 -0.074 ± 0.052

9 -0.538 ± 0.054 -0.262 ± 0.077 -0.396 ± 0.068 -0.113 ± 0.078

12 -0.621 ± 0.060 -0.317 ± 0.093 -0.493 ± 0.073 -0.170 ± 0.097

2

3 -0.157 ± 0.043 -0.133 ± 0.036 0.107 ± 0.039 0.123 ± 0.032

6 -0.382 ± 0.053 -0.299 ± 0.054 -0.171 ± 0.054 -0.100 ± 0.053

9 -0.530 ± 0.056 -0.415 ± 0.066 -0.354 ± 0.063 -0.247 ± 0.069

12 -0.630 ± 0.053 -0.505 ± 0.072 -0.481 ± 0.062 -0.355 ± 0.078

3

3 0.175 ± 0.062 0.176 ± 0.058 0.578 ± 0.042 0.577 ± 0.040

6 -0.193 ± 0.066 -0.169 ± 0.065 0.204 ± 0.057 0.217 ± 0.056

9 -0.407 ± 0.062 -0.369 ± 0.066 -0.054 ± 0.061 -0.030 ± 0.063

12 -0.541 ± 0.055 -0.497 ± 0.063 -0.233 ± 0.060 -0.200 ± 0.064

Table 2.3.: Ratios for 1 loop UChPT using LECs from a single channel fit
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2.5. Chiral Perturbation Theory at O(p6) and

Semi-Local Duality

The case for SU(2) O(p6) χPT is a little different, there are eleven low-energy constants

which must be constrained for the ππ amplitude, one at O(p2), four at O(p4) and six at

O(p6), examples of these are given in table 2.5. There are larger uncertainties regarding

the values to use and different values that give similar results at Nc = 3 may give quite

different results at larger values of Nc. In ref. [25] the possible behaviours of the ρ and

σ were incorporated as artificial constraints on the LECs and fits were produced for the

following cases, where in each a minimisation is first performed at Nc = 3 to data and

then a model is applied as described below at higher values of Nc depending on the desired

behaviour. This is added to the χ2 for data in the minimisation and different parameters

are found in each case. The cases we consider are:

• Case A: ρ as qq, σ only from data.

• Case B: ρ and σ as qq.

• Case C: σ as qq, ρ only from data.

A model is then proposed in ref. [25] to test each of the cases, such that if a state is qq in

composition, its mass and width should have the following behaviours,

M qq(Nc) =M0

(

1 +
ǫM
Nc

)

(2.35)

for the mass, and for the width of the state we have,

Γqq(Nc) =
Γ0

Nc

(

1 +
ǫΓ
Nc

)

(2.36)

where M0 and Γ0 are Nc-independent quantities and these equations give the familiar

property that the mass is roughly constant M ∼ O(1) and the width becomes narrower

with Nc, Γ ∼ O(1/Nc).
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For a qq state the expected MNc and ΓNc can be obtained from the IAM amplitudes,

M qq
Nc
≃MNc−1

[

1 + ǫM

(

1

Nc
− 1

Nc − 1

)]

= MNc−1 + ∆M qq
Nc
, (2.37)

Γ qq
Nc
≃ Nc − 1

Nc
ΓNc−1

[

1 + ǫΓ

(

1

Nc
− 1

Nc − 1

)]

=
Nc − 1

Nc
ΓNc−1 + ∆Γ qq

Nc
. (2.38)

We therefore define an averaged χ2
qq to measure how close a resonance is to a qq behaviour,

using as uncertainty the ∆M qq
Nc

and ∆Γ qq
Nc

χ2
qq =

1

2n

n
∑

Nc=4





(

M qq
Nc
−MNc

∆M qq
Nc

)2

+

(

Γ qq
Nc
− ΓNc

∆Γ qq
Nc

)2


 . (2.39)

This χ2
qq is added to χ2

data and the sum is minimised. Case A is where the data are fitted

assuming that the ρ is a qq meson as Nc is increased, while Case B assumes that both the

σ and the ρ are qq states with increasing Nc. Lastly, Case C is where we minimise χ2
data

and just χ2
qq for the σ.

Case A returns the best fit to data, as would be expected from χPT at O(p4), but even
this contains a subleading qq component apparently of the σ above 1 GeV as can be seen

in the plot for Imf 0
0 in fig. 2.8. As may already be apparent, this subleading component

will be vital later when we consider whether the Finite Energy Sum Rules and Semi-Local

Duality are satisfied as Nc changes.

In Table 2.4 the values of the χ2 contributions for each case are given, where Nc is summed

from 3 to 12. We see that constraining the ρ to be a qq state by including eq. (2.39) in

the minimisation is completely compatible with data at Nc = 3. In contrast, imposing a

qq configuration for the σ gives a much poorer agreement with data and can distort the

simple structure for the ρ. It is interesting to point out that, the lower energy at which the

σ qq behaviour emerges, the higher energy at which the ρ pole moves with Nc. Therefore,

as much as we try to force the σ to behave as a qq meson, less the ρ meson does. However,

requiring a qq composition for the σ for larger Nc causes no such incompatibility with the

physical world at Nc = 3.

We can follow the position of the poles in the complex E-plane which is performed in fig.

2.7, here we see the physical σ pole at Nc = 3 first begin to move away from the real axis
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IAM Fit χ 2
data χ 2

ρ,qq χ 2
σ,qq χ 2

σ,qq,Nc=9 χ 2
σ,qq,Nc=12

Case A: ρ as qq 1.1 0.9 15.0 4.8 3.4

Case B: ρ and σ as qq 1.5 1.3 4.0 0.8 0.5

Case C: σ as qq 1.4 2.0 3.5 0.6 0.5

Table 2.4.: Values of the χ2 for the different SU(2) fits.

as is seen in the SU(3) calculation, however now extra effects from the additional terms

in the chiral expansion cause the pole to turn back towards the real axis at energies in

the region of 1 GeV2 signalling the presence of a qq component in its Fock space. Figure

2.7 is directly comparable to fig. 2.3 for the O(p4) version of the calculation. The pole

motion is completely smooth for both the ρ and the σ suggesting that this really is a

property of these states as seen as Nc increases. The effect is also visible when we look at

the imaginary parts of the amplitudes, see fig. 2.8. There, a peak is seen in the I = J = 0

channel that arises around Nc = 9. This behaviour may be related to the existence of

another qq nonet above 1 GeV [29–38].
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Figure 2.7.: The motion of the σ and ρ poles at O(p6) for Case A [25–27].

These new effects come towards the edge of the region of validity of the single channel

unitarised chiral theory, at around 1 GeV. As Nc is increased beyond 12 then the effects

of coupled channels should be taken into account. In order to do this would require the

SU(3) O(p6) amplitudes which are at present unknown. This serves as a caveat to the

conclusions of this analysis, particularly for a σ pole much above 1 GeV, that coupled

channel effects could be important.
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Coeff Case A Case B Case C O(Nc) scaling.

lr1 −5.4 × 10−3 −5.7× 10−3 −5.7× 10−3 (Nc/3)

lr2 1.8× 10−3 2.5× 10−3 2.6× 10−3 (Nc/3)

lr3 1.5× 10−3 0.39× 10−3 −1.7× 10−3 (Nc/3)

lr4 9.0× 10−3 3.5× 10−3 1.7× 10−3 (Nc/3)

r1 −0.6 × 10−4 −0.58× 10−4 −0.60× 10−4 (Nc/3)
2

r2 1.5× 10−4 1.5× 10−4 1.3× 10−4 (Nc/3)
2

r3 −1.4 × 10−4 −3.2× 10−4 −4.4× 10−4 (Nc/3)
2

r4 1.4× 10−4 −0.49× 10−4 −0.03× 10−4 (Nc/3)
2

r5 2.4× 10−4 2.7× 10−4 2.7× 10−4 (Nc/3)
2

r6 −0.6 × 10−4 0.62× 10−4 −0.7× 10−4 (Nc/3)
2

Table 2.5.: The SU(2) at O(p6) low-energy constants from ref. [25].

Applying the low-energy constants from Case A above we perform the same analysis as

for the O(p4) SU(3) calculation given above now using the SU(2) O(p6) theory. The

motion of the σ pole has an important effect on the outcome, particuarly if we integrate

the FESR up to 2 GeV2. First we show in fig. 2.9 the integrands for calculating the ratio

F IJ
n , then we give the numerical values for the ratios again in table 2.6. The behaviour

is best visualised in fig. 2.10 where we see in particular for F 21
1 and F 21

2 for the curves

where νmax = 2GeV2, then the t-channel amplitude is always small, as is expected if local

duality is to be upheld with increasing Nc.

This leads us to the conclusion, notwithstanding the caveat given above regarding the

unknown coupled channel effects above 1 GeV, that in this framework, local duality can

be a feature of the theory as described by O(p6) SU(2) unitarised chiral perturbation

theory. Local duality however is not apparent in the standard LECs which we have

applied for the O(p4) SU(3) version of the calculation. This difference happens at O(p6)
because the pole associated with the resonance referred as the σ does not continue to move

away from the real axis in the complex E plane as Nc becomes larger, as is seen in O(p4)
SU(3) unitarised chiral perturbation theory. Instead, the pole moves smoothly away to

begin with, consistent with a dominant four-quark structure, but around Nc = 6 the pole

begins to move back towards the real axis, signalling an emerging qq structure. This

then provides the necessary contribution to keep the I = 2 t-channel exchanges small, as

is expected from local duality, particuarly when the integration region encompasses this

pole, as can be seen from fig. 2.10.
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2-loop SU(2) χPT (ρ as q̄q)

t = 4m2

π t = 0

n Nc νmax=1 GeV2 νmax=2 GeV2 νmax=1 GeV2 νmax=2 GeV2

F10

0

3 0.493 0.359 0.488 0.334

6 0.494 0.370 0.492 0.349

9 0.491 0.395 0.490 0.376

12 0.489 0.422 0.488 0.404

1

3 0.508 0.442 0.511 0.434

6 0.496 0.419 0.494 0.407

9 0.488 0.430 0.487 0.418

12 0.485 0.447 0.483 0.436

2

3 0.533 0.505 0.551 0.522

6 0.498 0.467 0.498 0.454

9 0.482 0.452 0.479 0.445

12 0.477 0.460 0.472 0.452

3

3 0.572 0.563 0.618 0.611

6 0.503 0.485 0.511 0.495

9 0.472 0.460 0.468 0.456

12 0.461 0.457 0.451 0.447

F21

0

3 -0.421 -0.060 -0.280 0.135

6 -0.536 -0.086 -0.454 0.058

9 -0.648 -0.061 -0.579 0.073

12 -0.748 -0.038 -0.686 0.090

1

3 -0.351 -0.202 -0.183 -0.028

6 -0.438 -0.196 -0.335 -0.069

9 -0.578 -0.215 -0.497 -0.102

12 -0.699 -0.227 -0.629 -0.121

2

3 -0.173 -0.123 0.097 0.139

6 -0.249 -0.152 -0.069 0.027

9 -0.435 -0.248 -0.294 -0.105

12 -0.594 -0.314 -0.477 -0.192

3

3 0.146 0.156 0.570 0.575

6 0.102 0.112 0.485 0.488

9 -0.121 -0.073 0.249 0.275

12 -0.332 -0.216 0.012 0.092

Table 2.6.: Ratios for 2 loops UChPT using the ρ as q̄q LECS fit.
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2.6. Conclusions

The Nc dependence of the unitarised chiral amplitudes at one loop order poses a problem

for the concept of semi-local duality between resonances and Regge exchanges. However,

at two loop order this is no longer the case. Semi-local duality is then satisfied at all Nc

where the IAM unitarisation procedure is valid, typically where Nc < 30. This is because

at one loop order the ρ and σ resonances have quite distinct structures, it is shown

that the ρ is a qq state, whilst the σ is not. Their behaviour with increasing Nc makes

these distinguishable. In contrast, at higher order in the chiral expansion, the σ has a qq

component in its Fock space, which though sub-dominant atNc = 3, becomes increasingly

important as Nc increases. This is critical, as we have shown here, in ensuring semi-local

duality is fulfilled as Nc increases. Thus the chiral expansion contains the solution to the

apparent paradox of how the distinctive natures of the ρ and σ resonances are reconciled

with semi-local duality as Nc is increased. Indeed, despite the additional freedom brought

about by the extra Low Energy Constants at two loop order, fixing these from experiment

at Nc = 3 automatically brings this compatibility with semi-local duality as Nc increases.

This is a most satisfying result.

It has been investigated whether the one loop chiral amplitudes could also reproduce

this behaviour. Explicitly imposing the behaviour as Nc is increased as we do here for

the O(p6) amplitudes, however it does not appear possible to simultaneously satisfy a

subleading qq component in the σ, and the ππ scattering data. The additional freedom

that arises in the O(p6) amplitudes reaches further into the fundamental theory to give

rise to this behaviour [27].

We consider further implications combined with the results of chapter 3 in our final

conclusion.
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Figure 2.8.: The amplitudes ImfIJ as defined in Eq. (2.21) from SU(2) χPT at O(p6) for
Case A in table 2.5. Top: The σ enhancement as a function of Nc. Middle:
The ρ resonance as a function of Nc. Bottom: The I = 2 scalar channel as
a function of Nc (Nc=[3(Black, Solid), 6(Red, Dashed), 9(Green, Dot-dashed),
12(Blue, Dotted)]).
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Figure 2.9.: The ImAtI(s, t = 4m2
π)/s

n amplitudes which form the integrands for the FESR.
Black, solid curve Nc = 3. Red, Dashed curve Nc = 6, Green, Dot-dashed curve
Nc = 9. Blue, Dotted Nc = 12
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Figure 2.10.: The Ratios F IJn at O(p6). Black squares: νmax = 1, t = 4m2
π. Red up-triangles:

νmax = 1, t = 0. Green down-triangles: νmax = 2, t = 4m2
π. Blue circles:

νmax = 2, t = 0



Chapter 3.

The Pole Structure of the f0(980)

Resonance

3.1. Introduction

The f0(980) is a scalar resonance that lies just aboveKK threshold, whose nature has long

been discussed. The most common suggestions for its composition have been a regular

qq state [39–43], a compact multiquark state [44,45], a KK molecule [46–50], or possibly

something else exotic. In fact as we saw in the previous chapter and as noted in [51], the

state could be seeded by qq and dressed by its strong coupling to hadronic channels. The

f0(980) is seen in ππ → ππ, ππ → KK and KK → KK channels. Due to its proximity

and coupling to the KK threshold the resonance shape is nontrivially distorted from a

simple Breit-Wigner by the rapidly varying phase space of this channel.

Recently, Babar has taken extremely precise data on Ds decays. The process Ds →
πf0(980) is of key interest, this is observed as Ds → π(ππ), Ds → π(K

0
K0) and Ds →

π(K+K−) final states. Crucially for resolving the structure, these data are finely binned

and are hoped to constrain the fit more precisely than previous analyses [39, 40, 52].

3.2. Method

Following earlier analyses of this resonance, we make use of an argument due to Wein-

berg [53–55], that was first applied to determine whether the deuteron was an elementary

38
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state or a composite particle. A similar procedure may be applied to any resonance that

fits the following criteria,

(1.) The resonance should lie close to a two-body decay channel with zero angular mo-

mentum between decay products.

(2.) The resonance should be stable.

for the f0(980) , condition (1.) is very well fulfilled, and condition (2.) is reasonably well

approximated due to the narrow width and rapid rise in phase observed in ππ scattering.1

The argument of Weinberg is then dependent upon the number of poles of the scattering

amplitude. A single pole2, corresponds to a ‘composite’ state, which we could interpret

here as a bound state of KK whilst two poles corresponds to an elementary excitation of

QCD which could be a qq state, some compact four-quark state, a purely gluonic state,

or some other bound combination of quarks and gluons [56].

Normally we consider our amplitudes in s, however, the sheet structure of the complex

s-plane is multilayered, and it is simpler to consider instead the complex k2-plane, which

unfolds into a single plane, with the real energy axis running along the positive imaginary

axis, around the origin at threshold and then along the positive real axis. There are two

definitions that we shall use for k2, one using a split KK threshold where we consider

the charged and neutral thresholds separately, and a simpler version using an averaged

threshold. These are defined as,

kave2 =
1

2

(

s− (mK± +mK0)2
)

1
2 , (3.1)

ksplit2 =
1

4

{

(

s− 4m2
K±

) 1
2 +

(

s− 4m2
K0

) 1
2

}

, (3.2)

where mK0 and mK± correspond to the neutral and charged Kaon masses respectively.

The key difference is that the physical line for the split case runs around a small quarter-

circle at the origin of the k2 plane, as shown in 3.4. We fit to a narrow region centred on

threshold 0.867 < E < 1.11GeV to investigate narrow structures. We require our energy

region to be centred on our region of interest, and we wish to avoid the added complexity

of ηη threshold at 2× 0.5478GeV. The background is not expected to vary rapidly over

such a narrow region.

1One could argue that the conditions are at odds with each other.
2Either in E or k2 which we define later.
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3.2.1. Jost functions, Matrix Elements and matching theory and

data

The Jost function [57] representation for the scattering matrix elements is particularly

convenient here since it gives precise control over the number and the position of poles in

the matrix elements. The Jost function is split into two parts,

φ(k2) = φpol(k2)φbg(k2), (3.3)

where φpol represents the part of the Jost function necessary to produce the resonant part

of the amplitude. The zeros of this at k
(np)
2 will correspond to the position of the nth pole

in k2 in the scattering amplitude, we parameterise this as,

φpol(k2) =

Npoles
∏

n=1

(

1− k2

k
(np)
2

)

. (3.4)

The φbg term is required to produce everything else in the amplitude from the Jost

function, primarily the background,

φbg(k2) = exp

(

Nγ
∑

j=0

γjk
j
2

)

, (3.5)

where the γi are complex expansion coefficients whose values can be fitted to data. The

S-matrix elements may then be related to the Jost function as [40],

S11 = 1 + 2iρ1T11 =
φ∗(−k∗2)
φ(k2)

(3.6)

S22 = 1 + 2iρ2T22 =
φ(−k2)
φ(k2)

(3.7)

Det(S) =
φ∗(k∗2)

φ(k2)
(3.8)

S12 = 2i
√
ρ1ρ2 T12 = (S11S22 −Det(S))

1
2 , (3.9)

where we now note the importance of the the zeros of φ(k2). The ρi are phase space

factors for the relevant channels. An essential feature of this parameterisation is that

it naturally incorporates unitarity which, along with the available data on this channel,

provides an important constraint. In this work we consider a wide range of datasets

from different experiments and hadronic decay channels, which constrain our T -matrix
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elements by relations of the form,

A1 = α1T11 + α2T12, (3.10)

A2 = α1T21 + α2T22, (3.11)

where Ai is the hadronic decay amplitude, Tij are the T-matrix elements and the αi are

unknown hadronic coupling functions, that are allowed by unitarity. Each distinct process

that we consider will require a different set of α coefficients which we parametrise by a

linear form in s.

3.2.2. The Flatté form

Flatté [58] originally introduced a modified form of the Breit-Wigner parameterisation

to fit the f0(980) resonance. This has since been generalised [47, 59] in recent studies of

this resonance. We perform fits also using this form to check our amplitudes. The Flatté

resonance formula is embedded in a general elastic background that is constrained by

unitarity [60]. The resonant part is given as,

Fij(s) =
gigj

m2
0 − s− ig21Γ1(s)− ig22Γ2(s)

, (3.12)

similar to Breit-Wigner fits, where m0 is a free, wholly real mass parameter, and the gi’s

are free parameters that are fitted. Different forms may be used for Γi(s), the simplest be-

ing just the phase space for the given channel, Γi(s) = ρi(s). General unitarity constrains

the T -matrix elements to have the form,

Tij(s) = δij
sinφi(s)e

iφi(s)

ρi(s)
+ eiφi(s)+iφj(s)Fij(s), (3.13)

where δij is the Kronecker delta-function and the φi(s) are background phases. Physically

the Flatté form is similar to the Jost function form since it allows freedom between the

positions of the poles such that if the data requires, the sheet 3 pole typically present in a

Breit-Wigner can move away into the complex plane. The key difference when performing

any analysis is that in the Jost function representation the pole position can be specified

directly and thus the behaviour of the fits, the background contribution and the resonant

part may all be studied as functions of the position of both poles. Previous studies using

this Flatté form have found that the position of the first pole on sheet II is essentially

fixed, and the second pole on sheet III is more weakly constrained.
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We do not consider this form for our primary analysis since the Jost form is more flexible

because we may specify the pole positions in the parameterisation. However, we will check

that our amplitudes from the Jost-function paramterisation are consistent with the Flatté

parameterisation.

3.2.3. Datasets and Theoretical Parameterisations

The f0(980) appears in many distinct channels, we supplement direct scattering con-

straining the ππ → ππ, ππ → KK and KK → KK amplitudes with the related hadronic

processes ψ → φππ, ψ → φKK which come from the BES and Mk3 experiments and also

the new data from Babar mentioned previously. We consider additionally data from AFS

on pp→ ppππ, pp→ ppKK, and also Ds → 3π data from the Focus collaboration.

Direct Scattering data

Much of these data have not changed since the previous study but is essential in this

analysis. There is an inconsistency in the absolute normalisation of the Etkin, Longacre

et al [61–63] and Cohen et al [64] datasets. There is no problem with the shape or phases,

just the normalisation. We fit Etkin et al [61] using a free normalisation since this dataset

is given in number of events. We also calculate χ2-fits to Cohen et al and Longacre et al

which have absolute normalisations. These do not alter the fitted solutions particularly,

however we will find that one data set is consistent with our other data, whilst the other

always returns a large contribution to the total χ2.

For the direct channel ππ → ππ there are a range of sources available that concentrate

on π+p → π+π+n and π−p → π0π0n. For the charged channel we use the data from

the CERN-Munich collaboration [65–67], these data have been analysed using a variety

of methods, we use the version given in ref. [65] which is almost identical to ref. [66] and

Solution B of ref. [67], the main difference being the phase at threshold has a much larger

error, although the central value is the same.

For the neutral channel there are data available from GAMS and BNL-E852 [68], these

both lack absolute phases, only S−D0 is available, and the amplitudes are not normalised.

An appropriate analysis that puts these data into a directly usable form is given in ref [69].

The isospin-2 components have to be removed for both S and D0 amplitudes, along

with the isospin-0 D0 contribution, this allows the inelasticity η00 and the phase δ00 to be
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obtained. A problem arises in this dataset beyond the range that we consider in that the

amplitudes violate unitarity. In reducing the data to this form multiple solutions arise

that have to be carefully considered, it is not clear which best represents physical reality,

if any, particularly due to the unitarity violation problem. The authors themselves even

question the precision of the method and data to this process. A comparison of the data

is shown in figs 3.1 and 3.2. We have assumed this analysis supercedes a previous analysis

of Gunter et al that gave the ππ phase from a smaller subset of the E852 data [70].

