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Abstract 

 

Remote sensing of spatiotemporal phytoplankton dynamics of 

the optically complex Lake Balaton 

 

Stephanie C. J. Palmer 

 

This thesis explores the use of remote sensing to measure the phytoplankton biomass of Lake 

Balaton, Hungary via the proxy pigment, chlorophyll-a (chl-a). Several scales of spatial and 

temporal variability are considered, using a ten year time series of Medium Resolution Imaging 

Spectrometer (MERIS) satellite imagery, ship-mounted Light Detection and Ranging 

(LiDAR), and water sampling and laboratory measurements from punctual and ongoing 

campaigns. Existing remote sensing methods are adapted to Lake Balaton for the first time, 

and novel directions are demonstrated which may be applied to other lakes in the future. Several 

chl-a retrieval algorithms applied to archive MERIS data are calibrated and validated using an 

extensive dataset of coinciding in situ measurements and results from each are compared. The 

application of two atmospheric correction algorithms is also validated and their influence on 

chl-a retrieval is considered in comparison with the use of un- atmospherically corrected, top-

of-Atmosphere (TOA) data. The fluorescence line height (FLH) algorithm applied to TOA 

MERIS data is found to accurately and robustly retrieve Lake Balaton chl-a (R2 = 0.87; RMSE 

= 4.19 mg m-3), particularly during high biomass bloom events (chl-a ≥ 10 mg m-3). This 

algorithm is then applied to the full MERIS archive (2002-2012), resulting chl-a time series 

are smoothed at the pixel level, and phytoplankton phenology metrics are extracted and 

mapped. Phenology metric mapping in lakes using MERIS remote sensing is demonstrated and 

significant spatiotemporal variability in bloom metrics is apparent. Laboratory tank and in situ 

ship-mounted Ultraviolet Fluorescence LiDAR (UFL) measurements indicate another novel 

direction for lake remote sensing. Chl-a, as well as total suspended matter (TSM) and coloured 

dissolved organic matter (CDOM), were measured and cyanobacteria was distinguished from 

chlorophyta via fluorescence emission spectra. The feasibility of retrieving accurate and 

quantitative information on Lake Balaton phytoplankton biomass dynamics through the use of 

remote sensing techniques is confirmed, and the resulting added value for both science and 

management is highlighted. 
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Chapter 1 

 

Introduction and thesis overview
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1.1 Research context 

 Freshwater resources provide a myriad of habitats, resources and ecosystem 

services, both extractable and non-extractable. Lakes in particular have been found to be 

sensitive sentinels to changes in the adjacent landscape and in climate conditions (Adrian 

et al. 2009; Williamson et al. 2009), and to face a broad range of threats to their ecological 

functioning and biodiversity (Beeton 2002; Brönmark and Hansson 2002; Duker and 

Borre 2001). Symptoms of eutrophication, such as intensified algal blooms and altered 

phytoplankton species composition, have been observed to increase under warming 

scenarios which are predicted with climate change (Moss 2012). As such, lake 

phytoplankton monitoring has increasingly been recognized by both science and policy 

realms as vital. Satellite remote sensing has been proposed as a powerful tool to monitor 

a number of water quality parameters, notably phytoplankton biomass via the remotely 

sensed optical signal of the pigment chlorophyll-a (chl-a) (IOCCG 2000). Robust chl-a 

concentration and other biogeochemical parameter retrievals have been demonstrated to 

be possible, although not consistently so, in a broad range of lake settings using satellite 

imagery (Matthews 2011; Odermatt et al. 2012).  

Numerous challenges continue to impose upon the remote sensing of lake water 

constituents, due in large part to the high optical complexity and variability associated 

with inland waters. The study site of this thesis, Lake Balaton in western Hungary, itself 

presents a broad range of optical conditions and water constituent concentrations which 

vary over space and time, and thus presents particular challenge and opportunity from a 

remote sensing perspective. Likewise, historical eutrophication and the regular recurrence 

of algal blooms affect water quality, tourism and lake ecology more broadly. 

Phytoplankton monitoring is of great interest for the management and research of Lake 

Balaton, and a vast in situ chl-a dataset is available from conventional monitoring 

programs for the development and validation of remote sensing products. This thesis 

intends to build upon achievements and progress made by the lake remote sensing 

research community over the past decades and to contribute via quantitative evaluation, 

application and adaptation of existing approaches to the Lake Balaton context as well as 

through the development, testing and demonstration of novel directions linking remote 

sensing and limnology.  
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Given increasingly robust chl-a retrievals for many inland waters for example, it 

is now timely to consider ways to go beyond mapping concentrations to quantitative 

spatiotemporal analyses that make use of the regular periodicity of satellite remote 

sensing. Phytoplankton phenology metrics are proposed here as a suite of parameters that 

have the potential to serve as important ecological indicators, as has been demonstrated 

via in situ, mesocosm and modeling data from other lake sites. Analogous parameters 

have a long history of retrieval via remote sensing for terrestrial vegetation (Boyd et al. 

2011; Dash et al. 2013; Justice et al. 1985; Malingreau 1986), and increasingly in open 

ocean settings (Platt et al. 2010; Platt et al. 2009; Racault et al. 2012; Sasaoka et al. 2011; 

Siegel et al. 2002), as well as to a certain extent for a limited number of lakes (Binding et 

al. 2011; Duan et al. 2014; Hu et al. 2010; Matthews 2014; Stumpf et al. 2012) which 

suggest the potential for further development in this area.  

Following the validation and comparison of several chl-a retrieval algorithms 

applied to Medium Resolution Imaging Spectrometer (MERIS) imagery of Lake Balaton 

(Palmer et al. 2015a), as well as deliberation on the underlying causes of the relative 

success and failure of the different algorithms, the measurement and mapping of 

phytoplankton phenology metrics in the lake is undertaken using MERIS imagery 

(Palmer et al. 2015b). Another remote sensing approach common in oceanic settings but 

not yet applied extensively to inland freshwaters, making use of active, laser-induced 

fluorescence of phytoplankton pigments (Babichenko 2008) is also investigated. The 

performance of ship-mounted fluorescence light detection and ranging (LiDAR) 

measurements of chl-a and other water constituents is tested under a range of possible 

freshwater conditions through a series of laboratory tank experiments and field 

measurements carried out on Lake Balaton (Palmer et al. 2013).  

For a great many lakes worldwide, remote sensing offers enormous potential for 

new insights, particularly where in situ monitoring may be absent or sparse due to the 

given geographic, political or economic context. However, remote sensing methods must 

be developed and tested through comparison with trusted conventional data before their 

reliable application in such data-limited settings. As such, Lake Balaton provides an ideal 

case study, with a long history of active research and available monitoring data spanning 

the MERIS archive considered in this thesis. Not only do measurements encompass 

multiple years, but all seasons as well, and are distributed across the spatial extent of the 

lake. Furthermore, even in lakes where conventional monitoring is underway, remote 
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sensing data offer an additional view with regards to its cohesive spatial and temporal 

resolutions and coverage, and should be considered a complementary data source. Certain 

limitations of conventional data have the potential to be more fully addressed through the 

use of satellite products, and vice versa. This thesis aims to test and develop such satellite, 

as well as ship-mounted remote sensing products toward adding to the knowledge of Lake 

Balaton phytoplankton dynamics on the one hand, and demonstrating novel remote 

sensing approaches that might be applied to other lake systems on the other. 

 

1.2 Thesis structure, objectives and questions 

The thesis chapters are largely grouped into three sections (Figure 1.1). First, 

chapters one through three together present the general context and background 

information; introducing the thesis itself, the broader field of study, and the study site and 

related previous works undertaken there. Chapters four through seven present the 

analyses carried out in order to answer the research questions described below and the 

results thereof, with validation results from chapters four and five informing the 

phenological analyses carried out in chapter six. Chapter seven presents the exploratory 

field and laboratory measurements of a novel, fluorescence LiDAR approach to lake 

remote sensing. Chapter eight provides a synopsis of the thesis work, highlighting the 

main achievements and conclusions as well as identifying future research priorities 

revealed by the thesis findings. 

 

 

Figure 1.1. Sections and subsections comprising the thesis structure.  
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In light of the general research context described in Chapter 1.1, the following 

questions are sought to be addressed through this thesis. Chapters four and five report the 

validation exercises applied to satellite image chl-a retrieval and atmospheric correction 

algorithms, and resulting implications. In chapter four, the comparison of calibration and 

validation results of six chl-a algorithms is carried out using extensive archive in situ data 

from the study site, Lake Balaton. The performance of two atmospheric correction models 

are considered in chapter five along with the influence of atmospheric correction on chl-

a retrievals from MERIS imagery. The overall performances of the tested chl-a retrieval 

and atmospheric correction algorithms, as well as spatial and temporal patterns 

uncovered, are discussed and validation is considered in mapping and through application 

to multi-year time series. In particular, the following questions are addressed: 

How do the chl-a retrievals of different algorithms compare for Lake Balaton? 

What is the influence of atmospheric correction on chl-a retrieval performance? 

Which algorithms are best suited for the mapping and monitoring of Lake Balaton 

phytoplankton blooms from MERIS satellite data? 

 

In chapter six, the application of the selected chl-a retrieval algorithm, informed by 

the results of chapters four and five, to the full MERIS image archive from 2002 to 2012 

is undertaken so as to examine satellite-derived phytoplankton biomass time series, and 

phenology metrics in particular. Although commonly retrieved from remote sensing in 

analyses of terrestrial vegetation, and increasingly for oceanic phytoplankton, freshwater 

phytoplankton phenology has not yet been fully considered through a remote sensing 

approach. This is examined here, and ecological indicators related to phenology are 

extracted, mapped and evaluated in application to Lake Balaton. The following questions 

are addressed: 

Can phytoplankton phenology metrics be derived from and mapped using MERIS 

satellite imagery and TIMESAT software in a lake setting? 

How does phytoplankton phenology vary inter-annually in Lake Balaton? 

How do phenology features vary spatially across Lake Balaton? 
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Although not uncommon in oceanographic research, the use of ship-mounted 

ultraviolet fluorescence LiDAR (UFL) has not yet been tested or applied in an inland 

water setting. A series of experimental laboratory tank and field measurements on Lake 

Balaton was carried out to investigate potential challenges posed by the more optically 

complex nature of inland waters compared with pelagic oceanic settings, as well as to 

identify insights that UFL can contribute through measurements of chl-a, as well as other 

important optically significant water quality parameters, coloured dissolved organic 

matter (CDOM) and total suspended matter (TSM). The following questions are 

addressed in Chapter seven: 

Can UFL present a reliable means to measure chl-a, as well as TSM and CDOM in 

optically complex lake settings? 

Do UFL measurements remain robust at high chl-a and TSM concentrations, 

achieved through laboratory tank measurements? 

Can UFL retrieved signals of different phytoplankton taxa be distinguished? 
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Chapter 2 

 

Remote sensing of lake water quality 
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This chapter begins by highlighting some of the challenges facing water resources and 

aquatic ecosystems that have been observed throughout the world. Although remote 

sensing may provide a tool to assist managers and researchers concerned with such issues, 

its use and interpretation are not straightforward. The biophysical principles behind the 

remote sensing of water constituents are introduced, as are some of the difficulties 

associated with this task, including those that distinguish the remote sensing of so-called 

optically complex coastal and inland waters from that in open ocean settings. The general 

methodology behind the retrieval of water constituents, including chl-a, are presented, 

and several key features and achievements associated with MERIS, used in this thesis, 

are highlighted. 

 

2.1 Remote sensing for lake water quality monitoring 

Lakes are important components and regulators of global carbon, nitrogen and 

phosphorous cycling, are vital within the hydrologic cycle, in addition to providing 

diverse habitat for rich biodiversity (Bastviken et al. 2011; Brönmark and Hansson 2002; 

Duker and Borre 2001). Human populations also rely on lake systems for the provision 

of food and of water for drinking, other household uses, industry, irrigation, as well as for 

energy, recreational and cultural uses (Johnson et al. 2001; Postel 2000). As freshwater 

resources are limited, their various uses are in direct competition with one another where 

they co-occur. Furthermore, inland aquatic ecosystems are sensitive to environmental 

changes, and face increasing, synergistic threats. These are related to climate change, the 

introduction, establishment and spread of exotic (alien or invasive) species, 

contamination (organic and inorganic), eutrophication, acidification, loss of biodiversity 

and the diversion of upstream source waters. Such stresses lead to changes in the 

physiochemical and biological structures of lakes and impacts cascade throughout 

associated ecosystems, including to humans (Brönmark and Hansson 2002; Khan and 

Ansari 2005; Ricciardi and Rasmussen 1999; Sala  et al. 2000; Suski and Cooke 2007).  

Due to their sensitivity to environmental change, and particularly to their capacity 

to integrate changes in the adjacent landscape (catchments) and atmosphere, lakes have 

widely been considered potential sentinels of climate change, with several measureable 

signals identified (Adrian et al. 2009; Williamson et al. 2009). Planktonic species are 
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affected by temperature and nutrient changes, are characterized by short generation times, 

and are thus considered especially sensitive indicators of climate and other environmental 

change (Adrian et al. 2009; Carvalho et al. 2013; Hays et al. 2005; Richardson 2008; 

Taylor et al. 2002). Results generally concur that warming trends will result in increased 

and intensified effects of eutrophication (Moss 2012), and ongoing monitoring has an 

important role to play in attributing and quantifying changes (Carvalho et al. 2013; Lovett 

et al. 2007). 

The current and anticipated degradation of freshwaters and associated ecosystems 

have become increasingly apparent and pressing over recent decades, and policy actions 

have been called upon as means to measure, mitigate and remediate such degradation 

(Bates et al. 2008; Dudgeon et al. 2006). In the United States, the Environmental 

Protection Agency’s Clean Water Act, dating back to 1972 and updated through 

amendments as recently as 2002, regulates pollution discharge to water bodies and water 

quality monitoring (US Congress, 1977). The Water Framework Directive (WFD) of the 

European Commission (EC Guidance Document No 10, 2003) aims to protect and 

enhance the quality of European waters and aquatic ecosystems (Chen et al. 2007; 

Dworak et al. 2005a; Dworak et al. 2005b; Hering et al. 2013). The importance of 

assessment across multiple spatial scales is emphasized within the WFD, with a focus on 

the catchment scale and on on-going monitoring so as to quantify trends in the 

degradation or the rehabilitation of systems to a desired status. In the case of the WFD, 

all European surface waters (lakes, rivers, coastal and transitional waters) are required to 

achieve a status of “good” by the year 2015 (Hering et al. 2013). 

Given the high level of diversity in biological, chemical, physical, hydrological 

and morphological characteristics from lake to lake, and typically even within a given 

lake, a precise definition of “good” can be difficult to achieve. A number of indices and 

indicators, both physiochemical- and biologically-based, have been proposed, as have 

various classification schemes that make use of different combinations of such indicators. 

Changes in some of these parameters may be useful in indicating overall changes in water 

quality. The widely-used biological classification scheme of the Organization for 

Economic Cooperation and Development (OECD) is based on the trophic state index of 

the lake, an absolute measure of biomass, nutrient status and transparency of a lake system 

at a given time. Lakes, or parts of lakes, are classified as either hypertrophic, eutrophic, 

mesotrophic, oligotrophic, or ultra-oligotrophic (OECD 1982). The classification system 
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promoted by the WFD makes use of biological indicators, known as biological quality 

elements (BQEs), which are divided into phytoplankton, aquatic flora, fish and benthic 

invertebrates (Hering et al. 2013).  The WFD aims to incorporate numerous 

hydromorphological, biological and physiochemical parameters, as well as the notion of 

ecoregions, which are generally identified as “areas within which there is spatial 

coincidence in characteristics of geographical phenomena associated with differences in 

the quality, health, and integrity of ecosystems” (Omernik 2004, page S33) and other 

geographical and abiotic features in an attempt to standardize the classification of inland 

water bodies while taking into account the diverse landscapes and climates of Europe 

(Dworak et al. 2005a). Carvalho et al. (2013) report the assessment of a variety of metrics 

for monitoring phytoplankton as part of the WFD across a range of European Union 

Member States, and have identified chlorophyll-a (chl-a), cyanobacteria biovolume and 

Phytoplankton Trophic Index (PTI), a measure of taxonomic composition, as most 

suitable. The use of the proposed metrics was further supported by results of Thackeray 

et al. (2013), that more than 85 % of the variance in the metric scores was among the 

sampled lakes, rather than due to differences related to sample processing, and was well 

predicted by total phosphorous concentration which is a main indicator of eutrophication. 

It should be noted that monitoring, in terms of identifying anthropogenic impacts for 

example, based on any system or set of parameters first requires knowledge of some 

baseline condition with which to compare (Lovett et al. 2007), and this notion is also 

embedded within the WFD classification guidelines (EC Guidance Document No 10, 

2003). 

The natural variability of lakes over time, seasonal or otherwise, is potentially 

difficult to untangle from anthropogenic-induced changes and poses a significant 

challenge to monitoring strategies, in addition to the inter- and intra- lake spatial 

variability. Such natural variability is also often crucial to the health and functioning of 

lake ecosystems, as is the case for most ecosystem types, and may itself be desirable to 

preserve or recover (Erlandsson et al. 2008; Landres et al. 1999). Accounting for the 

natural variability of systems while attempting to identify and minimize anthropogenic 

change augments the demand placed on both baseline and monitoring information in 

terms of temporal and spatial coverage. Likewise, causes and effects of environmental 

change on lake systems, as well as signs of recovery and restoration, occur at diverse 

spatial and temporal scales, which is an important consideration in the interpretation of 
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monitoring data (Hering et al. 2013). A minimum sampling frequency has therefore been 

calculated and proposed for the phytoplankton metrics associated with the WFD, 

mentioned above (Thackeray et al. (Appendix 2) in Mischke et al. 2012).  

Traditional monitoring through point samples or measurements can be limited and 

resource-intensive, however, and in many instances globally is simply impossible. The 

latter case occurs particularly when lakes are remote or when resources necessary to 

undertake monitoring are insufficient. Remote sensing has been identified as an 

alternative, or more realistically as a complementary source of data, having the potential 

to play an important role in the spatially and temporally cohesive monitoring of lake water 

quality, providing regular measurements of entire lake surfaces on the order of daily, 

weekly or monthly, depending on the satellite sensor and lake geographic context in 

question  (Bresciani et al. 2011; Chen et al. 2007; Glasgow et al. 2004). Although many 

parameters required to be monitored by the WFD cannot be measured using remote 

sensing technologies, some proxies can be derived, including remotely sensed chl-a 

concentration as a proxy for phytoplankton biomass, as will be discussed further in 

Chapter 2.2. 

Space-based, satellite remote sensing of lake water quality is a promising 

complement to traditional point sampling strategies, though its development and 

implementation for lake waters is complex and on-going (Matthews 2011; Odermatt et 

al. 2012). Airborne and ship-mounted remote sensing solutions may further complement 

the satellite data able to be acquired, providing data at small to intermediate spatial scales 

(< 1 – 100 m). Although such approaches are limited in terms of providing regular, 

continuous datasets through time, their punctual campaigns have the advantage of being 

quite flexible in terms of targeting a specific period or geographic location, for example 

so as to capture an event or process of interest (algal bloom, terrestrial runoff, etc.), and 

their often high spatial and spectral resolutions are also advantageous (Matthews 2011). 

Furthermore, in situ point measurements remain crucial within the larger framework of 

remote sensing, as sufficient reference data are required to develop and test the accuracies 

of models relating satellite remote sensing data to in situ water quality parameters so as 

to reliably apply them to mapping more broadly (Sriwongsitanon et al. 2011). A 

combination of datasets covering a range of temporal and spatial resolutions, including 

both remote sensing and in situ sampling, would thus be ideal. 
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2.2 Remote sensing of optically significant water quality 

parameters 

2.2.1 Optically significant substances  

The study of water quality parameters through remote sensing can largely be 

understood through their influence on water colour, given that some parameters of interest 

(optically significant substances) reflect or absorb solar radiation at different wavelengths 

across the visible and near-infrared electromagnetic spectrum. Water containing very 

little dissolved or suspended matter tends to appear dark blue, absorbing the least amount 

of light in the wavelengths associated with that colour (400-500 nm) (Braun and Smirnov 

1993). In the context of the optical properties of a water column, three main groups of 

optically significant substances affect water-leaving radiance through the scattering and 

absorption of light, in addition to the effect of pure water, which is a hypothetical medium 

consisting of only water molecules and dissolved inorganic matter. These are (1) 

phytoplankton, (2) total suspended matter (TSM), also known as suspended particulate 

material and occasionally broken down into living and non-living, or organic and 

inorganic components which can be distinguished optically, and (3) coloured dissolved 

organic matter (CDOM), also known as gelbstoff, yellow substance, or gilvin (IOCCG 

2000). It should be noted that substances that do not substantially alter the optical signal 

of the water, such as bacteria or viruses, are very important for overall water quality but 

cannot be directly measured through remote sensing. 

Phytoplankton are microscopic, free-floating, autotrophic organisms that are 

found in the upper, sunlit layer of water bodies (oceanic as well as freshwater). Through 

carbon fixation and photosynthesis, they form the base of aquatic and oceanic food chains 

and play a major role in the global carbon cycle (Reynolds 2006). Phytoplankton in very 

high concentrations, known as algal blooms, can be detrimental to aquatic ecosystems, 

however. Under  eutrophic and hyper-eutrophic systems, large quantities of algal biomass 

block sunlight and lead to depleted oxygen conditions as dead plant matter decomposes 

(Istvánovics 2010). The presence and amount of phytoplankton biomass is commonly 

determined through measurements of biovolume or of chl-a, the main pigment common 

to phytoplankton species. Chl-a is characterized optically by strong absorption at blue 



13 
 

and red wavelengths (Hunter et al. 2008a; Sváb et al. 2005), as well as a strong and narrow 

fluorescence signal at 685 nm (Barbini et al. 1998), and a peak at around 705 nm is also 

typical under high biomass conditions due to phytoplankton backscattering.  

Thousands of phytoplankton species have been identified, however, and many 

taxa are associated with distinguishing auxiliary pigments in addition to chl-a, such as 

chlorophyll-b, phycocyanin, carotenes and xanthophylls, which each have their own 

characteristic absorption, reflectance and fluorescence signals. Individual phytoplankton 

groups thus display variation in their spectral response profiles due to characteristic 

reflectance and absorbance of visible light at distinct wavelengths (Aguirre-Gómez et al. 

2001a; Aguirre-Gómez et al. 2001b; Vaillancourt et al. 2004). In addition to measuring 

phytoplankton biomass in general, it can therefore be possible to measure that of certain 

individual, targeted taxa given adequate spectral coverage and resolution (Hunter et al. 

2010; Hunter et al. 2008a). Taxonomic composition within a given water body can vary 

over time and space, and some taxa may be considered more important to identify and 

monitor than others. For example cyanobacteria, commonly known as blue-green algae, 

may produce cyanotoxins and form potentially harmful algal blooms (HABs) (Hunter et 

al. 2008b; Paerl and Huisman 2008, 2009). 

TSM encompasses the broad range of organic and inorganic, living and non-living 

material found suspended in the water column. The inorganic component is generally 

dominated by sediment introduced by rivers or resuspended from the bottom through 

wave action and currents, and thus occurs predominantly in relatively shallow coastal 

zones or inland waters rather than in deep open-ocean water where surface energy is 

unlikely to reach the bottom (IOCCG 2000; Miller and McKee 2004). Concentrations of 

suspended material are closely linked to the clarity or turbidity of the water, and 

consequently the light availability for photosynthesizing aquatic organisms (Havens et al. 

2011; James et al. 2009). Nutrient dynamics and pollutant transport have also been found 

to be influenced by suspended sediment concentrations (Martin and Windom 1990; 

Mayer et al. 1998; Miller and McKee 2004). The characteristic response spectrum of 

suspended matter in the visible range tends to be quite broad as a result of its general 

reflectance, lacking specific absorption or fluorescence features such as described above 

for phytoplankton. It can, however, be somewhat variable in its specific effect on water 

colour depending on sediment type (e.g., red, iron-rich clays versus white, calcareous silts 

or sands) (IOCCG 2000).  



14 
 

The CDOM component consists of the light-absorbing fraction of dissolved 

organic material (DOM) (Kutser et al. 2005), mainly humic and fulvic acids produced by 

the degradation of organic particles such as phytoplankton cells and wetland vegetation 

(IOCCG 2000). High concentrations can also be transported by rivers and thus do not 

necessarily reflect local processes originating within the lake. Imported terrestrial CDOM 

is important to lake ecosystems due to the external source of carbon provided and its 

influence on light availability for aquatic biota, including protection from potentially-

harmful UV-B radiation (Kutser et al. 2005). CDOM is rapidly photodegraded (broken 

down through exposure to UV radiation from the sun) (V.-Balogh et al. 2003). Although 

the water-leaving spectral response related to CDOM tends to be variable, absorbance 

between 420 and 440 nm is a commonly used proxy, and a broad fluorescence peak 

centred at 440 nm is also known to exist (Brezonik et al. 2005; Hu et al. 2004; Kutser et 

al. 2005; Lee et al. 1994). 

 

2.2.2 Inherent and Apparent Optical Properties 

Inherent Optical Properties (IOPs) describe the wavelength-dependent absorption 

(a) and the Volume Scattering Function (β), from which the total scattering coefficient 

(b) is determined, and their cumulative effect on the coefficient of beam attenuation (c) 

(eq. 2.1) (IOCCG 2006). Backscattering (bb) integrates the volume scattering function (β) 

over the angles 90-180°. The total absorption (atotal(λ)) and backscattering (bb total(λ)) can 

be further broken down into the contributions from each of the three optically significant 

constituent types described above (phytoplankton - aph(λ), bb ph(λ); tripton (non-living 

suspended matter) at(λ), bb t(λ);  CDOM - aCDOM(λ)) and from the water itself (aw, bb,w) 

(eq. 2.2 and 2.3). The IOPs are characteristic of the media, without influence from 

ambient light conditions (Kirk 1994).  

 

c(λ) = atotal (λ) + bb total(λ)     Equation 2.1 

atotal(λ) = aw(λ) + aph(λ) + at(λ) + aCDOM(λ)   Equation 2.2 

bb total(λ) = bb w(λ) + bb ph(λ) + bb t(λ)    Equation 2.3 
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Measurements via remote sensing, however, also include the influence of the light 

field at the time of measurement, as well as sensor and measurement geometry. 

Measurements are therefore of Apparent Optical Properties (AOPs), such as remote 

sensing reflectance (Rrs) which is the ratio of radiance upwelling from the surface of the 

water (Lu) to that downwelling from the sun (Ed) (eq. 2.4). AOPs can be related 

quantitatively to IOPs via the use of a constant, f, dependant on the measurement light 

field and β (eq. 2.5) (Gordon et al. 1975; Preisendorfer 1961), and IOPs to concentrations 

of optically significant substances through applying tuned coefficients, known as specific 

inherent optical properties (SIOPs).  

 

Rrs(λ) = Lu(λ)/Ed(λ)      Equation 2.4 

Rrs(λ) = f (bb total(λ) / a total(λ) + bb total(λ))   Equation 2.5 

 

2.2.3 Optical water types 

A general optical classification of natural surface waters (both freshwater and 

oceanic) into Case 1 and Case 2 types was introduced (Morel and Prieur 1977) and later 

updated (Gordon and Morel 1983; Morel 1988). The main distinction between the two 

classes is the much greater optical complexity inherent to Case 2 waters. Case 1 waters 

are those whose optical properties are dominated by phytoplankton. Though other 

components (CDOM, TSM) may be present, their influence on the overall optical 

properties of the host water is insignificant given their generally low concentrations and 

the fact that they co-vary linearly with, and are typically by-products of, phytoplankton 

(IOCCG 2000). The optical properties of Case 2 waters on the other hand are influenced 

independently and to varying degrees by all three components described above, which 

may each be present in a broad range of concentrations. Furthermore, the influence of 

each component on the water-leaving spectral response of a water body overlaps with the 

others and unique signatures are thus difficult to distinguish. Rather, at any given 

wavelength studied, a linear, one-to-one relationship with any of the components cannot 

be assumed (IOCCG 2000). 
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Although not universally the case, Case 1 waters are generally open-ocean waters, 

which tend to be relatively transparent due to the lack of or low inorganic suspended 

matter or externally-sourced CDOM influence, whereas coastal zone and inland waters 

are often of Case 2 type due to the potential for bottom sediment resuspension or 

suspended matter and CDOM input from adjacent terrestrial environments (river inflow 

or surface runoff), and generally higher phytoplankton biomass. The majority (> 90%) of 

the world’s surface waters are of the Case 1 type; however the possible optical variety 

presented by Case 2 waters is much greater. In fact, whereas Case 1 waters are strictly 

defined as being optically dominated by phytoplankton, Case 2 can be understood as 

everything that is not Case 1 (IOCCG 2000). These include waters dominated by one 

component other than phytoplankton (either TSM or CDOM), those dominated by a 

combination of two components with the third playing a minor role, and those where all 

three components are important (IOCCG 2000). The diversity of the so-called Case 2 

waters poses an enormous challenge to their remote sensing, requiring either site-specific 

or extremely broad retrieval algorithm calibration so as to encompass the full range of 

conditions possible to encounter.  

The relative difficulty of remotely sensing Case 2 waters compared with the 

remote sensing of Case 1 waters stems from this optical complexity and variability. This 

is both in terms of potential sensors, which require much greater spectral resolution and 

coverage and radiometric accuracy and precision (high signal-to-noise ratio), as well as 

more complex algorithms to successfully derive different components from their 

overlapping spectral responses (IOCCG 2000). It should also be noted that although this 

traditional classification system is still commonly used and referred to, its discontinuation 

has been proposed due to the continuum that the two cases comprise in reality both in 

terms of concentrations of parameters (there is no real, quantitative divide distinguishing 

so-called Case 1 from so-called Case 2 waters) and because of the temporal variability 

(i.e., a location may be classified as Case 1 at some times (e.g., high tide) but Case 2 at 

other times (e.g., low tide)) (Mobley et al. 2004). 
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2.2.4 Additional challenges in lake remote sensing 

In addition to the high optical complexity characterising the water itself, several other 

features specific to lakes add to the challenge of measuring their water quality 

components using remote sensing techniques.  

Atmospheric correction 

The atmosphere contributes as much as 90 % of the top-of-atmosphere (TOA) 

signal measured by a satellite sensor over water (Siegel et al. 2000; Vidot and Santer 

2005). Accounting for and removing this contribution, particularly scattering by aerosols, 

can therefore be important in the retrieval of water constituents such as phytoplankton 

biomass, but is challenging due to the optical complexity and high degree of spatial and 

temporal variability in both atmospheric and in-water conditions. Atmospheric correction 

methods successfully used for remote sensing of open ocean water quality rarely work 

when applied to coastal zones or lake waters. Bands considered to only reflect 

atmospheric conditions (specifically bands in the near-infrared part of the spectrum 

between 765 and 865 nm), known as the “black” or “dark” pixel assumption, may contain 

a signal from the higher concentrations and additional components of optically complex, 

so-called Case 2 waters, particularly suspended particulate matter (IOCCG 2000; Moore 

et al. 1999; Ruddick et al. 2000; Siegel et al. 2000). The use of longer, shortwave-infrared 

(SWIR) bands (wavelength > 800 nm) has been proposed as an alternative (Wang 2007), 

but a non-negligible water-leaving signal in this spectral range has since been 

demonstrated for very turbid waters (Knaeps et al. 2012; Shi and Wang 2009). 

