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Abstract: 
 Primate species are widely threatened from the impact of deforestation and 

other human activities, with many species already facing high risk of extinction. 

Climate change poses an additional threat to the world's biota. However, the 

extent to which future climate change poses a risk to primates in conjunction with 

the other threats remains largely unclear. This study will utilise bioclimate models 

in order to assess the potential changes in primate species richness under future 

climate change scenarios. These results will then be combined with country-level 

data on forest loss and projected increases in human populations, to establish the 

potential synergy between these drivers of environmental change and quantify the 

regions facing the greatest risks to primate species diversity. The response of 

primate species richness to future climate change was shown to vary between 

regions and to depend upon the climate model and emissions scenario used. 

Madagascar generally displayed the largest increase in suitable climate, whereas 

on the whole, African primates may potentially be impacted the most from adverse 

climate change. The greatest risk to primate species from the correlating threats of 

adverse climate change, forest loss and human population pressure, was found in 

countries of north-west Africa and Asia, in particular the south-east. The results 

demonstrate the complexity of the link between climate and biodiversity and 

highlight the importance of the choice of model used to assess climate change 

impacts on biodiversity. In addition, it is clear that there is a need for urgent 

conservation measures to be adopted in high risk regions in order to combat 

threats from climate change to already fragile primate populations. 

 
 
 
 
 
 
 
 
 
 
 
 



 

 ii 

Acknowledgments  
Primate species distributions (ArcMap shapefiles), in addition to their 

current endangered status and population trend, were obtained from the 

International Union for the Conservation of Nature (IUCN). Taxonomic data on 

primate species was obtained from www.bucknell.edu/MSW3/ (Wislon and Reeder 

2005). 

I would like to place on record my thanks to Dr. Ralf Ohlemϋller for his help 

and guidance throughout the course of this study. I would also like to thank Dr. 

Patrice Carbonneau, in addition to the School of Biological and Biomedical 

Sciences and the Department of Geography at Durham University, for continued 

support during my time in Durham. Most of all, I would like to thank my parents for 

their immense support and encouragement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 iii 

Contents: 
 

Chapter 1                                page 

General Introduction        1 
 Aims and structure of thesis       8 
 

Chapter 2 
Patterns of Global Primate Diversity  
 1. Introduction          9 

  1.2 Aims        10 

 2. Methods         10 

 3. Results         12 

  3.1 Species Richness       12 

  3.2 Taxonomic Distinctness      15 

  3.3 Threatened Species       16 

4. Discussion         18 

 4.1 Species Distributions and Richness     18 

 4.2 Causes of Species Distributions and Richness   20 

 4.3 Variations in Latitudinal Species Richness    23 

 4.4 Global Primate Taxonomic Distinctness    25 

 4.5 Primates Under Threat      27 

5. Conclusions         29 
 

Chapter 3 
Climate and Primate Diversity: Current Relationships and Projected Future 
Changes 
 1. Introduction         30 

  1.2 Aims        32 

 2. Methods         32 

 3. Results         35 

  3.1 Explanatory Power of Individual Climate Variables   35 

  3.2 Predicting Current Species Richness     37 

  3.3 Future Projections of Species Richness    42 

  3.4 Future Changes in Species Richness at Higher Elevations  47 

 4. Discussion         49 

  4.1 The Global and Continental Models     49 

  4.2 Baseline Representations, Observed vs. Predicted Species Richness 50 

  4.3 Regional Impacts of Climate Change on Primate Species Richness    51 

  4.4 Altitudinal Changes in Species Richness    58 

  4.5 New Climatically Suitable Areas     59 

  4.6 Model Limitations       60 

 5. Conclusions         61 



 

 iv 

Chapter 4 
Multiple Threats to Primate Diversity: Climate, Forest Loss and Humans 

1. Introduction         63 
  1.2 Aims        64 

 2. Methods         65 

 3. Results         67 

  3.1 High- and Low-Value Primate Countries    68 

  3.2 High Risk Countries       71 

  3.3 Mitigation Potential       73 

 4. Discussion         76 

  4.1 Human Population Pressure      76 

  4.2 Forest Loss        78 

  4.3 Climate Change       81 

  4.4 Combined Threat       82 

  4.5 Mitigation Potential       84 

  4.6 Limitations        85 

 5. Conclusions         86 

 
Chapter 5 
General Discussion         87 
 Conclusions         97 

 

References          99 

 

Appendix 1          114 

Appendix 2          116 

Appendix 3          118 

 
 
 
 
 
 
 
 
 
 
 
 



 

 v 

List of Figures: 
Fig. 2.1                   page 

 Total Species Richness Map        13 

Fig. 2.2 

 Latitudinal primate species richness gradients    14 

Fig. 2.3 

 Global taxonomic distinctness      15 

Fig. 2.4 

 Distribution of threatened primate species     17 

Fig. 3.1 

 Predicted (baseline) primate species richness    38 

Fig. 3.2 

 Observed vs. predicted primate species richness    40 

Fig. 3.3 

 Observed and predicted species richness against latitude   41 

Fig. 3.4 

 Projected changes in future primate species richness   43 

Fig. 3.5 

 Projected changes in species richness with elevation   48 

Fig. 4.1 

 Conceptual graphs        66 

Fig. 4.2 

 Comparison of changes in climate under A2 and B1 scenarios  67 

Fig. 4.3 

 Difference in threats faced by high- and low-value primate countries 68 

Fig. 4.4 

 Comparison of combined threats per country    70 

Fig. 4.5 

 Additive risk map        71 

Fig. 4.6 

 Risk category averages       73 

Fig. 4.7 

 Average government score per risk category    74 

Fig. 4.8 

 Average government score vs sum of combined threat   74 

Fig. 4.9 

 Comparison of GDP, government score and species richness  75 

 



 

 vi 

List of Tables: 
Table 3.1                                                                                                                page 

 Latitude/Longitude extent of each component of the continental model 33 

Table 3.2 

 Total species richness regression analysis     36 

Table 3.3 

 Average difference between modelled and observed species richness 39 

Table 3.4 

 Percentage of grid cells predicted to increase in species richness  45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 vii 

List of Abbreviations: 
Δ+   –  Taxonomic Distinctness 

 

GCMs   –  Global climate models 

 

SSTs   –  Sea surface temperatures 

 

IUCN    –  International Union for Conservation of Nature 

 

PCM   – Parallel Climate Model 

 

HadCM3  –  Hadley Centre Coupled Model, version 3 

 

    IPCC AR4 SRES  –  Intergovernmental Panel on Climate Change, Fourth  

Assessment Report, Special Report on Emission 

Scenarios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 1 

Chapter 1 
 

General Introduction 
 

Climate determines the baseline conditions for life on earth. The distribution 

of species and ecosystems, at large spatial scales, is primarily determined by 

climatic conditions. Past changes in climate have led to shifts in species and 

habitats across continents (e.g. Hewitt 2000) as well as species extinctions (e.g. 

Mayhew et al. 2008; Nogués-Bravo et al. 2010). Recent anthropogenic climate 

change has already led to range shifts in a number of species (e.g. Hickling et al. 

2006; Parmesan 2006) and the key task for conservationists is to assess and 

quantify the threat to species and ecosystems from future climate change.  

This study will assess the potential risks from climate change and other 

pressures on the mammalian order Primates, comprising of over 400 species and 

primarily found throughout the tropics in four key biogeographic regions; Asia, 

Africa, Madagascar and the Neotropics (Fleagle, et al. 1999). Primates comprise 

of the following groups: the Tarsiers, Lemurs and Lorises, new- and old-world 

monkeys, the Colobines and the Hominoids (Moynihan 1976; Morales et al. 1999).  

Primates have critical ecological roles as pollinators and seed dispersers 

(Jernvall and Wright 1998) and therefore have an important place in tropical forest 

ecosystems across the world. Results from the most recent IUCN assessment of 

the world’s mammals indicate that primates are among the most endangered 

vertebrate groups, with up to 50% facing the threat of extinction (Mittermeier et al. 

2009). Within the main primate-inhabited biogeographic regions species diversity 

has been found to correlate, at individual sites, with mean annual rainfall, 

excluding Asia for which the pattern is more complex (Reed and Fleagle 1995), 

with moist tropical forests forming the primary habitat for 90% of species (Reed 

and Fleagle 1995; Chapman and Peres 2001; Isabirye-Basuta and Lwanga 2008). 

Therefore the impacts of climate change on tropical forest ecosystems and 

patterns of rainfall will be highly important for primate species.  
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In this chapter, I will briefly introduce the key concepts relevant to this 

thesis: (i) the nature of future climate change (ii) the general patterns in which 

species may (and have) respond to changes in climate, (iii) the link between 

climate and extinction risk, (iv) the current methods used to model changes in 

biodiversity in response to climate change and (v) the current threats faced by 

primate species. 

 

Climate Change  
Future projections derived from global climate models for a wide range of 

scenarios indicate an increase in the Earth’s mean surface temperature of 1.4 to 

5.8°C by the end of the twenty-first century (IPCC 2007). The projected rate of 

warming is very likely to be unparalleled during at least the last 10,000 years, with 

land masses warming more than oceans and high latitudes warming more than the 

tropics (IPCC 2007). In addition to rising temperatures, precipitation levels are 

projected to increase in high latitude and equatorial areas and decrease in the 

subtropics (IPCC 2007).  

The potential effects warming may have on the frequency and magnitude of 

large scale climatic events such as the El Niño/Southern Oscillation (ENSO) could 

have major implications for biodiversity (McCarty 2001) especially since ENSO 

has displayed an increased intensity since the 1970’s compared with the previous 

100 years (IPCC 2007). However the impacts associated with ENSO can vary 

between regions and the upper extremes do not always occur (Latif and 

Keenlyside 2008). Additionally, sea level is expected to rise in response to melting 

of the ice caps and increased sea surface temperatures (IPCC 2007) posing a risk 

to low lying coastal regions.  

Ecosystem productivity and species diversity are globally determined by 

geographic variations in temperature, rainfall and seasonality, therefore 

ecosystems will respond to projected changes in these variables which will 

subsequently have an impact on biodiversity (Thomas et al. 2008). For instance, 

the combination of temperature and precipitation is significant in the distribution of 

global vegetation, which is sensitive to changes in temperature on the scale of 

years to decades (McCarty 2001). 

A wide range of literature has documented changes in natural systems that 

are already taking place under recent climate change (e.g. Gitay et al. 2002; 

Walther et al. 2002; Parmesan and Yohe 2003). However, it is important to 
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consider that factors influencing ecosystems and populations interact in complex 

ways (Forchammer and Post 2000), for instance temperature is related to moisture 

availability, which is of high importance to vegetation and general habitat 

requirements of species (Root et al. 2003). Additionally the current, historically 

unprecedented levels of carbon dioxide will affect plant species and ecosystems, 

leading to the potential for the development of novel species assemblages and 

interactions that will further impact biodiversity (Sala et al. 2000; Cox et al. 2004; 

Thomas et al. 2004). Primates are very habitat specific (tropical forest) and 

therefore the nature and extent of climate and ecosystem changes will be 

particularly important. 

 

Climate and Species Diversity 
Several changes may take place in species’ traits due to warming climates 

including changes in phenology, species range changes, changes in morphology 

(body size, behaviour) and shifts in genetic frequencies (Root et al. 2003). The 

anomalous climate of the past half century has been shown to have already 

affected the physiology, distribution and phenology of some species (Thuiller et al. 

2005). McCarty (2001) demonstrates how increased global temperatures and 

observed changes in the timing of seasonal events over recent years have 

affected ecosystems and a wide range of species. The earlier onset of spring and 

thus the growing season, brought on by increased temperatures associated with 

climate change, has been observed and this change in seasonality is occurring in 

a wide variety of locations and affecting many species (Sparks and Menzel 2002). 

For instance, frugivorous primates may be affected by changes in seasonal fruit 

production. Changes in phenology such as this are regarded to be the most 

responsive aspects of nature to global warming (Sparks and Menzel 2002) and will 

have fundamental impacts for most species. 

The climatic changes in recent years have seen numerous shifts in the 

distributions and abundance of species (e.g. Hickling et al. 2006), with increasing 

impacts expected for the future, with general patterns including shifts in 

geographic distributions of species towards the poles and higher elevations 

(Thomas et al. 2004; Thuiller et al. 2005; Levinsky et al. 2007). The importance of 

climate on species distributions and richness can be seen by the greater number 

of species present in areas that have displayed relatively stable climatic conditions 

for long periods, compared to regions of fluctuating climate in which species 
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numbers tend to be lower and vary over time (Janson 2002; Ohlemüller et al. 

2006). Although, results from a study by Menéndez et al. (2006) indicate that the 

species richness and composition of communities may take centuries to adjust to 

current climates. 

Janson (2002) explains how species have survived previous climatic shifts 

by tracking their preferred habitat, or inhabiting climatically stable areas, however 

the rapid human transformation of the Earth’s ecosystems will make such 

movements in response to current and future climate change much more difficult. 

Species are likely to respond individually to climate change (Menéndez et al. 

2006), for instance, species often displayed differential movements during rapid 

climate changes in the past and if similar trends take place this may disrupt 

interactions of many species in current ecosystems (Walther et al. 2002; Root et 

al. 2003). Many primates, however, will have restricted dispersal abilities on 

account of tropical forest forming the primary habitat for the majority of species, 

therefore the impacts of climate change on this biome could have major 

connotations for primate species. 

 

Climate and Extinction Risk 
Of the various threats to global biodiversity, global warming provides the 

most concern given its potential to even affect areas far from human habitation 

(Malcolm et al. 2006). Moreover, the threat from climate change will be elevated 

due to widespread human activities weakening the resilience of the natural 

landscape (Gardner et al. 2009). According to the Gitay et al. (2002) the current 

rate of biodiversity loss is greater than the natural background rate of extinction, 

with widespread losses being an expected ecological consequence of global 

warming and the magnitude of climate-driven extinctions in particular, having the 

potential to be very large (Schwartz et al. 2006). 

Species facing the greatest risk of extinction from climate change are those 

restricted to shrinking climates, especially small range endemic species and 

species already under significant strain for which even a small reduction in survival 

or reproductive success could lead to extinction (Ohlemüller et al. 2008; Thomas 

et al. 2008). The projected extinction risks vary between parts of the world and 

between taxonomic groups, a concern is that the risks might be higher than 

anticipated if future locations of suitable climate do not coincide with other 

essential resources such as soil type or food sources (Thomas et al. 2004), or in 
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case of most primate species, areas of tropical forest. Furthermore, local species 

that are lost may be replaced by exotic invasive species (McCarty 2001), which 

can have a detrimental effect on what would be already fragile ecosystems. 

Species extinctions can lead to cascading effects throughout communities, 

particularly in complex ecosystems such as tropical forests, where many species 

are strongly interlinked (Koh et al. 2004). 

For species such as primates, already facing high levels of threat from local 

pressures and environmental change, such as those imposed by human activities, 

ongoing climate change may present an additional source of stress, increasing the 

risk of extinction (McCarty 2001). The most severe impacts arising from climate 

change are likely to arise from a combination of interacting threats, rather than 

climate change acting in isolation (Sala et al. 2000; Thomas et al. 2004; Brook et 

al. 2008). For example, the substantial rise in human population throughout the 

twentieth century from 1.6 to around 6 billion has amplified the pressure on the 

environment, with human impacts on the environment believed to have increased 

at least as fast as the population (McCarty 2001). Therefore the pressures on 

many ecosystems and species are already significant even without anticipated 

climate change. Although ecosystems and populations are dynamic, varying over 

time, even in the absence of human disturbance and global warming, species 

have become extinct or changed their specific ranges (McCarty 2001). 

 
Bioclimate Models 

The complexity of the Earth’s climate needs to be considered when 

assessing future impacts on biodiversity (Forchhammer and Post 2000). Large 

regional differences exist with substantial disparity between regional and global 

mean changes, which combined with projected increases in climatic variability 

(IPCC 2007), serve to complicate future predictions. Therefore the type, scale and 

resolution of models used to assess climate change impacts are particularly 

important.  

 A range of bioclimatic models are used to estimate relationships between 

the distributions of species and climate (Guisan and Zimmermann 2000; Guisan 

and Thuiller 2005). Bioclimate models in their simplest form comprise of only 

climate variables, excluding biotic or other environmental factors such as land 

cover that may also influence species distributions (Pearson and Dawson 2003). 

Bioclimate models can be developed based on the relationship between observed 
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species distributions and environmental variables, in which climate variables are 

correlated with observed distributions and as such represent a species’ realised 

niche, since observed species distributions are constrained by non climatic factors 

(Pearson and Dawson 2003). The development of these models has been driven 

by the need for better data that can be used for biodiversity management in 

response to the increased rate of global change (Araújo and Rahbek 2006). Cane 

(2005) explains the increased importance of models in assessing potential impacts 

of climate change because past records do not provide a true analogue for the 

climate that human activity is creating. The scale used by models is particularly 

important given how observed relationships in ecology tend to vary with local 

conditions (Jetz et al. 2005). However, current bioclimatic envelope models for 

forecasting the effects of global warming on biodiversity have limitations and the 

validity of them has to be questioned (Botkin et al. 2007). Although, these models 

can be viewed as a useful first approximation of the potential impact of climate 

change on the distribution of species (Levinsky et al. 2007) and ecosystems as a 

whole. 

A problem arises when evaluating model performance under climate 

change; to overcome this models are calibrated with current species relationships 

and then tested against reconstructed species distributions from the fossil record, 

however this is limited to a few species and regions for which sufficient fossil 

records are available (Araújo and Rahbek 2006). Historically calibrated models, 

that generate results that can be evaluated through time, before projecting into the 

future, are more likely to provide accurate projections of future change (Algar et al. 

2009). Predictions of future species distributions from bioclimatic models gain 

uncertainty due to the difficulty accounting for local climate change, inaccurate 

estimates of species climatic tolerances and unforeseen evolutionary adaptations 

in populations in response to changes (Araújo and Rahbek 2006).  

Accurate predictions of future changes in species diversity in response to 

global climate change are critical if useful conservation strategies are to be 

developed (Algar et al. 2009). If reliable models predicting the occurrences and 

richness of rare and threatened species can be produced, they can allow the 

development of adaptive measures such as land use planning and allow 

prioritisation for conservation (Parviainen et al. 2009).Therefore, given the 

documented pressures on primate species from deforestation and other human 

activities, such as hunting and agriculture (Cowlishaw and Dunbar 2000; Chapman 
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and Peres 2001), the future impacts of climate change on primate species 

richness will need to be investigated in order to determine the potential for climate 

change to exacerbate, or alleviate these threats. 

 

Current Threats to Primate Species 
The major threats that primates currently face are primarily related to 

habitat modification such as wild fires and deforestation as a result of agriculture 

and logging operations (Cowlishaw and Dunbar 2000; Chapman and Peres 2001). 

The impact of wild forest fires is already a significant threat but can be devastating 

especially when combined with the results of selective logging, which leaves 

behind large quantities of dead wood acting as additional fuel for fires (Chapman 

and Peres 2001). With the increased frequency and severity of El Niño dry 

seasons anticipated under climate change scenarios, wildfires may become one of 

the most significant destructive forces in tropical forests (Chapman and Peres 

2001; Gitay et al. 2002). In addition to habitat modification, commercial hunting is 

another significant threat, for example primates are being hunted in great numbers 

and in an unsustainable fashion in many areas of Africa and parts of South 

America (Chapman and Peres 2001; Chapman et al. 2006; Corlett 2007). 

The already high levels of threat experienced by many primates may be 

exacerbated by projected climate change. For instance the effect of changing 

levels of precipitation and temperature will have a significant impact on tropical 

forests (Wiederholt and Post 2010), a habitat common to most primate species. 

Possibly one the most important consequences of climate change for tropical 

forests would be the impact of warming on ENSO, which is the greatest source of 

interannual climatic variation in the tropics, affecting regional differences in 

precipitation and temperature (Wright and Calderon 2006; IPCC 2007; Wiederholt 

and Post 2010). 

The interaction between climate change and other pressures, such as those 

arising from human activities in the form of changing land use can have serious 

consequences for primates (Chapman et al. 2006). The combination of 

increasingly large areas of agricultural land surrounding primate habitats, often 

supporting high human densities, and the loss of habitat with climate change will 

put primate populations under increasing strain (Chapman et al. 2006). 

Furthermore, the loss of particular plant species’ and changes in phenology as a 

result of climate change can alter ecosystems, affecting primate populations 
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(Chapman et al. 2006). Findings in Eeley and Lawes (1999) suggest that even 

relatively small environmental change may threaten a relatively large number of 

primate species. 

Very little is known about how climate change is affecting primate 

populations and how they will be impacted in the future (Wiederholt and Post 

2010). Primates are particularly sensitive to habitat loss and with tropical forests 

already being reduced by deforestation and forest fires in addition to the impacts 

of commercial and subsistence hunting on populations, the largely unknown 

impact of global climate change on forest ecosystems will have a considerable 

outcome on the survival of many species (Chapman and Peres 2001; Chapman et 

al. 2006).  

 
Aims and structure of this thesis 
 The aim of this study is to assess the risks to global primate diversity from 

climate change, habitat loss and human population pressures, quantifying which 

regions on earth are at greatest risk of primate species extinctions. To this end 

there are three objectives to this study: 

1. To assess global primate biodiversity patterns and identify hotspots of high 

diversity and threatened species (chapter 2). 

2. To model current drivers of primate species richness and use future climate 

data to project potential changes in primate species richness (chapter 3). 

3. To investigate the combined additive risk to primate diversity from human 

population, forest cover and climate (chapter 4). 

 

Chapter 5 will provide an overall discussion of our primate-specific results in the 

wider context of current literature surrounding potential climate change impacts on 

biodiversity. 
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Chapter 2 
 

Patterns of Global Primate Diversity 
 
1.1 Introduction 

Primates are widely distributed across the globe, primarily throughout the 

tropics and in four key biogeographic regions; Asia, Africa, Madagascar and the 

Neotropics (Fleagle et al. 1999). Moist equatorial and tropical forests form the 

primary habitat for most species (Mittermeier 1988), with many having critical 

ecological roles as pollinators and seed dispersers (Jernvall and Wright 1998). 

Primates, therefore, have an important role in tropical forest ecosystems across 

the world. 

There are currently 412 primate species on Earth, excluding Homo sapiens 

(IUCN 2009). The species richness and abundance of non-human primates varies 

greatly across each biogeographic region, in addition to the levels of taxonomic 

diversity, although similar trends in the location of species-rich areas can be 

observed with latitude (Stevens 1989; Peres and Janson 1999) and area of 

tropical forest (Mittermeier 1988; Reed and Fleagle 1995). The particular patterns 

of primate species richness and taxonomic diversity are not simply explained by 

the overall area of tropical forest, although there is a high correlation between the 

two on a continental scale (Reed and Fleagle 1995), moreover aspects such as 

rainfall, habitat heterogeneity and physical barriers such as rivers play important 

roles in shaping primate species richness and distributions at local scales (e.g. 

Ayes and Clutton-Brock 1992; Reed and Bidner 2004). In addition, the role of 

historical environmental change through glacial and interglacial cycles since the 

Pleistocene has set a platform from which current distributions have arisen 

(Chapman et al. 1999; Eeley and Foley 1999; Eeley and Lawes 1999). 

The Pleistocene and Quaternary periods have played a significant role in 

shaping current species distributions and taxonomic diversity. The result of cooling 

during glacial periods and then subsequent warming in interglacials has led to a 

sequence of forest contraction and expansion, in which primate species will have 

been isolated and fragmented for significant periods encouraging speciation, and 

then dispersal during interglacial periods allowing various species to reintegrate 

(Eeley and Lawes 1999). This pattern of environmental change would have led to 
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a variety of evolutionary forces operating on primate species (Chapman et al. 

1999), giving rise to modern day patterns of taxonomic diversity and species 

richness. 

 In recent times primate species have come under increasing threat from 

human activities and changing environmental conditions, and at present nearly 

half of all the world’s primates are threatened with extinction (Mittermeier et al. 

2009). In order to understand better the current threats faced by primates, a 

comprehensive review of their global distribution is necessary, taking into account 

global hotspots of species richness and the diversity of taxa within key 

biogeographic zones.  

 

1.2 Aims 
This chapter will utilise spatial datasets and the latest Red List data (IUCN 

2009) on primate species distributions and their respective levels of threat to 

address the following aims: 

1. To calculate and map global patterns of primate species richness, 

identifying any latitudinal trends. 

2. To calculate and map global patterns of primate taxonomic distinctness. 

3. To identify global hotspots of threatened and vulnerable species. 

 

2. Methods 
Species data 

Current distributions for 406 primate species were obtained from IUCN 

(2008) and combined with a 0.5° resolution grid of the earth’s landmass using 

ArcGIS. The grid cells which overlapped by at least 10% with the species' shape 

file were recorded as "present" for that species. The presence/absence data were 

used to produce a species richness table showing the number of species present 

in each 0.5° grid cell, which was then displayed in ArcMap. The Red List (IUCN 

2009) has distinguished 415 primate species, however in this study we can only 

account for 406 species due to the following five species having a distribution too 

small to be accounted for within a particular grid cell; Lepilemur 

tymerlachsonorum, Macaca pagensis, Mircrocebus mamirata, Procolobus kirkii, 

Tarsius sangirensis. In addition, two species included on the Red List of primate 

species: Palaeopropithecus ingens and Xenothrix mcgregori are already classed 

as extinct. The other species, Miza zaza, is acknowledged despite no species 
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shape file being available, due to limited knowledge of its distribution at the time of 

writing. The final species included on the Red List but not here are Homo sapiens, 

which are not relevant to this study which focuses on non-human primates, 

therefore only 406 species have been accounted for.  

We analysed latitudinal trends in species richness by plotting species 

richness against latitude at two resolutions: globally and for the four main 

biogeographic zones (Asia, Africa, Madagascar, and the Neotropics) separately.  

