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Abstract

In the era of high-luminosity hadronic colliders, the rare heavy-to-light decay

Λb → Λ `+`− receives increasing research attention in both experimental and theoret-

ical particle phenomenology. This flavour-changing neutral-current decay is a poten-

tial window for the discovery of new Physics beyond the Standard Model through its

helicity-sensitive nature, complementing past and ongoing searches and calculations

related to the B meson.

In this work the universal soft form factor in the heavy-quark and large-recoil

limits is calculated using light-cone sum rules in the framework of soft-collinear effec-

tive theory, as is the O(αs) correction from hard-collinear gluon exchange. Numerical

estimates on form-factor ratios and experimental observables are presented. Related

issues, including baryonic transition form factors and in particular light-cone distri-

bution amplitudes for the heavy baryon Λb, are also discussed.
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Chapter 1

Introduction

For all its impressive accuracy, the Standard Model, initiated in the 1960s as an

integral picture of how the universe works at a fundamental level, is not complete.

Various mysteries remain unsolved: there are many experimental observations, or

lack thereof, for which generations of scientists have so far failed to find satisfactory

explanations. The true status of neutrinos, which have been known for some time

to have non-zero mass, is still elusive; the strong CP problem, for which the axion

has been proposed, remains a problem; light has yet to be shed on dark matter, and

there exist many an observation for which fine-tuning is simply not an elegant or

likely solution. Pieces of the jigsaw puzzle that is the true nature of fundamental

physics are still missing; theorists make a guess of their shapes and sizes and the

locations at which they can be found, while experimentalists build ever more power-

ful and sophisticated machines to track the missing pieces. New physics beyond the

Standard Model is widely expected.

Of these open problems, CP violation is a phenomenon that is of particular

interest. Related to deep, unanswered questions concerning the observed matter-

antimatter asymmetry in our universe, and the origin of baryogenesis, it is fully

deserving of the experimental attention and theoretical scrutiny it has received for

decades. Unexpected results that have shown up in recent times, for instance a

surprisingly large charm-sector CP-violating effect, only highlight the inadequencies
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(and sheer difficulty) of theoretical work, and the room for technical improvement in

collider experiments.

The Large Hadron Collider (LHC) has been in operation, if slightly sporadically,

since 2008. It is a proton-antiproton collider of never-before-achieved power, bringing

the Particle Physics community alive and kicking into a “high-statistics” era. Precise

measurements of decay rates, particle masses and myriad other interaction parame-

ters have been achieved, reaching a feverish high point in July 2012, when a particle

widely expected to be the elusive Standard Model Higgs boson was observed at 5σ

statistical level. Much of what had previously been considered statistically unrealis-

tic is now possible at the LHC: Producing particles with small production rates, and

observing potential new particles generated through decays with tiny cross-sections.

Flavour physics is the arena in which much of the investigation into CP vio-

lation is done. In the Standard Model, the interactions of different types (flavours)

of quarks with one another are governed by the Cabibbo-Kobayashi-Maskawa

(CKM) matrix, which involves a complex phase as one of its independent parame-

ters. This is one of the few places in the Standard Model through which CP violation

can occur. By studying flavour-changing weak interactions, we hope to achieve bet-

ter understanding of the current framework of the Standard Model, and identify the
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cracks where it begins to fail.

Within flavour physics, B-physics is key. The bottom quark is the heaviest of

all six known flavours of quarks which form bound states. Its heavy nature – its

mass is much higher than the typical scale of non-perturbative QCD, ΛQCD, yet still

much lower than the W mass – allows theorists to invoke symmetries to simplify

calculations, making them often much more tractable than those involving other

quarks. Studying decays of hadrons containing the b quark to a high precision, with

the help of B-physics programmes at LHC, especially those at the dedicated B-physics

experiment LHCb, B-factories such as BaBar and Belle, and beyond, we accumulate

and analyse data about the CKM matrix which will either show clear inconsistencies

with Standard Model predictions, or provide more stringent constraints to narrow

the space in which we search for new effects, as long as we achieve, on the theoretical

side, numerical predictions to an adequate level of precision.

* * *

This thesis will focus on rare semi-leptonic heavy-to-light decays of Λb, one of the

simplest baryons containing a b quark. Baryonic B-physics research has been a bit

thin on the ground compared to its mesonic counterpart, due both to experimen-

tal challenges and theoretical complications; with ever more sophisticated machines,

however, the former are no longer an insurmountable hurdle. Indeed, both Tevatron

and the LHC have recently announced the first measurements of the semi-leptonic

decay Λb → Λµ+µ−. Theoretically, heavy baryons are also gradually garnering more

attention. Λb → Λ `+`− offers the possibility to study rare semi-leptonic and radiative

b → s transitions, and involves observables which will provide complementary phe-

nomenological information to mesonic decays. A systematic analysis and discussion

of this decay will form the heart of this thesis. The technology of light-cone sum

rules (LCSRs) within the framework of soft-collinear effective theory (SCET),

which has proved fruitful in analogous heavy mesonic decays, will be our weapon of

choice. With it we calculate the so-called universal soft form factor which enters the
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symmetry relations in the heavy-quark and large-recoil-energy limits. Similarly we

obtain the leading-order factorisable correction in the strong-coupling constant αs,

involving the exchange of a hard-collinear gluon.

Before then, an introduction to the calculational techniques and effective theo-

retical framework needed – SCET, LCSRs, QCD factorisation – will be presented in

Chapter 3, following a quick but necessary overview of flavour physics, CP violation

and recent experimental developments in relevant areas in Chapter 2.

Theoretical predictions for exclusive decay matrix elements require various non-

perturbative hadronic inputs, and one of the most important and challenging of these

is an accurate theoretical description of the heavy baryons, which enter our calcu-

lations as light-cone distribution amplitudes (LCDAs). We shall discuss an

updated formulation of these heavy baryonic LCDAs in detail in Chapter 4. There

we also put forward an alternative parametrisation of the baryonic transition form

factors which feature distinct advantages. Both of these are new developments which

play crucial parts in subsequent parts of this thesis.

Chapter 5 is the aforementioned calculation and discussion of ξΛ, the soft form

factor, and ∆ξΛ, the factorisable correction due to hard-collinear gluon exchange, for

the decay Λb → Λ `+`−, using SCET LCSRs. Results will be presented analytically

and numerically and juxtaposed with the latest experimental data.

Chapter 6 offers an outlook for related calculations before concluding this work.

The appendices collate extra material which are helpful but not essential to the main

text.



Chapter 2

Flavour Physics, CP Violation and

Experiments

2.1 Quark Flavour Physics

In the beginning (the 1960s) was the quark model: 3 particles called quarks were

theoretically proposed to explain the pattern of observed mesons and baryons at the

time, fitting into an (approximate) flavour SU(3) symmetry. Since then the existence

of these fundamental building blocks of nature have been established and better un-

derstood, and 3 heavier quarks have been postulated and confirmed, with Quantum

Chromodynamics (QCD), the non-Abelian theory of the strong force, formulated to

explain the strong interactions between colour-charged quarks and gluons. Along

with the electroweak sector, which contains the weak and electromagnetic interac-

tions, QCD is part of the Standard Model (SM), which has an overall gauge structure

of SU(3)C × SU(2)L × U(1)Y , a summation of our (incomplete) knowledge of how

physics work in terms of its fundamental matter and gauge fields. Fermions like

quarks and leptons gain mass through the Higgs mechanism, while the gauge bosons

W± and Z do so via spontaneous symmetry breaking; the photon remains massless.

The final missing, scalar member of the SM particle zoo, the Higgs boson (or a par-

ticle strongly expected to be it), was at long last declared discovered at the LHC in

2012, by the Atlas and CMS collaborations [4].
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Quark flavour physics is concerned with flavour-violating processes of all types

of quarks that are not the top quark. The study of these weak decays are vastly

complicated by the presence of QCD and its confining nature, meaning what we ob-

serve are hadronic bound states, whose analytical connection to free quarks are not

trivial. Calculations of hadronic quantities required for decay amplitudes of quark

processes necessarily involve low-energy QCD, whose running strong coupling con-

stant gs results in asymptotic freedom; study of decays where flavour dynamics are

the real focus becomes challenging or in some cases technically impossible due to the

exchange of soft gluons, whose presence negates the use of perturbation theory and

requires non-perturbative techniques. Thus all sorts of ingenious solutions are sought

to alleviate the problems, to find ways around the theoretical stumbling blocks, for

instance manipulating variables to make use of cancellations due to symmetries, or

neglecting heavy degrees of freedom by using appropriately constructed effective the-

ories. Of course, brute force is also often invoked, whether in Monte Carlo-type

calculations or lattice gauge field theory, via intensive computing-based methods.

Despite its challenges quark flavour physics is of great research interest in the era

of high-luminosity colliders, as it serves as a good arena for indirect searches of new

physics (NP). Experimentally, one can focus on measuring ever more accurately SM

parameters by identifying the cleanest and most promising decay channels, and one

can design and measure observables of processes which are highly suppressed in the

SM but not in NP scenarios. The challenges for experimentalists and engineers of

collider experiments are well known; for theoretical phenomenologists, it is to make

predictions of what would be observed experimentally if the SM (or an extension

thereof) is correct, to a level of accuracy that would match the ever-shrinking statis-

tical uncertainties and systematics in experimental data; by making the comparison

with reality we have a handle of understanding the truth better.
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2.2 The CKM Matrix and the Unitary Triangle

Quarks gain mass through Yukawa interactions with the scalar doublet Higgs field.

After spontaneous symmetry breaking, we have in the Lagrangian the Yukawa terms

LYukawa ⊃ d̄′Li Y
(d)
ij d′Rj + ū′Li Y

(u)
ij u′Rj + h.c.

The primes denote states in the weak flavour basis, and the Yukawa matrices Y (u,d)

are unconstrained and completely arbitrary. By defining physical (mass) eigenstates

for both left-handed (L) and right-handed (R) quarks:

DL = UdD
′
L , UL = Uu U

′
L , DR = VdD

′
R , UR = Vu U

′
R ,

where DL,R, UL,R are now 3×1 vectors of 3 generations of quark states, the Yukawa

matrix is diagonalised through a bi-unitary transformation, and the mass eigenvalues

are attained. This in turn affects the structure of the charged-current (CC) terms:

LCC ⊃ Ū ′LD
′
L → ŪL U

†
u UdDL ≡ ŪL VCKMDL ,

where VCKM is the complex unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix [5],

resulting in fascinating phenomenology in weak quark decays.
d′

s′

b′

 = VCKM


d

s

b

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



d

s

b

 . (2.1)

Neutral currents are not affected by the above: this is one way of looking at why

flavour-changing neutral currents (FCNC) are not allowed at tree-level in the SM. The

Glashow-Iliopoulos-Maiani (GIM) mechanism [6] provides another look at the same

principle: In a loop-mediated process, where all 3 quarks of the same type (up/down)

contribute, the resultant amplitude depends on their (squared) mass differences only,

and in the limit of equal quark masses, the amplitude vanishes. For example, for a

process like Bs → µµ ,

A =
∑
q=u,c,t

VqsV
∗
qb f(m2

q/m
2
W ) = VtsV

∗
tb

(
f(m2

t )− f(m2
c)
)

+ VusV
∗
ub

(
f(m2

u)− f(m2
c)
)
.

(2.2)
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This has made use of the unitarity of the CKM matrix:∑
q

V ∗qiVqj = δij , i 6= j . (2.3)

An early version of this mechanism actually anticipated the discovery of the charm

quark in 1974, as a way to explain the smallness of the branching ratio of K0 → µµ.

In any case, this phenomenon (of tree-level FCNC being forbidden and loop-generated

FCNC being possibly GIM-suppressed) is not necessarily a feature in extensions of

the SM, providing one of the reasons why rare flavour decays are considered suitable

for NP searches.

Looking at the form of the CKM matrix (2.1) again, a 3×3 unitary matrix has

9 real parameters. Unphysical quark-field phases can be rotated away by field re-

definitions, leaving just 4 independent physical CKM matrix parameters: 3 angles,

and 1 complex phase. This last phase is of great significance and research interest; it is

the only place in the Standard Model (with massless neutrinos) in which CP violation

can occur, apart from the θ parameter of the FµνF̃
µν term in the QCD Lagrangian

which experimentally is extremely suppressed, (a mystery known as the Strong CP

Problem, see e.g. Chapter 27 of [7]). In fact it was an attempt to explain quark CP

violation that led to the proposal of a third generation of quarks (a 2×2 matrix does

not allow a complex phase). The bottom and top quarks were discovered in 1977 and

1995 respectively. The numerical values [8] for the CKM matrix reveals a hierarchy,

which has engendered a number of parametrisations including the commonly used

Wolfenstein [9], a power expansion in a small parameter λ ∼ 0.2:

VCKM =


1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) . (2.4)

To understand quark flavour-breaking interactions is to investigate the values of these

CKM elements and the four physical parameters. To facilitate this, noting the uni-

tarity condition (2.3) forms a triangle on the complex plane, the Unitarity Triangle

(UT) was invented by common convention with i = b and j = d, whose sides are
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the 3 terms in (2.3) divided by V ∗cbVcd. This results in a triangle with one side of

unity length on the real axis; this choice of i and j leads to a triangle which is not

squashed (a result of the observed hierarchy of VCKM), and the V ∗V normalisation is

required for a reparametrisation-invariant observable. If the CKM formulation of the

weak interactions of the Standard Model is correct, this triangle would close due to

unitarity. Hence, the side lengths

Rt =

∣∣∣∣V ∗tbVtdV ∗cbVcd

∣∣∣∣ and Ru =

∣∣∣∣V ∗ubVudV ∗cbVcd

∣∣∣∣
and the angles

β = arg

(
−V

∗
cbVcd
V ∗tbVtd

)
, α = arg

(
− V

∗
tbVtd

V ∗ubVud

)
and γ = arg

(
−V

∗
ubVud
V ∗cbVcd

)
are to be measured, using the best channel(s) to give the cleanest signal for each;

if the resulting experimental values are all consistent to a high statistical accuracy,

i.e. the triangle closes perfectly, then one might say our understanding of quarks in the

weak sector can be considered accurate. Tensions between the parameters, or even

within the same parameter from different channels, however, hint at missing pieces

in the SM. Therefore, ideally, as many processes as realistically possible should be

investigated in order to achieve an over-determination. Figure 2.1 (taken from the

CKMfitter group [8]) is a summary of the experimental constraints so far attained in

relation to the UT parameters.

2.3 CP Violation

Three discrete symmetries, charge conjugation (C) (the relation between a particle

and its antiparticle), parity (P ) and time reversal (T ), are possible in quantum field

theory, and CPT together as a symmetry must be upheld as an automatic conse-

quence of a local Lorentz-invariant field theory. Even before the time of quarks, C

and P were known to be broken, for instance in weak interactions involving the neu-

trino; the combined CP symmetry was assumed to hold, until its non-conservation

was first experimentally identified in K0 decays in 1964 [10]. It has since been found
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Figure 2.1: The graphical compendium of the latest constraints on the unitarity triangle [8].

ρ̄ ≡ ρ(1− λ2/2) and η̄ ≡ η(1− λ2/2).

—

in decays of hadrons containing bottom and charm quarks too. CP violation is fa-

mously one of the 3 conditions proposed by Sahkarov in 1967 to be required for the

matter-antimatter asymmetry in the universe [11], therefore an understanding of its

provenance and influence has wide cosmological implications.

CP violation can happen in a number of ways in quark flavour physics: when the

decay amplitude of a process differs from its CP counterpart (“direct”):
∣∣Āf̄/Af ∣∣ 6= 1

(a relative phase is unobservable); when it originates from the mixing of a flavoured

(non-onium) meson (“indirect”): |q/p| 6= 1 where q and p are mixing parameters

characterising the physical mesonic states in terms of the flavour states; and when it

arises from interference between mixing and decay.

The phenomenon of CP violation is itself utilised in the measurement of UT

parameters, as in the example of the extraction of the angle β from the decay
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B0, B̄0 → J/ΨK0
S. where the consideration of time-dependent CP asymmetry re-

sults in an observable that is free of hadronic factors (for details see e.g. [7]) – a

“golden channel” used as the standard for the best data on β. This is actually where

the first non-kaon CP violation was observed at Belle and BaBar, which were built

to measure this decay in particular. Latest values of this β (and others) can be found

at [8]. Interestingly, this method cannot be straightforwardly applied to the angle α

with the similar decay B0 → π+π−, as an alternative diagram induced by a FCNC

loop (the penguin diagram) makes a non-negligible contribution in addition to the

tree-level process; careful analyses or different channels have to be used. The last an-

gle γ currently suffers from sizable uncertainties; although by definition γ = π−α−β,

an independent measurement would be beneficial for the desired over-constraining of

the UT. The side Rt involves Vtd which enter B0 mixing – a box loop diagram where

the top quark dominates due to the GIM mechanism; the side Ru can be measured

from tree-level semi-leptonic B decays for instance, and state-of-the-art results cur-

rently reveal a tension between inclusive and exclusive measurements [12] which is

not yet understood and hence interesting.

2.4 B-Physics and Experiments

In recent years B-physics data have been dominated by output from the 2 B-factories,

Belle [13] and BaBar [14], and the 2 hadron (pp̄) colliders, Tevatron and the LHC.

B-factories are e+e− asymmetric colliders tuned to produce as many B mesons as

possible (asymmetric to allow measurements of lifetimes and time-dependent CP

quantities), and as such have made many important discoveries, including the first

observation of non-kaon CP violation in bottom hadrons in 2001 [15]. The advantage

with such B-dedicated machines, which utilise e+e− → Υ(4s) to generate coherent

pairs of B0, is their hadronic environment for identifying the final states is much

cleaner than at the hadronic colliders, which use pp̄ → bb̄X. As a result the latter,

despite boasting a much higher production rate of bs, have a lower selection efficiency,



12 2.4. B-Physics and Experiments

and they study a more limited range of B0 decay modes where reconstruction is easier.

However, they do allow observation of states above the B0 – good for spectroscopy

and interesting decays like Bs → µ+µ−.

The only dedicated flavour experiment at the hadronic colliders is the LHCb [16];

CMS and Atlas, despite being general-purpose detectors, also have their own flavour

programmes [17]. The Tevatron collider at Fermilab, along with collaborations CDF

and D0, unfortunately shut down in 2011 due to lack of funding; BaBar, the experi-

ment at PEP-II, SLAC also ended in 2008, but some data are still coming through.

In the near-term future, however, in terms of sheer volume of data, all eyes are on

the LHC.

Since the beginning of the era of these major B-factories and in particular the

LHCb, those large, unambiguous effects beyond the SM that have been the hope

of many flavour physicists have failed to materialise, to the great disappointment of

advocates of flavour-sector NP searches and the fundamental physics community at

large. The alignment of predictions from the CKM theory to experimental data is

impressive, establishing it to be the dominant source of flavour violation of quarks

beyond doubt. The influx of data on suppressed channels only seems to reinforce the

apparent unimpeachability of the Standard Model. This is not to say there are no

promising hints of something important yet to come; big recent experimental news

stories in flavour physics include the like-sign dimuon charge asymmetry observed in

B0 mixing announced by the D0 in 2010 [18], and the discovery of unexpectedly large

direct CP violation in the charm sector (in D0 → K+K−, π+π−) in 2011 by LHCb

and subsequent (sometimes contradictory) measurements elsewhere [19].

The achievements at the B-factories and hadronic colliders are too numerous to

list in the last decade or two, but let us now highlight a number of channels for b→ s

decays that would serve as a backdrop to Λb → Λ `+`− which shall be discussed in

Chapters 4 to 6.
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Exclusive B → K(∗) `+`− transitions have obvious similarities to the baryonic

Λb → Λ `+`−, at least as far as the mediating effective operators (O7γ, O9 and O10),

and how their hadronic form factors simplify in certain kinematic limits are concerned.

The decay already offers rich opportunities for angular analyses [20] – with the sub-

sequent K∗ → Kπ there are a total of 3 kinematic angles, and for ` = µ experimental

searches are especially convenient. Theoretical calculations are not straightforward

as they involve hadronic matrix elements, but effective theories have been shown to

apply in certain situations and lead to simplified observables like differential cross-

sections and forward-backward asymmetries, experimental data of which are available

from both hadronic colliders and B-factories [21].

Attention should also be paid to the inclusive B → Xsγ (and B → Xs`
+`−), whose

latest combined branching ratio [22] is consistent with SM predictions. Inclusive de-

cays are often less complex theoretically through the use of heavy-quark operator

product expansion, but experimentally harder to discern than exclusive ones. Mean-

while the exclusive leptonic Bs → µ+µ− decay is a great channel for potential NP

signals to spot, as not only is it highly helicity-suppressed, it is a CKM-suppressed

FCNC process, with an estimated theoretical branching ratio of O(10−9). Various

hadronic colliders have searched for this decay thanks to its clean signature, but it

was not until 2012 that it was first observed, with a branching ratio that again agrees

well with the SM prediction [23], putting good constraints on NP models.

* * *

To sum up this chapter, despite the lack of “low-hanging fruits” in recent experi-

ments, flavour physics is still one of the biggest potential sites for the unearthing of

solutions to our various non-understandings. It might be an good time to focus on

taking full advantage of the powerful weapon we now have: an abundance of data.

On one hand, this simply allows us to delve into precision effects, deriving more

stringent constraints on CKM parameters using high-precision data. The gauntlet
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is thrown to the theorists who must now come up with better techniques – be it a

better understanding of symmetries, or definition of clean observables and channels –

that are sufficiently good at controlling systematic uncertainties to confront the data.

On the other hand, it is an increasingly trendy idea to use a Bayesian approach

in the handling of experimental data in the view of discovering new physics (see

e.g. [24]). This involves building specific, NP-encompassing models which will be pit-

ted against data using Bayesian statistics, with a pre-defined set of priors. This kind

of top-down approach enables modellers to make consistent, inter-related predictions

for all processes. However, it suffers from an obviously strong model dependence and

requires a huge number of observables (apart from a huge volume of data) as the

new models commonly involve more free parameters than observables experiments

can practically supply. For instance, the Minimal Supersymmetric Standard Model

(MSSM) [25] has more than 100 parameters. With more judicious simplification, like

the Minimal Flavour Violation (MFV) hypothesis [26] which assumes all flavour- and

CP-breaking new phenomena have the same source as in the SM, nevertheless, this

is a trail with a future in the high-statistics era, when physics comes equipped with

machines like the LHC that make possible many previously infeasible independent

channels of observation.



Chapter 3

Effective Theories and Light-Cone

Sum Rules

The central calculations of this work are performed using the technique of light-cone

sum rules (LCSRs) within the framework of soft-collinear effective theory (SCET).

Both of these are built on years of theoretical work, and this chapter attempts to pro-

vide an introduction to these as a backdrop to the exclusive heavy-to-light baryonic

decay calculations presented afterwards. Along with light-cone distribution ampli-

tudes (Chapter 4), the topics presented here were invented, have developed and now

stand alone as separate theories and technical innovations in their own right, and are

put to use in multifarious contexts and to varying levels of depth in particle physics;

as demonstrated here, they can also complement each other in an essential way, prov-

ing a useful and much-appreciated route to tackle challenging hadronic calculations

both perturbative and non-perturbative.

