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Abstract 

i 

REMOTE SENSING-BASED MAPPING AND MODELLING OF SALT MARSH HABITATS 

BASED ON OPTICAL, LIDAR AND SAR DATA 

by 

Sybrand van Beijma 

Abstract 

There is much interest in the ability of Remote Sensing (RS) technologies for mapping 

natural environments. Meanwhile, coastal zones need monitoring in order to find a 

balance between human use and sustainable functioning of coastal zone ecosystems. 

This research explores methods for characterising coastal salt marsh zone habitats 

using multi-source RS data, focussing on under-exploited Synthetic Aperture Radar 

(SAR) remote sensing data, thereby providing additional information in support of the 

mapping of natural habitats in coastal zones. 

This research examined the use of quad-polarimetric airborne S-band and X-band SAR 

data, in conjunction with optical and LiDAR RS data variables, for assessment of 

environmental parameters, mapping and modelling of salt marsh habitats in a research 

area set in the Llanrhidian salt marshes in Wales. In the first analysis it was researched 

how SAR descriptors (backscatter intensity and polarimetric decomposition variables) 

were affected by salt marsh environmental and botanical factors. It was found that 

SAR backscatter from the most seaward pioneer zone of the salt marsh was most 

affected by soil moisture variations. Differences in botanical structure caused 

variations in SAR backscatter mechanisms active in different habitats. In the second 

analysis habitat mapping was carried out with optical, LiDAR and SAR variables, with 

the supervised classifiers Support Vector Machine (SVM) and Random Forest (RF). 

With these classifiers accurate salt marsh habitat maps were produced, the most 

accurate classification achieved was 78.20% with RF based on all available RS variables. 

The last research experiment involved multivariate regression analysis of correlations 

between RS variables and biophysical parameters vegetation cover, height and volume 

and showed that multivariate SVM regression was the most accurate technique for all 

three biophysical parameters. This research indicated that SAR is complementary to 

optical and LiDAR data for ecological mapping and therefore recommended to be 

included in similar ecological studies. 
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1. Introduction 

Coastal zones are areas where, put simply, land meets sea. Their morphology varies 

from cliffs, beaches and mangrove forests to low-lying coastal salt marshes (Bird 2008). 

Due to the impact of wave activity, tidal currents and sediment supply, form and 

morphology of coastal zones are subject to constant change (Haslett 2003). The 

resulting environment is highly dynamic with frequently changing morphology and 

ecology, creating a major challenge for development of long-term and sustainable 

coastal management plans. Other challenges to the management of coastal zones are 

the expected effects of climatic change. It is expected that coastal areas will take the 

brunt of the effects of climate change due to sea level rise. Additionally, environmental 

pressures on coastal zones increase as a result of expanding population and economic 

developments in coastal areas (McGranahan et al. 2007).  

The need for a more integrated approach to coastal management has resulted in the 

adoption of the Integrated Coastal Zone Management (ICZM) policy in the European 

Union (EC 2011). The ways of implementation of ICZM has been discussed 

progressively (EEA 2006), in recent years focus has been given to eco-system based 

management of coastal areas (Katsanevakis et al. 2011). 

Low-lying intertidal coastal marshes are some of the main areas of concern when it 

comes to coastal monitoring and management. Coastal marshes are expressed as 

mangrove forests in tropical zones and salt marshes in temperate climates (Zisenis 

2010). These areas are particularly sensitive to climatic change, as they are directly 

exposed to sea-level rise and have limited space to shift landwards as they are often 

bounded by sea walls (Boorman 2003). Many of the world’s low-lying coastal habitats 

are in adverse ecological condition, degrading or eroding (FAO 2007). Nonetheless, 

coastal marshes provide valuable ecosystem services like flood and storm wave 

protection, as well as food provision (Adam 2002).  

Along the diverse coastline of the United Kingdom extensive areas are lined with salt 

marsh habitats. These habitats are characterised by specific halophytic grassy and 

shrubby vegetation types that are subject to varying levels of inundation by tidal 

activity (Adam 1990). Over time, many salt marshes have been converted to grazing or 

agricultural land, with an often detrimental effect on the natural vegetation habitats 

(Bakker 1985; Alber et al. 2008). Accordingly, some salt marsh regeneration projects 
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have been carried out to improve ecosystem services provided by salt marsh habitats 

(Garbutt and Wolters 2008).  

Mapping and monitoring of salt marsh areas poses some specific challenges. These 

areas are situated between high and low tidal level marks and therefore regularly 

flooded. Even at low tide salt marshes are difficult areas to access, the sub-strata are 

often very muddy and numerous creeks and channels make navigation difficult. 

Therefore, regular mapping of salt marshes along the UK’s coast is done based on 

interpretation of aerial imagery by the Environment Agency (Environment Agency 

2011). Primary goal of these surveys is to monitor decadal changes of salt marsh 

vegetation extent. The use of remote sensing (RS) technologies has shown to be a 

useful alternative to ground based surveys. Over the past two decades numerous 

publications have focussed on the use of RS of mapping and monitoring of salt 

marshes. Reviewing the literature reveals that research results have shown that RS can 

be used successful to map specific intertidal vegetation species with hyperspectral RS 

imagery (Stevens 2009) and LiDAR (Environment Agency and Natural England 2011). 

More fundamental research into the use of satellite-based RS sensors has shown that 

RS derived variables can successfully be used for salt marsh mapping (Hladik and Alber 

2014), and that combination of RS data from different sensors can improve mapping of 

salt marsh habitats (Dehouck et al. 2012). In recent years, the use of Synthetic 

Aperture Radar (SAR) data for mapping of intertidal and salt marsh areas has been 

gaining attention. SAR has specific advantages over optical RS sensors. Due to their 

relatively long wavelength, most electromagnetic pulses in the microwave domain pass 

through clouds unhindered. Additionally, they interact with targets on the Earth’s 

surface in a physical way, thereby providing information about the physical 

appearance of these targets. SAR remote sensing has been used for forestry and 

vegetation mapping studies (Woodhouse 2006; Lucas 2008). Research of the use of 

SAR in intertidal and salt marsh areas has shown that the interaction of radar pulses 

with the surface can provide useful information about the surface composition (van 

der Wal et al. 2005), presence of oyster beds (Choe et al. 2012) or vegetation habitat 

classification (Lee et al. 2012).  
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From the literature the following research aim was postulated: 

 

Research to which extent multi-frequency polarimetric SAR can contribute to the 

mapping and modelling of coastal salt marsh habitats. 

 

In order to support the research aim, a number of research experiments were 

designed, consisting of quantitative and qualitative approaches to investigate the 

contribution of SAR data for mapping of salt marsh habitats. It has to be acknowledged 

that this research has been data-driven due to the coincidence that an appropriate SAR 

data set was available for a well-suited salt marsh research area. It is aimed to use this 

data set starting from a traditional RS study: usually operational use of RS data sets 

focusses on optical and LiDAR data as these data sets are more readily available and 

easier to interpret. In this study the SAR data set is added to the optical and LiDAR data 

sets a complementary data source. With this combined data source it has been 

attempted to explain the outcomes of the research experiments in terms of 

environmental and ecological processes taking place in a salt marsh setting. 

This research starts with a report on the specific properties of SAR and the pre-

processing steps taken with the SAR data set used in this research. The airborne SAR 

data set used in this research was acquired as test data for the upcoming NovaSAR-S 

SAR satellite mission, set to launch in 2016. The data set was acquired in the S-band 

and X-band frequencies and is quad-polarimetric. The airborne quad-polarimetric SAR 

data has been pre-processed and polarimetric decomposition was performed. 

Polarimetric decomposition variables were extracted by decomposing the scatter 

matrix of the polarimetric backscatter channels according to model representations of 

the different scatter mechanisms. 

Subsequently, three research experiments were carried out, each focussing on specific 

processes or characteristics of salt marsh areas. In the first research experiment the 

response of SAR data to different environmental and physical characteristics 

throughout a salt marsh area were analysed, with focus on respective backscatter 

responses of SAR frequencies to salt marsh vegetation habitats, in this research S-band 

and X-band. Due to the physical interaction of microwave pulses with specific objects 

on the Earth’s surface, response of different microwave frequencies can differ 
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significantly (Schmullius and Evans 1997). For each SAR frequency band, specific 

optimal application domains exist. For example, longer wavelengths are better suited 

to map forest biomass, whereas shorter wavelengths are better suited to map 

grasslands. S-band SAR has rarely been used on SAR RS platforms; analysis of S-band 

interaction with salt marsh vegetation will provide excellent insight how this frequency 

band can be used to map this or other grassy and shrubby habitats. 

Polarimetric decomposition variables provide information about backscatter 

mechanisms and are more intuitively interpretable than variables based on 

polarimetric backscatter intensity channels (Li et al. 2012). However, polarimetric 

decomposition variables can only be extracted from quad-polarimetric SAR systems. 

Quad-polarimetric SAR systems are not commonly installed on satellite platforms as 

they consume relatively much power, are expensive and technologically complex. In 

this part of the research the added value of polarimetric decomposition variables over 

backscatter intensity channels has been researched. This was achieved by comparing 

accuracy assessment of habitat classifications based on the respective variables. 

Additionally, an initial habitat classification was carried out with the K-means Wishart 

classifier (Ferro-Famil et al. 2001). This classification is based on SAR polarimetric 

decomposition variables alone, the CP polarimetric decomposition variables are used 

for unsupervised classification that takes into account the specific statistical 

distribution of SAR data. 

The second research experiment focussed on the potential of SAR data to complement 

salt marsh vegetation habitats. In order to research to what extent SAR variables can 

complement with variables from other RS sensors, supervised image classification was 

carried out with an aggregate RS data set consisting of S-band and X-band SAR data 

(backscatter intensity channels and polarimetric decomposition parameters), optical 

data based on aerial photography and satellite-imagery derived vegetation indices and 

a LiDAR Digital Surface Model (DSM). The classifiers used in this research were Support 

Vector Machine (SVM) and Random Forest (RF). The versatility of the SVM and RF 

classifiers, especially their potential to use multi-source data, has made them popular 

for ecological studies (Cutler et al. 2007; Mountrakis et al. 2011). These classifiers 

provide additional information about variable performance or importance, which was 
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analysed in detail. The classifications resulted in maps of different salt marsh 

vegetation habitats, as well as a general vegetation extent cover map.  

Subsequently, a vegetation extent map was made to assess change in salt marsh 

vegetation cover, compared to earlier salt marsh mapping efforts. The resulting 

vegetation cover change analysis provided a model of vegetation cover dynamics in 

the research area in the last 12 years. 

The final research experiment involved the modelling of biophysical parameters with 

regression analysis with the multi-source RS data set used for the image classification. 

The term biophysical parameter is used for three biophysical parameters: vegetation 

cover percentage, average vegetation height and volume of vegetation within a 

specified area. The regression methods under consideration were: univariate linear, 

multivariate linear, SVM and RF regression. Of the latter two regression methods 

analysis of variable importance for the regression model has been carried out.  

The outcomes of the different research experiments resulted in a comprehensive study 

into complementary application of polarimetric SAR for ecological mapping and 

vegetation modelling. In this way different observations made of the SAR data and its 

application in conjunction with other data sets were highlighted.  

 

The outline of this thesis is as follows: 

 Chapter 2 provides a Literature Review related to the field of coastal 

management and ecological characteristics of salt marshes. Subsequently, 

recent advances in RS research for coastal mapping are reviewed, with focus on 

SAR technologies and applications. At the end of this chapter, research gaps are 

identified and the research questions formally stated. 

 In Chapter 3 an introduction into SAR remote sensing technologies is provided, 

with focus on extracting and use of polarimetric descriptors 

 In Chapter 4 the Research area and data processing are described. First focus 

is given to the research area; after which the RS data set and the processing 

steps are described in detail. Appendix C and Appendix D provide a graphic 

overview of the processing and analysis steps of the research. 

 In Chapter 5 the analysis of SAR backscatter signatures in salt marshes is 

presented. The chapter starts with a description of the methodology, followed 
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by research results. At the end of the results section, a paragraph is dedicated 

to the integration of the results in the environmental setting. Subsequently, a 

discussion of the results is provided and the chapter is finished with a 

summary. 

 In Chapter 6 the results of the Mapping of salt marsh habitats are presented 

and analysed. This chapter has a similar structure to Chapter 5. 

 In Chapter 7 the results of the Regression modelling of biophysical parameters 

are presented and analysed. This chapter has a similar structure to Chapter 5. 

 The significance and implications of the results are discussed in Chapter 8, the 

Considerations and recommendations. This chapter puts the research 

methodologies in a wider context and discusses the most important 

considerations in terms of validity and repeatability. This is followed by a 

discussion of recommendations for future research. 

 In the final Chapter 9, Conclusions are drawn. The key findings are presented 

and answers to the research questions in Chapter 2 are provided. 
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2. Literature review 

This chapter presents a literature study of recent research in the field of coastal zone 

management, current coastal management policies and research of ecology and 

management of salt marsh habitats. Subsequently, research into use of remote sensing 

technologies for monitoring of coastal zones with a specific focus on application 

development and analysis techniques are discussed. In the last section a summary of 

the most important findings from the literature review is provided, the most important 

research gaps are identified and the research questions of this thesis are re-stated. 

2.1. Coastal zone issues 

Coastal zones with elevation of less than 10 meters cover only 2% of the global land 

mass, but they host 10% of the world’s population (McGranahan et al. 2007). It is 

predicted that low-lying coastal areas will experience the majority of human 

population growth and economic development (Adam 2002; Foresight 2011). For 

example, an increase of 7.5% of artificial surfaces between 1990 and 2000 was 

recorded along Europe’s coastlines (Zisenis 2010). Coastal zones provide an important 

mixture of economic, environmental and ecological services, but many of these 

habitats are degrading at alarming rates (Boorman 2003; FAO 2003; FAO 2007; Giri et 

al. 2011). In tropical climates, the total area of intertidal mangrove communities are 

declining in high rates (Kuenzer et al. 2014), globally they declined by 20% between 

1980 and 2005 (FAO 2007). Even though it is uncertain what effect sea level rise will 

have in the near future, coastal areas are expected to experience the adverse effects 

of it (Nicholls et al. 2007). It is likely that climate change increases frequency of 

flooding and extreme storms, which have a profound effect on the degradation of 

coastal zones (Doody et al. 2004).  

2.1.1 Coastal zone management 

Coastal zone management has been on the political agenda since the 1990s. In 2002, 

the European Union (EU) drafted the Integrated Coastal Zone Management (ICZM) 

Recommendation, which aims to develop a legal ICZM framework that defines 

ecological sustainable management practices for coastal European member states (EC 

2011). To define what ICZM might exactly imply, a number of pilot studies have been 

carried out to research robust integrated coastal management practices (EC 2011; 
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OURCOAST 2011). The European Environmental Agency (EEA) has published a 

comprehensive report that addresses the urgent need for a more integrated long-term 

approach with regard to ICZM (EEA 2006). Two major recommendations stressed in 

the EEA report are:  

1) the need to research the expected impact of climate change on the coastal 

zone, 

2) move towards more ecosystem-based coastal management policy (Zisenis 

2010).  

The concept of ecosystem-based marine management involves integrated ecosystem-

driven coastal management, supported by improved marine spatial planning 

(Katsanevakis et al. 2011). A recent example of this approach is the ‘Building with 

Nature’ project in the Netherlands (Ecoshape 2011), promoting ecosystem-driven 

coastal management principles to show how ecosystem-driven coastal management 

practices can work. In the United Kingdom (UK), further definition of ICZM policies is 

performed by the Ministerial Department of Environment, Food and Rural Affairs 

(DEFRA) and its advisory conservation body, the Joint Nature Conservation Committee 

(JNCC). They propose a holistic approach to coastal management, enhanced by the 

recent improvements in the field of Marine Spatial Planning (Collins 2012). 

The Environmental Agency (EA) is responsible for the development of Shoreline 

Management Plans (SMP) in the UK (Environment Agency 2011). SMPs outline the 

management principles along a specific stretch of the UK coastline. The strategic 

options are: 1) no active intervention, 2) maintaining the current limit (‘hold the line’), 

3) managed retreat and 4) advancement. The first and fourth strategies are in place 

along stable or accreting stretches of the coast, where human pressure and economic 

activity is low. The second and third strategies are followed in coastal zones where 

erosion takes place (Table 1).  
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Table 1 – SMP policies in relationship with coastal processes and population and economic pressures,  
from Environment Agency (2011). 

Dominant coastal 
process 

Low population 
pressure or 

economic activity 

High population 
pressure or 

economic activity 

Erosion Managed retreat Hold the line 

Stable No active intervention 

Accretion Advancement 

2.1.2 Ecosystem services 

Ecosystem services are goods and services derived from ecosystem functions that 

benefit human populations, directly or indirectly (Costanza et al. 1997; Katsanevakis et 

al. 2011). Coastal ecosystems provide a number of ecosystem services in the form of 1) 

biodiversity support, 2) water quality improvement, 3) flood mitigation and 4) carbon 

management (Zedler and Kercher 2005). Research has been carried out into the flood 

mitigation capability of healthy coastal ecosystems, by dissipation of wave energy 

during storms and extreme events like tsunamis (Möller 2006; Kamthonkiat et al. 

2011). It was found that healthy coastal ecosystems like salt marshes and mangrove 

forests are effective buffers against storms, extreme events and sea level rise, 

provided that these ecosystems have space to migrate inland.  

Other research focussed on the ability of vegetated coastal ecosystems to uptake 

carbon (Pendleton et al. 2012). Even though there is much uncertainty about their 

relative role in the carbon cycle, it is estimated that degradation of coastal ecosystems 

contributes significantly to the release of carbon into the atmosphere.  

A further ecosystem service highlighted is food provision. For example, salt marsh 

areas are often used for grazing cattle. This pastoral activity can have a beneficial 

impact on plant diversity as it functions as a plant debris litter clean-up, provided the 

density of animals is limited (Bakker 1985). On the other hand, if overgrazing occurs 

the salt marsh ecosystem can degrade to bare areas, which makes them vulnerable to 

erosion (Alber et al. 2008). 

2.2. Salt marshes  

Salt marshes are coastal wetlands in temperate climates that are situated in the upper 

intertidal zone and are therefore regularly flooded. They are dominated by halophytic 

(salt-tolerant) plants such as herbs, grasses and shrubs (Adam 1990). They are 

important habitats in terms of ecosystem services, but are often converted to 
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agricultural land or suffer from pollution (Adam 2002). In this section the general 

geographical, environmental and ecological characteristics of salt marshes are 

described. Eventually, attention is given to salt marsh management practices. 

2.2.1 Geographical setting 

Salt marshes fringe many of the world’s soft sedimentary coasts exposed to low-

energy wave action (Adam 2002). Many salt marshes are located along estuarine 

shores, sheltered by barrier islands, spits, embayments, lagoons and along open shores 

exposed to low wave energy (Adam 1990). Three general types of salt marsh 

morphology can be distinguished (Boorman 2003):  

1. Open coast barrier-connected salt marshes. In the UK, such as are found in 

North Norfolk and on the Dutch Wadden Sea. These salt marshes form behind a 

spit or island as a protective barrier. These marshes are often rich in plant 

species. 

2. Foreland salt marsh. These can be found in The Wash and Morecambe Bay in 

the UK. They form in front of sheltered alluvial coastal areas. 

3. Estuarine salt marshes fringing larger estuaries. Examples of this type of salt 

marsh can be found in the UK in the Essex and Severn estuaries. In these salt 

marshes a transition from halophytic to fresh water plant species is visible, 

reflecting the salinity transition gradient of the estuarine water. 

Salt marsh communities in the United Kingdom (UK) are most abundant in the south, 

where most of the UK’s soft sedimentary coastlines are located (Figure 1). Along the 

English and Welsh coastline the UK’s largest salt marsh communities can be found, of 

which the largest are (Boorman 2003): The Wash (Lincolnshire), Burry Inlet (Llanelli), 

River Ribble (Lancashire), Morecambe Bay (Cumbria), Blackwater (Essex) and Wells to 

Blakeney (Norfolk). In Scotland no large salt marsh complexes exist due to the rocky 

nature of the coast, their presence is often confined to estuaries and firths (JNCC 

2004). In Europe, the largest salt marshes can be found along the shores of the 

Wadden Sea (Netherlands, Germany and Denmark) and other smaller complexes can 

be found in Portugal, France, Italy, Albania and Bulgaria. Outside Europe, salt marshes 

are commonly found along the east coast of North America and in Arctic zones.  
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Figure 1 – Location of salt marshes along the UK coastline indicated in bold lines,  

after (Boorman 2003). 
 

Salt marsh areas are characterised by complex network of drainage channels, creeks 

and ponds (Figure 2). The channels and creeks are capable of draining most of the salt 

marshes during low tides. These networks are best developed in the seaward facing, 

lower parts of salt marshes, as these are most often flooded. In areas further away 

from drainage channels (usually the higher, less-frequently flooded parts of salt 

marshes) water often collects in ponds (Adam 1990). According to (Moffett et al. 

2010), salt marshes are relatively stable once drainage is established. The salt marsh 

surface is usually very flat, with a topographic gradient between the land and seaward 

sides of less than five metres (Adam 1990). 
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Figure 2 – Impression of a salt marsh, displaying different vegetation habitats and drainage network.  

Photo taken by the author in the Llanrhidian Marshes, Wales. 

2.2.2 Environmental setting 

Salt marshes are influenced by fluxes from the sea, namely tides, waves and sediment, 

as well as climatic variations. Due to the influence of tidal flooding, edaphic conditions 

in salt marsh areas are changing constantly (Moffett et al. 2010). This results in 

changes in soil saturation between areas that are well-drained and areas where water 

remains longer. Due to evapotranspiration, soil salinity increases in areas where water 

remains longer. As a result of this, soil salinity is usually higher in the landward part of 

salt marshes than in the, seaward side of the salt marshes (Silvestri and Marani 2004; 

Moffett et al. 2010).  

2.2.3 Ecological characteristics 

In temperate regions salt marshes are characterised by a suite of halophytic 

herbaceous or low woody vascular plants, dominated by grasses, herbs and shrubs. 

Salicornia spp. and Spartina anglica are the most abundant and most researched 

species (Adam 2002).  

The spatial distribution of different salt marsh vegetation habitats is not random, but 

shows a distinctive pattern that can be recognised in many different salt marsh areas 

around the world (Rodwell 2000; Silvestri and Marani 2004). These patterns or 
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zonations are highly dependent upon the aforementioned soil salinity and inundation 

frequency. Topography and the related flooding frequency and duration are therefore 

important, albeit not the only, factors that drive variations of salt marsh vegetation 

habitats. Salt marsh vegetation communities also respond to seasonal temperature 

changes and rainfall. Some of the plant species are perennial. Other species are annual 

and are senescent in winter. The resumption of annual plant growth occurs in early 

spring. During summer droughts, growth can be inhibited by increased 

evapotranspiration which leads to hyper-saline conditions (Boorman 2003). 

Vegetation habitats can be classified according to many different classification 

schemes (Rodwell 2000; JNCC 2006). In the UK, the National Vegetation Classification 

(NVC) scheme is often used (Rodwell 2000). The European Union adopted the Habitats 

Directive in 1992 to improve the conservation of habitats (European Commission 

1992). With the Habitats Directive, the Annex 1 habitat classification scheme, in which 

intertidal habitats are subdivided in a number of zonations, based on geographical and 

environmental parameters like inundation frequency and topography (Boorman 2003). 

In Table 2 the classification of general salt marsh vegetation habitats according to 

Boorman (2003) is summarised. A graphical overview of the most common salt marsh 

zonations with their environmental characteristics is provided in Figure 3. 
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Table 2 – Salt marsh vegetation habitat zonations. 

Zonation 
Dominant 

species 
Vegetation 

life cycle 
Vegetation 
structure 

Inundation 
frequency 

Drainage network 
characteristics 

Pioneer 
zone 

Spartina spp., 
Salicornia spp., 
Aster tripolium 

Annual 

Incomplete 
ground 

coverage, 
vegetation 

height 0.1-1 
metre 

Every high 
tide 

Shallow creeks, 
tidal flat 

Lower-
Mid 

Marsh 

Festuca rubra, 
Puccinellia 
maritima, 
Previously 

named species 

Perennial 

Complete 
ground 

coverage, 
Vegetation 
height 0.05-

0.2 m 

Most high 
tides 

Complex network 
of channels and 
creeks, ponds 

Middle-
Upper 
Marsh 

Juncus 
maritimus, 
previously 

named species 

Perennial 

Complete 
coverage, 

Vegetation 
height 0.5-1m 

Spring high 
tide 

Ponds, 
large deep 
channels 

Upper 
Marsh 

Armeria 
maritima, 

Elytrigia spp. 
Previously 

named species 

Perennial 

Complete 
ground 

coverage 
Vegetation 

height 0.5-1m 

Highest 
spring tides 

Ponds, 
some channels 

 

 
Figure 3 – Idealised cross profile through a Northwest European salt marsh. 

From seaward side (left) to landward side (right). 
 

Salt marshes are dynamic environments and salt marsh vegetation communities can be 

subject to rapid changes in vegetation cover if vegetation habitat space accretes or 
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erodes (Boorman 2003). Accordingly, there is an urgent need for high-resolution 

mapping and monitoring of salt marsh habitats (DEFRA 2006). 

2.2.4 Salt marsh management 

Specific management of salt marshes in the UK is not carried out to a formal protocol 

yet. It is recognised that salt marshes do provide very useful ecosystem services 

(Boorman 2003) and they provide excellent buffers against storms and other extreme 

events (Möller 2006). In the Essex estuaries experiments have been carried out in 

managed realignment of the coastline, due to erosion of fringing salt marsh areas 

(Garbutt et al. 2006). The program is successful in terms of providing more space for 

coastal ecosystems, but it was found out that the biodiversity of recreated salt marsh 

areas is lower than untouched salt marshes considerably, even 50 years after 

recreation (Garbutt and Wolters 2008). Salt marsh species richness can be enhanced 

by allowing grazing in salt marshes (Bakker 1985; Adam 1990; Bos et al. 2002), 

although overgrazing can lead to destruction of the top soil in lower parts of the 

marsh, thereby decreasing species richness (Bakker 1989). 

The development of novel methods for mapping of salt marshes is needed to improve 

monitoring of their environmental, anthropogenic and ecological dynamics. This thesis 

contributes to these issues by researching novel methods for mapping vegetation 

habitats in salt marsh areas using remote sensing technologies.  

2.3. Remote sensing technologies 

Remote sensing (RS) sensors, either deployed on airborne or spaceborne platforms, 

have proven to be invaluable tools for the mapping and monitoring of the natural 

environment (Barrett 2013). Natural habitats are often difficult to access from the 

ground, making ground-based surveys difficult, more subjective and less cost-effective 

than remote sensing studies (Mumby et al. 1999).  

Most of the common remote sensing sensors are operational in the electromagnetic 

spectrum (Vincent 1997). Table 3 describes three of the most widely used remote 

sensing sensors: optical, Light Detection and Ranging (LiDAR) and Synthetic Aperture 

Radar (SAR), with their respective advantages and disadvantages. 
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Table 3– Overview of the three most common remote sensing sensor types  
(Lillesand et al. 2004; Wooster 2007). 

Sensor Advantages Disadvantages 

Optical 

 Passive sensors; limited power 
consumption, 

 Intuitive imagery, operating in 
similar way to human eye or 
camera, 

 High spatial resolution, up to 0.2-
0.5 meter resolution from 
spaceborne systems, 

 Large data archives available, 

 Well-established data processing 
and classification routines. 

 Cloud and atmosphere 
sensitive, resulting in unwanted 
variations of emissivity and data 
gaps, 

 Reflected sunlight needed for 
operation; no data acquisition 
at night. 