These data directly constrain the scattering amplitude,

S11 =1 + 2iρ1T11

= η00(s) e
2iδ00(s), (3.14)

which clearly has a simple relation to the Jost-function or Flatté parameterisations. There

is however a phase ambiguity in δ00(s) due to the periodicity in 2δ00, if the fitting program

finds a discontinuity in phase as it approaches 180◦ it will add ±180◦ to δ00(s) in order to

keep the phase continuous.
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Figure 3.1.: The ππ S-wave inelasticity η00 . Red diamonds are Ochs [65], Black squares are
Hyams et al [66], Green solid circles are the BNL/Achasov et al set 1 (fig. 5a
from ref. [69]), and the Blue empty circles are the BNL/Achasov et al set 2 (fig.
5e from ref. [69])
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Figure 3.2.: The ππ S-wave phase δ00 . Red diamonds are Ochs [65], Black squares are Hyams et
al [66], Green solid circles are the BNL/Achasov et al set 1 (fig. 5b from ref. [69]),
and the Blue empty circles are the BNL/Achasov et al set 2 (fig. 5f from ref. [69])

ψ → φ(MM)

In the Mk3 [71] and BES [72] data, the f0(980) results in a rapid reduction in events

in the ππ channel with an associated increase in the KK channel. The BES data have

particularly high statistics and each point has a small error, but is in 30 MeV bins, whilst

the Mk3 data has finer bins and larger errors. We make the connection to theory from

these data using eq. (3.11),

A1 = α1(s) T11 + α2(s) T12

A2 = α1(s) T21 + α2(s) T22

where we typically use,

αi(s) = α
(0)
i + α

(1)
i

(

s− (4m2
K)
)

+ α
(2)
i

(

s− (4m2
K)
)2

+ ..., (3.15)

where the α
(n)
i are minimised free parameters. The first two terms are sufficient for this

narrow region. There are additional factors required to compare to the number of events

as given in fig. 3.3.
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N events
i = C

1

3

(s[(mψ +mφ)
2 − s][(mψ −mφ)

2 − s])1/2
2π2m2

ψ

Re(ρi)|Ai|2 (3.16)

where C is some normalisation constant, mψ = 3.086 GeV, is the mass of the J/ψ,

mφ = 1.019 GeV, is the mass of the φ meson. An efficiency factor is also required for BES

and the normalisation constant C is a relative normalisation between the BES and Mk3

sets since one normalisation may be absorbed into the αi coefficients that are minimised

in the numerical procedure.

Ds → π(MM)

The decays Ds → πππ and Ds → πKK show an enhancement due to the f0(980) in

Dalitz plot analyses. Information on these channels may then be used in a similar fashion

to ψ → φ(MM) datasets. Excellent new results from Ds decays from Babar [73,74] have

prompted the present reanalysis. There are also data available on the ππ channel from

Focus [74,75], which is largely in agreement with the Babar data. We do not include these

since they are superceded by the Babar data. The KK data is highly constraining, it is

in 4 MeV bins with small errors and puts tight constraints on the parameters of our fit.

The ππ channel has fewer data points but is still important to constrain the βi parameters

below. Moreover, this dataset has been partial wave analysed which is exactly what we

require. The connection between the data and theory is simpler here because the data

have been more thoroughly analysed. The magnitude of the ππ data is given as |A1|,
whilst the KK data is given as |A2|2, these are the same as given above, and are plotted

in fig. 3.3. The coefficients of the T -matrix elements in eq. (3.11) will now be different

since this is a different hadronic process, we denote these coefficient functions βi to avoid

confusion later,

A1 = β1(s) T11 + β2(s) T12,

A2 = β1(s) T21 + β2(s) T22.

These are expanded in exactly the same way as before,

βi(s) = β
(0)
i + β

(1)
i

(

s− 4m2
K

)

+ β
(2)
i

(

s− 4m2
K

)2
+ ..., (3.17)
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where the β
(n)
i parameters are fitted in order to obtained agreement with the data, and

typically the first two orders are sufficient for such a narrow range in energy.

pp → pp(MM)

The f0(980) is also observed in proton-proton scattering. Data from the AFS collabora-

tion [76] formed an integral part of a previous analysis [40]. These data have now been

supplemented by the WA102 experiment, however, neither set has a significant impact on

the fits we carry out here.

3.3. Results and analysis

3.3.1. Fitting method

Fits were carried out using the CERNLIB package, Minuit [77], primarily using the ‘Sim-

plex’ and ‘Migrad’ minimisation options. Fitting was performed using a variety of meth-

ods, but one of the most successful for the problem at hand was to begin with a small

number of parameters and datasets, then obtaining a minimum and progressively increas-

ing the number of parameters and datasets until a better minimum was found. The

one-pole fits are the simplest and the position of the pole on the physical sheet of the

k2-plane is remarkably stable. The two-pole fits were a little more involved for a number

of reasons. Firstly, the introduction of the second pole makes the fitting routine less stable

and Minuit has to work much harder to find a minimum, since moving the second pole

slightly requires a readjustment of all of the other parameters in the Jost function. For

this reason the second pole is often forced outside the fitting region, where it has little

effect and we are essentially dealing with the simpler one-pole case.

3.3.2. One pole vs Two pole fits

The location and residue of a pole in the scattering amplitudes are the key properties

we intend to investigate since it is these that will elucidate the particle content in the

threshold region. In figure 3.4 we plot the region of interest in our fits. The physical
√
s scattering energy runs down the imaginary axis Imk2 and along the positive real axis

Rek2. For a pole to have a significant effect it must lie close to this line. A fit shown
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(a) ψ → φππ (b) ψ → φKK

(c) Ds → πππ (d) Ds → πππ

(e) Ds → πKK (f) Ds → πKK

Figure 3.3.: Hadronic Production data. Top: Mk3 and BES, Middle: Babar ππ, Bottom:
Babar KK.

by the two black points may be considered a genuine two-pole fit, however as the pole

begins to move away, for example the red points in fig. 3.4, then its effect on the real axis

is reduced. The residue of the pole is also important; if this vanishes then the pole will

also have little effect on the physical amplitude. We bear these properties in mind when

investigating our solutions.
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Figure 3.4.: The k2 plane with contours of Energy and decay width plotted.

3.3.3. Elimination of inconsistent data

As mentioned previously the absolute normalisations of two of the direct ππ → KK

datasets are in disagreement, this point has also been covered in ref [40]. There, a free

normalisation was applied to bring the data into agreement. In this analysis the three

sets have been treated independently. The data of Etkin [61] has a free normalisation,

whilst Cohen [64] and Longacre [62] are normalised to 1
4
(1− (η00)

2). It is found that for

all fits that satisfy our other data, the Cohen data contributes χ2
Coh ≃ 60 for only 5 data

points, whilst the Longacre data contributes χ2
Lon ≃ 7 for 4 data points. Hence we neglect

the Cohen data from our fits and include the Etkin and Longacre datasets. An example

of this is shown in figure 3.5 along with the results of a typical fit.

Also there is a problem related to the ππ scattering data and which analysis of the BNL-

E852 data [68,69] is the most appropriate. Performing fits using one or two poles using a

minimal set of data we find that in our region of interest, only the first set comes close to
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both the other data from the CERN-Munich collaboration and the results of the fitting

program. Again, we give an example of a typical fit in fig. 3.6. Hence we use only the

data from figures 5a and 5b of ref. [69], which corresponds to the solid green circles in

figs. 3.1, 3.2 and 3.6.

0.98 1.00 1.02 1.04 1.06 1.08 1.10
0.00

0.05

0.10

0.15

0.20

0.25

E @GeVD

R
eH
Ρ

2
LÈT

12
È2

Figure 3.5.: A typical fit to the T12 magnitude data. The solid curve is a typical theory fit,
Red is Cohen, Violet is Etkin with normalisation included and Green is Longacre.
The theory curve is averaged over each experimental bin.

3.3.4. Split Threshold vs Averaged Threshold

Since the f0(980) lies so close to the KK threshold then the choice between ksplit2 and kave2

is important, in principle ksplit2 is the physically correct version, however it is complicated

by extra sheets due to the additional square root when going from k2 to E. This can only

be important in the region very close to the threshold and provided the pole does not lie

within this region (close to the quarter circle around the origin in fig. 3.4) then the effect

can only be small. Since the poles we have found are always well outside of this region

then the split threshold does not cause an additional complication. Going from kave2 to

ksplit2 typically reduces the χ2 by 2 even without re-minimising the parameters. In the

following fits we will primarily use ksplit2 , this will be clearly visible in the plots that are

shown, by two separate kinks in the physical amplitudes as the individual charged and

neutral thresholds open.
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Figure 3.6.: A typical fit to the η00 parameter in ππ → ππ, we reject the data denoted by
the blue empty circles (Achasov fig. 5e, [69]) and retain the green filled circles
(Achasov fig. 5a, [69])

3.3.5. Second pole position investigation

The initial fits performed suggest that a one-pole parameterisation is sufficient to represent

the data selected. However, since the one-pole form is simpler to fit (the extra pole induces

some instability in the parameter values), then it is important to investigate the possible

positions of the second pole more thoroughly. This is done in three steps of increasing

effort. First, the pole position from an earlier analysis are taken as the starting points

and how the new datasets affect the positions of these poles are investigated. Second, we

slide in the second pole from some asymptotic value using a minimised one-pole solution.

In order to do this, the magnitude of the second pole is fixed and the parameters are

minimised starting from the previous solution. If small downward steps in the magnitude

of the pole are made then the solutions and parameters do not change very much and we

can investigate the χ2 as a function of |k(2p)2 |, the magnitude of the second pole. Third,

we perform a full parameter scan of the second pole position in the fourth quadrant of

the k2 plane, and plot the total χ2.

The position of the second pole is important since if it is far from the real axis or if it

moves outside of the fitting region then it will have little or no effect on the scattering

amplitudes. Also, if the poles are not symmetrically positioned in the k2 plane as in the
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usual Breit-Wigner parameterisation, then it is unlikely that this state may be described

as a compact system, and must be molecular in structure.

MP ‘93 pole positions

The black dot in figure 3.8 corresponds to the solutions given in ref. [40]. We use these pole

positions to check our χ2’s and as a potential starting point for minimisation. The values

we find are shown in table 3.1. We note that the original solution is now excluded since

it is not possible to simultaneously obtain good fits to both channels of the Babar data.

When freeing up both poles we note that the second pole moves away from the physical

line in k2 and hence has little effect. Something to note for later is that for these two pole

fits the Babar ππ data is sometimes represented poorly. This is due to the βi coefficients

being heavily constrained by the KK data, and since there are comparatively fewer points

for the ππ data in this channel this is where the discrepancy appears. Nevertheless, it

is important to note that the ππ data provides a crucial constraint in order to fix the

coefficient functions β1(s) and β2(s).

These pole positions are also heavily excluded when we consider the BNL/Achasov data.

This set contributes around ≃ 90 to χ2 for the fixed pole situations, whilst it only con-

tributes ≃ 32 when the poles are free. These data did not exist when the analysis of

ref. [40] was carried out.

First Pole Second Pole χ2 Note

E − iΓ/2 k
(1p)
2 E − iΓ/2 k

(2p)
2

0.988 − i0.024 −0.071 + i0.083 0.978 − i0.028 0.065 − i0.105 379.9 Poles fixed

0.990 − i0.016 −0.060 + i0.069 0.978 − i0.028 0.065 − i0.105 327.6 k
(2p)
2 fixed

1.008 − i0.022 −0.104 + i0.053 0.915 − i0.053 0.060 − i0.202 190.7 Poles free

Table 3.1.: Pole positions and fits. The fixed pole positions are taken from ref. [40]

Sliding second pole in from good known fit

In investigating the properties of the second pole, a fitting method was used where known

good one-pole fits became initial values of the parameters and the second pole was incre-

mentally moved closer to threshold region, from some asymptotic value. Several fits of

this type were performed, each with the same behaviour: as the |k2| value of the second
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pole was moved into the ‘interesting’ region, the value of χ2 increased significantly. The

additional pole allows the amplitude rapid variation over a small energy region, but if it

is close to the real axis then a larger phase shift is expected compared to the one pole

scenario. If the pole is accompanied by a small residue, or is far from the real axis then

the variation offered by the extra parameters may be used in obtaining a better fit, that

could also be obtained without the additional pole. This is apparent in the red/solid and

orange/dashed curves in figure 3.7 where as the pole approaches the area of interest, for

some fits the χ2 decreases by ≃ 10. The pole position at E = 0.91 − i0.07 is close to

the limit of our region at E = 0.87. However, as the pole moves fully into the region of

interest, the fits become poorer. It appears the pole is just allowing some extra variation

due to the extra parameters, that produces a better fit. This is probably not a physical

solution. The paths the poles take in the complex k2 plane are displayed in figure 3.8. The

red and black, dotted curves are at fixed Arg(k
(2p)
2 ) for the second pole whilst the blue

dot-dashed curve is restricted to Arg(k
(2p)
2 ) > 315◦ and the orange dashed curve is free

to move about the whole plane. This demonstrates the common minimisation problem of

local minima, since the parameter space of the orange curve includes that of the others,

however the χ2 is at times larger due to the local minima encountered along the path it

takes across the parameter space.

Parameter scan

The final method is the most time-consuming numerically but is reasonably conclusive

considering the unstable nature of the minimisation parameters. The method is to scan

over the fourth quadrant of the k2-plane in the region of interest. More precisely Arg(k
(2p)
2 )

is scanned in steps of 1◦ and the |k(2p)2 | is moved into the region of interest in steps of

0.025 GeV, starting from 0.6 GeV and working downwards. The other parameters are left

free and the value of χ2 is plotted in figs. 3.9 and 3.10.

Even making such small steps of ∆|k(2p)2 | = 0.025 GeV, the program occasionally fails to

find the absolute minimum and gets stuck in some local minimum. This is seen in fig.

3.9 where the minimisation procedure finds a value of χ2 larger than those around it and

it continues along this path as |k(2p)2 | is reduced. This can be seen as a slightly raised χ2

at a fixed angle in fig. 3.9. Repeatedly refitting and using different values of the starting

parameters does not always alleviate the problem.

There is a global minimum in this plot in a small range of values as can be seen in

fig 3.10 with the minimum at |k(2p)2 | = 0.1950 and Arg(k
(2p)
2 ) = 286◦ with χ2 = 183.
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Figure 3.7.: The value of χ2 as it increases with decreasing |k2| of the second pole. The red

solid curve has Arg
(

k
(2p)
2

)

= 286◦ fixed and passes through the global minimum.

The Orange dashed curve has Arg
(

k
(2p)
2

)

completely free. The Black dotted

curve has Arg
(

k
(2p)
2

)

= 303◦ fixed and the Blue dot-dashed curve is restricted to

the part of the plane that has the most effect on the scattering amplitudes, that

closest to the real axis, so we enforce the limit Arg(k
(2p)
2 ) ≥ 315◦. These curves

also correspond to those shown in figure 3.8.

This is on the edge of the region where the pole can be important and corresponds to

E = 0.9267− i0.0046 GeV. Since this pole lies towards the edge of the region of interest

and is some distance from the all-important real axis then its effect may be limited. If

we consider the residue of this pole in the various amplitudes which we obtain from the

Jost functions then its residue is considerably smaller than that for the first pole. For

this solution, the first pole residue lies in the range [−3.4, 4.2] and the second pole lies in

the range [−0.4, 0.9] however the distance from the real axis is the most important factor:

this pole is not required to reproduce the experimental scattering amplitudes.

We now drop the second pole from the analysis since it is an unnecessary complication, and

we now investigate how well the data are represented by the Jost function parameterisation

using just one pole.
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Figure 3.8.: The k2 plane with contours of Energy and decay width plotted. The red solid

curve has Arg(k
(2p)
2 ) = 286◦ fixed and passes through the global minimum. The

Orange dashed curve has Arg(k
(2p)
2 ) completely free. The Black dotted curve has

Arg(k
(2p)
2 ) = 303◦ fixed and the Blue dot-dashed curve is restricted to Arg(k

(2p)
2 ) ≥

315◦. These curves also correspond to those shown in figure 3.7. The units of k2
are in GeV.

3.4. Best-fit χ2 Analysis

It has been found that only a single pole in k2 is required to reproduce the scattering

amplitudes as described by the currently available data. Using the Jost function repre-

sentation of the threshold region we find a minimum with χ2 ≃ 190 and a single pole on

the second quadrant of k2 (which corresponds to a sheet 2 pole in E) and this controls

the physical amplitude. We summarise in table 3.2 the χ2 contributions and numbers of

data points for each set that we consider.

The row labelled ‘Significance’ is the output of the CERNLIB routine ‘Prob’ [78] given

these χ2’s and number of degrees of freedom (Nd.o.f), which is defined by the number of
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Figure 3.9.: A contour plot of the scanned k2 plane of the second pole. Note that much of
the white region close to the origin has been covered by the scan, however the
plot only shows χ2 < 350. The χ2 increases rapidly as |k2| → 0 however there are
some small χ2’s around Imk2 ≃ −0.2, Rek2 ≃ 0.07.

data points minus the number of fitted parameters. According to statistical folklore, we

require this number to be greater than 0.05 in order to have a good fit to the data.

The function ‘Prob’ calculates the error integral,

Q(χ2, Nd.o.f) =
1

2N/2 Γ(N/2)

∫ ∞

χ2

dt e−t/2 tN/2−1. (3.18)

If Q > 0.05 then the model is considered consistent with the data, if Q < 0.05 then there

is some statistically significant deviation between model and data.

This is important to assess the relevance of the parameterisation (or model) that we have

used to the data. The simplest measure of the quality of a fit is χ2/d.o.f. which is expected
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Figure 3.10.: The k2 plane of the second pole, zoomed. The position of the second pole lies in
the dark region labelled χ2 < 186. The χ2 increases rapidly as |k2| → 0.

to be in the region of 1 for a good fit, whilst larger values indicate increasingly poor fits.

The values in the first two columns of table 3.2, labelled Fit 1 and 2, indicate a fit that

is perhaps not as good as we would hope. The χ2 contribution of the BNL/Achasov data

is always abnormally large, it would be expected that the 12 data points contribute a

χ2 ≃ 12, however they are typically more than double this. The same could be said of the

data sets labelled in the table ‘Etkin et al ’, this includes the data from Etkin, Longacre

and Cohen and the phases from Etkin and Cohen are a little inconsistent with each other.

These data are vital and we must be retained in order to constrain the ππ → KK part

of the amplitude, however, we may neglect the BNL/Achasov dataset due to the issues
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noted by the authors of the paper [69], and the T11 matrix element is already constrained

by the CERN-Munich data of Ochs et al.

The significance of the fits including the Achasov data is less than the required 0.05,

which indicates that some of the data is mildly inconsistent. If we drop BNL/Achasov

from the fits then we find the results given in last two columns of table 3.2, where the

χ2/d.o.f. values are now close to 1 and the significance values are much improved. This

now indicates no significant deviation between the model and the selected data. However,

if we investigate the plots and the differences when we include or exclude these data, in

the η00 plot we find that the best fit curve always lies between the two sets, regardless of

whether the BNL/Achasov is included or not, see fig 3.11.

In order to distinguish between the number poles, ideally the χ2 analysis would clearly

favour one over the other, however, when the same number of free parameters are used,

the χ2’s of the Jost function fits are almost identical. There are two situations that we

can imagine occuring, first the second pole could be an essential ingredient and the χ2 is

dramatically reduced by its inclusion in the model. Second, the extra pole is not required,

but its position and free parameters are utilised by the minimisation routine in order to

add some extra variation. Thus comparing a fit with the same free parameters results in

a similar χ2.

In these fits it is the second situation that occurs, the pole is positioned such that its effect

is minimal and it gives no improvement over single pole fit. The position of the second

pole far from the real axis, its relatively smaller residue and the lack of improvement over

the one-pole χ2 all point to the same conclusion: only one pole is required to produce the

experimentally observed scattering amplitude.

In table 3.2 we present the output of the minimisation procedure for a four different fits

labelled Fit 1 and 2 for the fits including the BNL/Achasov dataset, and Fit 5 and 6

excluding this dataset. The significance values show an improvement when this dataset is

removed. These are the results of one-pole fits and the number of free parameters in the

Jost function polynomial is varied between each fit, this is indicated by the total number

of free parameters. The minimised values of the parameters are given in table A.1 from

appendix A.

In the following figures, we present the results of these four fits for a selection of the data.

In fig. 3.11 we present the results of the fits to the ππ scattering data. The green circles

correspond to the BNL/Achasov data that is only included in the χ2 for fits 1 and 2. In

fig. 3.12 we show the bins that each data point is averaged over to match from experiment
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to theory, this time only for the CERN-Munich data since the BNL/Achasov bins are at

different positions. In fig. 3.13 we show the related ππ → KK datasets and the smooth

theory curves, that are averaged by the minimisation routine. In fig. 3.14 we present

two of the Babar ππ fits, note the unequal bin spacing. The program averages over bins

centred on each data point. The final figure for the Jost function fits is that for the Babar

KK dataset displayed in fig. 3.15.

Data Set Data χ2
i O

(

γ(3)
)

χ2
i O

(

γ(4)
)

χ2
i O

(

δ(1)
)

χ2
i O

(

δ(2)
)

Points (Jost) (Jost) (Jost) (Jost)

Fit 1 Fit 2 Fit 5 Fit 6

Total Parameters – 22 24 22 24

CERN-Munich 24 20.5 20.5 18.1 19.2

BNL/Achasov A 12 25.2 35.7 – –

Etkin et al 15 27.5 25.9 25.1 21.0

Babar ππ 16 15.9 6.7 16.9 5.2

Babar KK 61 82.2 71.1 75.7 66.7

Mk3 34 21.6 22.1 21.0 22.2

BES 13 5.9 8.0 8.6 11.4

Total 172 199.2 190.3 165.5 144.0

d.o.f. – 150 148 138 136

χ2/d.o.f. – 1.33 1.29 1.10 1.06

Significance – 4.6× 10−3 1.1× 10−2 5.5× 10−2 0.28

Pole Pos. [GeV] – 1.010 − i0.024 1.005 − i0.022 1.004 − i0.032 0.998 − i0.029

Table 3.2.: Individual χ2’s amongst the datasets for some best-fit amplitudes for the Jost-
function fits. Note that Etkin et al consists of Etkin, Longacre, Cohen et al [61–64].
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(a) δ00

(b) η00

Figure 3.11.: The Jost function fit to the ππ → ππ data. Fit 1 is Black Solid curve, Fit 2 is
the Red dashed curve, Fit 5 is the Green dot-dashed curve and Fit 6 is the Blue
dotted curve.
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(a) δ00

(b) η00

Figure 3.12.: The Jost function fit to the ππ → ππ data. Fit 1 is Black Solid curve, Fit 2 is
the Red dashed curve, Fit 5 is the Green dot-dashed curve and Fit 6 is the Blue
dotted curve. The fits depicted by this plot are the same as in fig. 3.11, however
here the value for each data bin is shown, this is what is actually fitted.
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(a) Re(ρ2)|T12|2

(b) Arg(T12)

Figure 3.13.: Some of the fits to the ππ → KK data, using the directly comparable sets with
24 parameters each for both the Jost and Flatté type fits. The phase of T12 is
the same as |T11 below threshold. Fit 2 is Red Solid curve, Fit 3 is the Blue
dashed curve, Fit 6 is the Green dot-dashed curve and Fit 7 is the Black dotted
curve.
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(a) Babar ππ |A1|

(b) Babar ππ Arg A1

Figure 3.14.: The fit to the new data from the Babar collaboration, ππ channel. Shown in
Red is Fit 2 and the Blue dashed curve is Fit 6. Other fits to these data are
much the same. We also show the theoretical fit averaged over each data bin,
this is what is actually matched to the experimental data.
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(a) Babar KK |A2|2

(b) Babar KK Arg(A2)

Figure 3.15.: The fit to the new data from the Babar collaboration, KK channel. Shown in
Red is Fit 2 and the Blue dashed curve is Fit 6. Other fits to these data are
much the same. Again, we also show the theoretical fit averaged over each data
bin, this is what is actually matched to the experimental data.
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3.5. Flatté Parameterisations

An alternative and popular parameterisation of this resonance is that originally proposed

by Flatté [58]. This is an extended form of the standard Breit-Wigner, we use the most

general form allowed by unitarity given above in eq. (3.12). The exact form used here is

given by [47, 59],

Fij(s) =
gigj

m2
0 − s− ig21ρ1(s)− ig22ρ2(s)

, (3.19)

Tij(s) = δij
sinφi(s)e

iφi(s)

ρi(s)
+ eiφi(s)+iφj(s)Fij , (3.20)

where Tij are the usual T -matrix elements and the terms are defined in eq. (3.12). The

first term has the form of an elastic scattering contribution, whilst the second term takes

the Flatté resonance formula and gives it an additional phase. This has a different set of

parameters compared to the Jost form. The phases φi(s) are parametrised by,

φi(s) = φ
(0)
i +

(

s

4m2
K

− 1

)

φ
(1)
i +

(

s

4m2
K

− 1

)2

φ
(2)
i + ... (3.21)

where the coefficients φ
(j)
i are fitted by the minimisation. The remaining parameters, m0,

g1 and g2 are also minimised so that the amplitudes fit the data. A similar conclusion

may be drawn here regarding the second pole, it does not appear near to the real axis so

does not contribute to the scattering amplitude.

