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ABSTRACT  

  

Spatially distributed estimates of population provide commonly used demand surfaces 

in support of spatial planning. In many countries, spatially detailed population 

summaries are not available. For such cases a number of interpolation methods have 

been proposed to redistribute summary population totals over small areas. Population 

allocations to small areas are commonly validated by comparing the estimates with 

some known values for those areas. In areas where spatially detailed estimates of the 

population do not exist, that is where the actual population in small areas is unknown, 

such as Nigeria validation is problematic. This research explores different interpolation 

methods applied at different scales in areas where the actual population distribution is 

known and where validation is possible. It then applies the parameters developed from 

these results to areas where the distribution is unknown. The binary dasymetric method 

using land cover data derived from a classified 30m spatial resolution satellite imagery 

as the ancillary data input and with disaggregation over 30m support grids, was found to 

provide the best target zones estimates of the population. The demand surfaces were 

then used to evaluate current health facility locations and then to suggest alternative 

spatial arrangements for health centres in Port-Harcourt, Nigeria. The average distance 

from each demand point to the nearest healthcare centre was found to be 1204m. When 

alternative locations for the current health centres were identified, the results suggest 13 

service provision points would provide almost the same demand coverage as the 17 

current PHCCs. This research develops methods that can be used to support informed 

decision making in spatial planning and policy development.    
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Chapter 1 

 

1. INTRODUCTION 

 

1.1 Problem description 

 

Population estimates for small areas are important for many types of spatial data 

analysis. They are especially important for accessibility studies that are commonly used 

to support spatial planning and policy development, and facility location-allocation 

analyses. Population censuses provide a reliable record of socioeconomic characteristics 

and the spatial distribution of residential population (Langford 2013) and thereby 

support geodemographic analyses (Harris and Longley 2002). In the U.K. census, 

population counts are collected for each household and published as aggregate counts 

and statistics for fixed pre-defined spatial units with Output Areas (OA) being the most 

detailed. The OA is similar to a U.S. census block. The OA was designed to be as 

homogenous as possible and to have a similar population size (Martin 1997; 1998). The 

target size of an OA is 125 households or approximately 300 people (Martin 1997). The 

main reason for aggregating population census counts is to reduce data volume and 

maintain confidentiality and respondent anonymity. In some countries census data are 

spatially aggregated to very coarse summaries that limit their use in further spatial 

analysis. For example, in Nigeria, simple population totals are provided for each state 

and local government area (LGA), with LGA being the most detailed. A LGA is similar 

to the size of a Unitary Authority (UA) district in the U.K. This level of aggregation 

makes accessibility studies and many types of spatial data analysis difficult as smaller 

area population estimates are often required than those provided by the census (Leyk et 

al. 2013).  

 

Areal interpolation is the process of transforming values of interest from source zones to 

provide estimates over a set of target zones with unknown values (Goodchild and Lam 

1980). A number of areal interpolation techniques have been developed but their 

performance has been found to depend on specific characteristics of the original data 

such as its known errors, its extent and its spatial properties (Zandbergen and Ignizio 
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2010; Wu et al. 2005) as well as the characteristics of any ancillary data used, for 

example, to constrain the disaggregation (Langford 2013). 

  

One of the simplest areal interpolation techniques is the areal weighting method that 

maintains total data volume and assumes that population is uniformly distributed within 

the source zones (Goodchild and Lam 1980). In reality, population distribution is not 

typically uniform within a source zone and assigning population density to every 

location is not a realistic representation due to the existence of water bodies, forests etc. 

where people are unlikely to reside. Point-based areal interpolation methods (Lam 

1983) have been used to overcome some of the errors associated with the assumption of 

uniform densities within source zones. These methods assign census zone populations 

to the centroid of each source zone, and then population counts are estimated by 

summing all points within the target zone. The major shortcoming of this method is that 

the polygon centroid is used to represent the total population within the polygon and by 

completely allocating (or not) to the target zone estimate the total population depending 

on its intersection status (Langford and Higgs 2006). This can cause aggregation errors 

when the centroids are used to measure accessibility to service facilities (Hewko et al. 

2002). Tobler (1979) proposed the pycnophylactic interpolation technique to overcome 

the shortcoming of point based approaches. Pycnophylactic interpolation generates a 

spatially varying but smooth surface from polygon data, whilst preserving the total data 

volumes. It assigns a non-zero population density value to every location within the 

study area. In reality, the areas of interest often have sudden changes in population 

density that coincide with rivers, roads and other uninhabitable areas. Thus approaches 

that make use of ancillary data to constrain areas within source zones over which data 

are disaggregated have been suggested (Langford et al. 1991; Eicher and Brewer 2001; 

Mennis 2003). One common approach for the interpolation of population data has been 

to include ancillary data on urban extent to drive this constrained allocation technique. 

 

Remotely sensed data such as aerial photographs have been used by researchers since 

the 1950s to visually interpret, analyse and estimate population (Green 1956). Lo (2008) 

describes three main approaches used to visually interpret aerial photographs for 

population mapping: first, counting individual dwelling units from the photographs; 

second, extracting the extent of urban settlement; and third, measuring areas of different 

land use. The increasing ability to process digital images has led to the development of 
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automated digital image classification based on spectral features of satellite imagery 

(Lillesand and Kiefer 1987; Lo 2006), and land cover derived from classified satellite 

imagery has been used by many researchers as ancillary data in spatial interpolation 

(Langford and Unwin 1994; Mennis 2003; Langford 2013). This is because the 

remotely sensed imagery provides spatial and spectral information that can be related to 

different land uses including residential areas. 

  

The dasymetric mapping method is an areal interpolation technique that incorporates 

additional data sources as control variables (e.g. such as can be derived from remote 

sensing data) to identify zones having different population densities (Langford and 

Unwin 1994; Cromley et al. 2011). In this way it is able to constrain the disaggregation 

of values of interest (e.g. population counts) from source zones to provide estimates 

over a set of target zones with unknown values (Langford et al. 1991; Langford and 

Unwin 1994; Mennis 2003, 2009; Eicher and Brewer 2001; Tapp 2010). The binary 

dasymetric method (Langford and Unwin 1994) which simply divides source zones into 

populated and unpopulated areas is the most common application of dasymetric 

mapping for population cross-areal interpolation (Mennis 2003). The binary dasymetric 

method uses only the populated area to calculate the population density, instead of using 

the total area of the source zone. This idea has been extended by Su et al. (2010) by 

further dividing the populated area into multiple classes depending on the availability of 

additional data. They applied transportation layers, topography and land use zoning to 

estimate population distribution in Taipei, Taiwan. An evaluation of a 3-class 

dasymetric model has been carried out (Eicher and Brewer 2001; Langford 2006), and 

although more complex than the binary dasymetric method, the results do not appear to 

show any strong benefit over the simple binary dasymetric method. Recent research has 

shown how improvements in the accuracy of areal interpolation can be advanced by 

using different statistical methods, varying from simple proportions to more 

sophisticated procedures (Qiu and Cromley 2013), a quantile regression approach 

(Cromley et al. 2011) and by utilising different data sources; for example, three 

dimensional LiDAR data (Sridharan and Qiu 2013), open access vector map data 

(Langford 2013) and household sample data (Leyk et al. 2013).   

 

It is a common practice to redistribute population census totals from an initial census 

area, as the source zone (e.g. middle super output area (MSOA) in the U.K.) to smaller 
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zones such as OA and to compare the result with the actual population counts of the 

lower level census area (e.g. OA) for validation. Previous research has used 

multispectral imagery mainly of 30m spatial resolutions to redistribute aggregate census 

data to a lower level census unit as the target zones for which true populations are 

known (Mennis 2003; Langford 2006; Lo 2008; Su et al. 2010). Langford (2013) draws 

attention to the implications of this practice: first, the performance of the most spatially 

detailed census data are not often measured because they are reserved for testing the 

performance of the interpolation methods; and second, it is difficult to evaluate the 

performance of target zones smaller than the lowest level census spatial unit because 

their true values are not known. He demonstrates the possibility of using unit postcodes 

(UPCs) in the UK as the target zones with an acceptable precision. The UPCs are 

smaller than the finest census zone division, the OA in the U.K. The population totals of 

the UPCs are not reported in the U.K. hierarchy of census units but are known and 

available at the Office of National Statistics (ONS) U.K. All these examples are drawn 

from a relatively “data rich” environment with census statistics available at a variety of 

scales extending down to fine divisions from Government Office Regions (GOR) of 

England to Unitary Authority districts, Census Wards, MSOA, Lower Super Output 

Areas (LSOA) and to OA. There remains an important question which is: How can a 

population surface be determined in areas of unknown distributions and with no 

validation data? This is an important issue as the spatial distribution of demand 

population is a critical input to determining demand and to evaluate access distance to 

facilities in location-allocation modelling. This is the primary motivation for the 

research reported here: to explore the methods to support location-allocation in Nigeria 

where census data are aggregated to very coarse summaries that limit their use in further 

spatial analysis. 

  

1.2 Motivation 

 

Census data at the small area level (e.g. MSOA, LSOA, OA, etc.) are unavailable in 

most parts of the world, especially in developing countries. In such places the need to 

estimate aggregate population counts to small areas to represent demand population 

(Cromley et al. 2012; Tomintz et al. 2013) is important in order to support better spatial 

planning and policy making. More specifically, calibrated solutions for estimating 

populations over small areas are needed to support repeatable and transparent facility 
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location analyses. Dasymetric interpolation using land cover and population data of the 

area under consideration potentially offers one such approach. 

 

In Nigeria population counts are collected for each household. Population censuses 

were conducted in 1963, 1973, 1991 and 2006; although it was to be conducted every 

10 years (NPC 2009). Census data are published only as spatially aggregated figures for 

States and LGAs. The aggregation of census data to LGA level, purportedly for 

confidentiality reasons, poses serious problems for effective spatial planning, such as 

for healthcare planning objectives. To date there appears to be no published research 

reporting the use of areal interpolation techniques to estimate aggregate census data 

over small areas in any part of Nigeria. However, population data for small areas have 

long been more generally found to provide information on local population 

characteristics that assist in coordinating, monitoring and evaluating service delivery 

(Curtis and Taket 1989). Reliable, spatially detailed population estimates are essential to 

support economic development, management decisions, disaster management, and 

urban and regional planning (Mennis 2009). Providing information describing the 

weight and distribution of demand over the region of interest also allows analyses of 

facility locations and population allocation.  

 

1.3 Aim and objectives of the study 

 

The main aim of this research was to generate population surfaces in areas where their 

actual distributions are largely unknown. The thesis evaluates dasymetric mapping and 

pycnophylactic interpolation applied across different spatial scales and using land cover 

data derived from classified satellite imagery of differing spatial resolutions as the 

ancillary data input. Initial work explored a U.K. case study to test the performance of 

the interpolation methods and the inputs in order to determine how well the populations 

reported in census small areas were estimated by interpolations with different input 

parameters. The best performing model and parameters developed from the U.K. case 

study were then adapted and applied to the Nigerian case study to estimate summary 

population totals over small areas of unknown distributions. The demand population 

established in this way was subsequently used to provide inputs to a location-allocation 

model in order to evaluate the current distribution of health facilities and to assess the 
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efficiency of their current locations and possible future spatial optimisation of these 

facilities.   

 

This research has three key aims: 

 To estimate population surfaces across different spatial scales in areas where 

actual distributions are unknown.  

 To transfer the ‘best’ solution found during this phase so as to create population 

surfaces and use these surfaces to evaluate current health facility locations.  

 To suggest alternative spatial arrangements of health facilities so as to improve 

their overall spatial accessibility. 

 

The specific objectives are to: 

 Apply dasymetric and pycnophylactic interpolation approaches across different 

spatial scales to redistribute aggregate population census data for Leicester over 

small areas.  

 Compare the estimated populations from the interpolations for three different 

census units and the known census counts in each case, to test the performance 

of the interpolation methods.  

 Adapt the model with the most appropriate interpolation method, grid size and 

ancillary data input to estimate demand population in Port-Harcourt, Nigeria. 

 Evaluate the public health facility locations currently in place in Port-Harcourt. 

 Suggest alternative spatial arrangement of public health facilities using heuristic 

location-allocation modelling approaches. 

 

1.4 Research questions 

 

The following questions were identified in order to achieve the overall objectives of this 

research.  

 Broad research question: 

How can estimates of the population for small areas be determined where 

detailed local mapping of census do not exist? 

 Specific research questions: 
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I. What is the relationship between estimated populations from different 

interpolations and the known census counts? 

II. Which is the most appropriate interpolation method, scale of 

disaggregation, and resolution of ancillary input data to apply to areas 

with no validation data? 

III. How well do current public health facilities serve the current population 

distribution? 

IV. What improvements in accessibility arise when public health facilities 

are optimally located? 

 

1.5 Thesis Structure  

 

The thesis comprises of eight chapters beginning with an introductory chapter, a general 

discussion and a conclusion chapter at the end. The main body of the thesis is divided 

into five chapters.  This section provides a brief description of these chapters as follows: 

 Chapter One presents a brief introduction to the thesis providing background to 

small area population estimation and spells out the problem area, objectives, 

research questions and the motivation for the study.  

 Chapter Two reviews literature on areal interpolation techniques, GIS and 

geographical analyses of access to health care and location-allocation models. 

The literature review forms the framework against which the analyses in 

subsequent chapters are undertaken. 

 Chapter Three presents the methodology. It describes the study area, the data 

and the implementation of areal interpolation methods. The chapter also 

highlights the evaluation of surfaces.  

 Chapter Four presents the results of areal interpolation for Leicester, the surfaces 

generated and the results from evaluation of surfaces. It highlights the most 

appropriate parameters from the results of the analyses in Leicester to be used to 

standardise the model for the analysis in Port-Harcourt.  

 Chapter Five presents the results of areal interpolation for Port-Harcourt, the 

inspection of surfaces generated using Google Earth and a brief description of 

what the errors from Leicester study mean for surfaces generated in Port-

Harcourt.  
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 Chapter Six presents case study analyses, methods and findings on location-

allocation in Port-Harcourt. The current public health facilities in Port-Harcourt 

were evaluated and alternative spatial arrangement of public health facilities 

were suggested. 

 Chapter Seven links the objectives with the key findings from the research to 

present a general discussion of the demand population values generated for 

Leicester and Port-Harcourt, the methods used and their assumptions. The 

chapter also reflects on the methods used and the result obtained, discusses 

limitations of the research and suggests areas for future work. 

 Chapter Eight links the findings from the literature, interpolations and the case 

study to present the conclusions from this research.   
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Chapter 2 

 

2. LITERATURE REVIEW 

 

2.1 Introduction 

 

In this chapter, the literature on the concepts and methods relating to the main aims of 

the research are reviewed. The objective is to review different techniques for areal 

interpolation and some of the more widely used location-allocation models.  

 

Section 2.2 reviews areal interpolation techniques. Section 2.3 considers the notion of 

geographic access measure more generally and in the specific context of access to 

health care, and considering facility location in health planning. Section 2.4 introduces 

location-allocation models and describes the p-median problem. The last section 

presents a summary of the review.  

 

2.2 Areal Interpolation Techniques  

 

Areal interpolation is the process of spatially disaggregating attributes (such as 

summary of counts) of some phenomenon such as population across incongruent 

boundaries where areas may be smaller, almost the same or bigger. Values are estimated 

for target zones (small areas) from source zones over which the data are summarised 

(Markoff and Shapiro 1973). A number of areal interpolation techniques have been 

proposed and used in order to improve estimation accuracy and to provide spatially 

distributed estimates of population over small areas (e.g. Markoff and Shapiro 1973; 

Tobler 1979; Goodchild and Lam 1980; Lam 1983; Flowerdew and Green 1991; 

Langford et al. 1991; Goodchild et al. 1993; Burrough and McDonnell 1998; Eicher and 

Brewer 2001; Mennis 2003; Cromley et al 2011; Langford 2013; Schroeder and Van 

Riper 2013). One reason for this is that many problems relating to spatially 

disaggregating attributes of some phenomenon largely depend on the spatial distribution 

of demand (Cromley et al. 2011; Tomintz et al. 2013). For these reasons, some of the 

proposed techniques use ancillary masks to spatially constrain the re-allocation (e.g. 
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Langford et al. 1991; Eicher and Brewer 2001) while others do not (e.g. Goodchild and 

Lam 1980; Tobler 1979). 

    

Table 2.1 shows a selection of previous literature reporting different areal interpolation 

methods. It illustrates the diversity and the duration of areal interpolation as a research 

topic. The table compares the characteristics of thirteen methods used by different 

authors in terms of assumptions made about their distribution of population, their use of 

ancillary data (or not) and their functions. The contents presented in the table are 

arranged alphabetically by the underlying methodology, starting first with methods that 

do not use ancillary data, then the intelligent methods. From Table 2.1, the distribution 

of population refers to assumptions made by each method whether the population is 

homogeneously or heterogeneously distributed within the source zone. The use of 

ancillary data characteristic describes the type of ancillary data used (or none) by each 

method to constrain the re-allocation. The Functions column describes the major spatial 

operation(s) used by each method to estimate population. The Authors column lists 

authors that have used each method. 

 

The review of areal interpolation methods focuses on the binary dasymetric method 

(Langford and Unwin 1994) and the pycnophylactic interpolation technique (Tobler 

1979). A combination of these two methods have been shown to produce better results 

than that obtained by either of the methods individually (Comber et al. 2008b; Kim and 

Yao 2010; Kim and Choi 2011) but it has not been tested in this research. This is 

because the primary purpose of this research is to evaluate dasymetric and 

pycnophylactic interpolations across different spatial scales. These techniques were 

chosen because of the variable of interest (population), data available and prior 

knowledge of the study areas. The basic difference between the two techniques is that 

the pycnophylactic interpolations do not make use of ancillary data and generate a 

smooth surface, while binary dasymetric surfaces use ancillary masks to constrain the 

re-allocation to only areas identified as populated and produces a non-smooth spatially 

discontinuous surface with sharp density transitions. 
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Table 2.1 Characteristics of areal interpolation methods 

S/NO Method Authors Ancillary data 
Distribution 

of population 
Functions 

1 
Areal 

Weighting 

Goodchild & Lam, 

1980;  Poulsen & 

Kennedy 2004; 

Cromley et al. 2009 

None Homogeneous 
Spatial 

Overlay 

2 
Point in 

Polygon 

Okabe & Sadahiro, 

1997 
None Homogeneous 

Point- in- 

Polygon 

3 
Pycnophylactic 

Interpolation 

Tobler 1979; Rase 

2001; Comber et al. 

2008; Kim & Yao 

2010 

None Heterogeneous 

Smoothing, 

Zoned 

Statistics 

4 

Address 

Weighting 

(AW) & Parcel 

Distribution 

(PD) 

Harris and Longley 

2000; Tap 2010; 

Zhang and Qiu 2011 

Address points 

& cadastral data 

(parcels) 

Heterogeneous Algorithm 

5 

Binary 

Dasymetric 

Method 

Langford & Unwin 

1994; Eicher & 

Brewer 2001; Mennis 

2003 

Land use/ Land 

cover 
Heterogeneous 

Spatial 

Overlay, 

Classification 

6 

Cadastral-

Based Expert 

Dasymetric 

System 

(CEDS) 

Maantay et al. 2007; 

Bentley et al. 2013 
Cadastral data Heterogeneous 

Spatial 

Overlay, 

Classification, 

Expert 

allocation 

system 

7 Control Zones Goodchild et al. 1993 
User defined 

zones 
Heterogeneous 

Digitizing, 

Spatial 

Overlay 

8 

Expectation 

Maximisation 

(EM) 

Flowerdew & Green 

1989;   Flowerdew & 

Green 1991; 

Dempster et al. 1977; 

Schroeder and Van 

Riper 2013 

Various 

variables 
Heterogeneous 

Statistical 

Algorithm 

9 
Heuristic 

Sampling 

Mennis & Hultgren 

2006; Sleeter & 

Gould 2007 

Land cover/ 

Land use 
Heterogeneous 

Classification, 

Empirical 

sampling 

10 
Neural 

Networks 

Turner & Openshaw 

2001 

Various 

variables such 

as distance, 

elevation etc. 

Heterogeneous 
Heuristic 

Algorithm 

11 
Regression 

Analysis 

Langford et al. 

1991;Yuan et al. 

1997; Cromley et al. 

2011. 

Land use/ Land 

cover 
Heterogeneous 

Regression, 

Spatial 

Overlay, 

Classification 

12 
Road Network 

Method 

Xie 1995;  Mrozinski 

& Cromley 1999; 

Reibel & Bufalino 

2005 

 

Road network 

data 
Heterogeneous 

Spatial 

Overlay 

13 

Smart 

Interpolation 

Method 

Diechmann 1996 

Location of 

rivers, transport 

structures etc. 

Heterogeneous 
Heuristic 

Algorithm 
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2.2.1 The Pycnophylactic Interpolation Technique  

 

Tobler (1979) proposed the pycnophylactic interpolation technique. The objective of the 

technique was to create a smooth surface of interpolated values from polygon data 

(choropleth to isopleth) with no sudden change at the polygon boundaries and to 

preserve the total source volume. That is, the total value of target zones equal that for 

source zones. The term “pycnophylactic” is derived from Greek pyknos for mass, 

density and phylax for guard, which means volume preserving (Rase 2001). The 

technique assumes heterogeneous population distribution within the source zone but 

does not draw on information about the underlying population distribution in the source 

zone, thereby assigning a non-zero population density value to every location (Kim and 

Yao 2010; Amaral et al. 2012). The lack of information about source zone internal 

structure is a major drawback as in reality some places do have abrupt barriers in the 

landscape such as elevated highways, rivers etc. (Reibel 2007). Such areas are 

uninhabitable and should have zero population density value. The pycnophylactic 

interpolation technique will be described formulaically in the methods chapter.   

 

The pycnophylactic interpolation technique has been used to improve the population 

density distribution of Seoul (Chang 2003). The results showed that population of Seoul 

were assigned to urban areas instead of residential areas. The assignment of population 

to urban areas was due to lack of information about source zone internal structure as the 

technique does not make use of ancillary data to spatially constrain the re-allocation. 

Some authors have attempted to improve the pycnophylactic interpolation technique by 

using attribute information of the population weighted centroid associated with each 

census tract (e.g. Martin 1989; Bracken and Martin 1989) to generate surfaces from 

points, and not areas. This surface generation technique was applied by Bracken and 

Martin (1989) to create spatial population distributions from census centroid data in 

South Wales, U.K. using the summary of the intra zone distribution of the population 

and the spatial configuration of centroid locations to generate a population surface 

independent of a particular zonal geography. Bracken and Martin found the method to 

identify populated areas based on population weighted centroid and to preserve sharp 

gradients at the source zones boundaries. The method also revealed the presence of 

unpopulated areas based on distance decay from population weighted centroid. 

Similarly, Harris and Longley (2000) created a discrete surface from points using 
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multiple population points based on address code records for each source zone instead 

of using population-weighted centroids. Zhang and Qiu (2011) suggest the use of high 

value points (school locations) that are assumed to provide a reasonable alternative for 

population-weighted centroids within the source zones. The school locations were used 

as control points in Collin County, Texas and the results show the method achieved a 

comparable accuracy with street weighting method. The major shortcoming of creating 

surfaces from points is the assumption about the nature of the population weighted 

centroid and lack of actual evidence of distribution (Langford and Higgs 2006). This 

causes aggregation error when the centroids are used to measure accessibility to service 

facilities (Hewko et al. 2002).  

 

The pycnophylactic interpolation technique was enhanced to model the distribution of 

population in Germany for regional planning (Rase 2001). Rase used triangulated 

irregular networks (TIN) instead of regular grids to improve visualisation and to 

maintain the original boundaries of the polygons. Another advantage of using a TIN 

over a traditional rectangular grid is that it uses boundary points as vertices in TIN 

model. The use of TIN is seen to be better than using regular grids as it allows the 

preservation of the original data points in the model of a surface (Peucker et al. 1978; 

Rase 2001). The disadvantage of the TIN model is that it requires additional processing 

time and large computer storage. Other example applications of the pycnophylactic 

technique include: point in polygon analysis (Okabe and Sadahiro 1997) and a 

geostatistical method of kriging (Kyriakidis 2004). 

 

Some authors have considered the limitations of pycnophylactic interpolation and 

combined the technique with the dasymetric method in order to draw the strengths and 

improve on the weaknesses of both techniques, which are perfectly complementary to 

each other (Kim and Yao 2010; Comber et al. 2008b). Kim and Yao (2010) developed a 

hybrid method that combines pycnophylactic interpolation with dasymetric method and 

compared the estimation accuracy of the hybrid method with areal weighting, binary 

dasymetric and the pycnophylactic interpolation methods. They found the combined 

technique to perform better than all others tested. Comber et al. (2008b) considered the 

benefits of pycnophylactic interpolation and combined the technique with dasymetric 

method to create the national agricultural land use dataset for England and Wales at 
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1km resolution. They found the technique to overcome differences in areal reporting 

units such as Parish (or Parish Groups), District, County etc. 

 

Many researchers acknowledged Tobler’s smoothing algorithm is cartographically 

suitable but not appropriate for advanced spatial analysis (Yuan et al. 1997; Eicher and 

Brewer 2001; Mennis 2003; Langford 2007; Tapp 2010). This is because the technique 

does not make use of ancillary information to reveal the underlying distribution of 

population in the source zones. It is simply a smoothed representation of a conventional 

choropleth map (Kim and Yao 2010). The concept of volume preserving remains very 

important in recent population estimation methods so as people are neither created nor 

destroyed. In view of this, further ancillary information is required to understand how 

population is distributed within the source zone to improve the interpolation process. 

 

2.2.2 The Dasymetric Mapping Method 

 

The history of dasymetric map dates back to the year 1833. The concept of dasymetric 

map were proposed by the Russian geographer Benjamin (Veniamin Petrovich) 

Semenov-Tian-Shansky (1870–1942) in his report to the Russian Geographic Society in 

1911 where he defined dasymetric map as “population density, irrespective of any 

administrative boundaries, is shown as it is distributed in reality, that is, by natural 

spots of concentration and rarefaction’’ (Petrov 2008, 134). The term “dasymetric” is 

derived from Greek words for density and measurement. This indicates the technique 

focused on the density within the underlying (population) surface, which can be 

recalculated using ancillary data that provide relevant additional information (Leyk et 

al. 2013). The dasymetric mapping technique when applied to cross-area population 

modelling makes use of ancillary information (e.g. remote sensing data) to infer 

underlying population distribution (Wright 1936) and provides a clear understanding of 

population distribution within a source unit (Langford and Unwin 1994; Langford and 

Higgs 2006).  

 

The basic principle of dasymetric mapping is to use additional control variables to 

identify zones having different population densities (Wright 1936). Many authors have 

used different types of control variables such as remotely sensed land cover data (e.g. 

Langford and Unwin 1994; Eicher and Brewer 2001; Mennis 2003), road network data 
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(e.g. Xie 1995; Mrozinski and Cromley 1999), cadastral data (e.g. Maantay et al. 2007), 

address points (e.g. Zandbergen and Ignizio 2010), and parcel data (e.g. Tapp 2010). 

The advantage of the technique is that it eliminates sharp differences at source zone 

boundaries and reduces errors of within-zone uniformity (Langford et al. 2008). In 

terms of population estimation, the model gives better information about the distribution 

of population (Cai et al. 2006). A possible limitation of dasymetric mapping is where no 

part of the source zone is identified as populated due to classification error (Martin et al. 

2000). This means population will not be assigned to that source zone or could be 

uniform in this case. The dasymetric mapping technique has been applied in different 

research areas such as environmental justice (Higgs and Langford 2009), public service 

accessibility (Langford et al. 2008), environmental health (Maantay et al. 2008), 

creation of National Agricultural Land Use Dataset (Comber et al. 2008b) and crime 

analysis (Poulsen and Kennedy 2004; Herrmann and Maroko 2006). The dasymetric 

mapping method will be described formulaically in the methods chapter.  

 

The ancillary data most commonly used in dasymetric mapping research to date has 

been land cover information derived from classified satellite imagery (Langford 2013; 

Kim and Yao 2010), and such data commonly have errors. Fisher and Langford (1996) 

analysed the sensitivity of the population estimates to error in the classified imagery 

with the assumption that the error was randomly spatially distributed and not related to 

specific classes. They found dasymetric mapping to be simple and robust to 

classification error. The technique when compared with four others provided better 

areal interpolation at classification error rates as high as 40%.  

   

A review of dasymetric mapping literature shows the development of several techniques 

using different types of ancillary data all with the aim of improving accuracy and 

possibly simplifying the method (Mennis 2003). The diversity of approaches is as a 

result of the absence of a universally accepted dasymetric mapping technique (Mennis 

2009). Some of the commonly used ancillary data are: topographic sheet (Wright 1936), 

aerial photographs (Green 1956), satellite imagery (Langford and Unwin 1994; Wu et 

al. 2005), land cover (Mennis 2003; Ryznar and Wagner 2001; Ward et al. 2000), image 

pixels (Harvey 2002; Holt et al. 2004), image texture (Chen 2002; Liu et al. 2006), 

slope (Schumacher et al. 2000), raster pixel maps (Langford 2007), vector GIS (Eicher 

and Brewer 2001), control zone (Goodchild et al. 1993), night-time lights (Pozzi et al. 
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2003; Briggs et al. 2007), cadastral data (Maantay et al. 2007; Bentley et al. 2013), 

housing distribution (Moon and Farmer 2001; Poulsen and Kennedy 2004; Leyk et al. 

2013), parcel data (Tapp 2010), OS VectorMap District (Langford 2013) and three 

dimensional LiDAR data (Sridharan and Qiu 2013).  

 

The most common approach to implementing dasymetric mapping is via the binary 

dasymetric method (Langford and Unwin 1994). This divides the source zone into 

populated and unpopulated regions, and the source zone population is then allocated to 

only the populated regions (Eicher and Brewer 2001; Mennis 2003; Langford 2007). 

However, the binary dasymetric approach still assumes that population density is 

uniformly distributed across the populated regions, within a source zone which is not 

likely to be true (Mennis and Hultgren 2006; Maantay et al. 2007). For this reason, a 

three-class dasymetric model has been evaluated by assigning population densities 

subjectively (Eicher and Brewer 2001) or by using a heuristic method based on 

empirical sampling (Langford 2006), but the results tested so far do not appear to show 

any significant benefits in accuracy over the simpler binary dasymetric method.  

 

Some authors have shown dasymetric mapping to consistently provide better target zone 

estimates than other areal interpolation techniques when they are compared (Langford 

2013; Poulsen and Kennedy 2004; Eicher and Brewer 2001; Martin et al. 2000; 

Cockings et al. 1997; Fisher and Langford 1995; Langford et al. 1993). Poulsen and 

Kennedy (2004) applied areal weighting and binary dasymetric to show the distribution 

of residential burglaries in central Massachusetts with the rate expressed as the number 

of residential burglaries per number of housing units. They found the results obtained 

from areal weighting method to be misleading since the housing units in the census are 

not evenly distributed. They applied dasymetric mapping and masked out non-

residential areas using a residential land use layer as the ancillary input data. This gave 

better result when compared with those obtained from areal weighting. Similarly, Eicher 

and Brewer (2001) applied five areal interpolation techniques to model population 

densities across 159 counties in Pennsylvania, West Virginia, Maryland, Virginia, and 

the District of Columbia. They used U.S. County zones as the source units and U.S. 

block group as the target unit to test the model. They found the binary dasymetric 

method to be the most straightforward and assigned 100% of the population to only 

urban and agricultural land use types. Langford (2013) investigated the accuracy of 
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different techniques of areal interpolation in redistributing aggregated census data to 

areas smaller than the finest census division (UK postcode units). The study compared 

nine different interpolation methods and found the dasymetric mapping method to 

perform better than street weighting, a population density surface method and areal 

weighting.  

 

Other researchers have used the dasymetric method to mask out areas of environmental 

restriction to human presence in order to generate a potential surface of population 

occurrence in the municipality of Maraba, Para State, in the Brazilian Amazon (Amaral 

et al. 2012). The aggregated population counts were then redistributed into cells. They 

found that the spatial patterns were compatible with the occupation process described in 

the literature and verified by field work. The possibility of redistributing aggregate 

census data to target zones smaller than the finest census zone division (OA in the U.K.) 

has been demonstrated (Langford 2013). Langford applied areal interpolation across 

two spatial resolutions. First, using lower super output areas (LSOAs) as the source 

zones and output areas (OAs) as the target zones. Second, output areas were used as the 

source zones and unit postcodes (UPCs) as the target zones. The UPCs are smaller than 

the OAs. The population totals of the UPCs are not reported in the U.K. hierarchy of 

census units but are known and are available at the Office of National Statistics (ONS) 

U.K. The results show that aggregate census data at OAs were successfully redistributed 

to UPCs with an acceptable precision. Previous research in areal interpolation literature 

used target zones whose actual values are known and are reported (see Table 2.2). This 

was done to test the performance of the interpolation techniques and to allow 

comparison of different interpolation techniques (Langford 2013). The implication of 

this is that small areas were referred to as not only “geographic target units” but those 

areas whose actual population is known. 
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Table 2.2 Target zones used in previous literature whose population is known 

Author/year Study area Title Source 

zone 

Target 

zone 

     

Fisher & 

Langford 1995 

Leicestershire 

County, UK 

Modelling areal 

interpolation errors 

U.K. ward U.K. ED 

Eicher and 

Brewer 2001 

Four U.S. 

States  

Areal interpolation 

using dasymetric 

mapping 

U.S. county U.S. block 

group 

Mennis 2003 Southeastern 

Pennsylvania, 

US 

Population modelling 

using dasymetric 

mapping 

U.S. census 

tract 

U.S. block 

group 

C.P. Lo 2008 Atlanta, 

Georgia, US 

Population estimation 

using GWR 

U.S. census 

tract 

U.S. census 

tract 

Su et al. 2010 Taipei, Taiwan Multilayer/multiclass 

dasymetric mapping 

County Chinese Li 

 

Langford 2013 Cardiff, South 

Wales, UK 

Small area population 

using open access data 

LSOA/ OA OA/UPC 

Sridharan and 

Qiu 2013 

Round Rock, 

Texas 

Areal interpolation 

using LiDAR 

U.S. block 

group 

U.S. block 

 

2.3 Influence of demand population on spatial accessibility 

 

Small area population estimates are important for accessibility studies that are 

commonly used to support spatial planning and policy development, and facility 

location-allocation analyses. In some countries (e.g. Nigeria) where small area 

population estimates are often required than those provided by the census, aggregate 

population census totals are redistributed to smaller areas to represent demand 

population values. The small area population estimates generated largely depend on the 

underlying population distribution model used.  

 

Previous studies have examined the influence of alternative population distribution 

models on GIS-based spatial accessibility analyses using the two-step floating 

catchment analysis technique (Langford et al. 2008). They applied areal weighting and 

dasymetric mapping to redistribute aggregate population for the city of Cardiff UA in 

South Wales, U.K. The population estimates were used to represent spatially distributed 
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demand values to evaluate accessibility to five services (General Practice, Dentist, 

Primary School, Post Office and Pharmacy). The study found that the underlying 

population distribution model used in generating demand surfaces has significant 

influence on the computed accessibility scores to such services. Similarly, Langford and 

Higgs (2006) used population estimates from dasymetric mapping to represent demand. 

They applied the two-step floating catchment technique to measure potential access to 

primary health services in three unitary authorities within Wales, U.K. These results 

showed that the dasymetric model returned lower accessibility scores than those from a 

standard pro rata model. Other authors have also used population estimates from 

dasymetric model to evaluate representation and scale error in the maximal covering 

location problem (Cromley et al. 2012). They found a significant difference when 

compared with estimates from point-based and areal weighting methods on a small 

scale data. This indicates an improvement in the spatial distribution of demand, thereby 

suggesting maximal coverage for all demand points.  

 

2.4 GIS and Geographical Access to Healthcare 

 

Geographical accessibility to health facilities is the relative ease with which individuals 

may travel a reasonable distance from their homes to the nearest health facility 

(Guagliardo 2004; Owen et al. 2010). Presently, health care needs of the population and 

how these needs can be met equitably are of particular interest to policy makers and 

health system planners (Cromley and Mclafferty 2002). Researchers all over the world 

are concerned with “the relationship between territory and health” (Benigeri 2007, p.3) 

and Geographical Information Systems (GIS) is a diverse, powerful and effective 

planning tool that is increasingly being used in providing such information (Higgs 2005; 

Carr and Addyson 2010). Health system planners require evidence to support unbiased 

decision making in resource location-allocation and the analyses of access to health 

facilities using GIS may help to provide this.  