 

LiDAR  
 Precise topography acquisition, 

 Active sensor, operation 
independent of daylight conditions. 

 Active system, large power 
consumption. 

 Limited deployment on 
spaceborne platforms so far, 
commonly deployed on 
airborne platforms. 

SAR  

 Active sensors, data acquisition 
possible day and night, 

 Little sensitivity to atmospheric 
condition, solid data acquisition 
and repeatability, 

 Information about 
structural/geometric features and 
dielectric properties of subsurface, 

 Different wavelengths and 
polarisations available, 

 Interferometric capabilities; 
displacement and topographic 
modelling. 

 Lower spatial resolution, 

 Higher energy consumption; 
expensive deployment on 
spaceborne platforms, 

 Signal difficult to interpret. 

 Few established processing and 
classification routines available.  

 

Research into SAR sensors has led to successful applications (Schmullius and Evans 

1997; Koch 2010; Hensley et al. 2012), but it lags behind the application development 

with optical sensors. SAR systems are more complex to deploy and the generated data 

is less intuitive than optical data and requires specialist knowledge to understand. 

However, obvious advantages of SAR sensors are more reliable and repeatable data 

acquisition and information about structural characteristics of surface targets, which 

justifies research of new applications of these sensors. Therefore, in the following 
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review of literature on the research and use of RS technologies for coastal mapping 

and management, special attention is given to research incorporating SAR. 

2.4. Research of RS for coastal mapping and monitoring 

This section describes recent and on-going research into the use of remote sensing 

techniques for mapping of salt marsh habitats. Research gaps will be identified that 

can support the formulated research questions. These are indicated in italic. 

2.4.1 Operational projects 

Several RS projects have been initiated to research and develop operational tools for 

ICZM. The European Commission and the European Space Agency support a number of 

RS research projects that research and apply Earth Observation (EO) techniques to 

support the marine side of ICZM. Coastwatch, which was part of the European Space 

Agency (ESA) GMES Service Element (GSE) programme has finished in 2007 

(Coastwatch 2010; GMES 2011). This project provided water quality products (Chl-a, 

Secchi depth, suspended sediment). The oceanographic part of the Copernicus 

program is now incorporated in myOcean (myOcean 2011). Projects with a terrestrial 

focus comprise EUROSION, a project focussed on mapping of erosional processes along 

the shorelines of Europe (Doody et al. 2004). A project involving InSAR applications is 

the Copernicus-funded FP7 project subCoast (subCoast 2011), a successor to the ESA 

GSE Terrafirma project. This project involves monitoring of vertical movements 

(subsidence or uplift) of low-lying coastal areas by interferometric SAR. The BIO_SOS 

project researches monitoring of ecological habitats using different EO technologies 

(Nagendra 2011). It has been acknowledged use of SAR in addition with optical data 

could improve habitat mapping (Nagendra et al. 2013). In this report it was mentioned 

that SAR is able to distinguish land cover types that are spectrally similar, but 

structurally different. 

In the UK, the Environmental Agency (EA) carries out a regular salt marsh mapping 

project around the UK (Environment Agency 2011). This mapping effort has focussed 

on salt marsh extent change, based on aerial photography solely. It is the first nation-

wide salt marsh mapping effort since the 1980s and part of the UK’s obligation to map 

coastal habitats within the Water Framework Directive. Another project in Scotland is 

carried out by the Scottish Environmental Protection Agency (SEPA) (Stevens 2009). 
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This project was based on the use of airborne hyperspectral RS data to map intertidal 

habitats.  

In a report for DEFRA in 2007 it was stated that RS is essential for the monitoring of 

climate change impacts on coastal areas, and that the biggest opportunity of RS in 

coastal zone management lies in habitat mapping of intertidal areas, especially with 

regard to the new and upcoming satellite sensors becoming available over the next 

few years (Pradhan 2007). JNCC has acknowledged the potential usefulness of new EO 

sensors with regard to habitat mapping (Medcalf et al. 2011). Accordingly, the Crick 

Framework was recently drafted to define how RS technologies can contribute to 

habitat mapping (JNCC 2011). According to this framework, more investigation is 

needed to test the applicability of Very High Resolution (VHR) EO imagery for the 

identification of different salt marsh habitats.  

 

A number of (semi-)operational RS projects have been initiated over the last decade to 

aid ICZM. However, there has been no project that has included operational use of SAR 

for mapping and monitoring of coastal habitats. 

2.4.2 Use of RS for mapping of coastal dynamics 

Coastline dynamics (erosion and accretion) can have profound effects on economic 

activity, coastal security and coastal habitats. Therefore, it is essential to research and 

monitor geomorphological processes to shape coastal areas. Research into the use of 

RS for mapping and monitoring of coastal dynamics has been carried out frequently. 

The repetitive nature of data acquisition of spaceborne platforms provides an excellent 

opportunity to monitor the changes of coastline position on a regular basis. A recent 

overview of the remote sensing of coastlines is provided by (Gens 2010), which 

summarises different RS technologies and approaches for monitoring of coastal areas. 

Several EO methodologies have been developed to delineate coastlines, including SAR 

tools, during the last twenty years. A major advantage of SAR for morphological 

mapping is strong backscatter contrast between land and sea, which can be less clear 

in optical imagery. Lack of temporal resolution of spaceborne SAR systems (only 

operational since 1991) has led to multi-sensor studies combining optical, airborne and 

spaceborne SAR data to construct multiple decade-spanning, time series (Souza-Filho 
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and Paradella 2003). A number of methodologies have been proposed to identify 

coastline location from SAR imagery (Yu and Acton 2004; Shu et al. 2010). Automated 

systems to delineate flood extent have been developed at DLR, which have been 

successfully applied to delineate the position of the coastline (Hahmann et al. 2008).  

In macro-tidal areas, coastline position extracted from RS imagery is merely a 

representation of the tidal level at the moment of overpass (Lee et al. 2011). This is 

used to develop a Digital Terrain Model (DTM) with the waterline method (Mason et 

al. 2010). This method is based on extraction of waterlines from a number of different 

RS images, acquired at different tidal levels. It is possible to construct a DTM by 

assigning a vertical height to the extracted water-land boundaries corresponding to 

tidal levels at time of acquisition. The main assumption of this method is unchanging 

morphology of the intertidal flats over the imagery acquisition period.  

Hong et al. (2010) researched wetland water level fluctuations in Florida, using repeat 

pass interferometric SAR (InSAR) data It was found that SAR data can be used 

successfully for monitoring of water level changes, because flooded vegetation creates 

stable double bounce scatterers (more on this in Chapter 3). Although this double 

bounce effect benefits water level modelling, it complicates the delineation of flood 

extent under flooded vegetated areas. A number of studies have been done to 

investigate how this problem can be overcome (Kasischke and Bourgeau-Chavez 1997; 

Henderson and Lewis 2008), focussing on mapping of flooding regimes in wetland 

coasts of Florida. With increasing availability of multi-polarimetric SAR platforms new 

possibilities for flood monitoring are being researched. It has been shown that 

polarimetric decomposition (which analyses the SAR response according to different 

types of surface scattering mechanism, more in Chapter 3) can be applied successfully 

in detecting change in wetland environments (Schmitt et al. 2010; Brisco et al. 2011).  

Fluctuations of soil moisture and soil salinity can impact the ecology of intertidal 

habitats. Soil moisture and salinity of salt marshes change along the slope from sea to 

land. Intertidal habitats are adapted to specific ranges of soil moisture and salinity. Soil 

moisture values correlate with SAR backscatter signatures (Kasischke and Bourgeau-

Chavez 1997); thus a combination of optical data and SAR can be used to monitor of 

vegetation and soil moisture dynamics in wetlands (Dabrowska-Zielinska et al. 2009). 
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Intertidal sand and mudflats are located below the pioneer zone of lowest salt marsh 

vegetation habitats. Intertidal sand and mudflats are flooded during every high tide. 

Research of SAR for mapping of intertidal mudflats and their geological composition 

with SAR has shown that variations in SAR backscatter from intertidal mudflats are 

related to surface roughness, which in turn correlates with sedimentary structures 

(ripple structures at the surface of intertidal flats) and inherent grain size (van der Wal 

et al. 2005). Mapping of intertidal sediment mapping is improved by using multi-

frequency SAR data (Gade et al. 2008).  

A thin layer of remaining water during low tide can affect radar backscatter by creating 

a specular scatterer (Gade et al. 2008). Effect of this phenomenon is low backscatter 

and low signal-to-noise ratio. Soil moisture variability of intertidal flats in different 

stages of the tidal cycle has been modelled by using multi-temporal SAR data images 

(Lee et al. 2011). Soil moisture on intertidal mudflats changes during the tidal cycle due 

to drainage, evaporation and tidal inundation, and has a significant effect on SAR 

backscatter. 

 

Research into the use of RS for mapping and monitoring of coastal dynamics has shown 

that these technologies provide useful tools. The integration of SAR data in mapping 

coastal dynamics has been researched with changeable success. The impact of 

environmental factors can have a significant impact on SAR backscatter signatures. 

Further research into the impact of environmental factors on SAR backscatter for the 

mapping of salt marsh habitats is needed. 

2.4.3 Use of RS for salt marsh vegetation mapping 

The applicability of RS tools for mapping of natural habitats is actively researched 

(JNCC 2011; Nagendra 2011; Corbane et al. 2015). As an example, a habitat 

classification of the natural habitats of Wales has been compiled, the first of its kind on 

a national scale (Lucas et al. 2011). Very High Resolution (VHR) optical RS data (SPOT, 

aerial photography) was used to create rule-based classification schemes for 

identification of vegetation habitats of Wales and the research suggested that the use 

of SAR would improve habitat classification initiatives. The EA carries out surveys of 

salt marsh vegetation extent approximately every ten years, based on high-resolution 
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aerial photography. Due to the use of different methodologies, there are significant 

differences in estimated salt marsh extent (Environment Agency 2011). The most 

recent survey was carried out in 2010, using aerial photography datasets acquired 

between 2006 and 2009. Airborne photography and LiDAR are commonly used to map 

salt marshes habitats and other low-lying coastlines. As Hladik and Alber (2014) have 

shown, GIS variables extracted from a single LiDAR Digital Elevation Model (DEM) input 

layer in a salt marsh setting can be used successfully for classification of salt marsh 

habitats. Most of the variables they used were derived from one DEM input layer, the 

combination of these variables provided different contributions to the classification 

model. Their RS model was more accurate than the model based on non-RS GIS 

variables. 

According to Corbane et al. (2015), the use of active microwave sensors (e.g. SAR) is 

generally unsuitable for mapping of wetlands, although it has been acknowledged that 

SAR does provide complementary information about vegetation structure to 

multispectral optical imagery. Maghsoudi et al. (2013) found that vegetation 

classification (in their case a boreal forest) based on SAR generally results in moderate 

classification accuracies. 

A number of studies into the into the use of satellite imagery for mapping coastal 

habitats haven been carried out, review articles are provided by Adam et al. (2010) and 

Klemas (2011). Recent examples of coastal wetland mapping are the discrimination of 

different plant species communities in small coastal wetland research areas with VHR 

multispectral optical imagery (Lu et al. 2004; Tuxen et al. 2011), as well as coastal 

habitat mapping studies based on hyperspectral imagery (Belluco et al. 2006; Gilmore 

et al. 2008; Stevens 2009). Tuxen et al. (2011) have shown that vegetation indices like 

the Normalised Difference Vegetation Index (NDVI) have shown to be very useful for 

distinction between vegetation, bare soil and waterbodies. It has also been found that 

multi-temporal RS imagery analysis can improve wetland classification by using 

seasonal variations of different habitats (Davranche et al. 2010). Use of LiDAR for 

monitoring of intertidal has shown to provide information about vegetation structure 

as well as geomorphological features (Mason et al. 2006; Gilmore et al. 2008).  

Early research into the use of SAR to discriminate different vegetation habitats by 

Kasischke et al. (2003) showed that different wetland vegetation habitats can be 
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discriminated with SAR, but that backscatter signature is significantly affected by flood 

level and soil moisture variations. More recent research into use of SAR for 

classification of salt marsh habitats has been researched (Choe et al. 2011; Dehouck et 

al. 2011; Gade et al. 2011; Lee et al. 2012). All the above studies found that combining 

SAR, optical and elevation data generated better results than the use of either alone 

optical or SAR data. Clint Slatton et al. (2008) showed that a combination of multi-

frequency SAR data (quad-polarimetric C-band and L-band airborne SAR) with LiDAR 

can be used to identify seasonal variations in an intertidal coastal marsh. Furthermore 

it was found that L-band data generated better classification results than C-band data. 

The differences in behaviour between SAR frequency bands will be discussed in 

Chapter 3. 

Analysis of multi-temporal data sets showed that polarimetric SAR is capable of 

detecting phenological changes of salt marsh vegetation throughout the year (Lee et 

al. 2012). Annual salt marsh vegetation species show distinctive seasonal growth and 

senescence, whereas perennial species do not change much in size or shape 

throughout the seasons. The optimal moment to distinguish between these two types 

of vegetation is winter, when the annual species are senescent.  

Lee et al. (2012) also researched the effect of salt marsh creeks and channels on SAR 

backscatter. Some of the creek and channel walls faced the radar platform, which 

resulted in very strong radar backscatter returns. This led to misclassifications and it 

was advised to include high-resolution DTM data to correct for this. One of the main 

recommendations of this research was to investigate how the use of quad-polarimetric 

and polarimetric decomposition routines can improve habitat mapping. They argued 

that: ‘when the microwave scattering mechanisms associated with herbaceous 

halophytes and the surrounding areas are fully understood via a polarimetric 

scattering decomposition approach, it will greatly contribute to tidal flat studies.’ 

Polarimetric decomposition of SAR data has been developed to model scatter 

mechanisms of surface features, improving extraction of information from SAR data 

(Cloude and Pottier 1997; Freeman and Durden 1998), its potential advantages are 

reviewed in Chapter 3.2.3.  

Intertidal sand and mudflat habitats have been mapped with multi-frequency SAR by 

Gade et al. (2011). They argued that different sediment types (gravel, sand and mud), 
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macrophytes and mussel beds could be distinguished with SAR data, primarily due to 

different surface roughness of the different land cover types. Oyster and mussel beds 

were detected because of differences in surface roughness (Adam et al. 2010), findings 

that were confirmed in a Korean intertidal flat and salt marsh (Choe et al. 2011). Here 

it was found that oyster beds can be detected by analysing the polarimetric SAR 

signatures. Oyster beds primarily created volumetric backscattering; the main scatter 

mechanism observed on sand and mudflats was surface scattering.  

 

Mapping of salt marsh vegetation habitats has usually been carried out with 

multispectral optical and/or LiDAR data, usually focussing on vegetation extent, 

without considering mapping different salt marsh vegetation habitats. Limited research 

has included SAR to complement mapping of salt marsh habitats, due to limited 

availability and complex processing and interpretation. Increased availability of 

polarimetric SAR and development of polarimetric decomposition routines have 

potential to expand the applicability of SAR in salt marsh mapping. Combination of 

optical, LiDAR and SAR RS data to map salt marsh habitats has never been done before. 

2.4.4 Use of RS for estimation of vegetation biophysical parameters 

Research into correlation between RS variables and vegetation biophysical parameters 

have been carried out intensively (Le Toan et al. 1992; Beaudoin et al. 1994; Schmullius 

and Evans 1997; Woodhouse 2006). SAR data has shown to have a significant 

correlation with vegetation biomass (Le Toan et al. 1992). Englhart et al. (2011) have 

researched the use of two different SAR frequency bands to estimate biomass in a 

tropical peat swamp. It was found that combining the two frequency bands in one 

regression model yielded more accurate results over the whole biomass range than a 

model based on one single SAR frequency band. It has been shown that SAR is capable 

to estimate height of objects (Guida et al. 2010), which can be used to model the 

height of vegetation. Additionally, LiDAR data is used for estimation of vegetation 

height and correlation with biomass in peat swamps (Englhart et al. 2011) or mangrove 

forests (Fatoyinbo and Simard 2012). Wang et al. (2009) have used LiDAR data for 

modelling vegetation height in salt marshes. They found that grassy and shrubby 
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vegetation associated with salt marsh habitats limited the potential to use LiDAR data 

to construct a reliable vegetation height model. 

 

Using multiple RS data sources to model biophysical parameters in salt marsh 

vegetation habitats is not commonly done, although previous studies in different 

natural habitats have shown that correlations of biophysical parameters with 

aggregate RS data sets are usually stronger than with RS data sets based on a single RS 

sensor. 

2.5. Literature review summary 

The management of coastal zones is a complex task. Coastal areas provide ecosystem 

services, as well as principal location for economic and social development. However, 

they have a very dynamic nature and are vulnerable to environmental and climatic 

changes. This suggests the need for reliable and timely mapping and monitoring in 

order to support their management. 

Salt marsh habitats provide valuable ecosystem services like natural storm buffers and 

food provision. The ecosystem service value of salt marshes is being acknowledged, 

and in the UK current salt marsh management practices focus on preservation and 

restoration of these habitats. Within salt marsh habitats distinct vegetation zonations 

can be identified, ranging from non-vegetated sand and mudflats on the seaward side, 

via pioneer vegetation and grass meadows to shrubby areas in the land-ward sections.  

Remote sensing technologies have been shown to be capable tools for mapping and 

monitoring of salt marsh areas. The synoptic capabilities of earth observation 

technologies facilitate information acquisition in inaccessible areas and provide an 

objective and consistent platform for mapping and monitoring purposes. Remote 

sensing research into mapping and monitoring of salt marsh habitats has been carried 

out to a limited extent. Most effort has been put into the mapping of changes in extent 

of salt marshes; the mapping of different vegetation habitats has only been tested in 

pilot studies.  

New remote sensing technologies provide new opportunities for mapping and 

monitoring of habitats. For example, data acquired from SAR sensors can provide new 

tools that can complement existing coastal habitat mapping. It has been shown that 
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SAR is capable of mapping and monitoring vegetation. SAR is virtually weather-

independent and provides information about the earth’s surface that complements 

optical and LiDAR RS data. The application of SAR technologies for salt marsh habitats 

mapping and monitoring has rarely been studied, even though these habitats and their 

environmental setting provide a unique area of research.  

2.5.1 Research gaps 

The Literature Review identified a number of critical research gaps in relation to RS of 

ICZM. These are re-stated below: 

 A number of (semi-)operational RS projects have been initiated over the last 

decade to aid ICZM. However, there has been no project that has included 

operational use of SAR for mapping and monitoring of coastal habitats. 

 Research into the use of RS for mapping and monitoring of coastal dynamics 

has shown that these technologies provide useful tools. The integration of SAR 

data in mapping coastal dynamics has been researched with changeable 

success. The impact of environmental factors can have a significant impact on 

SAR backscatter signatures. Further research into the impact of environmental 

factors on SAR backscatter for the mapping of salt marsh habitats is needed. 

 Mapping of salt marsh vegetation habitats has usually been carried out with 

multispectral optical and/or LiDAR data, usually focussing on vegetation extent, 

without considering mapping different salt marsh vegetation habitats. Limited 

research has included SAR to complement mapping of salt marsh habitats, due 

to limited availability and complex processing and interpretation. Increased 

availability of multi-frequency and quad-polarimetric SAR and development of 

polarimetric decomposition routines have potential to expand the applicability 

of SAR in salt marsh mapping. Combination of optical, LiDAR and SAR RS data to 

map individual salt marsh habitats has never been done before. 

 Using multiple RS data sources to model biophysical parameters in salt marsh 

vegetation habitats is not commonly done, although previous studies in 

different natural habitats have shown that correlations of biophysical 

parameters with aggregate RS data sets are usually stronger than with RS data 

sets based on a single sensor. 
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2.5.2 Research questions 

From the research gaps the following over-arching Research Question has been 

deducted: 

 

To what extent can multi-frequency polarimetric SAR contribute to the mapping and 

monitoring of coastal salt marsh habitats?  

 

This over-arching Research Question can be split in three specific Research Questions, 

which are guidance for the research experiments carried out in this thesis: 

 

1. How are polarimetric SAR backscatter signatures affected by salt marsh 

characteristics, like specific environmental parameters (sea level, soil moisture 

or soil salinity) or botanical structure? 

2. Does the inclusion of SAR in a RS data set based on optical and LiDAR data 

improve mapping of both salt marsh extent and individual salt marsh habitats? 

3. Is a combined RS data set from optical, LiDAR and SAR sensors better suited for 

regression modelling of biophysical parameters (vegetation cover, height and 

volume) than regression models based on a data set based on a single RS 

sensor? 
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3. SAR remote sensing 

The research presented in this thesis has been data-driven, focussing on a particular 

SAR data set (further described in Chapter 4.2.3). Therefore, most attention is given to 

the pre-processing and extraction of parameters from this SAR data set. This chapter 

provides a summary of the most important principles of SAR remote sensing, 

explaining the underlying physical principles of scatter, as well as presenting the 

polarimetric decomposition models used in this thesis. 

3.1. SAR introduction 

SAR remote sensing can be dated back to the 1950’s, when the principles of Doppler 

beam-sharpening concepts were developed (Richards 2009). This section will explain 

some of the basic principles of radar and more specifically SAR remote sensing, as well 

as give an overview of the current status of technological development. 

The microwave domain used in remote sensing ranges from 0.3 GHz (wavelength 100 

cm) to about 20 GHz (wavelength 1.5 cm) (Richards 2009). This range is subdivided into 

bands with specific names (Table 4): 

Table 4 – Microwave bands used in remote sensing. 

Band 

name 

Frequency 

(GHz) 

Wavelength 

(cm) 

P-band 0.3-1.0 30-100 

L-band 1.0-2.0 15-30 

S-band 2.0-4.0 7.5-15 

C-band 4.0-8.0 3.75-7.5 

X-band 8.0-12.5 2.4-3.75 

Ku-band 12.5-18.0 1.7-2.4 

 

A number of publications have been dedicated to explain the principles of SAR RS to 

great detail (Woodhouse 2006; Lee and Pottier 2009; Richards 2009). The following 

paragraphs provide a short summary, with special focus on SAR principles most 

appropriate for this research. 

3.1.1 Radar platforms 

Radar platforms have a common observational configuration (Figure 4) in which the 

antenna on the platform emits radar pulses laterally, 90 degrees to the direction of 
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platform travel, with a certain angle from the vertical (nadir), the incidence angle. The 

direction of flight is the ‘azimuth’ direction; the area perpendicular to the flight 

direction is the ‘range’ direction. The radar pulse has a specific opening angle in slant 

range direction, nearest to the sensor is called the near slant range, furthest away the 

far slant range. The area covered between this is the swath width. 

 
Figure 4 – Geometry of SAR acquisition platform, oblique view. 

 

The angle of incidence (see Figure 5) has influence on the amount of energy and the 

geometric distortion of the returned signal. The backscattered signal from near slant 

range will be higher in intensity than the signal backscattered from far slant range, due 

to the shorter pathway the signal travels and the lower incidence angle and therefore 

with less signal attenuation. During data processing, a normalisation correction has to 

be applied to overcome these geometric differences. In areas with strong topography, 

geometric distortion phenomena occur due to differences in signal travel times. 

Foreshortening is observed when the backscatter from the base of a tall feature (like a 

mountain) tilted towards the SAR sensor is received before backscattered signal from 

the top is received. Because the SAR system measures distance in slant range, the 

slope of the object will appear compressed and the length of the slope will be 

represented incorrectly. When signal backscattered from the top is received earlier at 

the antenna than signal backscattered its base geometric layover is observed. Signal 

shadowing is observed from areas that are placed behind objects, with regard to the 

SAR sensor. However, in low-lying and flat coastal regions, these geometric distortions 
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are very small, although strong backscatter can be observed from slopes tilted towards 

the sensor, like channel walls. 

 
Figure 5 – Geometry SAR acquisition platform, frontal view. 

 

The radar transmitter emits radar pulses with a certain beamwidth in the azimuth 

direction. If pulses are backscattered to the antenna, the received signal will consist of 

a combination of backscatter from a range of targets that fall within this beamwidth 

(Richards 2009). The quality of the backscattered signal rapidly deteriorates with 

increasing distance between the radar sensor and the target on the ground. To receive 

the backscattered signal from a specific target at a large distance with fine resolution, 

the receiving antenna should be of sufficient physical length, which cannot be 

achieved for sensors in space or with difficulty on airborne platforms. To overcome this 

problem, SAR systems have been developed. SAR uses the forward motion of the 

platform to create a ‘synthetic aperture’ by using signal returns from a position the 

platform is laterally still ahead of a certain target until it has passed it, using the 

respectively first, intermediate and last returns from a wide beam. By recording a 

sequence of signal returns from the same ground feature, as it is passed by the 

leading, central and trailing sections of the wide beam, correcting each return using 

the Doppler shift (a higher microwave frequency is received back when the platform is 

ahead of a target and a lower frequency when the platform has passed a target, just 

like the siren sound of a passing ambulance) a synthetic (long) aperture (i.e. a pseudo 

long antenna) can be created. This can be used to sharpen and improve the quality of 

the resulting SAR image in azimuth direction. 
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3.1.2 Airborne SAR systems 

Airborne SAR systems have fewer technological limitations than spaceborne SAR 

systems in terms of power supply, weight and resolution. Therefore airborne systems 

can consist of multiple frequency bands and full polarimetric capabilities (Reigber et al. 

2013). Added to this, a major advantage of airborne SAR surveying over spaceborne 

systems is higher spatial resolution (Hensley et al. 2012), often sub-metre pixel size in 

azimuth and range directions. Systems can be operational in multiple microwave 

frequency bands simultaneously, and new systems are tested to provide scientific 

input for proposed satellite missions (Natale et al. 2011).  

3.1.3 SAR speckle 

Radar images have a distinctive speckled, or ‘salt and pepper noise’ appearance. The 

resulting grainy appearance is commonly referred to as speckle noise. It is observed in 

all coherent imaging systems and can be attributed to interference among the 

coherent backscatter echoes of individual scatterers within a resolution cell 

(Woodhouse 2006). The interference pattern that exists in the scattered wave is 

effectively chaotic and unpredictable; it is effectively a random pattern. This 

randomness is visible in the radar image as speckle. The interference of the different 

scatterers within one resolution cell can be constructive (amplification of the 

backscatter intensity) or destructive (suppression of the backscatter intensity). An 

important aspect of speckle is that causes differentiation in areas with homogeneous 

cover, i.e. the backscatter signal from one cell can differ substantially from the signal 

from an adjacent cell of similar composition (Richards 2009).  

One way to correct for speckle is the multilook method, in which the azimuth beam of 

the radar system is split in a number of sub-beams (Oliver and Quegan 2004). In this 

way each resolution cell is ‘looked at’ by every sub-beam during the passing of the SAR 

antenna from different directions (from forward looking to backward looking). The 

result is that speckle variation for each cell can be estimated and be averaged. The 

resulting images have improved radiometric resolution. Disadvantage is the 

degradation of geometrical resolution, depending on the number of looks defined. 

Therefore in general a balance is sought between these two resolutions (Woodhouse 

2006).  
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Additionally, specific spatial filters have been developed that use statistical estimations 

to suppress speckle noise while keeping intact the geometric resolution. Some of the 

most commonly used are the Enhanced Lee (Lee et al. 2009) and Frost filters (Frost et 

al. 1982).These filters aim to filter strongly in homogeneous areas, like waterbodies 

while preserving radiometric variance in heterogeneous zones like built-up areas. 

3.2. SAR polarimetry 

Even though the concept of radar polarimetry is relatively understandable, the 

acquisition, description and interpretation of polarimetric radar data pose some of the 

most challenging aspects of remote sensing as a whole (Woodhouse 2006). This 

section aims to describe the most important fundamentals, without delving too deeply 

into the underlying mathematical and physical complexities. 

