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Abstract

This thesis investigates an area of beyond the Standard Model (BSM) phenomenology

associated with the presence of additional light, “weakly interacting slim particles” (WISPs).

Particular attention is given to the hidden photon, the gauge boson associated with an

additional U(1) gauge group that mixes kinetically with hypercharge.

The theoretical foundation of the interactions studied lies in effective field theory, and the

first part of the thesis investigates a so-far untested aspect of effective theories, namely

effective non-locality in particle propagation.

There are no observable effects of hidden photons if they are massless. We investigate the

impact on experimental signatures in the case that the hidden photon gets its mass during

compactification from a higher dimensional theory.

WISPs make good dark matter candidates, and are especially compelling in light of the lack of

observation of heavy WIMP (“weakly interacting massive particle”) dark matter. Nonetheless,

it is shown that if WIMP dark matter is composed of a Dirac fermion that couples to the SM

only through a pseudoscalar, indirect detection may be our only experimental window, and

that it may already be appearing as a gamma ray excess at the Galactic Centre.

There is considerable interest in dark matter searches at beam dump facilities, in particular

for light dark matter coupled through a similarly light mediator particle. We investigate this

set up in the context of the E613 beam dump experiment. Owing to the light mediator, the

low-Q2 kinematic region of deep inelastic scattering is especially important. We present a

new treatment of dark particle scattering in this region via a light vector mediator (such as a

hidden photon), and find that it enhances constraints.

The original research constituting this thesis has been previously presented in [1–4].
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1Introduction

„There’s no initiation either into such mysteries. He

has to live in the midst of the incomprehensible . . .

— Marlow

1.1 Motivation

The high energy frontier of particle physics has expanded enormously in the last few years

with the Run 1 LHC results. A new scalar boson has been discovered and looks alarmingly

like a “vanilla” Standard Model Higgs boson [5–7]. The guiding symmetry principles by

which the SM is constructed look as strong as ever and there is seemingly a complete lack of

any Beyond the Standard Model (BSM) physics at 8 TeV.

It is nonetheless clear that neither experimental nor theoretical efforts have yet unearthed

the full story. A handful of the problems that the Standard Model does not address are

catalogued below.

• Gravity: While potential UV completions of the Standard Model are numerous, there
is no theoretical consensus on the behaviour of gravity at Planck energies. This sits
uncomfortably with the description of all other observed fundamental forces as gauged
quantum field theories theories.

• The hierarchy problem: The difference between the Planck scale at which the
strength of gravity becomes comparable to that of the other known fundamental
forces, and the electroweak scale physics we commonly observe is extremely large,
spanning more than ∼ 16 orders of magnitude. An unnaturally precise cancellation
of high scale physics would be required in order that a scalar boson coupling to the
Standard model fermions could acquire a vacuum expectation value at the weak scale,
and yet this is what we observe.

• Dark energy: Approximately ∼ 68% of the observed total energy density is not
accounted for by matter [8]. A massive, unknown source of energy is required to
power the observed expansion of the Universe.
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• Dark matter: Galactic rotation curves, structure formation, observations of the Bullet
cluster, baryon acoustic oscillations and numerous other phenomena all point to
the fact that the remaining ∼ 32% of the energy density is composed of roughly 6
times more matter than we observe in baryonic matter [8], and that furthermore, the
additional matter cannot be baryonic.

• Neutrino masses: Neutrino masses, bounded to be non-zero by observation of flavour
oscillations, are not accounted for in the Standard Model. The essential nature of
neutrinos is not known – they could be either Majorana or Dirac fermions – but it is
quite possible that their masses originate with BSM physics.

• The strong CP problem: The Lagrangian describing QCD permits a CP violating
term L��CP ∝ θ GµνG̃µν , yet no CP violation is observed in the strong sector. One
attempt to explain the unnatural smallness of θ is provided by the Peccei-Quinn
symmetry, which gives rise to QCD axions. Further discussion of this is given below.

• The muon anomalous magnetic moment: The anomalous magnetic moment of the
muon, aµ, is truly anomalous, disagreeing with the SM predicted value by ∼ 3σ [9].
It is possible to explain this with the introduction of a new boson, such as the hidden
photon we discuss.

Owing to the remarkable precision with which the SM accounts for observations of nature, it

seems worthwhile to attempt to explain the above phenomena using the same principles

and construct new theories (to say, particles and forces) in the language of gauge theory.

Naturally doing so means there must be some interaction between any new theory and

the existing SM: it is a pillar of theoretical particle physics that the Lagrangian density1

describing a theory ought to include all gauge and Lorentz invariant terms – including any

that mix old physics and new. Indeed if we are to solve any of the outstanding issues in

physics, we had better ensure that our new theory interacts with existing physics – if not, it

cannot be affecting the results of observations. Whether or not this interaction is observable

is determined by nature, though one may be pragmatic and focus on those theories that

have some hope of observation2. The raison d’être of beyond the Standard Model physics

then is to provide an explanation, in terms of fundamental particles, of results for which the

SM does not account, without perturbing the phenomenology of the SM sufficiently to be in

conflict with other experimental results.

1Henceforth, we conform to the general convention of referring to the Lagrangian density simply as
the Lagrangian.

2For example, it is possible that dark matter interacts with baryonic matter only gravitationally, in
which case the prospect of an experimental discovery vanishes. Of course this does not mean that
one should not search for non-gravitational interactions of dark matter experimentally.
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While all the listed phenomena, and others, have engendered interesting physics, probably

the problem that has attracted the most attention is dark matter, to which we turn now. First

we present some preliminaries, followed by a general outline of the searches for dark matter,

which are related by a complementarity exhibited by 4-particle scattering processes. The

dominant paradigm in particle dark matter has long been that of the weakly interacting

massive particle (WIMP) – we present some theory relating to this paradigm and motivate the

introduction of an alternative: WISPs, or weakly interacting slim particles. After introducing

WISPs and the surrounding theory, we turn to the experimental hunt for this kind of particle,

in particular focusing on models with a hidden photon, which is central to some of the work

in this thesis.

1.2 Dark matter

Substantial evidence has accrued that the baryonic matter in the Universe cannot be a full

account of the total energy density. Based on observations of the gravitational interactions

of nearby galaxies, and accepting that gravity persists unmodified at galactic scales, approxi-

mately five times the baryonic energy density must be added from an additional, unknown,

source to reconcile theory and observation. No such source is visible to astrophysics (except

through gravity) and SM neutrinos are thoroughly ruled out as the principal component (or

even a large one) of the missing energy density, being far too relativistic to allow structure

formation. A promising direction is to consider the missing component to be some sort of

non-luminous dark matter, which interacts only weakly with the SM.

1.2.1 Preliminaries

While in general very little is known about dark matter, there are some particular properties

to which it must conform (within the generally established framework of ΛCDM cosmology).

Let us briefly consider the role of dark matter in the thermal history of the Universe.

The early Universe may be usefully described in the language of thermodynamics and we

may write a Boltzmann equation for the number density of a single simple WIMP species,

dn

dt
= −3Hn− 〈σv〉ann.(n2 − n2

eq.). (1.1)
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The Hubble parameter, H = ȧ/a, measures the expansion rate of the Universe, and a is

the scale factor describing the relative size of the Universe (ranging from 0 at the Big

Bang to 1 in the present day). It is defined by the Friedmann-Robertson-Walker (FRW)

metric for a homogeneous and isotropic Universe, which, schematically, has line element

ds2 = dt2 − a2(t)d~x2. The expression 〈σv〉ann. indicates the cross-section multiplied by the

the Møller velocity (i.e. relative velocity between annihilating particles3) and thermally

averaged over a Maxwellian distribution, where σ is the effective annihilation cross-section

for two DM particles to two SM particles. n is the present time number density of DM

particles, and neq. the equilibrium number density (neq. = g(mT/2π)3/2 exp(−m/T ) for

a non-relativistic Maxwell-Boltzmann distribution). Then the first term on the r.h.s. of

Eq. (1.1) encodes the dilution of the dark matter number density due to the expansion of

the Universe, and the second term the effect of dark matter annihilating into SM particles.

With the aim of calculating properties of the present day Universe, one important quantity is

the interaction rate per particle,

Γ = nσv. (1.2)

We can compare this to the Boltzmann equation above and see that while the expansion rate

of the Universe is approximately equal the interaction rate of a particle species, H ∼ Γ, the

particles are in thermal equilibrium with the Universe. When H becomes substantially larger

than Γ, particle freeze-out occurs, corresponding to the particles no longer being likely to

interact due to their rapidly increasing spatial separation.

Observation informs us that the Universe is, to a very good approximation, flat. A very

important constraint on dark matter arises from this, as it must decouple to leave a sufficient

density that Universe is not convex, but must also not be over dense, which would result in

a concave Universe. The density parameter Ω is defined,

Ω ≡ ρ

ρcrit.
= 8πG

3H2 ρ, (1.3)

where ρ is the density, ρcrit. is the critical density for a flat (Euclidean) Universe, and the

r.h.s of the equation arises from Einstein’s field equations for a FRW metric (G is Newton’s

gravitational constant). Note that the density parameter given above accounts for all matter,

baryonic and dark, in the Universe (as well as the dark energy that is powering expansion),

but may be considered component-wise by the insertion of the appropriate density ρ.

3v = vMøl is defined as vMøl =
√

(~v1−~v2)2−(~v1×~v2)2
1−~v1·~v2

, such that the annihilation rate per unit velocity
and time dN

dtdV
= σvn1n2 is frame independent.
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The density parameter is often quoted multiplied by the Hubble parameter squared, Ωh2

(h = (H0/100) km s−1 Mpc−1, where H0 is the present time Hubble parameter). Then

Ωh2 ∼ 0.45 is the density parameter of a flat Universe. Formally one must solve the

Boltzmann equation to find an expression for the relic density of dark matter. However,

accounting for the measured energy density, a useful approximation exists for a thermal

WIMP [10],

ΩDMh
2 = mDMnDM

ρcrit.
' 3× 10−27cm3 s−1

〈σv〉ann.
. (1.4)

where ρcrit. ' 10−5 h2 GeV cm−3 and mDM and nDM are the WIMP mass and number density

respectively. Note though that the above result is subject to several assumptions. For example,

it requires modification if there are any species in the early Universe that interact with the

WIMP and are also approximately degenerate in mass with it, due to the resonant effect of

co-annihilations [11].

With the above considerations in mind, we may make a few generic statements about dark

matter that we expect to hold true relatively model independently.

• It must interact sufficiently weakly with the SM to have thus far escaped all but
gravitational detection (modulo some potential astrophysical “hints” discussed later).
The best current limits on WIMPs from direct detection experiments are shown in
Figs. 1.2 and 1.3.

• To allow structure formation, the dominant component of dark matter must be cold
(non-relativistic). In our galaxy, this has an average local velocity in the region of
v̄ ∼ 200− 300 km/s relative to Earth, subject to a significant uncertainty [12, 13].

• The particle comprising dark matter must be stable w.r.t SM decays on cosmological
time scales, having a lifetime τDM & O(1017s).

• The local density of dark matter, at the Sun’s location in the Galaxy, is ρ� ∼
0.4 GeV/cm3 [14, 15].

• The relic density of cold dark matter is Ωh2 ∼ 0.12, approximately 27% of the total
energy density of the Universe [8].

As mentioned above, a popular paradigm in constructing models of Cold Dark Matter (CDM)

is that of the Weakly Interacting Massive Particle (WIMP). It turns out that for a single

species of thermally produced particles with a mass in the 10s to 1000s of GeV range and a

weak scale cross section, the relic abundance matches that experimentally observed with

very little to no fine tuning. In order to do so, the thermally averaged cross section for pair

annihilation into SM particles must fall in the region of 〈σv〉ann. ∼ 3× 10−26cm3s−1, based

on the estimate in Eq. (1.4).
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 ̄ SM

SM

Annihilation

Pair production

Elastic
scattering

Fig. 1.1.: Schematic 2→ 2 processes, where ψ and ψ̄ represent some dark matter field and
its conjugate (it may be self-conjugate, ψ = ψ̄).

We’ll now turn to experimental and theoretical approaches to dark matter.

1.2.2 Experimental approaches

Based on the known interactions of the SM and the requirements for gauge and Lorentz

invariance of the Lagrangian, it is not unreasonable to expect particle dark matter (hence

simply “dark matter”) to scatter in a 2 → 2 process featuring two SM particles and two

dark particles. In such a scattering process there arises a natural complementarity between

search techniques, paralleling a crossing symmetry in the process itself. Fig. 1.1 shows a

sketch of the scattering process, which may proceed along three directions, corresponding to

SM-dark matter scattering, DM-DM annihilation into SM and pair production of DM particles

via SM-SM annihilation. The blob in the sketch represents some interaction which could,

for example, be a 4-point effective vertex resulting from the presence of a heavy mediator

particle. These three processes are vital to the experimental search for dark matter, each

corresponding to one of the three canonical search techniques: direct detection (scattering),

indirect detection (annihilation) and collider studies (pair production). We’ll discuss the

salient features of each in turn here.
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Direct detection: DM + SM→ DM + SM

From observations of galactic dynamics, we know that dark matter is clustered around the

Milky Way in a roughly spherical distribution [16]. The Earth’s rotation around the Sun must

then necessarily create some relative motion between the dark matter and the Earth, and

we may search for an annual modulation in the signal of a suitable detection experiment.

While there is some uncertainty in the absolute velocity distribution of galactic dark matter

relative to Earth, this uncertainty is much reduced in the annual modulation signal, since

the unknown velocities cancel over the course of one Solar orbit [17].

Several experiments are underway to search for this phenomenon, and there exists a

pronounced tension between their reported results and those looking directly for WIMP

interactions. The most stringent constraints on the interactions of potential WIMPs (currently

from the LUX collaboration [18], which is directly searching for dark matter interactions

via nuclear recoil) rule out the claimed annual modulation from the CoGeNT [19] and

DAMA [20] collaborations. The CDMS experiment finds no sign of an annual modula-

tion [21], but does report three WIMP candidate events with an expected background of

only 0.41+0.20
−0.08(stat.)+0.28

−0.24(syst.) events, resulting in the preferred region shown in Fig. 1.2.

CRESST also detected candidate events, resulting in the corresponding preferred region [22].

There have been numerous attempts to resolve the conflict, and there exist proposals for

several non-exotic (SM) explanations of the apparent annual modulation [23, 24]4.

The current generation of direct detection experiments operate on the basis of nuclear

recoil, which limits their region of sensitivity to masses of a GeV and above (though this

can be extended to lighter masses, O(few MeV) by looking for ionisation [29]). In the

xenon-based detectors presently providing the most sensitive probes for spin independent

interactions, a DM particle striking a nucleus with sufficient energy in an elastic collision

causes both scintillation and ionization. The time delay in detection (with photomultiplier

tubes) between the photons created by the initial scintillation (the “S1” signal) and the later

scintillation of the ions (“S2”), which are accelerated, allows for positional and directional

determination of the initial DM interaction.

The constraints on the DM-nucleon interaction cross-section resulting from this method have

the advantage of being relatively model agnostic. Typically, the interaction is described by

an effective theory that integrates out the particle mediating the WIMP-nucleon interaction.

4All of which are refuted by the DAMA collaboration [25–28].
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Due to the very low energy of the collisions (WIMPs in the halo are non-relativistic, and

recoil energies are on the order of 10s of keV), and correspondingly low 4-momentum

exchange, the mass of the mediator need not be too high in order that it is not resolved:

even O (& GeV) is safe.

The cross-section for WIMP scattering depends strongly on whether the interaction is spin

dependent or not. In the case that it is, for example for interactions mediated by pseudoscalar

exchange, the cross-section is suppressed by the non-relativistic velocity of the WIMPs, and

the constraints from direct detection experiments are weakened by a factor of v2 ∼ 10−6

(c = 1) relative to the spin independent case. We explore the difference between spin

dependent and spin independent scattering further in Chapter 4.
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Fig. 1.2.: Exclusion limits on spin independent scattering of WIMPs with nucleons. Isospin
symmetry between protons and neutrons is assumed. Combination given in [30],
showing the constraints of [22, 31–41] with the more recent LUX [18] and
SuperCDMS constraints [42] added.

Indirect detection: DM + DM→ SM + SM

Should the WIMP interact with the Standard Model through any means that is not gravi-

tational, there are numerous astrophysical environments that make for promising hunting

grounds. In particular, the galactic potential well, strongest in the centre, can act as an

amplifier for dark matter annihilations (the rate grows with the square of the density,

Γann. ∝ ρ2
DM/m

2
DM), the products of which can be searched for in terrestrial and space based
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Fig. 1.3.: Exclusion limits on spin dependent WIMP scattering with a proton [34, 35,
43–46]. The results of IceCube are model dependent, representing limits on
annihilation to the indicated particle pairs. The neutron limits are similar [30],
though XENON100 is strongest, and IceCube present no constraint.

gamma- ray telescopes, positron and anti-proton telescopes and neutrino telescopes [16].

The annihilation products of dark matter are model dependent, but commonly result in a

continuous photon spectrum from secondary decays/annihilations and synchrotron radiation

from the propagation of charged annihilation products.

If the dark matter annihilates through an on-shell mediator, this would give rise to a

distinctive peak in the photon spectrum. A strong line with no astrophysical explanation

would be a smoking gun signal of dark matter annihilating into photons. Otherwise, one

may expect some particle abundances to be enhanced in high density regions of the galaxy,

corresponding to the product of dark matter annihilations.

There are several such astrophysical “hints” of dark matter, including a ∼ 3.5 keV line in the

x-ray spectrum of some galaxy clusters [47], an excess of 511 keV gamma rays originating in

the galactic central bulge [48], an overall gamma ray excess from the galactic centre [49], a

∼ 130 GeV line from the galactic centre [50] and an anomalously high positron abundance

in cosmic radiation [51]. The soft x-ray spectrum of the Earth was recently reported to show

seasonal variation, consistent with the conversion of meV mass Solar axions [52].
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Further details of indirect detection – in particular regarding the observation of a galactic

centre excess [49] by the Fermi satellite’s Large Area Telescope – will be discussed in

Chapter 4.

Collider: SM + SM→ DM + DM

The LHC has pushed the frontier of understanding to a new mass scale, and will do so again

in coming years. While the LHC is not responsible for the highest energy interactions ever

observed (that title is held by cosmic rays), it is the highest luminosity controlled source of

TeV scale collisions by a very large margin. When searching for dark matter at or below TeV

masses, one could expect that there may be signatures at the LHC.

The standard LHC search for dark matter particles (at least, WIMPs) has long been the

monojet [53–55], whereby a single jet appears in the detector with no corresponding particle

detection to balance transverse momentum, through interactions of the type pp→ χ̄χ+ jet.

Example Feynman diagrams for the process are shown in Fig. 1.4. Another promising channel

for dark matter searches is a single photon plus missing transverse energy, or monophoton

events [56, 57]. The two searches share a common operating principle. BSM particles must

be weakly interacting in order to have evaded detection, so once produced, they are unlikely

to interact again inside the detector, unless they decay near instantly to SM particles. This

signal has a neutrino background, a feature common to dark matter searches, since the

neutrino is also extremely weakly interacting and can bypass shielding designed to isolate

detectors from SM particles. The ATLAS and CMS detectors are both multipurpose, and

other searches for exotic phenomena will be made reference to throughout this thesis.

For some models of dark matter, LHC searches are competitive with, or exceed, the exclusion

limits of direct detection experiments. However, they are reliant upon an effective 4-point

interaction which is not valid in all regimes, and fails in particular if the particle mediating

the interaction of the DM and SM particles is light. We return to this point below.

Complementary to the LHC, there are also a host of experiments employing a single particle

beam (p or e−) incident upon fixed targets, whose results may be adapted to place constraints

on the interactions of dark particles [58–63]. The centre of mass energy of fixed target

experiments scales as ECoM =
√

2Ebeammp (wheremp ∼ 1GeV is the proton mass), meaning

that even with a high energy beam, such facilities will never compete with the CoM energy
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Fig. 1.4.: Simple monojet processes of the type that could contribute to an LHC signal. The
DM particles (which here interact with quarks through a vector mediator) do not
interact with the detector and contribute to a missing transverse energy signal,
whereas the radiated gluon and final state quark form QCD jets.

attainable at the LHC, which scales linearly with the beam energies. The great advantage of

fixed target facilities is in the large luminosity and well controlled backgrounds. The latter

may be achieved due to the large spatial separation of the target and detector, allowing, for

example, magnetic shielding to filter charged particles out of the beam. This makes them

uniquely suited to neutrino production, but also production of any other stable, neutral

particles with the appropriate couplings. In Chapter 5, we will extend the reach of the

Fermilab E613 proton beam dump experiment by a detailed treatment of dark particle

scattering, particularly considering QCD effects at low momentum transfer.

1.2.3 Theoretical approaches

Recent searches for dark matter, in particular at the LHC, have employed effective field

theories for a hypothesized 2→ 2 interaction [64], as schematically shown in Fig. 1.1. These

methods rely upon the assumption that the mediating particle – for example a new vector

boson associated with a hidden U(1) gauge group – is heavy, i.e. its mass is sufficiently

above the interaction energy (where sufficient is determined in part by how accurate we

demand the predictions of the effective theory to be).

The canonical example of an effective field theory, Fermi’s theory of weak interactions,

includes a four-fermion vertex, where we now know a W boson mediates the interaction.

The effective Lagrangian for charged current neutrino scattering is,

LCC = 2
√

2GF
(¯̀γµPLν

)
(ūγµPLd) + h.c. (1.5)

PL is the left projection operator, PL = (1 − γ5)/2, reflecting the chiral nature of weak

interactions. When the full theory is resolved, we realise that the coupling, GF , the Fermi

constant, is inversely proportional to the W boson mass squared, GF = g2

25/2
1

m2
W

, where g
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is the weak coupling constant. The effective coupling constant GF actually encodes the

effect of the W boson propagator in the limit of small momentum compared to the W boson

mass.

Our modern understanding of the SM as itself an effective theory suggests that it is possible

that even this is not a complete description of the same scattering process, but the effects of

additional dynamics are simply too small to notice at currently accessible energy scales.

While there are undeniably some desirable features in this framework, in particular the easy

classification of all combinations of vector, scalar, axial-vector, etc. dark matter particles and

interactions, the utility of such models is contingent upon the interaction originating at a

sufficiently high scale.

Schematically, the Lagrangian term for an effective 4-point interaction between Dirac

fermions ψ and χ looks like,

L ⊃ g2

Λ2 ψ̄Γ1ψχ̄Γ2χ, (1.6)

where Λ is the scale associated with new physics. The Γ encode the nature of the interaction

between the Dirac field bilinears i.e. the properties of the mediator particle that has been

integrated out in the effective Lagrangian:

Γ{1,2} =





1 scalar

iγ5 pseudoscalar

γµ vector

γµγ5 axial vector

σµν tensor

(1.7)

and it is implicit that the Lorentz indices are contracted across the two field bilinears in the

Lagrangian. Mixed axial and non-axial interactions, for example ψγµψ̄χγµγ5χ̄, where Γ1 is

vector-like and Γ2 is axial in nature are permitted, though such interactions would violate

CP symmetry. In [64], 24 possible operators coupling Dirac fermions and real and complex

scalars to SM quarks and gluons are enumerated, and have since been adopted by both

CMS [65] and ATLAS [66] in their respective presentations of dark matter search results.

While the advantage of a unified framework and notation is clear, there are limitations to

this approach [67], not least of which is that it does not encompass the scenario in which

mediator masses are lighter than TeV scale. There are several motivations to consider an

alternative framework.
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As illustrated above with the example of the weak force, 4-point interactions of the sort

described by Eq. (1.6) originate from the elimination of a mediator particle from a theory.

In order that the effective theory is valid at LHC energies, the scale Λ suppressing the

interaction must be sufficiently large compared to the momentum exchange that the latter

may be ignored in the propagator for the removed mediating particle. The suppression by a

potentially very high scale Λ lowers the cross section for processes involving the operator,

but it is possible that this is compensated by a high value of the coupling constant. Owing

to the large momentum exchange interactions at the LHC, one can find that even for the

maximum allowed perturbative coupling (g ∼
√

4π for an expansion in α), the suppression

scale must be so large that the resulting cross sections are too small to result in a sufficient

event rate. Additionally, in the case that the mediator is light, such effective operators may

actually underestimate the cross section by not accounting for resonant production of dark

particles via on-shell mediators.

That dark matter can be detected at the LHC at all is not a requirement nature imposes.

However, in the case of thermal WIMPs, if the mediator is heavy and the coupling is not

too large the dark matter may not annihilate efficiently enough, overclosing the Universe

(i.e. resulting in a much higher than observed relic density), so there is reason to hope that

the LHC may yet discover a candidate. However, as discussed in Chapter 4, there are viable

models of even light particle dark matter that could be accessible to us only through their

astrophysical signs at present. Fortunately, we will see below that the WIMP paradigm is not

the only candidate.

The alternative approach: simple models

The great advantage of the effective theories, in the region where they are valid, is that they

are relatively model independent (modulo the assumptions necessary to allow the use of

effective theories). If one introduces lighter mediators, the interaction may be resolved, and

one must specify the theory in greater detail5.

Interest in simple models has recently been revived in light of the above criticisms of

applying a purely effective operator approach [68–70]. One complication of resolving a more

fundamental theory, i.e. replacing the 4-point interaction with space-time-separated 3-point

5Note that the result is likely still to be an effective field theory, but the scale at which the effective
theory is not valid has been raised. It is the modern view that any field theory, at least below the
Planck scale, may be considered fundamental only in so far as its short distance interactions have
not been probed
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interactions connected by an intermediate state, is the introduction of new parameters. In

the effective view, the unknown couplings and mass scale by which an operator is suppressed

may be combined into a single Wilson coefficient. This is not the case if the interaction is

resolved (though couplings may still be combined multiplicatively if the mediator width

is unimportant), but it is nonetheless possible to characterise some interaction types with

relatively few parameters.

The Lagrangians specified in [68] give simple models of vector and axial vector mediated

scattering of dark Dirac fermions,

Lvector ⊃ gDMVµχ̄γ
µχ+

∑

q

gqVµq̄γ
µq

Laxial ⊃ gDMṼµχ̄γ
µγ5χ+

∑

q

gqṼµq̄γ
µγ5q, (1.8)

where the vector Vµ, axial vector Ṽµ and dark fermion χ have standard mass terms and

the sum runs over all SM quark species. We see that either model depends on only a

few parameters: (i) the mass mDM of the dark matter particle, (ii) the mass mmed of the

mediating particle, (iii) the coupling gDM of the dark particle to the vector mediator and (iv)

the coupling gq of the mediator particle to the SM quarks. If we assume a flavour universal

mediator-quark coupling, the parameters number only four. One could in principle allow

for an arbitrary coupling to each quark flavour, increasing the number of free parameters.

Often though, there will be some inherent structure to the coupling scheme; for example,

with a scalar or pseudoscalar mediator instead of vectors, one may take inspiration from

the Standard Model and couple to quarks with a Yukawa hierarchy. Then, though each

quark has a different coupling, the number of model parameters remains low. In the limit

that mmed is large, these models in any case reproduce the same phenomenology as the

corresponding effective 4-point vertex (though in the case of the Lagrangians above no

CP -violating interactions are present, and as such they do not represent the full complement

of the 4-point interactions of [64]).

There is no reason to expect that nature in reality conforms to a simple structure. Indeed,

it may be a little naïve, given the rich structure of the SM, to hope that dark matter or

other BSM phenomena can be explained with the introduction of a single, arbitrary, new

particle species or two. Nonetheless, the hope is that by studying such models, we can learn

something of the full structure, if it extends beyond our first guess. This has the advantage
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Fig. 1.5.: Sketch of the communication of the hidden and visible sectors through a mediator
particle, or portal. In this instance the mediator is the hidden photon (which we
discuss below in Section 1.3.2), which interacts with dark matter in the hidden
sector, and communicates with the SM through a kinetic mixing operator with the
photon (here represented with a black dot).

of being computationally simpler, in part by not introducing a large spectrum of new states6.