 

Some of the recent applications of GIS in health planning include; the analysis of access 

to Multiple Sclerosis (MS) specialty care in Veterans Health Administration (Culpepper 

et al. 2010). Highly developed GIS mapping techniques were used with an existing 

database to generate travel times and to develop an approach to assess irregularities in 

access to specialty care. This is useful in identifying underserved areas for all conditions 
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and diseases affecting the population. Comber et al. (2010) applied a modified grouping 

genetic algorithm to existing emergency medical services (EMS) data to select 

alternative sites for locating ambulances in Niigata, north-western Japan. The result is 

likely to improve average EMS response time by 1 min 14 s. The importance of this 

cannot be overemphasized as ambulance response time is a critical determinant for 

patients’ continued existence and the technique provides strong evidence in support of 

spatial planning. Dulin et al. (2010) applied GIS techniques to available patient data of a 

community health centre to create a model that demonstrates the health care needs of 

the community and could also predict its future needs. The technique is called Multiple 

Attribute Primary Care Targeting Strategy. This is very useful for implementing 

changes and planning in order to improve access to health services in the community. 

The impact of community-based outreach immunisation services in Zambia were 

analysed and optimal locations of the Growth Monitoring Program Plus (service points) 

were identified using GIS (Sasaki et al. 2010). The result shows that access distance to 

service points were reduced by about 30 per cent, with more people having access to the 

service points thereby increasing immunisation coverage within the communities. This 

provides strong evidence in support of spatial planning.   

 

2.4.1 Review of spatial access 

 

In terms of health care provision, GIS allow “access distance to health services to be 

measured and provides a practical way to assess the geographic accessibility of said 

services” (Sasaki et al. 2010, p.1). In recent times, researchers have used GIS to 

measure access to services in a number of ways: Euclidean distance approach 

(McGregor et al. 2005; Apparicio et al. 2008; Jones et al. 2010), cost-path analysis 

(Brabyn and Skelly 2002), travel time (Martin et al. 2002; Delamater et al. 2012), 

isochrones approach (Tanser et al. 2006; O’Sullivan et al. 2000), standard deviational 

ellipse (Sherman et al. 2005; Nemet and Bailey 2000), floating catchment method (Luo 

2004; Langford and Higgs 2006; McGrail and Humphreys 2009; McGrail 2012), 

Gravity model (Rosero-Bixby 2004; Guagliardo 2004), Space-time prism (Lee and 

McNally 2002), Spatial Analysis Network Tools (SANET) (Okabe et al. 2006), and GIS 

network analysis method (Sasaki et al. 2010). 
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Some authors used the Euclidean distance approach to measure straight line distances 

(as the crow flies) from home to health facility (McGregor et al. 2005). The 

disadvantage of using this technique is that it does not consider topology and assumes 

people only use facilities that are closest to their homes. Other authors have developed 

an application that built isochrones (lines of equal travel time) for travel using different 

modes of public transport in Glasgow (O’Sullivan et al. 2000). There are other authors 

that have applied a space-time prism approach to measuring access to health facilities in 

Portland, Oregon (Lee and McNally 2002) and highlighted its usefulness in measuring 

access at both unit and zonal scales. Brabyn and Skelly (2002) in their cost-path 

analysis used street network distances to consider routes that are more likely to be used 

from homes to health facility. Some other authors enhanced the accuracy of distances 

measured on street network by including travel times (Martin et al. 2002). The travel 

time on a network is the time it takes to travel over a distance between two points on the 

network. There are other authors who considered individual’s activity space to measure 

access to primary health care in Carolina using a 1-km road network buffer (Sherman et 

al. 2005). A buffer is a circle drawn around a facility with population closest to the 

facility weighing more than the distant ones. The major limitation of the technique is 

that it does not account for travel routes (roads) and assumes the population within the 

circle all have the same access to the facility. 

 

Some authors have proposed spatial analysis network tools (SANET) which denotes 

real world events by using points on a network instead of considering events as a set of 

points on a plane (Okabe et al. 2006). The technique involves determining supply and 

demand and is likely to address questions relating to linear networks, utilities and 

facilities, finding the nearest facility, estimating distance to service areas, route planning 

etc. (Comber et al. 2008a). Gibson et al. (2011) applied a GIS network analysis of 

shortest travel distance to calculate distance travelled along the road network to find the 

most distant households from health centre in rural China. They mentioned the 

technique offers a more reasonable estimate of accessibility than other methods that 

disregard the terrain. Sasaki et al. (2010) studied the relationship between immunisation 

coverage and distances to immunisation service points in a peri-urban area in Zambia. 

They used a GIS network analysis method to measure distances from households to 

George health centre and the nearest Growth Monitoring Program Plus sites and found 
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that residents are less likely to access and utilise health facilities as their access distance 

to the facilities increases.  

 

These studies have demonstrated the utility of GIS and why it is being increasingly used 

to address key policy concerns such as health inequalities, accessibility and resource 

allocation. It also highlights the role GIS techniques can play in providing information 

needed to ensure health services are delivered closer to where people live, and at the 

same time to provide evidence in support of spatial planning. The flexibility and ease of 

obtaining information from GIS have shown health system planners’ interest in using 

GIS research findings as evidence to support their decisions on resource location and 

allocation. Optimal locations of health facilities is the key feature in healthcare planning 

and location-allocation models assist health system planners in determining and 

assigning users to the new facility (Bowerman et al. 1999; Cromley and McLafferty 

2002). 

 

In summary, this review shows most studies to date in Health Care planning have used 

planar based approaches to measure accessibility, but analysis of access to health 

services requires a more realistic estimate of accessibility and GIS network analysis 

technique provides this (Gibson et al. 2011). The measure of the shortest distance 

travelled on road network between each demand and each facility is used as an input 

into location-allocation models together with the demand surfaces generated from the 

areal interpolations of population data and facility locations to evaluate location 

decisions. The review also highlights the importance of facility location and allocation 

of resources in determining geographical accessibility to health services. 

 

2.5 Location-allocation models 

 

The location-allocation problem was first introduced by Cooper (1963). Location-

allocation models are spatial analyses model that determine optimal facility locations 

based on set criteria by minimising the total average distance travelled from demand to 

all facility locations, or by increasing demand coverage (Hakimi 1964; Teitz and Bart 

1968). These models are used in GIS to select the best possible location for a facility to 

best serve a demand area, or at the same time, to allocate demand that the facility will 

serve best (Abernathy and Hershey 1972; Oda and Yamamura 1987; Bashiri and Fotuhi 
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2009). The main objective of location-allocation models is to determine the optimal 

locations of facilities (Kumar 2000). They require three critical inputs: spatially 

distributed demand surfaces, facility locations to serve as the supply points, and shortest 

network distance travelled between demand and supply. A number of location-

allocation models have been applied to various fields of study (e.g. GIS and spatial 

planning, health facilities, engineering, industry etc.) and are also implemented with 

various constraints, such as minimum distance, maximum coverage etc. (Jia et al. 2007). 

 

Some authors classify location-allocation models based on certain criteria, the most 

common of these are: the objective function of the model (Rosing et al. 1979; Chen and 

Handler 1993), input parameters used (Marianov and ReVelle 1992), methods used in 

obtaining results (Brandeau and Larson 1986), topological characteristics (Campbell 

1994; Daskin 1995), features of the facilities (Pirkul and Schilling 1991), locating 

facilities at different time periods (Erlenkotter 1981), type of supply chain (Gao and 

Robinson 1994), demand patterns (Plastria 1997) and single/multi product model or 

push/pull models (Klose and Drexl 2004). Jia et al. (2007) considers the objective 

function and classifies location models into three types namely; p-median, p-centre and 

Covering models. The p-median approach aims to minimise total weighted distances 

(Teitz and Bart 1968). The covering models maximises demand coverage (Toregas et al. 

1971; Church and ReVelle 1974). The p-centre approach attempts to find the smallest 

radius that covers all points on a circle (Sylvester 1857).   

 

2.5.1 The p-Median problem  

 

The p-median problem was introduced by Hakimi (1964) with an objective function of 

selecting p facilities (among the total facilities) that minimises the total weighted 

distance travelled (or time) between facilities and demand points (Teitz and Bart 1968; 

ReVelle and Swain 1970), thereby maximising accessibility. There are two basic 

approaches to solve the p-median problem: optimal and heuristic (Church and Sorensen 

1994). The most robust of the optimisation techniques is the Lagrangian Relaxation 

with sub-gradient optimisation developed by Narula et al. (1977) but this technique 

requires too much computation time to solve (Church and Sorensen 1994). A number of 

heuristic procedures have been developed to help solve the p-median problem. They 

include: Maranzana (1964), Teitz and Bart (1968), Genetic Algorithm (Holland 1975), 
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Simulated Annealing, TABU search (Glover 1990), GRASP and a combination of two 

or more procedures to form the hybrid approach (Church and Sorensen 1994). The 

general principles of these heuristic procedures are discussed below. 

 

A warehouse location heuristic was developed by Maranzana (1964), as an alternative 

strategy for the p-median problem. The Maranzana heuristic starts with a configuration 

of p facility locations, selecting a subset (p) of, for example 20 out of 85 potential 

locations. The heuristic first assign each demand to the closest facility location creating 

service areas around each facility. It then takes each service area separately and 

relocating the facility within that service area to the place that best serves the demand. 

The heuristic repeats these two steps until there is no change in the service areas and the 

locations of facilities within each service area. 

 

An alternative approach to solve the p-median problem by adding an interchange 

heuristic to the model was suggested by Teitz and Bart (1968). The interchange 

heuristic controls the selection of locations that are more likely to reduce the average 

weighted distance (or time) from demand to all locations. The process starts with a 

configuration of p facility locations. The selected locations in the subset are called the 

p-facility locations while the potential locations not in the subset are the candidates. The 

process selects a candidate site and swaps this candidate for each of the current p-

facility locations. Any swap that improves weighted distance, replaces the p-facility 

location. The process then continues by selecting another candidate site, testing swaps 

and replacing the p-facility location where there is an improvement in weighted 

distance. The heuristic stops when no swap between candidate and p-facility location 

improves weighted distance.      

 

Genetic Algorithms are heuristic search and optimisation algorithms, introduced by 

Holland (1975) that “simulates the process of genetic mutation and selection in 

biological evolution” (Sasaki et al. 2010). The optimisation process proceeds by first 

initialising a population of chromosomes. These chromosomes represent individual sites 

in a multi-site optimisation (Comber et al. 2010). Then evaluating each chromosome in 

the population based on some fitness criteria to assess its performance. The criteria 

involve creating new chromosomes by mating chromosomes in the current population, 

using crossover and mutation. Then deleting members of the existing population to 
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make way for new members and evaluating the new members to add them to the 

population. The evaluation stages are repeated until some convergence criteria are met 

or usually based on the number of populations produced. The heuristic algorithm then 

returns the best chromosome as the solution. 

 

Tabu search is an advanced interchange heuristic that has the capability to arrive at a 

local optimum, back away from a local optimum, and attempt to re-optimize using 

interchange (Glover 1986, 1990). The process can use both short and long term 

memory. It uses short term memory (TABU List) to manage interplay between what 

enters and exits the tabu list and when. It also uses long term memory to help in 

identifying either productive or untried areas for search. Tabu search algorithm starts by 

choosing an initial solution (Tabu list). It then creates a candidate list of solutions. The 

algorithm evaluates solutions and chooses the best admissible solution. If the stopping 

conditions are satisfied then it is a final solution, else, it will update the tabu list as a 

new initial solution and create a new candidate list of solutions.  

 

The first Simulated Annealing algorithm was developed by Metropolis et al. (1953). 

The algorithm begins with creating an initial random placement (location). It then 

makes a defined move to modify the initial placement and create a new placement. It 

evaluates placements by calculating the change in placement due to creation of new 

placement. Depending on the change in placement, the algorithm either accepts or 

rejects the new placement. It then updates the acceptance or rejection and repeat by 

making another new placement. The process is done until there is no change in 

placement with a new placement.   

 

Some authors have used the p-median method of location-allocation to measure the 

efficiency of a facility location (Rahman and Smith 2000; Jia et al. 2007). They found 

an increase in the efficiency of a facility location when the total average distance from 

demand to all facilities reduces. This is often used in research relating to health 

geography to select optimal locations of emergency medical services (EMS) and other 

health facilities (Tomintz et al. 2013). The p-median model and all algorithms used to 

solve the p-median problem assume that minimising the total distance between demand 

and supply is more likely to provide optimal accessibility to facility locations. The p-

median problem also assumes the facilities to be located have the same capacity and 
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provide the same services. This is the major shortcoming of the p-median problem. In 

situations where the hierarchical nature of the facilities to be located is incorporated in 

the model, it was found to produce a less appropriate result (Hodgson 1990). This is 

because the assumption made by the model does not fit the facilities to be located. The 

advantage of the p-median problem is that it analyses the network as it minimises the 

total weighted distance (ReVelle and Eiselt 2005). The p-median problem was first 

described mathematically by ReVelle and Swain (1970) as in Equation 2.1 subject to 

three conditions outlined in Equation 2.2 to 2.4:  

 

Minimise Z      ∑ ∑ 𝑎𝑖 𝑑𝑖𝑗

𝑛

𝑗=1

𝑥𝑖𝑗

𝑛

𝑖=1

                                                                  [2.1] 

 

Where Z is the objective function, i is a set of demand areas (residential areas), j is a set 

of supply areas (health facility locations), 𝑑𝑖𝑗 is the shortest distance travelled between 

demand and supply, 𝑎𝑖  is the volume of demand (the population), n is the number of 

points (demand/supply), P is the number of facilities to be located, and 𝑥𝑖𝑗 equals 1 if 

demand i is assigned to facility j, otherwise 0. 

 

Each demand point must be assigned to at least one facility as in Equation 2.2. This 

means that each demand point is assigned to its closest facility location, thereby 

creating service areas around each facility location to suggest a catchment for the 

facilities and indicate the likely geographical coverage for each facility. 

 

                                                          ∑ 𝑥𝑖𝑗 

𝑛

𝑗=1

= 1       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖                                                 [2.2] 

 

Only the p facilities are to be located as in Equation 2.3. This means out of the total 

number of potential locations (e.g. 85), only a subset (e.g. 32 optimal sites) is to be 

located. Also, assignment can be made only to a facility as in Equation 2.4. This means 

a demand can only be allocated to its closest facility. 

   ∑ 𝑥𝑗𝑗 = 𝑃

𝑛

𝑗=1

                                                                        [2.3] 
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  𝑥𝑖𝑗 ≤ 𝑥𝑗𝑗  ;   𝑥𝑖𝑗 = 0, 1   for all i, j                                            [2.4] 

 

Some authors compared Teitz and Bart’s heuristic with optimal solutions derived by the 

linear searches (Rosing et al. 1979). They found Teitz and Bart’s (1968) heuristic to 

perform better than linear searches when there are large numbers of facilities to locate. 

Other authors compared Teitz and Bart’s heuristic with Ardalan’s p-median problem, 

with and without maximum distance constraints (Rahman and Smith 1991). They found 

Teitz and Bart’s heuristic to perform better than Ardalan’s p-median. The advantage of 

using Teitz and Bart over Ardalan’s method is that the latter seeks to minimise weighted 

distances but does not substitute an existing facility by a potential facility as it is done 

by Teitz and Bart’s heuristic. Another shortcoming of the Ardalan’s method is that it 

“does not guarantee optimality at termination” (Rahman and Smith 1991). Teitz and 

Bart heuristic is seen to be superior to other heuristic searches because it is insensitive 

to starting configuration as its application for specific problems need to be started only 

once (Rosing et al. 1979; Fotheringham et al. 1993).  

 

The choice of heuristic procedure to solve the p-median problem in a GIS system must 

be based on its robustness, speed, simplicity and ease of integrating into existing data 

structure and software. Teitz and Bart’s (1968) heuristic is a “proven approach, easy to 

program, relatively fast, easy to explain, and produces good results” (Church and 

Sorensen 1994).  

 

2.6 Summary 

  

The key points arising from this review are that the pycnophylactic interpolation 

technique assumes a heterogeneous population distribution and assigns a non-zero 

population density value to every location across the study area. The binary dasymetric 

method uses ancillary data to understand the underlying population distribution and 

only allow values to be redistributed over areas identified as populated. The GIS 

network analyses technique is more likely to provide a realistic estimate of accessibility 

to health services than the planar based approaches. The Teitz and Bart’s heuristic for 

the p-median model have been found to be robust, relatively fast and produce generally 

better results compared to other search approaches.  
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Chapter 3 

 

3. METHODS 

 

3.1 Introduction 

 

This chapter presents the implementation of areal interpolation methods for Leicester, 

U.K. This research aims to determine population surfaces in areas of unknown 

distributions. The research design applies areal interpolation techniques at different 

spatial scales to redistribute summary population totals over small areas in a location 

where small area census data is available for validation (Leicester, U.K.), in order to 

adapt the most appropriate method, target grid sizes, and ancillary data for areas where 

small area census data is not available (Port-Harcourt, Nigeria). The idea is to develop 

and validate models for Leicester so that the most appropriate model and parameters can 

be calibrated with land cover and census data for Port-Harcourt. The methods used and 

the stages involved in the research design are illustrated in Figure 3.1.  

 

The research design was implemented in two stages: The first stage, highlighted in blue 

dash in Figure 3.1, shows that the dasymetric method was applied to census totals for 

Leicester UA, the source zone while the pycnophylactic interpolation method was 

applied to census totals for Leicester UA together with all the surrounding UAs 

(Harborough, Blaby, Charnwood and Oadby and Wigston) with which it shares a 

common boundary, as the source zones to derive an interpolated gridded population 

surface at resolutions of 100m and 30m postings, to then be aggregated to MSOA, 

LSOA and OA target units. The estimated populations were then compared with the 

known census counts in each case, for validation. This chapter reports the 

implementation of the first stage and the results are reported in Chapter Four. The 

second stage, highlighted in red long dash dots in Figure 3.1, used the results from the 

first stage to adapt the most appropriate interpolation method, target grid sizes and 

ancillary data and applied these to the Port-Harcourt case study and the results are 

presented in Chapter Five.   
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The next section of the chapter introduces the two study areas. Section 3.3 describes the 

data acquired for the research. Section 3.4 describes the implementation of areal 

interpolation methods. Section 3.5 describes the evaluation of surfaces generated from 

areal interpolations. The last section presents a summary of the chapter. 

 

 

 

Figure 3.1 - The research design highlighting the first stage in blue dash and the second 

stage in red long dash dots.  

 



30 

 

3.2 Study areas 

 

This research aims to redistribute summary population totals to small areas where the 

population distribution is unknown. The research design involves selecting an area 

where the actual population distribution is known and where validation is possible, to 

develop models and evaluate their performance. The most appropriate model will then 

be calibrated using land cover and population data for an area where the actual 

population distribution is unknown to estimate its aggregate population to small areas. 

The methodology was first developed for Leicester. This is because of the analysts’ 

knowledge of the area, the ease of validation and data availability. The model was then 

calibrated using ancillary information and 2006 population census data for Port-

Harcourt, Rivers State, Nigeria to redistribute summary population totals to small areas.  

Given the diversity of settings between Leicester and Port-Harcourt, one would not 

necessarily expect models developed for Leicester to capture accurately the relationship 

between population density and land cover in Port-Harcourt. However, satellite images 

for the two study areas were not classified the same way. The satellite images for the 

city of Leicester show industrial zones to be very different from residential areas 

whereas in Nigeria, although there is a distinction between industrial zones and 

residential areas, it is not very clear. To minimise the effect of this, the study assumes 

all built-up areas are residential areas because it will be difficult to extract only 

residential areas for Port-Harcourt. 

 

3.2.1 Leicester    

 

The city of Leicester is the largest in East Midlands and the tenth largest in the U.K. 

Leicester covers an area of about 73 km
2
 with a total population of 279921 in 111148 

resident households as at 2001 census (http://www.leicester.gov.uk/about-leicester/). 

Leicester is one of the U.K.’s most ethnically and culturally diverse places with 

residents of the city originally from over 50 countries from across the globe. The 

diversity is as a result of a number of reasons such as economic, family and the fleeing 

of persecution. The city of Leicester witnessed migration of Ugandan Asians in early 

1970s although significant in Leicester’s history but does not have much effect on the 

population. This is because the census figures show a decrease in total population by 

1% from 1971 to 1981 (see Table 3.1). The city of Leicester witnessed intense 

http://www.leicester.gov.uk/about-leicester/
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migratory change in the 1990s when asylum seekers and refugees from Balkans, Iraq, 

Afghanistan, Iran and Kurdish area of Turkey began to arrive into the U.K. The 

migration of Somali into the U.K. since 2000, and the arrival of migrants from 

European Union (EU) countries due part to the accession of 10 countries into the EU in 

2004 were major migration events in Leicester’s history 

(www.leicester.gov.uk/research).  

 

Table 3.1 shows total population for the city of Leicester from 1951 - 2011. It also 

shows the percentage increase/decrease in the population for the period from 1951 - 

1961 up to 2001 - 2011. There was a significant increase in total population by 6% and 

17% during the periods 1991 - 2001 and 2001 - 2011 respectively. This is important 

because the variable of interest is population and the two study areas (Leicester and 

Port-Harcourt) witnessed an increase in population from 1990 to 2011. 

 

Table 3.1 Percentage change in population for Leicester from 1951 to 2011 

Census Year Population From 

Census Year 

To 

Census Year 

Percentage  

Increase/Decrease  

1951 

 

285200 
   

1961 288100 1951 1961 1 

1971 284200 1961 1971 -1 

1981 280300 1971 1981 -1 

1991 272133 1981 1991 -3 

2001 279921 1991 2001 3 

2011 329839 

 

2001 2011 17 

 

The map of England highlighting the location of Leicestershire County in English 

midlands is shown in Figure 3.2a. Figure 3.2b shows map of Leicestershire County with 

the city of Leicester in dark shade at the middle of the County. Figure 3.2c shows the 

boundary map of Leicester.   

http://www.leicester.gov.uk/research
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Figure 3.2 - The map of (a) England showing location of Leicestershire County; (b) 

Leicestershire County with location of Leicester UA; (c) Leicester UA. The digital 

boundaries are © Crown Copyright and/or database right 2013. An Ordnance 

Survey/EDINA supplied service.  

 

3.2.2 Port-Harcourt 

 

Port-Harcourt is the capital of Rivers State from the South-south zone of Nigeria. It is 

the country’s second largest commercial centre. Port-Harcourt city local government 

covers an area of about 109 square kilometres with a population of 541115 in 126010 

households (NPC 2006a). It lies on the coastal plain of eastern Niger Delta along Bonny 

river located in Nigeria’s oil rich Niger Delta (Amnesty International 2010). Crude oil 

in commercial quantity was discovered in Oloibiri town, Rivers State in 1956 and was 

first exported in 1958 (NNPC 2011). The Delta has an estimated reserve of 37.2 billion 

barrels (as at December 30 2013) of crude oil with over 14 major exploration and 
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production companies having their offices in Port-Harcourt (EIA 2010). Oil and Gas 

sector generated approximately $600 billion from 1960 to 2009 with three-quarters of 

all rural communities in the Delta lacking access to fertile arable land, safe water source 

and health care (Amnesty International 2009a). Port-Harcourt city experienced intense 

migratory change from other states of Nigeria because of oil and gas activities, and from 

rural areas of Rivers State where farmlands have been destroyed due to oil spills in the 

90s (Nna and Pabon 2012).  

 

The map of Nigeria highlighting the location of Rivers State in the South-south zone is 

shown in Figure 3.3a. Figure 3.3b shows map of Rivers State with Port-Harcourt LGA 

in dark shade around the middle of the map. Figure 3.3c shows the boundary map of 

Port-Harcourt LGA.   

  

 

Figure 3.3 - The map of (a) Nigeria showing location of Rivers State; (b) Rivers State 

showing location of Port-Harcourt; (c) Port-Harcourt City Local Government Area. The 

digital boundaries are Copyright for Geotechnics Services 2011.  
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3.3 Data 

 

The aim of this research is to redistribute summary population totals available for 

relatively large UA region for reasons of confidentiality to predict those in much 

smaller areas such as LSOAs and OAs. A possible solution is to use population census 

data for Leicester UA with digital boundaries as the source zones, a set of square grids 

to derive the modelled population surface and digital boundaries for MSOAs, LSOAs 

and OAs as target zones. Satellite imagery covering the study area is also required 

because one of the interpolation techniques to be evaluated uses land cover data 

extracted from a classified satellite image as the ancillary data input. The research also 

aims to use the population surfaces that are generated to evaluate current health facility 

locations and to suggest alternative spatial arrangement of public health facilities using 

heuristic location-allocation approaches. This requires the locations of health centres 

and a road network dataset. The datasets acquired for implementing areal interpolation 

for Leicester and Port-Harcourt are presented in Table 3.2 and Table 3.3 respectively. 

 

3.3.1 Leicester 

 

Table 3.2 shows the data acquired for implementing areal interpolation for Leicester. 

The table also shows the format and source of the data.  

 

Table 3.2 Data: Leicester 

Data Format Source 

*Landsat7 (ETM) 30m 

spatial resolution 
Image 

United States Geological Survey (USGS) 

website (http://www.usgs.gov/) 

**Ortho-rectified aerial 

photograph 25cm spatial 

resolution  

Image Ordnance Survey, U.K. © Crown copyright 

and/or database right 2013. All rights 

reserved. 

Census data (U.K. 2001) 

with boundaries of OAs, 

LSOAs and MSOAs 

Shapefile Census Area Statistics on the Web (casweb) 

(http://casweb.mimas.ac.uk/2001/start.cfm). 

*Landsat7 (ETM) acquired 16th April 2003, WRS_PATH=202 and WRS_ROW=023.     

** Ortho-rectified aerial photograph acquired 22nd May 2010  

http://www.usgs.gov/
http://casweb.mimas.ac.uk/2001/start.cfm
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Figure 3.4 shows a Landsat7 (ETM) image (30m spatial resolution) covering part of 

England with Leicester area highlighted with a black polygon with image band 

combination 4:3:2 with WRS_PATH = 202 and WRS_ROW = 023. The city of 

Leicester covers an area of about 73 Square Kilometres. The metadata file is available 

in Appendix 1.  

 

 

 

 

Figure 3.4 - The Landsat7 (ETM) image 30m spatial resolution of the Leicester area 

(black polygon) with image band combination 4:3:2.  

 

 

 



36 

 

Figure 3.5 shows one of the 98 tiles of 25cm ortho-rectified aerial photographs that 

covers the city of Leicester with image band combination 1:2:3. 

 

 

Figure 3.5 - One of the 98 tiles of 25cm ortho-rectified aerial photograph with image 

band combination 1:2:3. The tile is © Crown Copyright and/or database right 2013. An 

Ordnance Survey/EDINA supplied service.  

 

Image Resample 

 

The 25cm ortho-rectified aerial photograph was used to resample image pixels to 

different pixel resolutions (3m and 10m) without altering the projected coordinate 

system. The cubic convolution resample method that uses the closest 4 x 4 block of 

input cells to fit a smooth curve through the cell centres to find the value, was used to 

compute each output cell value. The weighting factors for the average of the input cells 

are computed using a cubic function of distance. The cubic convolution resample 

method was used because it reduces blurring and produces a smoother output image 

when compared with the output of nearest neighbour or bilinear method. The resampled 
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images for Leicester area with 3m and 10m spatial resolutions are shown in Figures 3.6 

and 3.7 respectively.    

 

 

 

 

 

Figure 3.6 - 25cm ortho-rectified aerial photograph of Leicester area resampled to 3m 

with image band combination 1:2:3. 
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Figure 3.7 - 25cm ortho-rectified aerial photograph of Leicester area resampled to 10m 

with image band combination 1:2:3. 

 

The boundary of Leicester area and the support grids (30m and 100m square grids) used 

to derive the modelled population surfaces are shown in Figures 3.8. 
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Figure 3.8 – The boundary data for; (a) Leicester UA, (b) 100m square grids, and (c) 

30m square grids. The digital boundary is © Crown Copyright and/or database right 

2013. An Ordnance Survey/EDINA supplied service.   

(a) 

(b) 

(c) 
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The boundaries of MSOA, LSOA and OA for Leicester UA used as target zones to test 

the performance of the interpolation methods are shown in Figures 3.9 to 3.11 

respectively.    

 

 

 

 

Figure 3.9 – MSOA used as the testing zones. The digital boundary is © Crown 

Copyright and/or database right 2013. An Ordnance Survey/EDINA supplied service. 
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Figure 3.10 - LSOA used as the testing zones. The digital boundary is © Crown 

Copyright and/or database right 2013. An Ordnance Survey/EDINA supplied service.  
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Figure 3.11 - OA used as testing zones. The digital boundary is © Crown Copyright 

and/or database right 2013. An Ordnance Survey/EDINA supplied service. 
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3.3.2 Port-Harcourt  

 

Table 3.3 shows the data acquired for implementing areal interpolation and location-

allocation for Port-Harcourt. The table also shows the format and source of the data.   

 

Table 3.3 Data: Port-Harcourt 

Data Format Source 

*Landsat7 (ETM+) 30m 

spatial resolution 

Image  United States Geological Survey (USGS) 

website (http://www.usgs.gov/) 

**Spot5 (colour) 10m 

spatial resolution 

Image Astrium Services U.K. (www.astrium-geo.com) 

***Quickbird 60cm 

spatial resolution 

Image Geo-technics Services Limited, Port-

Harcourt. 

Population census (2006) 

with priority tables 

Excel National Bureau of Statistics’ website  

http://www.nigerianstat.gov.ng/ 

Primary Health Care 

Centres (PHCCs) 

MS word Planning, research & statistics dept., Ministry 

of Health, Port-Harcourt. 

Road network data Shapefile Geo-technics Services Limited, Port-Harcourt 

States and LGAs boundary Shapefile Geo-technics Services Limited, Port-Harcourt 

*Landsat7 (ETM+) acquired 8th January 2003 WRS_PATH=188 and 

WRS_ROW=057. 

**Spot5 acquired 10th January 2007 

*** Quickbird image acquired 2006  

 

Figure 3.12 shows a Landsat7 ETM+ image (30m spatial resolution) covering Port-

Harcourt area, Rivers State, Nigeria with image band combination 4:3:2, and with 

WRS_PATH = 188 and WRS_ROW = 057. A subset of the image for Port-Harcourt 

was obtained as shown in Figure 3.13. The satellite image was used to derive land cover 

data for Port-Harcourt at 30m spatial resolution that was used as the ancillary data input 

for the binary dasymetric method. Port-Harcourt city covers an area of about 109 

Square Kilometres. The metadata file information is available in Appendix 2.  

 

 

http://www.usgs.gov/
http://www.astrium-geo.com/
http://www.nigerianstat.gov.ng/
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Figure 3.12 - The Landsat7 (ETM+) 30m spatial resolution covering Port-Harcourt area 

(shaded in grey), Rivers State, Nigeria with image band combination 4:3:2.  
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Figure 3.13 - Subset for Port-Harcourt acquired from the Landsat (ETM+) 30m spatial 

resolution. Port-Harcourt city covers an area of about 109 square kilometres. 
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Figure 3.14 shows Spot5 colour image (10m spatial resolution) covering Port-Harcourt 

area with image band combination 4:3:2. The satellite image was used to derive land 

cover data for Port-Harcourt at 10m spatial resolution that was used as the ancillary data 

input for the binary dasymetric method. The metadata file information is available in 

Appendix 3.  

 

 

 

 

 

Figure 3.14 – Spot5 colour image 10m spatial resolution for Port-Harcourt obtained 

from Astrium Services SpotCatalog (http://catalog.spotimage.com/PageSearch.aspx).  

 

 

 

 

 

http://catalog.spotimage.com/PageSearch.aspx
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Figure 3.15 shows a Quickbird satellite image 60cm spatial resolution covering Port-

Harcourt (red polygon) with image band combination 1:2:3. The image was obtained 

from Geo-technics Services Limited, Port-Harcourt, Nigeria in ecw format. The image 

was resampled to 3m spatial resolution using cubic convolution resample method as 

described earlier. The resampled image for Port-Harcourt area with 3m spatial 

resolution is shown in Figures 3.16.    

 

 

 

Figure 3.15 – Quickbird satellite image 60cm spatial resolution covering Port-Harcourt 

(red polygon) with image band combination 1:2:3. The image was obtained from Geo-

technics Services Limited, Port-Harcourt. 
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Figure 3.16 - Quickbird satellite imagery 60cm spatial resolution covering Port-

Harcourt resampled to 3m with image band combination 1:2:3.  
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The source zone and the support grids (30m) used for the implementation of areal 

interpolation for Port-Harcourt are shown in Figures 3.17.  

 

 

 

Figure 3.17 - The boundary data for; (a) Port-Harcourt LGA (source zone), and (b) 30m 

square grids used to derive the modelled population surface. The digital boundary is 

Copyright for Geotechnics Services 2011.  
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3.4 Implementation of areal interpolation methods 

 

This section describes the implementation of the two areal interpolation methods: the 

binary dasymetric and pycnophylactic interpolation technique. The data described in 

section 3.3.1 was used to apply areal interpolation methods across different spatial 

scales over Leicester area. Leicester UA boundary was used as the source zone for the 

binary dasymetric method while Leicester UA together with all the surrounding UAs 

with which it shares a common boundary were used as source zones for the 

pycnophylactic interpolation method, to derive an interpolated gridded population 

surface at resolutions of 100m and 30m postings, to then be aggregated to MSOA, 

LSOA and OA target units and assessed for accuracy using known census counts in 

each case. An essential component for dasymetric mapping method is an ancillary data 

(e.g. land use) that provides a binary divide between populated and unpopulated areas 

(Kim and Choi 2011; Qiu et al. 2012). The satellite images described in section 3.3.1 

were classified into land cover types and reclassified to create a binary divide between 

built-up and non-built-up areas. 

 

3.4.1 Supervised Classification  

 

The supervised classification technique was employed to process the remotely sensed 

images (described in section 3.3.1) and identify the extent of built-up areas so that it can 

be used as ancillary data in the implementation of the binary dasymetric method in 

order to redistribute aggregate population of the source zone to only those areas. This 

was done in Erdas Imagine 2013. Landsat7 (ETM) 30m spatial resolution and aerial 

photo 25cm spatial resolution resampled to 10m and 3m were used to derive the land 

cover data. Areas of homogenous land cover in the image were selected as the training 

sets and circumscribed by polygon boundaries with each representing known land cover 

category. Spectral signatures that represent the mean digital numbers of those pixels 

selected in the training sites were defined. Fourty, thirty-four and thirty-two spectral 

signatures were selected for each of 30m, 10m and 3m spatial resolution image 

respectively. These spectral signatures were evaluated using the display mean plot 

window to ensure the signatures for each land cover type are closely related and to 

generate as little confusion as possible, suggesting a clear separation of land cover 

classes before classification. The mean plot window for the Landsat7 (ETM) 30m 
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spatial resolution image is shown in Figure 3.18 while those of 10m and 3m from 

resampled aerial photo of Leicester are shown in Appendix 4. After the signatures were 

evaluated and are determined to be satisfactory, the signatures of each land cover type 

were combined using the merged selected signatures utility in the tool bar creating a 

new weighted signature for each land cover type. This was done to ensure the signatures 

of each land cover type include each training site selected. The names and colour 

symbols for the new combined signatures were changed to identify the land cover type 

that each signature represents. Three land cover types were identified for the 30m 

spatial resolution image (vegetation, water and built-up) and five land cover types 

(water, bare ground, vegetation, thick vegetation and built-up) for each of 10m and 3m 

image were identified. This is because the 10m and 3m images appear to offer greater 

spatial precision in the depiction of different land cover types compared to the 30m 

image. These land cover types were selected with special interest on built-up areas 

because they are more likely to be associated with residential land use. Category names 

(vegetation, thick vegetation, built-up, bare ground and water) were assigned to these 

classes and are described in Table 3.4. These were used in the supervised classification. 

The signature editor and the signature mean plot for the combined signatures for 

Landsat (ETM) 30m spatial resolution image are shown in Figures 3.19 and 3.20 

respectively, and those for 10m and 3m from resampled aerial photo of Leicester are 

shown in Appendix 5.   

 

Table 3.4 Classified land cover categories for Leicester  

Category name Definition 

Built-up 

All built-up areas. This includes residential areas, commercial 

areas, urban recreational areas, industrial facilities, cemeteries, 

campus-like institutions, roads, schools etc. 

Vegetation All agricultural land uses, parks, gardens, shrub, grass, crops, tree 

cover etc.  

Thick vegetation All forests, thick tree covers, woods etc. 

Water Open water such as rivers, lakes, ponds, reservoirs, streams, canals 

etc.  

Bare ground All open fields and non-built-up areas, exposed soil. 
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Figure 3.18 - Signature mean plot evaluating signatures for vegetation, builtup and 

water from Landsat7 (ETM) 30m spatial resolution image.  

 

 

 

Figure 3.19 - Signature editor for the combined signatures from Landsat7 (ETM) 30m 

resolution image 
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Figure 3.20 - Signature mean plot for the combined signatures from Landsat7 (ETM) 

30m resolution image.  