A variety of approaches have also been presented that invert of top‐of‐atmosphere 

(TOA) radiances through radiative transfer modelling, such as Second Simulation of the 

Satellite Signal in the Solar Spectrum (6S) atmospheric correction (Vermote et al. 1997), 

or using artificial neural network techniques, including neural networks designed 

specifically for use over optically complex waters (Schroeder et al. 2007a). Depending 

on the size and geographic context of a given lake, atmospheric correction models used 

over land and extrapolated or interpolated over the water surface may suffice, as in the 

case of the coastal Waters and Ocean MODTRAN-4 Based ATmospheric correction (c-

Wombat-c) model (Brando 2008) and the Self-Contained Atmospheric Parameters 

Estimation for MERIS data (SCAPE-M) model (Guanter et al. 2007; Guanter et al. 2008; 
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Guanter et al. 2010). Though each of these approaches and specific models has been 

proven to perform well in some instances, none is universally successful. Rather a case-

by-case approach is generally followed, though a more broadly robust approach is 

currently a priority of the coastal and inland water remote sensing community. Although 

temporal variability in atmospheric conditions unaccounted for in uncorrected, TOA data 

or in only partially corrected, bottom-of-Raleigh data introduces a source of error, this 

has nonetheless been found to result in robust water constituent retrievals (Matthews et 

al. 2010; Matthews et al. 2012; Palmer et al. 2015a).  

Adjacency effect 

The adjacency effect, also referred to as the background or environmental effect, 

is related to the reflectance of much brighter land next to the generally darker water, 

leading to the contamination of the optical signal of water pixels. Light reflected from 

land is in some instances forward scattered into the adjacent water pixels causing a 

blurring between land and water pixels. This may skew water quality parameter 

measurements and/or result in the breakdown of atmospheric correction (Sterckx et al. 

2011). The adjacency effect was first reported in association with Landsat imagery in the 

1980s in both coastal and inland water settings (Kaufman and Joseph 1982), and has been 

identified in airborne and satellite-based hyper- and multispectral imagery since 

(Reinersman and Carder 1995; Van Mol and Ruddick 2004). This effect can largely be 

removed through some atmospheric correction codes such as 6S, Scape-M and Moderate 

Resolution Transmission (MODTRAN) or through dedicated modelling. The Improved 

Contrast between Ocean and Land (ICOL) algorithm (Santer and Zagolski 2008) has 

provided major improvements to or had a neutral effect on atmospheric correction and 

constituent retrieval in some cases (Sterckx et al. 2011; Sterckx et al. 2012; Vermote et 

al. 1997). However, overcompensating for such effects through over-modelling has been 

observed elsewhere, and can be equally damaging to the reliability of derived data 

(Sterckx et al. 2011; Sterckx et al. 2012; Vermote et al. 1997). 

Size and geometry 

Due to their inland location, relatively small size and often irregular geometry, a 

large number of lake water pixels tend to also contain land components (these are 

commonly referred to as mixed pixels, imaging both land and water in various 

proportions) (Kay et al. 2005; Sentlinger et al. 2008). As the remote sensing reflectance 
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determined for a given pixel will be influenced by all surfaces contained within that pixel, 

information pertaining to the water body alone cannot (or is very difficult to) be attained. 

The relative importance of mixed pixels for a given lake also depends on the spatial 

resolution of the sensor. For example, the spatial resolution of sensors designed primarily 

for use in ocean colour remote sensing such as the Coastal Zone Colour Scanner (CZCS), 

the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and the ocean colour bands of 

the Moderate Resolution Imaging Spectroradiometer (MODIS) is approximately one 

kilometre. Although this is perfectly suitable for open-ocean measurement and 

monitoring applications, most lakes would contain too few, if any, pure, unmixed water 

pixels at this spatial resolution for remote sensing to be directly applied (Sentlinger et al. 

2008). As the spatial resolution of imagery improves, the total area lost to mixed pixels 

is reduced. Some multispectral sensors designed and tested as suitable for remote sensing 

of Case 2 water quality parameters improve upon such spatial resolutions, offering 300 

m resolution in the case of ENVISAT’s MERIS, or 250 – 500 m resolution in the case of 

some MODIS bands. However, in the cases of many lakes these too prove inadequate.  

Bottom effect 

Depending on the combination of water depth and transparency, lakes can be 

considered either “optically shallow”, whereby incoming solar radiation can penetrate the 

full water column and reflect back off the bottom to be detected by a sensor, or “optically 

deep”, whereby incoming radiation is attenuated more rapidly, does not reach and is not 

reflected by the bottom because of the highly turbid and/or very deep water. Where waters 

are optically shallow, the bottom effect must be accounted for, adding yet another 

component to consider in modelling water-leaving radiance (Giardino et al. 2011; IOCCG 

2000; Ma et al. 2011; Voss et al. 2003). Whether a lake can be expected to be optically 

deep or shallow depends upon optical properties and depth of the water and the optical 

properties of the bottom (Lodhi and Rundquist 2001). The bottom effect has been 

calculated to be negligible when secchi depth (a measure of transparency whereby the 

water depth after which a black and white disk is no longer visible is estimated) is 2.5 – 

3 times less than total water depth (Mueller and Austin 1995). In cases where the bottom 

effect cannot be assumed to be negligible, its albedo can be measured, included in bio-

optical modelling and removed from total water-leaving radiance (Albert and Mobley 

2003; Giardino et al. 2011; Lee et al. 1994; Lee et al. 1999). 



20 
 

2.2.5 Constituent retrieval algorithms 

 Given the wavelength specificity of different optically significant substances on 

the optical properties of the water column, different models have been proposed to 

quantitatively relate remotely sensed AOPs to constituent concentrations, either directly 

or via quantification of IOPs. Band arithmetic type models directly fit statistical 

relationships between reflectance measured at one or more different wavelengths 

(different bands of a given sensor) and the constituent concentrations (Matthews 2011). 

Such algorithms deriving chl-a concentrations in lakes typically make use of chl-a 

absorption, backscattering or fluorescence features in the red and near-infrared range 

which are less affected by other optically significant substances, compared with the blue 

and green range typically used in open ocean (so-called Case 1) settings (Dall'Olmo et al. 

2005; Gower et al. 1999). Relationships are determined for one constituent at a time, and 

coefficients and even band combinations found to successfully retrieve concentrations at 

one site are likely to completely fail at another, where site-specific calibration and 

coefficient tuning is required. The same has been found to be true at the same lake, from 

season to season or year to year or from different parts of the same lake; the algorithm is 

dependent on the calibration dataset for which it was trained. On the other hand, many 

band arithmetic type algorithms have been found to very robustly retrieve constituent 

concentrations for the site and conditions for which they were trained, and several band 

combinations have proven transferable between sites given the local calibration of model 

coefficients (Matthews 2011; Odermatt et al. 2012) 

 Another algorithm type makes use of radiative transfer-based bio-optical 

modelling (Lee et al. 2002; Maritorena et al. 2002; Mobley 1994; Preisendorfer 1961). A 

forward model relating IOPs to AOPs is inverted to acquire IOPs from remotely sensed 

AOPs. Despite their strong, physical basis, these algorithms are also limited in that they 

require large datasets of difficult to obtain optical properties and extensive 

parameterization, not feasible for many sites and often acquired only during punctual 

campaigns. Furthermore, the retrieval of chl-a and other constituent concentrations from 

the retrieved IOPs depends on the specific inherent optical property coefficients (SIOPs) 

relating IOPs to constituent concentrations for a given site, and is therefore also site 

specific. The high in situ data requirement is also the case for training neural network 

type algorithms, which typically use remotely sensed AOP data as the input layer, and 
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IOPs and constituent concentrations as the output (Doerffer and Schiller 2007; Doerffer 

and Schiller 2008; Schroeder et al. 2007a). 

 

2.2.6 MEdium Resolution Imaging Spectrometer (MERIS) 

The remote sensing of lakes and coastal zones has evolved in part from 

adaptations and advances to the sensor and algorithm design used in open ocean waters 

(IOCCG 2000). It should be noted that although these are not generally suitable 

themselves for the remote sensing of coastal and inland waters due to their low spatial 

resolutions and spectral characteristics, ocean colour satellite sensors are extremely useful 

and well-suited for exactly the purpose for which they were designed – the monitoring of 

chl-a and the broad estimation of phytoplankton biomass over large open-ocean areas – 

and are now used in operational monitoring (Gordon 2010; IOCCG 2000). Furthermore, 

coarse resolution ocean colour satellite sensors have been applied in the case of very large 

lakes, such as the American/Canadian Laurentian Great Lakes (Binding et al. 2007; 

Pozdnyakov et al. 2005; Shuchman et al. 2006), Lake Lagoda (Pozdnyakov et al. 2013) 

and Lake Baikal (Heim et al. 2005).  

Higher spatial resolution sensors intended primarily for terrestrial purposes, ALI, 

Landsat and SPOT have also been used in lake water quality measurements (e.g., Dekker 

and Peters 1993; Dekker et al. 2002; Kutser et al. 2005; Tebbs et al. 2013; Torbick et al. 

2013; Trescott and Park 2013; Tyler et al. 2006), though spectral resolution and coverage, 

and therefore applications and results, tend to be limited (Matthews 2011). Commonly 

employed are the medium resolution multispectral sensors. The Moderate Resolution 

Imaging Spectroradiometer (MODIS), aboard Aqua and Terra satellites of the NASA 

EOS-1 mission, launched in 1999 and 2002, has been especially useful in the retrieval of 

TSM and related parameters (turbidity, Secchi depth) using the two 250-m resolution 

bands in the red/near-infrared spectral range (e.g., Doxaran et al. 2009; Miller and McKee 

2004; Petus et al. 2010; Wu et al. 2008; Wu et al. 2009). Although chl-a retrievals in lakes 

have been reported using MODIS (e.g.,Chavula et al. 2009), a limitation in many cases is 

the spectral band placement in the red/near infrared spectral range.  

Although oceanographic imaging was the primary intention, with the goal of 

adding to the understanding of ocean processes and productivity within the climate 
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system context (ESA 2013a), MEdium Resolution Imaging Spectrometer (MERIS) has 

proven to be revolutionary in the remote sensing of inland waters, providing a 

combination of radiometric, spectral, spatial and temporal resolutions suitable for 

retrieving meaningful signals from medium to large size optically complex waters. 

MERIS has thus been applied to a large number of wide-ranging lake studies from 

phytoplankton and cyanobacteria biomass mapping (e.g., Binding et al. 2013; Binding et 

al. 2010; Binding et al. 2011; Binding et al. 2012; Bresciani et al. 2013; Chawira et al. 

2013; Giardino et al. 2005; Gons et al. 2008; Gower et al. 2005; Matthews 2014; 

Matthews et al. 2010; Matthews et al. 2012; Matthews and Odermatt 2015; Moses et al. 

2009a, b; Odermatt et al. 2010; Odermatt et al. 2008; Wynne et al. 2013a; Wynne et al. 

2013b) to TSM (e.g., Eleveld 2012; Tarrant et al. 2010) and CDOM mapping (e.g., Kutser 

et al. 2014), as well as various combinations of these and other parameters (e.g., Alikas 

and Reinart 2008; Campbell et al. 2011; Candiani et al. 2005; Giardino et al. 2010; 

Giardino et al. 2011; Koponen et al. 2008), and is used in this thesis work.  

MERIS, aboard the polar-orbiting Envisat satellite platform of the European 

Space Agency (ESA), is a push broom, multispectral imaging sensor, measuring in fifteen 

spectral bands ranging from the visible (band one; centred at 412.5 nm) to the near-

infrared range (band fifteen; centred at 900 nm) (Table 2.1; ESA 2013a). Its spectral band 

placement was intended to allow the various optically significant substances suspended 

or dissolved in the water column to be distinguished spectrally. In the context of oceanic 

and inland waters measurements, a number of band placement decisions were made in 

association with the spectral signatures of chl-a and other pigments, CDOM and TSM 

(Table 2.2; ESA 2013a). In particular, the presence of MERIS band 8, centred at 681.25 

to capture the chlorophyll fluorescence peak, and band 9, centred at 709 nm and which 

captures a peak related to phytoplankton blooms at high biomass (Gower et al. 2004; 

Gower et al. 1999; Gower et al. 2005) have contributed to its unique value in the remote 

sensing of lakes. Given its ability to focus on the red-near infrared spectral region for chl-

a retrievals, the interference by CDOM and TSM, most prominent in the blue-green 

range, is largely avoided.  

Given its intended use over water, which tends to be very dark (approximately 

90% of the signal received by the sensor is from atmospheric scattering, and less than 

about 10% from the water itself, due to the high absorbance of water (Brivio et al. 2001; 

Maul 1985)), the radiometric sensitivity was of high priority in the sensor design. A 
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radiometric resolution of less than 0.03 Wm-2 sr-1 mm-1 was identified as necessary to 

discriminate chl-a concentrations at the level of 1 mg m-3 (ESA 2013a). MERIS has a 

swath width of 1150 km, measured by five overlapping cameras, and operates on two 

spatial resolutions; full resolution (FR), with a pixel size of 300 m intended for land and 

coastal zone applications, and reduced resolution (RR), with a pixel size of 1200 m at 

nadir intended for global ocean applications. Two to three day overpass frequency allows 

for sufficient temporal resolution of data to closely follow phytoplankton bloom 

dynamics. A ten year archive of MERIS imagery data from June, 2002 to April, 2012 

remains, although Envisat is no longer active. 

 

 

Table 2.1. Spectral positioning and resolution of the 15 MERIS bands, and 

potential aquatic, vegetation and atmospheric applications. Adapted from 

©ESA Earthnet Online 2000 – 2013 (ESA 2013a). 

Band 

number 

Band centre 

(nm) 

Bandwidth 

(nm) Potential application 

1 412.5 10 Yellow substance, pigments 

2 442.5 10 Chl-a absorption maximum 

3 490 10 Chl-a, other pigments 

4 510 10 Suspended sediment, red tides 

5 560 10 Chl-a absorption minimum 

6 620 10 Suspended sediment 

7 665 10 Chl-a absorption, fluorescence reference 

8 681.25 7.5 Chl-a fluorescence peak 

9 708.75 10 Fluorescence reference, atmospheric correction 

10 753.75 7.5 Vegetation, cloud 

11 760.625 3.75 Oxygen absorption 

12 778.75 15 Atmospheric correction 

13 865 20 Vegetation, water vapour reference 

14 885 10 Atmospheric correction 

15 900 10 Water vapour, land 
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Chapter 3 

 

Study site 
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This chapter presents the study site of the thesis, Lake Balaton, Hungary, which is not 

only the largest lake in central Europe by surface area, but is also an extremely important 

resource, at the centre of the region’s tourism and recreation economy. The general 

biogeographical context as well as features of specific relevance to the thesis – such as 

previous knowledge of the spatiotemporal phytoplankton dynamics – are presented. Due 

to its historic and current influence on Lake Balaton water quality, features of the Kis-

Balaton Water Protection System are also described. Several past and ongoing remote 

sensing works on various facets of Lake Balaton water quality and on vegetation mapping 

are also presented to provide context for the current thesis work.  

 

3.1 Lake Balaton 

Lake Balaton, located in the western Transdanubian region of Hungary (105.1 m 

above Adriatic sea level), is by surface area (597 km2) the largest lake in Hungary (Figure 

3.1) and in Central Europe (Herodek et al. 1988; Szabó et al. 2011). The lake is elongated 

along a predominantly northeast-southwest axis, is 78 km in length and on average 7.6 

km wide, pinched to 1.5 km wide at the location of the Tihany peninsula (Figure 3.2). 

There are four main, consecutive basins (from west to east: Keszthely (1), Szigliget (2), 

Szemes (3), and Siófok (4); Figure 3.2). Water depth decreases gradually from northeast 

to southwest. Sediment deposition and carbonate precipitation occur predominantly at the 

southwestern end at the location of inflow from the Zala River (average monthly 

discharge ranging from 5 to 10 m3 s-1), the main inflow of surface water to the lake (Figure 

3.2; Korponai et al. 2010). Likewise, the lake is characterized by a biological or trophic 

gradient from typically oligo- to mesotrophic in the northeast (Basin 4; Figure 3.2) to eu- 

to hypertrophic in the southwest (Basin 1; Figure 3.2), as a result of the nutrient-rich 

inflow from the Zala River and predominant water circulation patterns (Mózes et al. 2006; 

Présing et al. 2008). However, periodic and seasonal variability superimposed upon this 

gradient is also observed. 
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Figure 3.1. Locations of the principle inland water bodies and rivers of Hungary; 

the study site, Lake Balaton (a), Lake Tisza (b), Lake Velence (c), Lake Fehér (d) 

and Lake Fertő (e), also known as Neusiedler See on the Austrian side. 

 

 

Figure 3.2. The four main basins of Lake Balaton (1: Keszthely, 2: Szigliget, 3: 

Szemes, 4: Siófok), as well as the principle water inlet (the Zala River) and outlet 

(the Sio Canal), and sampling locations of the Balaton Limnological Institute (BLI) 

and of the Central Transdanubian (Regional) Inspectorate for Environmental 

Protection, Nature Conservation and Water Management (Közép-dunántúli 

Környezetvédelmi, Természetvedelmiés Vízügyi Felügyeloség (KdKVI)). 
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Balaton is a shallow lake, with a mean depth of 3.3 m at current service levels 

(max. depth 10.2 m) (Zlinszky and Molnár 2008), and an average residence time of 4.17 

years (V.-Balogh et al. 2003). Water flow out of Lake Balaton is controlled by an outflow 

gate constructed in 1863 on the only outflow from the lake, the Sio Canal which connects 

to the Danube River (Figure 3.2) (Herodek et al. 1988; Korponai et al. 2010; Tátrai et al. 

2008). Turbidity is generally high, with typical secchi depth ranging from between less 

than 20 cm and approximately one meter depending largely on wind and other 

meteorological conditions (Herodek et al. 1988). As a result, the lake can be classified as 

"optically deep” for the purposes of remote sensing, whereby light reflected off the 

bottom does not contribute to total water-leaving reflectance (IOCCG 2000; Mueller and 

Austin 1995). The total catchment area drained by Lake Balaton is 5775 km2, of which 

2622 km2 is drained by the Zala River, and 1175 and 820 km2 are drained by sub-

catchments of the northern and southern shores respectively (Herodek et al. 1988).  

Approximately 250,000 full-time residents inhabit the Lake Balaton region year-

round. Though agriculture is the predominant land use activity, with forest cover also 

important (Figure 3.3), tourism has been estimated at approximately twelve times more 

important economically (LBDCA 2005). The tourism industry associated with Lake 

Balaton is long lived, with tourism development already well underway in the 1840s 

(Puczkó and Rátz 2000). The development of the transportation network to and within 

the region allowed easier access and thus accelerated the growth of tourism as of the 

1860s and continuing into the 20th and 21st centuries with road and highway 

improvements and expansion. Shifting political and economic conditions in Hungary and 

in neighbouring countries over time resulted in fluctuations in tourism, and currently 

more than a million tourists visit the region per year, mainly concentrated in the six to 

eight week “high” period in July and August (LBDCA 2005; Puczkó and Rátz 2000). 

Such an intensive tourism industry results in consequent pressure on the Lake Balaton 

system as a result of increased resource use and waste production. Likewise, the 

nationally and regionally important Lake Balaton tourism industry is heavily dependent 

on the lake as a natural resource and as such is very sensitive to lake water quality and 

ecosystem features and processes. 
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Figure 3.3. CORINE land cover map (2006) for the Lake Balaton region, highlighting 

principally forestry and agricultural land covers. © European Environment Agency Corine 

Land Cover 2006 raster data (published 2010). 

 

In recent decades, several events have been cause for alarm regarding lake water 

quality and sustainability. These include periodic droughts and consequent drastic drops 

in water level (notably occurring over the period 2000-2004 (Martinez et al. 2011; 

Padisak et al. 2006)), and a massive eel die-off in 1992 (Puczkó and Rátz 2000). 

Fluctuations in, and degradation of water quality, especially eutrophication and the 

presence of potentially harmful algal blooms (HABs) are of on-going concern. Of 

particular importance was the severe eutrophication that took place in the 1970s and 

1980s. Several major remediation and mitigation measures were implemented, including 

the development of a new sewage diversion system and treatment facility, and the 

construction of the Kis-Balaton Water Protection System, which have largely been found 

to be successful in remediating water quality to pre-1970s conditions (Herodek et al. 

1988; Istvánovics et al. 2007).  Two annual phytoplankton blooms still typically occur in 

Lake Balaton, however; a smaller spring bloom (~ April) and a larger late summer bloom 

(~ August/September) (Mózes et al. 2006; Présing et al. 2008). Water quality monitoring 

takes the form of sampling two to five points at the centre of the different basins of the 

lake once to twice monthly (Figure 3.2). Samples are analysed for chl-a and TSM, and 

water temperature, secchi depth and euphotic depth are also recorded. This has been 

carried out by both the Balaton Limnoligical Institute (BLI) and the Central 

Transdanubian (Regional) Inspectorate for Environmental Protection, Nature 
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Conservation and Water Management (KdKVI; "Közép-dunántúli Környezetvédelmi, 

Természetvedelmi és Vízügyi Felügyeloség”) (Section 4.1.1). 

 

3.2 Kis-Balaton Water Protection System 

The Kis-Balaton wetland was originally the fifth basin of Lake Balaton and 

became separated early in the nineteenth century as a result of water drainage, dredging 

and land cover conversion for agricultural uses (Zlinszky and Timár 2013). As such 

activities continued and intensified throughout the nineteenth and twentieth centuries, the 

wetland became severely degraded in quality and area (Dömötörfy et al. 2003; Korponai 

et al. 2010). As a result, nutrient-rich water transported by the Zala River which had 

previously been filtered by the wetland flowed directly into the Keszthely basin (basin 1; 

Figure 3.2) of Lake Balaton. Furthermore, the nutrient load of the Zala River increased 

as population and agricultural pressures increased, and by the early 1970s signs of the 

severe eutrophication of Lake Balaton were already obvious as a result (Herodek et al. 

1988). 

The Kis-Balaton Water Protection System (KBWPS) was designed for nutrient 

retention in response to the increasingly eutrophic conditions of Lake Balaton (Pomogyi 

1993). The KBWPS was constructed at the site of the former Kis-Balaton wetland in two 

phases. Construction began in 1981 and the first phase was operational in 1985. It is 

essentially a eutrophic pond (surface area 21.5 km2) with a water residence time of 

approximately 30 days. The second phase became partially operational in 1992 as a 

constructed wetland with a residence time of approximately 60 days (surface area 54 km2 

with macrophyte coverage (primarily reed) over approximately 95%) (Hatvani et al. 

2011; Korponai et al. 2010; Tátrai et al. 2000).  This second phase is an important habitat 

for birds (particularly water fowl) and aquatic species, and is a protected nature 

conservation area under the 1971 Ramsar Convention (Ramsar Convention, 1971). Water 

level is artificially modified throughout the system by a series of dykes to remain constant 

in both pond and wetland sections (Hatvani et al. 2011). The KBWPS, in combination 

with sewage diversion and treatment, was found to be successful overall in reducing the 

nutrient load from the Zala River to Lake Balaton (Pomogyi 1993; Tátrai et al. 2011; 

Tátrai et al. 2000). Currently, speculation surrounds the reversal of KBWPS performance, 
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with sediment saturating in terms of nutrient uptake capacity and nutrient release 

consequently occurring (unpublished KdKVI data, 2011; Horváth et al. 2013). This is yet 

to be confirmed, but will be important to consider in ongoing monitoring. 

 

3.3 Remote sensing of Lake Balaton to date 

Several remote sensing studies of the Lake Balaton system have been undertaken 

in recent years, and Landsat 1 imagery was used qualitatively as early as 1970 to visually 

inform hydraulic studies of lake currents and sedimentation patterns (Dr. Lászlo Rákoczi, 

personal communication in June 2012). Simultaneous spectral and water constituent (e.g., 

chl-a, TSM, dissolved organic matter) concentration measurements were made across the 

lake in 1985, 1986 and 1988 toward developing optical retrieval models, and included 

spectral simulation of Landsat MSS bands (Gitelson et al. 1993). More recently, 

algorithms were developed through the use of cascading Principle Component Analysis 

to differentiate spectrally unique end-members that can be unmixed to quantify chl-a and 

total suspended sediment. This was first approached through simulating Landsat ETM+ 

data in controlled tank and field spectrophotometer measurements (Sváb et al. 2005), 

followed by the application of resulting algorithms to a series of Landsat ETM+ images 

(Tyler et al. 2006). These studies resulted in high accuracies of derived chl-a and TSM 

measurements, suggesting the potential application to lake monitoring, but were not 

continued in application to further time series data.  

A United Kingdom Natural Environment Research Council (NERC) and 

European Facility for Airborne Research (EUFAR) funded campaign resulted in AISA 

hyperspectral and laser scanning (LiDAR) altimetry point-cloud data of Lake Balaton 

open water and shoreline. These data are being used to develop methods to distinguish 

phytoplankton species groups of Lake Balaton, particularly cyanobacteria, and in bio-

optical (HydroLight) modelling (C. Riddick PhD research (University of Stirling), in 

progress). In the context of aquatic vegetation, data collected during this campaign are 

also being used in the monitoring of shoreline wetland vegetation, for mapping (Zlinszky 

et al. 2012a; Zlinszky et al. 2012b) and for the identification of wetland vegetation species 

and vegetation health (Stratoulias et al. 2015; D. Stratoulias PhD research (University of 

Leicester), in progress). Measurements of Lake Balaton bio-optical properties and 
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laboratory analyses of chl-a, TSM and CDOM were carried out in Basin 4 (Figure 3.2) as 

part of the EULAKES project (Ref. Nr. 2CE243P3) led by the CNR (National Research 

Council) IREA (Institute for Electromagnetic Sensing of the Environment) (Bresciani and 

Giardini 2011). Parameter (chl-a, CDOM, TSM) retrieval was then extended to MERIS 

imagery, and applied to 39 images from 2004 through 2010, though the image retrieval 

performance was not validated.  

Lake Balaton was one of 258 large lakes included in the University of Edinburgh 

ARC-Lake project aiming to retrieve and reconstruct (filling gaps where necessary) lake 

surface water temperature (LSWT) and lake ice cover products from 2002 to 2010 

(MacCallum and Merchant 2012). Lake Balaton is also included in the ongoing UK 

(NERC) funded GloboLakes project (globolakes.stir.ac.uk), coordinated by the 

University of Stirling, the ESA funded Diversity-2 project (diversity2.info), coordinated 

by Brockmann Consults GmBH, and the EU FP7 project Improved monitoring and 

forecasting of ecological status of European INland waters by combining Future earth 

ObseRvation data and Models (INFORM; http://www.copernicus-inform.eu/) 

coordinated by the Flemish Institute for Technological Research (VITO). These projects 

are of international scope, intended to develop, test and apply common remote sensing, 

modelling and interpretation approaches and methodology to a broad range of lakes from 

around Europe (INFORM) and the world (GloboLakes, Diversity-2).  

  



32 
 

Chapter 4 

 

MEdium Resolution Imaging 

Spectrometer (MERIS) chlorophyll 

retrieval, mapping and time series 

validation   
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Parts of the work presented in this chapter have published as: 

Palmer, S. C. J. et al. (2015a). Validation of Envisat MERIS algorithms for chlorophyll 

retrieval in a large, turbid and optically-complex shallow lake. Remote Sensing of 

Environment, 157, 158-169. 

 

4.1 Introduction & rationale 

In Chapter 2, “Remote sensing of lake water quality”, the importance of 

measuring and monitoring phytoplankton was introduced with regards to its influence on 

both water quality and aquatic ecosystem productivity. The potential additional insight 

afforded by the use of satellite imagery in this respect was also discussed, not only in 

terms of regular and frequent satellite overpass and cohesive spatial mapping of 

phytoplankton biomass, but also in terms of access to remote and under- or un-sampled 

sites. The quantification of phytoplankton biomass via remote sensing techniques using 

the proxy pigment chl-a was presented. Likewise, algorithms of varying architectures that 

have been developed to retrieve chl-a concentrations in optically complex conditions 

were introduced.  

Several neural network and band difference algorithms have been automated and 

made available as part of the Basic ERS & ENVISAT (A)ASTER MERIS (BEAM) 

toolbox developed by Brockmann Consult, Hamburg (Fomferra and Brockmann 2005). 

The free availability and automation of these tools and image processing software, as well 

as the ever increasing availability of satellite image data, means that remote sensing can 

be applied more widely than ever before for use in research, monitoring and management 

activities. However, prior to the reliable use of satellite-derived chl-a concentration maps 

for use in scientific activities or management applications, such as regular phytoplankton 

biomass measurement toward meeting the WFD goals of the European Commission, 

validation of retrieval algorithm performance is essential. 

A large number of validation exercises have been carried out for lakes around the 

world, particularly in application to MEdium Resolution Imaging Spectrometer (MERIS) 

imagery which has been found to be especially suitable for medium to large lakes given 

its unprecedented combination of spectral, temporal, spatial and radiometric resolutions 

(Koponen et al. 2008; Matthews 2011; Odermatt et al. 2012). A validation of the Case 2 



34 
 

Regional (C2R), Boreal Lake (BL) and Eutrophic Lake (EUL) neural network processors, 

contained within BEAM, retrieving atmospherically-corrected reflectance, and a range of 

IOPs and constituent concentrations (including chl-a), was undertaken for several 

European and African lakes (Koponen et al. 2008; Ruiz-Verdú et al. 2008a). Chl-a 

concentration retrievals were validated during an algal bloom in the Canadian/American 

border lake, Lake of the Woods, using C2R, the standard MERIS algal_2 product, and 

the band difference Fluorescence Line Height (FLH) and Maximum Chlorophyll Index 

(MCI) algorithms (Binding et al. 2010). C2R, EUL and several semi-empirical algorithms 

were compared in application to the high phytoplankton biomass Lake Zeekoevlei in 

South Africa (Matthews et al. 2010). C2R, with and without the use of ICOL, was 

validated for perialpine lakes (Odermatt et al. 2010), for Lake Constance, Germany 

(Odermatt et al. 2008) and for Lake Trasimeno, Italy (Giardino et al. 2010). Chl-a 

concentration retrievals from the standard MERIS Case 1 and Case 2 algal products were 

validated for Lakes Vattern and Vanern, Sweden, and Lake Peipus, Estonia/Russia 

(Alikas and Reinart 2008).  

