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High Precision Simulations of
Electroweak Physics with

Sherpa

Jennifer M. Thompson

Abstract
One vital theoretical tool in the ever-improving description of particle physics
is Monte Carlo event simulation. With the CERN LHC currently exploit-
ing the highest energies in any human-made experiment, with unprecedented
precision for a range of processes, very precise theoretical models are strongly
motivated. This thesis introduces an implementation of Sudakov logarithms,
which are a high-energy approximation to the exact NLO calculation of the
electroweak quantum theory, within the Sherpa Monte Carlo framework.
As well as this, it validates and applies the Sherpa+OpenLoops interface
to a range of interesting electroweak processes at NLO in QCD. One key
area of study in the electroweak sector is that of high multiplicities of weak
bosons in the final state, which are motivated by the insight these studies
could provide into the recently discovered 125 GeV particle, with properties
consistent with the Standard Model Higgs boson. Furthermore, several elec-
troweak processes are key backgrounds in searches for physics beyond the
Standard Model. In addition, leading order results are presented for more
complex electroweak processes for which such a high level of precision has
not yet become necessary. The thesis is concluded with studies at a potential
future 100 TeV proton-proton collider.
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Chapter 1

Introduction

1.1 The LHC and Future Colliders

The recent progress in experimental particle physics has been largely driven

by the ongoing experiments at the CERN LHC. The LHC is currently the

highest energy particle physics collider in the world. It is capable of reaching

centre-of-mass energies of up to 14 TeV with proton-proton collisions. From

its first successful run, data is available at 7 TeV with 4.8 fb−1 of data and

8 TeV with 20.3 fb−1 of data. The physics results from these experiments have

a broad range and provide some of the most precise and detailed analyses

available. An early, great success of the LHC is the 2012 discovery of the

Higgs boson with a mass of 125 GeV, which has been confirmed by both the

ATLAS and CMS experiments [1, 2]. This discovery completes the Standard

Model of particle physics (SM), and validates the Brout-Englert-Higgs (BEH)

mechanism of electroweak (EW) symmetry breaking mechanism [3–8], which

was initially proposed about 5 decades ago. To date, many of the properties

of this boson have been found to be in agreement with the SM predictions,

including its couplings to both fermions [9–11] and bosons [12–14] as well as

its spin-parity quantum numbers [15, 16].

In June 2015, the LHC restarted at an increased centre-of-mass energy (
√
s)

of 13 TeV. This is before it will finally reach its design energy of 14 TeV,

with an expected total luminosity of 3 ab−1. Possibilities for future colliders

after the LHC, which would operate at even higher centre-of-mass energies,

1



Chapter 1. Introduction 2

are being discussed. For example, the potential for physics at a 100 TeV

machine [17] opens up several new potential physics studies as well as intro-

ducing challenges that are not present at current energies.

Despite the amazing success of the LHC so far, there are still several deep,

open questions to be explored by subsequent runs and future colliders. This

thesis presents both phenomenological studies into relevant electroweak pro-

cesses, and the implementation and validation of some tools that allow the

necessary high precision to be obtained. These questions include:

1. Precision studies of Higgs boson couplings to other SM par-

ticles

Although current measurements of the Higgs boson couplings to the

other SM particles have been measured to be in good agreement with

the SM, further precision measurements are necessary to contain these

couplings, because any deviation from SM predictions would be an in-

dication of beyond the Standard Model (BSM) physics.

2. Anomalous gauge boson coupling

Similarly, the measurement of the tri-linear gauge boson couplings –-

and, once possible, also the quartic couplings – is necessary to constrain

possible anomalous gauge boson couplings. These would be BSM phe-

nomena which would result from the inclusion of new operators, which

are typically of higher dimension.

3. Higgs boson self-coupling

The Higgs boson self-coupling parameters, the tri-linear and quartic

couplings, are yet to be precisely measured. These couplings are po-

tentially very sensitive to new physics, and therefore their measurement

has the potential to place stringent constraints on new physics models.

4. Dark matter

The LHC has not yet found a suitable candidate for dark matter, which

makes up ∼ 25 % of the universe. As this is likely to be a new, massive

particle, it could be detectable at future colliders. An option for this

dark matter is that it could couple to the SM through the Higgs boson

interaction only, as a so-called Higgs portal.
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5. Supersymmetry or other extensions of the SM

Supersymmetry (SUSY) is a very popular extension of the SM, and is

capable of presenting solutions to many problems with the SM, such

as dark matter and the hierarchy problem. As yet, no evidence of

SUSY has been observed but the search will continue at higher energies,

with several SUSY models and regions of parameter space as yet not

excluded.

1.2 Monte Carlo Event Generators

Particle physics phenomenology is dominated by calculations, based on first

principles, in the perturbative expansion of the underlying quantum field the-

ory. By the nature of these calculations, they become almost prohibitively

complicated beyond next-to leading order (NLO), at least with current tech-

nology. Within this approach, it is also not possible to describe the very

high-multiplicity final states (hundreds or thousands of particles) commonly

encountered in experiments. Furthermore, there are no first-principle calcu-

lations for the low-energy physics that plays an important role in any particle

physics experiment: hadronisation effects and the underlying event. This se-

riously limits the predictive power of the theory, and strongly motivates the

Monte Carlo approach. This thesis makes use of the Sherpa Monte Carlo

event generator, with its OpenLoops interface where applicable, to perform

several phenomenological studies into the EW sector.

Monte Carlo event simulations provide the interface between the low-

multiplicity final states of fixed-order perturbation theory with the com-

plicated high-multiplicity hadronic experimental final state. This approach

divides the calculation of the full event into several stages, occurring at differ-

ent scales. This allows the stages to be considered to factorise and therefore

be treated more or less independently. In this way, the Monte Carlo ap-

proach to event simulations can overcome the limitations of other theoretical

approaches discussed above.



Chapter 1. Introduction 4

1.2.1 Overview of the Physics Stages

The following provides a very brief overview of the key physics stages imple-

mented in a Monte Carlo simulation. An excellent and more thorough review

is available in Ref. [18], and references therein.

Hard Process

Because many processes of interest at colliders involve a large transfer of

transverse momentum, Monte Carlo simulations begin with a calculation of

the underlying hard process of the event, which can have several external

particles. This can be calculated from the perturbation theory of the quan-

tum fields, made possible even in QCD by the nature of asymptotic freedom

of the quanta, quarks and gluons. The hard process can then be calcu-

lated from matrix elements (MEs) resulting from, e.g., all relevant Feynman

diagrams. The partonic cross section is calculated from the squared ME,

averaged over incoming colours and spins. At hadron colliders, the partonic

cross section must further be folded with the parton distribution functions

(PDFs) of the incoming hadrons – protons at the LHC – which govern the

transition from hadrons to quarks and gluons, to finally produce the total,

hadronic cross section. The result is then integrated over the phase-space

of the final state particles. While these advanced numerical methods are

capable of more complex hard processes than a purely analytical approach,

they do not meet the full complexity of the experimental final states. This

is because of the high scale at which the hard process occurs. It allows the

particles to radiate possibly large numbers of particles as they evolve to the

low scale of hadronisation, which is discussed in more detail below.

It is possible that some of the particles produced in the final state of the

ME are unstable, and need to decay. This can be factorised if the particle

is considered in the narrow-width approximation. Within the Sherpa [19,

20] framework, these decays can be treated in such a way as to correctly

include spin correlations and redistribute the kinematics onto a Breit-Wigner

distribution. In these decays, new particles are created. These new particles

can also be unstable and need to decay themselves, creating a chain than

terminates at stable or sufficiently long-lived particles.
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Parton Shower

Coloured particles produced in the hard process considered above can radiate

secondary quanta, in the same way that charged particles emit photons.

The parton shower allows this cascade of an arbitrary amount of secondary

radiation to be described. A complication in QCD, as compared to the QED

case, is that emitted gluons can, themselves, emit further gluons.

The hard process is a fixed order calculation, and can be supplemented by

the parton shower, as this is a complementary approximation. The parton

shower is completely universal and becomes exact in the soft-collinear region

of phase-space, where the majority of the additional radiation occurs. It acts

as a numerical solution to the renormalisation group equation, performing

an effective resummation of the large logarithmic terms introduced. Cur-

rent implementations of parton showers are available to leading logarithmic

accuracy; they describe the leading emissions from the external particles as

they evolve from the high scale of the hard process to a low scale at which

non-perturbative effects dominate due to the confinement property of QCD.

At this scale, O(1 GeV), a phase transition occurs from the quanta of QCD

to colourless bound states. In Monte Carlo event simulation, this phase tran-

sition is described by a procedure known as hadronisation, which is discussed

below.

Hadronisation

Because there are no quantitative models available from first principles for

hadronisation, Monte Carlo event simulations use qualitative models such as

the string [21, 22] and cluster models. These involve several unconstrained

parameters, which reflect the lack of knowledge about this physics. These

parameters are determined by fitting to data. Since this occurs at a scale

so well separated from the hard interaction, hadronisation can be considered

to factorise as a universal procedure independent of the hard process and

parton shower.

The string model of hadronisation relies on the long-distance confinement

property of QCD, and treats the colour flow along quark lines as flux tubes.
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Breaks in these tubes correspond to particle creation, and gluons provide

‘kinks’ in the tube, which are associated with an energy and a momen-

tum. The cluster model is instead predicated on the pre-confinement [23]

nature of the parton shower, such that, once gluons are forced to split to

quark-antiquak pairs, the hadrons comprise of colour singlets of quarks which

neighbour each other in colour space.

Hadron and τ Decays

Many hadrons produced in this hadronisation step will be unstable. There-

fore, in order to produce a realistic experimental final state, these unstable

hadrons must decay. The branching fractions for these decays can be taken

from look-up tables, with many of the relevant numbers being reported in

the Particle Data Group’s Review of Particle Physics [24]. However, for

some decays theoretical models are employed instead, and not all hadrons

are included in the simulations.

The hadronic decay products can potentially need to decay further, and this

proceeds until the hadrons have a sufficiently long lifetime. Typically, this

means that light mesons and baryons are considered stable. Although not

a hadron, the τ lepton decay to its neutrino and a virtual W boson can be

implemented alongside the hadron decays.

QED Shower

Additional QCD radiation was considered above in a parton shower approach.

Naturally, particles charged under QED can radiate secondary quanta (pho-

tons) as well. QED radiation can also be treated in a parton shower approach,

with electric charge used in place of the colour flow.

An alternative approach to QED radiation is provided by the YFS [25] pro-

cedure, which is an exponentiation of the full eikonal approximation to soft

photon emission below some cut-off as well as the virtual contributions.
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Multiple Interactions

An additional difficulty presents itself at a hadron collider. Because hadrons

are extended objects, it is very likely that a hard interaction is supplemented

by other partonic collisions occurring at lower energy. These collisions are

simulated as pure 2→ 2 QCD processes, and typically involve small transfers

of momentum, yielding particles with very small values of transverse momen-

tum. As the colliding partons are coloured, these interactions can have an

impact on the colour flow of the entire event.

This procedure does not affect the total cross-section for the process, and

the radiation from these interactions rarely produce radiation that passes

a jet definition. Instead, the effect on the event is more global; multiple

interactions increase particle multiplicity and energy.

1.2.2 Recent Developments

In recent years, the Monte Carlo community has made great progress in

accuracy, by including NLO QCD MEs in simulations. These calculations

frequently rely on an interface to external code to provide the virtual part

of the NLO contribution, with the Monte Carlo contributing the rest of the

calculation. Currently, NLO QCD calculations are the standard level of

precision in simulations of LHC events. However, as experimental precision

improves, even this level of accuracy in QCD can become a limiting factor in

physics studies. Calculations to next-to-next-to leading order (NNLO) QCD

results have already been published for some processes [26–37] as have results

for NLO EW corrections [38–41].

The first steps towards including NNLO QCD in a Monte Carlo event gener-

ator with parton showering effects have been completed to date [42–44], and

there has been a similar interest in including NLO EW calculations [45–47].

These face different technical challenges to the NNLO QCD implementations,

and Refs. [45–47] show successful implementations of EW NLO calculations

within Monte Carlo event generators.
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1.2.3 EW Sudakov Logarithmic Corrections

This thesis also details and validates the implementation of EW Sudakov ap-

proximation to NLO EW corrections in Sherpa. A contribution to full NLO

EW calculations comes from EW Sudakov logarithms. These logarithms are

a consequence of the scale hierarchy between the centre-of-mass energy of the

collision and the EW scale, and therefore naturally grow logarithmically with

energy. As the centre-of-mass energy increases, the EW Sudakov logarithms

begin to dominate the NLO EW correction. Because it is possible to imple-

ment these logarithms without the full machinery of NLO EW calculations,

EW Sudakov logarithms are a very useful approximation to the full NLO

EW calculation in the high-energy limit. The EW Sudakov approximation

has been studied in many different processes [48–59].

The EW interaction includes weak bosons with masses of the order of the

weak scale, and the photon, which is massless. The interaction can, therefore,

be considered to have two phases: a symmetric phase in which all EW bosons

have equal masses, and a broken phase which accounts for the difference be-

tween the masses of the weak bosons and the photon. The high-energy

approximation of EW Sudakov logarithms is dominated by the symmetric

phase, and the logarithms arising from the scale difference between the pho-

ton and the weak bosons is cancelled by real radiation.

The form of these logarithms is log(|(pi + pj)
2|/M2

V ), where MV is the mass

of the boson and pi, pj are the momenta of external legs i, j of the calculation

relevant to the EW correction. It is clear that these logarithms will increase

with the centre-of-mass energy, and will begin to dominate EW corrections

in the high-energy limit. They are also comparable in size to NNLO QCD

corrections, and as such a consistent implementation of both the NNLO QCD

and NLO EW corrections is important. The EW Sudakovs can be included

on top of fixed order MEs in a Monte Carlo simulation as a K-factor. This

is a factor that multiplies the amplitude squared by some constant value,

and therefore makes including the mixed NLO QCD+NLO EW correction

trivial.

The above paragraphs discuss the calculation of the Sudakov logarithmic ap-

proximation in the absence of any real EW boson emission. However, in a
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typical experimental analysis, observables are likely to be sufficiently inclu-

sive to either missing energy, jets or leptons as to include at least some of the

real correction. These real emission processes will then cancel some of the

logarithms arising from the virtual exchange, and must be included in simu-

lation for an accurate description of the physics. It is trivial to include these

as additional LO processes at O(αn+1
EW ) alongside the Born process, where n

is the order in the EW coupling, αEW, of the Born process considered. This

is at minimal additional cost in CPU time. Nevertheless, the large Sudakov

logarithms from virtual EW boson exchange have a significant impact in the

high-energy tails of distributions, which is important for new physics searches

and precision EW physics studies.

It is worth noting that non-Abelian interactions naturally violate [60] the

Bloch-Nordsieck (BN) theorem [61], leading to large logarithmic corrections

becoming physically relevant even in fully inclusive calculations due to non-

cancellation of the real and virtual emission. For Abelian interactions, such

as QED, the BN theorem guarantees the exact cancellation of the real and

virtual divergences. However, the more general Kinoshita-Lee-Nauenberg

(KLN) [62, 63] theorem applies to non-Abelian interactions. Compared to

the BN theorem, the KLN theorem includes an additional term that is in gen-

eral non-zero and can lead to IR divergences. In QCD the exact cancellation

between the real and virtual divergences is recovered due to colour confine-

ment. This introduces a colour averaging over the initial state, washing out

the non-cancellation term. In contrast, the initial state for EW interactions

is not an EW singlet, and therefore the non-cancellation of the real and vir-

tual contributions can be observed. The NLO calculation in EW, therefore,

includes a logarithmic dependence on the IR cut-off of the theory. However,

this does not have such a substantial impact on the cross-section, and even

in distributions the inclusion of real radiation greatly reduces the virtual

contribution.

1.3 Structure of the Thesis

Most of the work included in this thesis make use of the Sherpa [19, 20]

Monte Carlo event generator, either using or extending its functionality.
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Sherpa is a general purpose Monte Carlo event generator with in-built ME

generators, Comix [64] and Amegic++ [65]. MEs can therefore be gener-

ated up to NLO QCD accuracy, with an interface to an external one-loop

provider for the virtual contribution. Where NLO QCD calculations are per-

formed, they use the interface to the one-loop provider, OpenLoops [66].

This is a fully automated code which uses a numerical recursion method. For

these NLO QCD calculations, the Collier library [67] is used to provide the

tensor and scalar integrals, as this provides a high level of numerical stabil-

ity. These MEs can then be passed through the internal parton shower and

subsequent hadronisation. Unless otherwise specified, the PDFs are those

from CT10 [68].

This thesis aims to produce precision physics studies in the EW sector of the

SM. These studies are vital for the remaining questions in particle physics.

The tools required for precision studies into EW processes are NLO correc-

tions in both QCD and EW.

A validation is included of an automated NLO QCD interface for nearly arbi-

trary processes in the SM, which are calculated to NLO in QCD and correct

matching of these MEs to the parton shower. The physics studies presented

to NLO accuracy in QCD are EW processes of interest at high precision. The

NLO techniques are employed in Higgsstrahlung production (V H production

for V = W±Z), where couplings between the Higgs boson and the gauge

boson can be explored, as well as in tri-lepton production channels in the

SM, which form backgrounds to several BSM searches. In particular, these

backgrounds are of interest in neutralino and chargino searches at the LHC

experiments [69–74]. A study into the Higgs boson tri-linear self-coupling is

also presented, where the tt̄HH channel is exploited as the leading contri-

bution to di-Higgs boson production with constructive interference between

contributing diagrams [75].

The second technique demonstrated in this thesis is that of the implemen-

tation of an automated high-energy approximation to NLO EW corrections

within the Sherpa ME generator framework, the EW Sudakov implementa-

tion introduced in Subsec. 1.2.3.

In addition, some EW processes are considered at 100 TeV, in preparation
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for a potential future collider at this energy [17]. These studies also focus

on EW processes, and extend the previous tri-lepton study as a BSM back-

ground. The relative cross-sections for weak boson fusion (WBF) production

of multiple Higgs bosons are presented, alongside theoretical calculations of

multiple weak boson production.

To summarise, this thesis consists of an overview of the relevant theory in

Chap. 2, followed by three main parts:

1. Part I

To open the thesis, two chapters are dedicated to work completed into

the implementation and validation of high precision methods within

the Sherpa framework. Firstly, there is a validation study of the

Sherpa+OpenLoops interface with a comprehensive check of total

cross-sections for a range of processes. These are checked against pub-

lished MadLoop numbers. Secondly, there is a detailed explanation of

the implementation of EW Sudakov logarithms within Sherpa along

with validation plots and initial results.

2. Part II

The second part of the thesis focuses on the application of precision

Monte Carlo calculations to LHC physics. These chapters use the

Sherpa+OpenLoops interface validated in the first part. Results

are shown for important EW processes at LHC energies, both for Higgs

boson studies and SUSY searches.

3. Part III

The last part of this thesis looks at the future of precision EW physics

beyond the LHC. This presents results for EW processes which will be

of interest in a 100 TeV hadron collider.

The conclusions are then presented in Part IV.



Chapter 2

Theory

This chapter outlines the current literature and theoretical basis on which

many of the subsequent chapters rely. It outlines the status of Monte Carlo

simulations and details the tools employed to extend these simulations to

NLO QCD accuracy. The Sherpa+OpenLoops interface is used as an

explicit example, because this is the set-up which will be employed in this

thesis. Other codes are available, and these are mentioned, although their

exact methods are not detailed.

2.1 The Cross-Section

The general form for the cross-section, σ, for a n+2-leg process as in Fig. 2.1

at a hadron collider, is

σ(µ) =

∫ ∫
dx1dx2f1(x1, µ)f2(x2, µ)

∫
(2π)4δ4

(
p1 + p2 −

∑
f

pf

)
×

|M(µ)|2
2ŝ

∏
f

d3pf
(2π)32Ef

,

(2.1)

where E1(2), p1(2) are the energy and momentum of incoming leg 1(2), respec-

tively; Ef and pf are the energy and momentum of the final state leg f . The

partonic centre-of-mass energy is denoted by
√
ŝ, fi is the PDF for hadron

i and xj denotes the momentum fraction of parton j. M(µ) represents the

ME evaluated at scale µ, where the renormalisation scale, µR, and factorisa-

12
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Figure 2.1: A general diagrammatic representation of a hard process at
a proton-proton collider for incoming protons with momenta P1 and P2,
where arrows denote the direction of the relevant momentum. p1, p2 are the
momenta of the incoming partons, and pfj is the momentum of the final state
particles from j = 1 to j = n.

tion scale, µF , are taken to be equivalent as µR = µF = µ. These scales are

discussed in more detail in Subsec. 2.1.1.

In addition to calculating this total cross-section, it is important for Monte

Carlo simulations to be able to provide fully differential distributions, dσ.

This allows the calculation of the distribution for an arbitrary observable, O,

whose distribution is defined by dσ/dO.

2.1.1 Fixed Order Scales

The importance of the PDFs in a Monte Carlo simulation has been mentioned

above. These must be evaluated at a scale known as the factorisation scale,

µF . This scale is related to the hard process, but is unphysical. This implies

that any dependence on this scale should vanish if an all-orders calculation

in perturbation theory was performed. At LO there is a strong dependence

on this scale choice.

A second unphysical scale, µR as introduced above, is the of the renormal-

isation scale, which determines the scale at which the strong coupling is

evaluated. The relationship between the values of the coupling constants

evaluated at two different scales, Q1 and Q2, is given by the renormalisation

group equation,
dα

d log(Q1/Q2)
= β(α) . (2.2)
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The appropriate β function for the strong coupling constant, αs, is

β(αs) = −
(

11− 2

3
nf

)
α2
s

2π
, (2.3)

where nf is the number of flavours of quarks considered to be massless.

The ME also depends on this scale, through the strong running coupling.

However, for most processes, the factorisation and the renormalisation scales

are taken to be equivalent, µF = µR, as in Eq. (2.1).

2.2 Monte Carlo Simulation

As has been mentioned in Chap. 1, Monte Carlo simulations allow high mul-

tiplicity hadronic final states typical of collider experiments to be theoreti-

cally modelled. This section describes the hard process calculation in Monte

Carlo simulation in more detail, explaining some of the methods and tools

employed. It also details the interaction between the ME and the parton

shower.

2.2.1 Fixed Order Calculations

The procedure outlined in Sec. 1.2 begins with the calculation of a fixed-

order perturbative calculation. This section discusses the method employed

in calculating NLO MEs. Calculations of NLO QCD cross-sections, σNLO,

take the form

σNLO =

∫
dΦBB +

∫
dΦV V +

∫
dΦRR , (2.4)

where B is the differential LO cross-section, V is the differential virtual

contribution and R is the differential real contribution. ΦX represents the

appropriate phase-space for X. Fig. 2.2 shows the virtual (left-hand-side)

and real (right-hand-side) contributions. The virtual diagram includes an

undefined loop momentum, q in Fig. 2.2, which means that V must contain

the integral over q. This integration produces divergences in the limits q →
∞, the UV divergence, and q → 0, the IR divergence. UV divergences can
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Figure 2.2: Left-hand-side shows the virtual contribution to the NLO
cross-section, and right-hand-side shows the real contribution to some ar-
bitrary process denoted by the blob. pi denotes the external momenta for
i = {1, 2, 3, 4}, and q the internal loop momentum.

be handled with a regularisation and renormalisation procedure, however the

IR divergences require the inclusion of the real radiation in order to become

finite.

An analytical method for handling these divergences of the NLO calculation

is dimensional regularisation [76]. Taking this as an example, the divergences

are parameterised by ε, where ε is defined by the number of dimensions, D,

used in the calculation according to D = 4 − 2ε. As ε is taken to zero, the

real and the virtual contributions diverge. However, the explicit analytical

expressions for the divergences in the real and the virtual terms exactly cancel

each other.

Since numerical methods cannot integrate the divergent quantities separately,

the divergences cannot be naively treated. One possible solution to this,

which is the current approach adopted by Monte Carlo event simulators,

involves cancelling the divergences at the integrand stage. Fig. 2.3 shows a

diagrammatic representation of the NLO QCD cross section for e+e− → qq̄

production. There is no interference between the real and the virtual contri-

butions, as the final states do not exist in the same phase-space. Therefore,

in order to cancel the divergences the subtraction method introduces an ad-

ditional quantity, S, as∫
dΦNLOσNLO =

∫
dΦB [B + V + I] +

∫
dΦR [R− S] . (2.5)
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Figure 2.3: The diagrammatic representation of NLO e+e− → qq̄ pro-
duction. This comprises a LO contribution (top line), a real emission part
(middle) and an interference term between the tree-level diagram and the
virtual contribution.

I is the integral of S over the one-parton subspace,

I =

∫
dΦ1S , (2.6)

such that the operation amounts to adding 0 to Eq. (2.4). The LO term,

B, and the virtual term, V , have been collected together because they share

a common phase-space, as can be seen from Fig. 2.3. This phase-space is

ΦB ≡ ΦN for an N -body final state Born process, while ΦR ≡ ΦN+1. S

represents a structure that exactly cancels the divergences in R, and therefore

I exactly cancels the divergences introduced by the virtual correction. Now

each term in the equation for the NLO QCD cross-section is separately finite

and appropriate for Monte Carlo integration.

The conditions required for S to fulfil are listed in Ref. [77]. These conditions

are that S must:

� not be dependent on the considered observables.

� exactly cancel all divergences of R.

� not introduce additional divergences.

� be a convenient form for Monte Carlo integration.