3.1 Effective Field Theories

Quantum processes often involve different energy scales, but not every one of them

is directly relevant to the particular problem at hand. This is not to say the desired

final amplitudes are not sensitive to all scales; in an ideal world, all real and virtual
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field effects and corrections would be taken into account. In reality, with finite com-

puting power and knowledge of what goes on at all energy scales, approximations are

indispensable. Effective field theories provide a general theoretical framework to sep-

arate different energy scales and simplify the physical problem into a manageable one,

in which heavy fields (irrelevant to the problem), like the W boson, are “integrated

out” as dynamical degrees of freedom. The terminology “integrating out” refers to

the procedure in the path-integral formalism, in which the quantum fluctuations of

heavy fields above a mass scale Λ are removed via functional integration from the

generating functionals for the Green functions, leaving a modified, “effective” theory

only valid at an energy scale below Λ. Technical details of the path-integral formalism

can be found in textbooks and reviews, e.g. [27,28].

As our knowledge of physics is limited at energy scales higher than those our

current experimental prowess can manage to probe, the Standard Model (SM) is but

an effective theory itself, encoding only what we already know of a more fundamental

theory.

We can write out the effective Hamiltonian for a certain type of process using

operator-product expansion (OPE) [29]: To a given order, it can be expressed as the

sum of matrix elements of effective local operators Oi, each weighted by a process-

independent Wilson coefficient, Ci, which encodes high-energy-scale effects down to

MW :

Heff =
∑
i

Ci(µ)Oi(µ) +O(1/M2
W ) .

The sum has to include all gauge-invariant operators allowed by the symmetries of

the theory with dimensions above 4. The OPE series is equivalent to the full theory

if all orders of 1/M2
W are considered; truncation provides a systematic scheme for an

approximate theory.

The beauty and power of this framework come through in its ability to drastically

simplify many strong-interaction calculations, which are challenging due to the confin-
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ing nature of QCD. Wilson coefficients, which are responsible for the high-frequency

modes (having absorbed the effects of integrated-out heavy fields), are calculated

perturbatively at a high scale (say MW ), by equating calculations using both the

effective and full theories to a given order, in a process called “matching”. They are

then evolved down to the characteristic scale µ relevant for the (low-energy) process

under consideration. Large logarithms of (MW/µ)2 arising from this are resummed

using renormalisation-group (RG) methods. (The details of RG-related technology

– anomalous dimensions and beta functions etc. – are available in a wide range of

didactic literature e.g. [27, 30].) Calculations of the local hadronic matrix elements

remain relatively complex, to be unravelled by non-perturbative methods like sum

rules or lattice calculations, and it is their systematic uncertainties that tend to dom-

inate the final outcome.

As only the high-energy portion of any effective theory is meddled with, its in-

frared (IR) behaviour should directly replicate that of the full theory. It makes sense

to some cases to perform the integrating-out of heavy degrees of freedom more than

once, as in SCET-I and -II (see later sections); in such a scenario, the IR limit of an

effective theory should give the effective theory below.

It is important to note that experimentally sought-after New-Physics effects can

reveal themselves either through an alteration (from SM-predicted values) in the

Wilson coefficients, or through new effective operators which are absent in the SM

framework. Beyond the above introduction, we shall take the internal gears of ef-

fective theories in general as a given; now we delve more deeply into the specific

effective theories, including their principles and notations, which form the backbone

of form-factor calculations in Chapter 5.
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3.1.1 In Heavy Flavour Physics

In heavy flavour physics, the characteristic energy scale can be identified as the mass

of the heavy quark in question. Here we specify this to be mb ∼ 5 GeV, the mass of

the bottom quark whose FCNC decays into the light strange quark are of interest in

this work. After matching (at a scale of around MW ), the Wilson coefficients have to

be evolved to this hadronic scale. The set of leading (dimension-6) effective operators

for b→ s and ∆B = 1 are (following mostly the conventions of [28,31]):

Current-current operators:

O
(U)
1 = (s̄iUj)V−A (Ūjbi)V−A , O

(U)
2 = (s̄iUi)V−A (Ūjbj)V−A , (3.1)

QCD penguins:

O3 = (s̄ibi)V−A

∑
q

(q̄jqj)V−A , O4 = (s̄ibj)V−A

∑
q

(q̄jqi)V−A ,

O5 = (s̄ibi)V−A

∑
q

(q̄q)V+A , O6 = (s̄ibj)V−A

∑
q

(q̄jqi)V+A , (3.2)

Electroweak penguins:

O7 =
3

2
(s̄ibi)V−A

∑
q

eq(q̄jqj)V+A , O8 =
3

2
(s̄ibj)V−A

∑
q

eq(q̄jqi)V+A ,

O9 =
3

2
(s̄ibi)V−A

∑
q

eq(q̄jqj)V−A , O10 =
3

2
(s̄ibj)V−A

∑
q

eq(q̄jqi)V−A , (3.3)

Magnetic dipole penguins:

O7γ =
emb

8π2
s̄i σ

µν(1+γ5) biFµν , O8g =
gsmb

8π2
s̄i σ

µν(1+γ5)T aij bjG
a
µν , (3.4)

Semi-leptonic operators:

O9` = (s̄ibi)V−A (¯̀̀ )V , O10` = (s̄ibi)V−A (¯̀̀ )A , (3.5)

where eq is the electric charge of the relevant quark in units of e, and the sums over

q include all quarks but t, except for O1,2 where U = u, c only. Operators for other
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FCNC decays like b → d and s → d take analogous forms. The basic purely QCD

effective Hamiltonian for the process b→ sq̄q using these operators become:

Hb→sq̄q
eff =

GF√
2

{∑
i=1,2

Ci(µ)
(
λuO

(u)
i + λcO

(c)
i

)
+ (λu + λc)

∑
i=3−6,8g

Ci(µ)Oi

}
+ h.c. ,

(3.6)

where we have used the GIM mechanism to remove reference to dependences on the

top quark which is no longer a dynamical degree of freedom in the effective theory.

O7−10 and O7γ come into the expression once electroweak corrections are included.

The two semi-leptonic operators O9` and O10` enter in addition for Λb → Λ `+`−,

which this work mainly concerns. Along with the electromagnetic penguin O7γ, these

operators will be the most important and interesting especially in the numerical

analysis of our results in Section 5.3; these will be re-notated as O7,9,10 from now on

whenever necessary (it should be clear from the context). Other operators like O8g

and O3−6 only enter in sub-leading radiative corrections. The values of corresponding

Wilson coefficients to the above operators and their anomalous dimensions can be

found in [32].

Hb→s``
eff =

GF√
2


∑
i=1,2

Ci(µ)
(
λuO

(u)
i + λcO

(c)
i

)
+ (λu + λc)

∑
i=3−10,

7γ,8g,9`,10`

Ci(µ)Oi

+ h.c. ,

(3.7)

Beyond the Standard Model, b → s transitions need no longer be left-handed in

nature, and extra (primed) operators with the wrong chirality may enter the Hamil-

tonian with no mass suppression (also, scalar and pseudoscalar operators) – a fertile

ground for exploration in NP modelling.

3.2 Heavy-Quark Effective Theory (HQET)

As its name suggests, heavy-quark effective theory (HQET) [33–35] describes the

physics and symmetries that result when the limit mQ → ∞ is taken, for processes
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involving a heavy quark (large energy scale mQ) and soft interactions (typical QCD

confining scale ΛQCD). From now on, we shall fix the identity of the heavy quark Q

to be b, though the same principle, less fittingly, could also apply to the charm quark

(mc ' 1.3 GeV).

Within a hadronic bound state with only one heavy quark, the latter acts as a

“static colour source”, and as it only interacts with soft degrees of freedom, it is

nearly on-shell, and its momentum can be parametrised as

pµ = mbv
µ + kµ ,

where v is the 4-velocity of the heavy quark with v2 = 1, and k ∼ O(ΛQCD) is

the “residual” momentum, if a frame is chosen in which the heavy quark is near-

stationary. (For simplicity its rest frame is often chosen, in which case vµ = (1, 0, 0, 0).)

If one decomposes the Dirac spinor of the heavy quark in such a way that

Q(x) = e−imb v·x
(
hv(x) +Hv(x)

)
,

with hv(x) = eimb v·x
1 + /v

2
Q(x)

and Hv(x) = eimb v·x
1− /v

2
Q(x) , (3.8)

hv(x) and Hv(x) can be identified as, respectively, the large massless component, and

the small component of the heavy-quark Dirac spinor with mass 2mb. This can be

seen if we substitute (3.8) into the Dirac Lagrangian

L = Q̄ (i /D −mb)Q

= h̄v iv ·Dhv + H̄v (−iv ·D − 2mb)Hv + h̄v i /~DHv + H̄v i /~D hv , (3.9)

where i /~D = i /D −/v (iv ·D). Power-counting shows that indeed Hv ∼ O
(

ΛQCD

mb

)
hv . To

achieve the desired effective theory, the heavy degrees of freedom need to be integrated

out, and in this context it is the Hv field, which cannot be excited through soft

interactions. This is done by using its equation of motion. The effective Lagrangian

becomes

LHQET = h̄v iv ·Dhv +
1

2mb

h̄v i /~D i /~D hv + · · · ; (3.10)
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the form of the leading term illuminates both the flavour and spin symmetries that

have resulted from taking the heavy-quark limit. These are broken already by the

second, O(1/mb) term in (3.10).

In its current form so far the HQET lacks the full QCD gauge invariance, as hard

quarks and gluons have been integrated out and the remaining hv field represents only

the soft fluctuations of the heavy quark field about its mass shell. To remedy this,

a modified set of gauge transformation rules can be defined, that also scale correctly

with the soft-quark and soft-gluon fields in the power-counting.

On the other hand, the effective theory can be further simplified by decoupling

soft gluons from the heavy field, by performing a field re-definition of hv:

hv(x) = Yv(x)h(0)
v (x) ; (3.11)

the object which satisfies our need turns out to be in the form of a time-like Wilson

line in the direction of v, defined as:

Yv(x) = P exp

(
igs

∫ 0

−∞
dt v ·As(x+ tv)

)
, (3.12)

where P is the path-ordering symbol. With its property to “convert” a covariant

derivative into a normal, partial derivative, the HQET Lagrangian takes the final

form of

LHQET = h̄(0)
v iv ·∂ h(0)

v +O(1/mb) . (3.13)

At leading order this seems like a simple, if a bit useless, free-quark theory. The

truth is more complicated once external interaction currents are taken into account,

taking back into the picture soft quarks in a non-trivial way. The two issues of mod-

ified gauge transformation rules and decoupling of soft interactions from the leading

quark fields will be discussed in some more detail in the following discussion on SCET.

We mention HQET here not only because of its usage in defining the heavy effec-

tive field in a heavy-to-light transition like Λb → Λ `+`−, but also because it is a pre-

cursor in some ways to the more complicated effective theory, SCET, to be discussed
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and used imminently. Ideas can be gleaned from how HQET simplifies treatments

of heavy-to-heavy hadronic decays. Using the heavy-quark symmetry projectors, a

larger number of matrix elements of currents in QCD reduce to a smaller set in

HQET, the Isgur-Wise functions [35, 36] which depend on the variable v · v′ only;

for example in the decay Λb → Λc eν̄, taking both mb ,mc → ∞, there is only one

independent hadronic form factor remaining, and for (heavy-to-light) Λb → Λ decays,

two. Beyond the strict HQET limit there are both 1/mb and αs corrections. This

idea of a consistent power-counting (in the inverse of a large characteristic scale) can

be taken further; by applying it to other suitable situations, one hopes to extract

symmetries that decomplexify QCD calculations.

3.3 Soft-Collinear Effective Theory (SCET)

In various QCD processes inclusive and exclusive, jet-like dynamics play a crucial

part; in both jet hadronic physics and flavour transitions, light particles with energies

much larger than their invariant masses abound, and their dynamics are essentially

Minkowskian. For instance, in the heavy-to-light decay of Λb → Λ `+`− (which

example will provide the terminology in the following discussion for variables and

expressions), the Λ hadron would move close to on the light cone, and the s quark,

when receiving most of the energy from the decaying heavy b quark (in the large recoil

limit), is collinear with its hadron. Light degrees of freedom are also present. In the

reference frame of the heavy, decaying hadron, we can assume the Λ momentum p′ to

be large in one light-cone direction nµ− and small in the opposite nµ+. In general one

requires n+·n− = 2 and n2
± = 0, but they are commonly chosen as nµ± = (1, 0, 0,±1).

So,

p′µ = n+p
′ n

µ
−

2
+ n−p

′ n
µ
+

2
+ p′µ⊥ ; (3.14)

the components scale as (n+p
′, p′⊥, n−p

′) ∼ Q(1, λ1/2, λ), where Q is a large char-

acteristic scale we identify as Q ∼ mb ∼ EΛ, and λ ∼ ΛQCD/mb. We can see

p′2 = (n+p
′)(n−p

′) + p′2⊥ ∼ mbΛQCD = µ2
hc – an intermediate energy scale, distinct
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from the hard (virtuality m2
b) and soft (Λ2

QCD) scales. The Λ particle also contains

soft degrees of freedoms such as the light spectator quarks, whose momenta scale as

(n+k, k⊥, n−k) ∼ Q(λ, λ, λ).

SCET sets out to take into account both soft and hard-collinear (as we shall

name the intermediate scale which displays the momentum scaling as p′ described

above) momentum-scaling, by assigning them independent effective fields. It was

first formulated by Bauer, Fleming, Pirjol, Stewart (BFPS) [37, 38]1, and further

developed by Beneke, Chapovsky, Diehl, Feldmann (BCDF) [41, 42] and others in-

cluding [43, 44], and exists in a few versions with slight differences in terminology

and technicalities. The original BFPS “label” formulation makes an effort at letting

the SCET procedures emulate HQET, so that a hard-collinear momentum is made

to comprise of a “label” for its large component, and other “residual” dynamical

components, a bit like p = mbv + k for a heavy quark in HQET. Projection oper-

ators that only act on the large labels replace conventional derivatives, resulting in

a hybrid position/momentum-space representation. On the other hand, the BCDF

formulation, to which we shall stick in this work, works consistently in the position

space and explicitly retains all momentum components of all fields.

SCET shares the same ideas as the method of regions in QCD calculations, but

better facilitates systematic power-counting and corrections. The construction of the

SCET will in certain aspects mimic that of HQET – which is now enlisted to describe

heavy fields, and integrate out hard degrees of freedom irrelevant to SCET physics.

Let us start by considering the hard-collinear quark field. In ψhc can be identified

1It serves as a formal extension of the older “Large-Energy Effective Theory” (LEET) [39, 40]

which does not include hard-collinear gluon fields and hence cannot fully account for hard-scattering

gluon-exchange contributions.



24 3.3. Soft-Collinear Effective Theory (SCET)

the large and small 2-component spinors, using the appropriate SCET projectors:

ψhc(x) = ξ(x) + η(x) , where ξ(x) =
/n−/n+

4
ψhc(x) ,

and η(x) =
/n+/n−

4
ψhc(x) . (3.15)

One can demonstrate by power-counting (in terms of λ) that ξ indeed generates the

leading contribution. η can be “integrated out” by using its equation of motion,

whose form

η(x) = − /n+

2

1

in+ ·D + iε
i /D⊥ ξ(x) (3.16)

reveals one aspect where SCET and HQET differ: while the latter gives a Lagrangian

which is close to local, SCET remains a non-local theory, as seen from the appearance

of inverse differential operators unaccompanied by a large mass, unlike in HQET.

Putting this into the QCD Lagrangian ψ̄ i /Dψ, with ψ = ξ + η + q where we have

added back the soft quark field q, we end up with the first semblance of a SCET

effective Lagrangian:

LSCET = ξ̄

(
in−D + i /D⊥

1

in+D + iε
i /D⊥

)
/n+

2
ξ + q̄ i /Ds q

+ ξ̄ gs /Ahc q + q̄ gs /Ahc ξ − q̄ gs /Ahc
1

in+D

/n+

2
gs /Ahc q

− ξ̄ i /D⊥
1

in+D

/n+

2
gs /Ahc q − q̄ gs /Ahc

1

in+D

/n+

2
i /D⊥ ξ , (3.17)

where (as below) iDµ
s,hc = i∂µ + gsAs,hc. The purely hard-collinear and purely soft

Lagrangian terms (on the first line of (3.17)) are leading (O(1)) while the interaction

terms involving both sectors start at O(λ1/2). Any terms that are kinematically for-

bidden do not appear in the SCET Lagrangian; for instance, one hard-collinear quark

line cannot be connected to two soft quark lines as momentum must be conserved.

Note that the integration measure
∫
d4x should be treated as scaling as λ−2 and λ−4

for the two leading terms respectively.

As SCET aims at a formalised treatment of effective QCD fields based on indi-
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vidual momentum configurations2, the Lagrangian should be constructed such that it

contains only terms that explicitly have a single, homogeneous λ-scaling, to facilitate

calculation at each order of λ without risk of double counting. To this end, in (3.17)

ξ̄ in−D
/n+

2
ξ should be re-written as

ξ̄ in−Dhc
/n+

2
ξ + ξ̄ gsn− ·As

/n+

2
ξ , (3.18)

while the inverse covariant derivative should be expanded as

1

in+D
=

1

in+Dhc

− 1

in+Dhc

gsn+ ·As
1

in+Dhc

+O(λ4) . (3.19)

Other terms in the Lagrangian can similarly be separated.

Multi-pole expansion of soft fields

On the other hand, though all momentum components of the soft fields scale as λ,

one has to be careful with interaction terms between hard-collinear and soft fields; as

the hard-collinear scaling naturally dominates the vertex momentum, the soft field

varies more slowly in some directions than would have led to a leading result, and this

results in an inhomogeneous contribution. In order again to disentangle the leading

and sub-leading terms, one performs a multi-pole expansion on soft fields, expanding

the position arguments so that

φs(x) =

(
1 + x⊥ ·∂⊥ + x+ ·∂ +

1

2
xµ⊥xν⊥∂

µ∂ν
)
φs(x−) +O(λ3φs) , (3.20)

where xµ∓ ≡ (n±x)nµ∓/2, as they scale like (x−, x⊥, x+) ∼ (λ−1, λ−1/2, 1). From now

on, in all interaction terms one should take care to evaluate all soft fields at light-cone

position x− (while hard-collinear fields remain at general x.) In any case, there are

no such interaction terms at leading order in λ in the SCET Lagrangian.

2In some physical situations, the hard-collinear and soft momentum modes are not suffi-

cient, as there are other configurations involving momenta scaling as Q(1, λ, λ2) (“collinear”) and

Q(λ2, λ2, λ2) (“ultrasoft”), for example. This more complicated formulation is termed SCET-II,

which will rarely be mentioned again, as opposed to SCET-I presented and used in this work.
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Gauge transformation rules

After setting up separate effective fields with different momentum scalings and inte-

grating out some degrees of freedom, the full QCD gauge invariance is lost, leaving

only a “residual” gauge invariance described by a modified set of gauge transfor-

mation rules, whose gauge operators Uhc and Us also follow corresponding scaling

properties.

Hard-collinear: Ahc → UhcAhcU
†
hc +

i

g
Uhc

[
Ds, U

†
hc

]
, ξhc → Uhcξhc ,

As → As , q → q ,

Soft: Ahc → UsAhcU
†
s , ξhc → Usξhc ,

As → UsAsU
†
s +

i

gs

Us

[
∂, U †s

]
, q → Usq . (3.21)

Soft fields must not transform under hard-collinear transformations, as Ahc would

ruin the soft scaling. Meanwhile this does not happen the other way round, and the

soft gauge field acts as a kind of slowly varying background field for the hard-collinear

fields, though this does cause Ahc to transform inhomogeneously under its own gauge

transformation.

Wilson lines

Already briefly mentioned in the discussion of HQET, Wilson lines are used in mul-

tiple facets of SCET and HQET.

All interactions between soft and hard-collinear fields at leading order can be

removed, similar to what happens in the case of HQET, by imposing a re-definition

of the ξ field, using a “soft” Wilson line Yn−(x−) in the appropriate direction, defined

as with Yv(x) in (3.12) with n− replacing v:

ξ(x) = Yn−(x−) ξ(0)(x) and Aµhc(x) = Yn−(x−)A
(0)µ
hc (x)Y †n−(x−) . (3.22)
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The leading purely hard-collinear term in the SCET Lagrangian now simplifies to

ξ̄(0)(x) in−D
(0)
hc (x) ξ(0)(x).

Wilson lines can also help to remove the unsavoury inverse covariant differential

operators from the Lagrangian, by harnessing its effect on a field or object φ(x):

1

in+Dhc

φ(x) = Whc
1

in+∂
W †

hc φ(x) = −iWhc(x)

∫ 0

−∞
dt
[
W †

hcφ
]
(x+ tn+) , (3.23)

where the hard-collinear Wilson line is defined by

Whc(x) = P exp

(
igs

∫ 0

−∞
dt n+ ·Ahc(x+ tn+)

)
. (3.24)

The leading-order SCET Lagrangian becomes:

LSCET = ξ̄(0)(x) in− ·D(0)
hc

/n+

2
ξ(0)(x)

−
[
ξ̄(0) i

←

/D
(0)
hc⊥W

(0)
hc

]
(x)

/n+

2
i

∫ 0

−∞
dt
[
W
†(0)
hc i /D

(0)
hc⊥ξ

(0)
]
(x+ tn+) . (3.25)

Wilson lines are also immensely useful in building gauge-invariant objects and opera-

tors like external currents. For example, the full QCD heavy-to-light (hard-collinear)

current q̄ Γ b is not matched directly to ξ̄ Γhv , but to ξ̄ Whc Γhv , which is the com-

bination that preserves gauge invariance. Moreover, this object actually sums up

an infinite geometric series of leading-order hard-collinear gluon emissions from the

heavy quark before the decay vertex. Such leading-order couplings with n−Ahc are

large, so unlike Ahc⊥ and n−Ahc they cannot be written as an expansion; they have to

be summed by exponentiation, and a hard-collinear Wilson line turns out to be the

right object for this purpose. Such off-shell heavy-quark lines are not part of SCET

and HQET by construction, and must be reproduced as an effective current.

