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Abstract 

 

 

A greater knowledge of the interactions between the Greenland Ice Sheet and climate is critical 

to understanding the possible impacts of future global warming, including ice sheet contribution 

to global sea-level rise and perturbations to ocean circulation.  Recent acceleration, thinning 

and retreat of major tidewater glaciers in Greenland and Antarctica during the past two decades 

demonstrate the potential for ice sheets to respond to climate change much faster than 

previously assumed.  One approach to understanding the role of atmospheric and oceanic 

warming to ice sheet dynamics is to investigate how ice sheets responded to past periods of 

climate change.   

 

This thesis uses benthic foraminifera as a proxy to reconstruct past changes in the temperature 

of the relatively warm West Greenland Current, to investigate the possible influence of ocean 

warming on ice sheet dynamics during the initial marine-based deglaciation phase, and 

throughout the Holocene, when the ice was positioned close to the present margin.  This thesis 

finds that the marine-based ice sheet in central West Greenland collapsed rapidly due to a 

combination of high relative sea-level and ice sheet thinning due to climatic warming.  

Foraminiferal evidence does not support a major influence of ocean forcing on initial 

deglaciation.  However, Holocene changes in the relative temperature of the West Greenland 

Current may have had a more significant influence on ice stream dynamics following the 

marine-based ice retreat, when outlet glaciers were positioned within coastal fjords.  Changes in 

the relative temperature of the West Greenland Current are determined “upstream” by wider 

scale changes in the North Atlantic region.     
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Introduction 

 

 

1.1 Introduction 

The Greenland Ice Sheet (GrIS) (Fig. 1.1) is the only great northern hemisphere ice sheet that 

has survived to the present day.  The modern GrIS contains more than 7 m equivalent sea level 

(Lemke et al., 2007), and contributes approximately 0.5 mm a-1 to global mean sea-level rise 

(Shepherd and Wingham, 2007).  A greater knowledge of the interactions between the GrIS and 

climate is critical to understanding the possible impacts of future global warming, including ice 

sheet contribution to global sea-level rise and perturbations to ocean circulation (Alley et al., 

2005).  It has become apparent that since the mid-1990s, the GrIS has been losing mass at an 

accelerating rate (Krabill et al., 2000; Krabill et al., 2004; Chen et al., 2006; Ramillien et al., 

2006; Velicogna and Wahr, 2006; Luthcke et al., 2007).  Rapid instabilities in fast-flowing ice 

stream systems, the main outlets by which the GrIS evacuates ice to the oceans, appear to be 

the main source of this mass imbalance (Rignot and Kanagaratnam, 2006).  The acceleration, 

thinning and retreat of major tidewater glaciers in Greenland during the past two decades 

demonstrates the potential for ice sheets to respond to climate change much faster than 

previously assumed (Zwally et al., 2002; Krabill et al., 2004; Rignot and Kanagaratnam, 2006; 

Howat et al., 2007; Luthcke et al., 2006).  Jakobshavn Isbræ, which drains approximately 7% of 

the GrIS into Disko Bugt, central West Greenland, is one such glacier that underwent significant 

changes between 1997 and 2003, including a near doubling in velocity and the collapse of the 

floating marine-based terminus (Bindschadler, 1984; Abdalati and Krabill, 1999; Thomas et al., 

2003; Joughin et al., 2004; Podlech and Weidick, 2004; Thomas, 2004).  However, the driving 

mechanisms behind these changes remain poorly understood. 

 

A key uncertainty is the role of atmospheric versus oceanic forcing influencing ice sheet 

dynamics.  Atmospheric warming may drive rapid instabilities through enhanced ablation and 

subsequent meltwater penetration to the ice sheet bed, leading to basal lubrication and 

acceleration of ice streams (e.g. Zwally et al., 2002; Thomas et al., 2003).  Alternatively, warmer 

ocean temperatures may cause abrupt changes in ice sheet behaviour by enhancing basal 
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melting of the marine-based portions of the ice sheet, resulting in thinning of floating ice, 

enhanced calving, and ice stream acceleration (Payne et al., 2004; Bindschadler, 2006; Holland 

et al., 2008).   

 

A robust approach to understanding the role of atmospheric and oceanic warming to ice sheet 

dynamics is to investigate how ice sheets responded to past periods of climate change.  The 

presence of two large trough mouth fans that extend 400 km west of the present ice sheet 

margin in the Disko Bugt and the Uummannaq area, suggests the GrIS expanded on to the 

outer continental shelf in the past, and possibly during the last glacial advance.  It is likely that 

large ice stream systems draining into these two areas were a major influence on GrIS 

dynamics in the past.  Previous research in central West Greenland investigating deglacial and 

Holocene ice sheet history has been largely limited to the terrestrial ice-free margin and the 

inner continental shelf of Disko Bugt, and has focused on the latter stages of deglaciation.  

However, there has been little offshore research from the outer shelf in these areas to constrain 

past ice sheet extent and retreat history.   

 

In light of these shortcomings in our current knowledge, this study seeks to investigate the 

timing and nature of ice retreat during the early stages of deglaciation, and the possible role of 

ocean forcing on ice sheet stability during deglaciation and throughout the Holocene.   
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Figure 1.1 Map of Greenland showing location of study area in red box (illustrated in Fig. 1.2).   
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Figure 1.2 Map showing location of major settlements, outlet glaciers, fjords, and study sites 

mentioned in text. 
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1.2 Research aims and objectives 

The overarching aim of this thesis is to investigate deglacial and Holocene changes in the 

activity of major West Greenland ice streams, and identify possible interactions between 

climate, ocean circulation, and ice sheet dynamics.   

 

This broad aim is investigated using proxy evidence from offshore geological records (sediment 

cores) from three key locations, and is addressed with reference to five specific objectives 

outlined below: 

 

i) To investigate the ecology of modern benthic foraminifera assemblages in 

central West Greenland in order to more reliably reconstruct past environmental 

changes from fossil foraminifera assemblages. 

ii) To assess fossil sediment cores for evidence of reworking and their suitability 

for high-resolution palaeoceanographic reconstructions, and identify changes in 

glacimarine sedimentation linked to major West Greenland ice streams.   

iii) To assess Funder and Hansen’s (1996) model for deglaciation in the central 

west sector of the Greenland Ice Sheet, and to identify alternative driving 

mechanisms for ice retreat where the pattern of deglaciation differs from this 

model. 

iv) To establish high resolution deglacial and Holocene records of changes in local 

and regional water mass characteristics from marine records representative of 

proximal and distal locations to the Greenland Ice Sheet 

v) To compare these new marine records documenting changes in ocean 

circulation and ice stream activity to other published marine, terrestrial and ice 

core records, in order to identify and evaluate possible driving mechanisms of 

ice stream behaviour. 
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1.3 Wider justification and context for research 

Over the past 100 years, the Arctic has warmed at nearly twice the global average rate (Serreze 

and Francis, 2006; Trenberth et al., 2007; Kaufman and Arctic Lakes 2k Project Members, 

2009).  Since 1950, average Arctic temperatures have increased by 2-3°C and winter 

temperatures have risen by up to 4°C (Huntingdon and Weller, 2004).  The Arctic is warmer at 

the present than at any time in the preceding 1300 years, and climate projections indicate this 

warming trend will continue in future decades (Trenberth et al., 2007).   

 

While ice sheet mass balance estimates vary (e.g. Thomas et al., 2008), there is a consensus 

that the GrIS is losing mass, and that the rate of ice loss has increased in the past decade.  Ice 

losses are due to surface ablation at low altitudes and acceleration of outlet glaciers at the ice 

margin (Luthcke et al., 2006).  Two-thirds of ice mass loss is believed to be due to ice dynamics 

(Rignot and Kanagaratnam, 2006).  There is growing evidence of ocean forcing on ice margin 

stability (e.g. Rignot and Jacobs, 2002; Payne et al., 2004; Luckman et al., 2006; Walker et al., 

2007; Holland et al., 2008; Hanna et al., 2009; Nick et al., 2009; Rignot et al. 2010).  In 

Greenland, marine-terminating glaciers have accelerated, thinned, and retreated much faster 

than land-terminating glaciers (Sole et al., 2008; Moon and Joughin, 2008).  There also appears 

to be a trend of marine-terminating glacier acceleration spreading northwards (e.g Rignot and 

Kanagaratnam, 2006).  Thomas (2004) identified average ice shelf thinning of 80 m a-1 

immediately preceding the acceleration and collapse of Jakobshavn Isbræ’s floating ice tongue, 

which took place between 1997 and 2003.  These rates are considerably higher than thinning 

rates of nearby grounded ice, suggesting that basal melting due to warmer ocean temperatures 

may be responsible.  Holland et al. (2008) found that a pulse of warm sub-surface water was 

transported northwards along the West Greenland coast, and entered Disko Bugt and 

Jakobshavn Isfjord in 1997, coinciding with initial rapid changes in ice stream behaviour.  

Recent studies in Greenland and Antarctica suggest ocean forcing may be an important 

influence on modern ice stream stability (e.g. Jenkins et al., 1997; Payne et al., 2004; Walker et 

al., 2007; Holland et al., 2008; Straneo et al., 2010; Rignot et al., 2010).  It is therefore likely that 

ocean temperature changes have influenced ice margin dynamics over longer timescales. 
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Understanding the driving mechanisms behind collapses of marine-based ice is a key societal 

concern.  This is particularly pertinent for the West Antarctic Ice Sheet, which is grounded below 

sea level, contains 5.6 m sea level equivalent, and is the world’s most unstable ice sheet and a 

large potential contributor to future sea level rise (e.g. Vaughan and Spouge, 2002; Overpeck, 

et al., 2006).  Recent research in Antarctica has identified similar accelerations and thinning of 

ice streams to those observed in Greenland (Rignot, 2001; Shepherd et al., 2001; Rignot et al., 

2002).  However, the rapid response of inland ice to the loss of ice-shelves in Greenland and 

Antarctica indicates that ice grounded above sea level is also vulnerable to future perturbations 

(e.g. Rignot et al., 2002; Shepherd et al., 2002; de Angelis and Skvarca, 2003).  Warming 

subsurface ocean temperature is one cause of ongoing ice loss (Rignot and Jacobs, 2002; 

Shepherd et al., 2004).  However, the potential for warmer subsurface waters to drive large-

scale changes in ice dynamics is at present poorly understood.   

 

1.4 Rationale behind research objectives 

1.4.1 Objective (i) 

To investigate the ecology of modern benthic foraminifera assemblages in central West 

Greenland in order to more reliably reconstruct past environmental changes from fossil 

foraminifera assemblages. 

 

Identifying environmental controls on modern benthic foraminifera provides a foundation for 

correctly interpreting fossil benthic foraminiferal assemblages and reconstructing 

palaeoenvironmental change.  Data from other studies of modern and fossil benthic foraminifera 

from high-latitude shelf and fjord environments will supplement interpretations of modern 

foraminiferal assemblages from central West Greenland.  Statistical analyses on the recently 

extended modern foraminifera dataset will assess whether benthic foraminifera from the central 

West Greenland shelf may be a reliable and robust proxy that can be used to semi-

quantitatively reconstruct environmental parameters from fossil foraminifera assemblages.  This 

may aid our understanding of the characteristics of intermediate waters impinging on the 

seafloor in central West Greenland.   
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1.4.2 Objective (ii) 

To assess fossil sediment cores for evidence of reworking and their suitability for high-resolution 

palaeoceanographic reconstructions, and identify changes in glacimarine sedimentation linked 

to major West Greenland ice streams.   

 

Sediment reworking (e.g. sediment-gravity flows, turbidity currents, bioturbation, iceberg 

scouring) is common in high-latitude continental shelf settings influenced by rapid sediment 

accumulation.  It is therefore necessary to assess sedimentary deposits for evidence of 

reworking, since this has important implications for palaeoceanographic reconstructions using 

proxy evidence (e.g. Ó Cofaigh et al., 2002).  Changes in glacimarine sedimentation may reflect 

changes in glacial activity at the ice terminus.  These may be driven by internal ice sheet 

dynamics, or external factors such as climate and ocean temperature changes.  The 

characteristics of glacimarine sediments may be used to interpret relative changes in the 

position of the ice front and/or changes in glacier activity.  An understanding of changes in 

glacimarine sedimentation, which exert a strong influence on surface water conditions, turbidity 

in the water column, and sedimentation rates, may therefore aid interpretations of foraminiferal 

assemblages.   

 

1.4.3 Objective (iii) 

To assess Funder and Hansen’s (1996) model for deglaciation in the central west sector of the 

Greenland Ice Sheet, and to identify alternative driving mechanisms for ice retreat where the 

pattern of deglaciation differs from this model. 

 

This study seeks to assess Funder and Hansen’s (1996) two-stage deglacial model for 

Greenland which proposes deglaciation took place in two distinct phases; firstly, an early and 

rapid clearance of marine-based ice driven by eustatic sea-level rise from ca. 15 ka BP, 

followed by slower land-based ice retreat driven by atmospheric warming.  Basal ages from 

cores collected from deep offshore troughs on the West Greenland shelf will provide minimum 

ages to constrain the pattern of fast-flowing ice retreat during deglaciation.  The timing and 

nature of GrIS retreat across the shelf will be identified by comparing basal ages from cores 
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from the mid-shelf to nearby minimum ages for deglaciation.  A robust dating framework allows 

faunal and sedimentological changes in cores from this study to be compared against other 

local and regional proxy climate records to help establish driving mechanisms of deglaciation. 

 

A greater knowledge of spatial and temporal differences in deglaciation is a key requirement for 

validating ice sheet models (e.g. Tarasov and Peltier, 2002; Fleming and Lambeck, 2004; 

Simpson et al., 2009).  Constraining the timing and magnitude of ice sheet, and hence ice 

volume changes, enables a greater understanding of the role of climate and ocean forcing on 

modern ice-sheet changes, and improving the predictability of ice sheet response to future 

climate change and contribution to sea level rise.  

 

1.4.4 Objective (iv) 

To establish high-resolution records of deglacial and Holocene changes in local and regional 

water mass characteristics from marine records representative of proximal and distal locations 

to the Greenland ice sheet.  

 

By comparison with terrestrial and ice core records, high-resolution records of marine 

temperature changes during deglaciation and the Holocene will help establish linkages between 

ice-ocean-climate interactions on ice margin dynamics.  A particular focus is to identify the 

potential influence of relatively warm and saline West Greenland Current (WGC) waters on ice 

sheet retreat.  Links with air temperatures are often well established, though the role of ocean 

temperatures on ice margin stability is in its infancy.  Records in close proximity to ice margins 

are relatively few in number, and local-to-regional scale variations in ocean circulation patterns 

present additional challenges to identifying changes in ocean forcing.  This is particularly true 

along the West Greenland shelf, where temperatures at the seafloor are influenced by changes 

in the influence of Polar and Atlantic-sourced Water.   

 

Current ice-sheet models incorporate reconstructed air temperatures based on ice core data as 

‘forcing parameters’ for ice sheet response to climate change.  To improve predictability and 

reduce uncertainty in future ice-sheet models, high quality records of ocean temperature 
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changes must be incorporated.  These records must be collected from shelf locations, such as 

those used in this thesis, in relatively close proximity to the ice sheet margin.  

 

1.4.5 Objective (v) 

To compare these new marine records documenting changes in ocean circulation and ice 

stream activity to other published marine, terrestrial and ice core records, in order to identify and 

evaluate possible driving mechanisms of ice stream behaviour. 

 

A robust dating framework allows faunal and sedimentological changes in cores from this study 

to be compared against other local and regional proxy climate records to help establish forcing 

mechanisms on ice margin position.  Comparing reconstructed changes in the temperature of 

waters impinging on the West Greenland shelf against other proxy records may help identify 

how these waters are influenced by wider-scale climate changes in the North Atlantic and Arctic 

region.  Temperature changes in sub-surface waters along West Greenland have been linked to 

changes in the phase of the North Atlantic Oscillation (NAO) (e.g. Hakkinen and Rhines, 2003; 

Holland et al., 2008).  The penetration of relatively warm Atlantic Water into Jakobshavn Isfjord, 

where it subsequently enhanced basal melting beneath the floating ice tongue of Jakobshavn 

Isbræ in Disko Bugt (Fig. 1.2), has been traced to an increase in Irminger Current water 

entrained in the West Greenland Current during a negative NAO phase (Holland et al., 2008).  A 

greater understanding of the linkages between variability in sub-surface WGC water 

temperatures and wider scale changes in North Atlantic Ocean and atmospheric circulation 

patterns (e.g. the NAO/Arctic Oscillation) may help identify conditions under which enhanced 

Atlantic Water may be propagated northwards in the WGC, and potentially influence ice margin 

stability.  Identifying the possible role of warmer ocean temperatures on ice margin stability over 

longer timescales will improve our understanding of mechanisms of deglaciation and how ice 

sheets may respond to future oceanic and climate warming. 

 

 

 

 



Late Quaternary ice-ocean interactions in central West Greenland 

 
12 

 

1.5 Thesis structure 

Chapter 2 introduces the West Greenland study area.  In order to provide context for 

interpreting the results of this study, the geological, climatic, oceanographic, and glacial setting 

of central West Greenland is summarised.  Relative ocean temperatures on the West 

Greenland shelf are strongly influenced “upstream” in the Atlantic and Arctic Ocean.  Changes 

in ice stream activity of the GrIS may also affect global ocean circulation “downstream” through 

meltwater fluxes to locations of deep-water formation.  Therefore, variability in wider-scale 

oceanography, and how this is manifested in West Greenland waters, is also summarised.  

Finally, current knowledge concerning deglaciation of the Baffin Bay region, and subsequent ice 

marginal changes in central West Greenland, are reviewed, and limitations to our understanding 

are identified.   

 

The material and methods used in this study are introduced in Chapter 3.  A synopsis of the 

location and importance of each core site is given, and the sampling strategy used for each core 

with respect to addressing the research questions for this thesis is given.  The methods used to 

approach these questions are introduced and briefly reviewed to provide context for the analysis 

and interpretation of the results.  Methods of statistical modelling (multivariate methods) are 

also introduced.   

 

In Chapter 4, the relationships between modern benthic foraminifera and environmental 

variables are explored using multivariate methods.  This identifies the major controls on the 

distribution of modern benthic foraminifera in central West Greenland, particularly the 

relationship of benthic foraminifera to water mass characteristics (i.e. temperature and salinity of 

water impinging on the shelf).  These data provide a basis for interpreting past changes in the 

relative temperature of the basal water mass impinging on the seafloor of the West Greenland 

continental shelf.  A preliminary transfer function is also developed that may be applied to fossil 

benthic foraminifera assemblages to provide estimates of past water temperatures.  Discussion 

of the results is supplemented with reference to other benthic foraminiferal investigations from 

high latitude shelf locations.   
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In each of Chapters 5, 6, and 7, the results of analyses on marine sediment cores from key sites 

on the mid-shelf west of Disko Bugt, in the Vaigat, and the mid-shelf west of Uummannaq Fjord, 

respectively, are presented.  The three key locations are presented and discussed individually 

since each core is investigated with respect to different research objectives.  The timing and 

nature of deglaciation, and ocean conditions during initial deglaciation west of Disko Bugt (as 

the ice sheet retreats from an ‘ice-proximal’ position) is investigated in Chapter 5.  Chapter 6 

provides constraints of the timing of initial deglaciation on the Uummannaq shelf, investigates 

marine conditions during the early stages of deglaciation, and provides a more regional scale 

reconstruction for possible marine forcing when the ice sheet has retreated landwards to an 

‘ice-distal’ location.  Chapter 7 focuses on mid- to late-Holocene conditions in Vaigat.  The core 

from this location provides a link between the southerly core outside Disko Bugt and the 

northerly core west of Uummannaq.  This is because both the relatively warm and saline waters 

that circulate and may influence ice dynamics in Disko Bugt, and the icebergs calving from 

marine terminating glaciers in Disko Bugt, exit the bay through this sound, and can be linked to 

marine and sedimentological influences on conditions on the Uummannaq shelf.   

 

Finally, in Chapter 8, the results from the preceding three chapters are discussed with respect 

to the main research aim of this thesis, and placed within a wider context.  Discussion focuses 

on Late Quaternary ice-ocean interactions in central West Greenland.  This is divided into two 

parts.  Firstly, regional differences in timing and nature of deglaciation of the shelf are identified, 

and the possible driving mechanisms for this are discussed.  Secondly, Holocene 

oceanographic changes in central West Greenland, and linkages between ice margin changes, 

climate, and ocean circulation, are discussed.  To conclude, the main findings of this thesis are 

summarised.  

 

All dates in this thesis are reported in calibrated years before present (where present is defined 

as A.D. 1950), which is abbreviated to “ka BP”, unless otherwise explicitly stated.  Age ranges 

are quoted at the two-sigma level. 
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Chapter 2 

Study area and background 

 

 

2.1 Introduction 

The Greenland Ice Sheet plays an important role in climate dynamics and ocean circulation on 

a regional to global scale.  This chapter provides an overview of the current glacial, 

oceanographic and climatic setting in the central West Greenland study area.  The tightly 

coupled ice-ocean-atmosphere system responds to external forcings over a range of timescales 

through complex positive and negative feedbacks.  This chapter explores the modern 

oceanography and climate, and their possible influences on ice-margin dynamics in order to 

contextualise sub-centennial scale oceanographic changes in marine fossil records from the 

West Greenland shelf.  While an exhaustive review of modern ice-ocean-atmosphere 

interactions is beyond the scope of this chapter, knowledge of modern (spanning instrumental 

records) processes operating in the North Atlantic region that may impact upon marine proxy 

records in central West Greenland is important to make informed interpretations of fossil 

archives.  Therefore, the characteristics, origins and variability of water masses entrained in the 

West Greenland Current (WGC) are summarised to understand possible causes of changes in 

the character of this current.  Since past climatic extremes beyond modern limits of variability 

may have been associated with different ocean circulation patterns, it is important to understand 

regional scale climatic, oceanographic, and glacial influences from the broader North Atlantic 

and Arctic region that determine the ‘downstream’ characteristics of the WGC.  This provides a 

firm basis and context for identifying past controls on the relative temperature and salinity of the 

WGC, which is a strong influence on West Greenland climate, and possibly on dynamics of 

marine-terminating glaciers during and after the last deglaciation.  

 

2.2 Extent of past research in West Greenland 

Although Norse settlers in southwest Greenland made anecdotal descriptions of ice and climatic 

conditions between the 10th and 15th Centuries, it wasn’t until the 1700s that pioneering 

researchers began to record observations of ice rafting activity and frontal position of local outlet 

glaciers, including Jakobshavn Isbræ (Weidick and Bennike, 2007).  Regular mapping of the 



Late Quaternary ice-ocean interactions in central West Greenland 

 

 
16 

 

Jakobshavn Isbræ ice front began when H.J. Rink visited in 1850-1851 (Weidick et al., 2003).  

From 1875, ice velocity measurements were made for outlet glaciers in Disko Bugt (Helland, 

1876, cited in Weidick and Bennike, 2007), and instrumental climate records from the Disko 

Bugt-Uummannaq region extends back to 1807, though almost continuous annual records are 

only available from 1840 (Box, 2002; Vinther et al., 2006).  In recent decades, a particular 

research focus has been to understand Late Quaternary ice sheet history and environmental 

changes.  Numerous studies have investigated ice-sheet marginal fluctuations (e.g. Weidick, 

1968; Weidick, 1972b; Ten Brink and Weidick, 1974; Kelly, 1985; Weidick, 1985; Warren and 

Hulton, 1990; Weidick, 1996; Long and Roberts, 2002, 2003; Long et al., 2006), changes in 

climatic conditions (e.g. Fredskild, 1984; Anderson and Leng, 2004), and relative sea-level 

histories (e.g. Donner and Jungner, 1975; Rasch and Nielsen, 1994, 1995; Rasch et al., 1997; 

Rasch and Jensen, 1997; Long et al., 1999; Rasch, 2000; Long and Roberts, 2002).  While 

many land-based studies have investigated Holocene environmental change, marine 

investigations over the past decade have been limited to inner Disko Bugt (e.g. Kuijpers et al., 

2001; Park, 2003; Lloyd et al., 2005; Lloyd, 2006b) and local fjord systems (e.g. Gilbert et al., 

1998; Desloges et al., 2002; Moros et al., 2006; Lloyd et al., 2007).     

 

2.3 West Greenland 

2.3.1 Central West Greenland study area 

In this study, central West Greenland refers to the terrestrial and offshore shelf areas between 

68°30’N and 72°00’N encompassing Disko Bugt and the Uummannaq area, and the outlet 

glaciers that feed into fjords in these bays (Fig. 2.1).  Whereas the continental shelf of Baffin 

Island on the western margin of Baffin Bay is narrow (typically ca. 50 km), the continental shelf 

off much of West Greenland is relatively wide at more than 150 km.  Two large trough mouth 

fans extend up to a further 100 km off the coast west of Disko Bugt and Uummannaq Fjord (see 

Fig. 2.1).  The presence of large sediment fans and deep glacially eroded transverse troughs in 

Disko Bugt, Vaigat, and Uummannaq extending to the shelf break along the West Greenland 

continental margin (Zarudzki, 1979) in addition to submarine moraine systems (Brett and 

Zarudzki, 1979) are suggestive of an extensive offshore GrIS configuration in the past (Fig. 2.1).  
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2.3.2 Geological setting 

Knowledge of the Disko Bugt-Uummannaq area geology is of particular importance for 

identifying sediment provenance and dispersal mechanisms.  Three distinct geological areas 

define Disko Bugt and Uummannaq (Fig. 2.2).  The mainland (including adjacent smaller 

islands) and the eastern part of Nuussuaq peninsula form part of the Precambrian basement, 

consisting of Late Achaean (ca. 2800 Ma) orthogneisses, including Atâ tonalite and local 

granites (Garde and Steenfelt, 1999).  The geology of Disko Island is largely composed of 

Cretaceous-Tertiary clastic sediments in the eastern and northeastern areas, and Tertiary flood 

basalts and picritic lavas to the west (Henriksen et al., 2000).  Quaternary deposits overlie large 

parts of northern Disko Island and immediately south of Disko Bugt.  There is a northern 

continuation of Lower Tertiary basalts in the western parts of the Uummannaq area, dominating 

the geology of Ubekendt Ejland and the Svartenhuk Halvø area.  Quaternary deposits overlie 

the basement geology in western Nuussuuaq, eastern Ubekendt Ejland and the eastern part of 

Svartenhuk Halvø to the north.  While the geology of the terrestrial margin is well defined, there 

is limited data available for the subglacial and offshore geology.  Bonow (2005) provides an 

overview of the general submarine geology in Disko Bugt, shown in Fig. 2.2.  Tertiary basalts 

dominate the outer continental shelf west of Kronprinsens Ejland, forming part of a basalt ridge 

across outer Disko Bugt between Queqertarsuaq and Aasiaat, as well as the western margin of 

Vaigat and northwards from Nuussuuaq to Svartenhuk Halvø via Ubekendt Ejland (Henriksen et 

al., 2000).  Inner Disko Bugt and the Vaigat consist of Cretaceous-Paleocene sediments, while 

a continuation of the Precambrian basement is found at the seafloor in southeastern Disko Bugt 

(Bonow, 2005). 
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Figure 2.1 Bathymetric map of central West Greenland shelf, showing positions of key features 

mentioned in text.  Green shading marks the position of the Hellefiske moraines.  Arrows 

indicating approximate water depths are based on multibeam echosounding data from Harff 

(2007) and Ó Cofaigh (2009). 
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Figure 2.2 Map showing onshore and offshore geology for central West Greenland.  Modified 

from Bonow (2005) and Bonow et al. (2006). 
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2.3.3 West Greenland climate  

The climate of Baffin Bay region is strongly influenced by the North American continent, the 

Greenland Ice Sheet, and surrounding water masses.  In Baffin Bay, mean summer 

temperatures are typically less than 5°C and winter temperatures range between -20°C and -

40°C (Valeur et al., 1996).  Mean annual air temperatures in West Greenland are consistently 

8°C higher than in western Baffin Bay due to the warming influence of the WGC (Williams and 

Bradley, 1985).  Disko Bugt has an arctic marine climate.  Mean monthly temperatures range 

from -15.2°C in March to 8.0°C in July at Ilulissat (Norwegian Meteorological Institute, 2010).  

Although cyclones are dominantly routed from Newfoundland over southern Greenland towards 

Iceland, some follow a ridge of low pressure along the West Greenland coast (Valeur et al., 

1996).  These depressions cause strong southerly winds along West Greenland compared to 

the moderate winds that usually persist in Baffin Bay.  Annual precipitation is typically 200-300 

mm in the Disko Bugt area (compared to ca. 1000 mm in southwest Greenland), and is greatest 

during late summer/autumn corresponding with open water conditions and frequent cyclonic 

activity (Valeur et al., 1998). 

 

A combination of the relative warmth of the WGC and atmospheric forcing determine winter 

sea-ice extent and duration in Baffin Bay (Stern and Heide-Jørgensen, 2003).  Sea-ice (the so-

called “Westice”) in western Baffin Bay (along the path of the cold Baffin Current; Fig. 2.3) is 

relatively stable, and is partly occupied by multi-year sea-ice sourced from Nares Strait and the 

Arctic Ocean (Valeur et al., 1996).  Sea-ice conditions along West Greenland are more dynamic 

due to the variable oceanographic conditions (Stern and Heide-Jørgensen, 2003).  Sea-ice 

typically develops in Baffin Bay and Davis Strait during mid-October due to declining insolation 

and air temperatures, reaching a maximum extent during March, before receding to the west 

and north. Eastern Baffin Bay is typically ice-free by mid-August (Valeur et al., 1996).  In Disko 

Bugt, sea-ice usually forms between late December and early February (normally mid-January).  

Sea-ice and the seasonal thermocline break up between early May and late June (normally late 

May), as insolation and air temperatures increase (Nazareth and Steensboe, 1998).  The timing 

of sea-ice break-up depends on the severity of the winter, which is in part controlled by wind 

stress and the relative strength of the WGC (Valeur et al., 1996).  Sea-ice cover develops 
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earlier (ca. 2 weeks) in Uummannaq Fjord (Nazareth and Steensboe, 1998).  In more southerly 

waters, pack ice drift (“Storis”) along the East Greenland coast to Cape Farewell (and 

occasionally off southwest Greenland) has a cooling and freshening influence on surface waters 

(Buch and Nielsen, 2001).  Decadal variability in Baffin Bay sea-ice cover trends show a strong 

relationship with the North Atlantic Oscillation (NAO), with greater sea-ice cover in Baffin Bay 

and Labrador Sea linked to a strongly positive NAO (Mysak et al., 1996; Stern and Heide 

Jørgensen, 2003).  Sea-ice extent and duration determines the availability of a moisture source 

for West Greenland, and hence is important for precipitation levels (Williams and Bradley, 

1985).  While Southwest Greenland experiences high levels of precipitation (> 700 mm a-1) due 

to open water conditions throughout the year, seasonal sea-ice conditions cause precipitation 

levels in West Greenland to be much lower (200 to 400 mm) (Williams and Bradley, 1985). 

 

2.3.4 West Greenland oceanography 

Baffin Bay has a three-layer water mass structure; a cold, fresh surface layer overlies warm and 

saline intermediate water, with cold fresh deep and bottom water underneath (Tang et al., 

2004).  The circulation and distribution of water masses in Baffin Bay is determined by the 

inflow of water masses originating either from the Arctic Ocean through the Canadian 

Archipelago to the north, or from the Atlantic region through Davis Strait to the south (Fig. 2.3).  

Sills shallower than 700 m depth restrict deep-water exchanges between Baffin Bay, which is 

locally more than 2300 m deep, and the Arctic Ocean and Labrador Sea (Aksu, 1983; Ingram 

and Prinsenberg, 1998).   

 

The major influence on West Greenland oceanography and climate is the West Greenland 

Current (WGC), which enters Baffin Bay through eastern Davis Strait (Fig. 2.3) and flows 

northwards along the West Greenland coast in surface and intermediate layers (Chapman and 

Beardsley, 1989).  The convergence of the cold, fresh East Greenland Current (EGC) and the 

relatively warm, saline Irminger Current (IC) as they round Cape Farewell at the southern tip of 

Greenland (Fig. 2.3), form the key components of the WGC (Bersch et al., 1999). 
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Figure 2.3 Bathymetric map of the North Atlantic with schematic of major surface currents.  Red 

arrows indicate warm currents and blue arrows indicate cold currents.  The boxed area shows 

the study area shown in Fig. 2.1.  Abbreviations used are: BC, Baffin Current; EGC, East 

Greenland Current; IC, Irminger Current; NAC, North Atlantic Current; WGC, West Greenland 

Current.   

 

The EGC is responsible for exporting cold Polar Water (<0°C, 33.5-34.8 psu) from the Arctic 

Ocean via the Fram Strait and into the Subpolar Basins (Iceland, Irminger, Labrador Basins) 

through Denmark Strait (Aagaard and Carmack, 1989; Curry and Mauritzen, 2005; Sutherland 

and Pickart, 2008).  Polar Water transported in the EGC system is progressively warmed and 

freshened between Denmark Strait and Cape Farewell due to meltwater contributions from 

inland ice, melting sea-ice and icebergs, and net precipitation increases (Bersch et al., 1999; 

Sutherland and Pickart, 2008).   

 

The IC, on the other hand, transports relatively warm and saline Atlantic Water.  The mixing of 

subtropical water in the NAC with cooler and fresher subpolar water as it is transported 

northwards by Atlantic meridional overturning circulation (AMOC) produces a water mass 
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transitional in nature, and described here as “Atlantic Water” (Hansen and Østerhus, 2000).  

Part of the Atlantic Water that circulates within the Subpolar Basins is redistributed by the IC, 

which branches off the NAC (Fig. 2.3) (Hansen and Østerhus, 2000).  The majority of Atlantic 

Water advected by the IC is deflected southwards at Denmark Strait where it flows alongside 

the East Greenland Current parallel to the Greenland coast (Bersch, 1995; Hansen and 

Østerhus, 2000).  The water mass characteristics of Atlantic Water in the WGC may be 

influenced by entrainment of water sourced from the Irminger Basin and Labrador Sea into the 

IC (e.g. Buch, 1993; Sutherland and Pickart, 2008).   

 

Along West Greenland, the cold and low-salinity Polar Water component of the WGC flows 

closer to the surface and nearer the shore, while the relatively warm and saline Atlantic Water 

component flows below and to the west (Andersen, 1981a).  After rounding Cape Farewell, the 

Polar Water component, no longer confined against the coast, becomes laterally more 

extensive (Buch and Nielsen, 2002; Myers et al., 2009).  At Cape Farewell, the warm core in the 

Atlantic Component of the WGC (5-6°C) is located at 100-200 m water depth (Buch and 

Nielsen, 2002).  At Davies Strait, the warm core of the WGC is located off the shelf (300-600 m 

water depth, ca. 4.5°C, >34.9 psu) and is able to penetrate into Baffin Bay (Tang et al., 2004; 

Cuny et al., 2005). 

 

As the WGC flows northwards, the Atlantic and Polar Water components are partly mixed, and 

freshened by meltwater flux from the Greenland ice-sheet and the melting of seasonal sea-ice, 

though individual water masses remain distinguishable on the shelf in central West Greenland 

(Chapman and Beardsley, 1989).  WGC water is regularly deflected westwards in anticlockwise 

gyres as it flows north along West Greenland, weakening the transport of Atlantic-sourced 

waters to northern Baffin Bay.  Water advected westwards from the WGC merges with the 

south-flowing Baffin Current, which is composed of cold, fresh Polar Water from the Arctic 

Ocean (Ingram and Prinsenberg, 1998).  Cold Polar Water is also deflected eastwards from the 

Baffin Current, and has been found north of Egedesminde (area around Egedesminde Dyb in 

Fig. 2.1) between 40-150 m depth, where it becomes entrained in the WGC (Buch and Nielsen, 

2002).  The interplay between changes in freshwater from terrestrial and ice-sheet sources, and 
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changes in the strength of the WGC are responsible for determining the temperature and 

salinity of sub-surface waters impinging on the shelf in the Disko Bugt-Uummannaq area.  

Wider scale influences on characteristics of sub-surface waters transported by the WGC are 

discussed in section 2.4 below. 

 

2.3.5 Oceanographic setting of Disko Bugt and Uummannaq Fjord 

The core of the Atlantic Water component of the WGC is typically found at ca. 300 m depth as it 

passes west of northern Store Hellefiskebanke, controlled by the shallower topography (see Fig. 

2.4c).  Glacially eroded deep-water troughs play an important role in the routing and circulation 

of relatively warm and saline subsurface waters into the inner continental shelf (Fig. 2.4e and 

2.5).  West of Disko Bugt, the Atlantic Water component of the WGC flows between 300 and 

600 m, with the warm core centred at 300-400 m (2.5-3.5°C) and a saline core at 400-600 m 

(34.5-34.8 psu).  These subsurface waters follow the path of outer Egedesminde Dyb (ca. 550 

m deep) and penetrate into Disko Bugt after passing over a shallow ridge (ca. 305 m depth) to 

gain access to the much deeper (locally > 900 m water depth) inner Egedesminde Dyb (Fig. 

2.4e and 2.5) (Andersen, 1981a).  Smith et al. (1937, cited in Andersen, 1981a) estimate that 

approximately 1/3 of the WGC passing Egedesminde enters Disko Bugt.  The warmest 

temperatures are found in southwest Disko Bugt since more northerly waters are cooled by 

iceberg melting and upwelling (Andersen, 1981a).  Stable and relatively fresh surface waters 

formed from summer meltwater flow northwards out of Disko Bugt through the Vaigat with the 

deeper WGC water (Andersen, 1981a).   
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Figure 2.4 (caption below) 
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Figure 2.4 (above) Interpolated temperature and salinity section profiles in central West 

Greenland and Davis Strait (triangles indicate CTD sampling stations).  Temperature and 

salinity are plotted on a common depth scale.  All other scales differ.  Illustrated profiles are 

marked the Google Earth (2010) image of Baffin Bay; (a), Uummannaq shelf (July, 1987); (b), 

Vaigat (1971); (c), Davis Strait (July, 1987); (d), northeastern Disko Bugt (July, 1987); e, central 

Disko Bugt (July, 1987).  Cores investigated in this study are indicated by numbered (1-3) 

arrows; (1), core MSM-343340 (this core is located north of section shown and in deeper water); 

(2), core DA06-139G; (3), core MSM-343520.  Data are stored in the World Ocean Database 

2005, and were retrieved online from the National Oceanographic Data Centre, NOAA 

(http://www.nodc.noaa.gov), and graphed using Ocean Data View (Schlitzer, 2007).   

 

 

 

Figure 2.5 Pathways of WGC intrusion into Disko Bugt and Uummannaq Fjord at intermediate 

depths (200 m).  Solid red arrows show the main WGC pathways; dashed arrows show 

weaker/episodic intrusions of WGC into inner shelf area and fjords.  Modified from Andersen 

(1981a) with additional data from Lloyd (2006a) and Harff (2007). 
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The WGC penetrates into fjords with relatively open or exposed locations and orientations, 

including fjords on the west coast of Disko, and over-sill penetration into mainland fjords, such 

as Jakobshavn Isfjord, Akulliit, and Kangasuneq (Fig. 2.7; Deslodges et al., 2002; Harff, 2007; 

Holland et al., 2008; Lloyd et al., 2007).  Importantly, this indicates that warmer WGC water can 

gain access to the base of tidewater glaciers, and subsequently enhance basal melt rates of 

floating ice tongues (e.g. Holland et al., 2008).  Shallow sills restrict two-way water exchanges 

at fjord heads, while shallow topography in Atâ Sund (250 m to 300 m depth) and at the 

entrance to Vaigat (245 m depth) (Fig. 2.5) restricts the inflow of relatively warm and saline 

WGC water into the Vaigat and glacier fjords in northeastern Disko Bugt (Andersen, 1981a).  

However, Atlantic-sourced water is able to penetrate north into these areas (Harff, 2007; Rignot 

et al., 2010).  Only the upper part of the Atlantic-sourced WGC water enters the Vaigat (Fig. 

2.4b,d), and can be identified flowing along the Nuussuaq peninsula shoreline, where it mixes 

with overlying cold water (Andersen, 1981a).  Warm Atlantic Water (generally below 250 m) 

does not always cross the 245 m deep threshold (Fig. 2.5) into the ca. 500 m deep Vaigat, 

though in years where this does happen, bottom water temperatures below the threshold depth 

are increased by up to 2°C (Andersen, 1981a).  

 

North of Uummannaq, the core of Atlantic Water deepens to 400-500 m depth (Fig. 2.4a), as 

the overlying surface waters are cooled and freshened (ca. 2°C, <33.5 psu) by the melting of 

icebergs and winter sea-ice, and the advection of Polar Water from the Baffin Current 

(Andersen, 1981a).  On the outer shelf, the Uummannaq trough is ca. 600 m deep, and 

provides an unobstructed pathway for WGC water to penetrate into the inner shelf towards the 

base of marine-terminating glaciers.   

 

Andersen (1981a) suggests that the relatively warm, saline WGC prevents cold Polar Water 

from the Baffin Current from entering inner shelf areas.  Thickening of the Polar Water layer due 

to advection of cold, fresh water from the Baffin Current may result in a deepening of the warm 

core of the underlying Atlantic Water.  This may restrict inflows of the warmest Atlantic-sourced 

water to inner shelf areas, where there are shallow topographic barriers to cross (i.e. entrance 

to Disko Bugt).  In the deeper Uummannaq trough, however, basal water temperatures may 
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increase through a deepening of the warm core of the WGC, since this usually lies 100-200 m 

above the seafloor.  

 

2.4 Wider scale changes in North Atlantic  

Long-term changes in the characteristics of the WGC reflect the wider oceanography and 

climatic variability in the North Atlantic region.  Therefore, establishing climatic and 

oceanographic variability that influences the relative contribution of water transported in the 

EGC and IC current systems to the WGC (Fig. 2.3) is important for understanding the possible 

causes of water mass changes identified in the palaeoenvironmental record.   

 

The AMOC transports warm, saline subtropical surface and intermediate waters to high 

latitudes where they cool, sink and return south as cold, saline deep water.  Heat redistributed 

through the AMOC (via the North Atlantic Drift) warms North Atlantic air temperatures by up to 

10°C (Macdonald and Wunsch, 1996; Ganachaud and Wunsch, 2000).  Denmark Strait 

Overflow Water (DSOW) and the less dense Labrador Sea Water (LSW), the two main 

constituents of North Atlantic Deep Water (NADW), form in the Nordic and Labrador Seas, 

respectively (e.g. Weaver et al., 1999; Rahmstorf, 2002; Straneo, 2006; Kuhlbrodt et al., 2007).  

These locations are climatically important because the cooling and sinking of dense saline 

water drives global thermohaline circulation, which redistributes heat to higher latitudes (Weaver 

et al., 1999; Rahmstorf, 2002; Straneo, 2006; Kuhlbrodt et al., 2007).  Freshwater perturbations 

to sites of Deep Water formation in the North Atlantic region are a possible cause of Holocene 

climate fluctuations (e.g. Nesje et al., 2004; Denton and Broecker, 2008).  Meltwater from the 

western part of the Greenland Ice Sheet is routed to areas of NADW formation in the Labrador 

Sea first by the WGC, and then southwards via the Baffin Current and Labrador Current (Fig. 

2.3).  Changes in the volume of freshwater (due to direct melting of the GrIS and/or increased 

calving flux from tidewater glaciers) from West Greenland may therefore influence LSW 

formation.    
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2.4.1 The North Atlantic Oscillation (NAO) 

The NAO, which is the most prominent indicator of large-scale atmospheric circulation changes 

in the North Atlantic region (Ambaum et al., 2001), significantly contributes to 

interannual/decadal climate variability in the northern hemisphere (Hurrell, 1996).  The position 

of the North Atlantic subtropical high-pressure cell (Azores high) and the subpolar low-pressure 

cell (Icelandic low) determine changes in the strength of westerly winds (illustrated 

schematically in Fig. 2.6b and d).  Changes in the strength of westerly winds subsequently 

affect the pathways and strength of North Atlantic surface currents, which, in turn, alter the 

temperature and salinity of the WGC (Hurrell & van Loon, 1997; Greatbach, 2000; Blindheim et 

al., 2001; Furevik and Nilsen, 2005).  Stronger-than-normal westerly winds are characteristic of 

a high/positive NAO index, whereas weaker-than-normal westerly winds typify a low/negative 

NAO index (Greatbach, 2000).  Positive phases of the NAO are associated with more severe 

than normal conditions in West Greenland and eastern Canada.  An increase in westerly wind 

stress under positive NAO conditions causes a narrowing and strengthening of the North 

Atlantic Current (NAC) (Fig. 2.6a and b), resulting in both a weakening of the Irminger Current 

(IC) and East Greenland Current (EGC), although the EGC component dominates the WGC 

(Fig. 2.6c and d) (Blindheim et al., 2001; Buch, 2002).  Under negative NAO conditions, the 

weaker westerly winds result in a much broader NAC and an increase in strength of westward 

branches of Atlantic Water, particularly the transport of IC water (Fig. 2.6c) (Blindheim et al., 

2001; Buch, 2002). 
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Figure 2.6 The pattern of ocean surface currents associated with changes in the position of the 

North Atlantic subtropical high-pressure cell (Azores high) and the subpolar low-pressure cell 

(Icelandic low).  (A, B) Atmospheric and oceanic conditions associated with a positive NAO; (C, 

D) Atmospheric and oceanic conditions associated with a negative NAO.  Cartoons modified 

from Blindheim et al. (2001) and Climatology/Meteorology Research Group (2004).  

 

2.4.2 Great Salinity Anomalies and the NAO 

Recent observations report a freshening of North Atlantic waters (Belkin et al., 1998; Dickson et 

al., 2002; Curry et al., 2003; Curry and Mauritzen, 2005).  Advection of relatively fresh waters to 

the Labrador and Nordic Seas, and North Atlantic subpolar gyre, have been linked to changes 

in freshwater flux (associated with glacial melt, river runoff, and changes in ocean circulation) to 

these sites, and phase changes in the NAO.  Between 1965 and 1995, an additional 19,000 ± 

5,000 km3 of freshwater entered the Nordic Seas through Fram Strait (Curry and Mauritzen, 
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2005), via the EGC, as a series of pulses during the 1970s, 1980s, and 1990s, that have been 

described as Great Salinity Anomalies (GSAs) (Dickson et al., 1988; Belkin, 2004).  Nearly 80% 

of this flux penetrated into the eastern Subpolar Basins, freshening surface waters, and through 

vertical mixing, deeper waters (Curry and Mauritzen, 2005; Peterson et al., 2006).  The source 

of each GSA is debated, though Belkin et al. (1998) suggest the larger 1970s anomaly is 

primarily the result of freshwater outflows from the Arctic Ocean caused by an intensification of 

northerly winds over the Greenland Sea.  The 1980s GSA, however, was probably formed in the 

Labrador Sea following severe winters in the Labrador and Baffin Bay region (Belkin et al., 

1998).  Changes in ocean circulation during GSA events may provide insights into how the 

WGC system may have responded to large freshwater fluxes into the polar and sub-polar region 

during the Holocene.  

 

Dickson et al. (1996) suggest a deep-sea convection seesaw exists between the Labrador Sea 

and Greenland Sea, and is controlled by the NAO.  During a period of reduced overturning with 

warmer winters and weaker winds in the Greenland Sea during the 1970s and 1990s, a 

strengthening of deep convection (LSW formation), cooler air temperatures and increased 

storminess occurred in the Labrador Sea (Dickson et al., 1996).  This antiphase relationship has 

been linked to freshwater flux through Denmark Strait (Oka et al., 2006).  Peterson et al. (2006) 

argue that increased freshwater transport to the Labrador Sea is linked to a strong positive NAO 

phase.  Model-based studies indicate that the NAO is linked to convection in Labrador Sea, but 

not directly related to overturning in the Greenland Sea (Oka et al., 2006).  The volume of cold 

and fresh dense water propagated during the 1988-1994 GSA appears to be exceptional during 

most of the 20th Century (Yashayaev et al., 2003).  The propagation of GSAs coincide with a 

strongly positive NAO index, which is related to increased sea-ice extent in Baffin Bay 

(Chapman and Walsh, 1993), and a corresponding reduction in mean annual air temperature in 

West Greenland (Drinkwater, 1996).  The advection of freshwater anomalies and subsequent 

reduction in deep convection in the Labrador Sea creates a thermohaline contrast across the 

NAC, which leads to a greater entrainment of warm, saline IC water to the Labrador Sea (Belkin 

et al., 1998).  The switch to warmer, more saline waters in the Labrador Sea and reduced LSW 

formation in the 1990s is linked to weakening of the North Atlantic subpolar gyre circulation.  
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These negative-NAO conditions are linked to reduced transport of cold, fresh Polar Water in the 

EGC, and a trend of increasing heat transport in the WGC, which has extended into the 2000s, 

consistent with an increase in Irminger Water influence (Hakkinen and Rhines, 2004; Myers et 

al., 2009).   

 

Since WGC water deflected westwards at Davis Strait may be the main source of freshwater 

and heat flux to the Labrador Sea (Myers et al., 2009), changes in LSW formation may be 

closely linked to sub-surface temperatures of WGC water on the West Greenland shelf.  There 

is no evidence that the magnitude of recent GSA events are large enough to reduce the 

strength of the Gulf Stream (Peterson et al., 2006), and cause more extreme climate responses, 

though Hátún et al. (2005) suggest this is because the increasing salinity of Atlantic water 

entering the Nordic Seas and Arctic Ocean may counteract these freshwater fluxes.  Despite 

this, changes in the freshwater balance of the North Atlantic contribute to the modification of the 

composition of the WGC.   