� be analytically integrable over the one-parton sub-space.
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Figure 2.4: Diagrammatic representation of Catani-Seymour splitting ker-
nels used for S subtraction terms.

Ref. [77] introduces a universal subtraction scheme for calculating S for an ar-

bitrary process. This is known as Catani-Seymour subtraction, and is shown

diagrammatically in Fig. 2.4. This implies the structure for the subtraction

terms, S, of

S =
∑
dipole

B ⊗ dVdipole , (2.7)

such that S is expressed as a convolution of an underlying LO term, B, and

a universal splitting function, Vdipole. The divergent information is contained

within Vdipole, and naturally B contains all the process-dependence. The

mapping of the real emission final state back onto its LO partner introduces

some momentum violation, which must be absorbed by a spectator particle,

defined as a relevant colour partner.

The subtraction terms formed in this way are a summation over all possible

splittings that could give rise to the final state S structure. The splitting

function dVdipole depends on the final state partons involved in the splitting,

including the spectator particle included for momentum conservation.

Other subtraction schemes exist, and produce similarly process-independent

subtraction terms, such as Nagy-Soper dipoles [78, 79], the FKS method [80]

and antenna subtraction [81, 82]. The following section details how to pro-

ceed to match the NLO QCD ME to a parton shower.

One-Loop Providers

Considering, once again, the equation for a numerical NLO calculation given

in Eq. (2.5), the B, I and R − S components can be calculated by Sherpa

stand-alone. The remaining V component is the virtual loop contribution

to the NLO calculation. This is usually obtained from external codes, such
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t i
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j

t k

Figure 2.5: A diagrammatic representation of a step in a tree-level recur-
sion calculation. The lines terminating in black blobs represent the external
lines of the diagram. The remaining line (far left-hand-side of each diagram)
represents an internal, off-shell line.

as those listed in Subsec. 2.2.1. The Sherpa+OpenLoops interface, which

is validated and employed for phenomenological studies in this thesis, uses

OpenLoops’ very versatile native interface.

The focus in this thesis is on the interface with the OpenLoops code. This

is a fully automated one-loop generator based on a fast numerical recursion

for multi-particle processes.

The OpenLoops method can be used with either tensor integral reduction

or OPP [83] reduction. For tensor integrals the Collier library [67] is used,

which guarantees high numerical stability thanks to the methods of Refs. [84–

86]. Alternatively, CutTools [87] can be used for OPP reduction, with the

scalar integrals provided by OneLOop [88].

To briefly explain the method employed by OpenLoops, it is necessary

to consider recursion methods, beginning with tree-level recursion. Fig. 2.5

shows how the recursion of tree-level amplitudes occurs. The left-hand dia-

gram, M , in Fig. 2.5 shows a graphical representation of a sub-tree ti with

colour-stripped amplitude aα(ti). α denotes the spinor or Lorentz index of

the cut line, as appropriate.

The colour factor, C, of the diagrams is factored out of the amplitudes as

M(ti) = CA(ti) , (2.8)
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where A(ti) can be calculated as a contraction of two sub-trees.

The sub-tree ti can be constructed by connecting sub-trees tj and tk with

amplitudes a(tj) and a(tk), respectively, by a vertex, as shown in Fig. 2.5, as

aα(ti) = V α
βγa

β(tj)a
γ(tk) , (2.9)

where V α
βγ denotes the calculation of the vertex and propagators introduced in

the recursion. This process of decomposition can then be applied recursively

until external lines are reached.

It is possible to use this technique with loop calculations. Fig. 2.6 shows the

cutting of a loop propagator, labelled D0, for a diagram with colour-stripped

amplitude Av. Considering the set of n sub-trees, shown as blobs in Fig. 2.6,

to be collectively labelled as Sn, this amplitude involves an integral over the

loop momentum, q, in D dimensions of

Av =

∫
dDqN(Sn, q)

D0...Dn−1
, (2.10)

where the denominators of the relevant propagators are D0...Dn−1, and the

numerators of the evaluation are collected as N(Sn, q). Eq. (2.10) shows the

evaluation of the amplitude shown diagrammatically in Fig. 2.6. In principle,

this enables the recursion method described for tree-level diagrams to also

calculate N(Sn, q) for fixed values of the loop momentum, as needed in OPP

reduction, by

Nα
β (Sn, q) = V α

γδ(Sn, q)N
γ
β (Sn−1, q)t

δ
n , (2.11)

where the sub-tree tδn represents the tree-like sub-diagram of Nα
β , and the

vertex and numerator of the propagator introduced in the recursion are con-

tained in V α
γ,δ(q).

Repeating the recursion to evaluate the numerator for many loop momenta

turns out to be quite inefficient. Furthermore, there is no straight-forward

and efficient way to use this procedure in combination with tensor integrals.

Instead, in the OpenLoops approach, the momentum dependence is fac-
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Figure 2.6: The cutting of loop propagatorD0 to create a tree-like structure
to be calculated with tree-level recursive relations. The loop calculation is
then given by the trace over external indices α and β. The blobs represent
sub-amplitudes at tree-level.

torised out from both Nα
β and V α

γδ. This yields the following

Nα
β (q) = Nα

0,β +Nα
1,β;µ1

qµ1 + ...+Nα
m,β;µ1...µm

qµ1 ...qµm (2.12)

V α
γδ(q) = V α

0,γδ + V α
1,γδ;µq

δ;µ , (2.13)

where the first subscript for N , V on the right-hand-side of Eqs. (2.12) and

(2.13) denotes the order of q for which it is a coefficient. Higher orders in q are

possible for effective theories. These coefficients are numerically calculated

and stored for later use.

With this approach, multiple evaluations of Nα
β (q) become very fast, there-

fore reducing the CPU time needed for OPP reduction significantly compared

to the tree recursion approach described earlier. On the other hand, inserting

Eq. (2.12) into Eq. (2.10) and taking the trace over N , naturally yields the

tensor integral representation of the amplitude, where the polynomial coeffi-

cients of the numerator correspond to the coefficients of the tensor integrals.

Since the publication of Ref. [66], other collaborations have implemented this

method, such as MadGraph + aMC@NLO [89].
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Available Tools

This subsection lists the available tools for Monte Carlo event simulation.

These are the general purpose Monte Carlo simulators

� Pythia [90]

� Herwig++ [91, 92]

� Sherpa [19, 20]

� Ariadne [93]

In addition to this, there are several ME generator codes; these calculate the

hard ME and interface to external code for the parton showering.

� MadGraph + aMC@NLO [89]

� Whizard [94, 95]

� AlpGen [96–98]

� Helac [99, 100].

For loop processes, several codes exist as one-loop providers.

� GoSam [101, 102]

� NJet [103, 104]

� OpenLoops [66]

� BlackHat [105, 106]

Some interfaces between Monte Carlo event generators and external one-loop

providers make use of the BLHA [107] standard. A very convenient way of

including different PDF sets in a Monte Carlo simulation is with an interface

to LHAPDF [108]. In this thesis, the default PDF set used is the CT10 PDF

set, which is included directly in Sherpa. All other PDF sets used in this

thesis are included via the Sherpa interface to LHAPDF.
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2.2.2 Matching

LO matching to parton shower is achieved in the following way, where the

phase-space dependence of the differential LO cross-section, B, is made ex-

plicit for an expansion in the parton shower, PS, up to one emission;

σPS
LO =σLO ⊗ PS =∫

dΦNB(ΦN)

[
∆(Q2

0, µ
2
q) +

∫ µ2
q

Q2
0

dΦ1
αs
2π

K(Φ1)∆(q(Φ1)
2, µ2

q)

]
.

(2.14)

Eq. (2.14) comprises a term describing no emission (left-hand term on right-

most-side) and a term describing exactly one emission (right-hand term on

right-most-side); αs is the coupling constant for QCD. It is important to no-

tice that the bracket on the right-most-side of Eq. (2.14) integrates to unity;

the parton shower does not alter the total cross-section. In Eq. (2.14), and

q(Φ1) is the evolution parameter, typically considered to be virtuality, trans-

verse momentum or opening angle. It is determined by the first emission,

and is smaller than the starting scale, µq, and larger than the lower hadroni-

sation scale, Q0. The starting scale, µq, for the shower is a process-dependent

quantity, and cannot be determined from first-principles. It is therefore an

unphysical choice like the factorisation and renormalisation scales discussed

earlier. This scale is typically varied by a factor of 2 to give an estimate

of the theoretical uncertainty. ∆(t1, t2) represents the Sudakov form factor,

which can be interpreted as a no-emission probability between scales t2 and

t1. This has the form

∆(t1, t2) = exp

(
−αs

2π

∫ t2

t1

dΦ1K(Φ1)

)
. (2.15)

K is the splitting kernel for the parton shower.

NLO QCD calculations include the possibility of an emission of QCD radia-

tion from the ME. This complicates the matching of the ME to the parton

shower, since the parton shower can double-count the emission from the

ME. Matching algorithms avoid this double-counting by demanding that the

hardest QCD emission comes from the ME.
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Of the two matching procedures currently available, MC@NLO [109] and

POWHEG [110, 111], Sherpa implements the S-MC@NLO method [112,

113], which is a variant of MC@NLO. This variant exactly identifies the sub-

traction terms with the parton shower splitting kernels. This adjustment

allows the S-MC@NLO implementation to handle subleading colour config-

urations in a process-independent way.

Although, historically, the second matching scheme for NLO MEs, the

POWHEG method can be considered as a generalisation of the MC@NLO

method. In the POWHEG approach, Eq. (2.14) is transformed by including

the ratio of the real emission to the Born cross-sections in the Sudakov form

factor as

σPS
POWHEG =∫

dΦN B̄(ΦN)

[
∆(Q2

0, µ
2
q) +

∫ µ2
q

Q2
0

dΦ1
αs
2π

R(ΦN ,Φ1)

B(ΦN)
∆(q(Φ1)

2, µ2
q)

]
.

(2.16)

The POWHEG method, as seen up to the first emission in Eq. (2.16), expo-

nentiates the full phase-space, and uses R/B as the splitting kernel, leading

to an altered Sudakov form factor. B̄ is the NLO reweighted Born term,

as explicitly shown in the subtraction equation Eq. (2.5). The POWHEG

method naturally includes configurations that are not part of the NLO cal-

culation. In order to remedy this, the phase-space can be divided into hard

and soft regions. The exact location of this split is tunable, and this can be

used to mimic higher order effects.

The MC@NLO method, again up to the first emission, re-expresses Eq. (2.14)

as

σPS
MC@NLO =

∫
dΦN B̄(ΦN)

[
∆(Q2

0, µ
2
q) +

∫ µ2
q

Q2
0

dΦ1
αs
2π
RS(Φ1)∆(q(Φ1)

2, µ2
q)

]
+

∫
dΦN+1RH(ΦN+1) .

(2.17)

Eq. (2.17) looks similar to Eq. (2.16), with an additional term on the right-

hand side,
∫

dΦN+1RH(ΦN+1). This originates from R = RH +RS, where R
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is the real emission ME, as in Eq. (2.16), and RH , RS are the hard and soft

regions, respectively. All of the divergences of the real emission are encoded

in RS, as the subtraction terms. If there is no emission from the ME, there

is a veto on any parton shower emissions. This is shown in Eq. (2.17) by the

Sudakov form factor, ∆(Q2
0, µ

2
q).

The NLO re-weighted LO term is provided by the following in the S-

MC@NLO implementation,

B̄(ΦN) = B(ΦN) + V (ΦN) +

∫
dΦ1B(ΦN)RS(Φ1)Θ(µq −Q) , (2.18)

and RH is given by

RH(ΦN+1) = R(ΦN+1)− [B ⊗RS](ΦN+1)Θ(µq −Q) . (2.19)

2.2.3 Merging

It is possible to improve the kinematical description of observables, without

performing the full NLO QCD calculation, by including multiple LO MEs

with different multiplicities. This method is known as merging, and this

section outlines the procedure as implemented in Sherpa, before extending

this formalism to NLO, as the next logical step.

LO Merging

Multi-jet merging introduces additional QCD radiation from the ME. This

produces a more accurate calculation of radiation patterns in hard, well-

separated regions of phase-space than the parton shower, because the parton

shower is a soft-collinear approximation. LO merging, therefore, makes use

of several MEs, calculated up to some order in αs. The inclusion of these

high multiplicity MEs in calculations creates double-counting problems, as

occurred with NLO MEs. Similarly, an algorithm is required to consistently

include a parton shower on top of the ME.

There are several available merging algorithms, and instances of these algo-

rithms are included in several Monte Carlo simulations. An overview of the

different algorithms can be found in Refs. [114–116]. The available merging
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algorithms are:

� CKKW(-L) [117, 118]

This method is discussed in detail below this list. Implementations of

the method can be found in Sherpa and a similar merging method,

the dipole cascade [119, 120], is implemented in Ariadne.

� UMEPS [121]

This merging algorithm preserves the total cross-section to LO, unlike

other methods which break unitarity. There is an implementation of

this merging algorithm in Pythia.

� MLM [97]

This method implements the Sudakov suppression by vetoing any final

state, once the parton shower has been completed, that is reconstructed

to have more jets than was initially requested. It is implemented in

Alpgen, MadGraph and Helac.

Focussing on the CKKW method, this introduces a merging scale, which

is used to determine a minimum-distance requirement on the emissions. It

requires that all emissions above the merging scale are produced from the

ME as opposed to the parton shower. Below this cut, the QCD radiation is

produced by the parton shower. Similar to the fixed-order scales introduced

in Subsec. 2.1.1 and the parton shower starting scale introduced in Sec. 2.2.2,

this is an unphysical scale whose variations provide a theoretical uncertainty

on the calculation. The implemented algorithm is:

1. One of the multiplicities is selected, by weighting the processes by the

cross-sections, such that the ME with final state multiplicity i is se-

lected with the probability σi/
∑

j σj.

2. The final state is re-clustered back to a 2→ 2 process, or until no valid

clustering can be found, using the parton shower splitting kernel. In

this way a parton shower history can be constructed from the ME.

3. A scale for the process is calculated from the 2 → 2 core process, or

from a process-specific scale. Process-specific scales must be used if the

process cannot be re-clustered back to a 2→ 2.
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4. The event is reweighted according to the parton shower couplings for

the emissions and appropriate Sudakov form factors.

5. The parton shower radiates as a truncated shower between the ME

emissions.

6. The Sudakov form factors are included by vetoing any event for which a

parton shower emission is produced harder than the merging scale. The

exception to this is for the highest multiplicity case, where the parton

shower is required to fill the rest of the phase-space. Here events are

vetoed only if the shower emits a parton harder than the softest parton

shower starting scale.

This produces a consistently merged sample, with the hardest jets described

to LO accuracy, as opposed to the leading logarithmic accuracy provided

by the parton shower. The LO merged cross-section, as implemented in the

Sherpa Monte Carlo event generator, is given by the following equation,

where the merging scale is given by Qcut,

dσLOPS
LO = dΦNBN ⊗ PSNΘ(Qcut −QN+1)

+ dΦN+1BN+1Θ(QN+1 −QN+2)∆(Q2
N+1, Q

2
N)PSN+1Θ(Qcut −QN+2)

+ ... ,

(2.20)

where BN represents the differential LO ME with final state parton multi-

plicity of N . Eq. (2.20) shows the explicit construction of the LO merging up

to one additional emission from the ME. The subsequent emissions proceed

in a similar way, each containing generating functions PSN+m, where m is

the number of additional QCD emissions from the ME.

NLO Merging

To extend merging to NLO QCD, a similar method to that explained in

Subsec. 2.2.3 is employed. There are NLO extensions to the CKKW method,

which is implemented in Sherpa and to the UMEPS scheme, which is UN-

LOPS. UNLOPS has the same fundamental principle of UMEPS, where the



Chapter 2. Theory 27

total cross-section from the merging algorithm is maintained to NLO accu-

racy. Therefore, with the UNLOPS method the merging procedure is unitary.

The method presented here is the extension of the LO merging method de-

scribed above to including NLO QCD accurate MEs. This procedure is

MEPS@NLO, as implemented in Sherpa. NLO QCD accuracy introduces a

complication: the real emission from the N parton final state contains N + 1

parton final states, as does the LO-like contribution from the N + 1 par-

ton ME. This double counting is corrected by a removal of the real emission

by adapting the Sudakov form factor, ∆. The contribution from the real

emission term can be removed either through subtraction or a multiplicative

factor. The differences between these two methods is of higher order.

Rewriting Eq. (2.20) in an appropriate way for NLO QCD merging with

multiple NLO QCD MEs yields an equation for the fully differential, NLO

QCD merged cross section, dσMEPS
NLO . This is expressed in Eq. (2.21) in terms

of the N -parton NLO QCD cross sections, σNLO
N ,

dσMEPS
NLO = dΦN B̄N ⊗ P̃S

N
Θ(Qcut −QN+1)

+ dΦN+1B̄N+1 Θ(QN+1 −Qcut)
[
∆(Q2

cut, Q
2
N+1)−∆(1)(Q2

cut, Q
2
N+1)

]
⊗ P̃S

N+1
Θ(Qcut −QN+2) + ... .

(2.21)

Eq. (2.21) shows the NLO merging procedure. ∆(1) denotes the contribution

to the Sudakov form factor for the real emission part. This is subtracted

from the full Sudakov form factor. In the Sherpa implementation of NLO

merging, the removal of this double counting is achieved in a multiplicative

way. The subtraction method of this removal is shown in Eq. (2.21) as it is

more illustrative for clarity. P̃S
N

provides the shower for the NLO QCD N

particles cross section.

Further emissions can be considered to either NLO or LO accuracy on top

of Eq. (2.21).
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Chapter 3

Validation of the

Sherpa+OpenLoops Interface

In order to perform calculations to NLO accuracy in QCD, Sherpa [19, 20]

makes use of an interface with one of several external codes that provide the

virtual one-loop MEs. The one-loop providers which are currently interfaced

to Sherpa are OpenLoops [66], NJet [103, 104], GoSam [101, 102] and

BlackHat [105, 106]. This chapter looks at the validation of total cross-

sections calculated with the Sherpa+OpenLoops interface.

3.1 Introduction

A comprehensive list of total cross-sections for SM processes at the LHC has

been published to NLO accuracy in QCD by the MadLoop + aMC@NLO

collaboration in Ref. [122]. This list of processes comprises an overview of

LHC physics, including multiple partonic final states, massive weak bosons

and photon production as well as production of massive coloured particles.

This chapter presents the comparison between these published numbers and

those calculated with the Sherpa+OpenLoops framework, as a validation

of the interface.

The method of the OpenLoops code is described in Chap. 2. It provides

loop MEs in the form of generated libraries, and these exist for a wide va-

riety of processes, for QCD and EW corrections. Therefore, through the

29
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Sherpa+OpenLoops interface, Sherpa can perform both NLO QCD

and NLO EW calculations. OpenLoops also includes some MEs for loop-

induced processes, such as gg → HZ, although the validation of these pro-

cesses is not included in this thesis. This chapter also does not address

any validation of the S-MC@NLO implementation of distributions and ob-

servables. However, this provides a good proof-of-concept argument for the

Sherpa+OpenLoops interface for NLO QCD calculations. uncertainties

quoted in Sec. 3.4 are statistical.

3.2 Basic Consistency Checks

The form of the virtual loop contribution, V , is

V = B

(
Pε
ε

+
Pε2

ε2

)
, (3.1)

where B is the Born ME, Pε and Pε2 are the coefficients to the poles diverging

as 1
ε

and 1
ε2

, respectively. In this formalism, ε parameterises the divergent

behaviour of integrals which have been performed using dimensional regu-

larisation. It is important that the integrated subtraction term in Sherpa

and the virtual contribution from OpenLoops agree on the values of B, Pε

and Pε2 for each phase-space point. This is easy to check within the Sherpa

framework, see Appendix A for details.

3.3 Set-Up

The cross-sections presented in Sec. 3.4 were calculated using both the

Comix [64] and Amegic++ [65] ME generators, separately, for the LO

comparison. Amegic++ was also employed for the Born and integrated

subtraction terms of the NLO calculation, using OpenLoops for the virtual

ME. For the subtraction procedure, Catani-Seymour subtraction terms were

used. This was the most CPU intensive part of the NLO QCD calculation,

for the majority of processes in this validation study. The Comix ME gen-

erator was used for the calculation of these terms, because it has a better
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Parameter value Parameter value
MZ 91.188 α−1 132.50698
MW 80.419 GF 1.16639× 10−5

Mb 4.75 CKMij δij
Mt 172.5 ΓZ 2.4414
MH 120 ΓW 2.0476

Table 3.1: Relevant EW parameters. Masses, MX , and widths, ΓX , for
particle X are given in GeV. The Gµ scheme was employed to set the relevant
EW parameters.

convergence than Amegic++. All final state particles are considered to be

stable with their widths set to zero.

The parameters in Tab. 3.1 are used for all processes considered in this chap-

ter, and are a consistent set of EW parameters. A diagonal CKM matrix,

which contains the information on mixing between quark generations, is used

in the Born processes as well as the loops. The calculations presented in

this chapter are performed with a fixed width scheme, as this was required

in the MadLoop calculation. However, the complex mass scheme is also

implemented in the Sherpa+OpenLoops interface. Some of the cross-

sections in the MadLoop paper were calculated with loops involving EW

bosons removed on the MadLoop side. This is not reproduced with the

Sherpa+OpenLoops interface, which includes all possible loops.

Any applied cuts are kept to a minimum, and any that are are applied

are provided in Subsec. 3.3.1. These cross-sections were completed for

7 TeV proton-proton collisions with the MSTW2008nlo (MSTW2008lo) PDF

set [123, 124] in the case of NLO (LO) calculations with massless b-quarks

and the MSTW2008nlonf4 (MSTW2008lonf4) PDF set for NLO (LO) calcu-

lations with massive b-quarks. The running of the strong coupling is taken

from the PDF set. The scales in this process are set such that the renormal-

isation, factorisation scales are set equal and to a fixed value, which enables

a comparison between the integrators. This scale is chosen for each process

independently. A list of the scales and number of light flavours considered is

given in Tab. 3.2.
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Process µ nf Process µ nf
t̄ Mt 5 W+(e+ν) MW 5
tj Mt 5 W+(e+ν)j MW 5
tjj Mt 5 W+(e+µ)jj MW 5
tb̄j Mt/4 4 Z(e+e−) MZ 5
tb̄jj Mt/4 4 Z(e+e−)j MZ 5

W+(e+ν)bb̄ MW + 2Mb 4 Z(e+e−)jj MZ 5
W+(e+ν)tt̄ MW + 2Mt 5 HW+ MW +MH 5
Z(e+e−)bb̄ MZ + 2Mb 4 HW+j MW +MH 5
Z(e+e−)tt̄ MZ + 2Mt 5 HZ MZ +MH 5

γtt̄ 2Mt 5 HZj MZ +MH 5
W+W− 2MW 4 Htt̄ Mt +MH 5
W+W−j 2MW 4 Hbb̄ Mt +MH 4
W+W+jj 2MW 4 Hjj MH 5

Table 3.2: Table of the scales and number of light flavours considered in
the PDF for all processes considered.

3.3.1 Applied Cuts

For processes involving a final state photon, the photon is isolated according

to the Frixione isolation procedure [125] with a radius d = 0.4, an exponent

n = 1 and energy fraction ε = 1. This requires that the maximum energy

deposited in a cone of radius d around the photon does not exceed εEγ, where

Eγ is the energy of the photon. In addition to this requirement, the photon

is required to be hard and central, with a p⊥ > 20 GeV and |η| < 2.5. Any

process with jets have jets defined by the kT clustering algorithm with p⊥ >

25 GeV and a cone size of R = 0.7. In the case of oppositely charged leptons,

`+`−, in the final state, there is an invariant mass cut, m`+`− > 30 GeV.