 

Taxonomic Distinctness 

 We calculated the taxonomic distinctness of the species present in each 

grid cell in order to attain a more adequate measure of biodiversity, rather than 

simply using species richness, providing data on the ‘relatedness’ of species 

(Clarke and Warwick 1998). First, a primate taxonomy was obtained from the 

Bucknell website (Wilson and Reeder 2005; http://www.bucknell.edu/MSW3/) and 

was used to produce a taxonomic table based on the Linnean classification, with 

the following levels: order, suborder, infraorder, superfamily, family, genus, 

species. Sub species was not included due to insufficient data. The taxonomic 

table, in conjunction with the presence/absence data, was used to deduce the 

taxonomic distinctness of each grid cell with at least two species present, similar to 

the methods used in several previous studies (e.g. Clarke and Warwick 1998; 

Warwick and Clarke 1998; Clarke and Warwick 1999; Mouillot et al. 2005), using 

the following equation: 

 

    Clarke and Warwick (1999) 

 

Where  is the total number of species in a particular study and  is the weight 

(path length) given to the taxonomic relationship between species  and  (Clarke 

and Warwick 1999). Taxonomic distinctness (Δ+) can range from 0, low values of 

diversity through to 1, indicating the highest diversity/taxonomically distinct 

assemblage. 

Taxonomic distinctness (Δ+) is the average number of steps up the 

hierarchy that must be taken to reach a taxonomic rank common to two species, 

computed across all possible pairs of species in an assemblage (Clarke and 

Warwick 1999; von Euler and Svensson 2001; Mouillot et al. 2005), i.e. within 

http://www.bucknell.edu/MSW3/�
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each grid cell, therefore presenting an estimate of the average evolutionary 

distance between different species within an assemblage. Δ+ provides an 

adequate measure of taxonomic diversity when only presence/absence data are 

available, with the impact of an individual species depending upon the overall 

species composition of the assemblage (von Euler and Svensson 2001). Using Δ+ 

is beneficial because it utilises simple species lists such as presence/absence 

data, it attempts to capture phylogenetic diversity rather than simply the number of 

species and is more closely linked to functional diversity (Clarke and Warwick 

1999). Additionally, Δ+ has been shown to decline monotonically in response to 

environmental degradation whilst being relatively insensitive to major habitat 

variations, removing the limitations associated with species richness measures of 

biodiversity, which are more strongly affected by habitat type and complexity 

(Warwick and Clarke 1998), therefore Δ+ allows comparisons to be made across 

various habitats. 

 

Threatened Species Data 

 Data collected from the IUCN Red List website provided information on the 

conservation status of each species: Critically Endangered, Endangered, 

Vulnerable, Near Threatened, Least Concern (IUCN 2009). The upper limits in 

terms of the level of threat a particular species is facing; Critically Endangered, 

Endangered and Vulnerable were combined for each species and a total was 

calculated for each grid cell to provide an overall sum of threatened primate 

species. From this the percentage of threatened species in each grid cell was 

calculated and displayed in a global map. Similarly, the population status of each 

species was obtained i.e. decreasing, stable, increasing, unknown, from the Red 

List (IUCN 2009), and the percentage of primate species with decreasing 

populations was calculated for each grid cell. 

 
3. Results 
3.1 Species richness 
 Primate species occur in four biogeographic regions; Asia, Africa, 

Madagascar and the Neotropics (Fig. 2.1). Areas with the highest concentration of 

species richness are the Amazon River Basin in South America and the Congo 

River Basin in Africa. Outside of these two regions, Madagascar has the highest 

number of primate species, which is concentrated around the coasts with the 
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narrow central spine of the country being mostly devoid of primates. For much of 

Asia the number of species per-grid cell is lower than in Africa and Madagascar 

even though the total number of primate species in this region is higher than in the 

latter two. Grid cells with only one species present predominantly occur on the 

edges of more primate-rich areas and at greater latitudes (Fig. 2.1). This is 

particularly noticeable in areas of North Africa and those bordering the Sahara 

desert, northern parts of India and China, and upper and lower reaches of the 

Neotropics. 
 

 

 
Figure 2.1: Total species richness - the numbers in each box represent the number of 

primate species present in each biogeographic zone; The Neotropics, Africa, Madagascar and 

Asia. 
 

Given the distribution of species richness against latitude (Fig. 2.2) it is 

evident that primate species richness declines with increasing distances from the 

equator, with the areas of high species richness concentrated between 20° North 

and South. Africa and the Neotropics follow a similar pattern with the greatest 

species richness occurring between 15° North/South, although in the Neotropics 

this is weighted towards -15° South. The pattern for Madagascar is restricted due 

to the comparatively small area of the island and it being constrained to southern 

latitudes. Similarly the distribution for Asia is weighted towards northern latitudes 

due to most of the land mass being situated north of the equator. 
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Figure 2.2: Latitudinal primate species richness gradients - shown globally (A) and for the 

four biogeographic regions separately (B-E). It is clear that the majority or primate species are 

located between 20° North and South of the equator. 
 

A 
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D E 



 

 15 

3.2 Taxonomic distinctness  
The global taxonomic distinctness (Δ+) of primate species (Fig. 2.3) 

provides a value of the unrelatedness of species within a grid cell and it is 

apparent that Africa possesses the highest levels of taxonomically distinct species, 

excluding southern Africa, with large areas containing Δ+ values close to 1, which 

relates to the most irregular observed taxonomic tree (Mouillot et al. 2005). 

Outside of Africa, areas of south-east Asia and southern India possess relative 

high levels of Δ+, particularly along the Sunda Shelf region. In contrast, the lowest 

levels of Δ+ occur throughout the northern parts of Asia and Central America, with 

the bulk of South America and Madagascar displaying similarly high levels of Δ+.  

In comparison with the species richness map (Fig. 2.1) large differences 

between species richness and Δ+ become apparent; particularly for Africa, which 

has almost universally high levels of Δ+ despite moderate levels of species 

richness for most of the continent outside of the west-central band around the 

Congo Basin. Similarly the high levels of Δ+ for parts of Asia such as the southern 

extent of India are not matched by particularly high levels of species richness. 
 

 

 
Figure 2.3: Global primate taxonomic distinctness (Δ+) - the higher values indicate a more 

taxonomically distinct species assemblage. Africa is shown to have the most unrelated, 

taxonomically distinct species assemblage, followed by the Sunda Shelf region of south-east 

Asia, and southern India. 
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3.3 Threatened species 
The regions with the highest percentage of threatened primate species are 

south-east Asia, upper Central America and along the eastern coast of Brazil (Fig. 

2.4A). Africa on the whole, except for small areas in the Mediterranean region of 

North Africa and the central-western band covering the Congo River Basin, has 

comparatively few threatened species present. In stark contrast, there is a much 

larger geographic area of primate species exhibiting a declining population trend 

(Fig. 2.4B), incorporating regions that have no threatened species currently 

present. 

Much of South America, Madagascar and the majority of Asia, excluding a 

section of India and Pakistan, have very high percentages (around 70%) of 

primate species with decreasing populations. Africa is the region with the lowest 

levels of decreasing primate populations similar to the trend displayed in the 

percentage of threatened species map (Fig. 2.4A). However, there is a larger 

geographic area of decreasing populations in Africa in comparison to the area of 

threatened species, with particular concern for the locations just below/bordering 

the Sahara desert, and the northern Mediterranean region. Madagascar is home to 

a large number of primate species, especially given its size in comparison to other 

the biogeographic regions, however it is almost entirely comprised of high 

percentages of threatened and decreasing primate populations. The percentage of 

decreasing populations per grid cell in particular, are considerably high in 

Madagascar (60-70% plus), and it could be expected that this will eventually lead 

to elevated numbers of threatened species. 

Thus, when considering the percentage of threatened species, in addition to 

the percentage of primate species with decreasing populations, the main hotspots 

of threatened species are Madagascar, south-east Asia, west-central Africa, 

roughly covering the area of the Congo River Basin, Central America, large parts 

of Amazonia and the coastal areas of Brazil.  
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Figure 2.4: Distribution of threatened primate species – showing the percentage of 

threatened species per grid cell (A) and the percentage of decreasing primate populations per 

grid cell (B). The dark grey areas represent areas in which primate species are present but 

have either 0% threatened species/decreasing populations or insufficient data on the 

conservation status/population trend were available. It is clear that there is a much greater 

amount of decreasing primate populations, leading to the possibility that the numbers of 

threatened species will increase. 

A 
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4. Discussion 
4.1. Species Distributions and Richness 

Areas with the highest levels of primate species richness are the Amazon 

River Basin in South America and the Congo River Basin in Africa (Fig. 2.1) as 

has been previously observed (Eeley and Foley 1999; Fleagle et al. 1999; Peres 

and Janson 1999). One of the areas with the highest values of primate species 

richness is western Amazonia, which is regarded to have one of the most diverse 

mammalian communities in the Americas (Costa et al. 2000). The high values of 

primate diversity for Madagascar are well documented, in particular by Ganzhorn 

et al. (1999) who claimed that the island holds the third highest primate diversity of 

any country on Earth, supported in part by our results, which indicate Madagascar 

to have the third highest number of primate species out of the four biogeographic 

zones (Fig. 2.1). Although, in the case of Madagascar it has been proposed that 

little mammalian competition on the island has made such high levels of primate 

species richness possible (Ganzhorn et al. 1999).  

The clear pattern in which high species richness follows the tracks of the 

Amazon River (Fig. 2.1) may be a result of very high tree density with a wide 

variety of vegetation due to the river providing fertile soils, and consequently 

resource rich areas capable of supporting multiple species, although observer bias 

will need to be considered as people use the rivers as a transport mechanism 

throughout the forests, thus increasing the likelihood of sightings along tracks of 

the Amazon. Costa et al. (2000) suggest this pattern along the Amazon has arisen 

in response to historic climatic and vegetation fluctuations in response to major 

glacial cycles.  

The general increase in species richness from east to west across the 

Amazon (Fig. 2.1) has also been observed by Peres and Janson (1999) who show 

how the interfluvial regions of the western Amazon are substantially richer than 

those of east Amazonia. Peurtas and Bodmer (1993) link these superior levels of 

species richness present in the western Amazon to the greater floral diversity 

within the area which has greatly influenced species diversity. In addition, the 

important role rivers have played in constraining the dispersal of Amazonian 

primates is highlighted by Ayres and Clutton-Brock (1992), who discuss how 

species that evolve in areas closely bounded by major rivers are likely to have 

smaller geographic ranges than those evolving at a greater distance from 

permanent rivers. Furthermore, the considerable density of rivers found in the 
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Amazon rainforests probably contributes to the high diversity of mammals 

associated with them (Ayres and Clutton-Brock 1992), supporting our results 

which show how the reaches of the Amazon have some of the highest 

concentrations of primate rich grid cells (Fig. 2.1). This impact from rivers on 

species richness is also apparent in Africa with the high levels of species richness 

throughout the Congo River Basin, although again this could be a result of 

observer bias with rivers providing the easiest routes to travel through the dense 

tropical forests, increasing the likelihood of sightings along the rivers path. 

In addition to riverine barriers, elevational barriers are known to exist and 

may present a major obstacle to primate distributions. Gradients of species 

richness tend to be steeper near higher elevations, a pattern that is prominent in 

South America where there is a rapid decline in species richness over a relatively 

short distance adjacent to the Andes Mountains (Fig. 2.1) (Eeley and Lawes 

1999). Hence the patterns of primate distribution and diversity in South America 

are partly a consequence of the combined influence exerted by riverine and 

elevational barriers. Alternatively, higher altitude locations may have provided 

areas of forest refugia during periods of increased aridity in tropical lowlands 

(Eeley and Lawes 1999) providing a refuge for species which would have become 

isolated and subsequently followed different evolutionary paths. This could explain 

areas of lower species richness or where just one species is present, due to these 

populations being isolated at higher altitudes.  

 The clearest evidence of any kind of natural barrier to species dispersal is 

the Sahara desert in northern Africa, which appears to restrict the northward 

distribution of primate species, with an abrupt end in primate-inhabited grid cells 

along the edge of the region. This is the largest part of Africa that is devoid of 

primates. In contrast, the highest primate numbers in Africa have been found to 

occur at sites composed of a complex mixture of different habitats (Fleagle et al. 

1999) such as the areas throughout the Congo River Basin (Fig. 2.1). This 

supports Lehman (2004), who found a positive relationship between primate 

species richness and habitat heterogeneity, a relationship driven by the increased 

number of ecological niches in diverse habitats. 

Much of Asia has moderate level of species richness despite having a 

greater number of species present across the continent than Africa and 

Madagascar, a finding that is supported in other assessments of primate diversity 

(Reed and Fleagle 1995; Fleagle et al. 1999; Reed and Bidner 2004). There are 
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several possibly reasons for this; site to site variation in primate communities and 

various habitat parameters across south-east Asia have been observed by Gupta 

and Chivers (1999), who attributed it to the existence of human-induced 

microhabitats, suggesting that these microhabitats may account for variations in 

primate community structure at broader scales. The impacts of human activity 

throughout the continent may have reduced primate numbers, particularly 

considering the high population densities of countries such as Bangladesh, India 

and China. Alternatively, Reed and Bidner (2004) suggest it potentially could be 

due to Asia possessing more primate species in the 5-10kg category, and that this 

may be related to resource acquisition in such a way that species numbers within 

a community are restricted.  

The region with the highest species richness in Asia is situated along the 

Sunda Shelf, a region characterised by intermittent volcanic activity over the last 

100million years producing large mountainous areas, which were separated by 

rising sea levels during the Holocene forming many small islands (Heaney 1984). 

The distribution of primates across the islands of the Sunda Shelf is believed to be 

best explained by extinctions of species from smaller islands after they became 

isolated from the main land due to the rising sea level (Harcourt 1999; Harcourt 

and Schwartz 2001). Additionally, large variations in rainfall across south-east Asia 

associated with the monsoon have produced a varied vegetation structure and a 

uniquely rich fauna along the Sunda Shelf (Gupta and Chivers 1999) which could 

account for greater numbers of primate taxa due to the large variety of habitats 

and available food resources being able to accommodate more diverse species 

assemblages. 

 

4.2 Causes of Species Distributions and Richness 
Tropical Forest 

Reed and Fleagle (1995) analysed primate communities in South America, 

Africa, Madagascar and Asia, with their results displaying a high positive 

correlation between the number of primate species present and the area of tropical 

forest, in addition to a correlation, at individual sites, between species diversity and 

mean annual rainfall in each biogeographic region except Asia. There are few 

primate species adapted to either temperate or non-forest habitats (Reed and 

Fleagle 1995), something that is also evident from the latitudinal distribution of 

primate species (Fig. 2.2). This could imply that primate diversity at a continental 
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level is determined primarily by the area of tropical forest (Reed and Fleagle 

1995). Thus it could be concluded that the large areas of tropical forest on 

Madagascar may have played a key role in supporting the high species richness 

on the island.  

Mittermeier (1988) demonstrates how the equatorial regions of South 

America have extensive forest cover and boast some of the highest levels of 

primate diversity and endemism in the world; our results also show this area with 

high concentrations of species-rich grid cells (Fig. 2.1). Similarly the habitats in 

south Asia that hold some of the higher levels of primate species richness, span 

two main forest formations; the deciduous monsoon rainforests of mainland Asia 

and the evergreen forests on the Sunda Shelf Islands (Gupta and Chivers 1999), 

which include species-rich areas such as Sumatra, Java, Borneo and Malaysia. 

In a typical forest environment, a high value of tree density can be 

associated with greater amounts of food and resources that primate communities 

require, thus it could be expected that more diverse primate communities will 

feature in areas of high tree density (Gupta and Chivers 1999), a theory supported 

by the species-rich areas synonymous with the tropical regions of South America, 

Africa and Asia in addition to providing a possible explanation for the large 

numbers of primate species on the tropical island Madagascar. Therefore 

assuming that it is simply the area of forest cover that dictates primate species 

richness is an oversimplification, and although it may be the case on a broad 

scale, the complexity of habitats that comprise these primate rich regions will have 

a significant impact on levels of primate species richness (Eeley and Lawes 1999).  

In addition to forest cover, several authors have shown the importance of 

rainfall in relation to primate species richness (Reed and Fleagle 1995; Chapman 

et al. 1999; Peres and Janson 1999). For example, Asia is subject to monsoon 

rainfall providing high levels over a short period each year, which could be 

expected to encourage very different patterns of plant productivity than that found 

on other continents (Reed and Fleagle 1995). Following this, the vegetation 

structure and composition throughout south-east Asia can be accounted for by the 

variation in rainfall across the region, for example; low tree species diversity and 

density in the drier regions of western India, to the high tree species diversity and 

density in the high rainfall areas of south-east Asia (Gupta and Chivers 1999) 

promoting a gradient in the habitats across the region and potentially explaining 

the higher levels of primate species richness observed over south-east Asia (Fig. 
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2.1). However, even within a single forested region that receives similar levels of 

rainfall, primate communities that occupy different areas can vary (Chapman et al. 

1999) and in some cases this may be a consequence of physical and biotic 

barriers. 

 

Other Factors 

Physical and biotic barriers can restrict the dispersal of individuals, limiting 

the distribution of taxa and preventing gene flow by splitting species ranges (Eeley 

and Lawes 1999). Barriers to species dispersal can include large rivers (Ayres and 

Clutton-Brock 1992), mountain ranges (Eeley and Lawes 1999), or more subtle 

features such as forest types that do not provide appropriate food items at certain 

times of the year (Chapman et al. 1999).  

Habitat diversity may operate in conjunction with riverine barriers, for 

example interfluvial regions are characterised by habitat variability (Lehman 2004) 

and such regions are generally the areas with the greatest numbers of primate 

species, for example, the Amazon. Riparian forests typically border the banks of 

large rivers and are often backed by a variety of moist woodland habitats (Ayres 

and Clutton-Brock 1992) in which primate diversity and abundance can vary 

considerably, for instance between non flooded moist forest and flooded forest 

(Lehman 2004). The effect of rivers inhibiting species dispersal and the habitat 

heterogeneity created by interfluvial regions could be expected to promote 

speciation leading to the high levels of species richness observed in South 

America around the Amazon and across tropical west-central Africa throughout the 

Congo River Basin (Fig. 2.1). The action of rivers dissecting large areas of forest 

or the topography of a region can potentially have an impact on species 

distribution and richness. For example, the patterns of species richness throughout 

South America could be attributed to this, due to the combined effect of the 

Amazon River and mountains such as the Andes (Ayes and Clutton-Brock 1992; 

Eeley and Lawes 1999).  

However, there is debate about the contribution of rivers such as the Congo 

and Amazon to patterns of diversity, with other factors such as forest 

fragmentation often thought to initiate population differentiation with rivers acting 

later to limit dispersal and therefore reinforce and maintain differentiation 

(Chapman et al. 1999). Although in areas where there is a high density of rivers, 

such as the Congo and Amazon River basins, it may have a more fundamental 
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effect by influencing the pattern of forest refugia (Eeley and Lawes 1999). In such 

regions forest contraction is likely to have encouraged the separation of a number 

of local populations promoting diversity and endemism (Ayres and Clutton-Brock 

1992). The importance of rivers acting as a hindrance to dispersal abilities of 

primates is such that they may slow the spread of a population, allowing two 

different, but related taxa to spread out from centres of differentiation on opposite 

river banks (Chapman et al. 1999). 

 

4.3 Variations in Latitudinal Species Richness 

The distribution of primate species is found to be concentrated around 

tropical and equatorial latitudes (Fig. 2.2). Generally there are fewer numbers of 

species at higher latitudes due to the greater climatic variability and seasonal 

extremes demanding species to be better adapted, often with greater range sizes, 

compared to the smaller range sizes of the more specialized species located at 

lower latitudes, with a lower environmental tolerance (Stevens 1989; Stevens 

1992; Eeley and Foley 1999; Eeley and Lawes 1999; Gaston 2000; Harcourt 2000; 

Harcourt et al. 2002; Willig et al. 2003). In particular for primates, the location of 

tropical forest will lead to greater species numbers at tropical latitudes. However, it 

is more than simply the location of tropical forest that determines the range of 

many primate species, rather it is a result of constraints on species dispersal at 

greater latitudes outside the tropics (Harcourt and Schreier 2009). 

Several patterns have been proposed to explain latitudinal gradients in 

species richness; variation in habitat seasonality, extreme temperature 

fluctuations, net primary productivity, floristic diversity and parasite diversity 

(Stevens 1989; Peres and Janson 1999; Willig et al. 2003). For instance, Harcourt 

and Schreier (2009) demonstrate how high speciation rates in the tropics 

compared with the ecological and thus evolutionary constraints on diversity at 

higher latitudes have led to greater diversity within the tropics. 

 The Neotropics and Africa show the most distinct relationship between 

species richness and latitude. Cowlishaw and Hacker (1997) observed similar 

trends of latitudinal gradients in primate species richness for Africa as those 

displayed in our results (Fig. 2.2), highlighting how African primates are 

predominantly tropical, although there are species that do exist outside the tropics. 

Similarly, Eeley and Lawes (1999) demonstrate how anthropoid primate species 

richness across Africa and the Neotropics was focused in equatorial regions and 
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declined with increasing latitudes. Peres and Janson (1999) explain how latitude is 

one of the most important predictors of Neotropical primate diversity due to the 

gradual increase in species richness towards the equator in a number of 

phylogenetically independent taxa.  

In Africa the pattern of primate richness has been shown to reflect 

vegetation types, with decreasing species richness from wetter to more arid areas 

(Grubb 1982), thus potentially explaining why extreme north- and southerly 

latitudes have reduced numbers of primates. Hence a species’ latitudinal extent is 

heavily determined by their ability to adapt to greater climatic variations that are 

experienced at higher latitudes (Willig et al. 2003). Furthermore, species 

occupying more extreme latitudes can be expected to have an increased 

geographic range and are often generalist species that can tolerate a broader set 

of climatic conditions, allowing them to spread across a wider range of habitats 

(Cowlishaw and Hacker 1997), whereas species exclusively located at equatorial 

latitudes can be expected to be specialised with smaller ranges and therefore a 

narrower environmental tolerance (Stevens 1992; Harcourt 2000). Within Africa for 

example, species richness declines with increasing latitude north and south of the 

equator (Fig. 2.2), at the same time Eeley and Foley (1999) found that the average 

species range size, habitat and dietary breadth all increase. The broader climatic 

variability experienced at more extreme latitudes could explain the areas on the 

outer reaches of the major biogeographic zones in which only one species is 

present, such as Mediterranean- and southern-Africa and northern regions of Asia 

(Fig. 2.1).  

The Neotropics follow a similar pattern to Africa in that species richness has 

a strong latitudinal gradient (Eeley and Lawes 1999) and the regions of greatest 

diversity are strongly linked to the distribution of the forest biome (Mittermeier 

1988). Peres and Janson (1999) explain how the reduction in species richness at 

high latitudes in Neotropical primates is a product of greater seasonality, lower 

floristic diversity and the substantial decrease in areas of tropical forest with 

increased distance from the equator. An alternative theory to the patterns of 

latitudinal species richness for Africa and the Neotropics has been proposed by 

Eeley and Lawes (1999), who speculate the degree to which patterns observed 

between species richness and latitude could be due to the shape of each 

continent, with both being widest at the equator. 
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4.4 Global Primate Taxonomic Distinctness 
 Africa has the highest levels of taxonomic distinctness (Δ+), which equates 

to the most unrelated assemblage of taxa (Fig. 2.3). Hacker et al. (1998) found 

that hotspots of taxon richness were clustered in west Central Africa, which would 

coincide with the hotspots of species richness we found in Africa (Fig. 2.1). The 

species composition of African primates is believed to have resulted from long-

term historical processes of dispersal, extinction and evolution (Chapman et al. 

1999) therefore more diverse primate communities will have evolved over time. 

Climatic changes since the Pleistocene, associated with glacial and interglacial 

periods, have constructed a sequence of forest contraction (glacial) and expansion 

(interglacial) within which forest vegetation would have been rarely stable for long 

periods, the consequence of this pattern of environmental change would have led 

to a variety of evolutionary forces operating on primates living in African forests 

(Chapman et al. 1999), therefore encouraging the development of evolutionary 

distinct species assemblages (Fig. 2.3).  

Forest contraction leads to separation of primate populations, encouraging 

speciation and when the forest expands there is potential for these new 

populations to interact, encouraging further adaptations and hybridization 

(Chapman et al. 1999). However it is not just forest expansion and contraction, the 

effect of barriers such as rivers and mountains can further separate populations, 

as previously discussed (Ayes and Clutton-Brock 1992; Eeley and Lawes 1999; 

Lehman 2004), consequently isolating populations and promoting the development 

of taxonomically distinct species assemblages in different habitats, therefore 

providing a possible explanation for high levels of Δ+ in Africa and South America. 

The location of regions with high levels of Δ+ could be expected to coincide, 

to a certain extent, with areas that contain the highest levels of species richness, 

and this could explain why Madagascar has a relatively high Δ+ value, due to the 

high density of primate species on the island given its total area when compared to 

regions such as the whole of Africa. Although Madagascar’s unique evolutionary 

history will have played a major role in the development of the taxonomically 

distinct species assemblages present on the island (Reed and Bidner 2004). In 

comparison, large parts of Asia are classed as having high levels of Δ+ despite 

intermediate levels of species richness. Although areas of high Δ+ across Asia 

primarily feature in the south-east of the continent (Fig. 2.3) and the pattern of 

species richness follows a similar trend, with the islands of the Sunda Shelf 
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supporting some of the highest values (Fig. 2.1). The reasons for this could be due 

to the isolation of small primate populations across the many small islands that 

make up the Sunda shelf, which have been subject to unique evolutionary 

conditions promoting diversification. Furthermore, Holocene sea level rise that 

produced the islands of the Sunda shelf (Heaney 1984) will have separated 

primate populations and may have promoted speciation. Primates present only on 

larger Sunda Shelf islands are thought to have gone extinct on the smaller islands, 

with those species that remain on smaller islands being the ones least susceptible 

to extinction (Harcourt and Schwartz 2001). Thus the primate communities across 

the Sunda Shelf vary with island size (Harcourt 1999) and species that became 

isolated following the creation of the islands will have subsequently followed 

different evolutionary paths, developing more unrelated and therefore 

taxonomically distinct species assemblages. Additionally, historical environmental 

change comparable to that described for Africa and South America (Fleagle et al. 

1999; Chapman et al. 1999; Eeley and Lawes 1999) could have altered the 

monsoon cycles acting over south-east Asia and subsequently impacted the 

structure of forests and vegetation across the region, creating varied habitats, 

promoting the development of new, distinct primate species assemblages. 