The “WISPy” models presented below conform well to the principles of simple models.

1.3 WISPs

Given the rich structure of the Standard Model matter and gauge fields that account for

only approximately 5% of the observable energy density of the Universe, it does not seem

unreasonable that dark matter also has a nontrivial field content. Nonetheless, following a

“bottom up” approach and beginning with the phenomenology of BSM physics, we ought

to start with simple field configurations, and see what we can learn. The historical tactic

for discovery of new physics has been to probe ever higher masses. There is at least one

orthogonal direction to probe in the search - that of weak couplings. We will see that light,

weakly coupled hidden sectors of physics can provide solutions to BSM problems that are as

compelling as their heavier cousins. By hidden sector, it is meant that there exist distinct

sets of fields that are not charged under the Standard model SU(3)×SU(2)×U(1) gauge

group. Such models arise naturally in brane constructions, where distinct sectors of physics

may be located on branes that are spatially separated in higher dimensions. Constructing

models in such a way also provides the mechanism for achieving the requisite extremely

weak couplings [71–79]. In order that a hidden sector can interact with the SM fields at all,

6The clear allusion here is to the comparatively ‘complicated’ (meaning having many free parameters)
supersymmetry (SUSY) and its many variants and extensions. This is not to be derided for its
complexity, however, since the principal reason for introducing SUSY was not explaining dark
matter. There are a host of good motivations to extend the space time symmetry group, including
a solution to the hierarchy problem, unification of the SM coupling constants in the UV regime
and indeed providing a WIMP candidate in the lightest supersymmetric particle (LSP). Further
discussion of SUSY lies beyond the scope of this thesis.
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there must exist some mediating particles that interact with both sectors. Numerous possible

portals exist, for example [80],

• Vector7 ∼ χBµνXµν .

• Axial/pseudoscalar ∼ a
fa
Fµν F̃µν , ∂µafa ψ̄γ

µγ5ψ.

• Scalar ∼ (µS + λS2)H†H.

• Neutrino ∼ ynLHN .

This thesis will be concerned principally with the vector portal, though Chapter 4 investigates

the phenomenology of a pseudoscalar mediated interaction in the context of astrophysical

hints of dark matter. First though, let us review the case for light, weakly interacting particles,

by way of introducing the WISP “zoo”.

1.3.1 Axions

QCD provides a theoretically sound and phenomenologically successful framework for strong

interactions, but still hides several mysteries. The non-perturbative regime at small Bjorken-

x, for example, is poorly understood (something we revisit in the context of dark matter

scattering in Chapter 5). Strikingly, the CP -violating term in the QCD Lagrangian,

LQCD ⊃
θ

32πG
µνG̃µν (1.9)

where θ is in principal non-zero and Gµν is the gluon field strength tensor (with dual G̃µν),

appears to be vanishing, or at least unnaturally small. No CP -violating interactions have

been observed in the strong sector, so that the limit (from measurements of the neutron

electric dipole moment, which would be generated by CP -violating strong interactions)

on the magnitude of θ is that it is at least 10 orders of magnitude smaller than would be

expected naïvely.

One possible solution to the problem of an anomalously small θ is to introduce a new

symmetry: Peccei and Quinn introduced an approximate global U(1) symmetry [81, 82].

The symmetry (which is already anomalously broken by the QCD vacuum) is spontaneously

7Up until now we have used χ to represent a non-SM fermion. We avoid this notation here and in the
remainder of this thesis, to prevent confusion with the kinetic mixing parameter intended here.
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broken, and the resulting pseudo-Goldstone boson acquires a mass. The potential that this

generates sets the natural value of the CP violating term to zero, by a cancellation between

the θ term and the expectation value of the axion field (〈a〉 = faθ), which has a Lagrangian

term,

L��CP = a

fa
GµνG̃µν , (1.10)

suppressed by the mass scale fa at which the Peccei-Quinn symmetry was spontaneously

broken.

The axion also has a gauge invariant two photon interaction, which is key to many searches

for the (so far, completely) elusive particle. If one has a pseudoscalar with a two photon

coupling that does not solve the strong CP problem, it is often referred to as an axion-like-

particle (ALP), and is subject to many of the same constraints.

1.3.2 Hidden photons

We may attempt to reconcile the success of the Standard Model with the necessity of

additional physics by introducing new matter and forces in such a way that the essential

structure of the SM is not changed, but perhaps appended to. We’ll here give considerable

attention to the simplest possible addition, which underpins much of the present thesis.

Consider the extension of the SM gauge group to include an additional Abelian symmetry [71,

72, 74–78, 83–92], becoming SU(3)×SU(2)×U(1)×U(1)′, before electroweak symmetry

breaking. After symmetry breaking, so that the gauge bosons have mass, the electroweak

gauge part of the SM Lagrangian, with an additional U(1)′ gauge field is,

L =− 1
4B

µνBµν −
1
4X

µνXµν −
1
4W

a,µνW a
µν −

1
2χYB

µνXµν + 1
2m

2
XX

µXµ

+ 1
2
m2
W

g2 (gW 3,µ − g′Bµ)2 + 1
2m

2
W (W 1,µW 1

µ −W 2,µW 2
µ). (1.11)

Assuming no SM matter fields are charged directly under the U(1)′, the principal interaction

comes from the the kinetic mixing of the new gauge boson with hypercharge, with mixing

angle χY . Considering only the Abelian portion of the Lagrangian at energies sufficiently

below the electroweak scale that we can ignore the heavy electroweak gauge bosons, the

terms consistent with gauge and Lorentz invariance are:

L = −1
4F

µνFµν −
1
4X

µνXµν −
1
2χF

µνXµν + 1
2m

2
XX

µXν + jµAµ. (1.12)
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The j ·A term couples hypercharge to the electromagnetic current and the additional term

∝ m2
X is a mass for the gauge boson associated with the new field, Xµ (with field strength

tensorXµν = ∂µXν−∂νXµ). Such a mass term can arise from either a Higgs or Stueckelberg

mechanism – we return to the question of mass generation below and in Chapter 3, where

we will consider the impact of the U(1)′ being extra-dimensional, such that initially massless

hidden photons generate a massive Kaluza-Klein tower upon compactification. The direct

mixing with the photon described by Eq. (1.12) is valid so long as mX � mZ . For hidden

photon masses comparable to or larger than mZ , the additional mixing of the hidden photon

with the hypercharge component of the Z boson must also be included. The kinetic mixing

parameter in Eq. (1.12) relates to the kinetic mixing with hypercharge as χ = χY cos θW ,

corresponding to the factor cos θW relating the hypercharge and photon gauge fields8.

The kinetic mixing between the two gauge fields is the novel feature that generates interesting

phenomenology for hidden photon models, but let us try to remove it, and bring the

Lagrangian into a more familiar form. This may be accomplished with either of two field

redefinitions. Consider first redefining the hidden gauge field as such: Xµ → Xµ − χAµ.

Note that terms of order χ2 and above will be ignored – we are interested in small values

of χ, which justifies the approximation. In the case that the new gauge field is massless,

mX = 0, this decouples the two fields entirely - the SM phenomenology would not be

impacted at all. However, in the presence of a mass term, we find that the result of the shift

is simply to change basis, diagonalising the kinetic term and moving the mixing to the mass

terms,

L = −1
4F

µνFµν −
1
4X

µνXµν + 1
2m

2
X(Xµ − χAµ)2 + jµAµ. (1.13)

Instead of shifting the hidden field, we could have shifted the SM photon field as Aµ →

Aµ − χXµ. The resulting Lagrangian,

L = −1
4F

µνFµν −
1
4X

µνXµν + 1
2m

2
XX

µXµ + jµ(Aµ − χXµ), (1.14)

is diagonal in the kinetic terms, as before. Now, instead of creating a mixing in the mass

terms for Aµ and Xµ, there is a direct coupling between the SM electromagnetic current

and the new field Xµ.

8The mixing parameter χ (and the hypercharge equivalent) is in fact a mixing angle, and the prefactor
to the mixing terms sinχ. In practice, we are mostly (and entirely, throughout the present work),
interested in small values of χ, so the distinction makes no difference.
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It must be emphasised that the physical pictures corresponding to the two field redefinitions

above – that of photon-hidden photon oscillation and that of a direct coupling between the

electromagnetic current and the hidden photon – are completely equivalent. Which picture is

used depends only upon what is convenient when computing the impact on a given physical

phenomenon: all observables take the same value regardless of the picture used9.

We have derived a mass mixing, analogous to that of neutrinos, that allows the oscillation

of photons (after EWSB) into the new gauge boson, the so-called hidden photon. Having

done so by beginning with the Lagrangian (1.12), it is worth asking how we got a mixing

angle in the first place. The answer is that the Lagrangian represents an effective quantum

field theory, assumed to be valid only to a finite energy scale. The interaction that leads to

mixing between the gauge fields involves some heavy particles that cannot be accessed at

low energies, but whose existence facilitates the mixing interaction. Though the origin of

the interaction does not affect the low energy phenomenology of the theory, it is instructive

to see how such a mixing arises. We will consider the case of two Dirac fermions (though

A X

Fig. 1.6.: Loop diagram resulting in the mixing of the SM U(1) with a hidden U(1) gauge
group. In the presence of multiple high scale fermions, the contributions of all
fermions to the process must be accounted for.

this is not a unique choice) described by the Lagrangian,

L =
∑

n

(
iΨ̄nγ

µ∂µΨn −mnΨ̄nΨn − ignAµΨ̄nγµΨn − ig′nXµΨ̄nγµΨn

)
(1.15)

where the two species of fermion are indexed by n = 1, 2. The interaction leading to mixing

is a fermion loop (shown in Fig. 1.6), similar to the leading order diagram for the photon

self-energy (leading to charge renormalisation) in QED. To evaluate the diagram, thus χ,

one must integrate over the loop momentum. For a single fermion,

iM = (−1)
∫

d4k

(2π)4 (−igh)(−ig′h)tr
[
γµ

1
γ · k −mγν

1
γ · (p+ k)−m

]
. (1.16)

9In the course of this thesis, both pictures will be used and made reference to. In most cases, it will
not be explicitly stated which physical picture is envisaged, though it should be apparent from the
situation being considered.
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This integral is at least logarithmically UV divergent, even when dimensional regularisation

is applied. We can extract (after some work) the divergent part, and find,

χ ∝ ghg′h log mΛ . (1.17)

If we add the contribution of the second fermion, we find the problem is not alleviated unless

the diagrams enter with relative sign, so that the divergences are cancelled. One means

to accomplish this structure is presented in Appendix A, where U(1)×U(1)′ kinetic mixing

is derived from a spontaneously broken SU(2)×U(1)′ gauge theory. The charge structure

under (U(1),U(1)′) resulting from the spontaneous breaking of SU(2)→U(1), is Q = (1, 1)

for the first fermion and Q = (1,−1) for the second, so the diagrams add destructively, as

required. As such, we find the logarithmic divergence is tamed to logm1/m2, and mixing

can only result so long as the masses m1,m2 are non-degenerate.

It is important to note that the diagram in Fig. 1.6 is fundamentally divergent. The necessity

of two fermions generating the loop here is entirely manually inserted to make the diagram

calculable, which is not a restriction that nature imposes.

Beyond the considerations in some string constructions (e.g. [71, 72, 89]), there is little to a

priori specify the allowed values of any of the coulings gh, g′h or masses m1,2, so we find that

the kinetic mixing parameter can take practically any value.

It was noted earlier that in the absence of additional hidden matter charged under the U(1)′,

if the hidden photon is massless, it decouples from the SM, which can be seen by a simple

field shift. The following sections consider two means of generating a mass for the hidden

photon.

A hidden Higgs?

Taking inspiration from the Standard Model, the first mechanism for generating masses for

hidden photons we will consider is to invoke a hidden Higgs [93]. In the presence of a

suitable potential,

Vh = −µ2
h|ϕh|2 + λh|ϕh|4, (1.18)

the hidden Higgs field ϕh acquires a vacuum expectation value, 〈ϕh〉 = vh√
2 = 1√

2

√
µ2

h
λh

.

Assuming the hidden Higgs is initially charged (0, qX) under U(1)EM×U(1)′, upon spon-
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taneous symmetry breaking the Higgs-hidden photon interaction term becomes a hidden

photon mass term,

L ⊃ q2
Xg

2
X |ϕh|2XµXµ

SSB−−→ q2
Xg

2
X

v2
h
2 X

µXµ. (1.19)

Performing a change of basis for the Xµ or Aµ field, as described previously, results in either

of the physically equivalent pictures of hidden photon mass mixing with the photon, or a

direct coupling to the electromagnetic current. However, in addition to the standard hidden

photon phenomenology that results from the non-zero mass, there is a dynamical Higgs field,

h = 1√
2 (vh + ϕh).

This additional field changes the phenomenology of the model substantially. In fact, the

hidden Higgs field picks up a fractional electromagnetic charge −χ(gX/e)qX from its in-

teractions with the Abelian fields, acting as a minicharged particle [94] (further described

later in this Chapter), and the same constraints, shown in Fig. 1.8, apply. Additionally, the

new scalar may interact, unsuppressed, with the SM Higgs field, inducing a so-called “Higgs

portal” [95] between the SM and hidden sectors. Even without addition of hidden photons

from an extra U(1)′, Higgs portal models present a rich phenomenology themselves (for

example [59, 95–97]).

The Stueckelberg mechanism

Since the hidden photon arises from an Abelian symmetry, an alternative, Stueckelberg,

mechanism can generate the hidden photon mass necessary for observable phenomenol-

ogy [98]. Consider the following Lagrangian for an Abelian gauge field,

LAbelian = −1
2∂µAν∂

µAν + 1
2m

2AµA
µ, (1.20)

which results in the equation of motion,

(∂2 +m2)Aµ(x) = 0. (1.21)

In order to restore gauge invariance to Eq. (1.20), an additional field must be introduced:

Stueckelberg’s B field. The field obeys the same equations of motion as the Abelian gauge

field,

(∂2 +m2)B(x) = 0, (1.22)
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following from the Lagrangian terms,

LStueckelberg ⊃
1
2∂µB∂

µB − 1
2m

2B2. (1.23)

The gauge transformations of the two fields are:

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µΛ(x)

B(x)→ B′(x) = B(x) +mΛ(x) (1.24)

The gauge function Λ(x) (which is complex) obeys the same equations of motion as the

gauge and Stueckelberg fields, (∂2 +m2)Λ(x) = 0, a feature not present in standard QED,

but which is necessary to lower the total degrees of freedom for our massive vector field to

three (in addition to a condition that the free field annihilation operators of the combination

∂µAµ(x) +mB(x) must annihilate a physical state – without the Stueckelberg field, ∂µAµ(x)

alone must do the same).

Under the gauge transform (1.24), the Lagrangian (1.20) is gauge invariant, permitting a

mass term for an Abelian field. We can see the mass generation more explicitly by rewriting

the whole Stueckelberg Lagrangian (i.e. the sum of equations (1.20) and (1.23)), which is,

up to total derivatives,

LStueckelberg = −1
4F

µνFµν + m2

2

(
Aµ − 1

m
∂µB

)(
Aµ −

1
m
∂µB

)

− 1
2 (∂µAµ +mB) (∂νAν +mB) . (1.25)

The trick here has been to realise that a spin one representation can be built from a scalar field

with the application of the momentum operator. In essence, the Stueckelberg mechanism

is a version of the Higgs mechanism, where the particle excitation of the field – the boson

– is infinitely massive and so decouples. Consider parametrising the Higgs field in polar

coordinates, φ = (v + h)eiθ/v. Taking the boson, h, mass to be infinite, it can be integrated

out and decouples from all processes in the theory. Then θ is analogous to the Stuckelberg

field B(x).

We have considered two HP mass generation mechanisms. In Chapter 3, we consider a third:

the hidden photon field exists in higher spacetime dimensions, and mass is generated upon

compactification to the four dimensions of our common experience. The idea is inspired

by the fact that both hidden photons and additional spatial dimensions arise frequently in
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string theory, though we employ only a toy model, with the aim of investigating the salient

features of the resulting phenomenology.

1.3.3 Minicharged particles

Axions and hidden photons are both viable dark matter candidates in themselves. Nonethe-

less, there is much phenomenological interest in pseudoscalar and vector (and many other)

portals to more extended hidden sectors. In part, this relates to the fact that an additional

mediator particle allows one to tune the annihilation cross-section of a thermally produced

dark matter candidate, to be discussed later in this Chapter.

As a first example of a simple but non-minimal model, we may consider a theory with a

simple hidden sector, to say a group of fields completely uncharged under the SM gauge

groups. For example, the hidden sector could consist of a single species of Dirac fermion, ψ,

that interacts with the visible (SM) sector only through the kinetic mixing of a hidden U(1)′

group – under which the hidden fermion is charged (with coupling constant gh) – with the

SM hypercharge. The Lagrangian describing such a theory is

LBSM = −1
4F

µνFµν −
1
4X

µνXµν −
1
2χF

µνXµν

+ iψ̄γµ∂µψ − ighXµψ̄γµψ −mψ̄ψ. (1.26)

Performing the same field redefinition designed to diagonalise the kinetic terms as earlier,

Xµ → Xµ − χAµ, the interaction terms of the hidden fermion become,

L ⊃ −ighXµψ̄γµψ + iχghA
µψ̄γµψ. (1.27)

The latter term is precisely analogous to the coupling between photons and electrons, with

with electric charge e replaced by a combination of the kinetic mixing and hidden gauge

charge, χgh. Since the kinetic mixing is not assumed to be quantised, and is likely to be

small, this results in the hidden fermion appearing to the SM fields exactly as if it were in

possession of an electromagnetic charge of size ε = χgh
e (in units of the electron charge).

Notice that in contrast to our earlier observation, in the presence of an extended hidden

sector charged under the U(1)′ even a massless hidden photon can present interesting

phenomenology.
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1.3.4 Generalised hidden sectors

The example of minicharged particles is representative of a much larger class of BSM models,

with some matter occupying a hidden sector and the interaction with the SM mediated by

an additional new particle. Various combinations of particle can be considered for both the

hidden sector and the mediator, each with its own characteristic experimental signatures,

birthing a broad search [80]. Typically, the mediator is considered to be light, such that it

can be resolved by the collider experiments employed in searches for this variety of model,

rather than relying on an effective 4-point vertex. A possibility of particular interest for us

later (see Chapter 5) is a secluded scenario [99], whereby the mediator is lighter than the

dark matter, so that annihilation into the SM is allowed, but the mediator cannot decay into

dark matter.

The presence of a mediator allows even thermally produced MeV− GeV mass dark particles

to act as dark matter, since the mediator mass and couplings can regulate the dark matter

annihilation rate [100]. So long as the rate is not too small, the dark matter does not freeze

out too early (in which case it would remain relativistic, inhibiting structure formation),

and even light particles can be a good CDM candidate. We discuss an alternative to thermal

production for light dark matter in the next Section.

Light dark matter scenarios involving a hidden sector coupled by some mediator particle are

apt for exploration at fixed target facilities, such as those used as neutrino factories [4, 61,

62, 101, 102].

1.3.5 WISPs as dark matter

The dominant paradigm in particle dark matter has long been that of the weakly interacting

massive particle (WIMP), which when produced thermally in the early Universe with weak

scale interactions, almost automatically produces the correct relic density [10]. The standard

lore is that dark matter candidates that are too light violate the Lee-Weinberg bound [103],

resulting in a relic density that is far too high. However, this assumes both thermal production

and interaction through a heavy mediator (e.g. electroweak boson), and actually motivates

the introduction of new, light bosons as messengers between the visible and dark sectors.

Light particles also pose a problem for structure formation as the light particle is less likely

to be trapped in a potential well (to say, light particles have higher free-streaming lengths
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than heavy particles). In order that light dark matter be viable, an alternative production

mechanism must be in place – a good substitute exists in the misalignment mechanism.

Consider the equation of motion of a scalar field on a Friedmann-Robertson-Walker (FRW)

background metric,

φ̈+ 3H(t) φ̇+m2φ = 0. (1.28)

Recognising that this resembles a damped harmonic oscillator, we break the solution into

two regimes: overdamped and underdamped. In the overdamped stage, for early times,

H(t)� m, so there is essentially no oscillation, φ̇ = 0. As the Universe expands the Hubble

constant decreases, so that at some time H(tcrit) ∼ m and the field begins to oscillate. Note

that before oscillation, the mass term is negligible compared to H, and there is no reason

to expect the field value to be zero. It should be noted that m is not constant during the

evolution of the Universe, since it receives corrections from thermal processes.

The misalignment mechanism works in much the same way for vector fields as for (pseudo)

scalars, like the axion. In order to fully reproduce the scalar behaviour with the spatial

components of a vector, however, a non-minimal coupling to gravity is required [104, 105].

Here we explicitly derive the equations of motion governing the vector field.

Again assuming a FRW metric with scale factor a(t) (for notational elegance, we will hence

suppress the time dependence of a),

ds2 = dt2 − a2δijdx
idxj . (1.29)

The action describing the dynamics of a massive vector field in this background is,

S =
∫
dx4√−g

(
−1

4F
µνFµν + 1

2m
2AµAµ

)
(1.30)

The equations of motion for the Aµ field are arrived at by taking the functional derivative of

the action with respect to the same field. It is easiest to present the result component-wise,

splitting the time component of the field from the spatial components,

− 1
a2 ∂

2
iA0 +m2A0 + 1

a2 ∂iȦi = 0

Äi + ȧ

a
Ȧi −

1
a2 ∂

2
iAi +m2Ai − ∂iȦ0 −

ȧ

a
∂iA0 + 1

a2 ∂i(∂kAk) = 0 (1.31)
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One can make the assumption of spatial homogeneity and treat the first derivative of the

field w.r.t. any of the spatial components as negligible, ∂iAµ ∼ 0. Then it follows from the

equations of motion above that the time component of the field A0 = 0.

We arrive at an equation of motion for the spatial components of the Aµ field, Ai,

Äi +HȦi +m2Ai = 0, (1.32)

where H = ȧ/a is the Hubble constant (which is, via a, a function of time).

Since the spatial components of the metric are all preceded by a factor of a2, we may

redefine the vector field to absorb it, making the computation of the energy density later

straightforward. We introduce the field Bi ≡ Ai/a, and can rewrite the equation of motion

as,

B̈i + 3HḂi + (m2 + 2H2 + Ḣ)Bi = 0 (1.33)

From the above, we can see that for sufficiently late times, when m � H, the spatial

components of the vector field behave like independent scalars. However, during the early

Universe, the additional potential terms, ∝ 2H2, Ḣ are dominant. These terms enter as

prefactors to the field Bi, so, the hidden photon is subject to a large effective mass, which

causes problems with the standard inflationary paradigm (the “slow rollover” period requires

a relatively flat potential). One way to mitigate this effect, without introducing fine tuning,

is to introduce a non-minimal coupling to gravity, Lgrav = R
12A

µAµ. Since, for a FRW metric,

R
6 = −(2H2 + Ḣ), this term precisely cancels the geometric contribution to the vector mass.

More generally, one could parametrise the strength of the non-minimal coupling with a

prefactor κ to the Lagrangian term, as in [106], and find that the geometric mass term is

proportional to (1− κ). It would be interesting to study the effect in cases where κ 6= 1.

For late times, the Hubble terms become negligible and oscillation modes of the field may be

interpreted as particles, which are non-relativistic (cold), providing a suitable dark matter

candidate.

1.4 The low energy frontier

The three primary experimental approaches utilised in the search for WIMP dark matter

(outlined in Section 1.2.2) may also be applied to WISP dark matter. As we have seen
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Fig. 1.7.: Current best constraints on HP parameter space, updated from [107]. See text for
details.

though, some WISP candidates are motivated by considerations other than dark matter,

and may not comprise a sufficient fraction of the relic density to be susceptible direct

or indirect detection searches. Additionally, the light masses of WISPs open up avenues

for exploration in low-energy, precision experiments. The experimental search for new

light particles has engendered much innovation and novelty. Here we outline some of the

experimental techniques employed to search for WISPs. As in the preceding theoretical

section, our primary focus will be hidden photons and dark sectors coupled via kinetic

mixing, reflecting the content of the following Chapters in this work.

The search for hidden photons benefits from parallel and complementary searches for axions

and ALPs. In some cases, experiments designed to search for axions may be reinterpreted

in the context of hidden photon models, a prime example being the CERN Axion Solar

Telescope (CAST) [108] bounds [109, 110], now part of the established canon of hidden

photon searches. The CAST constraint is shown as an extension to the solar lifetime

constraint in Fig. 1.7, but has since been eclipsed by the solar lifetime constraint itself, owing

to the inclusion of previously neglected effects from longitudinal modes [111, 112].

Certainly, the established astrophysical searches for, and theory surrounding, axions can be

used as a guide to construct similar constraints for hidden photons, e.g. [58, 113–115].
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1.4.1 Hidden photon searches

The strongest current bounds on the hidden photon (mX , χ) parameter space are shown

in Fig. 1.7. Clearly the space is large, with constraints spanning 29 orders of magnitude in

mass and 18 in the mixing parameter. There are no concrete predictions for either parameter,

though some string models make broad statements about the expected ranges. However,

if the hidden photon is to act as cold dark matter, the mixing must be of order ∼ 10−7 or

below in order that a sufficient amount can survive to the present day.

To bound the mass from below, one may consider the structure formation of compact

galaxies [116], with typical length scales on the order of a single kilopasec (kpc) and

masses of order 2× 1011M�. In order that the structure formation can occur, the Compton

wavelength of the particles involved must clearly be shorter than the size of the galaxy, since

otherwise the uncertainty in the particle’s position does not allow it to be localised to the

galaxy. This can provide a rough estimate of the minimum allowable mass for a cold dark

matter hidden photon [117],

1kpc > ∆x = ~
2∆p = ~

2mXvesc

⇒ mX >
~

2 kpc vesc
∼ 2.5× 10−25eV. (1.34)

In practice this is not a restrictive bound, since our experimental and observational reach

ceases some ten orders of magnitude higher than this mass.

The bounds of Fig. 1.7:

• Planetary magnetic fields. Many of the constraints on hidden photons arise from the

modification to Maxwell’s equations that ensue from the addition of a massive photon.

This modification can be probed by many experiments, but also in astrophysical

environments, such as the magnetic fields of the Earth and Jupiter [118]. Planetary

magnetic fields allow us to probe small mass scales as a result of the large distances

involved.

• Cosmic Microwave Background. Accurate measurements of the CMB allow us to

calculate the effective number of light particle species during recombination (photon

decoupling, the time at which the CMB formed), N eff
ν = 3.30± 0.27 [8]. Combining

this with measurements of Large Scale Structure (LSS) and supernovae [113, 114]
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allows bounds to be placed on the hidden photon, which would contribute additional

relativistic degrees of freedom, increasing N eff
ν .

• Light Shining Through Walls & Helioscopes. Exploiting the phenomenon of photon-

hidden photon oscillations would in principle allow light to pass through an otherwise

opaque wall. This can be exploited in several setups, including fixed target colliders

(discussed below) and much lower energy setups, for example coupling two, e.g.,

Fabry-Pérot cavities [119–122]. The latter rules out a small but interesting regime, and

extension of the idea to microwave frequency cavities has proved fruitful [123–126].

This novel technique is discussed further in Chapter 2. Applying the same principle of

photon regeneration after an opaque wall, but sourcing the hidden photons from the

Sun, describes a helioscope. Note that no cavity set up can be employed by helioscopes,

and in any case would not help, as solar hidden photons would be emitted with a

broad spectrum of energies – there is no resonant mode. Though now eclipsed by

other constraints, CAST generated a substantial exclusion region [109, 110] and

designs for a successor experiment, the International Axion Observatory (IAXO) are

underway [127].

• Stellar evolution. The evolution of stars is a reasonably well understood pro-

cess [128]. If additional particle species (such as HPs) are introduced and produced in

sufficient quantity in stellar interiors, the contribution to the energy loss of stars must

be calculated. If this loss is too high, no stellar model can be constructed that would

allow, for example, the Sun to survive to the present day. Even if the energy loss is

curtailed by reabsorption of the new particle species, constructing a viable model can

be rendered impossible by the contribution to non-local energy transfer within the

star. Observation of the Sun and horizontal branch stars provide constraints on the

maximum allowed mixing of HPs with photons [109]. Recently, the importance of

longitudinal modes was noticed, which increases the strength of the bound in the low

mass region considerably [111, 112].