3.4 Results

The results of the comparison are presented in this section. Tab. 3.3 shows the

comparison of LO cross-sections between Amegic++ and Comix in Sherpa

and MadGraph, which demonstrates that the two set-ups compared are

identical. Tab. 3.4 shows the relative agreement at LO between the Sherpa

cross-sections for both Amegic++ and Comix with MadGraph. The
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Process MadGraph/pb Amegic++/pb Comix/pb
W+(e+ν) 5072.5(2.9) 5074.56(2.54) 5074.9(2.5)
W+j(e+ν) 828.4(8) 827.83(82) 828.31(83)
W+jj(e+ν) 298.8(4) 299.34(30) 299.63(30)
Z/γ∗(e−e+) 1007.0(1) 1007.92(10) 1007.9(1)
Z/γ∗(e+e−)j 156.11(3) 156.22(16) 156.35(16)
Z/γ∗(e+e−)jj 54.24(2) 54.32(5) 54.48(21)

HW+ 0.3428(3) 0.34296(13) 0.34266(13)
HW+j 0.1223(1) 0.12235(12) 0.12226(12)
HZ 0.2781(1) 0.27820(10) 0.27821(14)
HZj 0.0988(1) 0.098918(99) 0.099078(99)

W+(e+ν)bb̄ 11.557(5) 11.553(6) 11.5472(58)
W+(e+ν)tt̄ 0.009415(3) 0.009414(5) 0.009408(5)
Z/γ∗(e+e−)bb̄ 9.459(4) 9.4552(47) 9.4564(47)
Z/γ∗(e+e−)tt̄ 0.0035131(4) 0.00351307(35) 0.003509(6)

tt̄ 123.76(5) 123.714(47) 123.67(12)
γtt̄ 0.2906(1) 0.2904(1) 0.2907(4)
Htt̄ 0.08896(1) 0.088912(9) 0.08892(8)
Hjj 1.104(2) 1.105(1) 1.103(1)
tj 34.78(3) 34.83(3) 34.807(35)

W+W− 29.976(4) 29.96(2) 29.98(2)

Table 3.3: Comparison of cross-section numbers between the Sherpa LO
and the LO MadGraph numbers. Processes with an unstable Z boson
include photon interference. Column 2 presents the cross-section from Mad-
Graph, column 3 from Amegic++ and the final column from Comix.
Eq. (3.2).
∗The large discrepancy for Z/γ∗ → e+e− related to an outstanding disagree-
ment with MadGraph.
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Process d(A,M) d(C,M) d(C,A)
W+(e+ν) 0.5 0.6 0.1
W+j(e+ν) -0.5 -0.08 0.4
W+jj(e+ν) 1.08 1.7 0.7
Z/γ∗(e−e+) 6.5 6.4∗ -0.1
Z/γ∗(e+e−)j 0.7 1.5 0.6
Z/γ∗(e+e−)jj 1.5 1.1 0.7

HW+ 0.1 -0.4 -0.2
HW+j 0.3 -0.3 -0.5
HZ 0.7 0.6 0.06
HZj 0.8 2.0 1.1

W+(e+ν)bb̄ -0.5 -1.3 -0.7
W+(e+ν)tt̄ -0.2 -1.2 -0.8
Z/γ∗(e+e−)bb̄ -0.6 -0.4 0.2
Z/γ∗(e+e−)tt̄ -0.05 -0.7 -0.7

tt̄ -0.7 -0.7 -0.3
γtt̄ -1.4 0.2 0.7
Htt̄ -3.6 -0.5 0.1
Hjj 0.4 -0.4 -1.4
tj 1.2 0.6 -0.5

W+W− -0.8 0.2 0.7

Table 3.4: Comparison of d(X,Y), as defined in Eq. (3.2), between LO cross-
sections for Comix (C), Amegic++ (A) and MadGraph (M). Processes
with an unstable Z boson include photon interference.
∗ See caption of Tab. 3.3

distance measure, d(X,Y), is

d(X,Y) =
X− Y√
δX2 + δY2

, (3.2)

where δX represents the uncertainty of value X.

The validation of the Sherpa+OpenLoops interface is provided by the

comparison of the NLO QCD total cross sections with the MadLoop cal-

culation. These total cross sections are presented along with their rel-

ative difference, d(Sherpa+OpenLoops,MadLoop), in Tab. 3.5. The

Sherpa+OpenLoops interface shows good agreement with MadLoop

for several different processes at the LHC. There is disagreement between

MadLoop and the Sherpa+OpenLoops calculation for the Z/γ∗(e+e−)

process, as can be seen in Tab. 3.5. This disagreement in also present
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Process MadLoop/pb Sherpa+OpenLoops/pb d(SOL,M)
W+(e+ν) 6146.2(9.8) 6136.81(3.09) -0.9
W+j(e+ν) 1065.3(1.8) 1065.8(2.0) 0.2
W+jj(e+ν) 289.7(3) 289.5(4) -0.4
Z/γ∗(e−e+) 1170(2.4) 1192.04(56) 9∗

Z/γ∗(e+e−)j 203.0(2) 203.3(7) 0.4
Z/γ∗(e+e−)jj 54.1(6) 54.5(6) 0.5

HW+ 0.4455(3) 0.44564(14) 0.4
HW+j 0.1501(2) 0.1508(2) 2.3
HZ 0.3659(2) 0.36588(15) -0.08
HZj 0.1237(1) 0.1245(2) 3.6

W+(e+ν)bb̄ 22.95(7) 23.09(5) 1.6
W+(e+ν)tt̄ 0.01159(1) 0.01160(1) 0.7
Z/γ∗(e+e−)bb̄ 15.31(3) 15.37(3) 1.4
Z/γ∗(e+e−)tt̄ 0.004876(2) 0.004873(5) -0.6

tt̄ 162.08(12) 162.07(11) -0.06
γtt̄ 0.4169(3) 0.4168(7) -0.1
Htt̄ 0.09869(3) 0.09873(12) 0.3
Hjj 1.333(2) 1.336(2) 1

W+W− 43.92(3) 43.96(3) 0.9

Table 3.5: Comparison of cross-section numbers between the
Sherpa+OpenLoops (SOL) interface and the MadLoop (M) num-
bers. Processes with an unstable Z boson include photon interfer-
ence. Column 2 provides the MadLoop cross-sections, and column 3 the
Sherpa+OpenLoops calculation. The final column is the difference be-
tween the NLO calculations, as defined in Eq. (3.2).
∗ See the caption of Tab. 3.3.
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Figure 3.1: The d(Sherpa,MadGraph) for the processes presented in
Tab. 3.3, for Comix and Amegic++. These are compared to a Gaussian
distribution, with all curves and histograms normalised to unit area. The un-
certainties on the histogram are statistical, and d(A,B) is defined in Eq. (3.2).

in Tab. 3.4 at LO, however, the independent ME generators Comix and

Amegic++ agree to |d(Comix,Amegic++)| < 0.1 at LO for this pro-

cess. The disagreement between Sherpa(Sherpa+OpenLoops) and

MadGraph(MadLoop) for the (N)LO cross section for the Z/γ∗(e+e−)

process remains unresolved.

Figs. 3.1 and 3.2 show the relative difference between the calculations from

X and Y according to d(X,Y), as given in Eq. (3.2). The anomalous results

for Z/γ∗(e+e−) are not included in these distributions. Fig. 3.1 shows the

differences between the LO cross-sections for both Comix and Amegic++

with MadGraph, for the processes presented in Tab. 3.4. The histograms

are shown to be consistent with a Gaussian distribution within the statisti-

cal uncertainties for both the Comix and Amegic++ ME generators con-

sidered, as is expected for a comparison between two sets of statistically
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Figure 3.2: The d(Sherpa+OpenLoops,MadLoop) for the processes
presented in Tab. 3.5. These are compared to a Gaussian distribution, with
both the curve and histogram normalised to unit area. The uncertainties on
the histogram are statistical, and d(A,B) is defined in Eq. (3.2).
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independent calculations. Fig. 3.2 shows the same plot for the NLO QCD

cross-section calculation, between Sherpa+OpenLoops and MadLoop.

Again, within the statistics available, the d(A,B) distribution is compatible

with the Gaussian distribution.

3.5 Conclusions

This chapter presents the validation of the interface between Sherpa and

the one-loop provider OpenLoops, which will used in subsequent chap-

ters for phenomenological studies. LO cross-sections were compared be-

tween Amegic++, Comix and MadGraph as a check that the set-up

and cuts were identical, before full NLO QCD cross-sections were compared.

Good agreement was found across a broad range of processes between the

Sherpa+OpenLoops interface and MadLoop. This included processes

with several different physics and technical challenges, such as a highly

coloured final states, high multiplicities and heavy coloured particles. Some

Higgs boson production channels were also included in this chapter.

At both LO and NLO QCD, the distributions of d(X,Y) were binned and

compared to a Gaussian distribution, with both the histogram and the Gaus-

sian being normalised to unit area. For the low statistics available, the

histograms of the differences were compatible with the expected Gaussian

distribution.



Chapter 4

Numerical EW Sudakov

Corrections

This chapter details the numerical implementation of the EW Sudakov for-

malism in the Sherpa framework. This provides an efficient way of ap-

proximating the high-energy limit of the exact NLO EW corrections. The

implementation applies the correction as a K-factor to the squared amplitude

at each phase-space point evaluated. Cross-sections are presented for some

simple processes and compared to literature values, along with some initial

results.

4.1 Introduction

In the present era of precision physics, with the LHC frequently probing

precision of O(1 %), there is a significant pressure on theorists to produce

the required precision in simulations. With this motivation, Chap. 3 fo-

cussed on validating the Sherpa+OpenLoops interface for calculations

of total cross-sections to NLO in QCD. Chap. 5 uses this interface in some

phenomenological studies of EW SM processes, employing the S-MC@NLO

and MEPS@NLO technology introduced in Chap. 2 to match to a parton

shower. This set-up, NLO QCD ME merging, is the current state of the art

in precision of Monte Carlo event generators. However, as the precision of

experiments continues to improve, moving beyond the NLO QCD approxi-

39
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Figure 4.1: Diagrammatic representation of NLO QCD (top right hand
side), NNLO QCD (middle) and NLO EW (bottom) for an arbitrary Born
process (top left)

mation becomes increasingly important. As introduced in Chap. 1, there is

currently interest in developing NNLO accurate Monte Carlo simulations [26–

37, 42–44], at which precision NLO EW corrections become important. In

some cases NLO EW corrections can even form the dominant correction, such

as Higgs boson production via WBF. It is therefore well motivated to con-

sider the effect of NLO EW corrections alongside NNLO QCD, and an exact

NLO EW calculation is implemented within the Sherpa framework [47] with

OpenLoops providing the virtual diagrams. However, the exact NLO EW

computation is very CPU intensive, and often an approximation is sufficiently

accurate, especially in event generation. This chapter focuses on increasing

the precision in EW of processes in the SM via the implementation of high

energy EW Sudakov approximation to the exact NLO EW calculation.

Chap. 1 introduced the concept of EW Sudakov logarithms as a high-energy

approximation to the exact NLO EW calculation, arising as a result of the

difference in the scale of the process and the mass of the EW boson. Fig. 4.1

shows example diagrams for NLO, NNLO QCD corrections and EW NLO

corrections to an arbitrary Born process. The structure of the NLO QCD

calculation is mirrored in the NLO EW case. However, a difference between

NLO QCD and NLO EW is highlighted in Fig. 4.2. This shows the decay of
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W/Z W/Z

Figure 4.2: Diagram showing the decay of real emission of weak bosons
that allow it to be categorised as a distinct process.

the real radiation of weak bosons to observable particles, which allows it to be

theoretically consistently separated from the rest of the NLO EW calculation

as a distinct process. This leaves the virtual diagrams uncancelled by any

real emission, and physically observable. However, if an analysis is inclusive

with respect to the decay products of the real emission term, these diagrams

can be included at LO in the calculation as a separate process, as discussed

in Chap. 1.

As is expected from the form of the logarithms, the main effect of the Sudakov

logarithms is in the high transverse momentum, high-p⊥, tail of distributions.

This high-p⊥ tail is an important feature to understand correctly as heavy

new resonances can show up in this region of phase-space. As well as this,

there is an angular contribution to the Sudakov corrections which introduces

shape changes in angular distributions, which can impact the decay plane of

a heavy resonance.

The implementation detailed in this chapter follows the general algorithm for

calculating these logarithms as formulated by S. Pozzorini and A. Denner [48].

This general algorithm for the inclusion of EW Sudakov corrections is also

implemented in the AlpGen ME generator [59].

4.2 Relevant Diagrams

The relevant diagrams that lead to these large logarithms are those that

suffer from mass singularities [126]. These divergent structures are illus-

trated in Fig. 4.3. These arise from the collinear and soft limits of the boson

emission, which become divergent in the limit of vanishing mass of the ex-
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Figure 4.3: Diagrams contributing to large logarithms. Above is the soft,
collinear exchange between two external legs, and below is the collinear con-
tribution, with the double counting with the soft-collinear and wavefunction
renormalisation contributions subtracted. The second term in the lower di-
agram is evaluated in the eikonal approximation.

changed boson. The two diagrams in Fig. 4.3 represent the categories of these

divergences. The upper diagram illustrates a contribution to the double-

logarithmic, soft and collinear divergences, which arise when an external line

emits an EW particle, which is absorbed by a second external line. The

lower diagram in Fig. 4.3 illustrates the emission of an EW particle from an

external line into an internal line of the process. The soft-collinear contribu-

tion, such as those included in the upper diagram of Fig. 4.3, are removed.

This leaves a collinear divergent structure, which contributes only a single

logarithm to the correction.

Soft divergences, which are subtracted in Fig. 4.3, occur when the emitted bo-

son is reabsorbed by the emitting external line. The logarithms introduced by

this procedure are accounted for by a field renormalisation. These introduce

single logarithmic corrections, and are included alongside the collinear single

logarithms in this implementation. However, other forms of single logarithms

arising from renormalisation of EW parameters, labelled in this chapter and

in Ref. [48] as parameter logarithms, are included separately. These param-

eter logarithms naturally fall out of the calculation of the process with the

EW parameters at the new, high scale.

For the exchange of an EW boson between external lines, as in the upper dia-

gram of Fig. 4.3, it is clear that the logarithm is independent of the underlying
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process. However, the factorisation of the collinear logarithms is not obvi-

ous, even at high energies, where the symmetric part of the EW Lagrangian

is dominant. Ref. [49] demonstrates the factorisation of the collinear loga-

rithms in all cases, and therefore shows that it is possible to calculate both

the single and double logarithms without any detailed information about the

underlying process. The only necessary information comes from the external

lines, with the exception of the parameter renormalisation logarithms, which

must be approached differently as described in Subsec. 4.4.3.

In the high-energy limit, where the EW Sudakov logarithms dominate the ex-

act NLO EW result, the single logarithms have a smaller effect than the dou-

ble, soft-collinear logarithms. However, at currently accessible energies and

energies that will become accessible in the near future, the single logarithms

still provide a significant contribution to the total EW Sudakov correction.

They are typically O(1 %) of the LO cross section at energies ∼ 1 TeV, com-

pared to O(10 %) for double logarithms. Furthermore, in the 2→ 2 process

for four fermions at 1 TeV, the single logarithms are the dominant correction,

larger than the double logarithms [127]. Because the single logarithms are

typically positive in sign, whereas the double logarithms are negative, the

single logarithms must be included to prevent the overall prediction for the

EW Sudakov correction from becoming too negative. It is therefore impor-

tant to consider the contribution of both diagrams in Fig. 4.3 to the EW

Sudakov approximation.

4.3 Notation

The notation used in this chapter is inspired by the Denner and Pozzorini

paper, Ref. [48], which concisely presents the universal structure of EW log-

arithms.

The Sudakov corrections can be applied to the calculations at the amplitude

level. The EW Sudakov corrected Born ME, Mi1...in
EW , to an original process

Mi1...in
LO with external lines [i1...in] can be expressed by some perturbation,

δMi1...in
EW , to the original Born ME Mi1...in

LO as in Eq. (4.1). For all external

lines defined by convention to be incoming,
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Mi1..in
EW =Mi1...in

LO + δMi1...in
EW , (4.1)

and therefore the squared amplitude can be written as

|Mi1...in
EW |2 = |Mi1...in

LO + δMi1...in
EW |2

= |Mi1...in
LO |2 + 2<

[
M∗i1...in

LO δMi1...in
EW

]
+O({δMi1...in

EW }2) .
(4.2)

It is at this amplitude squared level that a K-factor can be introduced. The

transformed squared ME, |Mi1...in
EW |2, can be written as

|Mi1...in
EW |2 = (1 + KEW)|Mi1...in

LO |2 . (4.3)

This chapter details the implementation of the calculation of KEW in Eq. (4.3)

for any arbitrary EW process with Sherpa. By a comparison between

Eqs. (4.2) and (4.3), it can be seen that

KEW =
2<[M∗i1...in

LO δMi1...in
EW ]

|Mi1...in
LO |2 +O({δMi1...in

EW }2) . (4.4)

The term O({δMi1...in
EW }2) is neglected in this implementation as sublead-

ing. KEW is the calculated quantity in this implementation of EW Sudakov

logarithms. This is calculated for each phase-space point evaluated, and

multiplied to the squared Born amplitude.

There are three distinct categories from which the EW Sudakov logarithms

can arise. These are the double logarithms that arise from soft-collinear

emission, KSC
EW, single logarithms, KC

EW, and single logarithms arising from

parameter renormalisation, KPR
EW. Therefore, KEW is decomposed as

KEW = KSC
EW + KC

EW + KPR
EW

=
2<[M∗i1...in

LO

(
δMSCi1...in

EW + δMCi1...in
EW + δMPRi1...in

EW

)
]

|Mi1...in
LO |2 .

(4.5)

The δMXi1...in
EW terms in Eq. (4.5) are the relevant correction terms for the

corresponding KX
EW.
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Figure 4.4: The form of diagrams that contribute to the soft-collinear dou-
ble logarithms in the Sudakov approximation.

4.4 Implementation of K-factors

From Eq. (4.5), it is possible to describe the individual contributions from the

three different forms of EW Sudakov logarithm. This section describes the

implementation of the KSC
EW, KC

EW and KPR
EW components, which can be treated

entirely independently in this approach. Once all of the corrections have

been calculated, the final result, KEW, is simply the sum of the components.

The Sudakov implementation in Sherpa does not affect any part of the

event generation, other than the ME weighting. The following subsections

detail the implementation of each different contribution to the EW Sudakov

approximation. Where applicable, the longitudinal polarisations of the weak

bosons are treated with the Goldstone boson equivalence theorem. This

implies the substitutions

MW±L = Mφ± , (4.6)

MZ±L = iMχ , (4.7)

for some ME, M, with longitudinal gauge boson, W±
L , ZL, replaced by the

appropriate Goldstone boson, φ±, χ.
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4.4.1 Soft-Collinear Logarithms

The double logarithms, which arise from diagrams such as those in Fig. 4.4,

provide the KSC
EW contribution. These corrections include logarithms, LV , for

each EW boson V , of

LV (|(pl + pk)
2|) = log2

( |(pl + pk)
2|

M2
V

)
, (4.8)

where pl, pk are the momenta of external legs, l and k, involved in the EW

boson exchange. Extracting the KSC
EW terms from Eq. (4.5) gives

KSC
EW =

2<
[
M∗

LOδMSC
EW

]
|MLO|2

, (4.9)

where the external lines are not labelled explicitly for clarity. As MLO is

known as the original Born term, calculating KSC
EW relies on the calculation of

δMSC
EW. This can be expressed as a combination of EW couplings, logarithms

of the form LV (|(pl+pk)
2|) and an underlying ME,M0. This underlying ME

is not necessarily equivalent to MLO, since the exchange of a weak boson,

W±, Z can lead to flavour changes in the external lines.

Summing over all possible exchanges of EW bosons, V , between all possible

combinations of external lines, l and k,

δMSCi1...in
EW =

α

4π

∑
l

∑
k<l

∑
V

Mi1...il′ ...ik′ ...in
0 gVil′ ilg

V
ik′ ik

LV (|(pl + pk)
2|) , (4.10)

where gVil′ il represents the coupling of boson V to external line il, which is

transformed by the EW vertex into line il′ . It is possible, for example in the

case of photons, for il′ = il, although this is not the case in general. The soft-

collinear contribution to the EW Sudakov correction can be implemented in

the form of Eq. (4.10); however, the dominant correction can be obtained in

such a way that it does not depend on the external momenta. It is simple
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see from Eq. (4.8) that

LV (|(pl + pk)
2|) =

[
log

(
ŝ

M2
V

)
+ log

( |(pl + pk)
2|

ŝ

)]2
= log2

(
ŝ

M2
V

)
+ 2 log

(
ŝ

M2
V

)
log

( |(pl + pk)
2|

ŝ

)
+ terms with no large logarithms .

(4.11)

It is important to notice that Eq. (4.11) neglects the final term, log2
(
|(pl+pk)2|

ŝ

)
,

which uses the assumption that |(pl + pk)|2 ∼ ŝ�M2
V , such that this is not

a large logarithmic contribution. For the first two terms on the right-most

hand-side of Eq. (4.11), the first is LV (ŝ), and the second is defined to be

2 log

(
ŝ

M2
V

)
log

( |(pl + pk)
2|

ŝ

)
≡ LSSC

V (ŝ) . (4.12)

Including these logarithms in Eq. (4.10) gives,

δMSCi1...in
EW =

α

4π

∑
l

∑
k<l

∑
V

Mi1...il′ ...ik′ ...in
0 gVil′ ilg

V
ik′ ik

[
LV (ŝ) + LSSC

V (ŝ)
]
.

(4.13)

It is clear that the first term on the right-hand side of Eq. (4.13) provides

the leading Sudakov correction, while the second term reduces to a single

logarithmic contribution. It is noticed in Ref. [48], that the invariance of

the S-matrix under global SU(2) transformations implies that this leading

contribution, δMLSCi1...in
EW , can be rewritten as

δMLSCi1...in
EW = − α

8π

∑
l

∑
V

Mi1...il′ ...in
0 gVil′ ilg

V
il′ il
LV (ŝ) . (4.14)

An advantage of this re-expression is that the sum now only runs over single

external legs. This greatly simplifies the calculation, as well as reducing the

number of potential flavour changes in M0, which must be calculated. A

similar trick cannot be employed for the second, subleading term, which can

be labelled δMSSCi1...in
EW , since this contains a dependence on momenta of the

external lines, which is not a global property.

One remaining simplification to be made, in line with Ref. [48], is to relate

all Sudakov logarithms to the same weak boson mass. This is chosen to be
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MW , and naturally introduces logarithms of the ratio of EW boson masses.

While this difference is small for the Z boson, the photon is massless and

this therefore includes a divergence. This divergence is the consequence of

the necessity of an exact NLO calculation in QED. For this implementation

of EW Sudakov logarithms, the photon is given a fictitious mass, MW , and

the logarithms resulting from the difference between this mass and the actual

photon mass are not included. An exact NLO QED calculation should be

performed if these effects become important.

Introducing this into δMLSCi1...in
EW gives

δMLSCi1...in
EW =

− α

8π

∑
l

∑
V

Mi1...il′ ...in
0 gVil′ ilg

V
il′ il

[
LW (ŝ) + 2 log

(
ŝ

M2
W

)
log

(
M2

W

M2
V

)]
,

(4.15)

where the latter term on the right-hand side only contributes when V = Z,

and the term ∼ log2
(
M2

W

M2
V

)
is neglected completely as it has no large loga-

rithms. The same substitution in δMSSC
EW yields no large logarithms contain-

ing log
(
M2

W

M2
V

)
. In Eq. (4.15), LW (ŝ) denotes LV (ŝ) with MV →MW .

To summarise this section, the soft-collinear contribution to the Sudakov

logarithms consists of two parts:

δMSCi1...in
EW = δMLSCi1...in

EW + δMSSCi1...in
EW , (4.16)

with

δMLSCi1...in
EW = − α

8π

∑
l

∑
V

Mi1...il′ ...in
0 gVil′ ilg

V
il′ il[

log2

(
ŝ

M2
W

)
+ 2 log

(
ŝ

M2
W

)
log

(
M2

W

M2
V

)] (4.17)

δMSSCi1...in
EW =

α

2π

∑
l

∑
k<l

∑
V

Mi1...il′ ...ik′ ...in
0 gVil′ ilg

V
ik′ ik

log

(
ŝ

M2
W

)
log

( |(pl + pk)
2|

ŝ

)
.

(4.18)

Appendix B lists the explicit look-up values for ∆X , where X = LSC, SSC,
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and Eqs. (4.17) and (4.18) are expressed as

δMLSCi1...in
EW = − α

4π

∑
l

∑
V

∆LSC(il, V )Mi1...il′ ...in
0[

log2

(
ŝ

M2
W

)
+ 2 log

(
ŝ

M2
W

)
log

(
M2

W

M2
V

)] (4.19)

δMSSCi1...in
EW =

α

4π

∑
l

∑
k<l

∑
V

∆SSC(il, V )∆SSC(ikV )Mi1...il′ ...ik′ ...in
0

log

(
ŝ

M2
W

)
log

( |(pl + pk)
2|

ŝ

)
.

(4.20)

Flavour Changes

The underlying Born term, M0, can potentially have differently flavoured

external legs to that of the MLO. Flavour, as discussed in this chapter, is

the type of particle being considered. Since the leading soft-collinear correc-

tions can be expressed in terms of the summation over single legs, the only

potential alteration to the Born process is Z ↔ γ interference as a result

of W± boson loops. For the subleading calculation, any process involving a

W± boson emission also introduces a flavour-changedM0. This forces a full

EW family of processes to be calculated alongside the original Born process.

Additionally, Z boson emission can introduce flavour changes in the Higgs

sector. Pure QED loops cannot introduce a flavour-changedM0. Therefore,

for the contribution from photons, < [M∗
LOM0] /|MLO|2 = 1 and does not

need to be explicitly calculated, simplifying the calculation of the K-factor

in this case.

Technical Issues

The leading soft-collinear corrections are the largest contribution to the Su-

dakov high-energy approximation. Since it only depends on global variables,

such as ŝ, the implementation of these logarithms is simple. The external

particles are looped over and the relevant coefficient is found from a look-up

table of values (see Appendix B). These are related to the couplings of the

particles to the EW bosons. This value is then multiplied by the common

logarithm to the correction, log
(

ŝ
M2

W

)
.
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As the couplings of the weak bosons are dependent on the helicities of the

external particles, the amplitude corrected by the K-factor must be decom-

posed into each spin structure for both the W± and Z boson contributions,

which are each corrected by their relevant factor. This corrected amplitude

is then included as δMEW in KLSC
EW .

Another issue for the leading soft-collinear correction is that of the potential

flavour changes to the underlying Born process, Z ↔ γ. This involves cal-

culating the flavour-changed process, provided that the transformed flavour

combination is permitted. For this interference, both the flavour-changed

and original ME must be considered, in proportion to their contributions to

the total cross section. This is naturally included in the calculation if both

possible amplitudes are added linearly. As the mass of the Z boson and the

photon are so very different, the flavour change between these will force the

particle off-shell. It is therefore necessary to redistribute the momenta in

order to put all external particles back on-shell. As only one external par-

ticle at a time can potentially be affected by the correction, the recoil from

putting this particle on-shell must be distributed in a consistent way between

the remaining external particles. There are multiple ways in which this can

be achieved, but in this implementation the recoil is shared between all final

state particles, while the directions of the momenta are preserved.