Beyond tree level, the general matching expression is a bit more complicated but

very interesting. A list of explicit current matchings can be found in [45]. In general,

the matching is given by
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ψ̄hc(x) Γ b(x)→
∑
i

∫
dt C̃i(t, µ)

(
ξ̄Whc

)
(x+ tn+) Γi hv(x−)

=
∑
i

Ci(n+ ·P hc, µ)
(
ξ̄(0)W

(0)
hc

)
(x) Γi

[
Y †n−(x−)Yv(x−)

]
h(0)
v (x−) ,

(3.26)

where we have used translational invariance and the decoupled hard-collinear quark

fields again. P hc refers to the total net hard-collinear momentum. In other words

it can be said that QCD operators match to a sum of products of SCET operators,

which reproduce correct physics below the scales integrated out, and Wilson coef-

ficients that encode the short-distance effects. Even though the final expression of

(3.26) looks like it has cleanly separated into the heavy and hard-collinear parts,

with a sterile heavy field and a hard-collinear ξ̄(0)W
(0)
hc which is decoupled from soft

interactions, the object
[
Y †n−(x−)Yv(x−)

]
has arisen – this constitutes a cusp singu-

larity at position x− where the two Wilson lines of different directions meet. This

is a universal object of geometric origin and gives rise to a logarithmic term in the

anomalous scaling dimension of the effective current, and knowledge of its value to

sufficiently high orders is important for RG resummation of large Sudakov logarithms.

In Chapter 5, use of Wilson lines (to maintain gauge invariance in hard-collinear

fields) will be implicitly assumed and not written out every time.

Renormalisation-group evolution of Wilson coefficients

The matching between QCD and SCET heavy-to-light currents leads to Wilson co-

efficients which are renormalisation-scale-dependent. In the RG equation

d

d lnµ
Ci(µ) = γ(µ)Ci(µ) , (3.27)

the anomalous dimension has the general structure

γ(µ) = −Γcusp(αs) ln
µ

µhard

+ γ′(αs) (3.28)
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which includes an explicit logarithmic dependence on the energy scale together with

the cusp anomalous dimension [44] mentioned above; this is a special property of the

RG structure in SCET.3 The solution has been found [37] to satisfy the universal

evolution

Ci(µ) = Ci(mb) exp

[
− 4π CF
β2

0 αs(mb)

(
1

z
− 1 + ln z

)
+ f1(z)

]
, (3.29)

where

z =
αs(µ)

αs(mb)
=

(
1 +

β0

2π
αs(mb) ln

µ

mb

)−1

.

The first term in the exponential is responsible for summing up “double logarithms”

of the form αns lnn+1(µ/mb) while f1(z) (whose full form can be found in [37]) sums up

next-to-leading-log terms, αns lnn(µ/mb), performing the necessary job of resumming

large logarithms that arise naturally in effective theories where large disparate scales

would otherwise have invalidated ordinary perturbative expansions.

3.4 Factorisation

The factorisation theorem, in the context of heavy-to-light flavour transitions, was

originally introduced by Beneke, Buchalla, Neubert, Sachrajda (BBNS) for use in

non-leptonic two-body B decays [46–48]. It proposes that certain contributions to

decay amplitudes can be separated into universal non-perturbative hadronic param-

eters and perturbatively calculable, process-dependent kernels, in the heavy-quark

limit mb →∞. This stays true to the goal in general in effective theories to system-

atically segregate high- and low-energy physics.

In a clearly oversimplifying scenario called “näıve factorisation”, a decay like

B → π π can be written as:

〈π+π−|(ūb)V−A(d̄u)V−A|B̄d〉 → 〈π−|(d̄u)V−A|0〉 〈π+|(ūb)V−A|B̄d〉 , (3.30)

3 µhard is a high scale like mb or the large recoil energy.
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where the two objects on the right-hand side are essentially a decay constant and

a transition form factor. This result is problematic in view of the mismatch in

renormalisation-scale dependence, and it also obviously neglects possible gluon in-

teractions between the two pions and final-state rescattering effects.

To put this into a more rigorous framework in which the above is the leading term

at the head of a series of corrections (in αs and 1/mb), more generalised factorisation

formulæ are needed. Staying in the case of B to two light mesons M1,M2, the formula

reads:

〈M1M2|Oi|B̄〉 =
∑
j

FB→M1
j (m2

2)

∫ 1

0

du T Iij(u) ΦM2(u) + (M1 ↔M2)

+

∫ 1

0

dξ du dv T IIi ΦB(ξ) ΦM1(v) ΦM2(u) ; (3.31)

the Φis are the universal non-perturbative objects that describe the mesons, and

T I,II are perturbatively calculable functions which contain to an arbitrary order in

αs possible contributions due to hard-scattering interactions. At leading order in αs,

only the first line of (3.31) remains and T I is independent of u – reproducing the

näıve factorisation result. However, another type of contribution to the amplitude is

still missing from this equation: when the partons only undergo soft interactions, its

contribution remain a genuinely non-perturbative, “non-factorisable” quantity, com-

monly encased in a form factor.

The validity, and to what order in αs specifically, of the factorisation theorem has

to be proved for each decay on a case-to-case basis. In any case, the idea to take from

this approach is that factorisable terms can be identified which can be decomposed

into simpler objects than the original transition matrix element.

The original BBNS approach as introduced above concerns non-leptonic decays;

as in this work we are principally interested in semi-leptonic b decays in which a

heavy hadron H decays into a light energetic particle L, we will turn our attention

from now on to a more suited language. Note that this new situation is palpably
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simpler than before, as gluon exchange between final states are now impossible. One

schematic way of writing the contribution to a particular form factor is:

〈L|q̄ Γi b|H〉 = Ci(µI) ξL(µI) + φH(µII)⊗ Ti(µII)⊗ φL(µII) , (3.32)

again valid at leading order in 1/mb. In the first term on the right-hand side,

Ci = 1+O(αs) includes the hard effects (like hard-vertex renormalisations) due to

heavy degrees of freedoms already integrated out using effective theory, and µI is a

factorisation scale below mb. ξL is the soft overlap form factor mentioned earlier.

It arises from the “Feynman mechanism” where a soft particle receives many small

boosts to become a higher-energy particle (with no hard-gluon exchanges present.)

There are arguments as to why it ought to be suppressed relative to hard-scattering

contributions – Sudakov suppression, related to the fact that one quark carries hard-

collinear momentum while the spectator quark(s) remains soft, forcing the hadron to

live in the end-point region – but numerically the situation is not so clear-cut and

it appears that the soft term counts just as importantly as hard-scattering terms in

heavy-to-light decays. (For a discussion of Sudakov effects see e.g. [49].) In the strict

heavy-quark limit, ξL is expected to be independent of the Dirac structure of the

decay current (analogous to the Isgur-Wise functions in heavy-to-heavy decays [50]).

In the “QCD factorisation” (QCDF) approach to calculating matrix elements (which

leads naturally the related discoveries discussed at the beginning of this section), ξL

is formally classified as a non-factorisable, non-perturbative object and must strictly

be treated as an input rather than calculated, as ill-defined loop diagrams appear.

The other term in (3.32) – proportional to αs as all hard-scattering contributions

are – is factorised, at a factorisation scale of µII < µhc; it exists as a convolution

of light-cone distribution amplitudes (LCDAs), universal non-perturbative objects

treated as inputs describing the distribution of momentum within the initial and final

hadrons (see Section 4.2), while Ti is a perturbatively calculable process-dependent

hard-scattering kernel, encoding both hard-collinear interaction effects and hard cor-

rections. This “factorisable” term is readily calculated using the so-called QCDF

framework for mesonic transitions [51, 52]. An alternative approach, SCET-based
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light-cone sum rules (which will be used in this work), is attuned to deal with both

the soft and hard-scattering factorisable contributions, but at the cost of introducing

extra auxiliary parameters and the always tricky approximation of the hadronic spec-

trum, in place of light-hadron LCDAs. At the end of the day, no method has been

found to be truly ideal in this challenging area of matrix-element calculation, and

light-cone sum rules in SCET and QCD factorisation (and other alternative meth-

ods) are best considered complementary bedfellows.

3.5 QCD Sum Rules (on the Light Cone)

The technique of QCD sum rules (for a good review see [53]) is one of the most effec-

tive tools to determine non-perturbative parameters of low-lying hadronic states, of

which it may otherwise be difficult to get theoretical estimates. A sum rule, in short,

is a relation linking a finite number of hadronic parameters, derived by connecting

two representations of the same object, a correlation function of two quark currents.

The attractions of QCD sum rules are many. Results attained using this technique

are universal – a parameter derived from one sum rule can then be used as an input in

another, along with other inputs known from experimental measurements or theoret-

ical calculations of all kinds. Manipulating sum-rule expressions in combination often

results in cancellation of inputs and hence of systematic uncertainties. Meanwhile

the method has its limitations – there is no systematic, rigorous “textbook” way to

proceed; every case has to be considered and analysed individually, preferably with

the benefit of experience. Sum rules are often restrained by irreducible systematic

errors; nevertheless it remains a route that enjoys reasonable simplicity and allows

one to keep track of sources of uncertainties.

Shifman, Vainshtein, Zakharov [54] originally put forward the QCD sum rules

in the 1970s (hereby known as the SVZ sum rules). A correlation function of the
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time-ordered product of two quark currents is defined between QCD vacuum states,

as an analytic function of the momentum-transfer variable q2 (which can for instance

refer to the virtuality of the photon that leads to the creation of a pair of quarks, as

in the following sample correlation function:)

Πµν(q) = i

∫
d4x eiq·x 〈0|T{jµ(x)jν(0)}|0〉 = (qµqν − q2gµν)Π(q2) , (3.33)

where jµ = q̄γµq. The currents involved have the right quantum numbers correspond-

ing to the states and process at hand. Light-cone sum rules (LCSRs) (see e.g. [55–57])

is a modification most suited to describing heavy-to-light flavour processes, where the

starting point is a time-ordered product of two appropriate currents sandwiched be-

tween the vacuum state and an on-shell hadronic (or photonic) state. The other

hadron is represented by an interpolating current. For instance, the B → π decay

would involve a correlation function of the b→ u current and the b−d pseudoscalar

interpolating current (see Figure 3.2):

Πµ(q) = imb

∫
d4x eiq·x 〈π(pπ)|T{ū(0)γµb(0) b̄(x)iγ5d(x)}|0〉 . (3.34)

The quark decay current is designed to project out the form factor being estimated.

The correlation function displays vastly different behaviour depending on the value

of q2: at large negative q2�−ΛQCD, the particles involved are highly virtual, and the

short-distance physics is generally calculated within the framework of perturbation

theory. If q2 is raised to positive values, the particles become real observed hadronic

states; long-distance physics lurks into view, and the correlation function has to be

expressed in terms of the hadronic spectrum. These two views of the same object are

then connected through dispersive analysis.

In SVZ sum rules, the currents are sandwiched between QCD vacuum states. To

fully account for the true non-perturbative vacuum effects, short-distance operator

product expansion (OPE) is used to separate the correlation function into perturba-

tively calculable Wilson coefficients, and universal vacuum expectation values of field

operators known as vacuum condensates. (In heavy flavour physics the OPE is facil-

itated by a natural scale mb.) These objects, which have to be determined elsewhere
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and imported into the sum rules as inputs, take care of the interactions with the back-

ground field of soft vacuum gluons and quarks. These condensates rank in importance

in order of their mass dimensions; usually only the first few lowest-dimension terms

are relevant. In LCSRs, the correlation function is expanded near the light-cone as it

is dominated by light-like distances in co-ordinate space (the validity of this is care-

fully demonstrated in [53]), resulting in an OPE-like procedure with the result that

it is now expressible as the sum of a series of convolutions, where the perturbative

process-dependent objects are not Wilson coefficients but hard-scattering kernels, and

the non-perturbative inputs are light-cone distribution amplitudes, which are ordered

by twist (see Section 4.2.1). A generic mesonic LCDA correlation function looks like:

Π(q2, p2) =
∑
n

∫ 1

0

du T (n)(u, q2, p2, µ)φ(n)(u, µ) , (3.35)

where φ(n) is a LCDA term at twist n. Also note that a factorisation-scale depen-

dence has entered both elements which must cancel after convolution.

On the hadronic side of the sum-rule derivation, the spectrum typically contains

a small number of (for convenience in this discussion we shall assume this to be

a single ground state reasonably far away from any other higher state) low-lying

resonant states (corresponding to poles on the real axis of the q2 complex plane), and

a continuum of higher-energy states (a cut, beginning at q2 = scut). By defining an

appropriate contour, as shown in Figure 3.1, and taking its radius to infinity assuming

the integrand vanishes sufficiently fast, Cauchy’s formula gives a dispersion relation:

Π(q2) =

∫ ∞
scut

ds
ρ(s)

s− q2 − iε
, (3.36)

where ρ(s), the spectral density function, describes the specific physical spectrum at

hand.

The hadronic content of the spectrum is, however, often poorly understood. To

help isolate the contribution of the ground state in which one’s interests lie, the uni-

tarity relation is used to insert a complete set of states into the correlation function,
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Figure 3.1: Contour on the complex q2-plane used to get the dispersion relation. The

circular dot represents a generic excited-state resonance (a pole on the real axis), and the

cross shows the beginning of the continuum of higher-energy states (a cut).

—

from which one then extracts the ground state, represented as a δ-function-like res-

onance whose normalisation fM depends on the quark currents in the correlation

function; everything else (mostly the continuum states) is shelved into a spectral

function. Hence the total spectral density function can now be expressed as:

ρ(s) = fM δ(s−M2) + ρ∗(s) θ(s− scut) . (3.37)

To evade having to find knowledge of the heavier states in the spectrum, one

invokes quark-hadron duality, which assumes at large enough q2 > s0, the integrated

spectral function is equivalent to that calculated using OPE, as if hadrons could be

approximated by a free-parton picture. This allows the integral in the OPE represen-

tation of the correlation function to be truncated above this “threshold parameter”

s0, which is typically taken as the location of the next highest resonance or the be-

ginning of the continuum, above the ground state.

As we have seen, QCD sum rules are by construction really only ideal for studying

low-lying hadronic states, in particular the ground state (isolated knowledge of higher
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states are typically difficult to get, even if one uses tricks based on symmetries and

so on to cancel out certain undesirable contributions.) A second, mathematical trick

further pushes on the derivation to its natural conclusion: a Borel transformation,

Π(M2
Bor) = B̂M2

Bor
Π(q2) = lim

−q2,n→∞
−q2/n=M2

Bor

(−q2)n+1

n!

(
d

dq2

)n
Π(q2) , (3.38)

is performed, which eliminates any positive polynomials in q2 and suppresses higher

states exponentially, achieving the overall effect of emphasising the contribution of

nothing but the ground state.

These procedures introduce auxiliary parameters into the sum rules – the Borel

parameter M2
Bor and the hadronic threshold parameter s0 respectively, which unfor-

tunately and inevitably carry their own associated uncertainties, as, for example,

the hadronic spectrum of the interpolating current is more often than not not clear-

cut in its structure beyond the lowest states. These parameters are not necessarily

process-independent, but it is usually sensible to get at least an order-of-magnitude

estimate from other sum rules. This issue must be considered carefully during the

analysis on the reliability of the final sum-rule expression. With hope, there exist (a

range of) values of them that lead to a stable sum rule. Despite this weakness the

sum rule method is often still favoured for its simplicity compared to methods like

lattice-based calculations.

Flavour physics-related parameters that have been successfully calculated us-

ing sum rules over the years include quark masses, meson decay constants, LCDA-

related parameters like Gegenbauer moments, and also transition form factors (see

e.g. [58–63] for achievements in decay form factors of B mesons over the years). In

this work, we combine it with SCET to estimate form factors entering the decay

Λb → Λ `+`− in the large-recoil limit.



3.5. QCD Sum Rules (on the Light Cone) 37

Figure 3.2: Sum-rule correlation diagrams, using the soft Feynman-mechanism term as an

example, in conventional light-cone sum rules (left) and SCET LCSRs (right).

—

3.5.1 SCET LCSRs

For the quintessential exclusive heavy-to-light decay B → π, it has been shown [64]

that light-cone sum rules produce results that fit with symmetry relations derived

from QCD factorisation for factorisable terms. However, while the traditional LCSR

framework is able to assign momentum scalings to quark and gluon lines in individ-

ual diagrams reminiscent of SCET procedures, incorporating SCET into the LCSR

framework in a fundamental way makes it more naturally accommodating with QCDF

ideas, when it comes to identifying factorisable and non-factorisable contributions.

With SCET as a formal underlying effective-theory framework to enforce explicit per-

turbative separation of scales, a modified version of the LCSR technique will facilitate

better control of resummation of large logarithms, for both generic and end-point con-

figurations via renormalisation-group methods.

Importantly, while traditional LCSRs do not require the heavy-quark limit to be

taken at the beginning, and dispersive analysis is performed with finite heavy-quark

masses, a SCET version of LCSRs allows the heavy-quark expansion from the outset,

allowing power counting at the correlator level, with the analysis proceeding from

there, ending with a systematic expansion of terms in 1/mb and αs.
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The first technical modification comes from recognising that the hard degrees of

freedom (virtuality O(m2
b)) in the heavy-quark field are integrated out already into

external coefficients. Hence it ought to be treated as an external source field and

not forced to enter the correlator as a propagating particle. To this end, the heavy

hadron is now made to enter the correlation function through its momentum-space

light-cone distribution amplitudes, while the light hadron is represented by a choice of

interpolating current with the correct quantum numbers. This swap in the manners

of involvement of the initial and final hadrons of course leads to the issue of heavy-

hadron LCDAs which require different treatment in a number of ways from their light

counterparts (see Section 4.2).

* * *

A generic “factorisable” term in a heavy-to-light decay, as represented by the

second term in (3.32), could be visualised as in Figure 3.3: formally, it divides into

3 parts as clearly shown by the structure of the term φH ⊗ Ti ⊗ φL. This would

require a calculation involving SCET-II, as the quark lines entering the light hadron

are counted formally as having collinear momentum: pc ∼ Q(1, λ, λ2), but with the

same virtuality as soft fields. Unfortunately this s⊗ hc⊗ c factorisation structure is

idealistic and reality fails to factorise simply, due to complications between the latter

2 sectors.

Using SCET LCSRs where the separation of the scales mb, µhc and Λ is already

built in, and where the light hadron is interpolated by quark fields, one effectively

sidesteps complications involving the collinear sector (and usage of SCET-II). Instead

of having to consider both soft and collinear radiative corrections and end-point di-

vergences related to the light LCDAs in relevant diagrams, one now only has soft ones

from the heavy side. Another significant consequence is that with SCET LCSRs, one

can even attempt to deal with the QCDF-designated non-factorisable term, and as

seen in [65] and in equation (5.6), it ends up also as a convolution of a heavy LCDA

and a kernel-like object – originating from the soft and hard-collinear regions respec-

tively. Thus both factorisable and non-factorisable terms at their respective leading
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orders in 1/mb and αs have been calculated; theoretically a systematic and consistent

expansion exists but whether the corrections are technically feasible to be derived is

another matter. In any case, it is pleasant to see the two types of contributions on

equal footing calculationally speaking.

Figure 3.3: A factorisable exclusive heavy-to-light process in QCDF/SCET.

—



Chapter 4

Light-Cone Distribution

Amplitudes and Decay Form

Factors for Heavy Baryons

To begin this chapter we motivate flavour research on heavy baryons, in particular

the Λb particle and its decays; we also discuss two issues which will play important

rôles in the SCET sum-rule calculations for Λb → Λ `+`− in Chapter 5 – the light-cone

distribution amplitudes for Λb in HQET and relevant form-factor parametrisations.

4.1 Baryon versus Meson

Experimentally observed fermionic bound states of quarks exist as either mesons or

baryons. The B meson is the simplest possible hadron containing a heavy quark –

a single b quark and a single light quark. Due to the simplifying power of the high

mass of the b, much has been achieved in terms of data on CKM parameters and

CP violation, through measurements of decay rates, angular distributions, mixing

parameters and so on, with related technological advances on the theory side.

However, B mesons exist as pseudoscalar bound states; although angular analyses
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can be used to extract helicity information out of rehadronisation processes, using

decays of half-integer-spin baryons one has a more direct link to the helicity structure

of the weak effective Hamiltonian, for instance whether extra wrong-chirality effective

operators suppressed or forbidden in the Standard Model, like an extra operator O′7γ

(3.4) where (1 + γ5) is replaced by (1 − γ5), might be at play. In any case baryonic

decays have a complementary analysing power to mesonic ones, and their hadronic

systematic uncertainties are not the same. A natural candidate for consideration is

the decay Λb → Λ `+`−, whose initial state, the Λb baryon, is one of the simplest

3-quark heavy bound states, with the valence structure of a heavy b quark and the 2

lightest quarks u and d, a ground state with JP = 1
2

+
and mass MΛb = 5.6 GeV [66].

Utilising heavy-quark symmetry leads to considerable theoretical simplification (see

Section 3.2 and [35, 67]); within the baryon the dynamics reduce to soft interactions

between light degrees of freedom and an external static colour source. In particular, it

enjoys an SU(2) spin symmetry; the spin degrees of freedom “decouple” in the heavy-

quark limit, with the light u d pair forming as a spin- and isospin-singlet “diquark”

object, and the overall baryonic state shares the same spin= 1
2

with the heavy b quark.

At e+e− colliders, Λb baryons retain a significant portion of the longitudinal po-

larisation that originates from the bottoms produced through Z decays; at pp̄ hadron

colliders the transverse-polarised are less negligible (for more information about Λb

polarisation from hadronic collisions see e.g. Section 6 of [68]). This is enormously

helpful in the study of helicity structure of the effective Hamiltonian mentioned above,

through angular analysis of the Λb spin and the Λ momentum [69]. Even for unpo-

larised Λb particles, information can be gathered through an angular analysis of the

self-analysing secondary decay Λ→ p π−, or lepton asymmetries.

There are obvious downsides to using baryons in the search for new physics,

various additional difficulties compared to mesonic investigations. Immediately one

knows that the theoretical calculations become more intricate as there are more light

degrees of freedom in bound states, leading to larger theoretical uncertainties. In
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addition, baryons like Λb suffer the disadvantage of a lower production rate. Com-

pared to the B meson, the production rate of Λb through b hadronisation is smaller

by about an order of magnitude (see e.g. [70]).

On the semi-leptonic decay B → K(∗)`+`− much work has been done in past

experiments in particular BaBar [71] and Belle [72]. The observation of the baryonic

equivalent is not expected at these B-factories, however, due to a practical issue:

both of these B-factories, Belle and BaBar, are by definition specialist machines for

producing B mesons, with the centre-of-mass energy tuned at just above Υ(4S)1. For

baryonic b decays one has to rely on hadronic colliders. It was at CDF Tevatron that

Λb → Λµ+µ− was first observed and measured in 2011 with a O(10−6) branching

ratio. The bright side is that, given the power of current hadron colliders especially

the LHCb, the issue of small data is increasingly overcome. Data for the same decay

from LHCb were announced in June 2013 with a slightly bigger yield. The available

data are summarised in Table 4.1.

Experiment & Yield Branching ratio/10−6 Remarks

Published year /events (±stat±sys)

CDF 2011 [73] 24± 5 1.73± 0.42± 0.55
√
s = 1.96 TeV, 6.8 fb−1

CDF 2012 update [74] 51± 7 1.95± 0.34± 0.61 full data set 9.6 fb−1

LHCb 2013 [75] 78± 12 0.96± 0.16± 0.13
√
s = 7 TeV, 1.0 fb−1

±0.21 from normalisation
mode Λb→J/ψΛ data collected in 2011

Table 4.1: Currently available experimental data on the decay Λb → Λµ+µ−.