The χ2 values for a similar range of fits as for the Jost analysis are given in table 3.3.

The pattern is much the same, including the BNL/Achasov data then the significances

indicate mildly inconsistent data and rejecting this dataset results in acceptable values.

The relevant pole is found in much the same position as for the Jost function fits to the

same datasets. Fits 3 and 4 include the BNL/Achasov data and in fits 7 and 8 this has

been excluded. Again, different numbers of parameters are used in the phases φ given in

the Flatté amplitudes. Fits 3 and 7 are linear in (1−4m2
K/s) and fits 4 and 8 have phases

that vary up to quadratic order. Fits 3 and 7 have the same number of free parameters

to the Jost function fits 1 and 5 so the results may be directly compared. Importantly

the E pole position is stable given these input data for both types of fit.

An example of the fit to the ππ → ππ data is given in figure 3.16 and is much the same

as the fits using the Jost function.
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(a) δ00

(b) η00

Figure 3.16.: The Flatté fit to the ππ → ππ data. Fit 3 is Black Solid curve, Fit 4 is the Red
dashed curve, Fit 7 is the Green dot-dashed curve and Fit 8 is the Blue dotted
curve.
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Data Set Data χ2
i O

(

γ(3)
)

χ2
i O

(

γ(4)
)

χ2
i O

(

δ(1)
)

χ2
i O

(

δ(2)
)

Points (Flatté) (Flatté) (Flatté) (Flatté)

Fit 3 Fit 4 Fit 7 Fit 8

Total Parameters – 24 26 24 26

CERN-Munich 24 19.8 21.4 18.8 18.1

BNL/Achasov A 12 41.7 20.4 – –

Etkin et al 15 21.4 22.8 20.7 22.1

Babar ππ 16 7.1 4.7 7.3 5.8

Babar KK 61 82.9 73.7 74.8 64.1

Mk3 34 23.8 23.9 22.5 23.0

BES 13 13.5 13.6 11.6 9.3

Total 160 210.3 180.7 155.7 142.6

d.o.f. – 148 146 136 134

χ2/d.o.f. – 1.42 1.24 1.14 1.06

Significance – 6.1× 10−4 2.7× 10−2 0.119 0.290

Pole Pos. [GeV] – 1.002 − i0.024 1.002 − i0.024 0.996 − i0.030 1.002 − i0.024

Table 3.3.: Individual χ2’s amongst the datasets for some best-fit amplitudes for the Flatté
fits. Note that Etkin et al consists of Etkin, Longacre, Cohen et al [61–64].

3.6. Mass determination and Error

The fitting procedure naturally returns an error on the given parameters so for the Jost

function the determination of the error on the pole is straightforward, using fit 6 from

table 3.2 we find that in energy E the pole resides at,

Epole = (1.004± 0.005)− i(0.032± 0.004) GeV (3.22)

corresponding to a mass and width given by,

Mf0(980) = (1.004± 0.005) GeV (3.23)

Γf0(980) = (0.064± 0.008) GeV (3.24)

looking at the range of values of E for the different fits given in tables 3.2 and 3.3 the

error seems sensible given these fits since all of the fits lie within or very close to the error

bound. The value forM is a little higher than that quoted at present by the PDG [20] and
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a number of other analyses of this resonance, however given this combination of datasets

the position of this pole is very well determined.

3.7. Conclusion

Following an analysis suggested long ago by Weinberg for the deuteron, we have inves-

tigated the structure of the f0(980) resonance observed in meson scattering and decay.

By utilising a range of data, including some recently made available by the Babar col-

laboration we have a firm conclusion that the physical amplitude requires only a single

pole to produce the experimental data. A second pole close to the real axis, and there-

fore physically relevant, is excluded by the data. This conclusion stands well with other

related studies of this particle using recent data [47,48] that suggest a single pole is suffi-

cient. Given this pole structure the method dictates that the dominant component of the

f0(980) must be KK and this component must dominate all of its physical interactions.

However, theoretically, this does not exclude the picture that the state is seeded by a bare

qq pair, possibly ss, and is subsequently dressed by strong coupling to KK [37,38,43,79].



Chapter 4.

The Schwinger–Dyson Equations of

QCD

As we have seen, certain aspects of the QCD Lagrangian may be understood using a

perturbative expansion. However, to really understand the inner workings of hadrons it

appears we must use some other method since no known expansions are convergent for

the region of interest. One method is to go back a step to the fundamental theory and

investigate the structure of dressings of bare propagators and vertices. It turns out that

the equations lead to strongly coupled non-linear integral equations relating just a few

unknown functions, and that these unknown functions can be determined numerically by

looking for self-consistent solutions of the integral equations. The method is however not

without problems, as we shall find below.

4.1. Introduction

The Schwinger–Dyson equations were first derived for QED [80–82], but exist for any

well defined field theory such as QCD that we consider here. The Schwinger–Dyson

Equations of QED and QCD form an infinite interconnected series of equations that

form the field equations of our theory. They may be expanded in g yielding the familiar

series of Feynman diagrams that are found in perturbation theory, or we may attempt to

solve them directly using a carefully chosen approximation or truncation. Truncating the

infinite series is potentially a dangerous thing to do since it is completely analogous to

throwing away diagrams from a perturbative series, which for the gluon propagator can

violate transversality, gauge invariance and plague the results with unphysical quadratic

68
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divergences. These problems, that are well understood in perturbative QCD, can also be

present in poorly chosen truncations of the Schwinger–Dyson Equations and great care

must be taken at all times to retain the physical properties of the underlying theory.

Other than simple curiosity, one of the motivations for studying these equations are

that they are necessary inputs for the Bethe–Salpeter Equation for bound state hadronic

physics. In pure Yang–Mills theory we may use the Schwinger–Dyson Equations in the

Landau Gauge to investigate the behaviour of ghosts and gluons alone without the added

complications of quarks and with the additional luxury of precise data from Lattice QCD.

Studying these equations contributes to the understanding of confinement and how QCD

correlation functions behave at long distances. Confinement is a statement not only about

quarks, but also gluons since both are absent asymptotically. In this study we will not

consider quarks initially, only the pure SU(3) Yang-Mills theory. Physically this will need

rectification later, however mathematically it is a sound approximation and should not

introduce additional problems. This naturally links to Lattice QCD where quarks are

computationally expensive and more precise data at smaller momenta are available for

the pure gauge sector.

We consider the pure Yang–Mills sector of QCD and attempt to construct a minimal,

solvable truncation that reproduces perturbation theory in the ultraviolet and produces

a manifestly transverse gluon for all momenta. The ultimate intention is to then include

quarks and calculate physically observable quantities.

The full derivation of the Schwinger–Dyson equations for QCD is widely available in the

literature. In the introductory chapter we showed the form of the generating functional

used to give the connected, one-particle-irreducible (1PI) graphs from the fundamental

Lagrangian. The SDEs are really just the equations of motion of the theory and may be

derived by considering the Euler-Lagrange method originally used in classical mechanics.

The structure of the equations and their relation to the perturbative series may also be

visualised by considering a summation of the series of all the 1PI graphs. All that is then

required is to sum the geometric series of 1PI graphs and we obtain a structure that we

shall see many times.
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For example, if we consider a simpler theory such as QED we have,

= + + + ...

= +

= −
−1 −1

(4.1)

where a heavy dot on a propagator or vertex denotes a fully ‘dressed’ quantity where

all of the infinite loop effects are included. In the second term on the right-hand side of

the first line, it can be shown that this combination represents all one-particle-irreducible

contributions. The exact same structure will also arise for the ghost propagator in QCD,

however the gluon has more terms due to the two self-coupling vertices in the Lagrangian.

The dressings of the propagators are neatly restricted by the Ward-Slavnov-Taylor Iden-

tities. The simplest WSTI restricts the Gluon propagator dressing in a remarkably simple

way,

Dµν(p) =
Gl(p2)
p2

(

gµν −
pµpν
p2

)

+ ξ
pµpν
p4

(4.2)

so that any dressings from virtual particle effects may be combined into one simple func-

tion of momentum-squared, Gl(p2). This function is known as the gluon propagator

dressing function. The gauge parameter ξ is arbitrary and p2 is the momentum flowing

through the propagator. In the Landau gauge, where we perform our calculations, both

the bare and dressed gluon propagators are transverse which is an important property

that arises when individual gauge–dependent loops are combined; individual loops are not

necessarily transverse. A similar relation exists for the Ghost equation,

D(p) = −Gh(p
2)

p2
(4.3)

where Gh(p2) is known as the ghost propagator dressing function. In order to learn about

the non-perturbative physics of the propagators, in principle, all that is required is to

find the correct form that satisfies the Schwinger–Dyson equations. Unfortunately, the

problem is complicated by the vertices, which also contain unknown functions and both

the ghost and gluon equations depend on these. Some limits are known already though,
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for example the perturbative limit, or large-p2 limit, is straightforwardly calculable order-

by-order in g for both propagators. Since the unknown vertex functions depend also on

further, higher n-point Greens functions then truncations have to be considered where a

vertex dressing is modelled and the propagators are solved self-consistently. A natural first

step is to consider the tree-level vertices, further constraints can be found by considering

the WSTIs for the vertices, multiplicative renormalisability and the structure of the SDEs

for the vertices themselves.

Although they are the simplest Greens Functions in the infinite series of Schwinger–Dyson

Equations, the full equations for the Ghost and Gluon propagators have yet to be solved

for all momenta. Depicted in figure 4.2 is the full Gluon propagator equation, in the

absence of quarks. The truncations considered herein use only relatively simple forms

for the vertices. The dressed two-loop terms have never been completely included in

any truncations currently in existence, although a significant attempt has been made to

include their effects [83] in a scaling type analysis, which refers to a type of solution

we discuss below. There are no expansions or power counting schemes for neglecting

these terms in general; their effects must be included in order to obtain any reasonable

level of precision for the gluon propagator. The reason that these terms are neglected is

simply that they are mathematically more difficult and computationally time-consuming

to evaluate accurately. However, one must begin somewhere and the inclusion of these

diagrams results in sharp increase in complexity and there is little choice but neglect

them, at least initially.

Simple truncations observe the presence of two classes of solutions. The ‘Type 1’ or

‘Scaling’ solutions denote a Ghost dressing function that is singular in the limit p2 → 0,

or IR limit [84–86] and the ‘Type 2’ or ‘Decoupling’ solutions correspond to a Ghost

dressing that is finite in the IR limit [86, 87]. These correspond to different solutions

of the Ghost equation and it appears both solutions coexist there. The Gluon equation

of course couples to the Ghost and extra terms and vertices present complicate matters

considerably. The consensus is that a qualitatively similar Gluon dressing which vanishes

in the IR limit and reproduces perturbation theory in the UV may simultaneously solve

the equations for both types of Ghost solution. This is dependent upon the dressings

chosen for the vertices which we will discuss in detail. A comparison of the two types of

ghost solution for a fixed gluon input are given in fig. 4.1.
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Figure 4.1.: A comparison of typical finite and infinite ghost solutions for a fixed gluon input.
The curves depict the the relevant dressing functions Gh(p2) and Gl(p2).

The full equation for the ghost propagator represented in figure 4.3, is given by,

Dab(p)−1 = Dab,(0)(p)−1

+

∫

d4ℓ

(2π)4
Γacdµ (−ℓ−; p, ℓ+)Dcf

µν(ℓ−)Γ
bef,(0)
ν (ℓ−; ℓ+, p)D

de(ℓ+), (4.4)

where the dressed propagator Dab(p), depends upon its bare counterpart, Dab,(0)(p), and a

loop integration containing a ghost and a gluon. The term Γabcµ is the ghost-gluon vertex

and the internal propagator momenta are defined symmetrically using ℓ± = ℓ ± p/2.

This will later be renormalised, and models for the ghost-gluon vertex will be inserted.

Apart from this vertex, all of the quantities here can be obtained from the equations in a

straightforward manner. The full equation for the gluon propagator represented in figure
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4.2, with no approximations, is given by,

Dab
µν(p)

−1 = Dab,(0)
µν (p)−1

+

∫

d4ℓ

(2π)4
Γacdµ (−p; ℓ−, ℓ+)Dcf(ℓ+)Γ

bef,(0)
ν (p; ℓ+, ℓ−)D

de(ℓ−)

+

∫

d4ℓ

(2π)4
Γ
adeb,(0)
µδǫν Dde

δǫ (ℓ)

+

∫

d4ℓ

(2π)4
Γacdµγδ(p,−ℓ+, ℓ−)Dcf

γφ(ℓ+)Γ
bef,(0)
νǫφ (−p,−ℓ−, ℓ+)Dde

δǫ (ℓ−)

+

∫

d4ℓa
(2π)4

d4ℓb
(2π)4

Γacdµγδ(p,−ℓ2, ℓ4)Dcg
γζ(ℓ2)Γ

befg,(0)
νǫφζ Der

ǫρ(ℓ1)D
ft
φτ (ℓ3)Γ

rst
ρστ (ℓ1,−ℓ4,−ℓ3)Dds

δσ(ℓ4)

+

∫

d4ℓa
(2π)4

d4ℓb
(2π)4

Γacdeµγδǫ(p,−ℓ1,−ℓ2,−ℓ3)Dγψ
cj (ℓ1)D

dg
δζ (ℓ2)D

ef
ǫφ(ℓ3)Γ

bfgj,(0)
νφζψ , (4.5)

where latin indices denote colour and greek letters denote the Lorentz indices. The prop-

agators and vertices may be identified by the number of Lorentz indices and are defined

in appendix B. Equation 4.5 is represented graphically in fig. 4.2. The momenta are as

defined in the figure, the relations between the loop momenta ℓa, ℓb and the propagator

momenta in the two-loop integrals are left undefined, the only restriction is momentum

conservation at each vertex.

The integrals in eq. (4.5) contain divergences that may be regulated in a variety of ways.

Theoretically, dimensional regularisation is the most appealing since it respects all of the

symmetries of the theory, however, numerically a cutoff Λcut is much simpler to implement

so this is chosen for the numerical procedure that is applied to solve these equations. After

regularisation, the quantities will typically be of the form, at leading order,

∫ Λcut

d4ℓ
...

ℓ2(ℓ+ p)2
∼ 1 + #g2 log

(

p2

Λcut

)

+O(g4). (4.6)

The cutoff parameter will appear in the results of the loop integrations and any sensitivity

to it is unphysical since is value is arbitrary. The bare equations must be renormalised in

order to remove this sensitivity and the method chosen here is a momentum subtraction

scheme, sometimes referred to as a MOM scheme. This involves subtracting the result

from itself at some value such that the cutoff dependence is cancelled,

[

∫ Λcut

d4ℓ
...

ℓ2(ℓ+ p)2

]

−
[

∫ Λcut

d4ℓ
...

ℓ2(ℓ+ p)2

∣

∣

∣

p2→µ2

]

∼ #g2 log

(

p2

µ2

)

+O(g4). (4.7)
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Figure 4.2.: The Schwinger–Dyson Equation for the Gluon in the absence of quarks.
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Figure 4.3.: The Schwinger–Dyson Equation for the Ghost.
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These subtractions in the SDEs also remove the Z3 factors that appear in the renormalised

ghost and gluon propagator equations, which it must since these are cutoff dependent

quantities. The vertices may also receive divergent, as we know from perturbation theory,

so these must be renormalised too. The usual method is to replace all of the dressed

quantities by their renormalised counterparts in order to remove the cutoff dependence

from the quantities that are calculated, a multiplicative method is applied such that,1

Dµν(p
2,Λ2

cut) = D(r)
µν (p

2, µ2)Z3(µ
2,Λ2

cut), (4.8)

D(p2,Λ2
cut) = D(r)(p2, µ2)Z̃3(µ

2,Λ2
cut), (4.9)

Gl(p2,Λ2
cut) = Gl(r)(p2, µ2)Z3(µ

2,Λ2
cut), (4.10)

Gh(p2,Λ2
cut) = Gh(r)(p2, µ2)Z̃3(µ

2,Λ2
cut), (4.11)

Γabcµ (k2, p2, q2,Λ2
cut) = Γabc,(r)µ (k2, p2, q2, µ2)Zg(µ

2,Λ2
cut)Z̃

−1
1 (µ2,Λ2

cut), (4.12)

Γabcµνρ(k
2, p2, q2,Λ2

cut) = Γabc,(r)µνρ (k2, p2, q2, µ2)Zg(µ
2,Λ2

cut)Z
−1
1 (µ2,Λ2

cut), (4.13)

g(Λ2
cut) = Zg(µ

2,Λ2
cut)g(µ

2), (4.14)

where each Zi renormalises its respective Green’s function and µ2 is the renormalisation

momentum-squared. There are simple relations between some of the renormalisation

constants,

Z̃1 = ZgZ
1/2
3 Z̃3, (4.15)

Z1 = ZgZ
3/2
3 , (4.16)

Z1

Z3
=
Z̃1

Z̃3

. (4.17)

The quantities with r-superscripts are now renormalised. Only the dressed Green’s func-

tions get renormalised, with the exception of the coupling g which appears in both the

dressed and bare vertices. The final ingredient is then to specify some finite value for the

dressing functions at the renormalisation point µ2, for which the most natural choice is,

Gl(r)(µ2, µ2) = 1 (4.18)

Gh(r)(µ2, µ2) = 1 (4.19)

however other values may be used. The r-superscript, and frequently the parameter µ2,

will be dropped in the notation below. All of the dressed Greens functions considered

1This is applied in the Landau gauge where the gauge parameter needs no separate renormalisation
constant.
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below will be renormalised. We may write down a renormalised version of eq. (4.4),

Dab(p, µ2)−1 = Z̃3

(

µ2,Λ2
cut

)

Dab,(0)(p)−1+

Z2
g (Λ

2
cut)Z3(µ

2,Λ2
cut)Z̃

2
3(µ

2,Λ2
cut)

Z̃1(µ2,Λ2
cut)

×
∫

d4ℓ

(2π)4
Γacdµ (−ℓ−; p, ℓ+, µ2)Dcf

µν(ℓ−, µ
2)×

Γbef,(0)ν (ℓ−; ℓ+, p, µ
2)Dde(ℓ+, µ

2). (4.20)

This simplifies using eq. (4.15), facdf bcd = Ncδ
ab, the bare ghost-gluon vertex and the

Green’s function definitions,

Gh(p, µ2)−1 = Z̃3

(

µ2,Λ2
cut

)

−

Z̃1(µ
2,Λ2

cut)
g2(µ2)Nc

p2

∫

d4ℓ

(2π)4

(

p.ℓ+ −
p.ℓ− ℓ+.ℓ−

ℓ2−

) Gh(ℓ2+, µ2)Gl(ℓ2−, µ2)

ℓ2−ℓ
2
+

, (4.21)

for other diagrams and extended vertices the momentum factors from the tensor contrac-

tions under the integrals lead to lengthy expressions which are usually referred to as a

kernel. The kernels here are different to those given in ref. [85] since the loop integration

momentum here is symmetric,

Gh(p, µ2)−1 = Z̃3

(

µ2,Λ2
cut

)

+ Z̃1(µ
2,Λ2

cut)g
2(µ2)Nc

∫

d4ℓ

(2π)4
K(p, ℓ)Gh(ℓ2+, µ2)Gl(ℓ2−, µ2), (4.22)

which implicitly defines K(p, ℓ),

K(p, ℓ) = −1
p2ℓ2+ℓ

2
−

(

p.ℓ+ −
p.ℓ− ℓ+.ℓ−

ℓ2−

)

= −ℓ
2 sin2 θ

ℓ2+ℓ
4
−

(4.23)

where θ is the angle between ℓ and p. A vacuum polarisation function is also usually

defined,

Πgc(p
2, µ2) = g2(µ2)Nc

∫

d4ℓ

(2π)4
K(p, ℓ)Gh(ℓ2+, µ2)Gl(ℓ2−, µ2) . (4.24)
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The subtraction can then be performed which removes Z̃3, instead requiring the renor-

malisation condition to be specified, eq. (4.19),

Gh(p2, µ2)−1 = Gh(ν2, µ2)−1 +Πgc(p
2, µ2)−Πgc(ν

2, µ2) (4.25)

where ν2 is the point at which the equations are subtracted.

The gluon equation, even without the two-loop diagrams is considerably more complicated

than the ghost equation. There is the propagator tensor structure to worry about, and

there are many more terms in the two 1-loop integrations, particularly in the gluon loop

integration. The Gluon propagator Schwinger–Dyson equation neglecting the two-loop

terms is given by the first four lines of eq. (4.5), the first thing we notice is that we have a

rank-2 tensor equation to solve when we only wish to solve for the scalar dressing function.

We can apply a projector on the propagator, such as,

Pµν(p, ζ) = 1

p2(d− 1)

(

gµν − ζ p
µpν

p2

)

(4.26)

where d is the number of dimensions that arises from metric contractions and ζ is an

abitrary number that will become very important. The projector is normalised such that,

Pµν(p, ζ)Dµν(p)
−1 =

1

Gl(p2, µ2)
(4.27)

in principle, the full physical result is independent of the parameter ζ , however in a

truncation where terms have been neglected this may not be the case. Should this occur,

then it signals a manifest breaking of gauge invariance since the transversality of the gluon

propagator must have been lost through truncation. This parameter has two important

values, ζ = 1 picks out the function multiplying the gµν term of the propagator, whilst

ζ = d picks out the term multiplying pµpν . Any other value picks out some admixture of

the two. Applying the projector eq. (4.26) and following the steps above using the bare

vertices leads to,

Gl(p2, µ2)−1 =Z3(µ
2,Λ2

cut)

+Z̃1(µ
2,Λ2

cut)
g2(µ2)Nc

(d− 1)

∫

ddℓ

(2π)d
Gh(ℓ2+, µ2)Gh(ℓ2−, µ2)M(p, ℓ, ζ)

+Z1(µ
2,Λ2

cut)
g2(µ2)Nc

(d− 1)

∫

ddℓ

(2π)d
Gl(ℓ2+, µ2)Gl(ℓ2−, µ2)Q(p, ℓ, ζ). (4.28)
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It is important to note that whilst the result should be independent of ζ , the integration

kernels M and Q do depend on it. The tadpole term, the second integral in eq. (4.5) is

independent of the external momentum and proportional to (ζ−d) so does not contribute

when ζ = d and is usually neglected for ζ = 1 since it contains no momentum dependence

after integration.