• Electron fixed target experiments. Hidden photons produced in bremsstrahlung

from an electron beam incident on a fixed target can traverse the beam lines of

such facilities easily. Their low interaction cross-section allows HPs to pass through

the shielding that stops all SM particles except neutrinos. This gives rise to a novel

signature: pairs of electrons reaching the detector. The SLAC E137 and E141 ex-

periments, and Fermilab E774, have all been used to place limits on the mass and
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kinetic mixing of hidden photons via simple event counting [58]. Some additional past

electron fixed target experiments have since had their results mapped to the hidden

photon plane [129]. These constraints all borrow somewhat from the light-shining-

through-walls principle, as the hidden photon can propagate through layers of rock

and shielding that would otherwise stop the electron beam. There are several purpose

built experiments running that instead search for a resonance from the hidden photon

decay in the dielectron invariont mass spectrum [130–133]. The two approaches are

very complimentary, with the LSW-flavoured beam dump experiments probing smaller

mixings but unable to constrain the higher mixings that would result in the produced

HPs decaying before reaching the detector. The mass peak searches are sensitive to

higher mixing angles, and also slightly higher masses.

• LHC. For high mass hidden photons, the only viable controlled production environment

is the Large Hadron Collider. One could look for missing transverse energy caused

by HPs leaving the beam line without interacting, but the more promising signal

turns out to be a dilepton event, caused by the decay of a HP into an e+e− or µ+µ−

pair [134]. However, the LHC is ill suited to search for WISPs in general, since their

mass spectrum spans many orders of magnitude below the high energies the LHC is

designed for and they are extremely weakly interacting. High luminosity fixed target

experiments cover a larger, but complementary, area of parameter space.

• IDPB. Hidden photons may also be sought in the Intergalactic Diffuse Photon Back-

ground, where their decays would create an excess of photons over that expected

from background processes [135, 136]. This constraint is contingent upon the hidden

photons surviving until the present day, and also requires that they are not sufficiently

massive to decay to electron pairs. When this is the case, the fermion-loop-induced

three photon decay dominates, resulting in a photon excess.

• Atomic spectra. HPs need not be produced on-shell to contribute to physical observ-

ables. The Lamb shift in the hydrogen atom, for example, receives a contribution

from the hidden photon as an insertion into the photon propagator. By comparing

a theoretical prediction of the HP-adjusted spectra of atomic transitions with the

experimental error on such transitions, constraints can be placed on the HP parameter

space [137–139].
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• Coulomb potential. The HP insertion to the photon propagator creates a Yukawa-like

modification to the Coulomb potential, δV (r) ∝ −χ2e−mXr/r [140–142]. This can

be bounded by precise, tabletop experiments, specifically designed to search for long

range forces that would manifest in such a way.

Several of the above constraints will be discussed in more detail in Chapter 3, when we

derive constraints on a hidden photon in the presence of large extra dimensions.

1.4.2 Proton beam dumps

The WISP paradigm represents a low energy approach to theory beyond the standard model,

and we have already described some of the experimental techniques employed to search for

hidden photons. Among those techniques, the use of high luminosity, relatively low energy

beam dump experiments best generalises to the search for more extended hidden sectors.

Proton beam dump facilities – where a proton beam is fired directly into a suitable metal

target – used to generate neutrinos for long baseline experiments also make excellent

production factories for some classes of hidden sector models [4, 61, 62, 101, 102]. In

particular, when the hidden sector matter is light and connected to the standard model by a

light mediator.

Assuming a coupling to quarks, the light mediator also facilitates plentiful production in

relatively low energy collisions by a direct Drell-Yan process and in the decays of mesons

produced from the pN collisions. The advantage of these facilities is the high luminosity,

with, for example, MiniBooNE, MINOS and T2K each delivering on the order of ∼ 1021

protons on target to date [61].

The MiniBooNE experiment is currently delivering a dedicated run searching for low mass

dark particles coupled through a vector portal [143] (such as kinetic mixing). Project X

(under consideration) also has the potential to search for numerous light dark matter and/or

WISP scenarios [144]. In light of the increasing interest in this experimental approach, it

is important that we understand the interactions of dark particles in such an environment

thoroughly. The specific interactions are of course model dependent. In Chapter 5 a thorough

treatment of dark fermion scattering through a vector portal is given (a popular paradigm,

in part owing to the connection to the hidden photons and minicharged particles discussed

previously), in particular accounting for novel QCD effects at low momentum transfer. This is
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Fig. 1.8.: Exclusion limits on the minicharge as a function of mass from numerous ex-
periments and astrophysical considerations. Figure from [80], see references
therein.

especially important for light particles, where the low momentum transfer region dominates

the cross-section.

The novel formalism of Chapter 5 will be used to enhance the constraint on minicharged

particles from the E613 beam dump experiment. This is a small contribution to the exclusion

limits on minicharged particles, as there has been considerable experimental effort devoted

to the search already, resulting in the exclusion limits shown in Fig. 1.8. However, the

applicability of the same formalism to other scenarios makes even the small increase in

sensitivity it grants significant.

1.5 Thesis structure

This content of this thesis is built around four publications [1–4]. Each of Chapters 2− 5

will detail the work of one publication. As such, the Chapters are relatively self contained,

though there are some common themes running throughout. The Chapter contents are as

follows.
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Chapter 2

In Chapter 2 we explore the notion of effective theories a little further, particularly in light

of low energy experiments. Taking motivation from light-shining-through-walls searches

for WISPs, we construct a toy quantum optics setup that may realise a novel tunnelling

phenomenon dubbed “Tunnelling of the 3rd kind”. Such a phenomenon would be a smoking

gun for WISPy physics if observed with fundamental particles, but in the quantum optic

setup, actually allows one to test the effective non-locality present in effective theories. To

the author’s knowledge no other test of this phenomenon has been devised.

I was involved in all stages of (and calculations in) the work, which has been previously

presented in [1]:

Tunnelling of thc 3rd Kind: A Test of the Effective Non-locality of Quantum Field Theory

Europhys.Lett. 101 (2013) 61001

Chapter 3

In this Chapter we move on to WISPs proper with a study of hidden photons in the presence

of large extra dimensions. This string-inspired set up provides an alternative mass generation

mechanism worth exploring, even in light of the recent discovery of a SM Higgs boson.

We review the work already presented in [3]. This project was the basis of a previous thesis

by Sabyasachi Roy [145], who performed many of the bound calculations. There have been

several developments since then, including the addition of the effects of longitudinal modes

in stellar constraints, bounds from the LHC and much of the perturbativity discussion. All

the bounds have been reproduced independently by myself, but I am indebted to Sachi for

his work. While some of the content of the Chapter is standard formalism, the novel aspects

are weighted towards my own contributions.

Hidden Photons with Kaluza-Klein Towers

arXiv:1408.0019 [hep-ph]
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Chapter 4

Here I present [2]:

Extended gamma-ray emission from Coy Dark Matter

JCAP 05 (2014) 009

Having investigated a WISP scenario in detail in the previous Chapter, we now divert

ourselves to the WIMP paradigm. Counter to the essential message of this thesis – that WISPs

are a fruitful and worthwhile class of models to study – we show that the WIMP paradigm is

not without merit. A simple model of WIMP dark matter is able to fit the Galactic Centre

excess while leaving no trace in either direct detection or collider experiments. This effect

originates in the axial nature of the interaction, which serves to highlight the importance of

understanding dark matter scattering.

I was instrumental in initiating this project and performing the first calculations, including

setting up rudimentary versions of the monojet and Fermi-LAT analyses. However, much

credit is due to Matt Dolan and Chris McCabe for the final code and plots used in the paper.

Chapter 5

Beam dump experiments have been used in BSM searches since their inception. With

increasing interest in light dark matter scenarios, it is timely to investigate theoretical issues

surrounding the scattering of light particles in some depth. Here we present a treatment

of the scattering of low mass dark Dirac fermions, interacting through a light vector portal,

from lead nuclei in the E613 beam dump experiment [4]. The treatment is novel in dealing

with QCD effects at low-Q2 and low Bjorken-x. These effects are negligible in the case

of a heavy mediator particle, but become important in BSM scenarios where this is not

guaranteed. As with the Coy Dark Matter study, this reinforces (albeit, in a subtler way) the

importance of investigating the interactions of dark matter carefully.

I was involved in, and responsible for, all calculations within the paper, of course with

extremely valuable contributions and validation from the other authors.
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Scattering of Dark Particles with Light Mediators

Phys. Rev. D 90 (2014) 115005

Chapter 6

Finally, I conclude with a short summary bringing together the themes of the thesis, namely:

the utility of effective theories and simple models in BSM physics, the good physics case for

light, WISPy hidden sectors and the potential of low energy experiments for the discovery of

such states.
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2
Tunnelling of the Third Kind

„For a time I would feel I belonged still to a world of

straightforward facts; but the feeling would not last

long. Something would turn up to scare it away.

— Marlow

The modern understanding of the Standard Model of particle physics is that it represents an

effective theory of the fundamental forces and matter content of nature. By effective, it is

implied that the theory does not hold to arbitrarily high energy scales, but rather represents

only a low energy description. This view reconciles the apparent excellent agreement

between the Standard Model and experiment in many areas with its clear inadequacy in

explaining some phenomena at all: the physics explaining the remaining “BSM problems”

is generated at a high energy scale, of which the observed SM is perhaps only an effective

description. Note that this does not imply that there are no other signals of the higher energy

theory at accessible scales. In particular we detailed in the previous Chapter the possibility

that very light, weakly coupled particles are responsible for gravitational observations of

dark matter.

Among the interesting phenomena associated with effective field theories, there is a general

property of non-locality. To obtain an effective theory, one integrates out virtual degrees

of freedom from the more fundamental (to say, valid at higher energy scales) theory. This

produces some novel effects, such as allowing seemingly forbidden interactions (e.g. 4-

photon), or a generating a contribution to the effective potential between particles. These

phenomena account for the effects of the virtual particles that were integrated out. In fact,

owing to quantum corrections, a non-locality is induced in the propagation of the remaining

particles, through, at first order, a one-loop diagram. It is this effective non-locality we will

investigate in this chapter. First though, we give some context to the study, with reference to

the hidden photons so prevalent in this thesis.

37



2.1 Effective field theories

It is noted by Howard Georgi in a review of effective field theory [146] that “One of the

most astonishing things about the world in which we live is that there seems to be interesting

physics at all scales”. While a unified theory of physics encompassing all matter and its

interactions remains the pipe dream of the particle physics effort, it is clearly impractical

to simply observe all phenomena to which we have access and attempt to dream up a

single all-encompassing model. Effective theories are extremely useful tools to isolate the

phenomena that are relevant in a given regime. In the case of fundamental particle physics,

the regime may be determined by a single parameter - the energy (or, equivalently, length)

scale. Heavy particles associated with higher energy regimes naturally have a very short

range, so constructing an effective theory of physics in some regime involves consideration of

the minimum length that can be probed in that regime. One can then neglect all interactions

that occur exclusively at shorter length scales, and include these effects, if they are important

at all, as corrections to the effective theory.

An effective quantum field theory is so named for being a description of quantized (i.e.

particulate) field interactions that is supposed only to be valid up to a certain energy. Above

this boundary the theory is not valid, owing to the availability of additional degrees of

freedom that can be excited. If the effective description is a good one, these degrees do not

sufficiently impact the theory at low energies for it to be worth explicitly including their

dynamics in computations. There is generally no lower boundary on the energy regime to

which an effective theory is valid, but it may be that the description provided by the effective

theory can be replaced by an even simpler effective theory at lower energies.

Novel Light Effects

The existence of virtual particles is fundamental to the modern understanding of quantum

field theory, and their effects must be factored in to any relativistic scattering calculation.

Additionally, virtual particles give rise to a host of novel phenomena, that would not be

possible without their existence. An early example of this is the Euler-Heisenberg Lagrangian,
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which includes the first order quantum correction to photon propagation, permitting light-

by-light scattering,

LE−H = −1
4F

µνFµν −
α2

m4
e

(
c1(FµνFµν)2 + c2(Fµν F̃µν)2)+O(α3) (2.1)

F̃ is the dual to the field strength tensor, F̃µν = 1
2ε
µνρσFρσ. The Euler-Heisenberg Lagrangian

serves as an example of an effective field theory. Here an electron loop has been integrated

out to give rise to an effective four-photon interaction. We see that the corresponding

interaction terms in the Lagrangian are suppressed by the fourth power of the electron mass,

one power for each electron propagator in the full diagram (there are correspondingly four

powers of the electron charge e encoded in α2). The constants c1,2 must be determined

by matching to the full theory, i.e. QED1. Note, for the context of tunnelling of the third

kind that we introduce shortly, that the operators in the Lagrangian (2.1), while higher

dimensional, are entirely local.

2.1.1 Light shining through walls

The search for WISPs has engendered many novel techniques. One class of experiments is

that of laser based light-shining-through-walls [119]. This kind of experiment exploits the

oscillation of photons into hidden photons (or, in a magnetic field, axions) to search for

light in an otherwise dark cavity separated from a laser cavity by a reflective wall. The only

particle capable of producing such a signal in the Standard Model is the neutrino, which, in

the presence of a magnetic field, could be produced on one side of the wall and pass through

unhindered, before being detected on the other (indeed, this is the operating principle of

long baseline experiments, where the “wall” is many kilometres of Earth). However, in order

that the neutrinos are produced by a laser, and detected as photons, a loop diagram and

electroweak boson exchange is required on both sides of the wall, within the confines of

the cavity. The probability of this is so prohibitively small that even if one were to shine

every photon in the universe at the wall, perhaps no photons would pass through in this

channel [119, 147].

The advantage the light-through-walls approach in a laser set up (over a beam dump type set

up, for example) is that photon-WISP oscillations can be coherent if the phase velocities of

the photon and the WISP are close. In this case, the amplitudes for conversion all interfere

1The calculation is relatively involved, but yields the simple, if seemingly arbitrary result c1 = 1/90
and c2 = 7/360.
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Fig. 2.1.: Schematic experimental setup for light shining through walls cavity experiment.

constructively, greatly enhancing production. Additionally, in an optical cavity with reflective

walls, photons can be “recycled” (i.e. make a pass of the cavity) ∼ 105 times, enabling the

easy production of high luminosity experiments.

A schematic of a typical setup in shown in Fig. 2.1 (in this case, without a magnetic field

that would be uniformly applied across the cavity).

2.1.2 Tunnelling of the third kind

Taking the idea of light shining through walls to the extreme, whereby the wall is traversed

not by real particle oscillation, but by an off-shell virtual particle, we arrive at a new

phenomenon - tunnelling of the third kind2 (T3K). The idea is that photons initially trapped in

one cavity may traverse a wall (much like a light-shining-through walls setup) by fluctuating

into a virtual particle-antiparticle pair, before regenerating in an adjacent cavity. Since

neutrinos carry no electrical charge, there are no known fundamental particles for which

this is possible at the 1-loop level. (Neutrinos can be used beyond the 1-loop level, but the

probability is small enough that there is zero chance of observing the effect over the lifetime

of the Universe). It would thus be a smoking gun signal of BSM physics.

Motivating investigation of the phenomenon from a bottom up perspective, in the cor-

rect experimental set up, tunnelling of the third kind can enhance existing constraints

on minicharged particle (MCL) scenarios. Fig. 2.2 shows the region of parameter space

accessible by applying a strong magnetic field (B = 5 T) rotated at various angles to the

polarisation of the cavity photons. Notice that magnetically amplified T3K can actually

improve on cosmological constraints in the low mass MCP region.

2We identify the first kind of tunnelling to be the non- relativistic quantum tunnelling of a particle
through a potential barrier and the second kind to be transition via a real particle conversion, i.e.
the light-shining-through-walls effect.
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Fig. 2.2.: The probe-able minicharged particle parameter space with the application of a
strong magnetic field to a tunnelling of the third kind experiment [148].

The technique was in fact originally proposed [149] as a means of searching for minicharged

particles. Here we depart temporarily from BSM physics and explore a novel phenomenon

inherent to effective quantum field theories – effective non-locality. We describe a potentially

realisable quantum optical set up that could exhibit T3K.

2.2 A test of effective non-locality

2.2.1 Lagrangian approach

We begin with the foundation of most quantum field theories, a classical local action.

S =
∫
d4xL, (2.2)

where L is the Lagrangian of the theory in question and contains all renormalisable inter-

actions permitted by Lorentz and gauge symmetry. The process we will investigate can

be neatly formalised with a classical field theory for three scalar fields and their local

interactions, described by,

Sint =
∫
d4x

λ

~2c2
φa(x)φ∗b(x)φc(x) + h.c., (2.3)

where φa,b are complex and φc is real (the choice of complex or real may seem arbitrary, but

is justified in the following). Notice that the interactions of Eq. (2.3) (which, for simplicity,
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does not include any couplings to external potentials) and the accompanying kinetic terms

are entirely local. In the non-relativistic limit, and with only one spatial dimension plus time,

also for simplicity, the theory is expressed as

Seff =
∫∫∫∫

dtdt′dxdx′φ∗a(x′, t′)
{
δ(x− x′)δ(t− t′)×

[
i~∂t + ~2

2m∂2
x − Va(x)

]

−Π(x, x′, t− t′)
}
φa(x, t), (2.4)

with the corresponding equation of motion,

i~∂tφa(x, t) = − ~2

2m∂2
xφa(x, t) + V (x)φa(x, t) +

∫∫
dx′dt′Π(x, x′, t− t′)φa(x′, t′). (2.5)

This is a non-local version of Schroedinger’s equation for the field φa(x, t). The non-locality is

manifest in the function Π(x, x′, t− t′), which implies that the evolution of φa(x, t) depends

not only on its value at space-time coordinates (x, t), but also on its value at a spatially

and temporally separated point (x′, t′) (so long as Π(x, x′, t − t′) is not proportional to

δ(x− x′)).

We can test this effective non-locality by realising a “tunnelling of the third kind” experiment.

Tunnelling processes (say, between two square well potentials) in non-relativistic quantum

mechanics rely upon a finite barrier height; the tunnelling rate is vanishing in the limit

that the barrier height goes to infinity. However, quantum field theory introduces non-

particle number conserving processes not present in single particle (“regular”) quantum

mechanics. This allows the real particle φa to split into a pair of virtual φb and φc particle

states. Tunnelling of the third kind can be achieved if these virtual states interact sufficiently

weakly with the (infinite) barrier potential to pass through it. The states must, as they are

virtual, recombine into a real φa particle. If they have traversed the barrier, then the particle

φa has crossed a region that is forbidden to it both classically and quantum mechanically,

a clearly non-local phenomenon. This is induced explicitly by the non-particle number

conserving property of quantum field theory. The non-locality is only an effective one,

resulting from eliminating the intermediate states from the description when we write the

effective Schrödinger equation, Eq. (2.5), for the particle φa.

As mentioned, there are no suitable fundamental particles to realise T3K in the SM, but a

realisation may be possible by exploiting the behaviour of atomic excited states. We outline a

toy quantum optical configuration that is a suitable analogue to directly test the non-locality

inherent to effective field theories.
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The set up will consist of two potential wells separated by an infinite potential barrier,

with an atom A in the ground state localised to the left hand well. The T3K process then

consists of the atom entering a virtual excited state A∗ by the emission of a virtual photon

and passing the barrier into the right hand well before recombining. It is assumed that

neither the photon nor the excited state are subject to the barrier potential, but both remain

bounded within the overall potential well. Such a situation is realisable with excited atomic

states, which often occupy different potential surfaces to the ground state. As a practical

consideration, we will place the whole arrangement within a cavity that allows only a single

resonant mode of the photon (but ensure the potentials in which the atoms are trapped are

such that there is no possibility of collision with the cavity walls).

We can investigate the effect of the effective non-locality on the rate of tunnelling between

the two potential wells (which, in the absence of the virtual state, would be zero). In the

eigenbasis expansion, φa(x, t) =
∑
n c

(a)
n (t)ϕ(a)

n (x) where ϕ(a)
n (x) are the eigenstates of the

unperturbed system, we explicitly separate the time dependence of the field from its spatial

dependence. The unperturbed eigenstates are the solutions to the (local) Schroedinger

equation, (
− ~2

2m∂2
x + Va(x)

)
ϕ(a)
n (x) = E(a)

n ϕ(a)
n (x). (2.6)

We can use this expansion to write the effective action (2.4) in energy space,

Seff =
∑

n

∫
dt

[
c(a)∗
n (t)

(
i~
d

dt
− E(a)

n

)
c(a)
n (t)

]

−
∑

n,n′

∫∫
dtdt′

[
c(a)∗
n (t)Πn,n′δ(t− t′)c(a)

n′ (t′)
]
,

(2.7)

where Πn,n′(t − t′) ≡
∫∫

dxdx′ϕ(a)∗
n (x)Π(x, x′, t − t′)ϕ(a)

n′ (x′) and we assume short lived

virtual intermediate states, such that we can make the approximation Πn,n′(t − t′) ≈

Πn,n′δ(t − t′). Note that this approximation is not valid in the resonant case, where the

energy of the photon in the intermediate state equals the energy difference between the

ground and excited state. The assumption that this is not the case is justified a posteriori by

the agreement between the Lagrangian and Hamiltonian calculation we will perform. The

resulting equations of motion are,

0 = δSeff

δc
(a)∗
n (t)

=
(
i~
d

dt
− E(a)

n

)
c(a)
n (t)−

∑

n′

Πn,n′c
(a)
n′ (t), (2.8)
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which we can cast as a matrix equation

i~
d

dt


 cS(t)

cA(t)


 =


 ES 0

0 EA




 cS(t)

cA(t)


+


 ΠSS 0

0 ΠAA




 cS(t)

cA(t)


 . (2.9)

In writing the matrix equation, we have assumed the potential Va to be symmetric around

the central barrier. We have further ignored all but the lowest two energy eigenstates of

φa, allowing us to cast them in a symmetric (subscript S) and antisymmetric (subscript A)

basis.

Parity enforces that ΠAS = ΠSA = 0, and the symmetry between the two wells sets means

E ≡ ES = EA (the parity operator commutes with the Hamiltonian, so energy eigenstates

are also parity eigenstates, and parity must be conserved). ΠSS is the energy shift caused

by the creation of virtual particles coupling two symmetric states (and similarly for the

antisymmetric case).

We are investigating the tunnelling between two adjacent potential wells, and there is a

natural basis that reflects that. Let cL ≡ (cS + cA)/
√

2 and cR ≡ (cS − cA)/
√

2 define

amplitudes for the left and right hand wells respectively. We localised the atom in the ground

state (a) to the left hand well at t0 = 0, so we can apply the initial condition cL(0) = 1,

cR(0) = 0, to get cR(t) = [e−i(E+ΠSS)t/~−e−i(E+ΠAA)t/~]/2. Then the tunnelling probability

is simply the probability to find the atom in the right hand well at a time t > t0.

PT3K(t) = |cR(t)|2 = sin2([ΠAA −ΠSS ]t/2~), (2.10)

This result displays the expected feature that the tunnelling rate is determined by the energy

shift δE = ΠAA −ΠSS .

2.2.2 Hamiltonian approach

The Lagrangian formulation has the advantage of making the non-locality manifest, and

is a familiar language for high energy physics. However, in this instance, the equivalent

Hamiltonian formulation, more often applied to non-relativistic quantum mechanics, proves

computationally easier.
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To set up the framework, we must define the potentials involved in the problem. The first

is an overall trapping potential to localise all particles to an infinite square well, which we

define to have length 2`+ d,

Vb(x) =





0 for −`− d/2 ≤ x ≤ `+ d/2,

∞ for |x| > `+ d/2.
(2.11)

Additionally, we must define a central “wall” potential that will be felt by the ground state

atom, but not the excited state or virtual photon. We give it width d, so that each side of the

well has width `,

U(x) =




∞ for −d/2 < x < d/2,

0 for |x| ≥ d/2.
(2.12)

The “bare” frequencies for atoms in a, b states are,

ω
(a)
j = Ωa + ~π2j2

2m`2 , ω
(b)
j = Ωb + ~π2j2

2m(2`+ d)2 , (2.13)

where ~Ωa,b are the internal energies of the atom when in the ground and excited states.

j indexes the energy eigenstate, and we again take only the lowest two spatial modes

(corresponding to j = 1) for the atom in state a. The two modes are denoted ϕ(a)
L (x) and

ϕ
(a)
R (x), and we abbreviate ωa ≡ ω

(a)
1 . The excited atom, in state b, has spatial modes

denoted ϕ(b)
j . We initially assume that only a single cavity (photon) mode couples the a and

b states, with energy ~ωc.

Can now write a complete Hamiltonian realising the desired features,

Ĥ =
∑

σ=L,R
~ωaâ†σâσ +

∞∑

j=1
~ω(b)

j b̂†j b̂j + ~ωcĉ†ĉ+
∑

σ=L,R

∞∑

j=1
~gσj(ĉ+ ĉ†)(â†σ b̂j + b̂†j âσ). (2.14)

The terms in the Hamiltonian form analogues to those in the Lagrangian description. The

creation (â†) and annihilation (â) operators respectively create and annihilate an atom in

state a, represented by the field ϕ(a)
σ (x) (and similarly for the b and c states).

The couplings (normalised to be real) gσj are,

gσj = g

∫
dxϕ(a)

σ (x)ϕ(b)
j (x)C(x), (2.15)

where g represents some overall scaling of the couplings. It is usual in atomic optics to

neglect terms in the Hamiltonian representing high frequency oscillations – the Rotating
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Wave Approximation (RWA) [150] – but here our effect arises from precisely these beyond-

RWA [151] terms, which are explicitly included.

For the simple set up we have described, with a single atom in either state a or b and n cavity

photons (with n ∈ {0, 1} for now), we can use the basis {|a, σ, n〉, |b, j, n〉}, with σ ∈ {L,R}

and j ∈ {1, 2, 3, . . . }. The result is a simple form for the probability of tunnelling of the third

kind to occur,

PT3K(t) = |〈a,R, 0| exp(−iĤt/~)|a, L, 0〉|2. (2.16)

For a first approximation, we can consider only the lowest spatial modes of the a and b states

and a single photon. We will see that this proves too naïve and correct it later. The matrix

form of Hamiltonian is,

Ĥ = ~




ωa g̃ 0

g̃ ωb + ωc g̃

0 g̃ ωa


 , (2.17)

with ωb ≡ ω(b)
1 , ωa ≡ ω(a)

1 as defined in Eq. (2.13), and g̃ = gL1 = gR1 from Eq. (2.15). The

lowest order solution is,

PT3K(t) =
∣∣∣sin(g̃2t/δ) + 2(g̃/δ)2e−iδt/2 sin(δt/2)

∣∣∣
2
, (2.18)

where δ = ωb + ωc − ωa is defined for convenience. The solution contains both slowly and

rapidly oscillating components (assuming that the coupling is sufficiently small, |g̃| � |δ|).

The slow oscillating term, frequency 2g̃2/δ dominates for large times. The second term is

has high frequency, δ, oscillations, but is suppressed by the small factor (g̃/δ)2. Ignoring this

second term shows the same time dependence as the result from the Lagrangian calculation,

Eq. (2.10), when we recognise that the energy gap ΠAA − ΠSS = 2g̃2/δ (which may be

checked explicitly in second order perturbation theory). This agreement justifies the earlier

claim that a short lived intermediate state (such that Πn,n′(t − t′) ≈ Πn,n′δ(t − t′)) was

justified in the Lagrangian calculation.
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Recall: ‘regular’ quantum tunnelling

It will be useful to quickly review the salient features of “regular” quantum tunnelling.