Given enough data, the study of baryonic heavy decays opens up possibilities

previous unavailable for mesonic decays. In any case, with its non-zero spin and

its completely separate hadronic make-up from B mesons, the Λb simply unlocks

1Though Belle has also explored the Υ(10860) resonance and some lower ones.



4.2. Λb Light-Cone Distribution Amplitudes 43

an excellent extra set of independent channels to complement B processes, allowing

comparison and additional constraints on BSM models. As brought up at the end

of Chapter 2, any new independent decay channel will be considered valuable, if the

community moves towards a Bayesian statistical approach to New Physics discovery,

which will require as many observables as possible in order to be able to draw con-

straints on parameters in each new model. The hard-to-detect nature of baryonic

decays are no longer valid arguments with the recent advent of powerful hadron col-

liders, but there is still a long way to go. The investigation of Λb decays looks bright

as long as we continue to build upon theoretical work to keep uncertainties under

control and manageably small for confronting high-statistics data.

* * *

As we have probably mentioned, the focus is on the decay Λb → Λ `+`− in this

work, specifically to calculate its transition form factors using SCET light-cone sum

rules, which requires a description of the Λb baryon in terms of light-cone distribu-

tion amplitudes. In the following section we introduce LCDAs and a new study of

Λb LCDAs which have received relatively little attention until recently.

4.2 Λb Light-Cone Distribution Amplitudes

4.2.1 Introduction

Light-cone distribution amplitudes (LCDAs) are matrix elements of non-local QCD

light-cone operators between the vacuum and the multi-quark bound state under

consideration. They encode information about the (longitudinal) momentum distri-

bution among partons within a hadronic state, and have been probed to various levels

of depth for mesons and baryons, light and heavy, for use in both flavour physics and

beyond. First put forward by Brodsky, Lepage [76], Chernyak, Zhitnitsky [77,78] and

others in the context of QCD hard exclusive processes, the study of LCDAs can be

viewed as a field of research unto itself; as the constituents of a hadronic bound state
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are held together through soft interactions of order ΛQCD, LCDAs are non-trivial ob-

jects not calculable perturbatively by nature, and they are modelled and estimated

accordingly, using methods like lattice calculations and sum rules, and also investi-

gated experimentally.

The name reflects that the operators involved are defined at light-like separations;

e.g. the 3 quark fields in (4.2) and (4.3) lie on the same light-cone direction. Due

to this non-local nature, to restore manifest gauge invariance to the matrix element,

one has to include gauge links in the form of Wilson lines:

[x, y] = P exp

{
igs

∫ 1

0

dt (x− y)µAµ(tx+ (1− t)y)

}
, (4.1)

where P signifies path-ordering. In this chapter we focus only on the Λb LCDAs de-

fined by 3-particle operators, in which the b quark enters as an effective heavy-quark

field, and the light diquark is interpolated by different possible Dirac structures.

In general, usage of LCDAs facilitate the ideas of QCD factorisation. As seen in

the previous chapter, LCDAs feature in factorisation theorems, in which exclusive

heavy-to-light decays contain factorisable parts that use LCDAs as non-perturbative

universal inputs. In sum-rule approaches, LCDAs are indispensable ingredients for

calculating the same decays, which depending on the exact approach may allow treat-

ments of both factorisable and non-factorisable contributions. Another advantage is

that the renormalisation-group (RG) evolution behaviour of the operators that de-

fine LCDAs translate directly into RG equations for the LCDAs themselves. Their

usefulness and ease-of-use are a good driving force behind keen research into LCDAs

– their basic parametrisation, modelling and RG behaviour.

Conventional QCD sum rules on the light cone require the knowledge of DAs of

light mesons, and these were the first to be examined at length. Using conformal

symmetry of massless QCD, the matrix elements of such light-cone non-local oper-

ators are subjected to short-distance expansion, using local conformal operators as
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a basis [53, 79]. It can be shown that this results in an infinite series of terms sup-

pressed by increasing inverse powers of the large momentum transfer, linked to the

twist (=dimension−spin) of the conformal operators, and hence LCDAs of the lowest

twist(s) are the most crucial ones to be included in related calculations. The volumi-

nous2 literature on light-meson LCDAs began from early studies in twist-2 LCDAs

of π [76,77], to twist-2 and higher LCDAs of chiefly pseudoscalar and vector mesons

like π, ρ,K,K(∗), φ , using sum-rule and related methods [80–83], lattice-based meth-

ods [84] and various others, e.g. [85].

With more partonic content baryonic LCDAs are obviously more challenging and

research is thin in comparison, with most of it focussed on the nucleon [86,87]. Strange

baryons have also been studied [88,89].

Interest in LCDAs of heavy-light hadrons flared after their worth in the QCD

factorisation approach to heavy-to-light decays was realised. They naturally require

a different treatment from their all-light counterparts, starting not from conformal

massless QCD but from a definition and parametrisation of matrix elements within

heavy-quark effective theory. Now, twist itself has no clear definition within HQET

(though could still be assigned to the light-quark spinors, as in [90]); in the case of

SCET (sum rules), which we shall adopt in Chapter 5, the power-counting officially

follows from the effective field operators and is in terms of 1/mb and 1/n+p
′, and is

not in direct correspondence with a twist expansion; meanwhile the soft multi-pole

expansion takes the place of the light-cone expansion in conventional twist-counting.

LCDAs of B mesons were first explored in [91] and have been studied in papers such

as [51,92,93]; for particular focus on their RG properties see e.g. [94–97].

* * *

This leads us ultimately to the construction of LCDAs of heavy-light baryons,

2The citations here represent but a small selection of results published on this vast topic, often

by the same experts building on previous work.
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which will inevitably build on the expertise in all of the above. For the relatively

simple Λb (JP = 1/2+) baryons, their LCDAs have been looked at in [98, 99] but

were first carefully classified and modelled in the important paper [90], upon which

other work has been built [100]. Now we present a new study of these LCDAs and

corresponding models.

4.2.2 LCDAs for Heavy Baryons: A New Study

Light-cone distribution amplitudes for Λb baryons in HQET contain the hadronic

information entering factorisation theorems for exclusive Λb transitions in the heavy-

quark limit (see e.g. [1, 101]). Following [90], we define the following position-space

LCDAs related to the leading 3-particle operators:

εabc 〈0|
(
ua(τ1n−)Cγ5/n− d

b(τ2n−)
)
hcv(0)|Λb(v, s)〉 = f

(2)
Λb
φ̃2(τ1, τ2)uΛb(v, s) ,

εabc 〈0|
(
ua(τ1n−)Cγ5/n+ d

b(τ2n−)
)
hcv(0)|Λb(v, s)〉 = f

(2)
Λb
φ̃4(τ1, τ2)uΛb(v, s) , (4.2)

for diquark currents with an odd number of Dirac matrices, and

εabc 〈0|
(
ua(τ1n−)Cγ5 d

b(τ2n−)
)
hcv(0)|Λb(v, s)〉 = f

(1)
Λb
φ̃s3(τ1, τ2)uΛb(v, s) ,

εabc 〈0|
(
ua(τ1n−)Cγ5 iσµνn

µ
+n

ν
− d

b(τ2n−)
)
hcv(0)|Λb(v, s)〉 = 2f

(1)
Λb
φ̃σ3 (τ1, τ2)uΛb(v, s) ,

(4.3)

for those an even number of Dirac matrices. Gauge links of the form (4.1) required

to ensure gauge invariance have been omitted for simplicity.

Light-Cone Projectors for the 3-Particle Fock State

The above definitions can be cast into a manifestly Lorentz-invariant form by defining

the most general non-local matrix elements in co-ordinate space as

εabc 〈0|
(
uaα(z1) dbβ(z2)

)
hcv(0)|Λb(v, s)〉

≡ 1

4

{
f

(1)
Λb

[
M̃ (1)(v, z1, z2) γ5C

T
]
βα

+ f
(2)
Λb

[
M̃ (2)(v, z1, z2) γ5C

T
]
βα

}
uΛb(v, s) , (4.4)
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in which the part containing an odd number of Dirac matrices, M (1), has been sepa-

rated from the part with an even number, M (2). These are:

M̃ (2)(v, z1, z2) = /v Φ̃2(t1, t2, z
2
1 , z

2
2 , z1 ·z2) +

Φ̃X(t1, t2, z
2
1 , z

2
2 , z1 ·z2)

4t1t2
(/z2/v/z1 − /z1/v/z2)

+
Φ̃

(i)
42 (t1, t2, z

2
1 , z

2
2 , z1 ·z2)

2t1
/z1 +

Φ̃
(ii)
42 (t1, t2, z

2
1 , z

2
2 , z1 ·z2)

2t2
/z2 ,

(4.5)

M̃ (1)(v, z1, z2) = Φ̃
(0)
3 (t1, t2, z

2
1 , z

2
2 , z1 ·z2) +

Φ̃Y (t1, t2, z
2
1 , z

2
2 , z1 ·z2)

4t1t2
(/z2/z1 − /z1/z2)

+
Φ̃

(i)
3 (t1, t2, z

2
1 , z

2
2 , z1 ·z2)

2t1
/v/z1 +

Φ̃
(ii)
3 (t1, t2, z

2
1 , z

2
2 , z1 ·z2)

2t2
/z2/v , (4.6)

where ti = v · zi. Considering isospin invariance for the light-quark fields (exchanging

z1 ↔ z2 and taking care of the charge-conjugation properties of Dirac matrices), one

requires the above LCDAs to have the following symmetries and relations:

Φ̃2(t1, t2, z
2
1 , z

2
2 , z1 ·z2) = Φ̃2(t2, t1, z

2
2 , z

2
1 , z1 ·z2) ,

Φ̃
(i)
42 (t1, t2, z

2
1 , z

2
2 , z1 ·z2) = Φ̃

(ii)
42 (t2, t1, z

2
2 , z

2
1 , z1 ·z2) ,

Φ̃X(t1, t2, z
2
1 , z

2
2 , z1 ·z2) = Φ̃X(t2, t1, z

2
2 , z

2
1 , z1 ·z2) , (4.7)

and

Φ̃
(0)
3 (t1, t2, z

2
1 , z

2
2 , z1 ·z2) = Φ̃

(0)
3 (t2, t1, z

2
2 , z

2
1 , z1 ·z2) ,

Φ̃
(i)
3 (t1, t2, z

2
1 , z

2
2 , z1 ·z2) = Φ̃

(ii)
3 (t2, t1, z

2
2 , z

2
1 , z1 ·z2) ,

Φ̃Y (t1, t2, z
2
1 , z

2
2 , z1 ·z2) = Φ̃Y (t2, t1, z

2
2 , z

2
1 , z1 ·z2) . (4.8)

The Projector M̃ (2) (odd number of Dirac matrices)

Here one expands z1 and z2 around the light-cone, using n−zi�z⊥i �n+zi , to obtain

M̃ (2)(v, z1, z2) −→ /n+

2
φ̃2(τ1, τ2) +

/n−
2

(
φ̃2(τ1, τ2) + φ̃

(i)
42 (τ1, τ2) + φ̃

(ii)
42 (τ1, τ2)

)
+
φ̃

(i)
42 (τ1, τ2)

2τ1

/z⊥1 +
φ̃

(ii)
42 (τ1, τ2)

2τ2

/z⊥2

+ φ̃X(τ1, τ2)

(
/z⊥1
2τ1

− /z⊥2
2τ2

)(
/n−/n+

4
− /n+/n−

4

)
+O(z2

i⊥, n−zi) , (4.9)
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where again τi = n+zi
2

are the Fourier-conjugate variables to the momentum compo-

nents ωi = n−ki of the associated light-quark fields, such that

φ2(ω1, ω2) ≡
∫
dτ1

2π
eiω1τ1

∫
dτ2

2π
eiω2τ2 φ̃2(τ1, τ2) etc. (4.10)

Comparison with the definition in (4.2) yields the relation

φ̃
(i)
42 (τ1, τ2) + φ̃

(ii)
42 (τ1, τ2) = φ̃4(τ1, τ2)− φ̃2(τ1, τ2) , (4.11)

while the asymmetric combination of φ̃
(i)
42 and φ̃

(ii)
42 and also φ̃X do not contribute in

the collinear limit z2
i → 0. After Fourier transformation, the general momentum-

space representation for (4.9), including first-order terms off the light-cone, reads:

M (2)(ω1, ω2) =
/n+

2
φ2(ω1, ω2) +

/n−
2
φ4(ω1, ω2)

− 1

2
γ⊥µ

∫ ω1

0

dη1

(
φ

(i)
42 (η1, ω2)− φX(η1, ω2)

) /n+/n−
4

∂

∂k⊥1µ

− 1

2
γ⊥µ

∫ ω1

0

dη1

(
φ

(i)
42 (η1, ω2) + φX(η1, ω2)

) /n−/n+

4

∂

∂k⊥1µ

− 1

2
γ⊥µ

∫ ω2

0

dη2

(
φ

(ii)
42 (ω1, η2)− φX(ω1, η2)

) /n−/n+

4

∂

∂k⊥2µ

− 1

2
γ⊥µ

∫ ω2

0

dη2

(
φ

(ii)
42 (ω1, η2) + φX(ω1, η2)

) /n+/n−
4

∂

∂k⊥2µ
. (4.12)

The Projector M̃ (1) (even number of Dirac matrices)

Similarly, for the projector with an even number of Dirac matrices, one obtains

M̃ (1)(v, z1, z2) −→ φ̃
(0)
3 (τ1, τ2) + φ̃

(i)
3 (τ1, τ2)

/n+/n−
4

+ φ̃
(ii)
3 (τ1, τ2)

/n−/n+

4

+ φ̃
(i)
3 (τ1, τ2)

/v /z⊥1
2τ1

+ φ̃
(ii)
3 (τ1, τ2)

/z⊥2 /v

2τ2

+ φ̃Y (τ1, τ2)

(
/z⊥2 /n−
2τ2

+
/n−/z⊥1
2τ1

)
+O(z2

i⊥, n−zi) , (4.13)

where from (4.3) one now has

φ̃s3(τ1, τ2) =
2φ̃

(0)
3 (τ1, τ2) + φ̃

(i)
3 (τ1, τ2) + φ̃

(ii)
3 (τ1, τ2)

2
,

φ̃σ3 (τ1, τ2) =
φ̃

(ii)
3 (τ1, τ2)− φ̃(i)

3 (τ1, τ2)

2
. (4.14)
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It is sometimes more convenient to define, following [90],

φ̃+−
3 (τ1, τ2) ≡ 2

(
φ̃s3(τ1, τ2) + φ̃σ3 (τ1, τ2)

)
= 2

(
φ̃

(0)
3 (τ1, τ2) + φ̃

(ii)
3 (τ1, τ2)

)
,

φ̃−+
3 (τ1, τ2) ≡ 2

(
φ̃s3(τ1, τ2)− φ̃σ3 (τ1, τ2)

)
= 2

(
φ̃

(0)
3 (τ1, τ2) + φ̃

(i)
3 (τ1, τ2)

)
. (4.15)

The expansion of the corresponding momentum-space projector takes the general

form

M (1)(ω1, ω2) =
/n−/n+

8
φ+−

3 (ω1, ω2) +
/n+/n−

8
φ−+

3 (ω1, ω2)

− 1

2

∫ ω1

0

dη1 φ
(i)
3 (η1, ω2) /v γ⊥µ

∂

∂k⊥1µ
− 1

2

∫ ω2

0

dη2 φ
(ii)
3 (ω1, η2) γ⊥µ /v

∂

∂k⊥2µ

− 1

2

∫ ω1

0

dη1 φY (η1, ω2) /n−γ
⊥
µ

∂

∂k⊥1µ
− 1

2

∫ ω2

0

dη2 φY (ω1, η2) γ⊥µ /n−
∂

∂k⊥2µ
.

(4.16)

Wandzura-Wilczek Relations

Wandzura-Wilczek (WW) relations [102] have been shown to link certain LCDA

terms for particles like B mesons in HQET [51,103] and light vector mesons [81]. In

the WW approximation where LCDAs for higher Fock states with dynamical gluons

are neglected, the matrices M̃ (1,2)(z1, z2) (4.5,4.6) would fulfil the equations of motion

for free light-quark fields,

γµ
i∂

∂zµ2
M̃ (1,2)(v, z1, z2) =

i∂

∂zµ1
M̃ (1,2)(v, z1, z2) γµ ≈ 0 . (4.17)

This translates into differential equations for the LCDAs in the collinear limit. These

can be obtained by expanding the above equation around the light-cone, and solving

for the derivatives with respect to the arguments (z2
i , z1·z2) off the light cone. Alter-

natively, one can start from the expanded form of M̃ (1,2) and consider the projected

equations of motion

/n+/n−
4

γµ
i∂

∂zµ2
M̃ (1,2)(v, z1, z2)

∣∣∣
z⊥1,2=0

=
i∂

∂zµ1
M̃ (1,2)(v, z1, z2) γµ

/n−/n+

4

∣∣∣
z⊥1,2=0

≈ 0 . (4.18)

This yields the following WW relations for the LCDAs in M̃ (2):

φ̃
(i)
42 (τ1, τ2) + φ̃X(τ1, τ2) + τ1

∂

∂τ1

φ̃4(τ1, τ2) ≈ 0 ,

φ̃
(ii)
42 (τ1, τ2) + φ̃X(τ1, τ2) + τ2

∂

∂τ2

φ̃4(τ1, τ2) ≈ 0 . (4.19)
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For the Fourier-transformed LCDAs this implies

φ
(i)
42 (ω1, ω2) + φX(ω1, ω2)− ∂

∂ω1

(ω1 φ4(ω1, ω2)) ≈ 0 ,

φ
(ii)
42 (ω1, ω2) + φX(ω1, ω2)− ∂

∂ω2

(ω2 φ4(ω1, ω2)) ≈ 0 , (4.20)

or, equivalently,

φ
(i)
42 (ω1, ω2)− φ(ii)

42 (ω1, ω2) ≈ ∂

∂ω1

(ω1 φ4(ω1, ω2))− ∂

∂ω2

(ω2 φ4(ω1, ω2)) ,

2φX(ω1, ω2) + φ4(ω1, ω2)− φ2(ω1, ω2) ≈ ∂

∂ω1

(ω1 φ4(ω1, ω2)) +
∂

∂ω2

(ω2 φ4(ω1, ω2)) .

(4.21)

The latter relations reveal that, once the functions φ2 and φ4 – which are the relevant

LCDAs for the collinear limit – are known, φX and the asymmetric combination of

φ
(i,ii)
42 can be calculated from the WW approximation. At the same time, one could

also conclude that given the number of WW relations derived is smaller than the

number of LCDAs in the Lorentz decomposition (4.5), the LCDA terms relevant for

the collinear limit in (4.2) remain independent.

In a similar way, for the terms in M̃ (1) one obtains the relations

φ̃
(i)
3 (τ1, τ2) + τ1

∂

∂τ1

(
φ̃

(0)
3 (τ1, τ2) + φ̃

(i)
3 (τ1, τ2)

)
≈ 0 ,

φ̃
(ii)
3 (τ1, τ2) + τ2

∂

∂τ2

(
φ̃

(0)
3 (τ1, τ2) + φ̃

(ii)
3 (τ1, τ2)

)
≈ 0 , (4.22)

or, in momentum space,

φ
(i)
3 (ω1, ω2)− ∂

∂ω1

(
ω1 φ

(0)
3 (ω1, ω2) + ω1 φ

(i)
3 (ω1, ω2)

)
≈ 0 ,

φ
(ii)
3 (ω1, ω2)− ∂

∂ω2

(
ω2 φ

(0)
3 (ω1, ω2) + ω2 φ

(ii)
3 (ω1, ω2)

)
≈ 0 . (4.23)

Notice that in this case, the function φY does not appear in the WW relations, and

therefore remains independent, whereas the functions φs3 and φσ3 appearing in the

collinear limit are related by

−ω1
∂

∂ω1

φ−+
3 (ω1, ω2) ≈ −ω2

∂

∂ω2

φ+−
3 (ω1, ω2) ≈ 2φ

(0)
3 (ω1, ω2) . (4.24)
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4.2.3 Construction in Momentum Space

Momentum-space projectors of the LCDAs are especially useful as they find straight-

forward application in the diagrammatic analysis of exclusive matrix elements, whether

in QCD factorisation or sum-rule correlation functions (as seen in [51] etc.) Here

we construct on-shell projectors for the Λb baryon from 3-particle “wave-functions”

directly from a momentum-space representation (the meson case is similarly inves-

tigated in [2]); to keep the discussion simple, corrections to the WW relation are

neglected in the rest of this discussion.

The most general form of the momentum-space projector can be written as:

M (1)(v, k1, k2) = ψ̃s(x1, x2, K
2) /k2 /k1 ,

M (2)(v, k1, k2) = ψ̃v(x1, x2, K
2) /k2 /v /k1 , (4.25)

where xi = 2 v ·ki and K2 = (k1 + k2)2, and ψs and ψv are two independent wave-

functions. The equations of motion, /k2M
(1,2)(v, k1, k2) = M (1,2)(v, k1, k2) /k1 = 0,

are again trivially fulfilled for on-shell quarks with k2
i = 0. In addition to the WW

approximation, the potential K2-dependence is neglected for simplicity, even though

the invariant mass of the diquark system can in principle be arbitrary, i.e. K2 6= 0.

This approximation corresponds to the case where the wave-function only depends

on the total invariant mass of the 3 quarks in the Λb baryon, i.e. (mbv + k1 + k2)2 '

m2
b +mb(x1 + x2).