It will become convenient as the kernels become more complex later to collect together

the integrals into the polarisation functions Π2c for the ghost loop and Π2g for the gluon

loop, we define these implicitly via,

Gl(p2, µ2)−1 = Z3(µ
2,Λ2

cut) + Z̃1(µ
2,Λ2

cut)Π2c(p
2, µ2) + Z1(µ

2,Λ2
cut)Π2g(p

2, µ2). (4.29)

The functionsM and Q are found by performing the tensor contractions of the vertices,

internal propagators and the projector eq. (4.26), they are given by,

M(p, ℓ, ζ) = (−1) 1

p2ℓ2+ℓ
2
−

(

p2
[

ℓ2 − p2

4

]

− ζ
[

(ℓ.p)2 − p4

4

])

, (4.30)

Q(p, ℓ, ζ) =
(

1

2

)

1

p2ℓ2+ℓ
2
−

{

− 2(d− 1)ℓ6p2 + ℓ4
(

(7− 5d)p4 + 2(d− 1)(ℓ.p)2ζ
)

+ (1/8)(ℓ.p)2
(

−16(d− 2)(ℓ.p)2ζ + (d− 1)p4(8 + ζ)
)

+ (1/8)ℓ2p2
(

−9(d− 1)p4 + 8(ℓ.p)2 [−8− 3ζ + d(6 + ζ)]
)

}

, (4.31)

where d is the number of dimensions arising from gµνg
µν terms and ζ is the projection

parameter. The factor of (−1) in eq. (4.30) is due to the ghost field being antisymmetric.

The factor (1/2) in eq. (4.31) is due to having two identical gluons in the loop.

Part of the renormalisation prescription is to specify some value for the coupling, this is

arbitrary but can be fixed with a physically motivated choice or by fitting to some other

data, physical or lattice. Since quarks are not considered at present then matching to

the physical coupling may not be sensible, however an estimate can be made since in the

perturbative region the physics is well understood.

The most precisely measured value of the running coupling is given at the Z-boson mass

[20], α (MZ = 91.1 GeV) = 0.118. This is found in the MS renormalisation scheme which

differs from the MOM scheme used here by finite, momentum dependent terms.
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4.1.1. Multiplicative Renormalisability

Multiplicative Renormalisability (MR) is an important property from which all orders

constraints can be derived [83, 88–93]. A full MR study is not performed here but it is

important to understand how the renormalisation constants arrange themselves and how

this can be used to inform the choice of vertex dressing. The standard scheme for renor-

malisation is as given above where the unrenormalised dressed vertices are renormalised

by multiplying an appropriate Z factor. The bare vertices do not receive any renormal-

isation except for the coupling g which has its own renormalisation factor. In order to

check whether MR is satisfied we need to consider eq. (4.10) and eq. (4.11) at two different

renormalisation points, leading to,

Z̃3(µ
2,Λ2

cut)Gh(p2, µ2) = Z̃3(ν
2,Λ2

cut)Gh(p2, ν2) (4.32)

Z3(µ
2,Λ2

cut)Gl(p2, µ2) = Z3(ν
2,Λ2

cut)Gl(p2, ν2). (4.33)

The next step is to check whether the forms given in eq. (4.22) and eq. (4.28) satisfy this

property,

1

Gh(p2, µ2)
=
Z̃3(µ

2,Λ2
cut)

Z̃3(ν2,Λ2
cut)

1

Gh(p2, ν2) ,

=
Z̃3(µ

2,Λ2
cut)

Z̃3(ν2,Λ
2
cut)

[

Z̃3(ν
2,Λ2

cut) + Z̃1(ν
2,Λ2

cut)Πgc(p
2, ν2)

]

,

=
Z̃3(µ

2,Λ2
cut)

Z̃3(ν2,Λ2
cut)



Z̃3(ν
2,Λ2

cut) +
Z2
gZ3Z̃3

Z̃1

∣

∣

∣

∣

∣

µ2

Z̃2
1

Z2
gZ3Z̃3

∣

∣

∣

∣

∣

ν2

Πgc(p
2, µ2)



 ,

= Z̃3(ν
2,Λ2

cut) + Z̃1(µ
2,Λ2

cut)Πgc(p
2, µ2),

where we have used the relation in eq. (4.15) twice on the third line, and also the notation

Zi|µ2 = Zi(µ
2,Λ2

cut). The factor Z̃1 is convenient since in Landau gauge we expect this to

be 1 [94], since the divergent part of the vertex is proportional to ξ, the gauge parameter.

This suggests ghost-gluon vertex dressings of the form O
(Gh
Gh
)

. The same analysis may

also be performed on the gluon equation, there are several versions of this that we may

wish to consider with different vertex dressings. Starting with the bare equation eq. (4.28),
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we follow the same steps as before,

1

Gl(p2, µ2)
=
Z3(µ

2,Λ2
cut)

Z3(ν2,Λ2
cut)

1

Gl(p2, ν2) ,

=
Z3|µ2
Z3|ν2

[

Z3|ν2 + Z1(ν
2,Λ2

cut)Π2g(p
2, ν2)

]

+ Z̃1(ν
2,Λ2

cut)Π2c(p
2, ν2),

= Z3|µ2 +
Z2
gZ

3
3

Z1

∣

∣

∣

∣

∣

µ2

Z2
1

Z2
gZ

3
3

∣

∣

∣

∣

∣

ν2

Π2g(p
2, µ2) +

Z2
g Z̃

2
3Z3

Z̃1

∣

∣

∣

∣

∣

µ2

Z̃2
1

Z2
g Z̃

2
3Z3

∣

∣

∣

∣

∣

ν2

Π2c(p
2, µ2),

= Z3(µ
2,Λ2

cut) + Z1(µ
2,Λ2

cut)Π2g(p
2, µ2) + Z̃1(µ

2,Λ2
cut)Π2c(p

2, µ2),

as required. The ghost loop term is consistent with O(1) ∼ O(Gh/Gh) ghost-gluon vertex

dressings as in the ghost equation. The gluon loop comes with a factor Z1 which may be

cancelled by a triple-gluon dressing O(Gh/Gl). Dressings of this form are also suggested by

the Ward-Slavnov-Taylor identity for this vertex which we shall consider later. Inserting

a term proportional to Gh/Gl in Π2g and using relation eq. (4.17) the Z1 becomes Z̃1

which in a carefully chosen subtraction scheme in Landau gauge is remarkably simple,

Z̃1 = 1 [94]. This is particularly convenient since the only renormalisation constants

that then appear are Z3 and Z̃3 which are be removed by subtraction. It is however

straightforward to calculate the Z’s, either perturbatively as we do in the next section or

from the numerical procedure which we apply later.

4.1.2. Leading Perturbative Behaviour

The truncated SDEs, using tree level vertices, for the ghost and gluon are given in

eq. (4.22) and eq. (4.28) respectively. In order to calculate the one-loop perturbative

results, we simply insert Gl(p2) = 1 and Gh(p2) = 1 on the right of both equations. The

loop integration may then be performed using a variety of methods, using some kind of

regulator to control the divergences, either by performing the integrals in d = 4 − 2ǫ

dimensions or by limiting the integration volume to a hypersphere contained within some

volume ℓ < Λcut. Using the latter method, the leading perturbative results for each of the
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loops are,

∫ Λcut

d4ℓ K(p, ℓ) = −3π
16

(

1− 2 log
p2

Λ2
cut

+O(p/Λcut)
2

)

, (4.34)

∫ Λcut

d4ℓM(p, ℓ) =
π

48

(

13− 12 log
p2

Λ2
cut

+O(p/Λcut)
2

)

, (4.35)

∫ Λcut

d4ℓ Q(p, ℓ) = −7π
24

(

7− 12 log
p2

Λ2
cut

+O(p/Λcut)
2

)

. (4.36)

At leading order in perturbation theory these are solved to give the unrenormalised dress-

ing functions for the gluon and ghost dressing functions as,

Gh(p2,Λ2
cut)

−1 = 1− g2Nc

(2π)3
3π

16

(

1− 2 log
p2

Λ2
cut

)

, (4.37)

Gl(p2,Λ2
cut)

−1 = 1− 1

d− 1

g2Nc

(2π)3
π

48

(

85− 156 log
p2

Λ2
cut

)

. (4.38)

Using the momentum subtraction scheme to renormalise, this leads to,

Gh(p2, µ2)−1 = Gh(µ2, µ2)−1 +
g2(µ2)Nc

(4π)2
3

4
log

p2

µ2
, (4.39)

Gl(p2, µ2)−1 = Gl(µ2, µ2)−1 +
g2(µ2)Nc

(4π)2
1

d− 1

13

2
log

p2

µ2
. (4.40)

This implicitly defines the renormalisation constants given above, setting the dimensions

d = 4 and using Taylor’s condition, Z̃1 = 1 [94],

Z3(µ
2,Λ2

cut) = 1− Ncg(µ
2)2

(4π)2
13

6
log

(

µ2

Λ2
cut

)

+O(g4), (4.41)

Z̃3(µ
2,Λ2

cut) = 1− Ncg(µ
2)2

(4π)2
3

4
log

(

µ2

Λ2
cut

)

+O(g4), (4.42)

Z1(µ
2,Λ2

cut) =
Z3

Z̃3

= 1− Ncg(µ
2)2

(4π)2
17

12
log

(

µ2

Λ2
cut

)

+O(g4). (4.43)

These results for the propagator dressing functions can be improved by going beyond

fixed-order in perturbation theory to resum the leading-logarithms. This is what the

SDE solutions should give in the small coupling limit. The general method can be found

in ref. [4] and various standard texts. The starting point is the renormalisation group
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equation,

d

d logµ
Gl(p2, µ2) = γ0(g)Gl(p2, µ2) (4.44)

where γ0 is the important quantity that may be obtained using the 1-loop results given

above and µ is an arbitrary renormalisation point. This equation is solved in a straight-

forward manner by integrating,

∫

dGl(p2, µ2)

Gl(p2, µ2)
=

∫

d logµ γ0(g). (4.45)

The usual method is to use the QCD β function that relates the variation of the coupling

with the momentum scale. Typically this is expanded in a series in g, the coefficients βi

are then calculable from perturbation theory,

dg

d logµ
= β(g) (4.46)

= −β0g3 − β1g5 −O(g7). (4.47)

Using this, equation eq. (4.45) then becomes,

∫

dGl(p2, µ2)

Gl(p2, µ2)
=

∫

dg
γ0(g)

β(g)
. (4.48)

Performing the integration on the left and exponentiating leads to,

Gl(p2, µ2) = Gl(µ2, µ2) exp

(

∫ g(p2)

g(µ2)

dg
γ0(g)

β(g)

)

, (4.49)

which is solvable using the expansion for β(g). Since the function γ0(g) may be expanded

in the coupling g then this relation goes beyond leading order. The factor γ0(g) may then

be found using eq. (4.45),

γ0(g) =
1

Gl(p2, µ2)

d

d logµ
Gl(p2, µ2) (4.50)

= 13
g2(µ2)Nc

(4π)2
1

d− 1
+O(g3) (4.51)
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inserting into eq. (4.49) gives,

Gl(p2, µ2) = Gl(µ2, µ2)

(

g2(p2)

g2(µ2)

)[− 13Nc
2(4π)2(d−1)β0

]

(4.52)

the coefficient β0 that we require is most straightforwardly calculated using eq. (4.15)

using the Landau gauge condition Z̃ = 1 and the Z3 factors as implicitly defined by the

renormalisation in eq. (4.40) and eq. (4.39), in the abscence of quarks it is,

β0 =
11Nc

3(4π)2
. (4.53)

The ratio of running couplings at different renormalisation points is also required at this

order, using α(µ2) = g2(µ2)/4π then,

α(p2)

α(µ2)
=

(

1 +
11

12π
Ncα(µ

2) log
p2

µ2

)−1

. (4.54)

Inserting this and replacing the square bracket with the constant γ gives the final expres-

sion,

Gl(p2, µ2) = Gl(µ2, µ2)

(

1 +
11

12π
Ncα(µ

2) log
p2

µ2

)γ

. (4.55)

Applying the same analysis to the ghost equation where the only real difference are the

different factors in eq. (4.39), leads to,

Gh(p2, µ2) = Gh(µ2, µ2)

(

1 +
11

12π
Ncα(µ

2) log
p2

µ2

)δ

, (4.56)

where δ is the equivalent of the constant γ that arises in the gluon analysis. These are

the forms that should match to the full SDE solutions at large momenta. The exponents

are sometimes referred to as anomalous dimensions and their values are,

γ = −13/22, (4.57)

δ = −9/44. (4.58)

These appear in the next section in the vertex dressings and are used in the numerical

procedure when extrapolation is required in the UV.
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4.2. Initial Studies

The first full solutions obtained in quarkless QCD using full angular integrations found

solutions belonging to the ‘Type 1’ or ‘Scaling’ category [84, 85], this followed from a

thorough analysis in the infrared region [95] where self-consistent power law solutions

were obtained with the form,

lim
p2→0
Gl
(

p2
)

=
(

p2
)2κ

(4.59)

lim
p2→0
Gh
(

p2
)

=
(

p2
)−κ

(4.60)

where κ > 0 and whose value can be restricted by comparing the values simultaneously al-

lowed by the ghost and gluon equations. In order to solve the Schwinger–Dyson equations

for the ghost and gluon propagators, and indeed, to do the infrared analysis, some inputs

for the vertices are required. Sensible choices for ghost-gluon and triple-gluon vertices

are essential since they can dictate whether solutions are present, the type of solutions

present, and a poor choice may lead to a lack of solutions or unphysical solutions. In

this initial study we will neglect terms containing the four-gluon vertex and consider the

triple-gluon and ghost-gluon vertices only. This truncation for the gluon propagator may

be represented diagrammatically as shown in figure 4.4.

−1
=

−1
+

++

Figure 4.4.: The terms that we consider in the Gluon propagator Schwinger–Dyson Equation.
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↑ k

← p← q

µ

Figure 4.5.: The Ghost-Ghost-Gluon vertex, using a k = p− q momentum definition.

4.2.1. Ghost-Gluon Vertex

This truncation uses the tree-level ghost-gluon vertex,

Γabcµ (k, p, q)→ Γ(0) abc
µ (k, p, q) = igfabcqµ (4.61)

which at first sight seems like an over-simplification since this cannot be correct even at

one-loop level for the vertex [96, 97]. However, it is expected that the ghost-gluon vertex

should be relatively simple in the Landau gauge due to a non-renormalisation theorem [94]

which is valid in carefully chosen renormalisation schemes [98]. The full vertex is also

expected to reduce to its bare form for vanishing incoming ghost momenta [94, 95, 98],

lim
p→0

Γabcµ (k, p, q) = Γ(0) abc
µ (k, p, q). (4.62)

Reference [95] also suggests that the vertex should be bare in the symmetric limit,

lim
k2=p2=q2

Γabcµ (k, p, q) = Γ(0) abc
µ (k, p, q) (4.63)

however this is refuted in ref [98]. The bare vertex appears to be a sensible starting point,

so the forms given by eq. (4.22) and eq. (4.23) are used in this initial study, according to

ref. [85].

4.2.2. Triple-Gluon Vertex

The triple-gluon vertex does not have any simple restrictions like the ghost-gluon vertex,

it does however have a high degree of bose-symmetry due to only gluons being present.

In general the loop corrections significantly alter the Lorentz structure compared to the
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bare vertex, as can be seen from solutions to the Ward-Slavnov-Taylor Identity [99–101]

however initially, we use the simplified form since we wish to study the solutions of

refs. [84, 85]. The dressing used in this initial study is motivated by reproducing the

resummed one-loop gluon running in the perturbative region and leaving the IR essentially

the same2 as the bare vertex since the dressing returns a constant [85]. The form used is,

Γabcµνρ(k, p, q) =
1

Z1(µ2,Λ2
cut)

Γ(0) abc
µνρ (k, p, q)

Gh(p2)1−a/δ−2a

Gl(p2)1+a
Gh(q2)1−b/δ−2b

Gl(q2)1+b , (4.64)

where a and b are arbitrary parameters. The choice a = b = 3δ with δ the 1-loop ghost

anomalous dimension is often applied. Another choice is a = b = 0, this is used in other

truncations motivated by arguments for multiplicative renormalisability [83]. These can

be seen as some sort of minimal dressing that results in the correct one–loop running [85].

Reproduction of the correct running is independent of the arbitrary parameters a and b

however the IR behaviour of the solutions is dependent upon their values.

The equation that we then wish to solve is given by eq. (4.28) with an additional factor

under the integral,

Gl(p2, µ2)−1 =Z3(µ
2,Λ2

cut)

+Z̃1(µ
2,Λ2

cut)
g2(µ2)Nc

(d− 1)

∫

ddℓ

(2π)d
Gh(ℓ2+, µ2)Gh(ℓ2−, µ2)M(p, ℓ, ζ)

+
g2(µ2)Nc

(d− 1)

∫

ddℓ

(2π)d
Gh(ℓ2+, µ2)1−a/δ−2a

Gl(ℓ2+, µ2)a
Gh(ℓ2−, µ2)1−b/δ−2b

Gl(ℓ2−, µ2)b
Q(p, ℓ, ζ), (4.65)

whereM and Q are defined as in eq. (4.30) and eq. (4.31) respectively. It is noted [83],

that this form violates multiplicative renormalisability with a 6= 0 6= b,3 but it does

reproduce the one-loop perturbative running for QCD as can be shown by a large-p2

power matching analysis [85].

4.2.3. Quadratic Divergences

In a perturbative calculation, we sum a series of diagrams that have divergences that

cancel between the individual terms only at the end of the calculation. In general, only

when all of the diagrams at the relevant order in g have been accounted for, do we have a

2However, only for a = b = 3δ.
3In [83] multiplicative renormalisability appears to be satisfied but the renormalisation must be done
differently since Z2

1 and Z̃2
1 factors multiply the bare loops.
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physically meaningful result. At intermediate steps, individual diagrams contain quadratic

divergences, terms that are like Λ2

p2
if Λ is a cutoff regulator, and these are unphysical. The

coefficients of these terms from different diagrams add to zero leaving the leading large-p2

behaviour logarithmically divergent or possibly even finite, which after renormalisation

indicates the presence of terms ∼ log p2

µ2
at worst [3].

The same problem also exists in Schwinger–Dyson studies except now there is no simple

counting in g to which we can resort. Only in a full treatment, where all diagrams

are considered without approximation, can we be certain that the quadratic divergences

will be properly cancelled amongst the separate terms. There have been efforts made

to restructure the SDEs such that these cancellations are made explicit and an elegant

solution has been found [102, 103], however this method is restricted to a different gauge

so we do not consider it at present.

There are two broad classes of solution to this problem that exist at present in the lit-

erature. The most natural way is to remove the quadratic divergences by using ζ = d

in the projector. This works because the quadratic divergences are always proportional

to gµν and the pµpν term is only logarithmically divergent [83, 104–106]. The other class

of solution involves performing the integral and subtracting the piece that goes as Λ2

p2
,

either by introducing a type of counter-term [84, 85] or by identifying the coefficient of

p−2 in the polarisation function in the small-p2 limit and removing this same contribution

for all momenta [107]. It is not clear how the second class of solution, using some kind

of subtraction of the quadratic divergences, will affect the subleading behaviours of the

integrals, particuarly since it is performed after integration.

In this initial study we are forced to use ζ = 1 and subtract the quadratic divergences

separately in order to reproduce the original scaling solutions [84,85]. Sensitivitity to ζ is

intimately linked with the correct removal of the quadratic divergences and transversality

and shall be investigated in the numerical solution of the equations.

4.2.4. Small-p2 Analyses

A miraculous feature of the SDEs of QCD is that they can be solved exactly when the

external momenta p2 is very small. This is interchangeably referred to as the infrared

(IR) limit. A leading power scaling is assumed and self–consistent powers for the Ghost

and Gluon dressings may be identified. This happens to work because the integrands are
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sharply peaked around the external momentum scale so these scales, and the behaviour

of the dressings at these scales, tend to dominate the result.

The assumption usually made is as in eqs. (4.59 and 4.60),

Gl(p2) =A(p2)a (4.66)

Gh(p2) =B(p2)b (4.67)

The strongest constraints are obtained from the ghost equation and results in the two

types of solution. We first require the integral,

∫

ddq

(2π)d

(

1

q

)d/2(
q2

k2

)α(
k2

p2

)β

=
1

2dπd/2
Γ(α)Γ(d

2
− β)Γ(β − α)

Γ(β)Γ(d
2
− α)Γ(d

2
− α− β) . (4.68)

In eq.(4.22), substituting eqs. (4.66 and 4.67), and using eq. (4.68) to perform the

integrations, the result is [85],

1

B(p2)b
= Z̃3 − (p2)a+b

g2NcAB

16π2

3

2(a+ b)(a+ b− 1)

Γ(2− a− b)Γ(1 + a)Γ(2 + b)

Γ(3 + a+ b)Γ(2 − a)Γ(1− b) , (4.69)

then powers of p2 are matched, and if the renormalisation constant Z̃3 is neglected then

the requirement that a = −2b is obtained. This forms the basis for searching for the type

1, scaling solutions. A natural consequence of this is that the most natural definition of

the non-perturbative running coupling in the IR goes to some finite non-zero value. The

most commonly used definition in the ghost-gluon sector is,4

α(p2) =
g20
4π
Gh2(p2)Gl(p2), (4.70)

this combination of dressings and the requirement a = −2b automatically results in a

constant coupling in the IR. A common exponent a = 2κ and b = −κ is assigned which

gives the forms in eqs. (4.59 and 4.60).

A similar procedure can then be carried out on both the gluon and ghost equation simul-

taneously to restrict the value of κ, except now the coefficients of the leading powers are

considered. The coefficients are obtained again by using eq. (4.68) to obtain functions of

κ and values where simultaneous solutions to the ghost and gluon may be identified, see

4In fact, any of the vertices of the theory may be used to define the running coupling, and whilst
perturbatively they all must be identical, non-perturbatively different results can be obtained. It is
not clear at present if this is soley due to incomplete truncations.
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Refs. [83, 85] for full details. A function χi(κ) is identified for each equation and values

where these cross in fig. 4.6 correspond to values that simultaneously solve the equations.

The results shown do not in fact depend on the gluon loop since in this truncation its

contribution vanishes in the p2 → 0 limit.

Ghost 
 (Infinite Sol.)

Gluon from A, Ζ=1.

Gluon from B,  Ζ=4.

Κ>0.6

0.4 0.6 0.8 1.0
Κ

-0.5

0.5

1.0

1.5

2.0

2.5

Figure 4.6.: The results of the IR scaling anaysis [83,84].

Various analyses have come up with a range of values for κ, but we consider in this initial

study κ ≃ 0.595 [84, 85, 95]. In order to remove the quadratic divergence, a counter-term

is added to the gluon loop, this is because the IR analysis is dominated by the ghost loop

and such a subtraction leaves the ghost loop IR behaviour unaffected.5

This is in good agreement with theoretical arguments given by the Kugo-Ojima [108] and

Gribov-Zwanziger [109–113] confinement scenarios that predict a singular ghost and a

vanishing gluon at vanishing momentum.