 

The next step applies the maximum likelihood classification algorithm. The algorithm 

compares every pixel in the training samples with various spectral signatures and 

assigns all the pixels in an image into land cover types based on their most likely 

statistical relationship as described by Lillesand et al. (2008). Figure 3.21 shows the 

steps involved in supervised classification. It is common practise to use maximum 

likelihood classifier to classify land cover based on spectral signatures at per pixel level, 
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while ignoring spatial features in an image. Maximum likelihood classification 

algorithm can provide reasonably good classification results for Landsat imagery (Lu et 

al. 2012; Blaschke 2010). However, there are a number of issues related to using 

maximum likelihood classifier for medium and high resolution imagery. This is because 

a significant proportion of medium and high spatial resolution imagery in urban areas 

can be affected by shadows (Zhou et al. 2009). In this study, extracting urban land cover 

from resampled aerial photo data was more difficult compared to using the Landsat 

(ETM) source. Lu et al. (2010) have shown how the use of spatial features improves 

land cover classification, especially when high spatial resolution images are used. 

Object-based classification provides an alternative for classifying remotely-sensed 

images into thematic map. Lu et al. (2012) compared object-based classification with 

maximum likelihood and found object-based classification to be especially valuable for 

higher spatial resolution images. The object-based classification algorithm was not 

applied in this study. The supervised classification procedure was repeated several times 

using a consistent criterion throughout the classification process until the best possible 

results with global classification accuracy of 87.89%, 83.20% and 82.03% was achieved 

using 30m, 10m and 3m spatial resolution satellite image respectively. The accuracy of 

classification was assessed by comparing 256 random points identifying certain pixels 

in the classified image to reference pixels for which the class is known. The accuracy 

reports are available in Appendix 6. The results of the supervised classification using 

30m, 10m and 3m spatial resolution images are presented in Chapter 4. The classified 

images were reclassified into a simple binary division of built-up and non-built-up 

areas. The built-up areas were those classified as built-up while the non-residential areas 

were those classified as vegetation, thick vegetation, bare ground and water. A 

weighting factor of 1 was assigned for the built-up areas and 0 for the non-built-up 

areas. The binary masks derived from land cover data derived from classified satellite 

images of 30m spatial resolution, and those of 10m and 3m spatial resolutions derived 

from classified resampled aerial photo data which represent the underlying spatial 

distribution of population within the source zone, are presented in Chapter 4.   
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Figure 3.21 – Flowchart showing steps involved in supervised classification 
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3.4.2 The binary dasymetric method 

 

The binary dasymetric method is based on using additional geographic information (e.g. 

land use) that provides a binary divide between built-up and non-built-up areas within 

the source zone (Langford et al. 1991; Langford and Unwin 1994; Eicher and Brewer 

2001; Mennis 2003; Qiu et al. 2012). The use of this additional geographic information 

(ancillary data) as control units allows the source zone population to be redistributed 

only to built-up areas and assumes a constant population density within the source zone 

(Langford and Unwin 1994; Mennis 2003; Qiu et al. 2012). The population density is 

calculated by dividing the population count of a source zone by the total size of all 

built-up areas within the source zone. The population density is multiplied by the area 

of overlap between areas identified as built-up and the target zone to obtain an estimate 

of the population, and then all population estimates that falls within a target zone are 

summed up to obtain the target zone population. The binary dasymetric method can be 

implemented in both raster and vector modes, and may produce similar interpolation 

results (Qiu et al. 2012). In this study, the binary dasymetric method was implemented 

in vector mode. Land cover data derived from classified satellite imagery of the 

Leicester area with differing spatial resolutions (30m, 10m and 3m) were each 

converted to vector and used as the ancillary input data to implement the vector-based 

binary dasymetric method.  

 

The binary dasymetric method (vector mode) was implemented in nine steps and it 

involves: (1) overlaying the vector ancillary data representing populated areas within 

the source zone with the boundary of the source zone using the intersect tool in ArcGIS 

10.2.2; (2) calculating the area of overlap using calculate geometry; (3) summing up all 

the areas of overlap to obtain the total area for the source zone; (4) calculating the 

density of the populated areas by dividing the population of each source zone by the 

total area for that source zone. This is expressed mathematically in Equation 3.1; (5) 

overlaying each of 30m and 100m grids of cells with the areas of intersect derived in (1) 

above; (6) calculating the areas of the newly overlaid grids using calculate geometry; 

(7) calculating population estimate for each overlaid grid by multiplying the area with 

the density. This is expressed mathematically in Equation 3.2; (8) overlaying the target 

zones with the population for each overlaid grid using the intersect tool; and (9) 

obtaining the interpolated population of each target zone by summing all the 
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populations for each overlaid grid within the target zone. A flowchart describing these 

steps is shown in Figure 3.22 

 

 

Figure 3.22 - Implementation steps for the binary dasymetric method (vector mode) 

 

The population density of the source zone is expressed mathematically as:   

𝑑𝑠𝑝 =  
𝑃𝑠

𝐴𝑠𝑝
                                                                 [3.1] 

 

Where 𝑑𝑠𝑝 is the population density of the source zone s, 𝑃𝑠 is the total population of 

source zone s and 𝐴𝑠𝑝 is the area of source zone s having land cover identified as 

populated. 
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The estimated population for the overlaid grid is expressed mathematically as:   

�̂�𝑡 =  ∑ 𝐴𝑡𝑠𝑝𝑑𝑠𝑝

𝑆

𝑠=1

                                                     [3.2] 

 

Where �̂�𝑡 is the estimated populations of overlaid grid, t; 𝑠 is the number of source 

zones, 𝐴𝑡𝑠𝑝 is the area of intersection between overlaid grid t and source zone s and 

𝑑𝑠𝑝as defined in Equation 3.1.   

 

3.4.3 Pycnophylactic Interpolation Method 

 

The pycnophylactic interpolation of the population count for Leicester UA was used to 

derive an interpolated gridded population surface at resolutions of 100m and 30m 

postings, to then be aggregated to MSOA, LSOA and OA target units and assessed for 

accuracy using known census counts in each case. The unitary authority of Leicester is a 

“single polygon” and the technique can only be applied to two or more polygons. 

Polygons of districts that share a common boundary with Leicester UA (Harborough, 

Blaby, Charnwood and Oadby and Wigston) were included to generate the 

pycnophylactic surface with five source zones (as in Figure 3.23). The total population 

for each source zone is shown in Table 3.5 below.   

 

Table 3.5 Population totals for the source zones used to implement the pycnophylactic 

interpolation method. 

Unitary Authority Total Population 

Blaby District 90252 

Charnwood District 153462 

City of Leicester 279921 

Harborough District 76559 

Oadby and Wigston District 55795 
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Figure 3.23 - Source zones used for the pycnophylactic interpolation method with the 

City of Leicester (study area) shaded in grey. 

 

The basic principle of the pycnophylactic interpolation is to create a smooth surface 

across the study area with no sudden change at polygon boundaries and the total value 

of target polygons must equal that for source polygons (Tobler 1979) and for each 

source zone population to be unchanged. Figure 3.24 illustrates the general concept of 

the pycnophylactic interpolation. Given source zones with total populations (0 

iterations), and with each source zone being represented by a different colour as shown 

in Figure 3.24. The source zone populations are reassigned by mass preserving 
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reallocation to remove abrupt changes in source zones boundaries. The technique 

computes continuous population density (per cell) in each source zone. The population 

density per cell is then smoothed repeatedly by replacing the value of each cell with the 

weighted average of its neighbours. The volume of the attributes within each source 

zone remains unchanged but varies smoothly at the boundaries. It is assumed that with 

25 iterations as in Figure 3.24, a better representation of the variation is a smooth 

surface (Tobler 1979). 

 

 

Figure 3.24 – The pycnophylactic interpolation method 

(Source: Tobler, W. R., 1992) 

 

The procedure for generating the pycnophylactic surface for the total populations of the 

source zone has been described by Qiu et al. (2012) and it involves: (1) converting the 

source zone data (vector) to raster using the feature-to-raster tool; (2) joining the value 

attribute table (VAT) of the raster source zone to the vector source zone to access 

source zone populations; (3) computing the population density per cell in the attribute 

table of the source zone (using each of 30m and 100m support grids) by dividing the 

population by the number of cells in each source zone using the field calculator; (4) 

calculating a new density by replacing the value of each cell with the weighted average 

of its neighbours using the focal analysis tool; (5) estimating the density for each source 

zone using the new per cell density (for each of 30m and 100m support grids) with the 
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zonal statistics function; (6) adjusting the new density by multiplying each cell value 

with the ratio between the original population and the estimated total population density 

of each source zone; (7) repeat steps 3-6 until no more adjustment is required (e.g. 

maximum change in any pixel density values between iterations falls below a threshold 

level), such that zone total equals original value (pycnophylactic condition); (8) 

obtaining the estimated interpolated gridded population of each target zone by summing 

the adjusted population density of each cell falling within each target zone using the 

zonal statistics tool. The implementation steps described above are illustrated using a 

flowchart in Figure 3.25.   

 

 

 

Figure 3.25 - A flow chart for the implementation steps for the pycnophylactic 

interpolation method. 
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3.5 Evaluation of surfaces 

 

The interpolated gridded pycnophylactic surfaces and the dasymetric population 

surfaces at 100m and 30m resolutions of the output grid (created in sections 3.4.1 and 

3.4.2) were overlaid with the boundaries of MSOA, LSOA and OA target zones for 

Leicester and then aggregated to obtain estimates of the populations for these target 

zones, and assessed for accuracy using known census counts in each case. The digital 

boundaries for the target zones were overlaid with the interpolated gridded population 

surfaces based on spatial location and each polygon in the target zones was assigned a 

summary of all counts in the interpolated gridded population surfaces that intersect the 

polygon. The estimated populations in each target zone were then obtained and 

compared with known census counts for each target zone. Figure 3.26 shows an 

example where the boundaries of Leicester LSAOs were intersected with the 

interpolated gridded pycnophylactic surfaces at 100m resolution of the output grid and 

the estimates of the population at LSOA target zones were obtained. The same 

procedure was repeated to obtain population estimates for the three U.K. census units 

(MSOAs, LSOAs and OAs) for Leicester that were used as the target zones from the 

interpolated gridded pycnophylactic surfaces and the dasymetric population surfaces.    

 

The residuals were calculated and mapped to visually explore the nature of the error as 

has been done in previous research (Langford 2013; Qiu et al. 2012; Mennis and 

Hultgren 2006; Eicher and Brewer 2001). The residual is calculated as the estimated 

population subtracted from the actual populations of each census unit. The accuracy of 

the interpolation is measured using the root mean squared error (RMSE) metric 

described by Fisher and Langford (1995) as has been done in previous research 

(Langford 2013; Tapp 2010; Mennis and Hultgren 2006; Gregory 2002; Eicher and 

Brewer 2001). The RMSE metric gives a summary of the error within census units. The 

RMSE metric was used to be able to compare between alternative methods applied to a 

common set of source and target units. The error within a given source zone (RMSE) 

uses absolute difference between estimated populations and the populations reported for 

the census units within each of the target zones and is calculated as in Equation 3.6.  
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RMSE =  √
1

𝑛
 ∑(X𝑖 −  Y𝑖)2 

𝑛

𝑖=1

                                                  [3.6] 

 

Where: X𝑖 is the known census count at zone i, Y𝑖 is the estimated population from the 

interpolation at zone i, and n is the number of target zones. 

 

The RMSE metric is “less useful for comparing between different sets of source and 

target units” (Langford 2013), particularly where resolution change is involved. This is 

because the RMSE metric is affected by the absolute size of estimated values (e.g. 

MSOA counts are as expected larger than LSOA counts and would have a larger RMSE 

values). Previous research (Eicher and Brewer 2001; Mennis and Hultgren 2006; 

Langford 2013) considers the variation in actual population of the target zones (e.g. 

MSOA and OA), and to account for these variations, the RMSE score is divided by the 

average known population of each target zone to obtain the coefficient of variance 

(CoV). The CoV provides a relative error metric suitable for comparing values across 

the target zones. This is a useful metric as this research seeks to test performance over 

census areas of differing resolutions and CoV is more appropriate for cross-resolution 

comparisons. The CoV is calculated as in Equation 3.7.  

 

CoV =  
RMSE

x̄  
                                                               [3.7] 

 

Where: x̄  is the mean population of the known census count for each target zone. 
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Figure 3.26 - Leicester LSOAs intersect interpolated gridded pycnophylactic surfaces at 

resolutions of 100m postings   
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3.6 Summary 

 

This chapter has presented the methodology used to redistribute aggregate population 

census data for Leicester over small areas. Figure 3.27 presents a summary chart that 

provides a visual framework for all of the various models created and interpolations 

undertaken for Leicester study area. Eight modelled population surfaces for Leicester 

were generated using different combinations of land cover derived from classified 

imagery and source and target zone sizes. Two of these are pycnophylactic surfaces 

created using 30m and 100m support grids. The remaining six are dasymetric surfaces 

created using; a binary mask derived from land cover data derived from classified 

satellite image of 30m spatial resolution used as the ancillary data input at 30m and 

100m support grids postings; and a binary mask derived from land cover data of 10m 

and 3m spatial resolution each derived from classified resampled aerial photograph data 

used as the ancillary data input at 30m and 100m support grids postings. This was done 

to explore if different land cover data of both different sources and resolutions of the 

same source would reveal spatial variations within the study area, and also to explore 

whether a more detailed ancillary data input could reduce the estimation error (or not), 

as suggested by Zandbergen and Ignizio (2010). The estimated interpolated gridded 

population of each target zone (MSOA, LSOA and OA) were summed to obtain the 

estimated populations for each of the target zones. The estimated populations for these 

target zones were compared with known census counts of the same target zones to 

assess the performance of the interpolation methods. The results of the 24 experiments 

are presented in Chapter Four together with the error values for the simple areal 

weighting interpolation method. The simple areal weighting method defines the ‘lowest 

common denominator in terms of methodological sophistication and acts as a useful 

benchmark against which other techniques may be measured’ (Langford 2013). The 

most appropriate parameters obtained from Leicester study were applied to the Port-

Harcourt case study.    
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Chapter 4 

 

4. RESULTS: LEICESTER 

 

4.1 Introduction 

 

This chapter presents the results of areal interpolation for Leicester implemented in 

Chapter Three. The summary population totals for Leicester (from U.K. 2001 census) 

were disaggregated using two approaches: binary dasymetric and pycnophylactic 

interpolation. The binary dasymetric method used the Leicester UA as the source zone 

while the pycnophylactic interpolation method used the Leicester UA together with all 

the surrounding UAs with which it shares a common boundary as source zones. The 

binary dasymetric method is based on ancillary data (such as land use) that controls the 

redistribution to only built-up areas. A binary mask derived from land cover data 

derived from classified satellite image of 30m spatial resolution and a binary mask 

derived from land cover data derived from classified resampled aerial photo of 10m and 

3m spatial resolutions was each used as the ancillary data input. These source zones 

were used to create modelled population surfaces at resolutions of 100m and 30m, and 

then aggregated to MSOA, LSOA and OA target units and assessed for accuracy using 

known census counts in each case. The accuracy of the interpolation techniques used 

was measured using RMSE and CoV as suggested by Langford (2013).  

 

The next section presents the results of supervised classification. Section 4.3 presents 

the results of areal interpolations at different spatial scales for Leicester. Section 4.4 

presents results of evaluation of surfaces. The last section (4.5) provides a summary of 

the results for Leicester indicating the most appropriate parameters to apply to the Port-

Harcourt case study.  

 

4.2 Supervised classification 

 

The remotely sensed images acquired for Leicester and described in section 3.3.1 were 

processed to identify the extent of built-up areas that were used as the ancillary data 

input for the binary dasymetric method. This section presents the classified images 
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produced and the binary classified images created from the classified images, to show 

only built-up and non-built-up areas. 

 

4.2.1 Classified images 

 

The classified images obtained from supervised classification described in section 3.4.1 

are shown in Figures 4.1 to 4.3. Figure 4.1 shows a classified image using Landsat7 

(ETM) 30m spatial resolution. The classified images using resampled aerial photo data 

of 10m and 3m spatial resolutions are shown in Figures 4.2 and 4.3 respectively. The 

accuracy of classification was assessed by comparing 256 random points comparing 

certain pixels in the classified image to reference pixels for which the class is known.  

 

Table 4.1 presents the comparison of the overall accuracy and Kappa statistic between 

the different land cover data of both different sources and resolutions of the same 

source. The accuracy reports indicate a good agreement between thematic maps 

generated from image and the reference data when Landsat7 (ETM) 30m spatial 

resolution was used. The classification accuracy is above the minimum standard of 

digital image classification for optical remote sensing data (85%) recommended by Paul 

(1991) and Jansen et al. (2008) while the classification accuracy recorded from 

resampled aerial photo data of both 10m and 3m spatial resolution imagery were 

slightly below the minimum standard of digital image classification for optical remote 

sensing data (see Table 4.1).   

 

Table 4.1 - Comparison of the overall accuracy and Kappa statistic between the 

different land cover data 

Land cover data Overall accuracy (%) Kappa accuracy (%) Kappa coefficient 

30m spatial resolution  87.89 81.08 0.81 

10m spatial resolution  83.20 73.07 0.73 

3m spatial resolution  82.03 71.64 0.72 
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Figure 4.1 – The classified Leicester image derived from Landsat7 (ETM) 30m spatial 

resolution. The digital boundaries are © Crown Copyright and/or database right 2013. 

An Ordnance Survey/EDINA supplied service.    
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Figure 4.2 - The classified Leicester image derived from resampled aerial photo data of 

10m spatial resolution. The digital boundaries are © Crown Copyright and/or database 

right 2013. An Ordnance Survey/EDINA supplied service.    
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Figure 4.3 - The classified Leicester image derived from resampled aerial photo data of 

3m spatial resolution. The digital boundaries are © Crown Copyright and/or database 

right 2013. An Ordnance Survey/EDINA supplied service.     
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4.2.2 Binary classified images 

 

The binary dasymetric method uses additional geographic information (e.g. land use) to 

divide the source zone into built-up and non-built-up areas. The classified images 

presented in section 4.2.1 were reclassified into a simple binary division by assigning a 

weighting factor of 1 to all areas classified as built-up areas and 0 to all other areas (as 

described in section 3.4.1). The binary masks derived from land cover data derived from 

classified satellite images of both different sources and resolutions of the same source 

which represent the underlying spatial distribution of population within the source zone, 

are presented in Figures 4.4 to 4.6. Figure 4.4 shows a binary mask derived from land 

cover data derived from classified Landsat7 (ETM) 30m spatial resolution image data. 

Figures 4.5 and 4.6 show binary masks derived from land cover data derived from 

classified resampled aerial photo data of 10m and 3m spatial resolutions respectively.  

 

Table 4.2 compares the sizes of the total built-up areas in the source zone derived from 

different land cover data. The binary classified images showed that built-up areas 

derived from land cover data derived from classified Landsat7 (ETM) 30m spatial 

resolution has a larger area size compared to those derived from classified resampled 

aerial photo data of 10m and 3m spatial resolutions. The results showed that the area 

classified as built-up reduces in size as the resolution of land cover data increases. This 

is because 10m and 3m spatial resolution images appear to offer greater spatial 

precision in the depiction of different land cover types compared to the 30m image. The 

results do not show much difference between the 10m and 3m spatial resolutions 

resampled aerial photo data. One possible reason for this could be because they are both 

from the same source. 

 

Table 4.2 - Comparison of the total built-up area in the source zone between the 

different land cover data    

Built-up areas Total source zone area (km
2
) 

Landsat7 (ETM) 30m spatial resolution  45.31 

Resampled aerial photo data10m spatial resolution  35.94 

Resampled aerial photo data 3m spatial resolution  35.57 
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Figure 4.4 – A binary mask derived from land cover data derived from classified 

Landsat7 (ETM) 30m spatial resolution. The digital boundaries are © Crown Copyright 

and/or database right 2013. An Ordnance Survey/EDINA supplied service.  
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Figure 4.5 – A binary mask derived from land cover data of 10m spatial resolution 

derived from classified resampled aerial photo data. The digital boundaries are © 

Crown Copyright and/or database right 2013. An Ordnance Survey/EDINA supplied 

service.    
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Figure 4.6 - A binary mask derived from land cover data of 3m spatial resolution 

derived from classified resampled aerial photo data. The digital boundaries are © 

Crown Copyright and/or database right 2013. An Ordnance Survey/EDINA supplied 

service.   
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4.3 Areal interpolation methods 

 

The binary dasymetric and the pycnophylactic interpolation methods were tested across 

different spatial scales. The differences in the assumptions made by the two methods 

and the scales of disaggregation used in the implementation of the methods generated 

different target zone estimates of the population.  

 

4.3.1 The binary dasymetric method 

 

The binary dasymetric method described in section 3.4.2 uses land cover data derived 

from classified satellite imagery as ancillary masks to spatially constrain the re-

allocation, as has been done by many authors. In this study, three different land cover 

data of 30m, 10m and 3m spatial resolutions were used as the ancillary data input for 

the binary dasymetric method and square grids of 30m and 100m were each used to 

create the modelled population surfaces. Leicester UA was used as the single source 

zone for the binary dasymetric method. The population density for each of 30m, 10m 

and 3m spatial resolution land cover data used as the ancillary data input was calculated 

as a single uniform density estimate across Leicester.  

 

Table 4.3 shows the population densities (persons/10,000 m
2
) for the different ancillary 

data input used for the binary dasymetric method. The results show that land cover data 

derived from classified Landsat7 (ETM) 30m spatial resolution when used as the 

ancillary data input provided a lower population density compared to 10m and 3m 

spatial resolution land cover data derived from classified resampled aerial photo data. 

The 10m and 3m spatial resolution land cover data derived from classified resampled 

aerial photo data show small difference in population density across Leicester. This is 

not surprising because they are both from the same source.  

 

Table 4.3 - Population density per 10,000 m
2
 for binary dasymetric maps of population 

Ancillary data input Population density 

(persons/10,000 m
2
) 

Landsat7 (ETM) 30m spatial resolution  6.178 

Resampled aerial photo data 10m spatial resolution  7.788 

Resampled aerial photo data 3m spatial resolution   7.870 
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The population densities for each of the support grids (30m and 100m) were aggregated 

to create the final population surface layers across Leicester. The dasymetric population 

surfaces created using 30m, 10m and 3m ancillary data input are shown in Figures 4.7, 

4.8 and 4.9 respectively as representative example maps of the dasymetric population 

surfaces. 

 

 

 

Figure 4.7 - The dasymetric map of population surface at 30m posting created using 

land cover data derived from classified Landsat7 (ETM) 30m spatial resolution ancillary 

data input. 
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Figure 4.8 - The dasymetric map of population surface at 100m posting created using 

land cover data derived from classified resampled aerial photo data of 10m spatial 

resolution ancillary data input. 
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Figure 4.9 - The dasymetric map of population surface at 30m posting created using 

land cover data derived from classified resampled aerial photo data of 3m spatial 

resolution ancillary data input. 
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4.3.2 Pycnophylactic interpolation method 

 

The modelled population surfaces generated for Leicester are raster grids of 30m and 

100m resolutions as shown in Figures 4.10 and 4.11 respectively. The results show 

gradual density change around the source zone boundaries by applying a smooth density 

function across boundaries. The value of each of the cells is shown as a continuous 

surface in five classes ranging from low population density (shown in green) to high 

population density (shown in red). The modelled population surfaces do not represent a 

more realistic smooth distribution of population density. This is because the 

pycnophylactic method does not draw on further ancillary information about the 

underlying population distribution in the source zone. 

 

Figure 4.10 shows the change in population density at 30m resolution output grid. The 

figure shows a smooth and gradual density for the population density in the interpolated 

gridded population surface at 30m resolution of the output grid. High population density 

values are seen across the city of Leicester and most parts of Oadby and Wigston 

district, and gradually decreased to other source zones with low populations. The effect 

of source zone area size on interpolated gridded population surface is seen in the 

Harborough district. Low population density values are seen across the Harborough 

district. This is because it is the largest source zone in terms of area size and the second 

in terms of low population counts.  

 

Figure 4.11 shows the change in population density at 100m resolution output grid. The 

figure shows a smooth and gradual density for the population density in the interpolated 

gridded population surface at 100m resolution of the output grid. High population 

density values are seen in most parts of the city of Leicester and gradually decreased to 

other source zones with low populations. Similar to interpolated gridded population 

surface at resolution of 30m postings, Harborough district has the lowest population 

density values amongst the five districts used as the source zones.  
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Figure 4.10 – The change in population density at 30m resolution output grid. The 

digital boundaries are © Crown Copyright and/or database right 2013. An Ordnance 

Survey/EDINA supplied service.   
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Figure 4.11 - The change in population density at 100m resolution output grid. The 

digital boundaries are © Crown Copyright and/or database right 2013. An Ordnance 

Survey/EDINA supplied service.   
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4.4 Evaluation of Surfaces 

 

The estimated populations for the target zones were compared with known census 

counts of the same target zones to assess the performance of the interpolation methods.   

Performance measures for the various experiments undertaken are summarized in six 

tables. The error values for the simple areal weighting interpolation method which 

makes the assumption that source zone population is evenly spatially distributed within 

the zone boundary were also added to be able to see improvements made by the 

dasymetric mapping and the pycnophylactic interpolation methods. The simple areal 

weighting method defines the ‘lowest common denominator in terms of methodological 

sophistication and acts as a useful benchmark against which other techniques may be 

measured’ (Langford 2013). The results are presented in Tables 4.4 to 4.9 in order of 

increasing accuracy, as expected, areal weighting performs least well in all the models 

tested, setting a benchmark against which dasymetric mapping and pycnophylactic 

interpolations may be assessed. Tables 4.4 and 4.5 show interpolation results from 

Leicester UA to 30m and 100m square grids postings respectively, aggregated at 

MSOA. Tables 4.6 and 4.7 show interpolation results from Leicester UA to 30m and 

100m square grids postings respectively, aggregated at LSOA. Tables 4.8 and 4.9 show 

interpolation results from Leicester UA to 30m and 100m square grids postings 

respectively, aggregated at OA. The accuracy of the interpolations is measured using 

the RMSE metric and CoV.  

 

Table 4.4 shows the interpolation results from Leicester UA to 30m square grids 

postings, aggregated at MSOAs in order of increasing accuracy. The pycnophylactic 

method performed least well with RMSE score of 4233.4 and a CoV of 0.544. 

Interpolations using binary dasymetric with classified land cover data used as the   

ancillary data input returns significant improvement compared to that recorded using the 

pycnophylactic method. At this resolution of interpolation, the binary dasymetric 

methods tested using ancillary data input of differing spatial resolutions recorded 

slightly different CoV scores. The binary dasymetric model using land cover data 

derived from classified Landsat7 (ETM) 30m spatial resolution as the ancillary data 

input provided the best estimates among the methods tested with the lowest recorded 

RMSE of 2943.8 and a CoV of 0.379. The most striking feature in Table 4.4 is that the 

binary dasymetric model using land cover data derived from classified resampled aerial 
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photo data of 10m spatial resolutions as the ancillary data input achieved a RMSE 

values of 3314.4 which marginally improves to 3304.9 compared to a binary dasymetric 

model using land cover data derived from classified resampled aerial photo data of 3m 

spatial resolutions as the ancillary data input. This is surprising because higher 

resolution land cover data that offer greater spatial precision in the depiction of building 

locations does not automatically improves interpolation performance. One possible 

reason for this could be because they are both from the same source.   

 

Table 4.4 - Interpolation results from Leicester UA to 30m square grids postings, 

aggregated at MSOA  

Interpolation method RMSE CoV 

Areal weighting using zone boundaries only 4486.9 0.577 

Pycnophylactic interpolation  4233.4 0.544 

Binary dasymetric using 10m resolution classified land cover  3314.4 0.426 

Binary dasymetric using 3m resolution classified land cover  3304.9 0.425 

Binary dasymetric using 30m resolution classified land cover  2943.8 0.379 

Note: Mean population of target units is 7776.  

 

Table 4.5 - Interpolation results from Leicester UA to 100m square grids postings, 

aggregated at MSOA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries only 4934.1 0.635 

Pycnophylactic interpolation  3974.9 0.511 

Binary dasymetric using 3m resolution classified land cover  3668.7 0.472 

Binary dasymetric using 10m resolution classified land cover  3661.5 0.471 

Binary dasymetric using 30m resolution classified land cover  3579.7 0.460 

Note: Mean population of target units is 7776.   

 

Table 4.5 shows the interpolation results from Leicester UA to 100m square grids 

postings, aggregated at MSOAs in order of increasing accuracy. The results are similar 

to that reported in Table 4.4 with the pycnophylactic method performing least well and 

the binary dasymetric model using land cover data derived from classified Landsat7 

(ETM) 30m spatial resolution as the ancillary data input providing better target zone 
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estimates at this resolution of interpolation. At MSOA, interpolations to 30m square 

grids are better compared to 100m square grids. Also, different from Table 4.4, the 

RMSE value and CoV recorded for the binary dasymetric model using land cover data 

derived from classified resampled aerial photo data of 10m spatial resolutions as the 

ancillary data input marginally improves those recorded for the binary dasymetric 

model using land cover data derived from classified resampled aerial photo data of 3m 

spatial resolutions as the ancillary data input.     

 

Table 4.6 - Interpolation results from Leicester UA to 30m square grids postings, 

aggregated at LSOA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries only 1497.8 1.001 

Pycnophylactic interpolation  1368.5 0.914 

Binary dasymetric using 3m resolution classified land cover  1173.9 0.784 

Binary dasymetric using 10m resolution classified land cover  1155.6 0.772 

Binary dasymetric using 30m resolution classified land cover  1087.5 0.726 

Note: Mean population of target units is 1497.  

 

Table 4.7 - Interpolation results from Leicester UA to 100m square grids postings, 

aggregated at LSOA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries only 1805.3 1.206 

Pycnophylactic interpolation 1517.7 1.014 

Binary dasymetric using 3m resolution classified land cover  1467.5 0.980 

Binary dasymetric using 10m resolution classified land cover  1436.1 0.959 

Binary dasymetric using 30m resolution classified land cover 1309.4 0.875 

Note: Mean population of target units is 1497.  

 

Tables 4.6 and 4.7 show the interpolation results from Leicester UA to 30m and 100m 

square grids postings respectively, aggregated at LSOAs in order of increasing 

accuracy. The results recorded have similar pattern to that recorded in Table 4.5. The 

pycnophylactic method performed least well with RMSE of 1368.5 and 1517.7 (for 30m 

and 100m postings respectively) and CoV of 0.914 and 1.014 (for 30m and 100m 
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postings respectively). The binary dasymetric model using land cover data derived from 

classified Landsat7 (ETM) 30m spatial resolution as the ancillary data input provided 

the best target zone estimates at this resolution of interpolation with a recorder RMSE 

of 1087.5 and 1309.4 (for 30m and100m postings respectively) and CoV of 0.726 and 

0.875 (for 30m and100m postings respectively). 

 

Table 4.8 - Interpolation results from Leicester UA to 30m square grids postings, 

aggregated at OA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries only 586.2 1.861 

Pycnophylactic interpolation 516.8 1.641 

Binary dasymetric using 3m resolution classified land cover  458.1 1.454 

Binary dasymetric using 10m resolution classified land cover  447.4 1.420 

Binary dasymetric using 30m resolution classified land cover  429.6 1.364 

Note: Mean population of target units is 315. 

 

Table 4.9 - Interpolation results from Leicester UA to 100m square grids postings, 

aggregated at OA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries only 761.9 2.419 

Pycnophylactic interpolation  664.3 2.109 

Binary dasymetric using 3m resolution classified land cover  630.1 2.000 

Binary dasymetric using 10m resolution classified land cover  614.4 1.950 

Binary dasymetric using 30m resolution classified land cover 503.5 1.598 

Note: Mean population of target units is 315.  

 

Tables 4.8 and 4.9 show the interpolation results from Leicester UA to 30m and 100m 

square grids postings respectively, aggregated at OAs in order of increasing accuracy. 

The results recorded have similar pattern to those recorded at LSOAs. The 

pycnophylactic method performed least well with RMSE of 516.8 and 664.3 (for 30m 

and 100m postings respectively) and CoV of 1.641 and 2.109 (for 30m and 100m 

postings respectively). The binary dasymetric model using land cover data derived from 

classified Landsat7 (ETM) 30m spatial resolution as the ancillary data input provided 



87 

 

the best target zone estimates at this resolution of interpolation with a recorder RMSE 

of 429.6 and 503.5 (for 30m and100m postings respectively) and CoV of 1.364 and 

1.598 (for 30m and100m postings respectively). 

 

It can be seen from the results presented in Tables 4.4 to 4.9 that: 

1. The interpolation results aggregated at MSOAs have larger RMSE values than 

those aggregated at LSOAs, which are also larger than those aggregated at OAs. 

This is expected because the RMSE metric is affected by the absolute size of 

estimated values and the target size population for an OA is less than that of an 

LSOA, which is also less than that of an MSOA.  

2. Interpolations using binary dasymetric method with land cover data derived 

from classified satellite image used as the ancillary data input returns significant 

improvement when compared with the interpolation results recorded from the 

pycnophylactic method. 

3. The binary dasymetric model using land cover data derived from classified 

Landsat7 (ETM) 30m spatial resolution as the ancillary data input provided the 

lowest recorded RMSE score for all the models tested, for the three target zones. 

4. The interpolation results from Leicester UA to 30m square grids postings 

provided lower RMSE score compared to 100m square grids postings, for all the 

models tested.  

5. The CoV scores, which are appropriate for comparison across target zones, show 

interpolation results from Leicester UA to 30m square grids postings, aggregated 

at MSOAs provided the lowest CoV score among the solutions tested and for the 

three census areas used as the target zones.  

 

4.4.1 Residual Maps  

 

The residuals in all the census units tested were calculated and mapped. The residual 

maps are presented to provide a view of the absolute error present across the study area. 

Figures 4.12 to 4.14 show the target zones representative example residual maps for 

MSOAs, LSOAs and OAs respectively. The remaining residual maps are available in 

Appendix 7. The class intervals are shown by standard deviation from the mean error 

for each target zone. Standard deviations are the best way to symbolise normally 
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distributed quantitative data on maps making classes easy to interpret. From the residual 

maps presented in Figures 4.12 to 4.14, some pattern persists across scales. It becomes 

increasingly clear that a degree of spatial ‘smoothing’ is present in the estimates. That 

is, the very densely populated inner city OAs are underestimated, the less dense band 

running alongside the river north-south through Leicester is overestimated, and many 

large rural OAs are overestimated. Evidently, the residual maps show more census areas 

are subject to overestimation, as compared to underestimation, at greater than one 

standard deviation. The residual maps show that relatively large rural census units tend 

to be overestimated while relatively small urban census units tend to be underestimated. 

This is because they are designed to have a common target population count (Martin 

1997). Similar patterns have been found by other researchers (e.g. Mennis and Hultgren 

2006; Eicher and Brewer 2001), where relatively large rural blocks tend to be 

overestimated while relatively small rural blocks tend to be underestimated. In this 

study, the underestimated census units are mainly the smaller census units in the more 

densely populated areas such as the city centre while the overestimated census units are 

the larger spatial units in the less densely populated areas away from the city centre. A 

possible reason for this is that the satellite data being used as the ancillary data input is 

more likely to show houses and other built-up areas but not how many people live 

inside them. It is also likely in some areas there may be socioeconomic or cultural 

reasons why some houses have greater occupancy rates than the others. 
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Figure 4.12 - The spatial distribution of residuals at MSOA from a 100m gridded 

pycnophylactic population surface. The mean count error is 0 and a standard deviation 

of 3975. The digital boundaries are © Crown Copyright and/or database right 2013. An 

Ordnance Survey/EDINA supplied service.   
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Figure 4.13 - The spatial distribution of residuals at LSOA from a 30m gridded 

dasymetric population surface using land cover data derived from classified resampled 

aerial photo data of 3m spatial resolutions as the ancillary data input. The mean count 

error is -233 and a standard deviation of 1151. The digital boundaries are © Crown 

Copyright and/or database right 2013. An Ordnance Survey/EDINA supplied service.  
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 Figure 4.14 - The spatial distribution of residuals at OA from a 30m gridded dasymetric 

population surface using land cover data derived from classified resampled aerial photo 

data of 10m spatial resolutions as the ancillary data input. The mean count error is -107 

and a standard deviation of 434. The digital boundaries are © Crown Copyright and/or 

database right 2013. An Ordnance Survey/EDINA supplied service.   
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4.5 Summary of results for Leicester  

 

This chapter compares the results of two areal interpolation methods used to estimate 

the population of Leicester UA at different spatial scales over small areas of unknown 

distributions. This was done in order to select the most appropriate interpolation 

method, support grid and ancillary data input to disaggregate 2006 population census 

totals for Port-Harcourt, Nigeria. The results of the error analyses show the dasymetric 

method provides the best fitting target zone estimates. Land cover information derived 

from classified Landsat7 (ETM) 30m spatial resolution when used as the ancillary data 

input for the binary dasymetric method was found to provide better estimates in the 

target zones compared to land cover data derived from classified resampled aerial photo 

data of 10m and 3m spatial resolutions used as the ancillary data input. The results also 

show that disaggregation over 30m square grids is more likely to provide better 

estimates in the target zones compared to when 100m square grids are used.  