 

2.5 Recent changes in the Greenland Ice Sheet  

Although ice-sheet mass balance estimates vary widely between studies, there is a consensus 

that the Greenland Ice Sheet has been losing mass at an accelerating rate since the mid-1990s 

(e.g. Krabill et al., 2000; 2004; Velicogna and Wahr, 2005; 2006; Chen et al., 2006; Luthcke et 

al., 2006; Ramillien et al., 2006).  The major source of these mass balance losses is thinning at 

the ice sheet margin (Krabill et al., 2000; Abdalati et al., 2001; Rignot and Kanagaratnam, 2006; 

Thomas et al., 2006).  While peripheral thinning was initially restricted to southern Greenland 

(e.g. Velicogna and Wahr, 2006), observations show this has extended northwards.  Recent 

climatic warming in the North Atlantic region can only explain half of the increased ice mass 

losses (Krabill et al., 2004).  The remainder appears to be the result of increased ice flux 

through calving due to the recent acceleration and thinning of outlet glaciers draining the 

Greenland ice-sheet (Krabill et al., 2004).  

 

In West Greenland, Jakobshavn Isbræ showed the most dramatic acceleration, thinning and 

subsequent retreat, beginning in 1997 (Thomas et al., 2003; Joughin et al., 2004).  Major outlet 
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glaciers in East Greenland, including Kangerdlugssuaq and Helheim (Krabill et al., 1999; Howat 

et al., 2005, 2007, 2008), have since experienced similar ice dynamic changes.  The emerging 

trend shows accelerations in outlet glaciers, and hence increases in ice discharge, have spread 

northwards to 70°N (Rignot and Kanagaratnam, 2006).  Although retreat from pinning points 

may explain changes in ice dynamics for individual glaciers (e.g. Thomas et al., 2000; 2003; 

2004; Joughin et al., 2004), it is unlikely to explain the widespread observed pattern of ice 

stream acceleration and thinning in both Greenland and Antarctica (e.g. Rignot, 1998; Shepherd 

et al., 2001).  Instead, many authors suggest that an external driver such as atmospheric and/or 

ocean warming may be responsible (Luckman et al., 2006; Bamber et al., 2007).  

 

Whilst thinning rates of up to 10 m a-1 have been measured in peripheral areas of the 

Greenland Ice Sheet, enhanced surface melting alone is unlikely to explain thinning exceeding 

1 m a-1, especially at high (>1500 m) altitudes (Abdalati et al., 2001).  However, increased 

ablation and meltwater delivery to the ice-bedrock interface may cause enhanced basal-sliding 

(e.g. Zwally et al., 2002; Howat et al., 2008).  Despite an increase in the number of summer 

meltwater lakes on the surface of the Greenland ice-sheet in recent years (Kjær and Korsgaard, 

2009), no direct relationship linking atmospheric warming with ice stream acceleration has been 

found (Luckman et al., 2006).  Indeed, Joughin et al. (2008) suggest fast-flowing outlet glaciers 

are relatively insensitive to meltwater-driven basal lubrication compared to the slow-moving ice 

sheet.  Since the late-1990s, marine-terminating outlet glaciers have thinned significantly, while 

land-terminating glaciers have undergone only negligible changes (Sole et al., 2008).  Indeed, 

many authors favour a mechanism that causes perturbations at the calving margin resulting in 

reduced back-stresses and ice front retreat (Thomas, 2003; 2004; Howat et al., 2005, 2007; 

Luckman et al., 2006; Nick et al., 2008).  Reduced sea-ice in front of the ice margin linked to 

warmer sea-surface temperatures (Sohn et al., 1998; Luckman et al., 2006) is one possible 

cause.  Alternatively, basal melting of those parts of marine-terminating glaciers at the terminus 

in contact with warming subsurface ocean waters may be important (Payne et al., 2004; 

Shepherd et al., 2004; Bindschadler, 2006; Rignot et al., 2010; Straneo et al., 2010).  Based on 

studies from an Alaskan Fjord, Motkya et al. (2003) proposed a model of salinity-driven fjord 

circulation, with surface meltwater flux from the glacier strengthening the sub-surface 
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circulation, allowing incoming warm, saline deep waters to penetrate over the sill at the fjord 

mouth.  Warm ocean waters mix with subglacial meltwater to melt submarine ice, and increase 

meltwater flux.  In Sermilik Fjord, East Greenland, Straneo et al. (2010) suggest that circulation 

is driven by the ocean temperature and salinity of waters on the shelf, because meltwater-driven 

circulation is not strong enough to account for the rapid incursion of a large body of warm water 

observed between July and September 2008.  Straneo et al. (2010) suggest that flushing of 

warm waters into the fjord could take place over just a few days.  Northeasterly winds along the 

East Greenland coast were suggested to be important for establishing the ideal marine 

conditions for this to take place (Straneo et al., 2010).   

 

2.5.1 Glacial setting of Disko Bugt and Uummannaq Fjord 

Central and southwest Greenland (south of 72°N) produces approximately one-third of all calf 

ice from the Greenland Ice Sheet (Reeh, 1985, 1994; Bigg, 1999).  The outlet glaciers feeding 

into the Disko Bugt-Uummannaq area are responsible for the majority of this iceberg production 

(Weidick, 1995).  Past estimates suggest that tidewater glaciers from this catchment (eight in 

Disko Bugt, eleven in Uummannaq, Fig. 1.2) contribute between 82 (1957) and 93 km3 a-1 

(1964) of water equivalent to global sea level (Bauer et al, 1968; Carbonnell and Bauer, 1968).  

Calf-ice production in Disko Bugt and the Uummannaq area are broadly similar (Carbonnell and 

Bauer, 1968).  More recent estimates by Rignot and Kanagaratnam (2001) do not account for 

ice discharge from all the marine-terminating glaciers in Disko Bugt (33.6 km3 a-1in 1996) and 

Uummannaq (14.2 km3 a-1 in 1996). 

 

Disko Bugt is a large marine embayment (approximately 10,000 km2; 68°30’N to 70°00’N, 

50°00’W to 54°00’W), with typical water depths of around 400 m (Fig. 2.1).  Egedesminde Dyb, 

a deep-water trough between Jakobshavn Isfjord and the shelf break in Disko Bugt (Fig. 2.1), 

bisects shallow (< 100 m water depth) offshore banks.  It is likely that a major ice stream, 

possibly an extension of Jakobshavn Isbræ, drained onto the continental shelf through this 

channel at the LGM (Long and Roberts, 2003; Roberts and Long, 2005).  Modern tidewater 

glaciers draining the Greenland Ice Sheet are restricted to fjord systems.   
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The Uummannaq area (Fig.2.1; approximately 8,000 km2; 70°20’N to 72°00’N, 50°00’W to 

55°00’W) is characterised by the high concentration of tidewater glaciers that drain the central 

West sector of the Greenland Ice Sheet.  The most important glaciers in terms of calf-ice 

production in this region are Sermeq Kujalleq (Store Gletscher), which drains into Uummannaq 

Fjord, and Rink Isbræ, which drains into Karrats Fjord to the north.  Uummannaq Fjord (Fig. 2.1) 

is more than 800 m deep (Harff, 2007; Ó Cofaigh, 2009), although several areas of shallow 

topography (in places < 300 m depth) identified in multibeam data (Harff, 2007), in addition to 

the many islands in the inner shelf area, may have acted as ice stream pinning points during the 

last deglaciation.   

 

2.5.2 Ice stream activity  

The central West sector of the GrIS has the highest concentration of calving glaciers in 

Greenland (see Fig. 1.2) (Reeh, 1985).  The total calf-ice production in Disko Bugt and the 

Uummannaq ice stream complex are broadly comparable, each producing ca. 45 km3 a-1 

(Weidick, 1995).  The volume of calf ice produced by the two major ice streams in the 

Uummannaq ice stream complex, Rink Isbræ (10.5-16.7 km3 a-1) and Store Gletscher (13.2-17.5 

km3 a-1) totals ca. 25.7-34.2 km3 a-1 (Carbonell and Bauer, 1968; Bauer et al., 1968).  This 

estimate is broadly comparable to the estimated iceberg flux of Jakobshavn Isbræ (26-44 km3 a-

1) before the recent acceleration experienced in the past decade.  Calf ice flux is low for outlet 

glaciers south of Jakobshavn isbræ, though there are two significant glaciers (Sermeq 

avangnardleq and Sermeq Kujatdleq) calving into Torsukattak, in northeastern Disko Bugt, that 

each produces an iceberg flux of up to 10 km3 a-1.  In recent decades, ice margin changes have 

been asynchronous in this region.  The two outlet glaciers immediately south of Jakobshavn 

Isbræ have been relatively stationary since the 1920s, while, ice streams in northeastern Disko 

Bugt retreated slightly from the 1960s to 1990s, and Equip sermia advanced during the same 

period.  Weidick (1963) provides a more detailed account of historic glacier margin fluctuations 

in central West Greenland.  

 

Jakobshavn Isbræ is by far the most important glacier at present in central West Greenland, 

and one of the most important outlet glaciers in Greenland.  It has been a research focus for 
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many years because of the potential impact of sea-level rise and thermohaline circulation by a 

collapse of the ice front and drawdown of inland ice.  Jakobshavn Isbræ drains nearly 7% of the 

Greenland Ice Sheet into Disko Bugt through a deep subglacial trough that extends more than 

100 km inland from the present ice front to depths exceeding 1000 m below sea level 

(Bindschadler, 1984; Echelmeyer et al., 1991; Clarke and Echelmeyer, 1996).  The ice stream 

grounding line is located at 800 m below sea level, in the uniformly deep Jakobshavn Isfjord 

(Holland et al., 2008).  Current iceberg discharge from Jakobshavn Isbræ has doubled to 

approximately 50 km3 a-1 of calf-ice since the ice stream began accelerating in 1997 (Carbonnell 

and Bauer, 1968; Holland et al., 2008).  In northeastern Disko Bugt, Eqip Sermia drains into Atâ 

Sund, and Sermeq Avangnardleq and Sermeq Kujatdleq, feed into Torssukátaq (Fig. 1.2).  

Torssukátaq is a deep fjord system with water depths exceeding 1000 m, separated from 

northeastern Disko Bugt and the Vaigat by a shallow sill.   

 

Historical observations suggest Jakobshavn Isbræ gradually advanced from the A.D. 1700s 

(Weidick et al., 2004), and periods of moraine-forming glacier advances in West Greenland 

occurred at ca. A.D. 1840-1850, 1880-1890, and a smaller advance at ca. A.D. 1920 (Weidick, 

1972).  Jakobshavn Isbræ reached its Little Ice Age maximum at around A.D. 1850 (Weidick 

and Bennike, 2007; Young et al., 2011).  Jakobshavn Isbræ gradually retreated ca. 26 km 

between A.D. 1851 and 1953 (Weidick, 1995).  While there has been a general retreat of West 

Greenland glaciers since A.D. 1920 (Weidick, 1972), the position of the ice front of Jakobshavn 

Isbræ was relatively stable between the 1950s and 1990s (Weidick, 2004).  Following a period 

of relatively slow ice flow and ice stream thickening into the 1990s, Jakobshavn Isbræ 

experienced a significant acceleration (5.7 km a-1 to 12.6 km a-1), dynamic thinning and calving 

margin retreat between 1997 and 2003 (Thomas et al., 2003; Joughin et al., 2004).  Holland et 

al. (2008) recently demonstrated that the initial thinning of the ice tongue in 1997 corresponds to 

an abrupt increase in subsurface water temperatures (150-400 m depth) from a mean of 1.7°C 

in 1995 to 3.3°C in 1998 in their study area.  Holland et al. (2008) argued that gradual changes 

in atmospheric temperatures could not explain the large and abrupt ice stream changes, 

including thinning rates of 80 m a-1 (Thomas et al., 2003).  Thomas et al. (2009) found that near-

synchronous high-magnitude changes are occurring in marine-terminating glaciers with deep 
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grounding lines throughout Greenland, while those without deep beds are thinning slowly.  This 

suggests that warming ocean temperatures may indeed be driving higher basal melt rates; 

accelerating thinning and causing the catastrophic break up of ice fronts, as happened to the 

floating ice tongue in front of Jakobshavn Isbræ in the late 1990s (Weidick et al., 2003).  The 

plausibility of this mechanism depends on the ability of warm subsurface waters to overtop 

submarine sills at fjords mouths and gain subglacial access (Bindschadler, 2006).  Holland et al. 

(2008) demonstrate that warm subsurface waters are present both outside and throughout 

Jakobshavn Isfjord, having penetrated over the relatively shallow sill of Isfjeldbanken (the sill at 

the eastern end of Jakobshavn Isfjord). 

 

2.6 Glacial history since the LGM  

2.6.1 Greenland Ice Sheet history since the LGM 

The Greenland Ice Sheet is the only Northern Hemisphere ice sheet to survive the climatic 

amelioration following the Last Glacial Maximum (LGM).  The equivalent of 7 m global (eustatic) 

sea-level rise remains locked in the Greenland Ice Sheet (Lemcke et al., 2007).  The maximum 

extent of the Greenland LGM ice margin and the timing of subsequent ice recession continue to 

be widely debated.  Bennike and Björck (2002) argue for an extensive glaciation of the 

Greenland shelf at the LGM, reaching the shelf break in northeastern and southern Greenland, 

and potentially in West Greenland.  Others, however, place an offshore Greenland ice margin 

closer to the present outer coast, for example, in Northeast, West, and central East Greenland 

(Funder and Hansen, 1996; Funder et al., 1998).  A late deglaciation has been suggested for 

Northeast and Southwest Greenland due to wide shelf area (Bennike and Björck, 2002), while 

an early deglaciation of the Scoresby Sund area during the Allerød period has been 

hypothesized (Dowdeswell et al., 1994).   

 

Funder and Hansen (1996) proposed a two-phase model for the deglaciation of Greenland 

following the LGM (Fig. 2.7).  Ice is suggested to have expanded out to the shelf edge at the 

LGM in southeastern and southwestern Greenland.  The glaciation of north and northeastern 

Greenland was less extensive, to the modern coastline and inner fjords.  In central West 

Greenland, the ice sheet is suggested to have reached the mid-shelf area, with a large outlet 
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glacier extending out of Disko Bugt, possibly to the shelf edge.  The large outlet glacier in the 

Uummannaq area is suggested to be smaller, and less extensive (Fig. 2.7).  The first stage in 

Funder and Hansen’s (1996) model suggests eustatic sea-level rise rapidly cleared marine-

based ice on the Greenland shelf between ca. 15 and 10 ka BP, mainly in central East and 

central West Greenland, and areas to the south.  The second stage of the model suggests a 

slower land-based deglaciation continued from ca. 10 ka BP, with ice retreat driven by surface 

thinning due to atmospheric warming.  The terrestrial phase of deglaciation was most extensive 

in central East Greenland and central West/southwest Greenland.   

 

 

Figure 2.7 Funder and Hansen’s (1996) two-stage model for marine-based deglaciation from 

the continental shelf at ca. 15 ka BP (from green line), and land-based deglaciation of the 

Greenland Ice Sheet from ca. 10 ka BP (from red line). 

 



Chapter 2: Study area and background 

 
 

 
39 

 

2.6.2 Deglaciation in the Baffin Bay region  

Constraining the ice-sheet retreat histories for locations throughout the Baffin Bay region 

enables us to assess possible mechanisms responsible for deglaciation.  The extent of 

glaciation in northern Baffin Bay has been widely debated (e.g. Blake, 1970; England, 1976; 

1983; 1999; Miller et al., 2002).  Recent investigations support extensive ice cover at the LGM, 

with coalescent Greenland and Innuitian ice sheets in Nares Strait until around 10 ka BP (Zreda 

et al., 1999; England, 1999).  Since Nares Strait is one of the main paths for Polar Water export 

from the Arctic Ocean (Aagaard and Carmack, 1989), and Dyke et al. (2002) suggest calving 

rates must have been low to permit an extensive LGM ice-sheet configuration, freshwater inputs 

to northern Baffin Bay would have been low during the LGM.  At this time, cold and fresh Polar 

Water circulated within the Arctic Ocean, while a weak WGC circulated in Baffin Bay (Aksu and 

Piper, 1979; Aksu and Mudie, 1985).  Deglaciation of Nares Strait between ca. 10-9 ka BP 

(Zreda et al., 1999; England, 1999) would have allowed cold, fresh Polar Water to enter Baffin 

Bay from the Arctic Ocean.  This would have had a significant oceanographic impact on Baffin 

Bay.  The strengthening of gyre circulation in Baffin Bay by a stronger south-flowing Baffin 

Current as the Arctic channels opened may have helped initiate or strengthen the north-flowing 

WGC.    

 

Research suggests the ice margin in northwest Greenland (from Melville Bugt to Thule, see Fig. 

1.1), north, and northeast Greenland has changed relatively little in extent compared to other 

parts of the Greenland Ice Sheet (Kelly and Bennike, 1992; Funder and Hansen, 1996).  The 

apparently minimal ice margin retreat since the LGM in northwest Greenland may reflect 

reduced Holocene deglaciation and/or greater ice expansion in this sector of the Greenland Ice 

Sheet than elsewhere during the late Holocene Neoglaciation (Kelly, 1980).  It is possible that 

the warming influence of the WGC in northern Baffin Bay continued to provide an open water 

moisture source in close proximity to the ice sheet during a period of low Neoglacial air 

temperatures (Levac et al., 2001), and helped maintain a positive ice sheet mass balance in this 

region. 
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2.6.3 Deglaciation of the central west sector of the Greenland Ice Sheet 

Kelly (1985, p. 477) labelled central West Greenland a ‘classic area’ for studying the Greenland 

ice-sheet deglacial history because of the wealth of glacial landforms and dateable material 

found in the relatively wide (up to 200 km) ice-free terrestrial margin.  In Disko Bugt, the current 

deglacial chronology is based on radiocarbon dates from marine sediment cores (e.g. Lloyd et 

al., 2005), raised marine deposits (e.g. Ingólfsson et al., 1990; Bennike et al., 1994), and basal 

gyttja in lakes above the local marine limit (e.g. Long et al., 1999, 2003; Long and Roberts, 

2002, 2003).  There is greater uncertainty concerning the deglacial chronology for the less-

studied Uummannaq region, where there is little data to constrain both the extent of LGM ice 

and the timing of deglaciation.  The current chronology is limited to just two radiocarbon dates in 

the whole Uummannaq area (Símonarson, 1981; Bennike, 2000) of 10.6 ka BP and 10.4 ka BP 

on the central-northern shore of Nuussuaq peninsula and Svartenhuk Halvø respectively, 

though ongoing projects are using cosmogenic exposure dating to directly date deglaciation 

(D.H. Roberts, personal communication).   

 

Little is known about the offshore deglacial history (i.e. maximum ice extent and subsequent 

timing and nature of deglaciation) in central West Greenland.  The presence of crystalline 

erratics sourced from mainland Greenland on the basalt plateux of southern Disko Island 

suggests ice formerly extended out into Disko Bugt (Frich, and Ingólfsson, 1990).  Funder and 

Hansen (1996) hypothesized that ice streamed out of Disko Bugt, calving at or near to the shelf 

edge during the LGM.  Intensive scouring by deep-draft icebergs (>340 m) adjacent to outer 

Egedesminde Dyb supports ice sheet expansion onto the outer shelf at the LGM (Brett and 

Zarudzki, 1979), since this can only be explained by icebergs calving from inland ice sitting west 

of the 300 m deep threshold between inner and outer Egedesminde Dyb (Fig. 2.1).  Two major 

offshore moraine complexes, the Hellefiske moraines, located ca. 100 km offshore, and the 

Sisimiut moraines, located ca. 40 km offshore (Fig. 2.1), indicate that inland ice did indeed 

extend out onto the shelf in the past (Brett and Zarudzki, 1979; Zarudzki, 1980; Risum et al., 

1980; Kelly, 1985).  While their ages remain unknown, Kelly (1985) suggests the Hellefiske 

moraines formed during pre-LGM Weichselian glacial advances or earlier, and the Sisimiut 

moraines formed ca. 14 ka BP.  Van Tatenhove et al. (1996) speculates that the Hellefiske 
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moraines correspond to the maximum advance of the Greenland Ice Sheet during the 

Weichselian between 19 and 13 ka cal. BP, and the Sisimiut moraines are linked to extensive 

ice cover between 13.8 and 11.8 ka cal. BP.  However, there is increasing support for the 

Hellefiske moraines marking the extent of a Younger Dryas ice readvance (Rinterknecht et al., 

2009; Simpson et al., 2009; Roberts et al., 2009).  

 

Bennike et al. (1994) interpret rhythmically bedded glaciolacustrine sediments, together with 

kame deposits and features on western Disko Island, as evidence for an extensive ice shelf 

west of Disko Island before the last deglaciation.  Based on the degree of weathering, Bennike 

et al. (1994) reason that these features are similar in age as glacial striae and Pjetursson’s 

moraine in Blæsedalen, near Queqertarsuaq (Fig. 2.8), which Ingólfsson et al. (1990) attribute 

to the Godhavn Stade (the LGM on Disko Island), though no dating evidence exists to test this.  

A raised marine delta located at the marine limit in the Hammers Dal area, however, has been 

dated to ca. 10.2 ka cal BP (10,530-9,811 cal. yr BP; 9370±140 14C yr BP, Ingólfsson et al., 

1990).  The delta appears to be partly reworked by marine processes, possibly suggesting open 

water conditions characterised the shelf area to the west of Disko Island at this time. 

 

Many authors have argued either for a rapid (e.g. Funder and Hansen, 1996; Long and Roberts, 

2003) or slower, punctuated deglaciation of Disko Bugt and the nearby shelf (e.g. Ingólfsson et 

al., 1990; Weidick, 1996, Rasch, 2000).  The current deglacial chronology is largely developed 

using terrestrial-based evidence found in the wide ice-free margin in central West Greenland.  

Moraine systems have been tenuously correlated based on morphological similarities, often 

over distances of 10 km to 100 km.  These have been dated using in situ marine material, or 

where this is absent, linked to relative sea-level (RSL) curves (e.g. Weidick, 1972a; 1972b; Ten 

Brink and Weidick, 1974; Donner and Jungner, 1975; Ten Brink, 1975; Kelly, 1985; Long and 

Roberts, 2002; Long et al., 2006).  The Holocene marine limit (HML; the maximum height of a 

former RSL) is thought to have formed almost synchronously with deglaciation, as isostatic uplift 

accompanied ice sheet down wasting during initial deglaciation.  Dating of the marine limit is 

often based on extrapolation from local RSL curves where in situ dateable material is absent 
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(e.g. Donner and Jungner, 1975; Donner, 1978), or dating the onset of organic accumulation in 

lakes above the marine limit (Long and Roberts, 2003; Weidick and Bennike, 2007).   

 

Figure 2.8 Radiocarbon dates from central West Greenland providing minimum ages for 

deglaciation.  Updated from Bennike (1994), Rasch (1997), Long and Roberts (2002), Long et 

al. (2003; 2006), Lloyd et al. (2005).  Dates are given as mean ages in thousand cal. yr BP.  

Inner ED and Outer ED refer to the two parts Egedesminde Dyb; the deep trough in the Disko 

Bugt area. 

 

The earliest date for the minimum age of deglaciation comes from southwestern Disko Bugt 

(Qeqertarsuatsiaq, Fig. 2.8).  The age of ca. 13.2 ka cal. yr BP, obtained from lacustrine basal 

gyttja collected from above the marine limit, is a few thousand years older than other dates 



Chapter 2: Study area and background 

 
 

 
43 

 

collected in Disko Bugt (Fig. 2.8).  While this may suggest an early initial deglaciation followed 

by very slow retreat from outer Disko Bugt, or even a stillstand during deglaciation, much later 

dates obtained for the minimum age of deglaciation in more recent work by Long and Roberts 

(2003), suggest that the age of 13.2 ka BP must be wrong.  Dating of the marine limit indicates 

that deglaciation of western Disko Bugt took place around 11-10.2 ka BP (Long and Roberts, 

2003), with similar ages for marine limits in eastern Disko Bugt (e.g. Long and Roberts, 2002; 

Long et al., 2003) suggesting deglaciation across the bay was extremely rapid.  The minimum 

ages for deglaciation in this area are comparable to dates from Nunarssuaq, Kronprinsens 

Ejland (Fig. 2.8), of 9.3 ka cal. yr BP (8690±90 14C yr BP; Bennike et al., 1994) and 10-9.8 ka 

BP from southern Disko Island (Ingólfsson et al., 1990).   

 

The timing of ice retreat through the Vaigat is poorly understood.  Glacial till, composed partly of 

easterly-sourced gneisses, underlies a raised beach at Hammers Dal, northwest Disko Island 

(Fig. 2.8).  While it is likely that ice moving through Vaigat deposited this till, there are no age 

constraints available (Ingólfsson et al., 1990). A raised marine delta/alluvial fan complex at the 

marine limit on the western tip of Nuussuaq Peninsula (ca. 60 m a.s.l.) was formed when outlet 

glaciers flowed through Vaigat sound and Uummannaq Fjord (Bennike et al., 1994).  Dated 

molluscs found in the deposits up to 48 m a.s.l. returned infinite ages (>33,540 and >40,000 14C 

yrs), possibly suggesting that ice expansion in the Vaigat and Uummannaq did not coalesce at 

the LGM.   

 

Roberts and Long (2005) suggest that greater ice thicknesses and convergent ice flow from 

across the Disko Bugt area at the LGM would have facilitated topographically routed ice 

streaming onto the west Greenland continental slope.  Weidick (1994) proposed that enhanced 

ice stream flow velocities from Sermeq avangnardleq and Sermeq kujatdleq occurred during 

glacial conditions at the expense of ice flux from Jakobshavn Isbræ.  Roberts and Long (2005), 

however, suggest the confluence of these glacier systems south of Aasiaat (Fig. 1.2) may have 

encouraged a regional drawdown of ice and increased ice flow velocities.   
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While the available terrestrial-based dates in Disko Bugt provide minimum ages for ice retreat at 

the fringes of Disko Bugt, they do not permit us to address the timing and nature of deglaciation 

for faster flowing ice occupying Egedesminde Dyb, the deep water trough that runs through 

Disko Bugt and out to the shelf edge (Fig. 2.8).  At present, there are only two marine dates 

from Disko Bugt (from cores POR 18 and DA00-06, Lloyd et al., 2005) that provide minimum 

ages for the deglaciation of the faster moving outlet glacier that occupied Disko Bugt. 

 

Lloyd et al. (2005) found that the marine-based ice in Disko Bugt had retreated to the eastern 

part of the embayment by 10.3 ka BP (POR-18).  This was followed by a period of relative ice 

stream stability that lasted around 1000 years before the ice retreated landwards.  The DA00-06 

core site became deglaciated shortly before 8.3 ka BP (Fig. 2.8) (Lloyd et al, 2005), as ice 

retreated onto Isfjeldbanjken, a shallow sill at the mouth to Jakobshavn Isfjord.  The final retreat 

of Jakobshavn Isbræ back into the Isfjord at ca. 7.8 ka BP is clearly identified by 

sedimentological and foraminiferal changes (Lloyd et al, 2005).  As the ice retreated off 

Isfjeldbanken there was a major fall in sedimentation and a marked relative increase in coarse 

sedimentation.  This reflects the significant decline in fine-grained sediments ejected at the 

glacier terminus being deposited from suspension at the core site (Lloyd et al, 2005). 

 

2.7 Ice-ocean-atmosphere interactions in the North Atlantic 

Oxygen isotope measurements in Greenland ice cores show that large and repeated climate 

shifts of cooling followed by abrupt warming characterised the last glacial period (Dansgaard et 

al., 1982; 1993; NGRIP members, 2004).  These Dansgaard-Oeschger-type cycles can also be 

identified in North Atlantic marine sediment records, and show that progressively cooler D-O 

cycles end with massive iceberg discharges into the North Atlantic called Heinrich events 

(Heinrich, 1988; Broecker, 1991; Bond et al., 1992; 1993; Bond and Lotti, 1995).  The cause of 

these Heinrich events has been widely debated.  One explanation is that internal dynamics of 

the Laurentide Ice Sheet cause ice stream surges and massive iceberg discharges through the 

Hudson Strait (MacAyeal, 1993).  An alternative explanation is that Heinrich events are a 

response to external climate forcing (Bond and Lotti, 1995; Bond et al., 1999; Dowdeswell et al., 

1995).  While IRD layers are largely composed of detrital carbonate sourced from Hudson Strait 
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(Andrews and Tedesco, 1992; Bond et al., 1993), material originating from the eastern North 

Atlantic can also be identified (Bond and Lotti, 1995; Bond et al., 1997; 1999; Scourse et al., 

2000).  Apparently-synchronous ice sheet responses in disparate regions suggest that an 

external driver may be responsible.  Hulbe et al. (2004) hypothesize that periodic collapses of 

Canadian ice shelves in front of Hudson Strait were primarily responsible for the extensive IRD 

layers in the North Atlantic.  Ice-shelf collapses may be a response to gradual rather than abrupt 

climate warming (Hulbe et al., 2004).  The freshwater released from melting icebergs caused 

rapid reorganizations of North Atlantic thermohaline circulation, including a shutdown of NADW 

formation (Broecker, 1994; Keigwin and Lehman, 1994; Bard et al., 2000; Rahmstorf, 2002).   

 

While formerly considered to have a relatively stable climate, lower amplitude Dansgaard-

Oeschger cycles have continued throughout the Holocene at intervals of 1470±500 years 

(O’Brien et al., 1995).  These are correlated to drift-ice episodes to locations in the North 

Atlantic presently under the influence of the NAC and IC (Bond et al., 1997; 2001).  The 

composition of IRD from these events suggests past circulation regimes in the North Atlantic 

may have been vastly different to the modern one (Bond et al., 1997).  Haematite-stained IRD 

suggest ice-laden surface waters originating from the Nordic Seas advected southwards with a 

coincident shift in the polar front (Bond et al., 1997) and a reduction in NADW formation 

(Bianchi and McCave, 1999, Bond et al., 1999; Denton and Broecker, 2008).  Central West 

Greenland is an important source of modern iceberg and meltwater fluxes.  However, the 

possible influence of icebergs originating from the Baffin Bay region during the Holocene is 

poorly constrained.  Changes in solar irradiance have been suggested as the primary cause of 

Holocene millennial-scale climatic variability (Bond et al., 1997; 2001).  The climatic response to 

short periods of reduced solar irradiance is likely to resemble a negative phase of the NAO 

(Shindell et al., 2001), and cause a weakening in NADW formation similar to the recent GSAs 

described above (Bond et al., 1997).  
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Chapter 3 

Material and methods 

 

 

3.1 Introduction 

In this chapter, the materials and methods used to address the research objectives set out in 

Chapter 1 are summarised.  The rationale for site selection is outlined together with an overview 

of the physical setting at the core sites.  Secondly, the methods used to investigate past 

changes in sub-surface water mass characteristics and sedimentary environments, and the 

dating methods used to place these changes within a chronological framework, are outlined.   

 

3.2 Material 

Fossil sediment cores collected from three sites in the Disko Bugt-Uummannaq region of West 

Greenland during cruises of the RV Dana in September 2006 (Core DA06-139G) and RV Maria 

S. Merian in June-July 2007, leg 05/03, (Cores MSM-343340 and MSM-343520) provide study 

material for this investigation.  Long sediment records spanning the Holocene were collected 

using gravity corers (identified with ‘G’ suffix) at all sampling stations.  A short multicore 

retrieved from the core station MSM-343520 (identified with ‘MC’ suffix) preserves the sediment-

water interface at the seafloor and provides an undisturbed record of recent oceanographic 

changes.  

Core name 
Core 
type Location 

Position Water 
depth 
(m) 

Core 
length 
(cm) Latitude  Longitude 

DA06-139G Gravity Vaigat 70°05'47.90" 52°53'43.00"  384 444 

MSM-343340-
5_G 

Gravity 
Outer 
Egedesminde 
Dyb 

68°36'55.00" 55°19'59.00" 461.2 1074 

MSM-343520-2-
1_MC 

Multicore 
Uummannaq 
shelf 

70°48'57.00" 56°50'53.64" 545.3 42 

MSM-343520-
3_G 

Gravity 
Uummannaq 
shelf 

70°48'57.06" 56°50'53.88" 545.7 989 

Table 3.1 Details of fossil cores collected during cruises of the RV Dana (09/2006) and RV 

Maria S. Merian (06/2007). 
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3.2.1 Site selection 

There has been significant interest in research in the Disko Bugt-Uummannaq area over recent 

years investigating the interaction between the Greenland Ice Sheet and ocean circulation.  

Recent marine-based investigations in the Disko Bugt-Uummannaq area are largely confined to 

fjord environments (e.g. Deslodges et al., 2002; Gilbert et al., 2002; Park, 2003; Moros et al., 

2006; Lloyd et al., 2007) and inner Disko Bugt (e.g. Lloyd et al., 2005; Lloyd, 2006a, Moros et 

al., 2006; Lloyd et al., 2007; Seidenkrantz et al., 2008; Krawczyk et al., 2010).  The timing and 

mechanisms of deglaciation of the Greenland Ice Sheet in central West Greenland are widely 

debated (e.g. Funder and Hansen, 1996; Bennike and Björck, 2002; Long and Roberts, 2003).  

The current deglacial chronology (discussed in Chapter 2) of marine-based ice in Disko Bugt is 

limited to dates from the terrestrial margins and two dates from marine cores DA00-06 

(7843±72 14C yrs BP, 69°10.21’N, 51°23.71’W) and POR18 (9483±65 14C yrs BP, 69°10.54’N, 

51°49.38’W) in inner Disko Bugt (Lloyd et al., 2005).  Although geophysical surveys have 

identified moraines on the shelf west of Disko Bugt to the north and south of Outer 

Egedesminde Dyb (Brett and Zarudzki, 1979; see green shading in Fig. 3.1), there are at 

present no dates to constrain the timing of early deglaciation.  Further north, there are even 

fewer dates to constrain the timing of deglaciation in the Uummannaq region (Bennike and 

Björck, 2002).   

 

To investigate the timing and nature of deglaciation of the outer shelf west of Disko Bugt and 

Uummannaq Fjord, gravity cores MSM-343340_G and MSM-343520_G are used.  Following 

deglaciation of the marine-based portion of the ice sheet, these cores provide records of 

changes in bottom water conditions that reflect regional oceanographic trends.  Coring locations 

were selected based on parasound surveys undertaken during the cruise which identified deep-

water basins where continuous and relatively undisturbed sedimentation may have taken place 

during the Holocene.  
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Fig. 3.1 Location of core stations (black circles) and continental shelf bathymetry of the Disko 

Bugt-Uummannaq area in central West Greenland, showing troughs from inner shelf extending 

to trough mouth fans and location of moraine banks (highlighted in green).  Spot depths mark 

thresholds into Disko Bugt and the Vaigat.   

 

MSM-343340, Outer Disko Bugt  

Core MSM-343340_G (see Table 3.1 and Fig. 3.1) was collected from a water depth of 461.2 m 

using a 12 m gravity corer (125 mm diameter).  MSM-343340 was retrieved from the centre of a 

small basin located in the outer part of Egedesminde Dyb (Fig. 3.2).  Egedesminde Dyb is a 

deep-water trough extending from west of Jakobshavn Isfjord to the shelf break.  This trough is 

bisected by high bedrock (305 m water depth) east of the core site (see Fig 3.1).  Egedesminde 

Dyb is thought to have routed the glacial Jakobshavn Isbrae to the outer shelf at the Last 

Glacial Maximum (Long and Roberts, 2003).  However, streamlined bedrock terrain in 

southwest Disko Bugt suggests that ice streaming under glacial conditions was not restricted to 

this deep-water trough, and may have extended over a much wider area (Roberts and Long, 
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2005).  Consequently, this site provides the opportunity to assess the timing and nature of 

deglaciation of fast-flowing ice, compared to the slower-moving main body of the ice sheet in 

the Disko Bugt area.  

 

The shallow threshold located east of core MSM-343340 is the final barrier that the Atlantic 

water component of the WGC must overtop in order to enter the main area of Disko Bugt.  This 

core is therefore well situated to record changes in the relative temperature of Atlantic water 

entering Disko Bugt that has the potential to reach the calving margin of tidewater glaciers in 

Disko Bugt and influence glacier dynamics.  Site MSM-343340 is located within the depth range 

of the warm core of the WGC, and therefore changes in benthic fauna should reflect changes in 

the relative temperature of the WGC.   

 

MSM-343520, Uummannaq shelf 

Core MSM-343520_G (see Table 3.1 and Fig. 3.1) was collected from a water depth of 545.7 m 

using a 12 m gravity corer.  In order to sample an undisturbed record at the sediment-water 

interface a multicore (MSM-343520_MUC) was collected from the same site.  This core is 

located mid-way across the shelf west of Uummannaq Fjord (Fig. 3.1).  Parasound surveying 

shows that this site lies on a small plateaux (Fig. 3.3).  The seafloor deepens landwards to 

depths locally exceeding 1000 m on the inner shelf (Harff, 2007). 

 

Site MSM-343520 is a key site for investigating both deglaciation of the central sector of the 

Greenland Ice Sheet and the palaeoceanographic evolution of the WGC north of Disko Bugt.  

While the understanding of deglaciation in the Uummannaq region is poorly constrained, 

Bennike and Björck (2002) have suggested deglaciation of Uummannaq Fjord occurred around 

1000 years earlier than Disko Bugt, though the dating evidence for this is tenuous.  Core MSM-

343520_G therefore provides the opportunity to assess the relative timing of deglaciation of the 

mid-shelf area of Uummannaq compared to Disko Bugt.  The location of this core will allow 

investigation of the driving mechanisms of early deglaciation in the Uummannaq area.  

Following deglaciation, core sediments should provide a record of oceanographic evolution at 

core sites, and in particular sub-surface temperature changes in the area.  Furthermore, the 
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location of sites MSM-343340 versus MSM-343520 allows a qualitative assessment of changes 

in water temperature (relative cooling/dilution of WGC) between outer Disko Bugt and the 

Uummannaq shelf.  This is important in assessing the possible role of ocean temperature 

changes forcing ice margin dynamics in the two regions.   

 

DA06-139G, Vaigat 

DA06-139G is located in the central part of the Vaigat fjord (see Table 3.1 and Fig 3.1).  The 

Vaigat is the main conduit through which icebergs and meltwater exit Disko Bugt.  The majority 

of icebergs originate from Jakobshavn Isbræ, although Sermeq Avannarleq and Sermeq 

Kujalleq in Torsukattak also produce a significant volume of calf-ice.  This core is therefore 

appropriately sited for investigating the changes in iceberg discharge from tidewater glaciers in 

Disko Bugt that can be compared against sedimentological records from MSM-343520.   

 

Sub-surface water in Disko Bugt flows back into Baffin Bay via the Vaigat.  Sub-surface waters 

must overtop a shallow sill (245 m water depth, see Fig. 3.1) in order to enter the Vaigat from 

the eastern margin of Disko Bugt (Andersen, 1981a).  In view of the difficulties of retrieving 

sediment cores in fjord areas immediately in front of major ice streams, this site may provide the 

closest analogue for bottom-water conditions in more ice-proximal locations, and the potential 

for warm WGC incursion over shallow sills with a large meltwater layer at the surface.  

Sedimentological analyses of core DA06-139G further allows an investigation of the Holocene 

evolution of iceberg rafting from Disko Bugt.  
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Figure 3.2 Parasound record at station MSM-343340, from southwest (left) to northeast (right), 

going towards Disko Bugt.  Vertical line marks position of core. 

 

Figure 3.3 Parasound record at station MSM-343520, from east (left) to west (right), showing 

shoaling towards the shelf edge. Vertical line marks position of core. 

 

3.3 Methods 

Table 3.2 details the analyses performed on each core, and data used in this thesis provided by 

project collaborators.  Each sample from gravity cores are analysed in 2 cm ‘slices’ unless 

otherwise noted, while multicore samples are analysed in 0.5 cm slices from 0 cm to 11 cm, and 

1 cm thereafter, unless otherwise specified.  
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Analysis DA06-139G 
MSM-

343340_G 
MSM-

343520_MC 
MSM-

343520_G 
          

Foraminifera 8-16 cm 16 cm 0.5-1 cm 4 cm 

Grain size (sieving) 5 cm* X X 1 cm*** 

Grain size (LD) 8-16 cm 0.5-1 cm** 0.5-1 cm** 10 cm**** 

Clast counts 2 cm* 4 cm X 4 cm 

Petrologic counts 5 cm* X X X 

Dry bulk density 
(DBD) 

X 8-16 cm 0.5-1 cm 8-16 cm 

Water content X 8 cm 0.5-1 cm 1 cm*** 

Mag. Sus. 5 cm* 0.5 cm X 0.5 cm 

LOI X 8-16 cm X 1 cm*** 

XRF (core scanning) 1 cm* 1 cm X 1 cm 

TIC X X X # 

TN X X X 4-16 cm 

TC X X 0.5-1 cm** 4-16 cm 

δ18O X X X 2 cm (max.) 

δ13C X X X 2 cm (max.) 

 

Table 3.2 Details of analyses performed on each core, and the resolution of these analyses. 

* Data provided by C.S. Andresen (GEUS).  Further information about methods detailed in 

Andresen et al. (2011).   

** Analyses available in Krauß (2009), though no use of this data has been made in this thesis.   

*** Data provided by K. Perner and M. Moros (IOW).  Additional water content measurements 

made at a higher sampling resolution.  

**** Data provided by N. Dijkstra (University of Amsterdam).   

# Test analyses performed on selected samples from core. 

X No analyses performed. 

 

3.3.1 Core sedimentology 

Each core was visually logged to identify major changes in sedimentology (Eyles et al., 1983; Ó 

Cofaigh et al., 2001), including textural changes, sedimentary structures, sediment colour and 

presence of shell and plant material.  X-ray radiographs (see below) were also used to aid the 

description of sedimentary structures.  Sediment reworking by various processes, including 

sediment-gravity flows, turbidity currents, bioturbation, and iceberg scouring, is commonplace in 
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high-latitude continental shelf settings, particularly in locations influenced by high sedimentation 

rates (e.g. Pereira et al., 1988; Ó Cofaigh et al., 2002; Kuijpers and Werner, 2007; Kuijpers et 

al., 2007).  Sediments may be deposited, eroded, or disturbed by these processes (Ó Cofaigh 

et al., 2002), and this consequently has repercussions for the interpretation and resolution of 

palaeoceanographic reconstructions (Gutt, 2001; Ó Cofaigh et al., 2002).  Given that the 

sediment cores investigated in this study were collected from basins with steep sides 

(particularly in outer Egedesminde Dyb, illustrated in the parasound record shown in Fig. 3.2), 

sediment reworking processes may be particularly active.  A thorough characterisation of core 

sedimentology is therefore important for reliably interpreting palaeoceanographic records.  Each 

core was subject to a number of analyses.  Details of the methods used are briefly elaborated 

upon below.   

 

Moisture content (%) was calculated for samples in cores MSM-343340 and MSM-343520 to 

aid interpretations of X-ray radiographs and core scanning data, and identify sedimentological 

changes.  Core MSM-343520 was sampled at 16 cm intervals and at higher resolution 

(contiguous in places) for the lower 1.4 m in order to capture sedimentary changes at the base 

of the core.  Core MSM-343340 was sampled at 8 cm intervals.  Samples were oven-dried at 

110 ºC for 24 hours and re-weighed to determine sediment moisture content (%).  Moisture 

content (%) was calculated using the equation: 

 

Mn = [(nw-nd)/ nw] x 100   (1) 

 

Where M is the moisture content (%) of sample n, nw is the wet sample mass (g), and nd is the 

dry sample mass (g).  As part of the preparation for 210Pb dating for core MSM-343520_MC 

(see 3.3.5 below), dry bulk density was measured by calculating the volume of the wet sediment 

using electronic callipers before freeze drying to remove all moisture.  Dry-bulk density, defined 

as the dry sediment mass divided by the total wet sediment volume (Dadey et al., 1992), is 

calculated as: 
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n = md / Vw    (2) 

 

Where  is the dry bulk density (g/cm3) of sample n, md is the dry sediment mass (g), and Vw is 

the volume (cm3) of the wet sediment sample (Hobbs, 1983). 

 

Samples for core MSM-343520 at a 1 cm resolution (data provided by K. Perner and M. Moros, 

IOW) were analysed for loss-on-ignition (LOI) to help provide insights into changes in, for 

example, particulate organic carbon flux to the seafloor, pertaining to changes in water mass 

characteristics, and possible changes in sedimentation diluting the organic carbon content in the 

sediments.  Approximately 7 g of wet sediment (typically ca. 3.5 g dry mass) was analysed.   

 

LOI (% weight) was determined by heating sediment samples in a furnace at 550 ºC for 5 hours 

(Dean, 1974), and was calculated as: 

 

LOI (% wt) = [(nd – na) / nd] x 100 (3) 

 

Where na is ash sample mass (g) after heating in furnace. 

 

Grain size analysis 

Grain size analyses are used to help understand sediment transport, deposition, and post-

depositional processes on the Uummannaq shelf since deglaciation.  Grain size analyses 

determined using three methods, by laser diffraction of the finer than 2000 μm fraction, sieving 

of sand fractions, and clast counts from X-ray radiographs, are presented in this study.  In this 

study, the full suite of analyses has thus far only been applied to core MSM-343520_G, though 

clast counts are available for core MSM-343340_G and DA06-139G.  The combinination of 

analyses allows the full range of sediment sizes within the core to be analysed.  The three 

methods used to obtain these data are summarised below: 
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(i) Clast counts of particles greater than 2 mm 

Counts of clasts greater than 2 mm were made from X-ray radiographs, as advocated by Grobe 

(1987).  Counts for DA06-139G, provided courtesy of Camilla Andresen (Andresen et al., 2011), 

were made from 10x1 cm samples every 2 cm downcore.  Since the digital X- radiographs for 

cores MSM-343520_G and MSM-343340_G do not span the whole core width, clasts were 

counted in contiguous 4 cm ‘long’ samples downcore, with a uniform width of 4 cm.  This 

provides a more representative indication of IRD content, though at the expense of temporal 

resolution.   

 

(ii) Grain size analysis by laser diffraction of particles smaller than 2 mm 

The grain size fraction smaller than 2000 μm in surface samples collected in central West 

Greenland during the MSM 05/03 cruise were analysed at Durham University using a LS13320 

Coulter Laser Granulometer.  For each sample, approximately 0.5 g of sediment was placed in 

a 50 ml tube, and immersed with 20 ml of 20 % hydrogen peroxide.  Samples were covered with 

aluminium foil and placed in a boiling water bath until all organic matter dissolved.  Samples 

were centrifuged (4000 rpm for 4 minutes) and supernatant liquid decanted off.  This was 

repeated, and then 20 ml of distilled water and 2 ml of sodium hexametaphosphate solution (a 

dispersant) was added to samples.  The treated sediment samples were analysed by the 

Coulter granulometer.  Each sample was analysed twice and averaged.  Where repeat runs 

were poorly matched, additional analyses were made.  Samples from core MSM-343520_G 

were analysed by Noortje Dijkstra (Marine Biogeology, Faculty of Earth and Life Sciences, VU 

University of Amsterdam) at 10 cm intervals using a HELOS KR (Sympatec) laser-diffraction 

particle sizer. 

 

(iii) Dry sieving of coarse fractions greater than 63 µm and 150 µm 

Dry sieving of coarse grain size fractions, carried out by K. Perner and M. Moros (IOW), was 

used to analyse the percentage weight components of sediment fractions.  Samples were dried 

at 60°C, weighed, and then wet sieved through mesh sizes of 63 µm and 150 µm, dried at 60°C, 

then reweighed.  Wet samples masses were typically ca. 35 g.  The weight of each grain size 

fraction was calculated as a percentage of the total dry weight. 
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X-ray radiographs 

Differential attenuation of incident X-rays produce radiographs which primarily reflect bulk 

sediment density (St-Onge et al., 2007).  Changes in grain size, water content, and lithology 

therefore influence the grey scale intensity in X-ray radiographs.  Sediment reworking affects 

both the interpretation and resolution of palaeoceanographic records (Ó Cofaigh et al., 2002).  

The possible influences of current activity, turbidity, and bioturbation are therefore qualitatively 

assessed using X-ray radiographs.     

 

An ITRAX core scanner (Institute of Geology and Mineralogy, University of Cologne) captured 

20 mm wide digital X-ray radiographs of the archive half of sediment cores MSM-343340 and 

MSM-343520.  All core sections were X-rayed using a step size of 500 µm, while the bottom 

metre of core MSM-343520 was X-rayed at a higher-resolution using a step size of 200 µm.  X-

ray radiography used excitation conditions of 55 kV and 50 mA, with a measuring time of 3000 

ms and 4000 ms for measurements at step-sizes of 500 µm and 200 µm respectively.  Image 

processing procedures (e.g. image stacking, enhancing contrast) were applied to the digital X-

ray radiographs using the ImageJ software package (version 1.41, Rasband, 2008) to allow 

identification of different lithofacies.  

 

3.3.2 Geochemical analyses 

Sediments were analysed using a variety of geochemical methods, as detailed below. 

 

X-Ray Fluorescence (XRF) core scanning 

XRF core scanning is becoming more widely used as it provides a fast, economical method for 

determining relative abundances of elements in fossil sequences.  Data from XRF core 

scanning is used semi-quantitatively in this study to identify possible changes in sediment 

provenance, grain size, and biological productivity. 