4.2.5. Numerical Results and Analysis

It is not possible at present to solve these equations analytically for all momenta for a

number of reasons, predominantly due to the products of unknown functions Gl and Gh
under the integrals. Therefore we resort to a numerical procedure as outlined in appendix

C. The dressing functions are iterated until the inputs and the outputs are consistent

with each other. In figure 4.7, we plot the self-consistent solutions found from the ζ = 1

5The κ = 1 IR solution for ζ = 4 has also been investigated, however the numerical procedure has been
unable to produce solutions connecting this to the correct perturbative behaviour, it is likely that no
solutions exist and this is a solution of the IR equations only.
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version of the gluon equation, we also plot the result of using ζ = d, starting from the

ζ = 1 solution as input, and iterating just the gluon until convergence.

Gluon Ζ=4

Gluon Ζ=1

Ghost

10-6 10-4 0.01 1 100
10-5

0.001

0.1

10

1000

p2 @Internal UnitsD

Figure 4.7.: The Scaling Solutions. Black: Ghost dressing consistent with ζ = 1 Gluon. Blue,
dashed: Gluon solved using ζ = 1 with additional cancellation of the quadratic
divegence. Red, dotted: Gluon solved using ζ = d which naturally removes the
quadratic divergences.

We notice that the gluon is not that different with either ζ = 1 or ζ = d, however,

crucially, in this truncation if the ζ = d projector is used then no solutions can be found

that simultaneously satisfy both the ghost and gluon SDEs. The solutions disappear

altogether. This difference between ζ = 1 and ζ = d is of fundamental importance since

it points to gauge invariance being broken in these solutions, since the propagator is no

longer transverse. This was to be expected, since the IR analysis does not find solutions

for ζ = d, this is because there is an improperly cancelled quadratic divergence in the

ghost-loop. This is present even as p2 → 0 and produces a pole at κ = 0.5 in the gluon IR

analysis, this corresponds to a term ∼ p2 in the function Gl. This pole naturally induces

a rapid variation which results in the ghost IR function and gluon IR function having a

common IR solution close to κ = 0.5.

When we do perturbation theory and we calculate the g2 corrections to the gluon propaga-

tor we find that each term from each diagram may be written in the form Agµν +B pµpν
p2

.

Looking a little closer, we find that the A term contains quadratic divergences in the

individual contributions that later vanish when we sum the diagrams at this order in

the perturbative series. The B term has no such cancellation, the terms simply add to-

gether with the expected logarithmic UV divergences. Working in Landau gauge where
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the Gluon is transverse, in the end when we take the sum of the diagrams we must find

A = −B if transversality is to be upheld. The full inverse Gluon propagator in general

covariant gauge in this notation is given by,

D−1
µν (p) = A(p2)p2gµν +

(

B(p2) +
1

ξ

)

pµpν (4.71)

since we know that A = −B in a full treatment it would make no difference whether

we determined our Gluon propagator dressing from A, B or some admixture of the two.

However, since quadratic divergences are present then we must determine our Gluon

using the B term since we cannot know a priori how these behave in the strongly coupled

sector which we are interested in. The A term can be trivially determined from the Gluon

dressing that is found from the B term and any difference when this substituted into the

Schwinger–Dyson Equation for the A term can be assigned to the quadratic divergences.

We can see that this must be present from the IR analysis of [84], as has been noted

previously [83], see figure 4.6. The improperly cancelled quadratic divergence does ex-

actly what would be expected, it gives a pole at κ = 0.5 resulting from a residual term

proportional to p2 in Gl(p2), which is just the term from Π2c that goes as Λcut/p
2 . The

difference between the curve A, and the B determined curve is just the quadratic diver-

gence. Moreover, we also know that this cannot be gauge invariant if A 6= −B since

in Landau gauge the Gluon propagator has to be transverse. We intend to avoid this

problem by determining our Gluon propagator dressing function from the B term, our

Gluon propagator is thus,

D−1
µν (p) =

p2

Gl(p2)

(

gµν −
pµpν
p2

)

+
pµpν
ξ

(4.72)

where Gl(p2) = −1/B(p2). This procedure clearly results in a Landau gauge Gluon

propagator that is automatically transverse. The relevant Gluon components may then

be projected from the general tensor equation by setting the parameter ζ = d, the number

of dimensions in which we operate,

Pµν(p, d) = gµν − d
pµpν
p2

(4.73)

where p is the external momenta and d = 4 is the number of dimensions in which we work.

This consistently selects the B term for our iterations, protecting us from the quadratic

divergences.
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We note that improvements to the scaling solutions have been made by considering the

allowed extensions to the vertex structure and using smoothed step functions to switch

between desired IR and UV behaviours, however the solutions obtained are identical to

those presented here, within numerical tolerances [86]. Since the IR analysis forces the

gluon to break transversality, then we do not consider this to be a reliable truncation. We

now focus upon producing solutions using ζ = d only.

4.3. Investigating Vertex Extensions

Our intention is to construct a minimally solvable truncation for the Schwinger–Dyson

Equations of QCD, that has a transverse gluon, is gauge invariant and respects the per-

turbative limit. The aim is to find a simple starting point from which natural extensions,

such as the corrections induced from additional diagrams, may be incorporated. Through

considerable effort we have been unable to find a transverse gluon solution using bare ver-

tices, those obtained from tree-level perturbation theory. This is not surprising since those

vertices do not respect gauge invariance or the Ward-Slavnov-Taylor Identities (WSTI).

Our starting point will be to consider simple extensions for the ghost-ghost-gluon and

triple-gluon vertices.

4.3.1. Ghost Equation

The Ghost Equation is very simple compared with the Gluon Equation and it is also more

robust, likely due to the fact that it requires fewer assumptions. It depends on only three

unknown functions, two of which are the Ghost and Gluon dressing functions which we

intend to determine. The third is the vertex dressing function which in full generality is

given by,

Γabcµ (k, p, q) = igfabc (qµα(k, p, q) + kµβ(k, p, q)) (4.74)

however, the β term drops out of the calculation in this loop, and the α term is expected

to be O(1) for the same reasons given in section 4.2. This suggests using a bare form for

the vertex with β = 0 and α = 1, however this may be insufficient when included in the

gluon equation; the β term can be important there [95]. We postpone discussion of this

here since it has no consequences in this equation.



The Schwinger–Dyson Equations of QCD 93

4.3.2. Gluon Equation

In order to keep things simple, we consider only the dressed one-loop diagrams and neglect

the contributions from the dressed two-loop diagrams at this time. The one-loop tadpole

graph contains a bare four-gluon vertex, but this completely drops out when we use the

projector with ζ = d since it only contributes to the gµν term in the propagator. It is

thought that the three-gluon and ghost-gluon vertices in the remaining one-loop graphs

contribute the dominant part of the non-abelian theory in the IR and it is clear that

in the UV perturbation theory at leading order requires only the one-loop graphs. The

intermediate region is expected to be most affected by these terms, particuarly in situa-

tions where the gluon dressing becomes large with respect to the ghost. Unfortunately,

unless the gluon dressing is heavily suppressed in the IR and the vertices are not enhanced

there, then there are no expansions or power counting schemes for dropping these terms;

their effects must be included in order to obtain any reliable results the gluon propagator

dressings. This approximation is considerably more severe than inserting modelled ver-

tices into the equations since sensitive cancellations can occur between the terms in the

SDE itself, for an individual Green’s function. This can result in the dressing functions

having unphysical properties, for example a sign change or pole, which does not happen

when we use a sensibly modelled Green’s function. However, the starting point of any

analysis must be to address the one-loop diagrams and then, if necessary, the two-loop

terms can also be considered.

Triple–Gluon Vertex

The triple-gluon vertex dressing used in the previous section was chosen such that it

reproduced the perturbative one-loop running. We would like to go back a step and

investigate simple vertices that satisfy the bose symmetry and also forms that are either

inspired by, or exact solutions of, the Ward-Slavnov-Taylor identity (WSTI). A completely

bare triple-gluon vertex is insufficient, so we only consider dressed vertices that usually

include ratios of dressing functions.
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The WSTI for the triple-gluon vertex [99, 101, 114–116],

ikρΓµνρ(k, p, q) = Gh(k2)
{

Γ̃µν(−p; q, k)
(

gµρ −
qµqρ
q2

)

q2

Gl(q2)

−Γ̃µρ(q;−p, k)
(

gνµ −
pνpµ
p2

)

p2

Gl(p2)

}

, (4.75)

may be used by applying several approximations. The momentum convention for the triple

gluon vertex is that all momenta are outgoing, however the ghost-gluon scattering kernel

Γ̃µν is defined from the ghost-gluon vertex which has a different convention (k = p−q). In
the absence of any ghost corrections, we can set the dressing Gh→ 1, and the ghost-gluon

scattering kernel Γ̃µν = gµν . This yields vertex corrections of the form 1/Gl. Without

solving anything exactly, corrections of this form may be applied since the high degree

of symmetry for this vertex is already quite restrictive. It is useful to test a variety of

forms since the results shouldn’t be too sensitive given a range of sensibly chosen vertices

and also since the truncation in general does not give good control over the errors. The

following forms and their effects on the equations will be tested, the first are two similar

symmetric forms we may guess that require little additional work from the bare vertex,

Γabcµνρ(k, p, q) =
1

3

(

1

Gl(k2) +
1

Gl(p2) +
1

Gl(q2)

)

Γ(0)abc
µνρ (k, p, q), (4.76)

Γabcµνρ(k, p, q) =
1

3

(Gh(k2)
Gl(k2) +

Gh(p2)
Gl(p2) +

Gh(q2)
Gl(q2)

)

Γ(0)abc
µνρ (k, p, q). (4.77)

The second form is a little closer to the full solution, and setting the dressing functions

to 1 gives the bare form, which we know works in the perturbative region, various cyclic

combinations may be tested provided that they satisfy the symmetry for the vertex. For

example,

Γabcµνρ(k, p, q) = igfabc×
(

gµν(k − p)ρ
Gh(q2)
Gl(p2) + gνρ(p− q)µ

Gh(k2)
Gl(q2) + gρµ(q − k)ν

Gh(p2)
Gl(k2)

)

. (4.78)

The full solution at this level of truncation depends additionally on the solution of the

WSTI for the ghost-gluon vertex since this tells us something about the ghost-gluon

scattering kernel, Γ̃µν .
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The vertex used in the initial study eq. (4.64) with the parameters a = 0 and b = 0

corresponds to a multiplicatively renormalisable form used elsewhere [83]. This leads

to the curious property that the gluon equation does not depend on the gluon dressing

function directly, the dependence arises only through coupling to the ghost equation via

the ghost dressing function. The key property of this vertex is that it should reproduce the

correct running for the gluon equation since this is enforced in its derivation by matching

powers on either side of the gluon equation in a large-p2 expansion. A generalisation is

considered [86], that is intended for the finite ghost (type 2) solutions,

Γabcµνρ(k, p, q) = Γ(0) abc
µνρ (k, p, q)

(Gh(p2 + Λ2
dec)Gh(q2 + Λ2

dec)

Gl(p2 + Λ2
dec)Gl(q2 + Λ2

dec)

)

(4.79)

where Λdec is some ‘decoupling’ scale where the dressings freeze out. Practically, this

tames large contributions from the 1/Gl terms as the momenta become small. This vertex

does not have the bose symmetry between the legs as at the tree level, the momenta

corresponding to the dressed terms are meant to be those that participate in the loop

integration. This vertex dressing becomes bare in the IR so can be thought of as a

minimal dressing required to reproduce the 1-loop results. Whether the bare form in

the IR is the correct choice is an open question, however the WSTI solutions suggest

otherwise, since these vertices typically give a finite contribution at vanishing momenta.

Ghost–Gluon Vertex

The Ghost–Gluon Vertex is relatively simple in Landau gauge, its renormalisation con-

stant Z̃1 is always finite and in the MS renormalisation scheme or a momentum subtrac-

tion scheme where the incoming ghost momentum is set to zero the vertex receives no

renormalisation at all, hence Z̃1 = 1. In other schemes that do not subtract at vanishing

incoming ghost momentum, such as a symmetric point (k2 = p2 = q2), this may not be

the case and the dressing may receive some finite renormalisation [94, 98, 117, 118]. The

vertex reduces to its bare form for the vanishing incoming ghost momentum limit. It

must also reduce to its bare form at very high energies when the perturbative expansion

is valid.

Primarily for these reasons, the bare form has often been used, we find however that this

is insufficient, and self-consistent solutions for all momenta do not exist. In general the
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full ghost-gluon vertex has the structure,

Γabcµ (k, p, q) = igfabc [qµα(k, p, q) + kµβ(k, p, q)] (4.80)

where there is a term that is longitudinal in the gluon momentum kµ that is not present at

tree level. We already know from Taylor that in the extreme perturbative limit α(k, p, q) =

1 and β(k, p, q) = 0, as the coupling increases however there may be important effects in

both terms that we must try to quantify. An interesting form of the vertex to consider is,

Γabcµ (k, p, q) = igfabc
[

qµα(k, p, q) + kµ

(

γ(k, p, q)− α(k, p, q)k.q
k2

)]

(4.81)

we choose this because it isolates the component constrained by the Ward-Slavnov-Taylor

identity, and also explicitly satisfies Taylor’s theorem [94, 98] for any choice of α(k, p, q).

The truncated WSTI6 for this vertex reads [101],

i
kρ

k2
Γabcρ (k, p, q)D(p)D(q)− ip

ρ

p2
Γabcρ (−p,−k, q)D(k)D(q) = gfabcD(−k)D(p) (4.82)

we have already cancelled the momentum conserving δ-functions since they are already

factored out of the vertices using the definitions in appendix B. Inserting eq. (4.81)

in eq. (4.82) we find that all of the α contributions drop out, which is typical of these

relations in both abelian and non-abelian gauge theories where transverse terms are left

unconstrained,

k2γ(k, p, q)
1

Gh(k2) + p2γ(−p,−k, q) 1

Gh(p2) = − q2

Gh(q2) . (4.83)

It follows that γ has a simple solution, using conservation of momentum, k = p− q,7

γ(k, p, q) =
Gh(k2)
Gh(q2)

k.q

k2
, (4.84)

whilst the function α is unconstrained. This is not necessarily a problem, since we know

that this term must be O(1) in the perturbative limit and has some symmetries that

6An unknown four-ghost scattering term has been dropped. It is not clear whether this can cause a
problem or not [86]. It is completely possible that the neglected term is important.

7In deriving this solution, it seems that there may be a sign ambiguity for γ, however since we know
that α ∼ 1 perturbatively then the sign is automatically fixed given this solution for γ
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should be satisfied [95, 101]. The vertex this gives is then,

Γabcµ (k, p, q) = igfabc
[

qµα(k, p, q) + kµ
k.q

k2

(Gh(k2)
Gh(q2) − α(k, p, q)

)]

, (4.85)

It will be convenient in what follows to factorise this as,

Γabcµ (k, p, q) = igfabc
[

qµα(k, p, q) + kµk.q β̃(k, p, q)
]

, (4.86)

where

β̃(k, p, q) =
1

k2

(Gh(k2)
Gh(q2) − α(k, p, q)

)

(4.87)

is defined implicitly. A sensible choice for α is to use sums of simple ratios such as,

α(k, p, q) =
1

2

(Gh(q2)
Gh(k2) +

Gh(p2)
Gh(k2)

)

(4.88)

since in the UV when these functions are all slowly varying logarithms, we protect the

perturbative results. There could however be other important non-perturbative terms in

α(k, p, q) that need to be understood in order to make exact predictions. The different

options available here will be tested in the numerical investigation below, but for now we

leave α(k, p, q) an undefined function.

Given this form of the ghost-gluon vertex, we may use it to infer a form for the ghost-

gluon scattering kernel that featured in eq. (4.75). The definition of this stems from the

ghost-gluon vertex,

Γabcµ (k, p, q) = igfabc
[

qµα(k, p, q) + kµk.q β̃(k, p, q)
]

, (4.89)

= igfabcΓ̃νµ(k, p, q)q
ν, (4.90)

this implies the following structure must be present,

Γ̃µν(k, p, q) = α(k, p, q)gµν + β̃(k, p, q)kµkν , (4.91)

this may then be applied to the triple-gluon vertex WSTI.
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Simultaneously solving the vertex Ward-Slavnov-Taylor Identities

The full triple gluon vertex WSTI eq. (4.75) and the truncated ghost-gluon vertex WSTI

eq. (4.82) have been solved simultaneously [100], however using those solutions, using the

ζ = d UV-safe truncation and full angular integrals does not yield self-consistent solutions

in our numerical procedure, which will be explained later. However, the solution to the

WSTI may not be unique as noted in the original article so it may be worth considering

what alternative forms are possible.

A full decomposition of the ghost-gluon scattering kernel widely used in the literature

with all momenta incoming is [87, 99, 115–117],

Γ̃νµ(k, p, q) =gµνa(k, p, q)− pµkνb(k, p, q) + kµqνc(k, p, q) (4.92)

+ kνqµd(k, p, q) + qµqνe(k, p, q) (4.93)

which gives the required ghost-gluon vertex when contracted as in eq. (4.90). This basis

is not orthonormal, so may be written in many equivalent ways, to write it in the form

for eq. (4.91) we must use the form,

Γ̃νµ(k, p, q) =gµνa(k, p, q) + kµkνb(k, p, q) + kµqνc(k, p, q)+ (4.94)

+ kνqµ(b(k, p, q) + d(k, p, q)) + qµqνe(k, p, q) (4.95)

where a = α, b = β̃, c = 0, b = −d and e = 0 are required to give eq. (4.91). In

refs. [99,115,116] the triple-gluon WSTI is solved and the following constraint on the the

components of Γ̃µν is found, first they define,

akpq =
Gh(p2)
Gl(q2) a(k, p, q) (4.96)

and similarly for the other scattering kernel functions, then in this notation,

(akpq − apkq)− k.p (bkpq − bpkq) + k.qdkpq − p.qdpkq = 0 (4.97)

it can easily be shown that eq. (4.91) does not satify this equation. In ref. [100] a similar

problem arises which is then solved by adding a term, however in this solution the term
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added would interfere with the form already proposed so it appears it is not possible to

find a solution with this choice of scattering kernel.8

The von Smekal, Hauck and Alkofer Solution

A simultaneous solution of both WSTI does exist in the literature [100], this uses the

same truncated WSTI for the ghost-gluon vertex and the full triple-gluon vertex WSTI

as given above. Terms that are added to the ghost-gluon scattering kernel that do not

appear in the ghost-gluon vertex itself in order to obtain a simultaneous solution in the

triple-gluon vertex WSTI. The vertices that are obtained are,

Γµνρ3g,abc(k, p, q) =

igfabc

[

A+(q, k, p)(k − p)ρgµν + A−(q, k, p)

(

1

2
(k + p)ρgµν +

(k − p)ρ (k.pgµν − kνpµ)
k2 − p2

)

+A+(k, p, q)(p− q)µgνρ + A−(k, p, q)

(

1

2
(p+ q)µgνρ +

(p− q)µ (p.qgνρ − pρqν)
p2 − q2

)

+A+(p, q, k)(q − k)νgρµ + A−(p, q, k)

(

1

2
(q + k)νgρµ +

(q − k)ν (q.kgρµ − qµkρ)
q2 − k2

)

]

,

(4.98)

where

A±(k, p, q) =
Gh(k2)Gh(q2)
Gh(p2)Gl(p2) ±

Gh(k2)Gh(p2)
Gh(q2)Gl(q2) . (4.99)

Also, for the ghost-gluon vertex,

Γabcµ (k, p, q) = igfabc
[

qµ

(Gh(k2)
Gh(q2)

)

+ kµ

(Gh(k2)
Gh(p2) − 1

)]

. (4.100)

Later we shall use these vertices in a numerical procedure and explain why they do not

lead to a self-consistent solution in this truncation.

8It may be possible that more can be done here by adding extra terms that appear in the ghost-gluon
scattering kernel but do not affect the ghost-gluon vertex; terms that are transverse in qµ, in a similar
method as in ref. [100].
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An IR-Transverse Ghost-Gluon vertex

A ghost-gluon vertex that is transverse in the IR limit has been suggested on theoretical

grounds [95], particularly for the type of projection we apply here. Also, one of the

reasons we investigated the form in eq. (4.81) was that recently [86] there has been success

in solving the equations using a ghost-gluon vertex that is transverse in the IR. The

particular form that is used is,9

Γµ(k, p, q) = ig

(

qµ − kµ
k.q

k2
FIR(k, p, q,ΛIR)

)

, (4.101)

where k is the gluon momentum. This is found by enforcing the relation kµΓµ(k, p, q) = 0

in the IR limit to restrict the vertex functions, α and β. The term FIR(k, p, q,ΛIR) is just

a smoothed step function that switches this term on roughly below some scale ΛIR. This

allows solutions to be obtained in this truncation and the initial intention when solving

the WSTI for eq. (4.81) was that the term (Gh(k
2)

Gh(q2) −α) would act somehow similarly to this

step function, unfortunately this does not work since the dressing function ratio is always

less than 1 under the ghost-loop integration in the IR and this prevents solutions from

being obtained, since it induces an unphysical change in sign of the dressing function, for

a range of sensible choices for α.

Typical choices for the smoothed step function are,

FIR(k, p, q,ΛIR) =
Λ2

IR

(k2 + p2 + q2 + Λ2
IR)

, (4.102)

FIR(k, p, q,ΛIR) =
Λ6

IR

(k2 + Λ2
IR) (p

2 + Λ2
IR) (q

2 + Λ2
IR)

, (4.103)

the first of which has a spherical boundary and the second is cubic, both result in quali-

tatively similar solutions. The expectation is that ΛIR ≃ ΛQCD, which in the momentum

subtraction scheme is expected to be roughly 5× that of the MS scheme [96]. We will use

the version given by eq. (4.102) unless stated otherwise.

The reason that this form works so differently to the others is the presence of the 1/k2

term in the second term in eq. (4.101). This becomes large and positive in the IR limit of

the ghost loop in the gluon equation, similar to the ghost in the original scaling solutions.

In the decoupling solutions this new singular factor essentially replaces the one lost when

9In ref [86] additional terms are present in the suggested vertex since they have the additional problem
of the removal of quadratic divergences from using the ζ = 1 projection.
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the ghost dressing becomes finite, mathematically then the contributions of the ghost

loop and gluon loop are qualitatively similar in each set of solutions. Physically, this

term could be justified if the ghost loop were the only term that contributes in the deep

infrared region since this diagram would have to be transverse alone, in order to obtain

a transverse gluon. Whether or not this is the case depends on the choice of triple-gluon

vertex and will be investigated using the numerical procedure. However, if this diagram

does dominate, then transversality of the gluon should happen automatically since the

correct logarithms should be selected by using ζ = d. The real reason that this term

could be a important, if this is a sensible choice for the ghost-gluon vertex, must then be

that important longitudinal loop corrections occur either non-perturbatively or at higher

orders, and that these are required to obtain self-consistent solutions.

4.3.3. Numerical Solutions of the Ghost Equation

It is a useful exercise to attempt to solve the equation for the ghost dressing function alone,

for a fixed gluon input. There are two classes of solution possible [87] for a wide range

of choices for the ghost-gluon vertex and the input gluon propagator dressing. The first

problem is always to obtain self-consistent solutions, and second, to check the physical

properties.