Research and development of applications of polarimetric SAR has been successful in a 

number of domains (Schmullius and Evans 1997; Zhang et al. 2008; Reigber et al. 

2013). In comparison to conventional single channel SAR, the inclusion of SAR 

polarimetry consequently leads to a significant improvement in the quality of 

classification and segmentation results (Cloude and Pottier 1997; Lee et al. 1999). 

Polarimetric SAR is applied in land-use classification, forestry monitoring, ground 

surface roughness and soil moisture estimation (Lee and Ainsworth 2010). More 

advanced technologies such as polarimetric interferometric SAR (Pol-InSAR) data are 

used for SAR tomography, for example the three dimensional modelling of vegetation 

structures (Lee et al. 2004). An increasing number of operational polarimetric SAR 

systems on either airborne or spaceborne platforms require further research and 

development of applications (Reigber et al. 2013). 

The polarimetric signature of microwaves is defined as the direction in which the 

electric field oscillates. Electromagnetic waves oscillate transversely (i.e. perpendicular 

to the direction of the wave), which adds another parameter to describe the wave: the 

direction in which this oscillation takes place, the polarisation (Woodhouse 2006). If 

the propagating electric field oscillates in a vertical direction with regard to a plane 

parallel to the earth’s surface, it is named vertical polarisation. A field that oscillates in 

the horizontal direction is polarised horizontally. SAR antennae are capable of emitting 

and receiving radar pulses in specific polarimetric directions, most commonly in 
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horizontal (H) and vertical (V) directions. Different sensors operate with different 

polarimetric capabilities. SAR sensors that transmit in one polarimetric direction 

(which can be H or V) and receive in the same polarimetric direction are named single 

polarimetric systems. Systems that transmit in either H or V, but receive in both H and 

V are dual-polarimetric systems. Systems that transmit in both H and V and also 

receive in H and V are called quad or fully polarimetric systems. Fully polarimetric SAR 

systems with advanced polarimetric capabilities are very sophisticated and therefore 

expensive. This means that the installation of a fully polarimetric system on a 

spaceborne platform is risky in terms of technical failures and financial losses. 

Therefore single or dual polarimetric systems are often preferred over fully 

polarimetric systems. 

Backscatter intensity of HH, VH, HV and VV polarimetric channels can be expressed in 

intensity decibel units (dB). Usually, SAR intensity channels are expressed in sigma-

nought (σ0), which is a normalised coefficient of backscatter intensity that takes into 

account the size of the footprint or a pixel (Woodhouse 2006).  

3.2.1 Scattering matrix 

Polarimetric data incorporates a wealth of information about the ground surface that 

the radar pulses interact with. Even though the underlying physical description is very 

complex, a brief overview of the principles is provided here. For a more 

comprehensive explanation of polarimetric principles, (Richards 2009) and 

(Woodhouse 2006) are recommended reads. 

The most common way to describe polarimetric SAR data is by means of a scattering 

matrix S: 
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It describes the transformation of the electromagnetic field (E) of the incident wave 

(with superscript i) to the electromagnetic field of the scattered wave (with superscript 

s) for all polarizations (SHH, SHV, SVH and SVV). The four elements of the scattering matrix 

can be obtained from the magnitudes and phases measured from the four channels of 

a polarimetric radar system. In monostatic radar systems (i.e. the emitting and 

receiving antennae on the same platform) the SHV and SVH factors are assumed to 
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perform in the same way. This assumption means that the SAR system is reciprocal (SHV 

=SVH), the scatter matrix consists of only three independent elements: SHH, SVV and 

either SHV or SVH. The scattering vector or covariance vector kc is a vectorised version of 

the scattering matrix. Assuming reciprocity this vector is: 
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This vector can be expressed in a power-domain representation of the scattering 

properties, which is done by forming the product of this vector with itself.  
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In this matrix the + denotes the conjugate transpose and * the conjugate. The 

advantage of the covariance matrix is that it represents the power of the 

electromagnetic field; it relates the power of the scattered wave to the power of the 

incident wave (CCRS 2008).  

The scattering matrix can also be expressed in a coherency vector. This is closely 

related to the covariance vector and is preferred by some analysts, because each of its 

elements has a physical interpretation. It takes the following shape: 
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The three elements of the vectors are often used in SAR image analysis, as the 

elements closely relate to the odd-bounce, even-bounce and diffuse bounce scatter 

mechanisms (Richards 2009). 

3.2.2 Scatter mechanisms 

A next level of complexity in the interpretation of polarimetric microwave data 

involves an understanding of the scattering mechanisms present. Polarimetric 

decomposition methods have been developed over the last two decades to extract 

specific scatter mechanisms from the scatter matrix. Scatter mechanisms are pathways 
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that the radar signal takes when it interacts with features (targets) on the Earth’s 

surface (Freeman and Durden 1998). A natural target always shows a complex 

scattering response due to complexities in its reflectivity properties and geometrical 

structure. Therefore some elementary targets can be defined to describe the basic 

scattering mechanisms in order to provide a basis for describing more complex 

structures. Some of these elementary scatterers are dipole, dihedral, helix, and prolate 

spheroid scatterers (Figure 6). For further detailed information about basic scatterers 

and their properties, a good overview is provided by (Lee and Pottier 2009). 

 
Figure 6 – The shape of basic scatterers,  

From left to right dipole, dihedral, helix and prolate spheroid. 
 

Basic scatterers can be used to model the scatter mechanism, which is a description of 

the dominant scatter process of a certain surface material or target. Modelling these 

processes is done in the concept of polarimetric decomposition. Polarimetric 

decomposition theories are used to model the abstract scatter matrix into intuitively 

understandable scatter mechanisms. Three scatter mechanisms that are generally 

used for polarimetric decomposition modelling are (Touzi et al. 2004), (Figure 7): 

1. Rough surface, single or odd-bounce scatter. This occurs over surfaces that 

have a certain roughness, like grasslands, bare soils or sea surfaces with a 

certain wave height. Surfaces that are smooth, like paved areas or calm sea 

cause specular reflection of the incident wave, reflecting the signal away from 

the sensor. 

2. Double or even-bounce scatter. This occurs when the radar wave bounces on 

both the horizontal surface and a vertical structure, like tree stems or walls of 

buildings. As expected this scatter mechanism is dominant in built-up and 

forested areas. 

3. Canopy, volume or diffuse scatter. This occurs most frequently on surfaces 

where the wavelength of the incident wave is able to penetrate the surface in 
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some way, and is often backscattered following a complex pathway. This 

scatter mechanism occurs often in shrubby vegetation, tree canopies or snow-

covered terrain. 

 
Figure 7 – The most common scatter mechanisms. 

3.2.3 Polarimetric decomposition 

Target decomposition is developed to express the average scatter mechanisms as the 

sum of independent elements in order to associate a physical mechanism with each 

scatter matrix element (Touzi et al. 2004). Many target decomposition routines have 

been developed (Touzi et al. 2004; Zhang et al. 2008; Lee and Ainsworth 2010). As 

polarimetric SAR signal behaves differently on different surfaces, a number of different 

polarimetric decomposition routines are developed for specific target domains (Zhang 

et al. 2008). A few of the polarimetric decomposition routines and associated specific 

classification algorithms which are most commonly used and relevant for this research 

are described in the following paragraphs. 

3.2.3.1 Cloude-Pottier decomposition 

The Cloude-Pottier (CP) or H/A/α polarimetric decomposition is proposed in Cloude 

and Pottier (1997). This decomposition theory is based on the coherency matrix, by 

extracting matrix eigenvalues and eigenvectors entropy (H), anisotropy (A) and an 

eigenvector value alpha (α). The coherency matrix is built from the complex scattering 

vector in Pauli basis (Cloude and Pottier 1997): 
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The eigenvalues and the eigenvectors of this matrix are the foundation for the CP 

decomposition parameters, which are representative for three independent scattering 

mechanisms (surface scattering, double bounce scattering and volume scattering). The 

importance of each mechanism is found by analysis of the eigenvalues and 

eigenvectors entropy, anisotropy and alpha angle.  

Entropy (H) represents the predominance of a certain scatter mechanism. H is a 

dimensionless feature that varies between zero and one, where zero is the effect of 

simple mechanism and H-values of one represent pure noise. In real-life scenarios, H is 

low on surfaces that are relatively smooth, like ocean surfaces or sand flats. H tends to 

be higher in vegetated areas, because of multiple scatter mechanisms.  

Alpha angle (α) gives an estimate of the dominant scatter type and ranges between 0° 

and 90°. An α-angle of 0° is related to single bounce or surface scatter, values near 45° 

are associated with even bounce or double-bounce scatter. Values near 90° are 

associated with multiple bounce or volume scattering.  

Anisotropy (A) is the third eigenvalue used in the CP decomposition. It is, like H, a 

dimensionless feature which ranges in value between zero and one. It describes the 

relation between the second and third scattering contribution. High values of A denote 

the presence of only two scatter mechanisms, whereas low A-values denote equal 

measures of a second and third scatter mechanism. In classification applications it is 

not very commonly used, but it can serve as an additional distinguishing feature 

(Schmitt et al. 2010). 

3.2.3.2 Freeman-Durden decomposition 

The Freeman-Durden (FD) decomposition is a target model-based decomposition 

theorem proposed by Freeman and Durden (1998). This decomposition routine is 

based on extraction of three different scatter mechanisms: surface or Bragg scatter 

from a moderately rough surface, double bounce scatter from a pair of orthogonal 

surfaces and volume or canopy scatter from a cloud of randomly oriented dipoles. A 

detailed description of the calculation of the different scatter mechanisms is beyond 

the scope of this thesis, more details can be found in Freeman and Durden (1998). It 

uses geometric surface target shapes to model microwave behaviour, resulting in the 

three different scatter mechanism models: volume scatter (Pv), double-bounce scatter 



Chapter 3 - SAR remote sensing 

37 

(Pd) and surface scatter (Ps). The advantages of this decomposition is that it is 

straightforward to interpret and well suited for classification of natural targets (Zhang 

et al. 2008). The disadvantages are that the decomposition theorem tends to 

overestimate volume scatter and produces erroneous negative eigenvalues for surface 

and double-bounce scatter (Van Zyl et al. 2011).  

3.2.3.3 Van Zyl decomposition 

The Van Zyl (VZ) polarimetric decomposition theorem is proposed by Van Zyl et al. 

(2011) as a modification to the three-component FD decomposition. It is a similar 

model-based decomposition and decomposes the scatter matrix in the same 

components: volume scatter (Pv), double-bounce scatter (Pd) and surface scatter (Ps). 

However, it corrects for the over-estimation of Pv and the possible negative values of 

Pd and Ps, that can occur with the FD decomposition. 
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4. Research area and data processing 

This chapter describes the research methodologies used during the research. It has to 

be acknowledged that this research has been a data-driven research, focussing on the 

utilisation of a polarimetric SAR data set for habitat mapping in a salt marsh. One of 

the main aims of the research is to interpret the remote sensing analysis results of the 

in terms of the ecological and environmental processes taking place in the research 

area. 

This chapter starts with a detailed description of the research area, focussing on the 

geomorphological setting, the ecology, current management practices and a 

justification why this particular area has been selected as research area. Subsequently, 

the remote sensing data used during this research will be described and the final part 

of the chapter presents the processing and analysis steps. 

4.1. Research area 

The area of investigation was the Llanrhidian salt marsh complex, which is located 

along the southern coast of Wales, on the southern shore of the Burry Inlet. This inlet 

separates the Gower Peninsula from the mainland of Wales and forms the estuary of 

the River Loughor and is connected to the Bristol Channel (Prosser and Wallace 1999). 

The Burry Inlet and the wider area of the Camarthen Bay are designated Sites of 

Specific Scientific Interest (SSSI), one of the main reasons for this designation is the 

presence of the largest continuous salt marsh area in Wales (Countryside Council for 

Wales 2011). A number of environmental and ecological surveys have been carried out 

over the past two decades (Countryside Council for Wales 2005), including salt marsh 

habitat mapping (Farleigh 2010). Special mention is made to Prosser and Wallace 

(1999) have carried out detailed salt marsh vegetation habitat mapping based on the 

NVC classification. In general the area is regarded as one of the UK’s most biodiverse 

salt marsh areas (Countryside Council for Wales 2015). The field surveys have been 

carried out in conjunction with the Countryside Council for Wales (now re-named to 

Natural Resources Wales), to ensure the quality of the recorded ecological field data. 

An overview map of the research area is shown in Figure 8.  
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Figure 8 – Overview map of research area location in Wales. 

4.1.1 Geomorphological setting 

The Llanrhidian salt marshes measure over 2000 ha in extent and represent almost 5% 

of the total area of salt marsh in the UK (May 2007; Environment Agency 2011). From a 

geomorphological point of view the marshes are of interest for the range of features 

they display: saltmarsh creeks, saltpans, erosion cliffs and a range of sediment types. 

The marshes have developed in a sequence from east to west: more mature marshes 

in the east display well-developed terraces and a marsh cliff undergoing erosion, 

whereas at Llanrhidian in the centre of the marshes pans and creeks are present and 

display much dissection. At Landimore in the west, an intricate and deep creek 

network can be found. The sequence of marshes makes this specific salt marsh area a 

key area for an understanding of saltmarsh dynamics, sediment transport and sea-level 

changes. 

The marshes extend for about 15 km along the northern shore of the Gower Peninsula 

and are up to 1.5 km wide. In the western part near Landimore the marsh is sheltered 

by the Whiteford Burrows dune system and is the youngest part of the marshes. The 

central Llanrhidian Marsh is more exposed to waves entering the Burry Inlet from the 

west, but the eastern marshes near Crofty are in the more sheltered upper part of the 
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estuary. The spring tidal range is 6.6 metres and 3.7 metres at neap (Pye and French 

1993). Fine-grained sediment deposition is restricted to the more sheltered upper 

intertidal zone and upper reaches of the estuaries. Finer sediment grain size can be 

found on higher topographical elevation (Carling 1981). Generally, the mean sediment 

grain size on the upper tidal flat are sands, on the marsh edge sandy silts, and on the 

upper marsh clayey silts (Pye and French 1993). The marsh-edge is widely marked by a 

low cliff formed during periodic storm activity. Gently sloping ramped margins occur in 

areas of pioneer marsh progradation. There are some weakly developed terraces, the 

transition being marked by low cliff, ramp or residual mud-mound topography. Many 

creeks on the upper marshes show infilling in response to a reduction in tidal capacity 

while the marshes grow both vertically and laterally (Pye and French 1993). Small-scale 

mass-movements in rills and creeks in the muddy intertidal zone play an important 

role in the changes in creek morphology, the supply of sediment into the creeks, and in 

intertidal drainage patterns (Allen 1989). 

4.1.2 Ecological setting 

Figure 9 provides a photographic overview of the major salt marsh vegetation habitats 

of the Llanrhidian Marsh; the photos were taken during a reconnaissance fieldwork in 

November 2012. Over the decades, some ecological field studies have been carried out 

in the Llanrhidian Marshes (Prosser and Wallace 1999). The Llanrhidian Marshes are 

notable for a number of transitional sequences of vegetation communities from 

pioneer through middle to upper marsh vegetation. These transitions are particularly 

well developed in the western reaches of the salt marsh near Landimore and in the 

central part near Llanrhidian. In the latter location Juncus maritimus cover an 

uninterrupted extensive area in excess of 150 ha. In Landimore, the Burry and Great 

Pill bisect the marsh and provide habitat for extensive areas of pioneer Spartina 

anglica. This species was introduced to Loughor in 1931 and colonised rapidly in the 

1950s and 1960s, but appears to have declined since (Hubbard and Stebbings 1967). 

On the seaward end of the salt marsh, near the end of the Whiteford Burrows dunes, 

large areas of pioneer Salicornia have developed, and these are found along most of 

the lower reaches of the salt marsh. 
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Figure 9 – Photographic overview of major salt marsh vegetation habitats in the Llanrhidian Marsh. 
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The majority of the marsh is covered with Festuca rubra and Puccinellia maritime 

meadows. These areas are intensely grazed by cattle, the central part around the 

causeway from Weobly Castle resembles a bowling green (Prosser and Wallace 1999). 

There are some erosional edges in the central and eastern parts, near Llanrhidian. 

Here, a sudden transition from Festuca rubra meadows on higher terrain to and areas 

with dominantly Spartina anglica habitat on lower reaches is visible. The nett area of 

salt marsh vegetation is increasing (Environment Agency 2011).  

4.1.3 Management practices 

The Llanrhidian Marshes are owned by the National Trust (Pembrokeshire Council 

2011) and in use as common land, i.e. free for all to use within certain management 

limits. It is intensely used for grazing cattle, sheep and horses. Ungar and Woodell 

(1996) have carried out research on the marsh to assess the differences in botanical 

composition between grazed and un-grazed marshes. They found that grazing reduces 

plant species diversity. The Countryside Council for Wales (CCW), now re-named 

Natural Resources Wales (NRW), has advised to limit grazing to avoid the loss of plant 

diversity (Countryside Council for Wales 2005). The SMP for the Llanrhidian Marsh 

(Pembrokeshire Council 2011) mentions the marsh is in healthy condition and no 

intervention is needed to increase resilience to floods.  

The EA is the UK’s governmental organisation in charge of coastal protection and 

carries out a national salt marsh extent survey approximately every decade. The most 

recent survey was published in 2011 and is based upon aerial photography acquired in 

the years from 2006 and 2009 (Environment Agency 2011). The aerial photography for 

the Llanrhidian Marsh was acquired in 2007.  

In 1998 CCW carried out a comprehensive ecological field survey to map the 

vegetation habitats according to the NVC classification was carried out (Prosser and 

Wallace 1999). The NVC classification scheme provides detailed habitat descriptions of 

salt marsh communities. NVC classifications can be converted to other habitat 

classification schemes, for this research the NVC classes were converted to the EU 

Habitat Directive Annex 1 classes for salt marsh habitats (JNCC 2006). 
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4.2. Data description and processing 

This paragraph describes the remotely sensed data used in this research and the 

consecutive processing steps. Table 5 provides an overview of the different RS data 

sets used for this research. 

Table 5 – Overview of RS data used in this research. 

Mission Sensor 
Acquisition 
Date 

Acquisition 
time (UTC) 

Spatial 
resolution 
(m) 

Tidal level 
The 
Mumbles 
(m CD) 

Remarks 

Airborne 
campaign 

ADS40 02/06/2006 Not known 
0.25 x 
0.25 

Not 
known 

Visible light 
variables used, 
referred to as 
R, G and B 

Airborne 
campaign 

LiDAR 2007 Not known 2.0 x 2.0 

+6.89, 
based on 
lowest 
DSM 
elevation 

Digital Surface 
Model, 
referred to as 
DSM 

Landsat-7 ETM 04/06/2010 11:03:04 30 x 30 +7.37 

Used for NDVI 
calculation, 
variable 
referred to as 
NDVI_1 

AirSAR 
campaign 

Astrium 
SAR 
Demonst
rator 

28/07/2010 16:49:43 
0.75 x 
0.75 

+5.20 

Polarimetric 
channels HH, 
VV, HV, 
acquired in  
S-band and  
X-band 

Landsat-5 TM 28/04/2011 11:00:34 30 x 30 +3.86 

Used for NDVI 
calculation, 
variable 
referred to as 
NDVI_2 

4.2.1 Optical data sets 

Aerial photographic imagery was added to the data selection: a Red, Green and Blue 

(RGB) colour aerial imagery collected by a Leica ADS40 scanner with 0.25x0.25 metres 

spatial resolution. This data set was extracted from the Astrium Geostore data 

dissemination platform (Airbus DS 2015). The RGB aerial photography data set is 

shown in Figure 10. 
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Figure 10 – RGB composite of the aerial photography data set used in this research. 

 

Two Landsat satellite images added to the selection of optical images. These Landsat 

images were downloaded from the United States Geological Survey (USGS) 

EarthExplorer repository. The main reason to include the satellite imagery was to be 

able to use the information of the near-infrared and vegetation indices based on this 

channel, which were not available VHR resolution from aerial imagery. A relatively 

cloud-free image was found with an acquisition date closely coinciding with the SAR 

data used in this research, described in Chapter 4.2.3. This image was a Landsat-7 

ETM+ scene acquired on 04/06/2010. Additionally another Landsat-5 TM scene 

acquired on 28/04/2011 was added to the selection of optical imagery. This image was 

added in order to be able to research seasonal variation of salt marsh habitats, with 

one image from the early growing season and one during the maximum growing 

season.  

4.2.1.1 Pre-processing optical aerial imagery 

The pre-processing of the optical images was carried out with Envi 4.8. Initially, the 

aerial imagery was checked for inconsistencies in illumination and reflectance 

throughout the research areas. The RGB aerial imagery was acquired on one single day 
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on 02/06/2006 which meant there were no differences in illumination conditions, 

which can occur when imagery from different dates are stitched together in a mosaic. 

Subsequently, the RGB imagery was checked for geo-registration errors. In order to 

achieve this, the Ordnance Survey Mastermap, with scale of 1:10,000 was downloaded 

from the EDINA repository. Even though the area posed some problems in terms of 

finding stable Ground Control Points (GCP), there were some features in the area that 

could be used very well. Example imagery of the geo-registration check of all different 

data sets is provided in Figure 14. Finally, the spatial resolution of the RGB imagery was 

re-sampled from 0.25x0.25 metres to 2x2 metres, in order to coincide with the 

resolution of the other data sets. 

4.2.1.2 Pre-processing optical satellite imagery 

Initially, the geo-registration of the two Landsat images was checked in the same way 

as the aerial photography was checked, see Figure 13. It was found that the images 

were very well geo-registered and no further modifications were needed. 

Subsequently, NDVI was calculated from both Landsat images with the NDVI 

calculation module in Envi 4.8. Subsequently, the NDVI images were re-sampled from 

the native Landsat spatial resolution of 30x30 metres to 2x2 metres, in order to 

coincide with the other data sets.  

4.2.2 LiDAR data sets 

A LiDAR Digital Surface Model (DSM) data set was obtained from the Landmap 

repository (Millin-Chalabi et al. 2011). A DSM data set is a model of the Earth’s surface 

including the objects placed on it, like buildings and vegetation (Axelsson 1999). The 

data set had a native spatial resolution of 2x2 metres in the X and Y directions and a 

vertical resolution of 1-2 cm. The metadata delivered with the LiDAR data set was 

sufficiently vague that it only the year of acquisition could be identified as 2007. 

The geo-registration was checked with the Ordnance Survey Mastermap images, in 

which a number of GCPs were checked. In Figure 13 the positioning of the DSM data 

set with regard to the Mastermap in shown.  
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Figure 11 – LiDAR DSM data set used in this research. 

4.2.3 Airborne SAR data  

The airborne SAR data set used in this thesis was acquired by the Astrium SAR 

Demonstrator (Natale et al. 2011). This system operates in both S- and X-band and is 

quad polarimetric. In July 2010, a survey campaign was carried out to acquire SAR data 

as preparation for the upcoming NovaSAR-S satellite mission, which will be equipped 

with an S-band SAR instrument. A number of other research experiments have been 

carried out to test the suitability of S-band SAR for land cover mapping (Guida et al. 

2012; Iervolino et al. 2013). The S-band frequency domain has been used on the ill-

fated Soviet Union’s Almaz-1 satellite, which was operational for a very short period 

and endured numerous technical problems. Recently, it has also been installed on the 

operational Chinese HJ-1C EO satellite.  

The SAR image was acquired over the Llanrhidian Marsh on the 28th of July 2010 at 

16:49 GMT. The airborne SAR data was acquired using three polarimetric channels, HH, 

HV and VV. Although the data was not a full quad-polarimetric mode image, the data 

could still be analysed as if it was fully quad-polarimetric. For monostatic radars (i.e. 

transmitting and receiving antennas on the same location), both cross-polarimetric 
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channels are assumed to behave similarly (HV=VH). This is the reciprocity principle 

(Touzi et al. 2004; CCRS 2008) and it simplifies the coherency matrix considerably.  

The tidal level during acquisition of the airborne SAR data was ±5.20 m Admirality 

Chart Datum (ACD) and the water level was rising during image acquisition. The tidal 

information is extracted from the tidal recordings of the UK Hydrographic Office and 

accessed through the National Tidal and Sea Level Facility (NTSLF 2012). The nearest 

tidal station is located at The Mumbles, on the southern shore of the Gower Peninsula. 

This tidal level is halfway between spring low and high tide that ranges between 0.1 

and 10.3 meters ACD respectively. For reference, ACD chart level is placed -5.00 

meters with regard to Ordnance Datum (OD) at the tidal station of the Mumbles. This 

means that the tidal level during SAR acquisition was +0.20 m OD. This relates directly 

to the elevation values of the LiDAR DSM variable, described in Chapter 4.2.2.  

4.2.3.1 SAR data import  

The airborne SAR data pre-processing steps taken are summarised in Appendix D.  

The data set was delivered in a native generic FPI format, which included header 

information and the SAR data for the different polarimetric channels and both 

frequency bands. The SAR data was presented in Single Look Complex (SLC) format; in 

which amplitude and phase information are stored as the real and imaginary part of 

the data, respectively. The spatial resolution of the raw data set was 0.75 metres in 

both azimuth and slant range directions. The polarimetric channels were calibrated 

during the initial tests (Natale et al. 2011) using the procedure described by van Zyl 

(1990), using the returns from natural targets assumed to present azimuthal symmetry 

and at least one trihedral reflector. This technique allowed correction for cross-talk 

between polarimetric channels, and provides robust inter-channel calibration (Natale 

et al. 2011). 

A dedicated IDL script was used to extract the header information and prepare the SLC 

SAR data for import in Envi. In Envi the SAR data format was changed from complex 

format into two-layer float format files, after which it was ready to be imported in 

PolSARpro. 
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4.2.3.2 SAR radiometric correction 

For processing of the airborne SAR data set, the PolSARpro toolbox was used. This 

package is developed for ESA as a learning and processing tool for polarimetric SAR 

data and has a number of in-built processing and classification routines (ESA 2013).  

During the initial import into PolSARpro, a multilook correction was applied. 

Multilooking is a way to reduce the inherent speckle noise in SAR images, as described 

in Chapter 3.1.3. It was chosen to apply a multilook of 3x3 in the azimuth and slant 

range, respectively. This was chosen to preserve as much of the spatial resolution, 

while still reducing SAR speckle considerably. After the multilook, the SAR image 

spatial resolution was resampled from 0.75x0.75 metres to 2.25x2.25 metres. 

After multilook correction the data was imported in the RAT Radar Tools. This is a 

standalone SAR processing tool developed by Technical University of Berlin (Reigber 

and Hellwich 2010). The reason to use this tool is because it incorporates some SAR 

processing functions that are not available in PolSARpro. In this research it was 

primarily used to correct for antenna pattern. Returned microwave signal in the near 

slant range attenuates less than the signal retrieved from the far slant range (see also 

Chapter 3.1.1. This results in an image whose intensity is too high in the near slant 

range and too low in the far slant range. This artefact was corrected by applying an 

antenna pattern correction. In Figure 12, a plot of the antenna pattern correction 

curves are shown. The average backscatter of the three polarimetric channels is shown 

over the slant range, near slant on the left and far slant on the right of the plot. 

Consequently, a curve is fitted through the backscatter profile. This curve is used to 

correct for backscatter attenuation differences, it suppresses backscatter intensity in 

the near slant range and amplifies backscatter intensity in the far slant range. 

4.2.3.3 SAR geometric correction 

Geometric correction was carried out by performing a conversion from slant to ground 

range with RAT Radar Tools. Header information about near slant range and 

instrument (airplane) height was used to calculate incidence angles during acquisition. 