For the subleading soft-collinear correction, there are similar concerns. Sim-

ilarly to the leading case, the coefficients to the logarithms are found with a

look-up table of values, which are related to the couplings. The amplitude

must again be decomposed into its helicity components, with the coefficients

to the logarithms being calculated for each configuration independently for

W± and Z boson corrections. Of all the Sudakov logarithms implemented,

the subleading soft-collinear logarithms are the most CPU intensive. It can,

therefore, be beneficial to perform calculations with just the leading soft-

collinear logarithms and the single logarithms, in cases where the angular

dependence is not significant.

While flavour changes are common in the subleading logarithms, these are

often between massless fermions, and therefore no external line is forced off-

shell by the change. However, for W± bosons, as well as potentially external

Z and H bosons and the consideration of massive fermions, a change in mass



Chapter 4. Numerical EW Sudakov Corrections 51

can occur. In these cases, by the same reasoning as for the double logarithms,

the momenta must be redistributed. For the subleading soft-collinear cor-

rection, the calculation remains over pairs of external particles. This allows

the momentum redistribution to be kept between the two particles involved

in the correction, again while preserving the directions of the momenta.

Because the subleading soft-collinear contribution to the EW Sudakov correc-

tion includes logarithms of the form log
(
|(pj+pk)2|

M2
W

)
, which contains a depen-

dence on the momenta of the external particles involved, it must be calculated

for each possible pair of external particles. It is also important in the sub-

leading soft-collinear calculation to introduce a cut-off on the contribution

outside of the limit |(pj + pk)
2| � M2

W , where the approximation is valid.

This can be done with a harsh cut-off, or with some damping function. The

differences introduced in the distributions by a different choice of cut-off is a

source of uncertainty in the implementation. In the Sherpa implementation

of the EW Sudakov approximation, there is a hard cut-off implemented in the

subleading soft-collinear logarithms, for this validation, at |(pj+pk)2| = M2
W .

Further to this, no correction is applied to any phase-space point for which

ŝ < M2
W . This second condition applies for all classes of logarithms consid-

ered, the single soft or collinear and parameter renormalisation, as well as

the double logarithms.

The region in which the approximation theoretically no longer holds can be

explicitly removed by the multiplication of the correction between any two

external lines, i and j, by a factor, F , which is either 1 or 0 according to

F = Θ

( |(pi + pj)
2| − p2i − p2j

2|pi||pj|
− cos

[
M2

W

ŝ

])
, (4.21)

where pi denotes the momentum of external line i, and Θ is the step function.

The affect of choosing a different cut-off for the subleading double logarithms

is negligible.

4.4.2 Single Soft or Collinear Logarithms

The type of diagram that gives rise to single collinear logarithms is given in

Fig. 4.5, with the double-counting of the soft-collinear divergences appropri-
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Figure 4.5: Structure of diagrams leading to single collinear logarithmic
corrections. The soft-collinear and soft divergences are subtracted from the
general form on the left-hand-side. Wavefunction renormalisation logarithms
are then included on top of this contribution.

ately subtracted in the collinear limit, as discussed in Sec. 4.2. The contribu-

tions to the EW Sudakov approximation considered in this subsection are the

collinear single logarithms and the field renormalisation logarithms. These

logarithms are calculated in Ref. [49] for each EW particle. The general form

for these corrections is

KC
EW =

α

4π

∑
j

∑
V

∆C(ij, V )
2<[M∗

LOM
i1...i′j ...in
0 ]

|MLO|2
LV (ŝ) . (4.22)

The same transformation can now be applied as in the soft-collinear case,

such that LV (ŝ) → LW (ŝ). This does not introduce any other large log-

arithms, and so this is simply a substitution in Eq. (4.22). Further, the

summation over all EW bosons can be performed in Eq. (4.22), such that∑
V ∆C(ij, V ) = ∆C(ij) ∼ C(ij), where C(ij) is the Casimir operator of the

group for external line ij. This yields

KC
EW =

α

4π

∑
j

∆C(ij)
2<[M∗

LOM
i1...i′j ...in
0 ]

|MLO|2
LW (ŝ) . (4.23)

Appendix B lists the coefficients for ∆C, for Eq. (4.23).

Flavour Changes

Because the summation is of a similar form to the leading soft-collinear cor-

rection, the flavour changes for M0 are also similar. However, the renor-

malisation conditions forbid mixing from final state physical photons with Z

bosons.
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Technical Issues

The issues for the single logarithms are the same as those for the leading

soft-collinear logarithms. A coefficient is found from a look-up table relevant

for each particle, for each relevant helicity combination in the amplitude. For

the few cases where the underlying process, M0, includes a flavour-changed

interference, this amplitude is calculated with the altered flavour combination

with the appropriate momentum redistribution.

4.4.3 Parameter Renormalisation Logarithms

The final type of logarithm to contribute to the Sudakov logarithms are those

arising from the running of the EW couplings from the weak scale up to a high

scale, taken for convenience to be the centre-of-mass energy of the collision.

These parameter renormalisation logarithms differ from the other considered

logarithms in that they depend on the internal structure of the process. The

Born ME must be multiplied by a factor depending on the number of each

EW coupling present in the amplitude. This amounts to recalculating the

process at the higher scale. Therefore, the implementation of KPR
EW is

KPR
EW =

2< [M∗
LOM0]

|MLO|2
, (4.24)

where M0 = MLO(
√
ŝ), with the dependence on the ME on the scale at

which couplings are evaluated shown explicitly. Therefore, KPR
EW can be writ-

ten, with scale dependencies explicit on the right-hand-side, as

KPR
EW =

2<
[
M∗

LO(Q)MLO(
√
ŝ)
]

|MLO(Q)|2 , (4.25)

where Q is the original scale of the EW couplings. The EW couplings con-

sidered to have a scale dependence, and are therefore running couplings

within this implementation, are the QED coupling, the weak mixing angle

and Yukawa couplings.
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Technical Issues

The parameter renormalisation logarithms cannot be so easily separated from

the rest of the process as the other logarithms. This is because the logarithms

that arise depend on the details of the internal couplings and not simply the

external particles of the process. The calculation of these logarithms requires

the reinitialisation of the process with EW parameters run up to a high scale,

the centre-of-mass energy of the process. The ratio of the evolved ME and

the original ME then provides the logarithmic correction.

There is no alteration to the final state particles in the parameter renor-

malisation logarithms, and it is not necessary to decompose the ME into

its helicity components, because this is taken correctly into account with

the reinitialisation of the process with the evolved EW parameters. How-

ever, even though the flavour of the particles will not change, the mass of the

EW bosons will change when the parameters are evolved up to the high scale.

Therefore, any external weak boson will be pushed off its mass-shell. This re-

quires a momentum redistribution similar to that of the leading soft-collinear

and single logarithms.

4.4.4 Current Limitations

There are a couple of limitations to the current implementation of the EW

Sudakov approximation in Sherpa. These are briefly discussed in this sub-

section.

Massive Fermions

The MEs accessed by the EW Sudakov correction come as a summation of

helicity amplitudes. The correction is then applied to each helicity ampli-

tude separately, since the weak bosons are not blind to handedness. For

massive fermions, such as top quarks and potentially b-quarks, c-quarks and

τ -leptons1, it is possible to conceive of a Lorentz boost that inverts the helic-

ity of the particle. Therefore, the chirality of the particle in this case, which

1Other leptons are sufficiently light as to be considered massless in Monte Carlo simu-
lations.
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is related to the transformation of the particle under the SM, is not identical

to its helicity. This means that the correction will be applied to the wrong

amplitude in these cases. This is a restriction on the applicability of this

implementation of EW Sudakov logarithms, and is part of the extension to

this project.

ME Generator

Because the couplings of the weak bosons depend on the chirality of the

external lines, the K-factor must be applied to each of the helicity ampli-

tudes independently. In Sherpa, only the Comix ME generator, and not

Amegic++, will allow this to be done. Therefore, this EW Sudakov imple-

mentation can only be used with the Comix ME generator. This is not a

significant restriction, however, as Comix is the default Sherpa ME gener-

ator.

CKM Matrix and Width Schemes

As an initial implementation, the EW Sudakovs are set up with a diagonal

CKM matrix and the fixed width scheme for weak bosons. There is no

technical problem with extending the current implementation to also handle a

general CKM matrix or the complex mass scheme, both of which are possible

within Sherpa. Enabling the EW Sudakov approximation to be used with

a general CKM matrix and the complex mass scheme will be completed as

part of the next step in the implementation, and does not form part of this

thesis.

4.5 Validation

The validation of the Sudakov logarithmic approximation to exact NLO EW

calculations has been studied in many publications [59, 128–130]. This allows

for a validation of this implementation of EW Sudakovs to be done both in

comparison to published calculations of the EW Sudakov approximation, as

well as to the exact NLO EW result. In the latter case, the EW Sudakov ap-
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Observable Cut
p⊥,` > 25 GeV
p⊥,miss > 25 GeV
|η`| < 2.5

Table 4.1: The cuts included from Ref. [128] for µ+ν +X production at a
14 TeV proton-proton collider.

proximation is expected to converge to the exact NLO EW result in the high

energy limit. This is nicely illustrated for total cross sections by increasing

the harshness of final state cuts on p⊥ or transverse mass, MT , defined as

MT =
√
p⊥,`p⊥,miss(1− cos(φ`,ν)), where p⊥,` denotes the momentum of the

muon, p⊥,miss is the missing momentum vector, and φ`,ν is the angle in the φ

plane between the muon and the missing energy vector.

This section presents comparisons for µ+νµ [128], Drell-Yan [129], and

`+νj [131] production at a 14 TeV LHC. Results from the Sherpa imple-

mentation of the EW Sudakov approximation are compared to published

cross-sections from these papers. All uncertainties shown on the distribu-

tions in this section are statistical. The MRST2004QED LO PDF set [132]

is used throughout this section, and inclusive cross-sections are presented.

4.5.1 pp→ µ+νµ +X Production at a 14 TeV TeV LHC

The first process considered in this validation is W± production at a hadron

collider. This is a simple process to consider because it only has one helicity

structure for massless muons. This also follows the calculation and cuts

considered in Ref. [128], where Sudakov logarithmic effects were found to be

dominant in the high-MT region.

Set-Up

The cuts applied to this process are shown in Tab. 4.1, where η is the pseu-

dorapidity, and p⊥,miss is a cut on the transverse momentum of the neutrino.

The renormalisation, µr, and factorisation, µf , scales used for this process

were µr = µf = MW .
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Parameter Value/GeV
MW 80.403
MZ 91.1876
ΓW 2.141
ΓZ 2.4952
MH 115
Mt 172.6
GF 1.16637e-5

Table 4.2: The EW input parameters for the Gµ scheme used to set all
EW parameters as used in Ref. [128], for masses and widths, MX and ΓX for
particle X and Fermi constant, GF .

The weak parameters are set with the Gµ scheme with the inputs shown in

Tab. 4.2. Ref. [128] uses a non-diagonal CKM matrix (diagonal in the loops)

and uses the complex mass scheme. As the EW Sudakov approximation

is currently implemented in Sherpa, these settings cannot be replicated.

Therefore, a diagonal CKM matrix and the fixed width scheme are used in

the calculation presented in this section. These alterations make very little

impact on the final results. The mass of the muon is taken into account in

Ref. [128], whereas it has been neglected in the calculation presented to make

the identification between helicity and chirality exact.

Fig. 4.6 shows the behaviour of the EW correction normalised to the exact

NLO EW correction to inclusive µ+ν production at a 14 TeV LHC. The lit-

erature values shown for this validation are from a dedicated calculation of

the Sudakov logarithmic corrections, and this is compared to the general

purpose implementation of the Sudakov logarithms in the Sherpa frame-

work. Fig. 4.6 shows good agreement between the two calculations of the

EW Sudakov approximations, as well as showing both approximations con-

verging to the exact NLO EW result in the high-MT limit. This is the limit

in which the process enters the Sudakov regime, in which all relevant scales,

|(pi + pj)
2| � M2

W , where pi and pj represent all relevant final state par-

ticles in the process. Small differences between the calculations of the EW

Sudakov approximation occur between the calculations as a result of the dif-

ferent initial set-ups, as described above, and different choices made during

the calculation that amount to subleading effects.
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Figure 4.6: The plot of the ratio between the relative correction from the
EW Sudakov approximation (literature values and Sherpa implementation
shown) compared to the exact NLO EW computation, taken from Ref. [128].
This calculation is performed at 14 TeV for the LHC.

4.5.2 pp→ µ+µ− +X Production at a 14 TeV LHC

A second paper has been published by the same authors [129], which con-

siders the Drell-Yan process, under similar conditions to W+ production,

which are outlined in Subsec. 4.5.1 in Tabs. 4.1 and 4.2. It is considered for

a 14 TeV LHC with a scale choice of µr = µf = MZ . One key difference to

the previous validation study is that the cross-sections in this comparison

are on the invariant mass of the lepton pair, as opposed to the transverse

mass considered in Subsec. 4.5.1. This allows the centre-of-mass energy,
√
ŝ,

to become large while other kinematic invariants are small. Therefore, the

high invariant mass limit is not guaranteed to push the process into the Su-

dakov regime. This subsection presents a comparison between the results of

Ref. [129] and the local Sherpa EW Sudakov implementation for inclusive

muon pair production.

The effect of allowing these regions of phase-space into the Sudakov calcula-

tion can be seen in Fig. 4.7, the Sudakov approximation does not approach

the exact NLO calculation as quickly as it did in Subsec. 4.5.1 in the high

energy limit. This demonstrates the importance of removing these regions of
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Figure 4.7: Relative contribution of EW Sudakov logarithms from litera-
ture and Sherpa implementation normalised to the exact NLO EW correc-
tion for different cuts on invariant mass for inclusive µ+µ− production at a
14 TeV LHC.

phase-space from the EW Sudakov correction. The Sherpa implementation

is labelled as ‘improved’ in Fig. 4.7, as it does not extend into these regions

of phase-space, as discussed in Subsec. 4.4.1. Therefore, the Sherpa imple-

mentation demonstrates a better convergence towards the exact NLO EW

calculation than the pure EW Sudakov results presented in Ref. [129].

4.5.3 pp→ `+νj +X Production at a 14 TeV LHC

A further study, Ref. [131], presents an extension to pp → `+ν + X studied

in Subsec. 4.5.1. This involves the consideration of an additional QCD radia-

tion. As the Born process under consideration in Subsec. 4.5.1 was qq̄′ → `+ν,

this additional QCD radiation must introduce a gluonic external leg. As this

is not charged under the EW interaction, the relevant difference between

the two studies, for the EW Sudakov validation, is the altered phase-space.

The process can be pushed by this radiation into regions of phase-space for

which the EW Sudakov approximation does not hold, as seen in Subsec. 4.5.2.
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Figure 4.8: Validation of EW Sudakov approximation implemented in
Sherpa against exact NLO corrections from Ref. [131] for pp → `+νj pro-
duction at a 14 TeV LHC for increasing lepton p⊥ and jet p⊥. The Sudakov
approximation converges to the NLO result in the high-p⊥ limit.

Therefore, this process further tests the ability of the implementation to re-

move the correction from these regions.

Fig. 4.8 shows the validation for `+νj production at a 14 TeV LHC against

the exact NLO EW calculation performed in Ref. [131]. The set-up for this

process uses the same EW parameters as in the previous subsections, detailed

in Subsec. 4.5.1 in Tabs. 4.1 and 4.2, with additional requirements on the

additional jet. The jet is defined with the anti-kT method, with R = 0.4.

There must be at least one jet, which is well separated from the lepton,

∆Rlj > 0.4, and satisfies p⊥,j > 25 GeV and |yj| < 2.5. The renormalisation

and factorisation scales were set as

µr = µf =
√
M2

W + p2⊥,j . (4.26)

Values of the total cross sections were presented in Ref. [131] for different

values of the jet p⊥ and lepton p⊥. Fig. 4.8 shows the EW Sudakov imple-

menation in Sherpa approaches the exact NLO result for high-p⊥ for both

increasing lepton and jet p⊥. The approximation converges slightly faster for

increasing jet p⊥ than lepton p⊥.
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Figure 4.9: The effect of EW Sudakov logarithms on the p⊥ distribution of
the leading jet in W+(→ `+ν)j, `+ = e+, µ+ inclusive events with a 25 GeV
cut on the jet p⊥ at a 14 TeV LHC for on-shell (left-hand-side) and off-shell
(right-hand-side) production.

4.6 Results

This section presents some initial results obtained with the EW Sudakov

implementation in Sherpa. It builds on the pp → µ+ν + X and pp →
`+νj+X processes validated in Subsecs. 4.5.3 and 4.5.1, and presents results

for pp → `+ν+jets at a 14 TeV LHC. No hadronisation or underlying event

affects were considered in these results.

4.6.1 Width effects for pp → W+j + X production at a

14 TeV LHC

Firstly, the effect of the W+ boson width is considered. For these results,

the set-up used in Subsec. 4.5.3 was used, although the W boson width was

set to 0 for the on-shell production of the W+ boson. In contrast to the off-

shell production case considered in Subsec. 4.5.3, the on-shell W+j process

involves flavour changes which necessitate momenta redistributions. How-

ever, it is still a simple 2 → 2 process which therefore does not frequently

run into regions of phase-space for which the angle between relevant legs is

sufficiently small as to move out of the appropriate regime for the Sudakov
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Figure 4.10: The effect of EW Sudakov logarithms on the p⊥ distribution
of the leading jet in `+νj inclusive events with a 25 GeV cut on the jet p⊥ at
a 14 TeV LHC. `+ = e+, µ+. The uncertainties shown are statistical.

approximation. Also, three of the external legs are required to be partons,

indicating that one must be a gluonic leg. As gluons do not carry any EW

charge, there are only three external legs sensitive to the EW Sudakov cor-

rection. The W+ → `+ν decay is factorised from the production process,

and spin correlations are not included.

Fig. 4.9 shows the full distribution for on-shell and off-shell W+ boson pro-

duction in leptonic decays to `+ν for `+ = e+, µ+. The left-hand plot shows

the effect on the distribution for W+ bosons produced on-shell, and the

right-hand plot shows the same distribution for off-shell production. The

left-hand plot therefore shows the effect of the EW Sudakov corrections on

the W+ boson, whereas the right-hand plot shows the approximation on the

decay products, but not the intermediate boson. The effect of considering

the W+ boson to be produced on-shell is small compared to the size of the

EW Sudakov corrections in the limit of high jet-p⊥.

Fig. 4.10 shows the direct comparison of the EW Sudakov corrections for

the two distributions presented in Fig. 4.9. This shows similar behaviour

for both cases; the correction becomes more negative with increasing jet-

p⊥. However, the on-shell W+ production case tends to have a less negative

correction than the off-shell production throughout the high-p⊥ tail of the
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Figure 4.11: The Emiss
⊥ (left-hand-side) and ∆Φ between the lepton and

hardest jet (right-hand-side) for `+ν+jets production at a 14 TeV LHC, at
LO and including the Sherpa implementation of the EW Sudakov approxi-
mation. The uncertainties are statistical.

distribution. The Sudakov correction in Fig. 4.10 is negative over the full

p⊥ range. It is most significant in the highest p⊥ region, where it reaches

∼ −30 %. This demonstrates the increasing dominance of the leading soft-

collinear logarithms over the single logarithms at increasing energy. This

behaviour would therefore be more pronounced at even higher energies.

4.6.2 pp→ `+ν+jets at a 14 TeV LHC

Results are presented in this subsection are for the pp → `+ν+jets process,

with the 0,1 jet contributions from the ME, which include the EW Sudakov

correction. On top of this, the parton shower radiates, without any higher-

order correction. The off-shell production is considered, such that the decay

of the W+ boson is correctly treated with the EW Sudakov correction and in-

cluding all spin correlations. The set-up is again consistent with Subsec. 4.5.1,

with a merging scale of 30 GeV. The renormalisation and factorisation scales

are set according to the CKKW prescription [133, 134].

The left-hand-side of Fig. 4.11 shows the Emiss
⊥ distribution at a 14 TeV LHC

for `+ν+jet. The EW Sudakov correction increases with Emiss
⊥ , to O(20 %)

at 500 GeV. In the first bin of Fig. 4.11, the EW Sudakov correction is neg-

ligible. This implies that the total cross-section is not significantly affected

by the EW Sudakov correction. Instead, the importance of the EW Sudakov
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correction in Fig. 4.11 is in the the high-energy limit.

The right-hand-side of Fig. 4.11 shows the ∆Φ distribution between the lep-

ton and hardest jet in the event. This shows an increasingly negative correc-

tion from the EW Sudakov correction with increasing angular separation of

the lepton and the jet, up to O(25 %). Fig. 4.11 demonstrates the behaviour

of the EW Sudakov logarithms both with increasing energy (left-hand-side)

and with angle (right-hand-side).

4.7 Conclusions

This chapter has detailed the implementation of Sudakov logarithms as an

approximation to exact NLO EW processes in the high-energy limit. The

theory behind the approximation has been outlined and the origin of the large

logarithms explained. The implementation of these logarithms in Sherpa

has been fully documented, the technical issues addressed, and the origins of

theoretical uncertainty discussed.

This implementation has been validated against literature numbers for total

cross sections for the following processes with increasingly hard final state

cuts:

1. pp→ µ+ν at 14 TeV at the LHC with a cut on transverse mass.

2. pp→ µ+µ− at 14 TeV at the LHC with a cut on invariant mass.

3. pp → `+νj at 14 TeV at the LHC for a cut on both the jet p⊥ and

lepton p⊥, separately.

The first and second processes considered comprised comparisons to inde-

pendent calculations of the EW Sudakov correction, and to the exact NLO

EW result. Good agreement was found for pp→ µ+ν with the independent

EW Sudakov calculation, and the EW Sudakov implementations approached

the exact result in the high energy limit. For the pp → µ+µ− process, the

Sherpa EW Sudakov implementation converged to the exact NLO EW re-

sult faster than the independent calculation, as it included a phase-space cut

on the regions where the EW Sudakov approximation is invalid. The final
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comparison was with the exact NLO EW calculation alone. The NLO EW

calculations for a 14 TeV LHC were considered, for various cuts on both the

lepton p⊥ and jet p⊥. In both cases, the Sherpa implementation of the

EW Sudakov logarithms converged to the exact NLO EW calcuation with

increasing p⊥.

Some initial results were then presented for W+j and the `+ν+jets processes

at a 14 TeV LHC. This demonstrated the difference in considering on-shell

and off-shell effects for `+νj production. The results show that the differ-

ence between these two calculations is small, even in the high energy limit,

although the off-shell production does have a slightly more negative correc-

tion than the on-shell production channel. Results were also presented for

a merged `+ν+jets calculation, which showed the behaviour of the EW Su-

dakov approximation with increasing centre-of-mass energy, as well as its

angular dependence. The size of the EW Sudakov correction grew both with

increasing energy and increasing angular separation.
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Chapter 5

Tri-Lepton Production in the

SM

This chapter presents results obtained to NLO QCD accuracy with the

Sherpa+OpenLoops framework for tri-lepton final states in SM processes.

In Higgs boson studies, the tri-lepton final state naturally allows the coupling

between weak bosons and the Higgs boson to be studied. Furthermore, the

tri-lepton final state is a rare final state in the SM, which greatly reduces

the backgrounds to BSM processes, which is why multi-lepton final states

are used frequently in such searches. In this case, the Higgs boson provides

a significant contribution to the background.

In the light of all experimental determinations of the properties of the Higgs

boson with SM expectations based on the BEH mechanism [3–8], it is clear

that increasingly precise studies become necessary in order to look for subtle

effects where new physics could manifest itself.

A prime candidate for such studies is the production of multiple gauge bosons:

channels involving ZZ, W±W± and γγ final states have been employed,

among others, for the discovery of the Higgs boson, while processes with

W±γ, W±Z, ZZ, and Zγ final states are frequently used by the experi-

ments to search for anomalous triple gauge boson couplings, see for instance

Refs. [135–138]. Clearly, with higher energies, such searches can, and will,

be extended to also include anomalous quartic gauge couplings. In addi-

tion, multi-boson channels, and in particular those that lead to final states

67
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involving three leptons, are important backgrounds in searches for new parti-

cles; as an illustrative example consider neutralino-chargino pair production

and their subsequent decay in supersymmetric extensions of the SM. This is

discussed further in Sec. 5.2.

This chapter is divided into two sections:

� Sec. 5.1

This section presents the work published in Ref. [139] on searches for

the Higgs boson in tri-lepton final states.

� Sec. 5.2

This section presents work from an ongoing study with K. Zapp and

F. Krauss into rare SM processes that contribute to BSM backgrounds.

5.1 V H Associated Production in the Tri-

Lepton Channel

Since the discovery of the Higgs boson at the LHC there has been considerable

interest in the different available production modes. Both ATLAS and CMS

have published papers on V H production at the LHC [140–142]. This section

looks at the tri-lepton channel of these papers. These analyses naturally allow

the coupling between the Higgs boson and the vector bosons to be studied.

5.1.1 Introduction

This section focuses on the production of a SM Higgs boson in the Hig-

gsstrahlung process (associated V H production) and its subsequent decay

into W - or τ -pairs. Apart from the signal, all relevant background channels

will be studied as well. This includes multiple gauge boson final states such as

W±Z, W±W+W−, ZW±W±, ZZ, W±ZZ and ZZZ. The studies presented

here follow closely the recent analyses by ATLAS and CMS [140–142].