 

A containerized Avaartech X-ray fluorescence (XRF) core scanner (from the Royal Netherlands 

Institute for Sea Research) onboard the RV Maria S. Merian enabled analysis of sediment cores 

MSM-343340 and MSM-343520 at 1 cm resolution within hours to days of collection during the 
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MSM-05/03 cruise.  Smoothing and covering the sediment surface with plastic film helped 

reduce the impact of surface roughness on XRF analysis.  XRF scanning of core DA06-139G 

was undertaken at 1 cm intervals two years after collection (data provided by C.S. Andresen 

and A. Kuijpers, GEUS, Copenhagen).  The Avaartech XRF core scanner measures bulk 

intensities (concentration) of major elements in counts per second.  Nine elements (Al, Ca, Cl, 

Fe, K, Mn, S, Si, Ti) were analyzed, although analysis focuses on the elemental ratios [S/Al], 

[Si/Al], and [K/Ti].  Using normalized (ratio) X-ray fluorescence (XRF) elemental intensities, 

rather than just intensity data from XRF core scanners, is recommended because core-

scanners provide relative rather than absolute elemental data (e.g. Croudace et al., 2006; 

Richter et al., 2006; Calvert and Pedersen, 2007; Rothwell et al., 2006).  Richter et al. (2006) 

provide a good review of the capabilities, limitations, and applications of the Avaartech XRF 

core scanning data.   

 

Magnetic susceptibility 

Magnetic susceptibility measures the degree to which material can be magnetized (Thomson 

and Oldfield, 1986), and is the sum of all magnetically susceptible sediment components 

(Dearing, 1999).  Magnetic susceptibility may be used to identify changes in sediment 

provenance, though scanning sensor measurements are affected by grain size and water 

content.    

 

The split core was smoothed and covered by a thin plastic film to reduce the effect of surface 

roughness on magnetic susceptibility.  A Bartington Instruments MS2E1 high-resolution surface 

scanning sensor connected to a TAMISCAN-TS1 automatic logging conveyor measured surface 

magnetic susceptibility at 1 cm intervals (Harff, 2007).  Multicore sediments (0.5 to 1 cm 

intervals) were placed in Petri dishes, covered with plastic film, and measured using a MS2E1 

surface scanning sensor connected to a MS2 meter.  Volumetric magnetic susceptibility, K, 

expressed using the SI convention, is herein referred to as magnetic susceptibility. 
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Magnetic susceptibility and XRF core-scanning data provide a semi-quantitative means of 

assessing sediment provenance and making time-transgressive correlations between cores to 

supplement foraminiferal data.   

 

Total carbon (TC) and total nitrogen (TN) 

Samples from MSM-343340 and MSM-343520 were prepared at 8 cm intervals for total carbon, 

total nitrogen, and total inorganic carbon analysis.  Samples were freeze-dried then ground and 

homogenized using an agate pestle and mortar.  Total carbon (TC %) and total nitrogen (TN %) 

in samples was analysed by combustion in a Costech elemental analyser.  A sediment mass of 

approximately 50 mg was placed in tin capsules and weighed on a microbalance.  Tin capsules 

were sealed, compressed, and loaded into a carousel.  Measurements were calibrated using 

one blank (empty tin capsule) and four Sulfanilamide standard samples (0.5, 1, 1.5, 2 mg).  

Analytical precision was checked using an analytical quality control (AQC) sample (1.5 mg of 

the Sulfanilamide standard), a certified reference material sample (15 mg of high organic 

content sediment standard OAS - B2150), and a blank, in the middle and at the end of the run.  

Analytical precision determined by analysis of the CRM was better than 5 % for carbon and 

nitrogen in all batch runs.  Total inorganic carbon (TIC) was analysed by digestion in 

orthophosphoric acid in a Thermo Finnigan TOC 1200 analyser.  A stock inorganic carbon 

calibration standard was prepared using 4.4122 ± 0.0001 g anhydrous sodium carbonate and 

3.4970 ± 0.0001 g anhydrous sodium hydrogen carbonate dissolved into 500 ml of deionised 

water.  100 μl of the calibration standards (prepared to concentrations of 0, 10, 20, 50, 100, 150 

mg/l) were analysed to produce a calibration curve.  Sample masses typically varied between 

10-20 mg depending on inorganic carbon content.  Samples were digested for a maximum of 

500 seconds.  This allowed CO2 to reach background levels for most samples, and where this 

was not attained, the unanalysed carbonate contribution was negligible.  Calcium carbonate 

(calcite) is the primary form of inorganic carbon in samples, although minor quantities of less 

reactive forms (e.g. dolomite, CaMgCO3) may be present.  Regular AQC (100 μl) samples 

indicated analytical precision for TIC was better than ±5 %.  Total organic carbon (TOC %) was 

then calculated as the difference between total carbon (TC %) analysed by combustion and 

total inorganic carbon (TIC %) measured by digestion.  Since TIC was low (typically <0.004 %) 
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in a selection of samples analysed in MSM-343520_G, the proportion of TIC was considered to 

be negligible, and C/N ratios were therefore based on total carbon (%) / total nitrogen (%).  The 

weight or atomic ratio of carbon to nitrogen (C/N) is commonly used to calculate the proportion 

of terrestrially derived carbon in subaqueous sediments (e.g. Lazerte, 1983; Hedges et al., 

1988; Prahl et al., 1994).  C/N ratios are used to assess relative changes in the contribution of 

marine versus terrestrial organic inputs.  C/N ratios also help identify relative changes in 

terrestrial sediment delivery, which reflects changes in ice margin activity or changes in 

terrestrially-sourced sediment fluxes. 

 

3.3.3 Foraminiferal biostratigraphy 

A number of factors control the distribution and abundance of benthic foraminifera, including 

food supply, oxygen content, substrate type, water temperature, and salinity (Murray, 1991).  

Many studies have reconstructed water mass characteristics (i.e. temperature and salinity) 

based on benthic foraminifera assemblages from high-latitude shelf locations, which support 

analysis of foraminiferal assemblages in this thesis (e.g. Lagoe, 1979; Schafer and Cole, 1982; 

1986; Hald and Vorren, 1984; Osterman et al., 1989; Schröder-Adams et al., 1990; Corliss, 

1991; Scott and Vilks, 1991; Hald and Steinsund, 1992; Jennings and Helgadottir, 1994; Korsun 

and Hald, 1998; 2000; Rytter et al., 2002; Husum and Hald, 2004; Jennings et al, 2004).  

Recent studies have found organic flux (i.e. food supply), oxygenation, and species competition 

may be more important than temperature and salinity in controlling benthic foraminifera 

distribution and abundance (Van der Zwaan, et al., 1999).  However, warmer, more saline 

Atlantic water is responsible for delivering nutrient-rich water to the West Greenland shelf 

(Carmack, 2007), and consequently, benthic foraminifera show a strong correspondence with 

the relative temperature of the West Greenland Current (Lloyd, 2006a).   

 

Sampling strategy 

Details of the sampling strategy are summarised in Table 3.2.  The sampling strategy allows 

research objective (ii) to be addressed.  A sampling resolution of 8-16 cm for core DA06-139G 

was suitable to identify mid- to late-Holocene sub-surface palaeoceanographic trends in the 

Vaigat.  A lower sampling resolution of every 16 cm was used for core MSM-343340 since the 
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sedimentation rate is, for the majority of the core, an order of magnitude greater than core 

MSM-343520 and DA06-139G.  This sampling frequency is suitable for reconstructing changes 

in water mass characteristics (i.e. temperature and salinity) through a deglacial sequence, 

which reflect the balance between meltwater fluxes from the ice margin during deglaciation, and 

the relative strength of the WGC circulation.  Because of the fairly high and consistent 

sedimentation rate throughout core MSM-343520_G, a sampling interval of every 4 cm allows 

the interplay between meltwater fluxes and WGC circulation to be investigated during initial 

deglaciation, followed by a high resolution record of changes in the WGC throughout the 

Holocene.  Each time-averaged assemblage reflects approximately 20-40 years of sediment 

accumulation.  Sub-centennial Holocene trends in water temperature and salinity should be 

identifiable, and so this core should provide a regional scale record of detailing the potential 

ocean forcing on ice margin stability.  

 

Sample preparation 

Foraminiferal samples were prepared by leaving a measured volume of wet sediment (typically 

5 cm3) to soak and disaggregate in water overnight.  Samples were gently washed through a 63 

µm and 500 µm sieve and residues preserved in vials with ethanol.  Wet residues were 

transferred to a picking tray by pipette and foraminifera identified using a binocular microscope 

at 30x to 100x magnification.  Foraminifera were handpicked, transferred to Chapman slides, 

then sorted and identified.  Reference to type slides maintained taxonomical consistency.  

Calcareous foraminifera provided material for isotope analysis and radiocarbon dating.  

Foraminifera taxonomy follows a number of Arctic studies, including Vilks (1969), Feyling-

Hanssen (1980), Vilks et al. (1982), Schafer and Cole (1986), Schröder-Adams et al. (1990a), 

Corliss (1991), Scott and Vilks, (1991), Hald and Steinsund (1992), Seidenkrantz and Knudsen 

(1993), Jennings and Helgadottir (1994), Seidenkrantz (1995), Ishman and Foley (1996), 

Murray and Pudsey (2004), Jennings et al. (2004).  

 

A target of 300 specimens was counted where abundance was sufficient (e.g. Knudsen et al., 

2004; 2008a; Eiríksson et al., 2000).  Higher counts do not significantly increase data reliability 

(Phleger, 1960).  In samples with low foraminiferal abundance, counts of at least 100 individuals 
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were made where possible.  This provides a 95 % confidence level for species making up at 

least 3 % of the assemblage (Dennison and Hay, 1967) and is adequate for detecting more than 

99 % of species that make up ≥ 5 % of an assemblage (Fatela and Taborda, 2002).  Since fossil 

assemblages are subject to variable preservation (e.g. dissolution of calcareous fauna, 

destruction of arenaceous tests during burial), 100 specimens of calcareous and agglutinated 

species were counted where foraminiferal abundance was sufficient.  Foraminiferal counts are 

recorded as percentages for the total assemblage (TA; agglutinated+calcareous species), and 

individually for both agglutinated and (AA) calcareous foraminifera (CA).  Individual components 

therefore aid interpretations where there may be a systematic loss of certain species.  The 

number of individuals counted in a known fraction of wet residue (based on initial sample 

volume) is used to estimate foraminiferal concentration, expressed as specimens per ml 

(individuals per cm3) for the total assemblage.  Counts of foraminifera test linings provide an 

indication of species loss by dissolution.  Although not included in the foraminifera sum, the test 

lining count is may be used as an indicator of the size of the ‘lost’ calcareous assemblage by 

expressing test lining counts as a percentage of the total calcareous foraminifera and test 

linings.  Summary data is provided for percentage agglutinated versus calcareous foraminifera 

and for groups of species (percentage sum of selected taxa) whose distributions are associated 

with different water masses.  While Lloyd (2006a) classifies species associated with Atlantic, 

‘intermediate’, Arctic, and glaciomarine water mass influences, and a group of ‘indifferent’ 

species with no obvious affiliation to water mass characteristics, faunal trends in gravity cores 

are more simplistically grouped into either Arctic- or Atlantic-influenced fauna, or ‘indifferent’ 

fauna.  The additional ‘intermediate’ group is used for core MSM-343520_MC to better highlight 

the faunal trends.   

 

Modern foraminifera assemblage data presented in Chapter 4 is provided courtesy of J.M. Lloyd 

(University of Durham).  The data set constitutes samples collected in 1999 (see Lloyd, 2006a) 

and new surface samples (top 2 cm of sediment accumulation) collected during the MSM 05/03 

cruise in 2007.  These surface samples were collected using a multicorer to preserve the 

sediment-water interface.  Foraminiferal samples were stained with Rose Bengal in the field to 



Chapter 3: Material and methods 

 

 
63 

 

identify living specimens, and preserved with ethanol.  Foraminiferal samples are based on 

counts of at least 100 specimens and more than 300 where possible.   

 

3.3.4 Stable isotope analysis of benthic foraminifera  

Oxygen and carbon stable isotope analyses of foraminifera are widely used in 

palaeoceanographic investigations since calcareous tests preserve a record of the stable 

isotopic composition of the ambient water in which they grow (Murray, 1991).  Consequently, 

variations in isotope values primarily reflect changes in environmental conditions (Katz et al., 

2003).  Oxygen isotope ratios in biogenically precipitated calcite are particularly useful, and 

reflect both the temperature and isotopic composition of the ambient seawater in which 

foraminifera grow (Urey, 1947; Emiliani, 1955).   

  

A monospecific oxygen and carbon isotope record was constructed for core MSM-343520, with 

a resolution of up to 2 cm.  The species Nonionella labradorica was selected for analysis since 

this was present in adequate abundance throughout most of the core.  Although Nonionella 

labradorica has been recorded as deep-infaunal (up to 8 cm depth) at some locations (e.g 

Ivanova et al., 2008), most foraminifera are likely to live in the top 1 cm of surface sediment 

(Murray, 1991).  In general, 3 or 4 clean intact tests (approximately 70 µg), free of observable 

diagenetic affects, were used in each analysis.  Similar sized tests were selected for each 

sample to increase the likelihood that these tests represent the same generation or 

environmental conditions during test secretion, and minimize the affect of species vital effects.  

Stable isotope analyses were performed at the NERC Isotope Geoscience Laboratory (NIGL), 

Keyworth, using an IsoCarb common acid bath (reacted at 90°C) connected to a VG Optima 

mass spectrometer.  Isotope ratios are expressed using the δ notation: 

 

1000
)R(standard

)R(standard - R(sample)
  ‰    (4) 

 

as relative deviations (per mil) from 18O/16O and 13C/12C ratios (R) of the Vienna Pee Dee 

Belemnite (VPDB) standard by reference to an internal laboratory working standard (KCM) 
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calibrated against the reference material NBS-19 calcite.  Repeat measurements of KCM 

indicated that sample precision was better than ±0.05 ‰ for δ18O and ±0.02 ‰ for δ13C at the 1 

σ level.  The mean standard deviation for repeat analyses on 50 samples at 22 discrete 

sampling depths was better than ±0.13 ‰ for δ18O and better than ±0.23 ‰ for δ13C.  Ivanova et 

al. (2008) found that Nonionella labradorica calcifies in isotopic disequilbrium with ambient 

seawater, and a correction factor of +0.28 ‰ may be applied to the δ18O value to account for 

this.  However, this translation has not been applied to data in this study, since past variability of 

this effect is not known.   

 

3.3.5 Chronological framework 

In order to address objectives (iii) to (v), a dating framework combining radionuclide dating of 

bulk sediment (for upper multicores sediments) and radiocarbon dating of benthic foraminifera, 

bivalves, molluscs, and plant fragments is used to provide a chronology for each core.  A robust 

chronology will allow a fuller understanding of the timing of palaeoenvironmental changes, and 

allow comparisons between other archives.     

 

Lead-210 (210Pb) and Caesium-137 (137Cs) radionuclide dating 

210Pb (half-life of 22.26 ± 0.22 years) is the last unstable daughter isotope in the 238Uranium 

decay series.  Two types of 210Pb (constituting total 210Pb activity) exist in recently (last ca. 150 

yrs) deposited sediments; supported 210Pb (in equilibrium with its parent 238U) formed through in 

situ decay of 226Ra, and unsupported or excess 210Pb produced by natural fallout of unsupported 

210Pb (Appleby and Oldfield, 1992).  The latter is produced in the atmosphere by decay of 

gaseous 222Rn (half-life 3.8 days) released from surface sediments.  Unsupported 210Pb 

radionuclides return to the earth’s surface through precipitation, and are incorporated into 

marine and terrestrial sediments (Appleby and Oldfield, 1992).  Unsupported 210Pb is 

determined as the difference between supported 210Pb activity from in situ decay of 222Rn 

(measured in older sediments) from the total 210Pb activity in each sample.  It takes about 7 half-

lives (approx. 156 yrs) for 210Pb in a sample to reach near-zero activity.  However, the maximum 

reliable dating range is approximately 5 half-lives (ca. 1895 AD to present).   
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Sub-sampling of core MSM-343520_MC in slices of 0.5 cm thickness at intervals of 0.5 cm to 1 

cm (from 0 to 10 cm depth) and 1 cm thick slices at 2 cm intervals (from 10 to 21 cm depth) 

provided material for 210Pb dating.  Dry bulk density calculations for each sample follow the 

method as described above.  Sediment samples were freeze-dried, ball milled, placed in sealed 

vials, and left to equilibriate for 21 days.  This allows 226Ra and 214Pb to equilibrate prior to 

gamma analysis, and hence 214Pb emitted from each sample records the supported decay 

caused by 226Ra rather than atmospheric fallout.  210Pb and 137Cs activities were determined by 

gamma spectrometry by placing sealed vials in an Ortec GWL p-type Series Germanium 

gamma ray spectrometer.  Count times ranged between 114091 and 349479 seconds (1.3 to 4 

days), and errors were typically 5.4% (1 σ).  Supported 210Pb activity was determined via 214Pb 

counted from sediment in sealed vials.  Supported specifics activities were between 12.99 and 

36.55 mBq g-1.  

 

AMS 14C Radiocarbon dating 

Radiocarbon dates were analysed at four laboratories; NERC Radiocarbon Facility, UK (dates 

identified with “SUERC” prefix), Lund Univeristy Radiocarbon Dating Laboratory, Sweden 

(“Lus”), Poznań Radiocarbon Laboratory, Poland (“Poz”), and The Aarhus AMS 14C Dating 

Centre, Denmark (“AAR”).  Marine radiocarbon dates are calibrated using the Marine09 

calibration curve (Reimer et al., 2009) in the calibration programme Oxcal v4.1 (Bronk Ramsey, 

2009).  An ocean-atmosphere box diffusion model converts the atmospheric ages from the 

IntCal09 calibration curve to the surface ocean 14C ages in the Marine09 calibration curve.  The 

Marine09 curve is offset from the IntCal09 curve by a time-dependent global marine reservoir 

age, “R”.  Modelled variations in the Marine09 curve are smoothed and attenuated compared to 

annually-resolved atmospheric 14C records (Reimer et al., 2009).  This better simulates mixing 

from ocean circulation, thus avoiding a large number of intercepts and unrealistically precise 

calibrated ages afforded by using a constant offset from the atmospheric curve.  Between 0 and 

12.5 ka cal. BP, the Marine09 curve is corrected for changes in atmospheric 14C production 

(resolved using tree-ring chronologies).  After 12.5 ka cal. BP, a constant 405±22 14C yrs (i.e. no 

correction for atmospheric 14C production) is added to the IntCal09 curve to produce the 

Marine09 curve.   
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The regional marine reservoir age is assumed to have remained constant along West 

Greenland since the LGM.  However, it is noted that changes in ocean circulation and 

ventilation patterns may have significantly altered the marine reservoir effect (MRE) in West 

Greenland waters, particularly during the Late Glacial and Early Holocene.  Large temporal and 

spatial variability in the MRE has been reported in the North Atlantic region (e.g. Bard et al., 

1994; Bondevik et al., 2006; Ascough et al., 2007; Cao et al., 2007).   
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All counts of foraminiferal assemblages presented in this chapter were undertaken by Jeremy 

M. Lloyd (Durham University).  Environmental data associated with foraminifera surface sample 

assemblages collected during the R.V. “Porsild” cruise during September-August 1999 were 

provided by Jeremy M. Lloyd, and are published in Lloyd (2006a).  CTD data (water 

temperature and salinity) was collected during the cruises of the R.V. “Porsild” and R.V. “Maria 

S. Merian” (June-July 2007). 
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Chapter 4 

Environmental controls on modern distribution of benthic  

foraminifera in central West Greenland 

 

 

4.1 Introduction  

Modern distributions of benthic foraminifera offer the potential to be useful indicators of wide-

ranging environmental changes in marine and marine-influenced environments.  Factors that 

may influence the distribution of benthic foraminifera include bottom-water temperature and 

salinity, substrate type, food type and supply, turbidity, and oxygen concentration (Murray, 

1991; Jorissen et al., 1995).  These factors may limit distributions (e.g. temperature and salinity) 

or influence abundance (e.g. food supply) (Murray, 1991, Smart and Gooday, 1997; Wollenburg 

and Mackensen, 1998; van der Zwann et al., 1999).  Identifying environmental controls on 

modern distributions of benthic foraminifera is critical to reliably reconstructing 

palaeoenvironmental change.   

 

There is an increasing wealth of information about microhabitat preferences of benthic 

foraminifera in high-latitude settings.  Several ecological studies have been carried out from the 

Arctic Ocean and Canadian Arctic (Vilks, 1969, 1989; Scott and Vilks, 1991; Mackensen et al., 

1993; Bergsten, 1994; Wollenburg and Mackensen, 1998; Korsun and Hald, 1998), Svalbard 

shelf and fjords (Hansen, 1995; Hald and Korsun, 1997; Korsun and Hald, 2000), Norwegian 

shelf (Mackensen et al., 1985), Labrador Sea and Nova Scotian shelf (Bilodeau et al., 1994), 

and the East Greenland shelf (Jennings and Helgadottir, 1994; Madesen and Knudsen, 1994; 

Jennings and Wiener, 1996).  Parker and Jones (1865) conducted early studies of benthic 

foraminifera in Baffin Bay.  More recent investigations in the Baffin Bay region have focused on 

the Canadian Archipelago (e.g. Phleger, 1952; Schröder-Adams et al., 1990a, 1990b; Hunt and 

Corliss, 1993) and Baffin Island fjords (e.g. Schafer and Cole, 1986).  Studies of modern benthic 

foraminifera distributions on the West Greenland continental shelf, however, are rather more 

limited; Herman et al. (1972) investigated foraminifera assemblages collected from fjords in 
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southwest Greenland, and Lloyd (2006a) investigated samples collected from Disko Bugt, 

central West Greenland.   

 

New surface samples collected during summer 2007 extend the database of modern 

foraminifera assemblages presented by Lloyd (2006a).  In total, thirty-two surface samples were 

collected during cruises of the R.V. Porsild (August-September 1999) and the R.V. Maria S. 

Merian (June-July 2007), and are distinguished using POR and MSM prefixes (Fig. 4.1).  In light 

of this new data, it is necessary to review and improve our understanding of environmental 

controls on modern distributions of benthic foraminifera in West Greenland waters.  For each 

surface sample, the benthic foraminifera assemblage and eight environmental variables 

(temperature, salinity, water depth, total nitrogen, total organic carbon, clay, silt, sand) were 

analysed.  During the cruises, water depth measurements were recorded for each site, and 

CTD hydrographic profiles, providing temperature and salinity data, were collected using a Sea-

Bird Electronics systems (SeaLogger 25 system during the 1999 cruise, and 911plus system 

during the 2007 cruise).  Analysis of sedimentological properties (TN, TOC, and grain size) 

follows methods described in Chapter 3.   

 

The aims of this chapter are threefold; firstly, to identify primary controls on foraminifera 

distribution in West Greenland, secondly, to assess individual species relationships with 

environmental parameters, and thirdly, to consider whether a reliable transfer-function can be 

developed using the available data for application to nearby fossil cores.  
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Fig. 4.1 Map showing location of modern surface samples with associated environmental data 

from the 1999 R.V. Porsild cruise (Lloyd, 2006a) and 2007 Maria S. Merian cruises.  The 

majority of samples are located in the Disko Bugt-Uummannaq area (B), though the 

approximate location of one sample (343570), located in a trough on the shelf west of Nuuk, is 

shown in the inset map (A).  
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4.2 Numerical analyses 

4.2.1 Foraminifera samples  

Statistical analyses on two groupings of benthic foraminifera, the total assemblage (TLDA), and 

the agglutinated assemblage (AA) are presented below.  In this chapter, the total assemblage 

(TLDA) refers to all specimens counted in a surface sample, whether the foraminifera were 

living or already dead at time of collection.  The agglutinated assemblage refers to all 

agglutinated specimens in a surface sample.  The motivations for this are briefly described 

below.  

 

The primary focus of this chapter is on the influence of environmental controls on the total 

assemblage (TLDA).  The major advantage of analysing the total assemblage is that this is 

more likely to closely resemble time-averaged fossil foraminifera assemblages.  While separate 

analyses of living and dead foraminifera in surface samples may help identify taphonomic 

processes affecting the fossilisation potential of individual species (Murray and Alve, 1999), 

Lloyd (2006a) noted it was difficult to identify living agglutinated specimens because these 

foraminifera do not easily take up the Rose Bengal stain.  This is particularly problematic on the 

West Greenland shelf because agglutinated foraminifera are dominant in most modern 

samples.  The preservation of calcareous fauna in fossil cores from central West Greenland is a 

major problem, and is discussed in subsequent chapters.  Consequently, for the purposes of 

developing a transfer function that may be applied to core intervals where the calcareous 

foraminifera are poorly preserved, or completely absent from the biostratigraphy, multivariate 

analyses of agglutinated assemblages accompany TLDA analyses where appropriate. 

 

Only samples collected from depths exceeding 100 m are analysed in this study.  This is 

because marine fossil cores from central West Greenland are located at depths exceeding 300 

m, where sub-surface (intermediate) waters influence modern benthic foraminifera distributions, 

and would have also done so during deglaciation and throughout the Holocene.  The inclusion 

of samples under the influence of seasonally-variable surface waters (< 100 m) would most 

likely reduce the predictability of the transfer function for reconstructing palaeoenvironmental 

conditions at the seafloor.   
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4.2.2 Statistical methods  

A comprehensive understanding of environmental influences on modern benthic foraminifera 

distribution is critical if benthic foraminifera are to be used as a reliable proxy for reconstructing 

water mass characteristics from the geologic record.  The statistical approach to investigating 

relationships between foraminifera species and environmental variable data is described below, 

and is used to address research objective (i). 

 

The decision-making process followed for investigating species-environment relationships and 

developing a preliminary transfer function is outlined here.  A number of statistical techniques 

have been employed to analyse the data.  Multivariate methods of ordination allow 

multidimensional data to be summarised, making it easier to explore relationships between 

benthic foraminifera assemblages (the ‘total’ assemblage expressed as percentage 

abundances) and environmental parameters in a two dimensional space.  Multivariate analyses 

are performed using the CANOCO version 4.51 program (ter Braak and Šmilauer, 2002).   

 

A square root transformation was applied to foraminifera species data before analysis, to 

stabilise variances, increase their signal-to-noise ratio, and reduce the impact of dominant taxa 

on ordination (Prentice, 1980; ter Braak and Šmilauer, 2002).  Rare species (abundance less 

than one-fifth of the most common specie in a sample) are empirically down-weighted in 

proportion to their frequency in the CANOCO program so they do not disproportionately 

influence ordination (ter Braak and Šmilauer, 2002; Legendre and Legendre, 1998).  

Environmental variables are automatically centred (means equal to zero) and standardized 

(variances equal to one) in CANOCO before analysis (ter Braak and Šmilauer, 2002). 

 

The steps outlined below allow the following aims to be fulfilled: 

(a) Identify appropriate approaches to modelling species-environment relationships. 

(b) Identify the relative importance of individual environmental variables for explaining 

species distributions. 
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(c) Identify the importance of groups of variables for explaining species distributions, for 

example, the importance of water mass characteristics (temperature and salinity) 

versus sedimentological characteristics (grain size).  

(d) To construct a transfer-function that may be applied to fossil foraminfera assemblages 

in order to produce estimates for past bottom-water temperatures on the central West 

Greenland shelf. 

 

(i) Step 1: Detrended Correspondence Analysis 

Detrended correspondence analysis (DCA) is a method of indirect gradient analysis 

(unconstrained ordination) that assesses heterogeneity in species data (Lepš and Šmilauer, 

2003), and thereby indicates whether linear or unimodal constrained ordination methods are 

suitable for modelling species-environment relationships.  Species data was detrended-by-

segments with non-linear (Hill’s scaling) rescaling (Hill, 1979; ter Braak and Šmilauer, 2002).  

The length of the longest ordination axis represents the extent of species turnover (i.e. the beta 

diversity) in standard deviation (SD) units along an independent synthetic gradient (Hill and 

Gauch, 1980).  DCA axis 1 gradient length is 2.6 SD units for the total assemblage.  Gradient 

lengths between 2 and 3 SD units lie within a ‘grey zone’ where it is unclear whether linear or 

unimodal methods of constrained ordination best model species-environment relationships (cf. 

Birks, 1995; ter Braak and Šmilauer, 2002).   

 

(ii) Step 2: Canonical Correspondence Analysis 

Studies indicate canonical correspondence analysis (CCA) is suitable for analyzing both linear 

and unimodal data (ter Braak and Verdonschot, 1995; ter Braak and Šmilauer, 2002), and 

therefore can be applied to species data with relatively short (<3 SD units) gradient lengths (ter 

Braak and Šmilauer, 2002).  In CCA, compositional data (species, samples) are positioned 

along synthetic gradients (ordination axes) that represent linear combinations of environmental 

variables (ter Braak, 1986; Legendre and Legendre, 1998).  An initial CCA using all available 

environmental variables identifies relationships between foraminifera species and explanatory 

variables (ter Braak, 1986; ter Braak and Verdonschot, 1995).   
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(iii) Step 3: Stepwise forward selection in CCA 

High variance inflation factors (>20) calculated during the CCA ordination indicate 

autocorrelation (and hence redundancy) between environmental variables (ter Braak and 

Šmilauer, 2002).  The stepwise forward selection procedure in CCA identifies which 

environmental variables are statistically significant for explaining species distribution on the 

West Greenland shelf (ter Braak, 1990; Bocard et al., 1992; Lepš and Šmilauer, 2003), and 

removes redundant, highly correlated variables, thus avoiding artificially increasing the 

explained variance (Bocard et al., 1992; Birks, 1996).   

 

The first step involves the selection of the variable that best explains patterns in species data.  

Subsequent explanatory variables are added to the regression model one at a time based on 

the additional explained variance they contribute.  These are called their ‘conditional effects’ 

because they are conditional on the variance explained by already-selected variables.  At each 

step, a Monte Carlo permutation test (9999 unrestricted permutations, reduced model) 

assesses the statistical significance of the variance contributed to the regression model by the 

selected environmental variable.  Permutation tests performed using the reduced model 

minimises type I errors (i.e. rejecting null hypothesis when it is true), where the null hypothesis 

states that there is no relationship between compositional data and the environmental variable 

tested.  Rejecting the null hypothesis indicates that foraminifera species respond to measured 

environmental variables at the 5% significance level.  Forward selection identifies four variables 

(temperature, water depth, salinity, sand) that explain variation in species data at the 5% 

significance level.    

 

(iv) Step 4: Partial CCA 

Partial CCA assessed the independent contribution of each environmental variable to the 

proportion of species variation (ter Braak, 1988; Bocard et al., 1992; ter Braak and Verdonschot, 

1995).  Species data was analysed by CCA constrained to one environmental variable at a time.  

Variation explained by the explanatory variable is calculated as the first axis canonical 

(constrained to an environmental variable) eigenvalue divided by the total inertia (total variation) 

of the species data.  The proportion of variation explained by all environmental variables is 
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simply the sum of all canonical eigenvalues in CCA run with all environmental variables relative 

to the sum of all eigenvalues (total variation).   

 

Furthermore, partial CCA enabled partitioning of variation explained by different sets of 

environmental variables (see aim ‘c’ above), following Bocard et al. (1992).  This identified 

variation explained by subsets of environmental variables (X1), after removing the effect of 

covariables in X2 (X1|X2).  A second partial CCA identifies variation explained by explanatory 

variables in group X2 with members of X1 specified as covariables (X2|X1).  Variance shared by 

these subsets of variables (X1 ∩ X2) is the total constrained variation (sum of all canonical 

eigenvalues when all variables are analysed in CCA) minus the unique variation explained by 

each subset of variables.  Four sets of variables were analysed.  The variables in the first 

analysis help assess the unique variance of environmental variables identified by forward 

selection and the shared variances with variables not selected during this procedure.  The 

second analysis investigates the unique spatial effect of depth after accounting for other 

environmental variables.  A third analysis assesses variance explained by substrate variables 

since these are highly correlated, and partial CCA of individual sediment fractions probably 

overestimates the total variation explained.  Finally, variance partitioning gives an indication of 

the shared variance between temperature and salinity. 

 

(v) Step 5: Transfer-function development 

Transfer functions allow environmental variables from fossil records to be reconstructed using 

compositional data from fossil assemblages.  This process involves two steps, calibration and 

regression.  In the first step (calibration), the relationship between modern species data (benthic 

foraminifera assemblages) and their associated environmental data (e.g. temperature, salinity) 

is statistically modelled, producing the transfer function.  The second step involves regression of 

this transfer function.  Birks (1994) found that rare taxa contribute meaningful ecological 

information and help reduce prediction errors during the development of transfer function 

models.  An environmental gradient of 3 SD units for the total assemblage and 2.2 SD units for 

the agglutinated assemblage (untransformed data, no species down-weighting), calculated by 

detrended canonical correspondence analysis (DCCA) constrained to temperature, indicates 
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unimodal methods are suitable for modelling foraminifera data when developing transfer 

functions (Birks, 1995).  Transfer functions for summer bottom water temperature were 

developed in the C2 version 1.5 program (Juggins, 2003) using the weighted averaging (WA) 

(ter Braak, 1987) and weighted averaging partial least squares (WA-PLS) (ter Braak and 

Juggins, 1993; ter Braak et al., 1993) regression.  Two transfer function models were 

developed; one using the total assemblage data (TA model), and a second using the 

agglutinated assemblage (AA model), based on recalculated percentages from the original 

species counts.  Developing the AA model may permit reliable reconstructions of bottom water 

temperature during fossil core intervals characterised by calcareous dissolution.  All taxa and 

samples were included in the TA model.  Two samples were removed from the AA model 

(sample 3 and 7) based on a low count of agglutinated specimens. 

 

Prediction error estimates calculated by cross-validated transfer functions are more reliable and 

realistic (Birks, 1995).  This study uses the bootstrapping method with 1000 cycles to cross-

validate transfer-function models.  The coefficient of correlation (r2) and the root mean square 

error of prediction (RMSEP) statistics help assess the performance of the transfer function 

model.  The most precise bootstrapped-models have a high coefficient of correlation (r2) and a 

low root mean square error of prediction (RMSEP) (Birks, 1995).   

 

The WA model with classical deshrinking appeared to perform best for both total assemblage 

and agglutinated data.  Table 4.4 details the model performance statistics.  Both transfer-

function models (TA and AA) were applied to fossil foraminifera samples from multicore MSM-

343520 to reconstruct bottom-water temperature changes.  Lack-of-fit measures assess how 

closely fossil assemblages resemble modern assemblages, and therefore identify if modern 

species-environment relationships are suitable for reconstructing fossil samples.  The suitability 

of fossil data for reconstruction purposes is assessed using the minimum dissimilarity coefficient 

(MinDC) calculated by the modern analogue technique (MAT) in the C2 programme.  This 

assesses the reliability of the reconstructions of fossil samples by identifying if there are any 

similar modern assemblages.  The MAT compares each fossil sample to the ten most similar 

modern samples, producing a dissimilarity coefficient for each sample.  Woodroffe (2009) use 



Chapter 4: Environmental controls on modern benthic foraminifera, central West Greenland 

 

 
77 

 

the largest dissimilarity coefficient calculated between all modern samples as a cut-off between 

a ‘good’ and ‘poor’ match for fossil samples.   

 

4.3 Results 

4.3.1 Circulation of water masses in central West Greenland 

It is important to review the characteristics of water masses in central West Greenland because 

these potentially influence the composition of benthic foraminifera assemblages.  Understanding 

the relationships between foraminifera distribution and overlying water mass characteristics is 

critical to achieving the main aim of this thesis, as this will aid palaeoceanographic 

interpretations, and hence allow the potential role of temperature forcing on influencing ice 

sheet stability to be investigated.   

 

Figure 4.2 shows a compilation of historical measurements collected in the Davis Strait and 

central West Greenland area, highlighting the distinct nature of Atlantic and Polar Waters in 

Baffin Bay (all the samples shown in Fig. 4.2a and graphed in Fig. 4.2 d and e).  Figure 4.2c 

shows the samples collected from the mid- to outer-shelf of central West Greenland, and the 

temperature profile at sites MSM-343340 and MSM-343340.  Lloyd (2006a) presents CTD data 

collected during the 1999 R.V. Porsild cruise in the inner part of Disko Bugt.  Additional new 

data presented in this chapter are from the outer western parts of Disko Bugt, Vaigat, and 

further offshore.  The CTD data collected during the 2007 Maria S. Merian cruise (see selected 

CTD profiles in Fig. 4.3) show the three distinct water masses previously identified in West 

Greenland (e.g. Andersen, 1981a; Buch and Stein, 1989; Buch, 1993; Buch and Nielsen, 2002; 

Lloyd, 2006a); surface water, Polar Water and Atlantic Water.  Surface waters occupying the 

upper 50 m of the water column along West Greenland are generally warm (temperature 1-8°C) 

and relatively fresh (typical salinity 11-33.5 psu) during the summer.  The low salinity character 

of surface waters results from melting of seasonal sea ice, melting icebergs, and meltwater 

fluxes from inland ice, while warm water temperatures during the summer is due to increased 

solar insolation. The surface water layer at stations located closer to the ice sheet margin in 

Nordre Strømfjord is much thicker (ca. 60 m) compared to the western parts of the fjord (<10 

m), indicating a greater meltwater influence at the two easternmost sites.  A steep thermocline 
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between surface water and the underlying Polar Water is characteristic of temperature profiles 

for the majority of stations, with the exception of 343380 and 343390 in the Vaigat, where there 

is a greater mixing between surface waters and underlying Polar Waters to a depth of nearly 80 

m.   

 

Figure 4.2 Compilation of CTD data from cruises between June 1908 and June 1997 in 

WOD05; (a), location of sampling stations in West Greenland/Davis Strait area; (b) inset, 

showing selected profiles from West Greenland shelf shown in (c); (c), shows the temperature 

profile (with colour of dots reflecting salinity) for locations marked by blue dots in inset of (d).  

The temperature profiles for sample stations MSM-343340 and MSM-343520 (Harff, 2007) have 

been included as grey and black lines, respectively, for easy comparison.  (d, e), compilation of 

all data shown by blue dots in (a), clearly identifying distinct Atlantic and Polar Water 

components in West Greenland/Davis Strait waters.  Data available at: 

ttp://www.nodc.noaa.gov. 
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Figure 4.3 Selected temperature (ºC) and salinity (psu) profiles for sites from MSM 05/03 cruise, 

and POR-99 data from Lloyd (2006a).  Note the common temperature scale (bottom axis) and 

depth scale, and variable salinity scale (top axis).  Five water masses are identified; meltwater 

(MW), surface water (SW; both not shaded), Polar Water (PW, blue shading), Mixed WGC 

(MWGC, purple shading), West Greenland Current (WGC, red shading).  Site 343570 is located 

in the trough on the shelf west of Nuuk (see Fig. 4.1). 
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Polar Water (temperature -1.6 to 3°C, salinity 32.7 to 33.9 psu) along West Greenland is 

primarily sourced from the cold, low salinity East Greenland Current (EGC) that forms the upper 

water mass in the West Greenland Current (WGC) as it rounds southern Greenland.  Polar 

Water lies below surface water, and is present down to depths between ca. 180 m and 310 m in 

shelf areas, and deeper in Nordre Strømfjord, where the water column is uniformly cold and low 

salinity.  Temperatures throughout the water column at stations closer to the head of the fjord 

(343250 and 343260) are much colder, with a minimum temperature of -1.24°C and salinity of 

31.19 psu, compared to a minimum temperature of 0°C and salinity of 33.13 psu at 343280 

closer to the fjord mouth.  The Polar Water layer (ca. 220-30 m) at station 343570 west of Nuuk 

has a minimum temperature and salinity of 1.1°C and 33.3 psu, respectively.  However, 

minimum temperatures of -0.2°C at 343300 and 0.4°C at 343310 indicates much cooler Polar 

Waters outside Disko Bugt.  This likely reflects additional cooling and mixing of Polar Water with 

meltwater from the Greenland Ice Sheet as it flows northwards, possibly with a weak influence 

of Polar Water advected from western Baffin Bay.  On the Uummannaq shelf to the north, Polar 

Water occupies the top 150-220 m of the water column, and has water temperatures in the 

upper 100 m as cold as -1.6°C.  This is far colder than near-surface waters in the Vaigat and at 

southerly sites along the West Greenland margin, and most likely indicates the influence of cold, 

low salinity Polar Water from the south-flowing Baffin Island Current, which is deflected 

eastwards at Davis Strait, and re-circulates as part of the WGC.  

 

A transitional water mass, termed mixed-WGC (Lloyd, 2006a), lies between the Atlantic-sourced 

water and the overlying Polar Water layer.  The characteristics of this water mass are 

particularly evident in Fig. 4.4, which shows the basal temperature and salinity for all samples in 

this study.  The nature of this water mass varies by location; at station 343340 in outer 

Egedesminde Dyb, water temperatures cool gradually by more than 4°C from 325 m to 50 m 

depth.  However, there is a reduced temperature gradient in inner Egedesminde Dyb, indicating 

greater mixing between waters of polar and Atlantic origin.  The more homogenized water mass 

structure is suggestive of continued mixing of Polar and Atlantic waters within Disko Bugt, 

though cooling and freshening by meltwater and icebergs directed through the Vaigat are likely 

to be a strong influence on the character of the upper part of the water column.  Lloyd (2006a) 
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suggests a larger mixed WGC water mass is found in relatively sheltered locations, where water 

masses continue to mix.  The CTD profiles from outside Disko Bugt and Uummannaq Fjord 

certainly support this interpretation, with more abrupt changes between Polar and Atlantic 

Water. 

 

Figure 4.4 Temperature-salinity diagram of bottom-water characteristics at the sample locations 

(all samples >100m water depth).  Boxed areas distinguish the different basal water masses 

impinging on the shelf in central West Greenland; West Greenland Current water (WGC; 

Atlantic water influence), Mixed WGC water; Polar Water, and winter-cooled Polar Water. 

 

Relatively warm and saline water of Atlantic origin lies below 200 m depth, and has a 

temperature exceeding 2.5°C and a salinity greater than 34 psu.  In the trough west of Nuuk, 

the warm core of the WGC is located below ca.380 m with a temperature 4-4.2°C and a salinity 

of 34.6 psu.  At station 343340, located in outer Egedesminde Dyb, maximum water 

temperatures exceed 4.3°C at 325 m depth.  This warm and saline basal water cools very 

slightly as it flows eastwards into Disko Bugt, with maximum temperatures dropping to 3.5°C 

(salinity 34.4 psu) below 680 m depth at station 343330.  The bottom waters in the Vaigat 

(stations 343380 and 343390) has a weaker Atlantic signature, with a maximum temperature 

and salinity of 2.6°C and 34.4 psu, indicating further cooling as the water mass circulates and 

mixes in the embayment.  A distinct warm core of the WGC is recognisable at the northernmost 
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stations located in the Uummannaq trough, with temperatures of 3.5-3.8°C between 210 and 

310 m depth at station 343530, and temperatures of 3.3-3.7°C between 250 and 420 m at 

station 343520.  The warmest waters at this latitude remain warmer than more intensely mixed 

subsurface waters in Disko Bugt.  Interestingly, the warm core of the WGC during summer 2007 

remains positioned relatively high in the water column, despite a presumed northwards 

thickening in the Polar Water layer due to meltwater influxes and mixing between water masses.  

On the Uummannaq shelf, water temperatures cool significantly below the warm core, with 

basal temperatures of 1.8°C at station 343530 and 2.6°C at station 343520, though salinity 

remains relatively high and stable (34.5-34.6 psu) below 250-300 m.   

 

4.3.2 Surface foraminiferal assemblages 

Seventy-three benthic foraminifera species (30 agglutinated and 43 calcareous) were identified 

in modern surface samples, and are shown in Fig. 4.5.  Thirty-eight species occur in 

abundances greater than 2% in the total assemblage and in more than one sample.  Modern 

species data was square-root transformed using chord distance (Cavalli-Sforza and Edwards, 

1967) and modern surface samples grouped into six distinct faunal zones based on 

unconstrained cluster analysis in CONISS (Grimm, 1987).  Cluster analysis groups and orders 

assemblages based on similarity, so that the most similar assemblages are most closely linked 

on a dendrogram (see Fig. 4.5) (Kovach, 1995).  These cluster zones have been plotted on a 

map with the modern surface samples (Fig. 4.6) to highlight the geographic trends in the data 

linked to different environmental conditions.  Detrended correspondence analysis (DCA) was 

performed on the foraminifera data using the CANOCO version 4.51 program (ter Braak and 

Šmilauer, 2002).  The graphical output from DCA (Fig 4.7b) makes it easy to identify similar 

(closely spaced) and dissimilar (far apart) samples.  Each sample in the DCA plot is positioned 

at the centroid of the species that occur in it (Fig. 4.7b).  DCA results in clusters of samples that 

closely resemble the results of cluster analysis, and therefore support faunal groupings in Fig 

4.5.  The overlap of samples in FAZ 1 and 2 in the DCA results do, however, highlight 

similarities in species composition of these samples.  It is apparent that the faunal classification 

closely groups samples according to temperature and salinity at the seafloor (cf. Fig. 4.4).   
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Figure 4.5 Modern foraminiferal assemblages from sites in central West Greenland, classified 

into six distinct faunal assemblage zones (FAZ) based on unconstrained cluster analysis of 

square-root transformed species data.  Only species greater than 1% are illustrated.  Also 

shown are summary plots of species associated with Arctic and Atlantic waters, based on 

ecological affiliations identified in this investigation and other high-latitude studies.   
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Figure 4.6 Location of surface samples (+) in central West Greenland study area grouped into 

faunal assemblage zones (FAZs) identified by cluster analysis.  Sample 343570, located in a 

trough on the shelf west of Nuuk (see Fig. 4.1), is grouped in FAZ 5. 
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Figure 4.7 DCA ordination diagrams for axis 1 versus axis 2 scores (square-root transformed 

species data), which explains 30.6% of species variability, showing (A) species-sample 

relationships and (B) DCA sample scores only.  Assemblages are grouped according to cluster 

analysis (see Fig. 4.6); Blue circles – FAZ 1, red diamonds – FAZ 2, purples triangles – FAZ 3, 

green stars – FAZ 4, orange triangles –FAZ 5, pink squares – FAZ 6.  For clarity, the sample 

prefixes (343-) for 2007 cruise data have been removed.    

 

Agglutinated foraminifera are dominant in 25 of 32 samples.  These samples are grouped into 

faunal zones 1 to 4, typically comprising more than 80% of specimens counted in the majority of 

samples.  The samples grouped in FAZ 1 have the highest agglutinated foraminifera 

component, and are found at sites under the influence of Polar Water during the summer.  

Dominantly calcareous foraminifera samples are found under the influence of both relatively 

warm, saline water and extremely cold, lower salinity bottom waters.  Assemblages in FAZ 5 

and 6 are characterised by the highest calcareous foraminifera content.  However, the basal 

water masses influencing these assemblages are at opposite extremes of water mass 

characteristics in central West Greenland; assemblages in FAZ 5 are influenced by relatively 

warm and saline waters (>3.4°C , >34.3 psu) at the seafloor, while assemblages in FAZ 6 are 

influenced by cold, low salinity waters (<0°C, <33.3 psu).  The composition of assemblages in 

these faunal zones, identified by numerical analyses, is briefly described below. 

  

FAZ 1 comprises six samples dominated by agglutinated foraminifera (90-100%), and only 

isolated occurrences of calcareous fauna.  Adercotryma glomerata (6-24%) and 

Spiroplectammina biformis (15-46%) are the most abundant taxa.  C crassimargo (2-21%), C. 

arctica (4-16%), and T. nana (2-14%) are also important species.  Samples in this zone under 
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Polar Water influence, including sites close to Jakobshavn Isfjord and in southeast Disko Bugt, 

primarily because of the shallower water depths of the sample sites. 

 

FAZ 2 contains twelve samples, with A. glomerata (13-35%) being the most important species.  

C. crassimargo, R. fusiformis, R, pilulifer, S. difflugiformis, T. nana and T earlandi are also 

common in this faunal zone.  There is a slightly greater calcareous foraminifera presence (4-

22%) in FAZ 2, particularly M. barleeanum (up to 15%) and N. labradorica (up to 11%).  

Samples in this zone are found in a number of relatively shallow locations in Disko Bugt (Fig. 

5.1), and are influenced by slightly warmer bottom-waters than samples in FAZ 1. 

 

FAZ 3 is characterised by high calcareous foraminifera abundance (13-40%).  E. excavatum f. 

clavata (2-28%) is an important taxon in this faunal zone, with S. feylingi (1-9%) an important 

accessory species.  Abundances of A. glomerata are lower in FAZ 3 compared to FAZ 1 and 2.  

There are significant occurrences of R. fusiformis, R. turbinatus, R. pilulifer, S. difflugiformis, T. 

nana, and T. torquata within the four samples in this zone.  Samples in this zone are from 

deeper locations in the Vaigat and on the shelf west of Uummannaq.    

 

FAZ 4 contains two samples both with low species diversity and dominated by T. earlandi (49-

55%).  R. gracilis (18%) and C. neoteretis (11%) are common in individual samples, while A. 

glomerata, C. crassimargo and S. bifomis are accessory species.  These samples are located in 

southeast Disko Bugt under relatively warm, saline bottom waters with a muddy substrate.   