 The lowest levels of Δ+ are found in north/north-east Asia, upper central 

America and southern Africa (Fig. 2.3). The low levels of Δ+ are in higher latitude 

regions which experience greater climatic variability, limiting the number of primate 

species occurring in these environments (Stevens 1989; Harcourt and Schreier 

2009). Additionally, there is a possibility that areas in which Δ+ is lower may be 

due to previous extinctions and reduced population sizes, consequently reducing 

the dissimilarity in taxa as susceptible species die out from communities.  

Reed and Bidner (2004) explain that greater competitive interaction is 

expected among closely related species, therefore potentially explaining the low 

levels of species richness recorded for north and north-eastern parts of Asia (Fig. 

2.1), being a result of this region holding the some of the most closely related 

species assemblages across all continents, i.e. the lowest levels of Δ+ (Fig. 2.3). 

Although considering the area in question covers part of China, it is possible that 

the high human population and its associated pressures on habitats may have 

significantly reduced the taxa in this region. 
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4.5 Primates Under Threat 
 The most alarming observation from our results is the much larger area of 

decreasing primate populations when compared to the areas of threatened 

species (Fig. 2.4). Schipper et al. (2008) observe this trend for all mammals and 

explain that 52% of mammal species for which population trends are known are 

declining, including 22% of those classified as least concern. This indicates that 

the levels of threatened species could be expected to rise. Furthermore, the areas 

composed of high percentage of threatened species and decreasing primate 

populations coincide with the regions of the globe that harbour some of the highest 

levels of Δ+ and species richness, such as south-east Asia, leading to concern 

over potential losses from hotspots of primate diversity. However, this link could be 

attributed to areas of high primate diversity primarily being tropical forest, which 

are impacted greatly by human practices (Hacker et al. 1998) reducing the size of 

populations and ultimately increasing the risk of extinction. 

Primates have the challenge of coping with the dynamics of their habitats, 

which are continually changing, demanding them to adapt in order to survive or 

face potential extinction (Isabirye-Basuta and Lwanga 2008). Habitats are under 

threat worldwide from a variety of pressures, ranging from human activities such 

as farming and deforestation to the relatively uncertain effects associated with 

climate change (Cowlishaw and Dunbar 2000), however the influence of different 

threats will vary geographically (Schipper et al. 2008).  

Many of the habitats in south-east Asia are heavily impacted by human 

activities, with hardly any primate habitat unaffected (Gupta and Chivers 1999), 

most likely accounting for the high percentage of threatened species across the 

region, in addition to the even larger coverage of decreasing populations. Schipper 

et al. (2008) support this observation and estimate that potentially up to 79% of 

primate species in this region are threatened with extinction, a similar level to that 

displayed in our results (Fig. 2.4A). Furthermore the coastal areas of Brazil are of 

particular concern due to the potential pressure on habitats associated with the 

high human population density in this region, which also provides a possible 

explanation for the high levels of threatened species present along the Atlantic 

coast (Fig. 2.4A).  

Much of Africa is classed as having 0% threatened species, or Data 

Deficient (Fig. 2.4A), however, when considering the high levels of species 

richness and known human pressures upon common primate habitats throughout 
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Africa (Chapman et al. 1999), it was expected that there would be a larger 

percentage of threatened species across the continent. The largest area of 

threatened primates in Africa is centred over the same area in which the highest 

species numbers occur – roughly over west- and west-central Africa (Fig. 2.1 and 

Fig. 2.4A) leading to concern over the prospect of maintaining the high primate 

diversity of this region. 

It is important to appreciate that species not marked as threatened are not 

necessarily safe; many species have experienced range shifts and large 

population declines in the past that have not been accounted for in the current Red 

List status (Schipper et al. 2008). Furthermore, some species may already be 

committed to extinction as a result of habitat destruction, with extinction often 

occurring some time after habitat loss occurs (Tilman et al. 1994; Chapman et al. 

2006). This time lag between habitat destruction and extinction of a species is 

termed ‘extinction debt’ (Tilman et al. 1994). There are also primate species for 

which there is insufficient or unavailable data, therefore the percentage of 

threatened species and decreasing populations may be higher or lower in some 

areas. 

Madagascar has been shown to hold some of the highest levels of primate 

diversity on Earth (Fig. 2.1 and 2.3). However, given high percentages of 

decreasing primate populations on the island, combined with already high 

percentages of threatened species (Fig. 2.4), it makes it one of the regions of most 

concern. Ganzorn et al. (2001) highlight the ongoing loss of primary vegetation 

across the island, something which may explain why Madagascar harbours high 

percentages of threatened primate species. Many species have previously 

become extinct on Madagascar due to previous environmental change in which 

the island became drier, in addition to the onset of human habitation which 

accentuated the process and has been estimated to have eliminated at least one 

third of all lemur species on the island (Ganzhorn et al. 1999). Continued pressure 

on habitats, coupled with the potential effects of climate change, is a concern and 

may considerably reduce the number of primate species present in Madagascar, 

especially given current levels of threatened species (Fig. 2.4A). 

A limitation with showing the percentage of threatened/decreasing species 

per grid cell is that there is a slightly biased rating towards grid cells containing 

fewer species, for example; some grid cells only contain one species, which may 

be threatened/have a decreasing population status, resulting in that grid cell being 
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classed as 100% threatened even though there is only one species present. 

Conversely a grid cell may contain 14 threatened species, but with three species 

not threatened and therefore it will be given a lower percentage. 

 

5. Conclusions 
 The Neotropics hold the greatest numbers of primate species, followed by 

Asia, Madagascar and Africa. The particular areas which have the greatest 

concentration of primate rich grid cells feature the throughout the Amazon River 

Basin, particularly towards western-Amazonia, across west- and west-central 

Africa throughout the Congo River Basin, Madagascar and the Sunda Shelf region 

in south-east Asia. Primate species are linked to areas of extensive tropical forest 

with the latitudinal distribution of primate species richness highlighting how the 

majority of species are present between 20° North/South of the equator, a pattern 

shown most clearly for Africa and the Neotropics. 

 Africa comprises the most unrelated/evolutionary distinct primate species 

assemblages, illustrated by high levels of taxonomic distinctness (Δ+) over much of 

the continent. High levels of Δ+ are likely to have been brought about by a 

combination of historical environmental and evolutionary change, with the actions 

of physical and biotic barriers fragmenting populations leading to further 

differentiation (Ayres and Clutton-Brock 1993; Chapman et al. 1999). 

 The threat to primate species as a consequence of human activities and 

environmental change is a major concern. The number of threatened primate 

species could be set to increase given the much larger numbers of decreasing 

primate populations. Of particular concern are Madagascar, south-east Asia, 

Central America and coastal areas of Brazil which all have high percentages of 

threatened species, in addition to declining primate populations. Moreover, areas 

with a high percentage of threatened and decreasing primate populations tend to 

coincide with regions of the globe that harbour some of the highest levels of Δ+ 

and species richness, such as Madagascar and south-east Asia in particular. This 

raises possibility of reductions in the overall primate diversity of these regions as a 

consequence of species extinctions. 
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Chapter 3 
 

Climate and Primate Diversity: Current 
Relationships and Projected Future Changes 
 

1.1 Introduction 
 At large spatial scales, climate is the primary determinant of species 

distributions and diversity (Pearson and Dawson 2003), with energy availability 

being an important factor, particularly with regards to the occurrence of greater 

species richness in warmer climates (Schipper et al. 2008). Gaston (2000) 

explains how energy availability can enable a greater biomass to be supported in a 

region, allowing more individuals to coexist. These relationships with climate and 

environmental energy are linked with gradients of latitude and elevation, with 

current and historical states of these factors shaping the variation in distribution 

and diversity of species (Gaston 2000). Changes in climate will therefore inevitably 

impact upon species ranges, subsequently altering species numbers at a given 

location, with many studies documenting the influence climate change has already 

had on a variety of taxa (e.g. Hughes 2000; McCarty 2001; Gitay et al. 2002; 

Walther et al. 2002; Hickling et al. 2006).   

The IPCC (2007) anticipates a general rise in the Earth’s mean surface 

temperature over the twenty first century; this is expected as a result of rising 

levels of anthropogenic greenhouse gas concentrations. Alterations in global 

precipitation patterns are more varied however, with increases expected for 

equatorial areas and higher latitudes and a reduction in the subtropics (IPCC 

2007). Tropical Africa and eastern Asia are projected to receive amplified winter 

and summer precipitation levels respectively, with large year to year variations 

expected (IPCC 2007), which will be of particular importance to primate species 

located in these regions.  

The impact of global warming on large scale patterns of climatic variability 

such as the El Niño/Southern Oscillation (ENSO), which impacts climate 

worldwide because of the associated changes in heating of the tropical 

atmosphere, potentially altering global atmospheric circulation (Cane 2005), has 

the potential to affect primate-rich regions across the globe. Furthermore it is likely 
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that global warming will lead to an increase in the variability of Asian summer 

monsoon precipitation (IPCC 2007), which will affect Asian primates, many of 

which already face high risks of extinction and would struggle to cope with any 

further negative impacts on their habitats. In addition to global climate change, 

altered regional and local climate aspects can affect population abundance, 

species’ distribution and behaviour, and may also impact upon community 

structure (Easterling et al. 2000). 

Climate regimes influence species distributions and numbers, often through 

species-specific physiological thresholds of temperature and precipitation (Walther 

et al. 2002). In terms of primates, climate change may have a direct effect by 

creating unfavourable conditions, and subsequently impacting upon the bodily 

functions and physiology of individuals or it may have indirect effects by reducing 

food availability and influencing biological aspects such as competition, predation 

and disease (Hoffman and Parsons 1997). The extent to which a species may be 

impacted upon by projected climate change will depend on the size of its current 

range, its dispersal ability and its level of environmental tolerance, however, in the 

case of primates, dispersal ability will be restricted to areas of tropical forest for 

many species. 

Wiederholt and Post (2010) explain the need to quantify the role of climate 

change in the dynamics of primates due to the already large numbers (up to one 

third) of primate species threatened with extinction. This is particularly 

disconcerting considering that under projected climate change the extinction risk of 

vulnerable species is likely to increase (Dunbar 1998; Cowlishaw and Dunbar 

2000; Gitay et al. 2002; Thomas et al. 2004; Malcolm et al. 2006). As previously 

discussed (Chapter 2), primates are mainly located in tropical forests throughout 

tropical and equatorial regions; therefore the impact of any climatic changes on 

these areas will have important knock-on effects. For example, forest development 

is significantly linked with levels of rainfall (Reed and Fleagle 1995; Cowlishaw and 

Dunbar 2000; Reed and Bidner 2004), moreover floristic diversity, and the 

availability of food resources will be governed by climate, as plants can only 

successfully reproduce and grow within specific ranges of temperature and 

precipitation (Hughes 2000; McCarty 2001).  

Lucht et al. (2006) use Dynamic Global Vegetation Models to map the 

responses of terrestrial vegetation to climate change, concluding that climate 

change will cause widespread shifts in the distribution of major vegetation 
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functional types on all continents by 2100. However, using similar methods 

Schapoff et al. (2006) explain the difficulty in anticipating the response of sub-

tropical and tropical ecosystems to climate change due to large variations in 

simulated precipitation patterns from different global climate models. Nevertheless 

it is clear that climate change has the potential to impact primate species through 

a combination of factors acting across ecosystems. 

 

1.2 Aims 
In this chapter we investigate the relationship between current climatic 

conditions and primate species diversity at the global scale and how future climate 

change might affect global patterns of primate diversity. There are three main aims 

to this chapter: 

1. Establish the current climatic determinants on primate diversity, thus 

providing an understanding of the key climatic drivers in primate-inhabited 

regions. 

2. To develop a model to predict possible changes in primate species richness 

in response to projected future climate change. 

3. Use the model predictions to identify areas in which climatic conditions are 

set to improve/deteriorate and the possible effects on primate species. 

 
2. Methods 
Climate and Species Data 

Climatic conditions that may have led to the observed patterns of primate 

diversity were established using baseline climate data covering the last pre-

warming "normal" period 1931-1960. For this, the CRU TS 2.1 dataset was used 

providing mean values of baseline temperature and precipitation for 

June/July/August and December/January/February for each 0.5° grid cell 

(www.cru.uea.ac.uk/data/hrg); thus providing data for summer and winter, 

respective of which hemisphere. The total species richness of each grid cell, 

obtained in chapter 2, was used to build a model of species richness as a function 

of climate. 

Future climate data, for the period 2031-2060 (referred to hereafter as the 

“2050s”), were derived from the TYN S.C. 2.0 dataset, 

(www.cru.uea.ac.uk/data/hrg) providing June/July/August and 

December/January/February temperature and precipitation values from two 
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different global climate models (GCMs): PCM and HadCM3 under two different 

IPCC AR4 SRES greenhouse gas emission scenarios: A2 and B1. The A2 

scenario depicts a heterogeneous world harbouring a continuously increasing 

population with technological change more fragmented and slower than other 

scenarios (IPCC 2007). In contrast, the B1 scenario describes a convergent world 

with the same global population, in which the focus is on social and environmental 

sustainability with the introduction of clean and resource efficient technologies 

(IPCC 2007). Using a range of GCMs and scenarios allows for a better 

assessment of future changes, given the many uncertainties associated with future 

climate predictions. 

 

The Global and Continental Model 

The climate data and the values of species richness were organised into 

five datasets: one with a global coverage, incorporating all grid cells, representing 

the global model and one for each of the four main primate-inhabited 

biogeographic zones: Asia, Madagascar, Africa and the Neotropics, which 

constitute the continental model. The continental model uses a restricted dataset 

for each biogeographic zone, which may allow the model to account better for the 

specific climatic conditions that may be of greater or lesser importance in different 

regions, without adding a large number of negative values, i.e. absence records in 

areas clearly climatically unsuitable for primates. The global model incorporates all 

the grid cells and will be used to provide an indication of where climate conditions, 

suitable for primates, persist outside of primate-inhabited zones, in addition to 

providing a useful comparison with the continental model output. The geographic 

extent of the four biogeographic zones used in the continental model can be seen 

below in Table 3.1. 
 

Table 3.1: Latitude/Longitude extent of each biogeographic region incorporated in the 

continental model. 
 

Region 
Number of Grid 

Cells Latitudinal extent Longitudinal extent 

Neotropics 6701 24.25; -55.25 -99.25; -34.75 

Africa 10869 36.75; -34.75 -17.25; 46.75 

Madagascar 211 -12.25; -25.25 43.25; 50.25 

Asia 6507 41.25; -10.25 63.75; 141.75 
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The Species Richness Model 

Two stepwise multiple OLS regression models were built, using SPSS 17, 

with species richness used as the dependent variable, and the linear, second and 

third order climate variables as independent variables. The benefit of using a 

stepwise regression is that it provides the most parsimonious model, i.e. retaining 

the least number of variables while explaining maximum amounts of variation in 

the dependent variable. These regression models were applied to the global 

dataset, i.e. all grid cells (global model) and then to each biogeographic region, 

(continental model), thus providing two models of baseline species richness. In 

order to assess the accuracy of the models before using them for future 

predictions, they were compared to the observed values of species richness 

illustrating areas which may have been over or under-predicted. Graphs of 

observed against modelled species richness were plotted in order to illustrate 

model performance. In addition, graphs of modelled and observed species 

richness over latitude were produced to identify areas in which the model was 

most accurate and where it had over or under predicted species richness.  

The linear, second and third order baseline climate variables were also 

individually used in a regression analysis for each of the five datasets; the global 

coverage of grid cells and each biogeographic region, to provide the R2 values of 

the climate variables in each model (including the linear, second and third order 

terms). This will highlight the most important aspects of the climate acting in each 

of the biogeographic regions, and on a global scale in determining primate species 

richness. Additionally, the root mean square error (RMSE) was calculated 

providing an indication of model performance compared to observed data. 

The regression equations from the global and continental models were 

applied to the future climate variables to predict future primate species richness. 

The aim is to develop an accurate model that can be used to provide an 

approximation of species richness under future climate. Therefore, the projected 

change in species richness was calculated using the difference between the model 

output for future and baseline species richness, rather than with the observed 

values of species richness. This method was used because the model outputs for 

future and baseline species richness are relative to each other, on account of the 

way the model calculates species richness in terms of the climate variables, and 

therefore will provide better predictions of future changes.  
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The model projections for future changes in species richness were 

compared to the elevation for each grid cell to identify any links between altitude 

and changes in future climate. This could highlight regions of higher altitude which 

may act as a buffer against adverse climate change, or conversely show high 

altitude regions which will be more severely impacted by climate change than 

lower lying land masses. 
 
3. Results 
3.1 Explanatory power of individual climate variables 
 For each model the individual climate variables (linear, second and third 

order terms) were used as the single independent variable with total species 

richness as the dependent variable, providing the R2 values, all of which were 

significant, for each climate variable. The one climate variable with a relatively high 

R2 for each model is December, January, February (djf) temperature, which 

appears to be an important factor for current primate species richness (Table 

3.2A). However, the one exception to this is Madagascar, in which June, July, 

August (jja) precipitation appears to be the one important variable, with all the 

others possessing very low R2 values. In a similar trend to Madagascar, the Asia 

model demonstrates just djf temperature as the main climatic determinant with an 

R2 of 0.36 compared to 0.1 and 0.02 for the linear jja and djf precipitation variables 

respectively. Temperature also appears to be an important factor for Neotropical 

primates, as indicated by all the jja and dfj temperature variables having high R2 

values compared with much lower values for the precipitation variables. In 

contrast, the Africa model displays relatively high R2 values of 0.23 for jja and djf 

precipitation, although the highest R2 values are those relating to each djf 

temperature variable. On a global scale the two most important climate variables 

in relation to primate species are shown to be djf temperature and precipitation. 

Following the stepwise regression analysis the β coefficient values (Table 

3.2B) were used to build each model, with the subsequent regression equations 

enabling the prediction of species richness for the baseline climate conditions and 

for the projected future climate from each GCM and scenario. The Neotropics and 

Africa in particular, are best represented by the model parameters, demonstrated 

by the higher adjusted R2 values. Although both of these contain the largest 

number of grid cells and therefore data points, which will increase the R2.  

Madagascar is the poorest-performing model indicated by the lowest R2 value. The 
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Asia and Global model both have a relatively high adjusted R2 value, each 

explaining 54% of the variation in species richness, although the global model 

comprises the largest dataset consisting of all the grid cells.  
 

Table 3.2: Total species richness regression analysis. A: The R square value for each 

individual climate variable. B: The β coefficients produced from the stepwise regression, with 

total species richness as the dependent variable. The variables left in the model after stepwise 

regression analysis represent the minimal adequate model. NOTE: All the values were 

classed as significant; this could be a result of the large number of points in the models. 
 

 
 

 

B 

   A 
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3.2 Predicting Current Species Richness 
On the whole, the continental model has identified the patterns of high 

species richness within the biogeographic zones with more success than the 

global model, in particular for areas over central/western Africa around the Congo 

Basin, in addition to areas of south-east Asia (Fig. 3.1). Furthermore, the areas 

possessing the highest levels of species richness are concentrated around the 

tropics similar to the observed data. However, the continental model has failed to 

identify a relatively large area of primate species that are present in the observed 

data over southern Africa and some parts of eastern Africa. The global and 

continental model outputs are similar in that the same areas within each of the 

main biogoegraphic regions contain the highest values of species richness, and 

areas such as the Sahara Desert are devoid of primate species as in the observed 

data. In addition, both models class Madagascar as having high levels of species 

richness, the continental model in particular. However, the clearest difference 

between the global and continental model output is the difference in species 

numbers predicted by each model, with the global having a maximum of eight 

species in a particular grid cell, compared to 20 for the continental model. 

The global model also illustrates areas currently uninhabited by primates 

that may have suitable climatic conditions for primate species (under the baseline 

climate conditions); specifically these areas are along the east and upper north-

west of North America, and much of Australasia in particularly northern Australia. 

Additionally, the far east of Russia, up into the arctic is classed as having species 

present, although they are low numbers.  

The maps illustrating the difference between observed and predicted 

species richness (Fig. 3.1) show how the global model over-estimates species 

richness in areas such as Australia, where in reality there are no species present, 

but this is because the model calculates that the baseline climate was suitable for 

primate populations in that region. Both models identify areas in which primate 

species are present with differing accuracy; the global model tends to 

underestimate species richness whereas the continental model over estimates it, 

this is further supported in Table 3.3. Although the continental and global models 

both under-predict African primates, on average by -2.15 and -2.62 species per 

grid cell respectively. Furthermore, the areas around the Congo River Basin are 

considerably lower in primate species than the observed data (Fig. 3.1), in 

particular for the global model.
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Figure 3.1: Predicted (baseline-climate) primate species richness. I: Predicted primate species richness under baseline climatic conditions for the global 

(A) and continental (B) model; II: Difference between predicted and observed primate species richness for the two models. The most apparent difference 

between the global and continental model outputs is the scale, with the global model predicting much lower species numbers than the continental model.

A 
Global model 

B 
Continental 

model 

I 
Predicted current species richness 

II 
Difference between predicted and 
observed current species richness 
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Within the Neotropics the continental model over-estimates species 

richness in Central America and it is noticeable how it lacks detail in species-rich 

areas concentrated along the Amazon River Basin unlike in the observed data, 

whereas in comparison the global model largely undervalues the species richness 

in the Amazon Basin. On average, for the Neotropics, the global model under-

estimates species richness by -1.99 per grid cell compared to the continental 

model that over-estimates by 3.88 species per grid cell (Table 3.3). Both models 

class the central area of Madagascar as having species present; indicating that 

baseline climatic conditions in this area are suitable for primate species and their 

absence in the observed data is due to other factors. Asia brings contrasting 

results from each model, with the continental model over-predicting species 

richness on average by 4.09 species per grid cell (Table 3.3), although it is 

primarily India and far-east Asia that are over-estimated (Fig. 3.1). In contrast the 

global model under-values the whole region, with the exception of south-east Asia. 

For both models the patterns across continents such as Africa and South America 

are not as well pronounced as in the observed data and tend to be blurred, 

particularly the global model output. 

 

Table 3.3: Average difference between modelled and observed species richness - in 

addition to the absolute difference between each model prediction. Important to consider that 

this table just shows the average difference - the actual patterns of species richness predicted 

by each model may be different. 
 

  Continental Model Global Model                       
Absolute Difference 

Between Models 

Asia 4.09 -1.4 5.49 

Madagascar 5.24 -3.18 8.42 

Africa -2.15 -2.62 0.47 

Neotropics 3.88 -1.99 5.87 
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Figure 3.2: Observed vs. predicted primate species richness - for the continental model 

(A), the global model (B) and for each biogeographic region (C-F), with a 1:1 (x=y) line. 

A  B 

C  D 

E F 
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Figure 3.3: Observed (blue) and predicted species richness (pink) against latitude - for 

the continental model (A), the global model (B) and for each biogeographic region (C-F). The 

continental model predicts the baseline species richness with greater accuracy than the global 

model, with the latitudinal patterns of species richness reproduced better, except for Asia. 

A B 

C D 

E F 
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The predictions of baseline species richness vary considerably between 

each biogeographic zone (Fig. 3.2 and 3.3), with the best representation of current 

patterns of species richness being produced by the Neotropics, Africa and 

Madagascar models. Asia displays an unusual pattern compared to the observed 

pattern of species richness, with a heavy concentration of species present 

between 25 and 40° north of the equator (Fig. 3.3). The continental model outputs 

for the Neotropics and Africa also successfully duplicate the latitudinal pattern 

across the continents, although the Africa model produces lower levels of species 

richness. Conversely, the Madagascar model over-estimates species richness. 

The global model considerably under-estimates species richness with every 

biogeographic region under-predicted, by -3.18 species per grid cell in the case of 

Madagascar (Table 3.3). This under-estimation is also evident in the baseline 

maps (Fig. 3.1), however the model still roughly picks up on the latitudinal patterns 

of species richness. 

Generally the separate models for each biogeographic zone (continental 

model) tend to over-estimate species richness, by as much as 5.24 and 4.09 

species per grid cell on average for Madagascar and Asia respectively (Table 3.3). 

Although in contrast, the Africa model does under-predict species richness. 

However, given the more accurate representation of latitudinal patterns and 

numbers of species (Fig. 3.3), and the fact that the global model under values 

species numbers for each region (Table 3.3), the outputs from separate 

biogeographic zone models have been combined into the continental model, which 

will be used with future climate projections to assess potential changes in primate 

species richness. 

 
 
3.3 Future Projections of Species Richness 
 When assessing the model predictions of future primate species richness it 

is important to consider that areas anticipated to increase or decrease in primate 

species are doing so on account of an improvement or deterioration in suitable 

climate, respectively. Hence the models calculate potential change in species 

under projected future climate change given the current climate-primate species 

relationships, even though the actual numbers of primates in a particular grid cell 

may or may not change. There is a clear difference in scale of changes for each 

model; the continental model predicts increases of up to 20 species per grid cell 

and decreases of 12, compared to the global model which ranges from 7 to -30. 
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Figure 3.4:  Projected changes in future primate species richness – for (A) Continental 

Model and (B) Global Model. Calculated as the difference between current-modelled and 

future-modelled species richness. Increase in species numbers indicates potential 

improvements in climate given current climate-primate species relationships, whereas 

decreases in species numbers indicate a potential decline in suitable climatic conditions. The 

HadCM3 model predicts greater changes in species numbers than the PCM, although both 

models display similar trends, with the largest decrease in species over the Sahara Desert. 

 

 

Continental Model 

The continental and global model predictions of future primate species 

richness vary considerably between each GCM (Fig. 3.4). For instance, for both 

the continental and global model PCM A2 and B1 outputs, there are only moderate 

levels of change in primate species richness compared to the range of changes 

projected by the HadCM3 A2 and B1 outputs. Some general trends can be 

A B 
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detected across each GCM and scenario, such as Madagascar being predicted to 

increase in species richness, and regions bordering the Sahara Desert in Africa 

expected to decrease in primate species, again both of these changes occur on a 

greater scale under the HadCM3 model. With regards to Madagascar, it is the only 

model in which each GCM and scenario projects that 100% of the grid cells will 

become more climatically suitable for primate species (Table 3.4). 