Consider 2 1-D potential wells separated by a finite potential barrier of height V0. For a

particle initially localised to one side of the coupled wells, the probability to later find it in

the opposite well is exponentially suppressed by the height of the potential barrier V0, and

the width d of the barrier. At the barrier, the particle wavefunction is a solution to,

− ~2

2m
∂2ψ(x)
∂x2 = (E − V0)ψ(x), (2.19)

which takes the form,

ψ(x) ∝ exp
(
−
√

2m(V0 − E)
~2 x

)
. (2.20)

There is a problem with the result: it does not obey the Heisenberg uncertainty principle.

Provided the energy of the excited state |b, j, 1〉 is greater than the ground state energy

|a, L, 0〉, then analogy to regular quantum tunnelling with a finite barrier (where the “barrier”

here is the energy required to enter the excited state), the Heisenberg uncertainty principle

predicts that the tunnelling rate should be proportional to the exponential of the energy

gap and the wall thickness (each to some power). This behaviour is not displayed by Eq.

(2.18).

Additionally, the energy gap between the ground and excited state (∼ ~ δ) is usually larger

than the energy splittings of the spatial modes of the b states, and one should realistically

sum over all j. This requires an infinite dimensional matrix in the Hamiltonian, but with

a suitable simplification, one can still obtain a result. The simplification is to make the

cavity mode C(x) slow varying with respect to the tunnelling time, such that the coupling

g̃0 ≡ gC(x) may be taken constant. Then we can compute the energy difference again in

second order perturbation theory. The calculation is presented in Appendix B, and results in

the energy splitting;

δE = ΠAA −ΠSS = 8g̃2
0mξ` sinh2(`/ξ) csch([2`+ d]/ξ)

π2(1 + `2/ξ2π2)2 , (2.21)

where we have defined a characteristic length scale ξ =
√

~/2m|∆| and ∆ = Ωb+ωc−ωa.

2.2 A test of effective non-locality 47



𝓁
d

𝓁

Fig. 2.3.: Schematic experimental setup for tunnelling of the third kind cavity experiment,
realised with an atom A and it’s virtual excited state A∗virt.

In the limit that ` � ξ, we get the expected exponential suppression with the wall thick-

ness,

δE ≈ ε exp(−d/ξ), (2.22)

as a function of a characteristic energy scale (that bounds δE from above),

ε = 2π2 ~g̃2
0

∆

(
ξ

`

)3
. (2.23)

2.2.3 Experimental prospects

The approximate setup we want to imitate is shown in Fig. 2.3. The maximum barrier

width for which tunnelling is feasible, corresponding to the length scale associated with the

effective non-locality, is (from Eq. (2.22)) d = ξ ln(ε/δE), which is clearly linearly dependent

on ξ but only weakly dependent on ε/δE. We can observe no tunnelling if the cavity decays

faster than the tunnelling rate. To get a reasonable sample of events, we require that the

tunnelling rate is much greater than the cavity decay rate, κ. This puts a further constraint

on the barrier width,

d� ξ ln
( ε

~κ

)
. (2.24)

As an example feasibility study, let us consider circular Rydberg atoms in a cryogenically

cooled superconducting microwave cavity. The two key characteristics of such a setup are the

typical decay length (ξ) and typical transition frequency (ε/~). A reasonable Rabi frequency

Ω/2π = 50kHz (for transition frequency between the a and b state of 51.1GHz), which maps

to the coupling g̃0 in our formulation, results in a cavity decay rate κ/2π = 7.7Hz, with
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O(seconds) atomic lifetimes [152]. Even making the optimistic assumption of ` ∼ ξ, the

resulting characteristic length ξ ∼ 30pm is too small to realise with an optical setup, though

the characteristic frequency ε/~ ∼ 2π2g̃2
0/∆ ∼ 6Hz is of the same order as the cavity decay

rate.

Fortunately the experimental situation is not completely without promise. We can consider a

situation in which the initial state a is of higher internal energy than the intermediate b+ γ

state. The modified energy gap is then,

δE = 8g̃2
0mξ` sin2(`/ξ) csc([2`+ d]/ξ)

π2(1− `2/ξ2π2)2 . (2.25)

in which essentially all the ∆ in Eq. (2.21) have been replaced with a negative quantity, −|∆|.

This results in the replacements ξ → iξ, and the hyperbolic functions become trigonometric.

Crucially this modification has removed the exponential suppression with d, making the

system much easier to realise. With a negative energy gap between the a and b states, the

real decay of the initial state becomes possible, but the cavity setup we have described

does not permit ∆ = 0 (it is detuned from this resonance), so that only off-shell states may

traverse the wall, and the process is fundamentally the same as in the ∆ > 0 case.

A simulation of light-shining-through-walls

If tunnelling of the third kind could be realised in a quantum optical set up, it would

serve as a simulation of the light-shining-through-walls experiments searching for WISPs.

The initial state a would represent a photon, with the excited state b representing a WISP

(for example the hidden photon). The additional photon in the intermediate state of the

quantum optical setup is superfluous, since the hidden photon can be produced by oscillation

of the SM photon. In the case of an axion, a magnetic field would be required to facilitate

production via its two photon coupling. In a real experiment, the initial state would not be

a single photon, but a large number (N) of photons trapped in the cavity, enhancing the

probability of the process by a factor N . Building a quantum optical set up to exhibit the

LSW phenomenon (via a real rather than virtual intermediate state) could act as both a

proof of principle for LSW and a first step towards realising a T3K experiment.
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2.3 Conclusion

We have investigated the possibility of experimentally testing the effective non-locality in the

propagation of particles in an effective theory in a quantum optical system. The realisation of

a fully virtual transition across a potential barrier with atoms is difficult due to the extremely

narrow barrier width required. Considering an internal state with lower energy than the

initial state, the situation becomes more promising. An experiment to realise the barrier

crossing phenomenon even with an on-shell intermediate state would serve as a simulation

of LSW and represent a first step towards realising a full T3K experiment.

This Chapter has been something of a diversion from the primary BSM physics investigated

in this Thesis, but illustrates that investigating BSM phenomena can lead to innovations in

experiment applicable to SM (or even quantum optical) processes.
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3Hidden Photons from Large Extra

Dimensions

„. . . and got the dimensions back and front and every

way, taking notes carefully . . .

— Marlow

Hidden photons, motivated in the Introduction, often arise in string compactifications (when

higher degree gauge groups are broken upon compactification). In light of this, it seems

worthwhile to consider, in a very general way, the effects that the necessary extra dimensions

of string theories have on the phenomenology associated with hidden photons. In particular,

a single additional Abelian gauge boson has no effect on the Standard Model (except an

undetectable field redefinition) if it is massless and there is no hidden sector matter to

which it couples. Therefore, if we are to have any hope that hidden photons could be

detected, should they exist, we must provide the theoretical framework to generate their

mass. In addition to the “standard” Higgs and Stueckelberg mechanisms, extra dimensional

theories provide a novel means of mass generation, without the explicit introduction of

additional scalar fields for this purpose. If we begin with a massless extra dimensional U(1)

gauge field, a stack of massive Kaluza-Klein (KK) modes of the field are generated upon

compactification.

This Chapter will discuss this idea in detail, and experimental and theoretical constraints on

a toy model will be presented.

3.1 Introduction to LED

The hierarchy problem of particle physics may be phrased in multiple ways, and has attracted

many and varied approaches to its resolution. Electroweak symmetry breaking occurs in the

early Universe, the Higgs field gains a vacuum expectation value (VEV) and fundamental

particles become massive. It is common to put the question of the hierarchy problem in terms
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of the Higgs mass, which is particularly relevant in light of the recent discovery. In principle,

loop corrections to the Higgs mass introduce an arbitrarily high scale. The correction due

to a single fermion loop, for example, is δm2
h ∝ Λ2 + c log Λ, where Λ is the high scale,

usually taken in this context as the Planck scale. In order that the Higgs mass be at the

electroweak scale then (which is required to regularize longitudinal vector boson scattering,

but is also what we observe, both directly and in the masses of fermions), there must be

some extraordinary cancellation across 16 orders of magnitude. Supersymmetric theories

address this issue by providing a superpartner to every particle that contributes to quantum

corrections – this analytically cancels the term (or would, if SUSY were unbroken). An

alternative and orthogonal approach is to alleviate the problem by lowering the relevant

fundamental scale.

Perhaps a simpler statement of the hierarchy problem, and one that cuts to the heart of the

issue – a discrepancy of scales – is to ask “Why is gravity so much weaker than the other

fundamental forces?”

The answer to this question is not known, but there are several compelling possibilities;

among them is the idea of extra spatial dimensions. The idea is not new, dating back at

least to the work of Kaluza [153] and Klein [154] in the 1920s, but was revived more

recently by the introduction of viable models for large extra dimensions (LED) [155–157].

In such models, only a subset of the full field content of the model may propagate along

the extra dimensions. Commonly, only gravity is permitted in the bulk space. Its strength

is consequently diluted by the volume of the extra dimensions. Thus a solution to the

hierarchy problem is provided by introducing a new, lower “fundamental” scale which is

closer to the electroweak scale and associated with the full, (4 + d)-dimensional space.

The alternative paradigm, that of universal extra dimensions (UED), in which all fields

experience all dimensions, is subject to tighter experimental constraints on the size of the

extra dimensions. In such a situation, every SM particle would have an associated tower of

heavier states (so-called Kaluza-Klein excitations), none of which have yet been detected.

Models with LEDs may be further divided into two categories: those with flat extra dimen-

sions and those with warped extra dimensions, per the work of Randall and Sundrum [158–

160]. The latter case creates an exponential hierarchy between the weak scale and Planck

scale by introducing a warping factor in the metric. The content of this Chapter will be

concerned with the former, flat, case with a (4 + d)-dimensional Minkowski metric. Similar

work has been previously performed for the warped case [161, 162] (though with a focus
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primarily on high energy collider signals, rather than the low energy phenomenology we

will detail here).

Large extra dimensions attempt to solve the hierarchy problem by lowering the fundamental

scale, and having the observed high Planck scale be the result of compactification to 4

dimensions. We can see how this works by considering the Einstein-Hilbert action,

S4 = −M2
Pl.

∫
d4x
√
| − g(4)|R(4). (3.1)

Here MPl. is the familiar 4-dimensional Planck mass and R is the Ricci scalar. The generali-

sation to 4 + d dimensions is,

S4+d = −M2+d
?

∫
d(4+d)x

√
| − g(4+d)|R(4+d). (3.2)

We can first observe that when computed, the Ricci scalar doesn’t change in higher dimen-

sions, so R(4+d) = R(4). The line element for the whole 4 + d dimensional space, with dΩ(d)

representing the extra dimensional line element (and ignoring fluctuations of the metric)

maybe parameterised as,

ds2 = ηµνdx
µdxν −R2dΩ2

(d), (3.3)

where ηµν is the 4D Minkowski metric. One can see from this that the determinant of the

metric obeys
√
| − g(4+d)| = Rd

√
| − g(4)|. This allows the full (4 + d)-dimensional action to

be expressed as,

S4+d = −M2+d
?

∫
d4xdΩ(d)R

d
√
| − g(4)|R(4). (3.4)

The factor
∫
dΩ(d)R

d is precisely the extra dimensional volume, Vd = (2πR)d. Comparing

Eq. (3.4) to Eq. (3.1), we arrive at the desired relation between the 4-dimensional Planck

scale MPl. and the extra dimensional, fundamental scale M?,

M2
Pl. = VdM

2+d
? . (3.5)

We note briefly that there are several means of arriving at this relationship [163]. One can

now see that the fundamental scale and size R of the extra spatial dimensions are inversely

correlated, since MPl. is fixed. So in order that the fundamental scale is very low, say on

order 1 TeV, the extra dimensions must be correspondingly large. In the case of a single

extra dimension, the necessary size is on the order of 1 A.U. (astronomical unit, i.e. the

Earth-Sun distance, roughly 1011 m). This would clearly modify the Newtonian dynamics of
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d 1/R = m0 M?

1 > 1.1 meV & 3× 105 TeV
2 > 4.6 meV (27 eV) & 3 TeV (230 TeV)
3 > 740 eV (12 keV) & 3 TeV (16 TeV)
4 > 290 keV & 3 TeV
5 > 10 MeV & 3 TeV
6 > 120 MeV & 3 TeV

Tab. 3.1.: Limits on the scale of extra dimensions. The d = 1 constraint arises from direct
tests of the gravitational inverse square law [165, 166]. For d = 2−6 the scale
is more strongly constrained by the minimum value of the extra dimensional
(i.e. the fundamental) scale M? provided by colliders [167, 168]. The values
in brackets for d = 2,3 come from consideration of photon emission from KK
gravitons produced in neutron stars [164], and are discussed further in the main
text.

the solar system, so cannot be possible. If one wishes to lower the fundamental scale from

the Planck scale to 1 TeV with flat extra dimensions, one must consider more than one extra

dimension. In the case of two extra dimensions, the scale can be lowered to roughly 3TeV

before coming into conflict with LHC bounds. The limits on the size of extra dimensions

allowed by experiment for d = 1 . . . 6 are given in terms of M? and the corresponding 1/R

in Table 3.1.

For d = 2− 3 extra dimensions the strongest current bounds arise from the consideration

of the photon spectrum due to KK graviton excitations decaying into photons after being

produced in neutron stars [164]. These constraints are listed in brackets due to their reliance

on astrophysical processes being well modelled - in general, collider processes are far better

understood than those occurring in complex stellar environments. As such, while the neutron

star bounds are far stronger, they are perhaps less reliable than those obtained with the LHC.

In the exclusion plots shown later in the Chapter, the minimum KK mode mass will be taken

at the LHC limit, but the neutron star limit will also be shown. It should be noted that the

same reservations about bounds arising from astrophysical processes apply to the bounds

derived in the work [3] this Chapter presents.

3.2 The toy model

In Chapter 1 we highlighted that in the absence of an extended hidden sector, massless

hidden photons can have no observable effects. As such, two methods of mass generation

were covered – a hidden Higgs mechanism and the Stueckelberg mechanism. It was noted

that the presence of a hidden Higgs boson changes the constraints on the hidden photon
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parameter space by providing new experimental signatures. Here we will present a toy

model where the mass of the hidden photon originates from neither of the above mechanisms

per se, but is the result of compactification from a higher dimensional theory.

We consider the simplest situation: a Minkowski bulk space with d extra spatial dimensions.

The Standard Model fields are localised to a 3-brane, which we represent with an effective

description. The brane is assumed to be infinitesimally thin, infinitely heavy and possessed

of no intrinsic dynamics. In addition to the brane-localised SM, we include gravity and an

additional D = d+ 4 dimensional hidden photon gauge field (so that the number of extra

spatial dimensions is d), both of which extend through the whole bulk space.

Our notation is perhaps best illustrated by considering the extra dimensional metric, which

has the structure,

gMN =


 gµν gµb

gaν gab


 (3.6)

where gµν is the usual 4D metric (for Minkowski space, say), the indices M,N run over

0, . . . , D − 1, and the indices a, b cover only the extra spatial components, 4, . . . , D − 1.

For notational transparency, a general extra dimensional spatial vector aM has its compo-

nents represented by (x0, . . . , x3, y4, . . . , yD−1), so that the ya represent only the d extra

dimensions. Note that since we are treating only flat extra dimensions perpendicular to

the brane, the metric is a generalisation of 4D Minkowski space, so the off- diagonal terms

gµb = gaν = 0.

The hidden photon mixes kinetically with hypercharge only on the brane (due to the

localisation of the SM). Similarly, gravity interacts with the SM only on the brane, but may

interact with the hidden photon field in the bulk (see Section 3.3).

Explicitly including only the mixing with the photon (after electroweak symmetry breaking,

this is the most relevant part for the accessible phenomenology), the above is described by

the action,

SD =
∫

dDx
√
g

(
− 1

4F
µνFµνδ

d(~y)− 1
4X

MNXMN −
1
2χDF

µνXµνδ
d(~y)

)
, (3.7)

plus terms describing the remainder of usual SM.

It is experimentally clear that, for any number of extra dimensions in which gravity acts, the

spatial extent of these dimensions cannot be large. For a single extra dimension the most
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stringent constraint on this comes from tabletop tests of the inverse square law [165, 166].

For higher numbers of extra dimensions, constraints on the production of gravitons at the

LHC provide a tighter bound [167, 168]. Thus, extra dimensions must necessarily be small

enough that they have evaded these constraints. From a theoretical perspective, they must be

compactified onto a finite manifold. In keeping with the philosophy of choosing the simplest

model, we select a d-dimensional torus, Td = S1 × S1 × · · · × S1, as the compactification

manifold, with each torus having equal radius R. Notice that each dimension here has a

U(1) symmetry. This is emphatically not the same as the additional hidden photon U(1)

gauge field.

Compactification then, is the process of enforcing the symmetries of the manifold on the field

that is being compactified. In this simple case, it can be accomplished by Fourier expanding

the hidden photon field along each of the extra dimensions.

XM (xµ, ya) = 1
(πR)d/2

∑

|~n|≥0,σ

X
(~n,σ)
M (xµ)

d∏

i=1
fσi(niyi). (3.8)

Here σ indexes the nature of the Fourier modes, hence referred to as Kaluza-Klein (KK)

modes, each of which may be either cosine (+) or sine (−). The mode associated with

compactification along each extra dimension decomposes into both types, so that we should

consider all combinations, and σ = {(+, . . . ,+,+), (+, . . . ,+,−), . . . , (−, . . . ,−,−)}. The

functions f are,

fs(nx) =





√
2 cosx s = +, n 6= 0
√

2 sin x s = −, n 6= 0

1 s = +, n = 0

. (3.9)

Physically, only the modes that are nonzero at the brane location may interact with Standard

Model fields. Since the brane is located, by choice, at ~y = 0, this corresponds to the cosine

modes in the Fourier expansion (denoted by s = + above)1.

Let us calculate the effective action of the 4D theory resulting from the compactification of d

extra dimensions in our setup. We begin by Fourier expanding the extra dimensions along

1The choice of brane location is entirely arbitrary: shifting it would result in only a linear combination
of sine and cosine modes interacting with on-brane physics
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circles of radius R, corresponding to the chosen compactification manifold. Explicitly for the

simplest case of a single extra dimension,

XM (xµ, ya) = X
(0)
M

(2πR)d/2 + 1
(πR)d/2

∑

n>0

(
X

(n,+)
M (xµ) cos

(ny
R

)
+X

(n,−)
M (xµ) sin

(ny
R

))
.

(3.10)

Inserting this into the action in Eq. (3.7), (and returning to the general case of d extra

dimensions), we have,

Seff =
∫
d4x

[
− 1

4F
µνFµν −

1
4X

µν(0)X(0)
µν +

∑

n>0,σ

(
1
4X

µν(n,σ)X(n,σ)
µν + 1

2
n2

R2X
(n,σ)
µ Xµ (n,σ)

)

+
∑

n>0

(
1
2χ4F

µνX(n,+...+)
µν

)
+ . . .

]
. (3.11)

The ~n = 0 mode has not been included in the above. Since it is massless, the mixing with

the photon can be removed by a simple field redefinition and it has no observable effects

on the model. Also not included above are the towers of scalar particles associated with

the KK decomposition of the higher dimensional gauge field, which likewise decouple. The

scalar sector comprises d massless scalars, and d− 1 associated towers of massive (linear

combinations of) scalar KK modes. The remaining stack of massive scalar KK modes are

eaten by the corresponding modes in the massless vector KK stack. This essentially represents

n copies of the Higgs mechanism, and generates a massive stack of KK vector modes with

masses,

m2
γ′ = n2

R2 (1 +O(χ2)). (3.12)

To maintain correct dimensionality in the action, the kinetic mixing parameter is suppressed

by a volume factor. Notice that the mapping between the higher dimensional mixing pa-

rameter and the 4D mixing parameter is dependent upon the number of extra dimensions.

One may expect that for higher numbers of extra dimensions, the constraint on χ4 be-

comes stronger, since more modes contribute to any given process, and the volume factor

increases.

Upon compactification, the coupling constants of higher dimensional fields are scaled by

volume factors. In the present case, this manifests in a rescaling of the kinetic mixing

parameter. The four dimensional kinetic mixing is matched to the D-dimensional mixing

by,

χ4 = χD
(πR)d/2

d∏

i=1
ηni , where ηni =





1/
√

2 ni = 0

1 ni 6= 0
, (3.13)
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and ηni is a notational convenience to account for the different normalisation of the zero

modes of the KK tower.

3.3 Gravity

Crucial to the notion of extra dimensions is the introduction of a fundamental scale, which is

supposed to be much lower than the 4D scale. Recall that the two scales are related by,

M2+d
? = M2

Pl
(2πR)d . (3.14)

The interactions of gravity with the fields of a particular theory may be extracted from the

Lagrangian,

L = − 1
2MPl

∑

~k

(
G(~k)
µν T

µν +
√

2
3(d+ 2)φ

(~k)Tµµ

)
, (3.15)

where Tµν = ∂L
∂(∂µφ)∂φ− gµνL is the energy momentum tensor of the theory (simplified here

to contain only a single scalar field) and φ(~k) is the scalar “dilaton” field.

Should we be concerned about gravity when calculating the phenomenology of our model?

The interactions of gravitons (and the particles associated with the KK decomposition - “gravi-

vectors” and “gravi-scalars”) are all suppressed by a factor of the (4D) Planck scale. However,

the stack of KK modes attached to the hidden photon also exists for the graviton, and the large

number of modes could enhance the strength of the interactions substantially. Note that the

graviton modes have the same mass spectrum as the HP modes, having been compactified

on the same manifold. Thus the contribution to a process from gravity grows with the

number of modes in the same way that the hidden photon contribution grows. As such, if

the contribution of a single graviton mode is insignificant compared to the contribution of a

single hidden photon mode in a given process, we can safely ignore gravitational interactions

in that process. To estimate the relative size of the contributions, one can simply compare the

effective “couplings” of gravitons and hidden photons respectively, namely the inverse of the

(4D) Planck mass and the kinetic mixing parameter. Then, for a process occurring at energy

scale Λ, gravitational interactions are important relative to hidden photon interactions only

when χ4 . Λ/MPl.

The above concerns only gravitational interactions with the Standard Model occurring

independently to the hidden photon interactions. However, there are possible interactions of
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the graviton with the hidden photon to consider. Let us split these interactions into those

that may occur in the full bulk space, and those that may occur only on the brane.

Gravity in the bulk

In interactions involving only the hidden photon field and gravity, the presence of the 3-

brane is unimportant – neither field is localised there, so neither “feels” the brane except via

interactions with the SM fields. As such, both the graviton and HP fields exhibit translational

invariance along the extra d dimensions, and momentum along these directions is conserved.

Post compactification, extra dimensional momentum is represented by the KK mode number.

Recall the mass of a mode is directly proportional to its mode number n, m = |~n|/R. If we

then consider the decay of a hidden photon mode of mode number2 n into a lighter mode

(k) and a graviton mode (l), we have, by conservation of mode number |~n| = |~k|+ |~l |. In

terms of the particle masses, mn = mk + ml, and the phase space for the decay vanishes

precisely. Thus decays of the form X(~n) → X(~k) +G(~l ) are kinematically forbidden. Note

that the species of the particles involved are insignificant. Any initially massless particle that

is compactified on the same manifold will generate a KK stack with precisely the same mass

spectrum, and decays between these particles will have likewise vanishing phase space.

Note that the model does not include a brane localised hidden photon term. This would

break the invariance discussed above, and permit decays forbidden in the present set up. As

such the argument is not completely general, but rather a special feature of the symmetries

that are preserved by this specific and simple model.

Gravity on the brane

When on-brane interactions are considered, the translational symmetry of the extra di-

mensions is broken, and momentum need no longer be conserved along those directions;

consequently KK mode number is not conserved. Many of the observations that have been

used to constrain the parameters of hidden photons rely upon the hidden photon having

only a negligible probability of interacting once produced. It is thus important that we

understand any mechanisms that could enhance the HP interaction with SM particles after

2Here we simplify the discussion – we are really referring to a vector of length d of mode numbers,
one for each extra dimension.
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production. The inclusion of gravity in the model presents a novel decay mode with the

potential to do just that: X → G+ γ.

For a single graviton mode in the final state, one can bound the decay width by the case of a

massless graviton,

Γ(X(k) → G(l) + γ) < Γ(X(k) → G(0) + γ) = χ2m3
X

12πM2
Pl.
. (3.16)

One can see that such a decay is strongly suppressed by the both the (4D) Planck mass

squared and the smallness of the kinetic mixing parameter. However, a given hidden photon

mode can decay to a SM photon plus any of the kinematically accessible graviton modes,

so we must perform a sum over available graviton modes. The result of this sum is to

replace the suppression by the (4D) Planck mass MPl. by the weaker suppression with the

fundamental scale M?, by virtue of Eq. (3.5),

Γ(X(k) → G+ γ)total < Γ(X(k) → G(0) + γ)×
∫ mX/m0

0
ddl

<
1

2d−1πd/2dΓ(d/2)
χ2md+3

X

12πM2+d
?

(3.17)

Since we would like to determine whether such decays are important for our phenomenology,

we should consider the limiting cases where they are most likely to be so. With only a single

extra dimension, the limit on the fundamental scale M (d=1)
? is strong, and the decay is

strongly suppressed. Moving up to d = 2, the limit on M
(d=2)
? decreases by 5 orders of

magnitude, and the power of the fundamental scale suppression is still low. At the LHC,

HP masses of order 1-3 TeV can be probed, so we can consider the very limiting case that

mX ∼ M?, and hypothesise an extremely low mass splitting m0. In this case, the decay

rate reaches the same order as Γ(X → e+e−). Since the strongest constraints from the LHC

come from a dilepton search, the constraints are not actually affected by this additional

decay mode. It is possible that it could lead to some sort of novel signature, but at present

this could access only a small fraction of the hidden photon parameter space and we do not

investigate further.

In all of the non-LHC experiments, where mX < M?, the decay is sufficiently suppressed as

to be negligible.
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3.4 Constraints

3.4.1 General features with KK modes

Before deriving specific constraints on the mass and kinetic mixing of hidden photons for

the LED scenario, let us first outline some general considerations relevant to constructing

bounds with contributions from a tower of Kaluza-Klein modes.

The salient feature of the extra dimensional scenario we investigate is the stack of massive

KK modes associated with the hidden photon. Processes that otherwise would involve only

a single hidden photon may now be accessible to a large range of hidden photon modes,

though typically the dominant effect will come from a relatively small range of masses.

We can approximate the sum over all the KK modes in the stack by an integral, on the proviso

that the mode spacing (m0 = 1/R for a single extra dimension) is small compared to the

energy range of the dominant contribution to an observable. The approximation is,

∑

~n>0
→ 1

2d
∫
ddk. (3.18)

One can imagine some observable that receives a contribution from hidden photons, and

that the contribution of a single hidden photon of mass m is χp P(m). The total KK mode

contribution to the process, for KK modes lying in the mass range M1 to M2 (and with the

mode spacing sufficiently small, m0 �M1) is then,

χp
2π d2
Γ(d2 )

1
2d
∫ M2/m0

M1/m0

dkkd−1P(km0) = χp
1
md

0

2π d2
Γ(d2 )

1
2d
∫ M2

M1

dMMd−1P(M). (3.19)

Ignoring constant factors, one can see that the magnitude of the HP contribution, after

summation over the KK stack scales as,

∼ χp

md
0
Md. (3.20)

where M is representing the energy scale of the experiment. Typically, the constraint on

the HP parameter space arises by asserting that the HP contribution to a given process is

bounded above, for example by the error on the measurement of an observable, or at the
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extreme, by the value of the observable itself. From this we can deduce that we expect to

see the constraint on χ increase as m0 decreases, with power law,

χ ∼
(m0
M

) d
p

. (3.21)

The power p depends upon the process under consideration, but we generically expect small

mass splittings, m0, to be very tightly constrained.

The existing constraints in 4 dimensions for a hidden photon with a Stueckelberg mass are

shown in Fig. 3.1. The overlaid lines show the minimum mass of a KK mode in each of

d = 1, . . . , 6 dimensions. We will now investigate in turn those of the 4D constraints that are

Fig. 3.1.: Limits on hidden photon parameter space in D = 4 dimensions with lines overlaid
showing the lowest possible mass of a KK mode with d = 1, . . . , 6 extra spatial
dimensions.

relevant to the KK scenario. They arise from:

• Stellar evolution [109, 111, 112, 128].