In many of these processes, QCD corrections play a significant role, from

highly phase-space dependent K-factors ranging between 1.5 and 2 to the

fact that the emergence of additional jets can be used to shed light on the



Chapter 5. Tri-Lepton Production in the SM 69

actual production mechanism giving rise to triple gauge boson final states.

In addition, quite often vetoing additional jets is a very good way to sup-

press unwanted backgrounds, a prime example being the large suppression of

the t(→ W+b)t̄(→ W−b̄)W background to W±W+W− production or other

signals, which allows this class of processes to be ignored here.

For the signal process, V H-associated production, parton-level results are

available at NLO in the perturbative expansion of QCD [143] and NNLO

results have been known for more than a decade [144, 145]. Resummed

predictions were computed more recently [146]. The NLO QCD corrections

to triple gauge boson production have first been calculated in [147, 148], the

leptonic decay of the bosons has been discussed in [149, 150] and it has also

been implemented in the VBFNLO code [151]. Predictions at NLO QCD for

triple gauge boson production in association with one extra jet are presented.

For the calculation of the virtual corrections, OpenLoops [66] is em-

ployed. For the Born and real emission contributions, the ME generators

Amegic++ [152] and Comix [64] are used. The mutual cancellation of

infrared divergences in real and virtual contributions is achieved through

the dipole formalism [77, 153] and its automated implementation in both

Amegic++ [65] and Comix. The overall event generation is handled by

Sherpa [19, 20]. For the first time, the NLO QCD calculations are com-

bined consistently with parton showers, employing the S-MC@NLO vari-

ant [112, 113] of MC@NLO [109, 154] outlined in Subsec. 2.2.2. Parton

showers are generated by Sherpa, based on Catani-Seymour dipole sub-

traction [77, 153] as suggested in Ref. [155] and implemented in Ref. [156]. In

addition, a multijet merging with NLO QCD MEs including one additional

jet is included, following the MEPS@NLO algorithm [134, 157] mentioned in

Subsec. 2.2.3.

The Monte Carlo methods used to simulate jet production and evolution

are discussed in Chap. 2. Subsec. 5.1.2 presents results obtained with the

S-MC@NLO matching and MEPS@NLO merging methods. The discussion

focuses on the treatment of signal and background with typical cuts as used

by ATLAS and CMS [140–142]. This section closes with a summary and

some outlook in Subsec. 5.1.3.
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5.1.2 Results

Details of the Analyses

There are current efforts from both CMS and ATLAS to search for the tri-

lepton (` = e, µ) final states emerging from W±H-associated production,

where the Higgs boson decays either into τ± or W± pairs [140–142]1. These

final states allow a direct probe of the coupling between the Higgs boson

and the weak bosons. In the following, two analyses are presented: the

first inspired by a recent search by the CMS collaboration [141], the second

following searches from the ATLAS collaboration [140, 142]. The majority

of the cuts that are applied in both are given in Tab. 5.1. Their crucial

features in reducing unwanted backgrounds are a veto on Z bosons, which is

realised differently in both analysis, and vetoes on jet activity to eliminate

the large background from tt̄V production. Jets are reconstructed in both

analyses using the anti-kT algorithm [158, 159] with the parameters given in

Tab. 5.1. In the ATLAS-inspired analysis, events are allowed to contain at

most one jet, which must not be a b-tagged jet. The CMS-inspired analysis

vetoes all events with a jet of p⊥ > 40 GeV and any containing b-tagged jets.

Both analyses dress electrons with all surrounding photons within a cone of

∆R = 0.1 while muons are left bare.

The ATLAS-inspired analysis requires exactly three isolated leptons of net

charge ±1. At least one of the leptons needs to have a transverse momentum

of more than 25 GeV for electrons and 21 GeV for muons, the other two

leptons p⊥ > 10 GeV each. They are labelled in the following way: the

lepton with charge different from the others is called lepton 0, of the two

others the one with smaller distance ∆R from lepton 0 is called lepton 1 and

the remaining one is labelled as lepton 2. The leptons are considered isolated

if the transverse energy of all visible particles in a cone of radius ∆Riso = 0.2

for leptons 0 and 1 and ∆Riso = 0.4 for lepton 2 around the lepton is less

than 10% of the lepton p⊥. After this, pre-selection events containing a

same-flavour-opposite-sign (SFOS) lepton pair are classified as Z enriched,

those that do not belong to the Z depleted sample. In this section only the

1 Note that the ATLAS publication also includes similar searches in ZH-associated
production which will not be considered here.
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Cut ATLAS CMS

p`⊥,min 10 GeV 10 GeV
|ηemax| 2.47 2.5
|ηµmax| 2.5 2.4
Nleptons 3 ≥3
Z veto no SFOS |mZ −mSFOS| > 25 GeV
|∑Q`| +1 +1
Jet p⊥,min 25 GeV 20 GeV
Jet dR 0.4 0.5
Emiss
⊥,min – 40 GeV

Table 5.1: Cuts for the ATLAS- and CMS-inspired analyses.

Z depleted subsample is considered. Contrary to the experimental analysis

in Ref. [140], no requirement on the missing transverse energy is applied.

The CMS-inspired analysis, on the contrary, requires at least three isolated

leptons of net charge ±1. Of those, at least one is required to have p⊥ >

20 GeV while the others must only fulfil p⊥ > 10 GeV. The lepton isolation

in turn depends on lepton flavour rather than classification. Electrons are

considered isolated if in a cone of radius ∆Riso = 0.4 the sum of the transverse

energy of all visible particles does not exceed 15 % of the lepton p⊥, while

muons must satisfy this limit only in a cone of size ∆Riso = 0.3. In case

a pair of SFOS leptons is present in the event, the event is discarded if its

invariant mass is closer to the nominal Z boson mass than 25 GeV.

Both the ATLAS and CMS analyses include regions with more cuts than are

described here, however the observables presented do not use these regions.

Monte Carlo Samples

Production of pp→ 3`+Emiss
⊥ +X is considered at the LHC for a centre-of-

mass energy of 8 TeV. All processes with at least three leptons that involve

an on-shell Higgs boson are considered as signal processes, and those which

do not are considered background processes. Neutrinos do not necessarily

need to be present since missing transverse energy can also be generated due

to the limited detector acceptance in rapidity.

The signal is comprised primarily of W±H(→ W+W−), W±H(→ τ+τ−)
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and ZH(→ W+W−), but includes also ZH(→ τ+τ−), W±H(→ ZZ) and

ZH(→ ZZ) as subdominant contributions. All signal processes are calcu-

lated at MEPS@NLO accuracy, merging the respective processes accompa-

nied by zero/one jets at NLO in QCD and by two jets at LO accuracy. The

background processes considered are high-multiplicity bosonic final states:

W±Z, ZZ, W±W+W−, W+W−Z, W±ZZ and ZZZ, which can evade the

Z veto by the same method as W±Z, and also include hadronic decays of

the bosons. Higher multiplicity final states do not have a significant enough

contribution to be considered. In addition, the production of an off-shell

Higgs boson decaying to an on-shell V boson pair is also considered as part

of the background. The cross-section for this process is very small as com-

pared to the production of the on-shell Higgs boson, and it contributes mostly

through its interference with the triple boson background. The W±Z boson

background remains dominant over large portions of phase-space; this is due

to lost leptons and, more importantly, due to decays into τ -leptons which

enable the evasion of the Z veto. Of less importance is the W±W+W− pro-

cess, nonetheless warranting high theoretical accuracy. Thus, both W±Z and

W±W+W− are calculated at the same accuracy as the signal processes, while

the remaining subdominant background processes, ZZ, W+W−Z, W±ZZ

and ZZZ, are considered at MENLOPS accuracy, i.e. NLO QCD accuracy

for the respective inclusive process and leading order accuracy when the

gauge bosons are accompanied by one and two jets. Further, in order to

prevent tV1V2/t̄V1V2 contributions entering the V1V2W
±j calculation, and

tt̄V contributions entering the VW+W−jj calculation, only light quarks are

considered in the ME final state.

The Higgs and W/Z gauge boson decays are treated in the narrow width

approximation, including spin correlation effects throughout all decay chains.

The kinematics are then corrected by redistributing the boson’s propagator

mass onto a Breit-Wigner distribution. In cases where 1 → 2 decays are

not allowed kinematically their 1 → 3 substructure is resolved. This is

relevant mainly for H → V V ∗ decays. Additionally, all decays receive higher-

order QCD and QED corrections through intermediate parton showering or

YFS-type soft-photon resummation (including full O(α) corrections) [160],

respectively. Throughout, all possible decays leading to the desired final state
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are considered, including all invisible Z- and hadronic W -, Z- and τ -decay

channels.

The distributions for the central values include hadronisation [161] and an

underlying event simulation [162]. Scales are set according to the CKKW

prescription [133, 134] and the uncertainties are evaluated as follows

� To determine the renormalisation scale, the event is clustered using the

inverse of the parton shower, including electroweak splitting functions

as introduced in Ref. [163], until a 2→ 2 core configuration is reached.

The renormalisation scale µR is then defined through

αk+ns (µR) = αks(µcore)
n∏
i=1

αs(ti) , (5.1)

wherein k is the QCD order of the such determined core process at

tree level, i.e. k = 0 for qq̄(′) → V V (′) or qq̄(′) → V H, k = 1 for

qq̄(′) → V g or gq → V q(′), and k = 2 for pure QCD core processes. n

is the final state clustered jet multiplicity and the ti their respective

reconstructed emission scales. As core scale, µcore =
√
ŝ is chosen for

k = 0, µcore = 1
2
m⊥(V ) for k = 1, and µcore = 1

2
p⊥ for k = 2. For

n = k = 0, µR = µcore is set. The factorisation scale is set to µF = µcore

on the core configuration. The thus determined µR and µF are then

varied by a factor of 2.

� The resummation scale µQ, also defined in Ref. [134], is set equal to the

factorisation scale. It is varied by a factor of
√

2, cf. Ref. [164, 165].

� Qcut is the merging scale. Three values are chosen for this scale, 15 GeV,

30 GeV and 60 GeV.

The uncertainties in all figures are shown as two bands, one for the combined

background and one for the combined signal, accumulated through their re-

spective contributing processes only. They have been evaluated at the parton

level. The full perturbative uncertainty for each process is obtained as the

quadratic sum of the envelopes provided by the variation of the perturbative

scales, µR, µF , and µQ, and the merging scale Qcut. As non-perturbative

uncertainties were found to be very small, these parton level uncertainties
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Parameter value
α 1/128.802
MW 80.419 GeV
MZ 91.188 GeV
MH 125 GeV

Table 5.2: EW parameters used for the simulations of V H production and
all relevant backgrounds.

are directly applicable to the hadron level results. The EW input parameters

for this simulation are given in Tab. 5.2.

Results with MEPS@NLO

Results for selected observables defined on the event samples prepared with

the analyses and scale uncertainties described above, are presented here. All

observables considered below show a clear signal over background excess.

They focus on the leptons from the hard process after the Z and jet veto.

The Z veto is very important in these analyses, because without it the W±Z

process is very dominant over both the signal and the background. Similarly,

without the jet veto, top associated vector boson production would bury the

Higgs processes.

The first observable considered is the tri-lepton invariant mass of events in

the CMS-inspired analysis in Fig. 5.1. After the veto on the Z boson and

final state b-tagged jets, the invariant mass distribution of the 3 leptons can

be used to distinguish the signal from the background as a visible 30 % ex-

cess is seen in the peak region, far surmounting the background uncertainties

displayed in the lower panel. Very similar findings are made when looking

at events in the ATLAS-inspired analysis. Although the main signal pro-

cess W±H(W+W−) forms the majority of the excess, the contribution from

W±H(τ+τ−) is non-negligible, albeit of a slightly different shape. Regarding

the background processes, the tri-boson processes have a significantly harder

m3` spectrum, raising their relative contribution in the high-mass region, as

can be seen in the logarithmically plotted inlay.

A somewhat complementary observable is the missing energy distribution, ex-

hibited in Fig. 5.2, again effected on the event selection of the CMS-inspired
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Figure 5.1: The tri-lepton invariant mass after CMS cuts. All contributing
processes, grouped as whether considered signal or background and are added
incoherently, ordered by relative contribution. The inset displays the same
information on a logarithmic scale to better quantify the contributions of the
rarer processes. Below the main plot the accumulated relative uncertainties
originating from the respective signal and background processes to the total
expected cross-section are detailed.

analysis. The findings indeed display a similar behaviour to the tri-lepton in-

variant mass distribution of Fig. 5.1, namely that the signal is clearly visible

above the background for Emiss
⊥ . 100 GeV. Again, the dominant and sub-

dominant signal processes, W±H(W+W−) and W±H(τ+τ)−, exhibit some-

what different shapes, with W±H(τ+τ−) possessing less missing transverse

momentum. In both observables, the W±Z background is the most dominant

background. However, here the di-boson and tri-boson background have a

very similar behaviour at large Emiss
⊥ .

The relatively small excess in the Emiss
⊥ spectrum in the CMS-inspired event

selection is enhanced in the ATLAS-inspired event selection with its stronger

Z veto, implemented through a complete rejection on SFOS lepton pairs.

Here, the Emiss
⊥ distribution shows an excess of the signal over the background

of up to 50%. This is displayed in Fig. 5.3. In contrast to the case of a Z
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Figure 5.2: The missing transverse energy spectrum after CMS cuts. For
details, see Fig. 5.1.
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Figure 5.3: The Emiss
⊥ spectrum after ATLAS cuts. For details, see Fig. 5.1.
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Figure 5.4: The angular separation of the closest pair of oppositely charged
leptons in the case that no SFOS pair of leptons is found in the event after
ATLAS cuts. For details, see Fig. 5.1.

veto through a mass window as in CMS, where the distribution especially for

W±Z falls off smoothly, here the Z veto introduces a visible kink, while the

signal remains unaffected. This, of course, could be further used to reduce

the W±Z background by utilising this different impact on the respective

shapes.

The angular separations between pairs of leptons are interesting observables

for this process. Fig. 5.4 shows the distance ∆R between the closer of the two

pairs of oppositely signed leptons, following the ATLAS-inspired event selec-

tion. These leptons do not have the same flavour, as this observable isolates

the leptons that are most likely to be products of the Higgs boson decay to

W+W− or τ pairs. This effect, in particular on the W+W− channel, stems

from the spin correlations in the decay of the Higgs boson, as already dis-

cussed in Ref. [142]. As a result, this observable also has good discriminating

power between signal and background, providing a clear excess in the region

∆R < 3. It also, better than the other observables considered, separates the

two main signal processes. While W±H(W+W−) constitutes approximately
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80 % of the Higgs signal below ∆R = 1, W±H(τ+τ−) contributes roughly

60 % in the region 2 < ∆R < 3. There, however, the signal excess over

the background has fallen from a factor of two to approximately 35 % of the

background expectation.

The different uncertainties have been investigated individually for all pro-

cesses to check for their dominant source. In nearly all bins of all observables

considered in this section, the uncertainties are driven by the renormalisa-

tion and factorisation scale variation with a typical effect on the few-percent

level up to about 10 % for the tri-boson processes. In regions dominated by

jet activity, of course, the MENLOPS samples, being at leading order accu-

racy only, exhibit a stronger dependence than those processes simulated with

MEPS@NLO. In addition, it is worth stressing that effects due to hadroni-

sation and the underlying event are practically irrelevant for the uncertain-

ties in the simulation of the processes for the observables considered here.

Their main effect is on the isolation efficiency of the leptons. Although the

non-perturbative corrections have a clear impact on the shape of tri-lepton

invariant mass of Fig. 5.1, as the isolation is p⊥-dependent, their uncertain-

ties are barely noticeable. On the contrary, the missing transverse energies

of Figs. 5.2 and 5.3 and the angular separation of Fig. 5.4 receive merely a

change of the overall rate from effecting non-perturbative corrections. Again,

their uncertainties are negligible.

5.1.3 Conclusions

In this section NLO QCD accurate predictions for multiple weak boson pro-

duction at the LHC were presented, and their application to Higgs boson

searches based in tri-lepton final states has been highlighted. The W±H

and ZH Higgsstrahlung signals as well as the main backgrounds, W±Z and

W±W+W− production, have been simulated at NLO in QCD including up

to one extra jet in the MEPS@NLO multi-jet merging framework. The sim-

ulation of the W±W+W− background represents a non-trivial application of

multi-jet merging at NLO QCD and plays an important role for all Higgs

physics and new physics searches based on tri-lepton final states and jet ve-

toes. Also various other di-boson and tri-boson background processes have
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been computed at NLO QCD, including matching to the parton shower and

an improved description of extra jet radiation, based on the MENLOPS

technique. It is confirmed, at NLO QCD, that the relevant backgrounds to

W±H and ZH production are given by di-boson and tri-boson production

processes, if jet vetoes can be applied. The residual perturbative uncertain-

ties are shown to be, in large fractions of the relevant phase-space, of the

order of 10% or even below. This will offer excellent opportunities for Higgs

boson precision studies at the forthcoming LHC runs.

5.2 Rare SM Processes as BSM Backgrounds

This section studies a similar class of processes to Sec. 5.1, with a focus on

their contribution to backgrounds for BSM studies. A notable difference is

the inclusion of tt̄V processes in this section, since no jet veto is applied to

remove them. Observables used by the ATLAS and CMS publications in

tri-lepton BSM searches are presented, which focus on leptonic observables.

These are naturally very stable against hadronisation and underlying event

effects, neither of which are considered in this section.

5.2.1 Introduction

In addition to providing an interesting channel for Higgs studies, tri-lepton

processes are very interesting as backgrounds to BSM physics, due to the

rarity of high-multiplicity leptonic final state in the SM. This produces small

backgrounds to BSM models capable of producing these high-multiplicity

final states, the most prominent example of which being SUSY. See Ref. [166]

for a complete set of Feynman rules in the MSSM, which is the minimal

supersymmetric extension to the SM.

The existence of SUSY would introduce a partner to all observed particles,

which would differ from its SM counterpart by half integer spin. These SUSY

particles would need to acquire much larger masses than the SM particles by

a process of symmetry breaking. The lightest superpartner (LSP) would be

stable as a consequence of R-parity; which is a Z2 symmetry, R = ±1, for

which SM particles have R = 1 and supersymmetric particles have R = −1.
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The LSP cannot be directly detected in an experiment, it would instead

manifest itself as missing energy. Any SUSY particle created would then

decay into familiar SM particles and missing energy. The searches for these

particles are therefore confined to those SM signatures that introduce the

least background. As such, the tri-lepton final state is ideal.

These tri-lepton final states would be a typical signature of the EW produc-

tion of charginos and neutralinos. Charginos would be the superpartners to

W± bosons, and the neutralinos would be a linear superposition of the super-

partners to the neutral SM EW force carriers as well as Higgsinos. Charginos

would produce a tri-lepton signature through decays via sneutrinos, sleptons

or W± bosons, and neutralinos would produce similar final states through

slepton and Z boson decays. As well as the tri-lepton SUSY searches at the

LHC [69–74], similar studies have been completed at the TeVatron [167, 168]

and at LEP [169–172].

This section uses an ATLAS-inspired analysis from Ref. [73] and a CMS-

inspired analysis from Ref. [74].

From the ATLAS-inspired analysis, general event observables are considered,

the scalar sum of visible particles, HT and Emiss
⊥ of the event. As well as this,

angular distributions of the hardest leptons in the event are presented. These

distributions are sensitive to spin correlation effects, and these effects will be

different in SUSY processes than in the SM. This makes such observables

good discriminators of SUSY processes.

The CMS-inspired analysis looks at the Emiss
⊥ and HT observables shown in

Ref. [74]. This is binned by the invariant mass of the leptons identified as the

most likely Z boson candidate, and the transverse mass of the remaining lep-

ton and the missing energy. These distributions provide an insight into how

the behaviour of the different backgrounds to the Emiss
⊥ and HT observables

contribute with different invariant mass and transverse mass cuts.

5.2.2 Set-Up

This study is performed at S-MC@NLO level accuracy with Sherpa [19, 20]

and OpenLoops [66] as the one-loop provider for the virtual MEs. As the
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analyses employed in this section do not involve any jet vetoes, the increased

accuracy of a MEPS@NLO calculation is not necessary for an accurate theo-

retical prediction. W±, Z and Higgs bosons were produced on-shell, as were

the top quarks. The decays of these particles were treated in a factorised

way, with all spin correlations preserved. The kinematics of the production

are corrected, with the kinematic distribution fitted on a Breit-Wigner curve

as is explained more fully in Subsec. 5.1.2.

The effects of the weak boson width on typical observables can be seen in

Fig. 5.5, where the distributions of the tri-lepton invariant mass and the

missing energy distribution from the ATLAS analysis are shown for tt̄W±

production both for on-shell W± boson production, with the leptonic decay

channel selected by the decay module during event generation, and direct

production of tt̄`ν, where ` is a light lepton, either a muon or an electron.

Decays to τ leptons are not considered for this check. Calculating the full

final state naturally provides the decay to NLO QCD accuracy, whereas

in the narrow-width approach these decays are factorised and calculated to

LO accuracy only. Fig. 5.5 shows that the observables are not significantly

impacted by the different treatments of the W boson decay.

While Fig. 5.5 shows general event observables, Fig. 5.6 shows the same com-

parison for angular distributions. The curves are the same to within the

statistical uncertainty for both the ∆R distributions between the two hard-

est leptons in the event and between the two leptons of the same sign in the

event. Therefore, these plots justify the use of MEs with on-shell W bosons

for this study.

Similar plots are made for tt̄Z in Fig. 5.7. Here the invariant tri-lepton mass

and ∆R between the two hardest leptons are presented, again normalised to

unit area. For tt̄`+`− production the Z/γ∗ interference is included, which is

not present in tt̄Z production. This introduces a shift towards lower mass

distributions, as can be seen in the left-hand plot of Fig. 5.7. However, in the

angular distributions such as the right-hand plot of Fig. 5.7, these effects are

not present, and the two simulations are equivalent to within the statistical

uncertainties. This simulation of tt̄`+`− includes a cut on the invariant mass

of the lepton pair, M`+`− > 5 GeV. In this analysis the narrow-width ap-

proximation is used for the tt̄Z process, as the effects of the inclusion of the
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Figure 5.5: Left-hand-side shows the invariant mass distribution for the tri-
lepton final state from the ATLAS analysis, and the right-hand-side shows
the Emiss

⊥ distribution from the same analysis. Width effects are included in
the red dashed curve and on-shell W± boson production is considered in the
blue solid curve. Both plots are normalised to unit area, and the uncertainties
are statistical.

Particle Mass/GeV
MW 80.414
MZ 90.18
Mt 175
MH 126

Table 5.3: Masses, MX , of EW particles, X, used for this study.

full final state are too small to be significant in the observables considered.

Since the final state of all processes considered in this study are massive,

no phase-space cuts were placed on the final state before passing the event

through the experimentally-inspired analyses. The analysis was conducted at

the parton level. This does not significantly impact the distributions because

the observables considered, such as leptonic observables as well as HT and

Emiss
⊥ , are stable with respect to hadronisation. The scales for these processes

are set according to the CKKW procedure as described in Ref. [117]. The

masses used in this study for the EW particles can be found in Tab. 5.3.
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Figure 5.6: Left-hand-side shows the ∆R between the 2 hardest leptons for
the tri-lepton final state from the ATLAS analysis, and the right-hand-side
shows the ∆R between the 2 leptons of the same sign from the same analysis.
Width effects are included in the red dashed curve and on-shell W± boson
production is considered in the blue solid curve. Both plots are normalised
to unit area, and the uncertainties are statistical.

l+l−

Z on–shell

10−4

10−3

Invariant mass of the tri-lepton system

d
σ
/
d
M

ll
l/
p
b
/
G
eV

0 100 200 300 400 500 600

0.6

0.8

1

1.2

1.4

Mlll/GeV

R
a
ti
o

l+l−

Z on shell

10−1

∆R between hardest 2 leptons in the event

d
σ
/
d

∆
R
l 1
l 2

0 0.5 1 1.5 2 2.5 3 3.5 4

0.6

0.8

1

1.2

1.4

∆Rl1l2

R
a
ti
o

Figure 5.7: These plots show tt̄Z tri-lepton events for the calculation in
the narrow width approximation for the Z boson and for the NLO QCD
calculation of tt̄`+`−. Left-hand-side shows the invariant tri-lepton mass and
right-hand-side shows the ∆R distribution between the hardest 2 leptons in
the event. These plots are normalised to unit area.
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Parameter cut
Emiss
⊥ > 50 GeV

jet R 0.4
jet p⊥ > 20 GeV
jet |η| < 2.5

no. leptons 3
SFOS veto

Table 5.4: List of cuts in ATLAS tri-lepton SUSY search for the second
validation region. Jet R is the radius used in the jet reconstruction.

5.2.3 Analyses

Two experimental analyses were translated into Rivet routines for this study.

One from the ATLAS paper on chargino and neutralino searches in the tri-

lepton channel from Ref. [73]. This ATLAS search was conducted at
√
s =

8 TeV and excluded chargino masses up to 580 GeV with light sleptons in the

range 150-300 GeV. This note includes several different signal and validation

regions. In two of the three validation regions no veto on Z boson production

is made. Therefore, in these regions the W±Z region is by far the most

dominant process of all the irreducible backgrounds. In this section the focus

is on rare SM processes, which are most relevant in the validation region with

a veto on Z boson production. This is the VR2 region in Ref. [73], where a

veto is applied to all SFOS lepton pairs.