The PCM outputs follow similar spatial patterns to the HadCM3 model 

outputs; with both anticipating an increase in species richness across much of the 

Neotropics, with the HadCM3 A2 model predicting an increase in species richness 

for South America, in particular. This indicates more favourable climatic conditions 

for primate species arising in this region. Furthermore, each GCM and scenario 

predicts that over 90% of grid cells throughout the Neotropics will have an 

improved future climate given current climate-species relationships, with HadCM3 

B1 being the exception in which it is 88.69% (Table 3.4). 

Under both GCMs there is a moderate rise in species richness predicted for 

much of mainland Asia. However the islands of south-east Asia along the Sunda 

Shelf are predicted to decrease in species richness by the HadCM3 A2 and B1 

model, with the PCMB1 model also predicting declines in this region, albeit by a 

much smaller amount and over a reduced area. Between the PCM and HadCM3 

models there is clear difference in the percentage of grid cells increasing in 

species richness for the Asia, with the HadCM3 B1 predicting the lowest rise of 

86.81% of grid cells compared to 97.22% predicted under PCM A2. 

Africa displays the most variation across the continent in terms of the 

pattern of changes in species richness. The conditions in the Sahara desert region 

and much of northern Africa are predicted to become even more climatically 

unsuitable for primate species, as indicated by the high negative values, with the 

HadCM3 model predicting a considerable decrease in species richness in these 

areas. Moreover, out of all the components of the continental model, Africa has the 

lowest percentage of grid cells set to improve in climatic suitability for each GCM 

and scenario (Table 3.4). The greatest percentage occurs under the PCMB1, with 

41.59% of grid cells experiencing a rise in species numbers, compared to just of 

39% for each HadCM3 output and only 35.86% under the PCM A2. However, 

despite these decreases, large parts of Africa are also predicted to have elevated 

levels of species richness, particularly along the east of the continent, with the 

HadCM3 GCM output projecting high levels in east-central Africa. 
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Table 3.4: Percentage of grid cells predicted to increase in species richness (improved 

future climate) - This shows the proportion of grid cells that are predicted to either increase or 

decrease in species richness under future climate for the Continental Model and the 

equivalent biogeographic regions within the Global Model.  
 

 
% Grid cells projected to increase in species 

richness (improved climate) 
 PCMA2 PCMB1 hadCM3A2 hadCM3B1 

Global Model     
Asia 58.43 45.66 51.65 50.65 
Madagascar 99.05 100.00 81.99 75.83 
Africa 55.34 56.14 47.46 43.83 
Neotropics 74.84 79.14 75.47 76.23 
Continental Model         
Asia 97.22 96.11 88.47 86.81 
Madagascar 100.00 100.00 100.00 100.00 
Africa 35.86 41.59 39.22 39.19 
Neotropics 98.93 99.19 90.29 88.69 

 

 

Global Model 

 In a similar trend to the output from the continental model, the HadCM3 

projections display a greater range of results than the PCM output, ranging from -

30 through to +7 species per grid cell, compared to -3 to +3 species respectively. 

The scenarios used with each GCM do offer slightly different outcomes; however 

the same patterns are clearly evident, just in some cases slightly more 

pronounced under one scenario than another. The global model also provides an 

indication of climatically suitable regions for primates in areas which they are not 

present, as can be observed for each GCM and scenario for much of Australia. In 

addition, parts of central/eastern Europe, large parts of Russia and some central 

areas of North America, particularly under the HadCM3 output, are suggested as 

having future climate that may be suitable for primate species. Furthermore, a 

greater area than that already occupied by primates in South America is predicted 

to become climatically suitable. Clearly there are many aspects other than climate 

that would determine as to whether primate species could survive in these regions 

but these future projections highlight the potential suitability of such areas. 
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The area most unsuitable for primate species under the global model is 

centred over North Africa and the Sahara desert, spreading into Arabia and the 

Gulf, a feature common to each GCM and scenario. This suggests that the already 

harsh climate in this region is expected to intensify, becoming more unsuitable for 

primate species. The greatest impact of this will be on the primate species located 

in areas bordering the Sahara Desert. Further to this, the models have shown how 

similar unsuitable areas are present down towards central Africa just below the 

Sahara region, extending into the Congo River basin as well as in the 

Mediterranean region of North Africa, which is also predicted to decrease in 

primate species by the global model. On the whole, Africa, as it was for the 

continental model, is the continent which displays the lowest area of improving 

future climate, with only 43.83% of the continent predicted to increase in species 

richness under HadCM3 B1 (Table 3.4). However, the GCM and scenario outputs 

for the global model do have a higher percentage of grid cells increasing in 

primate species than the equivalent in the continental model. 

 The Neotropics show clear variation in the numbers of species present 

between the PCM and HadCM3 outputs (Fig. 3.4B), with the main difference in the 

patterns and numbers of species occurring over South America. Each HadCM3 

scenario has predicted very similar patterns and amounts of change (Table 3.4). In 

contrast, the PCM outputs have lower levels of species richness over much of the 

continent, with a slight difference between each scenario in the number grid cells 

expected to become more climatically suitable for primate species (Table 3.4). 

The common prediction across all the outputs for Asia is that the south of 

India will decrease in species richness, in addition to parts of China. However, the 

Sunda Shelf region will experience a split response, with the northern extent 

increasing in species compared to scattered areas of lower species richness along 

the central and southern extent of the islands. Similarly to Africa, Asia has a low 

percentage of grid cells increasing in primate species. There is little difference 

between the HadCM3 outputs, however, there is a difference of over 10% between 

the PCMA2 and B1 outputs. Moreover, when compared to the continental model, 

each GCM and scenario predicts a much smaller percentage of the Asian 

landmass to increase in species richness; for example, PCMB1 has less than half 

the amount of grid cells increasing in species richness than it does under the 

continental model. 
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Madagascar displays a pattern of rising levels of species richness for all the 

model outputs, although the northern extent of the island is shown to have 

reduced species richness by the HadCM3 A2 and B1 outputs (Fig. 3.4B). 

However, the percentage of grid cells on the island increasing in species varies 

from 99/100% for the PCM outputs, to only 81.99% and 75.83% under HadCM3 

A2 and B1 respectively (Table 3.4). This provides a contrast to the continental 

model, in which every GCM and scenario output predicts 100% of grid cells to 

increase in primate species. 

 

3.4 Future Changes in Species Richness at Higher Elevations 
 The change in primate species richness at higher elevations produces 

varying results under each GCM and for the continental and global model (Fig. 

3.5). Each scenario, however, generates similar results except for the global 

model PCM output, in which the A2 scenario displays a reduction in species at 

lower elevations, followed by a gradual increase at higher ones, in contrast to a 

reduced number of species at all elevations under the B1 scenario. The HadCM3 

continental model output displays the greatest reduction in climatic suitability at 

higher elevations, indicated by the reduction in species numbers over 4400m. 

However the global model HadCM3 and continental model PCM projections 

predict improved climatic conditions across all elevations, as indicated by the 

increases in species numbers, although at the highest elevations the size of the 

increases is slightly reduced. 
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Figure 3.5: Projected changes in species richness with elevation - displaying the change 

in the number of species per grid cell between baseline and future (2050s) climate conditions 

(i.e. change in suitable climate) against elevation. The linear lines of best fit represent the A2 

scenario (solid line) and the B2 scenario (dashed line) for each GCM. The global model PCM 

outputs produce the most varied results when compared to the other models. This is 

particularly apparent for the PCMA2 scenario (global model), which is the only output to 

predict an increase in species richness at the highest elevations. 
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4. Discussion  

4.1 The Global and Continental Models 
 The difference between the global and continental models is the restricted 

space used i.e. reduced number of grid cells and therefore climate data, for the 

four main biogeographic zones that were subsequently combined in the 

continental model. Thuiller et al. (2004) explain how restricting the input data can 

have several implications with possible consequences for model performance due 

to the fact that absences are often true absences, providing potentially relevant 

information on species ecology. This may account for the higher estimation of 

species numbers from the continental models, with up to 20 species present in a 

grid cell and generally much higher species numbers than in reality as can be 

seen from the observed/predicted difference maps (Fig. 3.1), possibly because the 

restricted environmental space used in the continental models incorporates mainly 

favourable conditions for primate species from grid cells comprising the key 

primate-inhabited biogeographic zones. In comparison, the global model includes 

a greater range of environmental conditions, including more climatically unsuitable 

grid cells from regions such as northern Canada, for example, possibly leading to 

the much lower values of primate species richness predicted, with no more than 8 

species present in one particular grid cell, in addition to much of the biogeographic 

zones being under-valued compared to observed species data (Fig. 3.1). 

The global model does not reproduce levels of species richness across 

biogeographic regions as accurately as the contitnental model (Fig. 3.1). This 

could be due to its inability to account for the varying importance of different 

climatic variables, such as the relationship between primate species and rainfall, 

between each of these regions (Reed and Fleagle 1995; Kay et al. 1997; Reed 

and Bidner 2004), due to the greater amount of environmental data used in the 

global model, which may obscure such regionally important climatic 

characteristics. In addition, the global model under-values species richness for 

baseline climate in each of the main biogeographic zones (Table 3.3), compared 

to the continental model, which over-values species richness for each region. This 

could again be due to the restricted dataset of the continental model including 

mainly favourable environmental variables and therefore elevating the subsequent 

predictions of species richness by the model. However, a restricted dataset, such 

as that used in the continental model, may not incorporate the complete range of 

environmental conditions in which a species may occur (Thuiller et al. 2004). 
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4.2 Baseline Representations and Observed vs. Predicted Species Richness 
Despite a restricted environmental dataset, the continental models appear 

to reproduce the baseline patterns of species richness accurately across each 

region, in addition to accounting for the latitudinal variations in species richness 

(Fig. 3.3). The greatest differences between observed and predicted species 

richness, from both the global and continental model, occurred for Madagascar 

(Table 3.3), this could be due to the large differences in the number of grid cells 

and environmental data present in the small Madagascar model compared to the 

much larger, unrestricted dataset in the global model.  

An interesting aspect of the Madagascar outputs is that both models 

account for the presence of primate species along the central spine of the island 

under baseline climatic conditions, despite the observed data showing no species 

present in this location, due to this central plateau of Madagascar consisting 

primarily of grassland and savannas on account of human disturbances (Reed and 

Bidner 2004). This further highlights the well documented negative impact of 

anthropogenic activities on the island (Ganzhorn et al. 1999; Reed and Bidner 

2004; Dunham et al. 2008), in that climatic conditions are currently suitable, and 

are even projected to become more favourable for primate species (Fig. 3.4), yet 

due to human influences there are areas in which primates are absent. Human 

modifications to the habitat and environment, which are not accounted for in the 

model, such as a loss of forest due to deforestation, reduce the numbers of 

primate species present despite suitable climatic conditions. Although this 

provides hope that suitable climatic conditions will prevail and benefit primates 

across the island. The anthropogenic activities on Madagascar could also account 

for the lower R2 value of the model (Table 3.2B), although the lower number of grid 

cells and therefore data points in the model will also be a contributing factor. 

The Asian model could be affected in a similar way to Madagascar, with the 

negative impacts of human activities being documented along areas of the Sunda 

Shelf and for much of the continent (Gupta and Chivers 1999; Reed and Bidner 

2004). Much of Asia is over-estimated in numbers of species present by the 

continental model, possibly an indication of the impact of human activities 

extensively reducing species numbers in reality, something not affecting the 

baseline model predictions due to the climate being suitable for primates. 

Both the continental and global model under predict the numbers of species 

present in Africa, however, on average, both models have similar outputs (Table 
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3.3). The Africa component of the continental model is the one with the most grid 

cells and therefore environmental data included. This means it will incorporate a 

wider range of climate data, similar to the global model, some of which will be 

negatively correlated with primate occurrence, for instance the grid cells that 

constitute the Sahara Desert region, which will have an unsuitable climate for 

primates. 

A visible difference between the baseline model outputs and the observed 

values of species richness for Africa and the Neotropics, is the reduced accuracy 

around the Congo River and the western extent of the Amazon River respectively, 

this is also apparent in the future predictions. This may be a consequence of the 

models not being able to account for the work of rivers in creating diverse habitats 

and resources, which can promote high species diversity within interfluvial regions 

(Ayres and Clutton-Brock 1992; Lehman 2004). 

The R2 values for each model (Table 3.2) can be considered to be relatively 

high given that only climate variables were used, which are not the only factors 

determining primate species occurrence. This is particularly evident for Africa and 

the Neotropics, although the greater number of grid cells and therefore 

environmental data used in these models may have contributed towards the higher 

R2 value. 

 

4.3 Regional Impacts of Climate Change on Primate Species Richness 
 Climate change is not uniform across all areas of the globe; some regions 

will experience large changes whereas others remain relatively stable (IPCC 

2007). However, the interlinked nature of the climate system will result in 

feedbacks associated with changing climate being conveyed across all parts of the 

world (IPCC 2007). Chivers (1991) explains how flexibility in feeding strategies 

allows primates to cope with short- and long-term environmental changes, 

however the primary concern is the current pace of change being experienced 

across ecosystems, in particular climate, which can impose new types of threat. 

For instance the effect of climatic stress might decrease primate species richness, 

highlighted by the decrease in primate species present at more extreme latitudes 

and with distance from the equator (Chapter 2); a pattern that might exist due to 

many species struggling to cope with greater environmental variability (Cowlishaw 

and Dunbar 2000). This can be supported by Neotropical primates, in which the 

small-bodied taxa are less likely to be found at higher latitudes due to them being 
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unable to sustain the high energy costs of thermoregulation or to survive long 

periods of food scarcity (Cowlishaw and Dunbar 2000). 

In comparing the global to the continental model outputs for the main 

primate-inhabited biogeographic zones, similar patterns become apparent 

between both sets of results. For instance, the broad patterns of increasing and 

decreasing species richness over much of Africa and Madagascar are similar. The 

main difference is the scale of changes, with the global model predicting lower 

levels of increases within these regions, in particular the PCM outputs. Asia 

provides the greatest variation between models; mainland Asia under the global 

model displays a more varied change in species richness, with a mix of increasing 

and decreasing areas, compared to the continental model output for this region 

which is largely comprised of areas of greater species richness, this is further 

supported in the percentage of increasing grid cells across the region (Table 3.4). 

The Neotropics are widely predicted to increase in species richness under the 

continental model output. However the global model, especially the HadCM3 A2 

output, displays scattered areas of decreasing species richness in South America, 

particularly over central areas of the Amazon, with a lower area of the continent 

expected to increase in species richness (Table 3.4). Although there is still a 

relatively high percentage of the Neotropics predicted have an improved future 

climate under the global model, with the possibility of increases in primate species 

richness. Below I will discuss the potential impacts of climate change on each 

primate species within each biogeographic region individually: 

 

4.3.1 The Neotropics 
 Generally much of the Neotropics are predicted to increase in species 

richness by the model outputs, indicating beneficial changes in climatic conditions. 

However, the Gitay et al. (2002) anticipated an increased rate of biodiversity loss 

in this region due to climate change, with analysis by Cox et al. (2004) suggesting 

that the primary cause of Amazonian climate change is an El Niño like sea surface 

temperature warming under increased levels of carbon dioxide. Wiederholt and 

Post (2010) found that climate change related variation in ENSO events posed a 

serious threat to South American Ateline primates, by impacting resource 

availability with a sequence of high and then low fruit production during El Niño 

and La Niña years respectively. This would be a result of an intensification of 

ENSO, which has been linked to precipitation anomalies in many regions of the 
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world (Thomson et al. 2003), and is something that has been evident in recent 

years and anticipated due to global warming (Wright and Calderon 2006; Latif and 

Keenlyside 2008). However our results suggest otherwise with both the continental 

and global model indicating that the majority of the Neotropics are set to improve 

in suitable climate for primate species richness (Table 3.4). 

Ripe fruit is the major source of energy for many Neotropical primates, 

although its availability varies seasonally (Kay et al. 1997). The seasonality of fruit 

production increases with length of the dry season, and thus may play a role in 

limiting species richness (Kay et al. 1997), especially if climate change alters the 

length of the dry season. A high correlation between mean annual rainfall and 

primate species richness has been found at sites in the Neotropics, in addition to 

sites in Africa and Madagascar (Reed and Fleagle 1995; Peres and Janson 1999), 

even though the strength of this relationship is quite variable (Fleagle et al. 1999). 

The explanation for this correlation is assumed to be because of the link between 

rainfall, primary productivity and the diversity of tree species, with plant 

productivity suggested to be an important determinant on primate species richness 

(Reed and Fleagle 1995; Chapman et al. 1999). For instance, Kay et al. (1997) 

discuss how Neotropical primate species richness can be linked to plant 

productivity, which declines with rainfall beyond levels of ~2,500mm, possibly due 

to soil nutrient levels being depleted on account of leaching, and subsequently 

depressing plant growth and thus the quantity and quality of important resources 

for primates. Despite the majority of the Neotropics being predicted to increase in 

species richness for both the continental and global models (Table 3.4), there are 

also areas predicted to decline; mainly the west of South America. These areas of 

decreasing species richness indicate negative changes in climate. 

 Rivers can also affect Neotropical primate habitats through flooding, leaving 

many forests seasonally inundated, with such forests generally comprised of lower 

species numbers (Reed and Bidner 2004). Therefore increased levels of rainfall 

could increase the amount of forest flooding or flood new areas of forest, reducing 

primate numbers, particularly primates not adapted to coping with flooded forests; 

such as those that feed on insects in the lower canopy, which will not be present 

when the forest is flooded (Reed and Bidner 2004). 

 In the case of flooding, an aspect of climate change not taken into account 

in this study is the impact of rising sea levels. Gitay et al. (2002) explains how 

Mangrove ecosystems will be degraded or lost due to sea level rise, in addition, 
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coastal mangrove forests in Asia, such as those in the Sundarbans, are also said 

to be vulnerable to climate change induced sea level rise, with a 1m rise in sea 

level being enough to make the Sundarbans disappear. This would cause a 

subsequent loss of primate habitat threatening species survival and placing 

greater strain on already fragile populations. 

 

4.3.2 Africa 

 Africa has the driest climate of each of the main biogeographic zones 

investigated here, yet despite this it hosts the second largest expanse of tropical 

forest in the world (Chapman et al. 1999; Reed and Bidner 2004). In addition 

Africa also has vast amounts of permanent swamp- and seasonally flooded forests 

(Reed and Bidner 2004). Primate species richness is constrained by the length of 

the dry season for much of Africa, as demonstrated by Chapman et al. (1999), with 

habitats that receive more rainfall generally having a greater level of plant 

productivity, which is likely to support a larger number of primates. 

 The impact of high latitude warming is evident in the model outputs for 

Africa, in which future predictions of species richness are much reduced over 

northern Africa (Fig. 3.4). This will come as a consequence of shifting rainfall 

patterns and seasonality with a rise in temperatures, potentially followed by an 

increase in size of the Sahara Desert (Gitay et al. 2002), thus explaining the low 

percentages of grid cells in the African model anticipated to improve in suitable 

climate (increase in primate species) (Table 3.4). Desertification is predicted to 

intensify in accordance with reduced rainfall and/or increases in the evaporative 

demand, subsequently reducing soil moisture, particularly for north, west and 

southern Africa (Gitay et al. 2002) with our results also showing these areas to be 

declining in suitable climate, with lower species numbers predicted by each model 

(Fig. 3.4). Following a potential reduction in rainfall and increased desertification 

there will inevitably be negative effects on vegetation and consequently food 

resources in these areas. Moreover, shifts in temperature generated by global 

warming are expected to have implications for the distribution of vegetation zones 

(e.g. Dunbar 1998; Lucht et al. 2006) which will impact a wide range of taxa.  

The future predictions of species richness (Fig. 3.4) display areas of 

greatest reduction over south, north-west and northern Africa. Considering the 

high diversity currently present in west- and west-central Africa this could be of 

great significance. Additionally the few species that inhabit areas of southern 
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Africa and areas bordering the Sahara Desert, in some cases just one species 

(Chapter 2) may become extinct as consequence of such climate change, 

removing primates from these areas completely. Furthermore, the region of 

decreasing suitable climate (species richness) present in southern Africa (Fig. 3.4) 

corresponds with an area where droughts occur in the December-March rain 

season after the onset of an El Niño event (Thomson et al. 2003), thus it is 

possible the model has taken account of this and the potential strengthening of 

ENSO and consequently predicted reduced numbers of species in this region. 

 

4.3.3 Madagascar 
 Madagascar has been subject to a unique evolutionary history, once being 

a part of Africa, the island has since experienced a period of extended isolation 

(Storey et al. 1995; Yoder et al. 2003; Reed and Bidner 2004). This in addition to 

the arrival of humans on the island, which greatly affected all forms of taxa, will 

have played a part in creating distinct species assemblages (Ganzhorn et al. 1999; 

Reed and Bidner 2004). The primate habitats of Madagascar range from dry 

desert in the south; to the eastern tropical rainforest and the western tropical 

deciduous forest (Reed and Bidner 2004). The island of Madagascar is a global 

extinction hotspot due to its high endemism and high rate of habitat degradation 

(Dunham et al. 2008), however the results from the models used in this study 

indicate a general increase in primate species richness, or at least a beneficial 

improvement in the climatic conditions for primates (Fig. 3.4). Reed and Bidner 

(2004) detail the current climatic influences acting on lemur habitats in 

Madagascar; they include extreme fluctuations in rainfall, with cyclical patterns of 

drought and cyclones, in addition to periodic extreme drops in temperature.  

 Thomson et al. (2003) found that ENSO events have caused severe 

droughts in Madagascar and the south of Africa, thus the potential for enhanced 

ENSO events in response to global warming is of particular importance, especially 

considering the already high levels of anthropogenic threats to primates on the 

island (Dunham et al. 2008). This may act by impacting primate species directly 

through changes in precipitation and temperature and indirectly by affecting 

vegetation structure and consequently food resources (Dunham et al. 2008). Many 

habitats may be affected by heavy droughts, in particular the west and south-west 

areas of the island (Reed and Bidner 2004). Model results from a Dunham et al. 

(2008) study found that a higher frequency of El Niño events directly affected 
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primate species, in this case P. edwardsi, with fecundity rates dropping by 65.5% 

reducing the average population size and increasing the risk of decline. However 

despite these negative impacts associated with climate change and ENSO, the 

model output in this chapter clearly displays an increase in primate species 

richness, across all scenarios (Fig. 3.4), particularly in the continental model in 

which across each GCM and scenario 100% of the grid cells are predicted to 

become more climatically suitable for primate species (Table 3.4). 

The reasons for the larger increases generally occurring on the western 

side of the Madagascar (Fig. 3.4) may be a result of a reduced length of the dry 

seasons experienced in the western deciduous Malagasy forests, which are 

currently particularly long compared to the eastern rainforests, which also receive 

a greater amount of annual rainfall (Reed and Bidner 2004). This may explain why 

the increases are not as large on the east of the island. One potentially negative 

aspect, difficult to assess with the models used here, is the impact of global 

warming on the cyclones, originating in the Indian Ocean, which periodically hit the 

island, destroying large areas of forest and subsequently reducing food supply 

(Reed and Bidner 2004). 

 

4.3.4 Asia 
 Asian primates currently inhabit a band extending from the south-east, 

around the Philippines, along the Sunda Shelf Islands and the Malaysian 

Peninsula up to India and parts of China and Japan (Chapter 2; Gupta and 

Chivers 1999; Reed and Bidner 2004). The continent offers a vast array of 

habitats, with five different types of forest being recognised on the Malay 

Peninsula alone (Reed and Bidner 2004). The highest levels of species richness 

are currently concentrated around south-east Asia, along the Sunda Shelf Islands. 

Despite much of mainland Asia predicted to increase in species richness in our 

study, although in most parts by low levels and primarily by the continental model 

(Table 3.4), there are important areas which display a reduction in species 

richness; the lower reaches of the Sunda Shelf Islands, and north-western Japan; 

both with more prominent reductions under the HadCM3 GCM. These two areas 

are of concern due to the high levels of diversity present across the Sunda Shelf 

meaning a greater risk to a wider variety of primate taxa; whereas in contrast, 

Japan has few species currently present meaning any future deterioration in 

climatic conditions could permanently remove primates from the country. 
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The climate supporting the forests of Asia comprises two monsoon 

seasons; in December-January and a milder one in late spring (Reed and Bidner 

2004). Many Asian forests experience particularly high levels of rainfall, which are 

elevated by the monsoon to annual levels of ~5,000mm, with low levels of 

2,000mm in other regions (Reed and Bidner 2004). It has been proposed that the 

monsoon and associated high levels of rainfall constrain species richness 

throughout Asia (Reed and Bidner 2004), due to high rainfall potentially limiting 

primary productivity and hence the overall species richness (Kay et al. 1997; Reed 

and Bidner 2004). Additionally, greater cloud cover, which is inevitable with higher 

levels of rainfall, will reduce solar radiation, limiting plant photosynthesis and 

therefore productivity (Kay et al. 1997). Furthermore, Peres and Janson (1999) 

discuss how, within the Neotropics, beyond a certain level of rainfall primate 

species richness has not been found to noticeably increase, with the possibility 

that species richness may decline in areas with extreme levels of rain because of 

a reduction in plant productivity associated with lower soil nutrients (Kay et al. 

1997; Peres and Janson 1999). This may also be relevant to Asian primates, with 

a considerable number of primate communities in Asia that already experience in 

excess of 2500mm of annual rainfall (Gupta and Chivers, 1999), thus the predicted 

decline in species richness over south-east Asia (Fig. 3.4) may be a result of 

altered patterns, or even increased amounts of rainfall possibly associated with 

changes in the activity of the Asian Monsoon. 

The IPCC (2007) report speculates as to whether increased global 

temperatures may increase the variability of the Asia summer monsoon 

precipitation. However, other studies such as Yu et al. (2004) found that the East 

Asian Monsoon weakens in response to tropospheric cooling in east Asia during 

July and August, causing the upper-level westerly jet stream over east Asia to 

move southward, resulting in decreased rainfall and a heightened risk of drought in 

northern China. 