The Projector M (2) (odd number of Dirac matrices)

To compare with the general definition of LCDAs, we consider the convolution of

their momentum-space projectors with a hard-scattering kernel that is at most linear

in ki⊥. One obtains:
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∫
d̃k1

∫
d̃k2 Tr

[ (
T0(ω1, ω2) + kµi⊥T

i
µ(ω1, ω2)

)
M (2)(v, k1, k2)

]
=

∫
dω1 dω2

∫ ∞
ω1

dx1

∫ ∞
ω2

dx2

{

Tr

[
T0(ω1, ω2)

(
ω1ω2

/n+

2
+ (x1 − ω1)(x2 − ω2)

/n−
2

)]
− Tr

[
T 1
µ(ω1, ω2)

(
ω1ω2(x1 − ω1)

/n+/n−
4

+ ω1(x1 − ω1)(x2 − ω2)
/n−/n+

4

)
γµ⊥
2

]
− Tr

[
T 2
µ(ω1, ω2)

γµ⊥
2

(
ω1ω2(x2 − ω2)

/n−/n+

4
+ ω2(x1 − ω1)(x2 − ω2)

/n+/n−
4

)]
}
ψv(x1, x2) , (4.26)

where we have used for the momentum integrations a Lorentz-invariant integration

measure d̃ki for an on-shell massless particle, defined such that it already reflects the

light-cone kinematics in a hard-scattering process (with the azimuthal angle in the

transverse plane integrated out):

d̃ki ≡ d|ki⊥|2
dωi
ωi

=
d3ki
π v ·ki

, where kµi = ωi
nµ+
2

+ kµi⊥ +
|ki⊥|2

ω

nµ−
2
. (4.27)

Comparison with the position-space expressions in the collinear limit as above yields

φ2(ω1, ω2) =

∫ ∞
ω1

dx1

∫ ∞
ω2

dx2 ω1ω2 ψv(x1, x2) ,

φ4(ω1, ω2) =

∫ ∞
ω1

dx1

∫ ∞
ω2

dx2 (x1 − ω1)(x2 − ω2)ψv(x1, x2) , (4.28)

together with

φ
(i)
42 (ω1, ω2) =

1

2

∫ ∞
ω1

dx1

∫ ∞
ω2

dx2 x2(x1 − 2ω1)ψv(x1, x2) ,

φ
(ii)
42 (ω1, ω2) =

1

2

∫ ∞
ω1

dx1

∫ ∞
ω2

dx2 x1(x2 − 2ω2)ψv(x1, x2) ,

φX(ω1, ω2) =
1

2

∫ ∞
ω1

dx1

∫ ∞
ω2

dx2 (x1 − 2ω1) (x2 − 2ω2)ψv(x1, x2) . (4.29)
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Some of these terms, following the pattern in (4.12), feature in the calculation of ∆ξΛ

in Chapter 5; for convenience here we define the concise notations

G(ω1, ω2) ≡
∫ ω1

0

dη1

(
φ

(i)
42 (η1, ω2)− φX(η1, ω2)

)
,

H(ω1, ω2) ≡
∫ ω2

0

dη2

(
φ

(ii)
42 (ω1, η2) + φX(ω1, η2)

)
. (4.30)

It can be checked that the LCDAs constructed in this way satisfy the WW relations

derived earlier. Note that our simplified ansatz relates all LCDAs to xi-moments of

only two fundamental wave-functions, ψv and ψs (see below). The functional form of

ψv can be reconstructed, for instance, from

ψv(ω1, ω2) =
d2

dω1 dω2

(
φ2(ω1, ω2)

ω1ω2

)
=
d4φ4(ω1, ω2)

dω2
1 dω

2
2

. (4.31)

With a more general ansatz these relations would be modified by non-trivial K2-

dependence of the wave-functions. In the simplest case, one could again model the

wave-functions by assuming an exponential dependence on (x1 + x2):

ψv(x1, x2)→
exp

(
−x1+x2

ω0

)
ω6

0

; (4.32)

this yields

φ2(ω1, ω2)→ ω1ω2

ω4
0

e−(ω1+ω2)/ω0 , φ4(ω1, ω2)→ 1

ω2
0

e−(ω1+ω2)/ω0 , (4.33)

and

φ
(i)
42 (ω1, ω2)→ (ω0 − ω1)(ω0 + ω2)

2ω4
0

e−(ω1+ω2)/ω0 ,

φ
(ii)
42 (ω1, ω2)→ (ω0 + ω1)(ω0 − ω2)

2ω4
0

e−(ω1+ω2)/ω0 ,

φX(ω1, ω2)→ (ω0 − ω1)(ω0 − ω2)

2ω4
0

e−(ω1+ω2)/ω0 . (4.34)

In particular,

φ
(i)
42 (ω1, ω2)− φ(ii)

42 (ω1, ω2)→ ω2 − ω1

ω3
0

e−(ω1+ω2)/ω0 ,

G(ω1, ω2) =
ω1ω2

ω3
0

e−(ω1+ω2)/ω0 , H(ω1, ω2) =
ω2

ω2
0

e−(ω1+ω2)/ω0 . (4.35)
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For comparison, a free-parton picture with x1+x2 = 2Λ̄ = MΛb−mb would correspond

to

ψv(x1, x2)→ 15

4Λ̄5
δ(x1 + x2 − 2Λ̄) , (4.36)

which yields

φ2(ω1, ω2)→ 15ω1ω2 (2Λ̄− ω1 − ω2)

4Λ̄5
θ(2Λ̄− ω1 − ω2) ,

φ4(ω1, ω2)→ 5 (2Λ̄− ω1 − ω2)3

8Λ̄5
θ(2Λ̄− ω1 − ω2) . (4.37)

To illustrate these results, we compare the forms of the LCDA φ2(ω1, ω2) resulting

from: (i) the exponential ansatz in (4.33), (ii) the free-parton approximation (4.37),

and (iii) the model from equation (38) in [90]. For this purpose, we consider the

functions

f2(ω) ≡ ω

∫ 1

0

du φ2(uω, ūω) =


ω3

6ω4
0
e−ω/ω0 (4.33) with ω0 = 2Λ̄

5
= 0.4 GeV

ω3

6ε40
e−ω/ε0 [90] with ε0 = 0.2 GeV

5ω3 (2Λ̄−ω)

8Λ̄5 θ(2Λ̄− ω) (4.37) with Λ̄ = 1 GeV

,

(4.38)

and

g2(u) ≡
∫ ∞

0

dω φ2(uω, ūω) =



2uū
ω0

(4.33) with ω0 = 0.4 GeV

uū
(

2
ε0

+
3a2(5(u−ū)2−1)

ε1

)
[90] with

 ε0 = 0.2 GeV

ε1 = 0.65 GeV

a2 = 1/3

5uū
Λ̄

(4.37) with Λ̄ = 1 GeV

.

(4.39)

The parameter ω0 in the first case has been related to the value of Λ̄ in the third case,

such that the 〈ω−1〉 moment of f2 is identical in both cases. The model in [90] prefers

a central value for ω0 that is significantly smaller – and which we suspect may be too

small for the light degrees of freedom in a realistic baryon – and takes into account a

(rather small) non-trivial shape for the function g2(u) from the next-to-leading term

in the Gegenbauer expansion. Figure 4.1 illustrates the shapes of f2(ω) and g2(u)

using these 3 models.
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.

.

Figure 4.1: The functions f2(ω) and g2(u) in 3 different models for the LCDA φ2(ω1, ω2):

Exponential ansatz (4.33) (solid lines); free-parton approximation (4.37) (dashed); model

in [90] (dotted).

—
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The Projector M (1) (even number of Dirac matrices)

Again we consider the convolution of the projector with a hard-scattering kernel:∫
d̃k1

∫
d̃k2 Tr

[ (
T0(ω1, ω2) + kµi⊥T

i
µ(ω1, ω2)

)
M (1)(v, k1, k2)

]
=

∫
dω1 dω2

∫ ∞
ω1

dx1

∫ ∞
ω2

dx2

{

Tr

[
T0(ω1, ω2)

(
ω2 (x1 − ω1)

/n+/n−
4

+ ω1 (x2 − ω2)
/n−/n+

4

)]
− Tr

[
T 1
µ(ω1, ω2)

(
ω1ω2 (x1 − ω1)

/n+

2
+ ω1 (x1 − ω1) (x2 − ω2)

/n−
2

)
γµ⊥
2

]
− Tr

[
T 2
µ(ω1, ω2)

γµ⊥
2

(
ω1ω2 (x2 − ω2)

/n+

2
+ ω2 (x1 − ω1) (x2 − ω2)

/n−
2

)]
}
ψs(x1, x2) . (4.40)

Comparison with the coordinate-space expression (4.16) yields

φ−+
3 (ω1, ω2) = 2

(
φ

(0)
3 (ω1, ω2) + φ

(i)
3 (ω1, ω2)

)
= 2

∫ ∞
ω1

dx1

∫ ∞
ω2

dx2 ω2 (x1 − ω1)ψs(x1, x2) ,

φ+−
3 (ω1, ω2) = 2

(
φ

(0)
3 (ω1, ω2) + φ

(ii)
3 (ω1, ω2)

)
= 2

∫ ∞
ω1

dx1

∫ ∞
ω2

dx2 ω1 (x2 − ω2)ψs(x1, x2) ,

(4.41)

and

φ
(0)
3 (ω1, ω2) =

∫ ∞
ω1

dx1

∫ ∞
ω2

dx2 ω1ω2 ψs(x1, x2) ,

φY (ω1, ω2) =
1

2

∫ ∞
ω1

dx1

∫ ∞
ω2

dx2 (2ω1 − x1) (2ω2 − x2)ψs(x1, x2) . (4.42)

The wave-function ψs in our approximation can again be reconstructed from

ψs(x1, x2) =
d2

dω1 dω2

(
φ

(0)
3 (ω1, ω2)

ω1ω2

)
ωi→xi

; (4.43)

with the exponential model for the wave-function

ψs(x1, x2)→
exp

(
−x1+x2

ω0

)
ω6

0

, (4.44)
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one obtains:

φ−+
3 (ω1, ω2)→ 2ω2

ω3
0

e−(ω1+ω2)/ω0 ,

φ+−
3 (ω1, ω2)→ 2ω1

ω3
0

e−(ω1+ω2)/ω0 , (4.45)

and

φ
(0)
3 (ω1, ω2)→ ω1ω2

ω4
0

e−(ω1+ω2)/ω0 ,

φY (ω1, ω2)→ (ω1 − ω0)(ω2 − ω0)

2ω4
0

e−(ω1+ω2)/ω0 . (4.46)

In the free-parton picture they take the form

φ−+
3 (ω1, ω2)→ 15ω2 (2Λ̄− ω1 − ω2)2

4Λ̄5
θ(2Λ̄− ω1 − ω2) ,

φ+−
3 (ω1, ω2)→ 15ω1 (2Λ̄− ω1 − ω2)2

4Λ̄5
θ(2Λ̄− ω1 − ω2) , (4.47)

and so on.

4.2.4 Renormalisation-Group Behaviour

The behaviour of baryonic LCDAs in renormalisation groups has been explored in [90],

following the important work done on mesonic B LCDAs in [94,96], which finds that

the logarithmic Fourier transform with respect to ln(ω/µ) of the leading LCDA,

ϕ+
B(θ, µ) =

∫ ∞
0

dω

ω

(
ω

µ

)−iθ
φ+
B(ω, µ) , (4.48)

has the RG equation solution of:

ϕ+
B(θ, µ) = eV−2γEg

(
µ

µ0

)iθ
Γ(1− iθ) Γ(1 + iθ − g)

Γ(1 + iθ) Γ(1− iθ + g)
ϕ+
B(θ + ig, µ0) , (4.49)

to leading order. (RG functions V = V (µ, µ0) and g = g(µ, µ0) can be found in [96].)

After going back to momentum space, ultimately one gets the desired analytic rela-

tion between the LCDA at different energy scales, as a convolution integral involving

hypergeometric functions and the same LCDA at a lower scale µ0.
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In [2] an alternative representation to the RG-evolution solution is proposed,

starting from the ansatz

ϕ+
B(θ, µ) =

Γ(1− iθ)
Γ(1 + iθ)

∫ ∞
0

dω′

ω′
ρ+
B(ω′, µ)

( µ
ω′

)iθ
, (4.50)

which makes use of a “spectral function” ρ+
B(ω′, µ), whose own relatively simple RG

properties in turn allow a straightforward relation between the momentum-space

LCDA at scale µ and this dual function at µ0, through a convolution with Bessel

functions:

φ+
B(ω, µ) =

∫ ∞
0

dω′

ω′

√
ω

ω′
J1

(
2

√
ω

ω′

)
ρ+
B(ω′, µ)

= eV
∫ ∞

0

dω′

ω′

√
ω

ω′
J1

(
2

√
ω

ω′

)(µ0

ω̂′

)−g
ρ+
B(ω′, µ0) . (4.51)

In the baryonic case, in complete analogy to the above, one finds for the LCDA

φ2(ω1, ω2, µ):

ϕ2(θ1, θ2, µ) =
Γ(1− iθ1) Γ(1− iθ2)

Γ(1 + iθ1) Γ(1 + iθ2)

∫ ∞
0

dω′1
ω′1

∫ ∞
0

dω′2
ω′2

ρ2(ω′1, ω
′
2, µ)

(
µ

ω′1

)iθ1( µ

ω′2

)iθ2
,

(4.52)

such that

φ2(ω1, ω2, µ) =

∫ ∞
0

dω′1
ω′1

∫ ∞
0

dω′2
ω′2

√
ω1ω2

ω′1ω
′
2

J1

(
2

√
ω1

ω′1

)
J1

(
2

√
ω2

ω′2

)
ρ2(ω′1, ω

′
2, µ) .

(4.53)

Using the exponential ansatz for φ2 would again correspond to a simple exponential

dual spectrum function:

ρ2(ω′1, ω
′
2, µ0)→ 1

ω′1ω
′
2

exp

[
−ω0

ω′1
− ω0

ω′2

]
. (4.54)

Apart from having one more momentum variable, the baryonic case is complicated by

a non-trivial Efremov-Radyushkin-Brodsky-Lepage (ERBL) term which arises from

gluon exchange between the light quarks in the heavy baryon. Neglecting this term

the RG evolution will retain its simplicity, with:

dρ2(ω′1, ω
′
2, µ)

d lnµ
= −

[
Γcusp(αs) ln

µ√
ω̂′1ω̂

′
2

+ γ2(αs)

]
ρ2(ω′1, ω

′
2, µ) , (4.55)
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solved by

ρ2(ω′1, ω
′
2, µ) = eV2

(
µ0√
ω̂′1ω̂

′
2

)−g
ρ2(ω′1, ω

′
2, µ0) . (4.56)

A more detailed discussion on the above approach can be found in [2].

* * *

We have presented a relatively simple-to-use framework for the momentum-space

representation of the heavy baryonic LCDAs of Λb, which is inspired by separation of

momentum regions à la SCET and QCD factorisation, through the use of light-cone

expansion of the matrix projectors; we await its applications in related calculations

of heavy-to-light and heavy-to-heavy decays. Future extensions to the current work

may address the effects of going beyond the pure WW approximation, and allowing

a non-zero diquark invariant mass K2 = (k1 + k2)2, which will inevitably reduce the

transparency currently achieved.

4.3 Helicity-based Parametrisation for Λb → Λ Form

Factors

Form factors are scalar functions defined as part of Lorentz decompositions of matrix

elements of bilinear quark currents (vector, axial-vector and tensor). For the baryonic

decay Λb → Λ, there are 10 of these independent physical form factors. Here we

put forward a Lorentz-invariant parametrisation that already incorporates symmetry

relations arising from HQET and SCET and hence is convenient to work with; in

other words, expressions of physical observables and other quantities (partial rates,

unitary bounds for example, c.f. [104, 105]) look conspicuously simplified and easier

to follow, compared to some previous, more traditionally looking parametrisations,

as provided for instance in [101, 106]. Concretely, the improvements come in two

aspects: (i) The form factors are now defined on a helicity basis; and (ii) they are

normalised to the limit of point-like hadrons.
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In the following, q = s(x) and b = b(x) denote the light- and heavy-quark fields

respectively in b→ s transitions. Starting with the vector decay current, we define:

〈Λ(p′, s′)|q̄ γµ b|Λb(p, s)〉 = ūΛ(p′, s′)

{
f0(q2) (MΛb −mΛ)

qµ
q2

+f+(q2)
MΛb +mΛ

s+

(
pµ + p′µ −

qµ
q2

(M2
Λb
−m2

Λ)

)
+f⊥(q2)

(
γµ −

2mΛ

s+

pµ −
2MΛb

s+

p′µ

)}
uΛb(p, s) ,

(4.57)

where s± = (MΛb ±mΛ)2 − q2 . (4.58)

At the limit of vanishing momentum transfer q2 → 0, one finds an additional kine-

matic constraint f0(0) = f+(0). The individual form factors f0, f+ and f⊥ in (4.57)

are defined such that they correspond to time-like (scalar), longitudinal and transverse

polarisations with respect to the momentum transfer qµ respectively (cf. [104, 105]).

Meanwhile the normalisation is chosen in such a way that for f0, f+, f⊥ → 1, the ex-

pression for a transition between point-like baryons is recovered, i.e. 〈Λ|q̄ Γ b|Λb〉 →

ūΛ ΓuΛb . It transpires that the form factor f0 corresponds to the scalar decay current,

as it can also be obtained by applying the equations of motion to (4.57):

〈Λ(p′, s′)|q̄ b|Λb(p, s)〉 =
qµ

mb −mq

〈Λ(p′, s′)|q̄ γµ b|Λb(p, s)〉

= f0(q2)
MΛb −mΛ

mb −mq

ūΛ(p′, s′)uΛb(p, s) . (4.59)

Expressions for the axial-vector and pseudoscalar currents can be directly obtained by

appropriately changing the relative sign between the light- and heavy-baryon mass,

leading to the definitions:

〈Λ(p′, s′)|q̄ γµγ5 b|Λb(p, s)〉 = −ūΛ(p′, s′)γ5

{
g0(q2) (MΛb +mΛ)

qµ
q2

+g+(q2)
MΛb −mΛ

s−

(
pµ + p′µ −

qµ
q2

(M2
Λb
−m2

Λ)

)
+g⊥(q2)

(
γµ +

2mΛ

s−
pµ −

2MΛb

s−
p′µ

)}
uΛb(p, s) ,

(4.60)
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where there is again the kinematic constraint g0(0) = g+(0) at the large-recoil limit

q2 → 0, and

〈Λ(p′, s′)|q̄ γ5 b|Λb(p, s)〉 =
qµ

mb +mq

〈Λ(p′, s′)|q̄ γ5γµ b|Λb(p, s)〉

= g0(q2)
MΛb +mΛ

mb +mq

ūΛ(p′, s′) γ5uΛb(p, s) . (4.61)

Finally, for the tensor and pseudo-tensor currents, we define:

〈Λ(p′, s′)|q̄ iσµνqν b|Λb(p, s)〉

= −ūΛ(p′, s′)

{
h+(q2)

q2

s+

(
pµ + p′µ −

qµ
q2

(M2
Λb
−m2

Λ)

)
+(MΛb +mΛ)h⊥(q2)

(
γµ −

2mΛ

s+

pµ −
2MΛb

s+

p′µ

)}
uΛb(p, s) , (4.62)

〈Λ(p′, s′)|q̄ iσµνγ5q
ν b|Λb(p, s)〉

= −ūΛ(p′, s′)γ5

{
h̃+(q2)

q2

s−

(
pµ + p′µ −

qµ
q2

(M2
Λb
−m2

Λ)

)
+(MΛb −mΛ) h̃⊥(q2)

(
γµ +

2mΛ

s−
pµ −

2MΛb

s−
p′µ

)}
uΛb(p, s) . (4.63)

Again, the normalisation of the form factors h⊥,+ and h̃⊥,+ has been fixed by the case

of point-like hadrons. This leads to a total of 10 independent form factors for the gen-

eral case, after the equations of motion have been taken into account. Appendix B.1

summarises how this set of form factors are related to those defined in [106].

In terms of these helicity form factors, the differential decay width for Λb →

Λµ+µ− takes a particularly simple form (see Appendix A). Another alternative

parametrisation, based on the large and small projections of spinors of energetic or

massive fermions, has been drawn up in Appendix B.2, also motivated by a desire to

align them with known symmetry relations from HQET and SCET.

4.3.1 HQET Limit

In the heavy-quark limit mb → ∞, baryonic heavy-to-light transition form factors

have been known to reduce to just 2 independent functions [67, 99, 107]; the heavy-

baryon velocity vµ can be used to project out the large spinor components h
(b)
v = /v h

(b)
v
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of the heavy b-quark field. In terms of this “reduced” 2-component field, we see the

result of spin symmetry:

〈Λ(p′, s′)|q̄ Γ b|Λb(p, s)〉 → 〈Λ(p′, s′)|q̄ Γh(b)
v |Λb(v, s)〉

' ūΛ(p′, s′) (A(v · p′) + /v B(v · p′)) ΓuΛb(v, s) . (4.64)

Here Γ is an arbitrary Dirac matrix, and pµ = MΛbv
µ ' mb v

µ. |Λb(v, s)〉 is a

heavy-baryon state, and uΛb(v, s) = /v uΛb(v, s) is a heavy-baryon spinor in HQET. In

the heavy-quark limit, where mΛ, v · p′ � mb, it can be shown that the 10 helicity

form factors are simply related to the 2 HQET form factors in (4.64) as follows:

f0(q2) ' g+(q2) ' g⊥(q2) ' h̃+(q2) ' h̃⊥(q2) ' A(v · p′) +B(v · p′) ,

g0(q2) ' f+(q2) ' f⊥(q2) ' h+(q2) ' h⊥(q2) ' A(v · p′)−B(v · p′) . (4.65)

These relations are valid in the region of small recoil, where

q2 = M2
Λb
− 2MΛbv · p′ +m2

Λ ∼ O(m2
b)

is large. Note that f0 and g0 in (4.65) have been derived from the (axial-)vector

current. Using the (pseudo)scalar current leads to results differing by terms of order

1/mb.

4.3.2 SCET Limit

In the kinematic region of large recoil energy EΛ of the Λ baryon in the rest frame of

the decaying Λb, further simplifications can be achieved (see e.g. [40, 51]). This can

be more formally shown using SCET. One projects out the large components of the

collinear quark field, ξ ≡ /n−/n+

4
q, where nµ± are light-like vectors used as a projector

as described in Section 3.3, and considers the matrix element of the leading current

of this effective hard-collinear s field and the effective heavy b field. In the large-EΛ

limit, one can approximate p′µ ' n+p
′ n
µ
−
2

and take mΛ → 0. This amounts to

〈Λ(p′, s′)|ξ̄ W ΓY †h(b)
v |Λb(v, s)〉

= ūΛ(p′, s′)
(
A(q2) + /v B(q2)

) /n+/n−
4

ΓuΛb(v, s)

= A(q2) ūΛ(p′, s′)
/n+/n−

4
ΓuΛb(v, s) +B(q2) ūΛ(p′, s′)

/n−
2

ΓuΛb(v, s) , (4.66)
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where W and Y are the appropriate Wilson lines in SCET included to render the

definitions of the form factors invariant under collinear and soft gauge transforma-

tions respectively (see Section 3.3). In the following their inclusion will no longer

be explicitly shown. (This actually corresponds to using the light-cone gauges for

collinear and soft gluon fields). Exploiting the approximate equations of motion for

ūΛ(p′, s′) /n− ' 0, (4.66) simplifies to

〈Λ(p′, s′)|ξ̄ Γh(b)
v |Λb(v, s)〉 ' ξΛ(n+p

′) ūΛ(p′, s′) ΓuΛb(v, s) , (4.67)

in which only a single form factor, ξΛ, remains. This defines the so-called “soft”

Λb → Λ form factor. It can be shown that ξΛ(n+p
′) ' A(v · p′) which appears in

the HQET expression (4.64), while the contributions from B(v · p′) are negligible.