It is important to note that results from these and other validation exercises are 

highly variable when the same algorithm is applied to different sites. This is largely a 

result of the optical complexity and range of conditions that are encompassed by lake 

waters and under the conventional Case 2 classification (IOCCG 2000), as detailed in 

Chapter 2.2.3. It can thus be expected that algorithms that perform well for some sites 

perform poorly for others and vice versa, rendering site-specific validation crucial (Kallio 

et al. 2001; Matthews 2011; Odermatt et al. 2012). Furthermore, most previous validation 

exercises cover only a limited time span and may not be fully representative of the 

systems for which they are undertaken. Even within Lake Balaton a broad range of water 

constituent concentrations and thus optical properties are present, particularly due to the 

trophic gradient along the southwest-northeast axis, the seasonality of phytoplankton 

dynamics and the high spatial- and temporal variability of suspended matter. It could be 

expected therefore that certain algorithms perform best in certain seasons or parts of the 

lake as a result and vice versa. As such it is important that the validation of MERIS chl-

a concentration retrievals for Lake Balaton encompass as broadly as possible all 

conditions, through in situ measurements coinciding with satellite overpass across 

seasons and years, as well as across the full spatial extent of the lake. A number of 

punctual validation exercises have previously been carried out for Lake Balaton 
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(Bresciani and Giardini 2011; Gitelson et al. 1993; Tyler et al. 2006), as discussed in 

Chapter 3.3. However these all comprise limited timeframes (generally one to two weeks 

at most, and with none or only few coinciding satellite images acquired) or spatial extents 

(e.g., in situ measurements only from Basin 4 (Bresciani and Giardini 2011)). Although 

data are no longer being acquired by MERIS as of April 2012, preventing the extension 

of the current analyses to the present despite the ongoing collection of in situ data, more 

than ten years of archive data remain to be more fully exploited once adequate validation 

has been carried out. The future ESA Sentinel-3 Ocean and Land Colour Instrument 

(OLCI) will provide continuity to MERIS, and the development and testing of 

methodology in application to MERIS will also serve to inform strategies for the use of 

OLCI data. 

 

4.2 Objectives 

Given the availability of archive MERIS image data coinciding with a large 

archive in situ dataset spanning all four basins of Lake Balaton, over several years and all 

seasons, the current chapter intends primarily to present the results of the first extensive 

chl-a retrieval algorithm validation for Lake Balaton. Several neural network and band 

difference algorithms reported to have robustly retrieved chl-a concentrations under 

optically complex conditions elsewhere, and available through BEAM, are tested and 

results are compared. The main objectives of this chapter are thus: 

(1) To validate a range of MERIS chl-a concentration retrieval algorithms of 

varying architecture types across all conditions encountered at Lake Balaton; 

 

(2) To compare the algorithm performances and select from among them the best 

for application in the full time series processing;  

 

(3) To apply and evaluate algorithms and how the results vary spatially; and 

 

(4) To demonstrate the utility of satellite-derived chl-a concentration mapping for 

Lake Balaton monitoring and scientific purposes. 
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4.3 Methods 

4.3.1 Selected chl-a retrieval algorithms  

Neural network algorithms 

 The neural network algorithms chosen for the evaluation of chl-a concentration 

retrieval for Lake Balaton have been trained using in situ data from elsewhere, and bio-

optical modeling and radiative transfer simulations to extend the quantity of training data 

available. These have been developed in an attempt to cover a broad range of conditions, 

and automated for use within the BEAM toolbox. Since extensive data are required to 

train neural networks, the availability of such pre-trained algorithms is an advantage for 

sites such as Lake Balaton where optical in situ data are limited or unavailable. For 

Balaton, measurements of IOPs, AOPs and mass-specific IOP (SIOP) coefficients which 

relate the IOPs to constituent concentrations, used in the development of these neural 

networks, are not available. Given that the training of these algorithms did not specifically 

include data from Lake Balaton, their validation prior to use is, however, of particular 

importance. The chosen neural network algorithms are the following: 

 The Water processor, developed at the Free University of Berlin (FUB/WeW) 

uses four separate neural networks trained using the results of radiative transfer modeling 

and covering broad variations of atmospheric and Case 2 in-water conditions. Level 1b 

top-of-atmosphere (TOA) radiance data are used as input, and log concentrations of chl-

a and TSM and log absorbance of CDOM are output along with parameters resulting from 

the simultaneous atmospheric correction – aerosol optical thickness (AOT) at four 

wavelengths (440, 550, 670 and 870 nm) and water-leaving remote sensing reflectance 

(Rrs (sr-1)) at eight wavelengths corresponding to MERIS bands one to seven and nine 

(412, 442, 490, 510, 560, 620, 665 and 708 nm). The training ranges of water constituents 

are 0.05 to 50 mg m-3 chl-a concentration, 0.05 to 50 g m-3 TSM concentration and 0.005 

to 1 m-1 CDOM absorbance (Table 4.1) (Schroeder et al. 2007b).  

 The Case 2 Regional (C2R) processor was also selected for validation. The C2R 

algorithms were developed to achieve accurate and efficient mass image processing by 
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the MERIS ground segment in response to the failure of the neural network algorithm 

designed for use over the so-called Case 1 waters in optically-complex waters (Doerffer 

and Schiller 2007; Morel and Antoine 2000)). Unlike the FUB/WeW processor, IOPs are 

retrieved in a separate step after atmospheric correction by the processor is complete, 

which takes place in a distinct neural network module. The C2R atmospheric correction 

module is described in further detail in the Chapter 5. Atmospherically-corrected MERIS 

reflectance in eight channels, as well as image viewing and solar geometry are input into 

the in-water module. IOPs at MERIS band two (443 nm) are output, and are also 

converted to constituent concentrations via simple equations that make use of specific 

inherent optical property (SIOP) coefficients. These coefficients can be adjusted by the 

user, as IOPs are provided by the processor (Doerffer and Schiller 2007). The bio-optical 

model underlying the C2R in-water module was established using in situ data from the 

North Sea, the North Atlantic, the Baltic Sea and the Mediterranean Sea. This was 

followed by the production of a large, simulated reflectance dataset through HydroLight 

(Sequoia Scientific, Inc.) radiative transfer modeling to train the NN. The C2R training 

ranges of the water constituents are 0.016 to 43.18 mg m-3 chl-a concentration, 0.0086 to 

51.6 g m-3 TSM concentration and 0.005 to 5 m-1 CDOM absorbance (Table 4.1) 

(Doerffer and Schiller 2007). 

Both the Eutrophic Lake (EUL) and Boreal Lake (BL) algorithms make use of 

same neural network architecture and atmospheric correction module as the C2R 

processor, and the same input data (MERIS L1b data at eight spectral channels and image 

geometry) and output parameters (IOPs and constituent concentrations) are used 

(Doerffer and Schiller 2008). However, the datasets used to train the underlying bio-

optical models are distinct, making use of in situ data obtained from eutrophic Spanish 

lakes and boreal Finnish lakes respectively. The training ranges of the water constituents 

for the EUL algorithm are 1 to 120 mg m-3 chl-a concentration, 0.42 to 50.9 g m-3 TSM 

concentration and 0.1 to 3 m-1 CDOM absorbance. Those for the BL algorithm are 0.5 to 

50 mg m-3 chl-a concentration, 0.1 to 20 g m-3 TSM concentration and 0.25 to 10 m-1 

CDOM absorbance (Table 4.1; Doerffer and Schiller 2008). 
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Table 4.1. Water constituent concentration limits of neural 

network algorithms. From Palmer et al. (2015a). 

Algorithm Chl-a  

(mg m-3) 

TSM  

(g m-3) 

CDOM 

(a440 m-1) 

C2Ra 0.016 – 43.18 0.0086 – 51.6 0.005 – 5 

EULb 1 – 120 0.42 – 50.9 0.1 – 3 

BLb 0.5 – 50 0.1 – 20 0.25 – 10 

FUB WeWc 0.05 – 50 0.05 – 50 0.005 – 1 

aDoerffer and Schiller (2007) 

bDoerffer and Schiller (2008) 

cSchroeder et al. (2007) 

 

 

Band difference algorithms 

 Two band difference algorithms were also validated for Lake Balaton. These 

make use of different combinations of spectral bands in the red and near-infrared spectral 

range, which is less affected by water constituents other than phytoplankton biomass than 

the blue and green range used to retrieve chl-a concentrations in pelagic open ocean 

settings and can thus be expected to relate more directly to chl-a in optically complex 

waters (Gower et al. 1999). An index is derived according to equation 4.1 and converted 

to chl-a concentration through tuning of coefficients with coinciding in situ data. These 

band difference algorithms, the Fluorescence Line Height (FLH) (Gower et al. 2004; 

Gower et al. 1999) and Maximum Chlorophyll Index (MCI) (Gower et al. 2005) have 

also been implemented as automated image processing tools within the BEAM toolbox. 

Both of these make use of a height-above-baseline approach, with the FLH drawing a 

baseline between radiance or reflectance measured at 664 (band 7) and 708 nm (band 9) 

and measuring the height above this baseline at 681 nm (band 8), typically related to the 

chl-a fluorescence maximum near this wavelength. The MCI draws a baseline between 

radiance or reflectance measured at 681 (band 8) and 753 nm (band 10) and measures the 

height above this baseline at 708 nm (band 9), related to the backscattering of 

phytoplankton particles at high concentrations captured by this wavelength (Figure 4.1). 

Both MCI and FLH algorithms take the form presented in Equation 4.1, where L2/ λ2 are 
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the radiance or reflectance and wavelength of the peak above the baseline created between 

L1/ λ1 and L3/ λ3. The constant, k, is set to 1.005 as a default in BEAM. 

FLH/MCI = L2 – k × [L1 + (L3 – L1) ((λ2 – λ1)/( λ3 – λ1))] Equation 4.1 

 

 

Figure 4.1. Schematic drawing of the biophysical underpinnings of the FLH and MCI 

algorithms. B7, B8, B9 and B10 refer to the corresponding MERIS bands, used in the 

FLH and MCI algorithms, of 664, 681, 708 and 753 nm center wavelength respectively. 

 

4.3.2 MERIS image processing  

 Processing of the C2R, BL, EUL, FLH and MCI algorithms for all MERIS images 

fully or partially overpassing Lake Balaton during the full 2007 through 2012 period was 

carried out using the the PHenology And Vegetation Earth Observation Service 

(PHAVEOS) at Airbus, UK (formerly known as the Astrium GeoInformation Division). 

Image output from each of the algorithms, as well as the L1b MERIS 300 m full 

resolution, full swath, georeferenced (FSG) data used as input were provided as part of a 

collaboration undertaken during a GIONET industrial secondment during PhD research. 

The development of PHAVEOS was undertaken as part of the ESA Earth Observation 

Market Development programme Value Adding Element (Lankester et al. 2010). The 

original concept underlying the PHAVEOS processing chain was the mass extraction of 

terrestrial vegetation indices and biophysical parameters such as Normalized Differential 
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Vegetation Index, Leaf Area Index and fraction of Absorbed Photosynthetically Active 

Radiation from very large volumes of data. However, biophysical parameters related to 

water quality, such as the concentrations or indices from the algorithms listed in the 

preceding section, are analogous to the terrestrial examples listed above. Therefore 

PHAVEOS is equally applicable in aquatic settings upon substituting the relevant 

algorithms.  

PHAVEOS first uses a vector-based region of interest (ROI) mask to extract 

MERIS image tiles that include Lake Balaton from the archive. Accurate MERIS Ortho-

Rectified Geo-location Operational Software (AMORGOS; Bicheron et al. 2008) is then 

used for geolocation of the extracted images, and small variations in central spectral 

wavelength in pixels across the MERIS field of view due to optical characteristics and 

slight misalignments in sub-systems of the sensor, known as the SMILE effect (Bourg et 

al. 2008), are corrected. Images are then processed using the code for C2R, EUL and BL, 

both atmospheric correction and in-water modules, as well as MCI and FLH which was 

adapted for use within PHAVEOS. For chl-a concentration retrieval validation, both chl-

a concentration and the related IOP, pigment absorption at 443 nm (a_pig(443)) were 

produced by the C2R, EUL and BL processors and MCI and FLH indices by the 

respective algorithms. Output data are resampled to a spatial resolution of 250 m pixels 

(Figure 4.2). A 3 x 3 kernel pixel, covering a total surface area of approximately 800 m2, 

was averaged and extracted for each coinciding date (± approximately three hours) and 

sampling location (Figure 3.2). For each clear-sky matchup identified from the 

PHAVEOS processing chain, the corresponding L1b MERIS FGS image was processed 

separately in BEAM using the FUB/WeW processor, and a 3 x 3 pixel kernel centred on 

the coinciding in situ matchup extracted from the log chl-a concentration (algal_2) layer.  
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Figure 4.2. PHAVEOS processing chain used in the current work. From Palmer et al. 

(2015a). 

 

 

4.3.3 Validation analysis  

In situ validation data 

Regular, on-going water sampling at fixed locations across Lake Balaton (Figure 

3.2), for the purpose of water quality monitoring, is conducted by researchers of the BLI 

as well as by the regional water authority, KdKVI, and was used as in situ reference data 

in the current study. One litre samples collected from each site by the BLI are average 

concentrations throughout the water column (integrated, bulk water column sampling 

method), whereas KdKVI samples are taken from the surface water layer (depth < 50 

cm). Chl-a concentrations (mg m-3) measured at the Nutrient Cycling Laboratory of the 

BLI are determined through spectrophotometric analysis using a Shimadzu 

spectrophotometer, model UV 160A following extraction by hot methanol from known 

volumes (Iwamura et al. 1970). The chl-a analysis carried out by the KdKVI differ in that 

hot ethanol is used in the place of hot methanol.  
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Given the intended use of archive chl-a data from both BLI and KdKVI sampling 

campaigns for comparison with remotely sensed measurements of the water surface, 

potential systematic differences between the two data sets that might arise from the 

aforementioned discrepancies in sampling and laboratory methodologies were 

investigated. Coinciding surface water layer and bulk water column samples were taken 

during biweekly BLI measurements at four sampling sites across the lake over the full, 

ice-free 2012 sampling season, from April to November (n = 80 pairs). Samples span 

diverse seasonal and meteorological conditions, notably wind speeds and temperatures. 

Likewise, several coinciding (same date and sampled basin) BLI and KdKVI samples 

were identified during this study and compared (n = 7 pairs), allowing limited additional 

insight into potential differences resulting from varying sampling methodologies as well 

as chl-a extraction specifics. Regression analyses were performed to assess the 

comparability of the two archive in situ datasets.  

Chl-a retrieval algorithm performance evaluation 

 Matchups flagged at either the Level 1, indicating invalid, coastline or land, 

bright, suspect or at risk of glint pixels, or at the Level 2 in the case of the NN processors, 

indicating out of input or output training ranges were removed from further analysis. Data 

were then randomly divided 70:30 for separate calibration and validation of each of the 

algorithms to ensure robust algorithm performance (Matthews, 2011). Due to the 

differing Level 2 flagging of each, largely resulting from different algorithm training 

ranges, this corresponds with different final numbers of matchups for each algorithm. 

Using the calibration datasets (70 % of the valid matchups for the given algorithm), 

coefficients relating the retrieved FLH and MCI indices to in situ measured chl-a 

concentrations were obtained through ordinary least squares regression. Neural networks 

were partially locally tuned in a similar way, using regression to calibrate SIOP 

coefficients between NN-retrieved pigment absorption (a_pig(443) of C2R, BL and EUL 

processors) and in situ measured chl-a. Although pigment absorption is not produced by 

the FUB/WeW NN processor, this was calculated from the retrieved log chl-a 

concentration by using the relationships and coefficients used in the processor to retrieve 

it from pigment absorption (apl(440)) (Bricaud et al. 1998; Schroeder 2005) (Table 4.3). 

Linear, power and exponential calibration relationships were tested for all six algorithms, 

and that resulting in the highest R2 was selected. 
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Following calibration, the remaining 30% of the datasets were then used to 

validate the locally-tuned chl-a concentration retrievals. The retrieval performance of all 

algorithms was then evaluated by the resulting coefficient of determination (R2) (equation 

4.2), bias (equation 4.3), and absolute and relative root mean standard error (RMSE) 

(equations 4.4 and 4.5 respectively) relative to the in situ matchup dataset.  

R2 = 1 - 
∑ (𝑋𝑖− �̅̂�)

2𝑁
𝑖=1

∑ (𝑋𝑖− �̅�)
2𝑁
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     Equation 4.2 
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𝑁
𝑖=1
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     Equation 4.3 
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∗ 100%  Equation 4.5 

 

4.4 Results 

4.4.1 Comparability of in situ datasets 

Results of regression analysis suggest no significant difference resulting from the 

two sampling methodologies; surface sampling, as carried out by the KdKVI in their 

regular monitoring, versus water column integrated sampling, as carried out in the regular 

monitoring by the BLI (Figure 4.3a; R2 = 0.95 (P < 0.001); RMSE = 0.94 mg m-3; slope 

= 0.95; intercept = 0.82). Similarly, results of regression analyses also indicate no 

significant difference resulting from samples collected on the same date and from the 

centre of the same basin from the two institutes and analysed in their respective 

laboratories, for both BLI water column (Figure 4.3b; R2 = 0.90 (P = 0.001); RMSE = 

2.46 mg m-3; slope = 1.00; intercept = -0.44) and surface samples (Figure 4.3b; R2 = 0.86 

(P = 0.002); RMSE = 2.88 mg m-3; slope = 0.96; intercept = 0.37) compared with KdKVI 
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surface samples respectively. These results support the combination of the two datasets 

for common use in the validation of chl-a algorithms applied to archive satellite imagery. 

 

 

 

Figure 4.3. Comparison of chl-a concentrations of simultaneous water column-integrated 

and surface samples collected and analyzed at the BLI during the full 2012 sampling 

season (April through December) (a) and same day chl-a concentration measurements by 

the KdKVI (surface sampling) and the BLI (surface and water column-integrated 

sampling) in 2012. From Palmer et al. (2015a). 

 

4.4.2 Matchup data and chl-a retrieval 

 Of the 1409 MERIS images that included all or part of Lake Balaton acquired 

between January 2007 and April 2012, extracted by the PHAVEOS processing chain, 68 

both exhibited clear-sky conditions and were acquired on the same day as in situ sampling 

by the BLI and/or the KdKVI. From these 68 images, a total of 289 matchup data points 

resulted. 201 remained after removing the matchups flagged at the Level 1 as invalid, 

coastline or land, bright, suspect or at risk of glint pixels. The final number of matchup 

points varied for the different processors, as flagging at the Level 2 associated with 

exceeding algorithm training ranges is different for each of the NN processors, and no 

Level 2 flagging is carried out by either MCI or FLH (n = 201 for each of these after 

Level 1 flagged matchups were removed). The C2R and EUL processors raised flags 

similarly (remaining n = 166 and 168 respectively), the BL raised flags in addition to 

those raised by C2R and EUL because of water-leaving reflectance out of range 
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(“wlr_oor”), and the FUB/WeW processor was found to exclude more matchups than the 

other three neural network-based algorithms (remaining n = 108). Notably, all matchups 

where in situ chl-a exceeded 30 mg m-3 were excluded by FUB/WeW flagging (Figure 

6.4d and 6.6d). Also removed prior to performance evaluation were several unflagged 

matchups for which in situ measurements exceeded the training ranges of the NNs (Table 

4.1).  

The full, in situ matchup dataset after removing Level 1 flags common to all 

algorithms ranged from 1.50 to 57.0 mg m-3, with higher concentrations measured in the 

west and lower concentrations measured in the east consistent with the strong productivity 

gradient described in Chapter 3.1. Further descriptive statistics of the in situ dataset for 

the full lake and per basin are presented in Table 4.2. The conversion of MCI and FLH 

indices to chl-a concentration and local tuning of the NN chl-a retrievals, as described in 

Section 4.3.3, is presented in Figure 4.4 and Table 4.3. Power functions were found to 

best fit neural network a_pig(443) and apl(440) to coinciding in situ chl-a measurements 

in all cases (R2 = 0.46 for C2R, R2 = 0.42 for EUL, R2 = 0.48 for BL, and R2 = 0.36 for 

FUB/WeW), and linear relationships for both FLH and MCI indices (R2 = 0.78 and 0.62 

respectively). A comparison of the default SIOP coefficients of each of the NN 

processors, and those locally tuned here is found in Table 4.3.   
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Table 4.2. In situ chl-a concentration (mg m-3) matchup dataset descriptive statistics. 

From Palmer et al. (2015a). Basin locations are provided in Figure 3.2 and in the 

schema below. 

 

Basin n* Min. Max. Mean Median SD 

Full lake 201 1.50 57.00 12.75 8.90 11.14 

1 59 3.03 57.00 17.37 12.69 12.65 

2 47 4.04 46.48 16.09 11.92 11.34 

3 38 2.20 41.45 12.87 9.21 10.57 

4 57 1.50 13.62 5.14 4.30 2.72 

*Remaining matchup points after removing those flagged at the Level 1 by the given 

processor. 

 

Table 4.3. Algorithm calibration, using 70 % of the matchup dataset between in situ Lake 

Balaton chl-a measurements and a_pig(443), apl(440) or MCI/FLH indices. From Palmer et 

al. (2015a). 

Processor n R2 Locally tuned equation Original equation 

     

C2R 116 0.46 Chl-a = 33.42*a_pig(443)0.91 aChl-a = 21 *a_pig(443)1.04 

EUL 118 0.42 Chl-a = 61.84*a_pig(443)1.01 bChl-a = 31.45* a_pig(443) 

BL 91 0.48 Chl-a = 35.06*a_pig(443)0.85 bChl-a = 62.61*a_pig(443)1.29 

FUB/WeW 76 0.36 Chl-a = 20.41*apl (440)0.58 cChl-a = 105.21*apl(440)1.58 

L1b FLH 141 0.78 Chl-a = -8.08*FLH + 10.33 n.a. 

L1b MCI 141 0.62 Chl-a = 3.91*MCI + 11.31 n.a. 
a Doerffer and Schiller (2007). 

b Doerffer and Schiller (2008). 

c Schröder (2005); Bricaud et al. (1998). 
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Figure 4.4. Calibration of algorithms using 70 % of the matchup dataset, to establish the 

equations between the indices or pigment absorption to apply for locally-tuned validation. 

From Palmer et al. (2015a). 
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The chl-a retrieval validation of the six algorithms evaluated here, using the 30 % 

of the matchup data remaining after calibration, is found in Figure 4.5, with points colour-

coded by basin. Table 4.4 contains additional performance indicators; R2, bias, RMSE 

and relative RMSE, as well as coefficients from the linear relationships between each 

MERIS-derived chl-a concentration and the corresponding in situ matchup. Overall, 

performance indicators revealed that FLH performed highest of all tested algorithms (R2 

= 0.87; RMSE = 4.19 mg m-3 (30.75 %)). However, this is found to be highly variable 

from basin to basin, with basins 1 through 3 performing very highly (0.91 < R2 < 0.92; 

23.25 % < relative RMSE < 27.76 %) and basin 4 performing poorly (R2 = 0.11; relative 

RMSE = 68.86 %). In fact, FLH is found to perform least well of all evaluated algorithms 

for Basin 4. Most matchups from Basin 4 are characterized by oligotrophic conditions 

(chl-a ≤ 8 to 10 mg m-3), and similarly, most oligotrophic matchups from the full dataset 

are from Basin 4. It can therefore be concluded that FLH is not suitable under oligotrophic 

conditions at Lake Balaton, but is highly suited to the measurement of eutrophic and 

hypertrophic (chl-a ≥ 8 to 10 mg m-3) conditions at this site. Although the neural network 

processors tend to show the inverse trend, with higher retrieval performances at lower 

chl-a concentration levels, none performs particularly well for Basin 4 retrievals. 

FUB/WeW obtained the best results, with relative RMSE = 32.17 %. Neural network 

retrievals are very poor for the higher chl-a concentrations characteristic of Basins 1 

through 3, with relative RMSE as high as 82.12 % for the EUL processor in Basin 1. All 

neural network-based algorithms, as well as the MCI algorithm, resulted in 

underestimations of coinciding in situ measured chl-a concentrations at concentrations 

exceeding approximately 10 mg m-3 (Figure 4.5). 
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Table 4.4. Algorithm performance, using the 30 %, validation dataset. From Palmer et al. 

(2015a). 

Basin Processor n Slope Intercept R2 Bias RMSE 
Rel. 

RMSE 

      (mg m-3) (mg m-3) (%) 

Full 

lake 

C2R 50 0.38 7.02 0.43 -0.10 9.98 65.98 

EUL 50 0.50 6.49 0.33 1.46 8.33 68.31 

BL 39 0.39 7.02 0.48 -2.22 9.97 60.61 

FUB/WeW 32 0.43 4.09 0.65 -0.76 5.53 45.43 

L1b FLH 60 0.85 1.52 0.87 -0.49 4.19 30.75 

L1b MCI 60 0.65 3.83 0.69 -0.91 6.62 48.63 

1 

C2R 13 0.22 13.80 0.21 1.71 15.70 66.23 

EUL 12 0.20 13.92 0.01 5.01 13.02 82.12 

BL 12 0.22 14.94 0.18 -1.60 12.35 55.62 

FUB/WeW 6 0.08 9.39 0.16 -0.17 6.71 46.63 

L1b FLH 16 0.93 -1.51 0.92 -2.91 4.77 23.25 

L1b MCI 16 0.48 6.79 0.58 -3.80 9.69 47.18 

2 

C2R 12 0.24 8.75 0.40 -2.11 9.12 58.67 

EUL 15 0.25 10.86 0.27 -0.53 9.26 58.32 

BL 8 0.21 10.15 0.59 -6.70 13.33 56.36 

FUB/WeW 6 0.26 6.29 0.56 -3.47 5.59 42.75 

L1b FLH 14 1.19 -2.48 0.91 0.05 3.64 26.58 

L1b MCI 14 1.06 1.67 0.77 2.54 5.65 41.29 

3 

C2R 8 0.31 6.97 0.53 -3.05 9.13 54.11 

EUL 8 0.93 0.72 0.72 0.09 3.55 30.20 

BL 8 0.37 7.20 0.56 -2.81 6.71 39.78 

FUB/WeW 8 0.47 3.53 0.74 -1.02 7.53 42.61 

L1b FLH 12 0.79 1.41 0.91 -2.10 4.65 27.76 

L1b MCI 12 0.68 1.31 0.86 -4.06 6.82 40.73 

4 

C2R 17 0.23 5.04 0.23 1.32 2.81 58.53 

EUL 15 0.22 4.61 0.04 1.33 2.58 61.62 

BL 11 0.09 5.09 0.02 0.80 2.90 61.47 

FUB/WeW 12 0.63 2.34 0.81 0.48 1.61 32.17 

L1b FLH 18 0.48 5.08 0.11 2.30 3.67 68.86 

L1b MCI 18 0.62 3.11 0.23 1.08 2.62 49.18 
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Figure 4.5. Chl-a concentration retrieval performance of the six selected algorithms, 

colour-coded by basin. Insets are plotted in normal and main graphs in log space. From 

Palmer et al. (2015a). 
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  When applied to mapping (Figure 4.6a), the implications of the variable algorithm chl-a 

retrieval performance for phytoplankton bloom monitoring are clear. Chl-a concentration maps 

produced during a bloom event in August 2010 using each of the algorithms compared here show 

that the bloom event is accurately captured and detailed spatially by the FLH algorithm, although 

the low concentrations measured in situ in Basin 4 are overestimated, and are more accurately 

retrieved by the NNs. In situ chl-a concentration in Basin 1 measured on the same date as image 

acquisition is 38.5 mg m-3, and that measured in Basin 4 is 7.0 mg m-3 (Figure 4.6b). Although the 

other five algorithms reveal a spatial gradient from high to low concentrations from Basin 1 to 4, 

the bloom concentrations are not accurately retrieved. MCI only slightly underestimates bloom 

concentrations, but all neural network processors, and especially FUB/WeW greatly underestimate 

concentrations. Considered over the full five-year study period assessed here, FLH is found to 

accurately and consistently retrieve bloom events, compared with in situ chl-a measurements. 

(Figure 4.7). 

Figures 4.8 and 4.9 present the FLH-derived chl-a concentration time series spanning pre- 

to post-bloom conditions in summer 2010, using select fully or partially cloud-free MERIS 

imagery from across this period to highlight the spatiotemporal patterns. Of the total 34 MERIS 

overpasses between July 17 and September 13, 17 images included full or partial cloud-free 

coverage of the lake. The development and progression of the bloom is clear through the FLH 

maps (Figure 4.8), including expansion over the surface area of the southwestern portion of the 

lake, from the confluence of the Zala River in the southwest, extending northeastward. Nuance 

and shifting in the spatial patterns of phytoplankton biomass can also be observed and may be 

related to wind and related water circulation superimposed upon the general southwest-northeast 

gradient. In addition to this spatial nuance, the FLH chl-a maps capture the onset and 

intensification of the bloom, as well as dynamics of post-peak concentrations in late August/early 

September. Translation of the maps from Figure 4.8 to the classification used by the KdKVI for 

EU WFD chl-a reporting (Table 4.5) is presented in Figure 4.9.  
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Figure 4.6. Comparison of selected algorithms’ chl-a mapping during a phytoplankton bloom in 

Basins 1 and 2 through mapping (a) and in comparison with in situ concentrations (b). From Palmer 

et al. (2015a). 
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Table 4.5. Chl-a concentration classification used by the KdKVI in Lake 

Balaton WFD reporting (personal communication with KdKVI, 2014). 

Chl-a (mg m-3) OECD classification WFD classification 

< 8 Oligotrophic High 

8 – 25 Mesotrophic Good 

25 – 75 Eutrophic Average 

> 75 Hypertrophic Poor 
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Figure 4.8. FLH retrieved chl-a concentration maps during the July-August 2010 bloom event.
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Figure 4.9. FLH retrieved chl-a concentration maps, according to WFD classification, during the July-August 2010 bloom event.
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4.5 Discussion  

 The semi-empirical, band difference algorithms evaluated here, and particularly FLH, 

performed much better than the evaluated neural network algorithms. Coefficients specific to Lake 

Balaton were determined and used to convert the FLH index to chl-a concentrations, as was done 

for the MCI algorithm and to relate pigment absorption (a_pig(443) or apl(440)) of the neural 

networks to in situ chl-a concentrations. These coefficients would not be expected to result in the 

retrieval of accurate chl-a concentrations when applied to another site. Rather, site-specific local 

tuning would be required. MCI chl-a retrievals were also validated using Level 1b data during an 

extreme bloom event in Lake of the Woods spanning the Canada/US border (Binding et al. 2010). 

If the slope and intercept coefficients used to tune chl-a retrievals there (6.166 and 6.347 

respectively) were applied to the retrieved MCI for Lake Balaton, chl-a concentrations would be 

greatly underestimated (bias = -5.61 mg m-3, relative RMSE = 74.67 %, compared with bias = -

0.91 and RMSE = 48.63 % found through local tuning here) for example. Similarly, SIOP 

coefficients locally tuned to retrieve Lake Balaton chl-a from NN processors’ pigment absorption 

would not be transferrable to another site, as apparent in differences between the original and tuned 

coefficients (Table 4.3), and recalibration would again be necessary. Despite the improvement to 

neural network retrievals through local calibration, overall performance for all four algorithms 

remained low relative to FLH and MCI chl-a retrievals, and it can be concluded that the a_pig(443) 

and apl(440) are themselves poorly retrieved by the processors for Lake Balaton, precluding robust 

chl-a concentration retrievals from them. 

It should also be noted that the FLH and MCI algorithms made use of TOA L1b radiance 

in the current work whereas each of the neural network algorithms carries out a neural network -

based atmospheric correction, either simultaneous to the chl-a retrieval or prior to it in a separate 

module (Doerffer and Schiller 2007; Doerffer and Schiller 2008; Schroeder et al. 2007a). The 

influence of atmospheric correction on the poor chl-a of the neural networks relative to the 

contribution of IOP or constituent retrieval failure itself is unknown, but may indeed be substantial. 