• IDPB [135, 136].

• Electron fixed target experiments [58, 129–133]

• LHC [134].

• Atomic spectra [137–139].

• Anomalous magnetic moments [9, 139, 169–171].

In principle there exist several other bounds that could contribute.
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SN1987a. The supernova SN1987a has been studied as a means of constraining light parti-

cles in several contexts (for examples, see [172]). Hidden photons have been constrained by

energy loss arguments [58, 115], and more recently by considering the actual electromag-

netic signal that would be generated by hidden photons decaying within the outer layers of

the supernova [173]. Crucially, both of the existing treatments neglect some plasma effects

we believe to be important, so we do not include a bound from SN1987a3.

B Factories. In the absence of a hidden sector Higgs, the hidden photon searches at

BABAR [174], DAΦNE [175] and similar facilities rely on a peak search in the dilepton

invariant mass spectrum. The mass splittings of the KK modes in the O(0.01− 10 GeV) mass

regime that these facilities can probe is smaller than the width of the modes, rendering

a peak search ineffectual. Additionally, a proper analysis requires a simulation of the

experimental detectors, which is not within the scope of this work. From the considerations

in the preceding section, we expect constraints to become stronger for lower mass splittings

m0, and it is unlikely that the constraints from B factories will surpass those from the LHC,

which are of comparable strength, but originate at a higher mass. When one considers a

low mass splitting at the LHC, it is likely to give a stronger bound than the comparable

mass splitting at a B factory, since the constraint will display the power law behaviour of

Eq. (3.21).

BBN and CMB. The low mass constraints derived from the CMB are irrelevant to the KK

scenario, since they are certainly eclipsed by higher mass constraints. The recent work [176]

on higher mass constraints from the CMB and BBN could indeed yield constraints in the

presence of a KK tower, and it would be interesting to include this bound in any related

subsequent work.

3.4.2 Astrophysical constraints

Astrophysical environments offer several avenues of exploration when considering new,

light species. Of particular interest in the present context are stellar interiors – effectively

production factories for hidden photons – and the Intergalactic Diffuse Photon Background,

which would receive contributions from decaying hidden photons.

3It was noted by my collaborator in his own doctoral thesis [145] that the existing treatments do
not account for the electron plasma mass. In working further on the issue, we found it to be an
extremely complex problem, worthy of a dedicated study in its own right, and as such do not
include it in the KK scenario bounds. We note that in principle, treated correctly, SN1987a could
contribute strong constraints.
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Stellar lifetime

Stars, by their very nature, are photon factories. Introducing a mixing between hidden

photons and SM photons opens up the potential for production of HPs in stellar interiors.

Owing to its proximity, the best-studied star is the Sun, which appears to be reasonably

well described by solar model BS05(OP) [128]. Among the features to consider when

modelling a star is the rate of energy loss due to photon and neutrino emission. Hidden

photons constitute a new channel for energy loss. If it is too great, such that the power

emitted exceeds that emitted through SM photons, it becomes impossible to construct a

model whereby the Sun survives until the present day.

The question then is can hidden photons be efficiently produced in the Sun. The answer is

a resounding yes, with a range of masses capable of being resonantly produced at varying

radial points in the Sun (since temperature varies radially). Once produced, it is unlikely

that hidden photons will interact again within the Sun, since the low stellar energies

(. 0.1MeV) mean that HPs massive enough to decay to electrons are not produced en masse.

Nevertheless, it is possible that a hidden photon is reabsorbed by oscillating into a photon.

However, this contributes to non-local energy transfer, for which solar models also cannot

account, and the constraint on the kinetic mixing remains intact.

The above arguments apply also to horizontal branch (HB) stars, with minimal modifications:

horizontal branch stars have a higher luminosity, ∼ 20L� (L� is the luminosity of the Sun,

∼ 3.8× 1026 W). Additionally, there are two resonant regions in a HB star, corresponding to

the hydrogen burning shell and helium burning core. This is place of the single resonant

region in the Sun, where the hidden photon mass mX is degenerate with the plasma

frequency ωp at some point in the stellar interior.
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Field theory at finite temperature

Calculating many-body scattering amplitudes in quantum field theory quickly becomes an
intractable problem. Ergodic systems (those in which, all else being equal, each microstate is
equiprobable, so that the time the system spends in each microstate is proportional only to
the phase space volume of the state) left to evolve over a sufficiently long period of time may
thermalize, whereby the average properties of the system are calculable in terms of only a few
observables, principally temperature T and chemical potentials µi, each of which associated
with a conserved charge of the system. In moving to this thermal (or finite temperature)
field theory description, we necessarily abandon some knowledge of the microphysics in
exchange for the benefit of otherwise insoluble systems becoming tractable.
The expectation values of operators in regular quantum field theory are calculated as,

〈O〉 = 〈out|O|in〉. (3.22)

In thermal field theory, the principal object is the partition function, Z(T ) ≡ Tr[e−H/T ], and
the expectation values of operators are,

〈O〉 = 1
ZTr

[
Oe−β(H−µiNi)

]
, (3.23)

where β is the inverse temperature β = 1/T (and here kB = 1),H is the system Hamiltonian,
µi are the chemical potentials of species i. Ni are relevant conserved quantities, for example
#(particles)i − #(antiparticles)i in relatively low energy scatterings, or B − L at the GUT
scale.
While thermal field theory calculations are in general complex, for sufficiently complicated
many-body QFT processes, moving to a thermal field theory description can dramatically
simplify the system by masking the internal dynamics. This simplification is illustrated with
cartoon diagrams in Fig. 3.2.

(a)A full, many-body QFT process. All the
dynamics are resolved, but the problem
rapidly becomes incomputable.

(b)The thermal field theory effective view of
the same process. The dynamics inside
the grey blob are not resolved, and only
average properties known.

Fig. 3.2.: Cartoon illustration of the regular vs. thermal field theory pictures of a complex
process.

When considering the production of hidden photons in stellar interiors, one must recognize

the non-trivial effect of the thermal medium in which interactions are taking place. These
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effects may be encoded in the self-energy for a particle in the medium; for example the rate

at which a given particle species approaches its equilibrium distribution is related to the

imaginary part of its in-medium self-energy,

Im Π(ω) = −ω Γ(ω). (3.24)

The principle of detailed balance (to say, at equilibrium all processes are equilibriated to

their respective reverse processes) relates the production and absorption rates by Γprod. =

e−ω/T Γabs., where the exponential is a factor arising due to the difference in Fermi and Bose

statistics4. Thus, Γ = Γabs. − Γprod. = (eω/T − 1)Γprod.. In the calculation below, we follow

the treatments of [109] and [111, 112].

To arrive at the differential production rates (per unit frequency and element volume), we

can write a Boltzmann equation for SM photons,

dnT,L
dω dt

=
dΓprod.

T,L
dω dV

1
1− e−ω/T −

dnT,L
dω

Γabs.
T,L , (3.25)

and relate the hidden photon case to this. The production rate for hidden photons is

simply,
dΓprod.,X

T,L
dω dV

= χ2
T,L

dΓprod.
T,L

dω dV
(3.26)

The electron plasma frequency, in terms of the number density ne and the electromagnetic

fine structure constant α is,

ω2
p = 4παne

me
. (3.27)

The real parts of ΠT,L, with the normalisation of the longitudinal mode used in [111]5, for

non-relativistic, non-degenerate electrons appropriate to the Sun are [178],

Re ΠT = ω2
p, Re ΠL = ω2

p

(
1− |

~k|2
ω2

)
(3.28)

For transverse photon modes, the dominant production mechanism is inverse bremsstrahlung

(free-free absorption), with a smaller contribution from Compton scattering,

ΓT = 16π2α3

3m2
eω

3

√
2πme

3T ne
∑

i

Z2
i niḡffi(1− e−

ω
T ) + 8πα2

3m2
e

ne. (3.29)

4This seemingly simple relation is subject to a surprisingly involved derivation [177].
5This differs from the normalisation of used in the standard reference [178] by a factor |~k|2

ω2−|~k|2
.
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The sum runs over the light ions i, in this case of elements hydrogen and helium, with Zi

the atomic number and ni the corresponding number density. The Boltzmann averaged

Gaunt factor ḡffi accounts for the deviation of the expression from Kramers’ classical law for

bremsstrahlung [179] 6. The stellar interior is assumed to be fully ionised, and free-bound

and bound-bound transitions are ignored as subdominant.

For longitudinal modes, bremsstrahlung is again dominant,

ΓL = 64π2α3ne
∑
i Zini

3
√

2πTm3/2
e ω3

F
(ω
T

)
+ 8πα2

3m2
e

ne

√
1− ω2

p

ω2 . (3.30)

Ignoring screening effects (a reasonable approximation – we are also ignoring Sommerfeld

enhancement, Pauli blocking and e−e− bremsstrahlung, together giving a correction .

20%),

F (ω) = K0

(ω
2

)
sinh

(ω
2

)
(3.31)

In general, the power radiated into hidden photons is given by the sum of the transverse

and longitudinal parts,

P =
∫
dω

∫
dV

(
χ2

Tω
dΓprod.

T
dω dV

+ χ2
Lω

dΓprod.
L

dω dV

)
. (3.32)

V is the finite size of the system. The effective (in-medium) kinetic mixing parameters, χT,L

are defined,

χ2
T,L = χ2m4

X

(m2
X + Re ΠT,L)2 + (Im ΠT,L)2 . (3.33)

Recalling from detailed balance the relationship between Γ and Γprod. given above, we have

everything we need to calculate the power emitted in the hidden photon channel. It is

interesting to note that due to the structure of the longitudinal effective mixing parameter,

χ2
L = χ2

(
1− ω2

p

ω2

)2
+
(

Im ΠL
m2
X

) , (3.34)

longitudinal modes can be resonantly produced (at ω = ωp) for any mX < ωp. Then,

incredibly, the contribution to the luminosity is independent of the production mechanism,

PL
dV dω

≈ 1
4π

χ2m2
Xω

3
p

eωp/T − 1
δ(ω − ωp). (3.35)

6We followed the procedure of [109] and references therein for the calculation of this factor.
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Enforcing that the total power from BSM channels is not more that 10% of the solar or HB

star luminosity results in an exclusion region on the (mX , χ) plane.

The effect of KK modes on the bound is straightforward. Each mode constitutes a new channel

for energy loss, and the sum over the losses via all modes, performed as en Eq. (3.19) must

not be greater than 10% of the observed luminosity. This enhances the constraints greatly, as

shown in the yellow and orange regions of 3.3, since even masses far below the Sun’s usual

reach have heavier modes that can be resonantly produced.

Longitudinal modes

The treatment of [109] was recently improved by the inclusion of the effects of previously

ignored longitudinal modes of the hidden photons within stellar plasmas [111, 112]. Longi-

tudinal modes in general are subdominant to transverse modes, however when the transverse

modes die off in the low mass regime (with χ4), the longitudinal modes die with only χ2,

enhancing the previous constraint.

The longitudinal modes had previously been thought unimportant due to a missing factor

of m2/ω2
p. The plasma frequency in the Sun is small relative to the typical HP masses

one considers, ωp ∼ 0.3 keV, which results in a large correction factor and significant

strengthening of the previous constraints.

Naturally, the constraint from horizontal branch stars is also subject to the same longitudinal

mode correction. As detailed above, we have included longitudinal modes in all our

calculations.

Intergalactic diffuse photon background

Should hidden photons survive until modern times, their decays into photons would enhance

the Intergalactic Diffuse Photon Background7 (IDBP) [135, 136]. HPs with a mass above

2me decay dominantly to electrons, which do not contribute to the IDPB. In our KK scenario,

this puts a natural upper limit on the mass of contributing modes at mX ∼ 1 MeV, above

7Also sometimes the Isotropic Diffuse Photon Background.
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which no constraint can be derived. Below this threshold, the dominant decay is the loop

induced three-photon decay, with rate [99, 136],

ΓX→γγγ = 17α4χ2

1164000π3
m9
X

m8
e

. (3.36)

As with the other bounds, there is no lower limit on the minimum HP mass m0 except

that imposed by the constraints on the size R of the extra dimensions. In the 4D case, the

constraint only exists in the mass range 104 − 106eV, reflecting the energy resolution of the

COMPTEL [180], INTEGRAL [181] and EGRET [182, 183] satellites that have measured the

IDPB. In the KK case, for m0 lower than this, the higher mass modes of the KK stack will

contribute decays in the observed range, so a constraint can still be devised.

The lower limit to the bound is formed, in the 4D case, by asserting that the photon flux

from HP decays cannot exceed the total measured IDPB, a constraint which may be cast in

the form [135],
mXτ(mx, χ)

GeV s . 1027
( ω

GeV

)1.3
(

ΩDM (χ2)h2

0.1

)
. (3.37)

The experimental analysis from which the original, 4D, constraint is calculated bins the

energy spectrum of the IDPB into bins of constant logarithmic width 0.4 dex. We make the

simplifying assumption of the photon energy being peaked at mX/3 for the three photon

decay, and sum the Kaluza-Klein contributions to each bin. For a given lowest mode mass

m0, the constraint plotted in Fig. 3.3 represents the bound from the tightest constrained

bin.

Note that in Eq. (3.37), no assumption is made about the fraction of dark matter comprised

of hidden photons, since the relic density in the final factor on the r.h.s is calculated in each

case. This is in contrast to [135], where the dark matter relic density is assumed to be

complete (i.e. ΩDMh
2 ∼ 0.1).

The upper limit on the constraint plotted (visible only in the d = 1, 2 cases) arises by asserting

that the lifetime of the hidden photons, τ = Γ−1
X→γγγ , must be sufficient that they survive

until after the CMB decoupling time, ∼ 1012 s after the Big Bang.
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3.4.3 Collider based constraints

While the experimental search for hidden photons has fostered some innovation in its use of

many relatively small experiments, such as in the case of resonant microwave cavities and

some light-through-walls setups, it can also make use of high energy experiments. For the

purpose of the ensuing discussion, high energy particle colliders will be divided into two

categories: fixed target experiments, whereby a particle (in the cases we consider in this

chapter, an electron) is incident upon a stationary block of material, and particle-particle

colliders (here, the LHC), where both particles in the collision are accelerated towards one

another in the lab frame.

Fixed targets

In the first kind of collider experiment we discuss, a single high energy beam is incident

upon a fixed target. Usually this is a block of metal, and the incident particle interacts with

a proton or electron within the target. The application to hidden photons works off the

light-shining-through-walls principle – that sufficiently weakly interacting particles can pass

through the shielding unhindered – and a fraction of these will decay into e+e− pairs in the

detector region.

We follow the analysis of [58] and employ the same three fixed target experiments, Fermilab

E137 and E141 and SLAC E774. All three constraints arise from counting electron events at

the detector, which makes them highly suited to the KK scenario under study. In the case of

a search for peaks in the invariant mass distribution of detected particles, for example, the

KK modes create a very wide peak, and a much more involved analysis would be necessary.

(As in the case of B factories).

Hidden photons are produced via bremsstrahlung from the incoming electron beam. They

pass without interaction through the target and shielding and decay to an electron-positron

pair in the beam pipe, which may be detected. The requirement that the hidden photon

decay within a given region introduces an additional factor of χ2 into the total amplitude for

the process. We observe in Fig. 3.3 that the slope of the fixed target region (green) obeys

a different power law to that of, say, the stellar lifetime constraints (yellow and orange

regions), since those constraints require only that the HP is produced. This is consistent with

the earlier general analysis of Section 3.4.1. The upper limit on the constraint arises due
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to hidden photons which mix too strongly with the photon, and decay to electrons rapidly,

such that they are stopped in the shielding region.

The constraints obtained on the usual 4D hidden photon parameter space are easy to

generalise to the case in the presence of a Kaluza-Klein stack. The KK modes simply increase

the number of channels into which a bremsstrahlung photon may oscillate to circumvent the

shielding region.

The constraints arising from this procedure are plotted in green (with shades denominating

the different experiments [light: E137, mid: E141, dark: E774]) in Fig. 3.3.

LHC

The LHC provides at least two avenues of investigation for hidden photons, depending upon

the HP lifetime. For long lived hidden photons, i.e. those with a very small kinetic mixing

parameter to suppress the decay to lepton pairs, a missing transverse energy search may

prove fruitful. Alternatively, in the opposite regime of short lived HPs, a dilepton search is

more suited. Each of these possibilities is investigated in turn below.

Monojets

An on-shell hidden photon may be produced at the LHC though the s-channel interaction

qg → qγ′ or t-channel interaction qq̄ → gγ′. If the hidden photon decay rate to SM particles

(in practice, this is dominated by decays to fermion pairs),

Γ(X → ff̄) =
χ2Q2

e/mαmX

3

√
1− 4

m2
f

m2
X

(
1 + 2

m2
f

m2
X

)
, (3.38)

is sufficiently small, owing to a small value of χ, then the hidden photon may escape the

LHC beamline without interaction, creating a missing transverse energy (MET) signal.

For a single hidden photon with mX = 100 GeV, its total decay width to all open SM channels

is Γtot. ∼ χ2×1 GeV. In order to contribute to a MET signal, the hidden photon must survive

long enough to escape the ∼ 10 m ATLAS detector8. For the lifetime, τ = 1/Γtot., to be

sufficient for a typical hidden photon to travel that distance before decaying, the kinetic

8Clearly, the same considerations apply to CMS, whose detector is slightly smaller.
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mixing parameter is required to be χ . 5× 10−9. Such a small mixing greatly suppresses

the production cross-section to ∼ 6× 10−14 pb. This is far too small to result in a detectable

event rate at the LHC.

Due to the mixing-induced coupling to the electromagnetic current, the primary decay mode

of hidden photons is to lepton-antilepton pairs. However, in reality the mixing is not between

the photon and hidden photon, but between the hidden gauge field and hypercharge. As

such, for sufficiently massive hidden photons, the mixing of the Z boson becomes important.

In this instance, it facilitates the hidden photon decay to neutrinos. This is not insubstantial:

for a HP with all decay modes open (i.e. mX > 2mtop), the branching ratio to neutrinos is

∼ 8%. Any hidden photon that decays to neutrinos would certainly contribute to MET.

Considering only a single hidden photon (without the whole KK stack), and using the

CheckMATE [184–189] software tool on a model generated with Herwig++ [190], we find

no constraint better than unity on the kinetic mixing parameter from monojet searches.

Including the effect of the many KK modes in the stack, it is likely some bound would arise.

However, since the effect of the KK modes is the same in the case of decay to neutrinos and

dileptons, we can be assured that if a constraint arises for a single hidden photon from a

dilepton search then the bound including the KK modes will also be stronger in that channel.

We turn now to dilepton searches, where a constraint does indeed arise.

Dileptons

In a BSM context, dilepton analysis attempts to identify or exclude new particles by searching

for a resonant peak in the invariant mass distribution of a lepton-antilepton pair (e± or

µ±) signaling a new massive particle decaying into the pair. Using a model created in

FeynRules [191] and generating cross sections with MadGraph 5 [192] (via the FeynRules

UFO output [193]), the results of the existing ATLAS Z ′ search [194] can be mapped directly

to the model we consider. This is straightforward in the case of only a single hidden photon,

but more involved when the stack of KK modes is considered.

It was just claimed that a new particle (with appropriate couplings) would decay into an

l+l− pair. In fact the hidden photon mediating the s-channel interaction between quarks

and the lepton pair need not be on-shell, and the effect of the KK modes should strictly be

summed at the amplitude level, with each mode entering as a propagator in the calculation
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of the S-matrix element for the scattering. This requires the introduction of a UV cutoff, or

the summation (approximated as an integral due to the near-continuous mass spectrum

of the KK stack) is divergent. Since in any case the signal is dependent on a peak in the

invariant mass spectrum of the resulting dilepton pair, we make the simplifying assumption

of an on-shell mediator, neglecting the effects of amplitude interference.

The KK modes are summed per energy bin used in the collaboration’s experimental analysis,

assuming an invariant mass spectrum strongly peaked around the mode mass. The limit

placed on χ is the strongest limit arising from any bin for a given m0.

This analysis is sufficient if the peaks from the decay of hidden photons into dileptons

are well separated. In the high m0 region (∼ TeV), this is the case and the mode width

is much smaller than the mode spacing, ∆m � Γ(mX , χ). As m0 decreases, the mode

spacing also does (for a single extra dimension, m0 = ∆m is the mode spacing), and at some

stage the spacing becomes comparable to the width. The blue bound representing the LHC

dilepton constraint in Fig. 3.3 is shaded darker in the region where there is peak overlap

(i.e. when Γ(mX , χ) & ∆m). In principal, a more detailed analysis is required here, and

the cross-section should be calculated at the amplitude level. This analysis has not been

performed, since it will be shown in Section 3.5 that for any of several reasonable cutoff

schemes, the region bounded by dileptons has a non-perturbative χeff., which invalidates

the whole analysis.

3.4.4 Laboratory constraints

At the opposite end of the energy spectrum to the LHC, constraints may be derived from low

energy precision measurements. The constraints of this section are of a different nature to

those from previous sections, in that they do not involve the production of real (on-shell)

hidden photons. Instead, the hidden photon enters the process as a propagator insertion, in

the same way as the virtual photon that mediates the process in the Standard Model case.

In the case of real HP production, there is an energy scale associated with the production

environment which provides a natural cut-off to the mass of the heaviest KK mode that

may be produced. When the mode is virtual, there is no such natural cut-off. In higher

dimensional theories, the integral over KK mode number is divergent. In the absence of a

well defined UV complete theory, we must impose an artificial cut off, Λ in order to tame the
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divergent behaviour. In Section 3.5, consideration is given to some issues arising from the

imposing of a cut-off energy scale.

Atomic spectra

Constraints on 4D hidden photons have been derived by considering the effect of the new

particle on the spectra of atomic transitions. Several transitions were considered in [139]; it

turns out the most stringent constraint for our scenario arises from the Lamb shift in the

2s1/2 − 2p1/2 transition in atomic hydrogen.

The constraint arises by relating the amplitude for the interaction of an electron with a

heavy target to the Born approximation for the same process, from which one can read

off the Coulomb potential. The hidden photon enters the amplitude as a new propagator,

and in the KK case, we can here perform the sum over KK modes (in reality, we will

integrate over the KK mode density later as in Eq. (3.19), which is precisely equivalent). The

presence of a hidden photon results in a Yukawa-like modification to the Coulomb potential:

δV (r) = −(χ2Zαe−mXr)/r for a single hidden photon.

When integrating the KK mode density to obtain the results plotted in dark red in Fig. 3.3, a

finite UV cut-off was imposed. The integration was cut-off at the point where the effective

kinetic mixing parameter χeff. becomes non-perturbatively large (in this case, we take

χeff. > 1 to signal non-perturbativity). Further discussion of perturbativity will be given in

Section 3.5.

Electron and muon g − 2

The anomalous magnetic moment of leptons arises due to quantum corrections to their

interaction with an applied electromagnetic field. The leading order correction is that caused

by a single additional photon in the vertex. The interaction of an electron with a vector

potential can be parametrised by two form factors, F1(q2) and F2(q2). The magnetic moment

may be expressed as,

〈~µ〉 = e

m
(F1(0) + F2(0)) ξ

′†σ
2 ξ, (3.39)

(ξ is a two-component spinor). To leading order, F1 = 1 and F2 = 0. The additional photon

in the vertex renders F2 non-zero. Comparing to the classical expression for the magnetic

moment,

~µ = g
( e

2m

)
~S, (3.40)
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we define the Landé g-factor by g = 2 (F1(0) + F2(0)). As mentioned, to leading order,

F1(0) = 1, so it is useful to define an anomalous magnetic moment,

ae = g − 2
2 (= F2(0)) (3.41)

Hidden photons modify this value in much the same way as for the atomic spectra, via a

propagator insertion into the amplitude, causing an adjustment proportional to the square of

the kinetic mixing parameter, χ2. If there were only a single measurement of the anomalous

magnetic moment, the modification would be undetectable, since it can be accounted

for by simple renormalisation of the fine structure constant, α → α/(1 − χ2). However,

the measurement has been accurately performed for both electrons and muons, and by

combining the measurements, we can arrive at a limit on the maximum experimentally

allowed magnitude of any modification to the anomalous magnetic moment.

The treatment of [139] details this procedure, and also resolves a problem with the scaling of

earlier constraints in the low mass region. We perform the integration over the KK spectrum

similarly to the atomic spectra case.

The anomalous magnetic moment of the muon is truly anomalous - around 3σ deviated [9]

from the SM expectation, accounting for higher order corrections that produce anomalous

magnetic moments at all (at tree level, g−2
2 = 0). There exists a narrow, unconstrained

region of parameter space where the presence of a (4D) hidden photon can explain the

discrepancy in the muon g − 2 [169–171]. Further, the entire region can be probed by the

upcoming DarkLight [195] and HPS [196] experiments, with the possibility of results as

early as 2015.

3.4.5 Summary of constraints

Fig. 3.3 shows the combined constraints for each of d = 1, . . . , 6 extra dimensions. In

each case, the region of the 4D kinetic mixing parameter excluded by a given process is

plotted against the mass of the lightest KK mode, m0. The minimum value of m0 probed

increases with the number of extra dimensions, corresponding to the limits on the size of

extra dimensions shown in Table 3.1.

The solid and dashed black lines on the plots illustrate the point above which the effective

kinetic mixing parameter becomes non-perturbatively large (greater than one). The point
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Fig. 3.3.: Limits on hidden photon parameter space for d = 1, . . . , 6 extra dimensions. The
mass constrained, mX , represents the lowest KK mode mass, i.e. also the spacing
between modes (for a single extra dimension). The lowest value of the mass
axis is set by constraints on the maximum size, R, of the extra dimensions from
graviton searches, see Table 3.1. The light grey shaded region for d = 2 and d = 3
indicates the region that is ruled out by neutron star processes, but not yet at the
LHC. The solid and dashed black lines represent the boundary of the perturbative
region if a finite cutoff scheme is applied at the corresponding scale. In the region
above the lines, the effective kinetic miking parameter (summing for the effect
of all modes) is greater than one. We see that this is very restrictive, rendering
a perturbative description incorrect in most of the accessible parameter space.
Refer to the text for further discussion.
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depends upon the cutoff scheme employed. Alternatively stated, if we demand perturbativity

of the effective mixing parameter up to 5 TeV, the solid black line indicates the region of

(mX ,χ4) parameter space that falls foul of this constraint (above the line). The dashed line

indicates the same constraint, where perturbativity of the theory is demanded up to the

fundamental scale M? (note that this is a function of m0). Further discussion of cut-off

schemes and perturbativity is given in the next Section (3.5)).

3.5 Perturbativity

Reference has been made in preceding Sections to issues of cut-off dependence and pertur-

bativity of the theory. To frame the discussion, we first define an effective kinetic mixing

parameter, which accounts for the summation over many KK modes contributing to a

process,

χ2
eff. = χ2

4 ×
∫ Λ

m0

1
d dk = χ2

4 ×
∫ Λ

m0

1

2π d2
Γ(d2 )

kd−1dk. (3.42)

The stack of KK modes are all mediating the same, extra dimensional, force, and as such

we are interested in their combined behaviour, not that of individual modes. Hence, in

discussions of perturbativity, this is the relevant parameter to consider. The region where a

perturbative treatment is valid is defined by χeff. � 1.

In defining the effective mixing above, it is necessary to include a cut-off mass scale, Λ,

at which the integral is terminated (since we are actually integrating over the number of

available KK modes, we terminate the integral at Λ/m0, the mode number of the highest

accessible mode). Clearly, the higher the scale Λ, the more modes contribute to the effective

mixing parameter.