 

FAZ 5 contains five samples dominated by calcareous foraminifera (41-79%), particularly N. 

labradorica (32-66%).  R. Fusiformis is common (7-14%), while G. inaequalis and B. 

pseudopunctata are accessory species.  These samples were collected from deep trough 

locations.  Samples 343300 to 343330 are located in Egesdesminde Dyb, the deep trough that 

provides a pathway for warm, saline WGC water into Disko Bugt, while sample 343570 is 

located in a trough south of Disko Bugt (west of Godthab), where Atlantic subsurface waters are 

warmer due to reduced mixing with Polar Waters. 
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FAZ 6 contains three samples from Nordre Strømfjord under the influence of extremely cold and 

low salinity water dominated by C. reniforme.  Samples in this zone have the highest 

abundance of calcareous foraminifera (68-86%), and there are significant occurrences of S. 

groenlandica, A. gallowayi, C. lobatulus and E. excavatum f. clavata.    

 

4.3.3 Ordination of compositional and environmental data 

Table 4.1 shows the modern environmental data used in ordination.  Ordination scores focuses 

on inter-species distances using biplot scaling since this is more quantitative and most suited to 

compositional data with short gradients (<3 SD) (ter Braak and Šmilauer, 2002).  In species 

scaling, the weighted-average optima of species are located as points within the ordination 

diagram, with samples it occurs in scattered nearby (ter Braak and Šmilauer, 2002).  According 

to the biplot rule, the location of species points with respect to the origin (0,0) of the ordination 

diagram indicate the rate of change of fitted species abundance along each axis (ter Braak and 

Šmilauer, 2002). 

 

Forward selection in CCA identifies temperature, salinity, water depth and sand as significant 

explanatory variables, accounting for 40.5% of variability (75.4% of explained variance).  Figure 

4.8a illustrates the results of forward selection, with common species, samples and 

environmental variable vector arrows.  The directions of arrows identify gradients of maximum 

change for individual environmental variables, while arrow lengths are proportion to the rate of 

change.  The first two axes of CCA explain 29.6% of species data and 73.1% of species-

environment relationships.  Variability along axis 1 of CCA is negatively correlated with bottom-

water temperature (-0.71) and salinity (-0.59).  The second axis is highly correlated with water 

depth (0.83), while bottom-water temperature (0.69) and salinity (0.65) also have a strong 

association with this axis.  Long arrow lengths for temperature, salinity and water depth 

variables indicate that these are the most important variables for explaining variation in species 

data.  The comparatively short arrow for a sandy substrate indicates that this variable does not 

have as large an influence on species composition.   
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Figure 4.8 Ordination diagrams of CCA results; (A), triplot of species-samples-environmental 

variables; (B), Species-samples plot.  All samples are shown.  Only species that occur in 

abundances greater than 2% and have a greater than 20% fit to environmental data are shown 

in both plots.  In (A) the environmental variables selected by the forward-selection procedure 

are black.  Variables that do not significantly contribute additional data are shown in grey.  See 

Fig. 4.5 for species codes.  
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Name 
Depth 

(m) 
Temp. 

(°C) 
Salinity 
(psu) 

TN 
(%) 

TOC 
(%) 

Clay 
(%) 

Silt 
(%) 

Sand 
(%) 

C/N 
ratio 

1 356 3.40 34.35 0.19 1.44 25.80 69.90 4.30 7.58 

2 355 3.36 34.34 0.18 1.67 25.60 71.70 2.70 9.28 

3 331 3.40 34.34 0.22 1.58 53.20 44.70 2.10 7.18 

4 198 1.86 33.83 0.22 1.17 50.80 46.60 2.60 5.32 

5 260 3.22 34.31 0.10 0.69 54.80 43.80 1.40 6.9 

6 327 3.42 34.35 0.16 1.16 46.80 50.40 2.80 7.25 

7 338 3.46 34.36 0.17 0.89 52.20 46.10 1.70 5.24 

8 358 3.49 34.36 0.19 1.55 56.90 41.70 1.40 8.16 

9 318 3.29 34.31 0.20 1.68 52.40 45.20 2.00 8.4 

12 112 1.53 33.65 0.07 0.44 9.1 24.2 60.2 6.29 

14 331 2.65 34.26 0.12 1.00 22.20 45.60 28.80 8.33 

15 245 2.56 34.22 0.10 0.80 17.00 42.80 38.60 8.0 

18 343 3.28 34.31 0.20 1.31 35.40 52.30 12.30 6.55 

19 353 2.66 34.14 0.20 1.09 40.80 58.30 0.90 5.45 

20 286 1.97 33.85 0.10 0.92 45.30 52.00 2.70 9.2 

21 254 2.06 33.88 0.07 0.55 48.40 51.60 0.00 7.86 

22 302 2.91 34.20 0.22 1.39 45.60 51.40 3.00 6.32 

23 253 2.45 34.08 0.05 0.29 16.40 20.80 58.40 5.8 

343250 361 -1.21 33.21 0.07 0.67 41.20 56.48 2.32 9.57 

343260 373 -1.18 33.19 0.03 0.44 47.29 52.28 0.43 14.67

343280 301 0.00 33.15 0.15 0.74 9.20 18.10 72.70 4.93 

343300 496 3.86 34.47 0.35 2.42 30.29 60.08 9.62 6.91 

343310 820 3.90 34.49 0.43 2.81 24.19 66.57 9.24 6.53 

343320 804 3.84 34.48 0.49 3.21 25.86 73.67 0.47 6.55 

343330 738 3.49 34.41 0.35 2.47 28.38 65.46 6.16 7.06 

343340 432 4.08 34.60 0.26 1.95 24.70 65.88 9.42 7.5 

343380 551 2.62 34.37 0.13 1.51 27.59 60.85 11.57 11.62

343390 508 2.52 34.34 0.12 2.35 28.08 63.26 8.66 19.58

343520 508 2.65 34.54 0.22 1.77 35.07 61.16 3.78 8.05 

343530 616 1.76 34.50 0.09 0.95 21.93 76.48 1.60 10.56

343540 202 2.93 34.31 0.13 1.13 28.81 62.97 8.22 8.69 

343570 446 4.23 34.64 0.21 1.51 29.53 38.28 32.19 7.19 

 

Table 4.1 Surface samples and associated environmental variable data.  C/N ratios are included 

for informational purposes, but are not included in multivariate analyses.   
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Table 4.2 lists the order of environmental variables according to their conditional and marginal 

effects.  The unique contributions of individual environmental variables to species variation, their 

marginal effects, indicate that temperature, followed by salinity then water depth, are the most 

important variables.  Forward selection re-orders explanatory variables according to their 

conditional effects, with the best fitting variable selected first, and subsequent variables added 

according to the additional explained variance they contribute to the model.  Reordering of 

explanatory variables based on their conditional effects indicates water depth is more important 

to explaining species variability than salinity after accounting for temperature.  This is not 

surprising since temperature and salinity are highly correlated (r = 0.91).  However, a higher 

ranking of sandy substrate indicates TN and TOC explain little additional variability to 

temperature, salinity, and water depth explanatory variables.   

 

Marginal Effects  Conditional Effects 

Variable λ1 r 
Exp. 
var. (%) Sig.  Variable λA P F 

Temperature 0.2 0.888 14.6 <0.001  Temp. 0.2 0 5.13 

Salinity 0.173 0.859 12.6 <0.001  Depth    0.18 0 5.41 

Depth 0.167 0.872 12.2 <0.001  Salinity 0.11 0 3.25 

TN 0.149 0.885 10.9 0.001  Sand     0.06 0.003 2.26 

TOC 0.134 0.849 9.8 0.001  TN       0.04 0.137 1.31 

Clay 0.083 0.66 6.1 0.022  TOC      0.04 0.262 1.17 

Silt 0.09 0.807 6.6 0.019  Clay     0.03 0.424 1.01 

Sand 0.081 0.758 5.9 0.046   Silt     0.08 0 2.82 

 
Table 4.2 Marginal and conditional effects from forward selection in CCA.  [Marginal effects in 

pCCA table as well] λ1, canonical eignevalues; r,species-environment correlation; (variance of 

species data) explained variation (%); significance (P); lambda; P-ratio; F-statistic.  Sum of all 

eignevalues.  1.369, canon. 0.736. Marginal effects are results of partial CCAs.  Highlighted 

variables are not significant at the 1 % level. 

 

Partitioning of variance in CCA identifies the relative importance of environmental variables and 

their shared variances.  Water depth, a variable describing spatial structure in the species data, 

appears to have little influence on foraminifera distribution (3% unique contribution) once the 

effects of other measured variables have been taken into account (Table 4.3).  After removing 

depth from the analysis, substrate type accounts for 14% of variation in foraminifera data, and 
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shares 7.5% of variation with the remaining environmental variables (temperature, salinity, TN, 

TOC).  Partitioning of variance in CCA indicates temperature and salinity environmental 

variables together account for 21.8% of variance (Fig. 4.9).  

 

 

 

Figure 4.9 Pie charts showing (A, C) the explained and unexplained variation in the 

foraminiferal data and (B, D) the unique contribution of individual environmental variables and 

the autocorrelation between these to the explained variance. 

 

Partial CCA assessed the contribution of individual environmental variables to the explained 

variance in the species data.  This reaffirms the importance of water mass characteristics, with 

bottom-water temperature identified as the most important variable (12.7% for TA and 11.6% for 

AGG; Fig.4.9), closely followed by salinity (11%), and water depth (10.3%).  In general, 

substrate type appears to have relatively little influence on foraminiferal composition.  The 

measured environmental variables explain 53.8% of species variability in the total assemblage 

and 51.5% in the agglutinated assemblage (Fig.4.9), while interactions between environmental 

variables account for nearly a third of explained variance.   
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        Total variation 
Proportion of 

explained variation 
(%) 

Subset 
X1 

Subset 
X2 

Exp. 
variation 

Unexp. 
variation 

X1|X2 X2∩X2 X2|X1 X1|X2 X2∩
X2 

X2|X1 

T, S, 
Depth, 
Sand 

TN, 
TOC, 
Clay, 
Silt 

0.736 
(53.8%) 

0.633 
(46.2%) 

0.392 
(28.6%) 

0.163 
(11.9%) 

0.181 
(13.2%) 

53.3 22.1 24.6 

EV Depth 
0.736 

(53.8%) 
0.633 

(46.2%) 
0.569 

(41.6%) 
0.023 
(1.7%) 

0.041 
(3%) 

77.3 3.1 5.6 

T, S, 
TN, 
TOC 

Sub-
strate 

0.695 
(50.8%) 

0.674 
(49.2%) 

0.401 
(29.3%) 

0.103 
(7.5%) 

0.191 
(14%) 

57.7 14.8 27.5 

T S 
0.298 

(21.8%) 
1.071 

(78.2%) 
0.125 
(9.1%) 

0.075 
(5.5%) 

0.098 
(7.2%) 

41.9 25.2 32.9 

 
Table 4.3 Decomposition of variance in CCA.  The total variation is equal to the eigenvalue of 

1.369.  Shared variance (X2∩X2) is the variance shared between the two sets of identified 

environmental variables.  The residual variance i.e. unexplained variance, unexp. variance) is 

the variance not accounted for by the specified environmental variables.  T, bottom-water 

temperature; S, bottom-water salinity; EV, All other remaining measured environmental 

variables.    

 

4.3.4 Transfer function model and reconstruction performance 

Partial CCA indicates that bottom-water temperature appears to be the greatest single influence 

on variation in species data.  However, a CCA plot of modern samples with the first CCA axis 

constrained to temperature indicates that there is significant variability along the second axis.  

While some samples have a strong negative correlation with temperature, no samples have a 

strong positive correlation with bottom-water temperature.  The results of CCA indicate that TN, 

TOC and water depth are highly correlated with axis two.  The bootstrapped transfer function 

models are shown in Fig.4.10 and Fig.4.11.  Performance statistics calculated for the transfer 

functions indicate that the training set species data can be modelled to provide relatively precise 

and reliable temperature estimates.  The selected transfer function models (Table 4.4) have r2 

values of 0.79 for the TA model and 0.65 for the AA model, with RMSEP values of 0.81°C and 

0.98°C for the TA and AA model, respectively.  These results indicate that the TA model should 

perform better than the AA model.  The RMSEP as a percentage of the temperature gradient 

length (5.44°C) is 14.9% for the total assemblage WA (Classical) model and 18% for the 

agglutinated only assemblage WA (Classical) model.  These values are relatively high when 
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compared to other studies using benthic foraminifera for various applications; Woodroffe (2009), 

for example, reports RMSEP values between 7.2% and 10.1% for different models. 

 

 
Total assemblage model      

Environmental gradient: 5.44°C, 1.79 SD units     

  Model Component Boot R2 RMSE s1 RMSE s2 RMSEP 

 WA Inv 0.78 0.46 0.66 0.81 

 WA Cla 0.79 0.54 0.61 0.81 

 WA TOL_Inv 0.80 0.47 0.84 0.96 

 WA TOL_Cla 0.80 0.57 0.75 0.94 

 WA-PLS 1 0.78 0.45 0.68 0.82 

 WA-PLS 2 0.75 0.53 0.67 0.85 

  WA-PLS 3 0.76 0.60 0.65 0.88 

Agglutinated assemblage model     

Environmental gradient: 5.44°C, 1.43 SD units     

  Model Component Boot R2 RMSE s1 RMSE s2 RMSEP 

 WA Inv 0.64 0.47 0.86 0.98 

 WA Cla 0.64 0.55 0.81 0.98 

 WA TOL_Inv 0.69 0.48 0.93 1.05 

 WA TOL_Cla 0.69 0.59 0.87 1.05 

 WA-PLS 1 0.63 0.46 0.87 0.99 

 WA-PLS 2 0.63 0.54 0.82 0.99 

  WA-PLS 3 0.62 0.60 0.83 1.02 
 
 

Table 4.4 Performance statistics for transfer functions developed using the unimodal methods of 

weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) for the TA 

and AA model.  Shading highlights best performing TA and AA model. 
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Figure 4.10 Transfer function model for temperature using total assemblage and the 

bootstrapped weighted averaging model (inverse deshrinking). 

 

 

 

Figure 4.11 Transfer function model for temperature using agglutinated assemblage and the 

bootstrapped weighted averaging model (classical deshrinking). 

 

4.4 Discussion 

4.4.1 Primary environmental controls on foraminifera distribution  

In total, measured environmental variables account for 53.8% of variation in species data, while 

the subset of significant variables identified by forward-selection explains only 40.5% of 

variation in species data.  There remains a significant proportion of unexplained variation (at 

least 46.2%) in the species data, most likely a combination of other environmental controls that 
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exist and have not been measured, and a significant amount of random variation in the data.  

Temperature and salinity are the two most important explanatory variables when considered 

independently.  However, taking the conditional effects of environmental variables into account 

indicates depth explains greater additional variance than salinity.  When assessed 

independently, a sandy substrate is the least important environmental variable.  However, a 

sandy substrate explains more additional variance than surface sediment TN and TOC content, 

potential sources of food for benthic foraminifera, after accounting for variability explained by 

temperature, salinity, and depth.  This indicates bottom-water temperature, salinity or water 

depth explain the similar patterns in species variation as TN and TOC content, and thus 

suggests a link between food supply to the benthos and water mass characteristics.  

 

Variance partitioning indicates that the forward selected environmental variables explain 28.6% 

of variation in species data, sharing 11.9% of their variance with non-selected variables, which 

uniquely contribute 13.2% to species variation.  After accounting for other environmental 

variables, the unique contribution of depth to variation in assemblage composition is small 

(3.8%).  This may be expected because water masses vary by depth, while higher levels of TN 

and TOC are found in deeper surface sediments.  Substrate (clay, silt, sand) has a weak 

influence on foraminifera distribution, together accounting for 14% of species variance, 

compared to 29.3% of variance accounted for by temperature, salinity, TN and TOC, all 

possible indicators of water mass characteristics.  Finally, independent of other environmental 

variables, temperature and salinity uniquely explain 9.1% and 7% of species variance, 

respectively, and together explain 21.8% of species variation.     

 

The results of multivariate analyses clearly indicate that of the measured environmental 

variables, bottom-water temperature has the greatest influence on foraminifera distribution, 

indicating the potential for foraminifera to reliably reconstruct bottom-water temperature 

changes on the continental shelf of West Greenland.  
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4.4.2 Ecological preferences of benthic foraminifera in central West Greenland 

Species that commonly occur together show a close grouping in DCA (Figure 4.7).  CCA further 

explores these species groupings and their associations to measured environmental 

parameters.   

 

The results of CCA indicate abundances of Cassidulina reniforme and Elphidium excavatum f. 

clavata increase under cold, low-salinity conditions characterised by reduced nutrient levels.  

Cassidulina reniforme and Elphidium excavatum f. clavata are common arctic species found in 

a range of microhabitats in fjord and shelf environments (Mackensen et al., 1985; Corliss, 1991; 

Hald et al., 1994; Jennings and Helgadottir, 1994; Hald and Korsun, 1997).  High abundances 

of Elphidium excavatum f. clavata are found at sites influenced by cold, low salinity waters in 

Nordre Strømfjord, though the highest abundances are found in samples from the Vaigat and 

Uummannaq shelf under the influence of mixed-WGC water during the summer (2.5 – 2.7 ºC, 

34.3 – 34.5 psu).  Elphidium excavatum f. clavata is highly tolerant of ecologically stressful 

environmental conditions, particularly close to glacier calving margins subject to cold bottom 

waters, and large shifts in salinity and sediment supply (Hald et al., 1994; Hald and Korsun, 

1997; Korsun and Hald, 2000; Jennings et al., 2004).  In these locations, E. excavatum f. 

clavata flourishes despite hampered primary productivity in the photic layer caused by turbid 

meltwater plumes (Korsun and Hald, 2000).  The transfer function predicted temperature and 

salinity optima of ca. 1°C and 34 psu, respectively, with wide ecological tolerances, appears to 

confirm the opportunistic nature of this species, and its preference for cold, low-salinity 

environments. 

 

Cassidulina reniforme is dominant in samples from Nordre Strømfjord (FAZ 6) influenced by 

low-salinity (<33.2 psu) and extremely cold (<0 ºC) bottom-water conditions.  Its distribution is 

reported to be similar to E. excavatum f. clavata (e.g. Nagy, 1965; Elverhøi et al., 1980; Hald et 

al., 1994; Hald and Steinsund, 1996; Hald and Korsun, 1997), which is indicated by the close 

proximity of these species in the CCA plot (Figure 4.8).  Abundances of C. reniforme exceed E. 

excavatum f. clavata in locations with reduced glacier influence (lower sedimentation rate, 

enhanced food supply) (Korsun and Hald, 2000).  Cassidulina reniforme is tolerant of high 
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concentrations of suspended particulate matter, indicating lower phytoplankton abundance and 

organic carbon content in surface sediments (Korsun and Hald, 1998).  Cassidulina reniforme 

and E. excavatum f. clavata dominate samples in fjord sites influenced by stable warm, saline 

bottom waters in north Iceland (ca. 5°C, 34.7 psu; Jennings et al., 2004) and northern Norway 

(6-6.9°C, 34-34.75 psu; Husum, 2002, in Jennings et al., 2004), indicating these species have 

wide ecological tolerances, as shown in Figure 4.12.    

 

Stainforthia feylingi, Silicosigmolina groenlandica and Cuneata arctica have positive axis 1 

scores and negative axis 2 scores, indicating an inverse relationship with temperature and 

salinity.  The results of CCA indicate the habitat of Stainforthia feylingi (= Stainforthia fusiformis, 

Fursenkoina fusiformis) is similar to E. excavatum f. clavata and C. reniforme, though the 

association with cooler and lower salinity conditions is not as strong.  Stainforthia feylingi is a 

common opportunistic shelf and fjord species in Europe and the Canadian Arctic (Murray 1991, 

1992; Alve, 1995).  Stainforthia feylingi reproduces rapidly in response to organic enrichment 

from a range of food sources (Alve, 1994) and throughout the year (Murray, 1992).  This 

species also tolerates low oxygen conditions and successfully colonizes formerly anoxic 

environments (Gooday, 1993; Alve, 1995; Gooday and Alve, 2001).  Neither depth nor TN/TOC 

appears to influence the distribution of S. feylingi.  While S. feylingi abundance increases under 

cooler bottom-water conditions, the closer position of this species to the centre of the CCA plot 

compared to E. excavatum f. clavata and C. reniforme may reflect the opportunistic nature of 

this species, tolerating a range of environmental conditions.    

 

The calcareous species Globulina inaequalis, Islandiella norcrossi, Nonionellina labradorica, 

and Stainforthia concava show a strong relationship to higher nitrogen and organic carbon in 

surface sediments, indicated by high CCA axis 2 scores.  Transfer function models predict the 

warmest temperature optima (> 3.5°C) for these species, with relatively high salinity (>34.4 

psu).  The distribution of I. norcrossi is usually interpreted to reflect cold Arctic Waters (e.g. 

Rytter et al., 2002), and occurs as an ice-distal species following glacier-proximal peaks of C. 

reniforme and E. excavatum f. clavata (Osterman and Nelson, 1989; Korsun and Hald, 1998).  

Silis (1993) interpret I. norcrossi to reflect influxes of glacial meltwater.  Feyling-Hanssen (1990) 
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interprets fossil samples dominated by I. norcrossi in the Thule area, northwest Greenland, to 

reflect high-Arctic conditions.  However, modern occurrences of I. norcrossi/helenae in central 

West Greenland are found under the influence of relatively warm Atlantic-sourced water and are 

strongly related to organic carbon and nitrogen content of surface sediments.  High abundances 

of I. norcrossi are found under the influence of cold bottom water temperatures with a high and 

stable salinity (Mudie et al., 1983; Austin and Kroon, 1996; Korsun and Hald, 1998) and not 

under Atlantic water (Hald and Steinsund, 1992; 1996; Ivanova et al., 2008 in SW Barents Sea).  

Peak abundances of Islandiella norcrossi on the Arctic shelf are linked to phytodetritus pulses to 

the seafloor under high surface primary productivity, including at edge of sea-ice (Korsun and 

Polyak, 1989; Hald and Steinsund, 1992, 1996; Steinsund and Hald, 1994).  Along the West 

Greenland margin, the distribution of I. norcrossi reflects higher levels of organic matter, which 

are interpreted to be related to influxes of warm WGC water.  The weighted averaging optimal 

temperature and salinity reaffirm such an interpretation.  However, I. norcrossi has wider 

tolerances than the other species it occurs with, suggesting that it is tolerant of Polar Water 

influence.      

 

Nonionellina labradorica is typically a deep endobenthic species (up to 8-10 cm) associated with 

areas of high seasonal productivity and fresh phytodetritus fluxes to the seafloor, particularly in 

the Polar Frontal Zone and at the summer sea-ice edge (Cedhagen, 1991; Hunt and Corliss, 

1993; Hald and Steinsund, 1992, 1996; Polyak et al., 2002; Rytter et al., 2002; Jennings et al., 

2004).  In central West Greenland, N. labradorica dominates samples in Egedesminde Dyb 

(FAZ 5), the deep trough at the southeast entrance to Disko Bugt FAZ 5.  Lloyd (2006a) 

interprets the distribution of N. labradorica to reflect enhanced nutrient delivery via the warm 

Atlantic component of the WGC relative to the Arctic Water component.  A number of studies 

find N. labradorica associated with warm Atlantic water (temperature 3 - 4°C, salinity >34.5 psu) 

on the Labrador shelf between ca. 500 and 600 m water depth (Vilks, 1980; Mudie et al., 1983; 

Scott et al., 1984).  In the Disko Bugt-Uummannaq region, temperature and organic 

carbon/nitrogen content are highly correlated, supporting a link between N. labradorica and 

bottom-water temperatures.  However, two samples (343340 and 343570) influenced by the 

warmest subsurface waters at the time of collection have lower abundances of N. labradorica 
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(particularly 343340), suggesting the relationship between this species and Atlantic Water 

influence is not straight forward.  It is possible that N. labradorica-dominated samples reflect 

enhanced surface primary productivity, particularly since these sites are located beyond the 

influence of productivity inhibiting meltwater from tidewater glaciers in Disko Bugt (Söderkvist et 

al., 2006).  However, it appears most likely that N. labradorica abundance corresponds to the 

higher nutrient levels in the Atlantic-sourced component of the WGC compared to nutrient poor 

Polar Water (e.g. Jennings et al., 2004).     

 

Cuneata arctica (= Reophax arctica) shows a negative relationship with temperature and salinity 

in CCA.  This is in agreement with Schafer and Cole (1988), who find higher abundances (10-

25%) of C. arctica present under cold water influence (ca.-1 to -1.5°C) in fjords of Baffin Island.  

While weighted averaging predicts a warmer nice for C. arctica (ca. 2.2°C), this remains among 

one of the “coldest-water” species in this study, and therefore is associated with Polar Water.  

Spiroplectammina biformis and Textularia earlandi have been associated with cold, Polar water 

influence (e.g.  Lagoe, 1979; Schafer and Cole, 1988; Ishman and Foley, 1996).  However, T. 

earlandi shows a weak positive relationship with temperature and salinity.  Despite this, 

Cuneata arctica, S. biformis and T. earlandi show an inverse relationship to TN/TOC-enriched 

sediments, which may reflect the influence of nutrient-poor Polar waters on these species.  

Negative axis 1 and 2 CCA species scores for S. biformis indicate a poor relationship with 

temperature and salinity.  Schafer and Cole (1982) suggest S. biformis has a wide ecological 

niche, though a maximum abundance of 25% is found under water at ca. 500 m depth with a 

temperature and salinity of 3.2°C and 34.8 psu, respectively.  However, in the Amerasian Basin 

in the Arctic Ocean, S. biformis is a dominant taxon under cold, low salinity waters (temperature 

ca. 0.5°C, salinity >34.5 psu).  The results of CCA suggest that S. biformis prefers environments 

characterised by a fine-grained substrate, along with a number of other species, including 

Trochammina nana, Recurvoides turbinatus, Cribrostomoides sp., and Adercotryma glomerata.  

Spiroplectammina biformis is relatively ubiquitous in central West Greenland, though is absent 

(or in low abundance) at sites influenced by warm WGC water, and relatively low abundance 

under extremely cold Polar Water in Nordre Strømfjord.      
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Figure 4.12 (A) Temperature and (B) salinity bootstrapped weighted average optima and 

tolerances of benthic foraminifera occurring in at least two samples and abundances exceeding 

2% in the modern training set.  Species with a bold typeface have more than five N2 

occurrences (Hill, 1973), and are therefore can be more reliably predicted.  Filled circles 

indicate agglutinated species and empty circles indicate calcareous species.  Dashed lines 

indicate approximate boundaries between different water masses in West Greenland, though 

note that these do overlap.  WGC, West Greenland Current influence; MWGC, Mixed WGC 

influence; PW, Polar Water influence.   
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The results of CCA (Fig. 4.8) indicate that the distribution of four species, Reophax pilulifer, 

Reophax fusiformis, Saccammina difflugiformis, and Melonis barleeanum, are closely related to 

bottom-water temperature and salinity (i.e.   close proximity to the variable arrow indicating the 

direction of the maximum rate of change).  Saccammina difflugiformis (=Saccammina atlantica) 

has been linked to Atlantic Water on the continental slope of north Svalbard, in Fram Strait, and 

on the Yermak Plateau (Scott and Vilks, 1991; Bergsten, 1994).  However, in Baffin Island 

fjords, Schafer and Cole (1988) found S. difflugiformis associated with cold water present at 

intermediate depths (temperature ≤ -1°C and depth 50-200m), though abundances do increase 

with distance from fjord heads.  Ecological studies indicate higher abundances of M. 

barleeanum are found in environments influenced by altered (slightly decomposed) marine 

organic matter (e.g.  Corliss, 1985; Caralp, 1989a, 1989b), and shows a strong relationship with 

TOC, and therefore cannot tolerate high sedimentation rates, particularly in locations influenced 

by seasonal meltwater (Caralp, 1989).  Ivanova (2006; cited in Ivanova et al., 2008) links higher 

abundances of M. barleeanum to the influence of Atlantic Water at the sediment-water interface 

in the Barents Sea (Ivanova, 2006, cited in Ivanova et al., 2008).   

 

Adercotryma glomerata is a common Arctic species (e.g. Schafer and Cole, 1982).  According 

to Wollenburg and Mackensen (1998a), Adercotryma glomerata avoids warmer water masses.  

However, Schafer and Cole (1982) found high abundances of A. glomerata (33%) between 500-

530 m depth under the influence of Labrador Current water with a temperature of 3.2°C and a 

salinity of 34.8 psu.  Vilks (1980) also found A. glomerata to be important on the Labrador Shelf 

under relatively warm water (temperature 3-4°C, salinity >34.5 psu).  CCA suggests a weak 

positive relationship to temperature and salinity, and indeed temperature and salinity optima are 

calculated to be close to 3°C and 34.2 psu, respectively, indicating a preference for relatively 

warm WGC waters.  However, the results of CCA also suggest a negative relationship to 

organic matter and depth, indicating this species tolerates Polar Water influence.   

 

Based on results from this chapter and other published records from Arctic shelf settings, Table 

4.5 lists the groups of foraminiferal species that will be used in palaeoenvironmental 
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reconstructions from marine fossil cores to summarise relative temperature changes in the West 

Greenland Current. 

 

Atlantic Water Group: Atlantic/Intermediate: Arctic Water Group: 

Ammoscalaria pseudospiralis Adercotryma glomerata Cuneata arctica 

Reophax bilocularis Spiroplectammina biformis 

Reophax fusiformis Textularia earlandi 

Saccammina difflugiformis Astrononion gallowayii 

Bolivina psedopunctata Cassidulina reniforme 

Bucella frigida 
Elphidium excavatum f. 

clavata 

Bucella tenerrima Islandiella norcrossi/helenae 

Cassidulina neoteretis Stainforthia concava 

Globulina inequalis Stainforthia feylingi 

Melonis barleeanum 

Nonionellina labradorica 

Trifarina fluens 

 
Table 4.5 List of foraminifera used to identify Atlantic, “intermediate”, and Arctic Water influence 

on the continental shelf in central West Greenland. 

 
 
4.4.3 Can a reliable transfer function model be developed? 

Multivariate analyses suggest benthic foraminifera on the central West Greenland shelf are 

reliable indicators for reconstructing former bottom water temperatures.  Many species are 

highly correlated (positively or negatively) with temperature and salinity, or TN/TOC.  A strong 

correlation between these sets of variables suggests that TN/TOC content in surface sediments 

corresponds to the influence of different water masses at particular sites.  However, CCA with 

the first axis constrained to temperature (Fig. 4.13) indicates a significant amount of 

unexplained variation (i.e. variation along axis 2 in CCA), though this is not surprising.  

However, only samples from Nordre Strømfjord show a strong (negative) relationship to 

temperature, suggesting that periods of significant warming may not be captured by the 

reconstruction estimates.    
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Figure 4.13 CCA biplot showing sample scores with temperature constrained to the first 

canonical axis 

 

The preliminary transfer-function models indicate a close matching between predicted and 

observed temperature values.  However, a number of caveats exist for the current transfer-

function models.  Perhaps most importantly, the current model contains only 32 samples 

beneath the surface layer.  Summer bottom-water temperatures between 1.8°C and 4°C 

influence the majority of samples, while only five samples span the interval between -1.2°C and 

1.8°C.  There exists a need to extend the current database of foraminiferal samples, particularly 

those influenced by cooler waters.  Taphonomic processes affect preservation of both 

agglutinated and calcareous foraminifera in fossil cores on the West Greenland shelf (Lloyd et 

al., 2007).  This presents a major problem for palaecological reconstructions.  The TA model 

appears to be more statistically robust, though cannot be applied to fossil intervals 

characterised by calcareous dissolution.  Furthermore, the low agglutinated fauna presence in 

samples influenced by colder Polar Water and the warmest WGC water suggests that applying 

the AA model to parts of the core where the calcareous assemblage has been significantly 

modified or lost by dissolution will result in reconstruction estimates biased to a “middle” 

temperature (i.e. predicting cool rather than cold or warm temperatures).   
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4.5 Chapter summary 

The available modern foraminifera data do not span a wide enough environmental gradient, nor 

are there sufficient samples, to produce a robust transfer function that can be applied to fossil 

assemblages.  The strong relationship between temperature and foraminifera suggests that it 

may be feasible to develop more robust transfer function models with improved predictive power 

in the future.  However, these results highlight the strength of interpreting fossil assemblages in 

this study primarily based on foraminifera ecology for the purposes of this study.   
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Chapter 5 

 

RAPID DEGLACIATION OF THE CENTRAL WEST 

GREENLAND SHELF IN THE DISKO BUGT AREA  

 

 

 

 

 

 

 

 

 

 

XRF and magnetic susceptibility core scanning data was undertaken aboard the R/V “Maria S. 

Merian” shortly after core retrieval.  Kerstin Perner and Matthias Moros (Leibniz-Institut für 

Ostseeforschung Warnemünde - IOW) provided digital X-ray radiographs of core MSM-

343340_G.  
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Chapter 5 

Rapid deglaciation of the central West Greenland  

shelf in the Disko Bugt area  

 

 

5.1 Introduction 

Funder and Hansen (1996) proposed a two-stage deglacial model with relatively early and rapid 

disintegration of marine-based ice, between ca. 15 and 10 ka cal. BP, driven by eustatic sea 

level rise and warmer air temperatures, followed by slower melting of the land-based ice-sheet 

due to atmospheric warming.  Others (e.g. Ingólfsson et al., 1990; Weidick, 1996) suggest 

deglaciation began later (13-10 ka BP), and that deglaciation was episodic (alternating between 

rapid retreat and relative stability during deglaciation), with high topographic ‘pinning’ slowing 

ice margin retreat (e.g. Warren and Hulton, 1990; Weidick, 1996).  A synchronous ice margin 

response would be expected if external factors such as atmospheric warming or eustatic sea 

level rise drove shelf deglaciation, whereas ice dynamic and topographic controls are likely to 

result in asynchronous deglaciation, with some parts of the ice margin retreating whilst other 

parts were stable (Long and Roberts, 2003; Roberts and Long, 2005). 

 

In order to address these shortcomings in our present understanding, this chapter aims to 

provide a minimum age for the retreat of marine-based ice from the shelf west of Disko Bugt.  A 

further aim is to reconstruct oceanographic conditions and ice stream-ocean interactions during 

initial deglaciation and the subsequent ice retreat off the continental shelf using 

sedimentological and proxy evidence in a marine sediment core, MSM-343340_G, located in 

outer Egedesminde Dyb, west of Disko Bugt.  A particular focus is to identify the potential 

influence of relatively warm and saline West Greenland Current (WGC) on ice sheet retreat.  

Marine archives potentially provide high resolution and uninterrupted records detailing 

environmental conditions during deglaciation, and allow us to constrain the timing and nature of 

deglaciation.  New data from marine sediment cores is used to establish the timing and nature 

of marine-based deglaciation in the Disko Bugt area, and test Funder and Hansen’s (1996) two-

phase deglacial model proposed for Greenland.   
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5.2 Results 

5.2.1 Chronology and sedimentation rates 

The age-depth model (Fig. 5.1) for this core uses linear interpolation between six radiocarbon 

dates obtained from intact bivalves (see Table 5.1).  The lowermost date of 12,325 yrs. BP 

(12.6-12.1 ka BP) from 902 cm core depth provides a minimum age for deglaciation at this site.  

This is a minimum age for deglaciation because it is the oldest date obtained from core MSM-

343340, and was retrieved from immediately above ice-proximal glacimarine sediments.  The 

absence of sufficient dateable material between 902 and 1074 cm in the core prevents a closer 

estimate of the age of the base of the core.  However, the basal age of the core (hence a more 

accurate estimate of the age of deglaciation) can be estimated based on the sedimentation rate 

of the lower section of the core.  If the sedimentation rate from up-core (approximately 450-900 

cm) were assumed to remain constant for this lower interval, the basal age for the core would 

be ca. 13 ka BP.  A relatively high sedimentation rate between 2.4 and 3 mm a-1 characterised 

the interval 12.3 to 11.2 ka BP.  The sedimentation rate then slowed to between 1.47 and 2.29 

mm a-1 during the next ca. 600 years, before a reduction by more than an order of magnitude to 

less than 0.25 mm a-1 from 8.8 ka BP until present, indicating a dramatic decline in sediment 

supply.   

 

 

Table 5.1 Radiocarbon dates for core MSM-343340-2-1_G.  14C ages (uncorrected) calibrated 

using Oxcal v.4.1 (Bronk Ramsey, 2009) using the Marine09 curve (Reimer et al., 2009), with 

ΔR=0±0.   

Core depth 
(cm) 

Lab. code Material  14C age ± 1σ 
(yr BP) 

Calibrated 
age (yr 
BP) 

Age 
range 2σ 
(yr BP) 

53 - 58 Poz-22361 Bivalve 2,555 ± 30 2,230 
2,315- 
2,135 

129 Poz-30988 Bivalve 8,240 ± 50 8,773 
8,951- 
8,604 

276 SUERC-26760 Bivalve 8,730 ± 39 9,414 
9,490- 
9,300 

456 - 457 Poz-30989 
Bivalve 
Nuculana sp. 9,790 ± 50 10,646 

10,876- 
10,533 

632 - 634 Poz-30990 Bivalve 10,260 ± 60 11,240 
11,545- 
11,128 

901 - 902.5 Poz-30991 
Bivalve  
Portlandia arctica 10,840 ± 60 12,325 

12,562- 
12,100 
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Figure 5.1 Age-depth model for core MSM-343340-2-1_G, with 2 s.d. age range, and 

sedimentation rates (mm/yr) based on linear interpolation between mean calibrated ages. 

 

 

5.2.2 Core sedimentology 

Sedimentological characteristics and sediment geochemistry are briefly described below 

according to four distinct sedimentological zones.  

 

Zone 1: 1075-880 cm 

Visual core logging and analysis of X-ray radiographs indicates that the base of core MSM-

343340 (1074-950 cm) is composed of interbedded laminated or massive mud (Fl/Fm) and 

stratified clast-rich or clast-poor diamicton (Dms), with primarily gradational or conformable 

contacts between sedimentary units (Fig. 5.2 and 5.3A).  These fine-grained grey muds are 

predominantly composed of clay with fine silt, and are typically parallel laminated (Fl), though 

occasionally massive (Fm), and range in thickness from a few millimetres to 8 cm.  Dropstones 

(Fld) are rare or absent in the laminated muds, though larger clasts are common in the stratified 

diamicton (Fig. 5.3A).  Macrobenthos are also uncommon or absent, and there is no evidence of 
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bioturbation.  A thin layer of fine sand at 945 cm overlies the diamicton.  There is an upcore shift 

to weakly stratified sediments containing networks of small branching tubes, interpreted as 

pyrite-infilled chondrites (Fig. 5.3B).  Biogenic trace fossils disappear above 920 cm, where 

there is a gradual transition back to laminated sediments between 910-880 cm.   

 

Sediment water content is initially low (32.6 %) in the laminated mud facies, though increases to 

ca. 40% in the overlying sediments, before peaking at 47.4 % at 753 cm.  Percentage loss-on-

ignition is low at the base of the core (1.1 %), though increases to 2.4 % just above the 

laminated mud at 977 cm.  Loss-on-ignition is ca. 2.1 % throughout most of the lower sediments 

There are high frequency fluctuations between very low and very high magnetic susceptibility 

throughout the laminated mud lithofacies, though the magnitude of these variations falls in the 

overlying lithofacies (Fmd).  XRF integral ratios for [Si/Al] and [S/Al] are low (ca. 10 and 0 

respectively) for the lower 300 cm of the core.   

 

Zone 2: 880-525 cm 

Above 880 cm, there is increasing evidence of biogenic activity in the weakly stratified/massive 

muds.  The sedimentology between 880 and 575 cm is characterised by preservation of 

numerous chondrite networks, as well as much larger subhorizontal to subvertical and slightly 

sinuous shafts (e.g. 5.3D), particularly at ca. 750 cm, and 665-675 cm.  The interval 575-525 cm 

is characterised by a high occurrence of long (each up to ca. 4 cm) vertical burrows, interpreted 

to be escape structures through weakly laminated sediments (Fig. 5.3C).  The fine-grained 

sediments between 750 cm and 560 cm are characterised by declining water content, reaching 

a minimum of 27.1 % at 561 cm, and increasing magnetic susceptibility, which also peaks at 

560 cm core depth.  Loss-on-ignition is relatively low in this zone (1.3-2.1 %), though begins a 

gradual increasing trend up core.  The [S/Al] integral ratio remains low, but there is a stepped 

increase in the [Si/Al] ratio to ca. 12 at 750 cm, which stays relatively constant up core through 

the overlying zone 3. 
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Zone 3: 525-130 cm 

A variety of burrow structures are present in sedimentological zone 3, particularly between 500 

and 400 cm.  Zone 3 is characterised by gradual increases in LOI, from ca. 1% to 3% and [S/Al] 

from an integral ratio of near 0 to 1.  There is a gradual decline in magnetic susceptibility 

throughout this zone (from ca. 250 to 50 SI), coincident with increasing water content from ca. 

30% to 45% (reaching a maximum at 300 cm core depth), and a reduction in dry bulk density, 

from ca. 1.4 g cm-3 to 0.8 g cm-3.  

 

Zone 4: 130-0 cm  

Zone 4 begins at 130 cm core depth, and is marked by a sudden and significant decline in the 

sedimentation rate.  While there is evidence of increasing bioturbation from 400 cm, sediments 

in the upper 40 cm of core MSM-343340 are heavily bioturbated (Fig. 5.3D).  The clayey mud 

lithofacies (from 270 cm in zone 3 to the top of the core) is characterised by high water content 

(ca. 40-45%) and the lowest magnetic susceptibility (ca. 50 K) throughout the core, though this 

begins to increase above 50 cm core depth.  Percentage loss-on-ignition continues to gradually 

increase up core, reaching at a maximum value of 4.9 % at the top of the core.  There is a 

significant rise and peak (to an integral ratio just above 2) in [S/Al] at ~50 cm, before a decline 

towards the top of the core.  The [Si/Al] data shows a similar increase to ~50 cm in zone 4, 

followed by a decline to the top of the core.  These peaks correspond to an interval of stratified 

or laminated sediments (between 50-41 cm).   
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5.2.3 Foraminiferal analysis  

Microscopic analysis identified 25 agglutinated and 19 calcareous species.  There is a 

significant variation in foraminiferal abundance in core MSM-343340; some parts of the core, 

particularly below 880 cm, have very foraminiferal abundance (i.e. the total number of 

specimens counted), while foraminifera abundance is generally higher above 700 cm core 

depth.  Relative abundances of species greater than 5% in at least one sample are shown in 

Figure 5.4 (full foraminiferal counts in appendix 1).  Core MSM-343340 can be divided into four 

distinct foraminiferal assemblage zones (FAZs) based on major faunal changes, which are 

described in turn below: 

 

FAZ 1 (Before 12.3 ka BP, 1074-880 cm) 

Well-preserved calcareous fauna dominate FAZ 1 from 12.4 ka BP to ca. 13 ka BP.  

Agglutinated species are common in the lower samples, decreasing significantly through this 

zone.  The ice-proximal species Cassidulina reniforme (60-75%) dominates samples from the 

base of the core until ca. 12.4 ka BP.  Spiroplectammina biformis also occurs in high 

percentage abundance at the base of the core (> 40%), before briefly disappearing by 12.5 ka 

BP.  There are smaller occurrences of Reophax gracilis (up to 8 %), Elphidium excavatum f. 

clavata (up to 10 %) and Islandiella norcrossi (up to 15 %).  Very low foraminifera 

concentrations (0-100 specimens/ml) characterise the lower part of the core.  Some samples 

were devoid of foraminifera, including at the base of the core, while a statistically significant 

count of 300 specimens was only possible for one sample at 950 cm depth in FAZ 1.   

 

FAZ 2 (12.3-11 ka BP, 880-560 cm) 

The opportunistic Arctic species Stainforthia feylingi (=S. fusiformis, F. fusiformis) dominates 

(65-100%) all samples between 12 and 11 ka BP (and an earlier sample at ca. 12.6 ka BP).  

During this interval, C. reniforme is common in a number of samples (up to 13 %), though 

shows a steady decline to the top of this zone.  Islandiella norcrossi, E. excavatum f. clavata, 

and S. biformis are generally less abundant between 12.5 and 11 ka BP, though constitute up to 

15 % of assemblages.  
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Figure 5.2 Sedimentology and geochemistry for core MSM-343340_G.  Foraminifer assemblage 

zones (FAZ) are shown on left, and indicated by grey shading.  The positions of X-ray 

radiograph example sections are also marked in order, from (A) at the base to (D) at the top.  

Lithofacies codes follow Eyles et al. (1992); Dms, diamicton (matrix supported, stratified); Fl, 

laminated mud; Fm, mud (massive); Fmd, mud (massive with dropstones; Sm, sand (massive).  

Note that sediment water content is on a reversed axis. 
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Figure 5.3 Representative X-ray radiograph sections of lithofacies from core MSM-343340_G 

(see Fig. 5.2 for location of core sections (A) to (D).  Arrows indicate examples of; (a) rhymically 

laminated mud, (b) clast-poor diamicton, (c) clast-rich diamicton, (d) ice-rafted clast, (e) 

chondrite burrowing networks, (f) rapid escape structures (polychaetes), (g) intensive 

bioturbation, (h) sub-horizontal burrows.  Note the small differences in scale between images. 
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FAZ 4 (8.8 ka BP-present, 110-0 cm) 

FAZ 4, spanning the past ca. 8.8 ka BP, is sampled at a coarse temporal resolution.  This zone 

is characterised by an agglutinated only faunal assemblage, dominated by C.arctica with an 

increasing abundance of Adercotryma glomerata in the mid- to late-Holocene and R. gracilis is 

common.  The initial appearance of Reophax pilulifer and Saccammina difflugiformis occurs 

shortly after 8.8 ka BP, with the latter species being particularly dominant during the mid-

Holocene.  Higher organic test lining counts in FAZ 4, suggesting increased dissolution of 

calcareous specimens, may partly contribute to the reduced foraminifera concentration in FAZ 4 

(<220 specimens/ml). 
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Figure 5.4 Foraminiferal assemblage from core MSM-343340_G.  Foraminifera frequencies are 

shown as relative abundance of the total count, only species ≥ 5% of the total assemblage are 

shown.  Faunal assemblage zone (FAZ) boundaries area based on major biostratigraphical 

changes.  Summary graphs show the total sum (% relative abundance) of warm water and cold 

water indicator species.  Test linings are calculated as a percentage of the total count of 

‘preserved’ calcareous foraminifera. 
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5.3 Palaeoceanographic interpretation 

An assessment of the core sedimentology indicated that the core was not significantly 

influenced by reworking processes.  The sediment core is generally composed of clayey or silty 

mud with no hiatuses in the record.  The upper ca. 9 m of the core MSM-343340_G comprises 

massive, occasionally bioturbated, hemipelagic mud with abundant foraminifera, indicating 

deposition under relatively quiescent conditions.  The foraminiferal and sedimentological data 

provide information concerning changes in bottom water conditions and the relative proximity of 

the former ice margin to the core location.  The close correspondence between 

sedimentological and foraminiferal changes allows palaeoceanographic interpretations to be 

made in turn according to foraminiferal assemblage zones. 

 

5.3.1 FAZ 1 (Before 12.3 ka BP, 1074-890 cm) 

The benthic foraminifera and sedimentological data support the interpretation of an ice-proximal 

glacimarine environment for the lower part of core MSM-343340 (Fig. 5.2 and 5.4).  Sediments 

in the lower 200 cm of the core are dominantly clays, typically laminated, interbedded with 

stratified diamicton, with gradational, conformable, or occasionally sharp boundaries between 

sediment units.  Foraminifera are rare or absent, indicating low benthic productivity and/or 

dilution due to rapid sedimentation.  These features are consistent with sediments deposited 

through suspension settling from meltwater plumes in an ice-proximal depositional environment 

(Mackiewicz et al., 1984; Dowdeswell et al., 2000; Ó Cofaigh and Dowdeswell, 2001).  

Variations in the abundance of IRD throughout this zone may correspond to changes in fine-

grained sedimentation ejected from the outlet glacier terminus, with intervals characterised by 

lower IRD possibly linked to greater suspension settling of fine-grained sediments.  Despite the 

lack of chronological control, these sediments were presumably deposited extremely rapidly and 

in close proximity to the calving margin.  Eitherway, this indicates that meltwater and calf-ice 

from fast-flowing ice exited Disko Bugt via outer Egedesminde Dyb during at least part of the 

Younger Dryas Stadial (GS-1), dated to ca. 12.8-11.7 ka BP (Rasmussen et al., 2006; Lowe et 

al., 2008) (12,896±138 to 11,703±99 yr. b2k on the GICC05 timescale, from NGRIP ice core).   
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The dominant foraminifera species in FAZ 1; C. reniforme, S. feylingi and the agglutinating S. 

biformis, are commonly found in glacimarine environments influenced by relatively cold water, 

extreme variations in salinity, and high sedimentation rates (Schafer and Cole, 1982; 1986).  