Therefore we see that in the SCET limit, where

q2 = M2
Λb
−MΛb n+p

′ +m2
Λ

(
1− MΛb

n+p′

)
is small, all helicity form factors defined in (4.57,4.60,4.62,4.63) are equal to ξΛ(n+p

′).

f0(q2) ≈ f+(q2) ≈ f⊥(q2) ≈ h+(q2) ≈ h⊥(q2)

≈ g0(q2) ≈ g+(q2) ≈ g⊥(q2) ≈ h̃+(q2) ≈ h̃⊥(q2) ≈ ξΛ(n+p
′) . (4.68)

4.3.3 Hard-Scattering Corrections

Hard-scattering gluon exchange constitutes a leading correction to the form-factor

relations described above, and can be described by new form-factor terms, which take

into account the corresponding sub-leading SCET currents containing one additional

(transverse) hard-collinear gluon field (see [41, 52]). If one neglects additional hard-

vertex corrections for simplicity, the form factors relate to matrix elements of local

SCET currents. In the duo limit mb, n+p
′ →∞, these matrix elements can again be

reduced to one single form factor, which we opt to define as follows:

〈Λ(p′, s′)|ξ̄ Γ̃ gA⊥µ h
(b)
v |Λb(v, s)〉 ≡MΛb ∆ξΛ(n+p

′) ūΛ(p′, s′) γ⊥µ Γ̃uΛb(v, s) , (4.69)

where the basis of independent Dirac matrices can be reduced to Γ̃ =
/n+

2

{
1, γ⊥ν , γ5

}
,

thanks to the fields now being two-component effective spinors. Due to the heavy-

quark spin symmetry, the Dirac matrix in the effective decay current couples trivially
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to the heavy-baryon spinor. The matching of the various decay currents in QCD onto

SCET currents is process-independent and can be taken into account by appropriate

Wilson coefficients. Relevant results are summarised in Appendix C.

* * *

It is these quantities, ξΛ(n+p
′) (4.67) and ∆ξΛ(n+p

′) (4.69), the universal soft

form factor and the hard-scattering factorisable correction, that will be calculated

using SCET LCSRs and analysed in the following chapter.



Chapter 5

Λb→ Λ `+`− Soft Form Factor and

Correction from Hard-Collinear

Gluon Exchange

As already discussed in the preceding chapters, Λb → Λ `+`− offers a relatively novel

channel to study rare exclusive semi-leptonic and radiative b→ s decays; experimen-

tal observation and theoretical prediction are to be checked side by side and reconciled

for refining SM parameters and spotting BSM effects. The CDF experiment has al-

ready measured a branching ratio of the order of 10−6 for l = µ [73]; here we make

a step to predict experimentally accessible observables using the technique of SCET

light-cone sum rules which has already well served the analogous case of B mesons.

It has been pointed out in Section 4.3 that in the heavy-quark limit, 2 independent

transition form factors remain for Λb → Λ `+`−, reducing to just one in the additional

kinematical limit of large recoil energy. This corresponds to the scenario where only

soft interactions occur within the hadronic system Λb → Λ, and our immediate goal

here is to estimate this universal “soft” form factor, ξΛ.

Some corrections to this leading term (in both αs and 1/mb expansions) are ex-

pected to be factorisable – expressible as a convolution of universal non-perturbative
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parameters and process-dependent kernels, as observed in analogous heavy B meson

decays. We estimate the O(αs) hard-scattering correction, in terms of a form factor

∆ξΛ as defined in Section 4.3.3, that breaks the form-factor symmetry relations (see

Appendix C.3). This term concerns the exchange of a hard-collinear gluon between

the decay vertex and either of the soft light quarks.

Following related work on the B → π(ρ) form factors in [65,108], the calculations

are built upon the SCET LCSR framework. A suitably defined SCET correlation

function between the decay current and an interpolating current with the quantum

numbers of the light hadron (Λ) is analysed using the dispersion relation. The heavy

baryon is represented by its LCDAs in momentum space (Section 4.2). The oper-

ational details and philosophy behind this set of procedures have been discussed in

Chapter 3.

The leading diagrams for the correlation functions involving ξΛ and ∆ξΛ are dis-

played in Figures 5.1 and 5.2. Note that in the case of ∆ξΛ, the light quark which is

uninvolved in the hard-scattering process remains a soft spectator and stays in the

kinematic end-point region in phase space; the diagram represents an intermediate

or hybrid case where only some of the constituents undergo calculable short-distance

interactions.1 This means that, unlike in the mesonic case, the QCD factorisation

approach cannot be directly implemented, as the kernel Ti(µhc) in eq.(3.32), i.e. the

part of the factorisable term that is not LCDAs, is only supposed to encode physics

above the hard-collinear scale. This strengthens our case of approaching our calcula-

tions using the method of SCET sum rules.

The sum rules that result from the dispersive analysis are investigated numeri-

cally, in particular their various dependences on hadronic input parameters and the

associated theoretical uncertainties. The expression for the ratio ∆ξΛ/ξΛ is free of a

1A similar discussion for the electromagnetic form factors for the nucleon can be found in [109].
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Figure 5.1: SCET correlation function relevant to the soft form factor ξΛ. The Λ baryon is

represented by an interpolating current JΛ and the Λb by LCDAs (4.2). The uppermost of

the 3 quark lines coming out of the Λb represents the heavy b quark which decays into an

s quark at the radiative vertex; the remaining lines denote the u and the d.

—

number of these inputs and uncertainties by cancellation, and hence presents itself

as a desirable object to be made good use of when designing observables. We also

provide estimates for the partial branching fractions for Λb → Λµ+µ−, at small q2

where the SCET limit is valid.

5.1 ξΛ: Soft Form Factor

A correlation function needs to be constructed to describe the transition from Λb

(momentum p) to Λ (momentum p′) in a semi-leptonic process. But before this a

choice has to be made on the interpolating current with the right quantum numbers

to stand for the final-state baryon, based on what is expected to lead to an overall

non-suppressed result. An appropriate choice is

JΛ(x) ≡ εabc
(
ua(x)Cγ5/n+ d

b(x)
)
sc(x) , (5.1)
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Figure 5.2: SCET correlation functions relevant to the form factor ∆ξΛ (defined in (4.69))

for the O(αs) hard-scattering correction. The quarks and gluon in the loop have hard-

collinear momenta.

—
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which is normalised by the matrix element

〈0| /n∓/n±
4

JΛ(0)|Λ(p′, s′)〉 = fΛ · n+p
′ /n∓/n±

4
uΛ(p′, s′) , (5.2)

corresponding to a leading term in the large-energy limit. Note that the Cγ5 re-

flects the scalar nature of the “diquark” object formed by the u and d quarks within

the partonic structure of the Λb baryon. For our eventual numerical analysis, we

use fΛ ' (6.0 ± 0.3) × 10−3 GeV2 for the Λ-baryon decay constant, derived from a

sum-rule estimate [88].2 The light quarks are decomposed into soft and hard-collinear

fields to match the above current onto SCET. At tree level, it is sufficient to calculate

the correlation function in QCD and perform the appropriate kinematic limits for the

propagators.

ΠΛ is in general a function of momentum transfer q2 = (p − p′)2; working in the

frame where the heavy quark is stationary with vµ = (1, 0, 0, 0) and the transverse

momentum of the final baryon p′⊥ vanishes, one can pick the independent kinematic

variables to be the large and small momentum components, n+p
′∼O(mb) and n−p

′∼

O(ΛQCD)<0 respectively. First, one considers ΠΛ as a function of n−p
′. The quark

fields inside ΠΛ are effective fields with their small irrelevant spinor components

already removed using respective effective-theory projectors:

ΠΛ(n−p
′) ≡ i

∫
d4x eip

′x 〈0|T
[

/n−/n+

4
JΛ(x)

[
s̄(0)

/n+/n−
4

Γ
1 + /v

2
b(0)

]]
|Λb(p)〉 .

(5.3)

The time-ordered product of the two currents can be calculated in perturbation

theory. Substituting in (5.1), the two s-quark fields present are contracted to a

propagator, while the u and d quarks start as and remain as spectators with soft

momenta, as seen in the diagram for the leading soft ξΛ (Figure 5.1). Employing the

kinematic limits in the QCD diagram, and performing a Fourier transform such that

ω1,2 = n−k1,2 correspond to the relevant light-cone momenta of the u and d quarks,

2In comparison, the nucleon decay constant is estimated to be fN ' 5.6×10−3 GeV2 in [86].
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the correlation function at leading order is given by:

ΠΛ(n−p
′)

'
∫

dω1 dω2

ω1 + ω2 − n−p′ − iε
〈0|εabc

(
ua(ω1)Cγ5/n+ d

b(ω2)
) /n−

2
Γhcv|Λb(v, s)〉

=

∫
dω1 dω2

ω1 + ω2 − n−p′ − iε
f

(2)
Λb

4

[
M (2)(ω1, ω2) γ5C

−1
]
βα

(Cγ5/n+)αβ
/n−
2

ΓuΛb(v, s)

=

∫
dω1 dω2

ω1 + ω2 − n−p′ − iε
f

(2)
Λb

4
Tr

[(
/n+

2
φ2(ω1, ω2)+

/n−
2
φ4(ω1, ω2)+· · ·

)
/n+

]
/n−
2

ΓuΛb(v, s)

= f
(2)
Λb

∫
dω1 dω2 φ4(ω1, ω2)

ω1 + ω2 − n−p′ − iε
/n−
2

ΓuΛb(v, s) (5.4)

In the second line, the momentum-space projector for the heavy Λb baryon, M (2) as

defined in Section 4.2, is recalled; only the LCDA φ4 remains due to the choice of the

interpolating current.

At leading order, the result for the correlation function only involves the sum of

the spectator-quark momenta, so the partially integrated version of the LCDA can

be used:

ψ4(ω) ≡ ω

∫ 1

0

du φalt
4 (ω, u) . (5.5)

Hence, the perturbative calculation of the correlation function results in:

ΠΛ(n−p
′) ' f

(2)
Λb

∫ ∞
0

dω ω
∫ 1

0
du φalt

4 (ω, u)

ω − n−p′ − iε
/n−
2

ΓuΛb(v, s) . (5.6)

Note that this takes the form of a convolution of a LCDA and a kernel, despite the

term being classified as “non-factorisable” in traditional QCD factorisation.

The quantity is evaluated again using the hadronic spectrum, which we assume

is dominated by the ground-state Λ. Starting from (5.3), one finds:

ΠΛ(n−p
′) '

∑
s′

/n−/n+

4

〈0|JΛ|Λ(p′, s′)〉〈Λ(p′, s′)|q̄ /n+/n−
4

Γh
(b)
v |Λb(v)〉

m2
Λ − p′2

=
fΛ · n+p

′ · ξΛ(n+p
′)

m2
Λ − n+p′ · n−p′

∑
s′

/n−/n+

4
uΛ(p′, s′) ūΛ(p′, s′)

/n+/n−
4

ΓuΛb(v, s)

=
fΛ · n+p

′ · ξΛ(n+p
′)

m2
Λ/n+p′ − n−p′

/n−
2

ΓuΛb(v, s) . (5.7)



5.1. ξΛ: Soft Form Factor 71

The perturbative (5.3) and hadronic (5.7) sides of the sum rule are equated. One

performs the standard sum-rule procedures of subtracting the continuum part of

the hadronic spectrum assuming quark-hadron duality above ωs, as well as Borel-

transforming the expression with respect to n−p
′ with Borel parameter ωM .3 This

produces the useful leading-order sum rule:

e−m
2
Λ/(ωM n+p′) fΛ · n+p

′ · ξΛ(n+p
′) = f

(2)
Λb

∫ ωs

0

dω ψ4(ω) e−ω/ωM , (5.8)

which takes an analogous form to one for the B → π, ρ, with the distribution am-

plitude for the spectator anti-quark in the B-meson replaced by an object that is

effectively a wave-function for the spectator diquark, in the Λb baryon.

The formal scaling of this tree-level result for ξΛ with the large-energy variable

n+p
′ at the limit ωs, ωM ∼ Λ2

n+p′
� 〈ω〉, where 〈ω〉 is the typical light-cone momentum

of the light diquark, can be derived by expanding the Λb LCDA around ω = 0 in the

integrand. This yields

ξΛ(n+p
′) '

f
(2)
Λb
ω2
M ψ′4(0)

fΛ · n+p′
em

2
Λ/(ωM n+p′)

(
1− e−ωs/ωM

(
1 +

ωs
ωM

))
, (5.9)

where ψ′4(0) ∼ 1/ω2
0 with ω0 ∼ 〈ω〉 (see Section 4.2 for details of the LCDA model

used here). In this limit, the soft Λb → Λ form factor scales as 1/n+p
′3 with the

large energy of the final-state baryon. Compared to the mesonic case [65, 108], one

encounters an additional factor of 1/n+p
′, which physically can be traced back to the

phase-space suppression of the additional spectator quark. Technically, the difference

between the mesonic and baryonic case stems from the fact that the B-meson LCDA

φ−B(ω) does not vanish at the end point, while ψ4(ω) vanishes linearly.

* * *

Radiative corrections (due to hard-collinear – virtuality O(mb ΛQCD) – gluon

loops; hard – virtuality O(m2
b) – effects have entered external Wilson coefficients Ci)

3Note that the parameters are related to QCDF ones as ωs = s0/n+p
′ and ωM = M2

Bor/n+p
′.
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to the leading-order sum rule leads to additional dependence of the form factors on

n+p
′ with logarithmically enhanced perturbative coefficients. There are universal cor-

rections which can be factorised into (i) hard-vertex corrections absorbed into Wilson

coefficients of SCET decay currents, (ii) a jet function, absorbing the hard-collinear

emissions from the strange-quark propagator in SCET, and (iii) contributions arising

from the soft evolution of the relevant LCDAs. To O(αs) (see Figure 1(a1-a4) of [108]

for relevant diagrams), one obtains an analogous result as discussed for the mesonic

case [65, 108]:

Fi(q
2) ' Ci(n+p

′, µ) ·
f

(2)
Λb

fΛ · n+p′
em

2
Λ/(ωM n+p′)

∫ ωs

0

dω′ e−ω
′/ωM

×

{[
1 +

αsCF
4π

(
7− π2 + 3 ln

[
µ2

ω′ · n+p′

]
+ 2 ln2

[
µ2

ω′ · n+p′

])]
ψ4(ω′, µ)

+
αsCF

4π

∫ ω′

0

dω

(
4 ln

[
µ2

(ω′ − ω)n+p′

]
+ 3

)
ψ4(ω′, µ)− ψ4(ω, µ)

ω′ − ω

}
, (5.10)

where Fi(q
2) denotes a generic form factor with the corresponding Wilson coefficient

Ci. The leading (double-logarithmic) µ-dependence is shown to cancel between the 3

terms on the right-hand side, using the renormalisation-group equations (see e.g. [37,

90,93–95]),

d

d lnµ
Ci(n+p

′, µ) = −αsCF
4π

Γ(1)
cusp ln

µ

mb

Ci(n+p
′, µ) + · · · , (5.11)

d

d lnµ
ψ4(ω, µ) = −αsCF

4π
Γ(1)

cusp ln
µ

ω
ψ4(ω, µ) + · · · , (5.12)

with the cusp anomalous dimension Γ
(1)
cusp = 4. Evaluating the terms in curly brack-

ets in (5.10) at a factorisation scale of order µ2 ∼ ωs ·n+p
′ and evolving the Wilson

coefficients down to that scale, one achieves the resummation of the leading Sudakov

double logarithms.

There are also additional process-dependent corrections to (5.10) arising from

hard-collinear gluon exchange between the strange quark and the “spectator” quarks

in SCET (Figure 1(b1-b2) of [108]). These involve a sub-leading term in the SCET

Lagrangian (3.17). (These corrections are not to be confused with that to be calcu-

lated in the upcoming section, which concerns a differently defined decay current.)
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As shown in [65, 108], these will lead to logarithmically enhanced terms which are

sensitive to the end-point behaviour of ψ4(ω, µ). The explicit derivation of these

terms is left for future work.

5.2 ∆ξΛ: Hard-Collinear Gluon-Exchange Correc-

tion

Sub-leading currents in the SCET Lagrangian induce violations of the form-factor

symmetry relations that hold in the large-recoil limit. In a SCET correlation func-

tion to be subjected to dispersive analysis, the contribution involving the exchange

of one hard-collinear gluon can be treated perturbatively. To obtain leading (O(αs))

corrections, we have defined the matrix element (4.69), in which the leading contribu-

tion arises from hard-collinear gluon exchange with either of the two light quarks in

the baryons (Figure 5.2). From the perspective of the QCD factorisation approach,

this diagram represents an intermediate case, where only some of the constituents un-

dergo calculable short-distance interactions; the remaining spectator quark remains

undisturbed and is thus forced to stay in the end-point region in phase space.

As in the sum-rule calculation of ξΛ above, we define a correlation function, where

the SCET decay current features an additional transverse gluon field. Moreover, we

use the projector
/n+/n−

4
(contrary to the one used in (5.3)) to project out the sub-

leading transverse momentum in the s-quark propagator.

Πµ
Λ(n−p

′) ≡ i

∫
d4x eip

′x〈0|T
[

/n+/n−
4

JΛ(x)
[
s̄(0) Γ̃ gsA

µ
⊥(0) b(0)

]]
|Λb(p)〉 . (5.13)

The momenta of the light quarks in the heavy baryon are as before denoted as k1,2,

and the relevant light-cone component ωi = n−ki. k = k1 + k2, while k⊥ is the

transverse component. Also, as hinted in (5.5), the longitudinal momentum fraction

variable u is introduced, such that in the diquark, ω1 = uω and ω2 = (1− u)ω ≡ ūω.

Assuming isospin symmetry of strong interactions, the two diagrams (Figure 5.2)
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under consideration are actually equivalent and lead to the identical results. Hence,

denoting the gluon momentum as l, the correlation function for the sum of both cases

can be expressed as:

Πµ
Λ(n−p

′) = 2× ig2
s

CF
2

f
(2)
Λb

4

∫ ∞
0

dω1

∫ ∞
0

dω2

×
∫

dDl

(2π)D
1

[l2⊥ + (n+l)(n−l − uω)]

1

[l2⊥ + (n+l + n+p′)(n−l + n−p′ − ω)]

× 1

[l2⊥ + (n+l)(n−l)]
Tr
[
M (2)(k1, k2)Cγ5/n+ (/k2 − l/) γµ⊥

]
× /n+/n−

4
( l/− /k1 − /k2) Γ̃uΛb(v, s) . (5.14)

Here ω1 denotes the light-cone momentum of the quark which remains a spectator.

Square brackets around a propagator denominator imply a +iε prescription. The

Dirac trace is straightforward:

Tr
[
M (2)(k1, k2)Cγ5/n+(/k2 − l/)γµ⊥

]
= −4φ4(ω1, ω2) lµ⊥ + 2n+l

(
G(ω1, ω2)

∂

∂k⊥1µ
+H(ω1, ω2)

∂

∂k⊥2µ

)
. (5.15)

G(ω1, ω2) and H(ω1, ω2) are defined in Section 4.2. This yields

Πµ(n−p
′) = i

g2
sCFf

(2)
Λb

4

∫
dω1

∫
dω2

×
∫

dDl

(2π)D

4l2⊥
D−2

φ4(ω1, ω2) + 2n+l [G(ω1, ω2) +H(ω1, ω2)]

[l2⊥ + (n+l)(n−l)][l2⊥ + (n+l)(n−l − ω2)][l2⊥ + (n+p′ + n+l)(n−p′ + n−l − ω)]

× /n+/n−
4

γµ⊥ Γ̃uΛb(v, s) . (5.16)

Both terms in the numerator contribute at the same order in the SCET correlator,

as l2⊥ ∼ ω ·n+l ∼ mb ΛQCD. However, in the limit ω1 → 0, the contributions from φ4

and G formally give sub-leading contributions to the ∆ξΛ sum rule (see (5.22)).

To tackle this complicated-looking integral involving the light-cone components

of loop momentum l separately, we split

dDl

(2π)D
→ 1

2

d n+l

2π

dD−2l⊥
(2π)D−2

d n−l

2π
;
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the integral over n−l can be performed using complex contour integration via Cauchy’s

theorem: we recognise that only when n+p
′ > −n+l > 0 is this integral non-vanishing,

as otherwise all 3 poles in (5.16) are on the same side of the real axis. One gets:

Πµ(n−p
′) =

g2
sCFf

(2)
Λb

4

∫
dω1

∫
dω2

∫
d n+l

2π

∫
dD−2l⊥
(2π)D−2

(n+l + n+p
′)

×
2l2⊥
D−2

φ4(ω1, ω2) + n+l [G(ω1, ω2) +H(ω1, ω2)]

[(ω − n−p′)(n+l)(n+l + n+p′) + l2⊥ n+p′] [(ω1 − n−p′)(n+l)(n+l + n+p′) + l2⊥ n+p′]

× θ(−n+l) θ(n+l + n+p
′) γµ⊥ Γ̃uΛb(v, s) ,

Πµ(n−p
′) =

αsCFf
(2)
Λb

2

∫
dω1

∫
dω2

∫ 1

0

dz

∫
dD−2l⊥
(2π)D−2

×
l2⊥
D−2

φ4(ω1, ω2) + n+l [G(ω1, ω2) +H(ω1, ω2)]

[l2⊥ − z(1− z)n+p′(ω − n−p′)] [l2⊥ − z(1− z)n+p′(ω1 − n−p′)]
γµ⊥ Γ̃uΛb(v, s) ,

(5.17)

where we have defined the dimensionless variable z = −n+l/n+p
′ in going to the final

line.

The (Euclidean) lD−2
⊥ integral is done using the standard method of Feynman

parameters, while the z-integral is straightforward. The extraction of a non-vanishing

imaginary part leads to further Heaviside functions. After Borelisation and continuum

subtraction, the perturbative calculation of the correlation function for ∆ξΛ is:

B̂Πµ
Λ(ωM) = −

αsCFf
(2)
Λb

4π

∫
dω1

∫
dω2

∫ ωs

0

dω′

ωM
e−ω

′/ωM

×
{ [ω2 + (ω′ − ω)θ(ω − ω′)] θ(ω′ − ω1)

4ω2

φ4(ω1, ω2)

+
θ(ω − ω′)θ(ω′ − ω1)

2ω2

[G(ω1, ω2) +H(ω1, ω2)]
}

× /n+/n−
4

γµ⊥ Γ̃uΛb(v, s) . (5.18)

In the limit ωs, ωM � 〈ω1,2〉, where 〈ω1,2〉 are the typical momenta of the light

quarks in the heavy baryon, the integral can be simplified. Since ω1 ≤ ω′ ≤ ωs, one

may approximate ω1 ' 0 in the LCDAs. This reflects the physical assumption that
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the hard-collinear scattering requires the active light quark to carry almost all of the

momentum ω of the diquark compound. In this limit,

B̂Πµ
Λ(ωM) ' −αsCF

8π
γµ⊥ Γ̃uΛb(v, s) f

(2)
Λb

∫ ∞
0

dω

ω
H(0, ω)︸ ︷︷ ︸ ×

(
ωM − e−ωs/ωM (ωM + ωs)

)︸ ︷︷ ︸ .
Λb JΛ

(5.19)

As indicated the right-hand side factorises into an inverse moment of the heavy-

baryon LCDA, and a function characterising the light baryon, in terms of the Borel

and threshold parameters related to the spectrum of the interpolating current.