The distribution and extent tropical rainforest in south-east Asia has been 

historically sensitive to climatic change according to Heaney (1991), who 

examined changes in vegetation and climate since the Miocene (25 million years 

BP), Pleistocene (2 million years BP) and the last glacial maximum (18,000 years 

BP) up to modern day times. This demonstrates the important link between 

changes in climate and primate habitat. Moreover, considering the many habitats 

already under high levels of anthropogenic pressure for much of Asia (Gupta and 
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Chivers 1999; Reed and Bidner 2004), beneficial changes in climate may help to 

ameliorate current pressures over areas of mainland Asia, whereas adverse 

changes, such as predicted by some model outputs for the Sunda Shelf, may 

exacerbate them (Fig. 3.4). 

 

4.4 Altitudinal Changes in Species Richness 
Generally, species that are confined to high altitude vegetation zones with 

small ranges may be more at risk from climate change than more mobile low 

altitude species (Dunbar 1998; Ohlemüller et al. 2008). Our results indicate that 

higher altitudes may witness improvements in climatic suitability, with the 

exception of global model PCM B1and both continental model HadCM3 outputs, 

whereas lower elevations generally witness the greatest improvements in climatic 

suitability, with the exception of the global model PCM outputs (Fig. 3.5). 

Climate change has been shown to have a detrimental impact on species at 

higher elevations, for instance Gitay et al. (2002) predicts that adverse effects on 

cloud (mist) forests will take place over Latin America, something which is 

supported by Pounds et al. (1999) who investigated the changes in species 

distribution as a consequence of warming in highland forests at Monte-Verde, 

Costa Rica. In this is example, atmospheric warming has accelerated the rise in 

sea surface temperatures (SSTs) leading to enhanced evaporation, generating 

large amounts of water vapour, with latent heat being released as this moisture 

condenses (Pounds et al. 1999; Hughes 2000). Thus the decline in temperature 

with elevation is significantly reduced, increasing the warming trend at higher 

altitudes, and subsequently raising the average altitude at the base of the 

orographic cloud bank, as predicted by the lifting-cloud base hypothesis (Pounds 

et al. 1999; Still et al. 1999). 

Montane species are particularly prone to extinction as vegetation can be 

driven up the altitudinal slope by warming (Peters 1991). However, topographic 

regions of high diversity can also act as a buffer in the face of climate change, 

providing areas of stable climate (Midgley et al. 2003). This appears to occur 

under global model PCM A2 output (Fig. 3.5) in which lower elevations have 

reduced species richness compared to increases at higher elevations, indicative of 

an improvement in climatic conditions given current primate species–climate 

relationships. 
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Dunbar (1998) carried out a study assessing the impact of global warming 

on the distribution and survival of the Gelada baboon situated on the high montane 

grasslands of the Ethiopian plateau, with their current population density 

constrained by agriculture practices at lower latitudes. The Gelada baboon 

species’ lower altitudinal limit is predicted to rise by around 500m for every 2°C 

rise in global temperature (Dunbar 1998). The importance of temperature is its 

impact on the nutritional content of the grasses, on which the Gelada baboons 

depend (Dunbar 1998). Moreover, the indirect effects of climate change on 

agricultural practice in the Ethiopian highlands, with warming allowing more 

intensive cultivation of profitable crops at higher altitudes, is likely to further 

constrain available habitat and exacerbate associated impacts of temperature 

increases on these primates (Dunbar 1998). This provides an example of the 

detrimental effects of rising temperatures on montane species.  

 

4.5 New Climatically Suitable Areas 
The benefit of the continental model is that the representations of baseline 

species richness are the most accurate, possibly because it better acknowledges 

the varying importance of the different climate variables across each 

biogeographic zone (Table 3.2). Thus it can be expected that the future projections 

of species richness will also be more accurate. However, the continental model is 

limited in that it only accounts for the areas within the biogeographic zones for 

which primate species are already present (Fig. 3.1), therefore other regions which 

may become more suitable for primate species under future climate change, will 

not be detected. 

The advantage of the global model in this study is that it provides an 

indication of areas which are climatically suitable for primates outside of the main 

biogeographic zones (and outside of areas where primates are currently found). 

This is important as future climate change will alter the spatial distributions of 

habitats and climatically suitable areas (Williams and Jackson 2007). The 

development of novel climates that will promote new species formations could 

increase the risk of extinction for species with small ranges and poor tolerance to 

climatic variability (Williams et al. 2007). Furthermore, dispersal limitations will 

elevate the risk of a species experiencing a loss of suitable climate or the 

occurrence of a novel climate (Williams et al. 2007); this is particularly important 

for primates due to most species being constrained to areas of tropical forest.  
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High latitude areas such as parts of North America and a large section of 

north Asia are predicted to become more climatically suitable (Fig. 3.4B) possibly 

on account of a global rise in temperature accompanied by enhanced levels of 

precipitation at high latitudes (IPCC 2007). The other region shown to harbour 

suitable climatic conditions for primate species is northern Australia (Fig.3.1 and 

3.4B), which already hosts areas of tropical rainforest. However, Gitay et al. (2002) 

anticipate large parts of Australasia to become drier and adds that much of the 

area has relatively nutrient-poor soils. Thus, it is unlikely that required levels of 

resources can be sustained in this region for primate species. Furthermore, 

Williams et al. (2003) demonstrate how tropical ecosystems of Australia are 

severely threatened by climate change themselves.  

Although new climatically suitable areas may occur across the globe, there 

are many difficulties facing primate species before they could successfully 

colonise. Firstly, as tropical forest is the common habitat for the majority of primate 

species, with only 5 primate species with a geographic distribution entirely outside 

of the tropics; Macaca fuscata, M. sylvanus, Rhinopithecus bieti, R. brelichi, R. 

roxellana (Cowlishaw and Dunbar 2000), it would generally fit that any region of 

suitable climate would also need this form of habitat. Reaching new climatically 

suitable areas can be complicated due to habitat fragmentation, in addition, the 

region would need to meet the specific food requirements of a particular species 

and there would also be potentially adverse effects of competition with new 

unfamiliar species and the prospect of new types of predators and diseases 

(Thomas et al. 2004). 

 

4.6 Model Limitations 
Pearson and Dawson (2003) demonstrate how the complexity of the natural 

system fundamentally limits model performance, making predictive errors 

inevitable. The models used in this chapter are primarily limited in that they only 

account for two climate variables; temperature and precipitation, although 

seasonal values in these are taken into account. The results provide an indication 

of how primate species richness may alter given predicted changes in these 

variables from each GCM and scenario, in addition to providing an indication of 

future climatically suitable areas. However, the impact of changing climatic 

conditions on vegetation, in particular tropical rainforests, is not accounted for and 

neither are factors such as changes in evapotranspiration and carbon dioxide 
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levels, all of which will impact upon primate species and their habitats. In addition, 

the models in this study fail to account for dispersal and migration of primate 

species, therefore the ability of species to reach areas that will be more climatically 

suitable in the future is unclear. However, as previously discussed, primates are 

generally confined to areas of tropical forest, therefore restricting dispersal 

abilities. 

 

5. Conclusions 
 The continental model, incorporating a more relevant regional rather than 

global environmental space, accounts for the regional patterns and latitudinal 

trends in species richness more accurately than the global model, possibly due to 

a better representation of the varying importance of the climate variables between 

the main biogeographic regions. However, the continental model generally over-

estimated baseline species richness, except for Africa, whereas the global model 

under-estimated it.  

The projected changes in future primate species richness varied between 

each model used; continental or global, and with each GCM and emissions 

scenario. However, some general patterns became apparent, such as 

Madagascar being predicted to have an improved future climate for primate 

species and Africa having the lowest percentage improvement in grid cells with 

suitable future climate, although this is affected by the size of the Sahara Desert. 

Similarly the impact of climate change on higher elevations is also shown to have 

a varied impact on future primate species richness, with lower elevations generally 

having greater increases in species richness (improved climate), except under the 

global model PCM outputs. Thus it is unclear as to whether high altitude zones 

may provide areas of refuge under changing climates.  

There are several locations that are predicted to have a suitable future 

climate for primate species which are not currently inhabited, in particular northern 

Australia. However, there are many factors that would make colonisation of new 

areas extremely complicated and unlikely, such as competition within new 

environments and the potential threats from new predators and diseases (Hoffman 

and Parsons 1997; Cowlishaw and Dunbar 2000). Moreover, one key restraint for 

primate species is the requirement of areas of tropical forest, which limits the 

regions in which they could locate. 
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The model results only provide an indication of future temperature and 

rainfall patterns, both of which are important to primate species, however, many 

other aspects will determine the effect of climate change on species richness, 

ranging from the impacts of warming on large scale climatic events such as 

ENSO, to the potential impact of new invasive species colonising primate habitats 

with changing temperatures. 
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Chapter 4 
 

Multiple Threats to Primate Diversity: Climate, 
Forest Loss and Humans 
 
1.1 Introduction 
 Global biodiversity is changing at an unprecedented rate as a complex 

response to several human-induced changes in the global environment (Sala et al. 

2000). Kerr and Burkey (2002) illustrate how extinction rates have risen and can 

be attributed to the influences of habitat loss on regions of the world with moist 

tropical forest. When anthropogenic impacts are combined with the effects of 

climate change the pressure on natural systems can be amplified, for instance 

habitat loss, as a consequence of human activity, reduces the ability of a species 

to adapt and keep pace with changes in climate (Travis 2003). Furthermore, 

Hoffman and Parsons (1997) explain how the effects of global changes will be 

exacerbated by human activities, such as those involving the destruction of local 

habitats, which can subsequently affect local climate. Such human modification of 

ecosystems is threatening biodiversity, of particular concern are the tropical 

forests that are experiencing rapid anthropogenic transformation with high rates of 

deforestation in the Americas, Africa and Asia (Chapman and Peres 2001; 

Schipper et al. 2008). 

One of the greatest threats primate species currently face is habitat 

destruction in the form of deforestation (Bearder 1991; Chapman and Lambert 

2000; Chapman and Peres 2001; Ganzhorn et al. 2001). Cowlishaw and Dunbar 

(2000) discuss how agriculture is often the primary mechanism leading to 

deforestation, with human population growth being the driving force behind this. 

Large economic development programs such as resettlement and infrastructure 

development, in addition to large scale projects such as mining and hydroelectric 

power developments, that further promote deforestation are also ultimately driven 

by increases in human population (Cowlishaw and Dunbar 2000; Chapman and 

Peres 2001). 

The threat imposed on primate species from increases in human population 

is related to the greater demand on resources that are required to support growing 
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human populations. Human population growth promotes greater encroachment 

into habitats which are subsequently degraded and destroyed by anthropogenic 

activities, such as deforestation, therefore limiting the areas of suitable habitat 

while further fragmenting populations (Hoffman and Parsons 1997). A rise in 

human population can therefore be seen as one of the key driving forces behind 

the threats currently faced by primate species. Although the way in which 

population growth and resources are managed will vary between countries, with 

developing countries generally having greater rates of human population growth 

and thus more likely to over exploit natural resources such as forests. 

The results in Chapter 3 of this study demonstrate, given the current 

climate-primate species relationships, how, depending on the region, future 

climate change may provide better or worse climatic conditions for primate 

species. When coupled with the effects of increased human population and 

subsequent habitat disturbances such as deforestation, negative aspects of 

climate change can be exacerbated. For instance, Phillips et al. (1998) 

demonstrate how tropical forests contain up to 40% of the total carbon stored as 

terrestrial biomass and help to buffer the rate of increases in atmospheric carbon 

dioxide (CO2), reducing the impacts of global climate change. Therefore the 

exploitation of the tropical forest biome from logging and large scale deforestation 

has the potential to accelerate global warming.  

The correlation of the threats faced by primates will ultimately exacerbate 

the impacts and subsequent risk to species (Chapman et al. 2006; Mora et al. 

2007; Brook et al. 2008; Darling and Côté 2008). Therefore in this chapter we 

attempt to combine the three main threats to primate species (human population 

growth; forest loss; future climate change) in order to highlight the countries facing 

the greatest risk of species loss. 

  

1.2 Aims 
This chapter aims to: 

1. Identify the primate-inhabited countries facing the highest levels of threat 

from forest loss, population growth and climate change. 

2. Address the ability of countries to mitigate the threats their primate species 

are facing. 
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2. Methods 

 All primate-inhabited countries were ranked according to three measures 

indicating their importance for primate biodiversity: total species richness, 

taxonomic distinctness and percentage of threatened primate species. To 

calculate species richness, the total number of primate species in each grid cell of 

a particular country was combined to provide the country-total species richness. 

Similarly, using the Red List data (IUCN 2009), the number of Critically 

Endangered, Endangered and Vulnerable species per country was deduced and 

displayed as a percentage of total species present, providing the percentage of 

threatened species per country. In the case of taxonomic distinctness (Δ+), which 

rather than a simple count like species richness, is a measure of the average 

evolutionary distance between different species in an assemblage (see Chapter 2; 

Clarke and Warwick 1998), the average Δ+ value across all the grid cells that 

constitute a particular country was calculated providing a country average value of 

Δ+. From this data 88 primate-inhabited countries were identified. These countries 

were then ordered separately by species richness, taxonomic distinctness and 

percentage of threatened species, to provide a top and bottom 25 list for each 

category (Appendix 1). 

Data regarding the human population density (per km2), in addition to the 

forest area (1000 ha per country), were obtained from the Food and Agriculture 

Organisation (FAO). Using this data, the change in population density from 2005 

to 2050 was calculated for each country, in addition to the percentage change in 

forest cover from 1990 to 2005. Although the change in forest cover does not 

include future projections, the change over this period will provide an indication of 

countries which have experienced forest loss and may continue to do so. 

Furthermore, using our model projections from Chapter 3, the percentage of grid 

cells predicted to decrease in climatic suitability for primate species was calculated 

for each country. These datasets were used to analyse the threats faced by the 

primate-inhabited countries (Fig. 4.1), with the different threats faced by the top 

and bottom 25 value countries being assessed. 

The 88 primate-inhabited countries were ranked according to the three 

threats; population increase, forest loss and decrease in suitable climate, with 1 

indicating lowest and 88 indicating the highest threat. All countries were then 

ordered by the combined sum of these rank values (greater rank sum equates to 

higher threat), which allowed the identification of countries facing the greatest 
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combined threats to primate species. From the sum of the rank values the 

countries were split into 8 categories of 11 countries, ranging from the highest risk 

countries, category 8, to the lowest risk, category 1. These categories were 

mapped using ArcGIS to provide a global hazard map of primate countries facing 

greatest combination of threats to species diversity. 

In order to appreciate the ability of countries to mitigate the threats faced to 

primate species, the 2004 average government score (Kauffman et al. 2005) in 

addition to the Gross Domestic Product (GDP) (World Bank 2005) of each country 

was used to highlight those countries which may struggle or be best suited to 

address the threats faced to their primate populations. The average government 

score accounts for each government’s score for; voice and accountability; political 

stability; government effectiveness; regulatory quality; rule of law; and control of 

corruption (Kauffman et al. 2005). The government score was plotted against the 

rank sum of the combined threats to identify to potential for high risk countries to 

be able to mitigate the threats faced to primate species. The GDP of each country, 

providing an indication of wealth, was combined with the average government 

score to provide an indication of the economic and political stability of primate-

inhabited countries, which can be used to infer the ability of a nation to mitigate 

threats from population pressure, forest loss and climate change. 
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Figure 4.1: Conceptual graphs - illustrating how the high threat countries were identified. 

Countries which fall in the dark red area are those facing the highest levels of combined threat 

from population increase, forest loss and climate change. The percent decrease in grid cells 

with suitable climate refers to the model outputs from Chapter 3; a grid cell may predicted to 

decline in future primate species richness (suitable climate) based on the current climate-

primate species relationships. 
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3. Results 
 For the purpose of this chapter, the outputs from the two global climate 

models used in Chapter 3, HadCM3 and PCM were averaged, providing the 

percentage of grid cells decreasing in suitable climate per country for the A2 and 

B1 scenarios. There is a close similarity between the two scenarios (Fig. 4.2), 

supported by the high R2 value of 0.9595. The main outliers have been identified 

as Cameroon, Central African Republic and Indonesia. Furthermore, as can be 

seen in IPCC (2007) report, the scenarios are very similar up until 2050, with little 

variation between them. Due to this similarity, only the A2 scenario was used 

throughout the analysis. 
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Figure 4.2: Comparison of changes in climate under A2 and B1 scenarios - the average 

of the two global climate models HadCM3 and PCM, used in the future predictions of species 

richness (Chapter 3), was taken and just two scenarios were used. % decreasing grid cells 

refers to number of grid cells predicted to decrease in climatic suitability (i.e. species richness) 

given current climate-primate species relationships (Chapter 3). Only the A2 scenario is used 

throughout the analysis in this chapter, due to the similarity between the A2 and B1 scenarios. 
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3.1 High- and Low-Value Primate Countries 
 The benefit of identifying high-value primate countries based on species 

richness, average taxonomic distinctness and percentage threatened is that it 

allows the countries with the highest importance in terms of primate species to be 

identified and analysed in relation to the threats they face. 
 

 

 

 

 
Figure 4.3: Difference in threats faced by high- and low-value primate countries – the 

threat from increases in human population (A), forest loss (B) and future climate (C), to the 

high-value (left) and low-value primate countries (right). Future climate is shown as the 

percentage of grid cells, per country, predicted to decrease in future primate species richness 

based on current climate-primate species relationships (Chapter 3).  
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A contrasting assessment of the threats faced by the higher and the lower 

value countries indicates that generally there is little variation between the threats 

faced by the top and bottom 25 primate value countries (Fig. 4.3). The greatest 

differences occur under the threat of future climate change. In which, generally the 

countries facing the greatest percentage decrease in grid cells with suitable 

climate are countries of lower primate importance. The difference between the 

countries with high and low proportions of threatened primate species is shown to 

be significant (p <0.05) for the percentage of grid cells decreasing in suitable 

climate (p=0.04) and for the change in population per km2 (p=0.03). This shows 

that the countries with high percentages of threatened primate species are at 

greater risk from increases in human population yet at much less risk from adverse 

climate change, compared to the countries with lower values of threatened primate 

species for which it is the opposite. 

There is a large proportion of primate-inhabited countries that have 

witnessed a decrease in forest cover from 1990-2005 (Fig. 4.4), in which most of 

the points are in the negative values. Although this change in forest cover is only 

from 1990-2005, rather than 2005-2050 like population change, it still provides an 

indication of countries which have experienced decreases in forest cover, which 

potentially may continue to decline, placing local primate species at greater risk. 

Furthermore, the majority of countries are predicted to witness increases in human 

population per km2 which will likely compound the threat faced from forest loss by 

placing further pressure on the remaining habitat. 

The top 25 countries with a high percentage of threatened species face a 

greater risk from decreasing forest cover and population increase, than from future 

climate change (Fig. 4.4C). In both graphs displaying population change and forest 

loss against percentage of grid cells decreasing in suitable climate, only six of the 

top 25 countries with the greatest percentage of threatened species were shown to 

be under threat from future climate change. Although in contrast, a larger number 

of the bottom 25 countries, all of which currently have zero percent threatened 

species, face a greater threat from future climate, which could potentially lead to 

these countries witnessing a rise in the number of Critically Endangered, 

Endangered and Vulnerable species. 
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Figure 4.4: Comparison of combined threats per country - showing the high-value primate 

countries (black), low-value primate countries (hollow square) and the other countries (grey) in 

terms of Species Richness (A), Average Taxonomic Distinctness Δ+ (B) and Percent 

Threatened (C) in relation to the combination of threats faced by each country. NOTE: The 

percentage change in forest cover is in 1000 ha per country and percent decreasing grid cells 

per country refers to the percentage of grid cells decreasing in suitable climate, given current 

species-climate relationships. The change in population is not calculated as a percentage. 
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3.2 High Risk Countries  

The primate-inhabited countries facing the highest levels of threat from 

human population growth, forest loss and climate change have been grouped into 

eight categories consisting of 11 countries (Fig. 4.5), ranging from 1, lowest risk, to 

8, highest risk (see Appendix 2 for full list of countries in each group). The most 

notable aspect of the global hazard map is how the countries facing the highest 

additive risk predominantly feature across Africa from north-west to east, and Asia, 

particularly south-east Asia. However, it is important to acknowledge that category 

1 countries may still face a particularly high risk from one of the threats, but not 

across all three. On a continental scale, the Neotropics appear to face the lowest 

combined levels of threat, whereas Africa and Asia, with the exception of China 

and Japan, face the greatest levels. 

 

 

 

 
Figure 4.5: Additive risk from forest loss, population pressure and climate change for 

primate-inhabited countries. Every country was given a rank value according to each of the 

three threats; human population increase, forest loss and decreasing suitable climate (a higher 

value was assigned to a greater threat). The sum of these rank values was calculated to 

identify the countries facing the highest combined levels of threat. The countries were then 

grouped into eight categories of 11 countries based on their overall rank sum. 1 to 8 

represents lowest to highest risk. The highest risk countries are located across the Sahara 

Desert region of Africa, in addition to the north-west and south-east of Asia, along the Sunda 

Shelf in particular. Much of the Neotropics appear to have moderate levels of risk, apart from 

Central America, with the exception of Mexico.  
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Countries in category 1 face the least risk and benefit from an average 

increase in forest cover in addition to no adverse impact from climate change (Fig. 

4.6A). However, there is still an average overall population increase anticipated for 

these countries. China, which is in category 1, is already known to have a large 

population with the associated pressures on land and habitat well documented, 

therefore the analysis here may be misleading. The highest risk group, category 8, 

displays the highest levels of forest loss and population growth, and some of the 

highest levels of adverse climate change. From category 1 to 8 there is a rise in 

the level of forest loss, and a general increase in climate change impacts, although 

the category 7 countries actually have a higher average percentage than 8. In 

contrast, the average change in population does not increase with increased risk 

category, i.e. 1 to 8, with category 2 and 5 having particularly large population 

growth, possibly due to presence of Mexico in category 2 and Bangladesh in 

category 5, increasing the overall average. 

Consideration needs to be made over the average values for primate 

diversity and threatened species levels across the 11 countries in each category 

(Fig. 4.6B), because it allows identification of a high risk group of countries that 

may have particularly high values of primate diversity. The percentage of 

threatened species per country is of particular importance due to the fact that 

countries with already high numbers of endangered primate species may face high 

levels of additive threat, and will therefore be at a greater risk of having species 

becoming extinct. Across the risk groups, the highest levels of threatened species 

are present in category 4 and 3 countries, making their primate species especially 

vulnerable to additive threats, with the lowest levels in category 7. 

Taxonomic distinctness (Δ+) is similar across all the risk groups (Fig. 4.6B), 

although of concern is category 8, the highest risk group of countries, which host 

some of the highest levels of Δ+. Similarly to the Δ+ values, species richness 

remains similar on average, across each of the categories, with the exception of 

category 3, which has almost double the amount of the other groups. Hence the 

threats in these countries can affect a large proportion of primate species. 
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Figure 4.6: Risk category averages – A: Charts showing the average values of each threat 

from the 11 countries in each category. B: The average value for species richness, taxonomic 

distinctness (Δ+) and percent threatened for each country in a category. The risk categories 

range from lowest risk, 1, up to the highest risk category 8. 

 
3.3 Mitigation Potential 
 To assess the potential for countries to mitigate the threats imposed by 

projected climate change, population growth and forest loss, the 2004 average 

government score (Kaufmann et al. 2005) was used. A low government score 

could be indicative of a government/country that may disregard conservation and 

protection of forests and habitats, or consider them to be of low 

importance/priority. There is a general trend for lower government scores within 

higher risk categories, which leads to concern for the higher risk primate species, 

since low government scores could be indicative of a potential exacerbation of 

threats faced by countries due to poor management (Fig. 4.7). Of primary concern 

is that the group of highest risk countries are also the ones with the lowest 

average government score. This leads to concern over the potential management 

of issues such as growing populations and adverse climate change, which risk 

category 8 countries face on a greater scale. Furthermore, the risk category 8 

countries face the highest levels of forest loss as previously discussed (Fig. 4.6A), 
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which could potentially be coupled in part with a low government score. Thus it is 

no surprise that the group of countries with the highest levels of forest loss also 

have the lowest combined average government score. 
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(Kaufmann et al.  2005)

-1.20

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

1 2 3 4 5 6 7 8

 
Figure 4.7: Average government score for each risk category - the average government 

scores for all the countries in each risk category was combined to provide an overall average 

value per category. The risk categories range from lowest risk, 1, up to the highest risk 

category 8. 
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Figure 4.8: Average government score (2004) plotted against combined threat - the sum 

of combined threat relates to the sum of the rank position of each country for population 

increase, forest loss and decreasing area of suitable climate, with a higher value assigned to 

countries with greater levels of threat. 
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The countries that have the highest combined levels of threat tend to have the 

lowest government scores (Fig. 4.8), with a general increase across the 8 risk 

categories (Fig. 4.7). Of concern would be the large number of countries that have 

a negative (low) score. The impact of this is that countries facing multiple threats 

can be assumed to be less able to mitigate the effects of such threats, on account 

of their low average governance scores. Additionally, the results could provide an 

indication of how a low government score leads to a higher level of threat (Fig. 

4.8). Although this is mainly relevant with forest loss, as in many cases it is the 

governments who decide whether to permit deforestation activities such as logging 

and how much forest area they are prepared to protect. 
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Figure 4.9: Comparison of GDP (2005), average government score (2005) and total 

species present per country - the size of the bubble represents the number of primate 

species present per country. Apart from Japan and China, primate-inhabited countries are 

characterised by a low GDP. Furthermore, given the size of the bubbles, the majority of 

primate species are indeed located within the poorer countries. 

 

The majority of primate-inhabited countries have a low Gross Domestic Product 

(GDP), with the exception of Japan and China, which have the largest GDP, 

followed by Brazil and India (Fig. 4.9). Furthermore, the countries with the lowest 

GDP also tend to have a lower average government score. Hence it is clear that 

primates are predominantly located in poorer, developing countries. 
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4. Discussion 
 Each of the main threats analysed here has implications when acting in 

isolation, although their combined effects are what place populations under the 

greatest risk. The potential for primate species to adapt and tolerate the threats 

they face depends on their ability to locate adequate food and suitable habitat in 

order to breed successfully and maintain their populations (Chivers 1991). 

 

4.1 Human Population Pressure 
 Despite the intelligence and adaptability for which primates are renowned, 

many species are struggling to cope with the environmental changes imposed by 

rising human population densities (Bearder 1991). The threat faced by primate 

species from population growth will be in the form of increased pressures on land 

and resources, promoting greater encroachment onto, and destruction of habitats. 