The dominance of C. reniforme indicates conditions at the seafloor most likely fluctuated 

between salinity extremes, presumably due to seasonally variable meltwater fluxes.  Turbid 

meltwater hampers primary productivity in surface waters (which is supported by low LOI 

values), thereby reducing delivery of food to the sea floor (Korsun and Hald, 1998).  This 

favours opportunistic species such as C. reniforme, which tolerate extreme seasonal variations 

in freshwater and sediment delivery, conditions usually found in close proximity to glacier 

calving margins (Korsun and Hald, 1998).  Other well-preserved fragile species (i.e. S. feylingi 

and S. biformis) found in sediments deposited before 12.3 ka BP are consistent with ice-

proximal conditions and high sedimentation rates (e.g. Lloyd et al., 2005; Ullrich et al., 2009; 

Jennings et al., 2010).  The excellent preservation of small, fragile Arctic calcareous fauna and 

the absence of organic test linings in the lower part of core MSM-343340 may be linked to rapid 

sediment accumulation before 12.3 ka BP, since the high dissolved CO2 content in Arctic water 

causes dissolution of dead calcareous fauna (e.g. Aksu, 1983; Hald and Steinsund, 1992; de 

Vernal et al., 1994; Jennings and Helgadottir, 1994). 

 

5.3.2 FAZ 2 (12.3-11 ka BP, 890-575 cm)  

The foraminifera and sedimentological data indicate the ice stream terminus retreated from 

close to the site of MSM-343340 after 12.3 ka BP, and ice-distal glacimarine conditions 

dominated outer Egedesminde Dyb between ca. 12.3 and 11 ka BP.  The transition from ice-

proximal to hemipelagic sedimentation in FAZ 2 marks a clear reduction in glacier influence 

compared to FAZ 1, with reduced sediment deposition from turbid meltwater plumes.  However, 

the ice stream in inner Egedesminde Dyb continued to exert a strong influence on 

environmental conditions in outer Egedesminde Dyb.  The distal-glacimarine indicator S. feylingi 

dominates FAZ 2, with smaller occurrences of the glacimarine species E. excavatum f. clavata 

and C. reniforme (Hald and Korsun, 1997; Jennings et al., 2001).  While these species are 

particularly dominant in unstable environments subject to large salinity fluctuations (e.g. Vilks, 

1969; Knudsen and Seidenkrantz, 1994), S. feylingi may have a narrower temperature and 
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salinity tolerance (e.g. Alve, 1995), suggesting higher and more stable bottom water 

temperatures and salinities prevailed during this period.  Indeed, in central West Greenland, S. 

feylingi has a weaker association to cold and relatively fresh water than C. reniforme and E. 

excavatum f. clavata (See Chapter 4).   

 

However, a strong meltwater influence may have created a highly stratified and stressed 

environment favouring glacimarine species.  Stainforthia feylingi colonises new habitats, and 

can survive with a low availability of food and oxygen (Gooday, 1993; Alve, 1995; 1999; Gooday 

and Alve, 2001), making it particularly suited to living in stratified waters.  Chondrites networks, 

the trace fossils of burrowing polychaetes searching for food, are often associated with low 

oxygen conditions (Eyles et al., 1992) and are indicative of pioneering colonisation by 

macrofauna (Rosenberg, 1979); interpretations consistent with foraminiferal evidence.  Since S. 

feylingi undergoes rapid population growth in response to fresh phytodetritus inputs (Alve, 1994; 

Gustafsson and Nordberg, 2001), extremely high concentrations in the upper part of FAZ 2 may 

reflect bloom events following the break up of seasonal sea-ice, or reduced glacier influence.   

 

5.3.3 FAZ 3 (11-8.8 ka BP, 575-125 cm) 

The transition between FAZ 2 and FAZ 3 at ca. 10.9 ka BP marks a major shift in 

oceanographic conditions on the shelf outside Disko Bugt.  This is most clearly indicated by a 

switch from dominantly calcareous to agglutinated-only foraminiferal assemblages dominated 

by C. arctica and S. biformis in the early Holocene, suggesting increasingly ice-distal conditions 

prevailed outside Disko Bugt, but still relatively cold water conditions.  High abundances of C. 

arctica are indicative of a well-mixed water column typical of open-marine conditions.  The high 

concentration of vertical escape structures suggests rapid sedimentation between 575 and 525 

cm, possibly reflecting a brief interval of enhanced meltwater plume influence, increasing 

sediment delivery to the core site at 11 ka BP.  In general, however, faunal changes are 

indicative of a less glacially-influenced environment, with a much weaker meltwater influence.  

Indeed, enhanced biological activity, revealed by increases in the [S/Al] ratio and percentage 

LOI, support a general reduction in glacier influence at this site, as does the enhanced 

bioturbation in the upper 400 cm of the core.  The increase in E. advena and C. jeffreysii 
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between 9.4 ka BP and 8.8 ka BP may reflect increased nutrient levels in diluted Atlantic Water 

(a ‘weak’ WGC) outside Disko Bugt. 

 

5.3.4 FAZ 4 (8.8 ka BP to present, 125-0 cm) 

The sedimentation rate falls by more than an order of magnitude shortly after 8.8 ka BP, from 

around 2.2 mm a-1 for the preceding 3.5 ka, to 0.2 mm a-1 for the upper part of the core 

indicates a dramatic decline in sediment supply.  The change in sedimentation rate is likely to 

occur at the boundary between FAZ 3 and FAZ 4, coincident with a change in the foraminifera 

species.  This shift is marked by a large, abrupt increase in organic test linings, and the 

continued absence of preserved calcareous foraminifera in FAZ 4; a trend identified in POR 18 

and DA00-06 in inner Disko Bugt by Lloyd et al. (2005).  To some extent, the data supports a 

link between dissolution of calcareous foraminifera and low sedimentation rates, as identified by 

Lloyd et al (2005), who conclude that reduced sedimentation exposes dead calcareous 

foraminifera to corrosive bottom waters.  Detailed discussions of the causes of calcium 

carbonate dissolution in Baffin Bay have been made elsewhere (e.g. de Vernal, et al., 1992).  

De Vernal et al. (1992) identify increasing calcium carbonate dissolution in the Davis Strait 

beginning during, or shortly before, the Early Holocene, indicated by an increasing ratio of 

organic test linings to calcareous foraminifera.  This pattern is similar to that identified in core 

MSM-343340.  However, the results from this study do not support their suggestion that cold, 

poorly oxygenated subsurface, Arctic-sourced, waters contribute to increased dissolution during 

the Holocene, since this interval is characterised by an increased abundance of species 

associated with Atlantic Water influence on the West Greenland shelf.  The initial shift to 

dominantly agglutinated fauna in FAZ 3 is not characterised by a coincident large increase in 

organic test linings, suggesting, in FAZ 3 at least, the faunal shift was due to environmental 

conditions and independent of changes in sedimentation rate.  

 

Foraminifera assemblages (characterised by A. glomerata, R. pilulifer, and S. difflugiformis) in 

FAZ 4 are indicative of warmer subsurface water temperatures (i.e. an increase in the strength 

of the WGC influence) at the core site of MSM-343340 over the past ca. 8.7 ka cal. BP. These 

species are found under the influence of Atlantic Water in Disko Bugt (Lloyd, 2006a; see 



Late Quaternary ice-ocean interactions in central West Greenland 

 

 
120 

 

Chapter 4).  Adercotryma glomerata is found under the influence of “Transformed” Atlantic 

Water in the outer parts of Svalbard’s fjords (Hald and Korsun, 1997), while S difflugiformis is 

common under Atlantic Water influence in outer Kangerdlugssuaq Fjord, East Greeenland 

(Jennings, and Helgadottir, 1994), and on the continental slope north of Svalbard (Scott and 

Vilks, 1991).  Sporadic occurrences of A. glomerata in core MSM-343340 from ca. 10 ka BP 

may reflect a weak Atlantic water influence outside Disko Bugt during intervals of reduced 

deglacial meltwater.  Prolonged sub-surface warming may also be marked by the appearance of 

E. advena at ca. 9.4 ka BP.  Many studies have linked E. advena to higher nutrient levels from 

pollutant outfalls, for example in Clam Bay, Nova Scotia (Clark, 1971), and Chaleur Bay, 

Canada (Schafer and Cole, 1974, Schafer, 1982).  High nutrient levels in West Greenland 

waters suggest enhanced entrainment of nutrient-rich Atlantic Water in the WGC, though to 

some extent may reflect greater surface water productivity and subsequent export of organic 

matter to the seafloor.  The highest LOI and [S/Al] values throughout the core, suggestive of 

increased primary productivity, support this interpretation. 

 

5.4 Discussion 

5.4.1 Timing and nature of marine-based deglaciation from the mid-shelf through Disko 

Bugt 

Figure 5.5 provides a conceptual representation of the retreat of the ice from the shelf through 

to the eastern margins of Disko Bugt and into Jakobshavn Isfjord based on new data and 

published information from Disko Bugt.  The retreat of ice is based on dates from a transect of 

marine sediment cores between outer Egedesminde Dyb and eastern Disko Bugt (cores MSM-

343340, MSM-343300, POR 18, and DA00-06, see Fig. 5.6) that provide minimum ages for 

deglaciation.  These offshore dates provide the most reliable data constraining the retreat of the 

marine-based ice sheet in Disko Bugt.   

 

The earliest date of 12.3 ka BP (12.6-12.1 ka BP, Table 5.1), obtained from a paired bivalve 

towards the top of the laminated lithofacies in core MSM-343340, provides a minimum age for 

deglaciation in Outer Egedesminde Dyb.  Sedimentation in FAZ 1 of MSM-343340 was likely to 

be rapid and short-lived owing to the close proximity of the ice front.  The high abundance of 
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ice-rafted material (Fig. 5.2) in Outer Egedesminde Dyb supports a nearby active calving margin 

during the YD and early Holocene.  With ice filling Disko Bugt during this period, icebergs must 

have exited to the east through Outer Egedesminde Dyb (e.g. Brett and Zarudzki, 1979), before 

flowing northwards into Baffin Bay. 

 

Figure 5.5 Conceptual cartoons of ice retreat from the outer shelf and across Disko Bugt.  

Cartoons in left panels show interpretations of major trends in data.  A plausible retreat scenario 

based on presently available data is illustrated in the right panel.  Red arrows (red panels) 

indicated the penetration of warm (solid) and ‘diluted’ (dashed) Atlantic-sourced water in the 

WGC.  Light blue arrows show meltwater and iceberg loss and trajectories, while dark blue 

arrows indicate phases of ice retreat.  Dashed blue lines highlight uncertainty in ice margin 

position. 
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Figure 5.6 Minimum ages for deglaciation in the Disko Bugt area, updated from Long et al. 

(2003) and Long et al. (2006).  The bold, marine-based dates are, west to east, from MSM-

343340, MSM-343300 (Jennings et al., 2010), POR 18, and DA00-06 (Lloyd et al., 2005).  The 

underlined calibrated dates indicate the approximate timing of the transition from glacimarine to 

more hemipelagic conditions.  Inner/Outer ED refers to the inner and outer parts of 

Egedesminde Dyb, the trough that runs from inner Disko Bugt to the outer shelf.  

 

The basal date from core MSM-343300 of 11.1 ka BP suggests deglaciation paused or slowed 

for ca. 1000 years (between MSM-343340 and MSM-343300, Fig. 5.5a and Fig. 5.6), perhaps 

linked to ice retreat into shallow waters between outer and inner Egedesminde Dyb.  While 

glacial marine conditions persisted for ca. 1,300 years until 11 ka BP at MSM-343340, these 

conditions only lasted for approximately 500 years until 10.6 ka BP at core MSM-343300 (Fig. 

5.6 and 5.7).  The longer glacial marine influence at MSM-343340 is most easily explained if 

deglaciation slowed, or there was a still stand, as ice retreated across the relatively shallow 

bank bisecting inner and outer Egedesminde Dyb.  Subsequent ice retreat towards, and into, 

Disko Bugt (Fig. 5.5b) appears to have taken place relatively quickly as suggested by Long and 

Roberts (2003), albeit slower than deglaciation of the outer shelf.  As ice retreated landwards of 
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core MSM-343340 and into Disko Bugt (Fig. 5.5.b), there was amelioration to more open-marine 

conditions outside Disko Bugt at ca. 11.1 ka BP, possibly reflecting a decline in meltwater 

influence.     

 

Deglaciation slowed as ice retreated into shallower waters in eastern Disko Bugt at ca. 10.3 ka 

BP at POR 18 (Lloyd et al., 2005).  This period was marked by relative ice stream stability for 

ca. 1000 years before ice retreated into Jakobshavn Isfjord.  These correlations suggest glacial 

marine influence persisted at station MSM-343300 until ca. 10.6 ka BP.  Rasch (2000) interprets 

a sudden fall in the marine limit at Aasiaat (southern margin of outer Disko Bugt, Fig. 5.6) as 

evidence for a stillstand or advance of the main ice sheet at ca. 11 ka BP.  It is possible that the 

bedrock high between Aasiaat and Qeqertarsuaq reduced the speed of retreat of the ice into 

Disko Bugt.  The escape structures in core MSM-343340 at ca. 11 ka BP suggest an interval of 

relatively high sedimentation, perhaps suggesting a period of relative ice stream stability in the 

early Holocene.   

 

In southern Disko Bugt, the outer coast became ice free at, or just before, 10.5 ka BP at 

Qeqertarsuatsiaq based on bulk sediment dating of the onset of organic accumulation in coastal 

lakes (9330±99 14C yr BP, AA-38842, Long and Roberts, 2003) and 10.4 ka BP (9185±62 14C yr 

BP, Long and Roberts, 2003) at Umivik and Innaarsuit, respectively (Fig. 5.6).  Deglaciation of 

the inner coast at Akulliit was complete by ca. 9.5 ka BP (8585±86 14C yr BP, Long and 

Roberts, 2002).  These dates suggest ice retreated from the outer coast towards the eastern 

margin of Disko Bugt in approximately 1000 years.  The decline in IRD at ca. 10 ka BP in MSM-

343340 (Fig. 5.2; between 10.6 and 9.4 ka BP) appears to support these data.  If ice had 

retreated to the eastern coast of Disko Bugt by 10 ka BP, and ice had vacated the Vaigat, then 

modern surface circulation patterns may have been established in Disko Bugt, with the result 

that calf-ice would be predominantly routed northwards, exiting Disko Bugt through the Vaigat, 

and not southwest through Disko Bugt (Fig. 5.5c; Andersen, 1981a). 
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Figure 5.7 Summary data from three cores (MSM-343340, MSM-343300, DA00-06) along a 

transect between outer Egedesminde Dyb and inner Disko Bugt.  Core scanning magnetic 

susceptibility (MS) data is shown for cores MSM-343340 and MSM-343300 and volumetric MS 

for core DA000-06.  Broad environmental descriptions (ice-proximal glacimarine to open 

marine) are shown for MSM-343340 and DA00-06, and suggested environment descriptions for 

MSM-343300 based on MS and [S/Al] trends. 
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The southern coast of Disko Island appears to have been deglaciated later, with dates of 10 ka 

BP obtained from Qeqertarsuaq (shells, 9240±250 14C yr BP, Ingólfsson et al., 1990) and 

Aqajaruat (gytjja, 8950±125 14C yr BP, Ingólfsson et al., 1990) to the east, which suggest ice 

retreated rapidly across the bay.  Indeed, dates from the outer coast of Arveprinsen Ejland, 

northeastern Disko Bugt, became deglaciated before 9.9-9.4 ka BP (8820±100 14C yr BP, Long 

et al., 1999, and 8760±125 14C yr BP, Ingólfsson et al., 1990, respectively, Fig. 5.6).  These 

dates may more closely mirror the behaviour and retreat of the ice stream in Disko Bugt, 

retreating even faster than surrounding ice to the eastern coast of Disko Bugt (Fig. 5.7c).   

 

Deglaciation of Jakobshavn Isbræ paused for at least 1000 years at the eastern margin of Disko 

Bugt.  Ice retreated landwards of core POR 18 by 10.3 ka BP.  The dominance of glacimarine 

foraminifera species in POR 18 suggest the ice margin was relatively stable, and stayed close 

to the core site until ca. 9.2 ka BP (Lloyd et al., 2005).  After 9.2 ka BP, there is a shift to 

warmer Atlantic Water species, suggesting ice retreated further landwards.  This is supported 

by evidence from core DA00-06 (Fig 5.6), which indicates that the ice margin was located east 

of this site by ca. 8.3 ka BP, and was presumably grounded on Isfjeldbanken, a shallow sill with 

depths of 50-200 m at the mouth of Jakobshavn Isfjord (Lloyd et al., 2005).  A significant 

reduction in fine grained sedimentation (Fig. 6 in Lloyd et al., 2005) and an associated decline in 

sedimentation rate (13.81 mm a-1 to 0.24 mm a-1), indicating a marked reduction in fine grained 

sedimentation produced at the ice terminus, records the withdrawal of ice from a grounded 

position on Isfjeldbanken into Jakobshavn Isfjord (Lloyd et al., 2005).  The timing of ice retreat 

into the Isfjord has been dated to 6.7 ka BP based on a new date from DA00-06, in addition to 

those presented by Lloyd et al. (2005) (J.M. Lloyd, personal communication).  

      

As the Greenland Ice Sheet became land-based in Disko Bugt and areas to the south during the 

early Holocene, Jakobshavn Isbræ probably remained as the only significant contributor to 

sediment supply to the southwest of Disko Bugt.  Thus, the sudden drop in sedimentation rate in 

core MSM-343340 shortly after 8.7 ka BP may be best explained by the retreat of Jakobshavn 

Isbræ into Jakobshavn Isfjord at 6.7 ka BP, identified by Lloyd et al. (2005).  This would have 

permitted the establishment of modern Holocene oceanographic conditions (Fig. 5.5d) with 
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relatively warm and saline sub-surface waters penetrating into Disko Bugt (see increase in 

Atlantic water foraminifera species in MSM-343340 and DA00-06, Fig. 5. 6). 

 

5.4.2 Driving mechanisms of deglaciation 

These results indicate that different mechanisms controlled Jakobshavn Isbrae’s mode of 

deglaciation across the central West Greenland shelf at various stages.  Below, the relative 

importance of atmospheric warming, the influence of bedrock topography, relative sea-level 

change and oceanic warming in determining the timing and nature of ice retreat across the shelf 

are discussed.   

 

Deglaciation of outer to mid-shelf outside Disko Bugt 

Recent observations of rapid melting of floating ice shelves in Greenland and Antarctica (e.g. 

Rignot and Jacobs, 2002; Thomas, 2004; Payne et al., 2004; Walker et al., 2007; Holland et al., 

2008) has raised the possibility that marine forcing (by warmer ocean temperatures increasing 

melt rates at the marine-based ice sheet margin) as a driving mechanism for marine-based ice 

sheet collapse may be more important that previously thought.  High-resolution foraminiferal 

evidence through the deglacial sequence in core MSM-343340 does not show any evidence for 

warming of sub-surface waters during initial deglaciation.  The first evidence of a weak and 

sporadic Atlantic Water influence may be indicated by the low abundance of R. turbinatus from 

ca.11 ka BP.  A significant Atlantic Water influence is not identified until after 8.7 ka BP, by 

which time ice had retreated onto land in Disko Bugt (e.g. Long and Roberts, 2001; Long et al., 

2006; Briner et al., 2010).  

 

Roberts et al. (2009; 2010) identify significant ice sheet surface lowering of more than 400 m in 

the Sisimiut area (ca. 200 km south of Disko Bugt; Fig. 1.2), beginning ca. 21 ka BP, before 

thinning rapidly until ca. 13.6 ka.  This pattern of ice thinning is partly driven by increasing air 

temperatures and surface ablation into and during the Bølling-Allerød interstadial (GI-1e to GI-

1a; Björck et al., 1998) at ca. 14.7-12.65 ka BP (Roberts et al., 2009; 2010).  It is likely that 

surface melting of the neighbouring Jakobshavn Isbræ ice stream complex also took place at 

this time.   
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Roberts et al. (2009; 2010) find that rising RSL and ice sheet thinning combined to drive marine-

based ice sheet retreat in the Sisimiut region.  Modelling by Simpson et al. (2009) predicts a late 

and rapid deglaciation in Disko Bugt and the adjacent shelf, initiated by rising relative sea level 

between 12 and 11 ka BP.  This corresponds very closely to the pattern of deglaciation 

identified in this study.  To the east of site MSM-343340, the RSL highstand at Qeqertarsuatsiaq 

(116.07 ± 1.8 m a.s.l.), southwestern Disko Bugt (Fig. 5.5), was reached at ca. 11-10.2 ka BP 

(Long and Roberts, 2003).  It is likely that fast-flowing ice extended onto the outer shelf at the 

LGM.  The marine-based outlet glacier occupying outer Egedesminde Dyb would have been 

more susceptible to collapse by rising RSL than the ice grounded on the shallow banks at either 

side of Egedesminde Dyb.  The style of retreat is likely to resemble that of a calving bay re-

entrant (e.g. Hughes, 2002; Leventer et al., 2006).  This model for deglaciation is favoured by 

the bathymetry in the Disko Bugt area, with shallow banks either side of the deep water trough.  

Indeed, the morphology of the Hellefiske moraines either side of outer Egedesminde Dyb, which 

are orientated in a landward direction adjacent to the trough (Fig. 5.6), appear to support a 

calving bay.       

 

Continued increasing RSL and surface lowering of ice occupying the trough from Disko Bugt to 

the outer shelf is likely to have destabilised and floated marine-based ice at the grounding line, 

reducing the friction between ice stream and bedrock, enabling higher flow velocities and 

subsequent ice retreat.  Thinning of tidewater ice streams reduces the effective bed pressure at 

the marine terminus, increasing buoyancy of the ice front, and resulting in accelerated ice flow.  

The reduction in backforce/stresses is propagated ‘upstream’ in a process termed the 

“Jakobshavn effect” (Hughes, 1986).  This would have resulted in increased fracturing 

(crevassing) and thinning during deglaciation, enabling greater delivery of meltwater to the base 

of the ice stream.  This would have perpetuated the so-called “Zwally effect”, in which increased 

surface ablation and meltwater penetration to the ice sheet bed facilitate higher ice flow 

velocities through increased basal lubrication and subsequent ice/bed decoupling (Zwally et al., 

2002).  The geometry of Outer Egedesminde Dyb (straighter than inner Egedesminde Dyb, with 

no shallow topography) is likely to have facilitated a rapid deglaciation (Warren, 1991).  The 
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retreat of the grounding line downslope into deeper water would have further increased the 

drawdown of interior ice, hastening ice retreat (Hughes, 1992).   

 

Terrestrial geomorphological evidence in eastern Disko Bugt supports higher ice flow velocities 

and ice/bedrock decoupling (Roberts and Long, 2005).  Roberts and Long (2005) suggest the 

high density of short bedforms (particularly whaleback bedforms modified by plucking) adjacent 

to Jakobshavn Isfjord resulted from increased ice velocities, which promoted greater basal 

erosion rates, and subsequent plucking.  Plucking of bedforms may also have been promoted 

by basal pressure and freeze-thaw fluctuations linked to greater meltwater penetration to the 

base of the ice stream.  Indeed, RSL investigations by Long and Roberts (2003) identify rapid 

and synchronous glacio-isostatic uplift across Disko Bugt, suggesting rapid ice thinning caused 

by atmospheric warming was responsible for initial deglaciation.  The absence of evidence for a 

punctuated deglaciation from RSL curves outside Disko Bugt may not be surprising if these 

pauses were short-lived or the isostatic response of the shelf was “dampened” by seawater 

replacing ice on the shelf.  

 

Deglaciation of the mid-shelf to inner-Disko Bugt 

The role of topographic controls on ice stream dynamics has been widely debated, particularly 

for central West Greenland (e.g. Warren and Hulton, 1990; Warren, 1991; Weidick, 1996; 

Roberts and Long, 2005).  Understanding the deglaciation of Jakobshavn Isbrae is an 

interesting case.  The geometry of the outer shelf is dominated by a typically wide, deep, and 

straight, glacially-abraded trough (outer Egedesminde Dyb, Fig. 5.5), while the inner shelf 

consists of deeper (greater than 900 m, and shoaling to ca. 400 m in eastern Disko Bugt), 

narrower, and atypically non-linear/curvilinear channels.  This trough is bisected by two notable 

bedrock highs; one dividing Egedesminde Dyb into an outer and inner trough on the shelf west 

of Disko Bugt, and a second between Qeqertarsuaq and Aasiaat at the entrance to Disko Bugt 

(Fig. 5.5) (Long and Roberts, 2003).  The fjords in Disko Bugt are over-deepened, with 

Jakobshavn Isfjord exceeding 1,500 m in depth (Clarke and Echelmeyer, 1996), and have 

further ‘pinning’ points.  Ice streams were topographically routed in Disko Bugt, and probably 

converged leading to a massive drawdown of ice from Disko Bugt and north of Nordre 
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Strømfjord to form a large coalesced ice stream on the outer shelf (Roberts and Long, 2005).  

On the outer shelf, the glacial Jakobshavn Isbrae probably exceeded 50 km in width and ca. 

800-1000 m in thickness (Long and Roberts, 2003). 

 

Since it is likely that the outer shelf deglaciated rapidly, it is possible that the ca. 1000 year 

difference in minimum ages for deglaciation between core MSM-343340 (ca. 12.3 ka BP) and 

MSM-343300 (ca. 11.1 ka BP; Fig. 5.5) suggests a slow-down or pause in deglaciation outside 

Disko Bugt.  A slow down in ice retreat is most easily explained by topographic ‘pinning’ of the 

ice stream terminus as the grounding line retreated into the shallower waters between outer and 

inner Egedesminde Dyb.  The bank bisecting this trough is at least ca. 160 m shallower than 

outer Egedesminde Dyb and ca. 550-700 m shallower than water depths in parts of inner 

Egedesminde Dyb (e.g. Harff, 2007).  This would have resulted in a loss of basal buoyancy and 

increased ice-bedrock coupling, thereby reducing ice drawdown and increasing ice stream 

stability (Hughes, 1986; Warren and Hulton, 1990; Hughes, 1992; Warren, 1992).   

 

5.4.3 Initiation of West Greenland Current in Disko Bugt 

The WGC was the dominant influence on Baffin Bay oceanography before the last deglaciation 

because extensive ice cover in northern Baffin Bay prevented inflow of cold, relatively fresh, 

Arctic water through Nares Strait and other northern Arctic Channels (Aksu and Piper, 1979; 

Aksu and Mudie, 1986).  However, this regime changed as these channels opened up during 

deglaciation, with increasing influence of cold, low-salinity waters from the Arctic Ocean. 

 

The majority of relatively warm, saline WGC water is deflected in westward gyres at Davis Strait 

and west of Disko Bugt.  However, the WGC water that penetrates into northern Baffin Bay 

provides a good indication of the strength (relative temperature) of the northwards-flowing 

current.  Early Holocene penetration of Atlantic Water along West Greenland and into northern 

Baffin Bay, and subsequent changes in the relative strength of the WGC, is well documented 

(Donner and Jungner, 1975; Kelly, 1979, 1985; Osterman and Nelson, 1989; Feyling-Hanssen 

and Funder, 1990; Ingólfsson et al., 1990; Funder and Weidick, 1991; Bennike et al., 1994; 

Dyke et al., 1996; Kelly et al., 1999; Bennike et al., 2000; Levac et al., 2001; Bennike, 2004; 
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Knudsen et al., 2008b).  In central East Greenland, Hjort and Funder (1974) found that the 

subarctic bivalves Mytilus edulis and Chlamys islandica had expanded into areas no longer 

habitable between ca. 9 and 5.9 ka BP (8400-5500 14C yr BP).  They suggest larvae must have 

been transported here in the West Spitsbergen Current, implying a greater influx of Atlantic 

Water along East Greenland, and therefore contributing to a relatively warmer, more saline, 

WGC.  Knudsen et al. (2008b) suggest increasing WGC influence resulted in changes in the 

position of the sea-ice limit in northern Baffin Bay after ca. 10.9 ka BP, as indicated by 

increasing planktonic foraminifera flux, and supported by heavier benthic foraminifera δ18O 

values.  The initial increase in the flux of dinoflagellate cyst after ca. 10.4 ka BP (9275±110 14C 

yr. BP, Ua-4448) indicates continued amelioration of surface waters (Levac et al., 2001).  

Radiocarbon dating of the earliest Subarctic mollusc species (e.g. Mytilus edulis Linné, Chlamys 

islandica Møller, Balanus crenatus Bruguière, Balanus hammeri (Ascanius)) indicate the WGC 

penetrated into the Thule area of northern Baffin Bay by ca. 10 ka BP (9,150±95 14C yr. BP, K-

4781, Mörner and Funder, 1990; Kelly et al., 1999).  However, the relative strength of the WGC 

fluctuated during the Early Holocene, with cooling episodes around 10 ka BP and 8.8 to 8.2 ka 

BP (Knudsen et al., 2008b).   

 

Benthic foraminiferal assemblages in core MSM-343340 indicate relatively warm Atlantic-

sourced water impinged on the shelf outside Disko Bugt (in outer Egedesminde Dyb) after ca. 

8.7 ka BP (FAZ 4 in Fig. 4).  However, there may have been a weak WGC influence from ca. 10 

ka BP, with brief incursions likely facilitated by reduced meltwater flux from the retreating ice 

sheet, followed by gradual sub-surface warming after ca. 9.4 ka BP.  Lloyd et al. (2005) identify 

warming of bottom waters in eastern Disko Bugt after 9.2 ka BP (core POR18).  However, the 

major faunal shift, which is similar to that identified in MSM-343340, takes place further up-core, 

between PORZ2 and PORZ3, for which there is no chronological control.  The penetration of 

warm Atlantic water into Disko Bugt at, or after, 8.7 ka BP may, therefore, be reasonable.  

Warming indicated by foraminiferal assemblages in core MSM-343340 corresponds well to the 

earliest occurrence of boreal molluscs in central West Greenland, which is dated to ca. 8.9 ka 

BP (8,360±120 14C yr. BP, K-5144, Funder and Weidick, 1991).    
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These data suggest a warming of the WGC penetrating to northern Baffin Bay (i.e. greater 

Atlantic Water entrainment) began at least a few hundred years before major warming in the 

Disko Bugt area (at sites MSM-343340 and POR-18).  Warm Atlantic water incursions to inner 

shelf areas north of Disko Bugt suggest a weakening in Polar water influence at this time (e.g. 

Dyke et al., 1996).  However, the absence of an Atlantic Water signal on the shelf in the Disko 

Bugt area at this time suggests the northwards-flowing WGC was diluted (i.e. meltwater mixed 

with, and lowered, WGC bottom water temperatures) or re-routed off the shelf by glacial 

meltwater exiting Disko Bugt from the retreating ice margin, thereby restricting access into 

Disko Bugt.  Indeed, the lag between increased calcareous dissolution (here assumed to be due 

to reduced sedimentation, Fig. 5.4) and a significant increase in Atlantic Water-indicator species 

suggests reduced glacimarine influence was followed later by increasing Atlantic Water inflow.  

However, the absence of a clear Atlantic signal in close proximity to the ice margin during 

deglaciation does not preclude an oceanic influence on ice retreat.  Motyka et al. (2003) point 

out that warmer, saline ocean water would be cooled and diluted as it mixes with subglacial 

meltwater flux at the ice terminus.  It may not, therefore, be possible to identify a true Atlantic 

Water influence on ice margin stability during initial deglaciation due to the dilution from 

meltwater flux.    

 

The withdrawal of ice into Jakobshavn Isfjord appears to have had a major impact on Disko 

Bugt, reducing the sediment flux derived from meltwater plumes and ice-rafting, as well as 

substantially reducing the influence of meltwater discharged from Jakobshavn Isbræ.  

Consequently, in the absence of a substantial volume of meltwater to deflect surface and 

subsurface currents, the modern circulation pattern of water masses in Disko Bugt was 

established.  Instead of meltwater and icebergs exiting Disko Bugt to the west, the modern 

regime is characterised by a counter-clockwise surface circulation, with waters entering from 

south-western Disko Bugt, and exiting to the north through the Vaigat, which became the main 

conduit for icebergs and meltwater leaving Disko Bugt (Andersen, 1981a). 
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5.5 Chapter summary 

In total, fast-flowing ice on the West Greenland shelf retreated some 180 km to eastern Disko 

Bugt between 12.3 and 6.7 ka cal. BP, averaging roughly 30 m a-1.  Initial deglaciation appears 

to have been conditioned by lowering of the ice sheet surface due to atmospheric warming 

and/or dynamic thinning.  As RSL increased, thinner ice resting on shallow banks would have 

been readily destabilised (due to lower basal buoyancy) and collapsed.  Greater ice thicknesses 

and drawdown of interior ice (due to the removal of adjacent ‘butressing’ ice) probably 

maintained ice flow out of Disko Bugt through Egedesminde Dyb after the initial collapse of 

adjacent (inter-ice stream) marine-based ice.  The subsequent deglaciation of the mid-shelf to 

the modern coastline in Disko Bugt is characterised by a slower and episodic marine-based ice 

retreat, suggested to be mainly the result of topographic pinning as the ice retreated between 

shallower and deeper waters.   
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Chapter 6 

 

DEGLACIAL AND HOLOCENE 

PALAEOCEANOGRAPHIC RECORD FROM 

UUMMANNAQ FJORD, WEST GREENLAND 

 

 

 

 

Kerstin Perner provided loss-on-ignition and moisture content data from core MSM-343520.  

XRF and magnetic susceptibility core scanning data was undertaken aboard the R/V “Maria S. 

Merian” shortly after core retrieval.  Kerstin Perner and Matthias Moros (IOW) provided digital X-

ray radiographs of core MSM-343520_G and grain size data obtained by sieving of coarse grain 

size fractions.  Noortje Dijkstra (University of Amsterdam) provided grain size data analysed by 

laser diffraction.  David H. Roberts provided unpublished cosmogenic radionuclide ages 

obtained from inner Uummannaq Fjord which permits a greater understanding the deglacial 

chronology from the mid- to inner-shelf. 
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Chapter 6 

Deglacial and Holocene palaeoceanographic record from  

Uummannaq trough, West Greenland 

 

 

6.1 Introduction 

Few studies have investigated the palaeoenvironmental and glacial history of the onshore and 

offshore Uummannaq area.  Our current understanding of the timing of deglaciation in this part 

of central West Greenland is limited.  Following on from this, our understanding of the driving 

mechanisms behind ice sheet retreat in this area is also limited.   

 

This chapter aims to assess the timing of deglaciation of the continental shelf in the 

Uummannaq area and compare deglaciation here to Disko Bugt and the south.  The chapter will 

also investigate the interaction between ocean circulation and the ice sheet in Uummannaq, 

specifically identification of the meltwater influence from the Greenland Ice Sheet and initiation 

of the WGC.  High resolution analysis of the full Holocene record will also allow investigation of 

the variability of the WGC flow (particularly temperature and salinity) that may be linked to ice 

margin response.  Investigating ice margin reponse to short-lived climate events and changes in 

ocean temperature during the Holocene provides an opportunity to assess ice-ocean 

interactions in central West Greenland.   

 

6.2 Results 

6.2.1 Chronology and sedimentation rates 

The age model for core MSM-343520 is based on ten AMS radiocarbon dates from a 

combination of benthic foraminifera (six dates) and intact shells (four dates) for the gravity core 

(Table 6.1), and 210Pb and 137Cs dating for the multicore.  

 

Linear sedimentation rates between radiocarbon-dated horizons are used to produce the age-

depth model for core MSM-343520_G.  Sedimentation rates are relatively consistent, varying 

between 0.52 to 1.11 mm a-1 (Fig.6.1), though are generally higher in the lower part of the core, 
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and show a slight decline at ca. 5 ka BP.  An AMS radiocarbon date of 10.9 ka BP (11,158-

10,630 cal. yr BP) at 9.01 m core depth provides a minimum date on deglaciation from the 

Uummannaq shelf.  The absence of sufficient calcareous material below 9 m prevents greater 

age control.  All radiocarbon dates lie in stratigraphical order (Table 6.1) and the sedimentation 

rate remains relatively high and constant throughout the core (Fig. 6.1).  While there is evidence 

of reworking in the gravity core, intense bioturbation is limited to the upper 50 cm of the core 

(see 6.2.2 below).  Each 2 cm sample represents an 18 to 38.5 year time slice, before 

accounting for the effects of bioturbation.   

 

The ‘Simple’ (CF:CS) model was used to construct the 210Pb age-depth model (Fig. 6.2c).  The 

decrease in 210Pbexcess closely resembles a near-ideal exponential decrease in 210Pb activity, and 

supports the use of the ‘Simple’ model (Robbins, 1978; Appleby and Oldfield, 1978) (Fig. 6.2a).  

Since there is very little variability in grain size distribution throughout the core (samples 

typically contain ca. 33.1% clay, 62.9% silt, and 4% sand) (Krauβ, 2009), there should not be 

any grain size-related variations in 210Pb activity.  137Cs activity counts were very low (typically 

less than 1.8 mBq g-1), though nonetheless supports the 210Pb chronology shown in Fig. 6.2c.  

Variability in 137Cs counts between samples may suggest that the sediment has not been 

significantly reworked (e.g. by bioturbation) following deposition. 

 

Both the multicore and gravity core of MSM-343520 therefore provide a reliable, high-resolution 

record of ice-marginal activity and oceanographic conditions since deglaciation.  Multicore 

(MSM-343520_MC) and gravity core (MSM-343520_G) data are presented seperately because 

there was insufficient calcareous (dateable) material for tie-in dates that could be used to create 

a reliable composite record (spice records together) for station MSM-343520.   
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Table 6.1 Radiocarbon dates from core MSM-343520_G.  All dates have been calibrated in 

Oxcal v4.1 (Bronk Ramsey, 2009) using the Marine09 calibration curve (Reimer et al., 2009), 

with ∆R=0±0.   

 

 

Figure 6.1 Age-depth model for core MSM-343520_G.  Age-depth model for MSM-343520_G is 

based on linear interpolation between mean calibrated radiocarbon ages.  Grey error bars 

indicate the two standard deviation age range. 

Core depth 
(cm) 

Lab. code Material  14C age ± 
1σ (yr BP) 

Mean calibrated 
age (yr BP) 

Age range  
2σ (yr BP) 

41 Poz 22364 Shell 1205 ± 30 744 831-666 

161 Poz 22365 Shell 2260 ± 30 1867 1963-1780 

216 – 218 LuS 8601 
Benthic 
foraminifera 

3055 ± 60 2836 2980-2714 

328 – 330 Lus 8550 
Benthic 
foraminifera 

4730 ± 70 4995 5220-4821 

452 – 456 Lus 8549 
Benthic 
foraminifera 

6125 ± 65 6555 6713-6400 

480 AAR 11700 Bivalve 6326 ± 43 6790 6906-6668 

556 – 560 Lus 8548 
Benthic 
foraminifera 

7065 ± 70 7547 7666-7424 

640 – 642 Poz 30962 Bivalve 7900 ± 40 8364 8457-8279 

692 – 694 Lus 8547 
Benthic 
foraminifera 

8340 ± 70 8896 9106-8655 

896 – 906 Lus 7707 
Benthic 
foraminifera 

9970 ± 100 10908 11158-10630 
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Figure 6.2 210Pb age-depth model for multicore MSM-343520_MC; (A), Total 210Pb (mBq g-1; 

grey marks) and excess 210Pb (unsupported 210Pb; black marks) with 1σ error bars, plotted 

versus core depth. (B), Calculation of linear sedimentation rate.  (C), Age-depth model based 

on the ‘Simple’ (CF:CS) model with 1σ x-axis error bars.  The red square marks the estimated 

position of the A.D. 1963 137Cs bomb spike.  The usefulness of 210Pb dating of sediments 

extends to just before A.D. 1900.  A linear approximation for the sedimentation rate (B) appears 

to be robust for this interval, and in the absence of other dating evidence, is extended 

throughout core MSM-343520_MC. 
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6.2.2 Core sedimentology and geochemistry 

In the following section, descriptions of core sedimentology are based on visual core logging, 

analysis of X-ray radiographs and grain size analyses, complemented by geochemical analyses 

including magnetic susceptibility and major elemental analyses by scanning XRF.  The close 

correspondence between silt/sand (>4 μm) content and the [Si/Al] XRF ratio throughout core 

MSM-343520_G, shown in Fig. 6.3, suggests [Si/Al] may provide a reasonable high-resolution 

record of changes in clay content.  This ratio varies depending on the relative abundance of 

quartz (SiO2; coarse grain fractions) to aluminosilicates, which form a major component of clay 

minerals (e.g. Feniak, 1944).  Higher [Si/Al] XRF ratios should therefore be linked to greater 

silt/sand content and lower clay content.   

 

FAZ 1a (Before ca. 11 ka BP, 989-915 cm) 

Sediments in FAZ 1a (989-922 cm, except 967-962 cm) are classified as clay (55.1-79.5 % clay 

content) according to analyses by laser diffraction, and have a high water content (typically 

>40%, Fig. 6.4).  X-ray radiographs show parallel laminated mud from 989 to 969 cm (Fig. 

6.5H).  Visual core descriptions indicate these are alternating layers of clay and clay/silt with 

fine sand, possibly rhythmically deposited cyclopels.  Coarse sediment particles (defined as 

particles > 63 um and > 2 mm) are abundant from 989 to 953 cm (11.8-11.4 ka BP) and 936 to 

922 cm (11.3-11.1 ka BP) (see Fig 6.4).  The laminated sediments grade into weakly stratified, 

matrix-supported diamict (978-968 cm), which is overlain by clast-poor clays.  X-rays suggest 

there may be loading structures beneath a large (>3.5 cm) clast at the lower boundary of this 

unit, though visual inspection suggests this is a void that opened as the sediments dried during 

core analyses and sampling.  The very dark greyscale X-ray radiograph for this area indicates 

high density (see shaded region, Fig. 6.4), confirmed by the high dry bulk density (1.37 g cm-3).  

Other characteristics include low water content (30.1%), higher coarse-grained sediment 

content, high magnetic susceptibility (ca.150 SI), and low LOI (ca. 4.6%).  The C/N ratio for the 

top of this interval is very high (31.8).  A small number (17) of benthic foraminifera were 

identified in the centre of this unit.  
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The sediments from 962-957 cm are clay with weakly developed diffuse and wispy laminations.  

Coarse sediments (clasts > 2 mm in Fig. 6.3 and % sand > 63 μm in Fig. 6.4) are absent from 

this unit, though can be identified between 954-957 cm.  Coarse particles are generally absent 

from the clay sediments in the interval 954-936 cm, apart from a brief section where there is a 

clustering of denser material (Fig. 6.5f) indicating turbidity (possibly traction current activity), 

with a possible rip-up from the underlying unit.     

 

Coarse sediment particles are common from 936 cm to 922 cm.  This interval contains textural 

variations where higher concentrations of coarse sediment can be identified.  Cross-bedded 

ripples become more distinct upcore in this section (lower part of Fig. 6.5h), and correspond to 

an upward coarsening in sediments from clay to fine sandy mud.  A continuous upcore 

presence of foraminifera begins from 928 cm.  The boundary between this unit and the 

overlying diamict (FAZ 1b) at 922 cm appears sharp.   

 

FAZ 1b (ca. 10.7-11 ka BP, 915-879 cm)  

Sediments from 922 cm (the upper 7cm of FAZ 1a) to 881 cm (Fig. 6.3 and 6.4) are primarily 

massive, with abundant coarse-grained clasts.  These sediments are similar to the unit between 

967 cm and 962 cm, with low water content (typically 35-38%), high MS (ca. 250 SI), higher 

DBD (ca. 1 g cm-3), which is further suggested by low greyscale values from the X-ray 

radiograph (Fig. 6.4).  The [K/Ti] XRF integral ratio is low (< 2), as is the LOI (< 6%), while the 

C/N ratio for this interval decreases.  The sediments (< 2 mm fraction) in this zone are 

predominantly mud, typically containing 50-60% clay.  Benthic foraminifera increase in 

abundance, and are present throughout this zone. 

 

FAZ 2 (10.7-7.3 ka BP, 879-531 cm) 

There is a gradual transition in the lower part of FAZ 2 (879-867 cm) to less dense sediments 

(higher water content, lower DBD) with declining coarse grain content.  Sediments above 867 

cm are composed of predominantly poorly or very poorly sorted clayey mud.  Mean grain size 

(and sorting) generally increases from the base of the core to 700 cm, from which there are 

small, but less distinct, changes in mean grain size trends in the sediments less than 2 mm in 
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size.  There are chondrites (pyrite-infilled burrows) identifiable in X-ray radiographs between 

850 cm and 750 cm (Fig. 6.5c).  Above this, there is little evidence of bioturbation until 570 cm, 

where there are some sub-vertical burrows between 570 cm and 550 cm (Fig. 6.5b), followed by 

a small occurrence of pyrite-infilled burrows between 545 cm and 520 cm.   

 

FAZ 3 (7.3-3.5 ka BP, 531-251 cm) 

There is a slight upward coarsening in mean grain size (not shown) through FAZ 3, with 

sediments grading from clayey mud (below 450 cm) to coarse silt (Fig. 6.3).  There is evidence 

of burrowing in this zone, though this does not appear as intense as in preceding or following 

sediments.  Loss-on-ignition values are ca. 6.5%, and XRF integral ratios for [S/Al] increase 

from ca. 10 to 12, while [K/Ti] decreases slightly from ca. 1.5 to 1.  Magnetic susceptibility is 

relatively high, and increases further, from 250 SI to 300 SI coincident with changes in XRF 

ratios at ca. 370 cm. 

 

FAZ 4 (3.5 ka BP to present, 251-0 cm) 

Silty mud sediments continue throughout most of FAZ 4, with sandy mud present in the upper 

20 cm of the core (Fig. 6.3).  Above 60 cm core depth, bioturbation becomes more intense, 

particularly between 43 cm and 20 cm (see Fig. 6.5a).  While there is less bioturbation in the 

upper 20 cm of the core, these sediments contain a high percentage (up to 33 %) of sand.  

Sediments in FAZ 4 are also characterised by gradually decreasing C/N ratios (from ca. 11 to 

9.9), generally increasing [S/Al] and [Si/Al] XRF ratios, and a generally decreasing [K/Ti] XRF 

ratio.  Magnetic susceptibility initially declines slightly, before stabilising at ca. 220 SI, while LOI 

values increase from 6.1% to 8% between 250 cm and 180 cm, before steadily declining to ca. 

6.4% at the top of the core.  Dropstones (clasts > 2 mm) in FAZ 4 are rare, and are significantly 

less abundant compared to lower sediments.  Foraminiferal abundance in FAZ 4 is generally 

high, particularly in the upper 120 cm. 
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Figure 6.3 Stratigraphy of core MSM-343520_G, with graphs showing sedimentological and 

geochemical data.  Grey shading highlights the position of foraminiferal assemblage zones.  

The position of example X-ray radiographs are marked, and are shown in order, from A at the 

top of the core, to H at the base of the core.  Sediment colour abbreviations are; o.g., olive grey; 

l.o.g., light olive grey. 
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Figure 6.4 Sedimentology and geochemistry for the lower 2 metres of core MSM-343520_G, 

with X-ray radiographs shown on the right.  Data is shown against extrapolated age-depth 

model and core depth.  Grey shading shows the position of diamict core sections (dark intervals 

on the X-ray radiograph).  The unshaded intervals below 900 cm are characterised by laminated 

sediments, while sediments in the upper unshaded interval is characterised by more 

hemipelagic sedimentation,  
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Figure 6.5 Example X-ray radiographs of sections of core facies in core MSM-343520_G 

(Positions of example sections are marked on Fig. 6.3): (A), intense bioturbation; (B), sub-

vertical burrows; (C), pyrite-filled ichnofossils; (D), hemipelagic sedimentation  with ice-rafted 

dropstone indicated by arrow; (E), transition from ripple, cross-laminated sediment to overlying 

diamict; (F), weakly laminated muds (predominantly clay) with wispy laminae and evidence of 

turbidty and possible rip-up (indicated by arrow); (G), diamict overlain by parallel laminated 

clayey mud; (H), laminated cyclopels with interspersed coarse grained clasts (> 2 mm), 

interpreted to be IRD deposited as sediment is released from melting icebergs.     
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6.2.3 Foraminiferal biostratigraphy 

Forty-one species (23 agglutinated and 18 calcareous) were recorded from the sediment core. 

The total assemblage (TA; relative abundance of combined agglutinated and calcareous faunal 

counts) of core MSM-343520_G is shown in Fig. 6.6.  Of the 226 samples containing benthic 

foraminifera, 172 samples have statistically robust counts exceeding 250 specimens, 31 

samples contain 100-249 specimens (samples below the grey dashed line through ‘total count’ 

data in Fig. 6.6), and 23 samples contain less than 100 specimens (omitted from Fig. 6.6).  Post 

mortem dissolution of calcareous fauna appears to be a major issue affecting assemblages in 

core MSM-343520_G, particularly between 6 ka BP and 2 ka BP (Fig. 6.6).  For this reason, 

relative frequencies of agglutinated (AA) (Fig. 6.7) and calcareous assemblages (CA) (Fig. 6.8) 

have also been calculated separately.  The AA data consists of 186 samples containing more 

than 100 specimens (of which 93 samples contain more than 250 specimens), while the CA 

data consists of only 74 samples containing more than 100 specimens, and only 7 containing 

more than 250 specimens.  Since calcareous foraminifera in multicore MSM-343520_MC (Fig. 

6.9) are also poorly preserved, and foraminifera counts are generally low throughout the 

majority of the multicore, only the agglutinated fauna are presented here.  Results discussed in 

Chapter 4 indicate that reliable interpretations of sub-surface water conditions can indeed be 

made using solely agglutinated fauna.   

 

Constrained cluster analysis of the TA of MSM-343520_G in CONISS (Grimm, 1987) identifies 

four key foraminiferal assemblage zones in core MSM-343520_G (FAZ 1 to 4).  A barren zone 

at the base of the core, termed FAZ 1a, is also described in the following analysis.  Cluster 

analysis of the AA data in MSM-343520_MC identifies three assemblage zones (FAZ 5 to 7).  