In the majority of the truncations considered in recent years where calculations have been

performed in the Landau gauge with ghosts included, the gluon propagator dressing has

been found to vanish. We consider first the type 1, scaling solutions that satisfy relations

eq. (4.60) and eq. (4.59). In order to produce a divergent ghost propagator we subtract

at zero momentum, and set Gh(ν2)−1 = 0 in the SDE where ν2 is the subtraction point

for the ghost equation which is in principle, different to the renormalisation point µ2.

We consider the following inputs for the gluon propagator,

Gl(p2) =
(

p2

p2 + λ2

)2κ

(4.104)

this is the form of a bare massive propagator for κ = 1/2, for other values it may be

used to test the IR condition. The idea of a dynamically generated gluon mass term has

become popular recently, partially due to results obtained by lattice QCD, a form with a
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mass term and UV running is,

Gl(p2) = p2

m2 + p2
[

1 + 13
2

g2Nc

12×4π2 log
(

p2+m2

µ2

)] , (4.105)

where strictly speaking, m should be a function of p2 that can only be nonzero in the

non-perturbative region. Both the type 1, scaling solutions and the type 2, decoupling

solutions can be obtained with minimal effort using the bare ghost-gluon vertex. In order

to obtain both sets of solutions we input eq. (4.104) and a ghost dressing that has the

desired form we wish to obtain. For the type 1 solutions we input,

Gh(p2) =
(

p2

p2 + λ2

)−κ

(4.106)

and for the type 2 solutions, the tree level value Gh(p2) = 1 may be used. In figure 4.8 we

show the results for a fixed gluon input and the consistent ghost output. The power law

behaviour is reproduced in the IR such that eq. (4.60) and eq. (4.59) are satisfied for a

wide range of values of κ. The same analysis can be performed for the type 2 solutions.

10-6 10-4 0.01 1 100
10-9

10-6

0.001

1

1000

106

p2

Figure 4.8.: Gluon inputs and consistent ghost outputs for Type 1 solutions. Each curve
corresponds to its ‘mirror’ about y = 1. Gluon inputs eq. (4.104), from bottom
to top (Black, dashed), κ = 1.0, 0.9, 0.7, 0.5, 0.3, 0.1. Numerical Ghost outputs
from top to bottom (Colours, Solid), κ = 1.0, 0.9, 0.7, 0.5, 0.3, 0.1.

Here we renormalise and subtract in the most natural way, using the same perturbative

point µ2 = 100 and α(µ2) = 0.15. We see that the ghost equation is highly solvable

for a range of gluon inputs. Using perturbative renormalisation conditions automatically
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Figure 4.9.: Gluon inputs and consistent ghost outputs for the Type 2 Solutions. Gluons from
left to right (in IR region), κ=0.1, 0.25, 0.5, 0.75 and 1 (Dashed, Black). Ghosts
from top to bottom in IR region, κ=0.1, 0.25, 0.5, 0.75 and 1 (Solid, Colours).

gives rise to the type 2 solutions, however the type 1 solutions are readily obtained by

subtracting at zero momentum. We now turn to simultaneous analyses of both equations.

4.3.4. Full Numerical Studies and Analysis

In the numerical study, we follow the methods used before as outlined in appendix C.

The vertices listed above give rise to new and extended kernels in addition to those of

section 4.2, these are given below. The tensor contractions for the gluon loop lead to long

expressions in the intermediate steps and the derivation can be lengthy. The solutions

obtained will be dependent upon the vertex choice. There are also free parameters that

must be sensibly fixed in order to obtain physically meaningful solutions. We begin with

a known working set of vertices and produce a set of solutions. These are then used to

investigate the reasons why some vertices lead to consistent solutions and others do not.

Solution Set 1

The first set of solutions we present are built from the vertex dressings given in equations

(4.77, 4.101) which is the transverse ghost-gluon vertex and the simplest bose-symmetric

triple-gluon vertex, using the parameter valuess listed in table 4.1. The integral equations
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Gluon GlIp2M

Ghost GhIp2M

Coupling ΑIp2M

10-5 0.001 0.1 10 1000 105
0.0

0.5

1.0

1.5

2.0

p2

Figure 4.10.: Solution Set 1, showing the Gluon dressing (Blue, dotted), the Ghost dressing
(Red, dashed) and the running coupling (Black).

that are solved require a slight generalisation compared to those used in section 4.2,

since we now use the vertex defined by eq. (4.101) which contains an additional tensor

structure. We write this using the generic form from eq. (4.80) where in this specific

case α(−p; ℓ−, ℓ+) = 1 and β(−p; ℓ−, ℓ+) = +p.ℓ+
p2
FIR(p, ℓ+, ℓ−,ΛIR). The Gluon SDE with

polarisation functions is given in eq. (4.29), with the new vertices these become,

Π2c(p
2, µ2) =

g2(µ2)Nc

(d− 1)

∫

ddℓ

(2π)d
Gh(ℓ2+, µ2)Gh(ℓ2−, µ2)×

(

α(−p; ℓ−, ℓ+)M(p, ℓ, ζ) + β(−p; ℓ−, ℓ+)Mβ(p, ℓ, ζ)
)

, (4.107)

Π2g(p
2, µ2) =

g2(µ2)Nc

(d− 1)

∫

ddℓ

(2π)d
Gl(ℓ2+, µ2)Gl(ℓ2−, µ2)×

1

3

(Gh(p2, µ2)

Gl(p2, µ2)
+
Gh(ℓ2−, µ2)

Gl(ℓ2−, µ2)
+
Gh(ℓ2+, µ2)

Gl(ℓ2+, µ2)

)

Q(p, ℓ, ζ), (4.108)

whereM and Q are as given in eqs. (4.30 and 4.31) respectively and,

Mβ(p, ℓ, ζ) = (−1)(ζ − 1) p.ℓ−
p2ℓ2+ℓ

2
−

. (4.109)
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Although we give a physical unit in GeV this is not to be taken too seriously, since without

quarks matching to a physical scale is not entirely meaningful, however we do expect ΛIR

to be in the region of 1 GeV, given the arguments above. The solutions obtained from

the numerical procedure are shown in figure 4.10. The first thing to note is that we

have obtained what appears to be ‘type 2’ or ‘decoupling’ solutions where the ghost is

IR finite. ‘Scaling’ or ‘type 1’ solutions have not been found in this truncation and likely

do not exist. A perturbative renormalisation point is chosen and the one-loop running

for each dressing is verified numerically, by taking the derivative to find the coefficient

of the logarithm. The renormalisation constants are also calculated and checked against

their one-loop perturbative counterparts, this is a 3% and a 0.5% error respectively for

Parameter Value

µ2 1000 GeV2

ν2 1000 GeV2

α(µ2) 0.1

Gl(µ2) 1

Gh(ν2) 1

Λ2
IR 5 GeV2

Table 4.1.: The parameters used for Solution Set 1.

Quantity One-loop All orders

Perturbative Numerical

Ghost log coeff. -9/4 -2.26

Gluon log coeff. -13/2 -6.69

Z3 1.119 1.153

Z̃3 1.041 1.049

Table 4.2.: Numerical and perturbative values for solution Set 1.

the gluon and ghost, which is in reasonable agreement. We also find that these vertices

automatically produce a Gluon dressing that goes exactly as p2 as p becomes small.

The subtracted gluon equation that we solve for numerically is,

Gl−1(p2) = Gl−1(µ2) +
(

Π2c(p
2)− Π2c(µ

2)
)

+
(

Π2g(p
2)−Π2g(µ

2)
)

(4.110)
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where we have dropped the second argument of the dressing and polarisation functions

for simplicity. The reason for choosing a subtracted polarisation function is to remove

the renormalisation constant Z3. Throughout this section we will enforce the most basic

momentum subtraction condition that Gl(µ2, µ2) = 1. The Gluon dressing function must

always be positive and any sign change will lead to a breakdown of the iterative procedure.

A minimal constraint then for a solvable system is,

1 + Π
(sub)
2c (p2, µ2) + Π

(sub)
2g (p2, µ2) > 0 , (4.111)

where Π
(sub)
i (p2, µ2) = Πi(p

2)−Πi(µ
2). For the full gluon equation there are more contri-

butions and the condition then would be,

1 + Π
(sub)
2c (p2, µ2) + Π

(sub)
2g (p2, µ2) + Π

(sub)
3g (p2, µ2) + Π

(sub)
4g (p2, µ2) > 0 , (4.112)

this is where the uncertainty arises regarding the statements we make about the ghost-

gluon vertex.

For the Set 1 solutions we find that both of these polarisation functions are both at

leading order in the infrared, contrary to the solutions in section 4.2 where the ghost loop

dominates and the gluon loop contribution is negligible. In fact they both have a pole

in p2 in the IR which when inverted becomes the p2 behaviour that is shown in figure

4.10. Since they are of opposite sign, to compare the behaviours of these it makes sense

to include an additional p2 factor, so we plot the components of eq. (4.111) multiplied

by p2 in figure 4.11, where we still require the sum to be greater than zero at any given

p2. We find that the leading IR component of the ghost loop is 0.140/p2 and that of the

gluon loop is −0.0516/p2. In the UV however the situation is reversed, as is known from

perturbation theory, the gluon loop gives the larger of the two contributions and both are

significant. The fact that both loops are at leading order has been found elsewhere [83].

This undermines the choice of using an infrared transverse ghost-gluon vertex,10 since

there is no reason why that loop should be transverse on its own when the gluon-loop

contributes at the same numerical order.

10An IR transverse vertex and an IR transverse ghost-loop in the gluon equation are identical in the
constraint bewteen the vertex functions
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Figure 4.11.: Gluon polarisation contributions for the Solution Set 1. Left: Full Region, Right:

IR Region. These show p2Π
(sub)
2g (p2) (Blue, Solid), p2Π

(sub)
2c (p2) (Red, Dashed)

and p2 (Black, Dotted).

Gluon UV running and subleading components

One problem that becomes apparent when solving this truncation for the vertices given

above is how the UV subleading components of the gluon propagator drop off as p2

becomes large. The gluon is expected to have some distinct intermediate momentum

behaviour but to tend to the simple resummed logarithm from perturbation theory as g2

becomes small as p2 becomes larger. How these subleading components slowly die away

is something we may consider analytically [85, 90] or numerically.

It is noted in refs. [83, 85] that a dressing like Gh2/Gl2 in the large-p2 limit gives the

correct running for the gluon loop. Some of the vertices here do not correctly reproduce

the logarithmic running by some small amount, this can make the results ambiguous

because the matching point between the SDE loop and perturbative running then has

a small kink which introduces and unphysical depdendence on this point. When using

these vertices, we use a procedure where we always match at the renormalisation point.

The extrapolation is required since the momentum in the dressing functions under the

integrals sample momenta beyond the cutoff. The exact procedure is defined in appendix

C.3, along with details regarding the effects of using these vertices.

Truncations with other vertices

In this study we have found that many of the vertices used elsewhere do not give self-

consistent solutions in our numerical procedure. It is worth checking exactly why this
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is since it will inform our choices for improving the truncation. There are many reasons

why a truncation could fail. They could of course fail due to neglecting the dressed two-

loop graphs which we do not consider at present. Provided that the neglected terms are

subleading in the IR11 then we require eq. (4.111) to be satisfied. In all of the triple-gluon

vertices that we have considered we have found that,

lim
p2→0

Π
(sub)
2g (p2, µ2) ≤ 0 . (4.113)

Although this list of vertices is not exhaustive, and presumably some vertex could be

contrived that would violate this condition, we are led to the requirement on the ghost

loop term that,

lim
p2→0

Π
(sub)
2c (p2, µ2) > 0 . (4.114)

Some triple-gluon vertices that lead to non-zero IR contributions in that loop would

require the even stronger condition,

lim
p2→0

Π
(sub)
2c (p2, µ2) >

∣

∣

∣

∣

∣

lim
p2→0

Π
(sub)
2g (p2, µ2)

∣

∣

∣

∣

∣

, (4.115)

for a truncation without the two-loop terms. Obtaining a ghost-gluon vertex that satisfies

this condition will be our primary concern. This is not a guarantee that solutions will

exist, eq. (4.111) must be satisfied everywhere. First we must calculate the new integrands

that result from the new tensor contractions. The required ingredients for the ghost loop

are already given by eq. (4.107), we choose to compare four ghost-gluon vertices, the

transverse vertex eq. (4.101), the bare vertex, the WSTI solution eq. (4.100) and an

additional dressed form closely related to the transverse vertex. Since ratios of dressing

functions should result from the WSTI analysis we choose the term multiplying the tree

level term from eq. (4.100) to multiply the whole transverse vertex from eq. (4.101),

Γµ(k, p, q) = ig
Gh(k2)
Gh(q2)

(

qµ − kµ
k.q

k2
FIR(k, p, q,ΛIR)

)

. (4.116)

In order to perform the same study on the gluon loop term, we must calculate the resulting

kernels for the generalised triple-gluon dressing eq. (4.78) which we choose to write now

11This is an unverified assumption that should be checked by explicit evaluation of the two loop graphs,
with a careful choice of dressed vertices.
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a more generic way,

Γµνρ3g,abc(k, p, q) = igfabc

[

Γ3g(q
2, k2, p2)gµν(k − p)ρ

+Γ3g(k
2, p2, q2)gνρ(p− q)µ

+Γ3g(p
2, q2, k2)gρµ(q − k)ν

]

(4.117)

where typically we choose something like, Γ3g(k
2, p2, q2) = Gh(k2)/Gl(p2). If we perform

the tedious but straightforward tensor contractions, projecting the tensor structure using

Pµν(p2, ζ) we find,

Π2g(p
2) =

(

1

2

)

Ncg
2(µ2)

(d− 1)(2π)4

∫

d4ℓ
Gl(ℓ2+)Gl(ℓ2−)
4 (p2ℓ2+ℓ

2
−)

2
×

{

Γ3g(p
2, ℓ2−, ℓ

2
+) [ − 32ζ(ℓ.p)4 + (3ζ − 4)p4(ℓ.p)2

− 48ℓ6p2 + 24ℓ4(2ζℓ.p2 − p4) + ℓ2p2(8(ζ + 6)ℓ.p2 + p4) ]

+Γ3g(ℓ
2
−, ℓ

2
+, p

2)2(ℓ.p2 − l2p2)
[

4ℓ2(5p2 + 2ζℓ.p) + p2(7p2 − 2(ζ − 12)ℓ.p)
]

+Γ3g(ℓ
2
+, p

2, ℓ2−)2(ℓ.p
2 − l2p2)

[

4ℓ2(5p2 − 2ζℓ.p) + p2(7p2 + 2(ζ − 12)ℓ.p)
]

}

.

(4.118)

We also calculate the triple-gluon WSTI solution given in eq. (4.98) using the above result

eq. (4.118), with the substitution Γ3g(k
2, p2, q2)→ A+(k

2, p2, q2), defined in eq. (4.99), the
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new terms from this extended vertex simply add to the previous result,

Π2g(p
2) = Π2g(p

2)(eq. (4.118)) +

Ncg
2(µ2)

2 (d− 1)(2π)4

∫

d4ℓ
Gl(ℓ2+)Gl(ℓ2−)
4 (p2ℓ2+ℓ

2
−)

2

{(

32 ℓ.p p2 (ℓ.p2 − ℓ2p2)×
[

A−(ℓ
2
+, p

2, ℓ2−)(4(ℓ
2 + ℓ.p)− 3p2)(4(ℓ2 − ℓ.p) + p2)(4ℓ2 − 8ℓ.p+ 7p2)

− A−(ℓ
2
−, ℓ

2
+, p

2)(4(ℓ2 − ℓ.p)− 3p2)(4(ℓ2 + ℓ.p) + p2)(4ℓ2 + 8ℓ.p+ 7p2)

]

)

−
(

A−(p
2, ℓ2−, ℓ

2
+)
(

4(ℓ2 − 3p2)2 − 16 ℓ.p2
)

×
[

ℓ2
(

192ζℓ.p4 + 4(7ζ − 16)p4ℓ.p2 + p8
)

+ (9ζ − 10)ℓ.p2p6 + 16(8− 7ζ)ℓ.p4p2

+ 192p2ℓ8 + 16ℓ6
(

7p4 − 12ζℓ.p2
)

+ 4p2ℓ4
(

4(3ζ − 22)ℓ.p2 + 5p4
)

]

)}

. (4.119)

Using the ghost-gluon vertices listed above, and the integrands calculated above along

with the bare triple-gluon vertex and the simply dressed form from eq. (4.77), we use

solution Set 1 as input, then calculate the subtracted polarisation functions and plot them

in fig. 4.12. There are no iterations here so the results do not represent the quantities

that may be produced by self-consistent solutions, however this gives some measure of

the properties of the vertices with respect to each other. It is from this plot we learn why

some of the other vertices do not work.

At first glance the ghost-gluon vertices are all very similar and in the UV all have roughly

the correct running. The bare ghost-gluon vertex is vanishing in the IR and too small

to give self-consistent solutions, as is the vertex from the simultaneous WSTI solution

eq. (4.100), although it gives a slightly different intermediate behaviour.

The result from the triple-gluon vertex given by eq. (4.78) is not that different to the one

already used in obtaining the first set of solutions and self-consistent solutions may be

found using it. The triple-gluon vertex given by the full WSTI solution eq. (4.98) is quite

large in the IR and also does not give the correct running in the UV. For this vertex to

work, it requires a larger cancelling contribution in the IR, using the transverse vertex

eq. (4.101), which is the largest considered so far, it is not possible to obtain self-consistent

solutions with this set of parameters. Solutions may be found but require very small bare

couplings.
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Figure 4.12.: Gluon polarisation contributions for the vertices that are considered, these show

p2Π
(sub)
2g (p2) and p2Π

(sub)
2c (p2). Top: Full Region, Bottom: IR Region. The

upper curves are the ghost loop contributions (Red) and the lower curves are the
gluon loop contributions (Blue). Solid lines: Set 1 polarisation functions, Dotted
lines: tree level vertices, Dashed lines: Alkofer et al WSTI vertices eq. (4.100)
and eq. (4.98), Dot-dashed ghost loop is the dressed Fischer et al vertex with
a WSTI type ratio of dressings, the Dot-dashed gluon loop uses individually
dressed terms as in eq. (4.78).
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It is also useful to consider the UV running of the different vertices since this should be

correct and is often considered a problem. In figure 4.13 we zoom on the UV region from

figure 4.12. We add a black solid curve that shows correct gluon loop contribution in order

to obtain the correct perturbative one-loop running. We find that the individually dressed

vertex, eq. (4.78), is a little way off, and the full WSTI triple-gluon vertex, eq. (4.98), gives

a very different answer to that obtained from one-loop perturbation theory. The simplest

symmetric dressing eq. (4.77) and the vertex like Gh2/Gl2 gives UV running contributions

that are very close. However, neither of these satify the WSTI for this vertex which is an

outstanding problem.
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Figure 4.13.: Gluon polarisation contributions for the vertices that are considered, for the de-
tails of each curve see the caption of fig. 4.12 except now we drop the p2 and plot

Π
(sub)
i (p2). In the perturbative region shown here the ghost loop contributions

are almost identical amongst the vertices. The black solid curve is the correct
contribution we expect from using the vertex given by a Gh2/Gl2 dressing, for
example eq. (4.79). This lies almost exactly on top of the simplest symmetric
dressed triple-gluon vertex eq. (4.77). The individually dressed vertex, eq. (4.78),
is a little way off (blue dot-dashed curve), and the full WSTI triple-gluon vertex,
eq. (4.98) (the blue dashed curve), gives a very different answer to that obtained
from one-loop perturbation theory.

Solution Set 2

Using the triple-gluon vertex in eq. (4.78) that has an individual dressing for each mo-

mentum term similar to the full WSTI solution, we solve the Schwinger–Dyson Equations
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again and obtain self–consistent solutions. The parameters used are much the same as

for the set 1 solutions, the range of values of ΛIR is a smaller for this vertex, the numbers

are as in table 4.1. The reason for this reduction can be correctly guessed from fig. 4.12,

the dressing given by eq. (4.78) (the blue, solid curve) relative to eq. (4.76) (the black,

dotted curve) is larger and in the changeover region around 1 GeV where the largest

contribution switches from being the ghost in the IR to the gluon in the UV then a larger

ghost contribution is required to keep the polarisation function positive.
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Figure 4.14.: The Set 2 Solutions with Set 1 also shown for comparison. Set 1 Gluon (Blue,
Dotted), Set 1 Ghost (Red, Dashed), Set 2 Gluon (Black, Dot-dashed), Set 2
Ghost (Green, Solid). The different running given by this triple-gluon vertex is
clearly visible in the UV.

4.3.5. The Running Coupling

The running coupling in quarkless non-perturbative QCD is more often than not defined

by the quantity [119],

α(p2) = α(µ2)Gh2(p2)Gl(p2), (4.120)

where α(µ2) = g2(µ2)/4π is what we refer to as the running coupling. There are other def-

initions that may also be used, some of which may be obtained from the definitions of the

renormalisation factors and the multiplicative renormalisation conditions. When study-

ing the fundamental physics of mesons, then the quark-gluon vertex may be a more natural
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starting point. To derive the above equation we require Eqs. (4.10, 4.11, 4.12, 4.14 and 4.15).

The derivation generalises from a perturbative one by considering the dressing functions

and using these to relate the coupling at different scales,

α(µ2) = α(Λ2
cut)

Z̃2
3 (µ

2,Λ2
cut)Z3(µ

2,Λ2
cut)

Z̃2
1(µ

2,Λ2
cut)

(4.121)

where the presence of Λcut denotes a bare Green’s function and we have used the defintion

α(µ2) = g2(µ2)/(4π). Substituting the MR conditions we obtain,

α(µ2)Gh2(p2, µ2)Gl(p2, µ2) = α(Λ2
cut)Gh2(p2,Λ2

cut)Gl(p2,Λ2
cut)

1

Z̃2
1(µ

2,Λ2
cut)

. (4.122)

In order to obtain the usual relation the Taylor condition is invoked, setting Z̃1 = 1. We

then notice that the LHS is independent of Λcut and the RHS is independent of µ2 so we

can eliminate the Λcut by evaluating at two different renormalisation points µ2 and ν2 and

dividing the resulting expressions,

α(µ2)Gh2(p2, µ2)Gl(p2, µ2) = α(ν2)Gh2(p2, ν2)Gl(p2, ν2) . (4.123)

Then we simply set p2 = ν2 and apply the perturbative renormalisation conditions

Gl(ν2, ν2) = 1 and Gh(ν2, ν2) = 1 and find,

α(ν2) = α(µ2)Gl(ν2, µ2)Gh2(ν2, µ2) , (4.124)

which is valid for a general renormalisation point µ2. Subtleties can be missed by blindly

applying the Taylor condition, so we propose to explicitly include the vertex dressing.