    

The binary dasymetric method using land cover data derived from classified Landsat7 

(ETM) 30m spatial resolution when used as the ancillary data input and with a modelled 

population surface created using 30m support grids are seen to be the most appropriate 

parameters to apply for Port-Harcourt study. 
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Chapter 5 

 

5. RESULTS: PORT-HARCOURT 

 

5.1 Introduction  

  

This chapter presents the results of areal interpolation for Port-Harcourt using the binary 

dasymetric method. It derives land cover information from classified Landsat7 (ETM+) 

30m spatial resolution covering Port-Harcourt to identify built-up and non-built-up 

areas, and redistributes 2006 population census totals to create a modelled dasymetric 

population surface using a 30m square grids. The input parameters were determined in 

Chapter 4. The binary dasymetric method was also applied using land cover data 

derived from classified Spot5 (colour) 10m spatial resolution and from classified 

resampled Quickbird (60cm) image data of 3m spatial resolution, to create modelled 

dasymetric population surfaces over a 30m square grids. This was done to verify if the 

most appropriate parameters determined for Leicester study (presented in Chapter 4) 

would provide the best fitting target zone estimates for Port-Harcourt. In the absence of 

known small area census counts for Port-Harcourt to assess the performance of the 

interpolations, a random sample of 200 locations was taken for each surface to visually 

inspect the results in order to assess the accuracy of the population distribution.     

 

The next section of the chapter presents the results of supervised classification. Section 

5.3 presents the results of areal interpolations. Section 5.4 discusses the visual 

inspection of demand surfaces. Section 5.5 highlights what the errors from Leicester 

mean in Port-Harcourt. The last section (5.6) provides a summary of the results for Port-

Harcourt.  

 

5.2 Supervised classification 

 

The remotely sensed images for Port-Harcourt described in section 3.3.2 were processed 

in the same way as the data for Leicester described in section 3.4.1 to identify the extent 

of built-up areas that were used as the ancillary data input for the binary dasymetric 

method. Different from the Leicester study, four land cover types were identified for 
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each of Spot5 (colour) 10m spatial resolution and resampled Quickbird (60cm) image 

data of 3m spatial resolution. Category names (vegetation, thick vegetation, built-up and 

water) were assigned to these four classes and are described in Table 3.4. These were 

used in the supervised classification. The signature mean plot for all signatures, the 

mean plot and signature editor for the combined signatures for Landsat (ETM+) 30m 

spatial resolution image are shown in Figures 5.1, 5.2 and 5.3 respectively, and those for 

10m and 3m images are shown in Appendix 8.  

 

The next step applied the maximum likelihood classification algorithm as described in 

section 3.4.1 and a global classification accuracy of 81.64%, 79.30% and 78.13% was 

achieved using 30m, 10m and 3m spatial resolution satellite image respectively. The 

accuracy reports are available in Appendix 9. This section presents the classified images 

produced and the binary classified images created from the classified images, to show 

only built-up and non-built-up areas. 

 

 

Figure 5.1 - Signature mean plot evaluating signatures for vegetation, built-up and water 

from Landsat7 (ETM+) 30m spatial resolution image. 
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Figure 5.2 - Signature mean plot for the combined signatures from Landsat7 (ETM) 

30m resolution image. 

 

 

 

Figure 5.3 - Signature editor for the combined signatures from Landsat7 (ETM) 30m 

resolution image. 
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5.2.1 Classified images 

 

The classified images created from supervised classification described in section 3.4.1 

are shown in Figures 5.4 to 5.6. Figure 5.4 shows a classified image using Landsat7 

(ETM+) 30m spatial resolution image data. Figure 5.5 shows the classified image using 

Spot5 (colour) 10m spatial resolution image data. Figure 5.6 shows classified image 

using resampled Quickbird (60cm) image data of 3m spatial resolution. The accuracy of 

classification was assessed in the same way as the data for Leicester described in 

section 4.2.1.  

 

Table 5.1 presents the comparison of the overall accuracy and Kappa statistic between 

the different land cover data of different sources and resolutions. The accuracy reports 

indicate a good agreement between thematic maps generated from image and the 

reference data although the three satellite images used recorded a little below the 

minimum standard of digital image classification for optical remote sensing data (85%) 

recommended by Paul (1991) and Jansen et al. (2008). However, the classification 

accuracy recorded for Landsat7 (ETM+) 30m spatial resolution image data was better 

that those recorded for Spot5 (colour) 10m spatial resolution image data and resampled 

Quickbird (60cm) image data of 3m spatial resolution (see Table 5.1). 

 

Table 5.1- Comparison of the overall accuracy and Kappa statistic between the different 

land cover data 

Land cover data Overall accuracy (%) Kappa accuracy (%) Kappa coefficient 

30m spatial resolution  81.64 73.72 0.74 

10m spatial resolution  79.30 71.58 0.72 

3m spatial resolution  78.13 69.55 0.70 
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Figure 5.4 - The classified Port-Harcourt image derived from Landsat7 (ETM+) 30m 

spatial resolution. The digital boundary is Copyright for Geotechnics Services 2011.  
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Figure 5.5 - The classified Port-Harcourt image derived from Spot5 (colour) 10m spatial 

resolution. The digital boundary is Copyright for Geotechnics Services 2011.  
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Figure 5.6 - The classified Port-Harcourt image derived from resampled Quickbird 

(60cm) image data of 3m spatial resolution. The digital boundary is Copyright for 

Geotechnics Services 2011.  
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5.2.2 Binary classified images 

 

The binary dasymetric method is based on additional geographic information (e.g. land 

use) that provides a binary divide between built-up and non-built-up areas. The 

classified images presented in section 5.2.1 were reclassified into a simple binary 

division by assigning a weighting factor of 1 to all areas classified as built-up areas and 

0 to all other areas (as described in section 3.4.1). The binary masks derived from 

different land cover data derived from classified satellite images of different resolutions 

and sources which represent the underlying spatial distribution of population within the 

source zone, are presented in Figures 5.7 to 5.9. 

 

Figure 5.7 shows a binary mask derived from land cover data derived from classified 

Landsat7 (ETM+) 30m spatial resolution image data. Figure 5.8 shows a binary mask 

derived from land cover data derived from classified Spot5 (colour) 10m spatial 

resolution image data. Figure 5.9 shows a binary mask derived from land cover data 

derived from classified resampled Quickbird (60cm) image data of 3m spatial 

resolution.  

 

Table 5.2 compares the sizes of the total built-up areas in the source zone derived from 

different land cover data. The binary classified images showed that built-up areas 

derived from land cover data derived from classified Landsat7 (ETM+) 30m spatial 

resolution and that derived from classified resampled Quickbird (60cm) image data of 

3m spatial resolution have the same area size. The area size slightly reduced for the 

binary classified image derived from land cover data derived from classified Spot5 

(colour) 10m spatial resolution. 

 

Table 5.2 - Comparison of the total built-up area in the source zone between the 

different land cover data    

Built-up areas Total source zone area (km
2
) 

Landsat7 (ETM+) 30m spatial resolution  43.69   

Spot5 (colour) 10m spatial resolution 43.64 

Resampled Quickbird image data 3m spatial resolution  43.69 
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Figure 5.7 - A binary mask derived from land cover data derived from classified 

Landsat7 (ETM+) 30m spatial resolution image data. The digital boundary is Copyright 

for Geotechnics Services 2011. 
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Figure 5.8 - A binary mask derived from land cover data of 10m spatial resolution 

derived from classified Spot5 (colour) image data. The digital boundary is Copyright for 

Geotechnics Services 2011. 
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Figure 5.9 - A binary mask derived from land cover data of 3m spatial resolution 

derived from classified resampled Quickbird (60cm) image data. The digital boundary 

is Copyright for Geotechnics Services 2011. 
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5.3 Areal interpolation methods 

 

The binary dasymetric method was implemented using land cover data derived from 

classified Landsat7 (ETM+) 30m spatial resolution for Port-Harcourt as the ancillary 

data input to create a modelled dasymetric population surface using a 30m square grid. 

The input parameters were determined from the results of Leicester study, in Chapter 4. 

The binary dasymetric method was also applied using land cover data derived from 

classified Spot5 (colour) 10m spatial resolution and from classified resampled 

Quickbird (60cm) image data of 3m spatial resolution, to create modelled dasymetric 

population surfaces over a 30m square grids to verify if the most appropriate parameters 

determined for Leicester study (presented in Chapter 4) would provide the best fitting 

target zone estimates for Port-Harcourt. The scales of disaggregation used in the 

implementation generated different target zone estimates of the population. 

 

5.3.1 The binary dasymetric method 

 

The binary masks derived from land cover data of different sources and resolutions 

(presented in section 5.2.2) were converted to vector and used together with 30m square 

grids to create dasymetric population surfaces for Port-Harcourt. The population density 

for each of 30m, 10m and 3m spatial resolution land cover data used as the ancillary 

data input was calculated and mapped as a single uniform density estimate across Port-

Harcourt as shown in Figures 5.10, 5.11 and 5.12 respectively. Figure 5.10 shows the 

dasymetric map of population surface at 30m posting created using land cover data 

derived from classified Landsat7 (ETM+) 30m spatial resolution ancillary data input. 

Figure 5.11 shows the dasymetric map of population surface at 30m posting created 

using land cover data derived from classified Spot5 (colour) 10m spatial resolution 

ancillary data input and Figure 5.12 shows the dasymetric map of population surface at 

30m posting created using land cover data derived from classified resampled quickbird 

(60cm) image of 3m spatial resolution ancillary data input. 

 

Table 5.3 shows the population densities (persons/10,000 m
2
) for the different ancillary 

data input used for the binary dasymetric method. The results show that land cover data 

derived from classified Landsat7 (ETM+) 30m spatial resolution, land cover data 

derived from classified Spot5 (colour) 10m spatial resolution and land cover data 
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derived from classified resampled Quickbird (60cm) image data of 3m spatial resolution 

all provided the same population density across Port-Harcourt.  

 

Table 5.3 - Population density per 10,000 m
2
 for binary dasymetric maps of population  

Ancillary data input Population density 

(persons/10,000 m
2
) 

Landsat7 (ETM+) 30m spatial resolution  12.385 

Spot5 (colour) 10m spatial resolution  12.398 

Resampled Quickbird (60cm) data  of 3m spatial resolution   12.386 

 

 

 

 

Figure 5.10 - The dasymetric map of population surface at 30m posting created using 

land cover data derived from classified Landsat7 (ETM+) 30m spatial resolution 

ancillary data input. The digital boundary is Copyright for Geotechnics Services 2011. 
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Figure 5.11 - The dasymetric map of population surface at 30m posting created using 

land cover data derived from classified Spot5 (colour) 10m spatial resolution ancillary 

data input. The digital boundary is Copyright for Geotechnics Services 2011. 
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Figure 5.12 - The dasymetric map of population surface at 30m posting created using 

land cover data derived from classified resampled quickbird (60cm) image of 3m spatial 

resolution ancillary data input. The digital boundary is Copyright for Geotechnics 

Services 2011. 
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5.4 Visual inspection of demand surfaces 

 

In the absence of field information (survey data) or another data source to validate the 

modelled population surfaces, a random sample of 200 locations was taken to visually 

inspect the results in order to assess the accuracy of the population distribution. The 

randomly placed points were generated to have a shortest distance of 200m between any 

two random points (see Figure 5.13). Google Earth 7.1 was used as a reference to 

inspect the surfaces as shown in Figure 5.14. The results of visual inspection of surfaces 

are available in Appendix 10. 

 

 

 

 

 

Figure 5.13 - The demand surfaces for Port-Harcourt with 200 random points generated 

within the boundary of Port-Harcourt. The digital boundary is Copyright for 

Geotechnics Services 2011. 
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Figure 5.14 - An overlay of study area boundary with random points generated within 

the boundary on Google Earth 7.1. 

 

Table 5.4 summarises the results of the visual inspection for the dasymetric population 

surfaces created for Port-Harcourt using land cover data derived from classified; 

Landsat7 (ETM+) 30m spatial resolution, Spot5 (colour) 10m spatial resolution, and 

resampled quickbird (60cm) image 3m spatial resolution as the ancillary data input. The 

results reveal some of the random points on the populated surfaces do not correspond to 

a populated area when viewed using Google Earth. This is likely due to land cover 

changes between the date of the Google Earth reference (20
th

 December 2013) and the 

dates the imagery were acquired (see Table 3.3). Figure 5.15 shows an example of a 

random point selected on a populated surface located in an unpopulated area. Some 

other random points on the unpopulated surfaces were identified on Google Earth in 

populated areas (see Figure 5.16). The effect of using built-up areas to represent 

populated areas is seen where some of the random points on the populated surface were 
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identified in an industrial area as in Figure 5.17. The results of the inspection show 

sixteen out of two hundred random points selected (eight per cent of the random points 

selected) identified as populated on the surface were actually in unpopulated areas. Five 

per cent of the random points not on the populated surface correspond to populated 

areas on Google Earth reference. A total of twenty-six out of two hundred random 

points selected (thirteen per cent) on the interpolated surface do not correspond with 

Google Earth reference. When 10m and 3m spatial resolution land cover data were 

used, 14.5 and 22 per cent respectively of the random points selected were not correctly 

redistributed.   

 

Table 5.4 – Summary of visual inspection of surfaces 

Google 

Reference 

 Dasymetric Population Surfaces 

 Populated Unpopulated 

Image resolution 30m 10m 3m 30m 10m 3m 

Populated 75 55 45 10 10 15 

Unpopulated 16 19 29 99 116 111 

 

Figure 5.15 - Random point on the populated surface corresponds to an unpopulated 

area in Google Earth reference.   
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Figure 5.16 - Random point on the unpopulated surface is identified in a populated area.   

 

Figure 5.17 - Random point on the populated surface is identified in an industrial area. 
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5.5 What the errors from Leicester mean in Port-Harcourt 

 

Population census totals for Leicester UA were redistributed to small areas of unknown 

distributions at different spatial scales. This was done to develop models using land 

cover and census data for Leicester where the population distribution is known and 

validation is possible in order to select the best performing model and parameters to 

apply to Port-Harcourt. The results show differences in demand surfaces generated by 

each method and for each support grid. These differences are largely due to different 

assumptions made by the two methods, the size of census areas used for testing the 

performance of the interpolations and the support grid sizes. The patterns of errors from 

Leicester study were carefully considered before selecting the input parameters for Port-

Harcourt. 

 

There are similarities between the population density, structure and demography for 

Leicester and that of Port-Harcourt. The spatial distribution of housing units in Leicester 

is assumed to be similar to that of Port-Harcourt (e.g. similar levels of overcrowding, 

lone occupancy etc.) with dense housing units in and around the city centre. This 

cultural assumption was made due to limited spatial data infrastructure in Port-Harcourt.  

There are also large tracks of unpopulated land within the urban fabric in both cities 

which makes it easier to depict the underlying distribution of the population with the 

use of ancillary information derived from classified satellite imagery. The errors from 

the Leicester study suggest the population estimates for Port-Harcourt are likely to be 

underestimated. This is because the error maps for Leicester suggest more urban census 

units with large populations were underestimated as compared to overestimated. For the 

pycnophylactic method, the assumption of continuous population surface having a non-

zero population density value at every location does not reflect the underlying 

population distribution in Port-Harcourt. This is because the information obtained from 

classified imagery shows about one third of Port-Harcourt is covered by water and other 

uninhabitable areas. This means if the pycnophylactic model were to be used in Port-

Harcourt, a large number of population estimates would be redistributed in 

uninhabitable areas thereby underestimating the actual population in Port-Harcourt.  
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5.6 Summary 

 

Population census totals for Port-Harcourt aggregated for reasons of confidentiality and 

to reduce data volume has been successfully redistributed over small areas of unknown 

distributions. The spatial distribution of population estimates reflects the underlying 

distribution of population in Port-Harcourt because ancillary data input was used to 

constrain the re-allocation of population counts to only areas identified as populated. 

The visual inspections of surfaces revealed about eighty per cent of the demand 

population values created correspond to areas identified as built-up in the Google Earth 

reference. The spatially distributed demand population values created for Port-Harcourt 

can be used as input to the location analyses described in the next chapter.  
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Chapter 6 

 

6. APPLICATION: Location-allocation in Port-Harcourt 

 

6.1 Case study: Primary Health Care Centres (PHCCs) in Port-Harcourt 

 

The case study is to evaluate the location of the 17 current primary health care centres 

(PHCCs) in Port-Harcourt, Rivers State, Nigeria. The PHCCs are the first level of 

health care service provision and are critical to the survival of children below the age of 

five. These services include; immunisation against infectious diseases, control of 

preventable diseases (Such as Malaria, Diarrhoea etc.), child survival and nutrition, 

maternal and new born care, health education and community mobilisation, antenatal 

care, family planning services, basic surgical services and general well-being of the 

people (Policy Project 2002). Rivers State government made known its commitment on 

the 7
th

 of April 2009 to provide quality healthcare that is affordable and accessible to the 

people in all areas of the state. The government is constructing 160 PHCCs across the 

23 local government areas (LGAs) in the state. As at May 2014, a total of 130 PHCCs 

have been completed and are in use, with the remaining 30 PHCCs at various stages of 

completion (Parker 2014). 

 

The National Health Policy (NHP) recommends at least one PHCC in each electoral 

ward. The electoral ward is the smallest constituency represented by a councillor with 

an estimated population of less than thirty thousand people (NPHCDA 2007). There are 

twenty wards in Port-Harcourt (Independent National Electoral Commission 2011). On 

the locations of health facilities, the Revised National Health Policy states that 

“Ministries of health shall review the distribution and establish standards to regulate 

the locations of health care facilities” (RNHP 2004, P.23). This gives government 

officials (in ministries of health) the mandate to decide on suitable location of health 

facilities. The final decision on the locations and number of PHCCs to construct in each 

of the 23 LGAs in the state was believed to have been made by government officials, 

politicians and local planners in the state. A total of 17 out of 160 PHCCs were sited 

within Port-Harcourt. The residents of Port-Harcourt have expressed concern over the 

process by which decision on the number of PHCCs to construct and their chosen 
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locations were finalised. This is because the residents alleged the decisions were made 

without any formal analysis and generation of alternatives as the government did not 

provide any evidence to support its decision.  

  

Geographical Information Systems (GIS) is an effective planning tool that is 

increasingly being used to obtain reliable health information that improves unbiased 

decision making in public health policies and health system planning (Higgs 2005). The 

case study is a p-median problem because the government had already sited 17 PHCCs 

in Port-Harcourt. The aim was to evaluate current health facility locations and suggest 

alternative spatial arrangements of facilities to improve spatial accessibility.  

 

The source zone, the boundary of Port-Harcourt local government area with the 

distribution of road network within Port-Harcourt and the locations of current PHCCs in 

Port-Harcourt are shown in Figure 6.1. The locations of 17 current PHCCs were directly 

observed during field trip.  

 

Figure 6.1 - Source zone with roads (in grey) and the locations of current PHCCs in 

Port-Harcourt. The digital boundary is Copyright for Geotechnics Services 2011.  
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This analysis evaluates the distribution of 17 current PHCCs in Port-Harcourt against 

the demand population values described in Chapter 5. The spatial distribution for the 

demand needs is an important factor in the location-allocation problems and the p-

median method was developed to support facility location planning using point 

representation for the demand surfaces (Cromley et al. 2012). Teitz and Bart’s (1968) 

algorithm was used to solve the p-median problem. This is because the aim of the case 

study analysis was to optimise the overall shortest distance travelled from each demand 

point to each health centre. The critical inputs into Teitz and Bart’s algorithm are the 

number of facilities to locate, the demand population values created from areal 

interpolation and the distance matrix. The demand population values were interpolated 

down to a very fine spatial detail (30m grid postings). It is therefore expected that the 

error rate (RMSE/CoV) associated with these values would be significantly higher than 

those reported earlier for OAs in Leicester, although the actual error is unknown. This is 

because of the size of the target units (30m grid postings) used for the interpolation. 

Findings from review of spatial access (section 2.4.1) show GIS network analysis 

method to be an ideal technique for evaluating access distance to facilities. A number of 

different approaches could be used to obtain access distance depending on the software 

used and the analysis to be performed. ArcGIS Desktop 10.2.2 was used to calculate the 

shortest travelled distance between each demand point and each health centre.  

 

The next section of the chapter describes the data processing. Section 6.3 describes the 

implementation of Teitz and Bart’s heuristics to solve the p-median problem. Section 

6.4 presents the results. The last section presents a summary of the chapter. 

 

6.2 Data and preparation 

 

The dasymetric map of population surface at 30m postings created using land cover data 

derived from classified Landsat7 (ETM+) 30m spatial resolution covering Port-Harcourt 

area as the ancillary data input was converted to points using feature-to-point function 

in ArcGIS 10.2.2. There are 56457 grid points spaced at 30m apart with each point 

representing estimates of the population redistributed from 2006 census totals for Port-

Harcourt. The spatially distributed surfaces representing demand in Port-Harcourt was 

used as input to the location analyses with roads data and point locations of current 

PHCCs (shown in Figure 6.1) to obtain the shortest travelled distance from each 
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demand point to each PHCC. The Network Analyst extension in ArcGIS was used. This 

extension requires a specific type of road network to be able to generate the shortest 

travelled distance on the road network from each demand point to each PHCC. These 

specifications include roads that: keep turns in, are connected at nodes, have known 

attributes (e.g. using metres to calculate distance) etc. The roads network dataset was 

built in ArcCatalog 10.2.2 using the roads layer (see Figure 6.2).  

 

 

 

Figure 6.2 - The road network dataset showing roads (in grey colour) and road junctions 

in red dots. 

 

6.2.1 Network distances 

 

The Origin and Destination (OD) cost matrix was run in ArcGIS 10.2.2 to generate the 

network distances. The grid points representing estimates of the population created from 
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areal interpolation were used as the Origins and the point locations of current PHCCs 

were used as Destinations. Figure 6.3 shows the spatial distribution of 17 current 

PHCCs (Destinations) in Port-Harcourt over demand points generated from areal 

interpolation (Origins). The analysis calculates the distances between each Origin and 

each Destination and lists them in the Line feature. When displayed the Line feature 

maps a line between each Origin and each Destination (see Figure 6.4). The lines 

indicate the links between points and their length does not represent the actual distance 

on the road network between points. Figure 6.5 shows the distribution of lines on the 

road network. The attributes of the Line data are: distances between each Origin and 

each Destination point, ID of each Origin and each Destination and ranking with the 

shortest distance first. The accessibility to current PHCCs was measured based on the 

minimum distance between each demand and each PHCC on road network as has been 

done by Owen et al. (2010). The record of the shortest travelled distances on the road 

network between each Origin and each Destination point created from a GIS network 

analysis were selected and a layer was created.   

 

Figure 6.3 – The spatial distribution of 17 current PHCCs (red dots) and the demand 

points generated from areal interpolation (grey dots). The digital boundary is Copyright 

for Geotechnics Services 2011.  
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Figure 6.4 - Lines representing shortest distances from each demand to each health 

centre 

 

A second distance matrix was created of distances between 85 grid points representing 

potential new locations of PHCCs and the demand points generated from areal 

interpolation. This was done to examine the potential of new locations of PHCCs and to 

demonstrate the selection of alternative locations of PHCCs. The grid points generated 

across the study area for potential new locations were spaced at 500m apart and chosen 

to be within 30m of an existing road. This was done for two reasons: first, to select 

future locations that are accessible by road; second, to be able to obtain the shortest 

travel distance on road network from each demand point to each potential new location. 

Figure 6.6 shows the spatial distribution of 85 potential new locations of PHCCs (red 

dots) and the demand points generated from areal interpolation (grey dots).  
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Figure 6.5 – The distribution of lines on the road network 

 

The layers for the shortest travelled distances on the road network created using 

locations of 17 current PHCCs and 85 potential new locations of PHCCs were exported 

and used together with the demand points from areal interpolation as the input into Teitz 

and Bart’s algorithm in R statistical software in order to allocate demand to PHCCs, 

evaluate 17 current locations of PHCCs, suggests alternative locations of PHCCs and 

optimise fewer locations of current and potential PHCCs to provide the same services.   
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Figure 6.6 - The spatial distribution of 85 potential new locations of PHCCs (red dots) 

and the demand points generated from areal interpolation (grey dots). The digital 

boundary is Copyright for Geotechnics Services 2011. 

 

6.3 Methods and models 

 

The objective function of the p-median method is to select the required number of 

facilities among the total potential facilities that minimises the total weighted distance 

travelled between facilities and demand points. The Teitz and Bart’s heuristic search 

algorithm requires the number of facilities to locate, the demand population values 

generated from areal interpolation and the distance matrix. The algorithm first randomly 

search for the required number of facilities, then substitute one of the selected with one 

not selected and tests to verify if the average weighted travel distance from demand to 

all locations is minimised. This is repeated until no distance is minimised by the 

substitution then the heuristic stops and the selected locations are assumed to be the 
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optimal locations. The use of interchange heuristic by Teitz and Bart’s algorithm 

controls the selection of locations that are more likely to reduce the average weighted 

travel distance from demand to all locations.  

  

Some assumptions were made by the Teitz and Bart’s heuristic algorithm both on the 

demand and supply used. On the demand side, the heuristic assumes the majority of the 

population attends the nearest PHCC on a road network, and residents do not attend 

PHCCs outside the boundary of Port-Harcourt. Although in reality, PHCCs located 

outside the boundary of Port-Harcourt are likely to be a potential service centre and 

some residents are likely to attend PHCCs that are closer to their places of work and not 

residential homes. On the supply side, the heuristic assumes PHCCs have the same 

capacity and provide the same services but in reality they do not provide the same 

services.  

 

Three analyses were run on the data to assess the locations of PHCCs in different 

situations: first, to evaluate current numbers of PHCCs; second, to suggest new 

potential locations; and third, changing numbers of PHCCs in current and new 

locations. 

  

Evaluate current numbers  

 

The distance matrix generated in section 6.2.1 for current numbers of PHCCs was used 

to classify PHCCs in terms of distances by identifying health centres nearest to each 

demand based on the demand weighted distance. The total demand allocated to each 

PHCC (catchment) is generated. This is important as it allocates each PHCC to each 

demand to suggest its catchment and assess its location by indicating the likely 

geographical coverage for each location. A location that minimises the total travel 

distance between a PHCC and its allocated demand is an optimal location. The R code 

used is available in Appendix 11. 

 

Suggest new potential locations 

 

The Teitz and Bart’s algorithm was used to select a subset of 17 optimal locations from 

85 potential locations. The suitability of optimal locations was assessed using the mean 
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distance between demand and the nearest selected new location. The algorithm allocates 

demand to each location and the mean distance between demand and the nearest optimal 

location was obtained. This was done to explore the potential of new locations and to 

demonstrate how the method could be used to select alternative future locations. The 

importance of this is to determine whether re-allocating some of the current PHCCs to 

new locations could improve overall accessibility in terms of reduced average distance 

travelled from demand to the nearest PHCC. The spatial distributions of the 17 optimal 

locations selected were mapped together with the location of 17 current PHCCs (see 

Figure 6.7 later). The R code used is available in Appendix 12. 

 

Adjust the number of locations  

 

Policy makers and health system planners need to be able to develop methods for 

optimising current facility locations. One way of checking this is to change the number 

of locations and compare the mean distance of the changed locations with that of the 

current locations. If the changed locations minimises the total travelled distance of the 

current locations, then the changed locations are better than the current locations. The 

importance of this is to determine whether the current locations of 17 PHCCs could be 

improved in terms of minimising the average distance from demand to the nearest 

PHCC, thereby evaluating service delivery with fewer PHCCs based on improved 

locations. This will inform decision makers of the need to close some of the current 

PHCCs or add new ones. 

 

The distance matrix for the current PHCCs and the interpolated populations were used 

as the input into Teitz and Bart’s algorithm in R statistical software to generate an 

optimal distribution of subsets of different number of locations (from 5 to 16 PHCCs) 

from current locations (see Appendix 13). The spatial distributions of some of the 

selected locations from current PHCCs are shown later in Figures 6.9 to 6.11. The 

procedure was repeated using a distance matrix for potential future locations, in this 

case to select subsets of 5 to 20 locations from 85 potential sites (see Appendix 14). 

This was done to determine the benefits of increased or reduced numbers of PHCCs. A 

number of outputs were produced for each subset. These include: the total demand 

allocated to each potential location in the subset and the mean distances between each 

potential location in the subset and each demand within its catchment. The variation in 
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the average distance travelled from demand to the nearest location of current PHCCs 

was compared with that of potential locations of PHCCs for each subset (see Figure 

6.12). The R code used to adjust the number of locations for both current and potential 

PHCCs is available in Appendix 15. 

 

6.4 Results 

 

This section presents results of location-allocation for current PHCCs, potential 

locations of PHCCs and changed locations for both current and potential PHCCs.  

 

6.4.1 Current locations of PHCCs 

 

Table 6.1 shows the total demand allocated to each of the 17 current locations of 

PHCCs and the mean distances between each PHCC and each demand within its 

catchment. The average mean distance is 1204m. The data in Table 6.1 show the first 

five PHCCs were allocated about 54% of the total demand with the remaining twelve 

PHCCs having about 46% of the total demand. Considering the assumption that these 

PHCCs have the same capacity and provide the same services, it is expected that the 

demand allocation should be equal for an optimal location. This means the current 

locations of PHCCs are not optimal. The implication of this result is that PHCCs with 

high demand allocation will be overstretched while those with low demand allocation 

will be underutilised. This result provides evidence for informed decision making in 

spatial planning and policy development.  

 

Key message: current PHCCs 

A person would have to travel an average distance of 1204m to access the closest PHCC 

in Port-Harcourt.  
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Table 6.1 Demand allocated to current PHCCs in Port-Harcourt 

S/No Health_centres Demand Demand (%) Mean.dist (m) 

1 OKIJA STREET 65001 12.68 1672 

2 AZUABIE 57179 11.16 2717 

3 AMADI-AMA 56645 11.05 1383 

4 OROGBUM 53543 10.45 1263 

5 MILE3 FSP CLINIC 41784 8.15 1343 

6 BORIKIRI 41133 8.03 1306 

7 ELEKAHIA 32059 6.26 1151 

8 OZUBOKO 28393 5.54 946 

9 POTTS JOHNSON 24911 4.86 1005 

10 CHURCHILL STREET 23115 4.51 813 

11 BMH IMMUN. POST 20683 4.04 1132 

12 MARINE BASE 18337 3.58 1156 

13 BUNDU AMA 17263 3.37 968 

14 ABULOMA 12838 2.51 784 

15 BANK ROAD 10203 1.99 1472 

16 OKURU-AMA 5273 1.03 897 

17 CITY COUNCIL 4090 0.80 465 

 

 

6.4.2 Potential locations of PHCCs 

 

Table 6.2 shows the total demand allocated to each of the 17 optimal locations of 

PHCCs selected from 85 potential new locations and the mean distances between each 

optimal location and each demand within its catchment. The average mean distance for 

the 17 optimal locations was found to be 1074m. This indicates a reduction in the 

average distance travelled when compared with the current locations of PHCCs by 

130m. This suggests an improvement in accessibility could be achieved with some re-

allocations to potential locations. The spatial distribution of the optimal locations (red 

circles) were mapped together with the current locations of 17 PHCCs (blue crosses) as 

shown in Figure 6.7.  
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Table 6.2 Demand allocated to potential PHCCs in Port-Harcourt 

S/No Health_centres Demand Demand (%) Mean.dist (m) 

1 2 43625 8.51 1704 

2 41 43542 8.50 1115 

3 10 40839 7.97 1141 

4 62 38070 7.43 1256 

5 30 37194 7.26 1053 

6 68 35797 6.99 1080 

7 56 35755 6.98 1001 

8 33 34986 6.83 1113 

9 71 31854 6.22 1045 

10 46 31305 6.11 1038 

11 16 23883 4.66 1129 

12 8 21508 4.20 784 

13 42 21501 4.20 795 

14 4 19265 3.76 869 

15 15 18668 3.64 1173 

16 19 17498 3.41 1008 

17 72 17160 3.35 947 

 

Key message: potential locations 

Re-allocating current PHCCs to potential locations reduces the average distance 

travelled from demand to nearest health centre by 130m.   

 

6.4.3 Adjust current locations 

 

The Teitz and Bart’s heuristic algorithm was applied to select sets of 5 to 16 PHCCs 

from current locations to determine the benefits of reduced numbers of PHCCs. A 

number of outputs were produced for each subset and the mean distances to the nearest 

PHCC (in metres) were plotted against the number of PHCCs in each subset (see Figure 

6.8). 
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Figure 6.7 - Spatial distribution of 17 optimal locations selected (red circles) from 85 

potential locations and 17 current locations of PHCCs (blue crosses). The digital 

boundary is Copyright for Geotechnics Services 2011. 
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Figure 6.8 - Average distances to the nearest current PHCCs plotted against the number 

of current PHCCs in a subset. 

 

Figure 6.8 shows a decrease in average distance to the nearest current PHCC as the 

number of PHCCs selected from 17 current locations in a subset increases. The graph 

shows a clear direction with the overall pattern moving from upper left to lower right. 

That is, an increase in the average distances to the nearest PHCC with a reduction in the 

number of locations in a subset. This suggests no improvement in the changed locations 

from current PHCCs was achieved in terms of reduction in the average travelled 

distance. This is not surprising as the average persons’ distance to the nearest PHCC is 

expected to reduce when a new PHCC is added to the current ones. It is worth noting 

that the total average travelled distance for all demand for the 17 current PHCCs 

increases by about 120m when 13 optimal locations were selected from the 17 current 

PHCCs. This means that 13 optimal locations selected from the 17 current locations of 
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PHCCs are almost as good as the 17 current PHCCs. This suggest almost the same level 

of accessibility as is currently achieved could be matched by using fewer but more 

optimally sited service provision points from the current locations of PHCCs, thereby 

potentially reducing the operating cost of these PHCCs. In terms of coverage, the model 

allocates all demand to all facilities in the subset. The spatial distributions of some of 

the selected locations of current PHCCs are shown in Figures 6.9 to 6.11 with the 

locations of selected PHCCs shown in red dots while those not selected are shown in 

blue dots.  

 

 

 

 

 

Figure 6.9 - The spatial distributions of selected locations of 5 PHCCs from current 

locations. The digital boundary is Copyright for Geotechnics Services 2011. 
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Figure 6.10 - The spatial distributions of selected locations of 10 PHCCs from current 

locations. The digital boundary is Copyright for Geotechnics Services 2011. 
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Figure 6.11 - The spatial distributions of selected locations of 15 PHCCs from current 

locations. The digital boundary is Copyright for Geotechnics Services 2011. 

                                 

6.4.4 Adjust potential locations 

 

The Teitz and Bart’s algorithm was also applied to select sets of 5 to 20 locations from 

85 potential new locations to determine the benefits of increased or reduced numbers of 

PHCCs. A maximum number of twenty locations were selected. This is based on the 

recommendation of the National Health Policy that at least one PHCC should be sited in 

each electoral ward (NPHCDA 2007) and there are twenty electoral wards in Port-

Harcourt. Table 6.3 shows the current distances, modelled distances and the difference 

between current and modelled distances for specific number of PHCCs used as the 

subsets. The average distances (in metres) to the nearest current locations (current 

distances) and optimal locations selected from 85 potential new locations (modelled 

distances) were plotted against the number of PHCCs in a subset (see Figure 6.12).   
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Table 6.3 Current and modelled average distances for facilities 

PHCCs Current_distances Modelled_distances Difference_metres 

5 2141 2017 124 

6 1968 1839 129 

7 1837 1716 121 

8 1624 1604 20 

9 1565 1476 89 

10 1488 1348 140 

11 1454 1307 147 

12 1392 1255 137 

13 1324 1206 118 

14 1292 1162 130 

15 1270 1130 140 

16 1235 1105 130 

17 1204 1074 130 

18 - 1046 1046 

19 - 1033 1033 

20 - 996 996 

 

The graph shows a clear direction with the overall pattern moving from upper left to 

lower right. That is, the average travelled distance for both current and modelled 

distances reduces as the number of locations in the subset increases. This is expected as 

the average distance to facilities from homes is more likely to reduce as the number of 

facilities increases. The graph also shows the modelled distances minimised the current 

distance travelled for all the subsets. The Teitz and Bart’s algorithm allocates total 

demand to all facilities and in terms of the total average travelled distance for all 

demand, the results suggest that 13 optimally sited service provision points selected 

from 85 potential new locations are as good as the 17 current locations of PHCCs. This 

suggests the potential locations are better than the current locations because with fewer 

resources (13 service provision points) the same demand coverage would be achieved, 

thereby potentially saving money, or alternatively that spending the same money on the 

same number of provision points but with these more optimally sited would offer a 

useful improvement in net accessibility to the service as it reduces the average travelled 
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distance from demand to nearest health centre by 130m. The result is similar to findings 

of Comber et al. (2010) who applied Grouping Genetic Algorithm (GGA) to identify 

sets of optimal ambulance locations to ascertain the advantages of having fewer 

ambulance site locations in Niigata city in north-western Japan. They found 27 optimal 

sites for ambulances to be located, that is, four new ambulance locations were added to 

existing 23 locations, significantly improves the average emergency medical services 

(EMS) response time by 1 minute 14 seconds compared to using 35 current locations. 