On the hadronic side of the sum rule, the contribution of the Λ baryon to the

correlator is given by

Πµ
Λ =

fΛmΛMΛb ∆ξΛ

m2
Λ/n+p′ − n−p′

γµ⊥ Γ̃uΛb(v, s) . (5.20)

After Borel transformation, and putting everything together, the sum rule for ∆ξΛ is

derived:

e−m
2
Λ/(ωM n+p′) fΛMΛbmΛ/ωM ∆ξΛ

= −
αsCFf

(2)
Λb

4π

∫
dω1

∫
dω2

∫ ωs

0

dω′

ωM
e−ω

′/ωM

×

{(
ω2 + (ω′ − ω) θ(ω − ω′)

)
θ(ω′ − ω1)

4ω2

φ4(ω1, ω2)

+
θ(ω − ω′) θ(ω′ − ω1)

2ω2

(
G(ω1, ω2) +H(ω1, ω2)

)}
(5.21)

' −αsCF
8π

f
(2)
Λb

∫ ∞
0

dω

ω
H(0, ω)×

(
ωM − e−ωs/ωM (ωM + ωs)

)
. (5.22)

In the large-recoil limit, the correction to the soft form factor scales as

∆ξΛ

ξΛ

∼ αs
ω0

mΛ

n+p
′

MΛb

.

Formally this has the same power-counting in terms of ΛQCD/mb (though note that

the ratio ω0/mΛ is numerically small), but its dependence on n+p
′ is less pronounced
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than for ξΛ. The decay constants of both baryons have dropped out of this ratio,

while the sensitivity to the sum-rule parameters and the exact shape of the LCDAs

of the Λb baryon remains.

5.3 Numerical Results

Here we numerically investigate the results of our sum rules regarding Λb → Λ form

factors (in the large-recoil limit). A small number of hadronic parameters play crucial

parts in the numerics, bringing along their respective uncertainties. Our “default”

choices for these are summarised in Table 5.1 for convenient reference throughout

this section.

Parameter Central value Remarks

Threshold s0 2.55 GeV2 First excited-state resonance: Λ(1600)

(ωs ≡ s0/n+p
′)

Borel M2
Borel 2.5 GeV2

(ωM ≡M2
Bor/n+p

′)

Decay constant fΛ 0.006 GeV2 Taken from [88]

Decay constant f
(2)
Λb

0.030 GeV3 Taken from [90]

Λb LCDA parameter ω0 300 MeV Our estimate

Table 5.1: Summary of hadronic input parameters

5.3.1 Soft Form Factor

The numerical value of ξΛ is predicted from the leading-order sum rule (5.8). We

shall also compare this with the approximated version (5.9). The default value for the
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threshold parameter is taken from the position of the next highest b-baryon resonance4

with I(JP ) = 0(1/2+). For the relevant LCDAs, we use our simple exponential model

as discussed in Section 4.2.3. In the case of ξΛ, only the partially integrated function

ψ4(ω) appears:

ψ4(ω) :=
ω

ω2
0

e−ω/ω0 ,

illustrated in Figure 5.3. It makes physical sense to model the diquark as unlikely to

possess too much or too little momentum.

Using the parameter values listed in Table 5.1, the soft form factor at maximal

recoil (q2 = 0, n+p
′ = MΛb) is estimated to be

ξΛ(n+p
′ = MΛb) ' 0.38 central value, from (5.8),

which is consistent within uncertainties with estimates derived from other methods

in [106, 111]. We remark in passing, that the authors of [101] estimate the Λb → Λ

form factors with a similar set-up, but without performing the large-recoil limit in

SCET explicitly. They quote a rather small value g2(q2 = 0) = 0.018± 0.003 for one

of the form factors that, as we understand, should coincide with ξΛ(n+p
′ = MΛb) in

the heavy-quark limit.

Figures 5.4 to 5.8 show the dependence of ξΛ(n+p
′ = MΛb) on the LCDA param-

eter ω0, the two auxiliary sum-rule parameters, and the energy dependence itself of

ξΛ(n+p
′) away from the large-recoil limit.

The following observations and comments can be made:

• As seen from Figure 5.4, for values of ω0 smaller than around 300 MeV (a value

extracted from the analysis in [90]), the approximate formula (5.9) does not

yield a reliable estimate, because numerically ω0 ' ωs ' ωM . In this case ξΛ is

4One should, however, be aware that one may encounter pollution from baryon states with

opposite parity, see the recent discussion in [110].
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Figure 5.3: Functional form of the partially integrated LCDA ψ4(ω) in the exponential

model, with ω0 = 300 MeV.

—

Figure 5.4: Dependence of ξΛ(n+p
′ = MΛb) on the value of ω0.



80 5.3. Numerical Results

Figure 5.5: Dependence of the soft form factor on n+p
′, using the leading-order sum rule

(5.8).

Figure 5.6: Results for the soft form factor using the leading-order sum rule (5.8) (solid line)

and the approximate formula (5.9) (thick dashed line). The shaded band demonstrates the

range between a pure 1/n+p
′2 and a pure 1/n+p

′3 behaviour. It is easy to see the leading-

order result more closely resembles the former.
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Figure 5.7: Dependence of the soft form factor on the Borel parameter at maximal recoil,

n+p
′ = MΛb .

Figure 5.8: Dependence of the soft form factor on the threshold parameter at maximal

recoil, n+p
′ = MΛb .

—
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overestimated by a factor of 2 or higher. However this might not be completely

surprising physically, as in the first place one expects the value of ω0 to be

larger in the baryonic LCDA than in the mesonic equivalent.

• Generally, one observes that the sum-rule result for ξΛ is very sensitive to the

shape of the LCDA, and the value of ω0 in particular. Varying ω0 in a rea-

sonable range between 0.2 and 0.5 GeV induces a 50% uncertainty in ξΛ. More

independent information on that parameter is clearly crucial for a higher-level

precision in this kind of sum-rule analysis.

• As graphically revealed in Figure 5.6, for small values of ω0, the energy depen-

dence of the form factor follows an approximate 1/n+p
′2 behaviour, rather than

a 1/n+p
′3 behaviour as predicted by (5.9).

• The dependence on the Borel parameter ωM (Figure 5.7) is very weak (less than

a few percent) and negligible compared to the other sources of uncertainties.

• The dependence on the threshold parameter ωs (Figure 5.8) is almost linear,

so the leading-order sum-rule result depends in an essential way on the exact

interpretation and modelling of the continuum contribution to the correlator; a

more sophisticated analysis than picking the position of the first excited state

may be required. Varying ωs in the range of 0.35 and 0.55 GeV induces a

10− 20% uncertainty for ξΛ at maximal recoil.

Taking these observations at face value, we have to conclude that the normalisa-

tion of the Λb → Λ form factors at large recoil still suffers from sizeable uncertainties,

most seriously those related to Λb LCDAs and the threshold parameter. The energy

dependence of the form factor also displays ambiguous behaviour, varying between

ξΛ ∼ 1/n+p
′2 to 1/n+p

′3 depending on the size of LCDA parameter ω0. Independent

study and verification of heavy-baryon LCDAs, in particular ψ4(ω), would clearly

be hugely useful for our current approach, as would further study on the lattice of

Λb → Λ form factors at intermediate momentum transfer (see Section 6.2).
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5.3.2 Form-Factor Ratios

Beyond leading order the symmetry relations between the individual Λb → Λ form

factors receive perturbative and non-perturbative corrections. Staying in the large-

recoil region, we turn our focus on the corrections springing from the exchange of one

hard-collinear gluon, contained in the function ∆ξΛ from (5.21). Using the same de-

fault numerical values of the hadronic inputs in Table 5.1 as before, ∆ξΛ is estimated

to be

∆ξΛ(n+p
′ = MΛb) ' −0.003 with

∆ξΛ

ξΛ

' −0.8% .

Note that for convenience the strong coupling constant has been fixed to αs ' 0.3,

which corresponds nicely to a hard-collinear energy scale of µ = 2 GeV.

The ratio ∆ξΛ/ξΛ is found to exhibit a mild linear dependence on the large recoil

energy and a pronounced linear dependence on the LCDA parameter ω0, as seen in

Figures 5.9 and 5.10. This is in qualitative agreement with the considerations after

(5.22).

The dependence of ∆ξΛ at maximal recoil on the sum-rule parameters is plotted

in Figure 5.11. In comparison with ξΛ, the sensitivity of ∆ξΛ to the Borel parameter

ωM is similarly weak, while the dependence on the threshold parameter ωs is some-

what weaker. Due to the different systematics in (5.8) and (5.21) pertaining to the

modelling of the continuum and the pollution from other hadronic resonances, the

dependence of the ratio ∆ξΛ/ξΛ on the sum-rule parameters is not straightforward

to estimate numerically; however, as already pointed out, to one’s delight both light

and heavy baryonic decay constants do not feature in the expression. The overall

dependence on the renormalisation scale used for the strong coupling constant has to

be resolved by calculating higher-order radiative corrections to ∆ξΛ in SCET.

Our result for the hard-collinear gluon-exchange correction ∆ξΛ/ξΛ can be utilised

to predict, in particular, ratios of individual form factors, which appear in physi-

cal decay observables. To illustrate this, using the definitions in the helicity-based
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Figure 5.9: Energy dependence of the form-factor correction ∆ξΛ/ξΛ from the exchange of

one hard-collinear gluon estimated from leading-order SCET sum rules (5.8) and (5.21).

—

Figure 5.10: Dependence of ∆ξΛ/ξΛ on the parameter ω0 which characterises the Λb LCDA,

at maximal recoil.

—
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.

.

Figure 5.11: Dependence of ∆ξΛ on the sum-rule parameters ωM and ωs at maximal recoil.

—
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parametrisation expounded in Section 4.2, we discuss the ratios h⊥/f⊥ and h̃⊥/g⊥

as examples. These appear in the forward-backward asymmetry observable AFB for

Λb → Λµ+µ−. Including the effect of hard-vertex corrections to O(αs) accuracy (see

Appendix C.2) (for which we use αs(mb) ' 0.2), Figure 5.12 is obtained which show

the sizes and energy dependences of the two ratios. We observe that the corrections

are dominated by the hard-gluon effects in the matching coefficients for the decay

currents.

5.3.3 Λb → Λµ+µ− Observables

The general expressions for the double-differential Λb → Λµ+µ− decay rate (neglect-

ing corrections from “non-factorisable contributions” – see Chapter 6) are summarised

in Appendix A. Our estimates for the form factors in the large-recoil region yield

branching ratios which are compatible with the central experimental values reported

in 2011 by CDF and its 2012 update [73] (and also compatible with an independent

theoretical estimate [111]) within theoretical and experimental uncertainties. Yields

from very recent results (June 2013) from LHCb [75] are on the low side compared to

our estimates (and CDF results as well), but still fall within the same order of mag-

nitude, though we keep in mind the small statistical significance of the data at low

q2 bins and the presence of large theoretical uncertainties in our predictions. Figure

5.13 presents our results, including also data points and errors from both experiments.

Note that hard-scattering spectator effects associated with ∆ξΛ are sub-leading and

so small, given the largeness of hadronic uncertainties, that we have chosen not to

plot them in Figure 5.13.

The functions describing the transverse and longitudinal rates and the forward-

backward asymmetry simplify considerably in the SCET limit, where all rates are

proportional to the universal form factor ξΛ(n+p
′), and when one takes mΛ � MΛb .

To first approximation, this is especially auspicious as taking ratios of observables

removes all references to the form factor itself, resulting in quantities free of hadronic
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.

.

Figure 5.12: Energy dependence of two form-factor ratios, including O(αs) corrections from

hard (dashed line) and hard plus hard-collinear (solid line) gluon exchange.

—
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Figure 5.13: Differential branching ratio for Λb → Λµ+µ− as a function of q2 in the large-

recoil region. The theoretical estimate is valid in the SCET limit; data points are taken from

CDF [74] (blue) and LHCb [75] (red). (Large) theoretical uncertainties in the theoretical

result are omitted. The red vertical error bars are shifted slightly sideways to improve

clarity.

—
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form-factor uncertainties. For instance, we have

HL(q2)

HT (q2)
' q2

2M2
Λb

∣∣M2
Λb
Ceff

9 (q2) + 2mbMΛb C
eff
7

∣∣2 +
∣∣M2

Λb
C10

∣∣2∣∣q2Ceff
9 (q2) + 2mbMΛb C

eff
7

∣∣2 + |q2C10|2
, (5.23)

and

HA(q2)

HT (q2)
' −

2 Re
[(
q2Ceff

9 (q2) + 2mbMΛb C
eff
7

)∗
q2C10

]∣∣q2Ceff
9 (q2) + 2mbMΛb C

eff
7

∣∣2 + |q2C10|2
, (5.24)

where Ceff
7 , Ceff

9 and C10 are Wilson coefficients. Ceff
7 and Ceff

9 include effects of

universal 1-loop contributions from hadronic 4-quark operators. The leading-order

result for the forward-backward asymmetry zero, q2
0, can be determined by the same

relation between Wilson coefficients,

Re
[
q2Ceff

9 (q2) + 2mbMΛb C
eff
7

]
q2=q2

0
' 0 , (5.25)

which is known from the inclusive b → s `+`− or exclusive B → K∗`+`− decays

(see [112] and references within).

Our numerical estimates for the decay-rate ratios HL/HT and HA/HT as a func-

tion of q2 are shown in Figure 5.14 along with error estimates, and we also compare

the SCET limit (5.23,5.24) with the more general result given in (A.4) in Appendix

A. Again, we emphasise that information on potentially sizable non-factorisable cor-

rections are not yet available. In the numerical analysis, the Wilson coefficients C1−7

are included to leading-logarithmic accuracy, and C9,10 to next-to-leading logarithmic

accuracy, with the numerical values taken from the analysis in [32].

It is apparent from Figure 5.14 that the inclusion of kinematic corrections of order

mΛ/MΛb together with perturbative corrections to the form-factor relations begets

a significant change in the value of HL/HT above q2 ' 2 GeV2, whereas HA/HT

is affected to a much lesser degree. Meanwhile, the shift in the forward-backward

asymmetry zero is rather small:

q2
0 =

 3.6 GeV2 (SCET limit),

3.4 GeV2 (incl. corrections).
(5.26)
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.

Figure 5.14: Ratios of observables HL/HT and HA/HT as a function of q2. Dashed lines

indicate the SCET limit (5.23,5.24). Solid lines include the default estimates for the form-

factor corrections from hard gluons, Cfi and hard-collinear gluons, ∆ξΛ, as well as kinematic

corrections of order mΛ/MΛb . In order to illustrate the (tiny) uncertainty from the variation

of ∆ξΛ/ξΛ, the error has been blown up to an interval of [25%, 400%] of its default value

(shaded error band).

—
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Because of the smallness of the imaginary part of the term (q2Ceff
9 (q2)+2mbMΛbC

eff
7 )

in the large-recoil region, the function HA/HT sports a pronounced minimum where

HA'−HT . Again, its position is only slightly shifted from q2 ' 1.9 GeV2 to 1.7 GeV2

when corrections are added to the SCET limit.

We point out that the function ∆ξΛ, responsible for spectator corrections to

the form factors, enters these observables with an additional suppression factor of

2mΛ/MΛb ∼ 40%, so even if we assign a large uncertainty to the ∆ξΛ/ξΛ, the ratio

observables do not change significantly. Thus we conclude the hard-vertex corrections

from the SCET matching coefficients Cfi and the purely kinematic corrections are

responsible for the dominant numerical effects, together with the unspecified uncer-

tainties from non-factorizable and power corrections.



Chapter 6

Outlook and Conclusions

6.1 “Non-Factorisable” Corrections to Λb → Λ `+`−

In the previous chapter, the leading soft form factor ξΛ entering symmetry relations

at the heavy-quark limit and large-recoil limit of the decay Λb → Λ `+`− has been

calculated. Using just this information at leading order the ratios of individual he-

licity form factors reduce to unity; this is broken after including the factorisable

contribution involving hard-collinear gluon scattering with a spectator quark, and

the correction from hard-vertex renormalisation. The effects of these two O(αs) cor-

rections on the 10 form factors are listed in Appendix C.3.

However there are more corrections still at the same order neglected in this work.

These are the “non-factorisable” corrections, by which we mean those which involve

in an essential way long-distance virtual photons (which then decay into `+`−) with

the purely hadronic effective operators, such that the whole non-local matrix element

〈γ∗(q)Λ(p′)| · · · |Λb(p)〉 cannot be factorised, and the results are not expressible in

terms of the usual form factors of the form 〈Λ|s̄Γ b|Λb〉. These “non-factorisable”

contributions might as well be called “non-form-factor”, and the label should not be

confused with that in the QCD factorisation sense.

Specifically these corrections come up in diagrams with insertions of the chro-
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momagnetic dipole operators O8g and the 4-quark operators O1−6, where one now

has to carefully include the photon field with large momentum in the n+ direction,

n−q ∼ O(mb) in the SCET sum-rule calculations. First, there are those vertex cor-

rections which, like the hard-vertex corrections in Appendix C.3, only concern the

active-quark line, independent of the spectator quark system and are thus universal

to all exclusive b→ s transitions. Hence these corrections, in the form of QCD/SCET

matching coefficients, can be readily lifted from mesonic calculations like [51,113,114].

Figure 6.1 shows the relevant diagrams.

Figure 6.1: Vertex corrections for O8 and O1−6. Possible locations of radiative vertices

are marked by crosses. The light-quark lines irrelevant to these corrections are omitted.

Diagrams related by symmetry are not shown.

—

These contributions enter as additional terms to the helicity form factors in ex-

pressions of observables like those in equations (A.4), and can be subsumed into a

modified coefficient function Ceff
9,a(q

2) → Ceff
9,a(q

2) + ∆Cver
9,a (q2), where a = +,⊥ refers

to those functions which appear with the longitudinal and transverse form factors;

for form factors defined with γ5, Ceff
9,a(q

2)→ Ceff
9,a(q

2) + ∆C̃ver
9,a (q2), with

∆C̃ver
9,a (q2) = ∆Cver

9,a (q2)
∣∣∣
mΛ→−mΛ

.

As an example, corrections due to the gluonic penguin O8g read:

∆Cver,O8

9,+ (q2) = −αs
4π

Ceff
8 (µ)

(
F

(9)
8 (µ, q2,mb) +

2mb

MΛb +mΛ

F
(7)
8 (µ, q2,mb)

)
, (6.1)

∆Cver,O8

9,⊥ (q2) = −αs
4π

Ceff
8 (µ)

(
F

(9)
8 (µ, q2,mb) +

2mb(MΛb +mΛ)

q2
F

(7)
8 (µ, q2,mb)

)
.

(6.2)
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The leading O(αs) contributions to the functions F
(7)
8 and F

(9)
8 have been calculated

in [114], and the unexpanded analytical form can be found in [32],

F
(7)
8 = −32

9
ln

µ

mb

− 8

9

ŝ

1− ŝ
ln ŝ− 8

9
iπ − 4

9

11− 16ŝ+ 8ŝ2

(1− ŝ)2

+
4

9

1

(1− ŝ)3

(
(9ŝ− 5ŝ2 + 2ŝ3)B0(ŝ)− (4 + 2ŝ)C0(ŝ)

)
, (6.3)

F
(9)
8 =

16

9

1

1− ŝ
ln ŝ+

8

9

5− 2ŝ

(1− ŝ)2
− 8

9

4−−ŝ
(1− ŝ)3

(
(1 + ŝ)B0(ŝ)− 2C0(ŝ)

)
, (6.4)

where ŝ = q2/m2
b and the integral functions are defined as

B0(ŝ) = −2
√

4/ŝ− 1 arctan
1√

4/ŝ− 1
,

C0(ŝ) =

∫ 1

0

dx
1

x (1− ŝ) + 1
ln

x2

1− x (1− x) ŝ
. (6.5)

Analogously the 4-quark operators would contribute ∆Cver,O1−6

9,+ (q2) terms to Ceff
9,a(q

2).

For completeness we also write down the vertex corrections to form-factor ratios:

∆Cver,FF
9,+ (q2) =

αsCF
4π

Ceff
7 (µ)

2mb

MΛb +mΛ

(
ln
m2
b

µ2
− 2(1− L)

)
, (6.6)

∆Cver,FF
9,⊥ (q2) =

αsCF
4π

Ceff
7 (µ)

2mb(MΛb +mΛ)

q2

(
ln
m2
b

µ2
− 2

)
, (6.7)

where L = −m2
b−q

2

q2 ln
(

1− q2

m2
b

)
.

Second, the additional operators lead to contributions arising from hard scatter-

ing with one of the spectator quarks (Figure 6.2). The photon vertex can be placed

on the active-quark line or the spectator-quark line in the initial or final state. The

emission of a hard-collinear photon causes certain internal propagators to go off-shell

and be integrated out. A careful power-counting should identify which polarisation

of the radiation in which diagram would give the leading effects in this type of cor-

rection; analogous calculations like those in [113] already done for the B → V `+`−

case should be a guiding light – whether the baryonic results fall in line with or defy

expectations from the older case will be of great interest.
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Figure 6.2: Emissions are possible from the heavy-quark line, the strange-quark line, or the

light quark before or after hard scattering – and even from the other light quark. For the

4-quark operators, also from the quark loop.

—

However, there comes a major difference with the mesonic case, considering an

energetic photon can be emitted from the light quark not involved in hard-scattering.

This scenario is tricky in our current calculational framework as this would leave

a diagram with a hard quark entering the final state which is represented by an

interpolating current, which exists beyond the usual definitions within SCET sum

rules; possibly this can be calculated in QCD factorisation where it can be formally

considered factorisable, or other methods.

* * *

In this work we have also overlooked diagrams with annihilation topologies (Fig-

ure 6.3). It actually enters the calculations at O(α0
s ), but [113] has shown that

for the simpler mesonic case, it is suppressed as only QCD penguin operators with

numerically small coefficients are involved, and/or it is Cabibbo-suppressed. The

O(αs) corrections are understandably even more negligible. We suspect not dissimi-

lar conclusions for the baryonic case but only an explicit calculation can verify that.

Along with this we look forward to future work completing the calculations of non-

factorisable corrections, to achieve a more confident set of predictions of observables

for Λb → Λ `+`− (and the related Λb → Λγ) for comparison with experimental data.
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Figure 6.3: The leading annihilation diagram.

—

6.2 Other Calculations on Λb → Λ `+`−

Among the more recent results regarding Λb → Λ `+`− form factors and observables,

one that is particularly exciting is the first and so far only calculation [115,116] of the

form factors using Lattice QCD. Lattice QCD [117] has long been a powerful player

in providing important non-perturbative phenomenological information, and various

collaborations have produced work on flavour physics encompassing mass spectra,

decay constants, mixing parameters, decay form factors and more (see e.g. [118] for

some recent reviews).