On top of the cuts in Tab. 5.4, there is a requirement on the leptons to fulfil

the experimental triggering requirement. This trigger condition depends on

the flavour combination of the two hardest leptons in the event. In the case

that both the leading and the subleading leptons in p⊥ are muons, they are

required to either both have p⊥ > 14 GeV or the leading muon to have p⊥ >

18 GeV and the subleading to have p⊥ > 8 GeV. If both leptons are instead

electrons, the condition is that either both electrons to have p⊥ > 14 GeV

or for the leading electron to have p⊥ > 25 GeV and the subleading to have

p⊥ > 10 GeV. The final possibility is for mixed flavours, an electron and a

muon as the hardest two leptons in the event. Here it is required that either

the electron has p⊥ > 14 GeV and the muon has p⊥ > 8 GeV or the electron

has p⊥ > 10 GeV and the muon has p⊥ > 18 GeV. Jet reconstruction makes

use of FastJet [159] and the anti-kT algorithm [158].
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Parameter cut
Emiss
⊥ > 50 GeV

no. leptons 3
jet R 0.6
jet p⊥ > 20 GeV
jet |η| < 5

Table 5.5: List of cuts for CMS-inspired SUSY search. Jet R is the radius
used in the jet algorithm.

Leptons are required to be isolated from both jets and other leptons. If a

jet is reconstructed to be within ∆R`j < 0.2 of an electron, where ∆R =√
∆Φ2 + ∆η2, it is discarded. This procedure provides a subset of the jets

which are well separated from the electrons in the event, which are labelled

as ‘isolated jets’. Then, if any pair of leptons are within ∆R`` < 0.1 of

each other, both leptons are discarded. An exception is made to this rule

in the case that the leptons are both electrons. In this case, only the softer

of the pair is discarded. The leptons are also required to be separated by

∆Rj` > 0.4 from any of the isolated jets.

The CMS analysis for the tri-lepton SUSY search in Ref. [74] involves searches

for leptonic final states. This study makes use of its tri-lepton analysis. This

CMS analysis is also at 8 TeV and bins results by the invariant mass of a

lepton pair and the transverse mass of the remaining lepton and the missing

energy. The cuts implemented for this analysis are given in Tab. 5.5.

The triggering requirement for the leptons in the CMS-inspired analysis is

that the leading lepton in p⊥ has p⊥ > 10 GeV. Further, the CMS-inspired

analysis includes isolation criteria for jets and leptons similar to the ATLAS-

inspired analysis: a jet is discarded if it is reconstructed within ∆R`j < 0.1

of an electron; both leptons are discarded if they are within ∆R`` < 0.1 of

each other, unless both leptons are electrons, in which case the softer of the

two electrons is discarded.

Tab. 5.6 shows the different bins employed in this analysis. First, the events

are separated into two regions, one with a SFOS pair, and one with no such

pair. This other region has same flavour leptons with the same sign, and

is therefore labelled the SSSF region. The invariant mass is taken from the

pair of oppositely signed leptons with reconstructed invariant mass closest to
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Binned Observables M`` MT

SFOS SSSF
low/GeV < 75 < 100 < 120

middle/GeV 75 > M`` < 105 - 120 < MT < 160
high/GeV > 105 > 100 > 160

Table 5.6: Bins used in CMS analysis for invariant mass, M``, and transverse
mass, MT . For M``, the bins vary depending on whether a SFOS lepton pair
is found. If not, the same-sign same-flavour (SSSF) bins apply.
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Figure 5.8: Distribution for ∆R between the hardest 2 leptons for the
ATLAS-inspired analysis.

that of a typical Z boson decay to leptons via τ pairs. This is taken to be

50 GeV, as in Ref. [74].

5.2.4 Results

The results of the study are presented in this subsection, for both the ATLAS-

inspired and the CMS-inspired analyses.
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Figure 5.9: Distribution for ∆Φ between the 2 hardest leptons for the
ATLAS-inspired analysis.

ATLAS-Inspired Analysis

Fig. 5.8 shows the distribution for the ∆R between the 2 hardest leptons

from the ATLAS-inspired analysis. The dominant contribution from the

processes considered here is the di-boson W±Z production. tt̄W± is the

leading subdominant channel. The processes with Z boson production tend

to fall off more quickly in the high ∆R`1`2 region, because the hardest leptons

in this process are likely to both come from a single Z boson, which limits

the distance between these decay products.

The ∆Φ distribution between the two hardest leptons in the ATLAS-inspired

analysis is shown in Fig. 5.9. W±Z di-boson production is similarly the

most dominant process, with tt̄W± as the leading subdominant process.

The distribution for the total background shows an increasing trend towards

∆Φ`1`2 = π. This trend exists in all the background processes, but is weaker

in the most dominant processes such that the sum of the backgrounds only

sees an increase of a factor of ∼ 2 between the first and last bins.

The two remaining observables shown from the ATLAS-inspired analysis are
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Figure 5.10: HT from the ATLAS-inspired analysis for SM processes yield-
ing a tri-lepton final state.
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Figure 5.11: Emiss
⊥ from the ATLAS-inspired analysis for tri-lepton final

states from SM processes.



Chapter 5. Tri-Lepton Production in the SM 89

the global event observables of the HT of all objects in the event in Fig. 5.10,

including leptonic activity and missing energy, and the Emiss
⊥ of the event in

Fig. 5.11.

Fig. 5.10 confirms the structure seen in Figs. 5.8 and 5.9, in that W±Z is the

dominant process with tt̄W± as the leading subdominant channel. It is clear

from Fig. 5.10 that the tt̄W± process becomes more dominant in the high-

HT region. This behaviour results from the increased mass of the final state

of tt̄W±, which forces it into higher HT regions than multi-boson produc-

tion. This is clear from the shape differences observed in Fig. 5.10 between

top-associated weak boson production and di-boson production. The top-

associated production channels peak at ∼ 380 GeV, whereas the multi-boson

contributions peak earlier in the distributions at ∼ 200 GeV. Therefore, it

is important for this observable to have control over accurate calculations of

both the W±Z process and the tt̄Z process which can dominate the shape

in the high HT tail.

Besides these most dominant contributions, Fig. 5.10 demonstrates the im-

portance of Higgs boson production in association with a W± boson. The

H → WW ∗ and H → τ+τ− decay modes, combined, contribute roughly 1
3

of the total cross-section at the W±Z peak. The ZZ production contribu-

tions is also significant, of the order of one percent of the total cross-section.

tt̄Z follows a similar pattern to tt̄W±, so while being negligible in the peak

region, it can impact the shape of the tail. The smallest contribution shown

here is that of ZH(→ ZZ), which only contributes at the sub-percent level

throughout the distribution.

The Emiss
⊥ distribution in Fig. 5.11 shows a behaviour similar to that in

Fig. 5.10. The dominant process at small values of Emiss
⊥ is W±Z produc-

tion, and the tt̄W± process begins to dominate the shape effects in the high

Emiss
⊥ tail. However, Fig. 5.11, in contrast to Fig. 5.10, does not contain such

a clear shape difference between W±Z and tt̄W± production. Both of these

processes peak at low values of Emiss
⊥ . The fall-off in the tail of the distribu-

tions is faster in the case of W±Z than it is in tt̄W±, but the effect is not as

strong as it was in Fig. 5.10. The distributions are softer for those processes

that require the Emiss
⊥ to come from neutrinos from τ± decays, which are on

average much softer than those neutrinos originating from W± or Z boson
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Figure 5.12: Histograms of missing energy of SFOS leptons closest to Z
boson mass binned by di-lepton mass and transverse mass from the CMS-
inspired analysis.

decay.

CMS-Inspired Analysis

Fig. 5.12 shows the plots of Emiss
⊥ for the CMS-inspired analysis for the SFOS

case according to Tab. 5.6. The top row shows the distributions in the lowest

invariant mass, M``, bin. The first column provides distributions in the

lowest transverse mass, MT , bin. The largest contrast, therefore, is between

the upper left-hand plot and the lower right-hand plot.

The W±Z process is dominant in all bins in Fig. 5.12. The leading sub-

dominant channel, however, varies across the bins. The middle row of the

plots corresponds to the Z mass peak, so here the processes which include a

Z boson are naturally very dominant. This leads to the suppression of the

tt̄W± process, which is otherwise the leading sub-dominant process, and the

W±H(→ WW ∗) and W±H(→ τ+τ−) processes.
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Mirroring the behaviour in the ATLAS-inspired analysis, the tt̄V process

becomes more significant in the lower right-hand plot, which contains the

events with the highest values of M`` and MT . These top-associated weak

boson production channels become more significant relative to the W±Z

dominant process both as MT is increased along the rows in Fig. 5.12 and

in the highest M`` bin as compared with the lowest M`` bin. In the lowest

right-hand plot, tt̄W± and tt̄Z contribute O(10 %) and O(1 %) respectively

of the W±Z contribution.

Conversely, the Higgs boson associated production channels in Fig. 5.12 tend

to provide a more significant contribution in the lower M`` and MT bins.

The W±H(→ WW ∗) process is most significant in the top left-hand plot,

the lowest M`` and MT bin. Here, the W±H(→ WW ∗) process contributes

O(1 %) of the W±Z cross-section. The distribution in the top left-hand plot

shows a strong preference for the W±H(→ WW ∗) process to contain only a

small amount of Emiss
⊥ , with the distribution falling off sharply with increasing

Emiss
⊥ . The exception to this trend is the W±H(→ τ+τ−) process, which is

a sub-percent effect. This process remains a relatively stable contribution

as a percentage of the total cross-section across the bins highest and lowest

in M``. It is suppressed in the lowest left-hand plot, which corresponds to

M`` > 105 GeV and MT < 120 GeV.

The complementary plots to Fig. 5.12 are given in Fig. 5.13. These show the

same observable, Emiss
⊥ , for the SSSF region of the CMS-inspired analysis.

This naturally includes a Z boson veto, by excluding any SFOS pair of lep-

tons. The binning is given by the SSSF section of Tab. 5.6. The top row of

Fig. 5.13 presents the lowest M`` bin, M`` < 100 GeV, and the first column

contains the distributions with MT < 120 GeV.

Fig. 5.13 shows tt̄W± becoming the dominant process in the bins for M`` >

100 GeV, to an extent that was not observed in the previous plots from either

the CMS- or ATLAS-inspired analyses. The W±Z process is dominant for

low M``, although there are sizeable contributions from both the tt̄W± and

W±H(→ WW ∗) processes in these bins as well.

The W±H(→ WW ∗) process follows a similar pattern in these plots as it did

in Fig. 5.12, since it has its most significant contribution in the lowest Emiss
⊥
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Figure 5.13: Histograms of missing energy of SSSF leptons binned by di-
lepton mass and transverse mass from the CMS-inspired analysis.

bin of the top left-hand plot. The trend seen in tt̄W± is also familiar from

Fig. 5.12, however its effect is enhanced as a result of the SSSF requirement.

As this requirement is a veto on SFOS pairs, the Z boson in W±Z production

is required to decay to τ pairs. This greatly impacts on its contribution to

distributions in the SSSF region. Similarly, in Fig. 5.13, the tt̄Z process

contributes less significantly than in Fig. 5.12, now becoming less dominant

than W±H(→ τ+τ−).

5.2.5 Conclusions

This section presented precision calculations of SM backgrounds to tri-

lepton searches performed at ATLAS and CMS in neutralino and chargino

searches. Relevant background processes have been modelled with the

Sherpa+OpenLoops interface at NLO QCD level accuracy, and mak-

ing use of the S-MC@NLO variant of the MC@NLO method to consistently

match the ME to the parton shower.

It was shown that the W±Z boson production provides the dominant irre-

ducible background for tri-lepton chargino and neutralino searches, with the

tt̄W± process contributing significantly in the high-energy tails of these dis-
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tributions, and even becoming the dominant irreducible background once a

SFOS veto is applied. It was shown that several subleading contributions to

the irreducible tri-lepton background are significant enough under realistic

experimental cuts to require a precise theoretical modelling.

This section also introduces the NLO QCD computation of top-associated

weak boson production, which was not introduced in Sec. 5.1. This introduces

a large contribution to the observables, which could be effectively removed

with a veto on b-tagged jets in the final state. With this addition, this

section presents NLO QCD accurate calculations of rare SM processes which

are important for current searches in for new physics in regions not typically

populated with SM processes.



Chapter 6

tt̄HH Production at a 14 TeV

LHC

This chapter draws heavily from a collaborative project in Ref. [173].

Searches for multi-Higgs boson final states can constrain parameters of the

SM (or extensions thereof) that directly relate to the mechanism of EW

symmetry breaking. Multi-Higgs boson production cross-sections, however,

are small and the phenomenologically accessible final states are challeng-

ing to isolate in the busy multi-jet hadron collider environment of the LHC

run 2 and HL-LHC. This makes the necessity to extend the list of potentially

observable production mechanisms obvious. Most of the phenomenological

analyses in the past have focused on gg → HH + jets; in this chapter the

pp→ tt̄HH process is studied at the HL-LHC and it is found that this chan-

nel for H → bb̄ and semi-leptonic and hadronic top decays has the potential

to provide an additional handle to constrain the Higgs tri-linear coupling in

a global fit at the end of the high luminosity phase.

6.1 Introduction

As was noted in Chap. 1, the properties of the Higgs boson have so far been

aligned with the SM expectation [174, 175] for standard measurements. The

next step in demystifying the nature of the EW scale will therefore crucially

94
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rely on precise measurements of the Higgs boson’s properties at low as well as

high momentum transfers during run 2 and the high luminosity phase, and

on constraining or even measuring the Higgs boson’s properties that have

not been in the sensitivity reach during run 1.

A parameter in the SM that is directly sensitive to spontaneous symmetry

breaking is the quartic Higgs coupling, η

V (Φ†Φ) = µ2Φ†Φ +
η

2
(Φ†Φ)2 ⊃ 1

2
m2
HH

2 +

√
η

2
mHH

3 +
η

8
H4 , (6.1)

where the unitary gauge ΦT = (0, (v+H)/
√

2) is used and v ' 246 GeV. The

second independent parameter in the SM Higgs potential µ2 < 0 is reverse-

engineered to obtain an acceptably large value of the EW symmetry breaking

scale and pole mass

(173 GeV)2 ' v2

2
=
−µ2

η
, m2

H = ηv2 (6.2)

for a given Higgs self-coupling, η. These relations determine a unique value

of the Higgs self-coupling in the SM, η = m2
H/v

2, as required by renormalis-

ablility.

To obtain a measurement of η, Eq. (6.1) may be thought of as the lowest

order in an effective field theory expansion in a new physics scale Λ. A

new operator possibly relevant for softening the correlation of Higgs boson

mass and EW scale is, e.g., O6 = (Φ†Φ)3. Consequently, in the absence of

additional new resonant phenomena related to EW symmetry breaking and

in order to prove or disprove the existence of such operators, a question that

needs to be addressed is how well the Higgs self-interaction parameter can be

constrained assuming the standard low-energy Higgs boson phenomenology

only.

The best option to phenomenologically access the relevant parameter, η, at

the LHC is via its impact on di-Higgs boson production [176–182] via the

tri-linear Higgs self-coupling. Inclusive di-Higgs boson cross-sections typi-

cally have cross-sections in the O(10 fb) range [75, 183]. This implies that,

in order to analyse them, the large SM-like Higgs boson branching ratios

H → bb̄, τ+τ− [184–186] and H → W+W− [187] must be employed. Ad-
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vanced substructure techniques [188–196] or small irreducible backgrounds

such as in HH → bb̄γγ [197–199] are crucial in most analyses to date, which

have focused on the dominant di-Higgs boson production cross-section, gluon

fusion (GF) with σNLO ' 30 fb [200–202]. To increase sensitivities in this

channel, emission of an additional jet has been discussed in Refs. [184, 203];

a complete analysis of WBF-like production in pp → HHjj has become

available only recently [204].

Common to all realistic di-Higgs boson analyses discussed in the literature

is that they will be sensitive to systematic uncertainties at the end of run 2

and the high luminosity phase, and it is quite likely that measurements in

only a single di-Higgs boson channel will not provide enough information to

formulate a significant constraint on the Higgs self-interaction in the above

sense [205]. Hence, it is mandatory to extend the list of potential phenomeno-

logically interesting search channels in proof-of-principle analyses.

This chapter details a study of pp → tt̄HH, and studies semi-leptonic and

hadronic top decays t→ `νb, t→ jjb and H → bb̄. In particular, it discusses

the phenomenological appeal of this particular di-Higgs boson final state as

a function of the number of applied b-tags. Firstly, the qualitative behaviour

of pp → tt̄HH is studied in Sec. 6.2, which also comments on the signal

and background event generation employed in the remainder of the chapter.

The analysis is detailed in Sec. 6.3, where the sensitivity of pp → tt̄HH

to the Higgs tri-linear coupling is discussed in detail before conclusions are

presented in Sec. 6.4.

6.2 Signal Cross-Section Sensitivity and Event

Generation

The sensitivity of di-Higgs boson cross-sections from GF and WBF is domi-

nated by destructive interference of continuum HH production and the sub-

amplitude proportional to the tri-linear coupling λ. In GF this is apparent
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from low-energy effective theory arguments [206–208] by expanding

LLET = − αs
12π

Ga
µνG

aµν log

(
1 +

H

v

)
=

αs
12π

Ga
µνG

aµν

(
H2

2v2
− H

v

)
, (6.3)

which makes the relative minus sign between the continuum and the gg →
H → HH diagrams explicit. As a consequence, the GF cross-section is a

decreasing function with λ & λSM =
√
ηmH/2. In WBF the destructive

character is explicit from nested cancellations that are similar to unitarity-

based cancellations observed in longitudinal gauge boson scattering.

Qualitatively different from GF- and WBF-induced di-Higgs boson produc-

tion, pp → tt̄HH is impacted by constructive interference, yielding an in-

creasing cross-section with λ > λSM, Fig. 6.1. pp → tt̄HH production is the

biggest di-Higgs boson cross-section among the production modes which ex-

hibit this behaviour (pp → WHH and pp → ZHH [75]). Quite different to

loop-induced GF di-Higgs boson production, there is no characteristic thresh-

old scale involved in pp→ tt̄HH that can be exploited in a targeted boosted

search strategy [184, 185]; the tt̄HH cross-section is a rather flat function

of λ [75], as can be seen in Fig. 6.2. Further, differential distributions away

from the production threshold do not show a significant deviation apart from

a global rescaling of the differential distribution by σ(λ 6= λSM)/σ(λSM) for a

transverse momentum range that is interesting for the experiments (Fig. 6.1).

Furthermore, the expected inclusive tt̄HH cross-section with σ ' 1 fb at a

14 TeV LHC asks for a selection as inclusive as possible to be sensitive to the

signal contribution even for a target luminosity of 3 ab−1 in the first place.

Treating the top-Yukawa interaction as legacy measurement and setting

yt = ySMt , a physics situation can be imagined which has an enhanced tri-

linear coupling that renders the dominant GF modes suppressed but leaves an

excess in pp→ tt̄HH production. In the general dimension six extension al-

luded to in the introduction this corresponds to a negative Wilson coefficient

of O6. Enhanced Higgs self-couplings have been discussed more concretely

in the context of conformal Coleman-Weinberg-type extensions of the SM

in [209]. Obviously, the opposite phenomenological situation of λ < λSM is

accompanied by enhanced GF and WBF di-Higgs boson cross-sections while

pp→ tt̄HH becomes smaller (however the cross-section becomes rather flat).
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Figure 6.1: Differential distributions at 14 TeV centre of mass energy of the
inclusive maximum Higgs boson transverse momentum for different values of
the Higgs tri-linear coupling λ. The lower panel displays the ratio of the
max p⊥(H) distribution with respect to the SM (λ = λSM).

Such a situation occurs for instance in composite Higgs scenarios [181, 182],

which typically have a smaller Higgs tri-linear coupling than predicted in the

SM (in addition to modified top Yukawa interactions). Therefore, comparing

the measured rates and (ideally) distributions in all three channels, i.e. GF,

WBF and in association with a top quark pair, provides a precision tool for

BSM EW symmetry breaking.
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Figure 6.2: cross-sections for different HH production channels at 14 TeV
for different values of the Higgs boson tri-linear self-coupling, λ as a fraction
of the SM value, λSM.

Given the small production cross-sections, in the following a combination

of semi-leptonic and hadronic decays of the final state top pair are focused

on, with both Higgs bosons decaying H → bb̄. Sherpa v2.1.1 is used with

the Comix ME generator [20, 64] to generate signal and background events

for modified tri-linear Higgs couplings with SM-like top Yukawa interactions

and normalised to the signal events. These event samples are normalised to

the NLO cross-sections extracted from Ref. [75] for the different values of λ,

after validating the calculation against the leading order results of Ref. [75],

provided in Fig. 6.2. This means applying a flat K-factor to the signal events.

The signal and background samples have been generated at purely leading

order matched to the parton shower, with modelling of hadronisation effects

and underlying event. Unstable particles are treated in the narrow width

approximation; any spin correlations are included in the Sherpa simulation.

Fig. 6.2 shows the behaviour of some Higgs boson production mechanisms. As

well as those shown here, Ref. [75] includes single-top associated Higgs boson

production and loop-improved effective field theory calculations of GF. The

tt̄HH process provides the second largest contribution to the di-Higgs boson

production channels in Fig. 6.2. The WBF process is more dominant, but

involves the same destructive interferences of the GF process. The associated

production channels become larger with respect to the tt̄HH process in the
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limit λ/λSM � 1.

The scales are set according to Ref. [133], and the masses and widths of the

SM particles used in the event generation are

MZ = 91.188 GeV ,

MW = 80.419 GeV ,

MH = 126 GeV ,

Mt = 173 GeV .

(6.4)

6.3 tt̄HH at HL-LHC

6.3.1 Final State Reconstruction

While this high-multiplicity final state might allow to trigger in multiple

ways, an isolated lepton (muon or electron) with p⊥,l > 10 GeV is relied on

for this purpose due to the low p⊥ threshold for the jets. A lepton is defined

mbb second Higgs boson

mbb first Higgs boson

mbb [GeV]

1/
σ
d
σ
/d

m
[1
/4

G
eV

]

2001801601401201008060

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Figure 6.3: Reconstructed invariant mass of bottom-quark pairs based on
Eq. (6.5) for λ = λSM.
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to be isolated if the hadronic energy deposit within a cone of size R = 0.3

is smaller than 10 % of the lepton candidate’s transverse momentum and

|yl| < 2.5.

After removing the isolated leptons from the list of input particles (|y| < 4.5)

of the jet finder, jets are reconstructed with R = 0.4 and p⊥,j > 30 GeV using

the anti-kT algorithm [158] of FastJet [159]. Events are vetoed with less

than 6 reconstructed jets.

Out of the 6 jets, at least 5 are required to be b-tagged by matching the

b-meson before the decay to the jet. A b-tagging efficiency of 70 % and a fake

rate of 1 % [210] is assumed.

As the signal rate after these inclusive cuts is already fairly small, O(10−2 fb)

for λ = λSM, the Higgs-decay jets are found by minimising

χ2
HH =

(mbi,bj −mH)2

∆2
H

+
(mbk,bl −mH)2

∆2
H

, (6.5)

where k 6= l 6= i 6= j run over all b-tagged jets andmH = 120 GeV (This choice

is commented on further below) and ∆H = 20 GeV. For the combination

which minimises χ2, |mbi,bj −mH | ≤ ∆H and |mbk,bl−mH | ≤ ∆H is required.

These 4 b-tagged jets are then removed from the event.

To confidently reduce the large gauge boson induced backgrounds, e.g.

W±+jets, at least one top quark is further required to be reconstructed.

Cross-sections are provided after the reconstruction of the leptonic top only;

after reconstructing the hadronic top quark only; or after reconstructing ei-

ther the leptonic or the hadronic top quark.

To avoid biasing the vector boson backgrounds towards the top quark signal,

for the leptonic top quark reconstruction the invariant mass of the sum of

the lepton, a b-jet and the missing transverse energy vector, built from all

visible objects within |y| < 4.5, is required to fulfil

|m`,b, /E −mt| ≤ ∆t . (6.6)

with mt = 170 GeV and ∆t = 40 GeV, which reflects the incomplete missing

energy reconstruction from the top decay. To identify the b-jet for m`,b, /E, all
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Figure 6.4: Expected confidence levels for the analysis of Subsec. 6.3.1 as
a function of the tri-linear Higgs coupling λ.

remaining b-jets in the event are considered and

χ2
t`

=
(m`,bi, /E −mt)

2

∆2
t

(6.7)

is minimised. Similarly, for the hadronic top quark reconstruction, all re-

maining jets are looped over and

χ2
tH

=
(mji,jk,jl −mt)

2

∆2
t

(6.8)

is minimised. Then

|mji,jk,jl −mt| ≤ ∆t (6.9)

is requested.

The cut flow for the described analysis steps is shown in Tab. 6.1.

6.3.2 Discussion

At a centre-of-mass energy of 14 TeV, the signal cross-section for tt̄HH is in

the sub-femtobarn range before decays are included. Therefore, the recon-

struction requires an approach that on the one hand retains an as-large-as
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possible signal yield and on the other hand triggers in the high-luminosity

regime. Therefore this study focuses on the Higgs boson decays to bottom

quarks and semi-leptonic t̄t decays. Other channels can be combined with

this to improve the sensitivity on measuring the self-coupling.