These foraminiferal assemblage zones are used to describe faunal changes in MSM-343520_G 

and MSM-343520_MC in turn below.   

 

FAZ 1a (Before ca. 11 ka BP, 989-915 cm) 

Benthic foraminifera are absent or in low abundance in FAZ 1a, while no foraminifera were 

found in the lower 20 cm of the core.  Miliolinella subrotunda (37% of TA) and Cassidulina 
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reniforme (18% of TA) occur in isolated samples at the base of the core.  Fragile calcareous 

foraminifera specimens are well preserved in FAZ 1a. 

 

FAZ 1b (ca. 10.7-11 ka BP, 915-879 cm) 

FAZ 1b is characterised by the presence of foraminifera throughout the zone, and higher 

foraminiferal concentrations (3-124 specimens per cm3).  Spiroplectammina biformis (8-23%), 

C. reniforme (8-40%), Elphidium excavatum f. clavata (6-41%), and Stainforthia feylingi (up to 

27%) are abundant in the TA of this zone; species often found in glacimarine environments (e.g. 

Schafer and Cole, 1986; 1988).  Trochammina nana (up to 47% of TA) and Recurvoides 

turbinatus are also present and are linked to Atlantic water influence (e.g. Jennings and 

Helgadóttir, 1994; Hald and Korsun, 1997; Lloyd, 2006a).    

 

FAZ 2 (10.7-7.3 ka BP, 879-531 cm) 

Foraminifera concentration increases from ca. 50 specimens per cm3 at 10.7 ka BP to ca. 300-

600 specimens per by 9.7 ka BP.  Apart from very high concentrations at ca. 8.7 ka BP and 8.2 

ka BP (up to 3000 specimens per cm3), foraminiferal concentrations remain fairly stable until the 

start of FAZ 4.  Low counts of organic test linings from calcareous foraminifera suggest 

preservation throughout FAZ 2 is good, particularly before 8 ka BP.  Agglutinating foraminifera 

are particularly dominant before 9 ka BP, followed by an increasing abundance of calcareous 

fauna.  Cuneata arctica and S. biformis are abundant (both 20-50% of TA) in FAZ 2, although 

the latter declines steadily after ca. 9 ka BP.  Cassidulina reniforme occurs frequently (typically 

10-20% of TA), with occasional E. excavatum f. clavata (generally <10%).  A notable feature of 

this zone are the two abundance spikes of Stainforthia feylingi at ca. 9 to 8.7 ka BP (up to 72% 

of TA) and at ca. 8.4 ka BP (up to 56% of TA), coincident with decreases in C. arctica and S. 

biformis.  Eggerella advena appears from 9.7 ka BP, and is common (10-23% of TA) from 9 ka 

BP to 8.4 ka BP, before maintaining low abundances through overlying sediments (typically 

<5%).  There are rare occurrences of species linked to Atlantic water influence throughout this 

interval, including R. turbinatus, T. nana, Bolivina pseudopunctata, Bucella frigida, and 

Nonionellina labradorica (all <5% of TA).  Adercotryma glomerata (up to 11% of TA) appears 
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after ca. 8 ka BP, together with Saccammina difflugiformis (<4% of TA).  This is followed, at ca. 

7.7 ka BP, by an increase in N. labradorica (up to 11% of TA).  

 

FAZ 3 (7.3-3.5 ka BP, 531-251 cm) 

FAZ 3 is characterised by poor carbonate preservation indicated by high test lining counts and 

patchy calcareous fauna.  Faunal trends are therefore described using AA and CA data to avoid 

problems associated with post mortem losses of foraminiferal tests.  The dominant feature of 

FAZ 3 is the gradual rise and fall in abundance of Reophax gracilis between ca. 7.4 ka BP and 

4.8 ka BP, constituting up to 66% of the AA (62% of TA) during the mid-Holocene.  Textularia 

torquata is found throughout the core and varies from 5 to 25 % (AA) through FAZ 3.   

   

Reophax gracilis and T. torquata are grouped as ‘indifferent’ since they do not show a strong 

relationship with water mass characteristics, although R. gracilis may be opportunistic in nature.  

The abundance of T. torquata remains relatively constant throughout the core, while R. gracilis 

is present throughout the core and in particularly high abundance in FAZ 3 

 

There is a persistent abundance of species associated with Atlantic water influence in both the 

AA and CA through FAZ 3.  Examples from the AA include A. glomerata, Ammoscalaria 

pseudospiralis, and R. turbinatus.  Atlantic water-associated species in the CA assemblage 

include N. labradorica (up to 27%), with lower abundances of B. frigida and B. pseudopunctata.  

The decline of C. reniforme (<20% of CA) is replaced by increasing abundances of E. 

excavatum f. clavata through the lower part of FAZ 3, with abundances typically ca. 55% 

between 6.5 ka BP and 4.7 ka BP.  The interval 5.3 ka BP to 4.3 ka BP is typified by high test 

lining counts (Fig. 6.6).  Stainforthia feylingi is abundant or dominant (19-67% of CA) from 7.3 

ka to 6.3 ka BP, and rare or absent in the upper part of FAZ 3.   

 



Chapter 6: Deglacial and Holocene palaeoceanographic record from Uummannaq trough 

 

 
147 

 

 

Figure 6.6 Benthic foraminifera with abundances ≥ 2.5% in the total assemblages (in samples 

with at least 100 specimens) of core MSM-343520_G.  Species are grouped according to their 

affiliation to different basal water masses in West Greenland.  The dashed line through the total 

count highlights samples where foraminifera counts exceed 250 specimens.  
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Figure 6.7 Benthic foraminifera with abundances ≥ 5% in the agglutinated assemblages of core 

MSM-343520_G.  Summary diagrams show the total abundance of species in their faunal 

groupings.  Only samples with at least 100 specimens in are shown. 
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Figure 6.8 Foraminiferal stratigraphy for species occurring in abundances ≥  5% in the 

calcareous assemblages of core MSM-343520_G.  Only samples with at least 100 specimens 

are included. 
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Figure 6.9 Agglutinated fauna (of assemblages containing at least 100 specimens) from 

multicore MSM-343520_MC.  Species occurring with abundances of ≥ 5% are shown.  The 

foraminiferal concentration (summary diagram) is based on agglutinated and calcareous 

foraminifera.     
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FAZ 4 (3.5 ka BP to present, 251-0 cm). 

FAZ 4 is characterised by an abrupt and significant shift in the dominant taxa, with a decline in 

C. arctica coincident with a dramatic rise in A. glomerata at ca. 3.5 ka BP, which is abundant 

(ca. 30-40% of AA) until 1.5 ka BP.  There are low foraminiferal concentrations from 3.5 ka BP 

to 1.9 ka BP.  A reduction in test lining counts indicates this is an interval of increasing 

carbonate preservation, particularly in comparison to the upper part of FAZ 3.  Several ancillary 

species occur in low abundances in FAZ 4, including T. torquata (ca. 10-20% of AA), S. biformis 

(typically 5-15%), and C. arctica (typically 10-20%).  There is a notable increase in R. turbinatus 

(up to 14.3%) and T. nana (ca. 7%) at 2 ka BP, succeeded by small increases in Atlantic water 

influenced species Reophax pilulifer and S. difflugiformis.  In the calcareous fauna, N. 

labradorica is abundant, peaking at 36% of the CA at approximately 1.2 ka BP, while B. 

pseudopunctata and B. frigida have a greater presence.  Abundance peaks of species linked to 

Atlantic water influence are followed by increased E. excavatum f. clavata (ca. 15–20% of TA 

between 1.1–0.6 ka BP), C. arctica (14-20% of TA), and S. biformis (ca. 10%, peaking at 21.5% 

of TA at 0.5 ka BP).  Calcareous fauna constitute more than 60% of the TA at ca. 0.7 ka BP, 

before a significant decline in abundance in the upper 32 cm of the core.  Adercotryma 

glomerata (28% of TA), S. difflugiformis (13%), T. earlandi (15%) and T. torquata (26%) are all 

important species towards the top of the core. 

 

FAZ 5 (AD 1666-1724, 42.5-35 cm, MSM-343520_MC) 

FAZ 5 in multicore MSM-343520_MC (Fig. 6.9) is typified by low foraminifera concentration (< 

50 specimens per cm3), particularly before AD 1720, and higher occurrences of calcareous 

fauna compared to upcore.  Six samples have been omitted from FAZ 5 in Fig. 6.9 because a 

representative count of foraminifera was not achieved.  The samples that achieved quota have 

a high abundance of species associated with relatively warm water influence in the WGC.  

Adercotryma glomerata, associated with a warmer mixed WGC influence, is abundant (25%) 

towards the base of the core, though declines in the upper part of FAZ 5, and is replaced by 

other ‘Atlantic water-influenced’ species, including S. difflugiformis and A. pseudospiralis.  From 

AD 1700, the cold, open water taxon, C. arctica, falls in abundance.  The higher abundance of 
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calcareous fauna and a brief spike in foraminiferal concentration coincides with a higher 

abundance of agglutinated species associated with warmer water influence.    

 

FAZ 6 (AD 1724-1895, 35-14 cm) 

FAZ 6 is characterised by the peak in A. glomerata at the base of the zone, followed by a 

decline in abundance between AD 1780 and AD 1860, and an increase towards the top of the 

zone at AD 1895.  Textularia torquata, a taxon with no obvious relationship to water mass 

characteristics, increases in abundance to ca. 20 % through this zone.  Cuneata arctica occurs 

in its lowest abundance throughout the multicore in FAZ 6, while small increases in the 

abundance of S. biformis can be distinguished before the twin peaks of A. glomerata.  The 

Atlantic water species are generally low in abundance, particularly compared to FAZ 5 and 7. 

 

FAZ 7 (AD 1895-2007, 14-0 cm) 

FAZ 7 is characterised by an abrupt switch from A. glomerata to higher abundances of C. 

arctica.  There is also a gradual rise in the abundance of other Atlantic water species, with S. 

difflugiformis increasing throughout FAZ 7, and R. pilulifer from AD 1930 and R. bilocularis from 

ca. AD 1970.  There is a concordant decline in the Arctic water species S. biformis and T. 

earlandi from, or just before, AD 1900.  There is also a noticeable decline in C. arctica from ca. 

AD 1975.  There is a dramatic increase in foraminiferal concentration from 25 specimens per 

cm3 at AD 1890 to between 250 and 300 specimens per cm3 from AD 1925. 

 

6.2.4 Transfer function reconstruction of bottom water temperatures 

The transfer functions developed in Chapter 4 were applied to cores MSM-343520_MC and 

MSM-343520_G.  The ‘agglutinated assemblage’ (AA) transfer function was applied to core 

MSM-343520_G and MSM-343520_MC because of the high agglutinated foraminifera content 

and post mortem losses of calcareous foraminifera, which may significantly alter the calcareous 

foraminifera assemblage.  To avoid a disproportionate influence of R. gracilis, which occurs in 

low numbers in modern assemblage but far higher abundances in fossil assemblages, this 

taxon was removed from the transfer function.   

 



Chapter 6: Deglacial and Holocene palaeoceanographic record from Uummannaq trough 

 

 
153 

 

The high minimum dissimilarity coefficient (minDC) values throughout most of core MSM-

343520_G (see Fig. 6.10d) suggest there are large differences between modern and fossil 

assemblages, and that modern assemblages may not provide good predictive power for 

reconstructing fossil assemblages.  Despite this, there is clearly a good correspondence 

between trends in reconstructed bottom water temperatures and changes in δ18O (N. 

labradorica), total Arctic water taxa (%), and LOI (%) changes (Fig. 6.11).  This suggests that 

the transfer function reconstructions may provide a reasonable indication of warming and 

cooling trends in core MSM-343520_G.  However, omitting calcareous foraminifera from the 

transfer function reduces the potential temperature range in reconstructions, since the warmest 

and coldest water species in West Greenland are calcareous foraminifera, whereas 

agglutinated foraminifera generally appear to occupy mid-range water temperatures (see 

Chapter 4).   

 

The temperature reconstruction (Fig. 6.10c) suggests initially warm bottom waters were present 

in outer Uummannaq trough after deglaciation, followed by a significant cooling in basal water 

temperatures.  However, the high MinDC values for the lower three assemblages at the base of 

the core suggest that there are no close modern analogues to these fossil assemblages in this 

part of the core, and that the temperature reconstruction here is inaccurate.  This interpretation 

is supported by the high abundance of calcareous benthic foraminifera characteristic of a strong 

Arctic water influence (Fig. 6.8).   

 

Generally cool bottom-waters are reconstructed for between ca.10.3 ka BP and 8 ka BP, 

followed by gradually warming bottom waters until 5.5 ka BP.  Low MinDC values around 10 ka 

BP, including some fossil assemblages below the 10% threshold that identifies ‘good’ or ‘close’ 

modern analogues from ‘poor’ modern analogues, suggest that the transfer function provides 

more reliable temperature estimates for this part of the core.  However, the gradually increasing 

MinDC values going upcore, corresponding with bottom water warming between 8 ka BP and 

5.5 ka BP, suggests that there are no close modern analogues for this part of the core.  This is 

perhaps not surprising, given the high abundance of R. gracilis found in these samples, which is 

a rare species in modern foraminifera samples.        
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The temperature reconstruction (characterised by poor modern analogues) suggests cooling 

from 5.5 ka BP to 3.5 ka BP, followed by warming from ca. 3.5 ka BP to 1 ka BP.  This warming 

interval, towards the top of the gravity core, is characterised by generally closer and often ‘good’ 

modern analogues, suggesting the transfer function provides a more accurate reconstruction.  

The brief cooling and then warming trend in the past 1000 years are again characterised by 

poorer modern analogues.  

 

The lack of modern analogues may reflect the poor preservation of fossil assemblages, or 

perhaps suggests that the full range of marine shelf environments recorded in the fossil core 

has not yet been sampled in the modern environment.  It is, of course, possible that past 

characteristics of sub-surface WGC waters are beyond the range of modern extremes, 

precluding the possibility of further expanding the database of modern foraminifera surface 

samples from West Greenland.  

 

6.2.5 Oxygen isotope data 

A δ18O (vs. PDB) record for core MSM-343520_G was produced using the species N. 

labradorica.  While N. labradorica is an infaunal benthic foraminifera, and is not as ideally suited 

to reconstructing bottow water δ18O changes as epifaunal species such as Cibicides 

wuellerstorfi and C. lobatulus (e.g. Hillaire-Marcel et al., 2001), it is the only foraminifera species 

that occurs throughout core MSM-343520_G and in sufficient abundance for isotope analysis.  

Other studies in Nares Strait (Mudie et al., 2006) and the Chuckchi Sea (Keigwin et al., 2006) 

have used N. labradorica to reconstruct changes in water mass characteristics.  Isotope studies 

by Ivanova et al. (2008) in the western Barents Sea indicate that N. labradorica has an 

estimated δ18O disequilibrium effect of 0.28‰, compared to -0.76‰ for epifaunal C. lobatulus.  

The δ18O recorded by N. labradorica was at least 0.4‰ higher than values recorded by other 

investigated species (C. lobatulus, C. reniforme, E. excavatum f. clavata, M. barleeanus).  

Additionally, δ13C values for N. labradorica were depleted by 1.2-1.7‰ compared to epifaunal 

taxon C. lobatulus (Ivanova et al., 2008). 
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Deviations in isotopic composition of biogenic calcite from equilibrium are commonly due to 

microhabitat and/or vital effects (Urey et al., 1951; Wilson-Finelli et al., 1998).  The influence of 

microhabitat and metabolic vital effects is evident in isotopes of benthic foraminifera living at 

different sediment depths.  The δ13C values of epifaunal species are commonly less negative 

and more closely reflect δ13Cseawater values than deep-infaunal species, which typically have 

lighter δ13C values.  This is because respired 13C-depleted CO2 in sediment porewaters may be 

incorporated into calcifying foraminifera tests (McCorkle et al., 1990; 1997).  Infaunal taxa may, 

therefore, be good palaeoproductivity indicators since high concentrations of organic matter in 

sediments (due to high surface water primary productivity or greater influx of nutrient-rich water 

carrying labile organic matter) may further decrease porewater δ13C values (Mackensen et al., 

1993; Katz et al., 2003).   

 

The δ18O curve reflects a combination of changes in global ice volume, temperature, salinity, 

and foraminifera species vital effects.  The trends in δ18O are interpreted to reflect long-term 

temperature and salinity changes in the waters transported by the WGC onto the West 

Greenland shelf.  Isotopic values range from 3.356‰ to 4.458‰. 

 

The temporal resolution of isotope samples is poor in the lower part of core MSM-343520, with 

only three samples before ca. 10.9 ka BP.  Relatively light δ18O values are found at 10.9 ka BP 

(3.880‰), followed by isotopic enrichment to 4.458‰ at ca. 10.3 ka BP.  After 9 ka BP, there 

are two significant light isotopic excursions from 9.0 ka BP to 8.8 ka BP (spanning ca. 220 

years; 3.842‰ at 8.8 ka BP) and 8.2 ka BP to 7.9 ka BP (spanning ca. 335 years; 3.848‰ at 

8.2 ka BP) of approximately 0.42‰ and 0.50‰, respectively.  Both events appear to begin 

abruptly, though this is perhaps more true for the second spike, where the initial shift to lighter 

isotope values is larger in magnitude.  The close correspondence between the light isotope 

peaks at 8.9 ka BP and 8.2 ka BP, and blooming of S. feylingi (Fig. 6.11a), suggest these are 

indeed two discrete ‘events’.        

 

From 7.8 ka BP (4.3‰), the general isotopic trend is one of gradual depletion to ca. 3.5‰ at 5.6 

ka BP, before a plateau until ca. 2.7 ka BP, and a trend of isotopic enrichment until 1.7 ka BP.  
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The past 1.7 ka BP is characterised by fluctuations with an amplitude of approximately 0.3‰, 

but with no long-term trend.  These trends are overprinted with a number of heavy spikes at 4.7 

ka BP, 2.8 ka BP, 2.7 ka BP, 2.2 ka BP, and 0.9 ka BP.  While these may reflect 

temperature/salinity fluctuations, the magnitude and abruptness of these spikes suggest that 

foraminifera vital effects or analytical errors are the cause. 

 

The δ13C (PDB) is initially heavy (ca. -1‰) from 10.9 ka BP to 9.2 ka BP, before a significant 

depletion to -5.253‰ at 8.7 ka BP, followed by a brief enrichment to -1.72‰, and then a greater 

depletion to -5.932‰ at 8.3 ka BP (Fig. 6.10).  After 7.9 ka BP, δ13C becomes more positive (ca. 

-0.9‰ at 7.5 ka BP).  There is a gradual depletion of ca 1.6‰ to 6.2 ka BP, followed by 

enrichment to 4.6 ka BP.  From 4.6 ka BP to 2.8 ka BP, isotope values are ca. -0.9‰, followed 

by a stepped enrichment of ca. 0.4‰ until 0.9 ka BP.  There is a brief negative trend of δ13C 

values, reaching -2.3‰ at 0.6 ka BP, before a return to heavier values in the past ca. 400 years 

(Fig. 6.10).   
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Figure 6.10 Comparison of foraminifera isotope data and foraminifera-based bottom-water 

temperature reconstruction from core MSM-343520_G, showing; (a) δ13C (N. labradorica), (b) 

δ18O (N. labradorica), (c) transfer function temperature reconstruction, with red dashed line 

indicating the modern (June 2007) temperature at the core station, (d) minimum dissimilarity 

coefficient values (MinDC).  

 

6.3 Palaeoceanographic interpretation 

There is no evidence that core MSM-343520_G has been significantly affected by downslope 

remobilization of sediments by debris flow processes.  Above ca. 9 m, the core sedimentology is 

generally composed of massive clayey mud or silty mud with abundant foraminifera.  This is 

interpreted to reflect continuous hemipelagic sedimentation, and indicates that proxy-evidence 

in the sediment core may be analysed for reliable palaeoceanographic reconstructions.  There 

is evidence that the core sedimentology has been influenced by turbidity which may be linked to 

debris flow processes (e.g. cross-bedded ripples, possible rip-up).  However, this does not 

significantly influence the palaeoenvironmental interpretation, since this probably took place in 

an ice-proximal setting when sediment accumulation due to the nearby ice front was rapid.   
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Relatively warm Atlantic-sourced water, a key component of the modern WGC, impinges on the 

seafloor of the outer Uummannaq Shelf below approximately 200-300 m depth at the present 

day (NOAA WOD05, Accessed September 2010), and may potentially penetrate into the fjords 

in the Uummannaq area, and directly influence ice dynamics.  Core MSM-343520 is located 

within Uummannaq Trough, which provides a natural pathway for warmer subsurface waters to 

inner shelf areas, and as such, is ideally situated for understanding changes in relative water 

temperature.  Benthic foraminiferal assemblages, which show a close correspondence with 

basal water temperatures in central West Greenland, provide a means of assessing the 

influence of ocean forcing on the Greenland Ice Sheet in the Uummannaq area. 

 

6.3.1 FAZ 1a (Before ca. 11 ka BP, 989-915 cm) 

The ‘light’ coloured, less dense, sediments identified in X-ray radiographs (Fig. 6.4; 989-967 cm, 

962-922 cm) appear to be of a different origin compared to other sediments in core MSM-

343520_G, as indicated by distinctly lower magnetic susceptibility, high LOI, and a high [K/Ti] 

ratio, suggestive of terrestrial sediment influence from the mainland (Fig. 6.4).  The high LOI 

values for sediments in FAZ 1a may reflect organic rich sediments being released from formerly 

subglacial areas as the ice retreated.  Zone 1 sediments are interpreted to be ice-proximal 

glacimarine in origin.  In FAZ 1a, this is supported by an absence of foraminifera at the base of 

the core (989-969 cm), and low concentrations of well-preserved fragile foraminifera specimens 

in overlying sediments.  Only two species, C. reniforme and Miliolinella (subrotunda?) sp., are 

found in relatively high numbers in FAZ 1a.  Cassidulina reniforme is often an early colonising 

species where glacial influence is waning (e.g. Korsun and Hald, 2000), and suggests cold, 

reduced salinity waters were influential at the core station.  While Miliolinella (subrotunda?) sp. 

is not abundant in high-latitude deep-sea and fjord studies, Korsun and Hald (2000) identified 

this species within 2 km of a calving margin in a Svalbard Fjord.  Since it only occurs in FAZ 1a, 

this species is believed to reflect glacimarine conditions.  However, low foraminiferal 

concentrations suggest reduced productivity and/or dilution of foraminiferal numbers by rapid 

accumulation though the sedimentation rate cannot be directly assessed because of a lack of 

dateable material in FAZ 1a.  One explanation for excellent preservation of calcareous 
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foraminifera during this interval may be high sedimentation, with rapidly buried dead 

foraminifera being ‘protected’ from overlying cold, low salinity waters with high dissolved CO2
 

content, which likely influences dissolution in the dead foraminifera assemblage (e.g. Lloyd et 

al., 2005).   

    

The dominance of clay suggests a close proximity to a calving margin ejecting fine-grained 

sediments in turbid meltwater plumes.  The relatively high water content of these sediments 

(Fig. 6.4) suggests clay particles were laid down rapidly, therefore preventing dewatering, and 

supporting this interpretation.  Planar parallel laminations (see Fig. 6.5H), corresponding exactly 

to the barren interval, with interspersed ice-rafted detritus (IRD) is characteristic of ice-proximal 

glacimarine sedimentation from meltwater plumes with a high suspended load (Dowdeswell et 

al., 1994; Cowan et al., 1997; Ó Cofaigh and Dowdeswell, 2001).  The presence of granules 

and larger clasts in these sediments suggests ice-rafting was also taking place at this time. 

There is a general absence of coarser sediments fractions in the clay sediments between 953 

and 936 cm, which may reflect suspension settling from turbid plumes while iceberg rafting was 

surpressed (e.g. Dowdeswell et al., 2000). 

  

The sediment facies that have been termed diamicts are believed to be ice-rafted in origin.  The 

base of the upper diamict is composed of very poorly sorted, fine sandy mud (14.8% sand), 

similar in composition to underlying sediments.  There is an upcore fining to mud with 

dropstones.  The gradational contacts at the top of these units support an interpretation that the 

coarse fraction was deposited by iceberg rainout (Cowan et al., 1997).  The more hemipelagic 

sediments that overlie the upper diamicton (above 879 cm, Fig. 6.4) have similar magnetic 

susceptibility properties to the diamicton, and slightly decreased [K/Ti], which may be indicative 

of a common origin of terrestrial sediments in these facies.   
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6.3.2 FAZ 1b (ca. 11-10.7 ka BP, 915-879 cm) 

The data from the core taken as a whole suggest that cold, low-salinity waters, influenced 

largely by meltwater from local deglaciation, were dominant in the Uummannaq trough and, 

most likely, across the shelf west of Uummannaq fjord during the early Holocene (Fig. 6.11i).  

This is indicated by abundant Arctic Water benthic foraminifera species (Fig. 6.8 and 6.11i) 

occupying the shelf at this time.  The high abundance of opportunistic calcareous taxa, 

especially S. feylingi, C. reniforme, and E. excavatum f. clavata, are diagnostic of ice-proximal 

glacimarine conditions from 11 to 10.7 ka BP (e.g. Schröder-Adams et al., 1990a, 1990b).  

These species tolerate large and abrupt salinity shifts associated with variability in meltwater 

flux at the terminus of marine-terminating glaciers (e.g. Korsun and Hald, 1998).  Together, the 

low [S/Al] integral ratio, percentage LOI, and foraminiferal concentration during this interval 

suggest low marine productivity.  Turbid waters caused by a high-suspended load associated 

with waters ejected close to the ice margin would have hampered surface water productivity and 

consequently reduced food supply to the benthos (Korsun and Hald, 1998).  This would have 

created an environment inhospitable to many foraminifera species, with the limited food 

availability in glacimarine environments favouring opportunistic calcareous fauna (Schröder-

Adams et al., 1990a, 1990b; Korsun and Hald, 1998).  The high abundance of S. feylingi at ca. 

10.9 ka BP suggests this taxon initially colonised the formerly inhospitable environment (e.g. 

Alve, 1999; Alve, 2003).   

 

Deglacial meltwater ejected from the glacier terminus in Uummannaq Fjord would have 

presumably been a major influence on the isotopic composition of bottom waters on the 

Uummanaq shelf.  Isotopically-light benthic foraminifera δ18O values (Fig. 6.11c) at ca. 10.9 ka 

BP therefore support the ice-proximal glacimarine environment in FAZ 1b suggested by the 

foraminifera data, and are interpreted to primarily reflect meltwater inputs from local deglaciation 

causing a freshening of the water column.  The upcore increase in δ18O values (Fig. 6.11c) and 

the overall decline in the C/N ratio (Fig. 6.3) through FAZ 1b suggest a reduction in glacimarine 

influence from 11 ka BP to 10.7 ka BP.  The change in C/N ratio suggests a reduction in 

terrestrially-derived sediment and a relative increase in marine productivity, while the δ18O 

enrichment probably reflects a reduction in meltwater influence.  The large and abrupt shift in 
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magnetic susceptibility values and the [K/Ti] XRF ratio (Fig. 6.3) suggest that ice may have 

rapidly retreated from the core site, withdrawing into the inner Uummannaq shelf.   

 

6.3.3 FAZ 2 (10.7-7.3 ka BP, 879-531 cm) 

In general, benthic foraminifera and oxygen isotopes suggest relatively cold, low salinity waters 

occupied the Uummannaq trough during FAZ 2.  Abundant C. arctica and S. biformis, and 

common C. reniforme before 9 ka BP indicates Arctic waters strongly influenced benthic 

foraminifera assemblages at this time (Fig. 6.6-6.8).  Cuneata arctica and S. biformis are found 

together in Baffin Island and Svalbard fjords under the influence of Polar water and glacimarine 

conditions (Schafer and Cole, 1988; Korsun and Hald, 1997), and on the Labrador shelf under 

cooler water conditions (Vilks et al., 1982).  Spiroplectammina biformis is found under the 

influence of cold (≤ 0°C) Arctic waters in Baffin Island fjords (Schafer and Cole, 1986) and the 

Amerasian Basin of the Arctic Ocean (Ishman and Foley, 1996).  The gradual decline in this 

species after 9 ka BP may, therefore, reflect a slight warming in waters impinging on the 

Greenland shelf or perhaps a reduction in glacimarine influence.  A decline in glacial influence is 

suggested by increasing foraminiferal concentrations between 10.7 ka BP and 9.5 ka BP, which 

reflect either reduced sedimentation or increased benthic productivity at core station MSM-

343520.  Calcareous fauna, with C. reniforme (>50%) dominant from 11 ka BP to 9.5 ka BP, 

support colder conditions during the early part of FAZ 2.   

 

The most notable features in this zone are the two distinct high abundance peaks of S. feylingi 

(Fig. 6.11a, b), a common opportunistic Arctic taxon that dominates foraminifera assemblages 

influenced by rapidly changing environmental conditions (Alve, 2003), and is a coloniser of 

recently established habitats (Alve, 1999).  Stainforthia feylingi is widely associated with low 

oxygen conditions, often dominating assemblages in dysoxic/anoxic sediments of silled 

Norwegian fjords (e.g. Alve, 1990; 1994; 1995; Bernhard and Alve, 1996; Alve, 2003).  

However, it is also widely found as a dominant species under well-oxygenated shelf waters 

(Alve, 2003).  Palaeoecological interpretations are further complicated by the feeding strategy of 

S. feylingi, since it feeds on a variety of food sources.  Stainforthia feylingi blooms are linked to 

high phytodetritus fluxes to the seafloor (e.g. Bernhard and Bowser, 1999; Gustafsson and 
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Nordberg, 2000; 2001), particularly at hydrographic fronts (Alve, 2003).  However, this taxon 

also feeds on degraded organic matter and bacterial sources (e.g. Alve and Bernhard, 1995, 

Alve, 2003).  Mudie et al. (2006) have used S. feylingi as an indicator of low oxygen conditions 

in geological sediments from Nares Strait, northern Baffin Bay, linking higher abundances to 

increased primary productivity or increased sea-ice, which would have slowed bottom water 

circulation (hence reducing air-sea gas exchanges and vertical mixing).   

 

On the Uummannaq shelf, the very high foraminifera concentration and dominance of S. feylingi 

at ca. 8.9-8.7 ka BP and ca. 8.3-8.1 ka BP, coinciding with depleted δ18O and δ13C values (Fig. 

6.11a-d), may be a rapid, opportunistic response to increased fluxes of organic matter to the 

seafloor.  Since S. feylingi feeds on a variety of food sources (e.g. Alve and Bernhard, 1995, 

Alve, 2003), the high abundance may be linked to a greater influx of labile organic matter 

transported in the nutrient-rich Atlantic Water (e.g. Jennings et al., 2004; Lloyd, 2006a).  

However, the foraminifera are suggestive of a colder water influence impinging on the shelf at 

this time, perhaps suggesting a response to fresh phytodetritus inputs from surface water 

primary productivity linked to a more stable, seasonally stratified water column (e.g. Alve, 2003).  

This interpretation may be supported by relatively high [S/Al] during this interval, and the lower 

δ13C (N. labradorica) values.  Respired 13C-depleted CO2 in sediment porewaters (produced 

during the decay of organic matter) may be incorporated into calcifying foraminifera tests 

(McCorkle et al., 1990; 1997).  Enhanced fluxes of organic matter may further decrease 

porewater δ13C values of infaunal taxa (Mackensen et al., 1993; Katz et al., 2003).  Water 

column stratification has a limiting influence on primary production in surface waters because 

access to replenishing inorganic nutrients is restricted (Andersen, 1981b; Nielsen and Hansen, 

1999; Nielsen et al., 2010), which may favour the opportunistic life style (rapid growth and 

reproduction) of S. feylingi.  In estuarine and shallow near-shore environments, E. advena is 

considered an opportunistic taxon and primary pioneer colonizer, found in high abundance near 

pollutant outfalls (e.g. Schafer and Young, 1977; Schafer, 1982; Alve, 1995).  While the 

Uummannaq shelf is a much deeper location, similar ecological preferences may indicate that 

the high abundance of E. advena between 9 and 8.2 ka BP could be an opportunistic response 

to episodic nutrient enrichment.  
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There is a noticeable increase in species associated with increased Atlantic water influence on 

the West Greenland shelf, including A. glomerata and smaller occurrences of Reophax spp. 

from 8.1 ka BP, followed by an increase in N. labradorica (Lloyd, 2006a).  Maximum 

abundances of N. labradorica are found under relatively warm and saline waters in the modern 

environment (where the mean temperature at sites where N. labradorica is dominant is 3.86°C), 

which has been linked to influxes of nutrient-rich Atlantic water into the Disko Bugt-Uummannaq 

area (Lloyd, 2006a).  These assemblages appear most similar to modern assemblages under 

the influence of mixed-WGC water, with temperatures typically 1.5°C to 3°C (cf. Chapter 4).  In 

light of this, the first significant influence of relatively warm and saline waters transported by the 

WGC to the central West Greenland shelf probably follows subsurface freshening at 8.2 ka BP. 

 

6.3.4 FAZ 3 (7.3-3.5 ka BP, 531-251 cm) 

FAZ 3 is characterised by both a reduction in agglutinated benthic foraminifera species 

associated with Polar water influence (Fig. 6.7), and an increase in calcareous fauna associated 

with Atlantic water influence (Fig. 6.8).  A decline in δ18O through this interval may further 

support a gradual warming in basal water mass characteristics.  The increase in abundance of 

N. labradorica (Fig. 6.8) is diagnostic of warmer Atlantic waters impinging on the Uummannaq 

shelf between 7.7 and 6 ka BP.  Nonionellina labradorica benefits from fresh phytodetritus 

inputs under hydrographic fronts and other high productivity areas in the northern North Atlantic 

and Arctic Ocean (e.g. Hald and Steinsund, 1992; Polyak et al., 2002; Rytter et al., 2002).  On 

the West Greenland shelf, the presence of N. labradorica reflects an increase in fresh 

phytodetritus linked to the influx of Atlantic Water (e.g. Jennings et al., 2004; Lloyd, 2006a).  

The relative decline in C. arctica and S. biformis, characteristic of cold waters (e.g. Schafer and 

Cole, 1986; 1988; Ishman and Foley, 1996), supports a slight warming in waters impinging on 

the Uummannaq shelf.  The slightly lower δ13C in the benthic foraminifera record (Fig. 6.10) and 

high percentage LOI (Fig. 6.11) on the Uummannaq shelf from between 7.6 and 5.4 ka BP may 

suggest a greater deposition of organic material during this interval, which may be linked to the 

greater influx of warmer Atlantic-sourced waters.  
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High abundances of S. feylingi from 7.3 and 6.4 ka BP, albeit at much lower concentrations than 

in FAZ 2, are succeeded by higher abundances of E. excavatum f. clavata between 6.4 and 4.5 

ka BP (Fig. 6.8).  This may reflect continued summer stratification of the water column, perhaps 

with more regular fluxes of organic matter to the seafloor (Murray, 1992, Jennings et al., 2001; 

Alve, 2003).  Elphidium excavatum f. clavata is often considered opportunistic in nature, 

dominating low diversity assemblages where environmental conditions are extremely variable, 

particularly close to glacier calving margins where there are extreme fluctuations in salinity and 

sediment supply (e.g. Hald and Korsun, 1997).  However, E. excavatum f. clavata has also 

been found as a dominant species under stable Atlantic Water-influenced sites (stable bottom 

water temperatures and salinities of ca. 5°C and 34.7 ‰) in Isafjardardjúp, on the North Iceland 

shelf (Jennings et al., 2004).   

 

Reophax gracilis is a major component of foraminifera assemblages in FAZ 3, increasing in 

abundance from the base of the core, and peaking at ca. 5.5 ka BP.  The ecology of R. gracilis 

is poorly understood in West Greenland shelf environments because of its low abundance in 

contemporary surface samples.  However, R. gracilis (=Leptohalysis gracilis, Leptohalysis 

catella) is believed to have an opportunistic life strategy (Alve, 2010).  This species is a 

common or dominant feature of Canadian (Blais-Stevens and Patterson, 1998; Patterson et al., 

2000) and Scandinavian fjords (Alve and Nagy, 1986; Alve, 2000; Gustafsson and Nordberg, 

2000; 2001), where it has been linked to nutrient enrichment by anthropogenic sources such as 

terrestrial plant material and aquaculture.  Gooday (1996) suggest larger populations of R. 

gracilis are associated with a feeding strategy dependent on degraded phytodetritus or 

associated bacteria (in shallow-water and deep-sea species; Goldstein and Corliss, 1994), 

rather than fresh organic inputs (e.g. Alve, 2010).  In West Greenland waters, labile organic 

matter is supplied by nutrient-rich Atlantic Water transported in the WGC.  This suggests that R. 

gracilis may be linked to an increase in relatively warm and saline Atlantic Water influence on 

the West Greenland shelf from 7.3 to 5 ka BP.   
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6.3.5 FAZ 4 (3.5 ka BP to present, 251-0 cm) 

The boundary between FAZ 3 and FAZ 4 marks an abrupt faunal shift at 3.5 ka BP, which is 

interpreted to reflect a shift from Arctic water influence on the shelf to enhanced Atlantic-

sourced water, characterised by abundant A. glomerata from 3.5 ka BP to 1 ka BP.  In central 

West Greenland, the mean bottom water temperature above modern surface samples where A. 

glomerata is the dominant taxon is relatively warm at 3.11°C.  A positive correlation with 

temperature and salinity has also been found for this taxon in Svalbard Fjords (Hald and 

Korsun, 1997).  The decline in C. arctica and taxa with opportunistic life styles supports this 

interpretation.  However, lower foraminiferal numbers, particularly calcareous specimens, mark 

the first ca. 1.5 ka during this interval.  It is possible that the benthic environment would be 

inhospitable to calcareous foraminifera if decay of organic matter (due to higher primary 

productivity fluxes to seafloor) produces high concentrations of CO2 (e.g. Jennings and 

Helgadóttir, 1994).  Nethertheless, the increase in agglutinated taxa such as Reophax spp. and 

S. difflugiformis (Fig. 6.7) and calcareous taxa, particularly N. labradorica (Fig. 6.8), support an 

increase in Atlantic Water influence on the Uummannaq shelf between 3.5 ka BP and 1 ka BP.  

This increase in basal water temperature is clearly indicated by an increase in Atlantic fauna 

and a decrease in Arctic taxa, as well as the transfer function reconstruction (Fig. 6.11).  The 

upper ca. 1 ka in core MSM-343520_G are marked by significant cooling in basal water 

temperatures.  This is particularly indicated by decreases in Atlantic Water-influenced taxa such 

as A. glomerata, R. pilulifer, and S. difflugiformis, and relative increases in taxa associated with 

Arctic Water influence, such as C. arctica, S. biformis, T. earlandi and E. excavatum f. clavata 

(Fig. 6.7 and 6.8).   

 

6.3.6 FAZ 5 (A.D. 1666-1740) 

The high abundance of A. glomerata at the base of core MSM-343520_MC, with lower 

abundance of Arctic taxa C. arctica and S. biformis is interpreted to reflect the influence of 

mixed-WGC waters in the Uummannaq trough at ca. A.D. 1700.  The dominance of Atlantic 

Water taxa (particularly A. pseudospiralis, R. pilulifer, and S. difflugiformis) indicates relatively 

warm, saline Atlantic Waters were present in Uummannaq trough between A.D. 1720 and 1740.  
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6.3.7 FAZ 6 (A.D. 1740-1895) 

The interval A.D. 1740 to 1790 is characterised by a slight cooling, as indicated by a decline in 

the Atlantic Water taxa, A. pseudospiralis, R. pilulifer, and S. difflugiformis, and an increase in 

A. glomerata, which suggests mixed-WGC waters (i.e. mixed Atlantic and Polar Water 

influence) were present on the Uummannaq shelf.  This is supported by an increased presence 

of Arctic Water taxa, S. biformis and T. earlandi.  From A.D. 1790 to 1860, a further decline in 

Atlantic Water fauna marks cooling of sub-surface waters on the Uummannaq shelf, followed by 

increasing A. glomerata from A.D. 1860, marking the start of a warming trend through the upper 

part of FAZ 6. 

 

6.3.8 FAZ 7 (A.D. 1895-2007) 

The high abundance of C. arctica in FAZ 7 suggests well-mixed marine conditions and the 

influence of Arctic Water during the 20th Century.  However, the increase in Atlantic fauna 

(particularly S. difflugiformis) between A.D. 1895 and 2007 mark the continuation of the 

warming trend that began at ca. A.D. 1860.  The decline in S. biformis and small increase in 

abundance of A. pseudospiralis, S. difflugiformis and R. bilocularis between A.D. 1930 and 

1940 suggest warming of sub-surface waters during this interval, followed by increased 

warming from ca. A.D. 1980, as marked by a further increase in S. difflugiformis, together with 

increases in R. bilocularis and R. pilulifer.  The increase in foraminiferal concentration may also 

suggest greater transport of Atlantic Water in the WGC from ca. A.D. 1925.   
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Figure 6.11 Foraminifera and sediment geochemistry data from core MSM-343520_G: (a) total 

abundance of S. feyling (TA); (b) foraminifera concentration; (c) δ18O and (d) δ13C (N. 

labradorica) data; (e) [K/Ti] and (f) [S/Al] XRF data; (g) Loss-on-ignition (550°C); (h) total 

Atlantic Water, and (i) total Arctic Water benthic foraminifera; (j) bottom water temperature 
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reconstruction using AA data; (k) warm/saline and (l) cold/fresh intervals in core MSM-

343520_G; (m) Climate “events” in the North Atlantic region: Early Holocene warming and 

continued deglaciation of Northern Hemisphere ice sheets, the 8.2 ka event, the Holocene 

thermal maximum (HTM), Neoglaciation ice expansion (NeoG), Roman Warm Period (RWP), 

European Dark Ages (EDA), Medieval Warm Period (MWP), and the Little Ice Age (LIA). 

 

6.4 Discussion 

The following discussion of deglaciation and palaeoceanographic evolution in central West 

Greenland is illustrated with time-slice cartoons of the main changes in ice margin position and 

ocean temperature on the Uummanaq shelf (see below).  Each cross section is accompanied 

by a map of central West Greenland to illustrate the evolution of sub-surface current patterns 

and relative temperature changes in these shelf waters, constrained (and hypothesized) 

changes in ice sheet margin position, and relative changes in Greenland Ice Sheet 

meltwater/iceberg flux based on core data from this study.   

 

6.4.1 Deglaciation of the Uummannaq shelf 

The Holocene deglacial chronology for the Uummannaq Fjord complex is poorly resolved, 

primarily because of the lack of dateable material in the area.  There are no dates from the 

offshore realm accurately constraining deglaciation in this area.  To the north of the 

Uummannaq area, a date from a shell in raised marine deposits on Svartenhuk Halvø places 

deglaciation of the inner shelf before 10.6 ka BP (10,764-10,467 cal. yr BP; 9730±60 14C yrs 

BP, Bennike, 2000, Fig. 6.12).  In the southern part of the Uummannaq area, Símonarson 

(1981) obtained a date of 10.4 ka BP (10,705-9953 cal. yr BP; 9510±150 14C yrs BP) on a 

bivalve (Hiatella arctica) found in raised marine deposits (45 m a.s.l.) at Sarfâqfîk, half way 

along Nuussuaq peninsula (see Fig. 6.12).  New cosmogenic surface exposure ages (Fig. 6.12) 

help further constrain the pattern of early Holocene deglaciation in the inner Uummannaq shelf 

area (D.H. Roberts, personal communication).   

 

Material from a marine-terminating glacier in Uummannaq Fjord (clasts deposited from icebergs 

calving at the glacier termini and fine-grained glacial flour ejected in subglacial/englacial 

meltwater deposited from suspension) is interpreted to have been the major influence on 

sedimentation in core MSM-343520_G before ca. 10.7 ka BP (as illustrated in Fig. 6.13a).  The 
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presence of glacimarine sediments at the base of core MSM-343520_G suggests that an 

extensive, rather than reduced, ice sheet configuration existed on the Uummannaq shelf during 

the early Holocene.  The lowermost date obtained from ice-proximal glacimarine sediments 

near the base of core MSM-343520_G indicates deglaciation took place before ca. 10.9 ka BP 

(11,158-10,630 yr. BP) on the mid-Uummannaq shelf.   

 

Figure 6.12 Minimum ages for deglaciation in the Uummannaq area.  The date obtained from 

the lower part of core MSM-343520 is shown in bold (with larger filled circle).  Dates from 

Ubekendt Ejland, Talerua (a), Ikerasak (b), and Store Gletscher (c) (all marked as filled red 

circles), are unpublished cosmogenic radionuclide exposure ages (D.H. Roberts, personal 

communication).  Quoted altitudes for ages are metres a.s.l., E denotes dates obtained from 

erratic boulders (all others are taken from bedrock), and asterixes (*) denotes samples with 

isotopic inheritance from earlier surface exposure (i.e. sample age is too old).  Black square 

marks the position of a raised delta complex at the western tip of Nuusuuaq peninsula 

discussed in the text.  Arrows mark ice flow trajectories in the Uummannaq ice stream system 

onset zone (D.H. Roberts, personal communication).    

 

A date of 10 ka on an erratic deposited on Ubekendt Ejland (770 m a.s.l.) by glacier ice in 

Uummannaq Fjord indicates ice was thinning at this time (D.H. Roberts, personal 

communication).  A similar age of 9.9 ka at a slightly lower altitude (642 m a.s.l.) on glacially-

abraded bedrock on Ikerasak further supports surface thinning of the ice sheet, while an age of 

9.9 ka retrieved from an erratic on Talerua at a much lower altitude of 129 m a.s.l. suggests ice 
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must have retreated landwards of this location at ca. 10 ka (Fig. 6.12) (D.H. Roberts, personal 

communication).  The two-sigma age range (10,705-9953 cal. yr BP) of the radiocarbon dated 

shell from Sarfâgfík encompasses these surface exposure ages indicating a slightly later 

deglaciation of the inner shelf area than the mean age (10.4 ka BP) suggests.  While ice must 

have retreated in the order of 200 km in approximately 600-1200 years (ca. 170-330 m yr-1) 

during the rapid clearance of the mid- to inner-Uummannaq shelf, ice retreat subsequently 

slowed dramatically, retreating only ca. 25 km between ca. 10 and 7.7 ka BP (< 11 m yr-1) 

based on the exposure date obtained from Store Gletscher (Fig. 6.12) (D.H. Roberts, personal 

communication).  Islands in the inner shelf and higher terrain along the modern coastline 

probably acted as topographic ‘pinning points’ to slow or halt ice recession during the latter 

stages of deglaciation (sensu stricto Warren and Hulton, 1990). 

 

The fast nature of ice withdrawal into inner Uummannaq Fjord suggests that rapid calving, 

facilitated by a straight and relatively unobstructed glacial trough that deepens landwards, drove 

deglaciation.  Calving velocity would have increased since the basal buoyancy of marine-based 

ice would have increased as it retreated into deeper waters where grounded ice would have 

been positioned relatively lower in the water.  The foraminiferal data show no clear evidence for 

a significant oceanic influence during initial deglaciation.  However, this is not unexpected, since 

the dominance of glacimarine sedimentation and meltwater injections during initial deglaciation 

provide inhospitable conditions for species commonly associated with relatively warm Atlantic 

water influence, and instead favour opportunistic species (e.g. Korsun and Hald, 1997).  It is 

further possible that the preceding collapse of ice cover in Disko Bugt would have had a cooling 

influence on ocean temperatures by deflecting relatively warm Atlantic-sourced water off the 

shelf, though there is no evidence of a northwards penetration of Atlantic water into Baffin Bay 

at this time.   

 

The apparently fast retreat across the Uummannaq shelf is similar in nature to deglaciation 

across the outer- to mid-shelf west of Disko Bugt, albeit more than 1000 years later.  One 

possible explanation for this could be that the grounded ice sheet in Uummannaq Fjord was 

thicker than ice in Disko Bugt, and therefore more resistant to rising eustatic sea-level.  The 
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glacial limit was located at ca. 770 m a.s.l. on Ubekendt Ejland during the early Holocene (D.H. 

Roberts, personal communication), suggesting ice thicknesses in excess of ca. 1500 m in 

Uummannaq Fjord (i.e. a ‘thick’ ice sheet configuration in Uummannaq fjord prior to 

deglaciation).  A submarine escarpment, composed of Tertiary basalts which are harder and 

more resistant than the Cretaceous-Paleocene sediments to the east, crosses Karrats Fjord 

between Ubekendt Ejland and Svartenhuk Halvø.  Ice streams feeding from the northern part of 

the Uummannaq ice stream system would have been routed southwards past the east side of 

Ubekendt Ejland by this escarpment (see Fig. 6.12; D.H. Roberts, personal communication).  

The confluence of ice streams from the north would have contributed to maintaining thicker ice 

in Uummannak Fjord.  This combined with the buttressing effect of Nuussuaq peninsula against 

the southern side of the ice stream would have contributed to maintaining ice stream stability in 

the Uummannaq area later than to the south in Disko Bugt.   