This is important as it provides spatial evidence to support planning and allocation of 

future resources.  

 

 

 

Figure 6.12 - Variation in average distance travelled from demand to: ( ) nearest 

location of current PHCCs (current distance); and ( ) nearest potential location 

selected from 85 potential new locations.   
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Figure 6.13 - The spatial distribution of 13 optimal locations (red circles) selected from 

85 potential locations and 17 current locations of PHCCs (blue crosses). The digital 

boundary is Copyright for Geo-technics Services 2011.  

 

6.5 Summary 

 

This chapter evaluates the distribution of current locations of PHCCs in Port-Harcourt 

using the demand population values created from areal interpolation. The results show a 

person would have to travel an average distance of 1204m to access the closest PHCC 

in Port-Harcourt. The results also show re-allocating current PHCCs to potential 

locations would reduce the operating cost as fewer resources would achieve almost as 

good as the current demand coverage with the same average travelled distance. 

Redistributing summary population totals over small areas, and using the spatially 

distributed demand points created to evaluate location decisions provides health policy 

planners with evidence to support policy decisions.  
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Chapter 7 

 

7. DISCUSSION 

 

7.1 Introduction 

 

Census data at the small area level are unavailable in most parts of the world, especially 

in developing countries. In such places the need to estimate aggregate population counts 

over small areas to represent demand (Cromley et al. 2012; Tomintz et al. 2013) is 

critical in order to support spatial planning and policy development. More specifically 

calibrated solutions for estimating populations over small areas are needed to support 

facility location analyses. Many studies have applied different areal interpolation 

techniques in order to generate spatially distributed estimates of the population over 

small areas (Markoff and Shapiro 1973; Tobler 1979; Goodchild and Lam 1980; Lam 

1983; Flowerdew and Green 1991; Langford et al. 1991; Goodchild et al. 1993; 

Burrough and McDonnell 1998; Eicher and Brewer 2001; Mennis 2003; Kim and Yao 

2010; Cromley et al. 2011; Qiu et al. 2012; Langford 2013). Recent studies have 

evaluated the use of areal interpolation techniques for the estimation of summary 

population totals over areas smaller than the U.K. finest census division (Langford 

2013).  However, to date, little research has estimated population surfaces in areas 

where the actual distributions are unknown and there is no published research reporting 

the use of areal interpolation techniques to disaggregate census data over small areas in 

any part of Nigeria. One possible reason is the difficulty in validating population 

allocations for small areas in such places by comparison with target units whose 

populations are known, as is common practice elsewhere.  

 

Some research has considered the validation of spatially allocated small area estimates 

from census data. This includes the use of historical census data for which a full 

population count is available at a fine spatial resolution (Ruther et al. 2013). Other work 

by Amaral et al. (2012) used dasymetric interpolation of population data in the Brazilian 

Amazon and the methodology was first developed for the municipality of Maraba, Para 

State and then adapted with local parameters for thirteen municipalities of the 
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Sustainable Forests District (SFD) generating population distribution surfaces for 2000 

and 2007.  

 

The research reported in this thesis estimated population surfaces in areas where actual 

distributions were unknown. It explored the different interpolation methods applied at 

different scales in areas where the actual population distribution is known and where 

validation is possible. It then applied the parameters developed from these results to 

areas where the distribution was unknown and used the population surfaces generated in 

this way to evaluate current health facility locations and to suggest alternative spatial 

arrangements of facilities to improve spatial accessibility. The key finding in this 

research is for locations where spatially detailed estimates of the population do not 

exist, that is, where the actual population in small areas is unknown, summary 

population totals can be redistributed over small areas by adapting a model that was 

developed for areas where validation is possible with land cover and census data for that 

area as a ‘best bet’ solution, given the circumstances. Addressing problems in spatially 

detailed estimates of the population in locations where small area population summaries 

are not available and using these estimates to evaluate facility location provides 

evidence to support spatial decision-making and planning.  

 

The next section discusses surface generation, the results of areal interpolation 

techniques for Leicester. Section 7.3 discusses the results of areal interpolation and 

location-allocation for Port Harcourt. Section 7.4 discusses the methods employed and 

their assumptions. Section 7.5 reflects on the results relating to methods. The last 

section discusses the limitations and suggestions for future work. 

 

7.2 Leicester: surface generation  

 

This study applied the binary dasymetric and pycnophylactic interpolation methods 

across different spatial scales over Leicester area. Leicester UA boundary was used as 

the source zone for the binary dasymetric method while Leicester UA together with all 

the surrounding UAs with which it shares a common boundary were used as source 

zones for the pycnophylactic interpolation method, to derive an interpolated gridded 

population surface at resolutions of 100m and 30m postings, to then be aggregated to 
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MSOA, LSOA and OA target units and assessed for accuracy using known census 

counts in each case. 

 

The interpolated gridded pycnophylactic population surfaces created for Leicester are 

raster grids of 30m and 100m resolutions as shown in Figures 4.10 and 4.11 

respectively. The analysis over the source zones showed that the pycnophylactic method 

locally overestimated actual population in larger census units within each source zone 

and underestimated the actual populations in small census units within the same source 

zones. The spatial distribution of residuals from the gridded pycnophylactic population 

surfaces also showed that relatively large source zones tend to be overestimated while 

relatively small source zones tend to be underestimated. Similar patterns have been 

found by other researchers (e.g. Mennis and Hultgren 2006; Eicher and Brewer 2001), 

where relatively large rural blocks tend to be overestimated while relatively small urban 

blocks tend to be underestimated. In this study, the underestimated census units are 

mainly the smaller census units in the more densely populated areas such as the city 

centre while the overestimated census units are the larger spatial units in the less 

densely populated areas away from the city centre. Hawley (2005) reported similar 

patterns when he used the pycnophylactic interpolation. 

 

Some authors have reported that the pycnophylactic method provides more accurate 

results than other areal interpolation techniques that do not make use of ancillary data 

(such as areal weighting), when compared (Hawley 2005; Kim and Yao 2010). Other 

research assigned a non-zero population density value in every location using the 

pycnophylactic interpolation in combination with dasymetric mapping to provide the 

best fitting target zone estimates (Comber et al. 2008b; Kim and Yao 2010). This study 

did not consider the combined method as it aims to compare the performance of the 

binary dasymetric and pycnophylactic methods evaluated at different spatial scales.   

 

The dasymetric surfaces generated over Leicester (see Figures 4.7 to 4.9) showed that 

the use of ancillary information to constrain the population distribution improves the 

accuracy of areal interpolation from that provided by the pycnophylactic method. The 

dasymetric models using ancillary data to constrain the re-allocations generally 

performed better than the pycnophylactic approach. This is because the pycnophylactic 

method has no detailed information that correlates to likely true distribution of the 
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population in the source zone. This result is similar to findings of other researchers that 

compared the results of dasymetric method with other areal interpolation techniques and 

found the technique consistently provided better target zone estimates (Langford 2013; 

Mennis and Hultgren 2006; Poulsen and Kennedy 2004; Eicher and Brewer 2001; 

Martin et al. 2000; Cockings et al. 1997; Fisher and Langford 1995; Langford et al. 

1993). The results also indicate that larger census units are more likely to produce better 

results as it shows improvements in RMSE and the values of CoV as the size of the 

spatial aggregation increases. This result is not surprising as one would expect higher 

accuracies when values are disaggregated over coarser spatial units. This result is 

similar to findings of Comber et al. (2008) where a combination of pycnophylactic 

interpolation with the dasymetric method was used to create the National Agricultural 

Land Use Dataset. They reported improvement in R
2
 and RMSE values for Arable and 

Grass land uses for Kent, U.K. as the size of the spatial aggregation increases by the 

plots from 1 km
2
 to 25 km

2
.  

 

Most dasymetric research has used land cover information derived from classified 

satellite imagery as the ancillary data input (Mennis 2003; Zandbergen and Ignizio 

2010; Langford 2013). However, deriving such information from classified satellite 

imagery requires specialized skills. Also, identifying residential land use and whether 

they are truly occupied from classified satellite imagery is another error associated with 

using land cover data derived from classified satellite imagery as the ancillary data 

input. This study evaluated land cover data classified from satellite imagery and 

resampled aerial photograph of differing spatial resolutions (30m, 10m and 3m) as 

ancillary data input to the dasymetric method. The results from the error analyses 

showed that the land cover data derived from classified Landsat7 (ETM) 30m spatial 

resolution ancillary data input provided the lowest values of RMSE and CoV for all the 

models tested. These results, along with the free availability of 30m spatial resolution 

remote sensing data (Landsat etc.) and the ease with which it can be classified into 

urban and non-urban areas suggests its suitability as input for the dasymetric method. 

This study found that land cover data derived from classified resampled aerial photo 

data of 10m and 3m spatial resolution when used as the ancillary data input for the 

dasymetric method does not improve the results as well as the additional processing 

time and storage compared to land cover data derived from classified Landsat7 (ETM) 

30m spatial resolution. The results indicate that the quality of the land cover data is not 
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as important as its ability to predict the population estimates. This is likely due to the 

ability of multispectral satellite imagery (Landsat7 ETM) to differentiate land cover 

classes. Also, the performance of 10m and 3m resampled aerial photo data can be 

attributed to using land cover information of different resolutions of the same source. 

Nagle et al. (2014) developed the penalized maximum entropy dasymetric model (P-

MEDM) and found that the land cover data derived from high-resolution imagery 

provided less accurate information about the population than lower-resolution image 

data. Similarly, Langford (2013) found OS VectorMap District (raster-mode processing) 

with 5m resolution recorded RMSE value of 153 compared to Enhanced Thematic 

Mapper Plus (ETM+) of 30m resolution with a recorded value of 145.  

 

7.3 Port-Harcourt: surfaces and location-allocation  

 

The dasymetric method was used to redistribute 2006 summary population totals for 

Port-Harcourt with ancillary land cover information derived from classified Landsat7 

(ETM+) 30m spatial resolution, classified Spot5 (colour) 10m spatial resolution and 

classified resampled quickbird (60cm) image of 3m spatial resolution, over a 30m 

square grids. The parameters used to generate these surfaces for Port-Harcourt were 

based on the areal interpolation for Leicester where the actual population distribution is 

known and the results were validated. In the absence of field information (survey data) 

or another data source to validate these population values, a random sample of 200 

locations was taken to visually inspect the results in order to assess the accuracy of the 

population distribution. Google Earth 7.1 was used as a reference, to inspect the 

surfaces. The results of the inspection show sixteen out of two hundred random points 

selected (eight per cent of the random points selected) identified as populated on the 

surface were actually in unpopulated areas. There were only ten out of two hundred 

random points selected (five per cent of the random points selected) identified as 

unpopulated on the surface but were actually in populated areas. A total of twenty-six 

out of two hundred random points selected (thirteen per cent) on the interpolated surface 

do not correspond with Google Earth reference. When 10m and 3m spatial resolution 

land cover data were used, 14.5 and 22 per cent respectively of the random points 

selected were not correctly redistributed. This difference may be partly due to 

classification error but it is more likely due to differences in spatial limits and temporal 

differences between the date of the Google Earth reference (20
th

 December 2013) and 
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the date the Landsat7 (ETM+) imagery used to derive the land cover data was acquired 

(8
th

 January 2003). This is a potential source of error which may have affected the result 

due to possible land cover changes between the periods. However, it was useful in 

inspecting the population surfaces. Other advantages of using Google Earth as a 

validation tool are that it is easily and freely accessible and it allows visualization of 

large datasets of high resolution images. This approach is similar to a recent study by 

Amaral et al. (2012) where the dasymetric method was applied over the municipality of 

Maraba, Para State and then adapted using local parameters for thirteen other 

municipalities, and used the population data for the official settlement projects in 2003 

from the National Institute of Colonization and Agrarian Reform (INCRA) as a 

reference for validation.  

 

The spatially distributed demand population values generated for Port Harcourt were 

used as input into location-allocation models with road network data to analyse the 

accessibility of current and alternative future locations of health centres. Specifically, 

the demand population values were used to allocate catchment areas for the PHCCs 

representing the expected geographical coverage for each PHCC and to analyse travel 

distance which gives information about the benefits of locating different numbers of 

PHCCs. Cromley et al. (2009) and Langford and Higgs (2006) have discussed the 

significant contribution of the spatial distributions of demand to potential measure of 

access to health facilities in the absence of small area census data. This study evaluated 

the locations of 17 current PHCCs in Port-Harcourt. The results showed the average 

distance to nearest PHCC to be 1204m. This distance is within the international criteria 

of 2km maximum distance a patient is expected to travel to an urban health centre that 

provides a comprehensive primary care as outlined by the Centre for Health Policy 

(1993) and discussed in Rispel et al. (1995) and Doherty et al. (1996).   

 

When alternative locations for the current PHCCs were identified, the results showed 

the average distance to the closest facility to be reduced by 130m. It can be argued that 

for this set of experiment, the results show a little improvement in the current locations 

of PHCCs but the study suggests some improvement in accessibility to PHCCs could be 

achieved when alternative locations are used. Other analyses quantified the impacts of 

locating different numbers of PHCCs in terms of average travel distances for both 17 

current PHCCs and 85 potential new locations. The results showed modelled distances 
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from potential new locations minimised the current distances for all the subsets, 

suggesting the methods applied in this study optimised current facility locations.  

 

Travel distance to health facilities from homes has been shown to be a barrier to 

accessing health centres (Payne et al. 2000; Brewer et al. 2012) and correlates with the 

rate of child mortality (Frankenberg 1995; Tanser et al. 2006). Many studies have 

reported reduced childhood vaccination coverage with increased travel distance from 

homes (Jamil et al. 1999; Acharya and Cleland 2000; Tanser et al. 2006). Some other 

studies have reported strong association between routine childhood vaccinations and 

survival among infants in developing countries (Kristensen et al. 2000; Arevshatian et 

al. 2007) as these vaccinations guard against life-threatening diseases and reduce the 

spread of these diseases (Gu et al. 2010). Potential beneficiaries are more likely to 

complete routine childhood immunization if the services are provided within a 

reasonable travel distance from their homes. The implication of lack of this is that more 

children remain unvaccinated and are exposed to risk of death from preventable 

diseases. Therefore, optimal location of PHCCs is of critical importance to provision of 

adequate care as it is more likely to increase patients’ attendance to PHCCs and reduce 

outbreak of diseases, thereby reducing the death of children below the age of five (Jamil 

et al. 1999; Hemat et al. 2009). 

 

7.4 Methods 

 

This section discusses areal interpolation and location-allocation methods used in this 

research. The dasymetric method was used to redistribute summary population totals 

over small areas for Leicester and Port-Harcourt while the pycnophylactic method was 

used for only Leicester area. For the location-allocation case study in Port-Harcourt, the 

p-median method implemented in Teitz and Bart’s heuristic algorithm (Teitz and Bart 

1968) was used. The differences in population estimates obtained were due to the 

adoption of different areal interpolation methods.  

 

The dasymetric representation provided detailed and more realistic understanding of 

population distribution within the source zone, and therefore should provide better 

target zone estimates than the pycnophylactic method. The dasymetric method used 

ancillary input data on urban extent that relates to spatial distribution of the population 
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in the source zone which could strongly support its output. Also, the assignment of 

population totals to only areas identified as populated would seem to provide a more 

likely representation of where people truly live. This study has shown that the choice of 

areal interpolation method has a substantial impact on the estimates in the target zones. 

Some authors that compared population estimates from the dasymetric method with 

other areal interpolation techniques have reported similar findings (Langford 2013; Kim 

and Yao 2010; Eicher and Brewer 2001; Martin et al. 2000; Langford et al. 1993; Fisher 

and Langford 1995).   

  

This study applied the binary dasymetric method which assumes population is most 

likely to be found in only urban areas, and therefore assigned a weighting factor of 1 for 

the residential areas and 0 for non-residential areas. The population surfaces produced 

in this way depict the underlying population distribution in the source zone. However, 

the binary dasymetric approach assume population density is uniformly distributed 

across the populated regions within each source zone, which is not likely to be true 

(Mennis and Hultgren 2006; Maantay et al. 2007). For this reason, there is the 

possibility that a multiclass dasymetric model may likely provide some insights since “a 

range of residential densities will be present in most census reporting zones” (Langford 

2006, p.167). The multiclass dasymetric approach was not used in this study because 

previous research by Eicher and Brewer (2001) and Langford (2006) evaluated three-

class dasymetric model but the results when compared do not show any significant 

benefit over the binary dasymetric method. 

  

The use of other ancillary data such as street segments (Xie 1995; Riebel and Bufalino 

2005; Tapp 2010) could provide more accurate target zones estimates in Leicester 

where streets are regularly spaced and houses are located at regular intervals on roads. 

This is because the approach assumes residential population density gradient is constant 

at a given distance from the nearest road or street. However, this method is not likely to 

work well in Port-Harcourt because a number of housing units are not located close to 

the road network. For this reason, local circumstance and available resources were 

considered prior to the decision on the ancillary data input to use.  

 

This study has shown that the resolution of land cover data used to constrain the re-

allocation could affect the population surfaces. The evaluation of land cover classified 
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from satellite imagery of differing resolutions was influenced by its ability to reveal 

spatial variations within the study area and to explore whether a more detailed ancillary 

data input could reduce the estimation error (or not), as suggested by Zandbergen and 

Ignizio (2010). The expectation is that high resolution satellite image, which appears to 

offer greater spatial precision in identifying urban extent, could lead to reduction in land 

cover classification error. This is because the spectral signatures for each land cover 

type are likely to generate as little confusion as possible with a clear separation of land 

cover classes before classification. This is more likely to improve the redistribution to 

only areas identified as populated. But the results presented in this research showed that 

land cover data derived from classified resampled aerial photo data of 10m and 3m 

spatial resolution when used as the ancillary data input does not improve the results of 

the redistribution compared to those derived from classified Landsat7 (ETM) 30m 

spatial resolution. This is likely due to the ability of multispectral satellite imagery 

(Landsat7 ETM) to differentiate land cover classes. Also, the performance of 10m and 

3m resampled aerial photo data can be attributed to using land cover information of 

different resolutions of the same source.  

  

This study has also shown that the size of the support grids could have an effect on the 

population estimates generated in the target zones. This study redistributed summary 

population totals to two different support grids (30m and 100m) for each method. A 

30m support grid was chosen to correspond to the resolution of the Landsat (ETM) 

image used, as has been done by Su et al. (2010). Also, multiples of 10m and 3m image 

resolutions will correctly match the 30m grids of cells used. On the other hand, a 100m 

grid was chosen although multiples of 10m image resolutions can fit into 100m grids 

but not that of 3m and 30m. This was chosen to examine the benefit or otherwise of 

redistributing aggregate population to target areas whose resolution does not correspond 

with the resolution of the image. The results of this study showed using smaller support 

grids provided better population estimates in the target zones compared to using larger 

support grids. 

 

There are other heuristic searches that could have an effect on optimal locations of 

facilities when used to solve the p-median problem. The use of Genetic Algorithm (GA) 

that employs natural selection similar to that in biological evolution is likely to provide 

different results, but GA is more suitable where there are large numbers of facilities to 
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locate (Comber et al. 2010). For this reason, GA was not used in this study as there 

were only 17 PHCCs to locate. This study assessed the suitability of optimal locations 

using the mean distances between demand and the nearest location of PHCCs as has 

been done by other researchers that have used Teitz and Bart’s algorithm to solve the p-

median problem (Rosing et al. 1979; Church and Sorensen 1994; Rahman and Smith 

2000; Jia et al. 2007; Tomintz et al. 2013).   

 

7.5 Reflections on the methods and results 

 

Geographic data are often aggregated into areal units for a number of reasons. For 

example, population census counts are aggregated to reduce data volume and maintain 

confidentiality and respondent anonymity. When data come from different sources for 

the same geographic area, they incorporate alternative spatial aggregations resulting in 

different sets of areal units. This changes the scale and the aggregated boundary, and to 

a large extent would affect the results of spatial analysis (Openshaw 1984). There is the 

need to disaggregate the data for a common geographic area to ease spatial analysis. 

The ability of GIS to integrate different data sources into a common database has 

increased the need for areal interpolation (Cromley and Qiu 2013). Areal interpolation 

is the process of spatially disaggregating summary of counts of some phenomenon such 

as population over smaller areas (Goodchild and Lam 1980). In areal interpolation 

research, particularly those based on dasymetric modelling, ancillary data input that are 

related to the spatial distribution of the population in the source zone has been used to 

constrain the re-allocation (Langford 2013; Mennis 2009, 2003; Langford and Unwin 

1994). One common approach for the interpolation of population data has been to 

redistribute summary population totals for a census area and compare the results with 

actual population counts of a lower census area for validation.   

 

This study used land cover data derived from classified satellite imagery as the ancillary 

data input for the dasymetric models as has been used by many researchers (Langford 

and Unwin 1994; Eicher and Brewer 2001; Mennis 2003; Wu et al. 2005; Langford 

2013). There are a number of concerns relating to the use of satellite imagery to derive 

land cover data to be used as the ancillary data input for dasymetric method. First, 

classifying satellite image requires specialized skills. Second, the selection of training 

sets, generation of spectral signatures and interpretation of results depends on analysts’ 
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decision and knowledge of the study area. Third, identifying residential land use and 

whether they are truly occupied. The image classification techniques allow 

identification of pixels relating to different land cover making it easier to reclassify land 

use types into residential and non-residential areas. In reality, it is likely that some of 

the pixels assigned to residential areas are not actually occupied and those assigned to 

non-residential (such as farmlands) do have populations. There are other issues with 

high resolution image data in pixel based urban classification such as misclassification 

due to shadows, mixing of vegetation etc. The classification algorithm applied in this 

study, the maximum likelihood classifier, classifies land cover based on spectral 

signatures at per pixel level, while ignoring spatial features in an image. This is likely to 

increase misclassification due to shadows and uncertainty in the position of object 

borders in satellite images. For these reasons, this study found a lower resolution land 

cover data derived from classified Landsat7 (ETM) 30m spatial resolution easier to 

detect a residential class compared to using land cover data of 10m or 3m spatial 

resolution. However, some researchers have used other ancillary data sources to 

improve the accuracy of the interpolations such as road data (Mrozinski and Cromley 

1999; Xie 1995), cadastral data (Maantay et al. 2007; Bentley et al. 2013), address 

points (Zandbergen and Ignizio 2010), household sample data (Leyk et al. 2013), open 

access data (Langford 2013) and three dimensional LiDAR data (Sridharan and Qiu 

2013). The choice of ancillary data is important as the performance of the interpolation 

methods have been found to depend on specific characteristics of the original data such 

as its known errors, spatial properties and its extent (Zandbergen and Ignizio 2010; Wu 

et al. 2005) as well as the characteristics of any ancillary data used to constrain the 

disaggregation (Langford 2013). 

 

The binary mask separating populated and unpopulated areas used in the dasymetric 

model may have affected the result because it considered all areas classified as built-up, 

as the populated areas. This is based on the assumption that people live only within 

built-up areas. This is a major source of error because it fails to differentiate residential 

built-up and non-residential built-up areas (e.g. industrial, commercial etc.). Using built-

up areas as residential areas has effects on error. Some of these commercial/industrial 

areas can be can be differentiated from residential areas as they look spectrally distinct 

(especially in Leicester area), but most cannot be differentiated for the Port-Harcourt 

area. The residential areas for Leicester could have been extracted from the built-up 
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areas using the attributes of unit postcode data to select only areas that are directly 

associated with residential addresses but this cannot be done objectively in Port- 

Harcourt. For such places (e.g. Port-Harcourt) where there are no reliable data that 

clearly identify residential and non-residential areas, an analyst with knowledge of the 

study area may likely exclude non-residential areas from the dasymetric map leaving 

only the residential areas. This is subjective as it depends on individuals’ knowledge 

and cannot be easily replicated. The built-up areas for both study areas were used as 

residential areas because the aim of this study is to develop a model for disaggregating 

population census data to small areas where validation data is available, and that are 

easily calibrated with land cover and census data for areas with no validation data. 

 

The temporal difference between the dates on which the satellite imagery was acquired 

and the census year may have affected the result due to possible land cover changes 

between the periods. The Landsat imagery used for Leicester is more current than the 

census data by two years while the aerial photograph is more current by nine years than 

the census data used. For Port-Harcourt study, the Landsat imagery predates the census 

data used by three years and the Spot5 imagery is more current than the census data by 

one year. This is a likely source of error and could affect the result of this study. More 

so in Nigeria, perhaps where urban growth and land cover change is more dynamic. 

 

The difficulty in identifying high-rise buildings may have affected the result especially 

in Leicester. The use of building volume to constrain the redistribution allow the 

modelling of both horizontal and vertical population distribution and is more likely to 

offer the most reasonable representation of where people actually live. This is more of 

an issue in Leicester area compared to Port-Harcourt area because there are relatively 

few high-rise buildings in Leicester around city centre location compared to low-rise 

buildings in Port- Harcourt, which reduced the potential estimation error. Sridharan and 

Qiu (2013) used LiDAR-derived building volumes as ancillary data input to estimate 

the population of Round Rock, Texas in the US and found the technique provided more 

detailed and realistic estimates than using area-based ancillary input data. The 

conversion of classified raster into vector may have affected the result as it is likely to 

introduce some distortions due to pixilation effect. This has however been reduced 

when a 10m and 3m satellite imagery were used to derive land cover data that was used 

as the ancillary data input for the dasymetric method. 
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The adoption of parameters developed for one area, to another area may have affected 

the result. It can be argued that the best performing parameters for an area may not 

likely provide the best fitting target zone estimates for another different area, as has 

been found by Zandbergen and Ignizio (2010) who compared dasymetric mapping 

techniques in four US States, and no single technique performed best in more than one 

state. The spatially distributed population surfaces generated in this study by the 

dasymetric method showed estimates were allocated to only areas identified as 

populated and the surfaces depict the underlying population distribution in the source 

zone. This is because the method used ancillary input data that are related to the spatial 

distribution of the population in the source zone to constrain the redistribution. The 

sensitivity of the population estimates to error in the classified imagery was examined 

by Fisher and Langford (1996) with the assumption that errors are spatially random and 

the results show the dasymetric method to be robust to classification error. A robust 

technique is more likely to “perform well for different study areas across a range of 

different conditions” (Zandbergen and Ignizio 2010, p.212). Despite this assumption, 

the surfaces generated have a potentially useful degree of precision based on the results 

of the visual inspection of some random points using google earth reference.  

 

7.6 Limitations and suggestions for future work 

 

There are a number of limitations in the methods adopted in this research. A major 

limitation is the lack of validation for the population estimates generated for Port-

Harcourt and a need to make inferences from places where it is known. One approach to 

validate the findings is to compare the results of a section of the study area with 

estimates obtained using manually digitised data for the selected area. The concept of 

dasymetric mapping was useful in Port-Harcourt since about one-third of the area 

within its boundary is covered by water, but caution must be exercised in generalising 

the result since the parameters adapted were only based on the analysis conducted in 

Leicester. While census data at small area level (for example OAs) are available in 

Leicester for validation, the parameters developed from Leicester study alone are not 

sufficient to conclude they are the best fitting parameters to apply for Port-Harcourt. 

There is the need to apply these techniques to other locations where the results can be 

validated to be able to make a firm conclusion on the parameters to be adapted for Port-

Harcourt study. Another limitation is that the dasymetric method assumes uniform 
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density within the populated areas in each source zone, but in reality, population density 

may vary greatly within a single land cover class. Also, boundary alignment issues exist 

as is the case for most settings that overlay spatial data from different sources. The 

polygon boundary is noticeably out of alignment with the extent of the satellite imagery 

used but the effect of such discrepancy was corrected as the polygon boundary was used 

to subset the imagery, and to generate grids of cells that were used as the target zones.  

 

Population data are likely to be uncertain, so also the intersection of census boundary 

with land covers. The dasymetric modelling approach applied in this research does not 

account for uncertainties in the population data, the dasymetric outputs and the 

relationship between ancillary and target variables. The difficulty in identifying 

residential, commercial or industrial areas from the built-up areas is another limitation 

of this research. One way of resolving this is to digitize and update the building attribute 

information which among others will describe the building usage. Also, it would be 

useful to obtain LiDAR data for the area to differentiate the heights of the buildings and 

then determine the volume of individual residential buildings. Another major concern is 

that residential housing units are not located at regular intervals, and a number of these 

residential housing units are not close to road network. The government will be 

encouraged to put in place appropriate policy and strategies such that new housing units 

will be located on the road network to ease evaluation of access distance. Some broad 

cultural assumptions were made with regards to population in adapting parameters 

developed for Leicester area in Port-Harcourt which may have affected the result. These 

include assumptions of similar levels of overcrowding, lone occupancy, different social 

mixes, feeling of place and neighbourhood, bus routes, etc. For the location-allocation 

analyses, it only considered PHCCs within Port Harcourt and it is likely that to some 

residents the nearest health centre is outside the boundary of Port Harcourt. 

Traditionally, most studies on location-allocation assume that the demand for services is 

static (e.g. Hakimi 1964; Church and ReVelle, 1974). This study assumes demand only 

comprises residential-based night time population as obtained from census estimates 

and not proximity to work places which may have affected the results of the analyses. 

This is because daily activities such as travel to work that characterise peoples’ 

behaviour were not considered when modelling locations for services.  
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Distance plays a vital role in evaluating spatial access to health services and analysis of 

distance from patients’ homes to the nearest health centre is an objective indicator of 

geographic accessibility to health services (Seidel et al. 2006). In such situations, the 

most appropriate method is to measure actual travel distance (or travel time) on a road 

network (Kohli et al. 1995). Distance metrics such as Euclidean, Manhattan, Road 

Network distances etc. are used in spatial analytical modelling to estimate distances 

from patient residence to hospital with each metric providing a single model of travel 

over a given network. An important aspect is the fundamental role of time in accessing 

health care services. The travel time measurements are more relevant and the most 

accurate estimates of accessibility (Schuurman et al. 2006). However, actual travel time 

on a road network depends on spatial and temporal conditions such as weekdays vs. 

weekends, traffic congestion, lane closures, rush vs. non-rush hours etc. Ignoring time-

dependent variations in travel may result in sub-optimal location choices (Schmid and 

Doerner 2010) or underestimation of actual travel times (Eglese et al. 2006). This study 

assumes all roads are just as easily travelled as each other with no traffic concentrations 

because access distance was evaluated based on the assumption that people travel to 

health facilities on the road network in Port Harcourt. In the future, footpath data would 

be obtained and incorporated into the distance matrix to evaluate access. This is because 

in reality some residents travel on foot from home to PHCCs, which most times 

travelling on the footpath is shorter than the road network data used. The study also 

considered a decrease in average travel distance, although travel time may be a better 

choice, is more likely to improve overall accessibility to PHCCs. 

 

Despite these limitations, this research is one of the first to apply dasymetric mapping 

techniques to redistribute census data over small areas in any part of Nigeria. One of the 

strengths of this research is that the datasets used are freely available and the technique 

can easily be replicated. The generation of demand population values using these 

methods in Port-Harcourt provides evidence to support spatial planning and location-

allocation decisions. Specifically, the use of these demand population values to obtain 

optimal locations of health centres has the potential to reduce travel distance to PHCCs, 

and more children are likely to attend routine childhood immunisation that is more 

likely to reduce outbreak of diseases and thereby, reduce the death of children below the 

age of five. This is vital because the Millennium Development Goals (MDGs) 

declaration (target-four) as described by UN (2000) is committed to reducing “child 
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mortality rate among children under 5 by two-third by the year 2015”. It is therefore 

important for government officials, politicians and local planners charged with decision-

making on the numbers and locations of health facilities to be aware of methods applied 

in this research that provides evidence to support decisions.    

 

There are a number of areas for possible future work based on findings and limitations 

of this research. Future work will consider conducting small area survey to collect data 

from individual households or another data source at small area level, for use in 

validation. The built-up areas in Port-Harcourt will be digitized and the attribute 

information will be updated to clearly identify residential built-up areas instead of using 

built-up areas. It is expected that more detailed census data for Nigeria would be 

available (at least at Ward level) as the office of the Surveyor General of Nigeria and 

the National Boundary Commission are jointly working on demarcating ward 

boundaries to allow creation of digital boundaries for wards. This will make it easier for 

future population census counts to be published as aggregate counts and statistics at 

wards level. Despite the current limitations of operating unmanned aerial vehicles 

(UAVs) in Nigeria, in the future, high resolution data and sophisticated object-based 

image classification using UAVs would be considered. Proxy datasets such as mobile 

phone records would be obtained from Nigerian Communications Commission (NCC) 

and used to represent the spatial distribution of the population. There are a number of 

concerns with these proxy datasets such as the different time of the day the data was 

recorded, the data may not represent all population as the children and elderly are not 

likely to use mobile phones, duplication of records as some residents may have more 

than one mobile phone etc.  

 

The suitability of parameters developed from the areal interpolation for Leicester to 

generate surfaces for Port-Harcourt was partly due to the similarities between the two 

cities, an analysis using two or more study areas is more likely to provide different 

insights. The performance of interpolation methods was tested using known values of 

OAs, LSOAs and MSOAs. In the future, known values of UPC for Leicester could be 

used to test the performance of the methods and compare the results with the census 

units reported. This study used U.K. 2001 census total for Leicester, which has 

increased by about 17% as at 2011 census. In the future, U.K. 2011 population totals 

would be used to compare with the results obtained using 2001 population totals for 
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Leicester. The data for all the 160 newly constructed PHCCs in the 21 LGAs of Rivers 

State would be obtained and incorporated into the analyses to evaluate the boundary 

effect on PHCCs within Port-Harcourt. This will allow the application of genetic 

algorithm (GA) to solve the p-median problem because the number of facilities to locate 

has increased. The results of using GA can be compared with that of Teitz and Bart’s 

algorithm. The locational analyses would be extended to include other public services 

(such as schools, petrol service stations, banks etc.) to evaluate accessibility.  
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Chapter 8 

 

8. CONCLUSIONS 

 

8.1 Introduction 

 

This chapter draws together the findings from the literature, interpolations and the case 

study to explore the practical and theoretical implications of the research. The key aims 

of the research were extensively discussed in the previous chapters. The first aim was 

the determination of population surfaces in areas of unknown distributions to support 

spatial planning. The second was the evaluation of current health facility locations using 

the demand population values generated from the interpolations. The third was the 

suggestion of alternative spatial arrangements of health facilities to improve spatial 

accessibility. These three aims have been achieved through areal interpolation of 

population counts, allocation of catchment areas for the health centres and generation of 

potential new locations to evaluate accessibility from demand to potential new 

locations.  

 

The next section summarises the key findings of this study relating to the aims of the 

research. Section 8.3 highlights the contributions of the research. The last section 

recommends policy options for health facility location planning and allocation of future 

resources.  

 

8.2 Research findings 

 

The key finding in this research is for locations where detailed local mapping of census 

do not exist, that is, where the actual population in small areas is unknown, summary 

population totals can be redistributed over small areas by adapting a model that was 

developed for areas where validation is possible with land cover and census data for that 

area as a best bet solution given the circumstances. Other findings from this research are 

presented based on the five research objectives that addressed the aims of the research 

outlined in section 8.1.  
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8.2.1 Research objective one: The application of dasymetric and pycnophylactic 

interpolations across different spatial scales to redistribute aggregate population census 

data for Leicester over small areas.  

 

The aim of this objective was to draw from a review of previous techniques of areal 

interpolations to select methods that best redistributes aggregate population counts to 

target zones with unknown distributions and evaluate the methods across different 

spatial scales. From the results presented in Chapter Four, this research concludes that 

the dasymetric method provided the best fitting target zone estimates. The research has 

shown that land cover information derived from classified Landsat7 (ETM) 30m spatial 

resolution when used as the ancillary data input for the dasymetric method provided the 

best estimates in the target zones compared to when 10m or 3m spatial resolution land 

cover data derived from classified resampled aerial photo data was used. This research 

also concludes that redistribution over 30m square grids is more likely to provide better 

estimates in the target zones compared to when 100m square grids are used.  

 

8.2.2 Research objective two: A comparison of the estimated populations from the 

interpolations for three different census units and the known census counts in each case, 

to test the performance of the interpolation methods.  