From this, the actual footprints of the image resolution cells were calculated. This 

information was used to project the slant range image on the ground. The image 

dimensions were changed to fit this footprint (Richards 2009). 
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Figure 12 – Antenna pattern correction curves for S-band SAR image from pre-processing in RAT.  

R: HH backscatter intensity, G: HV backscatter intensity, B: VV backscatter intensity. 

4.2.3.4 SAR polarimetric descriptors 

After radiometric and geometric correction, polarimetric decomposition parameters 

were extracted. PolSARpro offers a large suite of polarimetric decomposition tools and 

specific classification algorithms to extract additional information from polarimetric 

SAR data. An introduction into polarimetric decomposition methods was provided in 

the Chapter 3.2.3. The following four types of polarimetric descriptors were extracted: 

1. HH, HV and VV backscatter intensity channels. For the airborne SAR data 

set no σ0 calibration coefficients were available. Therefore backscatter 

intensity dB values could not be quantified per square ground unit. 

However, the data was corrected for signal attenuation by the antenna 

pattern correction. Considering the flat topography of the research area, it 

was assumed that intra-scene backscatter intensity variation was 

sufficiently corrected. 

2. Cloude-Pottier (CP) decomposition H, A and α-values. See Chapter 3.2.3.1 

for more information. 

3. Freeman-Durden (FD) decomposition, volume scatter (Pv), double-bounce 

scatter (Pd) and surface scatter (Ps). See Chapter 3.2.3.2 for more 

information. 
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4. Van Zyl (VZ) decomposition volume scatter (Pv), double-bounce scatter (Pd) 

and surface scatter (Ps). See Chapter 3.2.3.3 for more information. 

4.2.3.5 SAR geo-registration 

After extraction of the polarimetric descriptors, the image was projected in a 

geographical format. It was assumed that small topographical relief in the imagery 

(height difference 4-5 metres over the entire research area, see Figure 11) did not 

cause significant geometric distortions normally associated with SAR data. Assuming 

this, implementation of a height model to enhance the geometric correction could be 

avoided. The metadata of the raw airborne SAR data only provided two geographic 

coordinates, one of the first pixel and one of the last pixel of the first scan line, 

accompanied with an average aircraft flight heading. This proved to be too little 

information for a confident and accurate geo-registration. Therefore, it was decided to 

perform the geo-registration by selecting twenty Ground Control Points (GCPs) in both 

the SAR data set and the reference OS Mastermap topographical map. The geo-

registration was performed with Envi 4.8. Special attention was given to an even 

spreading of the GCPs in the image, as well as finding GCPs as close to each four 

corners of the SAR image as possible. The image posed a specific challenge as there 

were very few man-made (i.e. stable) objects in the SAR data set. Therefore it had to 

be assumed that some of the features in the salt marsh are more or less stable over 

time, like major creeks and ponds. In Figure 13 the locations of the GCPs are shown.  

 
Figure 13 – Location of GCPs used to geo-register airborne SAR data. 
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Even though the raw SAR imagery was delivered with correction for roll, pitch and yaw 

errors of the survey airplane, a second degree polynomial correction was needed to 

warp the image to obtain the best geographic fit. In Table 6 the statistics of the geo-

registration are shown, with the predicted and observed locations of the warped 

image, as well as the Root Mean Square (RMS) error of each GCP. The total RMS error 

was 5.20 metres. 

Table 6 – Airborne SAR geo-registration GCP statistics. 

GCP 
Base image Warp image Predicted location Location error RMS  

error x y x y x y x y 

1 5133.50 4731.00 721.00 621.00 714.25 622.43 -6.75 1.43 6.90 

2 4907.75 4494.00 875.00 369.00 875.60 369.30 0.60 0.30 0.67 

3 6480.75 5609.25 242.50 1994.00 240.64 1995.10 -1.86 1.10 2.16 

4 6235.50 5485.00 292.25 1755.75 295.56 1754.44 3.31 -1.31 3.56 

5 5916.50 5546.00 134.75 1498.00 134.65 1497.52 -0.10 -0.48 0.49 

6 5531.50 5376.00 188.75 1129.50 190.06 1125.86 1.31 -3.64 3.87 

7 6663.75 5477.25 432.00 2113.00 435.38 2118.08 3.38 5.08 6.10 

8 5051.75 5356.00 60.00 712.00 60.91 711.16 0.91 -0.84 1.24 

9 5380.00 5083.50 436.00 925.00 439.15 922.40 3.15 -2.60 4.09 

10 5323.00 5329.50 175.00 941.00 172.22 936.05 -2.78 -4.95 5.68 

11 6834.75 5818.25 133.25 2346.50 126.40 2349.80 -6.85 3.30 7.60 

12 6017.00 5373.00 346.25 1541.50 344.14 1539.63 -2.11 -1.87 2.82 

13 4555.75 5095.00 160.00 221.50 163.59 221.25 3.59 -0.25 3.59 

14 4774.25 5324.25 4.00 459.75 5.95 466.15 1.95 6.40 6.69 

15 4913.25 4456.75 909.50 364.75 914.62 364.55 5.12 -0.20 5.13 

16 5111.75 4867.75 578.00 638.00 569.74 638.53 -8.26 0.53 8.27 

17 7537.00 6009.00 124.00 2998.00 127.95 2996.77 3.95 -1.23 4.14 

18 7460.00 5647.00 504.25 2838.50 496.88 2840.37 -7.37 1.87 7.61 

19 7071.50 5425.75 609.00 2451.00 615.84 2453.24 6.84 2.24 7.19 

20 7593.00 5648.00 534.00 2959.00 535.97 2954.13 1.97 -4.87 5.25 

 

Subsequently, the geo-registration quality of the projected images was visually 

checked using the OS Mastermap. Figure 13 shows the geographical fit of the different 

RS data sets with regard to the only truly stable point in the research area, a 

foundation along the causeway through the centre of the area. The projected S-band 

and X-band SAR backscatter intensity images are presented as RGB composites in 

Figure 15 and Figure 16, respectively. 
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Figure 14 – Visual check of geo-registration of RS data sets used in this research. 

(A) RGB imagery, (B) DSM data, (C) S-Band SAR, (D) X-band SAR, 

(E) Ordnance Survey Mastermap, used as reference, (F) False colour Landsat-7 imagery. 
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Figure 15 – RGB composite of S-band polarimetric intensity channels. 

 

 
Figure 16 – RGB composite of X-band polarimetric intensity channels. 
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4.3. Reference data 

In this section the reference data is described, which has been used to correlate the RS 

data sets with the actual presence of different salt marsh vegetation habitats and 

biophysical parameters in the research area. 

4.3.1 CCW survey (1998) 

In 1998 an ecological field survey in the Burry Inlet and the Loughor Estuary was 

carried out (Prosser and Wallace 1999). The survey was initiated by the CCW. At the 

time, the survey was carried out to provide more detailed information on the 

distribution of key habitats for designation of a Special Area of Conservation (SAC). 

One of the key findings of this field survey was that Juncus maritimus was particularly 

well represented in the Llanrhidian Marsh (Prosser and Wallace 1999). A decline of 

Salicornia pioneer marsh vegetation was also observed. The vegetation habitats were 

mapped according to the NVC vegetation habitat classification, which is the most 

commonly used habitat classification scheme in the United Kingdom, which has 

detailed description of salt marsh vegetation habitats (Rodwell 2000). The NVC classes 

were re-grouped into the more broad classification of the Annex 1 habitats listed 

under the EC Habitat Directive (European Commission 1992). In Table 7 an overview of 

the relationships between the NVC and Annex 1 classes is provided, further explained 

in Chapter 4.3.3. The CCW data was made available as reports and GIS data, and is 

plotted in Figure 17. 
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Figure 17 – Habitat classification map based on the CCW ecological field survey (1998). 

4.3.2 Field survey (2013) 

Between 23rd and 25th July 2013, an ecological fieldwork specifically dedicated to 

collect ecological data for this PhD research was carried out in the Llanrhidian Marsh. It 

was carried out in this period to coincide as much seasonally with the SAR data 

acquisition, which was on the 26th of July 2010. Specific focus was given to the 

recording of habitat type and biophysical parameters of the vegetation for correlation 

with the RS data set. On a total of 100 locations samples were taken. The location and 

appearance of each sample site was recorded with Global Positioning System (GPS) 

and geo-registered photos. Figure 18 is an overview map of all sample locations. On 

each survey day another transect through the salt marsh was sampled. On July 23rd, 

2013 the western part of the salt marsh near Landimore was recorded. This part of the 

salt marsh can be characterised by a quick succession of upper salt marsh habitats to 

pioneer Spartina vegetation. This area was bisected by a number of major gullies and 

creeks and was very muddy in the Spartina swards. On the second day on July 24th, 

2013 the central part around the causeway crossing the salt marsh from Weobly Castle 

was investigated. In this Festuca rubra and Puccinellia maritima salt marsh meadows 

were dominant and it was the primary cattle grazing area. Further towards the pioneer 
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zone there are extensive sandflats with swaths of pioneer Salicornia spp. On the last 

day on July 25th, 2013 the eastern part of the marshes were visited, near the village of 

Llanrhidian itself. This area is dominated by dense Juncus maritimus fields in the upper 

part of the salt marsh. This gave way to salt marsh meadows in direction of the sea 

until a former erosive cliff was reached. Beyond this cliff a transition from salt marsh 

meadows to Spartina anglica was observed. The soil became progressively muddy and 

difficult to access. In Figure 18 the sample sites are plotted, with reference to the CCW 

habitat survey and the EA salt marsh extent survey maps. What can be seen from the 

map is that the vegetation cover in the pioneer zone has extended along the central 

and eastern transects, in each of the habitats samples have been collected. 

 
Figure 18 – Overview map of sample locations of field survey in July 2013. 

CCW and EA surveys are plotted in background for reference. 
 

In order to make sure that positioning errors in either the RS data set or during the 

field survey would least affect correlations it was made sure that each sample site was 

‘representative’ of the wider surroundings, also considering the average RMS error of 

the RS data geo-registration of 5.20 metres (Table 6). With representative it is meant 

that there were no sharp boundaries or transitions within a radius of 10 meters around 

the sample site. Also it was made sure that the vegetation type and cover found at the 



Chapter 4 - Research area and data processing 

57 

sample site was similar with the vegetation type and cover within this 10 meters buffer 

zone. 

At each site information was acquired by placing a 1x1 metre quadrat as a bounding 

box (Figure 19). Even though the spatial resolution of the combined RS data set was 

2x2 metre the quadrat size was chosen for practical purposes, it would have been very 

difficult to carry a quadrat of 2x2 metre around in a salt marsh. 

 
Figure 19 – Annotated picture of ecological field survey quadrat. 

 

At each sample site the following parameters were recorded (shown in Figure 19): 

1. NVC habitat, according to the NVC habitat classification scheme, later re-

grouped in Annex 1 habitats 

2. Vegetation species present within the quadrat (in), 

3. Percent cover of each species (Ci) in dm2 per m2, 

4. Vegetation height of each species (hi) in centimetre. 

From these parameters the Gross Vegetation Volume (GVV) which is defined as 

vegetation volume in dm3 inside the quadrat area of 1 m2 was calculated: 

     ∑      

 

   
 ( 7 ) 
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As equation 7 shows, GVV is a summation of the respective volumes of the species 

present in the quadrat. The volume was calculated by multiplying percentage cover 

with the height of each present species, similarly to the methodologies described in 

Suchar and Crookston (2010) and Axmanová et al. (2012). The recorded field data is 

presented in tabulated form in Appendix A, a number example pictures from a 

selection of sample site locations are presented in Appendix B. 

4.3.3 Salt marsh habitat classes 

The habitats were recorded during the field survey according to the NVC classification 

(Rodwell 2000). To convert these to other classification schemes, JNCC has drawn a 

conversion table (JNCC 2015). This table was used to convert the habitat classes to the 

Annex 1 classification. Table 7 is an overview of the relationships between the classes 

used in this research and the NVC and Habitat Directive.  

The EU Habitat Directive Annex 1 classification (Habitats Directive 1992) was designed 

as a comprehensive scheme to classify all of Europe’s natural habitats. Even though 

most member states still have their existing national classification schemes, wider 

implementation of Annex 1 scheme is considered (Lee 2001).  

It was acknowledged that the habitats ‘mid-upper salt marsh meadows’ and ‘upper 

Juncus maritimus’ are normally grouped in one habitat in the Annex 1 classification. 

These habitats were separated for this research as they show considerable differences 

in spectral reflectance and vegetation structure. In this way, the different RS responses 

of these two habitats can be distinguished. Additionally, a separation between wet and 

dry sand and mudflats was used for the mapping of salt marsh habitats. 

Table 7 – Relationships between NVC and Habitat Directive Annex 1 habitat classes. 
Common NVC classes are indicated in bold. 

Classes used in this research NVC class 
Annex 
1 class 

Sand or mudflats None, not vegetated H1140 

Pioneer Salicornia spp. SM8, SM9 H1310 

Pioneer Spartina anglica SM4, SM5, SM6 H1320 

Mid-upper salt marsh 
meadows 

SM10, SM11, SM12, SM13, SM14, 
SM15, SM16, SM17, SM19, SM20 

H1330 

Upper marsh Juncus maritimus SM18 H1330 
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5. SAR backscatter signatures in salt marshes 

5.1. Introduction 

This chapter presents the methods, results and discussion of the research experiment 

that was designed to provide answers to the first research question: 

 

‘How are polarimetric SAR backscatter signatures affected by salt marsh 

characteristics, like specific environmental parameters (sea level, soil moisture or soil 

salinity) or botanical structure?’ 

 

One of the main aims of this research experiment was to investigate the performance 

of S-band SAR in general. S-band SAR operates with wavelengths in the frequency band 

of 7.5 to 15 cm and X-band in the wavelength domain of 2.4 to 3.75 cm. These two 

frequencies interact with targets on the earth’s surface differently. As has been shown 

in previous studies, longer microwave wavelengths are better capable to penetrate 

through vegetation canopy or the upper part of soils (Schmullius and Evans 1997; Gade 

et al. 2011). With this in mind, behaviour of polarimetric S-band against polarimetric X-

band was expected to differ in salt marsh habitats. 

The second aim of this research experiment was to research the influence of salt 

marsh environmental and botanical parameters on SAR backscatter signatures. It has 

been known that soil moisture varies largely in a salt marsh throughout the tidal cycle 

(Silvestri and Marani 2004) and that these variations can have profound effect on SAR 

backscatter signatures (Dabrowska-Zielinska et al. 2009). The SAR data set was 

acquired when the tidal level was approximately half-way between low and high tide. 

From visual interpretation it is interpreted that there are moisture differences within 

the area of sand and mudflats, while the vegetation habitats are all dry. Therefore, the 

soil moisture analysis will focus on the sand and mudflats. The influence of botanical 

parameters on SAR backscatter is analysed focussing on the four vegetation habitats. 

5.2. Methods 

This section describes the different data analyses carried out with the RS and reference 

data sets, focussing on the analysis of SAR backscatter signatures in salt marshes. A 
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flowchart overview summarising the different analyses and their inter-relations are 

shown in Appendix C. 

The two frequency bands of the airborne polarimetric SAR data sets (S-band and X-

band) and its derived polarimetric descriptors are used to quantify the impact of 

environmental parameters as well as botanical differences in salt marshes. In order to 

achieve this, the analysis is split in two parts. The first part concerns statistical analysis 

of the polarimetric descriptors.  

In the initial analysis the response of S-band and X-band polarimetric intensity 

channels in different locations throughout the research area that represented different 

habitats and environmental settings was investigated. One of the main research topics 

of this research was to analyse backscatter signatures of S-band SAR. Additionally, 

attention was given to comparative analysis of CP, FD and VZ decomposition variables 

and understanding the added value of these variables for salt marsh vegetation 

characterisation. 

For the analysis of influence of environmental parameters on SAR variables, samples 

were taken from the SAR variables that corresponded with ecological field survey 

sample locations. For each of the sample locations, a buffer zone of 10 meters was 

defined and random samples were selected of each of the pixels within these buffer 

zone. Of each of the vegetation classes, 500 pixels were randomly selected and the 

corresponding SAR variable values were extracted. Qualitative analysis of backscatter 

behaviour in different salt marsh habitats was done by plotting the sampled S-band 

and X-band values in scatterplots. Subsequently, scatterplots of CP and VZ 

decomposition SAR variables were drawn to analyse differences between the 

behaviour of backscatter intensity channels and polarimetric decomposition 

parameters for S-band and X-band SAR. Besides analysing scatterplots, a number of 

boxplots of SAR variables were plotted for quantitative analysis of statistical 

distributions of habitats with different vegetation characteristics in a number of 

environmental settings. 

5.3. Results 

Analysis of polarimetric SAR variables provides insight into the interaction of 

microwave pulses with surface targets and materials. The performance of S-band with 
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relation to X-band and the performance of polarimetric decomposition data variables 

with relation to polarimetric intensity channels are analysed. 

In this section the results from the polarimetric SAR descriptor analysis are presented. 

The section consists of four parts: in the first the polarimetric backscatter intensity 

variables are analysed, followed by two parts about CP and VZ polarimetric 

decomposition variables. In the last part all the results are combined are integrated in 

a model of backscatter behaviour in all considered salt marsh habitats. 

5.3.1 Polarimetric backscatter intensity variables 

In the following paragraph the results are briefly described, subsequently an 

interpretation per habitat with consideration to environmental and botanical factors is 

made.  

Scatterplots were drafted showing relationships of the three polarimetric intensity 

channels (HH, HV and VV, normalised to dB) between X-band and S-band (Figure 20). 

These plots reveal a consistent difference between S-band and X-band behaviour of all 

three separate polarimetric channels. A best-fit linear regression line is drawn in all 

three scatter plots. This gradient can be interpreted as the relative sensitivity, or 

dynamic range, of the X-band SAR system relative to the S-band SAR system. In case 

the sensitivity of S-band and X-band SAR to different surface targets were the same, 

the best-fit line would have a gradient of 1 (parallel to the dashed line in the 

scatterplots, which is the line y=x). The three linear regression lines calculated for the 

three intensity channels have slopes of 0.7376 for HH polarisation, 0.5961 for HV 

polarisation and 0.6929 for VV polarisations channels, respectively. This indicates that 

the degree in which X-band changes with respect to S-band is lower, with a lower 

variance between the points. This implies that variance, or separation of X-band data 

points between different habitat classes is lower. From this it appears that X-band is 

less sensitive to differences in surface roughness or vegetation cover than S-band. 

The scatterplots give some indication of backscatter behaviour differences between 

salt marsh habitat classes, but this is shown clearer in Figure 21. This figure displays a 

series of boxplots of all SAR backscatter intensities channels against different land 

cover classes. In these boxplots the data is split into quartiles. The box of the boxplots 

goes from the first quartile (Q1) to the third quartile (Q3). Within the box, a vertical 
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line is drawn at the Q2, the median of the data set. Two horizontal lines, called 

whiskers, extend from the front and back of the box. The front whisker goes from Q1 

to the smallest non-outlier in the data set, and the back whisker goes from Q3 to the 

largest non-outlier. Outliers are plotted separately as points on the chart. 

 

 
Figure 20 – Scatterplots SAR polarimetric intensity channels X-band against S-band. 

 

The boxplots show that backscatter intensities from different land cover classes have 

different mean values and variability. The most notifiable difference in pattern 

between S-band and X-band data is visible in the HV backscatter intensity channels. S-

band HV backscatter intensity displays a wider dynamic range than X-band HV 

backscatter intensity. What is also noticeable is that there is a wider variety between 

vegetation classes for S-band HV intensity than can be observed with X-band HV 
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intensity. Generally it appears that S-band intensity channels display a wider dynamic 

range than X-band intensity channels and are better for discrimination between 

different vegetation habitats.  

 

 
Figure 21 – Boxplots SAR backscatter intensity channels against land cover classes. 

 

The mean and standard deviation values of the backscatter intensity variables are 

tabulated in Table 8.  

  



Chapter 5 - SAR backscatter signatures in salt marshes 

64 

 

Table 8 – Mean and standard deviations of backscatter intensity variables per habitat. 

Habitat Mean S HH SD S HH Mean S HV SD S HV Mean S VV SD H VV 

Sand/mudflats 30.48 5.82 21.13 3.52 32.91 6.43 

Pioneer Salicornia 30.85 3.92 22.25 4.95 31.75 3.18 

Pioneer Spartina 34.67 2.47 28.09 3.21 33.05 2.94 

Salt marsh meadow 32.52 3.81 24.84 4.00 31.95 3.48 

Upper Juncus sward 33.07 2.46 27.94 2.85 30.98 2.11 
              

Habitat Mean X HH SD X HH Mean X HV SD X HV Mean X VV SD X VV 

Sand/mudflats 38.06 5.14 32.93 2.68 37.99 5.50 

Pioneer Salicornia 38.64 4.49 34.90 4.05 38.58 3.77 

Pioneer Spartina 42.16 3.28 38.51 2.40 40.57 4.27 

Salt marsh meadow 39.87 3.73 36.88 3.41 39.72 3.87 

Upper Juncus sward 38.84 1.95 37.13 1.95 38.31 2.04 

 

Interpretation of the backscatter intensity variable analysis results per habitat can 

provide more information about influence of environmental and botanical parameters: 

 Sand and mudflats are characterised by the highest standard deviation for HH 

and VV polarisation in both frequencies. This might be caused by the variations 

of water cover or soil moisture in this habitat. Parts of the habitat are often 

covered by a thin layer of water, even at low tide. This results in large 

backscatter variations between dry areas and wet areas where the layer of 

water can act as a specular reflector to the radar pulses (Woodhouse 2006). 

Example pictures from the research area in Appendix B show the differences in 

appearance. Further worth noting are the relatively low mean values of HV for 

both S-band and X-band. This might be attributed to the relative smooth 

surface of the sand and mudflats, which does not cause re-polarisation often 

observed in vegetated areas (Le Toan et al. 1992). 

 The pioneer Salicornia salt marsh habitat displays backscatter signatures with 

comparable values as the sand and mudflat habitat. However, the standard 

deviations are lower for HH and VV backscatter, but higher for HV backscatter. 

This indicates that there is more variability in re-polarisation, which is likely 

related to increased variability of surface roughness and features. Meanwhile, , 
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Salicornia shows distinctly lower backscatter intensity compared to other 

vegetation habitats. These two observations show that there is more 

vegetation backscatter compared to the sand and mudflats, but with low 

intensity. This can be well explained if we realise the habitat is partially 

covering bare soil with low (up to 10-15 cm) Salicornia vegetation. 

 The Spartina habitat has the highest backscatter intensity for all backscatter 

intensity channels in both S-band and X-band frequencies, with a relatively low 

standard deviation. Especially the HV backscatter from both frequency bands is 

distinctly higher than other habitats. This indicates that the habitat has a well-

developed botanical structure which shows relatively little variability and 

appears little influenced by environmental factors 

 The salt marsh meadow habitats cause lower SAR backscatter intensity than 

the Spartina habitat, which might be attributed to the lesser volume of 

vegetation. Additionally, the standard deviations of the backscatter intensity 

channels in S-band are higher, indicating there is more variability in backscatter 

returns in this frequency domain. On average, the average backscatter intensity 

is coinciding with the Salicornia habitat, which is botanically characterised by 

vegetation of similar height. 

 The Juncus vegetation habitat shows the lowest standard deviation of all 

habitats, indicating a relatively homogeneous environmental and botanical 

setting. The backscatter intensity in S-band HV polarisation is relatively high, 

indicating that the structural composition of this habitat causes a considerable 

re-polarisation of polarimetric SAR. On the whole, the backscatter signature of 

this habitat is largely coinciding with the Spartina habitat, albeit with lower 

standard deviations. 

5.3.2 CP polarimetric decomposition variables 

Similar to the presentation of the SAR variable analysis results in the previous section, 

variables from the Cloude-Pottier decomposition (Entropy (H), Anisotropy (A) and 

alpha angle (α)), are presented as scatterplots of S-band against X-band values in 

Figure 22 and as boxplots in Figure 25. A tabulated overview of the mean values and 

the standard deviations is provided in Table 9. In the following paragraph the results 
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are briefly described, subsequently an interpretation with regard to environmental and 

botanical factors is made. 

The alpha angle is indicative of the scatter mechanism dominant within a resolution 

cell, alpha angles between 0° and 40-42.5° indicate predominant surface scattering, 

angles between 40-42.5° and 47.5-50° to volume scattering and from 47.5-50° to 90° at 

double-bounce or multiple scattering. The entropy values are measure of the 

predominance of a single scatter mechanism. Entropy values between 0 and 0.5 

indicate one scatter mechanism is predominant, between 0.5 and 0.9 there is clear 

presence of more than one scatter mechanism and beyond 0.9 the data is almost 

random noise. Anisotropy describes the relation between the second and third 

scattering contribution. High values of A denote the presence of only two scatter 

mechanisms, whereas low A-values denote equal measures of a second and third 

scatter mechanism. 

The scatterplots of X-band against S-band CP decomposition variables show little 

correlation for the H and A variables and negative correlation for α. The latter 

observation is especially worth noting: low α-values for S-band data correspond with 

relatively high α-values for X-band. In areas where S-band surface scatter (low α-

values) is the dominant scatter mechanism, double bounce (high α-values) scatter is 

dominant for X-band SAR data. In locations with dominant S-band volume scatter (α-

values around 45°), the α-values for X-band are approaching 50°, also indicating 

volume scatter. 

Another common way of presenting CP variables is in an H/α-plot. In this plot entropy 

values are plotted on the horizontal axis, expressed in values between 0 and 1. The 

associated entropy value density plot is displayed above the scatterplot. The alpha 

values are expressed in values between 0 and 90 degrees and plotted on the vertical 

axis, with the associated density plot to the right of the scatterplot. In the scatterplot 

two curves are drawn that represent boundaries of maximum and minimum 

observable H/α-values, in practice no values are observed that fall outside the feasible 

region. The straight dotted lines demarcate nine classification zones, as proposed by 

(Cloude and Pottier 1997). The H/α-plots for S-band and X-band variables are 

presented in Figure 23 and Figure 24, respectively. The two H/α-plots show a distinct 

different pattern, H/α-values follow a gradual increasing trend for S-band SAR and 
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seem to be more clustered in an area with relatively H and α-values for X-band SAR. 

The significance of this will be discussed in the end of this section, when behaviour of 

CP variables per habitat is discussed.  

 

 
Figure 22 – Scatterplots SAR Cloude-Pottier decomposition variables X-band against S-band. 
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Figure 23 – Scatter plots and density plots of α against H for S-band SAR data. 
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Figure 24 – Scatter plots and density plots of α against H for X-band SAR data. 

 

Boxplots (Figure 25) and the tabulated values (Table 9) of the CP variables for both 

frequency bands show a large variability in the different salt marsh habitats. The 

entropy and anisotropy values of the different habitats show high standard deviations 

for most habitats. The alpha angle values are more consistent, although there seems 

little variation between the different habitats, especially for X-band. 
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Figure 25 – Boxplots SAR CP decomposition variables against land cover classes. 

 

Table 9 – Mean and standard deviations of CP polarimetric decomposition variables per habitat. 