For example, in situ spectrometer-measured reflectance from high phytoplankton biomass Spanish 

lakes were input directly into the in-water module of the EUL processor, bypassing the 
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atmospheric correction (Koponen et al. 2008). Although the spatial scale may also have had an 

influence (i.e., the in situ spectrum is from exactly the same point as the matchup chl-a, rather than 

aggregated values from a 300 × 300 m pixel as is the case when MERIS imagery is input. The 

subpixel spatial variability is expected to also be a source of error), a significant improvement in 

retrievals was reported compared with when the atmospheric correction module was also 

employed.  

 Whereas the FLH originally has its physical underpinnings in the chl-a fluorescence 

maximum near 681.5 nm (MERIS band 8), above a baseline between lower adjacent values 

(Gower et al. 1999), as described above, and should therefore correlate positively with increasing 

phytoplankton biomass, a negative relationship was revealed here for chl-a concentrations greater 

than approximately 10 mg m-3. Similar findings have been reported elsewhere under meso-, eu- 

and hypertophic conditions (Binding et al. 2010; Gons et al. 2008; Matthews et al. 2012), and may 

be explained by the dominance of phytoplankton backscattering captured by MERIS band 9 (709 

nm) over the fluorescence signal captured by band 8 (681 nm). Nonetheless, the trough at band 8 

under the baseline between bands 7 (619 nm) and 9 more robustly retrieves in situ chl-a 

concentrations than does the band 9 peak above the band 8 to 10 (753 nm) baseline (i.e., the MCI 

algorithm). The lack of a strong fluorescence signal might be explained by cyanobacteria 

dominance (Binding et al. 2010; Matthews et al. 2012; Wynne et al. 2008), as chl-a is located for 

the most part in the non-fluorescence Photosystem I (PSI) of cyanobacteria (Johnsen and Sakshaug 

1996; Matthews et al. 2012; Mimuro and Fujita 1977), whereas most chl-a is stored in the 

fluorescing Photosystem II (PSII) in most other phytoplankton divisions (e.g., chlorophyta). 

Wynne et al. (2008) and several subsequent studies (Lunetta et al. 2015; Stumpf et al. 2012; Wynne 

et al. 2013a) make use of the same formulation as FLH in their Cyanobacteria Index (CI), whereby 

negative FLH values indicate cyanobacteria blooms and correlate with cyanobacteria bloom 

magnitude, since cyanobacteria do not produce a chl-a fluorescence signal near 685 nm and do 

produce a fluorescence signal near 664 nm. Positive FLH values therefore indicate the absence of 

a cyanobacteria bloom. A similar configuration is also adopted in the cyanobacteria flag of the 

MPH algorithm (Matthews et al. 2012), where cyanobacteria dominance is distinguished by a 

negative peak at MERIS band 8 above a baseline between bands 7 and 9 (i.e, FLH) coinciding 
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with a positive peak at band 7 (664 nm) above a baseline between bands 6 and 8. As such, it 

considered likely that the negative FLH values retrieved for Lake Balaton chl-a concentrations > 

10 mg m-3 are indicative of cyanobacteria dominance. Previous works on Lake Balaton 

phytoplankton community composition and eutrophication (e.g., Hajnal and Padisák 2008; 

Istvánovics et al. 2002; Padisák and Reynolds 1998) have also indicated cyanobacteria dominance 

of the large summer blooms, and particularly that of the subtropical invader Cylindrospermopsis 

raciborskii. However, in situ data on species composition or phycocyanin concentrations are 

lacking in the current work, precluding definitive confirmation. Therefore, phytoplankton blooms 

more generally are referred to here.  

 FLH is found to perform better at higher chl-a concentrations, within the concentration 

range assessed here. In the oligotrophic Basin 4, FLH performance is poorest of all tested 

algorithms, and FUB/WeW chl-a retrievals are found to be better. The failure of red-NIR band 

math algorithms such as FLH at concentrations lower than between 8 and 20 mg m-3 has also been 

observed elsewhere (Domínguez Gómez et al. 2011; Matthews et al. 2012). Although overall 

neural network performance was found to generally be poor for C2R, EUL, CL and FUB/WeW 

alike, these tended to perform slightly better at lower concentration levels, such as found in Basin 

4 (Table 4.4). An ensemble approach, whereby FLH was applied and concentrations retrieved as 

< 10 mg m-3 were subsequently excluded and processed with the FUB/WeW processor, was 

explored and found to slightly improve low concentration results (4.28 % improvement overall 

and 10.61 % improvement for concentrations < 10 mg m-3). Despite this slight improvement, the 

use of FLH alone is found to be sufficient for monitoring the onset and development of high 

biomass bloom events, and as such will be applied and considered more fully in Chapter 6.  

 The inaccurate chl-a concentration retrievals resulting from neural network application 

were apparent in mapped products (Figure 4.7), calibration (Figure 4.4) as well as validation 

matchup statistics (Figure 4.6; Table 4.2) alike. Within the context of monitoring and mapping 

Lake Balaton algal blooms, this underscores that the use of these algorithms would not result in 

reliable products. Similar to results found here, the analysis of a Lake of the Woods bloom (1.9 – 

70.5 mg m-3), revealed significant bloom underestimation by the C2R processor (Binding et al. 

2010), and the Validation Report of the ESA Development of MERIS lake water algorithms project 
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including Spanish, Finnish, German and African lakes found that Spanish lake chl-a 

concentrations (1.2 – 53.2 mg m-3) were greatly underestimated by the EUL processor (Koponen 

et al. 2008). Although matchups with chl-a concentrations that exceeded the various neural 

network training ranges were excluded here via Case 2 flagging (out of training range flags) and 

manually removed where they remained after flagging, information lacking for other constituents 

(TSM, CDOM) as well as IOPs and water-leaving reflectance made it impossible to do the same 

for all parameters. It could therefore be the case that although the chl-a concentration training 

range was not exceeded, other parameters were out of range despite adhering to neural network 

flagging. This is an important consideration in the current case, and also for other sites where in 

situ data may be fully or partially lacking. Although remote sensing is often over-sold as a 

replacement for in situ sampling and analysis, in reality validation with in situ measurements is an 

important component of remote sensing. The fuller and more robust a validation that is possible, 

the more reliable will be the produced satellite image-derived maps and interpretations. It is 

recommended that validation of water constituents, IOPs and AOPs be carried out whenever 

possible, however it must also be understood that in many cases, such as Balaton, archive datasets 

able to be acquired will be incomplete and that a compromise must be struck. 

The use of FLH in a classification exercise carried out in accordance with WFD reporting 

requirements demonstrated the added spatial information possible using satellite products relative 

to the use of conventional monitoring measurements (Figure 4.9). For example, point 

measurement-based classification might indicate that two of four basins are eutrophic (or 

“average”), but this could correspond to anywhere from 20 to 40 % of the total lake surface area. 

Although satellite image products, such as chl-a maps, have the potential to provide an informative 

tool to water resource managers, the volume of the associated data is often overwhelming (for 

example in the case of daily, or even dekad-binned, spatially cohesive maps of one or possibly 

several parameters (TSM, CDOM, secchi depth, temperature, etc.)). The classification proposed 

here in association with WFD reporting requirements offers a compromise between added spatial 

information possible through satellite imagery, and a partially digested data product which can 

more easily be integrated into management activities. 
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4.6 Conclusions 

 The use of MERIS satellite imagery has been demonstrated in application to Lake Balaton 

chl-a concentration mapping, however the accuracy of chl-a maps is strongly dependant on the 

retrieval algorithm employed. This highlights the importance of algorithm validation covering as 

broad a range as possible of optical conditions and constituent concentrations expected to be 

encountered for a given site or region. Caution is advised when applying un- or under-validated 

algorithms, despite the availability of automated algorithms. FLH was found to perform best after 

local tuning of all band arithmetic and neural network algorithms, and to successfully retrieve in 

situ chl-a concentrations and bloom dynamics over the full five years of the study period. The 

negative relationship between FLH and in situ chl-a concentrations suggests cyanobacteria 

dominance and absorption and backscattering rather than fluorescence as a physical underpinning 

of the algorithm for Lake Balaton. Its performance varies with the chl-a concentrations 

encountered, performing less well in low phytoplankton biomass (oligotrophic) waters than those 

characterized by high biomass conditions (eutrophic). This was not found to interfere with 

detection or monitoring of large blooms, however, and the application of FLH in full time series 

processing to improve spatiotemporal analysis of phytoplankton over ten years is concluded to be 

warranted. The ability of FLH to accurately delineate the temporal and spatial dynamics of Lake 

Balaton phytoplankton biomass has been demonstrated inter-annually as well as for a case study 

bloom event. Corresponding WFD reporting classifications also demonstrate the potential of 

remote sensing in informing and complementing required management reporting.  
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Chapter 5 

 

MERIS atmospheric correction validation and 

influence on chlorophyll-a retrieval 
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5.1 Introduction & rationale 

Atmospheric correction is an important processing step in the interpretation of optical 

satellite imagery, but is known to be a particular challenge over optically complex inland and 

coastal waters (Gordon and Wang 1994), as was introduced in the “Additional Challenges in lake 

remote sensing” section of Chapter 2. This is due to the synergistic effect of several factors. Firstly, 

water-leaving reflectance tends to be very low, comprising only a small percentage (ca. < 10 %) 

of the bulk signal measured by the satellite sensor; the remaining ca. > 90 % is related to 

atmospheric scattering (Siegel et al. 2000; Vidot and Santer 2005). As a result, small amounts of 

error in atmospheric correction will have a proportionately large impact over water bodies, which 

themselves have a very low signal, relative to typically much brighter terrestrial surfaces. 

Secondly, both atmospheric and water-leaving contributions of the signal received by the sensor 

comprise multiple variable scattering and absorbing components which overlap in optical signal. 

A related difficulty in optically complex waters results from the break-down of the conventional 

“black-pixel assumption” commonly employed in oceanic settings (Gordon 1997; Gordon and 

Clark 1981). In the so-called Case 1 waters of the pelagic ocean, an insignificant fraction of the 

signal measured by satellite sensors in the near-infrared range (between ca. 765 and 865 nm) is 

assumed to be from the water and water constituents. Rather, zero water-leaving reflectance in this 

spectral range can be assumed, and any radiance that is detected can be assumed to be of 

atmospheric origin. The atmospheric signal measured in the NIR range can then be proportionately 

removed from the visible spectral range (Gordon and Clark 1981; Siegel et al. 2000). However, in 

optically complex waters where water constituents occur in higher proportions and more variably, 

this does not hold true. Notably, NIR reflectance has been demonstrated to be non-negligible under 

conditions of high suspended particulate matter or phytoplankton biomass (IOCCG 2000, 2006; 

Moore et al. 1999; Ruddick et al. 2000; Siegel et al. 2000). 

An alternative approach proposed to avoid this issue in optically complex waters is to defer 

to the longer, shortwave infrared (SWIR) spectral range, instead employing the black-pixel 

assumption at wavelengths greater than 900 nm (Wang and Shi 2007). However, it has more 

recently been demonstrated that in very productive or highly turbid waters, the water-leaving 

reflectance even at SWIR wavelengths cannot be considered non-negligible (Knaeps et al. 2012; 
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Shi and Wang 2009). Furthermore, contributions to the total measured signal from the water and 

the atmosphere at any given wavelength are both highly variable over time, reflecting changes and 

variability in atmospheric conditions, as well as in-water constituents. Radiative transfer modeling 

to invert the TOA measured radiance has been demonstrated to be robust over lakes, although it 

requires extensive, highly specialized and site-specific in situ measurements (Brando and Dekker 

2003; Chavula et al. 2009; Doxaran et al. 2009; Petus et al. 2010; Vermote et al. 2011). Neural 

network algorithms have been found to perform well, but also require large volumes of training 

data, and are not expected to perform well outside their training ranges such that they also tend to 

be somewhat site specific. A number of NN approaches to atmospheric correction have trained 

using a broad range of atmospheric conditions from above coastal and inland waters in an attempt 

to be more broadly applicable (Doerffer and Schiller 2007; Moore et al. 1999; Schroeder et al. 

2007a). Several of these can easily be applied within the BEAM image processing toolbox to 

MERIS imagery. However, as was demonstrated for the neural network chl-a retrievals in Chapter 

4, validation is imperative so as to understand the associated reliability and uncertainty levels.  

Other atmospheric correction approaches proven to perform well for inland waters in 

several instances make use of the relative straightforwardness of estimating and removing 

atmospheric contributions to the sensor measured signal over land surfaces. These characterize 

atmospheric conditions for a given scene over an adjacent land mass, and extrapolate or interpolate 

these conditions over the inland or coastal waters within a predefined radius prior to their removal 

(Guanter et al. 2010; Vidot and Santer 2005). As such, there is no reliance on the complex and 

difficult to characterize optical conditions of the water body itself within the atmospheric 

procedure. A similar approach was developed for use over coastal waters, however instead of 

determining and extrapolating atmospheric conditions from adjacent land masses, Case 1 pixels 

are identified and atmospheric conditions constrained above these (Hu et al. 2000; Ruddick et al. 

2000). The determined atmospheric conditions are then extrapolated to pixels identified as Case 2 

within a 50 to 100 km radius and removed. The major limitation of applying this stepwise 

Case1/Case 2 approach in inland waters is that most inland water bodies, such as Lake Balaton, 

consist only of so-called Case 2 pixels and are not located near enough to oceanic Case 1 pixels 

for the atmospheric homogeneity assumption to hold. Furthermore, atmospheric correction in 

marine settings applies the condition of atmospheric pressure at sea level, which is not necessarily 
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true for lakes which may be situated at any elevation (Vidot and Santer 2005), e.g., ~105 m. a. s. 

l. in the case of Lake Balaton). 

As is true for the chl-a concentration retrieval algorithms evaluated in the preceding 

chapter, each atmospheric correction architecture type and specific model has its own associated 

advantages and disadvantages over lake waters. None can be assumed a priori to perform well or 

poorly based on results obtained elsewhere, as conditions between optically complex water sites 

are highly variable. Furthermore, the use of uncorrected TOA Level 1b radiance, or partially 

corrected bottom-of-Raleigh data has been proven to retrieve chl-a concentration and other 

parameters of interest with high accuracy in a number of cases (Binding et al. 2010; Matthews et 

al. 2010; Matthews et al. 2012), including the results presented in Chapter 4. A reasonable criticism 

of using only partially corrected or uncorrected data is the inherent inconsistency due to the 

inability to account for variable atmospheric conditions over time using such data (Binding et al. 

2010). However, the error imposed by atmospheric variability on time series chl-a retrievals 

relative to the contribution of different atmospheric correction models’ error to subsequent chl-a 

retrieval performance is largely unquantified. The coinciding and extensive archive image and in 

situ datasets for Lake Balaton permit the exploration of this question. 

 

5.2 Objectives 

 In light of the sensitivity and importance of atmospheric correction selection over inland 

waters prior to retrieving water constituents, as well as the range of models and model types 

developed and tested in the literature for other water bodies, the overarching objective of this 

chapter is the atmospheric correction and validation thereof of MERIS imagery overpassing Lake 

Balaton. Additionally, the impact of atmospheric correction performance on subsequent chl-a 

concentration retrieval from the same image set is determined. Specific objectives are as follows: 

(1) To atmospherically correct a subset of Lake Balaton MERIS imagery spanning several 

years and all seasons using selected approaches; 
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(2) To compare the performance of the selected atmospheric correction models quantitatively 

through a validation of retrieved water-leaving reflectance with in situ measured spectra; 

 

(3) To investigate the influence of matchup sampling timeframe interval (time between in situ 

measurement and satellite image acquisition) on water-leaving reflectance retrieval 

accuracy; 

 

(4) To consider the underlying mechanisms governing atmospheric correction performance, 

including intermediate processing steps and spatial resolutions of the algorithms; and 

 

(5) To assess the influence of atmospheric correction performance, and use of uncorrected data 

on subsequent chl-a concentration retrieval. 

 

5.3 Methods 

5.3.1 Atmospheric correction algorithms 

C2R atmospheric correction module 

As introduced in the preceding chapter, the C2R, EUL and BL neural network processors 

consist of separate modules to first carry out atmospheric correction, and subsequently retrieve 

IOPs and water constituents (Doerffer and Schiller 2007; Doerffer and Schiller 2008). Whereas 

the constituent retrieval modules of the three processors are distinct, with in situ data from different 

sites and vastly different conditions used to train their respective bio-optical models, the 

atmospheric correction module is common to all three processors (Doerffer and Schiller 2008). 

The atmospheric correction neural network uses image geometry (solar and viewing zenith and 

azimuth angles) and TOA radiance measured in 12 visible-NIR MERIS bands (1-10, 12-13) as 

input to produce water-leaving reflectance in the same bands. In addition to water-leaving 

reflectance, path radiance reflectance, transmittance, and aerosol optical thickness (AOT) at four 

wavelengths (443, 550, 778, 865 nm) are also output from the neural network, and the aerosol 
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angstrom coefficient is calculated from the AOT at 443 and 865 nm. A number of flags are assessed 

as part of the algorithm, indicating input or output pixels that are out of the training range, pixels 

possibly contaminated by sun glint and invalid pixels (Doerffer and Schiller 2008). The C2R/Lake 

processors’ neural networks are applied on a per pixel basis, resulting in products at the 300 m 

spatial scale when using MERIS full resolution imagery. 

SCAPE-M_B2 

The Self-Contained Atmospheric Parameters Estimation for MERIS data (SCAPE-M) 

model performs sequential cloud masking, atmospheric characterization and retrieval of surface 

reflectance through the analytical inversion of the radiative transfer equation (Guanter et al. 2007; 

Guanter et al. 2008). SCAPE-M functions on the assumption of homogeneous atmospheric 

conditions over areas of a given size, by default a 30 by 30 km cell, into which the input TOA 

Level 1b MERIS radiance image is divided. Water pixels are masked, and reference land pixels 

within each cell are selected so as to maximize the spectral contrast between them, spanning a 

range from highly vegetated to bare soil pixels in an ideal case. Assuming constant atmospheric 

conditions throughout each cell, the contrast in the surface reference pixels are used to discriminate 

the contribution of the surface from that of the atmosphere to the top of atmosphere (TOA) signal 

(Guanter et al. 2008).  

Reference pixels are modelled as a function of vegetated and bare soil end members for 

three vegetation type options and Aerosol Optical Thickness (AOT) associated with the best fitting 

end member combinations is chosen (Guanter et al. 2008). Visibility is calculated as a function of 

AOT and elevation and applied to the cell. Visibility is thusly derived for each of the 30 by 30 km 

cells of the image, the cell mosaic is smoothed to the pixel scale and blank cells (for example, over 

a water body; cloud cover remains masked) are filled via interpolation. AOT at 550 nm of the 

image is mapped as a function of visibility and elevation at the pixel scale (Guanter et al. 2008). 

Columnar Water Vapour (CWV) is then determined using view and sun angles, derived 

AOT, surface elevation and surface slope. Reflectance of bands 14 and 15 are also required, and 

are determined iteratively by solving reflectance in bands 13 and 14 with a default CWV of 2 g 

cm-2, and linearly extrapolating this to band 15 (Guanter et al. 2008). The resulting CWV is then 

applied again to improve the reflectance retrieval for bands 13 and 14, since band 14 may also be 
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slightly affected by water vapour. CWV, AOT, surface elevation and topography and angular 

information are then used in inversion of the TOA signal to retrieve surface reflectance for bands 

1-10, 12-14. Reflectance of 11 and 15 are determined through extrapolation or interpolation of 

neighbouring bands, because they are affected by oxygen and water vapour absorption. SCAPE-

M also interpolates to determine reflectance for band 2, as the gain coefficient is optimized for the 

higher reflectance of water bodies in the blue spectral range and it is typically applied over land 

surfaces (Guanter et al. 2008). SCAPE-M_B2 makes use of the known relationship between the 

originally retrieved reflectance value and the interpolated value to optimize band 2 reflectance 

retrievals for over inland waters (Domínguez Gómez et al. 2011), and otherwise follows the same 

processing chain as SCAPE-M. An adjacency effect correction is carried out for full resolution 

data, and subsequent geometric correction is optional (Guanter et al. 2008). 

Although not specifically designed for optically complex waters, SCAPE-M, and more 

optimally the SCAPE-M_B2 adaptation, can be applied over inland and coastal waters that are 

within the maximum distance of the cell size from land (Guanter et al. 2010). The default setting 

for SCAPE-M processing over inland water pixels, outside of which pixels are masked, is water 

pixels within less than 20 km of a land mass, or of an area less than 1600 km2, surrounded by a 

land mass. Since the atmospheric correction over land is extended (interpolated or extrapolated) 

over the water body, the need for extensive, difficult to obtain information regarding the optical 

conditions of the water itself is avoided. The performance of SCAPE-M over several lakes in 

Europe has been tested (Guanter et al. 2010). Generally, SCAPE-M was found to perform well 

over turbid and productive waters and to perform poorly in relatively clear, oligotrophic lakes 

where reflectance was overestimated. SCAPE-M_B2 was also validated over a number of highly 

productive Spanish lakes, reservoirs and lagoons, demonstrating accurate reflectance retrievals 

compared with several other atmospheric correction models (Domínguez Gómez et al. 2011). 

Good, but variable results using SCAPE-M in comparison with several other models were also 

reported in application to Lake Kasumigaura, Japan (Jaelani et al. 2013). 
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5.3.2 Chl-a concentration retrieval 

In addition to FLH and MCI, considered in the Chapter 4 analysis of BEAM-implemented 

chl-a retrieval algorithms, several other band math algorithms also make use of varying 

combinations of MERIS red and NIR channels. The band combinations evaluated here, along with 

reference studies and reported chl-a concentration and correlation coefficient ranges therein, are 

listed in Table 5.1.  

 

Table 5.1. Selected bandmath algorithms, previously reported to successfully retrieve 

chl-a over the approximate concentration range typically encountered in Lake 

Balaton, including reference studies, and reported ranges of chl-a concentrations and 

retrieval R2 therein. 

Band combination 

Reported R2 

range 

Chl-a range 

(mg m-3) 

B9/B8a 0.84 – 0.91 1.3 - 100 

B9/B7b 0.87 – 0.97 < 1 – 185 

(B9-B12)/(B7-B12)c 0.94 1 – 100 

(B9-B10)/(B7-B10)d 0.90 1.1 – 100 

(1/B7-1/B9) * B10e 0.78 – 0.95 < 1 – 247.4 

FLH (eq. 4.1)f 0.57 1.90 – 70.50 

MCI (eq.4.1)g 0.72 – 0.74 1.90 – 70.50 

aFlink et al., 2001; Kallio et al., 2001 

bMatthews et al., 2010; Moses et al., 2009; Koponen et al., 2007; Kallio et al., 2001, 

2003; Ammenberg et al., 2002; Gons et al., 2002, 2005. 

cKoponen et al., 2002  

dHärmä et al., 2001 

eMatthews et al., 2010; Gitelson et al., 2009; Moses et al., 2009 

fBinding et al., 2010 

gBinding et al., 2010 
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5.3.3 Validation data 

Remote sensing reflectance (Rrs (sr-1)) was measured in situ over the spectral range 350 – 

800 nm using a Hyperspectral Ocean Colour Radiometer Surface Acquisition System (HyperOCR-

SAS) produced by Satlantic. These data were acquired by colleagues from the University of 

Stirling School of Biological and Environmental Sciences during a field campaign at Lake Balaton 

in 2010 and were made available for the current work as part of a GIONET international 

secondment. Rrs measurements on August 22, 2010 coincided with a cloud-free MERIS overpass 

including Lake Balaton. In situ measurements made within three days of this overpass were also 

considered for validation (Figure 5.1). Measurements were made from a distance of 3.5 metres 

above the water surface, at a 135° angle from the sun. Downwelling irradiance, water surface 

radiance and sky radiance measured by three radiometers were used to calculate water-leaving 

radiance using Satlatntic ProSoft software (v.7.7.10), according to equation 2.4. Water-leaving 

radiance was converted to Rrs and spectrally resampled using the spectral response function of the 

MERIS bands 1 – 12 (Figures 5.2-5.5). Chl-a concentrations concurrent with Rrs measurements 

were also measured and made available. 

Archive chl-a concentration data from the KdKVI were also used. Monthly (biweekly 

during the peak phytoplankton biomass period in the summer months) surface (< 50 cm) water 

samples are collected from the centres of the four main lake basins, spanning the main, longitudinal 

axis of the lake, as described in Chapters 3 and 4 (Figure 3.2). Chl-a concentration of the samples 

is determined spectrophotometrically in the KdKVI laboratory in accordance with ISO standards, 

after filtration (1.2 μm), pigment extraction in hot ethanol and centrifugation.  
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Figure 5.1. Locations of the 2010 field campaign sample sites. Same day (a), ± one day 

(b), ± two days (c) and ± three days (d) matchups with the August 22 overpass are 

indicated by the different symbols. 
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5.3.4 Image processing and validation 

Level 1b MERIS data were processed using SCAPE-M_B2, and the atmospheric correction 

module of the C2R/Lake processor. SCAPE-M_B2 processed images were made available by J.A. 

Domínguez Gómez of the Universidad Nacional de Educación a Distancia. C2R/Lake processing 

was carried out using BEAM v.4.10. Mean L1b radiance, SCAPE-M_B2 reflectance and 

C2R/Lake reflectance, as well as AOT at 550 nm (AOT-550) produced by SCAPE-M_B2 and 

C2R/Lake, were extracted from a three-by-three pixel kernel centred on the corresponding in situ 

measurement using the pixel extraction tool of the BEAM toolbox.  

Reflectance retrieved using SCAPE-M_B2 and C2R/Lake atmospheric correction 

coinciding with in situ Rrs measurements (± 0 to 3 days) were converted to Rrs via equation 5.1 for 

validation. The band combination chl-a concentration retrieval algorithms listed in Table 5.1 were 

applied to L1b radiance, SCAPE-M_B2 reflectance and C2R/Lake reflectance matchup image 

datasets. Correlations with in situ chl-a concentrations were compared across semi-empirical 

algorithms, and also compared for a given algorithm using the different input data. K-folds (k = 

10) cross-validation was applied to each semi-empirical algorithm, using each input data type in 

R (using the cv.lm function of the DAAG package), whereby the matchups were split randomly 

into ten equal groups. One by one, each group was then withheld from the training of the algorithm, 

and used to validate the model.  

 

Rrs (sr-1) = Reflectance (sr-1) / π   Equation 5.1 

 

Retrieval performance of both Rrs and chl-a concentration in comparison to available in 

situ validation data was assessed in terms of absolute (sr-1 and mg m-3, respectively) and relative 

(%) RMSE, as per equations 4.5 and 4.6 respectively. Absolute and relative RMSE was calculated 

for each of the ten folds in the k-folds cross-validation applied to the semi-empirical chl-a 

concentration retrievals, and the averages and standard deviations are reported for each 

algorithm/input data type combination. 
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5.4 Results  

5.4.1 Atmospheric correction 

Mean and standard deviations of in situ chl-a, TSM and Rrs measurements from the 2010 

field campaign are presented in Table 5.2. Validated SCAPE-M_B2 and C2R/Lake retrieved Rrs 

spectra for individual measurement locations are presented in Figure 5.2 (same day matchups), 

Figure 5.3 (± 1 day), Figure 5.4 (± 2 days) and Figure 5.5 (± 3 days), and scatterplots combining 

validation for all measurement locations for SCAPE-M_B2 and for C2R/Lake Rrs are presented in 

Figure 5.6. Matchups are separated into same day, ± 1 day, ± 2 days and ± 3 days. The more 

pronounced spectral trough near 681 and peak near 708 nm in the in situ Rrs spectral data in Figure 

5.2, from the same day measurements, are associated with greater measured chl-a concentrations 

relative to those measured on the other days. On this date, measurements were made in Basin 1, 

which is known to have higher phytoplankton productivity than the other basins of Lake Balaton 

due to the well-known trophic gradient discussed in Chapter 3. 

In Figure 5.2 it is clear that the Rrs magnitude, as well as the spectral shape produced using 

the SCAPE-M_B2 atmospheric correction model robustly preserve those measured in situ made 

on the same day.  No statistically significant difference between relative RMSEs was found across 

the different sampling days as determined by the inability of a one-way Analysis of Variance 

(ANOVA) to reject this null hypothesis (F(3,40) = 0.308, p = 0.82), indicating that variance in 

relative RMSE between sampling days is less that than that within sampling days. However, the 

SCAPE-M_B2 reflectance from all ± 2-3 days matchups (Figures 5.4, 5.5) consistently slightly 

underestimate in situ Rrs and spectral shape in ± 1-3 days matchups (Figures 5.3, 5.4, 5.5), 

especially for spectra from Basins 3 and 4, is less well preserved in the red-NIR range than for 

same day matchups. The RMSE of SCAPE-M_B2 Rrs retrievals is between  0.001 and 0.011 sr-1 

for all bands and ± 0 to 3 days, typically ranging from approximately 20 to 40 % relative RMSE 

(Figure 5.7; Table 5.3). Outlying relative RMSE values are associated with same day matchups, 

for bands one (62.6 %) and eight (48.1 %), rather than with increasing time from the MERIS 

overpass as would have been expected.  
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Table 5.2. Descriptive, per day statistics of in situ measurements collected during the August 2010 field campaign, within ± 3 days of 

MERIS image acquisition, including mean ± standard deviation of chl-a, TSM and HyperSAS Rrs resampled to the MERIS spectral 

bands. 