 

The aim of this objective was to test interpolation performance and to compare 

alternative areal interpolation algorithms. This objective also aims to draw from the 

population values compared to select the best solution found during this phase so as to 

adapt the model with the most appropriate interpolation method, support grid and 

ancillary data input to estimate demand population values in Port-Harcourt, Nigeria. 

This research concludes that the dasymetric model using land cover data derived from 

classified Landsat7 (ETM) 30m spatial resolution as the ancillary data input with 

redistribution over 30m square grids was the best solution found at this resolution of 

interpolation.  
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8.2.3 Research objective three:  Adapt the model with the most appropriate parameters 

obtained from Leicester to estimate demand population values in Port-Harcourt, 

Nigeria. 

 

The aim of this objective was to transfer the ‘best’ solution found for Leicester study 

based on the most appropriate interpolation method, support grid and ancillary data 

input so as to create demand population values in Port-Harcourt, Nigeria and use these 

surfaces to evaluate current health facility locations. The spatial distribution of 

population estimates reflects the underlying distribution of population in Port-Harcourt 

because ancillary data input was used to constrain the re-allocation of population counts 

to only areas identified as populated. The visual inspections of surfaces revealed about 

eighty per cent of the demand population values created correspond to areas identified 

as built-up in the Google Earth reference.  

 

8.2.4 Research objective four: Evaluate the public health facility locations currently in 

place in Port-Harcourt. 

 

The aim of this objective was to use the spatially distributed demand population values 

created for Port-Harcourt as input into location-allocation models with road network 

data to analyse the accessibility of current locations of health centres. The demand 

population values were used to allocate catchment areas for the health centres 

representing the expected geographical coverage for each health centre in order to 

analyse travel distances from each demand to each health centre. The results presented 

in Chapter Six show that a person would have to travel an average distance of 1204m to 

access the closest health centre. This distance is within the international criteria of 2km 

maximum distance a patient is expected to travel to an urban health centre that provides 

a comprehensive primary care as outlined by the Centre for Health Policy (1993) and 

discussed in Rispel et al. (1995) and Doherty et al. (1996). However, identifying 

optimally sited service provision points is more likely to reduce the average travel 

distance from each demand to each health centre, thereby improving overall 

accessibility to health centres.     
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8.2.5 Research objective five: Suggest alternative spatial arrangement of public health 

facilities using heuristic location-allocation modelling approaches. 

 

The aim of this objective was to quantify the improvements in accessibility when the 

current health centres are optimally located. The results show the modelled distances 

from demand to the nearest potential new location minimised the average travelled 

distance from demand to the nearest health centre by 130m. This suggests alternative 

locations are optimal. This research concludes that some improvement in the overall 

spatial accessibility to health centres could be achieved when optimal locations are 

used.  

 

Key message: findings 

 

The key message to other researchers is that the dasymetric model with land cover data 

derived from a classified low resolution (e.g. 30m) satellite image as the ancillary data 

input with disaggregation over 30m square grids is more likely to be the solution for 

small area estimates in unknown distributions and without validation data. The model 

will provide better estimates in the target zones that will effectively depict the spatial 

heterogeneity of the population distribution in the source zone.  

  

8.3 Contributions 

 

This thesis provides an important contribution to knowledge, with respect to estimating 

population surfaces. Fine scale estimates of spatial population have relevance for a 

broad range of applications, and therefore the findings of this research are of value 

beyond the field of Geographical Information Science. This is demonstrated, to some 

extent, by the case study presented in Chapter 6. 

 

The challenge of applying areal interpolation techniques to a region where population 

data are less readily available is a key contribution of this research. The production of 

accurate population maps for cities such as Port-Harcourt has important implications for 

policy development in these areas. 
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8.4 Policy recommendation  

 

This study highlights the use of areal interpolation techniques and location-allocation 

models as a policy tool in identifying underserved areas. More specifically, this research 

draws the attention of policy makers, service providers and researchers into the need to 

collect and update small area census data in places where detailed census data are not 

currently reported. Analyses of this nature provide documentary evidence to support 

health facility location planning and allocation of future resource. The allocation of 

demand to current PHCCs provides evidence for informed decision making in spatial 

planning and policy development. The results of this research provide strong evidence 

to support spatial planning as against decisions taken by local planners and government 

officials on political grounds, without any formal analysis and generation of 

alternatives.   
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10. APPENDICES 

 

Appendix 1: Metadata file information for Leicester image downloaded from 

USGS  

GROUP = L1_METADATA_FILE 

  GROUP = METADATA_FILE_INFO 

    ORIGIN = "Image courtesy of the U.S. Geological Survey" 

    REQUEST_ID = "0101410048359_00002" 

    LANDSAT_SCENE_ID = "LE72020232003106EDC00" 

    FILE_DATE = 2014-10-05T00:09:14Z 

    STATION_ID = "EDC" 

    PROCESSING_SOFTWARE_VERSION = "LPGS_12.5.0" 

    DATA_CATEGORY = "NOMINAL" 

  END_GROUP = METADATA_FILE_INFO 

  GROUP = PRODUCT_METADATA 

    DATA_TYPE = "L1T" 

    ELEVATION_SOURCE = "GLS2000" 

    OUTPUT_FORMAT = "GEOTIFF" 

    EPHEMERIS_TYPE = "DEFINITIVE" 

    SPACECRAFT_ID = "LANDSAT_7" 

    SENSOR_ID = "ETM" 

    SENSOR_MODE = "SAM" 

    WRS_PATH = 202 

    WRS_ROW = 023 

    DATE_ACQUIRED = 2003-04-16 

    SCENE_CENTER_TIME = 10:46:55.9703464Z 

    CORNER_UL_LAT_PRODUCT = 54.11875 

    CORNER_UL_LON_PRODUCT = -2.24115 

    CORNER_UR_LAT_PRODUCT = 54.04025 

    CORNER_UR_LON_PRODUCT = 1.40991 

    CORNER_LL_LAT_PRODUCT = 52.13949 

    CORNER_LL_LON_PRODUCT = -2.27524 

    CORNER_LR_LAT_PRODUCT = 52.06639 

    CORNER_LR_LON_PRODUCT = 1.21252 

    CORNER_UL_PROJECTION_X_PRODUCT = 549600.000 

    CORNER_UL_PROJECTION_Y_PRODUCT = 5997000.000 

    CORNER_UR_PROJECTION_X_PRODUCT = 788700.000 

    CORNER_UR_PROJECTION_Y_PRODUCT = 5997000.000 

    CORNER_LL_PROJECTION_X_PRODUCT = 549600.000 

    CORNER_LL_PROJECTION_Y_PRODUCT = 5776800.000 

    CORNER_LR_PROJECTION_X_PRODUCT = 788700.000 

    CORNER_LR_PROJECTION_Y_PRODUCT = 5776800.000 

    PANCHROMATIC_LINES = 14681 

    PANCHROMATIC_SAMPLES = 15941 

    REFLECTIVE_LINES = 7341 

    REFLECTIVE_SAMPLES = 7971 

    THERMAL_LINES = 7341 

    THERMAL_SAMPLES = 7971 

    FILE_NAME_BAND_1 = "LE72020232003106EDC00_B1.TIF" 

    FILE_NAME_BAND_2 = "LE72020232003106EDC00_B2.TIF" 

    FILE_NAME_BAND_3 = "LE72020232003106EDC00_B3.TIF" 

    FILE_NAME_BAND_4 = "LE72020232003106EDC00_B4.TIF" 

    FILE_NAME_BAND_5 = "LE72020232003106EDC00_B5.TIF" 

    FILE_NAME_BAND_6_VCID_1 = "LE72020232003106EDC00_B6_VCID_1.TIF" 

    FILE_NAME_BAND_6_VCID_2 = "LE72020232003106EDC00_B6_VCID_2.TIF" 

    FILE_NAME_BAND_7 = "LE72020232003106EDC00_B7.TIF" 

    FILE_NAME_BAND_8 = "LE72020232003106EDC00_B8.TIF" 
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    GROUND_CONTROL_POINT_FILE_NAME = "LE72020232003106EDC00_GCP.txt" 

    METADATA_FILE_NAME = "LE72020232003106EDC00_MTL.txt" 

    CPF_NAME = "L7CPF20030401_20030531.09" 

  END_GROUP = PRODUCT_METADATA 

  GROUP = IMAGE_ATTRIBUTES 

    CLOUD_COVER = 0.00 

    IMAGE_QUALITY = 9 

    SUN_AZIMUTH = 153.69006941 

    SUN_ELEVATION = 44.40193007 

    GROUND_CONTROL_POINTS_VERSION = 1 

    GROUND_CONTROL_POINTS_MODEL = 183 

    GEOMETRIC_RMSE_MODEL = 4.027 

    GEOMETRIC_RMSE_MODEL_Y = 3.480 

    GEOMETRIC_RMSE_MODEL_X = 2.027 

  END_GROUP = IMAGE_ATTRIBUTES 

  GROUP = MIN_MAX_RADIANCE 

    RADIANCE_MAXIMUM_BAND_1 = 191.600 

    RADIANCE_MINIMUM_BAND_1 = -6.200 

    RADIANCE_MAXIMUM_BAND_2 = 196.500 

    RADIANCE_MINIMUM_BAND_2 = -6.400 

    RADIANCE_MAXIMUM_BAND_3 = 152.900 

    RADIANCE_MINIMUM_BAND_3 = -5.000 

    RADIANCE_MAXIMUM_BAND_4 = 241.100 

    RADIANCE_MINIMUM_BAND_4 = -5.100 

    RADIANCE_MAXIMUM_BAND_5 = 31.060 

    RADIANCE_MINIMUM_BAND_5 = -1.000 

    RADIANCE_MAXIMUM_BAND_6_VCID_1 = 17.040 

    RADIANCE_MINIMUM_BAND_6_VCID_1 = 0.000 

    RADIANCE_MAXIMUM_BAND_6_VCID_2 = 12.650 

    RADIANCE_MINIMUM_BAND_6_VCID_2 = 3.200 

    RADIANCE_MAXIMUM_BAND_7 = 10.800 

    RADIANCE_MINIMUM_BAND_7 = -0.350 

    RADIANCE_MAXIMUM_BAND_8 = 243.100 

    RADIANCE_MINIMUM_BAND_8 = -4.700 

  END_GROUP = MIN_MAX_RADIANCE 

  GROUP = MIN_MAX_PIXEL_VALUE 

    QUANTIZE_CAL_MAX_BAND_1 = 255 

    QUANTIZE_CAL_MIN_BAND_1 = 1 

    QUANTIZE_CAL_MAX_BAND_2 = 255 

    QUANTIZE_CAL_MIN_BAND_2 = 1 

    QUANTIZE_CAL_MAX_BAND_3 = 255 

    QUANTIZE_CAL_MIN_BAND_3 = 1 

    QUANTIZE_CAL_MAX_BAND_4 = 255 

    QUANTIZE_CAL_MIN_BAND_4 = 1 

    QUANTIZE_CAL_MAX_BAND_5 = 255 

    QUANTIZE_CAL_MIN_BAND_5 = 1 

    QUANTIZE_CAL_MAX_BAND_6_VCID_1 = 255 

    QUANTIZE_CAL_MIN_BAND_6_VCID_1 = 1 

    QUANTIZE_CAL_MAX_BAND_6_VCID_2 = 255 

    QUANTIZE_CAL_MIN_BAND_6_VCID_2 = 1 

    QUANTIZE_CAL_MAX_BAND_7 = 255 

    QUANTIZE_CAL_MIN_BAND_7 = 1 

    QUANTIZE_CAL_MAX_BAND_8 = 255 

    QUANTIZE_CAL_MIN_BAND_8 = 1 

  END_GROUP = MIN_MAX_PIXEL_VALUE 

  GROUP = PRODUCT_PARAMETERS 

    CORRECTION_GAIN_BAND_1 = "CPF" 

    CORRECTION_GAIN_BAND_2 = "CPF" 

    CORRECTION_GAIN_BAND_3 = "CPF" 

    CORRECTION_GAIN_BAND_4 = "CPF" 
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    CORRECTION_GAIN_BAND_5 = "CPF" 

    CORRECTION_GAIN_BAND_6_VCID_1 = "CPF" 

    CORRECTION_GAIN_BAND_6_VCID_2 = "CPF" 

    CORRECTION_GAIN_BAND_7 = "CPF" 

    CORRECTION_GAIN_BAND_8 = "CPF" 

    CORRECTION_BIAS_BAND_1 = "INTERNAL_CALIBRATION" 

    CORRECTION_BIAS_BAND_2 = "INTERNAL_CALIBRATION" 

    CORRECTION_BIAS_BAND_3 = "INTERNAL_CALIBRATION" 

    CORRECTION_BIAS_BAND_4 = "INTERNAL_CALIBRATION" 

    CORRECTION_BIAS_BAND_5 = "INTERNAL_CALIBRATION" 

    CORRECTION_BIAS_BAND_6_VCID_1 = "INTERNAL_CALIBRATION" 

    CORRECTION_BIAS_BAND_6_VCID_2 = "INTERNAL_CALIBRATION" 

    CORRECTION_BIAS_BAND_7 = "INTERNAL_CALIBRATION" 

    CORRECTION_BIAS_BAND_8 = "INTERNAL_CALIBRATION" 

    GAIN_BAND_1 = "H" 

    GAIN_BAND_2 = "H" 

    GAIN_BAND_3 = "H" 

    GAIN_BAND_4 = "L" 

    GAIN_BAND_5 = "H" 

    GAIN_BAND_6_VCID_1 = "L" 

    GAIN_BAND_6_VCID_2 = "H" 

    GAIN_BAND_7 = "H" 

    GAIN_BAND_8 = "L" 

    GAIN_CHANGE_BAND_1 = "HH" 

    GAIN_CHANGE_BAND_2 = "HH" 

    GAIN_CHANGE_BAND_3 = "HH" 

    GAIN_CHANGE_BAND_4 = "LL" 

    GAIN_CHANGE_BAND_5 = "HH" 

    GAIN_CHANGE_BAND_6_VCID_1 = "LL" 

    GAIN_CHANGE_BAND_6_VCID_2 = "HH" 

    GAIN_CHANGE_BAND_7 = "HH" 

    GAIN_CHANGE_BAND_8 = "LL" 

    GAIN_CHANGE_SCAN_BAND_1 = 0 

    GAIN_CHANGE_SCAN_BAND_2 = 0 

    GAIN_CHANGE_SCAN_BAND_3 = 0 

    GAIN_CHANGE_SCAN_BAND_4 = 0 

    GAIN_CHANGE_SCAN_BAND_5 = 0 

    GAIN_CHANGE_SCAN_BAND_6_VCID_1 = 0 

    GAIN_CHANGE_SCAN_BAND_6_VCID_2 = 0 

    GAIN_CHANGE_SCAN_BAND_7 = 0 

    GAIN_CHANGE_SCAN_BAND_8 = 0 

  END_GROUP = PRODUCT_PARAMETERS 

  GROUP = RADIOMETRIC_RESCALING 

    RADIANCE_MULT_BAND_1 = 0.779 

    RADIANCE_MULT_BAND_2 = 0.799 

    RADIANCE_MULT_BAND_3 = 0.622 

    RADIANCE_MULT_BAND_4 = 0.969 

    RADIANCE_MULT_BAND_5 = 0.126 

    RADIANCE_MULT_BAND_6_VCID_1 = 0.067 

    RADIANCE_MULT_BAND_6_VCID_2 = 0.037 

    RADIANCE_MULT_BAND_7 = 0.044 

    RADIANCE_MULT_BAND_8 = 0.976 

    RADIANCE_ADD_BAND_1 = -6.97874 

    RADIANCE_ADD_BAND_2 = -7.19882 

    RADIANCE_ADD_BAND_3 = -5.62165 

    RADIANCE_ADD_BAND_4 = -6.06929 

    RADIANCE_ADD_BAND_5 = -1.12622 

    RADIANCE_ADD_BAND_6_VCID_1 = -0.06709 

    RADIANCE_ADD_BAND_6_VCID_2 = 3.16280 

    RADIANCE_ADD_BAND_7 = -0.39390 
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    RADIANCE_ADD_BAND_8 = -5.67559 

  END_GROUP = RADIOMETRIC_RESCALING 

  GROUP = PROJECTION_PARAMETERS 

    MAP_PROJECTION = "UTM" 

    DATUM = "WGS84" 

    ELLIPSOID = "WGS84" 

    UTM_ZONE = 30 

    GRID_CELL_SIZE_PANCHROMATIC = 15.00 

    GRID_CELL_SIZE_REFLECTIVE = 30.00 

    GRID_CELL_SIZE_THERMAL = 30.00 

    ORIENTATION = "NORTH_UP" 

    RESAMPLING_OPTION = "CUBIC_CONVOLUTION" 

  END_GROUP = PROJECTION_PARAMETERS 

END_GROUP = L1_METADATA_FILE 

END 
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Appendix 2: Metadata file information for Port-Harcourt image downloaded from 

USGS  

GROUP = L1_METADATA_FILE 

  GROUP = METADATA_FILE_INFO 

    ORIGIN = "Image courtesy of the U.S. Geological Survey" 

    REQUEST_ID = "0101206084812_00004" 

    PRODUCT_CREATION_TIME = 2012-06-10T04:17:59Z 

    STATION_ID = "EDC" 

    LANDSAT7_XBAND = "2" 

    GROUND_STATION = "SGS" 

    LPS_PROCESSOR_NUMBER = 1 

    DATEHOUR_CONTACT_PERIOD = "0300814" 

    SUBINTERVAL_NUMBER = "04" 

  END_GROUP = METADATA_FILE_INFO 

  GROUP = PRODUCT_METADATA 

    PRODUCT_TYPE = "L1T" 

    ELEVATION_SOURCE = "GLS2000" 

    PROCESSING_SOFTWARE = "LPGS_12.0.2" 

    EPHEMERIS_TYPE = "DEFINITIVE" 

    SPACECRAFT_ID = "Landsat7" 

    SENSOR_ID = "ETM+" 

    SENSOR_MODE = "SAM" 

    ACQUISITION_DATE = 2003-01-08 

    SCENE_CENTER_SCAN_TIME = 09:33:30.6905415Z 

    WRS_PATH = 188 

    STARTING_ROW = 57 

    ENDING_ROW = 57 

    BAND_COMBINATION = "123456678" 

    PRODUCT_UL_CORNER_LAT = 5.2896247 

    PRODUCT_UL_CORNER_LON = 6.3620346 

    PRODUCT_UR_CORNER_LAT = 5.2950219 

    PRODUCT_UR_CORNER_LON = 8.4783619 

    PRODUCT_LL_CORNER_LAT = 3.3918211 

    PRODUCT_LL_CORNER_LON = 6.3686200 

    PRODUCT_LR_CORNER_LAT = 3.3952763 

    PRODUCT_LR_CORNER_LON = 8.4796659 

    PRODUCT_UL_CORNER_MAPX = 207600.000 

    PRODUCT_UL_CORNER_MAPY = 585300.000 

    PRODUCT_UR_CORNER_MAPX = 442200.000 

    PRODUCT_UR_CORNER_MAPY = 585300.000 

    PRODUCT_LL_CORNER_MAPX = 207600.000 

    PRODUCT_LL_CORNER_MAPY = 375300.000 

    PRODUCT_LR_CORNER_MAPX = 442200.000 

    PRODUCT_LR_CORNER_MAPY = 375300.000 

    PRODUCT_SAMPLES_PAN = 15641 

    PRODUCT_LINES_PAN = 14001 

    PRODUCT_SAMPLES_REF = 7821 

    PRODUCT_LINES_REF = 7001 

    PRODUCT_SAMPLES_THM = 7821 

    PRODUCT_LINES_THM = 7001 

    BAND1_FILE_NAME = "L71188057_05720030108_B10.TIF" 

    BAND2_FILE_NAME = "L71188057_05720030108_B20.TIF" 

    BAND3_FILE_NAME = "L71188057_05720030108_B30.TIF" 

    BAND4_FILE_NAME = "L71188057_05720030108_B40.TIF" 

    BAND5_FILE_NAME = "L71188057_05720030108_B50.TIF" 

    BAND61_FILE_NAME = "L71188057_05720030108_B61.TIF" 

    BAND62_FILE_NAME = "L72188057_05720030108_B62.TIF" 

    BAND7_FILE_NAME = "L72188057_05720030108_B70.TIF" 

    BAND8_FILE_NAME = "L72188057_05720030108_B80.TIF" 
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    GCP_FILE_NAME = "L71188057_05720030108_GCP.txt" 

    METADATA_L1_FILE_NAME = "L71188057_05720030108_MTL.txt" 

    CPF_FILE_NAME = "L7CPF20030101_20030331_06" 

  END_GROUP = PRODUCT_METADATA 

  GROUP = MIN_MAX_RADIANCE 

    LMAX_BAND1 = 293.700 

    LMIN_BAND1 = -6.200 

    LMAX_BAND2 = 300.900 

    LMIN_BAND2 = -6.400 

    LMAX_BAND3 = 234.400 

    LMIN_BAND3 = -5.000 

    LMAX_BAND4 = 241.100 

    LMIN_BAND4 = -5.100 

    LMAX_BAND5 = 47.570 

    LMIN_BAND5 = -1.000 

    LMAX_BAND61 = 17.040 

    LMIN_BAND61 = 0.000 

    LMAX_BAND62 = 12.650 

    LMIN_BAND62 = 3.200 

    LMAX_BAND7 = 16.540 

    LMIN_BAND7 = -0.350 

    LMAX_BAND8 = 243.100 

    LMIN_BAND8 = -4.700 

  END_GROUP = MIN_MAX_RADIANCE 

  GROUP = MIN_MAX_PIXEL_VALUE 

    QCALMAX_BAND1 = 255.0 

    QCALMIN_BAND1 = 1.0 

    QCALMAX_BAND2 = 255.0 

    QCALMIN_BAND2 = 1.0 

    QCALMAX_BAND3 = 255.0 

    QCALMIN_BAND3 = 1.0 

    QCALMAX_BAND4 = 255.0 

    QCALMIN_BAND4 = 1.0 

    QCALMAX_BAND5 = 255.0 

    QCALMIN_BAND5 = 1.0 

    QCALMAX_BAND61 = 255.0 

    QCALMIN_BAND61 = 1.0 

    QCALMAX_BAND62 = 255.0 

    QCALMIN_BAND62 = 1.0 

    QCALMAX_BAND7 = 255.0 

    QCALMIN_BAND7 = 1.0 

    QCALMAX_BAND8 = 255.0 

    QCALMIN_BAND8 = 1.0 

  END_GROUP = MIN_MAX_PIXEL_VALUE 

  GROUP = PRODUCT_PARAMETERS 

    CORRECTION_METHOD_GAIN_BAND1 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND2 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND3 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND4 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND5 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND61 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND62 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND7 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND8 = "CPF" 

    CORRECTION_METHOD_BIAS = "IC" 

    BAND1_GAIN = "L" 

    BAND2_GAIN = "L" 

    BAND3_GAIN = "L" 

    BAND4_GAIN = "L" 

    BAND5_GAIN = "L" 
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    BAND6_GAIN1 = "L" 

    BAND6_GAIN2 = "H" 

    BAND7_GAIN = "L" 

    BAND8_GAIN = "L" 

    BAND1_GAIN_CHANGE = "0" 

    BAND2_GAIN_CHANGE = "0" 

    BAND3_GAIN_CHANGE = "0" 

    BAND4_GAIN_CHANGE = "0" 

    BAND5_GAIN_CHANGE = "0" 

    BAND6_GAIN_CHANGE1 = "0" 

    BAND6_GAIN_CHANGE2 = "0" 

    BAND7_GAIN_CHANGE = "0" 

    BAND8_GAIN_CHANGE = "0" 

    BAND1_SL_GAIN_CHANGE = 0 

    BAND2_SL_GAIN_CHANGE = 0 

    BAND3_SL_GAIN_CHANGE = 0 

    BAND4_SL_GAIN_CHANGE = 0 

    BAND5_SL_GAIN_CHANGE = 0 

    BAND6_SL_GAIN_CHANGE1 = 0 

    BAND6_SL_GAIN_CHANGE2 = 0 

    BAND7_SL_GAIN_CHANGE = 0 

    BAND8_SL_GAIN_CHANGE = 0 

    SUN_AZIMUTH = 132.6855179 

    SUN_ELEVATION = 49.7604205 

    OUTPUT_FORMAT = "GEOTIFF" 

  END_GROUP = PRODUCT_PARAMETERS 

  GROUP = CORRECTIONS_APPLIED 

    STRIPING_BAND1 = "NONE" 

    STRIPING_BAND2 = "NONE" 

    STRIPING_BAND3 = "NONE" 

    STRIPING_BAND4 = "NONE" 

    STRIPING_BAND5 = "NONE" 

    STRIPING_BAND61 = "NONE" 

    STRIPING_BAND62 = "NONE" 

    STRIPING_BAND7 = "NONE" 

    STRIPING_BAND8 = "NONE" 

    BANDING = "N" 

    COHERENT_NOISE = "Y" 

    MEMORY_EFFECT = "N" 

    SCAN_CORRELATED_SHIFT = "N" 

    INOPERABLE_DETECTORS = "N" 

    DROPPED_LINES = "N" 

  END_GROUP = CORRECTIONS_APPLIED 

  GROUP = PROJECTION_PARAMETERS 

    REFERENCE_DATUM = "WGS84" 

    REFERENCE_ELLIPSOID = "WGS84" 

    GRID_CELL_SIZE_PAN = 15.000 

    GRID_CELL_SIZE_THM = 30.000 

    GRID_CELL_SIZE_REF = 30.000 

    ORIENTATION = "NUP" 

    RESAMPLING_OPTION = "CC" 

    MAP_PROJECTION = "UTM" 

  END_GROUP = PROJECTION_PARAMETERS 

  GROUP = UTM_PARAMETERS 

    ZONE_NUMBER = 32 

  END_GROUP = UTM_PARAMETERS 

END_GROUP = L1_METADATA_FILE 

END 
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Appendix 3: Port-Harcourt Spot5 imagery information from Astrium Services 

 

Spot5 imagery colour 10m spatial resolution taken 10
th

 January 2007 
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Appendix 4: The mean plot window for resampled aerial photo of 10m and 3m 

spatial resolution image of Leicester. 

 

 

Figure A4.1 - Signature mean plot for the combined signatures from 10m resolution 

image 

 

Figure A4.2 - Signature editor for the combined signatures from 10m resolution image 
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Figure A4.3 - Signature mean plot for the combined signatures from 3m resolution 

image 

 

 

Figure A4.4 - Signature editor for the combined signatures from 3m resolution image 
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Appendix 5: The signature editor and the signature mean plot for the combined 

signatures for resampled aerial photo of 10m and 3m spatial resolution image of 

Leicester 

 

 

Figure A5.1 - Signature editor for the combined signatures from resampled aerial photo 

of 10m spatial resolution. 

 

Figure A5.2 - Signature mean plot for the combined signatures from resampled aerial 

photo of 10m spatial resolution. 
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Figure A5.3 - Signature editor for the combined signatures from resampled aerial photo 

of 3m spatial resolution.  

 

 

Figure A5.4 - Signature mean plot for the combined signatures from resampled aerial 

photo of 3m spatial resolution.  
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Appendix 6: Classification accuracy report for Leicester 

 

Image File: z:/thesis_correction/leicester_30m/leic30m_sup.img 

User Name: ijm14 

Date: Mon Nov 24 11:22:35 2014 

 

ERROR MATRIX 

Reference Data 

Classified Data Unclassified Vegetation Water Builtup Row Total 

------ ------ ------ ------ ------ ------ 

Unclassified 130 0 0 0 130 

Vegetation 0 26 23 0 49 

Water 0 0 2 0 2 

Builtup 0 7 1 67 75 

Column Total 130 33 26 67 256 

 

----- End of Error Matrix ----- 

ACCURACY TOTALS 

 Class Reference Classified Number Producers Users 

Name Totals Totals Correct Accuracy Accuracy 

---------- ---------- ---------- ------- --------- ----- 

Unclassified 130 130 130 --- --- 

Vegetation 33 49 26 78.79% 53.06% 

Water 26 2 2 7.69% 100.00% 

Builtup 67 75 67 100.00% 89.33% 

Totals 256 256 225 

  

      Overall Classification Accuracy =     87.89% 

  

  

----- End of Accuracy Totals ----- 

 KAPPA (K^) STATISTICS 

Overall Kappa Statistics = 0.8108 

Conditional Kappa for each Category  

Class Name 

          

Kappa 

Unclassified 1.0000 

Vegetation 0.4612 

Water 1.0000 

Builtup 0.8555 

                                                      ----- End of Kappa Statistics ----- 
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Accuracy report for 10m image 

 

Image File: z:/thesis_correction/leicester_10m/leic_10m_sup.img 

User Name: ijm14 

Date: Mon Nov 24 23:03:09 2014 

 

ERROR MATRIX 

Reference Data 

Classified Data Unclassifi Bareground Vegetation Thick Veg Builtup Water 

Row 

Total 

--------------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- 

Unclassified 147 0 0 0 0 0 147 

Bareground 0 3 0 0 0 0 3 

Vegetation 0 0 34 2 0 14 50 

Thick Veget. 0 0 0 4 0 0 4 

Builtup 0 22 0 3 26 0 51 

Water 0 0 0 0 0 1 1 

Column Total 147 25 34 9 26 15 256 

        

 

----- End of Error Matrix ----- 

 

ACCURACY TOTALS 

 

Class Reference Classified Number Producers Users 

Name Totals Totals Correct Accuracy Accuracy 

---------- ---------- ---------- ------- --------- ----- 

Unclassified 147 147 147 --- --- 

Bareground 25 3 3 12.00% 100.00% 

Vegetation 34 50 32 100.00% 64.00% 

Thick Veget. 9 4 4 44.44% 100.00% 

Builtup 26 51 26 100.00% 50.98% 

Water 15 1 1 6.67%  100.00% 

Totals 256 256 213 

  

      Overall Classification Accuracy =     83.20% 

 

  

  

----- End of Accuracy Totals ----- 
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KAPPA (K^) STATISTICS 

 

Overall Kappa Statistics = 0.7307 

 

Conditional Kappa for each Category  

Class Name 

          

Kappa 

  

Unclassified 1.0000 

Bareground 1.0000 

Vegetation 0.5886 

Thick Vegetat. 1.0000 

Builtup 0.4544 

Water 1.0000 

 

 

                                                      ----- End of Kappa Statistics ----- 

 

 

 

 

 

Accuracy report for 3m image 

 

Image File: z:/thesis_correction/leicester_3m/leic_3m_sup.img 

User Name: ijm14 

Date: Wed Nov 26 13:26:36 2014 

 

ERROR MATRIX 

 

Reference Data 

 

Classified Data Unclassifi Bareground Vegetation Thick Veg Builtup Water 

Row 

Total 

--------------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- 

Unclassified 143 0 0 0 0 0 143 

Bareground 0 0 0 0 3 0 3 

Vegetation 0 0 29 8 0 6 43 

Thick Veget. 0 0 0 3 0 4 7 

Builtup 0 21 1 0 34 0 56 

Water 0 0 0 3 0 1 4 

Column Total 143 21 30 14 37 11 256 

 

 

 

----- End of Error Matrix ----- 
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ACCURACY TOTALS 

 

Class Reference Classified Number Producers Users 

Name Totals Totals Correct Accuracy Accuracy 

---------- ---------- ---------- ------- --------- ----- 

Unclassified 143 143 143 --- --- 

Bareground 21 3 0 0.00% 0.00% 

Vegetation 30 43 29 96.67% 67.44% 

Thick Veget. 14 7 3 21.43% 42.86% 

Builtup 37 56 34 91.89% 60.71% 

Water 11 4 1 9.09% 25.00% 

Totals 256 256 210 

  

      
Overall Classification Accuracy =     82.03% 

  

      

  

----- End of Accuracy Totals ----- 

  

 

KAPPA (K^) STATISTICS 

 

Overall Kappa Statistics = 0.7164 

 

 

Conditional Kappa for each Category  

 

Class Name 

          

Kappa 

  

Unclassified 1 

Bareground 0.0894 

Vegetation 0.6312 

Thick Vegetat. 0.3955 

Builtup 0.5408 

Water 0.2163 

 

 

                                                      ----- End of Kappa Statistics ----- 
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Appendix 7: Residual maps 

 

 

 

 

 

Figure A7.1 - The distribution of residuals using a 30m gridded pycnophylactic 

population surface at MSOA. The digital boundaries are © Crown Copyright and/or 

database right 2013. An Ordnance Survey/EDINA supplied service.   
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Figure A7.2 - The distribution of residuals using a 100m gridded pycnophylactic 

population surface at MSOA. The digital boundaries are © Crown Copyright and/or 

database right 2013. An Ordnance Survey/EDINA supplied service.   
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Figure A7.3 - The distribution of residuals using a 30m gridded pycnophylactic 

population surface at LSOA. The digital boundaries are © Crown Copyright and/or 

database right 2013. An Ordnance Survey/EDINA supplied service.   
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Figure A7.4 - The distribution of residuals using a 100m gridded pycnophylactic 

population surface at LSOA. The digital boundaries are © Crown Copyright and/or 

database right 2013. An Ordnance Survey/EDINA supplied service.   
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Figure A7.5 - The distribution of residuals using a 30m gridded pycnophylactic 

population surface at OA. The digital boundaries are © Crown Copyright and/or 

database right 2013. An Ordnance Survey/EDINA supplied service.   
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Figure A7.6 - The distribution of residuals using a 100m gridded pycnophylactic 

population surface at OA. The digital boundaries are © Crown Copyright and/or 

database right 2013. An Ordnance Survey/EDINA supplied service.   
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Figure A7.7 - The distribution of residuals using a 30m gridded dasymetric population 

surface at MSOA using 30m spatial resolution land cover data as the ancillary data 

input. The digital boundaries are © Crown Copyright and/or database right 2013. An 

Ordnance Survey/EDINA supplied service.  

 



207 

 

 

 

 

 

Figure A7.8 - The distribution of residuals using a 100m gridded dasymetric population 

surface at MSOA using 30m spatial resolution land cover data as the ancillary data 

input. The digital boundaries are © Crown Copyright and/or database right 2013. An 

Ordnance Survey/EDINA supplied service.  
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Figure A7.9 - The distribution of residuals using a 30m gridded dasymetric population 

surface at LSOA using 30m spatial resolution land cover data as the ancillary data input. 

The digital boundaries are © Crown Copyright and/or database right 2013. An 

Ordnance Survey/EDINA supplied service.  
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Figure A7.10 - The distribution of residuals using a 100m gridded dasymetric 

population surface at LSOA using 30m spatial resolution land cover data as the 

ancillary data input. The digital boundaries are © Crown Copyright and/or database 

right 2013. An Ordnance Survey/EDINA supplied service.  
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Figure A7.11 - The distribution of residuals using a 30m gridded dasymetric population 

surface at OA using 30m spatial resolution land cover data as the ancillary data input. 

The digital boundaries are © Crown Copyright and/or database right 2013. An 

Ordnance Survey/EDINA supplied service.  
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Figure A7.12 - The distribution of residuals using a 100m gridded dasymetric 

population surface at OA using 30m spatial resolution land cover data as the ancillary 

data input. The digital boundaries are © Crown Copyright and/or database right 2013. 

An Ordnance Survey/EDINA supplied service.  
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Figure A7.13 - The distribution of residuals using a 30m gridded dasymetric population 

surface at MSOA using 10m spatial resolution land cover data as the ancillary data 

input. The digital boundaries are © Crown Copyright and/or database right 2013. An 

Ordnance Survey/EDINA supplied service.  
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Figure A7.14 - The distribution of residuals using a 100m gridded dasymetric 

population surface at MSOA using 10m spatial resolution land cover data as the 

ancillary data input. The digital boundaries are © Crown Copyright and/or database 

right 2013. An Ordnance Survey/EDINA supplied service.  
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Figure A7.15 - The distribution of residuals using a 30m gridded dasymetric population 

surface at LSOA using 10m spatial resolution land cover data as the ancillary data input. 

The digital boundaries are © Crown Copyright and/or database right 2013. An 

Ordnance Survey/EDINA supplied service.  
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Figure A7.16 - The distribution of residuals using a 100m gridded dasymetric 

population surface at LSOA using 10m spatial resolution land cover data as the 

ancillary data input. The digital boundaries are © Crown Copyright and/or database 

right 2013. An Ordnance Survey/EDINA supplied service.  
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Figure A7.17 - The distribution of residuals using a 30m gridded dasymetric population 

surface at OA using 10m spatial resolution land cover data as the ancillary data input. 

The digital boundaries are © Crown Copyright and/or database right 2013. An 

Ordnance Survey/EDINA supplied service.  
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Figure A7.18 - The distribution of residuals using a 100m gridded dasymetric 

population surface at OA using 10m spatial resolution land cover data as the ancillary 

data input. The digital boundaries are © Crown Copyright and/or database right 2013. 