Habitat Mean S H SD S H Mean S A SD S A Mean S alpha SD S alpha 

Sand/mudflats 0.53 0.22 0.57 0.18 29.53 11.80 

Pioneer Salicornia 0.63 0.17 0.58 0.18 31.91 10.28 

Pioneer Spartina 0.73 0.18 0.40 0.19 39.51 10.94 

Salt marsh meadow 0.67 0.16 0.46 0.19 32.32 9.33 

Upper Juncus sward 0.80 0.12 0.31 0.16 42.59 9.66 
              

Habitat Mean X H SD X H Mean X A SD X A Mean X alpha SD X alpha 

Sand/mudflats 0.79 0.16 0.40 0.23 62.04 7.64 

Pioneer Salicornia 0.84 0.09 0.36 0.17 59.86 6.86 

Pioneer Spartina 0.85 0.12 0.32 0.18 58.51 7.39 

Salt marsh meadow 0.87 0.09 0.33 0.15 59.50 6.41 

Upper Juncus sward 0.92 0.06 0.25 0.13 58.23 5.98 

 

Interpretation of CP variable results per habitat tells us that: 

 Sand and mudflats show the highest variability for all CP variables. This is 

exemplified in the highest standard deviations. This can be attributed to the 

environmental variation within this habitat, from dry sand flats to areas 
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covered with a thin layer of water. However, the entropy values are on average 

lower than the values of other habitats, especially for S-band. This indicates 

there is a more predominant scatter mechanism in this habitat compared to 

other habitats. Worth noting is the difference in alpha angle between S-band 

and X-band for this habitat, it indicates surface scatter for S-band and double-

bounce scatter for X-band. This will be further discussed at the end of this 

section. 

 The pioneer Salicornia habitat has entropy values between the sand and 

mudflats and the other vegetation habitats, indicating a gradual transition from 

bare surface to fully vegetated soil. The alpha angle indicates that surface 

scatter is the primary scatter mechanism for S-band, while double-bounce 

scatter is more dominant for X-band. 

 The pioneer Spartina vegetation habitat has relatively high entropy values for 

both S-band and X-band, indicating there no clear pre-dominant scatter 

mechanism. The alpha angle ranges within the area of surface scatter for S-

band and double bounce for X-band. 

 Analysis of the CP variables for salt marsh meadow show a pattern largely 

coinciding with the Salicornia values, especially for H and α. However, the 

values for A are considerably lower for the salt marsh meadows compared to 

the Salicornia habitat in S-band, indicating that in this frequency domain in salt 

marsh meadows a second and third scatter mechanism are more present than 

in Salicornia habitats. 

 The Juncus habitat has the highest entropy for both frequencies, indicating that 

in this habitat there the main scatter mechanism is least dominant. The main 

scatter mechanism is volume scatter for S-band and double-bounce scatter for 

X-band. 

5.3.3 VZ polarimetric decomposition variables 

Variables from van Zyl decomposition variables (Surface (Odd), Volume (Vol) and 

Double Bounce (Dbl) Scatter) are presented as scatterplots of S-band against X-band 

values in Figure 26. The scatterplots of S-band VZ variables against X-Band VZ variables 

show that the only decomposition variable of which the regression line approaches a 
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slope of 1 is VZ Double Bounce with slope of 0.9293, indicating that X-band VZ Double 

Bounce scatter approaches the sensitivity of S-band VZ Double Bounce scatter for this 

decomposition. 

 
Figure 26 – Scatterplots SAR Van Zyl decomposition variables X-band against S-band. 

 

The boxplots of the VZ variables for the different habitats are shown in Figure 27, the 

tabulated results in Table 10. From the boxplots it appears that the variability within 

the habitats is less than observed for the backscatter intensity polarimetric channels 

(Figure 21) and the CP variables (Figure 25). The highest values observed for the S-

band variables are for surface scatter for all habitats, for X-band these are for double 

bounce scatter. 
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Figure 27 – Boxplots SAR VZ decomposition variables against land cover classes. 

 

Table 10 – Mean and standard deviations of VZ polarimetric decomposition variables per habitat. 

Habitat Mean S Odd SD S Odd Mean S Vol SD S Vol Mean S Dbl SD S Dbl 

Sand/mudflats 34.09 6.65 21.43 3.13 26.79 3.01 

Pioneer Salicornia 33.40 3.42 22.37 4.82 27.92 3.28 

Pioneer Spartina 35.91 2.49 28.31 3.01 31.07 2.19 

Salt marsh meadow 34.48 3.60 25.07 3.85 28.81 3.20 

Upper Juncus sward 33.65 2.36 28.04 2.63 29.89 2.16 
              

Habitat Mean X Odd SD X Odd Mean X Vol SD X Vol Mean X Dbl SD X Dbl 

Sand/mudflats 36.19 3.94 33.15 2.46 39.61 5.81 

Pioneer Salicornia 37.10 4.30 35.06 3.96 39.98 3.79 

Pioneer Spartina 40.13 2.73 38.59 2.73 42.93 3.23 

Salt marsh meadow 38.54 3.32 37.00 3.28 41.03 3.55 

Upper Juncus sward 37.84 1.48 37.24 1.59 39.38 1.90 

 

Interpreting the results for the VZ variables per habitat, the following things are worth 

mentioning: 

 The values for sand and mudflats show the highest standard deviations for S-

band surface scatter and for X-band double bounce scatter. This has been 
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similarly observed for the HH and VV backscatter intensity channels, with which 

surface and double bounce scatter is calculated in the VZ decomposition. The 

large variability indicates that there is relatively large impact of environmental 

factors.  

 The VZ variables in the Salicornia habitat shows relatively high standard 

deviations for volume scatter in both frequency domains. This corresponds 

with relatively high standard deviations for the HV backscatter intensity 

channels, with which volume scatter is calculated in the VZ decomposition. 

Generally, values for any of the backscatter mechanisms are higher than 

backscatter from the sand and mudflats and lower than backscatter from the 

other vegetation habitats. This is consistent with findings for the CP variables, 

in which it appeared that Salicornia is a gradual transition from bare surface to 

fully vegetated terrain. 

 The VZ variables in the Spartina habitat are consistently the highest for all 

backscatter mechanisms, which has been observed with the backscatter 

intensity channels as well. The standard deviations are relatively small. 

 The salt marsh meadows show backscatter values that coincide with the values 

observed in the Salicornia habitat, albeit with smaller standard deviations. This 

coincides with the interpretation of the results of the backscatter intensity 

channels for the salt marsh meadow habitat. 

 The Juncus habitat results for the VZ variables shows that this habitat has 

relatively high volume and double bounce backscatter for S-band. For X-band 

variables the habitat appears not to have a dominant scatter mechanism, which 

coincides with the high X-band CP entropy values observed. The standard 

deviations are the smallest for all VZ variables, which indicates that the habitat 

is relatively homogeneous in terms of environmental and botanical factors. 

5.3.4 Integration of results  

The three data sets extracted from the SAR data allows to model average SAR 

backscatter responses of each habitat. A graphic interpretation of the SAR mechanisms 

active in each habitat is provided in Figure 28. It was observed that backscatter from all 

polarimetric channels from the sand and mudflat is lower than the backscatter 
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intensity of other habitats. It was interpreted that this is to a certain extent due to 

specular reflection of SAR signal, caused by thin cover of water on the sand and 

mudflats. The influence of environmental factors in the vegetation habitats was less, 

with lower standard deviations of the backscatter intensity returns.  

In the S-band domain the dominant backscatter mechanism was surface scatter, in the 

X-band domain double-bounce scatter. This is likely to be attributed to different 

interactions of the radar pulses due to their different wavelengths.  

The last main observation is that CP entropy is lower in areas with less voluminous 

vegetation cover, or even bare areas. This indicates that in these areas less re-

polarisation occurs and therefore less variation in scatter mechanism is observed. 

Contrary, in the habitats characterised by voluminous shrubby vegetation (Spartina 

and Juncus) all three scatter mechanisms are present, especially volume scatter 

differentiates these habitats from others. 

 
Figure 28 – Observed SAR backscatter mechanisms in different salt marsh habitats. 

 

5.4. Discussion 

5.4.1 SAR signatures of salt marsh habitats 

Comparison of SAR backscatter response of different land cover classes was carried 

out by sampling SAR variables at specific field locations. Values of SAR variables were 

found to differ considerably between the land cover classes considered in this 

research. This is shown in the boxplots of backscatter intensity (Figure 21) and VZ 

polarimetric decomposition variables (Figure 27). The most distinctive habitat was 



Chapter 5 - SAR backscatter signatures in salt marshes 

76 

sand/mudflats, with higher standard deviation values for all backscatter intensity and 

polarimetric decomposition variables than the other habitats. This might be ascribed 

on a large extent to environmental factors, in this case predominantly variations in soil 

moisture. On sand and mudflats areas are often covered with a thin layer of water on 

the surface, causing specular reflections of the radar pulses. This phenomenon was 

also observed by Gade et al. (2011) and Lee et al. (2011). The implications of this 

specular backscatter effect are further discussed in the discussion of the methods 

(Chapter 5.4.1), as it is closely related to the repeatability of this research. The four 

vegetation classes showed less clear differentiation, although S-band HV backscatter 

intensity and VZ volume scatter showed clearly different values among these classes. 

The differences between these variables are discussed in more detail in the chapter 

about supervised classifications based on SAR variables (Chapter 6.4). 

5.4.2 S-band and X-band backscatter variations 

The CP variables showed that in the vegetation habitats surface scatter is the 

dominant scatter mechanism with S-band while the dominant scatter mechanism in X-

band is double bounce scatter. This was confirmed by the VZ variables. This can be 

ascribed to the penetration of SAR signal into the vegetation. It has been observed by 

(Schmullius and Evans 1997) that higher frequency SAR bands do interact with the 

branches and leaves of trees, where longer wavelength bands can penetrate up to the 

trunks of trees or the soil. Salt marsh vegetation is quite a different habitat from a 

forest, so other relationships are valid. X-band SAR interacts mostly as double-bounce 

and volume scatter for the salt marsh habitats, while S-band tends to interact more as 

surface and volume scatter. 

The analysis of SAR frequency bands showed that S-band displays a larger variability 

between the different land cover classes than X-band data. From the scatterplots of S-

band and X-band data for both backscatter intensity (Figure 20) and VZ polarimetric 

decomposition variables (Figure 26) it was observed that more distinction between 

habitats was possible with S-band variables due to larger variability of backscatter 

intensity or backscatter mechanism. The average variance of backscatter intensity for 

the five habitats for S-band is 3.68 and for X-band it is 2.27. This indicated that there is 

more distinction between habitats possible with S-band than with X-band. However, it 
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appeared that X-band SAR was able to detect more subtle differences in surface 

roughness, suggesting X-band is more suited to detect subtle differences in vegetation 

composition such as are found in the pioneer zone of the salt marsh. This was in line 

with the results from Clint Slatton et al. (2008), who argued that C-band SAR was too 

sensitive to structural differences in salt marsh vegetation to be able to identify 

distinctions among the major vegetation habitats. In contrast, S-band SAR wavelength 

distinguished the main salt marsh vegetation habitats. 

Other research into application of different SAR frequencies in coastal environments 

confirmed that different SAR frequency bands respond in different ways to different 

land cover types and each frequency band had its optimal application domain (Clint 

Slatton et al. 2008; Choe et al. 2012; Gade et al. 2014). The research carried out by 

Gade et al. (2014) was based on L-band, C-band and X-band SAR data acquired by the 

ALOS-PALSAR, Envisat ASAR and Terrasar-X satellites, respectively. It focused primarily 

on the characterisation of sediment type and surface roughness of sand and mudflats 

in the German Wadden Sea. They argued that multi-frequency SAR data, when used as 

in an integrated model, is capable of characterising different sandflat morphologies to 

a large extent, although they did not discuss the specific contribution of each SAR 

frequency band in detail. In the research carried out by Choe et al. (2012) more 

attention was given to different behaviour of the used SAR frequency bands (C-band 

and L-band) and they found that differences in surface roughness between mudflats 

and oyster banks are well identified with C-band data due to significant depolarisation 

of SAR channels. Contrary, this phenomenon was not observed in the L-band SAR data 

set, which led to the conclusion that longer wavelengths are not sensitive to 

differences in surface roughness between mudflat and oyster bed. Focussing more on 

salt marsh vegetation Clint Slatton et al. (2008) found L-band SAR to be preferable to 

C-band for vegetation characterisation, as it was less disturbed by small changes in 

vegetation structure and provided more homogeneous data. 

5.4.3 Backscatter intensity and polarimetric decomposition variables 

The boxplots of the S-band and X-band backscatter intensity values (Figure 21) and the 

S-band and X-band VZ polarimetric decomposition values (Figure 27) showed that 

statistical distribution of values for the different salt marsh habitats showed smaller 
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variance for VZ polarimetric decomposition than for backscatter intensity variables. 

This was confirmed by calculating the variance of all mean values of the backscatter 

intensity variables of all habitats (Table 8) and the variance of the VZ polarimetric 

decomposition variables (Table 10). The total variance for backscatter intensity 

variables was 27.99, compared to 31.36 for the VZ polarimetric decomposition 

variables. This indicates that the mean VZ polarimetric decomposition values for 

different habitats than are more different from each other than the backscatter 

intensity values for the different habitats. Additionally, the mean standard deviation of 

all backscatter intensity variables is calculated as 3.59, the mean standard deviation 

from VZ polarimetric decomposition variables is 3.26, indicating that the statistical 

distribution of values of each habitat for VZ polarimetric decomposition variables is 

slightly less dispersed. 

This shows that polarimetric decomposition variables differentiate more between salt 

marsh habitats than polarimetric backscatter intensity variables. This has been 

confirmed by previous research in other environments. Freeman and Durden (1998) 

argued that their three-component scattering mechanism (the FD decomposition as 

used in this thesis) was useful for distinguishing between different land cover types. 

The popularity of the FD decomposition algorithms in polarimetric SAR studies 

(Ballester-Berman and Lopez-Sanchez 2010; Taghvakish 2012) has demonstrated the 

utility of this model. However, few studies that directly compared polarimetric 

decomposition variables and SAR backscatter intensity variables have been carried out. 

Huang et al. (2011) compared backscatter intensity variables with Pauli and CP 

decomposition in order to map glacial land cover types. They found that image 

classification based on H, A and α-variables of the CP decomposition provide higher 

accuracies than classification based on the Pauli decomposition, which in turn provided 

higher levels of accuracy than classification based on backscatter intensity variables 

alone. In the research described by Choe et al. (2012) FD decomposition variables were 

analysed to distinguish backscatter mechanism differences in an intertidal mudflats. 

They found that these variables were sensitive to differences in surface roughness and 

provide useful additional information for mapping of coastal habitats. Lönnqvist et al. 

(2010) described a number of different classification routines based on both 

backscatter intensity variables and CP decomposition variables. They found CP 
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decomposition variables were preferable over backscatter intensity variables, as they 

provided better classification accuracies and were better suited to be used for 

unsupervised classification. However, the availability of quad-polarimetric SAR data is 

limited and the processing of quad-polarimetric SAR to polarimetric decomposition 

variables complex. 

5.5. Summary 

The results from the research experiment presented in this chapter indicate that quad-

polarimetric SAR data provides a lot of information about environmental and botanical 

parameters in a salt marsh setting. Analysis of backscatter signatures from S-band and X-

band SAR data sets indicate that each of these SAR frequencies show different response to 

salt marsh habitats, with a larger dynamic range observed for S-band variables. The 

extraction of polarimetric decomposition variables showed that these variables are slightly 

better for discrimination different salt marsh habitats than backscatter intensity variables 

alone. 
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6. Mapping of salt marsh habitats 

6.1. Introduction 

In this chapter it is aimed to provide an answer to the second research question: 

 

Does the inclusion of SAR in a RS data set based on optical and LiDAR data improve 

mapping of both salt marsh extent and individual salt marsh habitats? 

 

Initially, unsupervised classification of salt marsh habitats based on CP polarimetric 

variables is done. This habitat map is based upon the unsupervised Wishart K-means 

classifier, which has been developed to deal specifically with SAR data (Cloude and 

Pottier 1997). This is carried out to check the performance of polarimetric SAR for 

habitat mapping on its own. 

Subsequently, habitat mapping is carried out with supervised classifiers, using a 

combined RS data set consisting of optical, LiDAR and SAR data. In order to answer the 

RQ in the most logical way first a number of supervised classification results based on a 

combination of optical and LiDAR variables are presented. After this a number of 

supervised habitat mapping based on SAR variables are presented. The last stage 

involves combinations of optical, LiDAR and SAR variables. 

The supervised habitat mapping is carried out with the Support Vector Machine (SVM) 

and Random Forest (RF) classifiers, which have been used for ecological mapping 

previously (Gislason et al. 2006; Mountrakis et al. 2011) and have shown to provide 

accurate results (Lardeux et al. 2009; Rodriguez-Galiano et al. 2012). These classifiers 

allow analysis of variable importance for classification, which has been carried out for 

the different variable combinations. The habitat classes under consideration for this 

research experiment were: 

1. Wet sand or mudflat 

2. Dry sand or mudflat 

3. Pioneer Salicornia spp. 

4. Pioneer Spartina anglica 

5. Salt marsh meadow 

6. Upper Juncus maritimus sward 
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The only difference from the classes used in the SAR variable analysis chapter (Chapter 

5) is that the sand and mudflats are differentiated in wet and dry areas, as interpreted 

from the SAR imagery. This is done to analyse classification accuracy difference for 

these classes. In this way additional information can be extracted from the impact of 

soil moisture differences on SAR signal and classification potential. 

In the last part of the analysis a salt marsh vegetation extent map based on the 

combined RS data set is compared with salt marsh vegetation extent maps from 

previous mapping efforts. The change of salt marsh vegetation cover is analysed over a 

period of 12 years. 

6.2. Methods 

This section describes the methods used for the analysis of salt marsh vegetation 

mapping with the combined RS data set. A flowchart overview summarising the 

different analyses and their inter-relations are shown in Appendix B. 

6.2.1 Unsupervised habitat classification with SAR data 

The CP polarimetric decomposition creates entropy (H), anisotropy (A) and alpha angle 

(α) variables that can be used for unsupervised image classification based on the 

Wishart K-means classifier (Lee et al. 1999). The relationships between CP 

decomposition H, A and α parameters provide information about the dominant scatter 

mechanisms in different habitats, as highlighted in Chapter 5. Analysis of the 

relationships between these parameters for the different vegetation habitats provides 

information about how SAR pulses interact (Cloude and Pottier 1997).  

It has been found that covariance matrices of SAR data follow the complex Wishart 

distribution (Lee et al. 1999). The unsupervised K-means Wishart classifier 

implemented in PolSARpro classifies SAR data according to this distribution. This 

algorithm has been applied successfully in other studies (Lee et al. 1999; Reigber et al. 

2010). The classifier works by assigning an arbitrary set of initial class centres and 

classification of the pixels by using Wishart distance. A set of updated class centres is 

derived from all pixels in each class, and a new class assignment is carried out. This 

iterative process is repeated until class membership converges. 

By default, the K-Means Wishart classifier creates eight classes roughly corresponding 

to the eight common regions in the H/α-plane defined by Cloude and Pottier (1997). In 



Chapter 6 - Mapping of salt marsh habitats 

82 

the research area some of the eight classes were re-grouped according to the most 

likely land cover class they represented.  

Two unsupervised habitat classification maps were created, one based on S-band CP 

variables, the other on X-band CP variables. Around each field survey sample locations 

a buffer zone with diameter of 10 meter was defined and from these areas 5597 pixels 

were randomly selected from the salt marsh vegetation habitats as well and dry and 

wet sand/mudflats for classification accuracy. The accuracy of the unsupervised 

classification was analysed with confusion matrices (Congalton 1991), for further 

explanation see Chapter 6.2.2.3. 

6.2.2 Supervised habitat classification 

Mapping of salt marsh habitats in the research area has been carried out with 

supervised classifiers. Supervised classification models are based on known input 

values from locations within the research area. These models are generally more 

accurate than unsupervised classification models, and their accuracy can be assessed 

better (Lillesand et al. 2004). In this thesis two supervised classification methods were 

considered: Support Vector Machine (SVM) and Random Forest (RF) with the free-

ware tool EnMAP-Box was used (Earth Observation Center (EOC) DLR 2014). This 

toolbox is developed by DLR and Humboldt University in Berlin and incorporates a 

number of advanced classification and regression algorithms. 

6.2.2.1 Variable combinations 

For the salt marsh habitat mapping, a number of different variable combination 

scenarios have been used, summarised in Table 11. The underlying reason for the 

specific order of variable combination scenarios are that the habitat mapping effort 

starts off from the aerial imagery most commonly used for coastal mapping and adds 

more variables until all variables are included in the final variable model. 
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Table 11 – Variable combinations used for supervised classifications 

Input variables 
Classification model 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Optical 

RGB X     X              X 

NDVI_1  X X  X X             X X 

NDVI_2  X  X X X              X 

LiDAR DSM X  X X X X             X X 

S-band 

SAR 

Intensity       X    X      X X X X 

CP        X          X  X 

FD         X         X  X 

VZ          X X      X X X X 

X-band 

SAR 

Intensity            X    X X X X X 

CP             X     X  X 

FD              X    X  X 

VZ               X X X X X X 

 

The first model incorporates three variables from the RGB optical imagery (R, G and B 

channels) and the LiDAR DSM variable, which are commonly used in coastal mapping 

projects (Environment Agency 2011; Environment Agency and Natural England 2011). 

This variable combination is analysed in variable model 1. Subsequently, the use of 

NDVI variables (extracted from easily obtainable medium-resolution Landsat satellite 

imagery) for salt marsh habitat mapping is analysed. Initially an assessment is made of 

most useful NDVI variable from different seasons for salt marsh vegetation mapping. 

This is analysed in variable model 2 to 5. Subsequently, in variable model 6, all optical 

and LiDAR variables are combined. 

The use of SAR variable combinations for salt marsh habitat mapping are analysed in 

variable models 7 to 18. In total 12 polarimetric descriptors were used from each SAR 

frequency channel, which meant there were 24 SAR variables in total. The following S- 

and X-band SAR variables were used for habitat mapping:  

1. HH, HV and VV channel backscatter intensity,  

2. H, A and α variables from CP polarimetric decomposition, 

3. Pv, Ps and Pd variables from FD polarimetric decomposition, 

4. Pv, Ps and Pd variables from VZ polarimetric decomposition. 

Each of these polarimetric descriptor types are tested singly in variable combination 

models 7 to 10 for S-band SAR and variable combination models 12 to 15 for X-band 

SAR. The SAR variables that create the most accurate salt marsh habitat maps are 
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combined in variable models 11, 16 and 17 for S-band alone, X-band alone and both 

frequencies combined, respectively. All available SAR variables are combined in Model 

18. Finally, the optical, LiDAR and SAR variables are combined in models 19 and 20. The 

former model uses the most accurate variables of the three different sensors only, the 

latter uses all available variables. It consists of 30 variables in total. 

Classification training samples were randomly selected from the field survey data. At 

each of the 100 field survey vegetation sample locations and 23 un-vegetated locations 

a circular buffer zone of with a radius of 5 meters was defined. On average in each 

buffer location contained 60 pixels, a grand total of 7376 pixels in 123 locations. Of 

each of the six land cover classes 300 pixels were selected randomly for training of the 

classification models, a total training data set of 1800 pixels. 

6.2.2.2 Supervised classification variable importance  

Analysis of variable importance was carried out on the SVM and the RF classifiers. In 

the next two paragraphs a brief introduction into these two supervised classifiers is 

provided, explaining the specific steps needed to perform a variable importance 

analysis for both classifiers. 

SVM classification is based upon an algorithm that fits hyperplanes (the support 

vectors) in hyper-dimensional feature spaces for the calculation of maximum 

separability between classes (Melgani and Bruzzone 2004). A good explanation of the 

working of the SVM classifier for land cover mapping is provided by Huang et al. 

(2002). Unlike ML classification, it is a nonparametric classifier that is trained on and 

for the data set under analysis. As such, SVM classifiers have been found to provide 

higher classification accuracies than other widely used classifiers and can cope well 

with multi-dimensional data and need little training data for good results (Melgani and 

Bruzzone 2004). The SVM classification algorithm implemented in EnMap-Box searches 

the optimal combination of parameters for the g and C variables, and trains the model 

with these parameters. The g parameter defines the width of the Gaussian kernel 

function. The Gaussian kernel is a so-called universal kernel, thus an SVC with this 

kernel can separate any class distribution at any precision. The regularisation 

parameter C controls the trade-off between the maximization of the margin between 

the training data vectors and the decision boundary plus the penalisation of training 
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errors (more precisely margin errors). Therefore C directly limits the influence of 

individual training data vectors. The use of a smaller number of input variables can 

result in a non-inferior accuracy compared to classifications based on all available 

variables. It has been observed by Chi et al. (2008) that SVM classification accuracy 

increases slightly if more variables are added, until it reaches an optimum number of 

variables after which the accuracy begins to decrease. Besides the accuracy decrease, 

image classification with fewer input variables provides some additional advantages in 

terms of data storage and computational processing costs (Pal and Foody 2010). 

Therefore the optimal number of variables was analysed after the initial SVM 

classification and the model was re-trained using a subset of the most important 

variables. 

Random Forest (RF) classifiers have been applied successfully in ecological research 

(Cutler et al. 2007) and land cover mapping (Gislason et al. 2006). They are especially 

well suited for classification of multi-source remote sensing and geographical data. The 

RF algorithm is based on decision tree classification; it fits many classification trees to a 

multivariate data set and combines predictions from all the trees (Breiman 2001). The 

RF algorithm has been found to be relatively robust and superior to standard 

classification approaches (Rodriguez-Galiano et al. 2012). The output of the classifier is 

determined by a majority vote of the trees. The number of input variables is user-

defined and can be any combination of remotely-sensed and other geographical data. 

At the onset of classification, the maximum number of decision trees is set sufficiently 

large and the random forest is grown using the input variables. A bootstrapped sample 

of the original training data is used to train the model. Test set accuracy is determined 

by cross-validation of the remaining training set samples (out-of-bag samples) with the 

RF model. The importance of variables can be estimated by randomly permuting the 

value of out-of-bag samples for a certain variable. The error increase that this out-of-

bag sample permutation produces is a measure of the importance of this specific 

variable, indicating the influence of an input layer on the overall accuracy (Genuer et 

al. 2010). RF variable importance (VI) of variable Xj is calculated by considering the 

associated out-of-bag sample (OOBt, data not included in the samples used to 

construct the decision trees (t)), of which the error (errOOBt) is calculated. 

Consequently, the values of Xj are randomly permuted (OOBt 
j) and error calculated 
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(errOOBt 
j), the error of predictor t on the perturbed sample. Variable importance of Xj 

is then equal to: 

 
  (  )   
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which sums the error of a variable of all trees t of the RF. ntree denotes the total 

number of trees of the RF. The variable importance can be normalised by dividing the 

variable importance of each variable by its standard deviation. In this research analysis 

of variable importance was performed to rank all input variables according to their 

contribution to RF classification. 

6.2.2.3 Supervised classification accuracy 

Validation samples were created by using remaining sample pixels that were not 

selected during random sampling of the training data. In total 5593 validation pixels 

were used. These validation samples were used to assess the accuracy of the 

supervised classifications by calculating overall classification accuracy and Kappa 

coefficients of each classification model (Congalton 1991). The overall classification 

accuracy is a measure of the number of pixels classified correctly and its predicting 

capabilities, the Kappa coefficient is a measure of to what extent these capabilities are 

due to chance. As a rule of thumb K<0.4 is regarded as poor agreement, between 

K>0.4 and K<0.7 as a good agreement and K>0.7 as excellent agreement. More 

information was provided by a confusion or error matrix, in which correctly and 

incorrectly classified pixels were tabulated, and producer and user accuracies were 

calculated (Congalton and Green 2008). In order to keep the size of this thesis 

manageable only the confusion matrix and classification map of the variable input 

model that generated the most accurate result for each classifier are presented in the 

results. 