In our analysis we have found a significantly higher threat from future population 

pressure in countries of high percentages of threatened primate species compared 

to those with low percentages (Fig. 4.3), which may subsequently lead to 

extinctions as a result of population related pressures. However there was no 

significant difference between the threat faced by high and low species-rich 

countries or between high and low taxonomic distinctness (Δ+) countries (Fig. 4.3). 

Bomhard et al. (2005) discuss how habitat destruction and degradation, 

mostly because of agriculture and urbanisation are the main past and present 

threats to biodiversity. For instance countries such as Bangladesh, which face the 

greatest increases in population, will require increased space to house the growing 

numbers of people, while simultaneously placing more pressure on agriculture 

within the country. The associated change in land use as a response to growing 

populations is anticipated to have the greatest impact on terrestrial ecosystems, 

with model projections by Sala et al. (2000) predicting the greatest levels of land 

use change to occur in tropical forests, which will most likely impact primate 

species diversity. Considering that the majority of primate-inhabited countries are 

predicted to increase in human population (Fig. 4.4), it could to lead to greater 

instances of forest loss and climate change related threats due to the interaction 

between these different pressures (Brook et al. 2008).  

 Cowlishaw and Dunbar (2000) explain how shifting cultivation, practised by 

small scale farmers, involving clearing and planting crops in small patches of 

forest over periods of three years, causes minimal damage as the land is allowed 
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to recover. However, at increased population densities, inappropriate agricultural 

methods have been adopted leading to this form of agriculture causing 

considerable losses of tropical forest (Cowlishaw and Dunbar 2000). The results 

presented in this chapter support this link between high population countries and 

forest loss, with higher population countries often displaying a greater percentage 

of forest loss (Fig. 4.4). Considering that population pressure will lead to increased 

demand on agriculture as the need for food increases, it can be expected that 

more intense farming methods will be adopted, putting a greater strain on the 

environment, and subsequently leading to greater levels of forest loss (Saunders 

et al. 1991; Ewers and Laurance 2006). Conversely, a reduction in agriculture can 

promote an increase in the size of forest, as demonstrated by Matlack (1997). 

 In addition to agriculture, high population increases will place a greater 

demand on resources, for example Laurance (1998) documents an increase in 

mining and the numbers of major mineral oil and natural gas developments 

observed in the Amazon. The development of these large scale projects promotes 

extensive road building, opening up previously inaccessible forest, subsequently 

promoting settlement and agriculture, in addition to small towns to house the 

workforce (Cowlishaw and Dunbar 2000), all of which will place strain on the local 

environment and consequently primate species. Cowlishaw and Dunbar (2000) 

discuss how fires can be used to clear forest, which can spread easily with 

devastating consequences, for example in Madagascar the use of fire has become 

a cultural habit,  removing large areas of tropical forest that is subsequently 

replaced by grassland (Chapman and Peres 2001). Therefore, with regards to the 

countries in risk category 8 of the high risk countries map (Fig. 4.5 and 4.6), that 

face the highest levels of population growth, it can be expected that the already 

high levels of forest loss will become a more serious problem due to the links 

between forest loss and population. Moreover, countries that face high levels of 

population growth and relatively little forest loss could potentially be expected to 

witness a rise in future forest loss. 

A more direct effect of human population increases on primate populations 

could be a result of increased hunting and trade. Peres (2001) demonstrates how 

subsistence hunting has had negative effects on species diversity within 

Amazonian forests. Growth of human populations in some countries, particularly 

those of South America and Africa could lead to a rise in subsistence and 

commercial hunting of primate species (Chapman and Peres 2001). For instance, 
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Laurance (1998) show how hunting has increased throughout the Amazon due to 

improved access following infrastructure developments in the forest and similarly 

Corlett (2007) describes how high human population densities are leading to 

increased levels of hunting throughout almost all remaining tropical forest in Asia. 

Furthermore, Nekaris et al. (2010) demonstrate the detrimental impact of trade, 

driven by economic factors and cultural traditions together with increased forest 

access, on primate species in Asia. The result is that precarious populations are 

put under greater strain, with serious impacts on primate populations already 

observed in many regions of Africa (Chapman et al. 2006).  

Considering the majority of primate-inhabited countries have a low GDP 

(Fig. 4.9) these countries may have an increased dependence on their own natural 

resources to generate capital from exports, which may result in elevated levels of 

primate hunting. Further negative impacts can arise due to increased human 

contact and presence within habitats which is likely to facilitate the incidence of 

diseases and the threat of parasites to primate populations (Chapman et al. 2006). 

However despite this, the greatest threat from human population growth is the 

impact on primate habitat, particularly the area and quality of tropical forest. 

 

4.2 Forest Loss 
Forest loss can be considered one of the most serious threats to primate 

species, given how the majority of primate-inhabited countries display a reduction 

in forest cover from 1990-2005 (Fig. 4.4). Moreover, when combined with the 

number of countries with expanding populations (Fig. 4.4), which can exacerbate 

forest loss, this threat will be heightened. Additionally, there was no significant 

difference between the threat from forest loss on high- and low-value primate 

countries (Fig. 4.3), providing a further indication that it is a threat common to most 

primate-inhabited countries.  

Tropical deforestation has occurred predominantly in response to 

expansion of agriculture and large scale economic development programs 

(Chapman and Peres 2001). In addition to forest clearing, selective logging is 

having an impact on forests, particularly in Asia where alternative sources of 

timber are sought with the tropical forests already considerably reduced in size 

(Cowlishaw and Dunbar 2000). This along with the known high population 

pressure in Asia explains why a large number of primate-inhabited Asian countries 

are classed as facing the highest risk levels, particularly those in south-east Asia 
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(Fig. 4.5). In addition to the threat posed by logging operations in south-east Asia, 

the conversion of the remaining tropical forest habitat for oil palm cultivation is a 

major problem. Gaveau et al. (2009) explain how the expansion of high-revenue 

oil palm plantations, due to increased prices and demand from the food, cosmetic 

and biofuel industries, along with development of road networks, required to move 

palm oil from the remote forests to market destinations, is the most important 

threat to lowland forests in south-east Asia. This places primates such as the 

orangutan under increased risk of extinction, as has been documented for 

Indonesia and Malaysia (e.g. Gaveau et al. 2009; Swarna Nantha and Tisdell 

2009). Furthermore, logging operations from Malaysia and Indonesia are 

expanding into the Amazon, with a new trend in which selective removal of 

valuable tree species, rather than whole areas of forest occurs (Laurance 1998). 

This can be as equally damaging as any other form of logging due to the potential 

to affect specific food resources required by certain species. 

The effect of selective logging can lead to reductions in primate populations 

before the effects of deforestation have been delivered (Chapman and Peres 

2001). One of the main impacts on primate populations from selective logging will 

be reduced food availability (Chapman et al. 2000). However, Ganzhorn (1995) 

found that small scale logging on a Madagascan forest increased the availability of 

sunlight and resources for the remaining trees, leading to a greater abundance of 

fruit and better quality leaves with a subsequent rise in lemur populations. 

Although, the various other aspects associated with logging can offset any benefits 

and even prevent increased productivity. For instance, many logging operations 

often remove the important food trees (Chapman et al. 2006), in addition to the 

development of road networks and infrastructure during operations; which can 

cause tree mortality; changes in local microclimates and open up the forest to 

further human settlement and agriculture (Laurance 1998). Johns (1991), for 

example, demonstrate how tree diversity in the Amazon is important for 

maintaining numerous species within a community, but is being impacted by 

selective logging.  

Although selective logging may not result in large areas of forest being 

cleared, detrimental effects may arise as a consequence of changes in the forest 

structure, such as making the forest more flammable and prone to devastating 

forest fires (Cowlishaw and Dunbar 2000), something which can be exacerbated 
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by an intensification of El Niño, predicted under climate change scenarios (IPCC 

2007), promoting longer periods of drought (Dunham et al. 2008).  

Infrastructure developments associated with logging operations, such as 

road networks and sites to house workers, will further fragment the forest, resulting 

in the size of primate populations confined to a particular fragment being greatly 

reduced, consequently increasing the risk of extinction (Cowlishaw and Dunbar 

2000). This is supported by Harcourt and Doherty (2005) who demonstrate that for 

most regions, with the exception of Africa, the number of primate species declines 

linearly with fragment area. In addition to the direct threat of small fragment size, 

edge effects and changing microclimates will inflict further stresses on strained 

primate populations (Saunders et al. 1991; Cowlishaw and Dunbar 2000; Harcourt 

et al. 2001). Fragmented habitats are also more susceptible to invasive species 

such as weeds and pests, promoting further deterioration of the habitat (Hoffman 

and Parsons 1997). Furthermore these habitats become much more accessible for 

humans, prompting an increase in threats to primate species in relation to human 

population pressures as previously discussed, for example Peres (2001) explains 

how forest fragmentation can promote hunting due to greater accessibility. 

 In addition to being closely linked to population pressures, changes in forest 

are also related to changes in climate, with deforestation having the capacity to 

exacerbate climate change, just as climate change can promote forest loss 

(Laurance 1998; Cox et al. 2004). Laurance et al. (2000) document synergisms 

between forest fragmentation and natural climatic variability due to fragmented 

forest being more susceptible to desiccation making them more vulnerable to 

droughts and fire. Therefore it can be expected that the countries which are 

currently impacted by just one threat and those in lower risk categories (Fig. 4.5 

and 4.6), may soon face greater levels of other threats due these correlating 

factors (Mora et al. 2007; Darling and Côté 2008). An example of the link between 

human impacts on forest loss and subsequently climate, is the effect on forest 

microclimates which have been found to be sensitive to adjacent deforestation 

(Phillips and Gentry 1994), with instances of higher tree mortality in the Amazon 

being attributed to increased desiccation and wind turbulence near forest edges 

(Laurance 1998). 
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4.3 Climate Change 
 The threat from climate change is inherently linked to the threats from 

human population and forest loss, mainly due to the influence of changing land 

cover, such as deforestation and urbanisation, which can influence climate through 

a range of feed back mechanisms (Cox et al. 2004). For instance, tropical forest 

clearing decreases evapotranspiration rates, which in turn can reduce 

precipitation, potentially leading to a further decline in forest cover (Laurance 

1998; Gitay et al. 2002). Consequent changes in the hydrological cycle have also 

been observed (Laurance 1998) which can affect entire ecosystems. Based on 

these feedbacks, the countries with a low percentage of grid cells decreasing in 

suitable climate, but have high levels of population growth and forest loss in 

particular (Fig. 4.4), could potentially experience a deterioration in suitable climate. 

Furthermore, countries with a low percentage of threatened species were found to 

be at significantly greater risk from climate change than countries with a high 

percentage (Fig. 4.3), leading to the possibility that these countries could witness 

an increase in threatened species on account of the impacts of adverse climate 

change. Alternatively, the countries with a high percentage of threatened species 

are under less threat from climate change, meaning any added strain, from 

detrimental changes in climate, on these fragile primate populations may be 

avoided. 

Clearing of tropical forests contributes further towards the already 

increasing levels of greenhouse gas emissions, due to the role of forests in storing 

carbon, consequently accelerating the rate of climate change (Gitay et al. 2002). 

Similarly Cox et al. (2004) demonstrate the potential of the biosphere to effect 

climate due to the responses of vegetation to elevated carbon dioxide levels, with 

tropical forests having the potential to buffer the rate of climate change. Thus 

further highlighting the important interactions between these key threats, in that 

deforestation not only contributes towards climate change, but reduces the 

capacity for ecosystems to moderate and restrict the magnitude and rate of 

change. 

A decline in suitable climate, potentially in the form of increased 

temperatures, could promote drought conditions, which along with logging 

activities can substantially increase the risk of disastrous forest fires. For example, 

Chapman and Peres (2001) discuss how catastrophic wildfires in tropical forests 

will be aggravated by the synergistic effects of climate change, through stronger 
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El-Niño mediated dry seasons and anthropogenic forest disturbance that breaks 

up the forest, promoting rapid drying, in addition to activities such as logging which 

can provide large amounts of fuel wood (Laurance 1998; Gould et al. 1999; 

Dunham et al. 2008). Sala et al. (2000) demonstrate the synergistic interactions 

between drivers of global change with the example of how human disturbance and 

changes in climate can lead to the invasion of exotic species. Chapman et al. 2006 

explains how primate species would be able to respond to such pressures 

associated with climate change by migrating to a new area of tropical forest, 

however, human habitation and agriculture have curtailed this ability. 

 
4.4 Combined Threat 

The effects of just one threat can lead to adverse consequences for primate 

diversity, with a combination of threats having a greater potential to simultaneously 

impact upon primate species (Mora et al. 2007; Brook et al. 2008; Darling and 

Côté 2008). It is clear how population pressure, forest loss and climate change are 

interlinked through a variety of feedbacks. Due to this, the global map of high risk 

countries was produced taking account of the combination of these threats (Fig. 

4.5).  

One of the regions facing the greatest combined levels of threat is south-

east Asia (Fig. 4.5), where almost every primate habitat has been impacted by 

human activities (Gupta and Chivers 1999). These human induced land use and 

land cover changes have been linked to changes in the East Asian monsoon (Fu 

2003), providing another example of the correlation between threats. Furthermore, 

Brook et al. (2003) present results suggesting that the current rate of habitat 

destruction in south-east Asia will result in the loss of 12-42% of regional 

populations over the next century, half of which will be global extinctions, 

indicating the severity of the threats faced by the region. The other region 

identified as being at particularly high risk is the area across north-west to east 

Africa (Fig. 4.5). Previous studies, such as Chapman et al. (2006) highlight how 

African forests and their primate communities are seriously threatened, and when 

combined with the impacts of future climate change, in which northern Africa was 

projected to have large areas decreasing in climatic suitability (Chapter 3), it 

explains the band of countries across this region that display high levels of additive 

risk (Fig. 4.5). 
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Countries such as Brazil in South America have been assigned a lower 

threat category based on the sum of their combined threats. However, it is widely 

documented how Amazon deforestation is taking place (Laurance 1998; 

Cowlishaw and Dunbar 2000; Ewers and Laurance 2006). The annual percentage 

rate of deforestation in the Neotropics is around half that of Asia but destroys an 

area twice as large (Cowlishaw and Dunbar 2000), thus the sheer size of the area 

of tropical forest throughout the Amazon means what would be significantly large 

proportions of forest loss in other countries, is relatively small within the countries 

of the Amazon.  

Madagascar is in category 3 (Fig. 4.5), one of the lower risk groups, despite 

being documented to have witnessed significant reductions in forest cover 

(Ganzhorn et al. 2001; Dunham et al. 2008), this could potentially be a due to the 

limitation of assessing percentage change in forest cover, as with some of the 

countries in the Amazon, or due to most forest removal occurring outside the time 

frame used in this study (1990-2005). Additionally, the fact that Madagascar did 

not possess any grid cells decreasing in suitable climate may have reduced the 

overall additive risk. 

It is important to appreciate that the charts in Fig. 4.6 display the average 

values across countries in each category, therefore individual countries with high 

values can alter the pattern significantly. For example, category 3 is classed as 

having a much larger average number of species present than the other 

categories (Fig. 4.6B); the reason for this is the presence of Brazil and 

Madagascar in this category, the two countries that hold the greatest number of 

primate species. The aim of these charts is to provide an indication of the primate- 

and risk-values for each category. Furthermore, the countries classed as facing 

lower threat levels and may be in category 2, 3 or 4, could still have high 

population growth, forest loss or negative climate change impacts, but because 

the categories were assigned based on the combination of the three threats, some 

countries that face a particularly high threat from one hazard, such as adverse 

climate change, for example, may not face any forest loss or population related 

threats. 
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4.5 Mitigation potential 
The majority of the primate-inhabited nations can be classed as developing 

countries, indicated by the low GDP commonly displayed for most countries (Fig. 

4.9). These countries can be very poor and characterised by political instability, 

often with high rates of population growth, making issues such as forest protection 

a low priority (Ewers 2006; Isabirye-Basuta and Lwanga 2008), leading to elevated 

pressures on the environment and consequently primate species. The average 

government score (Kaufmann et al. 2005) provides an indication of a country 

which may be politically unstable and could be expected to make protection of 

primate species and their habitat relatively low on their agenda. With this in mind, 

it is of great concern that the countries facing the greatest overall threat from forest 

loss, population increase and climate (Fig. 4.7 and 4.8) have the lowest 

government scores. This could explain the high levels of forest loss (1990 to 2005) 

already experienced in these countries, due to issues such as conservation and 

forest protection being a low priority (Isabirye-Basuta and Lwanga 2008), in 

addition to raising the possibility of further losses in the future.  

The African continent hosts some of the highest rates of human population 

growth coupled with some of the lowest per capita incomes in the world, leaving 

people heavily reliant on natural resources, explaining factors such as the high 

rates of forest loss (Chapman et al. 2006) and therefore supporting the high risk 

levels assigned to much of the continent, particularly northern Africa (Fig. 4.5). 

Furthermore, throughout the continent there is great political and economic 

instability, which could serve to undermine any conservation efforts (Chapman et 

al. 2006). 

 The majority of primate species occur in countries with a low GDP and a 

low government score (Fig. 4.9), with the exception of Japan, China, Brazil and 

India. Ewers (2006) provides results showing how economic wealth has a direct 

effect on deforestation rate, with natural resources such as forests shown to be 

essential to the economic development of many countries and the main source of 

export earnings, with more wealthy countries having a lower reliance on 

environmental capital such as forest resources. This can be similar for countries in 

which hunting for primates is a common practice as it provides much needed 

capital from exports (Cowlishaw and Dunbar 2000). 

According to Tol et al. (2004) poorer people will be more vulnerable to the 

impacts of climate change due to their limited capacity for adaptation. Given that 
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primate-inhabited countries can be predominantly considered to be ‘poor’ the 

ability to mitigate threats such as climate change will be reduced, and when 

combined with the low government scores displayed by most of these countries 

(Fig. 4.8 and 4.9) it will likely consign primate species to greater risks of extinction. 

Additionally, Ewers (2006) explains how the quality of the government and the 

money available will determine the ability of a nation to make the switch from 

deforestation to afforestation. In this study these two variables can be represented 

by the average government score and GDP respectively, with it apparent that the 

majority of primate species are located in countries with low values for each (Fig. 

4.9). 

 
4.6 Limitations 
 Care has to be taken when interpreting percentage or absolute change in 

forest cover and population over their respective timescales. For example, Ewers 

(2006) explains that when a nation has low forest cover, a small change in the 

absolute amount of forest cover will be represented as a large percentage change, 

therefore nations with low forest cover being more likely to display greater rates of 

change. This could explain the lower percentage forest loss in the Amazon 

compared to areas of Asia and Africa. However, in the case of primates for which 

tropical forest is the primary habitat, a country with low forest cover will already 

have a small area for primates; therefore any further decrease is very important as 

there will be very little remaining habitat. The actual increases in population per 

km2 from 2005-2050 were calculated rather than the percentage for this reason. 

However, Cincotta et al. (2000) discuss how population growth can be a 

misleading indicator of risk due to growth rates masking the spatial distributions of 

increasing human populations. 
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5. Conclusions 
In the presence of continuing deforestation, agricultural expansion and 

climate change, primate populations are going to find their forest habitats 

increasingly fragmented, which poses a severe threat to their survival (Chapman 

et al. 2006). Human activity in the form of population growth can be seen as the 

ultimate driver behind threats to primate diversity, as it can promote deforestation, 

contributing towards climate change, which in turn can lead to reductions in forest 

cover. For instance within forests, the different forms of anthropogenic disturbance 

often coincide, with their effects operating synergistically (Peres 2001), with 

projected climate change having the capacity to magnify the impacts of these 

disturbances on primate habitats, consequently having serious implications to the 

extinction risk faced by primate species. 

The results in this chapter provided no significant differences in the levels of 

threat faced by primate-inhabited countries with high and low diversity. However, 

the countries that currently have low percentages of threatened species face 

increased risk from adverse future climate change, possibly leading to a rise in 

threatened species. Moreover, countries with high percentages of threatened 

species are at significantly greater risk from increases in human population. The 

greatest risk countries are those facing the combined action of various threats to 

primate diversity, which can intensify the overall impacts through associated feed 

back mechanisms. The ability for countries to mitigate these threats and protect 

primate species can be largely determined by their wealth and political stability 

(Chapman et al. 2006). However, it appears that the countries facing the highest 

additive risk from a combination of threats are also the ones with some of the 

lowest average government scores, placing an added concern over the future of 

primate diversity in these countries. 
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Chapter 5 
 

General Discussion 
 
 Primate species are widely threatened with nearly half of all species being 

classed as endangered (Mittermeier et al. 2009). Different species face different 

levels of threat from the various facets of ongoing environmental change. In this 

study, we have investigated the impact of future climate change and other threats 

on primate species, including to what extent these different threats act in synergy 

or in isolation, in addition to identifying regions in which the total threat is likely to 

be highest.  

The greatest threat currently faced by primate species is from deforestation 

as a result of various human activities, driven by the unprecedented growth and 

expansion of the human population over the last century (Chapman and Peres 

2001). Our model results illustrate the varied impact of future climate change on 

primate species across different geographic regions; with some areas set to 

witness improvements in climate, such as Madagascar, whereas others face 

deterioration in suitable conditions, such as northern Africa. The way in which 

climate change impacts upon primate habitats, many of which are characterised 

by high levels of human disturbance, could determine the fate of many species. 

In this chapter, I will summarise and discuss the primate-specific results of 

this study in the wider context of three issues: i) the relevance of past climatic 

conditions for current global biodiversity patterns and extinction risk, ii) changing 

climate dynamics and their effects on the biota, and iii) the interacting impacts of 

climate change and habitat loss. 

 

Global Primate Biodiversity, past Climatic Signals, and Extinction Risk 
Past Climate Change and Primate Diversity 

Modern day patterns of primate species richness have arisen as a result of 

ecological and historical factors associated with regional geomorphology and 

climate (Eeley and Foley 1999; Peres and Janson, 1999; Cowlishaw and Dunbar 

2000). There is considerable evidence that major environmental change during the 

late Quaternary has shaped present day patterns of primate distribution and 

diversity, in addition to those of many other species (Eeley and Lawes 1999; 
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Hewitt 2000). An example in which historical environmental change has helped 

shaped present day primate species assemblages and richness can be seen from 

the Sunda Shelf islands of south-east Asia. These islands were formed as a 

consequence of climatic warming leading to a rise in sea level during the Holocene 

period (Heaney 1984). The subsequent isolation of primate species on the various 

islands helped create distinct species assemblages due to extinction of primate 

species from smaller islands (Harcourt 1999; Harcourt and Schwartz 2001). 

Growth and decline of tropical forests in response to climatic change during 

the Pleistocene acted as a driving force behind historical evolution of primate 

species (Eeley and Lawes 1999; Cowlishaw and Dunbar 2000). As forests 

contracted with a changed climate and species composition, primate populations 

would have been fragmented and during times of isolation, evolutionary 

processes, adaptation to changing local conditions and competition would have 

often caused populations to differentiate (Chapman et al. 1999). Equally when 

forests expanded, species dispersal would have led to further adaptive change, 

and differing dispersal abilities and ecological tolerances influenced various 

species’ ability to establish new niche habitats (Chapman et al. 1999).  

Historical events and adaptive responses have played a major role in 

producing the patterns of modern day primate diversity (Chapman et al. 1999; 

Eeley and Foley 1999; Eeley and Lawes 1999), and potentially explain the global 

patterns of taxonomic distinctness for primates (Fig. 2.3). The way in which 

historical environmental change has shaped primate species distributions and 

abundance highlights the importance of climate and the potential for future climate 

change to impact species. 

 

Climate Change and Extinction Risk 

Mass extinction events have occurred across a wide range of taxa 

throughout the geological and fossil records and can often be associated with 

changes in climate (Hoffman and Parsons 1997; Mayhew et al. 2008; Nogués-

Bravo et al. 2010). Many studies accept that we are currently experiencing a mass 

extinction event driven by human activities (Cowlishaw and Dunbar 2000; Gitay et 

al. 2002). Benton and Twitchett (2003) study the end-Permian event, 600 million 

years ago, which saw the loss of around 95% of all species on Earth. There are 

several theories behind what triggered this mass extinction, with evidence of 

asteroid impact and/or mass volcanism contributing towards a spiral of positive 
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feedbacks which subsequently led to a dramatic rise in global temperatures, 

termed the ‘Runaway Greenhouse Effect’ (Benton and Twitchett 2003). The 

Runaway Greenhouse Effect results from a breakdown in global environmental 

mechanisms and consideration needs to be made of the risk for modern day 

global warming to reach a point that causes natural systems break down resulting 

in cascading effects similar to those proposed for the ‘runaway greenhouse effect’. 

 Environmental stochasticity such as seasonal fluctuations in temperature 

and rainfall, changes in large scale circulation systems such as the El 

Niño/Southern Oscillation (ENSO) and incidence of extreme events such as 

hurricanes, drives most natural fluctuations in population size through the 

associated effects on food availability, predation and disease (Cowlishaw and 

Dunbar 2000). Thus the projected impact of climate change on these activities 

may significantly affect extinction risk, with changes in the frequency and intensity 

of extreme events already being predicted under climate change scenarios 

(Easterling et al. 2000; IPCC 2007). However, fluctuations in the numbers of 

individuals over time and space are typical for all animal populations (Heino, et al. 

1997) with many species adapting to changing conditions in order to maintain their 

populations.  

Gitay et al. 2002 explain how future extinctions as a result of climate 

change will vary between regions, with no globally uniform trend; climate change 

will vary depending on the location. Our results corroborate this, with the varied 

impact of future climate change on primate species richness being demonstrated 

by large improvements in climate predicted for regions such as Madagascar and 

the Neotropics in particular, compared to Africa, in which the majority of the 

continent is set to decrease in climatic suitability, given current climate-primate 

species relationships (Fig. 3.4 and Table 3.4). Furthermore, extinctions will also 

vary between different countries, with some potentially better placed, economically 

and politically, to mitigate threats faced to primate species (Fig. 4.8 and 4.9) which 

may ultimately determine the ability of species to survive current pressures. 