Returning to eq. (4.122) we use relation eq. (4.12),

α(µ2)
Gl(ℓ2, µ2)Gh2(ℓ2, µ2)

Γ2
ρ(k, p, q, µ

2)
= α(Λ2

cut)
Gh2(ℓ2,Λ2

cut)Gl(ℓ2,Λ2
cut)

Γ2
ρ(k, p, q,Λ

2
cut)

. (4.125)

The next issue is the precise definition of how the vertex is renormalised in a momentum

subtraction scheme. Various conditions have been applied in the literature [95, 98, 117,

118, 120], either using a symmetric point (where k2 = p2 = q2), or the point where either

the gluon momentum vanishes (k2 = 0, and p2 = q2), or the incoming ghost momentum

vanishes (k2 = q2 and p2 = 0). This final condition is the one that leads to Taylor’s

theorem, and hence a vertex that is bare in this limit. The first and second differ from

this by some finite amount, even as Λcut →∞ in Landau gauge.
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We choose the Taylor point where p = 0 where the general ghost-gluon vertex eq. (4.80)

becomes12,

Γρ(−q; 0, q,Λ2
cut) = Zg(µ

2,Λ2
cut)g(µ

2) Z̃1(µ
2,Λ2

cut) iqρ
(

α(−q; 0, q, µ2)− β(−q; 0, q, µ2)
)

.

(4.126)

The renormalisation condition then requires,

α(−q, 0, q, µ2)− β(−q, 0, q, µ2) = 1 (4.127)

at a perturbative momentum q, in the region of µ. Taylor’s condition however, states that

this should be valid for all q but the ghost-gluon vertex we have applied using eq. (4.101)

violates this condition away from the perturbative region. We can then cancel some factors

in eq. (4.125), apply the renormalisation conditions (assuming a perturbative point), and

relabel, we then find,

α(p2) = α(µ2)
Gl(p2, µ2)Gh2(p2, µ2)

(α(−p, 0, p, µ2)− β(−p, 0, p, µ2))2
(4.128)

which for the ghost-gluon vertex in eq. (4.101) gives,

α(p2) = α(µ2)
Gl(p2, µ2)Gh2(p2, µ2)

(1− FIR(p2, 0, p2,ΛIR))
2 . (4.129)

Note that the denominator vanishes in the IR and the relative powers of this and the gluon

vanishing determine the behaviour of the IR running coupling. Since FIR is arbitrary then

this cannot be a firm prediction of the truncation. However, using the definition used in

the two solution sets given above then this would lead to an IR divergent running coupling.

A form could be chosen whose limiting behaviour is as p in the IR which would result in

a finite IR coupling.

This redefinition does not get around the problem that Taylor’s theorem is broken by

this choice of vertex. A different approach would be supplement the ghost-gluon vertex

functions α(k, p, q) and β(k, p, q) by additional terms that protect Taylor’s theorem, this

we consider next.

12Note that often the Taylor condition is quoted with a + between the two components of the vertex,
this is just due to differences in the definition of the vertex momentum.
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4.3.6. A Singular Ghost-Gluon Vertex?

The only ghost-gluon vertex that we have so far that produces self-consistent solutions is

the infrared transverse form eq. (4.101). This essentially has something like a 1/p2 term,

in the term in the vertex proportional to the gluon momentum. This enters under the

integral but gives a strong enhancement in Π2c as p
2 → 0 that is required for a vanishing

gluon at small momentum.13 This term does not contribute in the ghost equation or the

SDE projected with the ζ = 1, but is important in the ζ = 4 version of the equations.

Several other forms are suggested that introduce some sort of singularity in the vertex

[86,95,98,121], however the nature of this singularity will of course be dependent upon the

other factors from the loop integration and vertex dressing. Numerical investigations have

shown that a singularity is necessary to drive the Gluon dressing to zero (at least in the

one-loop-only truncation), which appears to be the most natural way of simultaneously

obtaining solutions like those found on the lattice. This may appear unnatural at first

and unexpected from related studies in QED [88,115,116], but seems to be necessary here.

We set aside these concerns for now and investigate some simple forms. The question is

how best to inform our choice of dressing. We have used eq. (4.101) [86,95] to obtain our

solutions so far but other forms may be possible and we would ideally prefer something

derived from the fundamental theory.

In a different truncation that uses pinch-technique and background field method rear-

rangements [122, 123], where the Green’s functions are elegantly rearranged into mani-

festly transverse groups, [121], the following dressing is used, along with a similar form

for the triple-gluon vertex,

Γµ(k, p, q) = Γ(0)
µ (k, p, q) +

kµ
k2

(

p2

Gh(p2) −
q2

Gh(q2)

)

(4.130)

this is chosen so that the Schwinger mechanism is reproduced [123]. This corresponds to,

in the above notation,

α(k, p, q) = 1 (4.131)

β(k, p, q) =
1

k2

(

p2

Gh(p2) −
q2

Gh(q2)

)

. (4.132)

13In the transverse vertex there is not actually a singularity since it is cancelled by the numerator in the
appropriate limit, however the result is that Π2c(p

2) goes as p−2 in the IR.
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The Green’s functions from this related method do not coincide with the Landau gauge

version exactly [124], because of the pinch-technique rearrangements, however we may

use this form and investigate its effect on our solutions. Clearly the 1/k2 in the external

gluon momentum may dominate in the small momentum region, as k → 0, if no cancelling

factors arise in the numerator. In this truncation, this vertex does not appear to give

sensible results.

A third dressing is inferred [98], by careful consideration of Schwinger–Dyson, Perturbative

and Lattice QCD results to restrict the deep IR powers of the propagators and vertices.

The conclusions there favour an IR divergent ghost-gluon vertex which has a particular

form that clarifies the structure of any singular term such that Taylor’s theorem [94] is

satisfied. Taylor’s theorem is often referred to as the ‘non-renormalisation’ theorem for

the ghost-gluon vertex. The actual statement, in the notation and momentum definition

used in eq. (4.80) is,

α(−q, 0, q, µ2)− β(−q, 0, q, µ2) = 1. (4.133)

The ghost-gluon vertex functions α and β may be written in terms of the ghost-gluon scat-

tering kernel function defined as a–e, and used earlier in eq. (4.90). The decompositions

for the vertex functions α and β are [98],

α(k, p, q) = a(k, p, q) + [b(k, p, q) + d(k, p, q)] k.q + q2e(k, p, q) (4.134)

β(k, p, q) = b(k, p, q)k.q + c(k, p, q)q2 (4.135)

where it is noted that since only b(k, p, q) appears in both terms, then if any term is

singular when p2 → 0, in order to satisfy Taylor’s theorem then it may occur only in b

since it will automatically cancel in eq. (4.133). The authors of [98] consider terms such

as q−2 × (regular fn.) or p−2 × (regular fn.). In the numerical procedure, we have not

found any working forms with singularities such as these. However, the vertex already

considered eq. (4.101), may be put into this form if we take,

b(k, p, q) = − 1

k2
FIR(k, p, q,ΛIR). (4.136)

This would lead to the natural extension of the transverse vertex, eq. (4.101),

α(k, p, q) = 1− k.q

k2
FIR(k, p, q,ΛIR). (4.137)
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This new vertex can be most simply written as the bare vertex plus a term proportional

to the incoming ghost momentum,

Γabcµ (k, p, q) = igfabc
(

qµ + pµ
k.q

k2
FIR(k, p, q,ΛIR)

)

, (4.138)

in this form it is clear that the additional term vanishes as p vanishes and the vertex

reduces to its bare form. We now solve the equations using this vertex and compare with

the previous sets.

Solution Set 3

Using the above expressions for the ghost-gluon vertex, we find the solutions shown in

figure 4.15. They are plotted with the Set 1 solutions for comparison. We notice that this

extra term in the ghost-gluon dressing hardly affects the result for the gluon equation,

but significantly changes the low momentum behaviour of the ghost dressing function. It

appears that there is a compensating effect in the gluon equation that counteracts the

increase in the ghost dressing since in the previous truncation with the transverse ghost-

gluon vertex if the ghost dressing increased by this amount then it would have a much

larger effect on the gluon equation.

The input parameters are as given for the Set 1 solutions in table 4.1 and the triple-

gluon vertex is also as used for Set 1 given by eq. (4.77), the simple symmetric dressing.

Although the solutions do not look that different, this vertex is much more restrictive in

the solutions that can be obtained, whilst for the Set 1 and Set 2 there are other solutions

for a wide range of parameters.

4.3.7. Using the Ghost-Gluon Vertex WSTI solution

Choosing a form for α(k, p, q) in the WSTI vertex eq. (4.81) from fundamental methods is

currently a problem. Appealing to the forms that have currently been found to work, for

example in eq. (4.101) and eq. (4.138) we can arrange a form that allows for self-consistent

solutions, utilising again the function FIR(k, p, q,ΛIR) since it is otherwise difficult to

arrange the limits that are required by perturbation theory,

α(k, p, q) = 1 +NFIR(k, p, q,ΛIR) (4.139)
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Figure 4.15.: The Set 3 Solutions, shown with Set 1 for comparison. The Ghost dressing is
quite different in the IR, but gluon dressing is almost identical. Set 1 Gluon
(Blue, Dotted), Set 1 Ghost (Red, Dashed), Set 3 Gluon (Black, Dot-dashed),
Set 3 Ghost (Green, Solid).

where N is a normalisation parameter that is selected so that solutions may be obtained.

We can also consider dressings to α(k, p, q) suggested by comparisons to eq. (4.100). The

full vertex is then,

Γabcµ (k, p, q) = igfabc

[

qµ

(

1 +NFIR(k, p, q,ΛIR)
)

+ kµ
k.q

k2

{Gh(k2)
Gh(q2) −

(

1 +NFIR(k, p, q,ΛIR)
)

}

]

. (4.140)

When solving the equations using this input we find that the range of solutions is similarly

restricted as found for Set 3. The additional term in α(k, p, q) causes an enhancement in

the ghost equation in the IR region compared to the bare vertex, for large couplings the

relation given by eq. (4.115) is not satisfied, the ghost-loop contribution can even become

negative. In order to find solutions we begin with very small couplings (α(µ2) = 0.01) and

find self-consistent solutions. The coupling is then increased adjusting the new parameter

N in eq. (4.140) such that we have solutions. The effects are non-trivial since N appears

in both the ghost equation and the ghost-loop term of the gluon equation. The non-
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linear nature of the equations makes it difficult to predict a priori which values of N

lead to solutions, however making small steps in the parameter values, re-solving for the

ghost and gluon equations self-consistently at each step and checking the behaviour of

the polarisation functions in the IR leads us to the parameters given in table 4.3 which

correspond to the solutions depicted in figure 4.16.

Parameter Value

µ2 1000 GeV2

ν2 1000 GeV2

α(µ2) 0.065

Gl(µ2) 1

Gh(ν2) 1

Λ2
IR 1 GeV2

N 6.5

Table 4.3.: The parameters used for Solution Set 4.

The form of the ghost-gluon vertex from eq. (4.140) is unfortunately not particularly useful

in this truncation. This leads to a number of possible conclusions, either the solution of

the WSTI is not a sensible one, that the terms neglected from the four-ghost term are

important. Alternatively, these ghost-gluon vertex dressings could be sensible and it is

the one-loop-only truncation that is at fault and the additional diagrams in the gluon

equation give important contributions. Finally it is even possible that some complex

unforeseen structures arise in the triple-gluon vertex dressings conspire to make the gluon

polarisation positive in the IR region at larger couplings.

4.4. Lattice QCD

In recent years a complementary technique where the equations of QCD are solved on a

four-dimensional lattice using discretised Euclidean spacetimes and a a finite number of

spacetime points, have achieved impressive results using increasingly improved algorithms

and improved computers. The lattice technique is not presently computationally practical

for the light quarks observed in nature and often lattice results are calculated for the pure

gauge part of QCD as we have done here. Furthermore, the calculations they perform

should be directly comparable to our own since they are usually carried out in Landau
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Figure 4.16.: The Set 4 Solutions. Also shown with a new version of Set 1, denoted Set 1∗,
where α(µ2) = 0.09 has been used for direct comparison. Similarly to Set 3
we notice a large enhancement of the ghost dressing in the IR caused by the
additional term in the function α(k, p, q). Set 1∗ Gluon (Blue, Dotted), Set 1∗

Ghost (Red, Dashed), Set 3 Gluon (Black, Dot-dashed), Set 3 Ghost (Green,
Solid).
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gauge and in Euclidean space. There are many differences also, some rather technical

related to the existence of Gribov copies and how this could have different effects in

different methods. The lattice can potentially suffer from finite volume effects and finite

spacing effects that do not vanish after the calculation when the continuum limit is taken.

The lattice should in principle include effects that would be contained within the two-

loop dressed graphs, which we have deliberately neglected. However, this does not stop

us comparing results.

The lattice solutions given in [125,126] are taken and fitted with a smooth curve. Starting

from solution Set 1, using eq. (4.101) for the ghost-gluon vertex and eq. (4.76) for the

triple-gluon vertex. We then tune a set of parameters, (see table 4.4) such that we obtain

something close to that given by the lattice. The subtraction and renormalisation point

is set to a point where both of the lattice dressing functions are roughly 1, doing a simple

logarithmic extrapolation we find a value of µ2 ≃ 650 GeV2 the position of the peak of the

gluon propagator roughly fixes the value of ΛIR and the coupling can be fixed by choosing

a value that best matches the data overall or fixing at some specific point on the dressing

functions. We will often use the latter option and fix the coupling by tuning the IR value of

the ghost dressing. There are two ways to present the gluon propagator dressing function.

In this work and most SDE studies it is the function multiplying the bare propagator that

is given, Gl(p2) however in many lattice studies the quantity Gl(p2)/p2 is given which is

usually finite for vanishing p2.

The functions are fitted manually by adjusting the free parameters in order to get the

best agreement with the data. The gluon data is considered twice, once with Gl(p2) which
emphasises the UV points and once with Gl(p2)/p2 which puts emphasis on the IR. This is

repeated for all of the combinations of vertices tested above. Many of these are discarded

because only very poor fits can be obtained.

We now consider three combinations of vertices in the standard one-loop-only truncation.

First we attempt to tune the parameters for the Set 1 vertices, using the triple gluon-

vertex given by eq. (4.77) and the ghost-gluon vertex given by eq. (4.101). For the solution

sets B-D we use the triple gluon-vertex given by eq. (4.77) and the ghost-gluon vertex

given by eq. (4.138), and for solution sets E and F we use the triple gluon-vertex given by

eq. (4.79) and the ghost-gluon vertex given by eq. (4.101). We find qualitative agreement

over a range of parameters as shown in table 4.4.
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Parameter Sol A. Sol. B Sol. C Sol. D Sol. E Sol. F

µ2 [GeV2] 650 650 650 650 650 650

ν2 [GeV2] 650 650 650 650 650 650

α(µ2) 0.1347 0.1253 0.1257 0.1363 0.1603 0.1665

Gl(µ2) 1 1 1 1 1 1

Gh(ν2) 1 1 1 1 1 1

Λ2
IR [GeV2] 12 7 12 24 2.75 4

Table 4.4.: The parameters used for the lattice solutions.

Unfortunately none of the solutions presented here naturally reproduce all of the lattice

data to any degree of precision. The triple-gluon vertex used for solutions E and F,

given by eq. (4.79) allows the gluon peak, when plotted as Gl(p2), to be most accurately

reproduced however when comparing with the actual lattice data plotted as Gl(p2)/p2
the behaviour in the transition to the IR has a strange peak, see fig 4.19. Similar effects

have been seen elsewhere using this form of vertex [83, 85]. This is a good reason, along

with the lack of symmetry between legs, and having a different form to that given by

any of the WSTI solutions, to reject this form vertex, however the correct reproduction

of the perturbative one-loop running is appealing. There may also be a problem with all

of the ghost-gluon vertices used. The value of ΛIR used is always larger than would be

expected if it is to be associated with ΛQCD which in a MOM scheme is always less than 1

GeV2. The lattice solutions are not necessarily matched to a physical scale, any matching

would still be questionable due to the lack of quarks in these treatments, however they

are solved at β = 6/g2 = 5.7, which corresponds to a smaller coupling than used here.

This could be due to the extrapolation that we have applied, or it could be due to finite

spacing effects giving an incorrect log running in the UV. The gluon naturally matches the

one-loop resummed form in the lattice solutions, but the ghost does not match completely

smoothly. There have been many discussions on finite volume, finite spacing and gauge

fixing effects [85,127–129], and the indications are that the lattice should find solutions of

this qualitative form, regardless of whether the corresponding infinite volume SDEs have

a finite or divergent IR behaviour.

We must also bear in mind that these equations are coupled and any effects that lead to

one equation not matching will lead to a corresponding effect in the other equation, so in

order to unravel the differences it may be important to consider the equations individually.

At present this isn’t necessary because the ghost is always fairly well reproduced (except

for solution A).
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Figure 4.17.: Lattice Fits using the triple gluon-vertex given by eq. (4.77) and the ghost-gluon
vertex given by eq. (4.101). The heavy solid lines represent the lattice data, the
feint lines are extrapolations. Dotted curve is Set A. (Blue: Gluon, top plot
Gl(p2), bottom plot Gl(p2)/p2, Red, both plots IR ≃ 3.5 curves: Ghost Gh(p2).)
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Figure 4.18.: Lattice Fits using the triple gluon-vertex given by eq. (4.77) and the ghost-gluon
vertex given by eq. (4.138). The heavy solid lines represent the lattice data, the
feint lines are extrapolations. Dotted Set B, Dashed Set C, Dot-dashed Set D.
(Blue: Gluon, top plot Gl(p2), bottom plot Gl(p2)/p2, Red, both plots IR ≃ 3.5
curves: Ghost Gh(p2).)
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Figure 4.19.: Lattice Fits using the triple gluon-vertex given by eq. (4.79) and the ghost-gluon
vertex given by eq. (4.101). The heavy solid lines represent the lattice data, the
feint lines are extrapolations. Dotted Set E, Dashed Set F. (Blue: Gluon, top
plot Gl(p2), bottom plot Gl(p2)/p2, Red, both plots IR ≃ 3.5 curves: Ghost
Gh(p2).)
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4.5. Conclusion

In solving the SDEs of QCD we encountered many questions, new and old, which we

have yet to find clear conclusions for. In all likelihood the issues that we give below

are interconnected and many will only be resolved by performing a much more complete

treatment of the Schwinger–Dyson equation for the gluon propagator dressing function.

4.5.1. Triple-Gluon Vertex dressing

Two forms were considered for the triple-gluon vertex dressing,

1. Vertex proportional to Gh/Gl

• Naturally arises in WSTI studies.

• Satisfies Multiplicative Renormalisability and removes vertex renormalisation

constant Z1 in Landau gauge.

• Incorrect resummed logarithmic running when used in Gluon loop.

2. Vertex proportional to Gh2/Gl2

• Leads to a logarithmic running consistent with the ghost-loop in the gluon equa-

tion, the ghost equation and 1-loop perturbation theory, if considered alone.

• If combined with the WSTI then this is not the case since it implies that the

ghost-gluon scattering kernel must have dressings of the form,

Γ̃µν ∼ Gh/Gl gµν + ... , (4.141)

which in turn implies ghost-gluon vertex dressings of the same form. If these

vertices are then used in the ghost-loop and the ghost equation then the one-loop

running becomes inconsistent.

• Leads to additional renormalisation factors to cancel the dressings in the gluon

loop.

• Vertices of this type with Bose symmetry have not been found to lead to self-

consistent solutions.
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A fair conclusion appears to be that Gh/Gl is the preferred dressing, but more work is

needed to resolve the one-loop running issue.

4.5.2. Ghost-Gluon Vertex dressing

We considered a range of forms for this vertex, driven by practical reasons (are solutions

obtainable?) and theoretical reasons (WSTI, the running coupling, Taylor’s Theorem).

The results again are not conclusive but are step forward. In this study, considering

forms already in existence in the literature, we have used this vertex to drive the gluon

propagator dressing as p2 in the IR limit. This arises naturally if the ghost loop digram

alone is transverse in the IR, which only occurs if all other terms are vanishing. This was

found not to be the case for any of the triple-gluon dressings informed by WSTIs, both

terms are found to be of similar order so the ghost loop diagram does not need to be

transverse alone. Extensions are considered with additional terms that ensure Taylor’s

theorem (α − β = 1) is satisfied. This is driven by the practical reason that solutions

should be obtainable in this, one-loop-only, truncation. This may not be the case, it is

entirely possible, and even likely, that large contributions of leading order in the IR limit

arise from the two-loop diagrams. This serves as a caveat to many of the conclusions

regarding this vertex.

1. Bare or minimally dressed vertex with no singularities.

• Solutions are not obtainable

• Preferred by WSTI.

• Allows for a simpler definition of the running coupling, with no or little contri-

bution from the vertex dressing.

2. Transverse dressing

• Solutions are obtainable.

• Violates Taylor’s Theorem.

• Running coupling not well defined, particularly sensitive to vertex modelling

with FIR.

• Scale ΛIR often too large to be compared with ΛQCD
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3. Modified Transverse dressing

• Solutions are obtainable for a limited range of parameters.

• Respects Taylor’s Theorem.

• Running coupling particularly sensitive to vertex modelling with FIR.

• Scale ΛIR often too large to be compared with ΛQCD

• Singular structure is not expected, and may be unphysical. It would not be

allowed in QED.

4.5.3. Final Words

The Schwinger–Dyson Equations of QCD were investigated using a minimal truncation

that ensures the solutions do not manifestly break gauge invariance. We find a ghost

propagator dressing function that is finite in the vanishing momentum limit and a gluon

propagator dressing function that vanishes like p2 as p2 → 0. We do not find an infinite

ghost type solution.

Significant effort has been devoted to this one-loop only truncation and whether solutions

are obtainable became an important consideration. A number of forms for the ghost-gluon

vertex have been investigated that provide solutions but have the unexpected property of

containing a singular term. This is necessary to provide the p2 behaviour that is required

by the ghost equation and in order to obtain solutions similar to those found on the

lattice. The main limitation and source of uncertainty in this study is the lack of two-

loop terms in the equation for gluon propagator, these could easily provide the required

contributions that have here been attributed to the ghost-gluon vertex. A study of these

terms has begun and some preliminary details are given in the following chapter.



Chapter 5.

Outlook for Landau Gauge SDE studies

in QCD

In this study of the SDEs of QCD, it was found that the ghost-gluon vertex in the one-

loop-only truncation is a very important object. This is the most natural place where large

positive contributions can arise to make the gluon equation solvable. In the infinite-ghost

solutions this is what happens, however in the finite solutions that appear to be favoured

by the lattice we require a similar contribution to be produced by the ghost-gluon vertex,

that becomes large as the gluon momentum vanishes.

It is not clear if this requirement is due to physical reality or a by-product of dropping the

two-loop diagrams; a full analysis of both contributions is necessary to fully understand

the structure of the gluon equation.

5.1. Ghost-Gluon Vertex

The ghost-gluon vertex in the Landau gauge was always supposed to be simple, and com-

pared to other gauges it almost certainly is due to it only receiving finite renormalisations.

However, if the one-loop-only truncations are meant to be taken seriously then significant

non-perturbative effects must arise. Taking into consideration Taylor’s Theorem [94] and

the truncated Ward-Slavnov-Taylor Identity [94,100,130] then the solutions found for the

ghost-gluon vertex have not been found to permit solutions at non-perturbative couplings.

This could be due to either the truncation of the WSTI by neglecting the four-ghost scat-

tering terms thus invalidating the solution, or alternatively, it could be that this is not the

correct place to generate the large positive contribution required in the gluon-equation,

130
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and the required contribution must then be due to the dressed two-loop diagrams whose

solution has all but been neglected in SDE studies to date due to their high numerical

complexity [83].