An Ordnance Survey/EDINA supplied service.  
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Figure A7.19 - The distribution of residuals using a 30m gridded dasymetric population 

surface at MSOA using 3m spatial resolution land cover data as the ancillary data input. 

The digital boundaries are © Crown Copyright and/or database right 2013. An 

Ordnance Survey/EDINA supplied service.  

 

 



219 

 

 

 

 

 

Figure A7.20 - The distribution of residuals using a 100m gridded dasymetric 

population surface at MSOA using 3m spatial resolution land cover data as the ancillary 

data input. The digital boundaries are © Crown Copyright and/or database right 2013. 

An Ordnance Survey/EDINA supplied service.  
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Figure A7.21 - The distribution of residuals using a 30m gridded dasymetric population 

surface at LSOA using 3m spatial resolution land cover data as the ancillary data input. 

The digital boundaries are © Crown Copyright and/or database right 2013. An 

Ordnance Survey/EDINA supplied service.  
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Figure A7.22 - The distribution of residuals using a 100m gridded dasymetric 

population surface at LSOA using 3m spatial resolution land cover data as the ancillary 

data input. The digital boundaries are © Crown Copyright and/or database right 2013. 

An Ordnance Survey/EDINA supplied service.  
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Figure A7.23 - The distribution of residuals using a 30m gridded dasymetric population 

surface at OA using 3m spatial resolution land cover data as the ancillary data input. 

The digital boundaries are © Crown Copyright and/or database right 2013. An 

Ordnance Survey/EDINA supplied service.  
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Figure A7.24 - The distribution of residuals using a 100m gridded dasymetric 

population surface at OA using 3m spatial resolution land cover data as the ancillary 

data input. The digital boundaries are © Crown Copyright and/or database right 2013. 

An Ordnance Survey/EDINA supplied service.  
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Appendix 8: Signature Mean Plot, Mean plot and Signature editor for the 

combined signatures for Port-Harcourt  

 

 

Figure A8.1 - Signature mean plot evaluating signatures for vegetation, built-up and 

water from Spot5 (colour) 10m spatial resolution image. 
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Figure A8.2 - Signature editor for the combined signatures from Spot5 (colour) 10m 

spatial resolution image. 

 

 

Figure A8.3 - Signature mean plot for the combined signatures from Spot5 (colour) 10m 

spatial resolution image. 
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3m Image 

 

 

Figure A8.4 - Signature mean plot evaluating signatures for vegetation, thick 

vegetation, built-up and water from resampled quickbird image of 3m spatial resolution. 

 

 

Figure A8.5 - Signature editor for the combined signatures from resampled quickbird 

image of 3m spatial resolution  



227 

 

 

Figure A8.6 - Signature mean plot for the combined signatures from resampled 

Quickbird image of 3m spatial resolution image. 
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Appendix 9: Classification accuracy report for Port-Harcourt 

 

Image File: z:/thesis_correction/port-harcourt/30m/sup_ph.img 

User Name: ijm14 

Date: Mon Dec 22 11:14:10 2014 

 

 

ERROR MATRIX 

 

 

                                                                          Reference Data 

                                                                             -------------- 

Classified Data Unclassified      Water   Built-up Vegetation  Row Total 

--------------- ---------- ---------- ---------- ---------- ---------- 

Unclassified 112 0 0 0 112 

Water 0 15 0 10 25 

Built-up 0 2 42 11 55 

Vegetation 0 24 0 40 64 

Column Total 112 41 42 61 256 

                                                                ----- End of Error Matrix ----- 

 

 

 

 

ACCURACY TOTALS 

---------------- 

Class Reference Classified Number Producers Users 

Name Totals Totals Correct Accuracy Accuracy 

---------- ---------- ---------- ------- --------- ----- 

Unclassified 112 112 112 --- --- 

Water 41 25 15 36.59% 60.00% 

Built-up 42 55 42 100.00% 76.36% 

Vegetation 61 64 40 65.57% 62.50% 

Totals 256 256 209 

  

 Overall Classification Accuracy =     81.64% 

 

 

 ----- End of Accuracy Totals ----- 
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KAPPA (K^) STATISTICS 

   

Overall Kappa Statistics = 0.7372 

 

    Conditional Kappa for each Category. 

 ------------------------------------ 

      Class Name           Kappa 

      ----------           ----- 

  Unclassified 1 

  Water 0.5259 

  Built-up 0.7172 

  Vegetation 0.5077 

  

    

    

 

----- End of Kappa Statistics ----- 

 

 

10m 

Image File: z:/thesis_correction/port-harcourt/10m/sup_ph10m_spot.img 

User Name : ijm14 

Date: Tue Dec 23 13:29:43 2014 

 ERROR MATRIX 

------------- 

 Reference Data 

 
Classified Data Unclassified Vegetation Thick vegetation Built-up Water Row Total 

--------------- ---------- ---------- ---------- --------- --------- ---------- 

Unclassified 111 0 0 0 0 111 

Vegetation 0 18 2 3 5 28 

Thick vegetation 0 0 24 0 9 33 

Built-up 0 20 0 39 0 59 

Water 0 2 12 0 11 25 

Column Total 111 40 38 42 25 256 

 ----- End of Error Matrix ----- 
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ACCURACY TOTALS 

---------------- 

Class Reference Classified Number Producers Users 

Name Totals Totals Correct Accuracy Accuracy 

---------- ---------- ---------- ------- --------- ----- 

Unclassified 111 111 111 --- --- 

Vegetation 40 28 18 45.00% 64.29% 

Thick vegetation 38 33 24 63.16% 72.73% 

Built-up 42 59 39 92.86% 66.10% 

Water 25 25 11 44.00% 44.00% 

Totals 256 256 203 

  

 Overall Classification Accuracy =     79.30% 

 

----- End of Accuracy Totals ----- 

 

 

KAPPA (K^) STATISTICS 

--------------------- 

 Overall Kappa Statistics = 0.7158 

 Conditional Kappa for each Category. 

------------------------------------ 

 Class Name Kappa 

   ---------- ----- 

   Unclassified 1 

   Vegetation 0.5767 

   Thick vegetation 0.6797 

   Built-up 0.5945 

   Water 0.3794 

   

 

 ----- End of Kappa Statistics ----- 
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3m 

Image File: z:/thesis_correction/port-harcourt/3m/sup_ph3m.img 

User Name : ijm14 

Date: Wed Feb 04 22:57:35 2015 

 ERROR MATRIX 

------------- 

 Reference Data 

-------------- 

Classified Data Unclassified Vegetation Thick vegetation Built-up Water Row Total 

--------------- ---------- ---------- ---------- --------- --------- ---------- 

Unclassified 114 0 0 0 0 114 

Vegetation 0 8 0 0 13 21 

Thick Vegetation 0 0 19 0 7 26 

Built-up 0 15 0 48 0 63 

Water 0 17 4 0 11 32 

Column Total 114 40 23 48 31 256 

 ----- End of Error Matrix ----- 

 

 

 

ACCURACY TOTALS 

---------------- 

Class Reference Classified Number Producers Users 

Name Totals Totals Correct Accuracy Accuracy 

---------- ---------- ---------- ------- --------- ----- 

Unclassified 114 114 114 --- --- 

Vegetation 40 21 8 20.00% 38.10% 

Thick Vegetation 23 26 19 82.61% 73.08% 

Built-up 48 63 48 100.00% 76.19% 

Water 31 32 11 35.48% 34.38% 

Totals 256 256 200 

  

 Overall Classification Accuracy =     78.13% 

 

----- End of Accuracy Totals ----- 
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KAPPA (K^) STATISTICS 

--------------------- 

 Overall Kappa Statistics = 0.6955 

 Conditional Kappa for each Category. 

------------------------------------ 

 Class Name Kappa 

   ---------- ----- 

   Unclassified 1 

   Vegetation 0.2663 

   Thick vegetation 0.7042 

   Built-up 0.7070 

   Water 0.2533 

   

 

 ----- End of Kappa Statistics ----- 
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Appendix 10: The results of visual inspection of surfaces 

 

Table A10.1 - Results of the visual inspection of surfaces using Landsat7 (ETM+) 30m 

spatial resolution image. 

 

FID CID X Y Surface G_Earth Correct 

0 0 283,149.56 530,560.14 Populated Populated Y 

1 0 286,464.28 523,625.92 Unpopulated UnPopulated Y 

2 0 273,405.58 529,135.30 Unpopulated  Unpopulated Y 

3 0 278,618.83 532,734.37 Populated Populated Y 

4 0 279,362.93 527,003.66 Populated Populated Y 

5 0 277,370.41 528,482.54 Unpopulated UnPopulated Y 

6 0 284,802.84 524,522.67 Unpopulated UnPopulated Y 

7 0 285,600.83 524,157.77 Unpopulated  Unpopulated Y 

8 0 282,881.97 524,466.88 Populated Populated Y 

9 0 283,329.30 533,283.51 Populated  Unpopulated N 

10 0 273,742.66 529,822.50 Unpopulated UnPopulated Y 

11 0 281,681.10 529,470.53 Unpopulated Unpopulated Y 

12 0 279,056.52 528,302.86 Unpopulated  UnPopulated Y 

13 0 274,806.36 528,113.45 Unpopulated  UnPopulated Y 

14 0 282,381.23 530,988.09 Populated Populated Y 

15 0 282,294.98 523,045.87 Unpopulated Unpopulated Y 

16 0 278,164.57 528,464.40 Unpopulated UnPopulated Y 

17 0 284,254.73 525,006.07 Unpopulated  Unpopulated Y 

18 0 278,506.12 528,005.80 Unpopulated  Populated N 

19 0 274,955.23 526,557.26 Unpopulated Unpopulated Y 

20 0 284,906.87 532,496.74 Populated  Populated Y 

21 0 279,713.27 523,122.76 Unpopulated  Unpopulated Y 

22 0 284,022.15 530,551.89 Unpopulated UnPopulated Y 

23 0 278,846.78 529,403.30 Populated  UnPopulated N 

24 0 279,028.35 529,524.92 Populated Populated Y 

25 0 281,996.97 523,121.61 Unpopulated  Unpopulated Y 

26 0 285,142.92 523,299.22 Unpopulated  Unpopulated Y 

27 0 280,734.30 523,293.55 Unpopulated Unpopulated Y 

28 0 281,314.67 531,668.75 Populated Populated Y 

29 0 273,203.85 528,730.62 Unpopulated Unpopulated Y 

30 0 283,744.02 526,623.07 Unpopulated Unpopulated Y 

31 0 283,601.93 528,846.17 Populated UnPopulated N 

32 0 278,415.02 524,689.09 Unpopulated  Unpopulated Y 

33 0 281,725.93 533,060.17 Populated  UnPopulated N 

34 0 281,470.62 522,471.02 Unpopulated  Unpopulated Y 

35 0 282,207.88 530,024.15 Populated Populated Y 

36 0 274,337.21 528,358.20 Populated  Unpopulated N 

37 0 276,795.11 530,833.04 Populated  Populated Y 
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38 0 272,157.33 528,862.64 Unpopulated Unpopulated Y 

39 0 279,293.97 530,923.60 Populated Populated  Y 

40 0 280,257.74 528,292.28 Populated UnPopulated N 

41 0 282,121.08 530,378.37 Populated  Populated Y 

42 0 280,437.49 526,944.84 Populated Populated Y 

43 0 281,694.28 521,866.63 Unpopulated Unpopulated Y 

44 0 276,818.62 531,893.66 Populated Populated Y 

45 0 282,624.15 526,891.17 Unpopulated  Unpopulated Y 

46 0 285,606.49 525,407.67 Unpopulated  Unpopulated Y 

47 0 276,926.33 530,420.00 Populated  Populated Y 

48 0 277,745.97 532,403.63 Populated  Populated Y 

49 0 278,686.39 532,162.75 Populated  Populated Y 

50 0 276,083.07 528,221.48 Unpopulated Populated N 

51 0 279,585.31 524,761.25 Unpopulated UnPopulated Y 

52 0 281,759.72 532,173.59 Populated Populated Y 

53 0 284,754.68 524,064.75 Unpopulated  Unpopulated Y 

54 0 277,498.94 531,285.58 Populated Populated Y 

55 0 285,573.69 522,823.64 Unpopulated  Unpopulated Y 

56 0 283,217.28 532,100.73 Populated Populated Y 

57 0 273,471.69 529,985.80 Unpopulated Unpopulated Y 

58 0 284,544.50 533,241.52 Populated Populated Y 

59 0 286,720.39 523,839.62 Unpopulated  Unpopulated Y 

60 0 284,925.70 526,867.65 Unpopulated Unpopulated Y 

61 0 280,876.57 532,755.57 Populated Populated Y 

62 0 279,564.76 526,641.63 Populated Populated Y 

63 0 274,983.25 529,627.02 Populated  Populated Y 

64 0 284,168.69 527,247.58 Populated Populated Y 

65 0 281,346.24 524,198.03 Populated Populated Y 

66 0 279,070.61 532,584.64 Populated  Populated Y 

67 0 281,090.80 530,793.83 Populated Unpopulated N 

68 0 283,691.18 531,361.69 Populated Populated Y 

69 0 274,706.68 526,581.04 Unpopulated  UnPopulated Y 

70 0 280,031.24 527,239.97 Populated Populated Y 

71 0 283,575.70 530,907.81 Unpopulated UnPopulated Y 

72 0 274,525.05 527,251.28 Unpopulated Unpopulated Y 

73 0 282,952.10 525,966.30 Unpopulated Unpopulated Y 

74 0 283,443.71 524,724.23 Populated  Populated Y 

75 0 283,964.34 524,902.77 Unpopulated Unpopulated Y 

76 0 281,316.51 524,943.71 Populated Unpopulated N 

77 0 284,797.19 530,551.40 Unpopulated UnPopulated Y 

78 0 282,343.51 525,177.46 Populated Populated Y 

79 0 281,736.44 532,474.06 Populated Populated Y 

80 0 282,480.89 530,263.55 Unpopulated UnPopulated Y 

81 0 276,131.16 526,690.60 Unpopulated Unpopulated Y 

82 0 279,775.25 530,839.60 Unpopulated Populated N 

83 0 277,865.36 529,307.21 Populated Populated Y 
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84 0 285,436.41 523,653.52 Unpopulated  Unpopulated Y 

85 0 282,026.29 531,217.99 Populated Populated Y 

86 0 278,782.10 529,173.91 Populated  UnPopulated N 

87 0 285,819.34 524,591.15 Unpopulated  Unpopulated Y 

88 0 286,051.74 524,403.25 Unpopulated  Unpopulated Y 

89 0 281,265.54 529,889.59 Populated  Populated Y 

90 0 283,461.74 527,721.69 Unpopulated UnPopulated Y 

91 0 273,444.33 528,056.29 Unpopulated  Unpopulated Y 

92 0 281,832.84 532,796.82 Populated Populated Y 

93 0 280,759.27 531,862.96 Populated  UnPopulated N 

94 0 281,332.64 528,987.62 Unpopulated  Unpopulated Y 

95 0 283,292.61 525,172.47 Populated Unpopulated N 

96 0 284,053.71 531,873.62 Populated Populated Y 

97 0 283,244.97 533,060.96 Unpopulated Unpopulated Y 

98 0 285,470.54 527,463.12 Unpopulated  Unpopulated  Y 

99 0 277,652.20 529,018.16 Populated Populated Y 

100 0 279,190.54 530,462.89 Populated Populated Y 

101 0 285,798.88 525,164.62 Unpopulated Unpopulated Y 

102 0 276,797.69 528,219.90 Unpopulated UnPopulated Y 

103 0 285,192.60 531,830.31 Populated  Populated Y 

104 0 277,844.08 528,614.52 Unpopulated UnPopulated Y 

105 0 280,442.81 528,425.69 Populated Populated Y 

106 0 284,840.71 525,148.95 Unpopulated Unpopulated Y 

107 0 285,089.70 529,699.28 Unpopulated UnPopulated Y 

108 0 273,707.53 528,962.53 Unpopulated Unpopulated Y 

109 0 285,145.82 531,341.88 Unpopulated UnPopulated Y 

110 0 276,343.56 527,600.70 Unpopulated UnPopulated Y 

111 0 279,068.79 530,073.21 Populated Populated Y 

112 0 281,888.72 530,818.02 Populated Populated Y 

113 0 272,634.00 528,500.06 Unpopulated  Unpopulated Y 

114 0 278,543.25 525,495.17 Populated UnPopulated N 

115 0 282,429.86 526,103.40 Populated Populated Y 

116 0 280,343.88 531,952.26 Populated  Populated Y 

117 0 282,204.06 528,923.45 Populated Populated Y 

118 0 285,631.90 528,869.09 Unpopulated  UnPopulated Y 

119 0 280,682.70 532,318.51 Populated Populated Y 

120 0 281,556.00 526,242.37 Populated Populated Y 

121 0 282,064.26 527,566.55 Unpopulated  Unpopulated Y 

122 0 284,415.74 532,746.51 Populated  Populated Y 

123 0 275,326.44 529,415.68 Unpopulated  Unpopulated Y 

124 0 280,884.07 530,644.59 Populated UnPopulated N 

125 0 279,127.94 528,882.88 Unpopulated  Populated N 

126 0 286,571.60 524,226.15 Unpopulated  Unpopulated Y 

127 0 283,528.87 528,395.24 Unpopulated UnPopulated Y 

128 0 274,767.17 530,077.71 Unpopulated UnPopulated Y 

129 0 285,800.12 527,957.73 Unpopulated  Unpopulated Y 



236 

 

130 0 279,632.67 532,385.64 Populated  Populated Y 

131 0 283,176.15 527,965.19 Unpopulated Populated N 

132 0 286,023.01 532,386.32 Unpopulated Unpopulated Y 

133 0 279,629.54 533,104.57 Unpopulated Populated N 

134 0 274,352.69 529,968.44 Unpopulated Populated N 

135 0 274,103.03 527,897.39 Unpopulated Unpopulated Y 

136 0 285,988.57 524,706.02 Unpopulated Unpopulated Y 

137 0 281,131.46 522,731.21 Unpopulated  Unpopulated Y 

138 0 281,204.78 527,757.77 Populated Populated Y 

139 0 286,163.20 523,481.19 Unpopulated Unpopulated Y 

140 0 282,035.39 524,294.66 Populated  UnPopulated N 

141 0 275,132.20 526,408.41 Unpopulated  Unpopulated Y 

142 0 282,522.14 523,794.31 Unpopulated  Unpopulated Y 

143 0 284,639.40 526,173.91 Unpopulated Unpopulated Y 

144 0 279,568.26 528,169.59 Populated Populated Y 

145 0 280,045.18 523,520.84 Unpopulated Unpopulated Y 

146 0 285,165.41 530,404.06 Unpopulated UnPopulated Y 

147 0 275,283.09 529,843.06 Unpopulated Unpopulated Y 

148 0 279,452.92 528,450.61 Populated  Populated Y 

149 0 283,094.45 524,441.92 Populated Populated Y 

150 0 284,972.67 522,863.67 Unpopulated Unpopulated Y 

151 0 285,324.75 526,080.55 Unpopulated  Unpopulated Y 

152 0 282,879.87 524,737.06 Populated  Populated Y 

153 0 282,129.55 526,285.60 Populated Populated Y 

154 0 285,030.94 526,182.60 Unpopulated  Unpopulated Y 

155 0 279,050.42 530,791.81 Populated  Populated Y 

156 0 278,448.99 531,586.12 Populated Populated Y 

157 0 284,584.12 531,838.38 Populated UnPopulated N 

158 0 280,599.57 527,348.84 Populated Populated Y 

159 0 285,609.66 532,073.26 Unpopulated  Populated N 

160 0 284,120.96 528,074.30 Unpopulated Populated N 

161 0 285,194.64 532,244.08 Populated  Populated Y 

162 0 284,443.81 524,222.99 Unpopulated  Unpopulated Y 

163 0 279,599.78 531,992.21 Unpopulated  UnPopulated Y 

164 0 277,840.14 528,093.35 Unpopulated UnPopulated Y 

165 0 286,232.43 531,540.77 Unpopulated Populated N 

166 0 279,939.69 523,146.44 Unpopulated  Unpopulated Y 

167 0 284,332.68 526,876.95 Unpopulated  Unpopulated Y 

168 0 277,604.06 527,644.64 Unpopulated Unpopulated Y 

169 0 281,977.16 523,939.78 Populated Populated Y 

170 0 272,869.86 528,083.78 Unpopulated Unpopulated Y 

171 0 280,790.42 522,654.81 Unpopulated Unpopulated Y 

172 0 279,190.85 531,598.47 Populated Populated Y 

173 0 275,533.06 528,835.04 Populated Populated Y 

174 0 273,435.22 528,922.12 Unpopulated Unpopulated Y 

175 0 283,849.25 532,606.71 Populated Populated Y 
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176 0 283,495.30 532,714.44 Unpopulated Unpopulated Y 

177 0 278,428.76 530,338.66 Populated Populated Y 

178 0 284,948.11 528,538.47 Populated Populated Y 

179 0 279,593.50 531,341.02 Populated Populated Y 

180 0 283,400.52 524,439.14 Populated Populated Y 

181 0 277,752.84 532,779.95 Populated Populated Y 

182 0 276,783.17 529,317.02 Unpopulated  Unpopulated Y 

183 0 272,855.24 530,063.37 Unpopulated UnPopulated Y 

184 0 274,341.36 529,001.68 Unpopulated  UnPopulated Y 

185 0 282,392.27 526,431.46 Populated Populated Y 

186 0 282,150.38 524,964.24 Populated Populated Y 

187 0 276,602.78 532,842.30 Populated  Populated Y 

188 0 285,200.87 526,777.89 Unpopulated  Unpopulated Y 

189 0 286,354.12 531,985.38 Unpopulated  Unpopulated Y 

190 0 273,202.72 528,529.29 Unpopulated  Unpopulated Y 

191 0 278,499.33 531,096.22 Populated  Populated  Y 

192 0 276,099.51 526,968.40 Unpopulated  Unpopulated Y 

193 0 275,944.85 526,532.71 Unpopulated Unpopulated Y 

194 0 281,582.88 532,756.06 Populated Unpopulated N 

195 0 281,687.91 530,949.80 Populated Populated Y 

196 0 276,351.45 528,477.48 Populated Populated Y 

197 0 285,621.93 523,057.96 Unpopulated  Unpopulated Y 

198 0 276,831.06 527,973.53 Unpopulated Unpopulated Y 

199 0 275,939.60 527,376.61 Unpopulated Unpopulated Y 

        

Populated surface on google earth 16/200 = 8% 

Unpopulated surface on google earth 10/200 = 5% 

 

Total 26/200 = 13% 
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Table A10.2 - Results of the visual inspection of surfaces using Spot5 (colour) 10m 

spatial resolution image. 

 

FID CID X Y Surface G_Earth Correct 

0 0 279,247.79 526,153.52 Populated Populated Y 

1 0 281,799.19 523,814.76 Populated unPopulated N 

2 0 278,899.36 524,692.87 Unpopulated UnPopulated Y 

3 0 286,600.56 531,784.78 Unpopulated  Unpopulated Y 

4 0 278,629.61 528,178.54 Populated Populated Y 

5 0 273,094.83 530,165.86 Unpopulated Unpopulated Y 

6 0 281,292.25 530,353.47 Populated UnPopulated N 

7 0 273,777.16 527,964.22 Unpopulated Unpopulated Y 

8 0 285,298.90 524,827.69 Unpopulated Unpopulated Y 

9 0 280,556.27 526,928.00 Populated Populated Y 

10 0 285,418.86 531,570.99 Unpopulated  Unpopulated Y 

11 0 284,337.04 525,672.53 Unpopulated Unpopulated Y 

12 0 280,033.99 527,764.31 Populated Populated Y 

13 0 280,375.69 523,120.55 Unpopulated Unpopulated Y 

14 0 276,864.31 531,389.63 Populated Populated Y 

15 0 281,112.88 531,331.93 Populated Populated Y 

16 0 283,478.13 526,249.17 Unpopulated  Unpopulated Y 

17 0 283,323.17 530,121.74 Unpopulated UnPopulated Y 

18 0 281,978.52 530,856.52 Unpopulated Unpopulated Y 

19 0 283,145.17 533,042.30 Populated  Populated Y 

20 0 285,026.12 529,445.34 Unpopulated Unpopulated Y 

21 0 273,169.44 529,489.29 Unpopulated Unpopulated Y 

22 0 272,479.34 529,641.08 Unpopulated Unpopulated Y 

23 0 285,698.32 532,460.38 Unpopulated Populated N 

24 0 284,058.84 531,573.94 Populated  Populated Y 

25 0 283,797.64 522,486.62 Unpopulated  Unpopulated Y 

26 0 279,607.15 526,177.13 Populated Populated Y 

27 0 283,318.90 526,861.57 Unpopulated  Unpopulated Y 

28 0 280,570.74 529,915.59 Populated  Unpopulated N 

29 0 283,349.81 524,040.60 Unpopulated  Unpopulated Y 

30 0 281,761.74 522,127.20 Unpopulated  Unpopulated Y 

31 0 284,050.61 524,755.51 Unpopulated  Unpopulated Y 

32 0 274,060.14 528,835.69 Unpopulated Unpopulated Y 

33 0 281,675.50 531,499.48 Populated  Populated Y 

34 0 280,572.02 531,699.27 Populated Populated Y 

35 0 286,239.33 525,028.89 Unpopulated Unpopulated Y 

36 0 282,817.11 523,570.56 Unpopulated  Unpopulated Y 

37 0 280,031.96 526,834.98 Populated Populated Y 

38 0 274,569.95 526,880.40 Unpopulated  Unpopulated Y 

39 0 283,358.84 530,487.12 Unpopulated  unPopulated Y 

40 0 282,352.73 526,229.98 Populated  Populated Y 
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41 0 280,435.80 531,526.70 Unpopulated Populated N 

42 0 273,037.49 528,804.05 Unpopulated Unpopulated Y 

43 0 282,784.82 527,831.37 Unpopulated Unpopulated Y 

44 0 273,326.66 528,620.03 Unpopulated  Unpopulated Y 

45 0 282,816.63 525,795.56 Unpopulated Populated N 

46 0 281,463.98 527,487.19 Unpopulated  Unpopulated Y 

47 0 277,323.87 528,158.70 Unpopulated Unpopulated Y 

48 0 279,209.15 525,358.70 Unpopulated Populated N 

49 0 282,753.51 531,715.95 Unpopulated Populated N 

50 0 281,338.05 525,583.86 Unpopulated  Unpopulated Y 

51 0 278,615.39 530,602.02 Populated Populated Y 

52 0 286,384.25 531,068.16 Unpopulated Unpopulated Y 

53 0 280,338.51 531,894.13 Populated Populated Y 

54 0 279,747.92 524,242.88 Unpopulated  Unpopulated Y 

55 0 280,094.19 526,064.14 Populated Populated Y 

56 0 278,215.42 527,780.73 Unpopulated  Unpopulated Y 

57 0 278,509.31 531,812.56 Populated  UnPopulated N 

58 0 285,426.15 531,079.64 Unpopulated  Unpopulated Y 

59 0 275,415.30 528,585.56 Unpopulated Unpopulated Y 

60 0 283,546.30 523,604.49 Unpopulated Unpopulated Y 

61 0 284,328.62 526,949.19 Unpopulated  Unpopulated Y 

62 0 280,505.18 524,827.01 Unpopulated Unpopulated Y 

63 0 278,425.07 532,257.60 Populated  Populated Y 

64 0 284,349.96 531,734.92 Populated Populated Y 

65 0 282,984.30 523,207.75 Unpopulated Unpopulated Y 

66 0 277,614.22 531,039.59 Populated Populated Y 

67 0 285,575.00 528,311.47 Unpopulated  Unpopulated Y 

68 0 280,186.14 526,677.27 Populated  Populated Y 

69 0 280,938.56 531,500.63 Populated Populated Y 

70 0 278,719.40 530,827.82 Populated Populated Y 

71 0 284,426.90 531,122.40 Populated  Unpopulated N 

72 0 274,433.22 525,977.28 Unpopulated Unpopulated Y 

73 0 285,196.49 532,899.26 Unpopulated Populated N 

74 0 276,845.36 532,672.66 Populated  Unpopulated N 

75 0 279,140.31 526,415.97 Populated  Populated Y 

76 0 279,429.24 529,009.03 Unpopulated unPopulated Y 

77 0 274,837.86 529,374.70 Unpopulated UnPopulated Y 

78 0 282,458.03 523,324.33 Unpopulated Unpopulated Y 

79 0 276,002.49 528,170.28 Unpopulated Unpopulated Y 

80 0 281,662.32 528,261.83 Populated Unpopulated N 

81 0 278,786.91 528,841.04 Unpopulated UnPopulated Y 

82 0 278,308.80 529,732.39 Populated Populated Y 

83 0 279,366.92 527,737.96 Populated  Populated Y 

84 0 281,509.70 521,430.91 Unpopulated Unpopulated Y 

85 0 285,789.05 525,843.50 Unpopulated  Unpopulated Y 

86 0 278,498.67 529,044.58 Populated Unpopulated N 
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87 0 284,236.08 526,712.93 Unpopulated  Unpopulated Y 

88 0 280,316.27 530,333.69 Populated Populated Y 

89 0 286,332.08 524,274.27 Unpopulated Unpopulated Y 

90 0 272,712.10 528,100.41 Unpopulated UnPopulated Y 

91 0 286,508.86 525,084.88 Unpopulated  Unpopulated Y 

92 0 275,802.15 526,673.97 Unpopulated Unpopulated Y 

93 0 283,534.29 530,126.88 Unpopulated unPopulated Y 

94 0 281,327.13 527,989.25 Unpopulated  Unpopulated Y 

95 0 285,183.08 523,405.42 Unpopulated  Unpopulated Y 

96 0 280,710.08 522,224.04 Unpopulated  Unpopulated Y 

97 0 283,493.49 522,776.53 Unpopulated  Unpopulated Y 

98 0 283,674.43 525,934.36 Unpopulated  Unpopulated Y 

99 0 282,524.53 524,604.30 Populated Populated Y 

100 0 280,825.66 521,611.64 Unpopulated Unpopulated Y 

101 0 283,864.74 531,423.84 Populated  Populated Y 

102 0 283,857.45 530,392.62 Unpopulated unPopulated Y 

103 0 276,728.82 530,092.89 Populated  Populated Y 

104 0 283,320.09 530,928.92 Unpopulated UnPopulated Y 

105 0 281,201.54 528,533.00 Unpopulated Unpopulated Y 

106 0 279,131.15 528,210.91 Populated Populated Y 

107 0 276,924.11 528,866.51 Unpopulated  Unpopulated Y 

108 0 284,807.76 526,838.12 Unpopulated Unpopulated Y 

109 0 275,884.09 529,918.19 Unpopulated Unpopulated Y 

110 0 281,122.70 529,921.45 Populated Populated Y 

111 0 281,035.52 522,268.43 Unpopulated Unpopulated Y 

112 0 284,651.10 530,454.21 Unpopulated Unpopulated Y 

113 0 281,200.82 522,402.05 Unpopulated Unpopulated Y 

114 0 277,828.52 532,083.57 Populated Populated Y 

115 0 286,598.73 523,347.56 Unpopulated Unpopulated Y 

116 0 278,306.35 532,039.69 Populated Populated Y 

117 0 274,653.94 528,346.67 Populated Unpopulated N 

118 0 280,186.67 524,889.83 Unpopulated  Unpopulated Y 

119 0 283,999.12 523,489.57 Unpopulated Unpopulated Y 

120 0 280,705.51 532,581.04 Populated  Populated Y 

121 0 278,287.21 528,974.95 Unpopulated UnPopulated Y 

122 0 286,249.91 531,265.66 Unpopulated Unpopulated Y 

123 0 276,777.06 527,034.88 Unpopulated  Unpopulated Y 

124 0 280,805.60 521,885.38 Unpopulated  Unpopulated Y 

125 0 282,060.83 532,654.75 Populated  Populated Y 

126 0 279,087.78 528,588.49 Populated  Populated Y 

127 0 279,681.17 528,846.13 Populated Populated Y 

128 0 279,217.01 532,289.86 Populated  Populated Y 

129 0 279,272.21 524,984.77 Unpopulated  UnPopulated Y 

130 0 282,237.71 524,733.43 Populated Populated Y 

131 0 283,868.20 526,951.24 Unpopulated  Unpopulated Y 

132 0 278,148.50 528,581.98 Populated UnPopulated N 
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133 0 286,115.43 524,173.40 Unpopulated  Unpopulated Y 

134 0 284,030.13 529,261.67 Unpopulated  Unpopulated Y 

135 0 282,029.57 525,024.90 Populated Populated Y 

136 0 285,657.80 523,477.06 Unpopulated Unpopulated Y 

137 0 283,754.47 522,994.70 Unpopulated Unpopulated Y 

138 0 285,951.75 525,719.23 Populated  Unpopulated N 

139 0 275,169.26 527,655.42 Populated Populated Y 

140 0 282,209.56 531,801.78 Populated  Populated Y 

141 0 280,471.40 525,097.30 Unpopulated Unpopulated Y 

142 0 285,498.99 532,816.00 Unpopulated  Populated N 

143 0 283,025.47 531,884.85 Populated  Populated Y 

144 0 278,122.72 532,426.83 Populated Populated Y 

145 0 281,192.73 524,325.41 Populated Populated Y 

146 0 282,398.11 527,647.31 Unpopulated  Unpopulated Y 

147 0 279,006.64 524,299.79 Unpopulated  UnPopulated Y 

148 0 279,258.76 531,342.87 Populated Populated Y 

149 0 276,458.56 530,565.29 Populated UnPopulated N 

150 0 285,810.03 525,419.18 Unpopulated Unpopulated Y 

151 0 283,887.69 528,949.74 Unpopulated Unpopulated Y 

152 0 285,184.34 529,729.71 Unpopulated Unpopulated Y 

153 0 280,189.25 528,664.72 Unpopulated UnPopulated Y 

154 0 275,381.88 529,526.29 Unpopulated  Unpopulated Y 

155 0 279,829.28 524,857.74 Unpopulated  Unpopulated Y 

156 0 281,183.22 523,674.78 Populated Populated Y 

157 0 282,947.91 530,253.08 Populated  Populated Y 

158 0 280,218.38 523,708.29 Unpopulated Unpopulated Y 

159 0 285,583.82 527,130.79 Unpopulated Unpopulated Y 

160 0 282,874.23 532,894.35 Populated  Unpopulated N 

161 0 283,553.49 533,023.43 Populated Unpopulated N 

162 0 281,875.37 529,745.15 Populated Populated Y 

163 0 274,947.67 528,405.73 Unpopulated Unpopulated Y 

164 0 276,695.02 531,135.54 Populated UnPopulated N 

165 0 277,818.37 529,467.33 Populated  Populated Y 

166 0 283,912.45 525,583.73 Unpopulated  Unpopulated Y 

167 0 278,468.19 528,545.57 Populated Populated Y 

168 0 279,448.00 531,518.39 Populated UnPopulated N 

169 0 275,337.28 529,930.84 Populated Unpopulated N 

170 0 282,475.78 527,880.91 Unpopulated Unpopulated Y 

171 0 281,397.38 523,960.52 Populated Populated Y 

172 0 280,542.25 532,798.10 Unpopulated Populated N 

173 0 282,747.22 527,194.03 Unpopulated  Unpopulated Y 

174 0 284,041.79 532,813.44 Populated Unpopulated N 

175 0 281,258.13 523,307.71 Unpopulated  Unpopulated Y 

176 0 275,404.35 527,379.74 Unpopulated  Unpopulated Y 

177 0 278,448.17 528,062.26 Populated  Populated Y 

178 0 275,200.29 528,484.18 Unpopulated  Unpopulated Y 
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179 0 285,825.41 524,088.24 Unpopulated Unpopulated Y 

180 0 283,286.90 526,482.09 Unpopulated Unpopulated Y 

181 0 274,240.63 528,264.88 Unpopulated Unpopulated Y 

182 0 276,492.71 529,448.48 Populated  Unpopulated N 

183 0 282,823.38 523,979.17 Unpopulated Unpopulated Y 

184 0 283,969.36 523,971.39 Unpopulated Unpopulated Y 

185 0 285,145.54 524,962.29 Unpopulated  Unpopulated Y 

186 0 275,820.81 527,405.68 Unpopulated  Unpopulated Y 

187 0 282,010.35 527,719.81 Unpopulated  Unpopulated Y 

188 0 283,703.74 525,450.02 Unpopulated Unpopulated Y 

189 0 278,075.71 532,728.99 Populated Populated Y 

190 0 272,721.24 529,590.14 Unpopulated  Unpopulated Y 

191 0 285,926.50 523,353.16 Unpopulated Unpopulated Y 

192 0 276,526.65 528,383.85 Unpopulated Populated N 

193 0 284,243.09 528,132.99 Unpopulated Populated N 

194 0 281,272.18 532,849.60 Populated Populated Y 

195 0 282,214.27 530,133.34 Unpopulated UnPopulated Y 

196 0 281,443.24 522,087.13 Unpopulated  Unpopulated Y 

197 0 285,553.40 526,819.04 Unpopulated Unpopulated Y 

198 0 277,778.56 531,397.38 Unpopulated Unpopulated Y 

199 0 282,958.69 526,669.13 Unpopulated Unpopulated Y 

 

  

Populated surface on google earth 19/200 = 9.5% 

Unpopulated surface on google earth 10/200 = 5% 

  

Total 29/200 = 14.5% 

  



243 

 

Table A10.3 - Results of the visual inspection of surfaces using Quickbird (60cm) 

image resampled to 3m spatial resolution. 