Despite the general consensus by many authors that anthropogenic climate 

change has the potential to increase extinction rates (e.g. Gitay et al. 2002; 

Thomas et al. 2004), there is contrasting evidence between the fossil record and 

molecular data and recent ecological research (Bininda-Emonds et al. 2007; 

Botkin et al. 2007). This along with specific problems with current forecasting 

methods led Botkin et al. (2007) to conclude that recent projections of extinction 
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rates are overestimates; based on the relatively few extinctions that have occurred 

during the recent ice ages, as displayed in the fossil record, compared to modern 

forecasts. This miss-match between future predictions and historical data is 

described as the ‘Quaternary Conundrum’ (Botkin et al. 2007). Possible 

explanations for this are that projected climate change is considerably different to 

that experienced during the Quaternary and even though species have responded 

to climate changes throughout their evolutionary history, it is the rapid rate of 

change coupled with increased pressures from human activities that could lead to 

a much greater number of extinctions (Root et al. 2003). Conversely, current 

forecasting methods do not account for the genetic and ecological mechanisms 

that may allow the persistence of many species even under rapid climate change 

(Botkin et al. 2007), potentially reducing the susceptibility of species to many 

threats. For example, Wright and Muller-Landau (2006) explain how large 

reductions in forest cover during Pleistocene glacial events may have allowed 

tropical forest species to develop a natural resilience to deforestation. This may be 

the case, however, the pace and scale of changes experienced by ecosystems, 

from a combination of anthropogenic activity and global warming, is unparalleled 

when compared with the slow changes experienced through previous Ice Ages 

(Travis 2003; Brook et al. 2006). Moreover, the impact of climate change 

combined with the threats from deforestation and human population pressure, 

places ecosystems, and therefore primate species, under greater strain. Hence 

the countries facing the highest additive risk from these threats (Fig. 4.5) will be 

most likely to witness extinctions of primate fauna. 

 

Changing Climate Dynamics 
Given global distributions of primate species, two of the most important 

aspects of the climate system that will have a major bearing on primates are 

ENSO and the Asian Monsoon. 

 

ENSO 

 ENSO arises from large-scale ocean-atmosphere interactions, with the 

combination of sea surface temperatures (SSTs), Walker circulation and the 

thermocline depth being responsible for the development of the two ENSO 

extremes – El Niño and La Niña (Latif and Keenlyside 2008). Cane (2005) explain 

how paleoclimate records highlight the sensitivity of ENSO towards changing 
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climatic conditions, thus it can be expected for this phenomena to behave 

differently in the future. The way in which climate change affects the feedbacks in 

the development of ENSO will underpin any changes in characteristics (Latif and 

Keenlyside 2008).  

Equatorial Pacific SSTs have increased over the latter half of the twentieth 

century concordant with global warming, however ENSO activity displayed nothing 

above what could be attributed to internal background variability, with no sustained 

long-term trend observed (Latif and Keenlyside 2008). However despite this, a 

potential shift towards more frequent and severe El Niño conditions has been 

observed (e.g. Gitay et al. 2002; Wright and Calderon 2006). Although the model 

predictions for the impact of climate change on ENSO face large uncertainties, 

particularly due to complex nature in which ENSO develops (Latif and Keenlyside 

2008). 

A model developed by Cox et al. (2004) incorporating vegetation and the 

carbon cycle demonstrates a switch towards an El Niño state, which could 

potentially reduce rainfall in northern Brazil and over Amazonia – both of which 

comprise high primate species richness and taxonomic distinctness (Fig. 2.1 and 

2.3). The result would lead to the Amazon rainforest drying out and becoming 

more susceptible to forest fires, which could further reduce the forest size (Cox et 

al. 2004), placing the high primate diversity within this region at risk. Moreover 

vegetation feedbacks will further reduce rainfall and increase atmospheric carbon 

dioxide levels, acting as a positive feedback and subsequently accelerating global 

warming (Cox et al. 2004). Thus the importance of ENSO can be demonstrated by 

the way that plants in tropical forests, the primary habitat for the majority of 

primate species, will respond to changes in temperature and moisture due to plant 

metabolism (Wright and Calderon 2006), for example Peres and Janson (1999) 

explain how annual rainfall throughout the Neotropics is positively correlated with 

floristic diversity and large scale primate species richness. Moreover, Wright and 

Calderon (2006) discuss the potential for El Niño events to decrease plant 

productivity due to reduced rainfall causing water stress or higher temperatures 

increasing respiration costs, however the effects could be weakened through 

greater irradiance alleviating periods of light limitation, potentially allowing 

productivity to increase. 

Isabirye-Basuta and Lwanga (2008) suggest that climate change can have 

severe effects on food resource base for primates and this has been displayed 
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through the potential for ENSO events to affect the timing, quantity and quality of 

fruit production in tropical forests (e.g. Wiederholt and Post 2010). For example, 

Gould et al. (1999) studied the impact of a 2-year drought, in which food resources 

were severely depleted, on Lemur catta in south-western Madagascar, during this 

period of environmental stress, increases in infant and juvenile mortality rates 

were recorded, with a general decrease in the entire population. Furthermore, 

during drought conditions large areas of forest can become defoliated 

exacerbating the risk of forest fires (Gould et al. 1999). This may increase the risk 

of extinctions due to the high percentages of threatened primate species already 

present in Madagascar (Fig. 2.4). Similarly, extended droughts associated with El 

Niño events have caused elevated tree mortality and increased the risk of forest 

fires in certain tropical forests of Asia and South America (Chapman and Peres 

2001; Wright and Calderon 2006). When this threat is considered alongside the 

high levels of threatened species over South America and much of Asia, in 

addition to the high percentage of species displaying a declining population trend 

(Fig. 2.4), it raises concern over the long term viability of primate populations in 

these regions. Asian primates in particular, will be of concern due to several 

countries in the region currently at high risk from a combination of threats (Fig. 4.5 

and 4.6).  

 

Asian Monsoon 

 Like ENSO, the Asian Monsoon develops from interplay between the 

ocean, atmosphere and land surface, with many factors affecting its strength, 

ranging from the SSTs in the Indian and Pacific Ocean to the snow cover and soil 

moisture over Asia, in addition to the strength and direction of the prevailing winds 

and variations in solar output (Wahl and Morrill 2010). However, a lack of 

information on these factors and the short observational record make it difficult to 

forecast and predict how the Asian monsoon might be affected by global climate 

change (Wahl and Morrill 2010) adding uncertainty to model predictions. Kumar et 

al. (1999) describe how the inverse relationship between the Indian summer 

monsoon and ENSO, in that a weak monsoon develops following a warm ENSO 

event, has diminished in recent decades. The possible reason for this lies behind 

Eurasion warming enhancing the land-ocean thermal gradient that is conductive 

towards a strong monsoon, thus sustaining monsoon rainfall at normal levels 

despite strong ENSO events (Kumar et al. 1999). Other future projections have 
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indicated a potential decrease in rainfall for the East Asian monsoon (Yu et al. 

2004). Fu (2003) concludes that human induced changes in land cover, which 

alter the exchanges of water and energy between the land and atmosphere, have 

weakened the East Asian monsoon resulting in decreased precipitation. Therefore, 

these human induced changes could potentially offset any increases in monsoon 

activity predicted due to global warming. 

Any change in Asian Monsoon frequency or intensity may have significant 

consequences for primates across the continent, primarily due to the widespread 

impacts of human activities across the region (Gupta and Chivers 1999; Sodhi et 

al. 2004). Additionally, Asia holds some of the countries facing the highest levels 

of combined threat to primate species (Fig. 4.5), and therefore may also be 

particularly vulnerable to any adverse changes in climate related to the Asian 

Monsoon. However, the impact of future climate change on primate species 

richness varies across Asia (Fig. 3.4), with, for example, an improvement in 

climatic conditions predicted for much of mainland Asia under the continental 

model outputs, whereas a deterioration in suitable climate for parts of south-east 

Asia. 

 

The Interacting Impacts of Climate Change and Habitat Loss 
 Despite beneficial improvements in climate projected for certain regions 

(Fig. 3.4 and Table 3.4), the warmer conditions anticipated under global climate 

model (GCM) outputs (IPCC 2007) will have effects on many aspects of 

ecosystems that are not included in our models.   

 

Changes in Phenology 

As a consequence of pressures arsing from climate change, plant species 

must alter their phenology to avoid increased risks of extinction, with advanced 

timing of events such as fruiting and flowering anticipated (Hughes 2000; Berteaux 

et al. 2004), which could potentially affect the feeding patterns of frugivorous 

primates, for example. Thus the way in which primates adapt to changes in 

phenology, in order to mitigate these effects, will determine how much they are 

impacted. Furthermore, Menzel (2002) explains how shifts in phenological phases 

due to climate change can have impacts on the climate system itself, especially 

regional climate, by feedback mechanisms of evaporation, carbon dioxide levels 

and surface albedo effects.  
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Dispersal and Adaptation 

In order to survive in the presence of environmental change species must 

either adapt to novel environmental conditions, or, more commonly, migrate to 

track their preferred ecological niche (Pearson and Dawson 2003; Martinez-Mayer 

et al. 2004; Malcolm et al. 2006). This will be problematic for primate species due 

to their restricted dispersal ability, on account of tropical forest being the primary 

habitat for most species (Mittermeier 1988), added to the fact that populations of 

trees expand at a much slower rate, in many cases dispersal being inadequate to 

keep up with climate change (Hoffman and Parsons 1997).  

Cowlishaw and Dunbar (2000) provide an overview of how changes in 

climate led to the extinction of the Theropithecus baboon, which was once 

prominent across Africa until rising temperatures promoted shifts of the temperate 

grasslands, which the species depended on, upward in altitude consequently 

leading to their demise as this habitat became highly fragmented due to the limited 

distribution of high altitude sites. The only surviving member of this genus was the 

Gelada on the Ethiopian Plateau, which is currently facing a significant threat from 

climate change and changing agricultural practices (Dunbar 1998; Cowlishaw and 

Dunbar 2000). This provides an indication of the difficulty species face when 

tracking their habitat through time and space, and even if this is accomplished, the 

pace and magnitude of changes may be too much for many populations to persist. 

The rapid pace of climate change may reduce the ability of plant species to 

track their preferred climates, with the only response being one of adaptation to 

the new environmental conditions (Jump and Penuelas 2005). Increasingly 

fragmented ecosystems, however, combined with rapid climate change, may 

negate the adaptation ability of plants, leading to altered genetic compositions 

yielding unpredictable species assemblages and an increased susceptibility to 

pest and disease outbreaks, which can further reduce populations (Jump and 

Penuelas 2005). Clearly this will play a huge role in determining primate survival in 

such habitats as essential food sources may no longer be available. In addition, 

the adaptability of primate populations to the cascading effects of various 

environmental changes may also be reduced due to the rapid pace of change. 

However, an example of a mammal species successfully adapting to a new 

climate regime is provided by Réale et al. (2002) who report how the timing and 

breeding of red squirrel populations in the Yukon, Canada have advanced as a 

consequence of microevolutionary changes in phenology and genetics in response 
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to rapid climate change altering their ecosystem. Therefore, some primate species 

may be able to adapt similarly. 

The combination habitat destruction and climate change can be enough to 

overpower species ability to adapt and cope with changes, ultimately leading to 

their extinction. For example, McLaughlin et al. (2002) report how two populations 

of checkerspot butterfly became extinct in response to increased precipitation 

variability. These populations will have most likely survived similar or even greater 

climatic fluctuations throughout their history due to their once extensive habitat 

allowing for persistence under climatic variability (McLaughlin et al. 2002). 

However the destruction of this habitat increased their vulnerability to climate 

change and subsequently led to their extinction (McLaughlin et al. 2002). Similarly, 

Warren et al. (2001) demonstrate how British butterflies will have reduced 

numbers of species due to the combined effects of habitat modification and 

climate change, with mobile and widespread habitat generalists dominating 

communities. Therefore, the countries facing the greatest risk from additive threats 

to primates, such as those in north-west Africa, Central America and south-east 

Asia (Fig. 4.5), are of primary concern due to the synergy between drivers of 

extinction (Sala et al. 2000; Brook et al. 2008; Darling and Côté 2008). 

 

Disease and Invasive Species 

Climate change may encourage movement of non-native species into new 

areas, potentially adding a new source of competition for local inhabitants 

(Thomas et al. 2004). In some cases climate change can lead to invasive species 

and epidemic diseases spreading into new areas, particularly with rising 

temperatures, which has seen expanding mosquito-borne diseases in the high 

lands of Asia, east Africa and Latin America (Walther et al. 2002).  

Other studies have demonstrated the impact climate change can have on 

invasive species and disease outbreaks. For example, amphibians, which primarily 

occur in the tropics like primates, face a significant risk from infectious disease 

with climate change anticipated to exacerbate this threat, with the small 

geographic ranges of many species making them susceptible to extinction (Wake 

and Vredenburg 2008). Pounds et al. (2006) show how recent amphibian 

extinctions in the mountains of Costa Rica are associated with warming 

temperatures promoting infectious disease. Similarly, Kiesecker et al. (2001) 

report how amphibian populations in western USA are coming under increasing 
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threat from pathogen outbreaks due to changes in precipitation as a result of 

climate change, altering the UV-B exposure of species. 

 

Impacts on the Tropical Forest Biome 

Potentially one of the most detrimental affects of climate change on primate 

species will be related to the potential impacts on forest ecosystems, with the 

species composition of forests likely to change with climate (Gitay et al. 2002; 

Jump and Penuelas 2005; Brook et al. 2006). Ecosystems dominated by long lived 

plant species, such as tropical rainforest, are often slow to show any indication of 

change but they will also be slow to recover from any changes imposed by climate 

related stress (Gitay et al. 2002; Brook et al. 2006). 

Wright and Muller-Landau (2006) suggest that the mass extinction of 

tropical forest species may be avoided and that many tropical forest species will 

be able to survive through the current rates of deforestation and human population 

pressures. This conclusion is based on anticipated increases in rural to urban 

migration and therefore a subsequent rise in urban populations, reducing the 

human population pressure in forested areas (Wright and Muller-Landau 2006); 

allowing for natural forest regeneration to take place, which will eventually exceed 

the rate of deforestation and result in a stabilisation or increase in forest cover 

(Wright and Muller-Landau 2006). If this does occur, then it could be expected, for 

example, that the primate species of Madagascar may be able to recover from 

current pressures due to a rejuvenated tropical forest habitat and flourish in 

potentially improved climatic conditions as predicted by our models (Fig. 3.4 and 

Table 3.4). However, Brook et al. (2006) disagree with the results presented by 

Wright and Muller-Landau (2006) due to the link between rural and urban 

population densities and deforestation being much more complex. For instance, 

urban populations can damage ecosystems many kilometres away due to the 

demands of such high population densities in urban centres, for example the need 

for water, energy (e.g. fuel wood, hydroelectric power plants, both of which are 

sourced outside urban areas) and areas for waste disposal (Cincotta et al. 2000). 

Moreover the strong likelihood that the essential habitat for most species will have 

already been eliminated or degraded to the point of no return, removes the 

potential for successful regeneration of forest (Brook et al. 2006). For example, 

fragmented habitats often experience changes in microclimates and edge effects, 

altering the plant and animal species present (Saunders et al.1991; Collinge 1996; 
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Turner 1996). In addition, the large number of indigenous species present in 

tropical forests, most of which have a low environmental tolerance, places them at 

greater risk of being lost due to forest fragmentation (Turner 1996).  

Time lags observed between habitat loss and species extinctions may give 

secondary forests the chance to mature (Wright and Muller-Landau 2006), 

however, the small population sizes of species in highly fragmented and 

secondary forests are often already committed to extinction due to extinction debt 

(Tilman et al. 1994; Brook et al. 2006). For instance, Cowlishaw (1999) performed 

tests based on the species-area relationships that indicate the likely existence of 

extinction debts amongst African forest primates as a result of historical 

deforestation, with the debt in most countries comprising around 30% of the forest 

primate fauna. These findings illustrate how forest regeneration or even 

conservation measures such as protected forest areas during time lags of 

extinction debt may not be enough to prevent extinctions induced through habitat 

loss (Cowlishaw 1999).  

 

 

Conclusions 
The magnitude and pace in which modern environmental change is 

occurring is unlike anything previously experienced by species, with the various 

impacts of climate change and human modification of the environment having an 

impact at global, regional and local scales. Several drivers of environmental 

change may act in synergy resulting in the potential of additive threats at a location 

or across a region. 

 The highest levels of threatened primate species are located in south-east 

Asia, Central America and the coastal areas of Brazil. Concern arises over the 

much larger amount of primate species with decreasing populations, which could 

be expected to lead to a greater number of threatened species, and thus a greater 

chance of species loss. Furthermore, the areas with a high percentage of 

threatened and decreasing primate populations tend to coincide with regions of the 

globe that harbour some of the highest levels of taxonomic distinctness (Δ+) and 

species richness, such as Madagascar and south-east Asia in particular. The 

threat from climate change was found to be significantly greater in countries with a 

low percentage of threatened primate species compared to countries with high 

percentages of threatened species, however, it is the opposite for human 
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population pressure, with countries holding the highest levels of threatened 

primates facing a significantly greater threat. 

Bioclimate models using a more relevant regional, rather than global, 

environmental space reproduced the distribution and patterns of global primate 

species richness for each biogegraphic zone more accurately. Running these 

models with future climate data produced results demonstrating how the impact of 

future climate change on primate species varies within and between regions. 

Given current climate-primate richness relationships, areas such as northern 

Africa are predicted to decrease in climatic suitability, in addition to parts of south-

east Asia, under some model outputs, whereas Madagascar is predicted to 

increase in climatic suitability for primate species richness. This study highlights 

differences in projections of climatic suitability, depending on which climate model 

and greenhouse gas emission scenario is used for model fitting. However, many 

other factors need to be considered when assessing the impact of climate change, 

such as the complex interactions between changing land use and climate, and the 

response of large scale climatic systems such as ENSO and the Asian Monsoon. 

Primate species facing the greatest risk of extinction can be found in 

countries facing the highest levels of combined action of the various threats to 

primate diversity; climate change, forest loss and human population pressure, 

which can intensify the overall threat to species due to synergy and associated 

feed back mechanisms between threats. Conservation measures will need to be 

implemented in high risk regions in order to prevent species losses, however, the 

ability for countries to mitigate these threats and protect primate species could 

largely be determined by their economic wealth and political stability, with the 

majority of primate species shown to be located in economically poor countries, 

with low government scores, indicating that conservation may be a low priority. 

Furthermore, the countries facing the highest risk from a combination of threats 

are generally the ones with some of the lowest average government scores, with 

low GDPs, such as Nigeria, for example, placing added concern over the future of 

primate diversity in these countries. 
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Appendix 1 
 

Appendix 1: Top 25 high-value primate countries (A) and top 25 low-value primate 

countries (B) 

  Top 25 - HIGH VALUE PRIMATE COUNTRIES 
  Total Species % Threatened Average Δ+ 
Country Brazil Belize Zimbabwe 
  Madagascar Algeria Mozambique 
  Colombia Morocco Swaziland 
  Peru Vietnam Angola 
  Indonesia Cambodia Malawi 
  Zaire (Dem Rep Congo) Laos Zambia 
  Cameroon Indonesia Burundi 
  Congo China Tanzania 
  Bolivia Thailand Congo 
  Tanzania Malaysia Gabon 
  Nigeria Brunei Rwanda 
  Ecuador Myanmar (Burma) Equatorial Guinea 
  Thailand Bangladesh Senegal 
  Uganda Guatemala Kenya 
  Venezuela Mexico Guinea 
  China Sri Lanka Cameroon 
  India India Burkina Faso 
  Vietnam Costa Rica Ivory Coast 
  Central African Republic Honduras Togo 
  Gabon El Salvador Nigeria 
  Angola Panama Uganda 
  Kenya Bhutan Zaire 
  Malaysia Madagascar Benin 
  Rwanda Nigeria Guinea-Bissau 
  Burundi Burkina Faso Ghana 

 
 
 
 
 
 
 
 
 
 
 
 

A 
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  Bottom 25 - LOW VALUE PRIMATE COUNTRIES 
  Total Species % Threatened Average Δ+ 
Country Algeria Libya Algeria 
  Libya Saudi Arabia Libya 
  Morocco Taiwan Morocco 
  Saudi Arabia Uruguay Saudi Arabia 
  Taiwan Yemen Spain 
  Uruguay Japan Taiwan 
  Yemen Argentina Uruguay 
  Afghanistan Afghanistan Yemen 
  Belize Pakistan Japan 
  Djibouti Mauritania Argentina 
  El Salvador Lesotho Afghanistan 
  Japan Djibouti Pakistan 
  Lesotho Niger Mexico 
  Pakistan Namibia China 
  Philippines Philippines Mauritania 
  Trinidad and Tobago Somalia Lesotho 
  Guatemala Nepal Djibouti 
  Mexico South Africa El Salvador 
  Nicaragua Chad Niger 
  Costa Rica Botswana Guatemala 
  Eritrea Paraguay Namibia 
  Honduras Trinidad and Tobago Bhutan 
  Namibia Eritrea Philippines 
  Nepal Malawi Somalia 
  Niger Swaziland India 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

B 
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Appendix 2 
 

Appendix 2: Rank table of combined threats for each country - Every country was given a 

rank value according to each of the three threats; human population increase, forest loss and 

decreasing suitable climate (a higher value was assigned to a greater threat). The sum of 

these rank values was calculated to identify the countries facing the highest combined levels 

of threat. The countries were then grouped into 8 categories of 11 countries based on their 

overall rank sum. 1 to 8 represents lowest to highest risk. 
Country                                Rank Totals   Sum Risk  
  Population Forest Loss ClimateA2  Category 
Afghanistan 72 82 42 196 8 
Benin 75 80 60 215 8 
Burkina Faso 69 38 78 185 8 
Burundi 87 88 35 210 8 
Ghana 66 78 59 203 8 
Indonesia 49 75 65 189 8 
Liberia 63 74 55 192 8 
Niger 46 83 86 215 8 
Nigeria 77 84 70 231 8 
Sierra Leone 73 53 66 192 8 
Togo 76 87 50 213 8 
El Salvador 83 70 31 184 7 
Eritrea 61 36 87 184 7 
Ethiopia 67 65 52 184 7 
Guinea-Bissau 71 42 72 185 7 
Mali 42 54 81 177 7 
Mauritania 15 85 80 180 7 
Nepal 82 76 18 176 7 
Pakistan 84 77 16 177 7 
Philippines 80 81 13 174 7 
Senegal 62 47 75 184 7 
Somalia 36 64 76 176 7 
Cameroon 40 62 71 173 6 
Chad 32 51 77 160 6 
Djibouti 51 22 88 161 6 
Ecuador 37 73 51 161 6 
Equatorial Guinea 41 57 68 166 6 
Guatemala 74 67 29 170 6 
Guinea 60 52 56 168 6 
Honduras 58 86 27 171 6 
Malawi 78 60 22 160 6 
Uganda 86 79 5 170 6 
Yemen 65 14 85 164 6 
Bangladesh 88 30 41 159 5 
Brunei 59 55 36 150 5 
Congo 45 28 79 152 5 
Gambia, The 79 8 63 150 5 
India 81 9 44 134 5 
Malaysia 53 43 54 150 5 
Namibia 10 58 67 135 5 
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Nicaragua 47 71 17 135 5 
Sudan 25 56 73 154 5 
Tanzania, United Republic of 48 66 43 157 5 
Zambia 27 63 47 137 5 
Angola 38 34 58 130 4 
Bolivia 18 41 57 116 4 
Cambodia 64 23 34 121 4 
Costa Rica 52 44 32 128 4 
Ivory Coast 57 11 53 121 4 
Kenya 68 37 26 131 4 
Libya 12 20 84 116 4 
Morocco 50 12 64 126 4 
Myanmar (Burma) 34 69 19 122 4 
Saudi Arabia 26 19 83 128 4 
Sri Lanka 55 68 11 134 4 
Algeria 19 5 82 106 3 
Argentina 17 40 49 106 3 
Bhutan 56 10 39 105 3 
Botswana 8 61 38 107 3 
Brazil 22 48 37 107 3 
Central African Republic 16 32 61 109 3 
Colombia 33 29 45 107 3 
Gabon 14 27 69 110 3 
Laos 44 45 25 114 3 
Madagascar 54 39 23 116 3 
Peru 24 33 48 105 3 
Belize 21 24 40 85 2 
Mexico 30 46 21 97 2 
Mozambique 39 35 20 94 2 
Panama 43 31 15 89 2 
Paraguay 28 59 14 101 2 
Rwanda 85 3 12 100 2 
South Africa 9 18 62 89 2 
Thailand 35 50 7 92 2 
Venezuela 31 49 3 83 2 
Zaire (Dem Rep Congo) 1 13 74 88 2 
Zimbabwe 20 72 1 93 2 
China 23 6 33 62 1 
French Guiana 11 26 30 67 1 
Guyana 6 21 28 55 1 
Japan 4 25 46 75 1 
Lesotho 5 2 24 31 1 
Suriname 3 17 10 30 1 
Swaziland 7 7 9 23 1 
Taiwan 29 16 8 53 1 
Trinidad and Tobago 2 15 6 23 1 
Uruguay 13 1 4 18 1 
Vietnam 70 4 2 76 1 
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Appendix 3  
 

Appendix 3: Taxonomic Table Order: Primates 

SUBORDER INFRAORDER SUPERFAMILY FAMILY GENUS SPECIES 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Allenopithecus Allenopithecus nigroviridis 

Strepsirrhini Lemuriformes Cheirogaleoidae Cheirogaleidae Allocebus Allocebus trichotis 

Haplorrhini Simiiformes   Atelidae Alouatta Alouatta arctoidea 

Haplorrhini Simiiformes   Atelidae Alouatta Alouatta belzebul 
Haplorrhini Simiiformes   Atelidae Alouatta Alouatta caraya 
Haplorrhini Simiiformes   Atelidae Alouatta Alouatta discolor 

Haplorrhini Simiiformes   Atelidae Alouatta Alouatta guariba 

Haplorrhini Simiiformes   Atelidae Alouatta Alouatta juara 
Haplorrhini Simiiformes   Atelidae Alouatta Alouatta macconnelli 