In the case of real production of KK hidden photon modes, there is a natural value for Λ

at the highest energy scale of the process, Λ = Emax. (for example, the beam energy in

electron fixed target experiments). In the case of virtual production of the modes (rather of

any process involving virtual modes), there is no such natural cut-off. The integral over loop

momentum runs in principal to infinity. In the case that the amplitude for a process involving

virtual modes decouples slowly from the loop momentum, in order to extract meaningful

information one must assert a finite cut-off by hand. Such an arbitrary dependence is

extremely undesirable in any theory of physics. However, it is already explicitly clear from

our formulation that the model Langrangian represents an effective theory, supposed to be
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a valid approximation only up to some finite energy scale, at which a more fundamental

theory is resolved. By asserting a cut-off, we are admitting ignorance of physics beyond this

point. Discussion will be given to three cut-off schemes.

The first is a finite cut-off at a fixed energy scale. As per Fig. 3.3, Λ = 5 TeV is chosen as a

reasonable toy value, being higher than the current constraints on the minimum fundamental

scale (Table 3.1) for d > 2. As shown by the solid black line in Fig. 3.3, it seems very little of

the experimentally accessible parameter space results in χeff. remaining perturbative up to

that scale.

However, it is not necessary to impose the same perturbativity requiremens on all constraints.

For example, in order that the treatment given to fixed target experiments be valid, pertur-

bativity is needed only up to a scale around a GeV. For the stellar lifetime constraints, the

maximum energy of the process is of the order of 10 MeV, and perturbativity is not required

any further than that for the treatment to be valid (we return to this momentarily).

In place of the somewhat arbitrarily chosen 5TeV cutoff, one could instead set the cut-off at

the fundamental scale, Λ = M?. This introduces a dependence on the lowest KK mode mass,

m0,

M? =
(
M2

Pl
(2π)dm

d
0

) 1
2+d

. (3.43)

which has been arrived at by use of the relationship M2+d
? = M2

Pl./(2πR)d. This turns out

to be an even more restrictive requirement than choosing Λ = 5TeV (since for much of the

space, M? > 5TeV).

Note that the crossing point of the solid and dashed lines in Fig. 3.3 is the point in m0

at which the fundamental scale is precisely 5TeV. Below this value of m0, M? is actually

less than 5TeV, and it is perhaps unreasonable to expect perturbativity beyond M?, as by

definition of our effective theory for the brane, we are ignorant of physics beyond that

scale.

As previously mentioned, it is understood that the kinetic mixing phenomenon we are

investigating is also an effective theory only. It can be that the scale at which the new

physics represented by the effective theory becomes accessible is lower than the fundamental

scale.
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A second cut-off scheme is possible. One can first calculate the point at which the effective

kinetic mixing χeff becomes larger than one, and cut-off the integration there. This is the

scheme applied to the atomic spectra and anomalous magnetic moment constraints. It

diverges from a finite cut-off (in this instance) only when d = 1, 2, leaving a small corner of

parameter space unconstrained by these bounds.

Finally, we may consider applying cut-offs on a bound by bound basis, at the relevant

energy scale of the experiment (this is reasonable only for constraints arising from the real

production of hidden photon KK modes). The result of this is shown in Fig. 3.4, where

regions that are not suitable for perturbative analysis have been whited out. For example, the

E774 fixed target experiment used a 275 GeV electron beam, so we cut-off the integration of

KK modes at Λ = 275 GeV. This is as before (in the results in Fig. 3.3), since clearly no modes

can be produced with a mass higher than the available energy. Now we compute the effective

kinetic mixing parameter χeff. with the same cut-off. Any combination of (m0,χ4) that results

in χeff. > 1 is not suitable for a perturbative treatment. We do not plot these regions, as we

can make no statement about their validity, having used perturbative techniques throughout.

The regions shown in 3.4 are thus ruled out with only the relatively modest assumption that

the photon-hidden photon kinetic mixing interaction remains perturbative up to the energy

of the experiment.
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Fig. 3.4.: Limits on hidden photon parameter space for d = 1, 4 extra dimension. Perturba-
tivity limits have been enforced on a bound-by-bound basis, with modes included
up to the energy scale of each constraint. Regions where a perturbative treatment
is invalid are not shown as constrained (see text for details).
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3.6 Conclusion

We have investigated the phenomenological impact of hidden photons arising from a higher

dimensional field. Upon compactification, this generates a massive stack of Kaluza-Klein

modes, which negates the possibility of the hidden photon decoupling from the Standard

Model by a field redefinition. In particular, since the KK mode tower is massive, it does not

require an additional Higgs or Stueckelberg mechanism in order to generate observable

effects.

The constraints on hidden photons from flat extra dimensions prove strong, with the

enhancement from the KK modes becoming stronger as the lowest mode mass m0 decreases,

reflecting the greater number of modes contributing. This study illustrates that one must

consider the mechanism of mass generation carefully, since it can drastically affect the

experimental signatures.
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4Coy Dark Matter

„. . . all along the formless coast bordered by dangerous

surf, as if Nature herself had tried to ward off

intruders . . .

— Marlow

4.1 Coy dark matter

The central thesis of [2] is that there exists a perfectly viable model of dark matter that

explains the apparent excess of photons from the Galactic Centre and yet is unlikely to be

give rise to detectable signals in either direct detection or at the LHC. This runs counter

to the usual implicit assumption (based on the complementarity diagram in Fig. 1.1 in

the Introduction) that dark matter would be discovered in multiple channels. It has since

been highlighted in [197] that the same model (as [2]) can also account for the tension

between the claimed annual modulation at DAMA [20] and the strong constraints from

XENON100 [32] and LUX [18]. Further, the model can also be adapted to explain the

anomalous magnetic moment of the muon [198].

Consider dark matter composed of a single species of Dirac fermion, ψ, which couples to the

Standard Model only via interaction with a pseudoscalar a, as described by the Lagrangian,

L ⊃ −igDM√
2
aψ̄γ5ψ − i

∑

f

gf√
2
af̄γ5f + h.c. (4.1)

We could parametrize our ignorance of the pseudoscalar couplings in several ways, so taking

motivation from minimal flavour violation, we choose that the couplings gf are equal to

the SM Yukawa values, gf = yf ≡ mf/174GeV. The coupling gDM of a to the hidden sector

fermions is a free parameter, as are, a priori, the masses of the hidden sector fermions

and the mediating pseudoscalar. We do not specify any further field content of the model,

assuming it is sufficiently heavy to decouple from the relevant processes in astrophysics
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and at the LHC, but note that similar scenarios arise in SUSY (though with much richer

phenomenology) and other theories featuring multiple Higgs doublets.

The simple model in Eq. (4.1) results in the thermally averaged cross section (times velocity)

for ψ̄ψ → f̄f annihilation,

〈σv〉f = NC
8π

y2
fg

2
DMm

2
ψ

(m2
a − 4m2

ψ)2 +m2
aΓ2

a

√
1−

m2
f

m2
ψ

. (4.2)

Notice that the r.h.s of the above cross-section is not dependent on the velocity distribution

of dark matter. However, one finds that the same Lagrangian results in a velocity suppressed

cross-section for interaction with a nucleus in a direct detection experiment. Let us examine

the phenomenon of velocity suppression.

4.1.1 Spin dependent vs. spin independent interactions

Unlike in high energy, relativistic processes, at the low energies associated with the non-

relativistic WIMPs in the galactic halo the difference between spin-dependent (SD) and spin-

independent (SI) scattering is pronounced. To illustrate this, consider the Lagrangian (4.1),

and the equivalent Lagrangian, with the pseudoscalar mediator replaced by a scalar φ,

Lscalar ⊃ −
g′DM√

2
φψ̄ψ −

∑

f

g′f√
2
φf̄f (4.3)

One can compute the cross-section for annihilation of each of these cases explicitly (see

Appendix C for the matrix element calculation), in which case the velocity suppression will

be apparent, but there is a physical reasoning behind the result.

Consider the annihilation of two Dirac fermions into two SM fermions, mediated by a

(pseudo)scalar. The total spin of the incoming fermion anti-fermion pair is 1, which allows

the projection along a chosen axis to take values −1, 0, 1. Assuming CP conservation, the

dark fermion Dirac bilinear must have the same CP properties as the resulting final state and

the intermediate particle. For fermions,

C : (−1)L+S , P : (−1)L+1, (4.4)

whereas for bosons,

C : (−1)L+S , P : (−1)L. (4.5)
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A combination of dark matter and SM bilinears can only result in a non-zero matrix element

if they respectively annihilate and create a state with the same total angular momentum

J . With a scalar interaction, the bilinear is ψ̄ψ, which is CP even, having L = S = 1, with

J = 0. The scalar mediating the interaction interacts in the same fashion with SM fermions,

so the interaction is allowed. The restriction for like J values simply eliminates interactions

where the Lorentz structure of the interaction is different for the DM and SM bilinears. This

makes sense, since a mediating particle (which, in the case of effective operators, has been

integrated out) must have definite spin, and cannot, for example, interact as a vector with

some fermions and a scalar with others. Note though, that the interaction has L = 1, and as

such the annihilation occurs in the p-wave, the L = 1 term in the partial wave expansion.

Partial wave amplitudes scale with v2L, where v is the relative velocity of the interacting

particles, so in the low energy limit, such an interaction is “velocity suppressed” by the

non-relativistic v ∼ 10−3c.

Conversely, if the interaction with both DM and SM is pseudoscalar (we will not consider

the CP violating case that the interaction with one of DM and SM is scalar and the other

pseudoscalar), the resulting CP odd bilinear has L = S = 0. Thus, it has an s-wave

amplitude, and is not velocity suppressed.

Summarising the CP properties above:

ψ̄ψ iψ̄γ5ψ ψ̄γµψ iψ̄γµγ5ψ

C +1 +1 −1 +1

P +1 −1 (−1)µ −(−1)µ

CP +1 −1 (−1)µ −(−1)µ

(4.6)

Included also are the vector and axial vector bilinears, where, using the notation of [199],

(−1)µ = 1 (−1) for µ = 0 (1, 2, 3). From these CP properties, one can determine the lowest

L state in which an interaction can occur, and thus whether or not the interaction is velocity

suppressed. A complete analysis of the suppression of many operators for fermionic, scalar

and vector dark matter for in both annihilation and scattering processes is given in [200],

including cases where even the s-wave amplitudes are helicity suppressed.

In general, the thermally averaged cross-section may be expanded as [201],

〈σv〉 = 〈a+ b v2 + c v4 + . . . 〉 = a+ 3
2b x

−1 + . . . (4.7)
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where with x = m/T , and m being the mass of a the incoming particles and T the tempera-

ture. Processes with an s-wave amplitude have non-zero coefficients a and b, whereas those

with no s-wave have non-zero b only, corresponding to the p-wave. For the model we are

considering in this Chapter, where DM annihilates through a pseudoscalar interaction, there

is an s-wave amplitude, so the thermal averaging process does not change σv (ignoring the

highly suppressed p-wave contribution).

4.2 Indirect detection with the Fermi satellite

It was reported in [49] that there is a significant gamma ray excess distributed around the

galactic centre. Owing to the complex nature of the astrophysical environment, coupled

with our relative ignorance of some aspects of astrophysics, it is not possible to rule out

completely a Standard Model explanation of the excess. However, it has been found [202,

203] that neither millisecond pulsars nor cosmic ray interactions (two of the most promising

SM candidates),can provide a suitable fit to the excess. It is known from simulations that

the galactic centre contains a dense population of dark matter. If that dark matter has an

annihilation chain to photons, it is not unreasonable to interpret the excess as a result of

this. Speculating that this is the case, one can constrain the parameters of a given DM model

in order that the excess is produced at the right level. Of course, there could be several

contributing processes, but it can at least be inferred that dark matter annihilations cannot

be responsible for an excess greater than that observed.

The prompt photon flux from DM annihilations (i.e. that which arises from direct annihilation

into photons, rather than those produced in the subsequent interactions of SM particles) at

Earth from a region of solid angle ∆Ω of the galactic centre is, in terms of the per annihilation

energy spectrum dN/dE,

dΦ
dEγ

= 1
4
r�
4π

(
ρ�
mDM

)2
〈J〉∆Ω

∑

f

〈σv〉f
dNf

γ

dEγ
. (4.8)

The local dark matter density is ρ� = 0.42 GeV cm−3, at a distance r� = 8.25 kpc from

the galactic centre. The J factor, which contains the elements of the above formula for

calculating the flux that are a function of the halo profile, is

〈J〉 = 1
∆Ω

∫
cos b J(b, l) db dl, (4.9)
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with

J(b, l) =
∫

l.o.s.

ds

r�

(
ρ(r)
ρ�

)2 
r=
√
r2
�+s2−2r�s cos b cos l

. (4.10)

The element of integration, ds, is to be performed along the line of sight, to say along a line

connecting Earth and the Galactic centre. For the density function we choose a NFW profile

with γ = 1.2, which gives a good fit to the gamma-ray excess [204],

ρ(r) = ρs

(
r

rs

)−γ [
1 +

(
r

rs

)]γ−3
. (4.11)

The final factor in Eq. (4.8), the photon energy spectrum per annihilation, and the J factor

are taken from precomputed tables [205] where the parton shower has been performed by

PYTHIA 8.135 [206]. Non-prompt photons, i.e. those produced by secondary processes and

particle decay cascades, are ignored. The cross-section (which to leading order in v � c is

not affected by the thermal averaging process) is that in Eq. 4.2.
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Fig. 4.1.: Data points and error bars for the photon excess in a 7◦ × 7◦ region about the
galactic centre. The blue line provides an example photon spectrum generated
for mDM = 30 GeV, with a cross-section appropriate to allow the DM to be a cold
thermal relic.

For mDM = 30 GeV, annihilating primarily to b quarks (as determined by the Yukawa hierar-

chy of the couplings), fitting to the observed galactic excess (minimising chi-squared [204])

results in a weak scale cross section compatible with the DM being a thermal relic. Fig. 4.1

shows the differential photon flux as a function of the photon energy for this set up with

a cross-section 〈σv〉 = 3 × 10−26cm3s−1. This cross section gives an excellent fit to the

observed data. Fig. 4.2 shows the best fit value of the cross-section as a function of the DM
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mass, with contours for the first 3 standard deviations from the best fit. The fit assumes the

branching ratio for decays to depend only on the Yukawa couplings.
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Fig. 4.2.: The point in the DM (mass, cross-section) plane that best fits the observed gamma
ray excess for, assuming branching ratios with a SM Yukawa structure, along with
standard deviation contours.

4.3 Direct detection

Having found the WIMP mass and cross-section that best fit the galactic centre excess, one

can now consider other experimental means by which such a model may be detected. We

will first discuss the prospects of discovery at direct detection experiments.

The dark matter galactic halo is constituted by primarily non-relativistic dark particles. The

WIMPs are assumed to have a Maxwellian velocity distribution [17],

f(~v,~vE) = e
− (~v+~vE)2

v2
0 , (4.12)

where ~v is the velocity of the WIMP w.r.t the terrestrial target nucleus, ~vE is the Earth’s

velocity relative to the DM halo and v0 is the average WIMP velocity relative to Earth. The

expected event rate per unit mass on the target is then,

dR = N0
A
σv dn (4.13)
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The number density of WIMPs is dn = (n0/k)f(~v,~vE)d3~v, with n0 = ρDM/mψ is the average

number density and k is a normalisation constant1 such that
∫ vesc.

0 dn = n0. N0 is Avogadro’s

number, 6.02× 1026 kg−1.

In general (by construction), the elastic scattering cross-section can be written as a sum of

spin independent and spin-dependent terms [207],

dσ

dER
= mN

2µ2
ψNv

2 (σSIF 2(ER) + σSDS(ER)), (4.14)

where F (ER) and S(ER) are form factors accounting for nuclear effects (each of σSI,SD is a

nuclear cross-section). µψN is the reduced mass of the DM with the nucleus. In terms of the

DM-proton interaction σSI
p , the nuclear cross- section for spin independent scattering is,

σSI = (Zfp + (A− Z)fn)2

f2
p

µψN
µψp

σSI
p . (4.15)

The DM couplings to the proton and neutron are fp and fn respectively. Still following [207],

the spin dependent cross-section is,

σSDS(ER) =
4πµ2

ψS

3µ2
ψpa

2
p(2JN + 1)(a2

0S00(q) + a0a1S01(q) + a2
1S11(q))σSD

p . (4.16)

The couplings a0,1 are combinations of the proton (p) and neutron (n) couplings, a0 =

ap + an and a1 = ap − an. The S00,01,11 functions are nuclear structure functions which

depend on spin and the species of nucleus.

The low energy of the interactions means that even theories with a relatively light, GeV-

scale particle mediating the interaction of dark mater with the standard model can be well

described by an effective theory. The theory expressed by the Lagrangian (4.1) can be

equivalently described in the low energy regime by,

Leff. = yfgDM
2m2

a

ψ̄γ5ψf̄γ5f (4.17)

though in practice we are interested only in the interactions with quarks for direct detection.

In fact, since the scattering occurs at such low energies (typical recoil energies for, e.g.

LUX are in the O(10 keV) range [18]) the relevant quantity is in fact the nucleon scattering

1Therefore, k =
∫ 2π

0 dφ
∫ +
− d(cos θ)

∫ vesc.
0 f(~v,~vE)v2 dv, vesc. =

√
2GMhalo/rhalo.
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cross-section. The nucleon-level matrix element can be related to the quark level matrix

element as (in the non-relativistic limit),

yqgDM
2m2

a

〈ψf |ψ̄γ5ψ|ψi〉〈nf |q̄γ5q|ni〉 →
gnnagDM

2m2
a

〈ψf |ψ̄γ5ψ|ψi〉〈nf |n̄γ5n|ni〉 (4.18)

where n is a nucleon and the nucleon coupling is

gnna = mn


 ∑

q=u,d,s

yq∆q
mq

− m̄


 ∑

q=u,d,s

∆q
mq


 ∑

q=u,...,t

yq
mq


 . (4.19)

The ∆q values are form factors, calculated based on nuclear measurements and lattice

simulations, and m̄ = (1/mu + 1/md + 1/ms)−1. We take the values [208],

∆u = −0.44, ∆d = 0.84, ∆s = −0.03, (4.20)

which represent a neutron. gnna ' 2.8 × 10−3 for a neutron which interacts with DM

via Yukawa couplings, yq = mq/174GeV. Though the current most sensitive limits on

spin-dependent WIMPs arise from the fluorine based SIMPLE [34], PICASSO [44] and

COUPP [35] (with the latter providing the most stringent constraint for mDM ∼ 30GeV),

the forthcoming LZ experiment is likely to surpass all present sensitivities [30, 209] and

is xenon-based. In principle, the proton content of a nucleus should also be accounted for,

in this case though, it is not necessary, since neutrons carry most of the spin in a xenon

nucleus.

The non-relativistic limit of the nucleon level matrix element (4.18) leads to a nuclear level

cross-section [210] for a nucleus of spin JN,

dσ

dER
= q4

m2
DMm

2
N

3g2
naag

2
DMmN

8m4
av

2
1

2JN + 1SA(q). (4.21)

SA(q) a the spin structure function, which is dependent on the momentum transfer q2 =

2mNER, where ER is the recoil energy (O(10keV)) and mN the mass of the nucleus. The

first factor in (4.21) is of order O(10−12), suppressing the cross-section substantially. Here is

the crucial observation central to “coy” dark matter. We earlier observed that the annihilation

cross-section was unsuppressed, and the model can account for the Galactic Centre excess.

However, the differential cross-section above is velocity suppressed (by v2 ∼ q4/v2), making

detection difficult.
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The number of expected events with between 2 and 30 photo-electrons in the LZ detector,

assuming the efficiencies of LZ to be the same as LUX, for mDM = 30GeV is [17, 211],

Nexp. =
(gDM

1

)2
(

250 MeV
ma

)4( Exposure
107 kg days

)
events. (4.22)

One can also map the cross-section to the form constrained by the experiments to allow

direct comparison with experimental limits,

σ̃SD
n = 9

16π
q4

m2
DM

g2
nnag

2
DMµ

2
n

m4
a

' 8× 10−43cm2
(gDM

1

)2
(

250 MeV
ma

)4
. (4.23)

The above form assumes fixed momentum transfer q = 100 MeV, compatible with ER ∼

10 keV and mDM = 30 GeV. µn is the DM-nucleon reduced mass.

The projected limit from LZ is σ̃SD
s ≤ 7 × 10−43 cm2 for a 30 GeV WIMP [30], on the

order of the estimate above for very low pseudoscalar masses. Clearly, for pseudoscalar

masses & 1 GeV considered in [2], the cross-section is highly suppressed, and no events are

expected.

The forthcoming PICO250 experiment uses fluorine in place of xenon, which results in greater

sensitivity to the WIMP-proton cross-section. The collaboration estimate that PICO250 will

be sensitive to cross-sections lower than 8 × 10−43cm2 (again, for mDM = 30 GeV) [30].

Modifying the above to account for the proton coupling, gppa ' −1.1× 10−2 and the lower

mass of a fluorine nucleus, resulting in q = 50 MeV for 10 keV recoil energy, the cross-section

in Eq. (4.23) grows approximately 45 times larger,

σ̃SD
p ' 8× 10−43cm2

(gDM
1

)2
(

250 MeV
ma

)4
. (4.24)

As such, PICO250 will nominally set a stronger constraint than LZ, but is nonetheless

insufficiently sensitive to detect scattering via a ∼ 10 GeV mediator, even for couplings of

order unity.

While for many spin-dependent operators, the first signal could actually come from loop-

induced spin-independent interactions, it is calculated in [212] that this is not the case

for light pseudoscalar mediators. Thus direct detection can provide no constraints on the

scenario discussed.
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4.4 LHC Signatures

Since direct detection suffers from velocity suppression for pseudoscalar mediated fermionic

WIMPs, perhaps creating the particles at relativistic energies, so the interaction rates are not

suppressed (since v ∼ c) could be more successful.

One could expect that the Yukawa coupling structure of the pesudoscalar makes a search

involving the tt̄a coupling viable. For example, the ATLAS tt̄+MET search [213]. In fact, the

pp→ tt̄a cross-section is very small, ∼ 40 fb, and this analysis results in no constraint. This

and other analyses (jets plus MET [214], jets plus one isolated lepton plus MET [215] and

three leptons plus MET [216]) were tested with CheckMATE [184], yielding no constraints.

The most relevant operator for a collider search is in fact the top-loop induced dimension

five aGµνG̃µν . The most sensitive search for this operator then turns out to be the CMS

monojet search with 19.5 fb−1 of data collected with 8 TeV centre-of-mass energy [65]. Cross

sections for the model are calculated with MadGraph 5 [192], using the UFO output [193]

of FeynRules [191]. The resulting exclusion limit (at 90% C.L.), as a function of the

pseudoscalar mass ma is plotted in Fig. 4.3 as the solid blue line – the region above the

line is excluded by the search. Notice the extremely large couplings that are still viable:

the current LHC data is inadequate to constrain this model. In fact, for such large gDM, the

pseudoscalar decay width is larger than its mass, making even interpreting the mediator

as a particle suspicious. Note also that use of the effective operator for the top loop is

likely to overestimate the cross-section for monojet production, so the bounds presented are

optimistic [217].

Making a projection of the potential of the full 14 TeV search to constrain the same process,

we see that it is possible that monojet searches will yet rule out some of the higher mass

region that can fit the galactic excess. The estimate assumes 40 fb−1 of data, where the

monojet signal over background has remained constant (though of course each individually

will have increased). The increase in the gluon PDF for the higher energy scatterings at 14 TeV

increases the cross-section for pseudoscalar plus monojet production. If the pseudoscalar has

a mass that facilitates decay to two WIMPs, ma > 2mDM, the cross-section for a monojet plus

missing transverse energy is approximately σ(pp→ a+ jet)× BR(a→ ψ̄ψ). So long as the

pseudoscalar-dark matter coupling gDM is larger than the bottom Yukawa yb (and provided

that the pseudoscalar is not so heavy that it can decay to top quarks), the branching ratio to
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WIMPs is high, ∼ 100%. This explains the step like potential exclusion region (dashed blue

in Fig. 4.3) – the exclusion is much weaker when decay to dark matter is not possible, but

beyond that threshold, the pseudoscalar mass is does not much change the cross-section.

Even then, there remains a large range of pseudoscalar masses that can couple to 30 GeV

dark fermions with a Yukawa hierarchy and explain the galactic excess, while leaving no

trace at the LHC or in direct detection experiments.

The solid blue line in Fig. 4.3 represents the only current constraint on the model. The

dashed red line represents the best fit to the Fermi excess, with the shaded area covering the

3 standard deviation region of parameter values giving a good fit. In both cases the WIMP

mass has been fixed to mDM = 30 GeV.
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Fig. 4.3.: The monojet exclusion limits plotted with the 3σ region that best fits the Fermi
gamma ray excess from the Galactic Centre. A WIMP mass mDM = 30GeV is
assumed.

It is very difficult to constrain the model we have constructed with colliders, and should dark

matter truly be composed as such, it is possible that our only non-gravitational observation

of it will be the galactic centre excess.

4.5 Conclusion

We have underlined the known importance of the nature of the scattering in dark matter

searches. Understanding which interactions in a DM model will be suppressed by the non-

relativistic velocity of the halo allows one to construct models to fit the available potential
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signals, or inversely, tells one where to look for signals given a model. In particular, we

found a simple model with Dirac fermion WIMPs and a pseudoscalar mediated interaction

that can fit the Galactic Centre gamma ray excess while potentially leaving no signal in

terrestrial experiments.

The existence of this scenario highlights the importance of understanding astrophysical

backgrounds, particularly in regions of likely DM annihilation signals, since it may be the

only non-gravitational window on dark matter we can access.
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5Deep, Dark Scattering

„The horror! The horror!

— Kurtz

In this Chapter we focus our attention on a particular search technique for dark matter - that

of fixed target, or beam dump, experiments. There is a fundamental distinction between the

operating principles of high energy pp colliders (such as the LHC) and pA colliders (where

A is the atomic number of the atom in the target material). The former focus on expanding

the energy frontier, giving access to particles with high masses. The latter are more limited

in their mass range, but are ideal for investigating lower mass particles with very small

couplings due to their high luminosity.

5.1 Beam dumps for new physics

In Section 3.4.3 of Chapter 3, constraints on the hidden photon parameter space were

derived from collider experiments. Among them were electron fixed target experiments, in

which a beam of electrons is fired (or dumped) into a solid metal target. It was shown in

[58] that they make an effective testing ground for hidden photons. Since then there has

been a renewed interest in studying new physics at beam dump experiments (which have

long been employed in, for example, SUSY searches).

In particular, proton beam dumps make a suitable testing ground for light particle dark

matter candidates. The combination of reasonably high energy, circa tens to hundreds

of GeV, and high luminosity makes them ideally matched to a MeV − GeV mass particle

with a low interaction cross section with the Standard Model [4, 61, 62, 101, 102]. The

centre of momentum (CoM) energy provides the upper limit on the mass of particles that

can be produced in a collision. For a pp collider the CoM energy is simply the sum of the

two beam energies Ebeam 1 + Ebeam 2, whereas fixed targets suffer from the substantially

worse scaling,
√

2Ebeammp. This restricts the mass range that can be probed, but the
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high luminosity combined with the ability to shield from charged particles presents novel

detection opportunities for light particles not available at the LHC.

In light of strong constraints on the interactions of single new particles species with SM

particles (at least when no mechanism to suppress the coupling is present, such as kinetic

mixing), particular interest has arisen in “portal” models [80]. In such models, at least two

new BSM species are postulated, typically one is stable, to act as a dark matter candidate,

and one mediates the interaction between BSM and SM fields. As discussed in Chapter 1,

this gives rise to the possibility of whole hidden sectors of physics that couple to the SM only

weakly through mediator particles. There are then two regimes, defined by the mass of the

mediating particle. Either (i) the particle is heavy with respect to the mass of the dark matter

candidate and the energy scale of a process under consideration, in which case an effective

theory with a four point DM-DM-SM-SM interaction may be constructed or (ii) the mediator

particle is light, and the interaction may be resolved. The former case has generated much

interest from the LHC community; both CMS and ATLAS quote their monojet results in terms

of the effective operators presented in [64]. Here we specify to the latter case, where the

interaction may be resolved.