Already after fulfilling the trigger requirement, minimal jet cuts and 5 b tags,

a signal-to-background ratio, S/B ' 1/15, is found for the backgrounds

considered. To confirm the measurement of a di-Higgs boson event, both

Higgs bosons have to be fully reconstructed. At this stage it is found that

S/B ' 1/9 with 5 b tags and S/B ' 1/6 with 6 b tags respectively. The re-

constructed masses of the hardest and second hardest Higgs boson are shown

in Fig. 6.3. Due to the partly invisible decay of B-mesons, mH is systemati-

cally shifted to slightly lower values. This is why mH = 120 GeV is chosen for

the minimisation procedure for the purpose of this chapter, guided by com-

parisons against Monte Carlo truth. In measurements, the experiments can

compensate for this systematic shift in the invariant Higgs boson mass using

b-jet calibrations. Further, at this point with the chosen b-tagging-efficiency

working point, W±+jets backgrounds are already subleading. Thus, choos-

ing a higher b-tagging efficiency working point at the cost of a larger fake

rate could be beneficial in this analysis to retain a larger signal yield and

improve the statistical significance expressed in S/
√
B.

In a further step, a leptonic or hadronic top quark reconstruction is per-

formed using the remaining measured final state objects. This can help to

further suppress potentially large reducible QCD-induced backgrounds, e.g.

W±+jets. However, for the top-rich irreducible backgrounds focused on in

this study, an improvement in S/B cannot be achieved using the signal-

sparing χ2 minimisation applied.

From Tab. 6.1 it becomes obvious that the signal vs. background ratio is ex-

pected to be in the 10 % range for λ = λSM. After 3 ab−1 13 signal events are

expected including the reconstruction of a top quark and 22 signal events re-

constructing only the two Higgs bosons. While the signal yield is too small to

claim a discovery at this stage, the number of observed events is high enough

to formulate an expected 95% confidence level limit on λ assuming yt = ySMt .

In order to do this, the CLs method [211–214] is employed, inputting the

expected number of signal and background events for a luminosity of 3 ab−1
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including the reconstruction of at least one top quark. The result is shown

in Fig. 6.4; and yields

λ . 2.51 λSM at 95 % CLs. (6.10)

Together with analyses of the bb̄γγ and bb̄ττ channels that yield a confidence

interval λ & 1.3 λSM [185, 197, 198], depending on systematic uncertainties,

tt̄HH will allow to extend the sensitivity to λ to a parameter region that is

not accessible via the former modes.

6.4 Summary and Conclusions

With current Higgs boson property measurements strongly indicating a SM-

like character of the discovered Higgs boson, analysis strategies for parame-

ters relevant for EW symmetry breaking that remain unconstrained in stan-

dard Higgs boson searches will play a central role in the search for new physics

beyond the SM during run 2. Constraining the Higgs self-interaction, as one

of the most interesting couplings in this regard, is an experimentally chal-

lenging task, and will require a large accumulated data set.

As is discussed in this chapter, the role of pp → tt̄HH production in this

regard is twofold:

1. It provides an additional channel that can be added to a global Higgs

boson self-coupling analysis across the phenomenologically viable chan-

nels. Signal vs. background ratios indicate that top-pair associated

Higgs boson pair production can provide significant statistical power

to increase the sensitivity to this crucial coupling at a targeted 3 ab−1

and extend the sensitivity coverage to the Higgs boson tri-linear cou-

pling.

2. If a situation with λ & λSM exists, pp → tt̄HH provides the leading

channel, where an excess over the SM expectation can be expected. A

negative search outcome in GF and WBF dominated search strategies

in addition to an excess in tt̄HH final states would therefore be a
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strong indication of λ > λSM, eventually allowing strong constraints to

be placed on BSM scenarios such as composite Higgs boson models.
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Chapter 7

EW Processes at a 100 TeV pp

Collider

This chapter presents studies of SM processes extended to a proton-proton

collider with a centre-of-mass energy of 100 TeV. This explores the possibil-

ities and challenges faced at such high energies for SM processes relevant for

new physics searches at high energies, with a focus on the rare processes with

high lepton multiplicity. It provides an extension of the studies in Chap. 5.

7.1 Introduction

Previous chapters have focussed on LHC physics. Chap. 5 detailed stud-

ies into some of the rare EW SM processes relevant for the LHC, while

Chap. 6 investigated a channel for one remaining avenue of searches in the

Higgs sector; the Higgs boson self-couplings. Current searches for di-Higgs

boson production are restricted by a low cross-section at 8 TeV [215, 216].

However, given the potential at higher energy colliders, there have been sig-

nificant theoretical studies into the potential for di-Higgs boson production

for 14 and 100 TeV [217] machines. Chap. 6 provides details on the current

theory for a 14 TeV LHC.

While the physics from the Higgs sector has been very rich from the LHC,

the search for physics beyond the SM has not been as rewarding. As a result

of this, searches for new particles are being pushed to higher and higher

108
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energies, and to fully investigate any high scale new physics, a future collider

will be essential. A recently proposed 100 TeV collider (VLHC) could reach a

total luminosity of 1 ab−1 [17], where many processes too rare for study at the

LHC could be investigated. In particular, this is of interest in multi-Higgs

boson production, where measurements of the Higgs boson self-couplings

would provide the final SM parameters.

There has been considerable interest on the theory side in the possibilities of

a 100 TeV collider. To date, many of these studies have focused on:

1. Higgs boson production [217–221]

2. The discovery potential for BSM physics [222–231].

3. Studies into the general properties of a 100 TeV collider and SM pro-

cesses [17, 232, 233].

This chapter falls into the third category, providing an overview of some key

SM processes at high energy studies. These involve backgrounds to BSM

studies as well as Higgs boson self-coupling studies.

Studying known SM physics in a 100 TeV pp environment is vital for any

definitive statements to be made about new physics at such a machine. As

Higgs boson couplings and BSM physics are the most immediate motivations

for a high energy pp collider, this chapter focuses on SM processes relevant

to these searches, as well as providing some insights into further stringent

tests of the SM that would become available at a 100 TeV collider.

7.1.1 Processes Studied

This chapter presents total cross-section results for multiple weak boson pro-

duction, both in pure weak boson production and in top pair associated

production, as a 100 TeV extension to the multi-lepton studies in Chap. 5.

Differential distributions are also shown for these processes, binned by lep-

ton multiplicity. This provides a handle on the 100 TeV backgrounds to BSM

searches carried out as a continuation of LHC studies.

Beyond their importance as backgrounds in many BSM searches, these multi-

ple weak boson production processes are interesting in their own right. Top
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quarks are unique in the SM, being the only fundamental fermion with a

mass of order of the EW scale, their interactions with the EW gauge bosons

is of considerable theoretical and experimental interest. At the LHC, tt̄V

production has been studied both in its own right and as a background to

BSM physics, as in Chap. 5. V n processes, for V = W±, Z, are studied in

searches for anomalous gauge couplings, for which limits have been placed

by both the ATLAS and CMS experiments at the LHC [234–237]. These

studies will continue at any future high energy collider.

Furthermore, measurements of multiple weak boson production can provide

insights into the restoration of SU(2) invariance at high energies. This sym-

metry would imply an equal production rate for each weak boson, W+, W−

and Z. At the TeVatron and the LHC, the interaction energies are typically

too close to the mass threshold for this symmetry to be realised. At the

TeVatron, the proton-antiproton collisions provided an equal treatment of

valence quarks and anti-quarks. This initial state therefore has no preference

for the production of W+ bosons over W− bosons, and while there was an

introduced asymmetry in the rapidity distributions, the overall rates were

equivalent. However, the production rate of Z bosons was not equivalent to

that of the W± bosons, and therefore the broken nature of SU(2) could be

observed. At the LHC, the symmetric proton-proton initial state includes an

intrinsic bias towards quarks over anti-quarks, and u quarks over d quarks.

This manifests itself as an increased production of W+ bosons over W−. At

the relatively low energy of the LHC, it is very rare to observe events with

3 or more weak bosons, making the study of production rates as a function

of boson multiplicity impossible. However, at a 100 TeV collider the total

cross-section for high-multiplicity boson states increases, allowing the pro-

duction rate of each weak boson to be studied as a function of total boson

multiplicity. This behaviour then allows the possible restoration of SU(2)

symmetry to be studied.

The second class of processes considered in this chapter are WBF produc-

tion of multiple Higgs bosons. Total cross-section results are presented for

Hnjm+2, where n = 1, 2, 3 and m = 0, 1, 2. The effect the inclusion of ad-

ditional Higgs bosons and QCD radiation has on the total cross-sections is

discussed, and the potential for Higgs boson self-coupling measurements to
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be made for this production channel is analysed.

7.1.2 Limitations

Extrapolating current physics models to 100 TeV is not trivial, with such

a large increase in centre-of-mass energy introducing several new theoreti-

cal considerations. Since many SM processes exist naturally about the EW

scale, studying these processes at a 100 TeV collider means probing partons

with very small momentum fractions, x. At sufficiently small x the parton

distribution functions are not well measured, and the appropriate factori-

sation scheme is not obvious. It is possible to begin to enter a regime in

which the typical DGLAP [238–240] factorisation does not provide an accu-

rate description and an alternative, such as BFKL [241–245], may need to

be implemented. However, the processes studied in this chapter should not

require probing sufficiently small x that this consideration is significant to

the results.

A similar concern regarding the limitations of the parton distribution func-

tions is that the high hadronic centre-of-mass energy motivates the consider-

ation of EW scale particles in the parton distribution functions, such as top

quarks and the weak bosons.

This chapter does not attempt to address these potential limits of current

physics understanding, although it is important to bear them in mind for

any theoretical predictions of 100 TeV physics. Modelling of multiple parton

interactions has not been studied or validated at such high energies. It is

important to study these events in their own right before considering these as

underlying events to hard processes. As a result, multiple parton interactions

are not included in the distributions, only the hard process and subsequent

parton showering.

7.1.3 Scaling

The radiation pattern of QCD partons in SM processes obey scaling laws,

which permit calculations at low parton multiplicity to be extended to higher

multiplicity regions without the full calculation of the more complicated
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hard process becoming necessary. These scaling studies can be performed

at 100 TeV to establish how scaling behaves with increasing centre-of-mass

energy.

Scaling discussions are often focused on QCD radiation. However, at high

energies such as 100 TeV the emission of weak bosons and Higgs bosons can

occur at scales much below the centre-of-mass energy of a collision. It is

possible that this radiation of weak bosons is also subject to similar scaling

laws as are familiar with QCD emissions. This is investigated in pure weak

boson production as well as tt̄V n. The scaling behaviour observed in QCD

radiation falls into two categories, as discussed in Refs. [246, 247], staircase

and Poisson. Staircase scaling implies a ratio, R(n+1)/n, of cross-sections for

(n+ 1) QCD emissions to n QCD emissions of some constant K, as

R(n+1)/n =
σn+1

σn
= K . (7.1)

The other known behaviour for the scaling behaviour is Poisson scaling, where

the same ratio of cross-sections is now given by

R(n+1)/n =
σn+1

σn
∝ 1

n+ 1
. (7.2)

7.1.4 Set-Up

The set-up of the calculation is in line with Chap. 5, however the calculations

are performed with LO Sherpa [20] event generation with the Comix [64]

ME generator. For the distributions, two additional QCD jets are included

from the hard process with the CKKW method [117] described in Chap. 2.

The weak bosons and top quarks in the distributions are calculated on-shell in

the narrow width approximation, and the decays are factorised with spin in-

formation preserved. The kinematics are then reshuffled onto a Breit-Wigner

distribution, as described in Subsec. 5.1.2. No hadronisation or multiple par-

ton interaction effects are included in the distributions, although for the

generic event observables shown these effects should be small.

For scale choices and cuts for specific processes see the relevant section.
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N jet 0 1
QCD Order LO/pb NLO/pb LO/pb LO/pb

Jet Cut/GeV 50 100
tt̄W± 6.795(8) 18.91(6) 12.68(4) 9.35(3)
tt̄Z 37.5(1) 61.7(2) 42.7(2) 24.3(1)

tt̄W+W− 0.814(3) 1.138(6) 0.689(3)
tt̄ZZ 0.1277(4) 0.1822(8) 0.1138(5)
tt̄W±Z 0.0820(1) 0.1580(6) 0.1127(5)

tt̄W+W−W± 0.002414(5) 0.00481(1) 0.00375(2)
tt̄W+W−Z 0.01418(5) 0.0241(1) 0.01535(7)
tt̄W±ZZ 0.00113(3) 0.002204(9) 0.001708(8)
tt̄ZZZ 0.0009450(4) 0.00147(1) 0.000940(1)

Table 7.1: Cross-sections for inclusive multiple vector boson production
in association with a top pair, with up to 1 additional QCD jet from the
ME, given for a p⊥ cut on the jet of 50 and 100 GeV. The scale used in these
calculations is the sum of the masses and p⊥ of all final state particles divided
by the number of final state particles.

7.2 tt̄V n Production

This section presents total cross-sections for tt̄V n production, where V =

W±, Z. Tab. 7.1 shows that these processes will be observable at a 100 TeV

collider up to n = 3, where processes typically have cross-sections in the

femtobarn range. This is a considerable improvement in sensitivity over the

LHC, which typically only reaches n = 1.

Tab. 7.1 presents cross-sections for tt̄V jm production, for m = 0, 1. Two

different jet p⊥ definitions are considered, p⊥ > 50 GeV and p⊥ > 100 GeV.

The effect the additional QCD radiation from the hard process on the cross-

section is significant; it demonstrates that these processes are more frequently

than not associated with a 50 GeV jet. This preference results from the intro-

duction of the quark-gluon initial state with the additional QCD radiation.

Without this QCD radiation, tt̄V n requires a quark-antiquark initial state

for charged V n, and either a quark-antiquark or a pure gluonic initial state

for neutral V n. In both of these cases, the mixed quark-gluon initial state

is unavailable, leading to a significant restriction of phase-space. This im-

plies that higher order corrections are likely to be very important to tt̄V n,

as demonstrated by the large NLO QCD K-factors in Tab. 7.1. This shows
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W
W
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Figure 7.1: Diagrams for the production of tt̄W± with (left-hand-side) and
without (right-hand-side) an additional QCD radiation. An example diagram
for tt̄W±j production, from the dominant qg production channel, is shown.

the NLO QCD K-factor for tt̄W± to be 2.78, and a smaller K-factor of 1.65

for tt̄Z. The kinematics of the event could easily be dominated by this ad-

ditional QCD radiation, implying that many observables in the NLO QCD

calculation will only be LO accurate.

The gluon PDF distribution increases more rapidly in the low-x region than

the quark PDF, implying a gluon-dominated regime in the low-x region.

Therefore, for purely gluonic initial states, the production of neutral final

states suffers from the typical low energy scale of the gluons. This restricts

the contribution they provide to hard processes such as tt̄V n production.

Consequently, in all tt̄V n boson production processes the quark-gluon chan-

nel (which is opened up with the additional QCD radiation) introduces a

considerable contribution to the cross-section.

Considering the production of a charged final state, at leading order with no

additional jets from the hard process, the initial state partons are necessarily

a quark pair such that the W± boson can be emitted from the initial quark

line, as shown in the left-hand diagram in Fig. 7.1. Once an additional QCD

radiation is forced from the ME, the quark-gluon initial state becomes avail-

able, shown in the right-hand diagram of Fig. 7.1, which therefore greatly

increases the overall cross-section for the process. It is the case for a charged

final state that considering both a jet p⊥ of 50 and 100 GeV in addition to

the tt̄V n process yields a larger cross-section than when no QCD radiation

from the ME is considered. The result of the NLO QCD calculation is given

for the tt̄W± process in Tab. 7.1, which shows similar behaviour to the real

emission of QCD radiation from the LO process with a K-factor of 2.78.

The discussion is not as simple for neutral final states, because a neutral final

state can include either 0 or 2 final state W± bosons. Since the behaviour



Chapter 7. EW Processes at a 100 TeV pp Collider 115

Process 1 jet 50 GeV/LO 1 jet 100 GeV/LO
tt̄W± 1.866(6) 1.376(5)
tt̄Z 1.139(6) 0.648(3)

tt̄W+W− 1.398(9) 0.846(5)
tt̄ZZ 1.427(8) 0.891(5)
tt̄W±Z 1.927(8) 1.553(9)

tt̄W+W−W± 1.993(6) 1.553(9)
tt̄W+W−Z 1.700(9) 1.083(6)
tt̄W±ZZ 1.950(9) 1.512(8)
tt̄ZZZ 1.56(1) 0.995(4)

Table 7.2: The ratio of the 1 jet cross-section to 0 jet cross-section at LO
calculated from the cross-section for an additional jet at p⊥ = 50 GeV and
p⊥ = 100 GeV for 100 TeV proton-proton production of tt̄V n.

of W± bosons differs greatly from Z bosons in this process, the two cases of

differing W± boson multiplicity will be considered separately.

Beginning with 0 W± bosons, it can be seen from Tab. 7.1 that for tt̄Zn

production, the increase in cross-section produced by the presence of an

additional jet falls off more sharply with jet p⊥ than for tt̄W±n production.

The tt̄Z production process can access the gluonic initial state that the tt̄W±

process cannot, which partially reduces the penalty received for lacking the

dominant quark-gluon initial state production channel. tt̄Znj processes have

a larger cross-section than tt̄Zn for jets with p⊥ = 50 GeV, whereas for

jets with p⊥ = 100 GeV, tt̄Znj has a smaller cross-section than tt̄Zn. This

indicates the reduced sensitivity of tt̄Zn to the quark-gluon initial state over

tt̄NW±, where N represents a neutral combination of (n− 1) gauge bosons.

The third final state to consider is that of a neutral final state which contains

W+W−. W+W− can be produced via a neutral boson propagator or as a

result of emission from the initial state. For the latter production channel, the

initial state is again forced to be a quark-quark interaction. Tab. 7.1 shows

tt̄W+W− as having a similar behaviour to tt̄ZZ with respect to additional

radiation. tt̄W+W−Z is alone in the neutral processes as having a larger

cross-section when a jet is produced with p⊥ = 100 GeV than with no jet

from the hard process.

A list of the relative corrections to the LO process from an additional QCD

emission is given in Tab. 7.2. This shows that for each final state as sep-
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n
σtt̄V n+1

σtt̄V n
+1 jet (50 GeV) +1 jet (100 GeV)

1 0.02331(9) 0.0267(1) 0.0272(1)
2 0.01824(8) 0.0220(1) 0.0238(1)

Table 7.3: The scaling ratios for tt̄V n production in association with weak
bosons W±, Z for n =1,2 bosons.

arated above, charged, tt̄Zn and tt̄W+W−Zm, there is a tendency for the

1 jet cross-section to increase with respect to the 0 jet cross-section. This

behaviour becomes more pronounced with increasing final state boson mul-

tiplicity. As the number of bosons in the final state increases, so does the re-

quired centre-of-mass energy. Therefore, as the boson multiplicity increases,

the 50 and 100 GeV jet cuts are increasingly soft in comparison. This pushes

the calculation into a regime where the soft limit is included in the hard

process. The definition of a jet in p⊥ must be sufficiently high as to remove

this contribution.

The scaling behaviour of tt̄ production with weak boson multiplicity is diffi-

cult to see with the available EW boson multiplicities. Tab. 7.3 shows the rel-

evant ratio for the 0 and 1 jet case, and this suggests a possible approximate

staircase scaling. Tab. 7.3 shows a reasonably constant ratio σn+1/σn ∼ K,

where K is some constant, and σn represents the total cross-section for tt̄

production associated with n weak bosons. The constant K increases when

an additional QCD jet is included from the hard process. It is higher again

for a jet p⊥ > 100 GeV. This behaviour is observed for the sum over all weak

bosons, and a similar behaviour is not observed for any subcategory, such as

W± boson emission only, or exclusively charged or neutral final states.

7.3 Multiple Weak Boson Production

This section presents total cross-sections for V m production. Fig. 7.2 gives

the average numbers of W+, W− and Z bosons which are produced per event

of each exclusive boson multiplicity. The increased weak boson multiplicity

corresponds to increased centre-of-mass energy of a collision, and, as this

energy becomes much larger than the EW scale, the SU(2) symmetry of the

weak bosons should be restored. It is therefore expected that the produc-
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Figure 7.2: The relative abundance of each weak boson at different multi-
plicities of weak boson production at a scale of ŝ.

tion fraction of each of these bosons tends towards 1
3

with increasing boson

multiplicity.

Fig. 7.2 shows a trend towards the restoration of the SU(2) symmetry at

high weak boson multiplicity. There is a clear preference for the production

of W+ bosons for single boson production, and a suppression of Z boson

production. The relative abundance of W− bosons increases in di-boson final

state due to the large cross-section for W+W− production. At the higher

boson multiplicities, however, the relative production of the W±, Z bosons

tend towards 1
3

in each case, indicating the restoration of SU(2) invariance.

The trend is very slow and towards the high end of the boson multiplicity

begins to level out, with a residual preference for W+ production over the

other weak bosons.

The total cross-sections for each boson multiplicity can be found in Tab. 7.4.

This shows a rapid decline in the overall cross-section for the production of
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Figure 7.3: The number of each weak boson produced, on average, for each
exclusive total boson multiplicity.

gauge bosons as a function of gauge boson multiplicity. This spans a range of

9 orders of magnitude, and in the highest multiplicity case considered, 5 final

state weak bosons, the production rate is of the order of femtobarns. Such

cross-sections should be readily available to a 100 TeV collider, and a study

into the behaviour of SU(2) invariance at high energies would therefore be

feasible.

Fig. 7.3 illustrates the behaviour of the average number of each weak boson

produced at each boson multiplicity. The expected production rate of the

W+ boson is consistently higher than that of either of the other weak bosons.

The average multiplicity of each kind of weak boson increases linearly with

increasing total boson number.

The production of multiple weak bosons with no other associated particle

is the cleanest environment to consider weak boson scaling. The ratio of

R = σn+1/σn, where n denotes weak boson multiplicity, tends to increase

with n in Tab. 7.4. From the categories considered – Z boson production,

W± boson production, neutral final states and charged final states – pure

Z boson production has the most constant scaling ratio. No distinction

was made between those charged final states which were positive and those
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n σ/pb
1 1.5230(6)×106

2 1.3589(4)×103

3 4.736(2)
4 5.3582(1)×10−2

5 1.460(3)×10−3

Table 7.4: This table shows the total cross-section for exclusive multiplic-
ities, n, of gauge boson production at 100 TeV with a scale of

√
ŝ. The

production range spans several orders of magnitude but even the smallest
cross-section considered here would be within reach of a 100 TeV collider.

which were negative. The scaling behaviour of Zn boson production being

more staircase-like in scaling than any other weak boson process suggests

that much of the non-constant behaviour of R comes from the weak boson

self-interactions, for which there are none in Zn production. These scaling

behaviours can be seen in Fig. 7.5. This demonstrates how the scaling be-

haviour is more staircase-like for the individual weak boson multiplicities,

shown on the right-hand plot of Fig. 7.5. Including mixed W±Z boson final

states causes a steeper increase in the value of R(n+1)/n with n. The exact

cause of this different scaling behaviour requires a more detailed study than

is possible in this thesis.

Fig. 7.5 can be compared with the QCD scaling observed in Fig. 7.4. The

scaling behaviour in Fig. 7.4 shows a Poisson scaling behaviour across all

EW processes and for each jet cut considered. The trend in Fig. 7.5 shows

the opposite behaviour, with the ratio increasing with increasing boson mul-

tiplicity. This difference between the weak and QCD interactions suggests

the behaviour is linked to the longitudinal polarisation of the weak bosons.

7.4 Multi-Higgs Boson Production by WBF

The selection criteria and cuts used for the cross-sections in Fig. 7.6 are given

in Tab. 7.5. The factorisation, µf , and renormalisation, µr, scales used for

this process were

µr = µf =
∑
j

p⊥,j +NMH , (7.3)
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Observable Cut
mj1j2 1 TeV
∆ηj1j2 5
p⊥,j 50 GeV
∆R 0.4

Jet Algorithm anti-kT

Table 7.5: Cuts on the jets for WBF total cross-sections. j denotes a jet,
and ji denotes the ith jet ordered in p⊥. ∆R is the jet radius used in the jet
finding algorithm.

where p⊥,j denotes the p⊥ of final state parton j, MH the mass of the Higgs

boson and N the number of Higgs bosons produced.

The cross-sections at 100 TeV for multiple Higgs boson production via WBF

are presented in Fig. 7.6. The calculations include the tri-linear and quartic

Higgs boson couplings in the di-Higgs boson and tri-Higgs boson channels.

The cross-sections fall off with increasing jet and Higgs boson multiplicity.

Even at a 100 TeV collider, tri-Higgs boson production via WBF would be

very rare, especially if any additional jets are included. It is therefore not

possible to study the quartic Higgs boson couplings via WBF at a 100 TeV

proton-proton collider, as Fig. 7.6 shows that the cross-section for this process

is 20 ab.

However, di-Higgs boson production via WBF has a cross-section of 25 fb,

which would allow for studies into the tri-linear Higgs boson coupling in the

WBF production channel at 100 TeV.

The scaling behaviour of the different multiplicities of Higgs boson production

at 100 TeV is shown in Fig. 7.6. This shows a constant scaling behaviour with

jet multiplicity for 0, 1 and 2 Higgs boson being produced. Increasing the

Higgs boson multiplicity decreases the production cross-section by a factor

∼ 1000.