 

A raised delta/alluvial fan complex at the westernmost tip of Nuussuaq peninsula (black square 

in Fig. 6.12) must have formed when extensive outlet glaciers occupying Vaigat and 

Uummannaq Fjords coalesced under full glacial conditions (Bennike et al., 1994).  However, the 

youngest dates (based on amino acid racemisation) obtained from in situ shell material (at 48 m 

a.s.l.) found just below the local marine limit (60 m a.s.l.) suggests these sediments were 

deposited during the Svartenhuk marine event during the last interglacial, or perhaps even 

earlier (Bennike et al., 1994).  While the old age of these dates does not fit in the new deglacial 

chronology presented here, there is also no apparent geomorphological evidence in aerial 

photographs to suggest this area was glaciated.  Instead, this small enclave may have 

remained unglaciated, bounded by a valley glacier to the east, and ice streams in Uummannaq 

Fjord and the Vaigat to the north and south, respectively, preserving this feature from an earlier 

glaciation.  
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Figure 6.13 (continued below). 
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Figure 6.13 Time-slice conceptual cartoons identifying the main changes in water mass 

characteristics on the Uummannaq shelf and corresponding changes in ice margin position.  

The left panel shows a cartoon cross-section across the shelf, illustrating the main ocean and 

glacier changes.  The right panel shows the evolution of sub-surface currents in the West 

Greenland area based on foraminiferal data from core MSM-343520_G and MSM-343520_MC, 

together with a new model for ice margin retreat for the Uummannaq shelf.   
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6.4.2 Links between climate change and ice-ocean interactions 

As ice retreated into Uummannaq fjord during deglaciation and glacimarine influences at site 

MSM-343520 declined, the foraminifera assemblages in core MSM-343520_G record more 

regional palaeoceanographic changes in sub-surface water mass characteristics (compare Fig. 

6.13a and c).  As a result, foraminiferal data from core MSM-343520_G record Holocene 

changes in the relative temperature of basal waters impinging on the shelf in the Uummannaq 

trough.  The following section addresses linkages between changes in ocean temperature and 

ice margin position. 

 

The Holocene is an ideal period in which to assess the relative contribution of climatic versus 

oceanic temperature changes on ice margin stability because there are several well-established 

brief climate oscillations, including, for example, the Medieval Warm Period and the Little Ice 

Age, and the so-called 8.2 ka event.  Identifying Holocene warming trends in marine records is 

critical to understanding the possible role of ocean forcing on ice front stability linked to changes 

in the sub-surface water temperature of the WGC.  Despite generally poor constraints on 

Holocene glacial history in the Uummanaq area, the subsurface temperature records from core 

MSM-343520_G and MSM-343520_MC presumably provide a good indication of subsurface 

temperatures of water masses that may also penetrate into Disko Bugt, where glacial history is 

more tightly constrained.  Foraminifera-based temperature estimates for basal waters on the 

Uummannaq shelf probably underestimate temperatures of sub-surface waters entering Disko 

Bugt, since further cooling takes place as Atlantic and Polar water components of the WGC 

continue to mix as they move northwards (e.g. Chapman and Beardsley, 1989). 

 

The text in parentheses at the end of the following sub-titles identifies the relevant time-slice in 

Fig. 6.13 discussed in each section.   

 

A record of the 8.2 ka BP event in West Greenland waters (Stage C) 

The drainage of glacial lakes Agassiz and Ojibway through Hudson Strait during the final stages 

of Laurentide ice sheet collapse at ca. 8.2 ka (e.g. Barber et al., 1999; Teller et al., 2002; Nesje 

et al., 2004; Flesche Kleiven et al., 2008) added an estimated 183,000 km3 of meltwater to the 
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Labrador Sea (Clark et al., 2001).  However, the response of the North Atlantic current system 

to large meltwater injections and how these impact on climate are still poorly understood.  The 

so-called 8.2 ka event (the most extreme Holocene climate oscillation), is identified in 

Greenland ice cores as a 4-8°C cooling spanning ca. 160 years (Alley et al., 1997; Rasmussen 

et al., 2007; Thomas et al., 2007; Lowe et al., 2008).  The climate anomaly is thought to have 

been caused by a slow down in thermohaline circulation due to freshening of North Atlantic 

surface waters by glacial meltwater (e.g. Alley et al., 1997; Barber et al., 1999; Nesje et al., 

2004; Alley and Agústsdóttir, 2005; Ellison et al., 2006; Flesche Kleiven et al., 2008).  The 8.2 

ka event occurred during a period of broader climate cooling, particularly in the North Atlantic 

region, from ca. 8.6 to 7.9 ka BP (Alley and Agústsdóttir, 2005; Rohling and Pälike, 2005).   

 

Two significant and abrupt spikes in S feylingi abundance, coeval with decreased benthic 

foraminifera δ13C, can be recognised in core MSM-343520_G (Fig. 6.11) at ca. 9.0-8.8 ka BP 

and ca. 8.2-7.9 ka BP.  Since the West Greenland Ice Sheet margin was situated within fjords at 

the present terrestrial margin after 9 ka BP (Fig. 6.12 and 6.13c), these distinctive features most 

likely reflect a more regional palaeoceanographic influence.  There are no major changes in 

MSM-343520_G core sedimentology that may accompany an event of local origin, and 

furthermore, it is unlikely that freshwater flux from a distal West Greenland Ice Sheet margin 

would directly influence bottom-water oxygen isotope composition on the Uummannaq shelf.  

There is a remarkable similarity in timing and nature of the two spikes in core MSM-343520_G 

spike to other North Atlantic Ocean records that suggest two major stages of proglacial lake 

drainage during the collapse of the Laurentide ice sheet (e.g. Keigwin et al., 2005; Ellison et al., 

2006; Hillaire-Marcel et al., 2007; Flesche Kleiven et al., 2008).  The first S. feylingi and isotope 

spike (9-8.8 ka BP) occurs earlier than in these North Atlantic records, although the precise 

timing of these features are subject to constraints of the age-depth model, including dating 

errors and uncertainties in the local reservoir age.  Nevertheless, these data provide the first 

evidence that a low-salinity anomaly linked to glacial outburst floods propagated into Baffin Bay 

along the West Greenland shelf.   
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Ice sheet response to 8.2 ka event 

The possibility of an ice sheet response the 8.2 ka event in central West Greenland was raised 

by Long and Roberts (2002), who identified a deviation from the steep falling RSL trend in 

southwestern Disko Bugt at this time indicative of crustal reloading due to ice sheet expansion.  

More recent investigations by Young et al. (2011) found evidence for an advance of Jakobshavn 

Isbræ just before 8.0±0.2 ka, corresponding to the deposition of the Tasisussaq moraine (the 

younger of the ‘Fjord Stade’ moraines).  The coincidence of this brief ice sheet advance and the 

8.2 ka event may represent a rapid ice-margin response to a short-lived climate event (Young et 

al., 2011).  However, Long et al. (2006) suggest that the 8.2 ka event was too short to have a 

significant impact on ice dynamics in Disko Bugt, and was unlikely to reverse the trend of rapid 

Early Holocene ice retreat.  Instead, Long et al. (2006) suggest the Fjord Stade moraines 

fringing the eastern coast of Disko Bugt represent diachronous ice margin retreat at ca. 10-8 ka 

BP, due to the varying influence of topography and ice sheet/ice stream dynamics on regional 

deglaciation.   

 

The increase in magnetic susceptibility and [Si/Al] at ca. 8.3-8 ka BP may be interpreted as a 

reduced mainland terrestrial influence (particularly a decline in fine-grained sedimentation from 

suspension) during this interval, resulting in a relative increase in magnetite-bearing basaltic 

sediments derived from Disko Island and Nuussuaq peninsula.  These changes may reflect an 

ice sheet response to the 8.2 ka cooling event, possibly linked to atmospheric cooling over 

Greenland, a reduction in surface ablation, and a subsequent decline in fine-grained sediments 

ejected at glacier termini.  The δ18O (N. labradorica) minima may be indicative of bottom water 

freshening.  However, it is possible that the δ18O values from the infaunal N. labradorica reflect 

microhabitat changes and pH and carbonate sediment porewaters, perhaps linked to changes 

in the depth habitat of N. labradorica (e.g. Ravello and Hillaire-Marcel, 2007). 

 

The Fjord Stade has been divided into two phases of moraine formation; an older Marrait 

moraine system (9.9-9.3 ka BP) deposited due to decreasing ablation and calf ice production, 

partly because of reduced marine influence at the ice margin and due to complex climate 

interactions, and the younger Tasisussaq Moraine system (8.7-7.7 ka BP).  The deposition of 
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the Marrait moraine appears to have preceded the first interval of freshening, which more 

closely corresponds to the glacier expansion on Disko Island at ca. 9 ka BP identified by 

Ingólfsson et al. (1990).  These glacier advances suggest a link with cooler surface waters, 

which probably had a cooling influence on regional air temperatures during these intervals.  

 

Initiation of the West Greenland Current on the Uummannaq shelf  

A number of studies from along West Greenland (e.g. Donner and Jungner, 1975; Funder and 

Weidick, 1991; Dyke et al., 1996; Lloyd et al., 2005) and northern Baffin Bay (e.g. Mörner and 

Funder, 1990; Kelly et al., 1999; Levac et al., 2001; Knudsen et al., 2008b) document an early 

re-establishment of Atlantic water intrusion into Baffin Bay following deglaciation.  A warmer 

WGC influence has been identified from as early as 10.9 ka BP (9275±110 14C yr. BP, Ua-4448) 

in northern Baffin Bay (Knudsen et al., 2008b) based on increased planktonic foraminifera flux.  

In central West Greenland, however, foraminifera and mollusc data suggest warming did not 

take place until after 9.2 ka BP (Funder and Weidick, 1991; Lloyd et al., 2005), and probably not 

until after 8.7 ka BP (see Chapter 5).   

 

Foraminiferal evidence indicates that the initiation of WGC warming in central West Greenland 

began at ca. 8 ka BP (Fig. 6.11h,i; Fig. 6.13d); much later than in northwest Greenland (Dyke et 

al., 1996), northern Baffin Bay (Levac et al., 2001; Knudsen et al., 2008b), and the Baffin Island 

shelf (Osterman and Nelson, 1989).  This can be partly explained by the significant meltwater 

flux produced during the retreat of the central west sector of the Greenland Ice Sheet from an 

extensive mid- to outer-shelf position to the inner shelf.  This would have diluted the north-

flowing WGC (and thereby lowering the temperature of the basal water mass) or deflected 

warmer WGC waters off the shelf (as illustrated by the dashed red line in the right panel of Fig. 

6.13a).   

 

Palaeoenvironmental conditions from 8-5 ka BP (Holocene thermal optimum, Stage D)  

This is the first high-resolution marine record with a robust dating framework that captures the 

pattern and timing of early Holocene warming on the shelf in central West Greenland.  Lloyd et 

al. (2005) constrained the initiation of subsurface warming (and the establishment of the modern 
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pattern of circulation) inside Disko Bugt to sometime after 9.2 ka BP.  Data from core MSM-

343340_G (Chapter 5) further constrains the initiation of warming to shortly after 8.7 ka BP.  

However, the foraminifera record (Fig. 6.11h and i) in core MSM-343520_G suggest warming of 

subsurface waters impinging on the seafloor in the Uummannaq trough did not begin until ca. 8 

ka BP, and lasted until 5.2 ka BP, with peak warmth (indicated by higher abundances of N. 

labradorica) occurring between 7.7 and 6 ka BP (Fig. 6.8).  The cartoon in Fig. 6.13d shows the 

reconstructed warming in sub-surface waters during this interval as an intrusion of warmer 

mixed-WGC waters on to the Uummannaq shelf (i.e. mix of Atlantic and Polar water, 

characterised by dominance of agglutinated fauna), rather than a dominant warm Atlantic 

influence.  This is because sub-surface water temperatures probably remained below modern 

values (see Fig. 6.11j), with optimal marine conditions not occurring until the late Holocene.   

 

Cosmogenic surface exposure dates from the adjacent to Store Gletsher (Fig. 6.12) suggest the 

ice sheet retreated onto land at ca. 7.7 ka BP (D.H. Roberts, personal communication), though 

marine-terminating glaciers would have continued to occupy fjords at this time.  In the more 

widely studied Disko Bugt area, ice retreated behind its present extent before 6.1 ka BP and 

advanced after 3.5 ka BP based on reworked shells and bone material found in moraine 

adjacent to Jakobshavn Isfjord (Weidick et al., 1990; Weidick, 1992; Weidick and Bennike, 

2007).  Marine-terminating glaciers in Disko Bugt (Jakobshavn Isbræ, Alángordliup sermia, and 

glaciers terminating in Pâkitsoq, ca. 35 km north of Jakobshavn Isfjord) are estimated to have 

retreated 15-20 km during the HTM Data from subsurface radar mapping of fjords in Disko Bugt.  

By identifying the likely origin of morainal material from radar mapping, Weidick (1992) 

estimates that Jakobshavn Isbræ retreated more than 20 km behind the present margin during 

the HTM.  Young et al. (2011) use 10Be surface exposure dating of bedrock and erratic 

boulders, combined with radiocarbon dating of proglacial/threshold lakes (conceptual approach 

described in detail in Briner et al., 2010) at locations within a few kilometres either side of 

Jakobshavn Isfjord to demonstrate that ice retreated rapidly at ca. 100 m yr-1 between 8 ka and 

7.5 ka.  Additional 10Be ages from bedrock approximately 10-15 km north of Jakobshavn Isfjord 

indicate that land-based ice retreated synchronously with that of marine-based ice in the Isfjord 
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(Young et al., 2011), suggesting atmospheric warming was the dominant driving mechanism for 

ice retreat during the early- to mid-Holocene.   

 

In Disko Bugt (e.g. Weidick et al., 1990; 1992) and southerly areas such as Holsteinborg (e.g. 

Roberts et al., 2009), surface ablation due to warmer air temperatures has been suggested as 

the main mechanism by which the ice sheet lost mass after the initial marine-based 

deglaciation.   

 

The timing of the HTM varies spatially across the Arctic region (Kaufman et al., 2004).  In 

central West Greenland, a HTM of ca. 7-4 ka BP has been identified in terrestrial records 

(Fredskild, 1983, 2000; Willemse and Törnqvist, 1999; Bennike, 2000; McGowan et al., 2003; 

Axford et al., 2010; Young et al., 2011).  Chironomid reconstructions from a proglacial lake on 

the northern flank of Jakobshavn Isfjord, Disko Bugt, suggest summer air temperatures were 

approximately 2°C warmer than present between ca. 6 and 4.5 ka BP (Axford et al., 2010; 

Young et al., 2011).  This corresponds closely to Bennike’s (2000) interpretation for the 

terrestrial HTM in central West Greenland occurring between 6.5 and 4 ka BP based on the 

presence of Betula nana (Dwarf Birch) pollen in lacustrine sediments from Nuussuaq peninsula.  

The period of sub-surface WGC warming recorded in core MSM-343520_G closely corresponds 

to the occurrence of warmth-demanding boreal molluscs along West Greenland (from 

Holsteinborg to Orpigsôq, southeastern Disko Bugt) between 8.9 ka BP (8360±120 14C yr. BP) 

and 5.2 ka BP (4870±110 14C yr. BP).  These thermophilous molluscs suggest water 

temperatures were 1-3°C warmer than present during this interval (Weidick, 1972a; Funder and 

Weidick, 1991).  The initiation of ocean warming on the Uummannaq shelf precedes the 

terrestrial Holocene thermal maximum (HTM) in West Greenland by 1.5-2 ka.     

 

The reduction in meltwater flux as the Greenland Ice Sheet approached its modern limit in the 

Uummannaq area shortly after ca. 8 ka BP may have permitted the intrusion of relatively warm 

and saline deep waters into inner fjord areas, possibly influencing ice stream dynamics by 

increasing basal melt of marine terminating ice streams.  However, since foraminiferal 

reconstructions suggest slightly cooler subsurface water conditions than at present, and there is 
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no significant WGC influence in the modern Uummannaq fjord, at least close to the calving 

margin, any ocean warming may have only had a minor direct influence on ice dynamics.  

However, it is likely that the early Holocene warming in WGC temperatures played an important 

role in the development of a warmer Baffin Bay climate, driving land-based deglaciation.  The 

interval of initial warming in core MSM-343520_G from ca. 8 ka BP corresponds with 

reconstructions of maximum August sea-surface temperatures (Solignac et al., 2006) and open 

water conditions (<0.5 months where sea-ice cover is greater than 50%) between 8 and 6 ka 

BP in HU90-013-013P from the southwest Greenland Rise (de Vernal and Hillaire-Marcel, 

2006).    

 

Palaeoenvironmental conditions from 5-3.5 ka BP (Neoglaciation, Stage E)  

The HTM was followed by the Neoglacial, a period of cooling and ice sheet expansion in 

Greenland spanning the past ca. 4 ka BP and culminating in the Little Ice Age (e.g. Weidick, 

1993; 1996; Kaplan et al., 2002).  The dominance of C. arctica and the relative increase in 

abundance of S. biformis in the agglutinated foraminifera assemblages indicates that this period 

of ice sheet expansion was characterised by a dominance of cold Arctic Waters on the 

Uummannaq shelf (Fig. 6.13E).  The pre-Historical moraines on Nuussuaq peninsula may be 

linked to the Drygalski moraines (Weidick, 1972; Kelly, 1980).  While the age of the Drygalski 

moraines are unknown, they are thought to have been deposited during the Neoglaciation 

between ca. 5-2.5 ka BP (Weidick, 1996), and are associated with a glaciation limit 200-500 m 

lower than the modern limit (Weidick, 1968; Kelly and Lowell, 2009).  The cooling in sub-surface 

ocean temperatures is associated with a deterioration in climatic conditions from ca. 5-4 ka BP 

documented in West Greenland lacustrine pollen and chironomid records (Fredskild, 1984; 

Young et al., 2011).  This interval of cold atmospheric and oceanic temperatures corresponds to 

the gradual advance of Jakobshavn Isbræ from 5-4 ka BP (Weidick, 1992; Weidick et al., 1990; 

2004).        

 

Palaeoenvironmental conditions from 3.5-1 ka BP (Stage F)  

The major shift in foraminifera assemblage composition at 3.5 ka BP, from fauna dominated by 

C. arctica to one dominated by A. glomerata, is indicative of amelioration in subsurface waters 
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impinging on the Uummannaq shelf.  This is followed by further warming of subsurface waters 

between 1.5 and 1 ka BP, suggested by higher abundances of species associated with Atlantic 

Water influence.  However, in inner Disko Bugt, Lloyd et al. (2007) identify the period 3.5 ka BP 

to 2 ka BP as an interval of cooling in bottom waters, with particularly cold bottom waters at 2.7-

2.2 ka BP.  Surface water cooling is also identified from diatom and dinoflaggellate cyst 

assemblages in Disko Bugt from 3.5 ka BP to 2 ka BP (Moros et al., 2006; Seidenkrantz et al., 

2008), and suggested by a reduction in sea salts from the Devon Ice Cap ice core on Baffin 

Island, suggesting greater sea-ice cover in Baffin Bay from 3.5 ka BP (Fisher, 1976).  Lloyd 

(2006b) find a link between warmer sub-surface waters in inner Disko Bugt between ca. 1650-

500 cal. yr BP and recession of the Jakobshavn Isbræ ice front.   

 

Palaeoenvironmental conditions from 1-0.1 ka BP (Little Ice Age, Stage G)  

The interval 1-0.1 ka BP is characterised by Arctic Water influence on the Uummannaq shelf 

(Fig. 6.13 G).  A chironomid-based temperature reconstruction from Disko Bugt suggests that 

July air temperatures were close to modern values at ca. 2.5 ka BP, and approximately 1°C 

cooler than present at 500 cal. yr BP (Young et al., 2011).  The dominance of Arctic Water 

along central West Greenland at this time may be linked to changes in the NAO.  A proxy-based 

reconstruction by Trouet et al. (2009) suggests the Medieval Warm Period from 900 to 500 cal. 

yr BP was characteterised by a persistent positive NAO phase.  At present, a positive NAO 

phase is linked with increased westerly wind stress and a strengthening and narrowing of the 

North Atlantic Current.  Under these conditions, there is less westward branching of warm, 

saline Atlantic Water, and therefore a reduced contribution of Irminger Current water to the 

WGC.  In Disko Bugt, the cold atmospheric and marine conditions are associated with the 

continued advance of Jakobshavn Isbrae towards the mouth of Jakobshavn Isfjord, reaching its 

maximum extent sometime around AD 1800 (Briner et al., 2010). 
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Figure 6.14 Summary data and transfer function reconstruction for core MSM-343520_MC, with 

climate reconstructions and instrumental data, and periods of ice advance in West Greenland, 

and the observed retreat of Jakobshavn Isbrae.  
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20th Century warming (Stage H)  

The foraminiferal record illustrated in Fig. 6.14 clearly shows a period of cooling in sub-surface 

WGC temperatures between ca. A.D. 1750 and A.D. 1850, as indicated by a minima in the 

Atlantic group of agglutinated foraminifera.  Briner et al. (2010) and Young et al. (2011) suggest 

that Jakobshavn Isbræ, and presumably other tidewater glaciers in Disko Bugt and 

Uummannaq District, reached its LIA maximum extent coeval with cool ocean temperatures.  

While cooler atmospheric temperatures permitted ice sheet expansion at this time, the absence 

of warmer waters penetrating into the inner fjords would have allowed marine-based ice to 

advance.  After A.D. 1850, there is a gradual warming in sub-surface water temperatures, 

indicated by an increase in A. glomerata up to the start of the 20th Century, and followed by 

increases in Atlantic Water species and foraminifera concentration (Fig. 6.14) that indicate 

higher sub-surface water temperatures in central West Greenland.  The increase in Atlantic 

Water influence on the Uummannaq shelf coincides with the gradual retreat of Jakobshavn 

Isbræ (with more frequent observations of ice margin position from A.D. 1875) (Weidick and 

Bennike, 2007).   
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Camilla S. Andresen (GEUS) provided sedimentological (sieving of coarse grain size fractions 

and clast counts), petrological, and magnetic susceptibility core scanning data from core DA06-

139G.  This data is presented in Andresen et al. (2011).   
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Chapter 7 

Mid- to late-Holocene palaeoceanography in central West Greenland:  

Ice sheet history and ocean forcing 

 

 

7.1 Introduction 

The Vaigat (Fig. 2.1), located between Disko Island and Nuussuaq peninsula, is an important 

location for understanding late Holocene changes in ice stream activity because at present the 

majority of calf ice produced in Disko Bugt is routed northwards through this fjord by the 

dominant surface currents (see Fig. 2.6).  The modern water mass structure of the Vaigat is 

characterised by a three-layer structure, with surface waters (0-50m), Polar water (50-

100/200m), underlain by Atlantic water (>100/200m).  Surface waters (<50m depth) are cooled 

and freshened by melting of icebergs and seasonal sea ice.  A cold and low-salinity Polar water 

layer sits between 50 to 100m depth.  During boreal summer months, inflow of surface-heated 

waters from Disko Bugt raise temperatures in this layer, and deepen the temperature minima 

from ca. 100m to ca. 200m.  Atlantic-sourced waters lie beneath the Polar water layer, generally 

at depths exceeding 150m.  The warm core of Atlantic water outside Disko Bugt is located at 

300-400m depth (2.5-3.5°C), and enters the main part of the bay by crossing a threshold depth 

of 305m (Fig. 2.2).  Relatively warm, saline Atlantic water in Disko Bugt is located at depths 

exceeding 250m.  However, in order to enter the Vaigat, Atlantic water must cross a shallow 

threshold (ca. 245 m) in northeast Disko Bugt (between Disko Island and Arveprinsens Ejland) 

(Fig. 2.2).  

 

Core DA06-139 was collected midway along the Vaigat (see Chapter 3 for core details, and Fig. 

3.1 for core location).  In this chapter, a combination of benthic foraminifera and 

sedimentological data are used to investigate the linkages between ocean circulation and ice 

margin stability.  The benthic foraminifera are used to reconstruct changes in the influence of 

relative warm and saline Atlantic Water transported by the WGC into Disko Bugt and the Vaigat.  

Since warm Atlantic Water must overtop the shallow sill at the southeastern entrance to the 

Vaigat, the foraminifera in core DA06-139G presumably allow intervals influenced by generally 
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warmer intermediate waters in Disko Bugt to be identified.  Foraminifera data are supplemented 

by sedimentological data (grain size, basalt versus non-basalt clasts > 500 μm) provided by 

C.A. Andresen (see Andresen et al., 2011).  Sedimentological data provide information on the 

calving activity of marine-terminating glaciers in Torssukátak, as well as Jakobshavn Isbræ to 

the south, which would also presumably exert a significant influence on sedimentation via ice-

rafting.   

 

7.2 Results 

7.2.1 Chronology and sedimentation rates 

The age model for core DA06-139G (Fig. 7.1) is based on 9 AMS 14C dates from shells, benthic 

foraminifera and plant remains measured at the AMS 14C Dating Centre, University of Aarhus.  

A general low abundance of calcareous foraminifera necessitated the use of these other 

materials for dating.  OxCal v4.1 (Bronk Ramsey, 2000) was used to calibrate radiocarbon 

dates using the Reimer et al. (2009) marine radiocarbon curve (ΔR 0±0) (Table 7.1).  A near-

basal date (at 435cm) of 4933±80 cal. yr BP indicates that this core provides a record of mid- to 

late-Holocene palaeoceanographic changes.  The age model is based on linear interpolation 

between calibrated radiocarbon dates.  The uppermost date (AAR 10953, Table 7.1) of 652-597 

cal. yrs BP has been removed from the age model.  This has been done for two main reasons.  

Firstly, the calibrated age of AAR 10952 (Table 7.1) is similar in age to sample AAR 10953, 

though is situated approximately 50 cm lower in the stratigraphical record, and, together with an 

additional calibrated date in the upper part of the core (AAR 13060, Table 7.1) lies close to a 

straight line between the underlying calibrated radiocarbon date and the top of the core.  

Secondly, the age of the top of the core is believed to be close to modern since the 125 mm 

diameter gravity corer causes relatively little disturbance of surface sediments (A. Kuijpers, 

personal communication, 2009).  However, since the age-depth model is based on dates 

obtained from shells (which are more mobile in near-surface sediments) and plant material 

(which have been transported into the area) the age model is susceptible to dating areas.  Not 

withstanding these possible errors, the age model appears to be robust (Fig. 7.1).  These dates 

in general lie in stratigraphical order; there are no major changes in sedimentation rates, and no 

evidence of hiatuses in the record.   
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The age model indicates that the sedimentation rate has gradually increased over the past 5 ka 

BP, from 0.44 mm yr-1 at the base to more than 1 mm yr-1 in the upper part of the core DA06-

139G (Fig. 7.1).  This includes an interval of apparently rapid sedimentation (3.87 mm yr-1) at 

1.4 ka BP, although this may be a result of an erroneous date at 134 cm depth.  Assuming 

constant sedimentation and without taking into account sediment reworking, each 2 cm 

foraminifera sample represents approximately 20 to 50 years of sediment accumulation.   

 

 

 

Figure 7.1 Age-depth model for core DA06-139G, based on linear interpolation between mean 

calibrated radiocarbon ages.  Grey error bars indicate the two standard deviation age range.  
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Core depth 
(cm) 

Lab. Code Material  14C age ± 
1σ (yr BP) 

Calibrated 
age (yr BP) 

Age range 2σ 
(yr BP) 

7 – 8 AAR 10953* Gastropod 1013 ± 35 590 652 - 527 

27 – 28 AAR13060 Gastropod 607 ± 22 250 302 - 145 

58 – 60 AAR 10952 Gastropod 903 ± 35 515 598 - 457 

132 – 136 AAR 10951 Plant remains 1797 ± 40 1342 1440 - 1260 

180 AAR13059 Plant remains 1913 ± 27 1456 1535 - 1373 

199 – 200 AAR 10950 Plant remains 2090 ± 42 1666 1792 - 1547 

302 – 304 AAR 13061 Benthic forams. 3030 ± 90 2822 3070 - 2604 

385 AAR 10949** Gastropod 3976 ± 38 3977 4093 - 3849 

390 – 393 AAR 10948** Plant remains 3833 ± 43 3783 3913 - 3783 

435 AAR 10947 Shell 4709 ± 40 4939 5059 - 4825 
 

Table 7.1 Radiocarbon dates from core DA06-139G.  The calibrated using the Marine09 curve, 

with ∆R=0±0, (Reimer et al., 2009) in Oxcal v.4.1 (Bronk Ramsey, 2009).  

 * Date considered too old and removed from age-model.   

**Dates are within 2σ range and considered coeval.  The mean of these calibrated dates is used 

in the age model. 

 

7.2.2 Sediment properties 

Particle size data show several peaks in the >150μm (% weight) and >500μm (grain frequency) 

fraction interspersed throughout core DA06-139G (Fig. 7.2).  There is a steady decline in 

sediment >150μm (% weight) between 5-4 ka BP, followed by very little coarse-grained 

sedimentation until after 3 ka BP, with the exception of an isolated peak at 3.6 cal. ka BP.  

Between 3 and 1.7 ka BP, there is an increase in coarse sediment content, which matches a 

greater delivery of clasts > 2 mm, as identified in X-ray radiographs (Fig. 7.2).  Coarse-grained 

sedimentation is greatest from 1.7 to 0.4 ka BP, as indicated by an increase in the number of 

clasts > 2 mm and percentage weight of sediment >150μm.  After 4.7 ka BP, 80-90% of coarse 

sediments are non-basaltic in origin, indicating sediment sourced from the mainland rather than 

Disko Island and Nuussuaq peninsula.  The upper part of the core (upper ca. 400 cal. yrs.) is 

marked by a decline in coarser sedimentation, with the exception of one significant spike at 0.3 

ka BP.  Basaltic material, sourced from Disko Island and/or Nuussuaq Peninsula, consistently 

comprises 10–20% of grains >500μm, with the exception of the base of the core (4.7-5.1 ka 

BP), where 40–60% of grains are basaltic.  There are further peaks of basaltic grains (>500μm) 
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at 2.1 and 3.6 ka BP.  However, there is greater low frequency inputs of basaltic material in the 

past 2.0 ka BP compared to the interval 5.1-2.0 ka BP. 

 

Figure 7.2 Sedimentological data for core DA06-139G (provided by C.S. Andresen); (A) 

magnetic susceptibility (SI x10-5), (B) percentage basalt grains, concentration of (C) basaltic 

grains and (D) non-basaltic grains calculated as the number of grains/weight of sample, (E), 

percentage weight of dry sediment fraction > 150 μm, (F) number of clasts > 2 mm in diameter 

identified in X-ray radiographs, and used as an indicator of ice-rafting. 

 

7.2.3 Foraminiferal biostratigraphy 

Forty-one species (23 agglutinated and 18 calcareous) were recorded from the sediment core.  

The morphologically similar species of Islandiella helenae and Islandiella norcrossi are 

presented together as I. norcrossi.  Test lining counts provide an indication of calcareous 

dissolution, and are presented as a proportion of total preserved calcareous foraminifera and 

test linings.  However, not all calcareous foraminifera have organic test linings, so the impact of 

dissolution may be underestimated, while samples with low calcareous counts must also be 
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interpreted with caution using this method.  Dominantly agglutinated foraminifera samples are 

probably the result of calcareous dissolution.  These data suggest dissolution of calcareous 

foraminifera has significantly modified fossil assemblages, especially in FAZ 2 and 3, becoming 

extreme from 900 cal. yrs. BP.   

 

The greater abundance of the robust C. arctica in the fossil record (Lloyd et al., 2007; this study) 

compared to modern samples (occasionally >10%, e.g. Korsun and Hald, 2000; Murray and 

Alve, 2000; Lloyd, 2006a) suggests either modern samples do not span the full range of 

environments and/or post-mortem changes have influenced foraminiferal assemblage 

composition.  Since abundances of C. arctica are relatively high from the top of the core 

(compared to abundance in modern samples), this suggests that any post-mortem changes 

occur immediately after burial, rather than increasing with sediment depth (i.e. due to increased 

sediment accumulation).  However, the high abundance of the slender and fragile R. gracilis is 

found at the base of the core suggests that taphonomic processes do not significantly affect 

agglutinated foraminifera in core DA06-139G. 

 

In light of these apparent preservation issues, agglutinated and calcareous species have been 

treated as separate components for percentage calculations.  However, there is a significant 

variability in species abundance between these components; all agglutinated assemblages 

contain more than 100 specimens (two-thirds of samples have more than 250 specimens), while 

29 of the 46 samples contained fewer than 50 calcareous specimens.  Stratigraphically 

constrained cluster analysis (incremental sum of squares) of the combined agglutinated and 

calcareous assemblage (total %) in CONISS (Grimm, 1987) divided the foraminiferal 

assemblages into three distinct zones (Fig. 7.3).  For simplicity, these faunal zones facilitate the 

description of both foraminiferal and sedimentological data.  Descriptions of faunal trends 

pertain to total agglutinated or calcareous foraminifera unless otherwise stated. 
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Figure 7.3.  Foraminiferal assemblages from DA06-139G.  Foraminiferal counts are expressed 

as percentages of total agglutinated or total calcareous specimens counted.  Only taxa >5% in 

samples containing a minimum of 50 agglutinated or calcareous specimens are included in the 

diagram.  Samples containing ≥50 specimens are identified by solid black bars, 20-49 

specimens have solid grey bars.  Species presence in samples with <20 specimens is indicated 

by hollow circles.  The core has been divided into foraminiferal zones based on stratigraphically 

constrained cluster analysis of the total assemblage data in CONISS (Grimm, 1987).  Species 

associations with Atlantic and Arctic water masses are based on ecological studies in West 

Greenland and other high-latitude shelf locations. 
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FAZ 1 (5.1-2.6 ka BP, 443-297 cm) 

FAZ 1 is characterised by the greatest proportion of calcareous fauna throughout the core, 

making up to 70% of the total assemblage.  The dominant Elphidium excavatum f. clavata (30–

60%) gradually declines in abundance to 3.0 ka BP.  Elphidium excavatum f. clavata is found in 

ice-proximal glaciomarine conditions (e.g. Feyling-Hanssen, 1964; Hansen and Knudsen, 1995; 

Hald and Korsun, 1997; Korsun and Hald, 2000), as well as ice-distal shelf environments 

dominated by relatively cold, low salinity Arctic waters (Korsun and Hald, 1998; Hald and 

Steinsund, 1996).  Elphidium excavatum f. clavata thrives under a variable hydrographic 

regime, often under the influence of turbid meltwater plumes with high suspension settling of 

sediment (Korsun and Hald, 1998, 2000; Jennings et al., 2001).  At ca. 4.5 ka BP the 

calcareous assemblage is composed of Nonionella labradorica (10-15%), Cassidulina 

neoteretis (5-10%), Bucella spp. (5-15%), and an isolated peak in Globulina inaequalis (15%), 

which are considered diagnostic foraminifera for Atlantic Water influence in central West 

Greenland (Lloyd, 2006a).  On the Labrador Shelf, N. labradorica is found under the influence of 

Labrador Sea Water, with a temperature of 3°C and a salinity of 34‰ (Bilodeau et al., 1994).  

Many investigators suggest increasing abundances of N. labradorica reflect higher nutrient 

levels (e.g. Jennings et al., 2004).  In West Greenland waters, increases in N. labradorica are 

positively correlated with temperature and salinity (Lloyd, 2006a), and likely reflect influxes of 

warm Atlantic water with relatively high nutrient concentrations compared to Arctic water 

(Stefánsson and Ólafsson, 1991; Jennings et al., 2004).   

 

The dominance of Cuneata arctica (50 to 80%) in the agglutinated fauna, particularly between 

5.1 and 3.6 ka BP, indicates the presence of cold Arctic waters in the Vaigat. Cuneata arctica is 

thought to reflect annually well-mixed open marine conditions (e.g. Hald and Steinsund, 1992; 

1996; Korsun et al., 1994; Murray and Alve, 2000; Jennings et al., 2001).  However, the low 

diversity (see Fig. 7.3) of samples where C. arctica abundance is greatest (especially at 5.1 and 

3.6 ka BP) suggests unstable and severe environment conditions prevailed (Feyling-Hanssen 

and Funder, 1990).  The abundance of C. arctica begins to decline towards the top of FAZ 1.  

Peaks in R. gracilis (up to 35%) at 4.8 and 3.1 ka BP correspond to the reduced abundance of 

C. arctica.  While R. gracilis is considered opportunistic, high abundances of the taxonomically-
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similar Leptohalysis catella found in Canadian and Scandinavian fjords (e.g.  Alve, 2000; 

Gustafsson and Nordberg, 2000; Blais-Stevens and Patterson, 1998; Patterson et al., 2000) 

have been linked to high organic inputs from terrestrial plant debris and a fine-grained substrate 

(Schafer et al., 1995; Blais-Stevens and Patterson, 1998).  Peaks in R. gracilis (4.9 and 3.1 ka 

BP) follow low diversity samples dominated by C. arctica, possibly reflecting initial amelioration 

of bottom-water conditions.  While E. advena, Spiroplectammina biformis, and Textularia 

torquata are present as accessory species throughout FAZ 1, diversity of the agglutinated fauna 

increases through this zone (mean of 9 species before 3.5 ka BP, compared to 13 species after 

3.5 ka BP).   

 

In general, there is a trend of cooler bottom waters in the Vaigat from 5.1 to 3.5 ka BP as 

suggested by the dominance of C. arctica and E. excavatum f. clavata and the low diversity, 

interrupted by a brief warm interval at ca. 4.5 ka BP.  This is followed by a warming trend from 

3.5 ka BP, indicated by a decline in C. arctica and E. excavatum f. clavata, and increased 

abundance of A. glomerata, R. turbinatus and I. Norcrossi.  A minor increase in A. glomerata at 

2.7 ka BP may be indicative of an increase in Atlantic Water influence at this time.  However, 

the increase in S. biformis and C. reniforme suggests a cooling trend into FAZ 2. 

 

FAZ 2 (2.6-1.5 ka BP; 297-189 cm) 

FAZ 2 appears to be marked by enhanced calcareous dissolution.  Elphidium excavatum f. 

clavata is abundant, though not as important as in FAZ 1.  Islandiella norcrossi, C. reniforme, 

and N. labradorica are common species in FAZ 2, the latter increasing in abundance after 2.0 

ka BP.  Arctic water indicators C. arctica (typically ca. 40%) and S. biformis (ca. 15%) are 

abundant, though generally less important compared to FAZ 1.  The exception is a brief interval 

ca. 2.5-2.2 ka BP where the abundance of C. arctica increased (ca. 65%), representing 

conditions colder similar to those shortly before 4.0 ka BP.  Adercotryma glomerata, Ammotium 

cassis, Recurvoides turbinatus occur in increasing abundance throughout FAZ 2.  Hald and 

Korsun (1997) found these species correlate well with temperature and salinity, and are 

common under the influence of transformed Atlantic water in Svalbard Fjords.  These species 
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indicate a greater influence of Atlantic water (weak WGC) compared to FAZ 1, particularly 

between 2.0 and 1.5 ka BP.   

 

FAZ 3 (1.5 ka BP to present; 189-0 cm) 

FAZ 3 is characterised by the gradually increasing dominance of S. biformis (from ca. 15 to 35% 

at 200 cal. yrs BP), and the absence of calcareous fauna after 1.0 ka BP. Dominantly 

agglutinated assemblages have been interpreted as indicating cold, low salinity bottom waters 

(e.g.  Vilks et al., 1982).  There is a continued decline in the abundance of C. arctica, although it 

is still the dominant species typically comprising ca. 25% of assemblages in FAZ 3.  

Spiroplectammina biformis is a dominant species in fjords of Baffin Island and Svalbard where it 

is found under the influence of Arctic waters and glaciomarine conditions (Schafer and Cole, 

1986; Korsun and Hald, 2000).  Despite wide temperature and salinity tolerances (Alve, 1990), 

S. biformis often dominates in low salinity (<30 psu) and low oxygen (<1 ml l-1) waters (Alve, 

1991), suggesting a greater influence of Polar water and reduced overturning/bottom water 

renewal in the Vaigat.  The opportunistic R. gracilis shows a slight decrease in abundance 

compared to FAZ 1 and 2, suggesting more stable environmental conditions persisted.  

Reophax turbinatus, T. torquata, and Cribrostomoides sp. are common in FAZ 3, while there are 

smaller occurrences of A. glomerata, A. cassis, Cribrostomoides crassimargo, and E. advena.  

Ishman and Foley (1996) identify a biozone dominated by the agglutinated foraminifera T. 

torquata and S. biformis as indicating cold Arctic waters in the Amerasian basin of the Arctic 

Ocean.  The uppermost significant calcareous assemblage at 900 cal. yrs BP consists of E. 

excavatum f. clavata (45%), I. norcrossi (25%), and C. reniforme (12%) indicating strong Polar 

water influence with occasional weak WGC incursions.   

 

7.3 Discussion 

The benthic foraminifera and sedimentological data provide a record of changes in the 

oceanographic regime and glacier calving activity during the mid- to late-Holocene.  Benthic 

foraminifera have been found to respond primarily to changes in the temperature and salinity of 

subsurface waters impinging on the West Greenland shelf, which are linked to variations in the 

influence of the WGC (Lloyd, 2006a; Chapter 4).  The foraminiferal data from DA06-139G 
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reflects interactions between the regional scale influence of the WGC and Arctic waters from 

Baffin Bay entering Disko Bugt, and meltwater fluxes from local tidewater glaciers.  The primary 

sources of sediments deposited in the Vaigat include suspension settling of fine-grained 

sediments from meltwater plumes, sediment rafting by icebergs and sea-ice, and mass 

transport by turbidity currents and debris flows.  Because subsurface WGC water must cross a 

ca. 245 m-deep threshold (Fig. 2.2) to enter the Vaigat (Andersen, 1981a), DA06-139G may 

provide a reasonable analogue for the penetration of Atlantic water into Disko Bugt fjords with 

sills located at similar depths.   

 

7.3.1 Preservation of benthic foraminifera 

Fossil foraminiferal assemblages represent the time-averaged accumulation of specimens and 

the combined effects of post mortem alterations, which include transport and destruction of 

foraminifera tests (Murray, 1991; Murray and Alve, 1999a, 1999b).  Water mass characteristics 

(particularly temperature and salinity) exert a significant control on the composition of modern 

benthic foraminiferal assemblages on the West Greenland shelf (see Chapter 4), indicating 

these should provide suitable proxies for reconstructing past bottom-water temperature and 

salinity changes.  However, palaeocological interpretations may be influenced if taphonomic 

processes in fossil sediments are not identified.  It is possible that significant differences 

between the composition of modern total (living + dead) and fossil assemblages will be because 

assemblages spanning the full environmental gradient have not yet been sampled.  However, 

taphonomic processes may also have a major influence on the composition of foraminiferal 

assemblages.   

 

Test lining counts are high throughout core DA06-139G, indicating dissolution of calcareous 

foraminifera plays a significant role in altering the death assemblage, particularly over the past 

2.5 ca. ka BP.  The causes of calcium carbonate dissolution in high-latitude benthic marine 

environments are widely debated, and various processes have been proposed (e.g. Schröder-

Adams et al., 1990a, 1990b; Hald and Steinsund, 1992; Hunt and Corliss, 1993; Jennings and 

Helgadottir, 1994; Steinsund and Hald, 1994; Alve, 1996; Murray et al., 2003; Lloyd et al., 

2007).  Furthermore, there is debate as to whether dissolution takes place at the sediment-



Late Quaternary ice-ocean interactions in central West Greenland 

 

 
196 

 

water interface or within the sediment pore waters, since this has implications for the processes 

involved.  Enhanced primary production leads to greater organic fluxes to the seafloor and 

subsequent decomposition helps create anoxic and acidic pore waters in the top few 

centimetres below the sediment-water interface, resulting in dissolution of infaunal calcareous 

foraminifera (Reaves, 1986; Walton and Burton, 1990; Freiwald, 1995; Steinsund and Hald, 

1996).  Since foraminifera primarily live below the sediment-water interface, acidic pore waters 

may be more likely to cause calcareous foraminifera dissolution, rather than highly oxygenated 

bottom waters.  This suggests better preservation is linked to reduced organic accumulation 

(Reaves, 1986).  Higher sedimentation rates may further dilute organic matter influxes and help 

preserve calcareous foraminifera (e.g. Korsun and Hald, 2000).  However, the increased 

sedimentation rate in the upper part of the core has no influence on calcareous preservation, in 

contrast to better preservation identified by Lloyd et al. (2005) in Disko Bugt during periods of 

increased sedimentation rate.  This is perhaps not surprising as sedimentation rates through 

this core are an order of magnitude less than intervals of good calcareous preservation 

identified by Lloyd et al. (2005).     

 

The role of sea ice in calcareous preservation has been widely debated (e.g. Anderson, 1975; 

Osterman and Kellogg, 1979; Scott et al., 1989; Schröder-Adams et al., 1990a, 1990b; de 

Vernal et al., 1992; Steinsund and Hald, 1996).  Schröder-Adams et al. (1990a; 1990b) suggest 

agglutinated fauna dominate in the Canadian Arctic during extended periods of seasonal ice-

free conditions where highly oxygenated meltwater influence enhances dissolution of 

calcareous fauna.  Glacier advances, greater iceberg transport and associated melting, and 

seasonal melting of greater sea ice cover may have contributed to enhancing meltwater delivery 

to the Vaigat during the past 2.5 ka BP.  However, it is difficult to envisage how meltwater alone 

would affect calcareous preservation, especially since greater meltwater delivery from surface 

ablation would presumably be more pronounced under warmer atmospheric conditions (i.e. 

prior to 2.5 ka BP).   

 

Water mass characteristics are likely to be an important factor controlling calcareous 

preservation.  Purely agglutinated assemblages altered by calcareous dissolution have been 
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found under the influence of cold, low salinity Polar waters in the Arctic Ocean and on the East 

Greenland shelf (Hald and Steinsund, 1992; Steinsund and Hald, 1994; Jennings and 

Helgadottir, 1994).  Agglutinated foraminiferal assemblages not altered by taphonomic 

processes have also been reported in the Canadian Arctic under Polar water influence, whereas 

increasing numbers of calcareous specimens are found under the influence of Atlantic water 

(Vilks, 1969; Hunt and Corliss, 1993).  Calcareous foraminifera under the influence of warm 

Atlantic water are likely to be better preserved than fauna under cold, highly oxygenated Arctic 

waters (de Vernal et al., 1992; Jennings and Helgadottir, 1994).  Greater calcareous content 

before 2.5 ka BP may therefore suggest a greater influence of Atlantic water, whereas 

increasing test lining counts and agglutinated foraminifera up core suggest a greater Polar 

water influence, particularly during the past 900 cal. yrs BP.  In the Vaigat, stronger stratification 

caused by a greater meltwater influence may reduce bottom water renewal, and further 

contribute to dissolution of calcareous foraminifera (e.g. Osterman et al., 1999).  

 

7.3.2 Palaeoceanographic interpretation 

Sediment logging indicated that core DA06-139G is comprised of hemipelagic muds with 

interspersed IRD.  There is no evidence that this core has been significantly disturbed by 

instantaneous mass wasting.  The sequential order of radiocarbon dates and absence of sharp 

erosive contacts supports an interpretation of continuous sedimentation during the past ca. 5 

ka.  The results from DA06-139G are used to interpret the palaeoceanographic evolution of the 

Vaigat over the last ca. 5 ka and are illustrated schematically using the five scenarios shown in 

Fig. 7.4.  

 

Palaeoenvironmental conditions from ca. 5.1 to 4.7 ka BP (Stage A) 

The foraminiferal record from DA06-139G indicates colder than present Arctic bottom-waters 

were present in the Vaigat before 4.7 ka BP (Fig. 7.4a) as suggested by high abundances of C. 

arctica and E. excavatum f. clavata.  Lloyd et al. (2007) also found foraminiferal evidence of 

bottom-water cooling in Kangersuneq Fjord, southeast Disko Bugt, at this time.  This cooling 

can be traced to upstream changes in oceanic source regions for the WGC.  There is evidence 

for reduced advection of Atlantic water (sea-surface cooling) to the North Atlantic region after 
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ca. 5.7 ka BP based on diatom records from the Reykjanes Ridge, the Vøring Plateau (west of 

Norway), and the North Iceland Shelf (Andersen et al., 2004a; 2004b).  Castañeda et al. (2004) 

also identify a weaker Atlantic influence (compared to the early Holocene) on the North Iceland 

shelf between 6.2 and 4.5 ka BP based on benthic and planktic foraminifera δ18O isotopes.  

Sea-surface temperature reconstructions from the East Greenland shelf are less clear for this 

period.  Jennings et al. (2002) and Bennike et al. (2002) identify a marked cooling between 5.0-

4.7 ka BP off East Greenland, while other studies suggest relatively stable sea-surface 

temperatures, or a slight warming of winter sea-surface temperatures at this time (Andersen et 

al., 2004b; Solignac et al., 2006).  The reduced Atlantic influence at this time favours a greater 

entrainment of Arctic water sourced from the East Greenland Current in the WGC.  Meltwater 

inputs from the Greenland Ice Sheet would further cool and freshen the WGC as it flows 

northwards.   

 

The concentration of sand-sized basalt grains sourced locally from the Tertiary basalts of Disko 

Island and Nuussuaq peninsula are markedly higher between ca. 5.1 and 4.7 ka BP compared 

to after 4.7 ka BP (Fig. 7.2).  Since there are no calving glaciers on Disko Island and Nuussuaq 

Peninsula that could transport and deposit sand-sized basalt grains, these deposits reflect 

either enhanced wind-blown deposition or greater sea-ice rafting of terrestrial basaltic 

sediments.  Eisner et al. (1995) identify high pollen and minerogenic accumulation rates from a 

lacustrine record in the Kangerlussuaq region of West Greenland indicating greater aeolian 

activity during the mid-Holocene, followed by a dramatic decline at 4.7 ka BP.  It is possible that 

the retreat of ice caps on Disko Island and Nuussuaq peninsula during the mid-Holocene may 

have increased the availability of basalt sediment for aeolian transport (e.g. Eisner et al., 1995).  