 

FID CID X Y Surface G_Earth Correct 

0 0 284,523.98 523,932.77 Unpopulated Unpopulated Y 

1 0 285,498.01 524,206.11 Unpopulated Unpopulated Y 

2 0 283,030.24 522,360.57 Unpopulated Unpopulated Y 

3 0 279,262.77 532,584.52 Populated Unpopulated N 

4 0 281,039.39 521,412.38 Unpopulated Unpopulated Y 

5 0 281,902.47 531,585.61 Populated populated Y 

6 0 279,588.65 527,344.57 Unpopulated populated N 

7 0 279,987.87 530,512.30 Unpopulated Unpopulated Y 

8 0 279,763.72 530,661.25 Populated populated Y 

9 0 284,872.15 532,669.55 Unpopulated Populated N 

10 0 282,866.56 528,018.28 Populated Populated Y 

11 0 283,421.34 527,633.76 Unpopulated Unpopulated Y 

12 0 286,140.31 531,646.62 Populated Unpopulated N 

13 0 283,136.85 529,174.84 Unpopulated  Populated N 

14 0 272,898.66 530,158.62 Unpopulated Unpopulated Y 

15 0 279,435.74 533,040.69 Populated populated Y 

16 0 278,637.72 532,653.03 Populated populated Y 

17 0 284,925.70 529,625.60 Unpopulated Unpopulated Y 

18 0 285,368.43 530,078.73 Unpopulated Unpopulated Y 

19 0 274,722.90 529,846.80 Unpopulated Unpopulated Y 

20 0 279,334.52 527,987.10 Unpopulated populated N 

21 0 282,648.37 530,547.46 Unpopulated  Unpopulated Y 

22 0 283,337.34 531,026.96 Populated populated Y 

23 0 282,201.37 523,545.04 Unpopulated Unpopulated Y 

24 0 281,331.98 521,508.03 Unpopulated Unpopulated Y 

25 0 283,815.43 527,555.64 Populated Populated Y 

26 0 280,099.59 524,548.23 Unpopulated Unpopulated Y 

27 0 279,372.49 529,966.89 Unpopulated Unpopulated Y 

28 0 280,173.88 532,297.66 Populated Populated Y 

29 0 271,952.19 530,419.57 Populated Unpopulated N 

30 0 285,391.12 528,860.37 Unpopulated Unpopulated Y 

31 0 273,945.94 528,979.61 Unpopulated Unpopulated Y 

32 0 281,247.90 524,296.72 Populated Populated Y 

33 0 282,550.25 527,038.14 Unpopulated Unpopulated Y 

34 0 283,622.11 528,939.74 Unpopulated Unpopulated Y 

35 0 283,675.63 524,284.16 Unpopulated Unpopulated Y 

36 0 277,811.70 530,295.89 Populated populated Y 

37 0 283,521.79 528,507.29 Unpopulated Unpopulated Y 

38 0 281,382.40 523,702.06 Populated Populated Y 

39 0 283,587.30 526,607.60 Unpopulated Unpopulated Y 

40 0 274,443.10 527,465.12 Populated Unpopulated N 
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41 0 285,916.54 532,489.16 Populated  Unpopulated N 

42 0 280,045.41 528,365.46 Populated Unpopulated N 

43 0 280,939.40 531,773.61 Populated populated Y 

44 0 283,276.90 532,059.19 Unpopulated Unpopulated Y 

45 0 283,972.40 529,411.88 Unpopulated  Unpopulated Y 

46 0 279,570.22 528,058.29 Populated  Unpopulated N 

47 0 274,753.36 529,216.81 Unpopulated  Unpopulated Y 

48 0 281,002.98 526,405.71 Populated populated Y 

49 0 285,503.65 524,809.15 Unpopulated Unpopulated Y 

50 0 278,442.49 527,863.78 Populated  Unpopulated N 

51 0 278,796.24 529,467.22 Unpopulated Unpopulated Y 

52 0 282,298.04 531,595.46 Populated populated Y 

53 0 281,203.20 530,852.80 Populated populated Y 

54 0 284,738.27 527,607.39 Unpopulated Populated N 

55 0 282,635.48 527,883.89 Unpopulated Unpopulated Y 

56 0 283,187.81 532,689.96 Unpopulated Populated N 

57 0 279,953.98 528,886.05 Populated Unpopulated N 

58 0 279,804.93 527,964.44 Unpopulated Unpopulated Y 

59 0 279,196.35 525,308.86 Unpopulated populated N 

60 0 282,813.02 531,330.09 Unpopulated  Unpopulated Y 

61 0 285,598.53 524,540.20 Unpopulated Unpopulated Y 

62 0 283,328.41 523,109.70 Unpopulated  Unpopulated Y 

63 0 275,971.71 528,452.00 Unpopulated Unpopulated Y 

64 0 284,304.37 524,171.90 Unpopulated  Unpopulated Y 

65 0 283,350.82 522,527.93 Populated  Unpopulated N 

66 0 278,092.05 528,887.97 Unpopulated Unpopulated Y 

67 0 284,765.87 526,484.20 Unpopulated Unpopulated Y 

68 0 279,862.22 523,869.89 Unpopulated Unpopulated Y 

69 0 275,182.23 526,028.91 Unpopulated Unpopulated Y 

70 0 275,016.40 529,089.17 Unpopulated Unpopulated Y 

71 0 278,185.10 532,761.23 Populated populated Y 

72 0 279,881.39 529,352.87 Unpopulated Unpopulated Y 

73 0 281,634.35 530,087.98 Populated Populated Y 

74 0 280,950.73 528,504.72 Populated Unpopulated N 

75 0 281,121.41 532,533.86 Populated Populated Y 

76 0 285,011.80 524,143.52 Unpopulated Unpopulated Y 

77 0 285,012.09 526,688.42 Unpopulated Unpopulated Y 

78 0 282,184.29 526,438.12 Populated Populated Y 

79 0 284,137.35 527,796.18 Unpopulated  Unpopulated Y 

80 0 279,884.52 525,836.21 Populated populated Y 

81 0 285,807.51 531,940.26 Unpopulated Populated N 

82 0 285,727.85 524,979.80 Unpopulated Unpopulated Y 

83 0 272,142.06 530,317.91 Unpopulated Unpopulated Y 

84 0 282,792.68 528,231.54 Populated  Unpopulated N 

85 0 280,991.45 533,176.64 Populated Populated Y 

86 0 284,455.33 529,396.83 Unpopulated Unpopulated Y 



245 

 

87 0 276,223.18 529,732.99 Populated  Unpopulated N 

88 0 277,715.00 530,877.34 Populated populated Y 

89 0 283,341.82 524,444.29 Unpopulated Populated N 

90 0 275,067.80 528,517.74 Unpopulated Unpopulated Y 

91 0 281,531.22 523,178.90 Unpopulated Unpopulated Y 

92 0 272,509.60 529,877.15 Unpopulated Unpopulated Y 

93 0 281,832.86 530,975.17 Unpopulated Unpopulated Y 

94 0 284,999.21 526,354.78 Unpopulated Unpopulated Y 

95 0 280,004.19 526,059.55 Populated populated Y 

96 0 276,453.95 529,152.85 Populated Unpopulated N 

97 0 282,556.96 529,951.55 Unpopulated Populated N 

98 0 278,635.54 528,389.10 Populated  Unpopulated N 

99 0 285,080.24 522,994.06 Unpopulated  Unpopulated Y 

100 0 276,172.49 527,319.64 Unpopulated Unpopulated Y 

101 0 284,553.97 530,590.70 Unpopulated Unpopulated Y 

102 0 284,467.51 527,051.34 Unpopulated Unpopulated Y 

103 0 284,956.26 530,522.89 Unpopulated Unpopulated Y 

104 0 282,332.73 532,729.33 Unpopulated Unpopulated Y 

105 0 285,350.75 526,648.14 Unpopulated  Unpopulated Y 

106 0 281,444.47 528,852.99 Unpopulated Unpopulated Y 

107 0 273,264.29 528,349.05 Unpopulated Unpopulated Y 

108 0 284,143.72 529,862.21 Unpopulated Populated N 

109 0 276,966.48 527,916.74 Unpopulated Unpopulated Y 

110 0 282,790.46 529,343.20 Unpopulated Populated N 

111 0 278,918.41 530,850.03 Populated populated Y 

112 0 283,615.39 525,313.46 Populated  Unpopulated N 

113 0 285,182.17 527,635.51 Unpopulated Unpopulated Y 

114 0 274,675.65 526,909.09 Unpopulated Unpopulated Y 

115 0 280,742.09 527,453.98 Populated populated Y 

116 0 281,260.52 525,700.93 Unpopulated Unpopulated Y 

117 0 275,468.87 526,297.27 Unpopulated Unpopulated Y 

118 0 285,938.69 523,132.02 Unpopulated Unpopulated Y 

119 0 281,757.38 525,255.54 Populated Unpopulated N 

120 0 281,938.37 530,147.01 Unpopulated Unpopulated Y 

121 0 277,609.17 529,041.83 Populated populated Y 

122 0 280,786.41 530,336.35 Populated unpopulated N 

123 0 277,041.70 532,371.07 Populated  Unpopulated N 

124 0 276,359.68 528,388.03 Populated populated Y 

125 0 282,458.10 523,248.95 Unpopulated Unpopulated Y 

126 0 276,924.03 531,321.39 Populated populated Y 

127 0 280,761.79 523,274.71 Unpopulated  Unpopulated Y 

128 0 277,380.51 527,843.40 Unpopulated Unpopulated Y 

129 0 275,433.94 529,331.47 Unpopulated Unpopulated Y 

130 0 279,989.60 524,192.63 Populated Unpopulated N 

131 0 273,114.98 529,539.55 Unpopulated Unpopulated Y 

132 0 276,164.55 528,105.54 Populated populated Y 
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133 0 274,742.38 528,541.56 Unpopulated  Unpopulated Y 

134 0 279,442.82 531,890.08 Unpopulated populated N 

135 0 280,300.68 527,409.85 Populated populated Y 

136 0 282,682.53 531,496.90 Unpopulated  Unpopulated Y 

137 0 281,626.30 533,197.67 Unpopulated Unpopulated Y 

138 0 281,970.11 522,044.60 Unpopulated Unpopulated Y 

139 0 283,604.48 533,290.99 Unpopulated Populated N 

140 0 272,053.14 528,978.14 Unpopulated Unpopulated Y 

141 0 274,613.83 527,738.93  Populated  Unpopulated N 

142 0 285,563.28 525,970.74 Unpopulated Unpopulated Y 

143 0 276,432.56 526,932.27 Unpopulated Unpopulated Y 

144 0 283,298.20 530,205.73 Unpopulated Unpopulated Y 

145 0 275,269.37 528,869.41 Unpopulated Unpopulated Y 

146 0 276,475.57 532,722.47  Populated Unpopulated N 

147 0 279,578.46 529,589.12 Populated Unpopulated N 

148 0 284,364.77 529,686.90 Unpopulated Unpopulated Y 

149 0 276,234.19 527,606.60 Unpopulated  Unpopulated Y 

150 0 286,277.62 523,086.91 Unpopulated Unpopulated Y 

151 0 285,589.97 528,321.04 Unpopulated Unpopulated Y 

152 0 275,298.84 529,575.11  Populated Unpopulated N 

153 0 275,683.86 528,157.21 Unpopulated  Unpopulated Y 

154 0 280,418.05 529,684.01 Unpopulated Unpopulated Y 

155 0 278,714.99 529,870.70  Populated populated Y 

156 0 277,076.22 528,485.63 Unpopulated  Unpopulated Y 

157 0 280,433.55 527,804.69  Populated populated Y 

158 0 276,754.45 527,513.96 Unpopulated  Unpopulated Y 

159 0 280,744.06 531,040.21 Populated populated Y 

160 0 284,266.02 530,173.62 Unpopulated Unpopulated Y 

161 0 281,775.25 521,684.90 Unpopulated Unpopulated Y 

162 0 280,851.01 529,804.93 Unpopulated Unpopulated Y 

163 0 284,516.55 531,709.33 Unpopulated Unpopulated Y 

164 0 286,670.98 524,010.72 Unpopulated  Unpopulated Y 

165 0 284,912.67 530,888.83 Unpopulated  Unpopulated Y 

166 0 279,095.14 526,996.25 Unpopulated populated N 

167 0 283,405.69 526,303.59 Unpopulated Unpopulated Y 

168 0 286,033.19 531,450.08 Unpopulated Unpopulated Y 

169 0 278,954.47 530,060.19  Populated populated Y 

170 0 275,954.39 528,098.62 Unpopulated Unpopulated Y 

171 0 284,307.60 527,578.91  Populated Populated Y 

172 0 274,900.37 528,020.09 Populated populated Y 

173 0 281,508.95 525,821.75 Unpopulated  Unpopulated Y 

174 0 284,648.38 530,108.65 Unpopulated  Unpopulated Y 

175 0 283,392.45 533,209.95 Unpopulated Unpopulated Y 

176 0 285,380.58 524,008.20 Unpopulated Unpopulated Y 

177 0 283,618.70 531,012.48 Unpopulated Unpopulated Y 

178 0 279,283.34 530,269.02  Populated populated Y 
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179 0 280,394.91 524,657.01 Unpopulated  Unpopulated Y 

180 0 278,477.56 531,403.82 Populated populated Y 

181 0 281,728.08 528,705.24 Populated populated Y 

182 0 274,989.24 526,155.02 Unpopulated Unpopulated Y 

183 0 281,187.40 522,195.56 Unpopulated Unpopulated Y 

184 0 284,413.75 528,075.07 Populated Populated Y 

185 0 284,588.33 528,613.27 Populated Populated Y 

186 0 278,085.93 528,116.17 Populated  Unpopulated N 

187 0 276,355.18 531,404.69 Populated  Unpopulated N 

188 0 280,649.51 523,764.45 Populated  Unpopulated N 

189 0 281,679.90 523,334.48 Populated  Unpopulated N 

190 0 277,440.98 529,246.20 Populated populated Y 

191 0 285,233.92 523,559.32 Unpopulated Unpopulated Y 

192 0 274,281.61 529,472.84 Unpopulated Unpopulated Y 

193 0 272,408.15 528,177.58 Unpopulated  Unpopulated Y 

194 0 278,697.53 525,802.91 Populated Unpopulated N 

195 0 276,631.72 529,058.84 Populated populated Y 

196 0 285,148.30 524,752.47 Unpopulated Unpopulated Y 

197 0 281,472.61 532,416.43  Populated Populated Y 

198 0 285,585.20 530,681.91 Unpopulated Unpopulated Y 

199 0 277,396.57 528,711.99  Populated populated Y 

 

 

 

Populated surface on google earth 29/200 = 14.5% 

Unpopulated surface on google earth 15/200 = 7.5% 

 

Total 44/200 = 22% 
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Appendix 11: Codes for allocating demand to all 17 current health centres 

 

Some of the functions were obtained from Professor Alexis Comber and modified to 

suit the objectives of this research. 

 
#load the libraries needed for the analyses 

library(GISTools) 

#load the source code and support functions for the  GGA 

source("permute.r") 

source("jegafunctions.r") 

#Load the source code for the Tietz-Bart algorithm 

source('pmedians.R') 

#set working directory to the right folder and read in the data to be 

used 

demand <- readShapePoints("Ph30m_30mgrids_points.shp") 

supply <- readShapePoints("Health_centres.shp") 

ph <- readShapePoly('port_harcourt.shp') 

roads <- readShapeLines('PHCroads.shp') 

#read in the OD Matrix csv file from ArcGIS 

access <- read.csv(current_access.csv',as.is=T) 

head(access) 

#attach the dataset (access) to make it available to memory and refer 

to each variable by name  

attach(access) 

#calculate the distance matrix by grouping items together from the 

first category, converting the list to an array such that when the 

file is attached column names becomes variables using an identify 

function (function (x) x) that returns what is given 

d.mat = tapply(Total_Length,list(OriginID,DestinationID),function (x) 

x)  

#check the dimension of the distance matrix 

dim(d.mat) 

#detach the dataset (access) 

detach(access) 

#select the estimated populations and call it pops 

pops <- demand$estimates 

#check the length of pops 

length(pops) 

#use only the lines that were used by the OD Matrix 

pops <- pops[1:54072] 

#select the health centres for which demand is to be allocated 

tb.best.loc <- 1:17 

selected <- tb.best.loc 

 

#classify the health centres interms of distance - that is the minimum 

distance to each demand   

dist <- classify(selected, type="dists") 

#name the health centre allocated to each demand 

names <- classify(selected) 

#put the result in a data frame 

results <- data.frame(healthcentre=names, Distance=dist, demand=pops) 

#obtain the total population (demand) allocated to each health centre 

- rowDemand  

ans1 <- tapply(results$demand,results$healthcentre,sum) 

#obtain the mean distance from demand to health centre within the 

catchment 

ans2 <- tapply(results$Distance,results$healthcentre,mean) 
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#obtain the maximum distance from demand to health centre within the 

catchment 

ans3 <- tapply(results$Distance,results$healthcentre,max) 

#put the results in a data frame 

ans4 <- 

data.frame(Health_centres=rownames(ans3),Demand=ans1,mean.dist=ans2, 

maximum=ans3) 

#Show the demand allocation in terms of percentage of the total demand 

#divide the demand by its sum and call it newDemand 

newDemand <- ans4$Demand/sum(ans4$Demand) 

#multiply newDemand by 100 to show each demand as a percentage of 

total demand 

Demand_percent <- newDemand * 100 

#add Demand_percent to ans4 

ans4_results <- cbind(ans4,Demand_percent)  

#write it out as a csv file 

write.csv(ans4_results,'Demandallfacilities.csv')   
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Appendix 12: Codes for generating optimal locations using 85 potential locations 

 

Some of the functions were obtained from Professor Alexis Comber and modified to 

suit the objectives of this research. 

 
#load the libraries needed for the analyses 

library(GISTools) 

#load the source code and support functions for the GGA 

source("permute.r") 

source("jegafunctions.r") 

#Load the source code for the Tietz-Bart algorithm 

source('pmedians.R') 

#set working directory to the right folder and read in the data to be 

used 

demand <- readShapePoints("Ph30m_30mgrids_points.shp") 

ph <- readShapePoly('port_harcourt.shp') 

roads <- readShapeLines('PHCroads.shp') 

supply <- readShapePoints("85potential.shp") 

#read in the OD Matrix csv file from ArcGIS 

access2 <- read.csv('potential_access.csv',as.is=T) 

head(access2) 

#attach the dataset (access2) to make it available to memory and refer 

to each variable by name  

attach(access2) 

#Remove the comma's in OriginID and Total length from access2 file and 

name it access 

access <- data.frame(ObjectID = ObjectID, Name = Name, 

OriginID=as.numeric(gsub(",","",OriginID)),DestinationID = 

DestinationID, DestinationRank = DestinationRank, 

Total_Length=as.numeric(gsub(",","",Total_Length))) 

detach(access2) 

attach(access) 

#calculate the distance matrix by grouping items together from the 

first category, converting the list to an array such that when the 

file is attached column names becomes variables using an identify 

function (function (x) x) that returns what is given 

d.mat = tapply(Total_Length,list(OriginID,DestinationID),function (x) 

x)  

#check the dimension of the distance matrix 

dim(d.mat) 

#detach the dataset (access) 

detach(access) 

#select the estimated populations and call it pops 

pops <- demand$estimates 

#check the length of pops 

length(pops) 

#use only the lines that were used by the OD Matrix 

pops <- pops[1:54072]  
#check the quality of the data for holes 

holes <- spot.holes(d.mat) 

holes 

#run the Teitz-Bart algorithm with 17 health facilities to allocate 

from 85 potential sites  

tb.best.loc <- tb(1:17,d.mat,pops) 

#select the best subset and call it selected 

selected <- tb.best.loc 

#display the best subset from the supply data and call it optimal 

point 
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optimal.points <- supply[selected,] 

#display the non optimal points  

not.optimal.points <- supply[-selected,] 

#classify the health centres interms of distance - that is the minimum 

distance to each demand   

dist <- classify(selected, type = "dists") 

#name the health centre allocated to each demand 

names <- classify(selected) 

#put the result in a data frame 

results <- data.frame(healthcentre=names, Distance=dist, demand=pops) 

#obtain the total population (demand) allocated to each health centre 

- rowDemand  

ans1 <- tapply(results$demand,results$healthcentre,sum) 

#obtain the mean distance from demand to health centre within the 

catchment 

ans2 <- tapply(results$Distance,results$healthcentre,mean) 

#obtain the maximum distance from demand to health centre within the 

catchment 

ans3 <- tapply(results$Distance,results$healthcentre,max) 

#put the results in a data frame 

ans4 <- 

data.frame(Health_centres=rownames(ans3),Demand=ans1,mean.dist=ans2, 

maximum=ans3) 

#Show the demand allocation in terms of percentage of the total demand 

#divide the demand by its sum and call it newDemand 

newDemand <- ans4$Demand/sum(ans4$Demand) 

#multiply newDemand by 100 to show each demand as a percentage of 

total demand 

Demand_percent <- newDemand * 100 

#add Demand_percent to ans4 

ans4_results <- cbind(ans4,Demand_percent)  

#write it out as a csv file 

write.csv(ans4_results,'17potentialsites.csv')   
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Appendix 13: Spatial distributions of 5 to 16 PHCCs selected from current 

locations 

 

 

 

 

 

 

Figure A13.1 - The spatial distributions of selected locations of 5 PHCCs from current 

locations. The digital boundary is copyright for Geotechnics Services 2011. 
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Figure A13.2 - The spatial distributions of selected locations of 6 PHCCs from current 

locations. The digital boundary is Copyright for Geo-technics Services 2011. 
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Figure A13.3 - The spatial distributions of selected locations of 7 PHCCs from current 

locations. The digital boundary is Copyright for Geo-technics Services 2011. 
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Figure A13.4 - The spatial distributions of selected locations of 8 PHCCs from current 

locations. The digital boundary is Copyright for Geo-technics Services 2011. 
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Figure A13.5 - The spatial distributions of selected locations of 9 PHCCs from current 

locations. The digital boundary is Copyright for Geo-technics Services 2011. 
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Figure A13.6 - The spatial distributions of selected locations of 10 PHCCs from current 

locations. The digital boundary is Copyright for Geo-technics Services 2011. 
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Figure A13.7 - The spatial distributions of selected locations of 11 PHCCs from current 

locations. The digital boundary is Copyright for Geo-technics Services 2011. 
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Figure A13.8 - The spatial distributions of selected locations of 12 PHCCs from current 

locations. The digital boundary is Copyright for Geo-technics Services 2011. 
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Figure A13.9 - The spatial distributions of selected locations of 13 PHCCs from current 

locations. The digital boundary is Copyright for Geo-technics Services 2011. 
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Figure A13.10 - The spatial distributions of selected locations of 14 PHCCs from 

current locations. The digital boundary is Copyright for Geo-technics Services 2011. 
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Figure A13.11 - The spatial distributions of selected locations of 15 PHCCs from 

current locations. The digital boundary is Copyright for Geo-technics Services 2011.  
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Figure A13.12 - The spatial distributions of selected locations of 16 PHCCs from 

current locations. The digital boundary is Copyright for Geo-technics Services 2011. 
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Appendix 14: Spatial distributions of 5 to 20 PHCCs selected from potential 

locations. 

 

 

 

 

 

 

 

Figure A14.1 - The spatial distribution of 5 optimal locations (red circles) selected from 

85 potential locations and 17 current locations of PHCCs (blue crosses). The digital 

boundary is Copyright for Geo-technics Services 2011.  
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Figure A14.2 - The spatial distribution of 10 optimal locations (red circles) selected 

from 85 potential locations and 17 current locations of PHCCs (blue crosses). The 

digital boundary is Copyright for Geo-technics Services 2011.  

  



266 

 

 

 

 

 

Figure A14.3 - The spatial distribution of 14 optimal locations (red circles) selected 

from 85 potential locations and 17 current locations of PHCCs (blue crosses). The 

digital boundary is Copyright for Geo-technics Services 2011.  
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Figure A14.4 - The spatial distribution of 15 optimal locations (red circles) selected 

from 85 potential locations and 17 current locations of PHCCs (blue crosses). The 

digital boundary is Copyright for Geo-technics Services 2011.  
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Figure A14.5 - The spatial distribution of 16 optimal locations (red circles) selected 

from 85 potential locations and 17 current locations of PHCCs (blue crosses). The 

digital boundary is Copyright for Geo-technics Services 2011.  
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Figure A14.6 - The spatial distribution of 17 optimal locations (red circles) selected 

from 85 potential locations and 17 current locations of PHCCs (blue crosses). The 

digital boundary is Copyright for Geo-technics Services 2011.  
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Figure A14.7 - The spatial distribution of 20 optimal locations (red circles) selected 

from 85 potential locations and 17 current locations of PHCCs (blue crosses). The 

digital boundary is Copyright for Geo-technics Services 2011.  
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Appendix 15: Codes for locating specified number of sites for current and 

potential locations. 

 

Some of the functions were obtained from Professor Alexis Comber and modified to 

suit the objectives of this research. 

 

#load the libraries needed for the analyses 

library(GISTools) 

#load the source code and support functions for the  GGA 

source("permute.r") 

source("jegafunctions.r") 

#Load the source code for the Tietz-Bart algorithm 

source('pmedians.R') 

#set working directory to the right folder and read in the data to be 

used 

demand <- readShapePoints("Ph30m_30mgrids_points.shp") 

ph <- readShapePoly('port_harcourt.shp') 

roads <- readShapeLines('PHCroads.shp') 

supply <- readShapePoints("500m_points.shp") 

#read in the OD Matrix csv file from ArcGIS 

access2 <- read.csv('potential_access.csv',as.is=T) 

head(access2) 

#attach the dataset (access2) to make it available to memory and refer 

to each variable by name  

attach(access2) 

#Remove the comma's in OriginID and Total length from access2 file and 

name it access 

access <- data.frame(ObjectID = ObjectID, Name = Name, 

OriginID=as.numeric(gsub(",","",OriginID)),DestinationID = 

DestinationID, DestinationRank = DestinationRank, 

Total_Length=as.numeric(gsub(",","",Total_Length))) 

detach(access2) 

head(access) 

attach(access) 

#calculate the distance matrix by grouping items together from the 

first category, converting the list to an array such that when the 

file is attached column names becomes variables using an identify 

function (function (x) x) that returns what is given 

d.mat = tapply(Total_Length,list(OriginID,DestinationID),function (x) 

x)  

#check the dimension of the distance matrix 

dim(d.mat) 

#detach the dataset (access) 

detach(access) 

#select the estimated populations and call it pops 

pops <- demand$estimates 

#check the length of pops 

length(pops) 

#use only the lines that were used by the OD Matrix 

pops <- pops[1:54072]  

#check the quality of the data for holes 

holes <- spot.holes(d.mat) 

holes 

#run the Teitz-Bart algorithm with 17 health facilities to allocate 

from 85 potential sites  

tb.best.loc <- tb(1:12,d.mat,pops) 
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#select the best subset and call it selected 

selected <- tb.best.loc 

length(selected) 

#display the best subset from the supply data and call it optimal 

point 

optimal.points <- supply[selected,] 

#display the non optimal points  

not.optimal.points <- supply[-selected,] 

#classify the health centres interms of distance - that is the minimum 

distance to each demand   

dist <- classify(selected, type = "dists") 

#name the health centre allocated to each demand 

names <- classify(selected) 

#put the result in a data frame 

results <- data.frame(healthcentre=names, Distance=dist, demand=pops) 

#obtain the total population (demand) allocated to each health centre 

- rowDemand  

ans1 <- tapply(results$demand,results$healthcentre,sum) 

#obtain the mean distance from demand to health centre within the 

catchment 

ans2 <- tapply(results$Distance,results$healthcentre,mean) 

#obtain the maximum distance from demand to health centre within the 

catchment 

ans3 <- tapply(results$Distance,results$healthcentre,max) 

#put the results in a data frame 

ans4 <- 

data.frame(Health_centres=rownames(ans3),Demand=ans1,mean.dist=ans2, 

maximum=ans3) 

#Show the demand allocation in terms of percentage of the total demand 

#divide the demand by its sum and call it newDemand 

newDemand <- ans4$Demand/sum(ans4$Demand) 

#multiply newDemand by 100 to show each demand as a percentage of 

total demand 

Demand_percent <- newDemand * 100 

#add Demand_percent to ans4 

ans4_results <- cbind(ans4,Demand_percent)  

#write it out as a csv file 

write.csv(ans4_results,'12potentialsites.csv') 
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Appendix 16: Permission to use pycno illustration from Uwe Deichmann 

 

From: Uwe Deichmann [mailto:udeichmann@worldbank.org]  
Sent: 29 January 2015 01:15 

To: Jega, Idris M. 

Subject: Re: Pycnophylactic Interpolation - Request for permission 

Dear Idris, 
 

Please feel free to use the figure. I'm very glad to hear that you find it useful. 
 
Best, 
Uwe 

From: Jega, Idris M. <ijm14@leicester.ac.uk> 

Sent: Wednesday, January 28, 2015 4:22 PM 

To: Uwe Deichmann 

Subject: Pycnophylactic Interpolation - Request for permission  

  

Dear Uwe Deichmann, 

  

I am Idris Jega, a PhD candidate at the Department of Geography, University of 

Leicester, UK.  

  

My thesis is looking at the challenges of applying areal interpolation techniques to a 

region where population data are less readily available (such as Nigeria). It involves 

creating population surfaces using different interpolation methods at different spatial 

scales. 

  

Please I sent a request for permission to use the image below to describe the basic 

principles of pycnophylactic interpolation to Waldo Tobler who mentioned that the 

illustration below was likely produced by you.   

  

I defended my PhD thesis on the 30
th

 October 2014 (Mitch Langford was my examiner) 

and part of the recommended amends to my thesis is to use a figure to illustrate the 

pycnophylactic interpolation method. Langford suggests I use this illustration.  

  

Please I am requesting for your permission to use the illustration below in my PhD 

thesis. 

  

Thank you, 

Idris. 

  

  

 

 

 

 

 

 

mailto:ijm14@leicester.ac.uk
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Idris  

  
From: Waldo Tobler [mailto:wtobler@earthlink.net]  

Sent: 28 January 2015 19:51 
To: Jega, Idris M. 

Subject: Re: Pycnophylactic Interpolation - Request for permission 
  
Idris, 
Thank you for your query. Your citations seem correct. Unfortunately the illustration shown, 
although it gives a very nice interpretation of what goes on, was not produced by me but rather 
a student.  I think it was Uwe Deichmann, who worked on the global demography project with 
me. I don't think that he copyrighted it. I think your version came from one of my power point 
presentations. Did you get it from my CD sent to one of your professors? 
Waldo 
  
-----Original Message-----  
From: "Jega, Idris M."  
Sent: Jan 27, 2015 4:01 PM  
To: "'tobler@geog.ucsb.edu'"  
Subject: Pycnophylactic Interpolation - Request for permission  

 

Dear Waldo Tobler 

  

I am Idris Jega, a PhD candidate at the Department of Geography, University of 

Leicester, UK.  

  

My thesis is looking at the challenges of applying areal interpolation techniques to a 

region where population data are less readily available (such as Nigeria). It involves 

creating population surfaces using different interpolation methods at different spatial 

scales. 

  

mailto:wtobler@earthlink.net
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Please I am requesting for your permission to use the image below to describe the basic 

principles of pycnophylactic interpolation. May I please ask which reference best suits 

the image, the original reference (1979) or the 1992 proceeding as below? 

  

Thank you for your time and consideration. I look forward to hearing from you. 

  

Sincerely, 

Idris.   

  

  

The original reference is  

Tobler, Waldo R. (1979), Smooth pycnophylactic interpolation for geographical 

regions, Journal of the American Statistical Association, 74, 367:519-530.  

an adjustment for interpolation on the sphere is described in the NCGIA Technical 

Report TR95-6.  

See also  

Tobler, Waldo R. (1992), Preliminary representation of World population by spherical 

harmonics, Proceedings of the National Academy of Sciences of the United States of 

America, 89, 14:6262-6264.  

  

Idris  
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Appendix 17: Request for Spot5 (colour) 10m spatial resolution 

 

From: White, Sheena [mailto:sheena.white@infoterra-global.com]  

Sent: 19 December 2012 09:03 

To: Comber, Alexis (Dr.) 

Cc: Mohammed, Idris J. 

Subject: RE: Satellite imagery request 

 

Hi Lex 

 

The data is ready to copy over from the ftp site for you. 

 

You need to go to 

 

ftp://ftp.infoterra-global.com  

 

Then login as 

 

Login leicsuniv 

Password dfkewogfj 

 

Please let me know when you have successfully downloaded the data. 

 

Many thanks and best regards 

 

Sheena 

 

From: Comber, Alexis (Dr.) [mailto:ajc36@leicester.ac.uk]  

Sent: 14 December 2012 12:07 

To: White, Sheena 

Cc: Mohammed, Idris J. 

Subject: RE: Satellite imagery request 

 

Dear Sheena 

 

Thank you for this. We are no longer requesting the imagery from Andrew Tewkesbury – we were 

pushing in to Astrium in 2 places – so apologies to all for that. 

 

Of the KML you sent you we would like the subset of the 10
th

 January 2007. We would like this at 1B 

Processing Level if possible. 

 

Many thanks, Lex 

 

Dr Alexis Comber  

Reader in Geographic Information 

Department of Geography 

University of Leicester 

Leicester, LE1 7RH, UK 

Tel +44(0)116 252 3812 / 3823 

Fax +44(0)116 252 3854 

Email ajc36@le.ac.uk 

http://www2.le.ac.uk/departments/geography/people/ajc36 

 

 

From: White, Sheena [mailto:sheena.white@infoterra-global.com]  

Sent: 14 December 2012 11:58 

To: ajc36@leicester.ac.uk 

Subject: FW: Satellite imagery request 

 

  

ftp://ftp.infoterra-global.com/
mailto:ajc36@leicester.ac.uk
mailto:ajc36@le.ac.uk
http://www2.le.ac.uk/departments/geography/people/ajc36
mailto:sheena.white@infoterra-global.com
mailto:ajc36@leicester.ac.uk
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Hi 

 

Thanks for your call. Please find the attached file which details the processing levels. I only have 

approval to supply a Level 1A, 1B or 2A scene. 

 

Best regards 

 

Sheena  

 

Sheena White 
Data Sales Manager | United Kingdom 

GEO-Information Services 

 

Astrium Services  

Europa House, The Crescent | Farnborough GU14 0NL | United Kingdom 

Tel +44 (0)1252 362080 | Fax +44 (0)1252 362012 | Mob +44 (0) 7799 437 122 

 

sheena.white@infoterra-global.com | www.astrium-geo.com 

 

>> Spot Image & Infoterra are teaming up. The GEO-Information Services division of Astrium will 

bring a consolidated portfolio of services & products to customers worldwide. 

 

 
 

 

From: Comber, Alexis (Dr.) [mailto:ajc36@leicester.ac.uk]  

Sent: 28 November 2012 09:44 

To: Lamb, Alistair 

Cc: Mohammed, Idris J. 

Subject: Re: Satellite imagery request 

 

Dear Alistair 

 

we have finally narrowed down what we are looking for - 1/8th of a SPOT scene for Port Harcourt in 

Nigeria (kml files are in the attached). 

 

My student was quoted ~£800 for this (see the attached correspondence between him and Astrium), 

however, we would be most grateful if you were able to get this scene for him. 

 

Many thanks, Lex 

 

 

 

Dr Alexis Comber  

Reader in Geographic Information 

Department of Geography 

University of Leicester 

Leicester, LE1 7RH, UK 

Tel +44(0)116 252 3812 / 3823 

Fax +44(0)116 252 3854 

Email ajc36@le.ac.uk 

http://www2.le.ac.uk/departments/geography/people/ajc36 

 

mailto:sheena.white@infoterra-global.com
http://www.astrium-geo.com/
mailto:ajc36@leicester.ac.uk
mailto:ajc36@le.ac.uk
http://www2.le.ac.uk/departments/geography/people/ajc36