7.5 BSM Backgrounds

This section produces distributions of the HT and Emiss
⊥ of events at a 100 TeV

binned by lepton multiplicity as relevant background SM processes for BSM

searches. These distributions have been produced at parton level with up to
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2 additional jets merged in from the ME. These cover the most significant

backgrounds to multi-lepton searches for BSM physics in the SM. The scale

used in these processes was the CKKW scale as described in Ref. [117].

These figures demonstrate how the behaviour of the background processes

differs over the distribution and how the dominant background processes vary

depending on the number of final state leptons required. There is also a Z

veto applied in the case of two final state leptons, and the effect implementing

this veto has on the distributions is discussed. This veto applies to any event

with a same flavour opposite sign lepton (SFOS) pair.

The analysis used in this section is the same as the ATLAS-inspired analysis

for the 14 TeV BSM background study in Chap. 5. However, for this study the

requirement that the number of final state leptons be exactly 3 is removed and

events are binned into final state lepton multiplicity, of which distributions

are presented for the exclusive 1, 2 and 3 final state lepton cases.

Figs. 7.7 and 7.8 show the contribution of multi-lepton SM final states to

the HT and Emiss
⊥ distributions, respectively. In addition to the processes

shown, single top and Higgs boson processes can contribute to multi-lepton

final states.

The plots in Figs. 7.7 and 7.8 show the contributions binned by lepton mul-

tiplicity as:

� top-left 1 lepton

� bottom-left 2 leptons

� top-left 3 leptons

� bottom-right 2 leptons with SFOS veto

Figs. 7.7 and 7.8 demonstrate similar patterns. As such, the following pro-

vides a detailed discussion of Fig. 7.7 which can be largely extended to

Fig. 7.8. The points specific to Fig. 7.7 are then made in a brief paragraph

at the end of the section.

In Fig. 7.7, for the 1 lepton bin, top production and single boson production

are the most dominant processes. W± boson production is predictably more
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Figure 7.7: HT of events binned by lepton multiplicity. The top plots shows
the 1 and 3 lepton bins, and the lower plots show the 2 lepton multiplicity
with(out) a Z boson veto on the right-(left-)hand-side.
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Figure 7.8: Emiss
⊥ of events binned by lepton multiplicity. The top plot

shows the 1 and 3 lepton bins, and the lower plots show the 2 lepton multi-
plicity with(out) a Z boson veto on the right-(left-)hand-side.
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dominant than Z boson production. The contributions from tt̄ and W± are

approximately the same, with W± beginning to be more dominant in the

high HT region.

The cross-section for W± production disappears in the 2 lepton bin, and

the contribution from tt̄ is reduced by a factor of ∼ 5. It is clear that W±

production cannot contribute to the 2 lepton final state, and that the tt̄

process is suppressed in the 2 lepton bin by the small W± branching ratio

to leptons, which is ∼ 1
4
, considering the further decays of any τ leptons.

The contribution from the Z production, however, is very similar between

the 1 lepton and 2 lepton bin. The Z boson decays to leptons relatively

infrequently, and can contribute to the 1 lepton final state through the τ+τ−

channel. It is most significant, however, in the 2 lepton final state where it is

comparable to tt̄ production in the low HT region and the dominant process

in the high HT tail.

The 3 lepton final state does not contain any contribution from the processes

which have been dominant thus far. In this plot it is the di-boson contri-

butions that are the most significant, with W±Z boson production most

dominant. Whilst the contribution from W±Z is still suppressed compared

to the lower lepton multiplicity plots, it is the most dominant process in the

tri-lepton final state by an order of magnitude. It is clear that the overall

contribution of all the SM processes in this tri-lepton final state is greatly

suppressed compared to the previous plots. This is the reason that this chan-

nel is of more interest in searches for BSM physics than the lower multiplicity

channels. Of the subleading processes in this channel, ZZ and tt̄Z are the

most significant. ZZ is the dominant subleading contribution in the low HT

region and tt̄Z is the dominant subleading contribution at high HT .

The remaining plot, the lower right-hand-side, includes the SFOS veto. The

most significant impact of this veto is on the Z boson contribution, which

is ∼ 1
20

of the cross-section from before the veto was applied. The tt̄ contri-

bution is not substantially affected, and as this was previously one of the 2

dominant processes, the overall contribution to the di-lepton final state from

all considered processes is only reduced by about a factor of 3.

In all of the plots for HT the tt̄V n plots, where n = 0, 1, 2, show a peak at
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higher HT than the multiboson contributions.

Fig. 7.8 is the complementary distributions to Fig. 7.7. This shows the same

processes as in Fig. 7.7 for the Emiss
⊥ distribution. The same pattern of domi-

nant processes is seen in Fig. 7.7 and Fig. 7.8. Here the SFOS veto eliminates

the Z boson contribution in the lower end of the Emiss
⊥ spectrum. However,

the high energy tail of the Z boson process remains in similar proportion to

the tt̄ process. The most significant impact of the Z boson veto is on the ZZ

boson process. The contribution, which is confined to the low Emiss
⊥ region,

is almost entirely eliminated by the Z boson veto. This reduction is a result

of the forced τ decays of both Z bosons.

7.6 Conclusions

This chapter detailed the 100 TeV extension of SM processes with the

Sherpa Monte Carlo event generator, and provides cross-section numbers

for key processes and distributions for multi-lepton production.

The behaviour of multiple weak boson production was discussed, and the

issue of SU(2) restoration was analysed at 100 TeV. While there was a ten-

dency in the high weak boson limit for the SU(2) symmetry to be restored,

there was still a preference for W+ production over other weak bosons in

a proton-proton collider with a multiplicity of up to 6 weak bosons. The

scaling behaviour with weak boson radiation was also analysed as compared

to QCD scaling behaviour in the high energy limit. For pure weak boson

production, Z boson production displayed the most staircase-like scaling,

however weak boson production, in general, does not demonstrate the same

behaviours familiar from QCD. Instead, the ratio R(n+1)/n typically increases

with increasing n. An approximate staircase scaling was also present in the

tt̄V n production for the sum of all possible V .

The effects of including one additional QCD radiation in tt̄V n production

demonstrates the dependence that cross-sections have on the p⊥ cut of as-

sociated jets. The increased cross-section arising from the requirement of

one QCD radiation is a result of the increased cross-section for quark-gluon

interactions over either gluon-gluon or quark-quark interactions.
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The final class of processes considered was multiple Higgs boson production

via WBF. This is complementary to the multiple Higgs boson production

via gluon fusion. The cross-sections show a staircase scaling behaviour with

both the jet multiplicity and with Higgs boson multiplicity.

Finally, distributions were shown for general event observables demonstrat-

ing the behaviour of SM processes to multi-lepton events. The dominant

processes in each lepton bin from 1 to 3 was shown, along with the effect of

including a veto on all SFOS leptons.
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Chapter 8

Conclusions

The work in this thesis demonstrates the state-of-the art technology avail-

able within Monte Carlo event generators for particle physics processes. The

move to NLO QCD ME calculations within the Sherpa software is detailed

in Chap. 2, with a focus on the OpenLoops method, which is employed

through the Sherpa+OpenLoops interface for this thesis. The Open-

Loops formalism allows for fast and flexible calculations of NLO QCD cross-

sections, and these results can be interfaced with the Sherpa parton shower

with use of the S-MC@NLO variant of the MC@NLO matching method.

Chap. 3 presents a proof-of-concept study for the Sherpa+OpenLoops in-

terface in calculations of total cross-sections to NLO QCD accuracy. There

is good agreement found between the Sherpa+OpenLoops interface and

published MadGraph + aMC@NLO numbers.

NLO QCD merged samples, such as those prepared by using the MEPS@NLO

procedure, are currently the state-of-the art for calculating differential cross-

sections with Monte Carlo event generators. Improving the perturbative

accuracy of the hard process can be achieved through NNLO QCD calcu-

lations, or the inclusion of NLO EW corrections. These are typically of a

similar order of magnitude. Sudakov logarithms provide a high-energy ap-

proximation to NLO EW corrections, which is simple to include on top of

NLO QCD calculations as it can be implemented as a K-factor. These log-

arithms allow for a very precise determination to be made in high-p⊥ tails,

where hints of heavy resonances are possible, as well as precise determination
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of the angular distributions of particles in decay planes, again important in

the search for new physics and heavy resonances. The implementation of this

formalism within the Sherpa framework has been detailed in Chap. 4 along

with validation plots, which find good agreement in the comparison of the

Sherpa implementation with published numbers, and initial results.

This thesis also presented some phenomenological results, which made

use of the technology validated in the first part of the thesis. The

Sherpa+OpenLoops set-up was applied in Chap. 5 to important and chal-

lenging processes relevant to both Higgs physics and BSM searches. The pro-

cesses considered were multiple weak boson production, with tri-lepton final

states produced from the decays. The phenomenological studies presented

were a Higgs boson study, and an application of the processes as SUSY back-

grounds. In the first case, Higgs boson processes contribute significantly to

the SM tri-lepton final state, via V H production, for V = W±Z. This chan-

nel, therefore, is a useful probe of Higgs sector physics. These processes were

calculated to MEPS@NLO accuracy, which provides a solid handle on the

signal and backgrounds. In addition, the rarity of the tri-lepton final state

in the SM makes this a very useful channel for SUSY searches. The same

processes were considered in this context, along with tt̄V . These processes

were calculated to only S-MC@NLO accuracy, as the additional precision of

the extra jets was not required by this analysis. It was shown that although

W±Z provides the leading background, associated Higgs boson production

contributes significantly to tri-lepton backgrounds to SUSY searches. It was

also demonstrated that tt̄V production becomes most significant to these

searches in the high-p⊥ tails.

One top pair production process of interest is the tt̄HH process, where the

Higgs can be produced via a direct coupling to a standard model fermion.

This process was considered in Chap. 6 at LO accuracy along with all rel-

evant backgrounds. The tt̄H(→ HH) process does not suffer the negative

interference with the t(→ tH)t̄(→ t̄H) process that occurs in many di-Higgs

production channels, such as the main production channel, gluon fusion. The

negative interference arises as a result of the triangle and box structures that

exist in gluon fusion. The tree-like structure of tt̄HH production allows for

the completely positive interference between production channels. This pro-
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cess therefore provides a complementary search channel for non-SM tri-linear

Higgs boson couplings, which is a key area for new physics to be observed.

Using this channel, this thesis presented theoretical bounds on the allowed

region for BSM physics in the tri-linear Higgs couplings.

The tt̄HH process can be studied at a 14 TeV LHC, although it does suffer

from a low cross-section. It is therefore likely to still be of interest at a

potential future 100 TeV collider. Physics at 100 TeV provides many new

challenges and a far more active QCD environment, and the investigation of

how to treat physics in this environment is still in the early stages. Chap. 7

provides a study of some EW processes at 100 TeV. This thesis presented

LO merged predictions for processes with leptonic final states, binned by

lepton multiplicity, at 100 TeV. It further presented the behaviour of multiple

gauge boson production and plots have been presented to demonstrate a

slow convergence towards the restoration of SU(2) invariance at high weak

boson multiplicity. Cross-sections have also been presented for multiple Higgs

boson production via WBF, and for the production of weak gauge bosons in

association with a top pair. Additional QCD radiation was shown to be

very common at a 100 TeV proton-proton collider, even for jet definitions

of up to p⊥,j > 100 GeV, for these processes. The scaling behaviour with

respect to EW radiation was investigated, and compared to QCD scaling

behaviour. The scaling with EW radiation was seen to typically have a

different behaviour to traditional QCD patterns.

This thesis presented extensions of the Sherpa functionality which increase

the available precision. The calculations at 14 TeV and 100 TeV were then

completed to the highest possible precision with Sherpa and OpenLoops.

The combination of higher order technologies presented in this thesis for

QCD and EW corrections will provide an important insight into future mea-

surements at high energy colliders.



Appendix A

Sherpa+OpenLoops

Consistency Checks

In order to check agreement between Sherpa and OpenLoops on the values

of the Born ME and the pole coefficient, the following settings were employed:

� OL BORN CHECK=1

� OL POLE CHECK=1

These settings output the ratio relative difference between the Sherpa and

OpenLoops calculation. This ratio, R, and difference, D, are defined as

R =
XOL

XSherpa

(A.1)

D =
XSherpa −XOL

XSherpa

, (A.2)

where XSherpa and XOL denote the value of X calculated by Sherpa and

OpenLoops, respectively. X is B for OL BORN CHECK=1, and Pε, Pε2 in

turn for OL POLE CHECK=1. In both of these cases, the calculation was

considered to be in conflict for D > 10−12. This procedure was automated

with the use of a python script, and a results file was produced with any

failing phase-space points.

133



Appendix B

EW Sudakov Look-Up Tables

This appendix provides the table of look-up values used for the coefficients to

the logarithms for the KLSC
EW , KSSC

EW and KC
EW components of KEW, as defined

in Chap. 4 as

KEW = KLSC
EW + KSSC

EW + KC
EW + KPR

EW . (B.1)

KLSC
EW , KSSC

EW and KC
EW contain a factorised numerical coefficient, ∆EW, and a

matrix element dependent structure. This appendix details the values used

to determine ∆EW for each flavour and helicity combination.

In this appendix, cos θW and sin θW of the weak mixing angle are denoted as

c, s, respectively.

B.1 Coefficients for Leading Soft-Collinear

Logarithms

This section provides the relevant coefficients for ∆LSC
EW as defined in Chap. 4.

This coefficient depends on the type of EW boson exchanged, and the flavour

and chirality of the external particles. This is included in the EW Sudakov
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l,σ ∆LSC(il,W
±) ∆LSC(il, Z) ∆LSC(il, γ)

ν,L 1
8s2c2

0

`,L 1
4s2

c2−s2
8s2c2

1
2

u,L (3c2−s2)2
72s2c2

2
9

d,L (3c2+s2)2

72s2c2
1
18

`,R s2

2c2
1
2

u,R 0 4s2

18c2
2
9

d,R s2

18c2
1
18

W±,T 1
2s2

c2

2s2
1
2

Z(→ γ),T − c
s

Z(→ Z),T c2

s2
0 0

γ(→ γ) 1
γ(→ Z) − c

s

H 1
s2

1
8s2c2

0
Z,L
W ,L 1

s2
1

8s2c2
0

Table B.1: This table shows the coefficients logarithms in the leading soft
collinear piece. These are broken down into each EW particle, and the brack-
ets indicate a mixing and therefore a new underlying Born term. In the
leading case, these changes can only be caused by W boson exchange. L/R
denotes the left/right handed helicities for fermions. For the massive bosons,
T represents the transverse polarisation and L the longitudinal polarisation.
The case for antiparticles is identical to that of the corresponding particle.

correction as

δMLSCi1...in
EW = − α

4π

∑
l

∑
V

∆LSC(il, V )Mi1...il′ ...in
0 ×[

log2

(
ŝ

M2
W

)
+ 2 log

(
ŝ

M2
W

)
log

(
M2

W

M2
V

)]
.

(B.2)

Tab. B.1 presents the values of ∆LSC(il, V ) for external lines il, with flavour

l and helicity σ.

B.2 Coefficients for Subleading Soft-Collinear

Logarithms

For the subleading logarithms, the look-up table must be used twice, once

for each of the external particles involved in the EW boson exchange. The
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l,σ ∆SSC(il,W
±) ∆SSC(il, Z) ∆SSC(il, γ)

νL(νL) (−) 1√
2sc

0

`−(`+),L(R) (−)1
s

(−)2s
2−1√
2sc

(−)
√

2

u(u),L(R) (−)
√

23−4s2
6sc

(+)− 2
√
2
3

d(d),L(R) (−)
√

22s2−3
6sc

(−)
√
2
3

`−(`+),R(L) (−)
√
2s
c

(−)
√

2

u(u),R(L) 0 (+)−
√

22s
3c

(+)− 2
√
2
3

d(d),R(L) (−)
√

2 s
3c

(−)
√
2
3

W±(Z)(W±),T ∓
√

2 c
s

±
√

21−s2
sc

∓
√

2

W±(γ)(−),T ±
√

2 − −
Z(W±),T ∓

√
2 c
s

0 0

γ(W±) ±
√

2 0 0
H(W±)(Z),L ± 1√

2s
− 1√

2sc

Z(W±)(H),L − 1√
2s

1√
2sc

0

WL±(H)(W±),L ∓ 1√
2s

±1−2s2√
2sc

∓
√

2

W±(Z)(−),L 1√
2s

− −

Table B.2: This table shows the coefficients logarithms in the subleading
soft collinear piece. These are broken down into each EW particle. For the
fermions, where the EW partner is unique, the brackets show the behaviour of
the anti-particle. However, for the EW bosons the first bracket indicates the
EW partner in the case of W boson emission, and the second bracket (if this
exists) shows the partner in the case of Z boson emission. L/R denotes left-
and right-handed for fermions, and L/T denotes longitudinal and transverse
polarisations for vector bosons.

coefficients are then included in the EW Sudakov approximation as

δMSSCi1...in
EW =

α

4π

∑
l

∑
k<l

∑
V

∆SSC(il, V )∆SSC(ik, V )Mi1...il′ ...ik′ ...in
0 ×

log

(
ŝ

M2
W

)
log

( |(pl + pk)
2|

ŝ

)
.

(B.3)

Tab. B.2 lists the values for ∆SSC(il, V ) for external line il with flavour l and

helicity σ.
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j,σ ∆C(ij)

ν,L 3 s
2+3c2

8c2s2

`,L 3 s
2+3c2

8c2s2

`,R 3
2c2

u,L 9s2+3c2

24c2s2
− m2

d

8s2M2
W

d,L 9s2+3c2

24c2s2
− m2

u

8s2M2
W

u,R 2
3c2
− m2

u

4s2M2
W

d,R 1
6c2
− m2

d

4s2M2
W

W±,T 19
12s2

Z(→ Z),T 19−38s2−22s4
12s2c2

Z(→ γ),T −19+22s2

6sc

γ −11
6

H

Z,L 1+2c2

s2c2
− Nt

Cm
2
t

4s2M2
W

W±,L

Table B.3: The coefficients for the logarithms in the single collinear case.
N f
C is the colour factor associated with fermion f . L/R represent the left and

right handed polarisations for fermions, and L/T represent the longitudinal
and transverse polarisations of massive gauge bosons. The masses of the light
quarks and all generations of leptons are ignored.

B.3 Coefficients for Single Collinear Loga-

rithms

In analogy to the previous two sections which document the coefficients for

the soft-collinear limit, KC
EW can be factorised as

KC
EW =

α

4π

∑
V

∑
j

∆C(ij, V )
2<[M∗

LOM
i1...i′j ...in
0 ]

|MLO|2
LW (ŝ) . (B.4)

Tab. B.3 lists ∆C(ij, V ) for external line ij with flavour j and helicity σ.



Appendix C

Plotting Tools

The plots in this thesis are produced mostly using the Rivet [248] package,

and the Feynman diagrams produces with JaxoDraw [249]. However, the

following plots were produced with matplotlib [250]:

� Figs. 3.1 and 3.2.

� Figs. 4.6 and 4.7.

� Fig. 6.2.

� Figs. 7.2, 7.3 and 7.5.

Further to these exceptions, Fig. 7.4 was prepared by Enrico Bothmann. En-

rico Bothmann also plotted Fig. 7.6, although the cross-sections displayed in

this figure were prepared by the author of this thesis. Both Figs. 7.4 and 7.6

make use of matplotlib.
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Tramontano and Zoltán Trócsányi, Higgs boson decay into b-quarks at

NNLO accuracy, Journal of High Energy Physics 1504 (2015), 036,

[arXiv:1501.07226 [hep-ph]].

[37] C. Anastasiou, J. Cancino, F. Chavez, C. Duhr, A. Lazopoulos et al.,

NNLO QCD corrections to pp→ γ∗γ∗ in the large NF limit, Journal of

High Energy Physics 1502 (2015), 182, [arXiv:1408.4546 [hep-ph]].

[38] W. Hollik, M. Kollar and M. K. Trenkel, Hadronic production of top-

squark pairs with electroweak NLO contributions, Journal of High En-

ergy Physics 0802 (2008), 018, [arXiv:0712.0287 [hep-ph]].

[39] S. Mao, M. Wen-Gan, Z. Ren-You, G. Lei and W. Shao-Ming, Precise

predictions for the Higgs production in association with a W -boson pair

http://www.slac.stanford.edu/spires/find/hep/www?eprint=1401.7754
http://arXiv.org/pdf/1401.7754
http://www.slac.stanford.edu/spires/find/hep/www?eprint=1403.2782
http://arXiv.org/pdf/1403.2782
http://www.slac.stanford.edu/spires/find/hep/www?eprint=1404.7116
http://arXiv.org/pdf/1404.7116
http://www.slac.stanford.edu/spires/find/hep/www?eprint=1405.2219
http://arXiv.org/pdf/1405.2219
http://www.slac.stanford.edu/spires/find/hep/www?eprint=1408.5150
http://arXiv.org/pdf/1408.5150
http://www.slac.stanford.edu/spires/find/hep/www?eprint=1412.3427
http://arXiv.org/pdf/1412.3427
http://www.slac.stanford.edu/spires/find/hep/www?eprint=1501.07226
http://arXiv.org/pdf/1501.07226
http://www.slac.stanford.edu/spires/find/hep/www?eprint=1408.4546
http://arXiv.org/pdf/1408.4546
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0712.0287
http://arXiv.org/pdf/0712.0287


Bibliography 143

at ILC, Eur.Phys.J. C59 (2009), 761–768, [arXiv:0808.3018 [hep-

ph]].

[40] Dao Thi Nhung and Le Duc Ninh and Marcus M. Weber, NLO correc-

tions to WWZ production at the LHC, Journal of High Energy Physics

1312 (2013), 096, [arXiv:1307.7403 [hep-ph]].

[41] Y. Zhang, W.-G. Ma, R.-Y. Zhang, C. Chen and L. Guo, QCD NLO

and EW NLO corrections to tt̄H production with top quark decays at

hadron collider, Phys.Lett. B738 (2014), 1–5, [arXiv:1407.1110 [hep-

ph]].
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[157] T. Gehrmann, S. Höche, F. Krauss, M. Schönherr and F. Siegert, NLO

QCD matrix elements + parton showers in e+e− →hadrons, Journal of

High Energy Physics 1301 (2013), 144, [arXiv:1207.5031 [hep-ph]].

[158] M. Cacciari, G. P. Salam and G. Soyez, The Anti-kT jet cluster-

ing algorithm, Journal of High Energy Physics 0804 (2008), 063,

[arXiv:0802.1189 [hep-ph]].

[159] M. Cacciari, G. P. Salam and G. Soyez, FastJet user manual,

Eur.Phys.J. C72 (2012), 1896, [arXiv:1111.6097 [hep-ph]].

[160] M. Schönherr and F. Krauss, Soft photon radiation in particle de-

cays in Sherpa, Journal of High Energy Physics 12 (2008), 018,

[arXiv:0810.5071 [hep-ph]].

[161] J.-C. Winter, F. Krauss and G. Soff, A modified cluster-hadronisation

model, Eur. Phys. J. C36 (2004), 381–395, [hep-ph/0311085].

[162] S. Alekhin et al., HERA and the LHC - A workshop on the implications

of HERA for LHC physics: Proceedings Part A, hep-ph/0601012.

http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0109036
http://arXiv.org/pdf/hep-ph/0109036
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0201036
http://arXiv.org/pdf/hep-ph/0201036
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0305252
http://arXiv.org/pdf/hep-ph/0305252
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0503053
http://arXiv.org/pdf/hep-ph/0503053
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0709.1027
http://arXiv.org/pdf/0709.1027
http://www.slac.stanford.edu/spires/find/hep/www?eprint=1207.5031
http://arXiv.org/pdf/1207.5031
http://www.slac.stanford.edu/spires/find/hep/www?eprint=0802.1189
http://arXiv.org/pdf/0802.1189
http://inspirehep.net/record/955176
http://arXiv.org/pdf/1111.6097
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0810.5071
http://arXiv.org/pdf/0810.5071
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0311085
http://arXiv.org/pdf/hep-ph/0311085
http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ph/0601012
http://arXiv.org/pdf/hep-ph/0601012


Bibliography 156

[163] Frank Krauss and Petar Petrov and Marek Schönherr and Michael

Spannowsky, Measuring collinear W emissions inside jets, Phys. Rev.

D89 (2014), 114006.
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et al., Rivet user manual, Comput.Phys.Commun. 184 (2013), 2803–

2819, [arXiv:1003.0694 [hep-ph]].

[249] D. Binosi and L. Theußl, JaxoDraw: A graphical user interface for

drawing Feynman diagrams, Computer Physics Communications 161

(2004), no. 12, 76 – 86.

[250] J. D. Hunter, Matplotlib: A 2D graphics environment, Computing In

Science & Engineering 9 (2007), no. 3, 90–95.

http://www.slac.stanford.edu/spires/find/hep/www?j=SovPhysJETP,45,199
http://www.slac.stanford.edu/spires/find/hep/www?j=SovJNuclPhys,28,822
http://www.slac.stanford.edu/spires/find/hep/www?j=SovPhysJETP,63,904
http://link.aps.org/doi/10.1103/PhysRevLett.108.032003
http://www.slac.stanford.edu/spires/find/hep/www?eprint=1208.3676
http://arXiv.org/pdf/1208.3676
http://www.slac.stanford.edu/spires/find/hep/www?eprint=1003.0694
http://www.slac.stanford.edu/spires/find/hep/www?eprint=1003.0694
http://arXiv.org/pdf/1003.0694
http://www.sciencedirect.com/science/article/pii/S0010465504002115
http://www.slac.stanford.edu/spires/find/hep/www?j=Computing%20In%20Science%20&%20Engineering,9,90