A natural place to turn to shed light on this vertex is the Schwinger-Dyson equation for

the vertex itself. This may be truncated to obtain a relatively simple form that should be

solvable numerically, and preliminary studies of this quantity have shown that significant

non-zero contributions can arise in the longitudinal terms after just one natural iteration,

using dressed propagator inputs [131]. This has been investigated only using the infinite-

ghost scaling solutions at present and no fully self-consistent solutions have been obtained.

There are numerous difficulties that are present and some of the problems found here are

the same as those found in attempts to solve the two-loop diagrams.

5.2. Two-loop diagrams

The two-loop diagrams have never been fully included in the gluon propagator. Attempts

have been made to quantify their effects [83] but a full numerical analysis has never

been performed. Neglecting these terms is quite a severe approximation since there are

no power-counting or expansion schemes that suggest why they are subleading. Indeed,

we know that their inclusion is mandatory in order to correctly reproduce the NNLO

(O(g4)) perturbative behaviour. The integration kernels are straightforward to calculate,

either by hand or making use of some algebraic system. Following ref. [83], we refer

to the polarisation contribution due the the sunset diagram as Π3g(p
2) and that due to

the crescent diagram as Π4g(p
2). The propagator momenta and diagram notation are as

defined in the relevant terms of figure 4.2. We leave the relation of the loop momenta to

the propagator momenta undefined, the only restriction is to conserve momentum but the

specific choice can simplify a numerical procedure. We begin with the sunset diagram and

for simplicity we use only bare lorentz structures in the vertices. This diagram turns out

to be relatively simple since the bare four-gluon vertex has no momentum dependence and

the kernel function is symmetric on interchange of any pair of gluon propagator momenta.

The bare vertices may be improved in the usual manner by multiplying sensible ratios of
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propagator dressings,

Π3g(p
2) =2

g4N4
c

(2π)8

∫

ddℓa

∫

ddℓb
Gl(ℓ21)Gl(ℓ22)Gl(ℓ23)

p2ℓ21ℓ
2
2ℓ

2
3

×
{

3ℓ1.ℓ2 ℓ2.ℓ3 ℓ3.ℓ1 + 3((d− 8)d+ 17)p2ℓ21 ℓ
2
2 ℓ

3
3

+4(d− 5)
[

ℓ1.p
2 ℓ22 ℓ

2
3 + ℓ2.p

2 ℓ23 ℓ
2
1 + ℓ3.p

2 ℓ21 ℓ
2
2

]

+
(

4(p.ℓ1)
2 + (d− 8)ℓ21p

2
)

(ℓ3.ℓ2)
2 − 4ℓ1.pℓ2.p

[

ℓ2.ℓ3 ℓ1.ℓ3 − 3ℓ1.ℓ2 ℓ
2
3

]

+
(

4(p.ℓ2)
2 + (d− 8)ℓ22p

2
)

(ℓ1.ℓ3)
2 − 4ℓ2.pℓ3.p

[

ℓ3.ℓ1 ℓ2.ℓ1 − 3ℓ2.ℓ3 ℓ
2
1

]

+
(

4(p.ℓ3)
2 + (d− 8)ℓ23p

2
)

(ℓ2.ℓ1)
2 − 4ℓ3.pℓ1.p

[

ℓ1.ℓ2 ℓ3.ℓ2 − 3ℓ3.ℓ1 ℓ
2
2

]

}

. (5.1)

The crescent diagram cannot be written in such a simple form which is just due to the

asymmetric structure, there should however be a symmetry between ℓ1 and −ℓ3 so we

divide the momentum external to this loop equally between each propagator, ℓ1 = ℓa− ℓ4
2
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and ℓ3 = ℓa +
ℓ4
2
,

Π4g(p
2) =

g4N2
c

(2π)8
3

4
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]

ℓ44 −
[

4ℓ4.ℓ
2
ap.ℓ4ℓ

2
a

]

+
[

(5− 4d)p.ℓ4 ℓ4.ℓ
2
a − 8(d− 2)ℓ2a p.ℓa ℓ4.ℓa + 4(2d− 3)p.ℓ4ℓ

4
a

]

ℓ24

}

+ 4ℓ4.ℓ
2
ap

2ℓ2a(ℓ2.ℓ4 − p.ℓ4)
]

+ℓ2.ℓ4

[

p.ℓ2

{

(

4ζp.ℓ4ℓ
2
a + (1− 2d)p2ℓ2a + 2ζℓ4.ℓap.ℓa

)

ℓ44 + 4ℓ4.ℓ
2
aℓ

2
ap

2

}

−ℓ2.ℓ4ℓ24
{

ℓ24
[

ζp.ℓ2a + (2ζ − 2d+ 3)ℓ2ap
2
]

+ 4
[

(d− ζ − 2)p2ℓ4.ℓ
2
a − ζℓ2a p.ℓ2a + (2ζ − 2d+ 5)ℓ4ap

2
]}

]}

. (5.2)

Preliminary analyses performed using an extended version of our numerical program have shown

that these diagrams although subleading in the UV can have an important contribution in the

IR. There are some singularities in certain kinematic regions that need to be dealt with and

there is also the problem of nested logarthmic divergences that must be considered carefully. A

simple resolution of these issues is still required.



Chapter 6.

Conclusion

In chapters 2 and 3 we investigated the behaviour of two light scalar resonances, the σ(600)

and the f0(980), both observed in low energy QCD in ππ scattering. There are many scalars in

QCD, many more in fact than might initially be expected, but dynamical models suggest [37,79]

that the qq seeds for the scalars lie around 1.4 GeV [30–32, 37] and coupling to decay channels

pulls their pole masses towards the relevant threshold. In chapter 2 we found that the dominant

four–quark component of the σ(600) at Nc = 3 [31, 44, 45] gives way to a pole above 1.2 GeV

and that this is neccessary for semi-local duality to be upheld for Nc > 3. In chapter 3 we found

that the dominant component of the f0(980) is that of a molecular KK bound state due to only

a single pole being required for its scattering amplitude. This does not neccessarily exclude the

possibility of the state being seeded by some higher pole and being pulled towards KK threshold

by a stong coupling to the decay channel. However, its composition at Nc is clear, and that is

that it is governed by a long-range force between two compact K mesons.

In chapter 4 we began a study to investigate the properties of QCD from the fundamental

Lagrangian utilising a truncated Schwinger–Dyson Equation. The main conclusions drawn were

that previous truncations may be at fault since transversality of the gluon propagator has been

violated which may be observed by the different solutions (or lack of) obtained when solving

the equations for the gµν term in the propagator or the pµpν term. It was also observed that

the effects of both the ghost-gluon and triple-gluon vertices are highly non-trivial and the bare

vertices are insufficient. Firm conclusions await an analysis of the two–loop diagrams in the

gluon propagator Schwinger–Dyson equation.
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Appendix A.

Parameters for the f0(980) fits

A.1. Jost

The best fit Jost-function parameters for the various fits are given in table A.1 below.

Parameter Fit 1. Fit 2. Fit 3. Fit 4.

|k(1p)2 | 0.12298 0.11395 0.13109 0.12052

Arg(k
(1p)
2 ) 153.86 151.06 145.85 140.85

|k(2p)2 | – – – –

Arg(k
(2p)
2 ) – – – –

Re(γ0) – – – –

Im(γ0) 3.1962 3.1661 3.2330 3.2188

Re(γ1) 0.26139 0.50813 0.28270 0.47542

Im(γ1) -0.30590 -0.09956 -0.21554 -0.00909

Re(γ2) – – – –

Im(γ2) 3.1227 4.3910 3.1517 4.5415

Re(γ3) – -8.5979 – -11.254

Im(γ3) – -3.3223 – -0.90109

Table A.1.: Pole positions and fits. Any dimensionful quantites are in GeV.

A.2. Flatté

The best fit Flatté parameters corresponding to fit 7 are given in table A.2.
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Parameter Fit 7.

m0 0.750 GeV

g21 0.555 GeV2

g22 2.74 GeV2

φ
(0)
1 73.9◦

φ
(1)
1 37.5◦

φ
(0)
2 2.78◦

φ
(1)
2 −53.1◦

Table A.2.: The Flatté parameters.

A.3. Amplitude Argand Plot

A useful representation of the amplitudes is to plot the path taken by Tij in the complex

plane. We give an example of this in figure A.1.

The curve begins at the lower limit of our fitting region where E ≃ 0.87 GeV, around

Arg(T11) = π/2 and |T11| = 1 at the top of figure A.1 and the phase increases to Arg(T11) =

π in the region of KK threshold which is visible by the first sharp kink from the unitarity

circle.
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Figure A.1.: Argand plots of T11, for Fit 1 (Black), Fit 2 (Red, Dashed), Fit 5 (Green, Dot-
dashed), Fit 6 (Blue, Dotted).



Appendix B.

Feynman Rules and Notation

B.1. Bare Propagators and Vertices

The following definitions are used for the Feynman rules throughout this thesis, delta

functions on the momenta of the vertices are implicit,

D(0)
µν (p) =

1

p2

(

gµν −
pµpν
p2

)

+ ξ
pµpν
p4

(B.1)

D(0)(p) =
−1
p2

(B.2)

Γ(0)abc
µνρ (k, p, q) = igfabc (gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν) (B.3)

Γ(0)abc
µ (k, p, q) = igfabcqµ (B.4)

In some truncations, a factorised dressing is applied where the bare Lorentz structure for

the triple-gluon vertex, is used but multiplied by some propagator dressings. It is useful

to define the quantity,

Γµνρ(k, p, q) = gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν . (B.5)

The bare four-gluon vertex is very simple, the bare form contains no momentum depen-

dence and we have not considered any dressed forms,

Γ(0)abcd
µνρσ = g2 [fabef cde (gµρgνσ − gµσgνρ) +

facef bde (gµνgρσ − gµσgνρ) +
fadef bce (gµνgρσ − gµρgνσ) ] . (B.6)
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Appendix C.

Numerical Procedure

There are two largely separater numerical problems to solve, the first is the integration and

the second the iterative procedure. We integrate numerically upto some momentum cutoff

ℓ2 = κ2. This is a safe thing to do with the subtracted equations, our loop integration

becomes,

∫

d4ℓ→ 1

2π

∫ κ2

0

dℓ2 ℓ2
∫ π

0

dθ sin2 θ (C.1)

this may be performed using standard quadrature techniques using a small linear piece

in the IR region, and a logarithmic scale for the rest, with a break at l2 = p2/4 where

some of the angular integrands have a kink which would result in lost accuracy from a

numerical quadrature method.

The iterative procedure we use is the Newton-Raphson method. We represent our func-

tions using Chebychev polynomials and some appropriate mapping for our momentum

region. We then do the usual Taylor expansion and calculate corrections to our co-

effiecients using the first derivative and neglecting higher terms. This results in a stable

iterative procedure that works well from a wide range of starting functions. These so-

lutions however are particularly stable and may be obtained using a natural iterative

procedure also, the Newton-Raphson procedure however works reliably for a wider range

of starting functions. Typical starting forms we have used are the lattice solutions or the

form,

Gl(p2) =
(

p2

p2 + λ2

)a

(C.2)
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for the gluon and a constant for the ghost. For 0 < a ≤ 1 we find that a = 1 is

returned from the iterative procedure. For other values the iterative procedure does not

always converge. The equations naturally reproduce the logarithmic running in the large

momentum limit, provided self-consistent solutions are found.

C.1. Integrations

C.1.1. Volume Integrals

The volume integral for closed loops is,

∫

ddℓ

(2π)d
(C.3)

we typically work in 4-dimensional Euclidean space which allows the insertion,

∫

ddℓ

(2π)d
→ 1

(2π)4
1

2

∫ ∞

0

dℓ2ℓ2
∫ π

0

dψ sin2 ψ

∫ π

0

dθ sin θ

∫ 2π

0

dφ (C.4)

For propagator integrals, there is a dependence on only one angle, hence both θ and φ

are symmetric so this reduces to,

∫

ddℓ

(2π)d
→ 1

(2π)3

∫ ∞

0

dℓ2ℓ2
∫ π

0

dψ sin2 ψ (C.5)

the angle ψ is defined by the angle between the external momenta pµ, and the loop

momenta ℓµ, ℓ.p = (ℓ2p2)1/2 cosψ. In order to perform vertex integrals and the inner

parts of the propagator integrals a second angle is required,

∫

ddℓ

(2π)d
→ 1

(2π)3
1

2

∫ ∞

0

dℓ2ℓ2
∫ π

0

dψ sin2 ψ

∫ π

0

dθ sin θ (C.6)

we now choose our external momenta as kµ and qµ, we define,

k.q = (k2q2)1/2 cos γ, (C.7)
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the following choice is arbitrary, but it follows that,

ℓ.k = (k2ℓ2)1/2 cosψ, (C.8)

ℓ.q = (q2ℓ2)1/2 (cosψ cos γ + sinψ sin γ cos θ) , (C.9)

this is applicable either in the vertex integrations where only a single loop integration is

necessary or when nested in the two-loop terms where then either q or k would be replaced

by the integration variable.

C.1.2. Numerical Integration

We integrate up to some momentum-squared cutoff κ2 in Euclidean space. The subtrac-

tion of the integrals helps with the convergence of the expressions, we always test that the

results are insensitive to the cutoff. We first split the integration into two regions, [0, ǫ2]

and [ǫ2, κ2]. Usually we will choose something in the region of ǫ2 = 10−8 and κ2 = 104.

The small momentum region we perform the angular integration numerically, nested inside

the momentum integration, and perform the momentum integration on a linear scale. All

integrations are performed using a standard one-dimensional Gauss-Legendre quadrature

method [132]. The region [ǫ2, κ2] is treated similarly except the scale is logarithmically

stretched such that we make the replacement,

∫ κ2

ǫ2
dℓ2F(p2, ℓ2)→

∫ log κ2

log ǫ2
du uF(p2, eu) (C.10)

where u = log ℓ2. The integration method we use works well for smooth functions however,

due to the angular integrations, the momentum integration is kinked at ℓ2 = p2/4.d0 due

to the propagators. We choose to split the integration at this point so that we have

two smooth integrals, which is numerically more efficient. Typical requirements for the

number of integration points are 30 for the angular integrals which are nested inside the

momentum integrals, and 5 points for the [0, ǫ2] region and 30 for [ǫ2, κ2] region. These

numbers can be increased or reduced depending on the specific problem.
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C.2. Numerical Representations

The functions Gl(p2) and Gh(p2) are fortunately only functions of a single variable, for

which there are many simple ways of representing them. It is important to have a smooth

representation for all momenta, we choose to split the function at two points and represent

the function differently in the three regions defined similarly to the integrations, [0, ǫ2],

[ǫ2, κ2] and [κ2,∞]. In the IR region [0, ǫ2], the function is represented by a power law

∼ A(p2)a where a = 0 is a valid choice. In the intermediate region [ǫ2, κ2] the functions

are represented using Chebychev polynomials that are logarithmically mapped onto the

momentum region, [−1, 1] → [log ǫ2, log κ2] [133, 134]. Chebychev polynomials form an

orthogonal set that can be defined via,

Tj(s) = cos (j arccos(s)) (C.11)

A truncated Chebychev expansion gives a smooth interpolation and is exact at the zeroes

of the n+1 polynomial if we truncate the series at n. The Chebychev expansion is given

as,

f(s) =

∞
∑

i=0

ciTi(s) (C.12)

where f(s) is defined on the region [−1, 1], ci are the coefficients and Ti are the Chebychev

polynomials, the mapping we use is,

s(p2) =
1

2

2 log p2 − (log ǫ2 + log κ2)

log κ2 − log ǫ2
. (C.13)

The Chebychev representation is preferred over using some other procedure, for example

splines, due to the orthogonality of the representation, which allows,

∂f(s)

∂cj
=

∂

∂cj

∞
∑

i=0

ciTi(s) = Tj(s) (C.14)

this relation will be very useful when constructing our iterative procedure.

The Chebychevs are most accurate for a flat function (for which n = 1 is perfectly

adequate!), so it can help the convergence of the Chebychev series if we factorise some

of the functional dependence, ideally we want to eliminate any rapid variation. There

are two variants of this that have been applied here, both produce numerically consistent
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results with n ≃ 30,

Gl(p2) =
(

p2

p2 + λ2a

)a n
∑

i=0

c
(Gl)
i Ti(s(p

2)) (C.15)

Gh(p2) =
(

p2

p2 + λ2b

)b n
∑

i=0

c
(Gh)
i Ti(s(p

2)) (C.16)

and also,

Gl(p2) = log

(

n
∑

i=0

c
(Gl)
i Ti(s(p

2))

)

(C.17)

Gh(p2) = log

(

n
∑

i=0

c
(Gh)
i Ti(s(p

2))

)

(C.18)

where a and b can be chosen as the require exponent for the required solution type and

the λ’s can be chosen around the region where the variation of the function is most rapid.

Although the integrations only run to ℓ2 = κ2, the propagator momenta ℓ2± sample values

greater than κ2 so some UV extrapolation is required. For this the most natural choice

is the 1-loop resummed running and this is smoothly matched at some point ν2, in the

region of κ2 using the following formulae [85],

Gl(p2) = Gl(ν2)
(

1 +
11Ncα(ν

2)

12π
log

(

p2

ν2

))γ

(C.19)

Gh(p2) = Gh(ν2)
(

1 +
11Ncα(ν

2)

12π
log

(

p2

ν2

))δ

(C.20)

where δ = −9/44 and γ = −1− 2δ are found from the 1-loop integrations.

C.3. Subleading components in the UV

Depending on where the functions are matched to their perturbative running, an am-

biguity can be introduced that gives an additional dependence on the matching point.

Typical choices for the matching point are the UV cutoff or the renormalisation point.

The renormalisation point is perhaps the best choice if the running is a little off since the

log p2/µ2 term in the running is automatically zero. If the cutoff is used and the running
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is a little off, then working down from the cutoff Λ2
cut to the renormalisation point µ2, can

result in different solutions since the intermediate behaviours differ.

An illustration of this is given in figure C.1 which is the case for solution Set 1 using

the Gh/Gl vertex, given by eq. (4.77) that approximates the WSTI solution. There are

several ways to match to the one loop results, the numerical procedure benefits from

having completely smooth functions so matching the derivative over a small region can

also be beneficial. If the one-loop running is reproduced exactly then this is of course not

a problem. This can be particularly important when solutions are not allowed for specific

regions of parameter space because different choices may lead to different solutions being

obtainable. An ambition for future studies will be to find solutions that simulaneously

satisfy the WSTI and correctly reproduce the leading resummed perturbative results.

Figure C.1.: The gluon running in the UV matched at 1000 GeV2 for the Set 1 solutions
showing the one-loop behaviour (red, dashed), and the numerical SDE solution
(black, solid).
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C.4. Iterative Procedure

Several iterative procedures work when solving these equations. The most comprehensive

used here is using a Newton-Raphson technique, but natural iterative procedures work

also in some cases and can also be more efficient computationally.

C.4.1. Natural Iterative Procedure

The natural iterative procedure has no guarantee of convergence whether a solution exists

or not, or whether the initial function is close or far from any given solution. It is however,

rather fast to compute subsequent steps and for independent equations (as opposed to

coupled equations), it actually works here reasonably well. The iterative procedure would

be defined via, eg for the truncated gluon,

Gli+1(p
2) = Gli(µ2) + Π

(sub)
2c,i (p2, µ2) + Π

(sub)
2g,i (p2, µ2) (C.21)

where on the right we substitute the current guess Gli where it is required. An obvious

alternative may be used that can sometimes stabilise an oscillatory iterative procedure,

Gli+1(p
2) =

1

2

(

Gli(p2) +
[

Gli(µ2) + Π
(sub)
2c,i (p2, µ2) + Π

(sub)
2g,i (p2, µ2)

])

. (C.22)

The iterative procedure may be applied to each equation in turn in a coupled problem,

provided that this coupling is not too strong between the equations and the initial guess

is reasonably good. For equations that are strongly coupled, numerically sensitive or we

have no idea about what solutions there may be, then we have no choice but to resort to

a more advanced procedure such as a Newton-Raphson method.

C.4.2. Newton-Raphson Iterative Procedure

The method we apply here considers a function represented by a truncated Chebychev

expansion to order n, tabulated at the zeroes of the n+1 Chebychev polynomial, xi.
1 In

order to derive this, we arrange our equations such that,

Fi(p2, ci) = Gli(p2, ci)−1 − Gli(µ2, ci)
−1 +Πi(p

2, ci)− Πi(µ
2, ci) (C.23)

1For more general discussions of the same procedure see [132, 133].
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where ci = (c0,i, ..., cn,i) is the vector of the Chebychev coefficients for the ith iteration.

For a good initial guess then Fi ≃ 0, and for convergence we require Fi = 0, we can

Taylor expand to find the required correction,

Fi+1(p
2, ci + δci) = Fi(p2, ci) +

n
∑

j=0

∂Fi(p2, ci)
∂cj,i

δcj,i +O(δcj,i)2 = 0, (C.24)

where i denotes the relative iteration number, j is the Chebychev polynomial degree,

δci = (δc0,i, ..., δcn,i), and the higher order terms are neglected. The iterative procedure is

then defined via ci+1 = ci+ δci which requires us to find the quantity δcj,i. The functions

are numerically tabulated at the zeroes of the n+ 1 polynomial (via the mapping) which

we donte p2k,

Fi(p2k, ci) = −
n
∑

j=0

∂Fi(p2k, ci)
∂cj,i

δcj,i (C.25)

we then identify this as a matrix diagonalisation problem where we have,























Fi(p20, ci)
...

Fi(p2k, ci)
...

Fi(p2n, ci)























= −























∂Fi(p20,ci)
∂c0,i

...
∂Fi(p20,ci)
∂cj,i

...
∂Fi(p20,ci)
∂cn,i

...
. . .

...
...

∂Fi(p2k,ci)
∂c0,i

...
∂Fi(p2k,ci)
∂cj,i

...
∂Fi(p2k,ci)
∂cn,i

...
...

. . .
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∂Fi(p2n,ci)
∂c0,i

...
∂Fi(p2n,ci)

∂cj,i
...

∂Fi(p2n,ci)
∂cn,i













































δc0,i
...

δcj,i
...

δcn,i























(C.26)

all that is required then is to invert this relation which is a simple numerical problem for

which we can use various techniques, for example LU decomposition [132]. Any sufficiently

precise procedure may be used since the diagonalisation takes several orders of magnitude

less time than the calculation of the matrix elements.

In order to derive this quantity we make repeated use of eq. (C.14). Calculation of

the matrix ∂Fi(p2k, ci)/∂cj,i is time consuming, particularly for more complicated vertex

dressings since they involve repeated calls to the interpolation and extrapolation routines

for the dressing functions.

This method naturally generalises to coupled equations and this is where its real usefulness

lies since it takes into account correlations in the derivatives of the Chebychev coefficients
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between the equations, we can simply expand the matrix and vectors in the following way,





F (1)

F (2)



 = −







∂F(1)

∂c
(1)
j

∂F(1)

∂c
(2)
j

∂F(2)

∂c
(1)
j

∂F(2)

∂c
(2)
j











δc
(1)
j

δc
(2)
j



 (C.27)

where the two coupled equations F (1) and F (2) are solved simulaneously by diagonalisation

of the matrix in eq. (C.27). This method may be generalised to several coupled equations,

however the additional time spent computing the off-diagonal elements increases such that

this method can become too costly [133].
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