  Chl-a TSM B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B12 

 Basin (mg m-3) (g m-3) (sr-1) (sr-1) (sr-1) (sr-1) (sr-1) (sr-1) (sr-1) (sr-1) (sr-1) (sr-1) (sr-1) 

Same day 1, 2 

27.83  

± 4.81 

10.99  

± 1.78 

0.006  

± 0.002 

0.007  

± 0.002 

0.010  

± 0.003 

0.013  

± 0.003 

0.025  

± 0.006 

0.015  

± 0.003 

0.012  

± 0.002 

0.008  

± 0.001 

0.011  

± 0.002 

0.004  

± 0.001 

0.005  

± 0.001 

± 1 day 2, 3, 4 

10.15  

± 4.50 

8.38  

± 2.15 

0.012  

± 0.005 

0.014  

± 0.005 

0.020  

± 0.006 

0.024  

± 0.007 

0.035  

± 0.008 

0.018  

± 0.005 

0.013  

± 0.004 

0.009  

± 0.002 

0.009  

± 0.003 

0.003  

± 0.001 

0.004  

± 0.001 

± 2 days 4 

11.54  

± 1.46 

14.62  

± 3.61 

0.019  

± 0.003 

0.021  

± 0.003 

0.028  

± 0.004 

0.032  

± 0.005 

0.044  

± 0.004 

0.026  

± 0.004 

0.019  

± 0.003 

0.013  

± 0.002 

0.014  

± 0.002 

0.004  

± 0.000 

0.005  

± 0.001 

± 3 days 1, 2, 4 

18.77  

± 12.84 

15.63  

± 4.27 

0.015  

± 0.005 

0.017  

± 0.006 

0.025  

± 0.007 

0.029  

± 0.007 

0.042  

± 0.006 

0.025  

± 0.003 

0.020  

± 0.002 

0.013  

± 0.001 

0.016  

± 0.002 

0.004  

± 0.001 

0.005  

± 0.002 
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Figure 5.2. Comparison of SCAPE-M_B2 and C2R/Lake retrieved remote sensing reflectance (Rrs 

(sr-1)) with in situ measured Rrs from the same date (August 22 2010) for different sampling 

locations. Number refers to sample location of Figure 5.1.
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Figure 5.3. Comparison of SCAPE-M_B2 and C2R/Lake retrieved remote sensing reflectance (Rrs (sr-1)) with in situ measured Rrs ± 1 

day for different sampling locations. Number refers to sample location of Figure 5.1.
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Figure 5.4. Comparison of SCAPE-M_B2 and C2R/Lake retrieved remote sensing reflectance (Rrs 

(sr-1)) with in situ measured Rrs ± 2 days for different sampling locations. Number refers to sample 

location of Figure 5.1.
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Figure 5.5. Comparison of SCAPE-M_B2 and C2R/Lake retrieved remote sensing reflectance (Rrs 

(sr-1)) with in situ measured Rrs ± 3 days for different sampling locations. Number refers to sample 

location of Figure 5.1.
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Figure 5.6. Scatter plots comparing SCAPE-M_B2 and C2R/Lake retrieved Rrs with in situ 

measured Rrs across MERIS bands 1-10, 12 for measurements taken on the same day (within 

three hours) as the overpass (a, b), ± 1 day (c, d), ± 2 days (e, f) and ± 3 days (g, h). 
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Figure 5.7. Absolute (sr-1) (a, b) and relative (%) (c, d) root mean square error (RMSE) for 

SCAPE-M_B2 and C2R/Lake retrieved Rrs per MERIS band (1-10, 12).
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Table 5.3. Remote sensing reflectance retrieval performance (relative and absolute RMSE) of SCAPE-M_B2 and C2R/Lake atmospheric 

correction for each processed MERIS band. 

Band 

# 

Centre 

wavelength 

(nm) 

SCAPE-M_B2 Rrs C2R/Lake Rrs 

RMSE (sr-1) Relative RMSE (%) RMSE (sr-1) Relative RMSE (%) 

Same 

day 

± 1 

day 

± 2 

days 

± 3 

days 

Same 

day 

± 1 

day 

± 2 

days 

± 3 

days 

Same 

day 

± 1 

day 

± 2 

days 

± 3 

days 

Same 

day 

± 1 

day 

± 2 

days 

± 3 

days 

1 412 0.004 0.004 0.004 0.003 62.6 32.7 21.1 18.0 0.003 0.008 0.013 0.010 43.7 65.5 71.3 69.8 

2 442 0.002 0.004 0.006 0.005 31.8 27.6 31.6 31.1 0.002 0.008 0.013 0.011 32.1 56.3 65.4 64.2 

3 490 0.004 0.005 0.008 0.007 38.1 26.6 29.7 28.6 0.003 0.009 0.015 0.013 28.5 43.2 54.5 53.8 

4 510 0.004 0.006 0.010 0.009 29.0 24.9 30.0 29.9 0.003 0.010 0.017 0.015 26.4 41.6 52.7 51.6 

5 560 0.005 0.007 0.011 0.011 18.2 19.3 24.5 26.4 0.009 0.015 0.023 0.021 36.0 43.2 52.8 50.2 

6 620 0.003 0.005 0.010 0.010 17.1 28.2 38.9 37.5 0.004 0.007 0.014 0.011 25.2 36.8 52.6 44.5 

7 665 0.002 0.004 0.008 0.008 19.9 30.8 41.9 39.6 0.003 0.005 0.011 0.010 22.5 40.2 57.5 49.9 

8 681 0.004 0.004 0.004 0.003 48.1 41.2 27.3 24.9 0.002 0.003 0.005 0.004 30.7 35.4 41.4 32.3 

9 708 0.004 0.003 0.005 0.005 32.8 36.3 37.7 32.3 0.003 0.004 0.009 0.009 29.5 45.8 64.9 54.7 

10 753 0.002 0.002 0.001 0.001 43.7 50.3 29.7 30.3 0.003 0.002 0.003 0.002 77.1 49.7 65.1 54.4 

12 778 0.002 0.002 0.002 0.002 30.5 40.7 33.2 33.5 0.002 0.002 0.003 0.003 45.6 62.9 73.1 66.0 
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C2R/Lake Rrs retrievals were found to generally underestimate in situ Rrs across all ± 

0-3 days matchups, although robust retrieval of the in situ spectral magnitude is found in some 

cases over part or the entire spectrum. However, a general flattening of the spectral shape was 

also observed. This is especially the case for the reflectance maximum at 560 nm (MERIS band 

5), and also the peaks and troughs of the red-near infrared spectral range, important for chl-a 

retrievals in medium-high productivity waters. The RMSE associated with C2R/Lake retrievals 

is found to be highly wavelength dependent, closely resembling the spectral shape of the in situ 

measured Rrs (Figure 5.7). This is related to the flattening of the retrieved spectral shape by 

C2R/Lake, as observed in Figures 5.2 to 5.5. RMSE ranges from 0.002 to 0.023 sr-1 for all 

matchups, with relative RMSE typically high, between 20 and 80 % for C2R/Lake Rrs retrievals 

(Figure 5.7; Table 5.3). 

Plotting AOT-550 nm retrieved by SCAPE-M_B2 against that retrieved by C2R/Lake 

during the August 2010 field campaign, much higher AOT-550 nm values estimated by 

C2R/Lake are clear, as is the effect of the larger SCAPE-M_B2 cell size (30 by 30 km) relative 

to the per pixel approach of C2R/Lake (Figure 5.8). Constant AOT-550 nm is retrieved across 

the entire lake surface by SCAPE-M_B2. Whereas more variable results are retrieved by 

C2R/Lake, the much higher retrievals (two to four times higher than those of SCAPE-M_B2) 

likely play a large role in the vast underestimation of Rrs by the processor. 

 

 

Figure 5.8. AOT at 550 nm estimated by SCAPE-M_B2 atmospheric correction and estimated 

by C2R/Lake atmospheric correction, coinciding with the August 2010 field campaign. 
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5.4.2 Chl-a concentration retrieval  

After removing level 1 flagged pairs, indicating bright, glint risk, suspect coastline, land 

and invalid pixels, as in Chapter 4, 104 remaining validation matchups from were identified 

from the dataset used here. An additional four matchups were flagged by the C2R/Lake 

processor as output of the atmospheric correction exceeding the training range, and in one case 

the input TOA radiance was also out of the training range. These were removed from analysis 

using the C2R/Lake reflectance (n = 100). All MERIS-extracted matchup spectra for each 

atmospheric correction and Level 1b data are found in Figure 5.9, with mean and standard 

deviation highlighted. The general trend observed in the validation of Rrs, whereby C2R/Lake 

reflectance spectra are much lower in magnitude as well as flatter than the SCAPE-M_B2 

spectra is observed for all spectra used in the chl-a retrieval. L1b radiance data display a large 

range of shapes more similar to the SCAPE-M_B2 than to the C2R/Lake spectra, with high 

radiance in the blue spectral region associated with atmospheric scattering in the uncorrected 

data. Chl-a concentrations associated with the retained matchups range from 1.50 – 57.00 mg 

m-3 (mean: 12.38 mg m-3; standard deviation: 10.58 mg m-3). Results obtained through the 

application of each of the band math combinations described in Table 5.1 are found in Figure 

5.10 and Table 5.4. In general, similar calibration performance was found using L1b radiance 

and SCAPE-M_B2 reflectance, with R2 of retrievals ranging between 0.68 and 0.82, and 0.66 

and 0.84 respectively (Table 5.4). The best performing of the tested algorithms was again the 

FLH model. Here, SCAPE-M_B2 reflectance only slightly outperformed L1b radiance (R2 = 

0.84 vs. 0.82). Relatively poor performance was found for all algorithms using C2R/Lake 

reflectance as input (R2 = 0.29 – 0.41), as expected based on the poor results of the Rrs 

validation described above. 

Results of the k-folds cross-validation similarly indicate a comparably high 

performance using SCAPE-M_B2 reflectance (RMSE ranging from 3.92 to 5.95 mg m-3 

(relative RMSE from 31.7 to 48.1 %) for the different chl-a algorithms) and L1b radiance 

(RMSE ranging from 4.35 to 5.94 mg m-3 (relative RMSE from 35.1 to 48.1 %)). Standard 

deviation (SD) of the RMSE retrieved through cross validation is less than 2 mg m-3 (≤ 14.2 

%) in the case of L1b radiance input data for all algorithms, and less than 3 mg m-3 (≤ 21.2 %) 

in the case of SCAPE-M_B2 reflectance input data for all algorithms, whereas mean and SD 
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of retrieval RMSE using C2R/Lake reflectance are consistently much higher (Figure 5.11; 

Table 5.4). 

 

 

 

Figure 5.9. Matchup spectra of L1b radiance, SCAPE-M_B2 reflectance and C2R/Lake 

reflectance used in the band math calibration-validation. The mean (solid line) ± one standard 

deviation (dotted line) of all spectra are highlighted in red. 
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Figure 5.10. Scatterplots of selected semi-empirical chl-a concentration retrieval algorithm 

calibration using L1b radiance, SCAPE-M_B2 reflectance and C2R/Lake reflectance as input.
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Table 5.4. Chl-a retrieval performance of the selected algorithms and input data, including results of k-folds cross-validation analysis. 

 L1b SCAPE-M_B2 C2R 

Band combination R2 

*Av. RMSE 

(mg m-3) 

*SD RMSE 

(mg m-3) R2 

*Av. RMSE 

(mg m-3) 

*SD RMSE 

(mg m-3) R2 

*Av. RMSE 

(mg m-3) 

*SD RMSE 

(mg m-3) 

B9/B8 0.80 

4.52  

(36.5 %) 

1.49 

(12.0 %) 0.78 

4.46  

(36.0 %) 

2.29 

(18.5 %) 0.41 

7.65  

(61.8 %) 

3.30 

(26.7 %) 

B9/B7 0.68 

5.94  

(48.1 %) 

1.48 

(12.0 %) 0.71 

5.45  

(44.0 %) 

2.08 

(16.8 %) 0.40 

7.76  

(62.7 %) 

3.22 

(26.0 %) 

(B9-B12)/(B7-B12) 0.78 

4.73  

(38.2 %) 

1.42 

(11.5 %) 0.77 

4.90  

(39.6 %) 

1.53 

(12.4 %) 0.39 

7.68  

(62.0 %) 

3.54 

(28.6 %) 

(B9-B10)/(B7-B10) 0.73 

5.40  

(43.6 %) 

1.37 

(11.1 %) 0.66 

5.88  

(47.5 %) 

2.62 

(21.2 %) 0.39 

7.82  

(63.2 %) 

3.34 

(27.0 %) 

(1/B7-1/B9) * B10 0.72 

5.36  

(43.3 %) 

1.70 

(13.7%) 0.67 

5.73  

(46.3 %) 

2.61 

(21.1 %) 0.40 

7.73  

(62.4 %) 

3.36 

(27.2 %) 

B8 – 1.005*[B7 + (B9 – B7)((λ8 – λ7)/( λ9 – λ7))] 0.82 

4.35  

(35.1 %) 

1.32 

(10.7 %) 0.84 

3.92  

(31.7 %) 

1.61 

(13.0 %) 0.33 

7.84  

(64.2 %) 

3.11 

(25.5 %) 

B9 – 1.005* [B8 + (B10 – B8)((λ9 – λ8)/( λ10 – λ8))] 0.77 

4.85  

(39.2 %) 

1.76 

(14.2 %) 0.67 

5.95  

(48.1 %) 

1.40 

(11.3 %) 0.29 

8.07  

(66.1 %) 

3.04 

(24.9 %) 

*Average (Av.) and standard deviation (SD) from the k-folds cross-validation (k = 10). 
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Figure 5.11. Resulting root mean square error (RMSE) of k-folds cross-validation chl-a 

concentration retrievals for each of the selected semi-empirical algorithms, using each of 

the input data types (L1b radiance, SCAPE-M_B2 corrected reflectance and C2R 

corrected reflectance). Box plots show mean (centre red line), median (centre black line), 

25th and 75th percentiles (grey box), 10th and 90th percentiles (whiskers) and outliers 

(dots). 

 

5.5 Discussion 

The overall robust retrieval of Lake Balaton Rrs using the SCAPE-M_B2 

atmospheric correction is consistent with results from elsewhere (Domínguez Gómez et 

al. 2011), and using SCAPE-M (without the adjustment to retrievals in band 2) (Guanter 

et al. 2010; Jaelani et al. 2013), whereby Rrs from highly turbid lakes and reservoirs were 

accurately retrieved in terms of both spectral shape and magnitude. Conversely, retrievals 
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from low reflectance lakes, such as Lake Constance and Lake Garda, were found to be 

poorly retrieved by SCAPE-M and better achieved through atmospheric correction using 

the C2R/Lake processor (Guanter et al. 2010). In highly turbid and reflective lakes and 

reservoirs, a similar underestimation and flattening of the spectra using C2R/Lake was 

observed as for Lake Balaton, although the extent of this effect was highly variable across 

water bodies (Guanter et al. 2010). In some turbid lakes, the magnitude was generally 

well retrieved by C2R/Lake, but the spectral shape not. An even greater underestimation 

and flattening by C2R/Lake atmospheric correction than that reported here was reported 

for Lake Kasumigaura, Japan in some cases, and a similar retrieval performance relative 

to those found here in others (Jaelani et al. 2013).  

Given the different approaches to atmospheric correction taken by SCAPE-M 

(and its SCAPE-M_B2 counterpart) and the C2R/Lake processor, it has logically been 

interpreted that an inversion based approach to modelling atmospheric radiative transfer 

and AOT, such as that employed by SCAPE-M_B2, will be more broadly applicable, 

including in extreme cases of hypertrophic or high TSM conditions (Guanter et al. 2010). 

This is supported by the Lake Balaton results found here. Variable SCAPE-M validation 

results from elsewhere (Jaelani et al. 2013) are suspected to result from heterogeneity in 

atmospheric conditions within the 30 by 30km cell, which is not indicated by the current 

results to be an issue for Lake Balaton. This is likely due to the vastly different 

atmospheric conditions of the two lakes in question. Whereas Lake Kasumigaura is 

situated in a coastal setting, and near Tokyo and heavy industrial activity (Jaelani et al. 

2013), a dry, continental climate overlays Lake Balaton, which is quite removed from 

major urban or industrial activity. Concerning temporal heterogeneity, it was expected 

that error in MERIS Rrs retrievals (Figure 5.7) would increase with time from the in situ 

sample due to variability in the bio-optical conditions of the lake. However, this was not 

found to be significant according to the ANOVA results. However, it is clear in spectral 

plots that the red-near infrared spectral features are indeed less well preserved in 

matchups exceeding one day difference compared with same day matchups. 

After accounting for solar and viewing angles and surface elevation, aerosol 

scattering is well known to be the largest source of error in atmospheric correction 

algorithms (Wang 2007), given the heterogeneous origins and characteristics of aerosols 

as well as their broad spatial and temporal variability. Aerosol content is often considered 

in remote sensing via the parameter Aerosol Optical Thickness (AOT) which can be 

derived at multiple wavelengths, most typically at 550 nm (AOT-550 nm), where AOT is 
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used in deriving surface reflectance in atmospheric correction. Validation using in situ 

measurements (R2 = 0.75) over several lakes (Guanter et al. 2010), and over diverse 

terrestrial settings  (R2 > 0.71, except in one case where R2 = 0.34) (Guanter et al. 2008), 

reveals the generally robust nature of AOT-550 nm retrievals by SCAPE-M over a range 

of conditions. Although no in situ AOT-550 nm measurements coinciding with the field 

measurements presented here were available for validation, the robust performance of 

SCAPE-M_B2 Rrs retrievals is likely a result of strong AOT-550 nm retrieval 

performance. Although neither chl-a nor TSM concentrations during the coinciding field 

campaign exceed the training range of the C2R/Lake processor, it may be that other water 

constituents or optical properties, or atmospheric conditions, not measured in situ exceed 

the NN training range and results in the much greater AOT-550 than that estimated by 

SCAPE-M_B2 (Figure 5.8). In general, the likely inaccurate Rrs retrieval of the C2R/Lake 

atmospheric correction module is expected to contribute in part to the large error in chl-

a concentration retrieval of the associated C2R, BL and EUL constituent retrieval 

modules presented in Chapter 4. 

Although the use of TOA data in water constituent retrieval has been challenged 

due the inability to account for spatial and temporal variability in atmospheric conditions 

resulting in an additional source of error (Binding et al. 2010), this is not supported by 

the current results for Lake Balaton. Band arithmetic algorithms using the red-NIR 

spectral region are employed to minimize the atmospheric influence (Matthews et al. 

2012). The similar chl-a concentration retrieval performance using L1b radiance and 

SCAPE-M_B2 reflectance and the results of the k-folds cross-validation indicate that the 

errors unaccounted for by using TOA data are similar in magnitude to the errors related 

to SCAPE-M_B2 atmospheric correction. Furthermore, if a poor atmospheric correction 

(i.e., C2R/Lake for Lake Balaton) is applied prior to chl-a retrievals, these will in turn be 

poor. 

 

5.6 Conclusions 

SCAPE-M_B2 and C2R/Lake reflectance retrievals are validated for the turbid, 

optically complex Lake Balaton, and estimated AOT-550 nm of each are compared. 

SCAPE-M_B2 retrievals are found to be accurate and to produce accurate chl-a retrievals 

when semi-empirical, band math algorithms are applied. C2R/Lake reflectance is found 
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to more often underestimate and flatten the shape of spectra measured in situ, possibly a 

result of an overestimation of the AOT. The poor performance of the C2R/Lake 

atmospheric correction expectedly results in poor performance when input into semi-

empirical chl-a retrieval algorithms, and can reasonably be expected to contribute to the 

poor chl-a concentration retrieval performance of the NN C2R, BL and EUL processors 

as presented in Chapter 4. FLH is again found to best retrieve chl-a concentrations after 

extending the number of semi-empirical algorithms explored, although reasonable 

retrievals are also found with other red-NIR semi-empirical algorithms tested. Chl-a 

retrieval algorithm performance using SCAPE-M_B2 reflectance was found to be 

comparable when TOA L1b radiance data were used. The spatial and temporal range of 

the data, as well as cross-validation results, suggest the stability of MERIS chl-a 

concentration retrieval algorithm performance using either SCAPE-M_B2 reflectance or 

L1b radiance for Lake Balaton. The error introduced by unaccounted for temporal 

variability in atmospheric conditions when using L1b data is not found to greatly exceed 

the error related to SCAPE-M_B2 atmospheric correction. Therefore, the use of the FLH 

algorithm using L1b data is proposed for the Lake Balaton full MERIS time series 

processing.  
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Chapter 6 

 

Earth observation of freshwater 

phytoplankton phenology metrics  
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The work presented in this chapter has been published as: 

Palmer, S. C. J., et al. (2015b). Satellite remote sensing of phytoplankton phenology in 

Lake Balaton using 10 years of MERIS observations. Remote Sensing of 

Environment, 158, 441-452. 

 

6.1 Introduction & rationale 

6.1.1 Lake phytoplankton phenology 

Phenology refers to the timing of cyclic biological events. It can be understood as 

the seasonality of recurring events such as leafing, greening-up, flowering and fruiting of 

vegetation (and the durations thereof), breeding, egg laying, hatching and other 

reproductive milestones in animals, feeding, pollination, hibernation and migration 

(Forrest and Miller-Rushing 2010). Phytoplankton phenology is distinct from these 

examples in that, rather than referring to individual life history events as is commonly the 

case for other types of organisms, it describes the cyclic nature of demographic, or 

population-level phenomena (Thackeray 2012; Winder and Cloern 2010). Instead of 

describing the timing of events such as breeding, flowering, and hibernation in 

individuals, for example, plankton phenological events include peak biomass of the 

population and its timing, dictated by the shift in balance between the various processes 

contributing to population growth and to population loss, in events known as blooms 

(Thackeray et al. 2008). Furthermore, phytoplankton biomass turns over much more 

rapidly, daily to weekly (on the order of hundreds of times per year), as a result of fast 

reproduction, growth and predator consumption (grazing) rates (Calbet and Landry 2004). 

This rapid turnover results in a high level of background noise overlaid upon the annual 

phenology of phytoplankton bloom events, particularly in comparison with terrestrial 

analogs (Winder and Cloern 2010). 

Wavelet analysis has been used to extract the dominant periods of variability, and 

the recurrence strength at those periods for the annual cycles of phytoplankton biomass 

for 50 lakes, in addition to 70 estuarine and 5 oceanic sites (Winder and Cloern 2010). 

Between eight and 50 years of monthly sampled data was available for these sites, which 

spanned latitudes between 22° to 60°. Four patterns were found to emerge: (1) a 12-month 
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periodicity (one annual bloom event, generally in the spring or summer), (2) a 6-month 

periodicity (two annual blooms, generally in the spring and late-summer/autumn or in the 

winter and summer), (3) a 2 – 4 month periodicity, suggesting a highly noisy system 

lacking a regular annual cycle, and (4) a mixed periodicity (generally a combination of 

12- and 6-month periodicity, with a marked shift from one regime to the other at some 

point in time) (Winder and Cloern 2010). Upon determining a regular periodicity for a 

given system through such an analysis of the time series, a number of approaches can be 

taken toward determining phenological features. 

Investigation related to freshwater phytoplankton phenology has greatly 

accelerated over the past decade, by means of laboratory or field mesocosm experiments 

(Berger et al. 2010a; Diehl et al. 2002; Gaedke et al. 2010; Lewandowska and Sommer 

2010; Sommer and Lewandowska 2011; Winder et al. 2012), modelling-based 

approaches (Elliott 2012; Elliott et al. 2006; Jones et al. 2011) and interpretation of long-

term field data (Feuchtmayr et al. 2012; Maberly et al. 1994; Meis et al. 2009; Thackeray 

et al. 2012; Thackeray et al. 2008; Walters et al. 2013; Winder and Schindler 2004a, b). 

Studies have variably investigated one or more individual phytoplankton taxa 

(Feuchtmayr et al. 2012; Thackeray et al. 2008) or have considered phytoplankton 

biomass generally (Adrian et al. 2006; Gerten and Adrian 2000; Seebens et al. 2009; 

Thackeray et al. 2012). Some have considered phytoplankton in combination with higher 

trophic levels (typically zooplankton) (Adrian et al. 2006; Feuchtmayr et al. 2012; 

Lewandowska and Sommer 2010; Thackeray et al. 2008; Winder and Schindler 2004a, 

b) with some suggestion of trophic level mismatch whereby higher trophic levels become 

decoupled from their lower trophic level food source (typically the primary producing 

phytoplankton in this case) due to differing rates of phenological shifting (Cushing 1990), 

although limited quantitative evidence to this effect has been documented (Thackeray 

2012). A variety of responses to changing environmental conditions, particularly nutrient 

levels, overwintering phytoplankton populations, predator (zooplankton grazer) 

population dynamics, light conditions and temperature have been determined, and found 

in some cases to be species specific (Adrian et al. 2006; Berger et al. 2010b; Feuchtmayr 

et al. 2012; Thackeray et al. 2012; Thackeray et al. 2008; Winder and Schindler 2004a, 

b).  

Since phytoplankton phenology is sensitive to environmental changes, phenology 

metrics may be useful to monitor in addition to more conventional phytoplankton biomass 

monitoring. Several phytoplankton phenology-related features are already included as 
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part of the European WFD, notably number of blooms per year (bloom frequency) and 

the magnitude or intensity of blooms (Carvalho et al. 2013; Nõges et al. 2010). Satellite 

remote sensing may provide a reasonable means to evaluate the phenology of medium to 

large lakes. This is due to the potential of remote sensing to retrieve chl-a, as 

demonstrated in the preceding thesis chapters, and the repeat image acquisition from 

sensors such as MERIS, providing the recurrent, high frequency data necessary for such 

analyses. In addition to the regular revisit/overpass frequency allowing for time series 

reconstruction, the cohesive spatial coverage would allow for a much more thorough 

spatial investigation of trends and phenomena than has been possible until now, as well 

as investigation into lakes lacking conventional monitoring of sufficiently high frequency 

for the measurement of phenology metrics. 

 

6.1.2 Remote sensing of phenology 

Satellite imagery has a long history of use and continues to be important in studies 

of terrestrial vegetation phenology (Boyd et al. 2011; Dash et al. 2010; Justice et al. 1985; 

Lüdeke et al. 1996; Malingreau 1986; Zhou et al. 2001), including contributions to 

identifying phenological shifts at the landscape scale in response to climate change. This 

is largely due to the long archive of satellite imagery appropriate to the retrieval of 

vegetation indices (more than 30 years of continued measurement), at the relevant spatial 

and temporal scales and with synoptic coverage. Imagery from the series of Landsat and 

NOAA-AVHRR sensors are primary data sources, with continuity provided through more 

recent sensors. A MODIS standard Level 3 Land Cover Dynamics (MCD12Q2) product 

has been developed to estimate terrestrial phenology globally (Ganguly et al. 2010). A 

range of common vegetation indices (VIs) have been used in phenological analysis, 

including the normalized difference vegetation index (NDVI), leaf area index (LAI), the 

fraction of absorbed photosynthetically active radiation (fAPAR), MERIS global 

vegetation index (MGVI) and MERIS terrestrial chlorophyll index (MTCI) (Boyd et al. 

2011). Time series of imagery with a given VI applied are generated, and seasonality 

functions and features are extracted for a region or pixels of interest. In addition to issues 

of inter-sensor and geometric, atmospheric and radiometric correction consistency, which 

plagues the reliability of long satellite image time series, standard methodologies or 

protocols for the extraction of seasonality functions and features remain to be developed 
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and adopted, despite the history of satellite imagery use in investigating terrestrial 

vegetation phenology dating to the 1980s (White et al. 2009). 

In recent years, several research groups have begun to advance from satellite 

validation and mapping of chl-a concentrations to the use of satellite chl-a mapping in 

time series and phytoplankton phenological analysis in open ocean contexts (so-called 

Case 1 waters, as described in Chapter 2). These have largely made use of archive 

SeaWiFS data (1998 – 2002) (Platt and Sathyendranath 2008; Platt et al. 2010; Platt et al. 

2009; Racault et al. 2012; Sasaoka et al. 2011; Siegel et al. 2002; Vargas et al. 2009), 

with some extending analyses back to also include CZCS (active from 1979 to 1983) 

(D'ortenzio et al. 2012), or forward to also include MODIS (1999 – present) and/or 

MERIS (2002-2012) data (Cole et al. 2012; González Taboada and Anadón 2014; Kahru 

et al. 2011). Satellite data used in such oceanic investigations are typically of quite coarse 

spatial resolution, with reported grid sizes ranging between 9 km (Siegel et al. 2002) and 

300 km (Vargas et al. 2009). They have variably focused on a specific geographic region 

(e.g., the North Atlantic (González Taboada and Anadón 2014; Platt et al. 2010; Platt et 

al. 2009; Siegel et al. 2002; Vargas et al. 2009) or the North Pacific (Sasaoka et al. 2011)) 

or provided a global scope (D'ortenzio et al. 2012; Kahru et al. 2011; Racault et al. 2012). 

In addition to mapping extracted phenology metrics, spatially explicit investigation was 

undertaken in a number of cases, either through the selection and comparison of zones of 

interest from the imagery (e.g., across latitudes (Platt et al. 2010; Platt et al. 2009)) or 

through cluster analysis using time series functions or phenological features extracted at 

the pixel level (D'ortenzio et al. 2012; Sasaoka et al. 2011). 

In most studies of oceanic phytoplankton phenology using remote sensing, timing 

of the spring bloom, especially initiation and peak timing, are derived (Kahru et al. 2011; 

Racault et al. 2012; Siegel et al. 2002). Some additional features are considered in Vargas 

et al. (2009) (“maturity” and “start of decay” of the bloom, referring to when the chl-a 

concentration is at 90% of either side of the maximum concentration) and D'ortenzio et 

al. (2012) make use of the full seasonality time series vector (chl-a concentration over 

time) in their cluster analysis. Platt and Sathyendranath (2008) propose a suite of potential 

phytoplankton phenology-related ecological indicators, including timing-related features 

(initiation, peak, termination and duration of blooms, etc.) and productivity-related 

features (amplitude of bloom, bloom and total annual biomass, etc.). These are discussed 

in relation to sea surface temperature (SST) and photosynthetically active radiation (PAR) 

time series of the North Atlantic and the outlining of ecological provinces in Platt et al. 
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(2010), as well as in a spatially cohesive global context by Racault et al. (2012). The same 

phenology features described by Platt and Sathyendranath (2008) are conceptually 

applicable to lake settings, depending on the availability of a suitable chl-a time series for 

use as input.  

Several specific challenges have rendered the reliable remote sensing of 

phytoplankton and other optical water quality parameters difficult if not impossible for 

many inland and coastal waters until quite recently, as discussed in Chapter 2, precluding 

the use of satellite imagery in such extended time series analysis. As a result, the 

quantification of phytoplankton phenology metrics using remote sensing has only been 

carried out to a certain extent for lakes in a few cases to date (e.g., (Binding et al. 2011; 

Duan et al. 2014; Hu et al. 2010; Matthews 2014; Stumpf et al. 2012). As increasingly 

robust chl-a retrieval algorithms are achieved for a growing number of lakes, such as 

described in Chapters 4 and 5 for Lake Balaton, an important continued direction in the 

remote sensing of lakes is foreseen to be the use and interpretation of satellite imagery to 

derive seasonality functions and extract and map phenology features. The adaptation of 

tools and approaches from both terrestrial and open ocean phenology remote sensing 

experience, as well as those from in situ phytoplankton phenology and recent lake 

phytoplankton and cyanobacteria time series analyses, will be invaluable toward the 

development of such application in lake settings. 

 

6.2 Objectives 

 The preceding two chapters have validated and compared multiple chl-a retrieval 

algorithms across the range of conditions encountered at Lake Balaton, and have 

highlighted the suitability of the FLH retrieval algorithm applied to MERIS Level 1b (top-

of-atmosphere) radiance imagery for use in the production of time series chl-a 

concentration maps for high biomass bloom events for this site. Although phenology 

analysis has not yet been extensively carried out for lake systems using satellite imagery, 

the use of remote sensing for phytoplankton phenology mapping has recently proven to 

provide invaluable and unprecedented insight in pelagic ocean settings, as described 

above, in addition to the long history in terrestrial applications, and first results in lakes 

are promising. The chl-a validation results presented in Chapters 4 and 5 (i.e., L1b FLH-
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derived chl-a time series maps) are therefore used in an Earth Observation-based retrieval 

and analysis of freshwater phytoplankton phenology to meet the following objectives: 

(6) To use validated MERIS chl-a maps for time series analysis of Lake Balaton 

phytoplankton dynamics spanning the full image archive; 

 

(7) To undertake the extraction of satellite image-based phenological analysis 

through the use of TIMESAT software in a freshwater setting for the first time; 

 

(8) To retrieve and map annual phenology and primary productivity features for Lake 

Balaton summer blooms; and 

 

(9) To highlight the spatial and interannual variability of, and any correlation between 

the mapped features. 