We find that with a light mediator we are in a somewhat unique scattering situation at

proton beam dumps. We have the deep inelastic scattering of neutral particles, precisely as

in the case of neutral current (NC) neutrino scattering, but without a heavy electroweak

gauge boson to mediate the process. The cross section for deep inelastic scattering scales as

σ ∝ 1/(Q2 +m2
v)2, where Q2 is the four-momentum squared (alternatively, the virtuality of

the process) and mv is the mediator mass. Clearly, if mv is very low, in the MeV range say,

then a large part of the cross section arises in the region where Q2 is low. In constrast, with

a heavy Z boson mediating the neutrino case, the low-Q2 region is relatively unimportant.

quantum chromodynamics is non-perturbative for values of Q2 less than a GeV, with the

evolution equations becoming non-linear owing to the self interactions of gluons. Thus

in this Chapter we employ a combination of theory and modelling to devise a reasonable

description of the low-Q2 scattering of dark particles, enabling us to fully exploit the phase

space, rather than cutting off the important contributions from low virtuality mediator

exchanges.
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5.2 Dark particles at beam dumps

First let us set up a toy model. We do not want it to interfere much with the successful

phenomenology of the SM, so we will work through a vector portal in a secluded scenario.

We add to the model a dark Dirac fermion ψ and dark vector boson Vµ which mediates the

fermion interaction with quarks via the effective Lagrangian,

LI = Vµ

(
gqq̄v

∑

q

q̄γµq + gψψ̄v ψ̄γ
µψ

)
. (5.1)

This model may be considered leptophobic, including no direct couplings to SM leptons and

instead coupling only to the quarks. It is extremely similar, however, to a hidden photon

model, where the coupling is initially to hypercharge (which facilitates interactions with

leptons). We will consider both of these cases separately when placing constraints, but the

formalism follows purely from the Lagrangian (5.1). The dark particles will be pair-produced

at beam dumps in a Drell-Yan process

pp→ ψ̄ψ +X, (5.2)

where here X represents the additional QCD matter produced by the proton constituents that

do not annihilate into ψψ̄. There are additional production mechanisms from the decays of

mesons produced in the reaction (part of th “X” above). For low enough dark particle masses

(O(100MeV)), production from mesons in fact dominates [62]. However, since the mission

of this study is to investigate the scattering of dark particles, we do not concern ourselves

with these additional production mechanisms. Drell-Yan production has the advantage of

being computationally simpler and is implemented in several widely available software

tools – the production cross-sections employed in this section are generated with Madgraph

5 [192] (from a FeynRules [191] model with UFO output [193]). The number of fermions

produced, as a function of protons on target (POT), is,

dN

dE dθ
= A

dσ(pp→ ψψ̄)
dE dθ

LT nT POT . (5.3)

where appropriate kinematic and geometric cuts must be applied to properly simulate

detection and. In particular, the opening angle of the dark fermions is bounded, in the lab

frame, by

θmax = 0.75 m
55.8 m = 0.0134 , (5.4)
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Fig. 5.1.: Binned energy distribution of ψ and ψ̄ particles, (g−2
qq̄vg
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ψψ̄v

)dN/dE, simulated
with Madgraph 5. The light blue region represents all produced particles, the
purple region only the subset that are on target for the detector at production, i.e.
those with opening angle θ < θmax.

such that we expect,
dN

dE
=
∫ θmax

0
dθ

dN

dE dθ
, (5.5)

dark particles produced on-target. Except for very large couplings, there is practically no

rescattering in the shielding and rock between the target and detector, so that essentially all

dark particles produced on target will reach the detector.

The energy distribution of dark particles, indicating those that are on target with the purple

shaded region is plotted in Fig. 5.1.

With production in hand, we may now turn our attention to the scattering of dark particles.

The essence of dark particles scattering from stationary (in the lab frame) hadrons – in the

present case nuclei – is captured by the formalism of deep inelastic scattering (DIS). DIS has

been a vital component in the development of the quark parton model, QCD and continues

to provide some exciting experimental frontiers (e.g. [218]). From [219], the cross section

for a charged lepton scattering from a hadron is given by,

d2σ

dx dy
= 8πα2ME

Q4

[(
1 + (1− y)2

2

)
2xF1 + (1− y)(F2 − 2xF1)− M

2ExyF2

]
. (5.6)
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We use the kinematic variables (slightly modified from the convention in [219]),

M2 = P 2

ν = P · q/M = (E − E′)

x = Q2

2Mν

y = ν

E
(5.7)

In particular, we have defined ν as the energy exchange from the incoming lepton to the

struck quark. x is often referred to as “Bjorken-x”, due to it’s importance in the phenomenon

of Bjorken scaling, whereby the at extremely high values of the four-momentum transfer

squared (Q2), the structure functions of deep inelastic scattering lose their dependence on

Q2 and scale only with x. This phenomenon provided the critical evidence for nucleons being

composed of point-like constituents (which at high Q2 are displaying asymptotic freedom),

rather than protons and neutrons themselves being fundamental.

Such scaling does not persist to arbitrarily low values of Bjorken-x, however. A definite de-

parture from scaling (called “scaling violation”) was observed with the HERA collider [220].

The reason for this lies in the essential non-linearity of the evolution equations in such a

kinematic regime, coming from full QCD, rather than a pure quark–parton model.

5.3 Two models of scattering

In the small-x or small-Q2 regime, nuclear interactions become decidedly non-perturbative.

Since the small-Q2 regime is of particular interest in this kind of scattering (due to the

unregulated 1/Q4 divergence of the cross section), it pays to give close attention to it. Below

the QCD scale, ΛQCD ∼ 200 MeV, the strong coupling constant grows non-perturbatively

large. To deal with non-perturbative physics, new machinery is needed. We will employ a

very simple analogy to optical transmission to model the scattering of particles of a nucleus

with non-perturbative interactions.

As the scale Q2 decreases, and x decreases in tandem (for a scattering event occurring at

some fixed energy transfer, ν), the gluon content of the nucleons rises steeply. At some point,

the nucleon (indeed, nucleus) becomes completely saturated by gluons, with almost no sea

quark content. Because gluons interact with themselves, the evolution equations describing

the content of the nucleus become non-linear, departing from the linear DGLAP equations.
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Though there is little experimental data, it is widely believed that the gluon content of the

nucleus saturates for sufficiently low values of x.

In such a regime, we can not rely on deep inelastic scattering for two reasons.

i. Our mediator particle interacts only with quarks, not gluons, so the gluon-saturated

nucleus would be transparent to the mediator and no interaction would occur.

ii. The physics is non-perturbative, and the parton distribution functions (themselves

non-perturbative objects) are not known below Q2 = 1 GeV.

Because it provides a reasonable and well theoretically motivated solution, we model the

scattering of the dark particle from the nucleus in the saturation regime with a dipole

model [221–224]. First, let us establish the kinematic framework.

5.4 Kinematics

Here we present the kinematics of neutral current scattering with a light mediator. We will

calculate the cross section for a Dirac fermion scattering from a hadron of mass M , in this

case a nucleus. The Bjorken scaling variable is defined

xBj = Q2

2Mν
. (5.8)

This definition corresponds to scattering from a nucleus. In cases where the nucleon level

Bjorken-x is required, Eq. (5.8) must be multiplied by a factor of the nuclear mass number,

A (resulting the standard definition: x = Q2/(2mpν), where the nuclear mass M ∼ Amp is

replaced by the proton mass).

There is a standard differential form for the deep inelastic scattering cross section in first

order perturbation theory that we will employ,

dσ = 1
4M [E2 −m2

ψ]1/2 (2π)−3d4p′ψ δ(p′ψ
2 −m2

ψ)
g2
ψψ̄v

Lµν 4πg2
qq̄vWµν

(q2 −m2
v)2 . (5.9)

The leptonic and hadronic tensors respectively are,

Lµν = 4pµψp
ν
ψ − 2(pµψq

ν + qµpνψ) + q2gµν , (5.10)
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and,

Wµν = 1
4π
∑

X

〈P |Jµ(0)|X〉〈X|Jν(0)|P 〉(2π)4δ(P + q − pX) . (5.11)

The vector particle couples to the quark currents in the hadronic matrix element above

with strength g2
qq̄v, which we factor out. We can simplify Eq. (5.9) by changing integration

variables with the Jacobian,

d4p′ψ δ(p′ψ
2 −m2

ψ) = k′2dk′

2E′ d cos θ dφ = π

2
√
E2 −m2

ψ

dν dQ2 . (5.12)

The differential cross section becomes,

dσ =
g2
ψψ̄v

g2
qq̄v

16πM
dν dQ2

E2 −m2
ψ

LµνWµν

(Q2 +m2
v)2 . (5.13)

Here ν is the energy exchange defined in Eq. (5.7) and Q2 is the square four-momentum

transfer. We can impose kinematic constraints on the integral. In the lab frame, where

the nucleus is at rest, we can write the initial momenta of the nucleus and incoming dark

particle,

P = (M, 0, 0, 0) ,

pψ = (E, 0, 0, k) , (5.14)

with k =
√
E2 −m2

ψ. The ψ particle imparts energy ν to the nucleus, so that its final state

energy is

k′ =
√

(E − ν)2 −m2
ψ , (5.15)

and the corresponding final state four-momentum of the scattered ψ particle is,

p′ψ = (E − ν, k′ sin θ cosφ, k′ sin θ sinφ, k′ cos θ) . (5.16)

We note that the ψ particle momentum cannot be measured directly, and, due to the

inelastic nature of the scatter, cannot practically be reconstructed by momentum conservation.

Eq. (5.12) shows that integration over ν and Q2 is equivalent to integration over the

momenta of the unobserved ψ particle. The four-momentum transferred in the scatter is,

q = pψ − p′ψ (5.17)
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which can be related to the energy transfer by Eq. (5.7), q · P = Mν, and also provides a

simple definition of Q2,

Q2 = −q2, (5.18)

which is manifestly Lorentz invariant. Explicitly,

Q2 = 2E(E − ν)− 2kk′ cos θ − 2m2
ψ . (5.19)

The final state momentum k′ of the ψ particle is unknown, so we define a function µ(ν),

purely for convenience, by,

kk′ = E(E − ν)− µ2(ν)−m2
ψ , (5.20)

so that the explicit form of µ(ν) is,

µ2(ν) =
m2
ψν

2

[E(E − ν)−m2
ψ] +

√
[E(E − ν)−m2

ψ]2 −m2
ψν

2
. (5.21)

Then, in terms of the function µ(ν), Q2 takes the simple form,

Q2 = 2[E(E − ν)−m2
ψ][1− cos θ] + 2µ2(ν) cos θ . (5.22)

The kinematic limits on Q2 are now clear, corresponding to the limiting values of cos θ, or

equivalently forward and backward scattering. The lower boundary of the Q2 integral is for

cos θ = 1 (forward scattering):

Q2 = 2µ2(ν) , (5.23)

and for the upper boundary, cos θ = −1,

Q2 = 4[E(E − ν)−m2
ψ]− 2µ2(ν) . (5.24)

Taken together, we have the kinematic constraints on Q2,

2µ2(ν) < Q2 < 4[E(E − ν)−m2
ψ]− 2µ2(ν) . (5.25)

Additionally, noting that the Bjorken scattering variable defined in Eq. (5.8) cannot, by

definition, exceed unity,

Q2 < 2Mν. (5.26)
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We now turn to the bounds on integration over ν. Experimentally, a certain fixed amount of

energy, Ecut, is required to be deposited in the detector in order for a jet to be registered.

Therefore, at least this much energy must be delivered to the hadron by the scattering dark

particle, so,

ν > Ecut (5.27)

The upper limit on the energy transfer follows from Eq. (5.15). Using the fact that k′2 > 0,

but taking the limit where k′ = 0, we get ν < E −mψ. Combined, the integration limits for

ν are,

Ecut < ν < E −mψ. (5.28)

Having addressed the integration variables in the differential cross section, we return to

Eq. (5.9). We can split the hadronic tensor into structure functions representing transverse

and longitudinal states of the exchanged vector boson,

Wµν = CµνT FT(xBj, Q
2) + CµνL FL(xBj, Q

2) , (5.29)

where the coefficient tensors are,

CµνT = − gµν + qµqν

q2 + 2xBj
P · q + 2xBjM2

(
Pµ − P · q

q2 qµ
)(

P ν − P · q
q2 qν

)
,

CµνL = 1
P · q + 2xBjM2

(
Pµ − P · q

q2 qµ
)(

P ν − P · q
q2 qν

)
.

(5.30)

With these forms of the coefficient tensors, we can easily check that CµνT vν = 0 for any vector

v that lies in the plane of P and q and similarly CµνL vν = 0 for any vector orthogonal to

both P and q, justifying our labelling the structure functions “transverse” and “longitudinal”

respectively. In deep inelastic scattering, the structure functions are often referred to as F1

and F2, which obey the Callan-Gross relationship F2 = 2xBjF1 and relate to the structure

functions defined here by FT = F1 and FL = (1 + 2xBjM
2/P · q)F2 − 2xBjF1.

We can now recast the cross section as,

dσ =
g2
ψψv g

2
qqv

16πM
dν dQ2

E2 −m2
ψ

1
(Q2 +m2

v)2
[
CµνT Lµν FT(xBj, Q

2) + CµνL Lµν FL(xBj, Q
2)
]
,

(5.31)
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where the contractions of the coefficient tensors with the leptonic tensors are

CµνT Lµν = Q2(2E − ν)2

ν2 +Q2 +Q2 − 4m2
ψ ,

CµνL Lµν = Mν
4E(E − ν)−Q2

ν2 +Q2 .

(5.32)

Finally, we arrive at the differential cross section written in terms of the integration variables

dν, dQ2 (whose limits we have defined), couplings and masses to be defined by the theory,

and structure functions, all as a function of the scattering energy, E,

dσ =
g2
ψψv g

2
qqv

16π
dν dQ2

E2 −m2
ψ

ν

(Q2 +m2
v)2

{[
(2E − ν)2

ν2 +Q2 +
Q2 − 4m2

ψ

Q2

]
2xBjFT(xBj, Q

2)

+ 4E(E − ν)−Q2

ν2 +Q2 FL(xBj, Q
2)
}
.

(5.33)

The scattering is now parametrised in terms of FT and FL, which are addressed in the

following sections.

5.5 Structure functions for scattering

Eq. (5.33) describes the cross section for the inelastic scattering of a dark fermion ψ from a

target hadron, in this case a nucleus, in terms of two structure functions, FL and FT. In the

following sections, the full forms of these structure functions are derived.

5.5.1 Large Q2: deep inelastic scattering

As a first approach, we can consider the scattering in a traditional, perturbative QCD

framework. The deep inelastic scattering process, sketched in Fig. 5.2, consists of the

incoming dark particle exchanging a virtual dark vector boson with a quark from the nucleus.

The structure functions for deep inelastic scattering are simply parton distribution functions

(into which initial state radiation may be factored) convoluted with the partonic structure

functions, denoted F̂T and F̂L. To lowest order in perturbation theory, F̂L = 0 for both

quarks and gluons, owing to the Callan-Gross relationship, F2 = 2xBjF1. The transverse

partonic structure function F̂T also vanishes for gluons, and for quarks is a delta function
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Fig. 5.2.: Deep inelastic scattering of a dark ψ particle from a nucleus by the exchange of a
dark vector boson, V . The lines labelled X represent additional QCD matter from
the disintegrating proton.

ensuring the momentum fraction of the quarks is xBj. In the quark-parton model for a

nucleus then,

FT = 1
2xBj

∑

q

xBjfq/A(xBj, Q
2)

FL = 0, (5.34)

where the sum in FT runs over light quark and anti-quark flavours, q = {u, ū, d, d̄, s, s̄}. The

dark particle couplings are not included in the structure functions, since we take the dark

vector boson to couple flavour-universally to quarks and the couplings have already been

factored out of the hadronic matrix element in Eq. (5.9).

The parton distribution function used here is that for the whole nucleus. In terms of nucleon

level distribution functions fu/p and fd/p, one can approximate the nucleus (with Z protons

and A− Z neutrons) as simply a sum of its constituent nucleons,

fu/A(xBj, Q
2)dxBj ≈ [Zfu/p(AxBj, Q

2) + (A− Z)fd/p(AxBj, Q
2)]d(AxBj) (5.35)

so that the complete nuclear distribution function for a u quark (for example) is approximated

by,

fu/A(xBj, Q
2) ≈ AZfu/p(AxBj, Q

2) +A(A− Z)fd/p(AxBj, Q
2) . (5.36)

Notice that the first argument of the distribution functions has been scaled by A, since xBj is

here defined with respect to the nucleus. In the following calculations, the leading order

Hirai-Kumano-Nagai (HKNlo) nuclear parton distribution functions for lead [225] are used.
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Nuclear parton distribution functions average over nuclear effects, so that in practice the

relationship is simply fu/A(xBj, Q
2) = Afu/p(AxBj, Q

2).

Inserting the structure functions from Eq. (5.34) into Eq. (5.33), the total parton model

cross section is,

dσ =
g2
ψψv g

2
qqv

16π
dν dQ2

E2 −m2
ψ

ν

(Q2 +m2
v)2

[
(2E − ν)2

ν2 +Q2 +
Q2 − 4m2

ψ

Q2

]∑

q

xBjfq/A(xBj, Q
2) .

(5.37)

5.5.2 Small Q2: saturation model

Inspecting Eq. (5.33) reveals that the cross section scales with 1/(Q2 +m2
v)2. This essentially

describes a 1/Q4 divergence, regulated by the mass of the particle mediating the interaction.

In the Standard Model, neutral current deep inelastic scattering occurs only with neutrinos,

and as such must be mediated by a Z boson. Since mZ ∼ 90 GeV, the scattering can never

enter a region where small Q2 is very important; even at very low Q2, the divergence is still

regulated.

In the present scenario, where the dark particle scattering is mediated by a new, light, gauge

boson, the cross section is not suppressed at small Q2. In fact, for the very light mediators

that we investigate (mv ∼ O(MeV)), the low Q2 region is extremely important, contributing

heavily to the cross section.

For very low Q2, below a few GeV, the deep inelastic description of scattering is no longer

appropriate. The strong coupling constant αS(Q2) becomes non-perturbatively large and the

parton distribution functions themselves are not measured. Additionally, with low Q2 and

the relatively high typical scattering energies shown in Fig. 5.1, Bjorken-x can be extremely

small. Parton distribution functions are subject to large uncertainties at small xBj, but it

is certain that the gluon distribution rises very steeply in this regime. We will model the

scattering here with a saturation model. The name derives from the expected behaviour of

gluons as the density rises: the gluons self-interact and the gluon content of a nucleon or

nucleus “saturates” at a high value.

Such models have been studied in a wide literature [226–236]. The model of Nikolaev

and Zakharov, Golec-Biernat and Wüsthof and Mueller is suitable to this situation and

features an intuitive physical interpretation as colour dipole scattering. We closely follow
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Fig. 5.3.: Sketch of the colour dipole picture of scattering from a gluon saturated nucleus.

the analysis of Hautmann and Soper, with some features of Bartels, Golec-Biernat and

Kowalski. The longitudinal structure function is investigated in detail in the saturation

model in [237], but for our purpose a simple analysis is suitable. The region of small Q2

where we will employ the dipole model is, by definition of Q a region where the virtuality

of the exchanged vector boson is small – it is the transition region between DIS and vector

production (in pure QED and QCD, photoproduction). On-shell massive vector bosons have

no longitudinal polarisation, so FL is insignificant compared to 2xBjFT and we make the

reasonable approximation that FL = 0, as in the parton model.

The result for the transverse structure function is quoted from [235],

2xBjFT = 1
4π
∑

f

24Q2

(2π)3

∫
db

∫
d∆

G(
√
Q2 + Λ2

ρ ∆)
∆2 Ξ(b,∆) . (5.38)

The sum runs over quark flavours, f = {u, d, s}, not anti-flavours, which are accounted for

in the dipole picture, where each dipole is composed of a q-q̄ pair.

Let us examine this expression. The two dimensional integration vectors b and ∆ represent

the impact parameter and dipole separation respectively. More precisely, the centre of the

two quarks in the dipole has its closest approach to the nucleus at transverse position b,

and each (anti-)quark in the dipole resides ∆/2 away from the dipole centre of mass in its

rest frame. The squared wavefunction for the for the dipole is represented by the function

G(
√
Q2 + Λ2

ρ∆)/∆2, where,

G(z) =
∫ 1

0
dα [1− 2α(1− α)]

[√
α(1− α) z K1(

√
α(1− α)z)

]2
. (5.39)
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The integration over α corresponds to integrating over the longitudinal momentum fraction

of the dipole carried by the quark (so the anti-quark carries fraction 1−α). K1(z) is the first

order modified Bessel function. The whole function G(z) may be approximated to within

∼ 15% everywhere by,

G(z) ≈ 2
3[1 + z2/4] . (5.40)

The argument of G describes the spatial extent of the wavefunction multiplied by Q, which

is approximately ∆ ∼ 1/Q in a perturbative calculation. However, for small Q, a pertur-

bative calculation cannot be trusted. The additional scale Λρ is the inverse size of a ρ

meson, ∼ 200 MeV, which is formed by gluon exchange in the dipole and included as a first

approximation to account for non-perturbative effects.

The second function under the integral in Eq. (5.38), Ξ(b,∆) is simply the probability of a

scatter occuring. It has the simple form,

Ξ(b,∆) = 1− e−∆2Q2
s (b)/4 , (5.41)

which can be arrived at by a direct analogy with classical optics. Let us define a transmission

function T by Ξ(b,∆) = 1− T (b,∆). The function T (b,∆) represents the probability for

the colour dipole to pass through the nucleus without interacting, and conversely, Ξ is

the probability of an interaction. We arrive at the explicit form of T (b,∆) in Eq. (5.41) by

considering the necessary limiting behaviours of the function [235], and making a reasonable

ansatz.

• The dipole can miss the nucleus entirely, when |b| > RA + ∆/2. Clearly in this case it

cannot rescatter, so Ξ(b,∆) = 0 and T (b,∆) = 1.

• In the opposite case, a dipole with large separation between the quarks (large ∆) that

hits the nucleus with small |b| < RA is extremely unlikely to pass through the nucleus

without interaction, T (b,∆) ≈ 0.

• When ∆ → 0, the quark-antiquark pair form a colour singlet object that cannot

interact with the nucleus, so T (b,∆) = 1.

• When ∆ is small the we expect that the probability of interaction is proportional

to the square colour dipole moment, ∆2. This reflects the two gluons that must be

exchanged in the cut Feynman diagram for the interaction.
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• The coefficient of ∆2 can be calculated in perturbative QCD for small ∆.

The saturation scale depends upon on the nuclear gluon density,

Q2
s (b) = 2π2αs(µ2)

3 xG(x, µ2)φ(b) . (5.42)

The function φ(b) parametrizes the transverse distribution of gluons from the centre of the

nucleus (thus it is a function only of the impact parameter b = |~b|). It is normalized such

that
∫
d~b φ(b) = 1,

φ(b) = 3
2πR3

A

√
R2
A − b2 Θ(b2 < R2

A) . (5.43)

The gluon distribution, G(x, µ2), used is the HKNlo distribution for lead. Nuclear parton

distributions are usually normalized per nucleon number (to allow comparison between

different species of nuclei), as is the case here, so that the total nuclear gluon content

G(x, µ2) in Eq. (5.42) is given by A×GHKN(x, µ2). We have thus far followed the formalism

of [235] precisely; now we will include some refinements from a later work [236]. The scale

µ2 is defined,

µ2 = C

∆2 + µ2
0 , (5.44)

with a regulator µ0 which prevents it from becoming arbitrarily small. Above µ2
0 though,

µ2 is still (approximately) proportional to the inverse size of the dipole squared, which

seems a reasonable scale for the perturbative regime (where ∆2 is small). The value of the

constants C and µ2
0 is to be obtained from fitting to the measured gluon PDF data. This is

computationally expensive, but a reasonable fit may be found by inspection, with C = 6.0

and µ2
0 = 2.0 GeV2, where we have prioritized maintaining a reasonably low IR regulator,

µ0.

Similarly, we include a regulator term in the parton momentum fraction x as it appears in

the gluon distribution (we do not apply the same regulation to appearances of x elsewhere).

Following [238], we take

x =
Q2 + 4m2

q
2Mν

, (5.45)

which ensures x does not become arbitrarily small at low Q2, but x ∼ xBj. when Q2 is not

too low.

Returning to the probability Ξ for a q−q̄ dipole to scatter from a hadron, we have applied both

theory and modelling. How severe is the dependence on modelling? The functionΞ(~b, ~∆) is

plotted in Fig. 5.4. Notice that for the large majority of the parameter space, corresponding
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Fig. 5.4.: Ξ(b,∆) for x = 10−4 and Q2 = 1GeV2.

to a wide range of impact parameters and dipole separations (both taken in ration to the

atomic radius), the scattering probability is one, so the modelling dependence is not too

severe.

5.6 Connecting the saturation model to the parton

model

Having derived a seemingly suitable model for the low-Q2 scattering regime, it behooves

us to compare the model to perturbative QCD. We’ll first qualitatively compare the DIS and

saturation models, considering the physical picture represented by each. Before making

the comparison in detail, we first introduce a more appropriate reference frame for the

saturation model.
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A lightning introduction to lightcone coordinates

For computational ease, we can redefine the coordinate system in which we calculate the
kinematics. Define, in terms of a four-vector xµ = (x0, x1, x2, x3),

x+ = 1√
2

(x0 + x3),

x− = 1√
2

(x0 − x3),

xT = (x1, x2), (5.46)

so that the new four-vector reads xµ = (x+, x−, xT). These coordinates coordinates are
referred to as “lightcone” coordinates, reflecting the fact that x+ and x− are both null
coordinates, though the components of xT remain space-like. To maintain Lorentz invariance
of the scalar product, it is defined,

a · b = a+b− + a−b+ − aTbT. (5.47)

Note that the metric tensor (the lightcone equivalent to the Minkowski metric) is non-
diagonal,

gµν = gµν =




0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1


 , (5.48)

and the integration measure is written d4x = dx+dx−dxT.

Consider the saturation picture in the rest frame of the nucleus, and define the negative

z-axis to be aligned with the momentum ~q of the mediating dark vector boson Vµ. We write

q in lightcone coordinates, so that, after some algebra, q− ≈
√

2ν (which is large for large

ν and small Q2, our region of interest) and q+ ≈ −2−3/2Q2/ν (which is small in the same

situation). As depicted in Fig. 5.5, the vector boson splits into a q − q̄ colour dipole, i.e. it

couples to two quarks. Label the momentum of one quark propagator pq. Then we can take

p−q large and p+
q small, as an estimate, following from the momentum of the exchanged

vector boson. Now consider the position space description of this process. There is a finite

separation ∆x between the coupling of the quark to the vector boson and its interaction with

a gluon from the nucleus. In lightcone coordinateso the scalar product of this distance with

the quark momentum is pq ·∆x = p+
q ∆x− + p−q ∆x+ − p⊥q ∆x⊥. Thus, there is an inverse

relationship in the magnitude of the (+) and (−) coordinates between the elements of the

position and momentum vectors that multiply one another. To say, for p−q large, ∆x+ is

small and vice versa (this is clearly not rigorous, but we may talk in broad strokes to come

up with an average description of a typical dipole interaction). So in the situation we have

described ∆x− is large, since p+
q is small. Estimating p+

q ≈ 2−3/2Q2/ν, the typical range
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1.8 ◊ 1017 POT, resulting in a maximum experimentally allowed number of dark particle

events of NÂ = 180 (to obtain 90%C.L. limits).