6.2.2.4 Vegetation extent change 

In order to analyse temporal change of vegetation cover, classification of vegetation 

extent was done with the same data set that was used for the habitat mapping. For 

this analysis two classes were distinguished:  

1. Salt marsh habitat vegetation cover  
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2. No salt marsh habitat vegetation cover 

For the extent mapping, 1000 training pixels were randomly selected from the sample 

locations for each land cover class. Accuracy was assessed by means of analysing 

classification accuracy assessment and Kappa coefficients, as discussed in the previous 

paragraph. In order to keep the number of reported maps and confusion matrices 

limited only the classification results of the most accurate classifier are presented in 

the results.  

The vegetation extent map was based on RS data sets acquired in different years, 

spanning a period between 2006 and 2011. For comparison with other salt marsh 

vegetation extent maps it was needed to define the year in which the most important 

variables were acquired. From , the variable importance plot of the vegetation extent 

map it is clear that the most important variable is the NDVI_1, from June 2010. 

Additionally, the SAR variables were also acquired in 2010. The importance of these to 

RS data sets amounted for 72.6% of total variable importance. Therefore it was 

decided to set the acquisition year of the RS data set on 2010.  

Other time steps were provided by the following data sets: 

1. The salt marsh vegetation extent map compiled by the EA (Environment Agency 

2011). This vegetation mask is based on aerial photography acquired in June 

2007. The EA salt marsh vegetation extent map is shown in Figure 29. 

2. The CCW salt marsh survey of 1998 (Prosser and Wallace 1999), based on 

ecological field survey data and manual mapping with aerial photography. The 

reference vegetation extent map is derived from the CCW ecological survey salt 

marsh habitat map (Figure 17), dated 1998. NVC classes with prefix ‘SM’ 

correspond to salt marsh vegetation habitats; these were clustered into one 

class: ’Vegetation cover’. The rest of the pixels within the boundaries of the 

research area are classified as ‘No vegetation cover’. The resulting vegetation 

extent map is shown in Figure 30. 

Three time steps were used for the temporal analysis: from 1998 to 2007, from 2007 

to 2010 and from 1998 to 2010. The last change analysis was done mainly to check if 

the total change of the former two change analyses were adding up to the same 

amount. The change in vegetation extent was presented in a vegetation change map, 

as well as a table with respective change values. 
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Figure 29 – Vegetation extent map based on EA salt marsh survey data (2007). 

 

 
Figure 30 – Vegetation extent map based on CCW ecological survey data (1998). 
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6.3. Results 

6.3.1 Unsupervised habitat classification with CP variables 

In this section the results of unsupervised image classification with CP polarimetric 

decomposition parameters are presented, based on the unsupervised Wishart K-

means classification. The classification map based on S-band is shown in Figure 31, the 

one based on X-band variables in Figure 32.  

Confusion matrices of classification accuracy proposed by Congalton (1991) are 

calculated with validation data of the ecological field survey and are displayed in Table 

12 and Table 13 for S-band and X-band classifications, respectively. 

From the classification maps and accuracy assessments a number of observations can 

be made: 

 The overall accuracy of unsupervised classification based on S-band is higher 

than the classification based on X-band, with values of 52.33% and 43.24% 

respectively. The kappa coefficients for the unsupervised classifications are 

0.4191 and 0.2967 for S-band and X-band respectively. It can be stated that S-

band classification is within statistically acceptable limits, although neither of 

the two classifications are satisfactory. 

 Visual interpretation of the classification map based on S-band CP variables 

shows there is over-classification of Salicornia spp. This is particularly visible in 

the southeast of the research area where it is found surrounding the Juncus 

maritimus sward. It is likely that in this transitional zone from dense Juncus 

maritimus vegetation to salt marsh meadow the surface roughness 

corresponds most with Salicornia-covered areas. Furthermore the S-band 

classification map shows some confusion between wet sand and mudflats on 

one hand and salt marsh meadows, two land cover classes that have similar 

surface roughness. Accuracy assessment (Table 12) of this map shows that user 

and producer accuracies for Salicornia are lowest of all land cover classes with 

7.71% and 19.81%, respectively.  

 Distinction between vegetation habitats differing considerably in terms of 

vegetation height and volume is poorly achieved with unsupervised 

classification based on X-band CP variables. There is a large amount of mis-



Chapter 6 - Mapping of salt marsh habitats 

90 

classification between salt marsh meadows and Juncus maritimus swards on 

one hand and between Spartina anglica and Salicornia on the other hand. 

Nonetheless, distinction of subsidiary creeks and ponds is better achieved than 

in the S-band classification. Analysis of accuracy of X-band classification (Table 

13) shows that the Salicornia land cover class is similar to the S-band 

classification, least accurately mapped with user and producer accuracies of 

2.46% and 3.72%, respectively. 

 In the far slant range part of the SAR images (the northern rim of the research 

area) extensive mis-classification occurs. The original SAR data is corrected for 

antenna pattern to compensate for signal attenuation differences over the 

slant range of the SAR image. Therefore, the signal-to-noise ratio of the far 

slant range part of the image is relatively low, which might have caused these 

mis-classifications.  

 

Unsupervised classification algorithms group pixels without a-priori knowledge of land 

cover or reference data. Due to speckle noise, unsupervised classification of SAR data 

poses a unique challenge. The custom Wishart K-means classifier is capable of dealing 

with speckle to a large extent. On one hand the classification is far from perfect, 

overall accuracy and Kappa coefficients are quite low. On the other hand the 

classification results provide highly-detailed, quickly produced maps that distinguish 

well between different vegetation habitats and non-vegetated areas.  
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Table 12 – Confusion table of unsupervised CP Wishart K-means with S-band SAR classification. 

 

Reference data 

Bare sand 
/ mud wet 

Bare sand 
/ mud dry 

Pioneer 
Salicornia 

Pioneer 
Spartina 

Salt 
Marsh 

Meadow 

Juncus 
maritimus 

Row 
total 

User 
accuracy 

(%) 

C
lassified

 d
ata 

Bare sand / 
mud wet 

804 126 191 30 200 34 1385 58.05 

Bare sand / 
mud dry 

1 742 10 79 147 2 981 75.64 

Pioneer 
Salicornia 

1 0 64 22 520 223 830 7.71 

Pioneer 
Spartina 

0 22 54 191 560 153 980 19.49 

Salt Marsh 
Meadow 

3 16 4 19 972 73 1087 89.42 

Juncus 
maritimus 

0 1 0 74 103 156 334 46.71 

Column 
total 

809 907 323 415 2502 641 5597 
 

Producer 
accuracy 

(%) 
99.38 81.81 19.81 46.02 38.85 24.34 

 

Overall 
accuracy 
52.33 % 

 

 
Figure 31 – Habitat map of unsupervised CP Wishart K-means S-band SAR classification. 
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Table 13 – Confusion table of unsupervised CP Wishart K-means with X-band SAR classification. 

 

Reference data 

Bare sand 
/ mud wet 

Bare sand 
/ mud dry 

Pioneer 
Salicornia 

Pioneer 
Spartina 

Salt 
Marsh 

Meadow 

Juncus 
maritimus 

Row 
total 

User 
accuracy 

(%) 

C
lassified

 d
ata 

Bare sand / 
mud wet 

775 6 153 0 68 23 1025 75.61 

Bare sand / 
mud dry 

2 213 10 45 74 1 345 61.74 

Pioneer 
Salicornia 

0 296 12 56 123 0 487 2.46 

Pioneer 
Spartina 

3 12 115 218 648 148 1144 19.06 

Salt Marsh 
Meadow 

2 300 29 63 870 137 1401 62.10 

Juncus 
maritimus 

26 80 4 33 716 332 1191 27.88 

Column 
total 

808 907 323 415 2499 641 5593 
 

Producer 
accuracy 

(%) 
95.92 23.48 3.72 52.53 34.81 51.79 

 

Overall 
accuracy 
43.24 % 

 

 
Figure 32 – Habitat map of unsupervised CP Wishart K-means X-band SAR classification. 
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6.3.2 Supervised habitat classification  

This section presents results of supervised habitat classification mapping for the SVM 

and RF classifiers. To test the classification performance of different RS data types a 

number of different data variable combinations are used. The different variable 

combinations are discussed in Chapter 6.2.2.1. 

6.3.2.1 SVM habitat classification 

The SVM supervised classification algorithm allows extra tuning of classification by 

variable analysis after initial classification, selection of the most significant variables 

and re-classification with this subset of variables. Accuracy assessments of SVM 

supervised classification with the different variable combination models are shown in 

Table 14. This table is subdivided in five sections, the first section provides accuracy 

assessment values of variable models based on optical and LiDAR data, the second on 

S-band SAR, followed by a section on X-band SAR and one combining S-band and X-

band SAR. The last section shows accuracy assessments of two models combining the 

optical, LiDAR and SAR variables. 

  



Chapter 6 - Mapping of salt marsh habitats 

94 

Table 14 – Overall classification accuracy and Kappa coefficient for the SVM classification models.  

The model with highest accuracy is indicated in bold. 

Variable Model Overall accuracy (%) Kappa coefficient 

DSM, RGB 50.22 0.38 

NDVI (1,2) 51.44 0.35 

DSM, NDVI (1) 57.82 0.45 

DSM, NDVI (2) 51.60 0.36 

DSM, NDVI (1,2) 54.03 0.38 

DSM, RGB, NDVI (1,2) 58.25 0.44 
   

S-band (Int) 57.01 0.45 

S-band (CP) 37.13 0.24 

S-band (FD) 58.33 0.48 

S-band (VZ) 56.73 0.46 

S-band (Int,VZ) 59.64 0.47 
   

X-band (Int) 44.22 0.31 

X-band (CP) 25.89 0.15 

X-band (FD) 46.56 0.35 

X-band (VZ) 44.49 0.34 

X-band (Int,VZ) 45.35 0.33 
   

S-band (Int,VZ), X-band (Int,VZ) 61.87 0.50 

S-band (Int,CP,FD,VZ),  

X-band (Int,CP,FD,VZ) 
60.43 0.50 

   

DSM, NDVI (1), 

 S-band (Int,VZ), X-band (Int,VZ) 
70.18 0.59 

DSM, RGB, NDVI (1,2),  

S-band (Int,CP,FD,VZ),  

X-band (Int,CP,FD,VZ) 

72.09 0.64 

 

Per variable input section, the most interesting observations can be made about the 

classification accuracies: 

 The optical and LiDAR variable models have accuracies between 50 and 58%, 

with the most accurate model the model based on all optical and LiDAR 

variables with 58.25%. The model based on the DSM and NDVI_1 variables is 

more accurate than the model based on DSM and NDVI_2 variables, with 

57.82% and 51.60% accuracy, respectively. This indicates that the NDVI variable 

derived from a Landsat image acquired in June provides more distinction 

between different salt marsh habitats than an NDVI variable derived from a 
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Landsat image acquired in April. Combining multiple NDVI variables in one 

classification model does not necessary improve classification. 

 The classification models based on S-band SAR variables are between 37 and 

60% accurate, with the most accurate model based on backscatter intensity 

and VZ polarimetric decomposition variables with 59.64%. It appears that CP 

polarimetric decomposition variables are not well suited for SVM classification 

with accuracy of 37.13%. The accuracies are in general very similar to or slightly 

higher than the variable models based on optical and LiDAR data. 

 X-band SAR variable models are less accurate than S-band SAR variable models, 

ranging between 25% and 47% overall accuracy. The most accurate model is 

based on X-band FD variables, with 46.56%. Again, the model based on X-band 

CP polarimetric decomposition variables is the least accurate (25.89%). 

 The models based on a combination of S-band and X-band SAR variables are 

slightly more accurate than the models based on S-band SAR variables alone, 

with accuracies between 60% and 62%. Interestingly, the model based on 

backscatter intensity and VZ polarimetric decomposition variables from both 

frequency bands is slightly more accurate than the model based on all available 

SAR variables. 

 The models based on a combination of optical, LiDAR and SAR variables have an 

accuracy of 70.13% and 72.09% for the model based on a selection of the most 

important (selection based on interpretation of the previously mentioned 

accuracy assessments) and the model based on all available RS variables, 

respectively. It appears that these combination models have a significant higher 

accuracy than the models based on either optical, LiDAR or SAR variables alone. 

 

After initial classification a variable analysis has been carried out with the model 

incorporating all available RS variables. Results of this analysis are shown in tabulated 

form Table 15 and graphically in Figure 33. 
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Table 15 – SVM feature selection analysis. 
Optical variables are highlighted in red, LiDAR variable in grey, S-band variables in green, X-band 

variables in blue. The 21 most important variables are bounded by a white line. 

Variable name Rank 
Accuracy assessment (%) 

Internal validation Independent validation 

NDVI_1 1 52.36 39.32 

X_Int_VV 2 69.96 52.83 

S_ Int_HV 3 74.85 62.14 

DSM 4 77.01 62.50 

NDVI_2 5 79.96 72.18 

S_VZ_Odd 6 82.34 76.65 

RGB_R 7 83.06 74.75 

RGB_G 8 85.34 75.59 

S_ Int_VV 9 86.45 76.70 

S_CP_alpha 10 87.28 77.72 

S_FD_Dbl 11 87.73 75.04 

RGB_B 12 88.56 74.54 

X_FD_Dbl 13 88.62 74.47 

X_CP_H 14 89.06 73.63 

S_VZ_Vol 15 89.56 73.66 

X_ Int_HH 16 89.39 73.95 

S_ Int_HH 17 89.56 73.74 

X_CP_alpha 18 90.51 74.02 

X_VZ_Dbl 19 90.39 74.49 

S_CP_H 20 90.73 73.97 

X_FD_Vol 21 90.95 74.04 
    

S_FD_Vol 22 90.23 73.88 

X_VZ_Odd 23 90.34 73.74 

S_FD_Odd 24 90.06 73.72 

X_ Int_HV 25 90.56 73.88 

X_VZ_Vol 26 89.95 73.91 

S_CP_A 27 90.45 73.79 

S_VZ_Dbl 28 90.12 73.61 

X_CP_A 29 90.39 73.24 

X_FD_Odd 30 88.62 72.34 

 

The variables were ordered according to their contribution to the SVM classification 

model. Two validations have been done, an internal cross-validation with a subset of 

the training samples and an independent validation using external validation samples. 

Internal validation samples are part of the sample population on which the SVM 

classification model is based, therefore overall accuracy of the internal validation is 

generally higher than the independent validation. Independent validation samples are 
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not used in improving the SVM model, therefore more attention was given to the 

internal validation for further classification. The highest ranked variable is NDVI_1, 

accounting for 52.36% classification accuracy for internal validation. After the second-

ranked variable (X-band VV intensity) was added the overall accuracy increased to 

69.96% for the internal validation.  

 
Figure 33 – SVM feature selection analysis of variable model based on all available RS variables. 

Variable selection numbers with highest accuracies are indicated with dashed lines. 
Optical variables are annotated in red, LiDAR variable in grey, S-band variables in green, X-band variables in 

blue. 
 

The top 10 variables consists of four optical variables, one X-band SAR variable, four S-

band SAR variables and the LiDAR DSM variable. In Figure 33 it can be seen that overall 

accuracy increases if more variables are included in the model, until an optimal 

number of variables was reached after which accuracy decreased again. The first 21 

variables provided the highest accuracy according to the internal validation, which is 

indicated as with a blue dashed line in Figure 33 and is marked with a white space in 

Table 15. The SVM model is re-run with the 21 most important variables, producing a 

habitat classification map (Figure 34) and confusion table (Table 16). 
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Table 16 – Confusion table of supervised SVM classification based on 21 input variables. 

 

Reference data 

Bare sand 
/ mud wet 

Bare sand 
/ mud dry 

Pioneer 
Salicornia 

Pioneer 
Spartina 

Salt 
Marsh 

Meadow 

Juncus 
maritimus 

Row 
total 

User 
accuracy 

(%) 

C
lassified

 d
ata 

Bare sand / 
mud wet 

764 9 25 0 2 0 800 95.50 

Bare sand / 
mud dry 

1 813 24 61 17 0 916 88.76 

Pioneer 
Salicornia 

37 12 168 65 46 0 328 51.22 

Pioneer 
Spartina 

0 3 71 249 320 66 709 35.12 

Salt Marsh 
Meadow 

7 70 35 40 1817 251 2220 81.85 

Juncus 
maritimus 

0 0 0 0 300 324 624 51.92 

Column 
total 

809 907 323 415 2502 641 5576 
 

Producer 
accuracy 

(%) 
94.44 89.64 52.01 60.00 72.62 50.55 

 

Overall 
accuracy 
73.87 % 

 

 
Figure 34 – Habitat map of supervised SVM classification, based on subset of the 21 most important 

variables of all available RS variables. 
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From the feature subset analysis and the subsequent SVM habitat mapping based on 

the subset the following things are worth mentioning: 

 The overall accuracy of a SVM classification models can be improved by using a 

subset. In this example the accuracy improved from 72.09% to 73.87%. This 

indicates that, besides saving computational power and time, feature selection 

for SVM classification models can improve accuracy.  

 The confusion table shows that both the dry and wet sand and mudflats are 

characterised very well, with producer and user accuracies of more than 88%. 

Of the vegetation habitats, pioneer Spartina has the lowest user accuracy, 

which is 35.12%. A considerable amount of salt marsh meadow is mis-classified 

as pioneer Spartina, but also as Juncus maritimus. 

 The classification map provides reasonable realistic representation of presence 

of different land cover types. The aforementioned misclassification of salt 

marsh meadows as pioneer Spartina and Juncus maritimus is visible in some 

areas, especially towards the central pioneer zone. A considerable part of this 

area is classified as Juncus maritimus, although during field visits in this area no 

vegetation of this type has been found. Similarly, in the western part of the salt 

marsh, a large area has been classified as pioneer Spartina, not confirmed by 

field surveys. 

6.3.2.2 RF habitat classification 

Similar to the results of the SVM classifiers, for the RF classification a total of 20 

different variable combination models are used (Table 11). In order to assess the 

variable combination generating the most accurate result, as well as qualitative 

comparison of variable combination models the overall accuracies and Kappa 

coefficients (Congalton 1991) were calculated. The accuracy assessments of the RF 

classifications of variable combination models are shown in Table 17. Similar to the 

interpretation of the results of the SVM classifier, the variable combination models are 

presented according to RS data type: 

 The optical and LiDAR variable combination models have accuracies between 

47% and 61%, the highest achieved by the model based on all optical and DSM 
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variables. The model based on NDVI_1 showed higher accuracies than the 

model based on NDVI_2, similar to the SVM results. 

 The S-band SAR models have accuracies between 32% and 68%, with accuracy 

of the model based on CP variables significantly lower than other variable 

combinations. 

 The X-band SAR models have accuracies between 24% and 51%, with accuracy 

of the model based on CP variables significantly lower than other variable 

combinations. 

 The S-band and X-band combination models show slight improvement of the 

classification accuracies based on S-band alone (63.41% and 66.41%). The 

model based on the backscatter intensity channels and VZ polarimetric 

decomposition variables is more accurate than the model based on all S-band 

and X-band SAR variables. 

 The classification models based on optical, LiDAR and SAR variables are 

significantly more accurate than the classifications based on fewer variables. 

The highest accuracy was achieved with a variable model based on all available 

optical, LiDAR and SAR variables, with accuracy of 78.20%. 

All in all the classification accuracies of the RF models are higher than the SVM 

models, although the relative performance of each model (its ranking among the 

20 variable models) is the same. 
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Table 17 – Overall classification accuracy and Kappa coefficient for the RF classification models. 
The model with highest accuracy is indicated in bold. 

Classification Model Overall accuracy (%) Kappa coefficient 

DSM, RGB 47.70 0.36 

NDVI (1,2) 52.40 0.36 

DSM, NDVI (1) 57.69 0.46 

DSM, NDVI (2) 54.62 0.40 

DSM, NDVI (1,2) 49.92 0.35 

DSM, RGB, NDVI (1,2) 60.41 0.48 
   

S-band (Int) 51.08 0.40 

S-band (CP) 32.12 0.20 

S-band (FD) 53.65 0.42 

S-band (VZ) 54.39 0.44 

S-band (Int,VZ) 62.86 0.52 
   

X-band (Int) 40.04 0.28 

X-band (CP) 24.82 0.12 

X-band (FD) 32.62 0.20 

X-band (VZ) 42.72 0.31 

X-band (Int,VZ) 50.69 0.39 
   

S-band (Int,VZ), X-band (Int,VZ) 66.41 0.56 

S-band (Int,CP,FD,VZ), 

 X-band (Int,CP,FD,VZ) 
63.41 0.53 

   

DSM, NDVI (1), 

 S-band (Int,VZ), X-band (Int,VZ) 
74.88 0.67 

DSM, RGB, NDVI (1,2),  

S-band (Int,CP,FD,VZ),  

X-band (Int,CP,FD,VZ) 

78.20 0.71 

 

The RF classifier analysed the relative importance of RS variables used for training of 

the classification model. A plot of the variable importance analysis of the variable 

model based on all available optical, LiDAR and SAR variables is provided in Figure 35. 

This plot is a graphical display of the importance of the input variables for the 

classification. The plotted values indicate raw variable importance, coloured according 

to input variable type. The two optical NDVI and elevation DSM variables are by far the 

most important for the RF classification model. The rest of the top 10 variables are a 

mix of S-band and X-band variables, mostly polarimetric decomposition variables. On 

the other end of the scale, the least important variables are three X-band variables and 
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the three optical aerial photography variables. Eight variables in total fall under the 1% 

total variable importance threshold, plotted as a dashed line in the diagram. 

 
Figure 35 – RF variable importance analysis of variable model based on all available RS variables. 

Optical variables are highlighted in green, LiDAR variable in pink, S-band variables in blue and X-band 
variables in purple. The dashed red line indicates 1% of total variable importance. 

The classification has been re-run on a number of subsets to test whether leaving less 

important variables created significant degradation of classification accuracy. These re-

runs are summarised in Table 18. The model using the top 22 variables is the model 

excluding the variables with less than 1% contribution to total variable importance. 

When interpreting the results the following observations are most important:  

 The ten most important variables are responsible for 74.13% classification 

accuracy. Inclusion of the remaining 20 variables increases accuracy with only 

4.07% to 78.20%.  
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 Overall accuracy gradually increases when number of input variables grows. 

This indicates that all variables have a positive effect on the classification (i.e. 

not decreasing overall accuracy). Unlike the SVM classification, best overall 

accuracy is achieved using all available input variables. 

Table 18 – Accuracy assessment of supervised RF classifications with subsets of the model based on all 
available RS variables. 

Data set Overall accuracy (%) Kappa coefficient 

Top 3 variables used 49.92 0.35 

Top 5 variables used 67.98 0.58 

Top 10 variables used 74.13 0.66 

Top 15 variables used 76.76 0.69 

Top 22 variables used 77.58 0.70 

All variables used 78.20 0.71 

 

From the model based on all available RS variables a salt marsh habitat map was 

created (Figure 36), the confusion matrix of classification accuracy of the among the 

different habitat classes is shown in Table 19. From the resulting habitat map and 

confusion table the following observations are worth noting: 

 Overall classification accuracy of bare sand and mudflats is high, with user and 

producer accuracies above 82%. Pioneer Salicornia is the least accurately 

classified, with user and producer accuracies around 50%. 

 On the habitat classification map, pioneer Salicornia and Spartina habitats are 

restricted to the pioneer part of the salt marsh, without significant appearance 

in other parts of the salt marsh. This coincides well with the findings of the field 

survey. Furthermore, little confusion exists between the salt marsh meadow 

and the two pioneer classes. 

 The transition between upper Juncus maritimus sward and the surrounding salt 

marsh meadow in the south-eastern part of the research area is very abrupt in 

the classification map. This corresponds with sharp boundaries between these 

two habitats that were observed during field surveys.  

 The classification map revealed a realistic image of spreading of salt marsh 

habitats. Compared to the SVM habitat classification map, the RF classification 

map seemed more consistent and less noisy. 
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Table 19 – Confusion table of supervised RF habitat classification based on all available RS variables. 

 

Reference data 

Bare sand 
/ mud wet 

Bare sand 
/ mud dry 

Pioneer 
Salicornia 

Pioneer 
Spartina 

Salt 
Marsh 

Meadow 

Juncus 
maritimus 

Row 
total 

User 
accuracy 

(%) 

C
lassified

 d
ata 

Bare sand / 
mud wet 

719 6 61 0 9 0 795 90.44 

Bare sand / 
mud dry 

4 900 25 76 81 0 1086 82.87 

Pioneer 
Salicornia 

86 0 161 41 31 0 319 50.47 

Pioneer 
Spartina 

0 0 72 289 308 27 696 41.52 

Salt Marsh 
Meadow 

0 1 4 9 1933 239 2186 88.43 

Juncus 
maritimus 

0 0 0 0 140 375 515 72.82 

Column 
total 

809 907 323 415 2502 641 5576 
 

Producer 
accuracy 

(%) 
88.88 99.23 49.85 69.64 77.26 58.50 

 

Overall 
accuracy 
78.20 % 

 

 
Figure 36 – Habitat map of supervised RF classification, based on all available RS variables. 
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6.3.3 Supervised vegetation extent classification 

In the previous section performance of different classifiers was analysed. The RF 

classifier has shown to be best considering the input variables available for this project. 

Therefore it was decided to use this classifier for mapping the extent of salt marsh 

vegetation in the research area.  

Similar to the supervised RF habitat classification, different variable combinations were 

used and their respective performance analysed. The classes considered were ‘No 

vegetation cover’ and ‘Vegetation cover’, irrespective of salt marsh vegetation habitat. 

In Table 21 the overall accuracy and kappa coefficient of the classification models are 

shown. Similar to the interpretation of the results in the previous section, the results 

are presented per RS variable type: 

 The variable models based on optical and LiDAR variables all achieve high 

accuracies, between 88% and 92%. The most accurate model is based on 

NDVI_1 and DSM variables with accuracy of 91.80%. This shows that a model 

based on only two variables can result in a highly accurate vegetation extent 

map.  

 The vegetation extent classification accuracies of the models based on S-band 

SAR variables range between 66.95% for the model based on CP polarimetric 

decomposition variables and 90.25% for the model based on FD polarimetric 

decomposition variables. This shows that models based on S-band SAR achieve 

similar accuracies as models based on optical and LiDAR variables. 

 The classification models based on X-band SAR variables show lower accuracies 

than the models based on either optical and LiDAR or SAR variables. This is 

similar to the relative accuracies observed in the previous paragraph. 
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Table 20 – Overall accuracy and Kappa coefficients for vegetation extent mapping variable models. 
The model with highest accuracy is indicated in bold. 

Classification Model Overall accuracy (%) Kappa coefficient 

DSM, RGB 88.30 0.77 

NDVI (1,2) 87.98 0.73 

DSM, NDVI (1) 91.80 0.81 

DSM, NDVI (2) 89.84 0.77 

DSM, NDVI (1,2) 89.05 0.78 

DSM, RGB, NDVI (1,2) 90.15 0.80 
   

S-band (Int) 89.60 0.79 

S-band (CP) 66.95 0.34 

S-band (FD) 90.25 0.81 

S-band (VZ) 88.35 0.77 

S-band (Int,VZ) 90.21 0.78 
   

X-band (Int) 82.50 0.65 

X-band (CP) 64.90 0.30 

X-band (FD) 84.05 0.68 

X-band (VZ) 84.35 0.69 

X-band (Int,VZ) 86.16 0.68 
   

S-band (Int,VZ), X-band (Int,VZ) 91.94 0.81 

S-band (Int,CP,FD,VZ), 

X-band (Int,CP,FD,VZ) 
92.43 0.82 

   

DSM, NDVI (1), 

S-band (Int,VZ), X-band (Int,VZ) 
89.91 0.77 

DSM, RGB, NDVI (1,2), 

S-band (Int,CP,FD,VZ), 

X-band (Int,CP,FD,VZ) 

91.59 0.81 

 

 The models based on a combination of S-band and X-band SAR variables are 

the most accurate classification models in this analysis, with accuracies of 

91.94% for the model based on S-band and X-band backscatter intensity and VZ 

polarimetric decomposition variables and 92.43% for the model based on all 

available SAR variables. This is different from the results of the habitat 

mapping, where these models performed rather well, but were not the most 

accurate ones. 
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 The models based on combination of optical, LiDAR and SAR variables show 

high accuracies, with accuracy of 91.59% for the variable model based on all 

available RS variables. 