 

6.3 Methods 

6.3.1 MERIS chl-a mapping and time series aggregation 

 The FLH algorithm applied to TOA Level 1b radiance imagery was identified in 

Chapters 4 and 5 as highly correlated with chl-a concentrations from Lake Balaton time 

series, and is used as a proxy for phytoplankton biomass mapping. Bulk processing of the 

full, ten year MERIS archive for Lake Balaton using FLH was undertaken at Brockmann 

Consult through the ESA Diversity-II and CoastColour projects and using their Calvalus 

portal, which was designed to facilitate the access to and processing of large volumes of 

MERIS data (Fomferra et al. 2012). After applying a land mask, screening for cloud 

contamination and mixed land-water pixels was carried out. The data were then processed 

to the Level 2 FLH product, and then to the Level 3 through dekad (ten day) mean binning, 

resulting in 36 images per year. Following the processing of FLH to the Level 3, 

coefficients found in Chapter 4 to relate the retrieved FLH index to chl-a concentrations 

(Table 4.3) for Lake Balaton via linear regression were employed, producing chl-a maps. 

Data beginning from January 1, 2003 through December 31, 2011 were used as 

input, excluding data from the years 2002 and 2012 which were only partially available 
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(from June onward and until April respectively), because constant numbers of images per 

year are required by TIMESAT. Data output from Calvalus were then further formatted 

for input into TIMESAT by converting missing values from “NaN” (not a number) to the 

integer -9999 and saving as ENVI standard format. As suggested by the TIMESAT 

developers, dummy years were added to the beginning and end of the time series for 

smoothing and phenology feature extraction since TIMESAT interpretation of the 

beginning and end of time series can be problematic and seasons are often missed from 

these years (Jönsson and Eklundh 2004). Data from these periods were then excluded 

from subsequent mapping and analysis. 

 

6.3.2 Data smoothing and phenology parameterization 

 TIMESAT is an open-source software developed by and available from 

researchers at Malmö University (Dr. Per Jönsson) and Lund University (Dr. Lars 

Eklundh) for the analysis of satellite image time series data, specifically to explore and 

extract parameters related to terrestrial vegetation seasonality (Jönsson and Eklundh 

2004; http://www.nateko.lu.se/timesat/timesat.asp). It allows users to input image time 

stacks, select from and apply a variety of time series smoothing techniques, and to output 

mapped phenology metrics. In TIMESAT, time series of VIs such as NDVI are smoothed 

following the user’s choice of Savitzky-Golay filtering, asymmetrical Gaussian or double 

logistic functions (Eklundh and Jönsson 2012; Jönsson and Eklundh 2004). Here, MERIS 

retrieved chl-a for Lake Balaton is used as input data. 

 In both the asymmetric Gaussian and the double logistic smoothing functions, 

curves are fit to the broad features of the data peaks (Eklundh and Jönsson 2012). The 

base level and amplitude are determined by linear parameters, c1 and c2, respectively 

(equation 6.1). The curve is fit to the maxima and minima, in the case of the asymmetric 

Gaussian function (equation 6.2), and to the inflection points, where shape of the curve 

shifts from concave to convex and vice versa, and rates of change at these, in the case of 

the double logistic function (equation 6.3). Two curves per peak are fit for both functions, 

separately for right and left sides of each peak (which is what the “asymmetric” and 

“double” prefixes to the two functions refer to, respectively) (Eklundh and Jönsson 2012). 

In the asymmetric Gaussian function, x1 is equal to the position of the maximum or 



99 
 

minimum with respect to t, the independent time variable. x2 and x4 alter the width of the 

curve, for right and left sides of the peak respectively, and x3 and x5 alter the flatness of 

the curve, similarly for respective right and let sides of the peak (equation 6.2a, b) 

(Eklundh and Jönsson 2012). In the double logistic function, x1 and x3 are inflection 

points to the left and right of the peak, respectively, and x2 and x4 are the rates of change 

at these respective inflection points, with respect to time (t) (equation 6.3) (Eklundh and 

Jönsson 2012).  

  𝑓(𝑡) = 𝑐1 + 𝑐2𝑔(𝑡; 𝑥1,… , 𝑥5)   Equation 6.1 

𝑔(𝑡; 𝑥1, … , 𝑥5) =  𝑒𝑥𝑝 [− (
𝑡−𝑥1

𝑥2
)
𝑥3

]   𝑖𝑓 𝑡 > 𝑥1  Equation 6.2a 

𝑔(𝑡; 𝑥1, … , 𝑥5) =  𝑒𝑥𝑝 [− (
𝑡−𝑥1

𝑥4
)
𝑥5

]   𝑖𝑓 𝑡 < 𝑥1  Equation 6.2b 

  𝑔(𝑡; 𝑥1,… , 𝑥5) =  
1

1+exp(
𝑥1−𝑡

𝑥2
)
− 

1

1+exp(
𝑥3−𝑡

𝑥4
)
  Equation 6.3 

  

 A filtering approach can also be used to smooth time series data, whereby each 

data value is replaced by a linear combination of nearby values within a window (equation 

6.4). Weighting values by a simple moving average typically preserves the area and mean 

position of the peaks (equation 6.5), but not the width and height of the peaks (Eklundh 

and Jönsson 2012). This is improved upon through the use of the Savitzky-Golay filter, 

whereby a quadratic polynomial function (equation 6.6) is instead fit to all 2n + 1 points 

in a moving window (n), replacing the original data value (yi) with the calculated value 

at its associated time step (ti) (Eklundh and Jönsson 2012). The width of the moving 

window (n) must be selected by the user to subjectively optimize between the degree of 

smoothing and the ability to follow rapid changes in the time series. The Savitzky-Golay 

filter in TIMESAT is adaptive, in that data filtered using a defined n in a first step are 

subsequently scanned and any abrupt increases or decreases are re-filtered using a smaller 

n value in a second step (Eklundh and Jönsson 2012).  

  ∑   𝑐𝑗𝑦𝑖 + 𝑗𝑛
𝑗= −𝑛    Equation 6.4 

  𝑐𝑗 =  
1

(2𝑛+1)
    Equation 6.5 

{ 
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  𝑓(𝑡) = 𝑐1 + 𝑐2𝑡 + 𝑐3𝑡2  Equation 6.6 

  

 Smoothing is applied for each pixel of an input time series image stack, or using 

pre-extracted ASCII format (text) data. Least squares fit to an adaptive upper envelope is 

used to avoid negative bias in the time series, such as that caused by cloud contamination 

(Eklundh and Jönsson 2012). Parameters such as the definition of the start and end of 

season and data range must be specified by the user after preliminary exploratory 

processing on selected pixels prior to application to the full input dataset, in addition to 

window size when Savitzky-Golay filtering is used (Jönsson and Eklundh 2004). The 

number of seasons per year (in this case the number of annual phytoplankton blooms) are 

determined as follows in TIMESAT. Data (ti, yi, i = 1, 2, …, N) for each year (with a 

minimum of three years input) are fit to equation 6.7, where w = 6π / N (N = 36 in this 

case, as described in section 6.3.1), and a pair of cosine and sine functions are fit for each 

season of each input year (Eklundh and Jönsson 2012). From equation 6.7, primary 

maxima are detected if there is at least one season and secondary maxima (two annual 

blooms) are determined if the ratio between secondary and primary amplitudes are greater 

than a user defined threshold (Eklundh and Jönsson 2012). If the user has prior knowledge 

that the system in question is characterized by one season (i.e., annual bloom), this 

seasonality parameter can be set to 1. Since the ratio between primary and secondary 

maxima cannot exceed 1 (the primary maxima is always the largest), only one season 

(associated with the primary maxima) will be considered, regardless of whether a 

secondary peak in the data is detected or not. Likewise, setting this threshold to 0 (the 

ratio cannot be less than this) ensures that two seasons will be considered (Eklundh and 

Jönsson 2012).  

𝑓(𝑡) = 𝑐1 + 𝑐2 sin(𝑤𝑡) + 𝑐3 cos(𝑤𝑡) + 𝑐4 sin(2𝑤𝑡) + 𝑐5cos (2𝑤𝑡) Equation 6.7 

 

 Since Lake Balaton is known to experience two phytoplankton blooms per year 

(Mózes et al. 2006; Présing et al. 2008), a small one in the spring and a large one in the 

mid to late summer, the “number of seasons” was set to two in TIMESAT. In the current 

work, however, only summer blooms were considered, which are more important for 

Lake Balaton both in terms of magnitude and species composition (commonly 
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cyanobacteria dominated as opposed to the diatom-dominated, lower biomass spring 

blooms). This was done by defining peaks to be considered as those occurring between 

June and October for each year. The data range was set from 0 to 100 mg m-3 chl-a so as 

to exclude missing pixel values, set to -9999, and to include all real values. The ability to 

capture bloom peak, onset and decline of the three available methods was compared. Ten 

randomly selected points from across the lake were selected for parameterization testing 

and smoothing method selection, as in Heumann et al. (2007), to qualitatively choose the 

smoothing function found to best capture bloom peak, increase and decrease relative to 

the original input data. 

 Consensus is lacking as to the definition of bloom events in lake ecosystems, 

which are very generally characterized as “high phytoplankton abundance”, in addition 

to the presence of indicator species (i.e., cyanobacteria) or uneven community 

composition (Carvalho et al. 2013). A widely used definition of start and end of the season 

(i.e., bloom) for similar analyses in pelagic ocean settings has been defined as when chl-

a concentrations rise above and fall below the full time series median for each pixel, plus 

5 % (Racault et al. 2012; Siegel et al. 2002). A similar approach to setting the start and 

end definition has been adapted for use here. Median values across Lake Balaton for the 

full 2003 to 2011 time series range from approximately 6 to 11 mg m-3. Given the inability 

to assign an absolute value on a per-pixel basis using TIMESAT, 10 mg m-3 was chosen 

as the threshold value above which concentrations must rise to define the start of the 

season. Following trial parameterization, this value was found to result in the fewest 

missed bloom events. The definition of end timing was set to chl-a values decreasing 

below 12 mg m-3 following a detected bloom event, as post-bloom values were often 

found to be 10-11 mg m-3. 

 The user can then output both the parameterized smoothed function, as well as the 

input (i.e., FLH chl-a dekad binned data in this case) and eleven phenology features 

(Figure 6.1; Table 6.1). These include the beginning, end and duration of the season, 

defined by the timing when the measured VI increases above and decreases below the 

pre-set values (Figure 6.1a and b), and the length of time between the two (Figure 6.1c). 

Start and end of season can be defined by either a user-defined value (e.g., NDVI = 0.4) 

or a value relative to the peak (e.g., when NDVI increases to 10% of the associated peak 

NDVI value). The mid-season timing is defined as the middle position at 80 % of the 

peak value (Figure 6.1e). Season maximum (Figure 6.1f) and base values, defined as the 
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average of minimum values to either side of the peak (Figure 6.1d), are also extracted for 

each season as is amplitude – the difference between the peak and base values (Figure 

6.1g). Left and right derivatives are calculated for each season, indicating rate of increase 

(Figure 6.1h) and decline (Figure 6.1i). Integrals under the curve for each season are also 

calculated; one above the base value, indicating seasonally active vegetation biomass 

(Figure 6.1k), and one above the zero value, indicating total vegetation biomass (Figure 

6.1j). Maps of each parameter for each bloom event can be generated (Jönsson and 

Eklundh 2004) since time series have been created, smoothed and analyzed for each pixel, 

providing rich spatiotemporal data on seasonality.  

 

 

 

Figure 6.1. Schematic of phenology features extracted from each phytoplankton bloom 

using TIMESAT, adapted from Jönsson and Eklundh (2004). Letters correspond to 

feature descriptions in Table 6.1. 
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Table 6.1. Description of bloom phenology features extracted with TIMESAT, including 

current parameterization, corresponding with labels in Figure 6.1. 

Feature (measurement unit) Description 

a. Start timing (day of year) Date at which chl-a concentration rises 

above 10 mg m-3 on the left side of the 

bloom. 

b. End timing (day of year) Date at which chl-a concentration falls 

below 12 mg m-3 on the right side of the 

bloom. 

c. Length (days) Difference between a. and b. 

d. Base concentration (mg m-3) Average of lowest concentrations on the left 

and right sides of the bloom. 

e. Mid-season timing (day of year) Mid-position between left and right sides at 

80 % of the maximum concentration. 

f. Maximum concentration (mg m-3) The highest chl-a concentration of the fitted 

function for each pixel during the bloom 

event. 

g. Amplitude (mg m-3) Difference between f. and d. 

h. Rate of increase (mg m-3 day-1) Amount of concentration increase per unit 

time on the left side of the bloom, between 

20 and 80 % of the maximum concentration. 

i. Rate of decrease (mg m-3 day-1) Amount of concentration decrease per unit 

time on the right side of the bloom, between 

80 and 20 % of the maximum concentration. 

j. Large integral (mg m-3 * day) Integral of the fitted function between start 

and end timings from 0 mg m-3 chl-a. 

k. Small integral (mg m-3 * day) Integral of the fitted function above the chl-a 

concentrations associated with start and end 

timing. 
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6.3.3 Phenology feature mapping and statistical analysis 

All in situ data spanning the MERIS archive from January 2003 through 

December 2011 were composited to the same dekad mean bins as the MERIS data 

(described above in section 6.3.1) for input into TIMESAT. This was done for in situ data 

from each of the four main basins. Where more than one measurement per ten-day bin 

was available for a basin, the mean of these was used. Three-by-three pixel kernels 

centred on the in situ measurement coordinates were then extracted from the MERIS FLH 

chl-a time series. The TIMESAT parameterization described above was applied to the 

extracted in situ and matchup MERIS time series, and resulting phenology metrics for 

each year were compared through regression and coefficient of determination (R2), bias 

and root mean square errors (RMSE) reported to validate the MERIS phenology metrics. 

Maps of features described above and listed in Table 6.1 were output as images 

for all blooms. Summer blooms, most important for Lake Balaton, were extracted as 

events starting between June and October of a given year. Spatial and temporal variability 

of all parameters, for each bloom, were assessed by calculating the mean, and tenth and 

ninetieth percentiles for the full lake. Percent spatial extent of each bloom was calculated 

as the surface area over which a bloom event was detected relative to the full lake surface 

area for each year. Percent surface extent anomalies were calculated by subtracting the 

mean bloom extent of all nine years considered from the extent of each year. A Pearson 

correlation analysis was carried out between phenology features extracted for all blooms 

detected from 30 randomly selected pixels as well as annual spatial extents to confirm 

and explore relationships between any of these.  

 

6.4 Results  

6.4.1 Time series smoothing and phenology parameterization  

 Asymmetric Gaussian, double logistic and Savitzky-Golay filtering approaches to 

smoothing were qualitatively compared, as per the example provided in Figure 6.2 which 

shows the input values and smoothing of an extracted pixel. As shown in this example, 

Savitzky-Golay filtering (with a moving window size set to four) was found to be best 

adapted to capture the onset, development and end of the two annual phytoplankton 
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blooms. Although the asymmetric Gaussian and double logistic smoothing methods often 

produced very similar results, a number of distinct bloom events were missed by both of 

these (e.g., spring 2004 and 2007 in Figure 6.2). Likewise, both asymmetric Gaussian and 

double logistic approaches were found to occasionally introduce artifacts, as is clear in 

Figure 6.2 (e.g., near the end of 2006 and over the year 2009). An example of Savitzky-

Golay filtered data, in comparison with the input chl-a concentrations, from across the 

trophic gradient of Lake Balaton (basins 1 – 4) is found in Figure 6.3. This figure also 

demonstrates the variability in chl-a time series from Lake Balaton, particularly in terms 

of magnitude, across its longitudinal axis trophic gradient, and the occurrence of two 

annual blooms. Savitzky-Golay filtering is not found to accurately retrieve minimum chl-

a concentrations in the spring, however. It can therefore be expected that the dependent 

features, base and amplitude concentrations, would not be reliably retrieved as a result 

and were thus excluded from mapping and further analysis.  

 

 

Figure 6.2. An example comparing the three smoothing functions possible in TIMESAT; 

asymmetrical Gaussian, double logistic and Savitzky-Golay (SG) filtering with input chl-

a data points extracted for a single pixel. From Palmer et al. (2015b). 
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Figure 6.3. Examples of the Savitzky-Golay filtering compared with input data from each 

of the four main Lake Balaton basins (Figure 3.2). 
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6.4.2 MERIS phenology validation 

Annual summer bloom phenology metrics extracted from MERIS chl-a time 

series using TIMESAT (Savitzky-Golay filtering) are compared with those from 

coinciding in situ chl-a time series in Figure 6.4. High correlations are generally found 

(0.72 < R2 < 0.84), with rates of increase and decline (R2 = 0.59 and 0.58 respectively) 

performing less well (Figure 6.4). Most metrics (with the exception of start timing; bias 

= +5.04 days) tend to be slightly underestimated by MERIS with respect to the in situ 

derived metrics. Furthermore, as in the example for start timing for matchups from each 

of the four basins (Figure 6.5), temporal trends are well recovered.   

 

6.4.3 Phenology feature mapping and variability  

The detected spatial extent of the annual summer blooms, mapped in Figure 6.6, 

was found to range from 24 to 77 % of the total lake surface area, with a mean of 56 %. 

The yearly anomalies in spatial extent relative to the mean of all nine years (56 %) are 

presented in Figure 6.7, and reveal extreme conditions from 2003 to 2005 (positive 

anomalies ≥ +20 % in 2003 and 2005; negative anomaly < -30 % in 2004), with those 

from 2006 to 2011 remaining between -10 and +10 %. All eight extracted phenology 

features are mapped for the 2003 summer bloom in Figure 6.8 as an example, highlighting 

the spatial variability of each. Base and amplitude concentrations, and small integral have 

been excluded based on the observation of unreliable smoothing of low chl-a 

concentrations. The start timing of summer blooms for all nine years are mapped in Figure 

6.9, to demonstrate inter-annual variability superimposed upon the spatial variability of 

the mapped features. Highlights of spatial and temporal variability for each feature are 

presented in Figure 6.10, through the annual mean, tenth and ninetieth percentiles of each 

feature for each year across the full mapped bloom. The full time series maps for all 

features are also available in Appendix I.   

In 2003, summer bloom start timing is found to range from day of year 160 (June 

9) to day of year 229 (August 17) (with only outliers (< 0.4 %; n = 23 pixels) mapped as 

starting later; maximum start date mapped = day of year 323 (November 19) = 0.06 % of 

pixels (n = 4)). The majority (mean = day of year 209 (July 28) ± one standard deviation) 

of 2003 pixels’ bloom starts are between days of year 175 (June 24) and 235 (August 23) 
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(Figure 6.10). Start timing is found to occur later from southwest to northeast, not only in 

2003, but typically for all nine years mapped (Figure 6.9). Across years, mean start timing 

ranges from day of year 173 (June 22, in 2008) to 221 (August 9, in 2004), occurring on 

average on day of year 195 (July 14). In 2008, much less spatial variability was observed 

in addition to the earlier than average start timing, characterized by a standard deviation 

of only 10 days in comparison with the average standard deviation across all years of 17 

days, and the maximum of the nine years (in 2004), of 24 days. The highest spatial 

variability, in 2004, coincided with the smallest spatial extent of the bloom as well as later 

than average start timing. 2003, 2006 and 2009 are also found generally to be later than 

average bloom starts, whereas 2005, 2010 and 2011, in addition to 2008, are found to be 

earlier than average bloom starts, with 2007 representing approximately average 

conditions.  

Varying degrees of spatial and temporal variability were also revealed for the 

other ten extracted and mapped phenology features, which are presented in detail in 

Figure 6.10 and mapped in Appendix I. Mean end time for the nine years considered 

ranges from day of year 256 (September 13) to day of year 299 (October 26), mean length 

from 64 to 109 days, and mean mid-bloom timing from day of year 233 (August 21) to 

day of year 263 (September 20). Mean maximum concentration across the spatial extent 

of the bloom ranged from 20.9 to 37.7 mg m-3. Mean rate of increase and decrease ranged 

from 0.37 to 0.80 mg m-3 d-1 and 0.19 to 0.63 mg m-3 d-1 respectively. Mean large integral 

ranged from 134.7 to 304.0 mg m-3 × d. 
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Figure 6.4.  Validation of the MERIS derived phenology metrics using phenology of in situ chl-a measurements. From Palmer et al. (2015b).



110 
 

 

Figure 6.5. Validation of the MERIS FLH chl-a derived trend in bloom start timing over 

the nine-year time series using in situ chl-a measurement derived start timing, for the four 

main Lake Balaton basins. From Palmer et al. (2015b). 
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Figure 6.6. The spatial extent over which a summer bloom event was detected for each 

year, relative to the total lake surface area. 
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Figure 6.7. Bloom spatial extent anomalies, relative to the mean spatial extent from the 

nine years considered. From Palmer et al. (2015b). 
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Figure 6.8. An example of each of the eight output TIMESAT phenology features, mapped for the 2003 Lake Balaton summer bloom. From 

Palmer et al. (2015b).
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Figure 6.9. Summer bloom start timing, mapped for each of the nine years, as an example 

of spatial and temporal variability of the phenology features. From Palmer et al. (2015b). 

 



115 
 

 

Figure 6.10. Variability of all extracted phenology features over the full lake area and 

time series. The black line is the mean ± tenth and ninetieth percentiles (shaded grey area).  

From Palmer et al. (2015b).
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6.4.4 Correlation analysis  

Results from the Pearson correlation matrix analysis are reported in Table 6.2, 

with all shaded values significantly different from zero at the alpha = 0.001 level, and 

colour-coded to represent different positive and negative correlation coefficient (R) 

values. Although no significant correlation was found between start and end timing, a 

significant correlation was found between each of these and bloom length (intuitively, 

earlier start timing and later end timing are correlated with longer bloom events, R = -

0.76 and 0.61 respectively). High, positive correlations (0.64 ≤ R ≤ 0.77) were also found 

between maximum concentration and large integral, rate of increase and rate of decrease. 

A high degree of correlation was found between length and large integral (R = 0.88), as 

well as some correlation between start timing (R = -0.63) and large integral as well as end 

timing and large integral (R = 0.57). No statistically significant correlation was found 

between any of the extracted phenology features and the spatial extent of the bloom for 

the given year. 

 

Table 6.2. Pearson correlation coefficient matrix of extracted spring and summer bloom 

phenology features. Shaded values are different from 0 with a significance level alpha = 

0.001. From Palmer et al. (2015b).
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6.5 Discussion 

No quantitative, universal definition exists for phytoplankton bloom events in 

lakes, which are considered rather generally to be periods of high biomass, or to be 

dominated by certain indicator species such as cyanobacteria (Carvalho et al. 2013). Here, 

a threshold-based definition was used for quantification, considering approximately 

median concentrations of the full time series, plus 5 %, as has been the approach in similar 

oceanographic works. In exploratory pre-processing steps, the chosen threshold values 

were found to most adequately capture bloom events, and are held constant over the full 

spatial and temporal ranges considered here. An important consideration for future work, 

however, is that these thresholds will not be transferable to other lakes where the 

dynamics are different from those of Lake Balaton. This is especially crucial to consider 

when progressing to inter-lake comparisons of phenology metrics. Consistency among 

phenology metric definitions has been explored in works using archive in situ plankton 

data and highlighted as important in assessing trends, drivers of phenology shifts and 

comparisons of phenology metrics among studies (Rolinski et al. 2007; Thackeray et al. 

2012). The use of consistent metrics will likewise be a priority for future remote sensing 

works, and should be adapted to correspond as much as possible with those used in in 

situ, modeling and mesocosm studies so as to promote the complementarity and 

comparability of results. 

Blank, white areas in the phenology or spatial extent maps indicate that no 

summer bloom was detected for the associated pixels in that year, according to both the 

bloom start and the bloom end criteria used here being met. In addition to no bloom event 

having occurred in reality, two scenarios have been revealed that lead to a bloom event 

having occurred, but not being detected by the present approach. As such, the spatial 

extents presented in Figure 6.6 and used to calculate yearly anomalies should be 

considered to be rough, minimum estimates. One of these non-detection of a real bloom 

event scenarios is that for a given pixel there were too many missing values in the input 

time series. In such cases, no smoothed time series will be generated and no phenology 

metrics will be calculated for any year of the time series for that pixel. A clear example 

of this is the cluster of unmapped pixels to the southwest of the Tihany Peninsula in Basin 

2 (Figure 6.6), which is constant for all nine years of the time series. Some individual, 

scattered unmapped pixels where a bloom is otherwise mapped may also be a result of 
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this. Where missing values in the time series of a given pixel exceed a certain threshold, 

these pixels are excluded, however there is also error introduced when there are missing 

values in a pixel’s time series but this pixel is not excluded (i.e., there are less missing 

values than the threshold for exclusion). Error related to missing SeaWiFS image data on 

global ocean spring bloom initiation and peak timing was found by Cole et al. (2012) to 

be ± 2 to 3 days for 10% missing data, and as much as ± 15 to 30 days for 80% missing 

data, common in sub-polar regions. A similar analysis to quantify this source of error for 

Balaton and other lakes in future work is recommended.  

The second scenario is that, for the given pixel and the given bloom event, chl-a 

concentrations did not rise from below to above the defined bloom start threshold (i.e., 

10 mg m-3) or did not fall from above to below the defined bloom end threshold (i.e., 12 

mg m-3). For example, if chl-a concentrations were greater than 10 mg m-3 prior to the 

detected peak or remained above 12 mg m-3 following it, a bloom will not be mapped 

even when a peak is apparent in the smoothed function. The concentration thresholds for 

the lake were selected after exploratory analysis and were found to minimize, but not to 

completely preclude this phenomenon, which is another explanation for the scattered 

unmapped pixels where a bloom is otherwise mapped. An alternative approach to 

capturing all cyclic phytoplankton biomass peaks, regardless of background biomass 

magnitude would be to assess the median + 5 % for each pixel, which is unfortunately 

not possible using TIMESAT. 

Superimposed upon the unmapped pixels resulting from the two scenarios 

described above, blooms as defined here (chl-a concentrations rising above 10 mg m-3 

and falling below 12 mg m-3) are found not to occur in several years in Basin 4 and 

occasionally in Basin 3 as well (Figure 6.6). This is thought to be related to the typically 

much lower chl-a concentrations measured in Basin 4, and increasing toward Basin 1 

(Figure 6.3). In addition to the mapped phenology features, the inter-annual variability in 

spatial extents is also valuable information in itself. No correlation with any of the 

phenology features was found here (Table 6.2), but the variable environmental drivers 

such as temperature and nutrient loading may underlie year-to-year discrepancies in 

extent, and are to be examined in depth in future work.  

Considerable and novel insight into the phenology of Lake Balaton was revealed 

through the MERIS chl-a map time series analysis of this chapter, particularly regarding 
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the spatial and interannual variability of the mapped features. The reliability of MERIS 

retrieved and mapped phenology metrics, including the spatial and temporal variability 

thereof, are further supported by robust validation using phenology metrics retrieved from 

in situ data (Figures 6.4 and 6.5). Going beyond the use of point in situ data (typically 

one point per lake) to examine phytoplankton phenology allows us to assess the 

compounded spatial and temporal variability (i.e., not only the variability for a given point 

in space from year to year, but also the variability in space for a given year and most 

interestingly the variability in spatial variability from year to year). Blooms varied widely 

in terms of timing and magnitude from year to year and basin to basin, and were absent 

in some years over varying extents of the lake. Most of the metrics are characterized by 

at least as much variability spatially, within a given year, as temporally, for a given pixel 

throughout the full time series. This may suggest that the lake would have a certain 

buffering capacity, or adaptability, in terms of the impacts of potential shifts in 

phenological metrics related to environmental change throughout the aquatic food web. 

Although overall or mean conditions (or those recorded by a single in situ measurement) 

might vary substantially from year to year, or shift over time, the diversity or range of 

conditions present over the spatial extent of the lake may still encompass key conditions 

necessary for ecological functioning (e.g., mean start timing in 2005 is only Day of Year 

(DoY) 190, compared with DoY 215 in 2003, but the tenth and ninetieth percentile ranges 

overlap, from 170 to 210 in 2005 and 185 to 235 in 2003). In this way, variability in the 

extremes (e.g., earliest and latest start dates) and the temporal variability in the spatial 

variability itself are expected to be important to consider. Likewise, the changes in the 

spatial gradients and ranges may themselves be an important response to changes in 

environmental conditions. 

Apparent in Figure 6.8, as well as the maps in Appendix II, is the strong positive 

or negative gradient of several mapped phenology features coinciding with the general 

trophic gradient of the lake. This would be expected to be displayed by metrics such as 

maximum concentration or large integral, consistent with the already well-documented 

trophic gradient of the lake, but is also clear for rates of increase and decrease for example. 

Start timing also displays the strong southwest to northeast gradient, suggesting that 

nutrient loading from the Zala River and subsequent lake water circulation in this 

direction is the main underlying factor. End and mid-bloom timing, however, show a 

much weaker gradient, suggesting that different drivers or mechanisms underlie these 
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metrics. These may be more strongly driven by, for example, temperature dynamics 

(perhaps via temperature-mediated zooplankton grazing) which are typically more 

spatially consistent across the lake. As such, differences in the shifts or trends in different 

phenological metrics would be expected in response to changing environmental 

conditions, depending on the specifics of the latter (e.g., warming vs. nutrient loading). 

Some significant, positive or negative correlations are highlighted in the results 

of the Pearson correlation matrix (Table 6.2). Correlation between some of the retrieved 

phenology metrics would be expected as a result of similarities or inverse patterns in their 

mapped gradients as well as their related conceptual definitions in some cases (Table 6.1). 

Although some are quite obvious, such as the strong, positive relationships between 

maximum bloom concentrations and large integral (R = 0.77) and length and large 

integral (R = 0.88), some nuanced insight is provided. For example, although both start 

and end timing correlate highly with length (R = -0.76 and 0.61 respectively), start and 

end timing do not correlate with each other either positively or negatively, indicating 

rather that blooms do not shift completely but remain more or less fixed in length, and 

that longer blooms have either earlier starts or later ends, but not both. Start and end 

timing are also found to be weakly associated with larger magnitude blooms, through 

correlation with maximum concentration (R = -0.27 and 0.29) and with large integral (R 

= -0.63 and 0.57). 

Although the retrieval of phenology metrics was demonstrated for only the annual 

summer blooms here, which are more important for Lake Balaton in terms of peak and 

total biomass, the metrics of annual spring bloom phenology can be similarly mapped. 

However, given that FLH has been found to be insensitive to lower phytoplankton 

biomass concentrations, as revealed in chapter 4, an algorithm better suited to such 

conditions would need to be used to generate the input chl-a time series. This would also 

require a reparameterization of the TIMESAT settings used here, as lower biomass 

Balaton spring blooms would often not be detected using the start and end thresholds of 

the current study. Remote sensing has been found to robustly identify cyanobacteria 

blooms (Matthews et al. 2012; Wynne et al. 2008) and to retrieve phycocyanin (PC) 

concentrations, a proxy for cyanobacteria presence and biomass in phytoplankton blooms  

(Hunter et al. 2010; Li et al. 2012; Li et al. 2015; Matthews et al. 2012; Mishra et al. 2013; 

Simis et al. 2005; Wynne et al. 2008). Given this, and that cyanobacteria are of particular 

interest from an ecotoxicology perspective and are associated with eutrophic conditions 
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(Smith 2003), the extraction of cyanobacteria phenology using remotely sensed 

phycocyanin concentrations and a similar approach as demonstrated here is of high 

interest for future work. It should be noted, however, that to achieve reliable phenology 

metric retrievals and mapping for lake phytoplankton, whether for phytoplankton biomass 

more generally or for cyanobacteria more specifically, the use of validated, robust 

retrieval algorithms for input chl-a or PC mapping is essential.  