The mean free path of a dark particle passing through a material with nucleon number A

is

⁄ = 1
flA‡(ÂN æ ÂN) . (5.51)

flA is the number density of nuclei, so all of the physics is contained within the nuclear

scattering cross section, ‡(ÂN æ ÂN), the calculation of which is detailed above. From the

mean free path, the probability of scattering in a length L of the material is straightforward

to calculate,

P =
⁄ L

0
dx

1
⁄
e≠ x

⁄ = 1 ≠ e≠L
⁄ (5.52)

Applying this to the geometry of E613 – a shielding region followed by a detector region –

the predicted number of events in the detector is,

Ndet. =
⁄
dE (1 ≠ Pshielding(E)) ◊ Pdetector(E) ◊ dN

dE
. (5.53)

dN/dE is the differential production rate for dark particles at the dump, and includes

geometric factors accounting for the shape and angular acceptance of the detector. The

shielding region is approximately 15m long and composed of iron, being designed to stop

or deflect charged particles with a magnetic field. A 1 GeV infrared cut on the energy

transfer required to constitute a scattering event in the shielding was imposed to cut-off

the divergence of deep inelastic scattering. In the detector region, the corresponding cut

is 20 GeV, but this has a physical origin – it is the trigger energy required to detect a jet

in the scintillator. For the small couplings of interest, the scattering cross section in the

shielding region is so small that practically no events are expected, and it could be accurately

approximated that no scattering occurs there. Events are expected in the detector by virtue

of the large proton flux at the beam dump; any given dark particle produced is unlikely to

scatter in the apparatus at all. The calculation performed is complete, but degradation of

the dark particle flux along the beam line is completely negligible, so the probability of a

scatter can be approximated very simply as P ≥ L/⁄. To be conservative, we apply that any

of the few particles that may scatter in the shielding region cannot continue to detection but

are lost upon scattering.

We will apply our description of scattering to two similar BSM models, beginning with the

toy Lagrangian in Eq. (5.1). In the first instance, we take the Lagrangian precisely as is, and
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Fig. 5.5.: The dipole scattering with occurs via gluon exchange between the dipole and
quarks in the nucleus.

of the quark, in the minus z direction is ∆x− ≈ 25/2πν/Q2 (where a factor 2π has been

brought in from the Heisenberg uncertainty relation). If the quark gluon interaction occurs

within the nuclear radius, this implies the interaction with the dark vector boson is located

far outside the nucleus.

This may seem quite different to the picture of deep inelastic scattering, where the interaction

of the vector boson with a quark takes place entirely within the nucleus. The views could be

somewhat reconciled by choice of reference frame, but recall that the saturation model is,

after all, describing scattering in a non-perturbative regime of QCD, and we should not be

surprised that the physics described is different. Nonetheless, there is a regime at large ν

and large Q2 where both physical pictures should agree - we will now investigate this.

To compare the perturbative QCD (i.e. DIS) and saturation models quantitatively, we should

consider the latter in the limit of large Q2. To do this, we can consider the transverse

structure function for the saturation model, Eq. (5.38), and take the large Q2 limit under

the integral over ∆. This results in the argument of G(z) collapsing to simply Q∆, and

G(Q∆) ∼ 8/(3Q2∆2). To enforce the largeness of Q2 (and thus Q∆), we include a crude cut

Θ(∆ > a/Q), for constant a. The resulting large Q2 approximation of the structure function

is,

2xBjFT ≈
∑

f

2
π4

∫
db

∫
d∆

Θ(∆ > a/Q)
∆4 Ξ(b,∆) . (5.49)
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Fig. 5.6.: The parton distribution function fq/A(x,Q2) for ū quarks in a lead nucleus accord-
ing to the HKNlo parton distributions [225] used in this work compared to the
same distribution in the saturation model, Eq. ((5.50)). We plot Axfq/A(Ax,Q2)
versus log10(Ax) for Q2 = 2GeV2, 10GeV2, and 50GeV2.

This is similar in structure to the corresponding DIS structure function in Eq. (5.34), and

can be made to match with the identification,

x fq/A(x,Q2) = 1
π4

∫
db

∫
d∆

Θ(∆ > a/Q)
∆4 Ξ(b,∆) . (5.50)

Notice the careful accounting for a factor of two, arising from the sum over quark flavours

in Eq. (5.49) compared to the sum over both flavours and anti-flavours in the DIS case,

Eq. (5.34). The saturation version is flavour agnostic - the x dependence comes from

the gluon PDF in the exponent contained in Ξ(b,∆). The inclusion of the cut on ∆ in

Eqns. (5.49) and (5.50) also serves to regulate the divergence from small ∆ in the integral.

Choosing a = 2e1/6−γE ≈ 1.32657 makes this cut equivalent to a MS renormalisation scheme

(at one loop order).

Fig. 5.6 shows a comparison between the saturation and DIS models of the parton distribution

functions. The approximation of Eq. (5.50) works well forQ2 around 10 GeV2 and reasonably

for Q2 = 2 GeV2. As Q2 increases though, one expects the saturation model approximation

to fail, as it does not include the effects of DGLAP evolution for the partons.
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5.7 Application at E613

Having developed the formalism for a detailed treatment of dark particles scattering from

nuclei in the toy model, constraints may now be placed upon the parameters of the model.

The experiment under consideration throughout has been the Fermilab E613 beam dump.

This was chosen as an example of a beam dump experiment with high beam energy (rivalled

only by CHARM [239]). The detector of E613 was configured to count charged and neutral

current neutrino events. The toy model introduced here produces scattering events that

replicate neutrino neutral current events very closely. The collaboration estimated that the

muonless neutral current events that the dark particles replicate appear with a maximum

rate (at 90%C.L.) of 100 events per 1017 protons on target (POT) [240–242]. E613 featured

1.8 × 1017 POT, resulting in a maximum experimentally allowed number of dark particle

events of Nψ = 180 (to obtain 90%C.L. limits).

The mean free path of a dark particle passing through a material with nucleon number A

is

λ = 1
ρAσ(ψN → ψN) . (5.51)

ρA is the number density of nuclei, so all of the physics is contained within the nuclear

scattering cross section, σ(ψN → ψN), the calculation of which is detailed above. From the

mean free path, the probability of scattering in a length L of the material is straightforward

to calculate,

P =
∫ L

0
dx

1
λ
e−

x
λ = 1− e−Lλ (5.52)

Applying this to the geometry of E613 – a shielding region followed by a detector region –

the predicted number of events in the detector is,

Ndet. =
∫
dE (1− Pshielding(E))× Pdetector(E)× dN

dE
. (5.53)

dN/dE is the differential production rate for dark particles at the dump, and includes

geometric factors accounting for the shape and angular acceptance of the detector. The

shielding region is approximately 15m long and composed of iron, being designed to stop

or deflect charged particles with a magnetic field. A 1 GeV infrared cut on the energy

transfer required to constitute a scattering event in the shielding was imposed to cut-off

the divergence of deep inelastic scattering. In the detector region, the corresponding cut

is 20 GeV, but this has a physical origin – it is the trigger energy required to detect a jet
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Fig. 5.7.: Exclusion regions for the leptophobic (toy) model with mV = 1 MeV. An addi-
tional constraint from Υ decays is also plotted [243]. See text for caveats to this
plot.

in the scintillator. For the small couplings of interest, the scattering cross section in the

shielding region is so small that practically no events are expected, and it could be accurately

approximated that no scattering occurs there. Events are expected in the detector by virtue

of the large proton flux at the beam dump; any given dark particle produced is unlikely to

scatter in the apparatus at all. The calculation performed is complete, but degradation of

the dark particle flux along the beam line is completely negligible, so the probability of a

scatter can be approximated very simply as P ∼ L/λ. To be conservative, we apply that any

of the few particles that may scatter in the shielding region cannot continue to detection but

are lost upon scattering.

We will apply our description of scattering to two similar BSM models, beginning with the

toy Lagrangian in Eq. (5.1). In the first instance, we take the Lagrangian precisely as is, and

derive constraints on the toy scenario, which is leptophobic. Next, we plot similar constraints

for a minicharged particle scenario, where the mediator mass is taken to be zero, but the

model is hidden photon inspired – the vector mediator can interact with leptons also. In

practice, this does not affect our results, but does introduce many new constraints to the

parameter space. The results for the leptophobic case are plotted in Fig. 5.7, where the

mediator-dark particle coupling gψψ̄v is set at unity and the mediator mass is chosen to

be 1 MeV. The two exclusion regions plotted in red and blue correspond to the DIS model

alone (Section 5.5.1) and with the additional saturation model treatment (Section 5.5.2)

114 Chapter 5 Deep, Dark Scattering



0 1 2 3 4 5 6 7
-4

-3

-2

-1

0

Log10m @MeVD

L
og

10
¶

E613
Hwith mesonsL

SLAC

New

LHC

CMB

Neff

ASP

KEK

Fig. 5.8.: New limits on minicharged particles from E613 based on DIS only (dark red) and
with saturation effects included (light red). Other constraints are shown, arising
from colliders [247], a SLAC beam dump [248], the LHC [134], CMB [249, 250]
and recent work on the number of light species, Neff [251].

respectively. For the DIS only region, a hard cut on the four-momentum transfer squared

was made to prevent the cross section diverging, Q2 > 1GeV2. We see that permitting this

region (by using the dipole scattering picture) improves the constraint noticeably.

There are additional constraints that apply to this model [243–245]. The region labelled

“Γ(Υ → hadrons)” is a mapping of the constraint on a U(1) gauge boson which couples

only to baryons to the model, and is derived from the upper limit on the new boson’s

contribution to the Upsilon decay width to hadrons. In fact, an extremely strong limit exists

on a leptophobic vector boson mediator, arising from measurements of low-energy n-Pb

scattering [246]. However, the strength of this constraint arises from a resonance structure

around 1 MeV, and it rapidly dies off as the mass of the mediator changes from this value.

Since we chose the value mv = 1 MeV arbitrarily to stand in for a generically light, MeV-scale

mediator, we can simply set the value to around 20 MeV in order for the constraints in

Fig. 5.7 to become novel again, without noticeably affecting the constraints plotted. The

region excluded by Upsilon decay is relatively independent of the mediator mass up until

GeV scales, at which point the importance of the low-Q2 region diminishes in any case.

It seems natural, when considering such a light mediator mass, to ask what happens in the

case that the limit is taken and the mass set strictly to zero. Doing so, in combination with

allowing leptonic interactions of the vector mediator particle realizes a model of minicharge
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constraint without production from meson decays.

particles [85], introduced in Section 1.3.3. Recall that in such a scenario, the hidden sector

fermion picks up an effective “mini” electric charge, ε = χgh/e, where χ is the kinetic mixing

between the photon and the vector mediator and e is the unit electric charge. Since the

production mechanism is Drell-Yan, i.e. quark annihilation, and the scattering is also from

quarks, so the quark charges must also be accounted for in the cross section. The constraints

arising from E613 on this model are plotted in Fig. 5.8. The dark red region corresponds to

the DIS only treatment, with the same Q2 cut as above, whereas the lighter red region also

includes the saturation regime. In contrast to the previous plot, only a small novel area is

ruled out by considering E613. There are several important considerations regarding this

area. The first is that the competing constraint originating from the effective number of

relativistic particle species Neff is strong, but dependent on astrophysical measurements,

which carry an intrinsic degree of uncertainty. While astrophysical limits are of course

important, it is always beneficial to try to verify any limits in several complementary

experiments. Either the limits agree and we gain confidence in our understanding, or they

do not, and we learn something about one or more of the experimental environments. There

are additional constraints from direct detection experiments if one asserts that minicharged

particles constitute a given fraction of the dark matter relic density [252], which we do

not.
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In Fig. 5.9, we show constraints on minicharged particles derived only from the E613

experiment. The dashed and solid red lines correspond to the DIS and saturation enhanced

constraints respectively. The light blue region shows the limits previously derived from the

same experiment in [242]. The earlier constraint is significantly weaker than the saturation

model limit for minicharged particle masses mψ & 500 MeV, but actually stronger for lower

masses. The explanation is simple: since the focus of this work is an analysis of the scattering

of dark particles, only Drell-Yan production was included, being simple to implement. For

a more fully realistic simulation of the whole experiment in the context of a dark particle

search (in either the leptophobic or minicharged scenario), production from meson decay

must be included. This is by far the dominant production mechanism for sufficiently light

O(100MeV) dark particles from pp collisions, as reflected by the stronger constraints in

Fig. 5.9. A rough estimate for the previous constraint without production via is shown as

the dashed blue line. Clearly the saturation picture is a marked improvement over this, and

it is to be expected that the full treatment would exceed the lower limit if all production

mechanisms were included. The DIS-only result of the present work is consistent with the

estimated earlier bound without meson decay, given the accuracy of approximations used in

each analysis.

5.8 Conclusion

Motivated by dark matter searches at past and present beam dumps, we have investigated

scattering in a context where DIS in no longer appropriate. We find that one can improve

the experimental reach of beam dump experiments in the search for light dark matter by

including non-perturbative scattering effects. This formalism should be applicable to a

range of different dark matter and BSM models, with the importance of including the effect

growing as the mediator mass decreases and the low-Q2 region contributes more heavily to

the cross-section.
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6
Conclusion

„“And this also,” said Marlow suddenly, “has been one

of the dark places of the earth.”

— Unnamed narrator

This thesis has explored some aspects of the phenomenology of one or more species of light,

weakly coupled particles, or WISPs, that provide a resolution to several of the outstanding

theoretical (eg. strong CP problem) and observational (dark matter, aµ anomaly) problems

of particle physics. Let us briefly recap the common themes of the thesis.

6.1 The case for effective theories

Throughout the work, we have relied upon the framework of effective field theories in order

to explore the potential of several models for new physics. Doing so acknowledges our

ignorance of physics at energy scales to which we do not, and in the case of the highest

scales likely never will, have access. However, we were nonetheless able to extract novel and

informative results regarding hidden photons in a Kaluza-Klein scenario and the potential

coupling of dark matter to Standard Model fermions through a pseudoscalar mediator.

Motivated by the principles of photon regeneration, or light-shining-through-walls, exper-

iments, a test of one hereto unexplored aspect of effective field theories – the effective

non-locality in the propagation of particles in an effective theory – was proposed. Our

analysis suggests that while an experimental realisation of tunnelling of the third kind

may be difficult in a quantum optical system, it is not beyond the realms of possibility, if a

suitably narrow potential wall can be constructed, or if one considers transitions where the

intermediate state is of lower energy than the initial state.
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It is interesting that considerations that are principally concerned with a search for beyond

the Standard Model physics led to an investigation of somewhat foundational ideas in

quantum mechanics.

We nonetheless caution that effective field theories have a limited region of validity, and that

there is a strong case for employing simple models in place of effective 4-point operators

when quoting results at, for example, the LHC.

6.2 The case for WISPs

The search for dark matter has previously been focused largely on the WIMP paradigm,

whereby the DM candidate is a thermal relic with a mass typically greater than 10 GeV.

There is by now a strong case for the further exploration of the alternative, WISP, paradigm,

whereby dark matter is composed of much lighter particles that have remained undetected

by virtue of their extremely weak interactions. As we have seen, these particles can either

form part or all of the relic density themselves, or mediate interactions to hidden sectors of

particles, each perhaps having its own rich structure.

A single new species of light particle is not viable as a thermal relic, typically freezing out

early and remaining too relativistic to allow for structure formation. Fortunately thermal

production is not the only mechanism, and light dark matter is completely possible if

produced by a misalignment mechanism. Alternatively, light dark matter may be thermally

produced, if it interacts with the SM via a mediator particle whose couplings allow the

correct cross- section to be obtained. Light, weakly coupled particles are in general less

constrained than WIMPs – in particular traditional direct detection techniques are not

suitable (though there is promising work in that direction). As such, there remain large

areas of parameter space that can represent light dark matter, and it is encouraging to see

increased experimental effort in these areas.

While the case for WISPs is strong, in Chapter 4, we constructed a simple model to illustrate

that even WIMP dark matter could have thus far evaded all terrestrial detection efforts.

This emphasises the requirement that we understand particle scattering at a coarse level.

This point was developed in a much subtler way in Chapter 5, where we illustrated that

low-Q2 QCD effects can enhance exclusion constraints (equivalently discovery prospects) by

understanding scattering at a much deeper level.
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6.3 The case for the low energy frontier

Among the virtues of new light particle species is their accessibility via existing technology.

In Chapters 3 and 5 it was demonstrated that relatively low energy apparatus can provide

novel constraints on low mass particles. In the case of the hidden photon, higher energy

facilities, such as the LHC, actually perform rather poorly by comparison. There is a clear

case for high intensity experiments, and the work presented in Chapter 5 goes some way to

exploring the potential of beam dump facilities by enhancing the existing formalism for dark

particle scattering.

It is encouraging that intensity frontier experiments are receiving the attention warranted by

their utility, and that dedicated runs are now in progress to search for light dark matter.

While any existing WISP has thus far evaded detection, a large and motivated community

are invested in a continuing search. The field remains a promising avenue of research, to

which this thesis represents a small, but hopefully significant, addition.
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A
The origin of kinetic mixing

Here we’ll present a worked example derivation of the origin of kinetic mixing. From an

initially SU(2)×U(1) theory with two fermions, we break the SU(2) symmetry with an

adjoint representation of a Higgs field. The remnant U(1) symmetry of the broken SU(2)

then mixes kinetically with the original U(1) gauge group by the combination of the two

fermion loop diagrams. This is not a unique origin or derivation, but does contain all the

features necessary to result in an effective Lagrangian for kinetic mixing.

The Lagrangian of the SU(2)×U(1) field theory we begin with is [253, 254],

L = −1
4G

a,µνGaµν −
1
2D

µϕaDµϕ
a − V

(
(ϕa)2)− 1

4F
µνFµν −

1
2MϕaGa,µνFµν . (A.1)

It is the final term that will lead to kinetic mixing after the spontaneous breaking of

SU(2)→U(1). The fermions in the theory obey,

LΨ = iΨ̄iγµD
µ
ijΨj −m0Ψ̄Ψ− hϕaΨ̄it

a
ijΨj . (A.2)

where the covariant derivative is Dµ
ij = (∂µ1ij + ig1A

µ1ij + ig2W
a,µtaij), with g1 and g2

the couplings to the original U(1) and the SU(2) respectively. The final term is a Yukawa

coupling of the Higgs field to the fermions, with coupling constant h. ta = σa/2 are the

generators of SU(2), where the Pauli matrices are,

σ1 =


 0 1

1 0


 , σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1


 . (A.3)

If the adjoint Higgs acquires a vacuum expectation value 〈ϕa〉 = (0, 0, v), by virtue of a

suitable potential, V ∼ (ϕaϕa − v2)2, then the fermion masses are determined by the matrix

equation,

m0


 1 0

0 1


+ hv

2


 1 0

0 −1


 . (A.4)
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The spontaneous breaking of the SU(2) symmetry also gives rise to masses for the W 1,2
µ

gauge fields. There is a remaining unbroken U(1) symmetry associated with the W 3
µ field

under which both fermions are charged. The first fermion has charge +1 and the second −1.

However, both fermions are equally charged under the U(1) symmetry associated with Aµ,

and so they realise precisely the requirements for kinetic mixing. The final term in Eq. (A.1)

is the result of a loop calculation involving the two fermions Ψ1,2. From that calculation,

one finds [253],
1
M

= g1g2
6π2 log

(
m0 + hv/2
m0 − hv/2

)
≈ ef

6π2
h

m0
, (A.5)

where in the last equality we have expanded to leading order in hv � m0.

123



B
Deriving the tunnelling probability

in T3K

Here we present a schematic of the prescription for calculating the energy gap δE =

ΠAA − ΠSS in second order perturbation theory. We change from our left/right basis to

a symmetric/anti-symmetric basis: |1〉 ≡ |sym, 0γ〉, |2〉 ≡ |anti, 0γ〉, |3〉 ≡ |b, 1γ〉, |4〉 ≡

|b, 0γ〉, |5〉 ≡ |sym, 1γ〉, |6〉 ≡ |anti, 1γ〉. The symmetric/antisymmetric basis is defined

|sym, 0γ〉 = 1√
2 (|a, L, 0〉+ |a,R, 0〉) and |anti, 0γ〉 = 1√

2 (|a, L, 0〉 − |a,R, 0〉). We can rewrite

the tunnelling probability in terms of the new basis (dropping the numeric prefactor for

notational elegance – we will reinsert it later), in the notation of Section 2.2.2,

PT3K = |〈a,R, 0 |e−iHt|a, L, 0〉|2

= |〈sym, 0γ|e−iHt|sym, 0γ〉 − 〈anti, 0γ|e−iHt|anti, 0γ〉|2

= |〈1(0)|e−iHt|1(0)〉 − 〈2(0)|e−iHt|2(0)〉|2 (B.1)

The mode number j indexing the energy levels of the infinite potential well has been inserted

as a superscript. The zero mode states are not eigenstates of H, so some trickery is in order.

We may perturbatively expand the eigenstates to second order in the parameter λ:

|1〉 = |1(0)〉+ λ

(
V31
E13
|3(0)〉

)
− λ2

(
V13V31
2(E13)2 |1

(0)〉
)

|2〉 = |2(0)〉+ λ

(
V32
E23
|3(0)〉

)
− λ2

(
V23V32
2(E23)2 |2

(0)〉
)

|3〉 = |3(0)〉+ λ

(
V13
E31
|1(0)〉+ V23

E32
|2(0)〉

)
− λ2

(
V31V13
2(E31)2 + V32V23

2(E32)2

)
|3(0)〉

where Vnm ≡ 〈n(0)|V |m(0)〉 is the interacting (off diagonal) part of the Hamiltonian and

Enm ≡ E(0)
n − E(0)

m . We can iteratively rearrange the above expressions for the zeroth order

perturbation states (r.h.s.) in terms of the exact eigenstates of the Hamiltonian (l.h.s.). The
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eigenvalues of H are the perturbatively corrected (to second order) energies for the states

|1, 2, 3〉:

E1/~ = ωa +
g̃2

sym,0γ
2(ωa − (ωb + ωc))

(B.2)

E2/~ = ωa +
g̃2

anti,0γ
2(ωa − (ωb + ωc))

(B.3)

E3/~ = ωb + ωc −
g̃2

sym,0γ
2(ωa − (ωb + ωc))

− g̃2
anti,0γ

2(ωa − (ωb + ωc))
. (B.4)

Reinserting the expansions of the eigenvectors of H in terms of the zeroth order states

makes performing the contractions trivial. We define ∆ = ωb + ωc − ωa for simplicity. Then

with some rearrangement (and inserting a factor of 1/4 for the change to the symmetric-

antisymmetric basis which has so far been ignored), to lowest order in δω2:

PT3K = 1
4

∣∣∣∣∣

(
1 +

g̃2
sym

2∆2

)
ei
g̃2
sym−g̃

2
anti

2∆ t −
(

1 + g̃2
anti

2∆2

)
+

(g̃2
sym − g̃2

anti)
2∆2 e−i∆tei

g̃2
sym
2∆ t

∣∣∣∣∣

2

(B.5)

Importantly this agrees with the earlier naive estimate Eq. (2.18), to leading order in g̃2.

The dominating factor in the tunnelling probability is the argument of the first exponent,

precisely Eanti − Esym = ΠAA −ΠSS . We have the form of the overlap integrals g̃sym/anti in

Eq. (2.15). Recall that the width of each of the coupled wells is ` and that the solutions to

the Schödinger equation for such a setup are of the form ϕn(x) =
√

2
` sin (nπx` ). Here n is

the mode number which for the intermediate state of our system (ie. `→ 2`+ d) must be

summed over. The overlap integral is

g̃ = 1√
2

√
2

2`+ d

√
2
`

(∫ − d2
−`− d2

dx cos
(
nπx

2`+ d

)
sin
(
π
(
x+ `+ d

2
)

`

)

− cos (nπ)
∫ `+ d

2

d
2

dx cos
(
nπx

2`+ d

)
sin
(
π
(
x− d

2
)

`

))
(B.6)

It turns out that the symmetric and antisymmetric parts may be consolidated into a single

sum over all n as the even and odd cavity modes alternately pick up only the antisymmetric

and symmetric parts respectively (this is how the integral is presented above). This sum can

be performed by multiplying the resulting function (from the overlap integral) by πcosec(nπ)

and applying residue theorem. The poles arise from the zeroes of ∆.

This procedure results in the expression (2.21).
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C
Annihilation amplitudes

Scalar

For a scalar mediated interaction, the amplitude for pair annihilation, ψ̄ψ → f+f−, with

initial state momenta p1, p2 and final state momenta k1, k2 is,

iM = ū(k1)v(k2)(−ig′DM) i

q2 −m2
φ

(−ig′f )u(p1)v̄(p2), (C.1)

so that,

|M|2 =
g′2DMg

′2
f

(q2 −m2
φ)2 (ū(p1)u(p1))(v̄(p2)v(p2))(ū(k1)u(k1))(v̄(k2)v(k2)). (C.2)

Taking the spin sum and average, we get,

1
4
∑

spins
|M|2 =

g′2DMg
′2
f

4(q2 −m2
φ)2 Tr[(/p1 +mψ)(/p2 −mf )]Tr[(/k1 +mψ)(/k2 −mf )]

=
4g′2DMg

′2
f

(q2 −m2
φ)2 (p1 · p2 −m2

DM)(k1 · k2 −m2
f ). (C.3)

Formally, one can calculate the amplitude by using non-relativistic spinors. However one

can see the velocity suppression by simply expanding the scalar product of the incoming DM

particle momenta and taking the non-relativistic limit. In the c.o.m. frame of the annihilating

dark matter (i.e. cos (θ) = −1),

p1 · p2 = E1E2 + |~p1||~p2| (C.4)

In the non-relativistic limit, we can use the Newtonian expression for momentum |~p1,2| =

p→ mDMv, E1,2 = E → m2
DM + p2 = m2

DM(1 + v2), with v the WIMP velocity in the c.o.m.

frame. Reinserting this to the amplitude, we see the velocity suppression already at the

amplitude level,
1
4
∑

spins
|M|2 =

4v2g′2DMg
′2
f

(q2 −m2
φ)2 (k1 · k2 −m2

f ). (C.5)
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Pseudoscalar

Now in the pseudoscalar mediated case the calculation proceeds precisely as for scalars, but

there are additional factors of γ5, which enter the trace in the squared matrix element as,

1
4
∑

spins
|M|2 =

g2
DMg

2
f

4(q2 −m2
a)2 Tr[(/p1 +mψ)γ5(/p2 −mf )γ5]Tr[(/k1 +mψ)γ5(/k2 −mf )γ5]

=
4g2

DMg
2
f

(q2 −m2
a)2 (−p1 · p2 −m2

a)(−k1 · k2 −m2
f ). (C.6)

The commutation relations of Dirac matrices mean that additional prefactors of minus

one are picked up before the scalar products of the momenta. In the scalar case, the non-

relativistic limit resulted in (p1 · p2 −m2
DM) → v2. With the additional negative however

there remain terms that are not velocity suppressed, −(p1 · p2 + m2
DM) → −mDM(2 + v2),

leading to,

1
4
∑

spins
|M|2 =

4v2g′2DMg
′2
f

(q2 −m2
φ)2 (k1 · k2 +m2

f ) +
8m2

DMg
′2
DMg

′2
f

(q2 −m2
φ)2 (k1 · k2 +m2

f ). (C.7)

Even in the limit v ∼ 10−3, there is a contribution from the v-independent second term, so

annihilation of Dirac fermions through a pseudoscalar channel is not velocity suppressed1.

From the above amplitudes, the annihilation cross section can be obtained via the formula

(e.g. [199]),

dσ = 1
2E12E2|v1 − v2|


∏

f

d3kf
(2π)3

1
2Ef


× |M(p1, p2 → {kf})|2(2π)4δ(4)(p1 + p2 −

∑
kf ).

(C.8)

The phase space factor takes on a simple form in the case that the final state is two body, as

is the case for pair annihilation of dark matter into two SM fermions here,


∏

f

∫
d3kf
(2π)3


 (2π)4δ(4)(p1 + p2 −

∑
kf ) =

∫
dΣcm

4π
1

8π

(
2|~p|
Ecm

)
. (C.9)

1Aside: notice that neither the scalar nor pseudoscalar amplitude contains cross-terms in the incoming
and outgoing momenta - (pseudo)scalar mediated scattering is isotropic! By contrast, vector
mediated scattering is not. (For an explicit example, see, e.g., Bhabha scattering in Ch. 5 of [199]).
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