Variable importance analysis is carried out on the classification model based on all 

available RS variables. The variable importance plot (Figure 37) shows that NDVI 

variables are most important for vegetation extent mapping. The DSM variable 

completes the top 3 important variables. X-band SAR variables constitute the following 

three variables. On the bottom end of the variable importance plot ten variables fall 

under the 1% variable importance threshold. As was shown in the previous section, 

improving classification model efficiency by decreasing variable number by leaving 

those that have low importance degrades overall classification accuracy only slightly. 

The overall accuracy of RF extent mapping classification with a subset of the twenty 

most important variables results in accuracy of 90.69%, a decrease in overall accuracy 

of 0.86%. This decrease in accuracy is comparable the decrease in accuracy observed 

for the RF habitat mapping, as described in the previous section.  

The resulting vegetation extent map (Figure 38) showed that the RF classifier produced 

a smooth and realistic picture of the extent of vegetation cover in the research area. 

The confusion table of the extent map (Table 21) shows that there are good user and 

producer accuracies for the two classes. The lowest accuracy is the producer accuracy 

for the class ‘Non-vegetated’ (82.11%), indicating a slight tendency to over-

classification of vegetation on the expense of non-vegetated area. 
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Figure 37 – Variable importance plot RF vegetation extent classification model 17.  

S-band variables are highlighted in blue, X-band variables in purple, optical variables in green and the 
elevation variable in pink. The dashed red line indicates 1% of total variable importance 

 

Table 21 – Confusion table of supervised RF vegetation extent classification based on all available RS 
variables. 

 

Reference data 

Non-vegetated Vegetated Row total User accuracy (%) 

C
lassified

 d
ata 

Non-vegetated 1583 126 1709 92.63 

Vegetated 345 3545 3890 91.13 

Column total 1928 3671 5599 
 

Producer accuracy 

(%) 
82.11 96.57 

 

Overall accuracy 

91.59 % 
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Figure 38 – Salt marsh vegetation extent map of supervised RF classification, based on all available RS 

variables. 

6.3.4 Integration of results 

6.3.4.1 Classifier analysis 

The use of a combined RS data set for salt marsh habitat and salt marsh vegetation 

extent mapping has been used in this research experiment. The main aim of this 

experiment was to research whether using SAR data would improve the accuracy of 

salt marsh habitat maps, starting off from a perspective of more readily available 

optical and LiDAR data sets. In Table 22 the highest classification accuracies for each 

variable combination category is shown. From this table it can be deducted that 

inclusion of SAR in a combined RS variable model does provide an improvement for 

habitat mapping, but less for vegetation extent mapping. The observed classification 

accuracy improvement for SVM habitat mapping is 13.84% and 17.79% for RF habitat 

mapping when SAR variables are included in the variable combination models. 

However, this improvement is not observed in the vegetation extent map, where the 

inclusion of SAR variables in the classification variable model results in a decrease of 

0.21% in classification accuracy. Moreover, it appears that the most accurate 

classification model is based on S-band SAR variables alone. 
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Table 22 – Highest classification accuracies of variable combination category for supervised 
classifications. 

Supervised 
classification 

Optical, 
LiDAR 

S-band 
SAR 

X-band 
SAR 

S-band SAR, 
X-band SAR 

Optical, LiDAR,  
S-band SAR,  
X-band SAR 

RF vegetation extent  91.80 90.25 86.16 92.43 91.59 

SVM habitat  58.25 59.64 46.56 61.87 72.09 

RF habitat  60.41 62.86 50.69 66.41 78.20 

6.3.4.2 Vegetation extent change analysis 

The vegetation extent map presented in Figure 38 is compared with two reference 

vegetation cover extent maps from the EA salt marsh survey (Figure 29) and the CCW 

salt marsh habitat survey (Figure 30). From the three extent maps vegetation extent 

change amounts were calculated (Table 23). The geographical component of salt 

marsh vegetation extent change is shown in Figure 39. From the change table it can be 

derived that vegetation cover gain has been larger than vegetation cover loss. The net 

vegetation cover area gain between 1998 and 2007 is 59.24 ha, between 2007 and 

2010 it is 60.90 ha. Considering the second time interval is only one third length of the 

first one it can be observed the change rate (stated between brackets) has accelerated. 

Table 23 – Salt marsh vegetation extent change. 
Values are hectares. Change rate in hectare per year is between brackets. 

Time interval 1998-2007 2007-2010 

Vegetation cover gain 103.51 (11.50) 65.29 (21.76) 

Vegetation cover loss 44.27(4.92) 4.40 (1.47) 

Net vegetation cover change 59.24 (6.58) 60.90 (20.30) 
  

Unchanged 805.06 
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Figure 39 – Vegetation cover extent change map for the period 1998-2010 

 

From the change analysis the following observations can be made: 

 Areas of vegetation gain and vegetation loss are located in the eastern and 

western part of the research area, respectively. This pattern is consistent 

during both time intervals, with most vegetation gain in the eastern pioneer 

zone of the research area and most vegetation loss in the western part. 

 Most vegetation loss and gain occurs in the pioneer zone of the salt marsh. 

However, there is considerable vegetation cover change noted along some of 

the major channels. This can be due to change of channel position, as these are 

known to migrate slowly. This is particularly visible in the major channel beds in 

the western part of the research area. However, most of the vegetation cover 

increase observed along the two major creeks in the eastern part of the 

research area can be ascribed to mis-classification due to methodological 

differences between the three mapping efforts. 

 The salt marsh seems to be in favourable ecological condition with net 

expansion of the area covered by salt marsh vegetation. 
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6.3.4.3 Habitat change analysis 

The most accurate salt marsh habitat map, based on RF classification with all available 

RS variables was compared to the CCW salt marsh survey habitat map. This analysis 

was carried out by a cross-classification of the two data sets, using aggregated NVC 

classes for the CCW data set. The resulting change analysis map is shown in Figure 40. 

In Table 24 the habitat changes are expressed in a confusion table with change in 

hectares. The colours in the map correspond to the colours used in the corresponding 

classes in the confusion table. In the confusion table the CCW survey classes are 

plotted in the rows, the RF classification results in the columns. On the diagonal no 

colour is used, as this indicates that no transition of habitat has taken place. The total 

values in the right column indicate the total area each habitat occupied according to 

the CCW survey in 1998. The total values in the bottom row indicate the total area 

each habitat occupied according to the RF habitat classification in 2010. Per habitat 

some important observations can be made: 

 The largest habitat change observed is the transition from sand and mudflat to 

salt marsh vegetation. The total area covered by sand and mudflat decreased 

from 346.72 hectare to 236.34 hectare. This will be confirmed in the 

vegetation extent change analysis in Chapter 6.3.4.2.  

 The habitat that increased most in area is Salicornia, with an area increase 

from 2.89 hectare to 86.19 hectare. This increase has gone mostly to the 

expense of sand and mudflats. This habitat also shows it is the least unchanged 

 It appears that Spartina is the only vegetation habitat that decreased in area, 

from 116.51 to 100.29 hectare. This is mostly attributed to an increase of 

Salicornia. The area of Spartina cover has decreased mostly in the western side 

of the research area and increased in the eastern side. 

 The salt marsh meadows have gradually expanded, especially to the expense 

of sand and mudflats in the eastern side of the research area. Most of the area 

decrease is transition to Spartina in the western part of the research area. 

 The Juncus area is relatively stable, with mutual area exchange with salt marsh 

meadow as the largest dynamic. 
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Figure 40 – Salt marsh habitat change map 

Colours used in the map coincide with the colours in  
Table 24. 

 

Table 24 –Habitat area change between CCW survey and RF habitat classification. 
Area change expressed in hectares. 

  
RF habitat classification 

Total 
% not 

changed 
  

Sandflat Salicornia Spartina Meadow Juncus 

C
C

W
 su

rvey 
Sandflat 184.45 54.18 37.98 65.99 4.12 346.72 53.20 

Salicornia 1.86 0.66 0.30 0.06 0.00 2.89 22.86 

Spartina 34.64 21.74 29.16 30.84 0.13 116.51 25.03 

Meadow 15.39 9.47 30.66 364.12 18.95 438.59 83.02 

Juncus 0.00 0.14 2.19 16.68 92.47 111.47 82.95 

 
Total 236.34 86.19 100.29 477.69 115.67 

  

 
Area 

gain/loss 
-110.4 83.3 -16.2 39.1 4.2 

  

 

6.4. Discussion 

6.4.1 Unsupervised habitat classification with CP variables 

Plotting CP decomposition variables α against H has been common practice for initial 

analysis of fully polarimetric SAR data (Cloude and Pottier 1997). The CP 

decomposition alpha angle (α) to entropy (H) plots of the S-band (Figure 23) and X-
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band data (Figure 24) showed very different patterns for both frequency bands. The S-

band H/α-plot revealed that the predominant scatter mechanisms were surface and 

volume scatter and a large variation of H for the different land cover classes. In 

contrast, the X-band H/α-plot showed much less variation of H and higher α-values, 

indicating predominant volume and double-bounce scatter mechanisms. This was 

further exemplified in Figure 22, in which scatterplots were displayed for direct 

comparison of S-band and X-band CP variables. Cloude and Pottier (1997) observed 

similar differences for L-band and C-band backscatter signatures over a forested area. 

Focussing on variations of the H/α-relationships of six land cover classes, it was evident 

that dry sand/mudflats had lower entropy than the other land cover classes for both S-

band and X-band. This indicated that this class is the most deterministic, i.e. more 

dominated by a single scatter mechanism than the other land cover classes. The 

dominant scatter mechanism for dry sand/mudflats was surface scatter in S-band and 

double bounce scatter in X-band. The other land cover classes largely overlap with 

similar values for H and α, especially for the X-band CP variables. The largest variation 

for the land cover classes within a single variable was S-band entropy.  

The H/α-relationships revealed some differentiation between the land cover classes. 

However, previous use of these variables with an unsupervised classifier based on 

normal population distribution was not successful. The K-means Wishart unsupervised 

classification (Lee et al. 1999) was developed to handle with the specific statistic 

distribution of SAR data. The unsupervised classification maps based on S-band CP 

(Figure 31) and X-band CP variables (Figure 32) showed considerable differences. The 

overall accuracies of the maps were insufficient to be used for land cover mapping: 

52.33% for S-band, 43.24% for X-band. However, close examination of the specific 

feature and differences between the maps based on S-band and X-band showed some 

interesting features. The habitat map based on S-band CP variables showed a well-

defined area of Juncus maritimus, which was barely observed on the X-band map. 

Contrary, the area where pioneer Salicornia vegetation occurred was more realistically 

portrayed in the X-band map, on the S-band map pioneer Salicornia was over-

classified. The unsupervised Wishart classification result could be improved by 

integrating the two SAR frequencies into one single Wishart classification model, as 

proposed by Ferro-Famil et al. (2001). Even though this creates a rather large 
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classification model, it can take advantage of the different backscatter responses of 

the different SAR frequencies. Further analysis of CP decomposition variable 

capabilities for land cover mapping is provided by Dickinson et al. (2013). They found 

that the Wishart classifier can characterise broad vegetation composition, in research 

areas with reasonably low entropy values. When entropy reached a certain threshold, 

backscatter was found to be random and unsuitable for classification. 

Analysis of polarimetric SAR variables did provide insight into the behaviour of radar 

pulses, and unsupervised K-means Wishart classification merely confirms these 

processes. The production of the K-means Wishart unsupervised SAR classification was 

relatively straightforward and found to be capable to deal with complex SAR data. 

However, interpretation of the resulting map was not always straightforward and large 

mis-classifications occurred as boundaries were drawn based on statistical properties, 

not necessarily ecological ones. From this analysis it has been shown that S-band and 

X-band SAR complemented each other for mapping of the entire research area. This 

implied that the use of both SAR frequencies in a single classification model can 

improve the overall classification. 

6.4.2 Supervised habitat classification 

This section discusses the results of the supervised habitat classification variable 

importance analysis and the resulting habitat maps.  

6.4.2.1 SVM habitat classification 

The SVM classifier proved to be a more successful method and provides opportunity to 

analyse the outcomes of the initial classification to optimise the number of input 

variables. The overall accuracies of the different variable input models for the SVM 

classification (Table 14) shows a clear improvement over the accuracies obtained with 

the ML classification (best overall accuracy 72.09%). The use of a variable subset of 21 

of the 30 available variables (Table 15) increased the overall accuracy slightly to 

73.87% (Table 16) Focussing on the importance of respective variables for the optimal 

variable subset (Figure 33) the variables that contributed most to classification 

accuracy were a mix of optical, elevation and SAR. The nine least important variables 

(which were not used for the re-training of the SVM model) primarily consisted of X-

band SAR variables. This indicated again that S-band SAR variables were more 
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successful than X-band variables in distinguishing between the salt marsh vegetation 

habitats. However, it was noted that the most important variable was one of the NDVI 

variables, followed closely by the DSM elevation variable on fourth place and the other 

NDVI variable on fifth place.  

As Melgani and Bruzzone (2004) argued, the SVM classifier is not dependent explicitly 

upon a certain dimensionality of input spaces, or distributions. It creates a hyper-

dimensional feature space in which it defines optimal hyperplanes to separate the 

classes under consideration. As such, it has been applied successfully in other RS 

research that includes SAR in the input variables (Lardeux et al. 2009; Huang et al. 

2011). As these two studies observed, the SVM classification produced higher 

accuracies than supervised Wishart and ML classifications, respectively. As indicated by 

Lardeux et al. (2009), use of a subset of the most significant variables to re-train the 

SVM model produced non-inferior results to an SVM model based on the complete 

variable data set. This concept was further researched and described by Pal and Foody 

(2010). They concluded that the accuracy of SVM classification was actually often 

reduced when more variables are added, because fitting of hyperplanes can become 

more troublesome after an optimal number of variables was reached. They advised to 

use a variable subset to improve classification accuracy.  

6.4.2.2 RF habitat classification 

The RF classification algorithm allowed analysis of variable importance. Examination of 

the variable importance plot for RF classification (Figure 35) revealed that the two 

NDVI and the DSM elevation variables dominated, followed by a combination of S-

band and X-band SAR variables. This was also observed in the variable subset selection 

of the SVM classification. The use of a variable subset did not improve the accuracy, as 

was showed in Table 18. According to this table, the 15 least important variables only 

increase overall accuracy with 1.64%. The small contribution of some variables for RF 

classification means that a subset could be used to save computational time, although 

they do not have a detrimental effect like with SVM classification.  

The most accurate RF classification result was obtained with the model incorporating 

all available SAR, optical and elevation variables, with overall accuracy of 78.20% 

(Table 17). This was almost 15% more than the variable model based on SAR variables 
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alone (63.41%) and almost 18% better than the variable model based on optical and 

elevation variables (60.41%). This confirmed that a combination of SAR, optical and 

elevation data had a complementary effect. This was confirmed in previous research 

into application of RF classifiers for ecological and land cover mapping (Cutler et al. 

2007; Waske and Braun 2009). They concluded that the RF classifier is very robust in 

handling with noisy data; it performs very well on multi-source RS data sets.  

The high importance of optical NDVI variables could be ascribed to the consistency of 

optical data quality with regard to SAR data. Speckle noise deteriorates the quality of 

SAR data, resulting in larger variance of the variable values of a certain habitat. A 

possible explanation for the high importance of elevation in classification is that the 

occurrence of different salt marsh vegetation habitats is highly dependent on flooding 

frequency, and therefore altitude.  

The habitat classification maps showed that the RF classifier produced the most 

accurate habitat classification maps, more accurate than maps generated with the 

SVM classifier. A reason for the better results of the RF classifier compared to the SVM 

classifier could lie in the different underlying principles of the two classifiers. The SVM 

classifier aims to find the optimal statistical separability between classes, the RF 

classifier simply creates a large set of decision trees, with less focus on statistical 

population distributions. It appears that this approach is more successful when 

handling multi-source RS data. 

6.4.2.3 Habitat maps 

The maps from the SVM classifier (Figure 34) and the RF classifier (Figure 36) showed 

that both classification methods generated classification maps of good quality, without 

obvious mis-classifications. However, it was observed that the SVM classification map 

had a more grainy appearance than the RF classification map. This might attributed to 

speckle noise from the SAR variables that influenced the SVM classifier. Contrastingly, 

the RF classifier generated a smoother classification result. It appeared to suppress 

SAR speckle noise better than the SVM classifier, as was also observed by Pal (2003) 

and Gislason et al. (2006).  

The results of these supervised classifications implied that multi-source RS data sets 

were capable of producing good quality high-resolution habitat maps. The resulting 
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classification accuracies in Table 22 indicated that the inclusion of SAR variables in the 

RS data set helps to dis-aggregate salt marsh maps from merely vegetation extent 

maps, as produced by Environment Agency (2011) into habitat maps of the major 

habitats, according to the Annex 1 classification scheme. 

6.4.3 Habitat change analysis 

The habitat change analysis was carried out between the two habitat maps available, 

the habitat map from the CCW survey of 1998 and the habitat map derived from RF 

supervised classification, dated 2010. The habitat change map (Figure 40) and 

corresponding confusion table (Table 24) showed that the habitats associated with the 

higher, more stable parts of the salt marsh corresponded well, with 83.02% and 

82.95% similarity between CCW data and RF classification data for salt marsh 

meadows and Juncus maritimus swards, respectively. This was an indication that the 

resulting habitat map is a valid representation of the habitats when the RS data set 

was acquired. The pioneer salt marsh habitats showed less coherence between 1998 

and 2010, but this was largely attributed to natural dynamics. 

6.4.4 Supervised vegetation extent classification 

The same RS data set as was used for salt marsh habitat mapping, a salt marsh 

vegetation extent map was created. This was done with the RF classifier, as it 

produced the best results for the habitat mapping and the goal of this analysis was to 

analyse vegetation changes, not to analyse respective performance of different 

classifiers. Table 20 shows that most variable input combinations produced excellent 

results for the extent mapping, with the highest accuracy of 92.43% achieved by the 

model based on all SAR variables combined. This contrasted with results from RF 

habitat mapping (Table 17) where highest classification accuracy was reached with the 

model based on all available RS variables. However, overall accuracy of vegetation 

extent based on all variables was only slightly lower. Analysis of variable importance 

(Figure 37) indicated that the optical NDVI and elevation variables are most important, 

followed by X-band SAR variables. The high importance of optical NDVI and LiDAR 

variables is also observed in SVM and RF salt marsh habitat mapping. The preference 

of X-band SAR over S-band SAR variables for vegetation extent mapping could be 

attributed to higher sensitivity of X-band SAR to subtle changes in surface roughness 
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than S-band, detecting the sparse pioneer zone vegetation more easily. This coincided 

with the findings of Chapter 5.4.2. and was also found by Lee et al. (2012), who argued 

that X-band SAR provides an excellent tool to monitor pioneer salt marsh vegetation. 

6.4.5 Vegetation extent change analysis 

Change analysis was based on vegetation extent differences between the CCW survey 

vegetation extent map, compiled based on data recorded in 1998 (Figure 30), the EA 

salt marsh survey map, based on data from 2007 (Figure 29) and the RF classification 

extent map, based primarily on data from 2010 (Figure 38). The extent of vegetation 

cover change (Figure 39) showed that in both time intervals a continuous trend of 

vegetation extent increase was observed. Most vegetation cover loss was located in 

the western part of the research area, most vegetation extent gain in the eastern part. 

The net area of salt marsh vegetation cover has increased. This process was confirmed 

by Farleigh (2010), who observed that the seaward boundaries of the entire Burry Inlet 

(the western side of the research area) was subject to erosion due to development 

along the northern shore of the estuary. Vegetation cover in the research area has 

shown to be dynamic, with rapid changes in the 12 years this change analysis spanned. 

However, the validity of the temporal analysis results needed to be discussed, 

considering there was a three-year time gap between RS data acquisition and 

recording of training and reference field data. This issue is further addressed in the 

methodological considerations (Chapter 8). 

6.5. Summary 

A combination of optical, LiDAR, S-band SAR and X-band SAR variables was used to test a 

number of classifiers for habitat classification. Unsupervised classification was varied out 

with the K-means Wishart classifier, using CP polarimetric decomposition variables. This 

classifier did not yield satisfactory results in terms of habitat discrimination, although the 

results were worth analysing. Analysis of the variable importance for the SVM and RF 

supervised classifiers indicated that optical NDVI and LiDAR DSM variables were in general 

most important for habitat classification, followed by S-band SAR variables. 

The resulting habitat classification maps showed that the RF classifier produced the most 

accurate habitat classification maps, closely followed by the SVM classifier. It appeared 

that the RF classification technique was able to suppress inherent SAR speckle noise to a 
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large extent. Analysis of the habitat change between two habitat maps dated 1998 and 

2010 showed that extensive change has occurred in the pioneer area of the salt marsh, 

whereas the upper parts appeared more stable. 

Mapping of general vegetation extent was carried out with the RF classifier. The most 

important variables were optical NDVI and LiDAR DSM variables, followed by X-band SAR 

variables. The high importance of X-band SAR instead of S-band SAR variables was ascribed 

to higher sensitivity of X-band SAR to subtle changes in surface, detecting sparse pioneer 

zone vegetation better. Change analysis of the resulting vegetation cover mask (dated 

2010) with vegetation cover maps from previous studies (dated 2007 and 1998) indicated 

that vegetation cover has remained stable in the upper part of the salt marsh. However, in 

the lower, more seaward part of the salt marsh significant change in vegetation cover has 

been observed, with vegetation cover retreat in the western half and accretion in the 

eastern half. The net area of salt marsh vegetation cover increased. 
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7. Regression modelling of biophysical parameters 

7.1. Introduction 

In this chapter it is aimed to find answers to the third research question: 

 

Is a combined RS data set from optical, LiDAR and SAR sensors better suited for 

regression modelling of biophysical parameters (vegetation cover, height and volume) 

than regression models based on a data set based on a single RS sensor? 

 

It has been known that SAR backscatter can provide an estimation of vegetation 

biomass, this link has been researched extensively (Le Toan et al. 1992; Englhart et al. 

2011). Combining SAR and optical data has shown to be useful to delineate different 

land cover types (Englhart et al. 2012), it has been shown that LiDAR is strongly related 

to above-ground biomass (Englhart et al. 2013). Relationships between measurements 

from RS platforms and biophysical parameters in coastal marshes have been 

researched to some extent (Heumann 2011; Fatoyinbo and Simard 2012), although no 

previous record of modelling of biophysical parameters of salt marsh habitats with RS 

variables has been found. 

In this chapter the methods, results and discussion of results of modelling of 

biophysical parameters with a combined RS data set consisting of optical, LiDAR and 

SAR variables is presented. The same RS data variables used for mapping of salt marsh 

extent and habitats (Chapter 6) were used for this research experiment. The 

biophysical parameters considered were vegetation cover, vegetation height and gross 

vegetation volume, calculated from vegetation cover and height. For more information 

about the biophysical parameters, see Chapter 4.3.2. Initially, the correlations of each 

available RS variable with the three biophysical variables is analysed in univariate 

linear modelling. Subsequently, all available RS variables are used to construct and 

analyse multivariate linear regression models. In the second part of the analysis, three 

different regression modelling techniques are used to map and analyse biophysical 

parameters in the salt marsh research area. The regression models of choice are 

Multivariate Least Squares regression, SVM regression and RF regression. 
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7.2. Methods 

This section describes the different data analyses carried out with the RS and reference 

data sets, focussing on the regression modelling of biophysical parameters with the 

combined RS data set. A flowchart overview summarising the different analyses and 

their inter-relations are shown in Appendix B. 

During the field survey vegetation cover and height were recorded. From these 

parameters GVV was derived (see Chapter 4.3.2), as a measure of vegetation volume. 

These three biophysical parameters offer valuable information about the three-

dimensional composition of vegetation in the research area. The RS input data was 

provided by calculating mean values from pixels from all available RS variables within a 

buffer zone of 10 meters around each of the 100 fieldwork locations, with an added 10 

extra sample locations on the bare sand and mudflats.  

7.2.1 Biophysical parameters regression analysis 

Several regression models were used to research the relationships between the 

recorded biophysical parameters and the RS data variables, resulting in tables of 

correlation coefficients for each relationship. Two regression models were used: 

1. Univariate Linear Regression (ULR) 

2. Multivariate Linear Regression (MLR) 

The ULR regression is used to test each RS variable’s specific correlation with the 

biophysical parameters. Linear correlation coefficients (R-values) were calculated of all 

relations between the RS variables and the three biophysical parameters. For the 

strongest correlation coefficients for each biophysical parameter a scatterplot was 

constructed to visualise the relationship. Subsequently, correlation coefficients were 

re-calculated using a subset of the sample population with GVV under 20%, leaving 

samples from the Juncus maritimus areas out. This was done to focus on subtle 

changes between non-vegetated sand flats, scarcely vegetation pioneer salt marsh 

habitats and densely vegetated salt marsh meadows. 

For the MLR models four different variable models were used: 

1. All optical and LiDAR variables 

2. All S-band SAR variables 

3. All X-band SAR variables 
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4. All optical and LiDAR, S-band SAR, X-band SAR variables  

The main aim of this approach was to test whether multivariate regression models 

improved when SAR variables were added to the optical and LiDAR variables. The 

initial MLR models were calculated with all variables for each variable combination 

model. Subsequently, variable subset models were designed by stepwise regression 

methods to improve the initial regression models. The stepwise regression technique 

has been applied in other RS studies successfully (Huang and Townshend 2003), 

although it has also been regarded controversial (Rencher and Pun 1980). It was used 

to research which RS variable combinations showed the strongest linear relationship 

with biophysical parameters.  

7.2.2 Biophysical parameter mapping 

The last analysis of this thesis was assessment of accuracy of biophysical parameter 

maps based on multivariate regression methods. Training and validation data was 

provided by sampling pixels in a buffer zone of 10 meters around each of the 100 field 

survey sample locations and 10 additional non-vegetated locations. From the pixels 

within these buffer zones, 500 were randomly selected to training data for the 

regression models. The rest of the pixels within the buffer zones (n=5797) were used 

for validation purposes. Accuracy assessments are expressed in tables of the adjusted 

R2-values (R2-values adjusted for number of input variables and training samples). Of 

each of the three biophysical parameters the map of most accurate regression result 

was displayed. 

Three regression models are tested to research their capabilities for the mapping of 

biophysical parameters: 

1. Multivariate Least Squares (MLS) regression  

2. Multivariate SVM regression 

3. Multivariate RF regression 

The MLS regression is the general multivariate linear regression model which is 

generally used for linear regression. 

SVM regression is based on the same principles as the SVM classification (see Chapter 

6.2.2.2 for more information about SVM). In general, SVM for regression estimate a 

linear dependency by fitting an optimal approximating hyperplane to the training data 
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in the multi-dimensional feature space. Initially, for all four variable input 

combinations, the coefficients of determination were calculated. Consequently, the 

best fitting models were re-run with a feature subset. Similar to SVM classification, 

feature analysis was carried out to identify the most important variables.  

RF regression is based on the same principle as RF classification (see Chapter 6.2.2.2 

for more information about RF). Similarly, analysis of variable importance was done to 

rank the input variables according to their contribution to the regression models. Even 

though these models do not necessarily produce the best-fitting regression results, 

variable importance of the regression models based on all variables was analysed. 