A number of previous works have taken different approaches to considering 

phytoplankton phenology in lakes using remote sensing, and particularly that of 

cyanobacteria. Several have looked at temporal changes in cyanobacteria surface scum 

areal extent using the floating algae index (FAI) applied to MODIS (Hu et al. 2010) and 

to both MODIS and Landsat (Duan et al. 2014) data for Lake Taihu, China. A threshold 

is applied to the retrieved FAI maps to indicate the presence or absence of surface scum, 

and bloom start timing and duration are determined from the time series, for each pixel. 

Matthews (2014) investigated time series of lake-wide median chl-a, as well as 

cyanobacteria bloom and surface scum (chl-a > 350 mg m-3) areal extent for 50 lakes 

throughout South Africa using the MPH algorithm (Matthews et al. 2012) applied to 

MERIS data from 2002 to 2012. Monthly averages of each were input into time series 

analysis. Timing (month) of maximum chl-a concentration and maximum cyanobacteria 

and surface scum surface area (referred to as phase) were retrieved, as was yearly 

amplitude of chl-a concentrations (the concentration difference between months with 

maximum and with minimum concentrations in a given year). Monthly anomalies and 

monthly and yearly trends were also calculated between 2005 and 2011. Binding et al. 

(2011) investigated yearly cyanobacteria blooms in the US/Canadian Lake of the Woods, 

similarly took lake-wide median chl-a concentrations (retrieved from MERIS Maximum 

Chlorophyll Index (MCI) algorithm (Gower et al. 2005)) as input into the generation of 

their time series (using all available imagery), and subsequently investigated the timing 

of maximum chl-a concentrations (referred to as phase in Matthews (2014) and peak 

timing here) as well as the maximum concentrations themselves, and the surface area of 

different trophic levels of the yearly blooms. Stumpf et al. (2012) estimated cyanobacteria 

concentrations in Lake Erie using the Cyanobacteria Index (CI) algorithm (Wynne et al. 

2008) applied to MERIS imagery from 2002 to 2011. CI images were dekad-binned (to 

maximum CI values) and “bloom intensity” of each dekad-binned image was calculated 

as the sum of CI, for all lake pixels where CI is greater than 0.001 (indicative of the 
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presence of a significant cyanobacteria (Microcyctis) bloom), as a proxy for total biomass 

of the associated period. Bloom area was calculated as the total area with CI greater than 

0.001 and annual “bloom severity” was calculated as the mean of the three highest “bloom 

intensities” for a given year. 

The TIMESAT approach used here is distinct from most previous works in that 

time series (of chl-a as in the current work, but maps of PC or other parameters with a 

regular seasonality could also be input) are generated and phenology metrics retrieved at 

the individual pixel level, which can then be examined and analysed through mapping. 

Current results highlight the high degree of spatial variability that can comprise 

phytoplankton phenology, even within a single lake, which is not captured through 

approaches that use lake-wide median or cumulative concentrations to examine the 

temporal evolution of bloom events. Although the FAI threshold approach to mapping 

the presence/absence of surface scums and the temporal evolution thereof enables the 

determination and mapping of start timing and duration of scum-forming blooms for each 

water pixel (Duan et al. 2014; Hu et al. 2010), this type of approach is limited to 

application for lakes wherein blooms typically form surface scums, does not account for 

non-scum forming blooms, and was also found to be limited due to the inability of the 

FAI algorithm to distinguish surface scums from macrophytes (Hu et al. 2010). 

Furthermore, since bloom concentration magnitude is not accounted for (rather 

seasonality metrics are based on a binary presence or absence of scum), several of the 

metrics demonstrated here (i.e., maximum concentration, rates of increase and decline, 

large integral) would be unable to be calculated. Each approach taken and set of 

parameters generated in the previous and current works provide a unique and potentially 

complementary perspective on bloom dynamics, and each is associated with its respective 

advantages and limitations. The tailoring of some phenology metrics to the specific 

contexts of the lake system or systems studied may be necessary or desirable in some 

instances. However, the cross-evaluation and standardization of features where possible 

would greatly facilitate the comparison of different lakes’ behaviours over time and the 

understanding of underlying environmental drivers, which is of clear importance within 

the context of global climate change for example. 

Phenology events generally respond to cues from biotic or abiotic environmental 

signals or changes. Typical responses of phenology metrics to changing environmental 

conditions reported from laboratory, mesocosm, modelling and field studies include shifts 
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in the timing of phytoplankton blooms, in terms of onset, peak and end (Berger et al. 

2010a; Lewandowska and Sommer 2010; Meis et al. 2009; Sommer and Lewandowska 

2011; Winder et al. 2012; Winder and Schindler 2004a, b; Winder and Sommer 2012), 

variable growth rates (Maberly et al. 1994), changes in overall phytoplankton biomass 

(or bloom magnitude) (Elliott et al. 2006; Lewandowska and Sommer 2010; Sommer and 

Lewandowska 2011), as well as decreased overall biodiversity and increased dominance 

of cyanobacteria (Elliott 2012; Elliott et al. 2006). The main underlying controls on 

freshwater phytoplankton phenology have been found to be temperature (Gaedke et al. 

2010; Thackeray et al. 2008; Winder et al. 2012; Winder and Schindler 2004a) and related 

stratification timing (Winder and Schindler 2004b), ice break up (Adrian et al. 2006), 

light conditions (Gaedke et al. 2010; Winder et al. 2012), grazing pressure (Gaedke et al. 

2010), overwintering population levels (Gaedke et al. 2010) and nutrient levels 

(Feuchtmayr et al. 2012; Thackeray et al. 2008). Winder and Schindler (2004b) linked 

phytoplankton phenology shifts in Lake Washington, USA with the extended stratified 

period related to Pacific Decadal Oscillation (PDO) (akin to the North Atlantic Oscillation 

(NAO) effects observed in European lakes (Straile et al. 2003)) and El Niño Southern 

Oscillation (ENSO) events. A meta-analysis carried out by Blenckner et al. (2007) 

demonstrated coherent direct and indirect responses to climate forcing of the North 

Atlantic Oscillation (NAO) by various biophysical and biochemical factors on long-term 

data from European lakes spanning diverse settings (northern, central and western 

regions). These include increased summer cyanobacteria biomass during positive NAO 

years, for example.  

Links between environmental drivers and shifts in phytoplankton phenology 

features have also been revealed in the remote sensing studies of the pelagic ocean 

mentioned in the introduction. Generally, differences in phenology metrics have been 

reported by latitude, especially in the timing and duration of spring bloom events, related 

to predominance of light or nutrient limitation which varies with latitude (Siegel et al. 

2002). Sea surface temperature (SST) and photosynthetically active radiation (PAR) have 

also been considered and found to have a strong influence on phenology, in addition to 

the influence of latitude by González Taboada and Anadón (2014) and Racault et al. 

(2012). El Niño/La Niña events and other climate indices such as the Southern Oscillation 

Index (SOI) and the Pacific Decadal Oscillation (PDO) have been correlated with 

phenological indices (González Taboada and Anadón 2014; Racault et al. 2012; Sasaoka 
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et al. 2011). Earlier end of ice cover was reported to be an important driver of earlier 

spring phytoplankton blooms in the Artic, with the timing of the maximum annual chl-a 

concentration advancing by up to 50 days over the 13 years of the study (Kahru et al. 

2011). Although the in situ, mesocosm and modelling studies discussed here, as well as 

remote sensing analyses of pelagic ocean phytoplankton phenology, typically focus on 

the spring bloom, summer/fall blooms in many temperate lakes are of particular concern 

due to their high biomass concentrations and cyanobacteria dominance, as in the case of 

Balaton. This is particularly the case under predicted climate change scenarios, with 

intensified cyanobacteria blooms associated with warming and eutrophication (Paerl and 

Huisman 2009). 

Some of the remote sensing investigations into phytoplankton and cyanobacteria 

phenology in lakes have also extended their results to comparison with potential 

underlying environmental drivers of variability. Stumpf et al. (2012) found a significant 

correlation between spring discharge and total phosphorous (TP) load of the Maumee 

River to Lake Erie and summer cyanobacteria blooms in the latter, and used this to 

construct a bloom forecasting model. Binding et al. (2011) found April through July 

cumulative rainfall to be significantly correlated with chl-a concentration peak timing and 

January through August cumulative temperature to be significantly correlated with peak 

concentrations. Nutrient ratios (total nitrogen (TN):TP) and preceding winter 

temperatures were found by Duan et al. (2014) to underlie the start timing of surface 

scum-forming blooms in Lake Taihu. Such previous works as well as the current results 

encourage the application of the methodology described here to other lakes, as well as the 

exploration of the effect of variable environmental conditions on mapped phenology 

features. 

Satellite remote sensing as used here provides general approximations of 

phytoplankton biomass via chl-a and will therefore be unable to address species specific 

phenology, including shifts in individual species’ phenology in response to various 

environmental drivers and across trophic levels as has been able to be documented 

through several in situ, mesocosm and modelling works described above. However, it is 

hoped that remote sensing products such as those explored here can nevertheless 

complement ongoing in situ, mesocosm and modelling phenological analyses. This is 

supported by the use of more general phytoplankton biomass indicators in a number of in 

situ studies (Adrian et al. 2006; Gerten and Adrian 2000; Seebens et al. 2009; Thackeray 
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et al. 2012). Another limitation of remote sensing in this capacity is the relatively limited 

temporal coverage. The MERIS time series used here is only available between mid-2002 

and early 2012 for example, compared with in situ datasets that have been used extending 

back multiple decades, in some cases to 1946 (Maberly et al. 1994). However, results 

from Meis et al. (2009) demonstrate that a significant trend in the advancement of bloom 

initiation could be obtained using a time series of only 15 years, a temporal coverage soon 

to be obtained by MODIS. Similarly, the use of satellite imagery is currently restricted to 

medium and large lakes, given the spatial resolutions of suitable sensors. Potential 

improvement is foreseen with the Sentinel-2 MultiSpectral Instrument (MSI), 

characterized by spatial resolution of less than 60 m and improved spectral resolution in 

comparison with Landsat.  

Ongoing and future work aims to bring together diverse datasets (nutrient loading, 

temperature, ice cover, irradiance, etc.) to thoroughly examine potential environmental 

drivers that might underlie such variability. Although MERIS data are no longer acquired 

on an ongoing basis, the future Sentinel-3 OLCI and Sentinel-2 MSI sensors will provide 

ongoing and improved sources of data for mapping Lake Balaton chl-a (ESA 2013b, c). 

In addition to chl-a, the validation and mapping of PC, an indicator pigment of 

cyanobacteria, is currently being tested for retrieval from MERIS and Sentinel data for 

Lake Balaton. As mentioned in Chapter 2, cyanobacteria detection and mapping is of 

particular interest due to the high biomass, eutrophic conditions which they tend to be 

associated with as well as their potential toxicity (Paerl and Huisman 2009; Smith 2003). 

The mapping of Lake Balaton chl-a phenology presented here, and increasingly robust 

measurements of phycocyanin using satellite imagery suggests the potential to similarly 

map cyanobacteria phenology. In addition to the application and adaptation of 

phytoplankton phenology mapping to other lake ecosystems, and their comparison with 

the current results, as well as the dedicated investigation into the influence of 

environmental drivers on phytoplankton phenology, cyanobacteria phenology metric 

mapping is of high interest for future work. As is the case for chl-a phenology mapping 

however, it is important to note that the robust performance of the retrieval algorithms 

used to produce the input phycocyanin maps is crucial.  
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6.6 Conclusions 

Phenology features of Lake Balaton phytoplankton have been retrieved and 

mapped here for the first time using MERIS satellite imagery, making use of a validated 

chl-a time series product and TIMESAT software. Lake Balaton summer bloom 

phenology features and bloom spatial extent were shown to display a high degree of both 

spatial and temporal variability, revealed through mapping as well as through statistical 

analysis. Correlation between some extracted bloom features revealed further nuance in 

bloom dynamics. The satellite-based mapping of phytoplankton phenology in inland 

waters shows great promise for furthering the understanding of phytoplankton dynamics, 

but is dependent on the accuracy of the chl-a product input. Chl-a retrieval validation 

therefore remains a crucial step, and will also influence the potential for inter-lake 

comparison, as will selected smoothing techniques and parameterization. Future research 

directions include quantitatively assessing the roles of potential environmental drivers of 

phenology feature variability, such as temperature and nutrient conditions. Also of 

interest would be the retrieval and comparison of phenology features from other lakes and 

notably from across diverse environmental, climatological, latitudinal and watershed 

settings, and the mapping of cyanobacteria biomass phenology specifically, making use 

of phycocyanin retrieval algorithms that are currently in development and testing stages. 

The fine-tuning of methodology adapted to freshwater phytoplankton phenology 

retrievals and mapping, considering some of the encountered issues discussed above, is 

another priority. 
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Chapter 7 

 

Ultraviolet Fluorescence Light Detection 

and Ranging measurements of water 

quality parameters under turbid lake 

conditions  
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The work presented in this chapter has been published as: 

Palmer, S. C. J. et al. (2013). Ultraviolet Fluorescence LiDAR (UFL) as a Measurement 

Tool for Water Quality Parameters in Turbid Lake Conditions. Remote Sensing, 

5, 4405-4422. 

 

7.1 Introduction & rationale 

 In addition to the passive optical remote sensing techniques used to retrieve chl-a 

and other physiochemical water quality parameters, described in the preceding chapters 

of this thesis, active fluorescence Light Detection and Ranging (LiDAR) approaches have 

also been used for many years in oceanographic settings (Farmer et al. 1979; Hoge and 

Swift 1981). Sensors aboard airborne, ship-mounted and stationary platforms have made 

measurements in diverse coastal, estuarine and pelagic ocean contexts. Sensor instrument 

types vary from hyperspectral to fluorosensor to imaging LiDAR and make use of 

different types of lasers, different optical geometries and are optimized to measure certain 

parameters (Babichenko 2008; Barth et al. 2000). In addition to measuring phytoplankton 

biomass through the fluorescence peak of chl-a near 685 nm, CDOM is measured through 

its broad-peak fluorescence centred near 440 nm (Rogers et al. 2012; Vodacek et al. 

1995), TSM has been estimated from the sea surface using its backscattering (Aibulatov 

et al. 2008), and pollutants such as oil spills have been detected (Abramov et al. 1977; 

Babichenko 2008; Barbini et al. 1999; Chubarov and Fadeev 2004; Pelevin et al. 1995). 

Synergy between fluorescence LiDAR and passive, satellite remote sensing has been 

achieved through the use of fluorescence LiDAR measurements in pelagic ocean settings 

as abundant in situ validation data (Fiorani et al. 2004; Hoge et al. 2003).  

 Airborne fluorescence LiDAR was used in inland waters settings in some early 

testing and application (Bristow et al. 1985), however more recent examples of its use in 

the research and monitoring of freshwater systems are very few (Babichenko et al. 2006; 

Babichenko et al. 2004). Fluorescence spectroscopy itself has provided enormous insight 

in both freshwater and marine settings through the characterization of CDOM, pollutants 

and phytoplankton (Anttila et al. 2008; Beutler et al. 2002; Proctor and Roesler 2010; 

Stedmon et al. 2003; V.-Balogh et al. 2003; Vodacek 1989). Combining the remote 

sensing capabilities of LiDAR with the ecological insight provided by fluorescence 
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spectroscopy would allow the characterization of lake water quality features in situ over 

large spatial areas and non-intrusively. The spatial scale of measurements able to be 

achieved by ship-mounted measurements, typically between one and five meters apart, 

would increase our understanding of small to medium scale ecological processes in lakes 

and provide a large number of measurements at the sub-pixel level for satellite sensor 

algorithm validation. 

  The Ultraviolet Fluorescence LiDAR (UFL), version 9, of the Shirshov Institute 

of Oceanology was used to undertake the current work during a research visit by and field 

campaign with its operating scientists. It is designed to measure the backscattering and/or 

fluorescence associated with the measurement of chl-a concentration, CDOM absorbance 

and TSM concentration, with distinct, non-overlapping channels for each and a strong 

signal due to its active, laser-induced nature (compared with the weaker signals induced 

by solar energy in passive remote sensing). It is thus ideally suited to measure all three 

groups of optically significant substances important in lakes. Given the novelty of 

fluorescence LiDAR measurements in lake waters, possible limitations that may be 

related to the high turbidity and optical complexity remain to be examined, particularly 

saturation at high concentrations. At high concentrations, the absorbance or 

backscattering features across the visible and near-infrared spectral range may mask the 

fluorescence signal, or the emitted fluorescence may itself be absorbed or scattered. The 

variety of different species and groups of phytoplankton found in natural communities 

may present additional challenges or opportunities through their varying chl-a 

fluorescence yield and distinct accessory pigments.    

 

7.2 Objectives 

 This chapter details laboratory and field fluorescence LiDAR measurements 

carried out in a lake setting for the first time at Lake Balaton. The objectives are thus 

exploratory in nature and can be summarized as follows: 

(1) To determine the reliability of UFL chl-a, CDOM and TSM measurements under 

the turbid and optically-complex conditions encountered in Lake Balaton during 

field measurements; 
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(2) To extend the range and variability of concentrations through a series of tank 

measurements carried out in the laboratory; 

 

(3) To identify the influence on UFL chl-a measurements when multiple 

phytoplankton species are present and to explore the possibility of distinguishing 

species via their UFL emission signals; 

 

(4) To point to possible extensions of the current work for ongoing investigation. 

 

7.3 Methods 

7.3.1 Ultraviolet Fluorescence Light Detection and Ranging (UFL) 

The series of Ultraviolet Fluorescence Light Detection and Ranging (LiDAR), 

UFL instruments 1 – 9, was developed by the Shirshov Institute of Oceanology of the 

Russian Academy of Sciences, Moscow (Aibulatov et al. 2008; Pelevin et al. 2001). 

Specific features of the Shirshov UFL-9, used during 2012 laboratory experiments and 

Lake Balaton field campaigns, are described here. Instrument details can also be found in 

Table 7.1. 

Dual neodymium-doped yttrium aluminum garnet (Nd:YAG) excitation laser 

pulses of the UFL-9 are emitted at a frequency of 2 Hz for a duration of 6 ns. The resulting 

distance between point measurements depends on the travel velocity of the transporting 

vehicle; these generally range from between one and five metres. Low pass filtering over 

a three point moving average window is then used to reduce noise. Measurements can be 

taken from a distance of between 1.5 and 25 m above the target (the water surface) by 

adjusting the telescope length accordingly, and with an incidence angle of between 10° 

and 60° degrees relative to the surface. During the 2012 field campaign, the UFL-9 was 

mounted on the front of the research boat of the BLI, as demonstrated in Figure 7.1. The 

dual excitation wavelengths of the emitted laser beams are 355 (1.5 mJ energy) and 532 

nm (3 mJ energy), however in the current work only the 355 nm beam was used. The 532 

nm pulse is employed under conditions of low insolation to strengthen the measured 

signal, and was not found to be necessary during either field or laboratory measurements. 
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The eleven bands of the UFL-9 spectral receiver are centred at 354, 385, 404, 424, 

440, 460, 499, 532, 620, 651, and 685 nm, so as to specifically target the identification 

and measurement of chl-a, TSM and CDOM, as well as water Raman backscattering. 

Figure 7.2 demonstrates a typical spectrum across the spectral receivers. Similar to 

elsewhere in the literature (Barbini et al. 2003; Barbini et al. 2001; Wright et al. 2001), 

CDOM is estimated through the fluorescence of each measurement point at 440 nm 

normalized to water Raman backscattering of the same point at 404 nm upon excitation 

by the 355 nm wavelength laser and fluorescence at 685 nm is normalized to water Raman 

backscattering to estimate chl-a concentrations at each measurement location. Specific to 

the UFL series, TSM is measured by backscattering of the 355 nm laser pulse at this same 

wavelength, normalized to Raman scattering. To our knowledge, the UFL series is the 

first to incorporate a spectral receiver band at 355 nm for the measurement of TSM 

backscattering, thus integrating a crucial parameter in the study of optically complex 

waters. Empirical coefficients derived between the normalized fluorescence signal of a 

subset of UFL measurements and coinciding in situ measured concentrations are then 

applied to the full suite of UFL measurements for chl-a, CDOM and TSM mapping. 

 

 

 

Figure 7.1. UFL-9 aboard the BLI research boat for the 2012 field campaign.  
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Table 7.1. Key features of the Ultraviolet Fluorescence LiDAR (UFL-9). From Palmer et 

al. (2013). 

Excitation laser 

wavelengths 

Receiver spectral channels 

355, 532 nm 

355, 385, 404, 424, 440, 460, 499, 532, 620, 651, 

685 nm 

Sounding frequency 2 Hz 

Pulse duration 6 ns  

Pulse energy 1.5 mJ (355 nm pulse), 3 mJ (532 nm pulse) 

Telescope 
Kepler; adjustable length to target range 1.5–25 

m 

Power supply 220 V, 50 Hz, 120 W 

Dimensions; weight 1.0 × 0.7 × 0.3 m; 35 kg 

Receivers Photomultipliers 

Channel filters 

Four-channel beam splitter; interference filters;  

high-frequency Analogue-to-Digital Conversion 

(ADC) 

Telescope clear aperture 140 mm 

Analog-to-Digital 

Converter frequency 
50 MHz 

Analog-to-Digital 

Converter resolution 
10 bit 
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Figure 7.2. Example fluorescence and backscattering signals measured by UFL (355 nm 

excitation laser pulse) across its 11 bands, including the removal of the colored dissolved 

organic matter (CDOM) baseline at 404 nm to establish Raman scattering for 

normalization. From Palmer et al. (2013). 

 

The field campaigns on Lake Balaton represent the first attempt to our knowledge 

to use ship-mounted fluorescence LiDAR techniques in investigations in a lake setting. It 

should be noted, however, that a particularly interesting feature of the application of 

fluorescence LiDAR systems to assess water components is the possibility to derive 

concentration measurements with depth for each measurement point, allowing for 3D 

profiles. As excitation laser depth penetration decreases under increasingly turbid 

conditions (i.e., is a function of turbidity as well as laser wavelength and strength 

(Babichenko 2008)), this is unfortunately not possible in the case of Lake Balaton 

(characterized by high turbidity; Secchi depth ranging from 20 cm to just under one 

metre). Rather, measurements of the CDOM absorption coefficient, and chl-a and TSM 

concentrations are only available for the water surface layer. Elsewhere, under less turbid 

conditions, the UFL series has measured chl-a fluorescence over depths of 2 to 3 m, 

CDOM fluorescence and TSM backscattering over depths of approximately 10 m 

(Kopova et al. 2010), ranges typical of fluorescence LiDAR systems (Babichenko 2008). 
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The UFL-9 weighs a total of 35 kg and measure 100 x 70 x 30 cm, including water 

resistant housing, enabling its installation aboard medium to small research vessels as 

well as small motor boats, typical in limnological studies, in addition to larger vessels, 

more typical of oceanographic research (e.g., the RV Akademik Ioffe of the Shirshov 

Institute of Oceanology, which is 117 m in length, 6600 gross tons). Power can be 

supplied from an on-board network or generator (220 V, 50 Hz, 120 W), further 

enhancing the flexibility and portability of the instrument in diverse environments. 

Through the combination of instrument and hardware design, and the addition of a 

receiver band targeting the measurement of TSM (in addition to more common 

fluorescence-based measurements of chl-a and CDOM), UFL instruments present new 

opportunities for fluorescence LiDAR measurement of water components in limnology. 

 

7.3.2 Tank measurements 

 In June 2012, a sequence of tank measurements were designed to be carried out 

in the laboratories of the BLI, with the overarching purpose of extending the range of 

water constituent concentrations and combinations expected to be encountered in the field 

measurements from the same period, and thus examine the limits of UFL measurements 

in highly turbid and optically complex conditions as well as potential application to other 

lakes. Phytoplankton biomass was measured between chl-a concentrations of 0.01 and 

400 mg m-3, using phytoplankton cultivated in the months leading up to the tank 

measurements at the BLI. Two algal species were used, to allow insight into the 

sensitivity of UFL measurements to the distinct chl-a fluorescence yields and the 

fluorescing accessory pigments characterizing each. One was the cyanobacteria 

Cylindrospermopsis raciborskii (ACT 9502) and the other the chlorophyta Scenedesmus 

armatus (ACT 9710). Both species are commonly found in Lake Balaton. Cyanobacteria 

blooms occur regularly in the summer months, and are of particular concern due to their 

high productivity and potential toxicity. Measurements were made of individual species’ 

cultures, diluted with filtered Lake Balaton water, as well as varying concentrations of 

the two cultures combined in a 2:1 (Cylindrospermopsis raciborskii : Scenedesmus 

armatus) ratio. Sediment for use in the experimental measurements was collected from 

Lake Balaton and oven-dried. TSM concentrations were expected to range between less 

than 0.1 and 120 g m-3. Relatively CDOM-rich water from the Zala River was collected 
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for use as the high-CDOM end-member in the tank measurement, diluted at varying 

intervals by filtered Lake Balaton water. CDOM absorbance was expected to range 

between 0 and 0.15 absorption m−1 at 440 nm (aCDOM(440)), limited by the maximum 

absorbance of the Zala River water. 

 The tank used consisted of a 1.2 m high cylindrical, matte black polyvinyl tube, 

sealed at one end. Water level (1.0 m) and volume (32 L) were constant across all 32 

measurements. The UFL was stabilized at a height of 2.0 m above the water surface, at 

an angle of approximately 5°, so as to avoid surface glint identified in trial measurements. 

The UFL excitation laser beam was directed to the centre of the tank, and the collection 

of 2 L of tank water sample immediately followed the UFL measurement for conventional 

laboratory measurements of TSM, CDOM and chl-a (described in Sections 4.3.3 and 

7.3.4). 

 

7.3.3 Field measurements 

 In situ UFL measurements were made of Lake Balaton between June 4th and 7th 

2012. The UFL was attached to the research boat of the BLI approximately two metres 

above the water surface and at a 45° angle. In addition to UFL measurements made while 

the boat was in motion for mapping, 34 UFL measurements coinciding with water 

samples were taken for validation by conventional laboratory measurement. 

Measurements were made across the full, longitudinal trophic gradient characterizing 

Lake Balaton in an attempt to maximize the range of chl-a concentrations encountered. 

Likewise, measurements were made into the mouth of the Zala River to maximize the 

range of CDOM encountered. 

 

7.3.4 Validation data 

All water samples collected during both tank and field measurements were 

analyzed as per the protocol of the Nutrient Cycling Laboratory of the BLI described in 

Section 4.3.3. However, samples coinciding with field measurements were taken from 

the surface layer (< 50 cm depth) rather than integrated over the water-column, as is 

standard practice, to coincide more closely with the UFL measurements. Coloured 
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dissolved organic matter (CDOM) was also determined following conventional 

methodology (Cuthbert and del Giorgio 1992), through its absorbance at 440 nm (m-1), 

measured using a using a Shimadzu spectrophotometer, model UV 160A. 

 

7.3.5 Data processing and statistical analysis 

 Fluorescence emission and backscattering measured during tank and field 

campaigns was normalized to Raman scattering at 404 nm through the establishment and 

subtraction of a baseline between emission at 385 and 424 nm to remove the effect of 

CDOM at this wavelength. Above this baseline, any signal at 404 nm is considered to be 

from Raman Scattering alone (Figure 7.2). Empirical relationships were determined 

between the normalized fluorescence emission at 440 nm and CDOM absorbance, the 

normalized fluorescence emission at 685 nm and chl-a concentration and normalized 

backscattering at 355 nm and TSM concentration. The field measurement dataset was 

randomly split 70:30 for training and testing, respectively, in cross-validation. 

Regressions were performed within SigmaPlot statistical and graphing software, v. 12.3 

(© 2014 Systat Software Inc.). 

 

7.4 Results 

7.4.1 Tank measurements 

 Results of the 32 conventional BLI sample analyses coinciding with UFL tank 

measurements are summarized in Table 7.2. Unfortunately, only 34 % (n = 11) of the tank 

measurements corresponded with a valid CDOM absorbance measurement, due to the 

remaining 66 % (n = 21) falling below the detection limit. The ranges of CDOM measured 

was 0.003 to 0.122 aCDOM(440), that of phytoplankton biomass was 0.01 to 377.9 mg 

m-3 chl-a and that of TSM was <0.10 to 128.4 g m−3. 

 Linear models were found to best relate normalized fluorescence and 

backscattering signals at 440, 685 and 355 nm to CDOM absorbance, chl-a concentration 

and TSM concentration respectively (Table 7. 3). UFL measurements performed highly 

across the full measured ranges of TSM concentrations (Figure 7.3a; R2 = 0.91, p < 
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0.001), of CDOM absorbance (Figure 7.3b; R2 = 0.95, p < 0.001) and of chl-a 

concentrations (Figure 7.3c; R2 = 0.85, p < 0.001). 

  

Table 7.2. Descriptive statistics of TSM, chl-a and CDOM measurements used to validate 

laboratory tank UFL measurements. From Palmer et al. (2013). 

 n Minimum Maximum Average Median 
Standard 

Deviation 

TSM (g m−3) 32 <0.10 128.4 24.21 2.62 39.39 

CDOM 

(aCDOM(440)) 
11 0.003 0.122 0.023 0.007 0.037 

Chla (mg m−3) 32 0.01 377.9 44.86 3.31 96.47 

 

 

Table 7.3. Validation of UFL tank measurements, including equation and coefficients, 

coefficient of determination (R2) and significance (p-value). From Palmer et al. (2013). 

 Equation R2 p 

TSM (g m−3) 0.13 × UFL355 - 5.14 0.91 < 0.001 

CDOM (aCDOM(440)) 0.002 × UFL440 + 0.004 0.95 < 0.001 

Chla (mg m−3) 288.85 × UFL685 - 4.84 0.85 < 0.001 

 

 

It was further found that the relationships between chl-a concentration and 

normalized fluorescence at 685 nm were robust and distinct for C. raciborskii and for S. 

armatus species. Whereas normalized fluorescence at 685 nm and chl-a concentration 

correlated linearly across the full concentration range for S. armatus (1.04–82.79 mg m−3, 

R2 = 0.99, p < 0.004, n = 4), normalized fluorescence at 685 nm increased exponentially 

with increasing chl-a concentrations in the case of C. raciborskii (0.19–377.88 mg m−3, 

R2 = 0.96, p < 0.005, n = 5). Furthermore, measurements containing the 2:1 mixture of 

the two cultures fell between the relationships described for the individual species (Figure 

7.4; 2.30–292.09 mg m−3, R2 = 0.99, p < 0.001, n = 4). 
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 C. raciborskii cultures were found to display a distinct fluorescence emission peak 

at 650 nm which is not apparent for S. armatus cultures (Figure 7.5), and the ratio of 

fluorescence emission at 650 nm to that at 685 nm was found to distinguish species 

cultures across chl-a concentrations (Figure 7.6). A Generalized Linear Model (GLM) 

performed in RExcel revealed that species is the only significant source of variance (F = 

18.68, p < 0.002) when chl-a concentration (F = 0.11, p = 0.75), species and the combined 

effect of the two (F = 0.07, p = 0.93) are considered (chl-a concentration, species and the 

combined effect of the two are considered = independent variables; the ratio of 

normalized fluorescence emission at 650 nm to that at 685 nm = dependent variable). 