The interpretation of greater sea-ice rafting of sediment is supported by diatom records from 

Kangersuneq Fjord, southwest Disko Bugt, which records higher abundances of sea-ice 

associated diatoms (especially Fragilariopsis cylindrus, Fragilariopsis oceanica) during this 

interval (Moros et al., 2006).  In addition, there is strong evidence to support an interpretation of 

greater wind activity before 4.7 ka BP.  O’Brien et al. (1995) linked enhanced sea-salt and 

terrestrial dust concentrations in the GISP2 ice core record to an expansion of the north polar 

vortex or increased meridional air flow between 6.1 and 5.0 ka BP.  Furthermore, Fredskild 
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(1983) suggests strengthening south-westerlies along West Greenland brought exotic pollen 

from North America during the mid-Holocene.  These atmospheric conditions would strengthen 

surface current circulation in Disko Bugt and the Vaigat, promoting sea-ice export and rafting of 

terrestrial sediments as the main dispersal mechanism.   

 

Figure 7.4 Cartoons of hydrographic conditions and glacier activity in Disko Bugt and the Vaigat 

during the past ca. 5.1 ka.  Intermediate waters enter the Vaigat via Disko Bugt, and exit into the 
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mid-shelf area to the west.  Red arrows indicate influxes of Atlantic Water, and thicker arrows 

represent greater Atlantic Water influence.  Red shading highlights the presence of relatively 

warm Atlantic Water in the Vaigat and Disko Bugt in (E).  Blue arrows represent the dominance 

of Polar Water, and a thicker Polar Water layer (shown by dark blue shading) preventing 

penetration of Atlantic-sourced water into the Vaigat. 

 

Figure 7.5 Selected sedimentological (A-C) and summary foraminifera (D-E) data, compared 

against air temperature reconstructions; (F), chironomid-based July air temperature 

reconstruction from North Lake, near Ilulissat (Young et al., 2011), and (D), Dye-3 borehole 

temperature anomaly (Dahl-Jensen et al., 1998).  Grey shading identifies boundaries between 

FAZs, and dashed lines separate stages A to F schematically illustrated in Fig. 7.4.  

 

Palaeoenvironmental conditions from ca. 4.7 to 4.3 ka BP (Stage B) 

The warmest calcareous assemblages in the core replace Arctic water fauna at ca. 4.5 ka BP, 

possibly reflecting warmer than present subsurface waters.  This brief warming spell indicates a 
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greater entrainment of warm and saline Atlantic water in the WGC (Fig. 7.4b).  A reduced Polar 

water influence is also required to allow Atlantic water to cross a threshold and penetrate into 

the Vaigat.  This scenario is corroborated by Moros et al. (2006), who identify an abrupt decline 

in sea-ice associated diatoms indicating maximum sea-surface temperatures peaking at ca. 4.5 

ka BP and persisting until shortly after 4 ka BP (Moros et al., 2006).   

 

After 4.5 ka BP there is a clear increase in preservation of the calcareous fauna (Fig. 7.3).  This 

can be explained by a strengthening in Atlantic water influence (i.e. lower dissolved CO2), 

and/or less acidic sediment pore waters, linked to lower surface productivity and decay of 

organic matter at the seafloor (e.g. Reaves, 1986).  If the latter explanation is responsible, this 

may be linked to a well-developed turbid meltwater plume hampering primary productivity in the 

photic zone.  Indeed, the low coarse sediment content at this time suggests sedimentation was 

primarily by suspension settling from meltwater plumes, rather than ice-rafting.  The presence of 

laminated sediments identified in core X-ray radiographs supports an interpretation of strong 

turbid meltwater plume influence at this time due to enhanced melting of local tidewater glaciers 

in northern Disko Bugt (see Fig. 2.1).  

 

Weidick et al. (1990) found evidence for a gradual recession of the Greenland Ice Sheet margin 

and outlet glaciers around Jakobshavn Isbræ in Disko Bugt during the HTM based on 

radiocarbon dating of reworked biogenic material found in moraines. Borehole temperature 

reconstructions suggest continued atmospheric warming characterised this interval (Dahl-

Jensen et al., 1998), and this corresponds to thinning near the Greenland Ice Sheet margin 

(Vinther et al., 2009).  At the end of the HTM, Weidick et al. (1990) estimate Jakobshavn Isbræ 

was located more than 15 km behind its present position.  The low sedimentation rate before 

3.8 ka BP in core DA06-139G is consistent with a more distal position of marine-terminating 

outlet glaciers in northeast Disko Bugt.  Warmer air temperatures during the HTM are 

suggested to have contributed to driving ice sheet recession primarily through calving rather 

than ablation (Weidick et al., 1990; Weidick, 1992).  However, there is no record of increased 

calving activity during the mid-Holocene from sedimentary evidence in core DA06-139G as 

might be expected from a Vaigat location along which icebergs exiting Disko Bugt pass over.  If 
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ice loss was primarily through calving, warmer air and sea surface temperatures combined with 

a choking of icebergs behind the shallow sill of Isfjeldbanken at the mouth of Jakobshavn 

Isfjord, and in Torssukátak, northeast Disko Bugt, could result in melting and dumping of IRD 

within close proximity of calving fronts.   

 

Palaeoenvironmental conditions from ca. 4.3 to 3.4 ka BP (Stage C) 

Increased abundances of Arctic-associated species, particularly C. arctica and E. excavatum f. 

clavata, and reduced abundances of warmer water species between 4.3 and 3.4 ka BP indicate 

a greater influence of Polar waters in the Vaigat.  This is supported by an increase in test lining 

counts and a high percentage abundance of agglutinated specimens (Fig. 7.3).  In general, this 

period is characterised by low inputs of coarse sediment, reflecting reduced iceberg rafting in 

the Vaigat.   

 

A decline in bottom-water temperatures in the Vaigat between 4.3 and 3.4 ka BP may mark the 

beginning of Neoglacial cooling.  This suggests that the warmest part of the WGC was unable to 

penetrate into the Vaigat at this time.  High sediment accumulation rates and more brackish 

diatom assemblages in Ameralik Fjord have been interpreted to reflect greater melting of outlet 

glaciers producing sediment-laden surface plumes in the interval 4.4-3.2 ka BP (Møller et al., 

2006; Seidenkrantz et al., 2007).  Greater meltwater additions and mixing of the WGC as it 

flows northwards would deepen the cool and low salinity Polar water mass that enters Disko 

Bugt and prevent warm Atlantic incursions to the Vaigat.  However, reconstructions indicate a 

continued cooling of Atlantic-sourced surface waters during this period linked to declining 

insolation (Andersen et al., 2004b).     

 

Neoglacial cooling began ca. 4000 yrs. BP (Kelly, 1980; Weidick et al., 1990; Weidick, 1992; 

1993) following peak warming as indicated in the Dye-3 borehole temperature reconstruction 

(Fig 7.5g) and chironomid-based temperature reconstructions from Disko Bugt (Fig. 7.5f) 

(Axford et al., 2010; Young et al., 2011).  Ice sheet and glaciers advances during the Neoglacial 

have been widely recorded in West Greenland, and more widely.  This interval is characterised 

by low IRD, which may partly be linked to cooler sub-surface water temperatures in the fjords. 
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Palaeoenvironmental conditions from ca. 2 to 1.5 ka BP (Stage E) 

The past 2,000 years are characterised by both an increase in the sedimentation rate (Fig. 7.1) 

and an increased abundance of IRD largely sourced from outlet glaciers draining the Greenland 

Ice Sheet (Fig. 7.3).  Together, these data are indicative of a greater intensity of ice-rafting, 

presumably reflecting glacier advances in the fjords.   

 

Palaeoenvironmental conditions from ca. 1.5 ka BP to present (Stage F) 

Concentrations of coarse non-basalt grains provide a proxy for ice rafting originating from 

tidewater glaciers, primarily Jakobshavn Isbrae in Disko Bugt, and Sermeq kujatdleq and 

Sermeq avangnardleq draining into Torssukátak (Fig. 1.2).  Distinct increases in IRD suggest 

either increased ice rafting, greater transport of icebergs through the Vaigat, or more rapid 

melting of icebergs due to warmer surface water and air temperatures. 

 

Dominantly agglutinated foraminiferal fauna characterised by high abundances of C. arctica and 

increased abundances of S. biformis indicate cold Polar waters have been dominant in the 

Vaigat during the past 1500 yrs. BP.  With the exception of isolated occurrences, there is a 

general absence of calcareous fauna.  This most likely reflects high calcium carbonate 

dissolution because of the influence of cold Arctic waters with high concentrations of dissolved 

CO2.  Surface water proxies indicate cooling and greater sea-ice cover during this period in 

Disko Bugt (Moros et al., 2006; Seidenkrantz et al., 2008).  This is consistent with greater 

iceberg rafting as indicated by a further increase in IRD clast counts shortly before 1.5 ka BP.  

Records of bottom water temperatures indicate relatively warm, saline WGC water was present 

in Ameralik Fjord and Igaliku Fjord, southewest Greenland (Lassen et al., 2004; Seidenkrantz et 

al., 2007).  Lloyd et al. (2007) find that relatively warm subsurface waters were present in 

Kangersuneq Fjord, Disko Bugt, until 900 cal. yrs. BP.  In Disko Bugt itself, warm, saline bottom 

waters were present west of Jakobshavn Isbrae until 500 cal. yrs. BP (Lloyd, 2006b).  This 

differs from the record in Vaigat, where the influence of cooler waters is evident much earlier.  

This is perhaps not surprising since the greater iceberg flux during the summer and increasing 

sea-ice influence during the winter would further cool waters in the Vaigat.  Greater meltwater 
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inputs into the Vaigat from these sources may partly be responsible for delivering highly 

oxygenated waters responsible for enhanced dissolution of calcareous foraminifera.    
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Unpublished cosmogenic radionuclide ages from Uummannaq Fjord supplied by David H. 

Roberts (presented in Chapter 6) and clast count data for core DA06-139G (presented in 

Chapter 7) are further used in summary figures in this chapter. 
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Chapter 8 

Deglacial and Holocene ice-ocean interactions in central West Greenland 

 

 

8.1 Introduction  

This chapter summarises the major findings from this thesis.  These findings are discussed with 

respect to the main research aim of this thesis: 

 

To investigate deglacial and Holocene changes in the activity of major West Greenland 

ice streams, and identify possible interactions between climate, ocean, and ice sheet 

dynamics. 

 

In order to address this aim, this chapter is divided into two main parts.  The first part addresses 

the timing and nature of deglaciation of marine-based ice in the Disko Bugt and Uummannaq 

area.  A discussion of the possible driving mechanisms for deglaciation in these two areas is 

presented by exploring linkages with ocean temperatures (based on foraminiferal records in 

cores MSM-343340 and MSM-343520_G), air temperatures, and changes in relative sea-level 

(RSL).  The second part addresses Holocene palaeoceanographic changes in the relative 

warmth of the WGC (i.e. once the Greenland Ice Sheet had retreated landwards to an ice-distal 

location) on the central West Greenland shelf.  Holocene ice-ocean interactions in central West 

Greenland are discussed based on changes in foraminifera assemblages in cores MSM-343520 

(Uummannaq shelf) and DA06-139G (Vaigat), and, more broadly, from MSM-343340 (outside 

Disko Bugt), and by comparison to other regional climate and ocean records.  This chapter is 

concluded by stating the key findings from this thesis.   
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8.2 Deglaciation in central West Greenland 

8.2.1 Regional pattern of shelf deglaciation in West Greenland 

Funder and Hansen’s (1996) two-stage deglacial model proposed that for central West 

Greenland eustatic sea-level rise drove early deglaciation (ca. 16-15 ka BP) and synchronous 

marine-based ice retreat eastwards from close to the shelf edge to the modern coastline by ca. 

10 ka BP.  This was followed by slower land-based ice retreat driven by atmospheric warming.  

While a number of studies have helped further constrain relatively small-scale changes (i.e. ice 

advance or retreat) in Holocene ice margin position in the Disko Bugt area (e.g. Bennike, 2000; 

Long and Roberts, 2002; 2003; Long et al., 2003; 2006; Lloyd et al., 2005; Briner et al., 2010; 

Young et al., 2011), these have not demanded a major revision of Funder and Hansen’s (1996) 

two-stage model for the culmination and decay of the Greenland Ice Sheet.   

 

However, data presented in this thesis offers new insights concerning the timing, nature, and 

mechanisms of marine-based deglaciation of the shelf in central West Greenland indicating that 

the first stage of Funder and Hansen’s (1996) model requires revising.  Sedimentological and 

foraminiferal evidence indicate that the marine-based ice occupying the troughs outside Disko 

Bugt and Uummannaq Fjord (shown in Fig. 8.1) extended at least to the mid-shelf area in these 

two areas, and probably to the shelf edge.  Basal radiocarbon dates (providing the first 

constraints on initial deglaciation) obtained from sediment cores collected from troughs on the 

mid-shelf west of the Disko Bugt (MSM-343520_G) and Uummannaq Fjord (MSM-343340_G), 

suggest that marine-based deglaciation in these two parts of the central west sector of the 

Greenland Ice Sheet took place much later than previously thought.  Ice had retreated east of 

the MSM-343340_G core site by ca. 12.3 ka BP and east of the MSM-343520 core site by 10.9 

ka BP (Fig. 8.1).  Comparisons to existing and unpublished (e.g. Jennings et al., 2010; D.H. 

Roberts, personal communication) dates on deglaciation provide strong evidence for the timing 

and nature of retreat (see Fig. 8.1).  It is clear that ice retreated more than 1000 years earlier in 

the Disko Bugt area than in the Uummannaq area to the north and several 1000 years later than 

suggested in the Funder and Hansen (1996) model. 
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Figure 8.1 Compilation of calibrated radiocarbon ages and unpublished CRN ages (D.H. 

Roberts, personal communication) in central West Greenland that provide minimum ages for 

deglaciation.   

 
 
 
 
 
 
 
 



Chapter 8: Deglacial and Holocene ice-ocean interactions in central West Greenland 

 

 
209 

 

8.2.2 Driving mechanisms for marine-based deglaciation 

A number of authors have speculated about the potential role of marine forcing (ocean 

warming) on ice stream and ice shelf stability in Greenland (e.g. Bindscahdler, 2006; Luckman 

et al., 2006; Nick et al., 2009), Antarctica (e.g. Rignot and Jacobs, 2002; Payne et al., 2004; 

Walker et al., 2007) and on other marine-terminating glaciers (e.g. Motkya et al., 2003).  Holland 

et al. (2008) recently demonstrated that the thinning of Jakobshavn Isbræ’s floating ice tongue 

in 1997 (followed by acceleration and eventual collapse in 2003) coincided with the penetration 

of warmer Atlantic-sourced waters into Disko Bugt and into Jakobshavn Isfjord.  More recent 

studies have speculated on the potential importance of ocean warming as a major driver of 

deglacial and Holocene ice dynamics (e.g. Roberts et al., 2009; 2010).   

 

The establishment of the WGC at 10 ka BP can be identified by the expansion of thermophilous 

molluscs to their modern limit along the West Greenland coast (Funder and Weidick, 1991; 

Dyke et al., 1996; Kaufman et al., 2004).  In northern Baffin Bay, there is evidence of warmer 

surface waters from 10.9 ka BP, with surface waters reaching close to modern temperatures at 

ca. 9.6 ka BP (Levac et al., 2001; Knudsen et al., 2008b).  However, there is no evidence of 

Atlantic Water influence in central West Greenland until ca. 9.2-8.7 ka BP (Lloyd et al., 2005; 

Chapter 5), by which time the ice margin in Disko Bugt and Uummannaq had already retreated 

towards and onto the mainland.  This suggests that ocean forcing was not a significant influence 

on the marine-based deglaciation in central West Greenland (see Fig. 8.2).  The high glacial 

meltwater discharge from the Disko Bugt and Uummannaq ice stream systems would most 

likely have deflected warmer sub-surface waters off the West Greenland shelf, or mixing of 

Atlantic Water and glacial meltwater may have diluted the WGC influence.   
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Figure 8.2 Cartoon illustrating the relative timing and speed of ice retreat in the Disko Bugt 

(solid line, circles) and Uummannaq (short dashed line, squares) area, and potential driving 

mechanisms (air/ocean temperatures, relative sea-level rise) for deglaciation.  Approximate 

changes in ice margin position are based on minimum ages for deglaciation and the distance of 

the dated sample to the modern ice margin (taken as Jakobshavn Isbræ in Disko Bugt, Store 

Gletscher in Uummannaq Fjord).  The curves illustrate the maximum extent of ice at each point.  

Solid black circles and squares indicate radiocarbon dates based on calcareous fauna from 

marine sediment cores (Lloyd et al., 2005; Jennings et al., 2010; Ó Cofaigh et al., 2010; this 

thesis).  Grey squares represent cosmogenic exposure ages (D.H. Roberts, personal 

communication).  Grey circles represent a cluster of dates on Fjord Stade moraines, LIA 

moraine and ice retreat (advance) behind (in front) of present margin based on data from 

proglacial-threshold lakes (e.g. Long et al., 2006; Weidick and Bennike, 2007; Briner et al., 
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2010; Young et al., 2011).  An abrupt shift in foraminifera and sedimentary characteristics in 

core DA00-06 at ca. 8.3 ka BP is interpreted to reflect ice retreating into Jakobshavn Isfjord.  

The hollow circle therefore marks the position of Isfjeldbanken at the fjord mouth.  Changes in 

air temperatures illustrated using NGRIP δ18O record (Andersen et al., 2006; Rasmussen et al., 

2006; Svensson et al., 2006; Vinther et al., 2006).  RSL prediction for the best-fit Earth model of 

Huy2 for Qeqertsuatsiaq, southwest Disko Bugt (modified after Simpson et al., 2009).  Model 

prediction shows a close fit to RSL data (Long and Roberts, 2003).  The Holocene marine limit 

at this site is at ca. 110-120 m a.s.l.  

 

However, the opening of the Arctic Channels in northern Baffin Bay, and the initiation of the 

south-flowing Baffin Current are believed to be a key factor in strengthening gyre circulation in 

Baffin Bay and the Labrador Sea, and initiating the north-flowing WGC in Baffin Bay (e.g. de 

Vernal et al., 1992).  The retreat of ice between Ellesmere Island and Greenland in northern 

Baffin Bay opened Nares Strait between ca. 10 and 9 ka BP (Zreda et al., 1999; England, 

1999).  This would have been accompanied by a significant change in oceanographic 

conditions, since around one-third of Polar Water export from the Arctic to Atlantic Ocean takes 

place through these channels into northern Baffin Bay (Aagaard and Carmack, 1989).  The first 

evidence for WGC initiation in northern Baffin Bay at ca. 10.9 ka BP (Levac et al., 2001; 

Knudsen et al., 2008b) is coincident with the initiation of rapid ice collapse on the Uummannaq 

shelf.  The evidence for a weak Atlantic Water influence in northern Baffin Bay (Levac et al., 

2001; Knudsen et al., 2008b) before the deglaciation of Nares Strait suggests that warmer 

waters may still penetrate into Baffin Bay without a strong gyre circulation driven by Polar Water 

outflow in the Baffin Current.  It may be possible that an extensive ice sheet configuration 

(possibly reaching the shelf edge) in central West Greenland may have acted to “block” (by 

acting as both a physical barrier, and due to a significant meltwater and cooling influence) and 

divert an early Holocene WGC southwards into the Labrador Sea.   

 

The rapid collapse of marine-based ice across the shelf in both Disko Bugt and Uummannaq 

areas suggests that deglaciation was driven primarily by relative sea-level rise.  The initial 

retreat of ice in both locations occurs during the interval ca. 12.5-11 ka BP, during which the 

RSL highstand in southwestern Disko Bugt is predicted to have occurred (Fig. 8.2) (Simpson et 

al., 2009).  The marine limit on Hareøen (island in outer Vaigat) has been dated to ca. 11.6 ka 
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BP (12,081-11,211 cal. yr BP, 10,470±130 14C yr) (Bennike et al., 1994), suggesting that RSL 

highstands were obtained at similar times in these two areas.  The differences in the timing of 

deglaciation between these two ice stream systems cannot be explained by climatic warming; 

the earlier deglaciation of ice in Disko Bugt took place during the colder conditions of the 

Younger Dryas.  Instead, the diachronous nature of ice retreat (schematically illustrated in Fig. 

8.2) suggests that differences in ice thickness in these adjacent parts of the Greenland Ice 

Sheet play an important role in conditioning the timing of ice retreat.  Earlier deglaciation of 

marine-based ice in Disko Bugt may well be a result of reduced ice thickness in comparison to 

the Uummannaq area.  A lower basal buoyancy of the thicker ice cover in the Uummannaq 

trough, maintained by the regional drawdown of ice into the southern part of the Uummannaq 

system, would have been less susceptible to collapse due to rising relative sea-level than 

thinner ice cover in Disko Bugt to the south.  Such a mechanism has been proposed by Roberts 

et al. (2010) to explain the longevity of Holsteinborg Isbræ on the inner shelf during 

deglaciation. 

 

New 10Be cosmogenic surface exposure ages obtained from the inner Uummannaq Fjord area 

(Fig. 8.1), indicate that ice thinning (lowering of ice surface elevation), potentially due to warm 

early Holocene atmospheric temperatures, preceded ice retreat in the Uummannaq area 

(though dynamic thinning due to accelerated calving can’t be completely ruled out).  This 

suggests that climatically-driven ice thinning (resulting in a gradual increase in basal buoyancy 

at the ice terminus) helped lower ice thickness to a critical threshold, at which point the rising 

relative sea-level initiated the collapse of marine-based ice.  Collapse and withdrawal of ice 

from the outer to mid-shelf probably took place rapidly.  However, as the ice retreated east of 

core site MSM-343520, deglaciation began to slow.  High bedrock features immediately outside 

and at the entrance into the Disko Bugt may have acted as topographic pinning points, causing 

a decline in the speed of ice retreat during the latter stages of marine-based deglaciation (see 

Fig. 8.2).   
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To summarise, the new deglacial chronology for marine-based deglaciation in central West 

Greenland began ca. 3 to 5 ka later than Funder and Hansen (1996) speculated.  Ice retreat 

was primarily driven by rising relative sea-level (Fig. 8.2), but it seems most likely that regional 

differences in ice thickness were responsible for the later retreat of ice in Uummannaq Fjord.  

Ice in the Uummannaq area collapsed catastrophically, retreating from the mid-shelf to inner 

Uummannaq Fjord in less than 1000 years.  Ice recession from the mid-shelf to inner Disko 

Bugt, on the other hand, probably took just over 2000 years, and may largely be attributed to 

topographic influences.  It took more than ca. 2000 years for ice to retreat from the inner shelf 

into the coastal fjords in both Disko Bugt and Uummannaq Fjord (Fig. 8.2).  As the outlet 

glaciers retreated into shallower waters, the role of topography would have become more 

important than relative sea-level changes in determining ice margin position.  The final retreat of 

ice across shallow topography at the entrance to the inner fjords was likely facilitated by 

increasing atmospheric temperatures and continued thinning of the ice sheet periphery after ca. 

10 ka BP (Fig. 8.2).    

 

8.2.3 Deglaciation of the Vaigat  

One part of the deglaciation jigsaw in central West Greenland that requires further attention is 

the extent of ice advance in the Vaigat, and the timing and nature of subsequent deglaciation.  

At the LGM, ice is likely to have extended out of the Vaigat, and merged with the adjacent 

Uummannaq ice stream to the north, though there is at present no direct evidence to support 

this.  On Hareøen (Talerua), in the outer Vaigat (see Fig. 8.3), marine shells (Mya truncata) in 

postglacial deposits at 30-35 m a.s.l. have been dated to ca. 11.6 ka BP (12,077-11,211 cal. 

yrs. BP; 10,470±130 14C yrs. BP, Bennike et al., 1994).  Radiocarbon ages of 10.9 ka BP 

(northern Disko Bugt) and 11.8 ka BP (southwestern Nuussuaq) provide minimum ages of 

deglaciation at the mouth of the Vaigat, while further dates from shells on the southern margin 

of eastern Nuussuaq peninsula indicate ice had retreated landwards of this site by 10.1 ka BP 

(see Fig. 8.1).  It is possible that the lower part of the sediment record in MSM-343520_G may, 

therefore, partly reflect sedimentation as ice filling the Vaigat broke up.  Unbuttressing of ice in 

the Vaigat may have resulted in influxes of basaltic material from Disko Island and Nuussuaq 

peninsula.   
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Figure 8.3 Hypothetical withdrawal of ice from the Vaigat.  Left panels show magnetic 

susceptibility (MS) and [S/Al] XRF trends from (1) MSM-520, (2) MSM-343300 and (3) MSM-

343340.  Red shading highlights the period characterised by modern ocean circulation patterns 

in Disko Bugt and the Vaigat following final withdrawal of ice into inner fjords.  Black bars show 

position of dated samples (mean ka BP) indicating approximate age.  Right panels show 

conceptual maps in two time slices before (unshaded interval on left panels) and after (shaded 

interval) 9 ka BP. 
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The combination of low magnetic susceptibility and high [K/Ti] (suggesting a low concentration 

of magnetic minerals) in the fine-grained laminated facies at the base of core MSM-343520_G 

may reflect the low magnetite content of sediments sourced from Uummannaq Fjord.  The up-

core increase in magnetic susceptibility and decrease in [K/Ti] may consequently reflect a 

greater influence of basaltic sediments as ice vacated the Vaigat and retreated eastwards in 

Uummannaq Fjord. 

 

8.3 Holocene palaeoceanography in central West Greenland 

8.3.1 Holocene ice-ocean interactions in central West Greenland  

Neoglacial and LIA ice sheet expansion destroyed geomorphological evidence for the minimum 

extent of the central West Greenland Ice Sheet during the HTM.  However, reworked marine 

fauna in moraines in the Jakobshavn Isfjord area indicate that ice retreated landwards of the 

present ice sheet margin at ca. 6.1 ka BP, and readvanced to its modern limit after 3.5 ka BP 

(Weidick et al., 1990; Weidick, 1992; Weidick and Bennike, 2007).  The interval 8-5.2 ka BP 

was characterised by warming of sub-surface waters on the Uummannaq shelf, with a 

particularly warm interval between 7.7 and 6 ka BP, indicated by higher abundances of N. 

labradorica in the foraminiferal assemblages.  This is similar to West Greenland records of 

thermophilous molluscs that indicate a warming in the WGC between ca. 9.2 and 5.6 ka BP 

(e.g. Weidick, 1972a; Kelly, 1980; Funder and Weidick, 1991; Kaufman et al., 2004).   

 

In the Jakobshavn Isfjord area, Young et al. (2011) show that both the marine-based ice in the 

Isfjord, and the terrestrial ice sheet margin rapidly retreated ca. 50 km between 8±0.2 ka BP 

and 7.5±0.2 ka BP (illustrated in Fig. 8.4).  The synchronous response of marine and terrestrial-

based ice suggests initial atmospheric warming was the key driver in these ice margin changes 

(Young et al., 2011).  However, this period coincides with initial warming of sub-surface waters 

identified in core MSM-343520_G on the Uummannaq shelf (Fig. 8.4).  This suggests that the 

more southerly location of Disko Bugt may have experienced warmer oceanographic conditions 

at this time.  It is possible that an incursion of warm Atlantic Water into Jakobshavn Isfjord (e.g. 

Holland et al., 2008) may have increased melting at the glacier terminus, and further contributed 

to ice margin retreat at this time.  Ice retreated up to 20 km behind the present ice sheet margin 
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between 7 and 5 ka BP (Funder, 1989; Weidick, 1992).  Air temperatures in Disko Bugt were up 

to 2°C warmer than present between ca. 6 and 4.5 ka BP (Fig. 8.4) (Axford et al., 2010; Young 

et al., 2011), lagging the early HTM in sub-surface water temperatures by nearly 2000 years.  

Mid-Holocene warming in sub-surface waters, particularly pronounced between 7.7 and 6 ka BP 

based on foraminifera assemblages in core MSM-343520_G, may have influenced marine-

based ice retreat in inner fjords at this time.   

 

Figure 8.4 Comparison of main changes in foraminiferal assemblages in three cores (MSM-

343340, DA06-139G, MSM-343520) investigated in this study, indicating periods of relatively 

warm or cool WGC influence in central West Greenland.  Background shading indicates periods 

of generally warmer water conditions (2, 4, 6).  Clast counts from the Vaigat core, DA06-139G 

(Andresen et al., 2011), indicate the increase in ice rafting from calving glaciers in Disko Bugt 
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during the Neoglacial and LIA.  Air temperature records are based on chironomid-based 

reconstruction from Disko Bugt (Young et al., 2011) and Dye-3 borehole temperature 

reconstruction, from southern Greenland (Dahl-Jensen et al., 1998).  Conceptual changes in ice 

margin position (retreat and advance phases) for the Jakobshavn Isjord area is modified from 

Young et al. (2011).  Dashed green lines indicate uncertainty in ice position. 

 

Dinocyst assemblages in northwest Baffin Bay indicate that sea-surface temperatures were up 

to 3°C warmer than present, and surface waters were ice-free for 4-5 months per years, 

between 7.3 and 4 ka BP (Levac et al., 2001).  Indeed, the generally warmer WGC in eastern 

Baffin Bay (suggested by foraminiferal assemblages in core MSM-343520_G) at this time would 

have favoured milder climatic and reduced sea-ice (extent and duration) conditions in central 

West Greenland.  The warm peak at the base of core DA06-139G suggests that there was a 

particularly strong Atlantic Water influence, and a relatively weaker Polar Water and/or 

meltwater influence at the entrance to the Vaigat (in northeastern Disko Bugt) at ca. 5-4.5 ka BP.  

In Kangersuneq Fjord, southwestern Disko Bugt, diatom evidence suggests amelioration of 

surface waters between ca. 4.8 and 3.5 ka BP (Moros et al., 2006), while Lloyd et al. (2007) 

identify a warm WGC influence on sub-surface waters between ca. 6.2 and 4.3 ka BP.  This 

period of warmth is similar to the pattern of warming on the Uummannaq shelf (MSM-34352_G) 

and at the base of the Vaigat record (DA06-139G).  It is possible that a reduced glacial 

meltwater influence from marine-based glaciers in Disko Bugt provided suitable conditions for 

warmer waters to penetrate over shallow bedrock areas, such as at the entrance to Disko Bugt 

allowing warmer water penetration into the Vaigat.  A thinner meltwater cap and a weaker Polar 

Water influence in surface waters may permit warmer Atlantic Water intrusion into fjord basins, 

potentially influencing the dynamics of tidewater glaciers (e.g. Motkya et al., 2003).   

       

Foraminiferal evidence suggests a cooling in sub-surface waters on the Uummannaq shelf 

between 5 and 3.5 ka BP (and 4.5 to 2 ka in the Vaigat).  This predates atmospheric cooling by 

ca. 800 years (Fredskild, 1983).  The Greenland Ice Sheet expanded between ca. 4 ka BP and 

A.D. 1850 during the Neoglacial (e.g. Kelly, 1980; Weidick et al., 1990; Weidick, 1992; 1993; 

Long et al., 2003).  The increase in clast counts (Fig. 8.4) from DA06-139G in the Vaigat, 

suggests ice rafting was particularly pronounced after ca. 3 ka BP (Andresen et al., 2011).  

Submarine melting at tidewater glacier termini in Disko Bugt may have influenced ice margin 



Late Quaternary ice-ocean interactions in central West Greenland 

 

 
218 

 

dynamics at this time.  In the Vaigat, two “ice rafting intervals” appear to correspond with the 

intrusion of warmer WGC waters into the Vaigat (Fig. 8.4), suggesting there may be a direct link 

between ocean forcing and Holocene ice dynamics.  However, the subsequent period (time 

interval ‘5’ in Fig. 8.4) characterised by increased ice rafting occurs during an interval of cooler 

sub-surface water temperatures in the Vaigat.  The trend of 20th Century warming is clearly 

identified in the multicore from the Uummannaq shelf (MSM-343520_MC).    

 

8.4 Summary 

Using benthic foraminifera, sedimentological, geochemical, and dating evidence from three 

marine sediment cores, the deglacial history and Holocene palaeoceanographic history in 

central West Greenland has been reconstructed and compared to other marine, terrestrial, and 

ice core records.  The major findings from this thesis are briefly summarised below. 

 

Basal ages from sediment cores MSM-343340_G and MSM-343520_G provide minimum ages 

for deglaciation of the mid-continental shelf.  In Disko Bugt, a suite of radiocarbon dates 

collected from cores between outer Egedesminde Dyb and Isfjeldbanken provide constraints on 

the minimum ages for deglaciation, and the timing of ice retreat into Jakobshavn Isfjord (Lloyd 

et al., 2005; Jennings et al., 2010).  The mid-shelf outside Disko Bugt was ice free by ca. 12.3 

ka BP, and was subsequently followed by episodic ice retreat into Disko Bugt.  The calving 

margin retreated landwards rapidly within the deep water of Egedesminde Dyb as a calving bay 

re-entrant, though appears to have slowed as the grounding line retreated across the shallow 

topography.  This is most noticeable between outer and inner Egedesminde Dyb and, later, as 

ice retreated into the shallower waters of inner Disko Bugt and towards the present coastline.  It 

took ca. 5.6 ka for ice to retreat from the mid-shelf and into Jakobshavn Isfjord at 6.7 ka BP 

(J.M. Lloyd, personal communication).    

 

The basal age in core MSM-343520_G of 10.9 ka BP suggests deglaciation began more than 

1000 years later in the Uummannaq area than Disko Bugt to the south.  While the timing of 

deglaciation is more poorly constrained in the Uummannaq area, new CRN ages from inner 

Uummannaq Fjord (D.H. Roberts, personal communication) suggest that marine-based 
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deglaciation took place much more rapidly than in Disko Bugt, retreating from the mid-shelf in 

and into the coastal fjords in around 3.2 ka.  The much faster deglaciation in the Uummannaq 

area may in part be attributed to the the morphology of the deep Uummannaq trough; 

topographic pinning of the ice stream would not have influenced ice dynamics until ice retreated 

into inner Uummannaq Fjord.   

 

Foraminiferal data from cores MSM-343340_G and MSM-343520_G do not show any evidence 

that ocean forcing (due to warmer sub-surface waters) influenced the timing of initial marine-

based deglaciation.  Instead, climatically-driven ice thinning and high relative sea-level were key 

driving mechanisms for the rapid collapse of ice in these two areas.  The diachronous nature of 

ice retreat is interpreted to be due to regional differences in ice thickness. Thicker ice cover in 

Uummannaq Fjord would have been more resistant to changes in relative sea-level and 

maintained a position on the outer shelf for longer compared to thinner ice cover in Disko Bugt. 

 

There is evidence of longer-timescale changes in the relative temperature of the sub-surface 

WGC that impinges on the West Greenland shelf, linked to wider-scale climatic and 

oceanographic changes.  There appears to be a clearer link between changes in ice margin 

position and changes in sub-surface ocean temperatures once ice had retreated into the coastal 

fjords.  In particular, the warming in the WGC during the HTM corresponds to an interval of ice 

recession, while Polar Water occupied the central West Greenland shelf during the LIA ice 

advance.  Changes in the temperature of sub-surface waters that penetrate into coastal fjords 

may therefore have apotentially significantly impact on sub-marine melt rates at the calving 

margin and on floating ice tongues.   
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Foraminifera taxonomic list 
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Agglutinated species 
 
Adercotryma glomerata (Brady, 1878) 
Ammodiscus gullmarensis (Höglund, 1947) 
Ammotium spp. 
Ammoscalaria pseudospiralis (Williamson, 1858)  
Cribrostomoides crassimargo (Norman, 1892) 
Cribrostomoides jeffreysi (Williamson, 1858) 
Cuneata arctica (Brady, 1881) 
Deuterammina lepida Brönnimann & Whittaker, 
1986 
Deuterammina grahami Brönnimann & 
Whittaker, 1988 
Eggerella advena Cushman, 1922 
Paratrochammina spp. 
Globotrochammina spp. 
Hormosinella spp. 
Lagenammina arenulata (Skinner, 1961) 
Pelosina spp. 
Recurvoides turbinatus (Brady, 1881) 
Reophax bilocularis Flint, 1899 
Reophax dentaliniformis (Brady, 1881) 
Reophax fusiformis (Williamson, 1858) 
Reophax gracilis (Brady, 1881) 
Reophax guttifer (Brady, 1881) 
Reophax pilulifer Brady, 1884 
Reophax subfusiformis Earland, 1933 
Saccammina difflugiformis Brady, 1879 
Saccammina spp. 
Silicosigmoilina groenlandica (Cushman, 1933) 
Spiroplectammina biformis (Parker and Jones, 
1865) 
Textularia earlandi Phleger, 1952 
Textularia torquata Phleger, 1952 
Trochammina globigeriniformis Parker and 
Jones, 1865 
Trochammina ochracea (Williamson, 1858) 
Trochammina nana (Brady, 1881)  
 
 
 
 
 
 
 

Calcareous species 
 
Astononion gallowayi Loeblich and Tappan, 
1953 
Bolivana pseudopunctata Höglund, 1947   
Buccella frigida (Cushman, 1922) 
Buccella tenerrima (Brady, 1950) 
Buliminella spp. 
Cassidulina laevigata d’Orbigny, 1826 
Cassidulina neoteretis Tappan, 1951 
Cassidulina obtusa Williamson, 1858 
Cassidulina reniforme Nørvang, 1945 
Cibicides lobatulus (Walker and Jacob, 1798) 
Dentalina sp. 
Elphidium excavatum (Terquem) f. clavata 
Cushman, 1944 
Elphidium incertum (Williamson, 1858) 
Elphidium spp. 
Elphidium subarcticum Cushman, 1944 
Fissurina spp. 
Globulina sp. 
Guttalina sp. 
Haynesina orbiculare (Brady 1881) 
Islandiella helanae Feyling-Hanssen and Buzas, 
1976 
Islandiella islandica (Nørvang, 1945) 
Islandiella norcrossi (Cushman, 1933) 
Lagena sp. 
Melonis barleeanum (Williamson, 1858) 
Miliolinella spp. 
Nonionella auricula Herron-Allen and Earland, 
1930 
Nonionella turgida (Williamson, 1858) 
Nonionella turgida var. digitata (Nørvang, 1945) 
Nonionellina labradorica (Dawson, 1860) 
Oolina sp. 
Pullenia bulloides (d’Orbigny, 1846) 
Pyrgo williamsoni (Silvestri, 1923) 
Quinqueloculina sp. 
Stainforthia concava Höglund, 1947 
Stainforthia feylingi Knudsen and Seidenkrantz, 
1994 
Stetsonia horvathi Green, 1960 
Trifarina fluens (Todd, 1947) 
Triloculina sp. 
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Foraminifera counts, MSM-343340_G 
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Foraminifera counts, DA06-139G 
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Foraminifera isotope analysis, MSM-343520_G 
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Sample 
No. 

Depth 
(cm) 

Age 
(cal yrs 

BP) 
δ 13C 
(PDB) 

δ 18O 
(PDB)   

Sample 
No. 

Depth 
(cm) 

Age 
(cal yrs 

BP) 
δ 13C 
(PDB) 

δ 18O 
(PDB) 

1 4 73 -0.426 3.753   55 133 1604 -0.250 3.666 

2 8 145 -0.728 3.704   56 135 1623 -0.694 3.851 

3 12 218 -0.564 3.713   57 137 1642 -0.223 3.745 

4 21 381 -1.021 3.619   58 139 1660 -0.461 3.793 

5 25 454 -0.458 3.779   59 141 1679 -0.158 3.618 

6 27 490 -0.524 3.737   60 143 1698 -0.558 3.606 

7 29 526 -0.790 3.673   61 145 1717 -0.470 3.654 

8 33 599 -1.129 3.782   62 147 1735 -0.368 3.801 

9 35 635 -2.300 3.776   63 149 1754 -0.622 3.545 

10 37 672 -1.444 3.773   64 151 1773 -0.541 3.861 

11 39 708 -1.458 3.669   65 153 1791 -0.162 3.581 

12 41 744 -1.376 3.631   66 155 1810 -1.230 -0.627 

13 43 762 -1.299 3.543   67 157 1829 -0.465 3.853 

14 45 781 -1.605 3.651   68 159 1848 -0.415 3.771 

15 47 800 -1.681 3.612   69 161 1867 -0.111 3.776 

16 49 819 -0.928 3.752   70 163 1901 -0.556 3.780 

17 51 837 -1.607 3.742   71 165 1936 -0.209 3.665 

18 53 856 -0.881 3.732   72 167 1971 -0.797 3.819 

19 55 875 -1.003 3.697   73 169 2005 -0.586 3.871 

20 57 893 -0.418 3.592   74 171 2040 -0.328 3.765 

21 59 912 -1.137 3.744   75 175 2109 -0.598 3.718 

22 61 931 -1.617 3.645   76 177 2144 -0.417 3.801 

23 63 949 -0.810 4.239   77 179 2178 -0.079 4.344 

24 65 968 -0.448 3.950   78 181 2213 -0.294 3.679 

25 67 987 -0.551 3.676   79 183 2247 -0.459 3.728 

26 69 1006 -0.444 3.680   80 185 2282 -0.103 3.701 

27 71 1024 -0.588 3.690   81 187 2317 -0.176 3.685 

28 73 1043 -0.674 3.768   82 189 2351 -0.137 3.762 

29 75 1062 -0.991 3.505   83 191 2386 -0.657 3.598 

30 77 1080 -0.363 3.677   84 193 2420 -0.664 3.580 

31 81 1118 -0.633 3.766   85 199 2524 -0.521 3.724 

32 83 1137 -0.283 3.829   86 201 2559 -0.580 3.526 

33 85 1155 -0.192 3.705   87 203 2593 -0.303 3.639 

34 87 1174 -0.290 3.711   88 205 2628 -0.580 3.525 

35 89 1193 -0.409 3.748   89 207 2663 -0.241 3.964 

36 91 1211 -0.435 3.620   90 211 2732 -0.207 4.024 

37 93 1230 -0.277 3.755   91 213 2766 -0.481 3.614 

38 95 1249 -0.258 3.736   92 215 2801 -0.207 3.764 

39 97 1268 -0.570 3.784   93 217 2836 -0.125 4.327 

40 101 1305 -0.244 3.655   94 219 2875 0.154 4.130 

41 103 1324 -0.316 3.756   95 221 2913 -0.354 3.594 

42 105 1342 -0.576 3.656   96 223 2952 -1.157 3.711 

43 107 1361 -0.259 3.805   97 251 3491 -0.729 3.575 

44 109 1380 -0.133 3.727   98 257 3607 -0.760 3.703 

45 111 1399 -0.266 3.736   99 263 3722 -0.472 3.606 

46 113 1417 -0.481 3.816   100 271 3876 -0.764 3.532 

47 115 1436 -0.381 3.684   101 273 3915 -1.086 3.763 

48 117 1455 -0.928 3.767   102 275 3954 -0.927 3.631 

49 121 1492 -0.615 3.696   103 279 4031 -0.869 3.620 

50 123 1511 -0.702 3.666   104 283 4108 -0.921 3.673 

51 125 1529 -0.318 3.736   105 287 4185 -0.926 3.609 

52 127 1548 -0.317 3.798   106 289 4223 -0.964 3.485 

53 129 1567 -0.625 3.712   107 291 4262 -0.808 3.582 

54 131 1586 -0.086 3.643   108 295 4339 -0.908 3.684 
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Sample 
No. 

Depth 
(cm) 

Age 
(cal yrs 

BP) 
δ 13C 
(PDB) 

δ 18O 
(PDB)   

Sample 
No. 

Depth 
(cm) 

Age 
(cal yrs 

BP) 
δ 13C 
(PDB) 

δ 18O 
(PDB) 

109 305 4532 -1.087 3.672   165 519 7171 -1.646 4.146 

110 307 4570 -0.776 3.608   166 521 7191 -1.553 4.046 

111 311 4647 -1.131 3.499   167 523 7210 -0.742 3.997 

112 315 4724 -0.212 4.282   168 525 7229 -3.075 3.964 

113 319 4801 -0.511 3.927   169 527 7249 -1.480 4.111 

114 321 4840 -0.612 3.624   170 529 7268 -1.247 3.906 

115 323 4878 -1.056 3.725   171 531 7288 -1.312 4.008 

116 325 4917 -1.214 3.767   172 539 7365 -1.161 4.173 

117 327 4955 -0.710 3.679   173 541 7385 -1.386 4.062 

118 331 5021 -1.035 3.679   174 545 7424 -1.164 3.965 

119 333 5046 -1.163 3.560   175 547 7443 -1.118 4.247 

120 335 5071 -1.021 3.654   176 549 7462 -1.080 4.286 

121 339 5121 -0.998 3.748   177 551 7482 -1.105 4.372 

122 351 5270 -0.931 3.626   178 557 7540 -0.902 4.192 

123 353 5295 -2.188 3.356   179 559 7556 -0.875 4.303 

124 355 5320 -1.006 3.659   180 561 7576 -1.232 4.326 

125 367 5470 -1.066 3.671   181 563 7596 -0.951 4.274 

126 369 5495 -1.374 3.744   182 565 7615 -0.981 4.323 

127 371 5520 -1.379 3.669   183 567 7635 -1.358 4.287 

128 375 5570 -3.206 3.501   184 569 7655 -1.002 4.358 

129 387 5720 -1.023 3.770   185 571 7674 -1.043 4.295 

130 401 5895 -1.108 3.801   186 573 7694 -1.017 4.316 

131 413 6044 -1.368 3.732   187 575 7714 -1.621 4.372 

132 417 6094 -2.263 3.861   188 577 7733 -1.489 4.256 

133 423 6169 -2.437 3.981   189 579 7753 -1.742 4.312 

134 427 6219 -2.583 3.950   190 581 7773 -1.693 4.224 

135 431 6269 -1.967 3.791   191 585 7812 -1.366 4.274 

136 433 6294 -1.529 3.847   192 587 7832 -1.593 4.201 

137 435 6319 -2.541 3.820   193 593 7891 -2.180 4.063 

138 447 6469 -2.166 3.757   194 617 8127 -3.998 3.920 

139 451 6519 -0.933 3.907   195 627 8225 -4.272 3.859 

140 453 6544 -0.461 3.954   196 633 8285 -5.100 3.848 

141 455 6561 -1.783 4.026   197 635 8304 -4.918 3.952 

142 457 6579 -1.839 3.914   198 637 8324 -5.932 3.967 

143 459 6598 -1.625 4.019   199 639 8344 -4.816 4.077 

144 461 6616 -1.273 4.095   200 641 8365 -1.719 4.348 

145 463 6634 -1.337 4.064   201 669 8651 -2.528 4.191 

146 465 6652 -1.005 4.132   202 671 8671 -2.782 4.157 

147 467 6670 -0.752 4.112   203 673 8691 -2.705 4.224 

148 469 6688 -0.967 3.942   204 677 8732 -3.003 4.139 

149 473 6725 -2.102 4.056   205 679 8752 -5.253 3.842 

150 475 6743 -1.859 4.049   206 681 8773 -4.468 3.877 

151 481 6802 -1.761 3.989   207 683 8793 -3.741 3.876 

152 483 6822 -1.424 4.042   208 689 8854 -2.747 4.016 

153 485 6841 -1.513 4.061   209 691 8875 -1.614 3.985 

154 487 6860 -1.121 4.078   210 693 8896 -3.144 4.054 

155 489 6880 -0.924 4.010   211 695 8916 -2.996 4.109 

156 491 6899 -1.388 3.779   212 697 8935 -2.494 4.030 

157 493 6919 -0.978 4.031   213 701 8974 -1.218 3.930 

158 495 6938 -1.203 4.068   214 705 9013 -1.117 4.122 

159 497 6958 -1.671 4.181   215 713 9090 -1.885 4.262 

160 503 7016 -1.574 3.990   216 719 9148 -2.405 4.162 

161 511 7093 -1.167 4.095   217 833.4 10256 -1.150 4.458 

162 513 7113 -0.607 4.237   218 893 10833 -0.975 4.139 

163 515 7132 -1.145 4.045   219 899 10891 -1.075 3.880 

164 517 7152 -0.843 4.040             
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Table 2 Duplicate isotope sample analyses on N. Labradorica specimens. 
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37 
-1.44 +3.77 

  
-1.71 -1.58 0.19 +3.66 +3.72 0.08 

73 
-0.67 +3.77 

  
-0.42 -0.55 0.18 +3.70 +3.74 0.05 

95 
-0.26 +3.74 

  
-0.26 -0.26 0.00 +3.67 +3.71 0.05 

131 
-0.09 +3.64 

  
-0.30 -0.19 0.15 +3.49 +3.57 0.11 

305 
-1.09 +3.67 

  
-1.02 -1.05 0.05 +3.58 +3.63 0.06 

431 
-1.97 +3.79 

  
-2.04 -2.01 0.05 +3.93 +3.86 0.10 

465 
-1.00 +4.13 

  
-0.90 -0.95 0.08 +4.13 +4.13 0.00 

493 
-0.98 +4.03 

  
-1.06 -1.02 0.06 +4.02 +4.03 0.01 

527 
-1.48 +4.11 

  
-0.82 -1.15 0.47 +4.03 +4.07 0.06 

565 
-0.98 +4.32 

  
-1.06 -1.02 0.05 +4.31 +4.32 0.01 

635 
-4.92 +3.95 

  
-5.67 -5.29 0.53 +3.78 +3.87 0.12 

 

 

 

 
 
 
 
 
 