Haplorrhini Simiiformes   Atelidae Alouatta Alouatta nigerrima 

Haplorrhini Simiiformes   Atelidae Alouatta Alouatta palliata 
Haplorrhini Simiiformes   Atelidae Alouatta Alouatta pigra 
Haplorrhini Simiiformes   Atelidae Alouatta Alouatta puruensis 

Haplorrhini Simiiformes   Atelidae Alouatta Alouatta sara 

Haplorrhini Simiiformes   Atelidae Alouatta Alouatta seniculus 

Haplorrhini Simiiformes   Atelidae Alouatta Alouatta ululata 
Haplorrhini Simiiformes   Aotidae Aotus Aotus azarae 
Haplorrhini Simiiformes   Aotidae Aotus Aotus brumbacki 

Haplorrhini Simiiformes   Aotidae Aotus Aotus griseimembra 

Haplorrhini Simiiformes   Aotidae Aotus Aotus jorgehernandezi 

Haplorrhini Simiiformes   Aotidae Aotus Aotus lemurinus 

Haplorrhini Simiiformes   Aotidae Aotus Aotus miconax 

Haplorrhini Simiiformes   Aotidae Aotus Aotus nancymaae 
Haplorrhini Simiiformes   Aotidae Aotus Aotus nigriceps 
Haplorrhini Simiiformes   Aotidae Aotus Aotus trivirgatus 

Haplorrhini Simiiformes   Aotidae Aotus Aotus vociferans 

Haplorrhini Simiiformes   Aotidae Aotus Aotus zonalis 

Strepsirrhini Lorisiformes   Lorisidae Arctocebus Arctocebus aureus 
Strepsirrhini Lorisiformes   Lorisidae Arctocebus Arctocebus calabarensis 
Haplorrhini Simiiformes   Atelidae Ateles Ateles belzebuth 

Haplorrhini Simiiformes   Atelidae Ateles Ateles chamek 

Haplorrhini Simiiformes   Atelidae Ateles Ateles fusciceps 

Haplorrhini Simiiformes   Atelidae Ateles Ateles geoffroyi 

Haplorrhini Simiiformes   Atelidae Ateles Ateles hybridus 

Haplorrhini Simiiformes   Atelidae Ateles Ateles marginatus 
Haplorrhini Simiiformes   Atelidae Ateles Ateles paniscus 
Strepsirrhini Lemuriformes Lemuroidea Indridae Avahi Avahi betsileo 

Strepsirrhini Lemuriformes Lemuroidea Indridae Avahi Avahi cleesei 

Strepsirrhini Lemuriformes Lemuroidea Indridae Avahi Avahi laniger 

Strepsirrhini Lemuriformes Lemuroidea Indridae Avahi Avahi meridionalis 
Strepsirrhini Lemuriformes Lemuroidea Indridae Avahi Avahi occidentalis 
Strepsirrhini Lemuriformes Lemuroidea Indridae Avahi Avahi peyrierasi 

Strepsirrhini Lemuriformes Lemuroidea Indridae Avahi Avahi ramanantsoavanai 

Strepsirrhini Lemuriformes Lemuroidea Indridae Avahi Avahi unicolor 
Haplorrhini Simiiformes   Atelidae Brachyteles Brachyteles arachnoides 

Haplorrhini Simiiformes   Atelidae Brachyteles Brachyteles hypoxanthus 

Haplorrhini Simiiformes   Pitheciidae Cacajao Cacajao ayresi 
Haplorrhini Simiiformes   Pitheciidae Cacajao Cacajao calvus 

http://www.bucknell.edu/MSW3/browse.asp?id=12100421�
http://www.bucknell.edu/MSW3/browse.asp?id=12100005�
http://www.bucknell.edu/MSW3/browse.asp?id=12100372�
http://www.bucknell.edu/MSW3/browse.asp?id=12100298�
http://www.bucknell.edu/MSW3/browse.asp?id=12100298�
http://www.bucknell.edu/MSW3/browse.asp?id=12100298�
http://www.bucknell.edu/MSW3/browse.asp?id=12100298�
http://www.bucknell.edu/MSW3/browse.asp?id=12100298�
http://www.bucknell.edu/MSW3/browse.asp?id=12100298�
http://www.bucknell.edu/MSW3/browse.asp?id=12100298�
http://www.bucknell.edu/MSW3/browse.asp?id=12100298�
http://www.bucknell.edu/MSW3/browse.asp?id=12100298�
http://www.bucknell.edu/MSW3/browse.asp?id=12100298�
http://www.bucknell.edu/MSW3/browse.asp?id=12100298�
http://www.bucknell.edu/MSW3/browse.asp?id=12100101�
http://www.bucknell.edu/MSW3/browse.asp?id=12100372�
http://www.bucknell.edu/MSW3/browse.asp?id=12100002�
http://www.bucknell.edu/MSW3/browse.asp?id=12100002�
http://www.bucknell.edu/MSW3/browse.asp?id=12100002�
http://www.bucknell.edu/MSW3/browse.asp?id=12100002�
http://www.bucknell.edu/MSW3/browse.asp?id=12100002�
http://www.bucknell.edu/MSW3/browse.asp?id=12100002�
http://www.bucknell.edu/MSW3/browse.asp?id=12100002�
http://www.bucknell.edu/MSW3/browse.asp?id=12100002�
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Haplorrhini Simiiformes   Pitheciidae Cacajao Cacajao melanocephalus 

Haplorrhini Simiiformes   Pitheciidae Cacajao Cacajoa hosomi 

Haplorrhini Simiiformes   Cebidae Callibella Callibella humilis 
Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus aureipalatii 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus baptista 
Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus barbarabrownae 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus bernhardi 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus brunneus 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus caligatus 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus cinerascens 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus coimbrai 
Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus cupreus 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus discolor 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus donacophilus 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus dubius 
Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus hoffmannsi 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus lucifer 
Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus lugens 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus medemi 
Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus melanochir 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus modestus 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus moloch 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus nigrifrons 
Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus oenanthe 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus olallae 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus ornatus 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus pallescens 
Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus personatus 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus purinus 
Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus regulus 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus stephennashi 

Haplorrhini Simiiformes   Pitheciidae Callicebus Callicebus torquatus 

Haplorrhini Simiiformes   Cebidae Callimico Callimico goeldii 

Haplorrhini Simiiformes   Cebidae Callithrix Callithrix aurita 

Haplorrhini Simiiformes   Cebidae Callithrix Callithrix flaviceps 
Haplorrhini Simiiformes   Cebidae Callithrix Callithrix geoffroyi 

Haplorrhini Simiiformes   Cebidae Callithrix Callithrix jacchus 

Haplorrhini Simiiformes   Cebidae Callithrix Callithrix kuhlii 

Haplorrhini Simiiformes   Cebidae Callithrix Callithrix penicillata 
Haplorrhini Simiiformes   Cebidae Cebuella Cebuella pygmaea 

Haplorrhini Simiiformes   Cebidae Cebus Cebus albifrons 
Haplorrhini Simiiformes   Cebidae Cebus Cebus apella 

Haplorrhini Simiiformes   Cebidae Cebus Cebus capucinus 

Haplorrhini Simiiformes   Cebidae Cebus Cebus cay 

Haplorrhini Simiiformes   Cebidae Cebus Cebus flavius 

Haplorrhini Simiiformes   Cebidae Cebus Cebus kaapori 

Haplorrhini Simiiformes   Cebidae Cebus Cebus libidinosus 
Haplorrhini Simiiformes   Cebidae Cebus Cebus macrocephalus 

Haplorrhini Simiiformes   Cebidae Cebus Cebus nigritus 

Haplorrhini Simiiformes   Cebidae Cebus Cebus olivaceus 

Haplorrhini Simiiformes   Cebidae Cebus Cebus robustus 
Haplorrhini Simiiformes   Cebidae Cebus Cebus xanthosternos 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercocebus Cercocebus agilis 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercocebus Cercocebus atys 
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Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercocebus Cercocebus chrysogaster 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercocebus Cercocebus galeritus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercocebus Cercocebus sanjei 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercocebus Cercocebus torquatus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus ascanius 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus campbelli 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus cephus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus diana 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus dryas 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus erythrogaster 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus erythrotis 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus hamlyni 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus lhoesti 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus mitis 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus mona 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus nictitans 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus neglectus 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus petaurista 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus pogonias 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus preussi 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus sclateri 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Cercopithecus Cercopithecus solatus 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Cheirogaleus Cheirogaleus adipicaudatus 
Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Cheirogaleus Cheirogaleus crossleyi 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Cheirogaleus Cheirogaleus major 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Cheirogaleus Cheirogaleus medius 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Cheirogaleus Cheirogaleus minusculus 
Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Cheirogaleus Cheirogaleus ravus 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Cheirogaleus Cheirogaleus sibreei 
Haplorrhini Simiiformes   Pitheciidae Chiropotes Chiropotes albinasus 

Haplorrhini Simiiformes   Pitheciidae Chiropotes Chiropotes chiropotes 

Haplorrhini Simiiformes   Pitheciidae Chiropotes Chiropotes satanas 

Haplorrhini Simiiformes   Pitheciidae Chiropotes Chiropotes utahickae 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Chlorocebus Chlorocebus aethiops 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Chlorocebus Chlorocebus cynosuros 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Chlorocebus Chlorocebus djamdjamensis 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Chlorocebus Chlorocebus pygerythrus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Chlorocebus Chlorocebus sabaeus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Chlorocebus Chlorocebus tantalus 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Colobus Colobus angolensis 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Colobus Colobus guereza 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Colobus Colobus polykomos 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Colobus Colobus satanas 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Colobus Colobus vellerosus 

Strepsirrhini Chiromyiformes   Daubentoniidae Daubentonia 
Daubentonia 
madagascariensis 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Erythrocebus Erythrocebus patas 

Strepsirrhini Lemuriformes Lemuroidea Lemuridae Eulemur Eulemur albifrons 
Strepsirrhini Lemuriformes Lemuroidea Lemuridae Eulemur Eulemur cinereiceps 

Strepsirrhini Lemuriformes Lemuroidea Lemuridae Eulemur Eulemur collaris 
Strepsirrhini Lemuriformes Lemuroidea Lemuridae Eulemur Eulemur coronatus 

Strepsirrhini Lemuriformes Lemuroidea Lemuridae Eulemur Eulemur fulvus 

Strepsirrhini Lemuriformes Lemuroidea Lemuridae Eulemur Eulemur macaco 

Strepsirrhini Lemuriformes Lemuroidea Lemuridae Eulemur Eulemur mongoz 
Strepsirrhini Lemuriformes Lemuroidea Lemuridae Eulemur Eulemur rubriventer 
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Strepsirrhini Lemuriformes Lemuroidea Lemuridae Eulemur Eulemur rufifrons 

Strepsirrhini Lemuriformes Lemuroidea Lemuridae Eulemur Eulemur rufus 

Strepsirrhini Lemuriformes Lemuroidea Lemuridae Eulemur Eulemur sanfordi 
Strepsirrhini Lorisiformes   Galagidae Euoticus Euoticus elegantulus 

Strepsirrhini Lorisiformes   Galagidae Euoticus Euoticus pallidus 
Strepsirrhini Lorisiformes   Galagidae Galagoides Galagoides cocos 

Strepsirrhini Lorisiformes   Galagidae Galagoides Galagoides demidovii 

Strepsirrhini Lorisiformes   Galagidae Galagoides Galagoides granti 

Strepsirrhini Lorisiformes   Galagidae Galagoides Galagoides nyasae 

Strepsirrhini Lorisiformes   Galagidae Galagoides Galagoides orinus 

Strepsirrhini Lorisiformes   Galagidae Galagoides Galagoides rondoensis 
Strepsirrhini Lorisiformes   Galagidae Galagoides Galagoides thomasi 

Strepsirrhini Lorisiformes   Galagidae Galagoides Galagoides zanzibaricus 

Strepsirrhini Lorisiformes   Galagidae Galago Galago gallarum 

Strepsirrhini Lorisiformes   Galagidae Galago Galago matschiei 
Strepsirrhini Lorisiformes   Galagidae Galago Galago moholi 

Strepsirrhini Lorisiformes   Galagidae Galago Galago senegalensis 
Haplorrhini Simiiformes Hominoidea Hominidae Gorilla Gorilla beringei 

Haplorrhini Simiiformes Hominoidea Hominidae Gorilla Gorilla gorilla 
Strepsirrhini Lemuriformes Lemuroidea Lemuridae Hapalemur Hapalemur alaotrensis 

Strepsirrhini Lemuriformes Lemuroidea Lemuridae Hapalemur Hapalemur aureus 

Strepsirrhini Lemuriformes Lemuroidea Lemuridae Hapalemur Hapalemur griseus 

Strepsirrhini Lemuriformes Lemuroidea Lemuridae Hapalemur Hapalemur meridionalis 
Strepsirrhini Lemuriformes Lemuroidea Lemuridae Hapalemur Hapalemur occidentalis 

Haplorrhini Simiiformes Hominoidea Hylobatidae Hoolock Hoolock hoolock 

Haplorrhini Simiiformes Hominoidea Hylobatidae Hoolock Hoolock leuconedys 

Haplorrhini Simiiformes Hominoidea Hylobatidae Hylobates Hylobates agilis 
Haplorrhini Simiiformes Hominoidea Hylobatidae Hylobates Hylobates albibarbis 

Haplorrhini Simiiformes Hominoidea Hylobatidae Hylobates Hylobates klossii 
Haplorrhini Simiiformes Hominoidea Hylobatidae Hylobates Hylobates lar 

Haplorrhini Simiiformes Hominoidea Hylobatidae Hylobates Hylobates moloch 

Haplorrhini Simiiformes Hominoidea Hylobatidae Hylobates Hylobates muelleri 

Haplorrhini Simiiformes Hominoidea Hylobatidae Hylobates Hylobates pileatus 

Strepsirrhini Lemuriformes Lemuroidea Indridae Indri Indri indri 

Haplorrhini Simiiformes   Atelidae Lagothrix Lagothrix cana 
Haplorrhini Simiiformes   Atelidae Lagothrix Lagothrix lagotricha 

Haplorrhini Simiiformes   Atelidae Lagothrix Lagothrix lugens 

Haplorrhini Simiiformes   Atelidae Lagothrix Lagothrix poeppigii 

Strepsirrhini Lemuriformes Lemuroidea Lemuridae Lemur Lemur catta 
Haplorrhini Simiiformes   Cebidae Leontopithecus Leontopithecus caissara 

Haplorrhini Simiiformes   Cebidae Leontopithecus Leontopithecus chrysomelas 
Haplorrhini Simiiformes   Cebidae Leontopithecus Leontopithecus chrysopygus 

Haplorrhini Simiiformes   Cebidae Leontopithecus Leontopithecus rosalia 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur aeeclis 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur ahmansonorum 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur ankaranensis 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur betsileo 
Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur dorsalis 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur edwardsi 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur fleuretae 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur grewcockorum 
Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur hubbardorum 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur jamesorum 
Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur leucopus 
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Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur mustelinus 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur microdon 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur milanoii 
Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur mittermeieri 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur otto 
Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur petteri 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur randrianasoloi 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur ruficaudatus 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur sahamalazensis 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur seali 

Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur septentrionalis 
Strepsirrhini Lemuriformes Lemuroidea Lepilemuridae Lepilemur Lepilemur wrightae 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Lophocebus Lophocebus albigena 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Lophocebus Lophocebus aterrimus 

Strepsirrhini Lorisiformes   Lorisidae Loris Loris lydekkerianus 
Strepsirrhini Lorisiformes   Lorisidae Loris Loris tardigradus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca arctoides 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca assamensis 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca cyclopis 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca fascicularis 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca fuscata 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca hecki 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca leonina 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca maura 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca mulatta 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca munzala 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca nemestrina 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca nigra 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca nigrescens 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca ochreata 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca radiata 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca siberu 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca silenus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca sinica 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca sylvanus 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca thibetana 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Macaca Macaca tonkeana 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Mandrillus Mandrillus leucophaeus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Mandrillus Mandrillus sphinx 
Haplorrhini Simiiformes   Cebidae Mico Mico acariensis 

Haplorrhini Simiiformes   Cebidae Mico Mico argentatus 
Haplorrhini Simiiformes   Cebidae Mico Mico chrysoleucus 

Haplorrhini Simiiformes   Cebidae Mico Mico emiliae 

Haplorrhini Simiiformes   Cebidae Mico Mico humeralifer 

Haplorrhini Simiiformes   Cebidae Mico Mico intermedius 

Haplorrhini Simiiformes   Cebidae Mico Mico leucippe 

Haplorrhini Simiiformes   Cebidae Mico Mico manicorensis 
Haplorrhini Simiiformes   Cebidae Mico Mico marcai 

Haplorrhini Simiiformes   Cebidae Mico Mico mauesi 

Haplorrhini Simiiformes   Cebidae Mico Mico melanurus 

Haplorrhini Simiiformes   Cebidae Mico Mico nigriceps 
Haplorrhini Simiiformes   Cebidae Mico Mico saterei 

Haplorrhini Simiiformes   Cebidae Mico Mico sp. nov. 
Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Microcebus Microcebus berthae 
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Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Microcebus Microcebus bongolavensis 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Microcebus Microcebus danfossorum 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Microcebus Microcebus griseorufus 
Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Microcebus Microcebus jollyae 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Microcebus Microcebus lehilahytsara 
Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Microcebus Microcebus mittermeieri 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Microcebus Microcebus murinus 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Microcebus Microcebus myoxinus 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Microcebus Microcebus ravelobensis 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Microcebus Microcebus rufus 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Microcebus Microcebus sambiranensis 
Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Microcebus Microcebus simmonsi 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Microcebus Microcebus tavaratra 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Miopithecus Miopithecus ogouensis 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Miopithecus Miopithecus talapoin 
Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Mirza Mirza coquereli 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Nasalis Nasalis larvatus 
Haplorrhini Simiiformes Hominoidea Hylobatidae Nomascus Nomascus concolor 

Haplorrhini Simiiformes Hominoidea Hylobatidae Nomascus Nomascus gabriellae 
Haplorrhini Simiiformes Hominoidea Hylobatidae Nomascus Nomascus hainanus 

Haplorrhini Simiiformes Hominoidea Hylobatidae Nomascus Nomascus leucogenys 

Haplorrhini Simiiformes Hominoidea Hylobatidae Nomascus Nomascus nasutus 

Haplorrhini Simiiformes Hominoidea Hylobatidae Nomascus Nomascus siki 
Strepsirrhini Lorisiformes   Lorisidae Nycticebus Nycticebus bengalensis 

Strepsirrhini Lorisiformes   Lorisidae Nycticebus Nycticebus javanicus 

Strepsirrhini Lorisiformes   Lorisidae Nycticebus Nycticebus coucang 

Strepsirrhini Lorisiformes   Lorisidae Nycticebus Nycticebus menagensis 
Strepsirrhini Lorisiformes   Lorisidae Nycticebus Nycticebus pygmaeus 

Haplorrhini Simiiformes   Atelidae Oreonax Oreonax flavicauda 
Strepsirrhini Lorisiformes   Galagidae Otolemur Otolemur crassicaudatus 

Strepsirrhini Lorisiformes   Galagidae Otolemur Otolemur garnettii 

Haplorrhini Simiiformes Hominoidea Hominidae Pan Pan paniscus 

Haplorrhini Simiiformes Hominoidea Hominidae Pan Pan troglodytes 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Papio Papio anubis 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Papio Papio cynocephalus 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Papio Papio hamadryas 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Papio Papio papio 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Papio Papio ursinus 

Strepsirrhini Lorisiformes   Lorisidae Perodicticus Perodicticus potto 
Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Phaner Phaner electromontis 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Phaner Phaner furcifer 
Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Phaner Phaner pallescens 

Strepsirrhini Lemuriformes Cheirogaleoidea Cheirogaleidae Phaner Phaner parienti 

Haplorrhini Simiiformes   Pitheciidae Pithecia Pithecia aequatorialis 

Haplorrhini Simiiformes   Pitheciidae Pithecia Pithecia albicans 

Haplorrhini Simiiformes   Pitheciidae Pithecia Pithecia irrorata 

Haplorrhini Simiiformes   Pitheciidae Pithecia Pithecia monachus 
Haplorrhini Simiiformes   Pitheciidae Pithecia Pithecia pithecia 

Haplorrhini Simiiformes   Hominidae Pongo Pongo abelii 

Haplorrhini Simiiformes   Hominidae Pongo Pongo pygmaeus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Presbytis Presbytis melalophos 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Presbytis Presbytis chrysomelas 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Presbytis Presbytis comata 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Presbytis Presbytis femoralis 
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Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Presbytis Presbytis frontata 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Presbytis Presbytis hosei 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Presbytis Presbytis natunae 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Presbytis Presbytis potenziani 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Presbytis Presbytis rubicunda 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Presbytis Presbytis siamensis 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Presbytis Presbytis thomasi 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Procolobus Procolobus badius 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Procolobus Procolobus gordonorum 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Procolobus Procolobus pennantii 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Procolobus Procolobus preussi 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Procolobus Procolobus rufomitratus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Procolobus Procolobus verus 

Strepsirrhini Lemuriformes Lemuroidea Lemuridae Prolemur Prolemur simus 

Strepsirrhini Lemuriformes Lemuroidea Indridae Propithecus Propithecus candidus 
Strepsirrhini Lemuriformes Lemuroidea Indridae Propithecus Propithecus coquereli 

Strepsirrhini Lemuriformes Lemuroidea Indridae Propithecus Propithecus coronatus 
Strepsirrhini Lemuriformes Lemuroidea Indridae Propithecus Propithecus deckenii 

Strepsirrhini Lemuriformes Lemuroidea Indridae Propithecus Propithecus diadema 
Strepsirrhini Lemuriformes Lemuroidea Indridae Propithecus Propithecus edwardsi 

Strepsirrhini Lemuriformes Lemuroidea Indridae Propithecus Propithecus perrieri 

Strepsirrhini Lemuriformes Lemuroidea Indridae Propithecus Propithecus tattersalli 

Strepsirrhini Lemuriformes Lemuroidea Indridae Propithecus Propithecus verreauxi 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Pygathrix Pygathrix cinerea 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Pygathrix Pygathrix nemaeus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Pygathrix Pygathrix nigripes 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Rhinopithecus Rhinopithecus roxellana 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Rhinopithecus Rhinopithecus avunculus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Rhinopithecus Rhinopithecus bieti 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Rhinopithecus Rhinopithecus brelichi 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Rungwecebus Rungwecebus kipunji 

Haplorrhini Simiiformes   Cebidae Saguinus Saguinus bicolor 

Haplorrhini Simiiformes   Cebidae Saguinus Saguinus fuscicollis 

Haplorrhini Simiiformes   Cebidae Saguinus Saguinus geoffroyi 

Haplorrhini Simiiformes   Cebidae Saguinus Saguinus imperator 
Haplorrhini Simiiformes   Cebidae Saguinus Saguinus inustus 

Haplorrhini Simiiformes   Cebidae Saguinus Saguinus labiatus 

Haplorrhini Simiiformes   Cebidae Saguinus Saguinus leucopus 

Haplorrhini Simiiformes   Cebidae Saguinus Saguinus martinsi 
Haplorrhini Simiiformes   Cebidae Saguinus Saguinus melanoleucus 

Haplorrhini Simiiformes   Cebidae Saguinus Saguinus midas 
Haplorrhini Simiiformes   Cebidae Saguinus Saguinus mystax 

Haplorrhini Simiiformes   Cebidae Saguinus Saguinus niger 

Haplorrhini Simiiformes   Cebidae Saguinus Saguinus nigricollis 

Haplorrhini Simiiformes   Cebidae Saguinus Saguinus oedipus 

Haplorrhini Simiiformes   Cebidae Saguinus Saguinus tripartitus 

Haplorrhini Simiiformes   Cebidae Saimiri Saimiri boliviensis 
Haplorrhini Simiiformes   Cebidae Saimiri Saimiri oerstedii 

Haplorrhini Simiiformes   Cebidae Saimiri Saimiri sciureus 

Haplorrhini Simiiformes   Cebidae Saimiri Saimiri ustus 

Haplorrhini Simiiformes   Cebidae Saimiri Saimiri vanzolinii 

Strepsirrhini Lorisiformes   Galagidae 
Sciurocheirus 
(GALAGO) Sciurocheirus alleni 

Strepsirrhini Lorisiformes   Galagidae 
Sciurocheirus 
(GALAGO) Sciurocheirus gabonensis 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Semnopithecus Semnopithecus ajax 
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Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Semnopithecus Semnopithecus dussumieri 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Semnopithecus Semnopithecus entellus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Semnopithecus Semnopithecus hector 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Semnopithecus Semnopithecus hypoleucos 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Semnopithecus Semnopithecus priam 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Semnopithecus Semnopithecus schistaceus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Simias Simias concolor 

Haplorrhini Simiiformes Hominoidea Hylobatidae Symphalangus Symphalangus syndactylus 

Haplorrhini Tarsiiformes   Tarsiidae Tarsius Tarsius bancanus 

Haplorrhini Tarsiiformes   Tarsiidae Tarsius Tarsius dentatus 

Haplorrhini Tarsiiformes   Tarsiidae Tarsius Tarsius lariang 
Haplorrhini Tarsiiformes   Tarsiidae Tarsius Tarsius pelengensis 

Haplorrhini Tarsiiformes   Tarsiidae Tarsius Tarsius pumilus 

Haplorrhini Tarsiiformes   Tarsiidae Tarsius Tarsius syrichta 

Haplorrhini Tarsiiformes   Tarsiidae Tarsius Tarsius tarsier 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Theropithecus Theropithecus gelada 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus auratus 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus barbei 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus cristatus 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus francoisi 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus geei 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus germaini 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus hatinhensis 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus johnii 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus laotum 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus obscurus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus phayrei 
Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus pileatus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus 
Trachypithecus 
poliocephalus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus shortridgei 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus vetulus 

Haplorrhini Simiiformes Cercopithecoidea Cercopithecidae Trachypithecus Trachypithecus delacouri 

Strepsirrhini Lemuriformes Lemuroidea Lemuridae Varecia Varecia rubra 

Strepsirrhini Lemuriformes Lemuroidea Lemuridae Varecia Varecia variegata 

 

 