Measurements of the two species combined again fell between the two species considered 

separately (Figure 7.6). 
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Figure 7.3. Relationships of coinciding UFL (excitation wavelength = 355 nm) and 

validation measurements of (a) TSM (TSM (g m-3) = 0.13 × UFL355 (backscattering) – 

5.14; R2 = 0.91; p < 0.001; n = 32); (b) CDOM absorbance (aCDOM(440)) (CDOM = 0.002 

× UFL440 (fluorescence emission) + 0.004; R2 = 0.95; p < 0.001; n = 11); and (c) chl-a 

concentration (mg m-3) (chl-a = 288.85 × UFL685 (fluorescence emission) - 4.84; R2 = 

0.85; p < 0.001; n = 32). From Palmer et al. (2013).  
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Figure 7.4. Distinct relationships between chl-a concentration and fluorescence emission 

at 685 nm (excitation laser pulse wavelength = 355 nm) for Cylindrospermopsis 

raciborskii (chl-a = 332.77 × UFL685 1.13; R2 = 0.96; p < 0.005; n = 5), Scenedesmus 

armatus (chl-a = 143.98 × UFL685 + 2.80; R2 = 0.99; p < 0.004; n = 4), and a mixture of 

the two (chl-a = 212.98 × UFL685 0.97; R2 = 0.99; p < 0.001; n = 4). From Palmer et al. 

(2013).  
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Figure 7.5. UFL fluorescence emission spectra (excitation laser pulse wavelength = 355 

nm) for (a) Cylindrospermopsis raciborskii and (b) Scenedesmus armatus cultures of 

varying biomass concentrations. From Palmer et al. (2013).  
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Figure 7.6. Discrimination of phytoplankton cultures, Cylindrospermopsis raciborskii 

and Scenedesmus armatus, through the ratio of fluorescence emission at 650 nm to that 

at 685 nm (excitation laser pulse wavelength = 355 nm; F = 18.68; p < 0.002). Averages 

are shown by symbols, bars report ± standard error. From Palmer et al., (2013). 

 

7.4.2 Field measurements 

Results of the 34 conventional BLI sample analyses coinciding with UFL field 

measurements are summarized in Table 7.4. TSM varied highly (over the range of 2.93 

to 30.50 mg m−3) over the study period, responding rapidly to changing wind conditions. 

Field measurements were unfortunately only possible between the spring and summer 

blooms, thus limiting the range of phytoplankton biomass encountered (measured 

between 2.66 to 7.33 mg m−3). CDOM absorbance coinciding with UFL measurements 

in the field ranged from 0.03 to 0.12 aCDOM(440). 

Relationships between TSM, chl-a and CDOM and their associated normalized 

UFL-measured backscattering and fluorescence signals were found to differ greatly 

between tank and field measurements, and a separate calibration was deemed necessary. 

Cross-validation based on only field UFL measurements and coinciding measurements 

of CDOM absorbance, chl-a and TSM concentrations resulted in highly robust retrievals 

in all cases. Strong linear relationships were found for both TSM (Figure 7.7) and chl-a 
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(Figure 7.8), whereas the relationship between CDOM and normalized fluorescence at 

440 nm was exponential (Figure 7.9).  

 

Table 7.4. Descriptive statistics of TSM, CDOM and chl-a measurements used in Lake 

Balaton UFL field measurement calibration and validation. From Palmer et al. (2013). 

 n Minimum Maximum Average Median 
Standard 

Deviation 

TSM (mg∙m−3) 34 2.93 30.50 15.86 15.01 5.79 

CDOM (aCDOM(440)) 34 0.006 0.120 0.014 0.008 0.019 

Chla (mg∙m−3) 34 2.66 7.33 4.35 3.95 1.20 

 

 

 

 

Figure 7.7. Field campaign specific (a) calibration (TSM = 0.12 × UFL355 + 1.81; R2 = 

0.72; p < 0.001) and (b) validation of UFL TSM measurements (in situ TSM = 0.78 × 

UFL TSM + 2.79; R2 = 0.81; p < 0.001; RMSE = 2.80 g m−3). Solid line is regression 

trend line; dotted line is 1:1. From Palmer et al. (2013).  



144 
 

 

Figure 7.8. Field campaign specific (a) calibration (chl-a = 89.2 × UFL685 + 1.98; R2 = 

0.19; p = 0.04) and (b) validation of UFL chl-a measurements (in situ chl-a = 1.18 × ULF 

chl-a – 1.18; R2 = 0.69; p = 0.04; RMSE = 0.71 mg m−3). Solid line is regression trend 

line; dotted line is 1:1. From Palmer et al. (2013). 

 

 

Figure 7.9. Field campaign specific (a) calibration (CDOM = 0.003 × exp (0.69 × 

UFL440); R
2 = 0.82; p < 0.001) and (b) validation of UFL CDOM measurements (in situ 

CDOM = 0.82 × UFL CDOM + 0.002; R2 = 0.66; p < 0.003; RMSE = 0.0022 a440 nm 

m-1). Solid line is regression trend line; dotted line is 1:1. From Palmer et al. (2013).  
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7.5 Discussion 

 The retrieval of TSM concentration, chl-a concentration and CDOM absorbance 

using UFL measurements of related backscattering and fluorescence emission features 

has been shown to be possible under turbid, optically complex lake conditions, as well as 

largely robust. Tank measurements made in the laboratory generally extended the range 

of the parameters measured in the field, particularly in the case of phytoplankton biomass, 

which was found to be limited in situ at the time of the field campaign relative to 

conditions during bloom events in the lake, whereby chl-a concentrations typically 

exceed 30 mg m-3. The TSM concentration range was also extended, from concentrations 

between 2.93 and 35 g m-3 measured in the field, to concentrations less than 0.1 g m-3 and 

greater than 120 g m-3 measured in the tank experiment. Concentrations as high as 115 g 

m-3 have been measured through regular BLI monitoring following high wind events, thus 

the concentration range is considered representative for Lake Balaton, as well as 

encompassing of a large concentration range that is likely to be encountered at other sites. 

Over this entire range, the relationship between gravimetrically measured TSM and 

normalized backscattering of the 355 nm UFL excitation laser pulse was robust.  

The range of CDOM measured in the field was not greatly extended by the tank 

measurements (from 0.006 to 0.120 in the field to 0.003 to 0.122 in the laboratory), as the 

high-CDOM end member used in the tank measurements was collected from the Zala 

River, where field measurements were also made. However, a twofold lowering of the 

minimum CDOM absorbance measured was achieved. Many of the CDOM absorbance 

measurements coinciding with UFL tank measurements (66%) were below the detection 

limit. This is thought to result from the relatively short optical path of the spectrometer 

(cuvette length = 5 cm), and a longer cuvette would allow for more sensitive CDOM 

absorbance measurements in the low range to better understand the UFL measurement 

performance there. Furthermore, low UFL measurements at 440 nm associated with these 

below detection limit samples qualitatively supports the calibration undertaken here. The 

exponential, rather than linear relationship found between CDOM absorbance and 

normalized UFL fluorescence emission at 440 nm during field measurements likely 

results from slight error in removing the CDOM baseline to establish Raman scattering. 

This leads to an over-estimation of Raman scattering, and under-estimation of CDOM 

which is proportionately greater at higher concentrations. Although it was not possible to 
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remove this effect, the exponential correlation observed in Figure 7.9 is highly significant, 

and can be used for reliable CDOM retrievals from the field measurements. 

 The experimental tank measurements carried out also revealed significant 

differences in the fluorescence signatures of the two phytoplankton species, C. raciborskii 

and S. armatus. This was in terms of the distinct relationship of the chl-a concentration 

of each with the normalized fluorescence signal at 685 nm, typically associated with chl-

a fluorescence. These are expected to result from differences in the chl-a fluorescence 

yield (or efficiency) of each, essentially the amount of fluorescence that results from the 

amount of light energy absorbed (Johnsen and Sakshaug 2007). Differences in 

fluorescence yield result from structural and pigmentation differences in the 

photosystems of the species, which are responsible for absorbing light and carrying out 

photosynthesis and energy and electron transferral (Johnsen and Sakshaug 2007). It has 

been found elsewhere that up to 90 % of the chl-a concentration in cyanobacterial species 

may be located in the non-fluorescing photosystem I (PSI) (Beutler et al. 2003; Bryant 

1986; Johnsen and Sakshaug 1996; Seppälä et al. 2007), which could result in the 

underestimation of cyanobacteria chl-a concentrations using the fluorescence maximum 

at 685 nm if a cyanobacteria-specific relationship is not first calibrated. Chl-a has been 

found to reside predominantly in the fluorescing photosystem II (PSII) of chlorophyta 

species (Beutler et al. 2002), which would explain the linear relationship established 

between S. armatus culture chl-a concentration and normalized fluorescence at 685 nm. 

 Environmental factors, such as ambient light conditions, and nutrient 

concentrations and availability, can also affect the fluorescence efficiency of pigments. 

As the phytoplankton cultivation and the measurements of individually cultured species 

and manipulated combinations, were carried out under constant conditions in the 

laboratory, however, this is not expected to be a significant factor. Such factors should be 

considered if attempting similar comparisons and interpretations in field measurements 

where these could be expected to have an effect and are more variable and difficult to 

account for given their complexity. Another difference in fluorescence spectra between 

C. raciborskii and S. armatus was found in association with the normalized fluorescence 

emission at 650 nm. This took the form of a clear peak in the cyanobacteria species which 

was absent in the chlorophyta, and is thought to be related to the fluorescence maxima of 

the phycobilisome pigment, phycocyanin found in its PSII. The ratio of UFL measured 
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normalized fluorescence at 650 nm to that at 685 nm resulted in a strong separation of the 

two species, confirmed via GLM (Figure 7.6).  

 The phytoplankton species cultivated and used in the tank measurements are 

commonly found in Lake Balaton. Their distinction via ULF measurements here points 

to the investigation of UFL measurements of other species with varying accessory 

pigments as an interesting future direction, potentially toward the creation of a 

fluorescence spectral library for different species with further investigation into 

identifying end member and mixed spectra, as has been carried out using passive 

spectrometry (Hunter et al. 2008a) and laboratory and in vivo fluorescence spectroscopy 

(Beutler et al. 2002; Gregor and Maršálek 2005; Johnsen and Sakshaug 1996; Seppälä et 

al. 2007) elsewhere. The conventional analysis of other pigment concentrations, not 

possible in the current work, would be necessary. This would be valuable in extending 

the use of UFL to other sites where different phytoplankton species may be present or 

dominant, and possibly to identifying the presence of species or taxa of interest, such as 

cyanobacteria which are known to be potentially toxic (Codd et al. 2005) and have been 

shown here to have a distinct UFL signature from that of the investigated chlorophyta 

species. The advantage of making such distinctions using LiDAR remote sensing 

approaches include the much greater spatial coverage and resolution possible, in 

comparison with conventional in situ measurements. Furthermore, the signatures of 

different water constituents and potentially phytoplankton taxa can be more clearly 

separated in comparison with passive optical remote sensing. However, in contrast to 

passive optical sensors found aboard satellite platforms, regular revisits are not possible 

where regular access to both site and instrumentation does not occur. As the UFL and its 

operation are highly specialized, this technology is currently not broadly accessible and 

therefore not likely to prove a regular feature in limnological monitoring at present. 

 Until now, ship-mounted fluorescence LiDAR has only been applied in marine 

settings, where constituent concentrations and optics are vastly different from those in 

Lake Balaton and other inland waters. Here, TSM, CDOM and chl-a have been shown to 

be accurately retrieved via UFL over a wide range of conditions. No negative effects 

related to the masking of one constituent’s signal by another or to the saturation or 

dampening of the retrieved signal at high concentrations were apparent. This stands UFL 

in contrast to passive optical remote sensing techniques used to retrieve the same 

constituents, where overlapping signals and variable constituent concentrations pose a 
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significant challenge (IOCCG 2000). However, the normalization of the UFL signal for 

the retrieval of CDOM concentrations in the field was found to be a challenge. UFL is 

considered applicable to the range of conditions encountered at Lake Balaton, and would 

be interesting to test in other lake types. Boreal lakes in particular would be of interest 

given the much larger CDOM range in comparison to that encountered at Lake Balaton 

(with absorbance as high as 11 m-1 aCDOM(420) (Kutser et al. 2005)). Highly eutrophic 

lakes would further test the limits of the UFL in the field. Tank measurements 

successfully retrieved chl-a concentrations up to 377 mg m-3, but in situ concentrations 

were very limited in the current work. 

 

7.6 Conclusions 

 Fluorescence LiDAR has been demonstrated to be a useful tool to measure 

ecologically important physiochemical and biological water quality parameters for the 

first time in a lake setting, through a series of UFL field and laboratory tank 

measurements. The high and variable concentrations investigated here are in contrast to 

those typically encountered in marine settings where ship-mounted fluorescence LiDAR 

has been employed for such measurements to date. In a mapping context, greater spatial 

coverage and resolution would be possible than is through conventional point 

measurements, to capture nuanced variation related to ecological processes on the small 

to medium spatial scales. The ability to distinguish different groups of algae via their UFL 

signal has also been proven, and the inclusion of further phytoplankton species and 

divisions is recommended for future work, as is the application to other lake ecosystems. 
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Chapter 8 

 

Conclusions, research contributions  

and outlook 
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This thesis has examined both passive, satellite-based and active, ship-mounted 

LiDAR remote sensing of biogeochemical water quality parameters, particularly 

phytoplankton biomass via the proxy chl-a, and has demonstrated the feasibility and 

potential novel contributions to be made by such remote sensing tools and approaches 

within a limnological context. Not only has the work undertaken added to knowledge of 

Lake Balaton with regards to remote sensing potential and water constituent dynamics, 

but methodologies previously unreported in application to freshwater settings are 

explored with Lake Balaton as a case study, that could be applied to other inland water 

bodies in the future. 

 

8.1 Original research contributions 

For the first time, a suite of chl-a algorithms compatible with MERIS image data 

have been extensively evaluated for Lake Balaton, which presents unique and complex 

optical conditions.  This is crucial so as to benefit from the reliable use of the ten year 

MERIS archive for phytoplankton mapping from space, and comprised a validation study 

of neural network and band arithmetic algorithms using in situ data from across the lake 

and all seasons over five years (n = 289 matchups) (Palmer et al. 2015a). Likewise, the 

broad range of conditions presented by Lake Balaton may offer insight into conditions 

expected to be encountered at other lakes and the current work may inform the algorithm 

selection for these. However, as pointed out in Chapter 4, dedicated calibration and 

validation of algorithms should be carried out using data from any other targeted site prior 

to choosing and applying a retrieval algorithm, as conditions are highly variable from lake 

to lake. Similarly, the validation of two atmospheric correction techniques was 

undertaken for the first time at Lake Balaton, and the influence thereof on chl-a retrievals 

was considered.  

The resulting algorithm selection and application to the full MERIS archive 

allowed for the exploration and evaluation of spatiotemporal dynamics of Lake Balaton 

phytoplankton, namely phenology metrics (Palmer et al. 2015b). This was the first time 

that TIMESAT has been used to extract and map phenology metrics in a freshwater 

setting. Not only does such an approach add an explicit and cohesive spatial component 

to investigations of phenology, which have traditionally been approached using point 
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data, but the regular revisit time of MERIS allows the possibility of phenological analysis 

where the high frequency in situ data that would otherwise be necessary are lacking. Such 

a progression from chl-a concentration algorithm validation and mapping to the use of 

time series chl-a maps in such a way is foreseen to be an important and continuing 

direction in the remote sensing of lakes. Furthermore, the phenology of Lake Balaton 

phytoplankton has been shown to be highly variable both spatially and temporally. 

The use of ship-mounted UFL to measure and map a suite of biogeochemical 

parameters important in lake water quality has also been evaluated in a freshwater setting 

for the first time as part of this thesis (Palmer et al. 2013). Measurements of chl-a, TSM 

and CDOM were found to be accurate in both field and laboratory tank measurements, 

across broad concentration ranges and in various combinations, and a distinct signal was 

found for the different phytoplankton taxa examined (chlorophyta and cyanobacteria). 

 

8.2 Thesis conclusions 

In Chapter 4, the results of an extensive calibration-validation exercise of chl-a retrieval 

algorithms are reported. Several general as well as more nuanced conclusions were drawn 

in response to, and extending beyond, the defined research objectives of this chapter:   

- The FLH algorithm robustly retrieves Lake Balaton chl-a, especially under meso- 

and eutrophic conditions (chl-a > 10 mg m-3), but does not perform well under 

oligotrophic conditions (chl-a < 10 mg m-3).  

- Local tuning of SIOP coefficients relating neural network-retrieved pigment 

absorption to chl-a concentration is confirmed to greatly reduce the error of 

associated retrievals, although neural network retrievals remain inaccurate 

overall. 

- Under oligotrophic conditions, the FUB/WeW neural network-based algorithm, 

locally-tuned through adjusting the SIOPs relating pigment absorption to chl-a 

concentration, outperformed FLH. Although a step-wise, ensemble approach 

combining FLH and FUB/WeW algorithms led to a slight improvement in low 

concentration retrievals, the use of FLH alone was found to be sufficient to 

monitor and map the onset and development of bloom events and was 

recommended for use in Chapter 6 analyses. 
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- FLH is found to have a physical basis related to phytoplankton absorption and 

backscattering rather than fluorescence for Lake Balaton, as is clear from the 

negative relationship between the two, which is likely indicative of cyanobacteria 

dominance in the phytoplankton community composition. 

- Classification using FLH-derived chl-a was found to add important spatial 

information for WFD reporting. Remote sensing is thus confirmed to have the 

potential to complement and inform WFD reporting for Lake Balaton.   

- The importance of such validation exercises is highlighted, with either poor or 

good performance of the tested algorithms apparent through regression-based 

calibration and validation, and mapping alike. Poor or uninformed algorithm 

selection could result in missed bloom events, false alarms or generally inaccurate 

mapping.  

In Chapter 5, the atmospheric correction of MERIS images coinciding with in situ water-

leaving spectral and chl-a measurements was undertaken using two models, the 

atmospheric correction component of the C2R/Lake processor and the SCAPE-M_B2 

model, to validate each and understand the influence of atmospheric correction on 

subsequent chl-a retrievals. The following conclusions were drawn: 

- Of the tested atmospheric corrections, the SCAPE-M_B2 model was found to 

generally retrieve measured in situ Rrs values accurately, whereas in situ 

measurements were typically underestimated, and spectra flattened, by the 

atmospheric correction of the C2R/Lake processors. 

- This discrepancy in performance is discussed with regards to the underlying 

assumptions and approaches of the two models. Although SCAPE-M_B2 assumes 

spatial homogeneity over larger areas than the C2R/Lakes processor, more 

accurate retrievals overall suggest that this is not a hindrance to algorithm 

performance in this case. 

- The comparison of AOT(550) retrieved by the two atmospheric corrections 

suggests that an overestimation by the C2R/Lake processor may underlie, at an 

intermediate step, the poor Rrs retrievals, although in situ data to confirm and 

quantify this were unfortunately not available for the thesis work.  

- Uncorrected, TOA data were found to retrieve chl-a concentrations to a similar 

level of accuracy as SCAPE-M_B2 corrected data, when semi-empirical retrieval 

algorithms were applied, and were thus deemed appropriate to use in MERIS chl-
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a mapping and time series analysis in combination with the FLH algorithm. This 

suggests that the error associated with temporal variability in atmospheric 

conditions not accounted for when using uncorrected data is similar to the error 

associated with the atmospheric correction itself in this case. 

- Although FLH was again found to best retrieve chl-a, several other band math 

algorithms using red-NIR spectral bands were also found to be robust. 

Chapter 6 presents a novel approach, combining MERIS satellite imagery and 

TIMESAT software to extract and map lake phytoplankton phenology metrics. 

Conclusions related to the methodology and to the variability of phenology metrics and 

underlying causes thereof include: 

- Phytoplankton phenology metrics of lakes can be measured and mapped using 

MERIS and TIMESAT software. 

- The Savitzky-Golay filtering approach to data smoothing was found to be superior 

to both the Double Logistic and Asymmetrical Gaussian approaches, likely as a 

result of its more local nature which is better adapted to phytoplankton dynamics. 

Rather than fitting the curve based on broad maxima, minima or inflection 

features, as in the Gaussian and Logistic approaches, the Savitzky-Golay filter is 

based on a moving window approach using temporally adjacent values, and 

therefore more sensitive to rapidly changing dynamics. 

- Such an EO approach added a cohesive spatial component to phenology analyses, 

revealing significant spatial variability of Lake Balaton phenology metrics. A high 

degree of temporal (inter-annual) variability of all phenology metrics and of 

bloom spatial extent was also revealed. 

- Spatial gradients in phenology metrics paralleling the main, longitudinal axis of 

Lake Balaton are expected to be associated with nutrient inflow in the southwest 

basin from the Zala River and a general northeastern water circulation.  

- Missing pixels in resulting phenology metric maps are attributed to three causes 

(1) no bloom occurrence in reality; (2) too many missing values in the input time 

series, which results in a blank pixel for each year of the time series; and (3) 

defined bloom conditions not met (rising from below to above the defined 

threshold and vice versa), resulting in a blank pixel for just that given bloom event. 
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Experimental UFL measurements conducted in both field and laboratory settings are 

described in Chapter 7, and result in the following conclusions:  

- UFL accurately and simultaneously retrieved chl-a concentrations, TSM 

concentrations and CDOM absorbance measured through coinciding conventional 

laboratory analysis of water samples. This included field measurements in Lake 

Balaton, and extended concentration ranges through an experimental setup of tank 

measurements. 

- Distinct multispectral fluorescence emission signatures were detected from 

cultures of chlorophyta species and cultures of cyanobacteria species used in the 

tank measurements, with mixtures of the two falling between. This was mainly 

related to the fluorescence peak at 650 nm of the cyanobacteria, related to the 

fluorescence of its accessory pigment, phycocyanin, as well as to the lower 

fluorescence at 685 nm per conventionally measured (extraction/spectroscopy) 

chl-a concentration as compared with the chlorophyta species culture. The 

cultures were therefore found to be clearly distinguished using a 650/685 nm 

fluorescence ratio. 

- The separation of Raman scattering and CDOM-fluorescence at 440 nm from field 

measurements proved difficult, resulting in a significant, but non-linear 

relationship with validation in situ data.  

 

8.3 Outlook and future research directions 

With MERIS no longer actively transmitting data as of April 2012, the launch of 

the upcoming ESA Sentinel-3A mission with the Ocean and Land Colour Imager (OLCI) 

sensor aboard is highly anticipated by the lake remote sensing community. OLCI will be 

characterized by similar spatial and temporal resolutions as MERIS, as well as similar 

spectral band placement, but with several additional bands in the blue and red/NIR ranges 

(ESA 2013a, c). This will allow for the continuity and improvement of activities begun 

using MERIS, including the mapping and monitoring of Lake Balaton phytoplankton. 

The same FLH algorithm for chl-a retrieval will be transferable to OLCI data for Lake 

Balaton (Figure 8.1), although coefficient tuning and subsequent validation will again be 

necessary. Also aboard Sentinel-3 will be the Sea and Land Surface Temperature 
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Radiometer (SLSTR), providing continuity to the ENVISAT (A)ATSR instrument, as 

well as the SAR altimeter (SRAL), the Doppler Orbitography and Radiopositioning 

Integrated by Satellite (DORIS) and the Microwave radiometer (MWR), which will 

provide topographic measurements of ocean and lake water (ESA 2013c). The 

MultiSpectral Imager (MSI) aboard the anticipated Sentinel-2 mission will also provide 

opportunities for lake remote sensing. Although its spectral resolution is less well-suited 

to inland waters as compared with OLCI (Figure 8.1), MSI will be characterized with a 

finer spatial resolution (from 10 to 60 m) favourable to the inclusion of a greater number 

of smaller lakes (Figure 8.2). Preparation for the forthcoming Sentinel data is already 

formally underway by members of the lake remote sensing community who comprise part 

of the Sentinel-3 Validation Team, including the European Union 7th Framework 

Programme project, Global Lakes Sentinel Services (GLaSS), which is working on 

algorithm development, automated processing, and integration of the upcoming data for 

use in inland waters. 

Upon the validation and re-establishment of phytoplankton and other water 

quality parameter mapping using the Sentinel missions, an important next direction will 

be the translation of detailed maps, such as those presented in the current thesis, to the 

language of WFD reporting. Following the first results in this direction, presented in 

Chapter 4, a more thorough analysis comparing WFD-oriented classification using 

satellite-based measurements and those from the point, in situ data of the KdKVI 

(currently used in WFD reporting) is recommended, as is an investigation of the spatial 

variability revealed through satellite remote sensing, over the full MERIS archive time 

series and in application to Sentinel-3 OLCI data once available. Likewise, the integration 

of satellite remote sensing into the monitoring programs of the BLI and the KdKVI is 

foreseen. Several larger, international projects currently underway (GloboLakes - 

http://www.globolakes.ac.uk/; ESA Diversity-2 - http://www.diversity2.info/; ChoroGIN 

- http://www.chlorogin.org/) will provide additional satellite products for many lakes 

throughout the world, including Balaton, and as such are expected to promote a greater 

use and value of remote sensing by local stakeholders.  

  



156 
 

 

Figure 8.1. Hyperspectral Remote Sensing reflectance spectra (5 nm spectral 

resolution) measured in Lake Balaton (a), resampled to the spectral bands of 

ENVISAT MERIS (b), Sentinel-3 Ocean and Land Colour Imager bands (c) and 

Sentinel-2 MultiSpectral Imager (d). MERIS bands 7, 8 and 9, used for FLH chl-

a concentration retrieval, are highlighted to compare band placement of OLCI and 

MSI. 
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Figure 8.2. AISA airborne hyperspectral imagery (1.1 m spatial resolution) over 

the southern shoreline of northeastern Lake Balaton (Siofok basin) (a), resampled 

to the spatial resolutions of Sentinel-2 MultiSpectral Imager (b, c) and MERIS 

and Sentinel-3 Ocean and Land Colour Imager bands (d). 
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Several future and priority research directions have been revealed through the 

phenology analysis and mapping carried out in Chapter 6. In relation to future satellite 

missions, the extension of phenology mapping using the Sentinel mission sensors should 

be carried out upon validation of chl-a retrieval algorithms and maps to be used as input. 

Furthermore, current ongoing work by a fellow PhD student (C. Riddick of the University 

of Stirling) aims to optimize the retrieval of phycocyanin concentrations, indicative of 

cyanobacteria biomass, for Lake Balaton using MERIS imagery. As cyanobacteria are 

typically associated with the higher biomass conditions in Lake Balaton and elsewhere, 

and because of concerns regarding their potential toxicity, the use of phycocyanin maps 

as input into time series phenology mapping would be of high interest to the research and 

lake/reservoir water management communities. This should be considered with future 

Sentinel data as well as with archive MERIS data. Application of the methodology 

presented here to additional lakes, as well as inter-lake comparisons of both general 

phytoplankton biomass (via mapped chl-a concentrations) and cyanobacteria biomass 

(via phycocyanin concentration) would be of great interest. However, a careful 

examination of the definition of bloom events and the fine-tuning of other methodological 

aspects will be crucial, especially when moving beyond site-specific analysis, and should 

be the subject of ongoing work. For example, the thresholds used to define bloom events 

in the current work are likely not be appropriate for other lakes where background and/or 

bloom concentration levels may be much higher or lower than the concentrations 

characteristic of Lake Balaton. The results presented in Chapter 6 pointed to the main 

location of nutrient influx in the southwestern basin and the general water circulation 

pattern as underlying the spatial patterns apparent in the phenology metric mapping. 

Phenology metrics have been found elsewhere to also be sensitive to climate forcing and 

to meteorological conditions, especially temperature and light availability. Ongoing work 

intends to closely examine both climate and nutrient drivers of mapped phenology 

variability at Balaton and other sites.  

In terms of potential new directions making use of UFL in inland water bodies, 

four main directions are clear from the current work. One is to undertake measurements 

at additional lake sites, particularly those characterized by vastly different conditions 

from those encountered at Balaton. This includes waters characterized by both extremely 

high and extremely low TSM. The latter would assess the interference by bottom signal 

in very clear (“optically shallow”) waters, however it should be noted that in the 
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laboratory tank measurements with TSM < 1 g m-3, no such signal was detected at a depth 

of only 1 m. The CDOM-rich, boreal-type lakes of Sweden, Finland and Estonia would 

also be ideal candidates, as CDOM concentrations are typically low and with relatively 

little variability in Balaton and they would therefore provide a great contrast. Highly 

eutrophic waters, such as documented in several Spanish reservoirs (Domínguez Gómez 

et al. 2011; Ruiz-Verdú et al. 2008a; Ruiz-Verdú et al. 2008b) and the 

Canadian/American Lake of the Woods (Binding et al. 2010) would be of similar interest 

so as to extend the in situ chl-a conditions encountered at Balaton. Lakes presenting the 

potential for cyanobacteria bloom mapping would be of particular interest, so as to further 

test the differentiation between cyanobacteria and non-cyanobacteria species, found 

possible here through laboratory UFL measurements. Both future laboratory and field 

measurements should explicitly consider the detection and quantification of 

cyanobacteria and other taxa by complementing UFL measurements with validation 

measurements of various accessory pigments, especially phycocyanin in the case of 

cyanobacteria. The use of calibrated and validated UFL measurements as abundant in situ 

validation for Sentinel and other satellite sensors could also be considered. However, for 

the resulting algorithm to be robust over time as well as space, and thus to allow its 

reliable application to other images from those coinciding with ULF measurements, UFL 

data would need to be available from multiple dates coinciding with satellite overpass, 

including across seasons and spanning bloom and non-bloom events in particular. This is 

foreseen to be hindered by the highly specialized nature of the UFL and its operation, 

however, precluding regular measurement campaigns at Balaton throughout the year. 
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Appendix II. Annual maps of summer bloom phenology 

features, 2003 to 2011 

 

 

 

 

Figure AII.1. Summer bloom start timing, mapped for each of the nine years 2003-2011. 
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Figure AII.2. Summer bloom end timing, mapped for each of the nine years 2003-2011. 
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Figure AII.3. Summer bloom length, mapped for each of the nine years 2003-2011. 
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Figure AII.4. Summer bloom mid-bloom timing, mapped for each of the nine years 2003-

2011. 
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Figure AII.5. Summer bloom maximum chl-a concentration, mapped for each of the nine 

years 2003-2011. 
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Figure AII.6. Summer bloom rate of chl-a concentration increase, mapped for each of the 

nine years 2003-2011. 
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Figure AII.7. Summer bloom rate of chl-a concentration decrease, mapped for each of the 

nine years 2003-2011. 
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Figure AII.8. Summer bloom large integral, mapped for each of the nine years 2003-2011. 

 

 