Heavy-to-light decays have been a relatively recent development, requiring a finer

lattice due to 1/mb discretisation effects, while on the other hand it is costly to deal

with fast light hadrons if they are involved. Technological advances in terms of the-

oretical experience and computing power have overcome certain problems to allow,

say, semi-leptonic B → π,K(∗) to be explored by a number of collaborations [119],

but results are typically more reliable for the intermediate-recoil region in the calcu-

lation of hadronic transition form factors, and large extrapolations are needed to get

an estimation of the values in the large-recoil region.

The results of [115] fit reasonably well with the intermediate-to-high q2 data from

LHCb and CDF (though the highest bin falls short), and in the small q2 region a com-

parison is not especially meaningful as the lattice predictions have required a large
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(model-dependent) extrapolation while the experimental data are quite insignificant

in terms of yield. Despite the fact that the results of [115] and ours work in opposite

regions of q2, it is still useful to see whether the predictions match to ensure everyone

is on the right track, speaking in general as well. Besides, in the current absence of

any efficient method that can confidently preside over the entire kinematic q2 range

for heavy-to-light decays, different methods could be treated as complementary in

the attempt to achieve a combined global dataset, collated from each focussing on

their own respective kinematic regions, where systematics are under the best control

and usage of various symmetries and mathematical tricks are most reliable.

Elsewhere, lattice-based baryonic studies seem to be focussed on nucleons [120]

and, for heavy baryons, mass spectroscopy (see [121] for a review and references

within). There is also a very recent paper [122] on Λb → p `−ν̄`, a non-FCNC decay

good for determination of |Vub|.

* * *

Outside of the lattice arena, our SCET- and sum-rule-based calculations regard-

ing Λb → Λ `+`− observables join a long line of investigations into semi-leptonic and

radiative Λb → Λ transitions, which began long before Λb → Λµ+µ− was first ex-

perimentally observed. As mentioned in Chapter 5, we have found our results are

compatible within uncertainty with [106] and [111]. Other sum-rule based approaches

include [101,123,124].

Others have employed alternative approaches like quark models and Perturbative

QCD [68, 69, 125–128] to make Standard-Model predictions of observables like cross

sections, various asymmetries and angular observables, often designed to be efficiently

sensitive to sources of New Physics, with some making use of polarised Λ and/or Λb

baryons. But given the disappointing obedience of most new flavour data in sticking

to SM predictions, it is not uncommon to contextualise the study of these decays

within specific BSM scenarios, for example SM extensions with supersymmetry [129],

extra dimensions [130] or four quark generations [131].
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Let us end this section by saying we encourage and look forward to more, indepen-

dent studies of related decays, as such are valuable and important for cross-checks;

and we express our hope that our new helicity-based parametrisation scheme for

baryonic transition form factors (4.3) will be found helpful in the near future by our

experimental and lattice colleagues.

6.3 Conclusion

Heavy flavour physics is an indispensible part of the quest to solve the fundamen-

tal mysteries of our universe. Theory and Experiment have in the past few decades

pushed each other to hone their techniques, on the way accumulating deep experi-

ence and expertise in unravelling the flavour jigsaw, decay by decay, observable by

observable. The specific focus of this thesis is a theoretical study of the semi-leptonic

baryonic Λb → Λ `+`− decay, a flavour-changing neutral-current process attuned to

revealing potential New-Physics effects. The use of baryonic channels is well justified

in an age where experimental technology has improved to a level where previously

hard-to-detect effects are now measured well enough to provide statistically viable

data and insights.

To investigate systematically the form factors entering the Λb → Λ `+`− transi-

tions, we have used the framework of soft-collinear effective theory (SCET). But first

as a starting point, we have proposed an alternative, helicity-based parametrisation

of the relevant baryonic form factors, which yield relatively simple expressions for

observables like decay widths and asymmetries, and simplify symmetry relations in

the limit of heavy b-quark mass and/or large recoil energy, in the hope of bringing

better clarity to calculations and physical understanding.

In the heavy-quark and large-recoil limits, the 10 physical form factors for Λb → Λ

transitions reduce to a single universal “soft” function ξΛ, which can be defined as
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the matrix element of a universal decay current in SCET. In this work, ξΛ has been

estimated using the technique of light-cone sum rules (LCSR), in which a SCET

correlation function involving the decay current and an interpolating current for the

light Λ baryon is calculated and analysed both perturbatively and hadronically. In

this framework, the heavy Λb baryon is represented by its light-cone distribution

amplitudes (LCDAs), the study of which is an important, intricate field in parti-

cle physics in its own right. Heavy baryonic LCDAs have received relatively little

attention in the past, and this work includes a careful derivation and modelling of

the momentum-space projection of the possible LCDA terms involved in the SCET

sum-rule form-factor calculations. Hence this exercise also provides essential inputs

required for other parts of this work.

The energy dependence of the soft form factor resulting from our sum-rule analy-

sis is studied, as is its dependence on the various hadronic and sum-rule parameters

entering the expression. These parameters include the characterisation of the shape

of the Λb LCDAs – for which we have chosen a simple exponential model – and the

hadronic spectrum of the Λ contributing to the sum-rule analysis. Our numerical

result is consistent within experimental and theoretical uncertainties when compared

to the 2011-12 measurement of the Λb → Λµ+µ− rate by CDF at Tevatron. LHC

has also very recently released their first data on the same channel with a larger data

set (but a small significance in the lower q2 bins), and our predictions are too within

order-of-magnitude consistency. However, our uncertainties are still large, especially

with the known unknowns of “non-factorisable” effects – corrections to ξΛ that cannot

be expressed in terms of hadronic Λb → Λ form factors – and annihilation topologies,

signifying the theoretical challenges ahead.

As a phenomenologist, constructing decay observables which are convenient from

an experimental point of view is crucial, in order to facilitate precision tests of the

Standard Model and searches of New Physics. To first approximation, we have found

that the dependence on hadronic form factors drop out of decay asymmetries in the
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large-recoil limit. In contrast to analogous mesonic decays, both HL/HT (the ratio

of the longitudinal and transverse decay rates) and HA/HT (defining the forward-

backward asymmetry zero) are independent of hadronic form factors in the SCET

limit.

One of the sources of corrections to ξΛ arises from short-distance gluon exchange

between the partonic b→ s transition and one of the light quarks in the Λb; we have

described the leading effect by defining a hadronic matrix element of a sub-leading

SCET current. As only one light quark is involved in this hard-scattering process,

the other light quark remains truly a spectator in the Λb → Λ `+`− decay and hence

can still populate the kinematic end-point region, where the resulting convolution

integrals are not well-defined. In this situation, the QCD factorisation framework

cannot be straightforwardly applied, in contrast to analogous semi-leptonic mesonic

B decays.

To calculate the correction term to the leading form factor relevant to this hard-

collinear gluon-exchange contribution, we have once more used SCET sum rules to

analyse a suitably defined correlation function; expressions for ∆ξΛ are obtained,

as are its contributions to individual transition form factors. It is shown that the

correction ∆ξΛ/ξΛ numerically only amounts to a few percent, and so does not affect

in a significant way observables like decay asymmetries. We have also included hard-

vertex corrections to Wilson coefficients appearing in the matching of QCD and

leading SCET currents, and kinematic corrections of order mΛ/MΛb .

* * *

As the Standard Model is evidently incomplete at the time of writing, with New

Physics lurking somewhere waiting to be unearthed by our particle colliders, B-physics

continues to occupy a central position at the leading experimental facilities. More

and more previously unavailable channels are thrown open and observables teased

out; the results LHCb announced in June 2013 on Λb → Λµ+µ− have only used data
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collected in 2011, so one can expect an update in the near future, as the LHC col-

lected data until its scheduled shutdown for repair and upgrade in late 2012. LHCb

has also released Λb lifetime measurements in July 2013 [132].

The LHC will restart in late 2014 at close to its full design energy, with 7 TeV per

beam, and an LHCb upgrade is planned for 2018 during the second long shutdown

[133]. All eyes will be on LHCb [134] for hadron-collider B-physics – CDF and D0 at

Tevatron which produced so much important work in flavour physics were terminated

in 2011 due to an unfortunate lack of funding. On the B-factory front, BaBar at PEP-

II SLAC ended in 2008 while Belle at KEKB is still running. A major upgrade of

KEKB, called SuperKEKB is already under way, for a new experimental collaboration

Belle-II [135]. A brand new high-luminosity B-factory, the SuperB project to be

located in Italy, was partially funded for years until hope was tragically squashed at

an advanced stage of preparation in late 2012 due to financial constraints [136].1

* * *

Clearly, much work is still left to be done in theoretical phenomenology, given the

high-luminosity machines we have and hopefully shall have, whose deluge of high-

statistics data will require considerable theoretical accuracy in Standard-Model (and

BSM) predictions to judge against. (There is also much left to be done for experi-

mentalists.) Despite the rather exasperating lack of unambiguous signs from beyond

the Standard Model, there are hints here and there of the great excitements that

physicists look forward to in flavour and beyond, and, maybe, a future theory of

everything that generations have toiled hard to reach. We hope that this work rep-

resents a small step towards achieving that goal.

1For a discussion of future heavy-flavour-related experimental prospects, see Chapter 2 of [137].



Appendix A

Differential Decay Widths for

Λb→ Λµ+µ−

This appendix presents more general formulæ for the differential decay widths for

radiative Λb → Λµ+µ− transitions (Section 5.3), in terms of the 10 helicity-based

form factors defined in Section 4.3. We consider the center-of-mass frame of the

lepton pair, and define the angle θ between the Λb baryon and the positively charged

lepton. For simplicity, we consider massless leptons, such that q2 = 2 k`+ · k`− . We

then have

pΛb · k`± =
M2

Λb
−m2

Λ + q2 ∓ λ cos θ

4
and pΛ · k`± =

M2
Λb
−m2

Λ − q2 ∓ λ cos θ

4
,

(A.1)

where

λ ≡ √s+ s− =

√(
(MΛb +mΛ)2 − q2

)(
(MΛb −mΛ)2 − q2

)
(A.2)

is the phase-space factor. We can define

d2Γ(Λb → Λ `+`−)

dq2 d cos θ
≡ 3

8

{
(1 + cos2 θ)HT (q2) + 2 cos θ HA(q2) + 2(1− cos2 θ)HL(q2)

}
,

(A.3)
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and if we neglect non-factorisable corrections, the differential decay rate can be writ-

ten out in terms of the form factors in the helicity basis:

HT (q2) =
λ q2 n

96π3M3
Λb

{
s−

(∣∣∣∣Ceff
9 (q2) f⊥ +

2mb (MΛb +mΛ)Ceff
7

q2
h⊥

∣∣∣∣2 + |C10 f⊥|2
)

+ s+

(∣∣∣∣Ceff
9 (q2) g⊥ +

2mb (MΛb −mΛ)Ceff
7

q2
h̃⊥

∣∣∣∣2 + |C10 g⊥|2
)}

,

HA(q2) = − λ2 q2 n

48π3M3
Λb

Re

[(
Ceff

9 (q2) f⊥ +
2mb (MΛb +mΛ)Ceff

7

q2
h⊥

)∗
(C10g⊥)

+

(
Ceff

9 (q2) g⊥ +
2mb (MΛb −mΛ)Ceff

7

q2
h̃⊥

)∗
(C10f⊥)

]
,

HL(q2) =
λn

192π3M3
Λb

{
s− (MΛb +mΛ)2

(∣∣∣∣Ceff
9 (q2) f+ +

2mbC
eff
7

MΛb +mΛ

h+

∣∣∣∣2 + |C10 f+|2
)

+ s+ (MΛb −mΛ)2

(∣∣∣∣Ceff
9 (q2) g+ +

2mbC
eff
7

MΛb −mΛ

h̃+

∣∣∣∣2 + |C10 g+|2
)}

,

(A.4)

where

n =
α2

s G
2
F

8π2
|VtsVtb|2 . (A.5)

These functions simplify considerably in the SCET limit q2 → 0, where

HT (q2) ' λ2 q2 n

48π3M3
Λb

|ξΛ(n+p
′)|2
{∣∣∣∣Ceff

9 (q2) +
2mbMΛb C

eff
7

q2

∣∣∣∣2 + |C10|2
}
,

HA(q2) ' − λ2 q2 n

24π3M3
Λb

|ξΛ(n+p
′)|2 Re

[(
Ceff

9 (q2) +
2mbMΛb C

eff
7

q2

)∗
C10

]
,

HL(q2) ' λ2 n

96π3MΛb

|ξΛ(n+p
′)|2
{∣∣∣∣Ceff

9 (q2) +
2mb

MΛb

Ceff
7

∣∣∣∣2 + |C10|2
}
. (A.6)



Appendix B

Form-Factor Parametrisations

B.1 Connection to Convention by Chen and Geng

Here we state the relations between our helicity-based parametrisation of 10 Λb →

Λ `+`− form factors, and the basis commonly used in recent literature, defined in [106].

Vector form factors: f0 = f1 +
q2

MΛb −mΛ

f3 ,

f+ = f1 −
q2

MΛb +mΛ

f2 ,

f⊥ = f1 − (MΛb +mΛ) f2 . (B.1)

Axial-vector form factors: g0 = g1 −
q2

MΛb +mΛ

g3 ,

g+ = g1 +
q2

MΛb −mΛ

g2 ,

g⊥ = g1 + (MΛb −mΛ) g2 . (B.2)

Tensor form factors: h+ = fT2 −
MΛb +mΛ

q2
fT1 ,

h⊥ = fT2 −
1

MΛb +mΛ

fT1 . (B.3)

Pseudo-tensor form factors: h̃+ = gT2 +
MΛb −mΛ

q2
gT1 ,

h̃⊥ = gT2 +
1

MΛb −mΛ

gT1 . (B.4)
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B.2 Symmetry-based Form-Factor Parametrisation

Ways to parametrise decay form factors are not unique, and here we set up another

alternative parametrisation which considers the different projections of the decay

current in the heavy-quark limit (mb → 0) and/or large-recoil-energy limit (EΛ →

∞). On the heavy-quark side, we make use of the heavy-baryon velocity vµ = pµ/MΛb

such that /v uΛb(p) = uΛb(p). We also take into account the projections on the light-

quark side (using parity invariance of strong interactions). In this system the general

expression for the matrix element of the decay currents is:

〈Λ(p′, s′)|q̄ Γ b|Λb(p, s)〉 = ξ
(±)
ij (v, p′) ūΛ(p′, s′)

{
Γi

/n±/n∓
4

Γ Γj

}
uΛb(p, s) . (B.5)

Now the basis of Dirac matrices can be chosen as

Γi = {1, γ5, γ
α
⊥} and Γj = {1, γ5, ~γµ, ~γµγ5} , (B.6)

where the standard definitions used are γα⊥ = γα− /n+

2
nα−−

/n−
2
nα+, and ~γµ = γµ− /v vµ,

etc. Here and in the following, we consider a frame where vµ = (nµ− + nµ+)/2 and

/p′⊥ = 0. The non-vanishing form factors are:

ξ
(±)
11 (v, p′) ≡ A(±)(v ·p′) ∼ O(1) , ξ

(±)
13 (v, p′) ≡ p′µ

v ·p′
B(±)(v ·p′) ∼ O(ε) ,

ξ
(±)
22 (v, p′) ≡ C(±)(v ·p′) ∼ O(ε) , ξ

(±)
24 (v, p′) ≡ p′µ

v ·p′
D(±)(v ·p′) ∼ O(ε) ,

ξ
(±)
33 (v, p′) ≡ δµαE

(±)(v ·p′) ∼ O(ε) ,

ξ
(±)
34 (v, p′) ≡ iεµρσα

vρ p
′
σ

v ·p′
F (±)(v ·p′) ∼ O(ε) . (B.7)

After the equations-of-motion constraints have been taken into account, only 10 out

of the 12 form factors above remain independent, as expected. The indicated sup-

pression of the form factors in terms of ε = ΛQCD/M refers to the violation of the

heavy-quark spin symmetry. In addition, in the large-recoil limit, the contributions

from the form factors with index (−) are additionally suppressed. Therefore, we

may neglect the 5 form factors B(−) through F (−), which is a good approximation,

because:
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• In the HQET limit v · p′ ∼ O(mΛ), their contributions are suppressed by at

least a factor of ΛQCD/M .

• In the SCET limit n+p
′ ∼ O(MΛb), their contributions are suppressed by at

least a factor of (ΛQCD/M)2 (for non-factorisable effects) or αs (for factorisable

effects).

This gives a rather efficient description which simultaneously combines the sym-

metry constraints in both limits. It also allows one to take into account sub-leading

corrections in the large-recoil limit systematically, which are partially calculable in

the framework of QCD factorisation or light-cone sum rules. In this approximation,

we find that the 10 physical helicity form factors are related by 5 equations (for

vanishing light-quark masses, ms → 0):

f0 =
MΛb +mΛ

MΛb −mΛ

n+p
′ −mΛ

n+p′ +mΛ

f+ +
MΛb − n+p

′

MΛb −mΛ

(
g⊥ −

n+p
′ −mΛ

n+p′ +mΛ

f⊥

)
,

g0 =
MΛb −mΛ

MΛb +mΛ

n+p
′ +mΛ

n+p′ −mΛ

g+ +
MΛb − n+p

′

MΛb +mΛ

(
f⊥ −

n+p
′ +mΛ

n+p′ −mΛ

g⊥

)
,

h̃⊥ =
MΛb +mΛ

MΛb −mΛ

n+p
′ −mΛ

n+p′ +mΛ

h⊥ +
MΛb − n+p

′

MΛb −mΛ

(
g⊥ −

n+p
′ −mΛ

n+p′ +mΛ

f⊥

)
, (B.8)

and

h+ =
MΛb +mΛ

mb

f+ +
n+p

′ −mΛ

mb

(
f⊥ −

n+p
′ +mΛ

n+p′ −mΛ

g⊥

)
,

h̃+ =
MΛb −mΛ

mb

g+ +
n+p

′ −mΛ

mb

(
g⊥ −

n+p
′ −mΛ

n+p′ +mΛ

f⊥

)
. (B.9)
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Corrections to Symmetry Relations

C.1 HQET Symmetry Relations

Here we write down the relations linking the 10 helicity-based form factors to the 2

in the HQET limit, following from Section 4.3.1:

Vector form factors:

f0(q2) = A(v ·p′) +
MΛb +mΛ − 2v ·p′

MΛb −mΛ

B(v ·p′) ≈ A(v ·p′) +B(v ·p′) ,

f+(q2) = A(v ·p′)− MΛb −mΛ − 2v ·p′

MΛb +mΛ

B(v ·p′) ≈ A(v ·p′)−B(v ·p′) ,

f⊥(q2) = A(v ·p′)−B(v ·p′) . (C.1)

Axial-vector form factors:

g0(q2) = A(v ·p′)− MΛb −mΛ − 2v ·p′

MΛb +mΛ

B(v ·p′) ≈ A(v ·p′)−B(v ·p′) ,

g+(q2) = A(v ·p′) +
MΛb +mΛ − 2v ·p′

MΛb −mΛ

B(v ·p′) ≈ A(v ·p′) +B(v ·p′) ,

g⊥(q2) = A(v ·p′) +B(v ·p′) . (C.2)

Tensor form factors:

h⊥(q2) = A(v ·p′)− MΛb −mΛ − 2v ·p′

MΛb +mΛ

B(v ·p′) ≈ A(v ·p′)−B(v ·p′) ,

h+(q2) = A(v ·p′)−B(v ·p′) . (C.3)
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Pseudo-tensor form factors:

h̃⊥(q2) = A(v ·p′) +
MΛb +mΛ − 2v ·p′

MΛb −mΛ

B(v ·p′) ≈ A(v ·p′) +B(v ·p′) ,

h̃+(q2) = A(v ·p′) +B(v ·p′) . (C.4)

C.2 Hard-Vertex Corrections to SCET Symmetry

Relations

The hard-vertex corrections to the individual QCD decay currents have been dis-

cussed before [37, 51]. Starting from the general 1-loop result in equation (28)

of [51], we can deduce the O(αs) corrections to the individual helicity form factors

fi = Cfi ξΛ + · · · for Λb → Λ `+`−, as these corrections concern only the active-quark

line, independent of the spectator system.

If we set

Cf+ = Cg+ ≡ 1 ,

(equivalent to choosing a renormalisation scheme), this leads to

Cf0 = Cg0 = 1 +
αsCF

4π
2(1− L) ,

Cf⊥ = Cg⊥ = 1 +
αsCF

4π
L ,

Ch+ = Ch̃+
= 1 +

αsCF
4π

(
ln
m2
b

µ2
− 2(1− L)

)
,

Ch⊥ = Ch̃⊥ = 1 +
αsCF

4π

(
ln
m2
b

µ2
− 2

)
, (C.5)

where

L ≡ −m
2
b − q2

q2
ln

(
1− q2

m2
b

)
.
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C.3 Hard-Collinear Gluon Exchange

We consider the tree-level matching (in light-cone gauge), following [51]:

q̄ ΓQv ' ξ̄ Γ̃hv −
1

n+p′
ξ̄ gs /A⊥

/n+

2
Γhv −

1

mb

ξ̄ Γ
/n−
2
gs /A⊥ hv + · · · . (C.6)

The hard-scattering contributions to the individual helicity-based form factors in the

large-recoil limit can then be identified by means of (4.69) and setting mΛ → 0 and

MΛb → mb ≡M . This is equivalent to using

A(−) ' −2M

mΛ

∆ξΛ and E(+) = F (+) =
1

2
∆ξΛ (C.7)

in (B.5). The final results including both hard-scattering and hard-vertex corrections

read as follows, with Ci = Ci(µ, n+p
′) denoting the hard-vertex coefficients:

Vector form factors:

f0(q2) ' Cf0 ξΛ(n+p
′)− 2M

n+p′
∆ξΛ(n+p

′) ,

f+(q2) ' Cf+ ξΛ(n+p
′)− 2

(
2− M

n+p′

)
∆ξΛ(n+p

′) ,

f⊥(q2) ' Cf⊥ ξΛ(n+p
′) +

2M

n+p′
∆ξΛ(n+p

′) . (C.8)

Axial-vector form factors:

g0(q2) ' Cg0 ξΛ(n+p
′) +

2M

n+p′
∆ξΛ(n+p

′) ,

g+(q2) ' Cg+ ξΛ(n+p
′) + 2

(
2− M

n+p′

)
∆ξΛ(n+p

′) ,

g⊥(q2) ' Cg⊥ ξΛ(n+p
′)− 2M

n+p′
∆ξΛ(n+p

′) . (C.9)

Tensor form factors:

h+(q2) ' Ch+ ξΛ(n+p
′) +

2M

n+p′
∆ξΛ(n+p

′) ,

h⊥(q2) ' Ch⊥ ξΛ(n+p
′)− 2

(
1− M

n+p′

)
∆ξΛ(n+p

′) . (C.10)

Pseudo-tensor form factors:

h̃+(q2) ' Ch̃+
ξΛ(n+p

′)− 2M

n+p′
∆ξΛ(n+p

′) ,

h̃⊥(q2) ' Ch̃⊥ ξΛ(n+p
′) + 2

(
1− M

n+p′

)
∆ξΛ(n+p

′) . (C.11)
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