7.3. Results 

7.3.1 Biophysical parameter regression analysis 

In this section results from regression analysis of relationships between RS variables 

and recorded biophysical parameters are presented. Main focus will lie on correlation 

and regression methods. In the first paragraphs of this section relationships between 

three biophysical parameters and each of the 30 available RS variables will be tested 

initially using univariate analysis, followed by variable combinations for multivariate 

regressions. In the second section analysis of regression model for biophysical 

parameter mapping with the MLS, SVM and RF regression techniques are described. In 

the final section, the results are integrated and their meaning is highlighted. 

7.3.1.1 Univariate linear regression  

The calculated Pearson correlation coefficients (R-value) for all combinations of 

biophysical parameters against RS variables are shown in Table 25. The highest R-

values of each biophysical parameter are indicated in bold. The percentage cover is 

best correlated with the NDVI variable derived from Landsat imagery acquired on 

04/06/2010 (R = 0.81). Both vegetation height and gross vegetation volume are most 

correlated with S-band FD odd bounce (surface scatter), with R-values of -0.57 and -

0.56, respectively. The scatterplots of these correlations are shown in Figure 41. 
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Table 25 – Pearson correlation coefficients (R-value) of biophysical parameters for all RS variables for 
entire sample location set (n=100). 

Cell fill colour corresponds to a gliding scale from red (R= 0) to green (R>0.6). The highest R-values of the 
three respective biophysical parameters are indicated in bold. 

Biophys. param. DSM RGB_R RGB_G RGB_B NDVI_2010 NDVI_2011 

Cover (dm2/m2) 0.63 -0.37 -0.35 -0.32 0.81 0.78 

Height (cm) 0.38 -0.35 -0.42 -0.33 0.25 0.22 

Volume (dm3) 0.45 -0.32 -0.38 -0.30 0.31 0.29 
       

Biophys. param. S_Int_HH S_Int_HV S_Int_VV S_CP_H S_CP_A S_CP_alpha 

Cover (dm2/m2) 0.21 0.40 -0.20 0.39 -0.51 0.29 

Height (cm) 0.04 0.32 -0.29 0.38 -0.52 0.48 

Volume (dm3) 0.03 0.33 -0.29 0.41 -0.52 0.48 
       

Biophys. param. S_FD_Odd S_FD_Dbl S_FD_Vol S_VZ_Odd S_VZ_Dbl S_VZ_Vol 

Cover (dm2/m2) -0.21 -0.21 0.40 -0.02 0.20 0.40 

Height (cm) -0.57 -0.55 0.32 -0.20 0.13 0.32 

Volume (dm3) -0.56 -0.54 0.32 -0.21 0.11 0.33 
       

Biophys. param. X_Int_HH X_Int_HV X_Int_VV X_CP_H X_CP_A X_CP_alpha 

Cover (dm2/m2) 0.03 0.43 -0.01 0.46 -0.40 -0.32 

Height (cm) -0.25 -0.01 -0.36 0.22 -0.39 -0.35 

Volume (dm3) -0.23 0.02 -0.34 0.25 -0.36 -0.30 
       

Biophys. param. X_FD_Odd X_FD_Dbl X_FD_Vol X_VZ_Odd X_VZ_Dbl X_VZ_Vol 

Cover (dm2/m2) -0.48 -0.45 0.39 0.16 -0.06 0.44 

Height (cm) -0.38 -0.50 -0.06 -0.20 -0.36 0.00 

Volume (dm3) -0.39 -0.50 -0.03 -0.18 -0.34 0.03 

 

 
Figure 41 – Scatterplots of the best-fitting RS variables for biophysical parameters, based on the full 

sample data set (n=110). 

 

In the scatterplots can be observed that there is a reasonably strong and positive linear 

correlation between percentage vegetation cover and NDVI. The other two biophysical 

parameters are less well correlated with any RS variable, especially sample locations 
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with higher GVV (mostly upper salt marsh Juncus maritimus). Therefore a subset of the 

sample locations was created of low vegetation volume (GVV < 20). The R-values of 

relationships between biophysical parameters and RS variables of this subset are 

presented in Table 26. 

Table 26 – Pearson correlation coefficients (R-value) of biophysical parameters for all RS variables for 
subset of sample locations with GVV < 20%. (n=81). 

Cell fill colour corresponds to a gliding scale from red (r= 0) to green (r>0.6). The highest R-values of the 
three respective biophysical parameters are indicated in bold. 

Biophys. param. DSM RGB_R RGB_G RGB_B NDVI_2010 NDVI_2011 

Cover (dm2/m2) 0.57 -0.31 -0.29 -0.27 0.81 0.78 

Height (cm) -0.12 -0.17 -0.21 -0.14 0.00 -0.01 

Volume (dm3) 0.10 -0.29 -0.30 -0.22 0.40 0.39 
       

Biophys. param. S_Int_HH S_Int_HV S_Int_VV S_CP_H S_CP_A S_CP_alpha 

Cover (dm2/m2) 0.26 0.37 -0.10 0.31 -0.42 0.15 

Height (cm) 0.35 0.51 0.12 0.39 -0.37 0.49 

Volume (dm3) 0.50 0.68 0.10 0.49 -0.57 0.48 
       

Biophys. param. S_FD_Odd S_FD_Dbl S_FD_Vol S_VZ_Odd S_VZ_Dbl S_VZ_Vol 

Cover (dm2/m2) -0.01 -0.03 0.37 0.10 0.23 0.37 

Height (cm) -0.63 -0.52 0.52 0.20 0.48 0.51 

Volume (dm3) -0.41 -0.40 0.69 0.28 0.58 0.69 
       

Biophys. param. X_Int_HH X_Int_HV X_Int_VV X_CP_H X_CP_A X_CP_alpha 

Cover (dm2/m2) 0.17 0.54 0.16 0.45 -0.32 -0.33 

Height (cm) 0.38 0.47 0.13 0.24 -0.29 -0.26 

Volume (dm3) 0.48 0.71 0.27 0.35 -0.30 -0.43 
       

Biophys. param. X_FD_Odd X_FD_Dbl X_FD_Vol X_VZ_Odd X_VZ_Dbl X_VZ_Vol 

Cover (dm2/m2) -0.42 -0.35 0.52 0.31 0.10 0.54 

Height (cm) -0.29 -0.29 0.48 0.34 0.23 0.47 

Volume (dm3) -0.39 -0.40 0.70 0.53 0.31 0.71 

 

Analysis of the R-values of the subset shows that the best correlation coefficient of 

vegetation cover remains the Landsat NDVI variable of 04th of June 2010, slightly 

higher at 0.81. The R-values of the relationships between the remaining two 

biophysical parameters and RS variables are improved considerably though, with 

maxima of -0.63 and 0.71 for vegetation height and GVV, respectively. Scatterplots of 

the strongest correlations are presented in Figure 42. Compared to the scatterplots of 

the complete sample set (Figure 41), it shows that the sample subset correlation of 
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GVV with X-band HV intensity is considerably stronger than strongest correlation of full 

data set for GVV, with S-band FD surface scatter. The highest R-values for GVV in Table 

26 are either S-band or X-band HV intensity, FD volume scatter or VZ volume scatter, 

all with R-values between 0.68 and 0.71. 

 
Figure 42 – Scatterplots of the best-fitting RS variables for biophysical parameters, based on a subset of 

the sample data set, GVV < 20% (n=91). 

 

From the ULR regression the following observations were made: 

 Vegetation height and volume correlated strongest with S-band FD surface 

scatter for the entire data set, with R-values of -0.57 and -0.56, respectively. 

For the subset data (volume <20 dm3) the R-values were higher, with -0.63 for 

S-band FD surface scatter and 0.71 for both X-band HV backscatter and X-band 

VZ volume scatter, respectively. This indicated that the use of the data subset 

generated a slight improvement for correlation of vegetation height and a 

larger improvement for vegetation volume. It was worth noting that the data 

subset regressions X-band FD and VZ volume scatter variables correlated 

slightly better than S-band SAR variables.  

 The exclusion of shrubby vegetation (volume > 20 dm3) improved the 

regression model based on X-band variables. This observation was similar to 

earlier analysis of the habitat classification results, which was that X-band was 

not capable to distinguish the shrubby Juncus maritimus vegetation from grassy 

vegetation habitats.  

None of the RS variables used in this research for univariate linear regressions 

were sufficiently correlated to the biophysical parameters vegetation height 

and volume to allow consistent mapping of these parameters with a single RS 

variable. In Figure 41 the correlations for vegetation height and volume are 
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statistically significant, but they show a poor linear fit. The sample subset data 

correlations were better (Figure 42), but this data set was not representative of 

the vegetation in the entire research area. 

7.3.1.2 Multivariate linear regression 

Initial MLR analysis was carried out with the full sample collection with the four 

variable combinations models. R2-values were calculated to assess which variable 

combination model fitted most accurately with the three different biophysical 

parameters (Table 27). The most accurate variable combination model for each of the 

three biophysical parameters is the model incorporating all variables, with adjusted R2-

values of 0.79, 0.64 and 0.60 for vegetation cover, vegetation height and GVV, 

respectively. 

Table 27 – Adjusted coefficients of determination (adjusted R
2
) of MLR models of biophysical parameters, 

based on the full sample data set (n=110). 

Biophys. param.  DSM and optical S-band SAR X-band SAR All RS variables 

Cover (dm2/m2) 0.68 0.52 0.46 0.79 

Height (cm) 0.43 0.49 0.40 0.64 

Volume (dm3) 0.40 0.46 0.39 0.61 

 

Subsequently, the best-performing variable combination for each of the three 

biophysical parameters was calculated by using forward and backward stepwise 

variable selection. This was carried out to simplify the statistical models and reduce 

noise to the estimation. Besides, a number of variables in the full data set are broadly 

collinear. For example, S_VZ_Vol and S_FD_Vol are both measures of S-band volume 

scatter and therefore respond similarly to vegetation differences; it is advisable to 

leave variables out that are trying to do the same job. The adjusted R2-values of the 

variable subsets for all four different combinations are shown in Table 28. 

Table 28 – Adjusted coefficients of determination (adjusted R
2
) of MLR subset models of biophysical 

parameters, based on the full sample data set (n=110). 

Biophys. param. Adjusted R2 # of RS variables used 

Cover (dm2/m2) 0.80 16 

Height (cm) 0.67 12 

Volume (dm3) 0.65 11 
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Comparison of Table 27 and Table 28 shows a slight improvement of the adjusted R2-

values for the S-band SAR, X-band SAR and DSM/optical data combinations of 1% on 

average. A larger improvement is observed for the variable subset models based on 

the initial all available variable models. The adjusted R2-values increase with 1%, 3% 

and 4% for the MLR models of vegetation cover, vegetation height and GVV, 

respectively.  

Table 29 is an overview of variable coefficients and statistical significance of the subset 

MLR model for vegetation cover. In the subset MLR model of vegetation cover, 16 of 

the original 30 variables remain. The five most significant variables are DSM, S-band VV 

intensity, X-band VZ surface scatter, RGB red channel and S-band VZ surface scatter. 

This indicates that the biophysical parameter vegetation cover correlates best with a 

combination of SAR, optical and elevation variables. 

Table 29 – Significance analysis of MLR coefficients of the subset model for vegetation cover.  
Significance codes: 0 < *** < 0.001, 0.001 < ** < 0.01 and 0.01 < * < 0.05. 

Variable Estimate Standard error t value Pr(>|t|) Significance 

(Intercept) 43.27 46.97 0.92 0.3593 
 

S_Int_VV -10.81 2.342 -4.61 1.30E-05 *** 

S_CP_H 88.91 63.13 1.41 0.1623 
 

S_CP_alpha -1.068 0.675 -1.58 0.1169 
 

S_FD_Odd -0.462 0.184 -2.51 0.0137 * 

S_FD_Dbl 0.438 0.185 2.36 0.0203 * 

S_FD_Vol -16.53 7.647 -2.16 0.0333 * 

S_VZ_Odd 12.11 3.803 3.18 0.0020 ** 

S_VZ_Vol 16.63 6.581 2.53 0.0132 * 

X_Int_HH -3.902 2.411 -1.62 0.1090 
 

X_Int_VV -5.998 2.347 -2.56 0.0122 * 

X_CP_H -52.79 32.38 -1.63 0.1064 
 

X_VZ_Odd 10.51 3.123 3.36 0.0011 ** 

DSM 18.17 3.783 4.80 6.00E-06 *** 

RGB_R -1.038 0.318 -3.26 0.0015 ** 

RGB_G 0.922 0.353 2.61 0.0105 * 

NDVI_2010 45.96 16.57 2.77 0.0067 ** 

 

Table 30 is the corresponding coefficient and significance table for the subset MLR 

model for vegetation height. This model is based on the 12 most significant remaining 
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variables, of whom the five most significant ones are, in descending order, DSM, S-

band VZ surface scatter, X FD volume scatter, NDVI of 2011 and S-band HH intensity.  

Table 30 – Significance analysis of MLR coefficients of the subset model for vegetation height. 
Significance codes: 0 < *** < 0.001, 0.001 < ** < 0.01 and 0.01 < * < 0.05. 

Variable Estimate Standard error t value Pr(>|t|) Significance 

S_Int_HH 6.057 1.564 3.87 0.0002 *** 

S_VZ_Odd -6.551 1.505 -4.35 3.30E-05 *** 

S_VZ_Vol 2.226 0.834 2.67 0.0089 ** 

X_ Int_HV -24.24 8.207 -2.95 0.0040 ** 

X_ Int_VV 3.943 1.578 2.50 0.0141 * 

X_CP_A -49.79 24.81 -2.01 0.0476 * 

X_FD_Vol -19.19 4.791 -4.01 0.0001 *** 

X_VZ_Vol 37.71 10.72 3.52 0.0007 *** 

DSM 15.39 2.788 5.52 2.80E-07 *** 

RGB_G -0.978 0.273 -3.59 0.0005 *** 

RGB_B 0.721 0.284 2.54 0.0127 * 

NDVI_2011 -55.86 13.99 -3.99 0.0001 *** 

 

The MLR coefficients and significance table for the subset model for vegetation volume 

is shown in Table 31. The subset MLR model is based on 11 variables of which the top 5 

five most significant are in descending order: DSM, X-band FD volume scatter, S-band 

CP entropy, RGB blue channel and X-band VZ volume scatter.  

Table 31 – Significance analysis of MLR coefficients of the subset model for vegetation volume (GVV). 
Significance codes: 0 < *** < 0.001, 0.001 < ** < 0.01 and 0.01 < * < 0.05. 

Variable Estimate Standard error t value Pr(>|t|) Significance 

(Intercept) 91.78 35.08 2.62 0.0103 * 

S_HH 5.066 1.603 3.16 0.0021 ** 

S_CP_H 113.7 25.16 4.52 1.70E-05 *** 

S_VZ_Dbl -3.106 2.053 -1.51 0.1336 
 

X_HV -22.30 8.287 -2.69 0.0084 ** 

X_VV 2.180 1.092 2.00 0.0486 * 

X_FD_Vol -23.02 4.769 -4.83 5.10E-06 *** 

X_VZ_Vol 40.57 10.80 3.76 0.0003 *** 

DSM 17.97 2.872 6.26 1.00E-08 *** 

RGB_G -1.049 0.276 -3.80 0.0003 *** 

RGB_B 0.770 0.290 2.66 0.0092 ** 

NDVI_2011 -53.66 15.39 -3.49 0.0007 *** 
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From the previous tables it appears that all three optimised subset MLR models 

comprise a mix of S-band and X-band SAR, optical and DSM variables. MLR analysis is a 

statistically sound regression method. However, it assumes normal distribution of the 

variable populations, which is not necessarily the optimal approximation for SAR data 

sets. 

 

The following observations can be made: 

 Analysis of the multivariate linear regression results based on all available RS 

variables (Table 27) and an optimised variable subset (Table 28) showed 

significant higher R2-values for all three biophysical parameters, when 

compared to the R2-values of the univariate linear regression results. Closer 

examination of the significance tables of the most accurate variable subsets 

(Table 29 for vegetation cover, Table 30 for vegetation height and Table 31 for 

vegetation volume) showed that each biophysical parameter was most 

accurately modelled with multivariate linear regressions by a combination of 

optical, LiDAR, S-band and X-band SAR variables. 

 Analysis of relative performance of regression models based on S-band or X-

band SAR variables alone shows that S-band variable models correlated better 

than the X-band variable models for all three biophysical parameters (Table 

27). Analysis of the variable subset models showed that X-band variables are 

more significant for the regression models for vegetation height and volume, 

whereas the S-band variables are more significant for the vegetation cover 

model. This confirmed the findings of the univariate linear regression analysis, 

which also indicated that X-band SAR variables correlated better with 

vegetation height and volume than S-band SAR variables.  

7.3.2 Biophysical parameter regression mapping  

In this section results of regression methods applied for mapping are presented, 

focussing on Multivariate Least-Squares (MLS), Support Vector Machine (SVM) and 

Random Forest (RF) regression methods. Four RS variable input models were used: All 

variables, S-band SAR variables, X-band SAR variables and elevation and optical 
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variables. In order to keep the size of this thesis manageable, only the three 

biophysical parameter maps of the best fitting regression models will be displayed.  

7.3.2.1 MLS regression 

Accuracy assessments of MLS regression mapping are shown in Table 32. Similar to the 

initial regression analysis, adjusted R2-values are used to assess regression model 

performance. It can be observed that the models based on SAR variables perform 

considerably worse than the model based on DSM and optical variables; the X-band 

SAR regression model for vegetation height is less than 10% accurate. 

Table 32 – Accuracy assessment of MLS regression of biophysical parameters. 
Expressed in adjusted coefficients of determination (adjusted R

2
), based on selection of samples from a 

buffer zone around field survey sample locations (n=5797). 

Biophys. param. DSM and optical S-band SAR X-band SAR All RS variables 

Cover (dm2/m2) 0.66 0.28 0.21 0.72 

Height (cm) 0.32 0.26 0.09 0.50 

Volume (dm3) 0.33 0.26 0.12 0.52 

7.3.2.2 SVM regression 

Adjusted R2-values from accuracy assessment of SVM regression results show that this 

regression method results in higher correlations than the MLS regression method. 

Vegetation cover is modelled with 90% accuracy when the DSM and optical variables 

are used. Vegetation height and volume (GVV) are both modelled 68% accurate, also 

based on DSM and optical variables.  

Table 33 – Accuracy assessment of SVM regression of biophysical parameters. 
Expressed in adjusted coefficients of determination (adjusted R

2
), based on selection of samples from a 

buffer zone around field survey sample locations (n=5797). 

Biophys. param. DSM and optical S-band SAR X-band SAR All variables 

Cover (dm2/m2) 0.90 0.36 0.37 0.78 

Height (cm) 0.68 0.26 0.07 0.59 

Volume (dm3) 0.68 0.18 0.10 0.57 

 

SVM feature selection has been carried out on the three biophysical parameter 

regression models. The plots of SVM feature selection analysis of the regression 

models based on all variables are displayed in Figure 43. In these plots decrease of root 

mean squared error (RMSE) of the SVM models with increasing number of input 

variables are shown. For the vegetation cover regression model the optimal number of 

input variables is 18, before RMSE increases again. For the vegetation height and 



Chapter 7 - Regression modelling of biophysical parameters 

133 

volume models the optimal number of variables is 11 and 22, respectively. For the 

SVM modelling of vegetation cover the NDVI_2011 variable is the most important, for 

vegetation height the S-band SAR CP alpha angle and for vegetation volume S-band 

SAR FD volume scatter are the most important initial variables. 

 
Figure 43 – SVM feature analysis of biophysical parameter regressions with all available RS variables. 

Colours on the labels on the X-axis according to variable type. 
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7.3.2.3 RF regression 

In Table 34 the adjusted R2-values of the RF regression models are shown. Similar to 

the SVM regression analysis results, DSM and optical variable input combinations 

generate the most accurate results, with adjusted R2-values of 0.88, 0.65 and 0.66 for 

vegetation cover, height and volume, respectively. The models based on S-band and X-

band SAR variables result in the lowest accuracies, particularly the X-band input model.  

Table 34 – Accuracy assessment of RF regression of biophysical parameters. 
Expressed in adjusted coefficients of determination (adjusted R

2
), based on selection of samples from a 

buffer zone around field survey sample locations (n=5797). 

Biophys. param. DSM and optical S-band SAR X-band SAR All variables 

Cover (dm2/m2) 0.88 0.45 0.53 0.77 

Height (cm) 0.65 0.35 0.22 0.56 

Volume (dm3) 0.66 0.34 0.26 0.55 

 

Analysis of variable importance is carried out for the RF models incorporating all 

available variables (Figure 44). Even though these models generate less accurate 

modelling results than the regression models based on optical and DSM variables, 

variable importance analysis of these models can tell more about relative importance 

of different RS sensors. 

 
Figure 44 – RF variable importance analysis of biophysical parameter regressions with all available RS 

variables. 
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From the variable importance plot (Figure 44) a few observations can be made: 

 On average, the most consistently important variables for modelling of all three 

biophysical parameters are elevation DSM and NDVI variables. These variables 

among the four most important variables for all three RF biophysical parameter 

regression models. This differs from the results of Chapter 6, in which was 

shown that SAR contributed to mapping of salt marshes. This difference will be 

further discussed in Chapter 7.3.3. 

 For the modelling of vegetation cover DSM and NDVI are most important input 

variables. Following the three most important variables, three X-band SAR 

variables are most important variables. The rest of the top ten consists of S-

band and X-band variables. Most of the SAR variables in the top ten, 

irrespective whether S-band or X-band, are variables that are responsive to 

vegetation, like FD and VZ Volume scatter or HV intensity. Optical R, G and B 

variables are at the bottom of the variable importance ranking. 

 The most important variable for the modelling of vegetation height is S-band 

CP alpha angle. This is somewhat surprising, the RF regression model for 

vegetation height based on S-band SAR variables is 30% less accurate than the 

model based on optical and DSM variables. The DSM and NDVI variables are 

the subsequent most important variables. Rest of the top ten variables consists 

only of S-band SAR variables. X-band SAR variables are less important in the RF 

model, most of the bottom half of the variables consist of these variables. 

 Analysis of variable importance of the RF regression model for vegetation 

volume shows that, besides DSM and NDVI variables, S-band SAR variables are 

most important. Most important SAR variable is S-band HV intensity, second 

most important after the DSM variable. The optical R, G and B channel are of 

little importance, similarly to the vegetation cover model. 

  



Chapter 7 - Regression modelling of biophysical parameters 

136 

7.3.2.4 Biophysical parameter maps 

From the analysis of multivariate regression mapping results SVM regression has 

shown to be the most accurate. The biophysical parameter maps of vegetation cover 

(Figure 45), vegetation height (Figure 46) and vegetation volume (Figure 47) all provide 

a realistic image of vegetation type expressions in different parts of the salt marsh. 

Vegetation cover is highest in the dense salt marsh meadows and the Juncus maritimus 

habitats and decreases gradually towards the pioneer Salicornia and Spartina anglica 

habitats. Low vegetation height is mapped in the salt marsh meadows and pioneer 

Salicornia. Pioneer Spartina anglica is slightly taller and the shrubby Juncus maritimus 

reaches heights of approximately 1 meter. Vegetation volume is largely dependent 

upon vegetation height and therefore the pattern in the vegetation volume map is 

very similar to the vegetation height map, with highest volume modelled in the Juncus 

maritimus habitat and lowest volume in the salt marsh meadows habitat. 

 
Figure 45 – Vegetation cover map, based on SVM regression with all available RS variables. 
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Figure 46 – Vegetation height map, based on SVM regression with all available RS variables. 

 

 
Figure 47 – Vegetation volume map, based on SVM regression with all available RS variables. 
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7.3.3 Integration of results 

The RS variables were used to model structural biophysical parameters (percentage 

vegetation cover, vegetation height and gross vegetation volume) with regression 

modelling. Similar to the supervised image classification approach, different regression 

techniques were tested and only the most successful were used for mapping of 

biophysical parameters. Initial univariate regression modelling results showed that 

vegetation cover is correlated strongest with optical NDVI variables, whereas 

vegetation height and volume correlate best with S-band SAR variables.  

Multivariate linear regression analysis indicated that the optimal combination of input 

variables to model any of the three biophysical parameters is a combination of SAR, 

optical and elevation variables. This is consistent with the outcomes of the supervised 

habitat classification (Chapter 6.3.2) and indicates that SAR, optical and elevation 

variables are complementary to each other. From multivariate SVM and RF regression 

variable importance analyses it emerged that the most accurate SVM and RF 

regression models were based on optical and elevation variables alone. This contrasted 

with the accuracies from the supervised habitat classifications based on the SVM and 

RF classifiers, which reported highest accuracy values for the models based on SAR, 

optical and elevation variables. It showed that inclusion of SAR for either regression or 

classification can lead to fundamentally different results. This might be ascribed to SAR 

data noise, which is not problematic for classification clustering, but suppresses 

accuracy in regression models. This observation will be further discussed in the next 

section. Nonetheless, RF variable importance analysis of the regression models based 

on all variables revealed that SAR variables dominated the importance analysis of 

vegetation height and volume. 

The regression model results showed that optical variables were better suited to 

model two-dimensional vegetation cover. LiDAR and SAR variables were better suited 

to provide information about the third (height) dimension and were better for 

modelling vegetation height and volume. Furthermore, S-band SAR variables generally 

correlated stronger with vegetation height and volume than X-band SAR variables. X-

band SAR variables are generally better correlated with vegetation cover than S-band 

SAR variables. This indicates that S-band SAR signal penetrates more into the canopy of 

the salt marsh vegetation, whereas X-band SAR does not penetrate significantly. X-
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band SAR was, however, better capable of detecting subtle differences in surface 

roughness associated with bare sand and mudflats and pioneer salt marsh vegetation. 

This is a confirmation of the results of the SAR variable analysis (Chapter 5) and the salt 

marsh habitat mapping (Chapter 6). 

7.4. Discussion 

In this section the results of the regression analyses of the biophysical parameters 

(vegetation cover, vegetation height and vegetation volume) are discussed. Initially, 

attention is given to results of the univariate linear regressions, followed by the 

multivariate regressions based on linear, SVM and RF models. In the last part of this 

section the presented biophysical parameter maps are discussed. 

7.4.1 Regression variable analysis 

Analysis of ULR regression results showed that optical and LiDAR variables correlate 

more strongly to vegetation cover density than SAR variables. Contrastingly, S-band 

SAR variables show stronger correlations with vegetation height and volume. When 

the variables are combined in any multivariate regression model (MLR, MLS, SVM or 

RF) the optical NDVI and LiDAR variables are generally the most significant regression 

variables for vegetation cover. In the multivariate regression variable combinations for 

vegetation height and volume the importance of SAR is significant. This is especially 

clear from the SVM feature analysis (Figure 43) and the RF variable importance 

analysis (Figure 44) for vegetation height modelling, where S-band SAR CP alpha angle 

is the most important variable for both regressions. 

The relationship of vegetation biomass with SAR backscatter has been researched 

extensively, starting with Le Toan et al. (1992). They found that L-band and P-band SAR 

correlated strongly with forest vegetation, especially for cross-polarised intensity 

channels. These findings were further confirmed by Patel et al. (2006), who focussed 

on shrub-tree vegetation, standing 3-4 meters high. They found that L-band SAR was 

preferable over C-band, although both frequency bands were deemed fit for use in 

these habitats. Instead of comparing qualitative performance of different microwave 

frequencies, Englhart et al. (2011) combined multi-frequency (X-, C- and L-band) and 

multi-temporal SAR data in a forest setting. They argued that combining various SAR 
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variables in a multivariate linear model could improve regression results considerably, 

even when only two multi-frequency SAR variables were used.  

7.4.2 Biophysical parameter mapping variable analysis 

The SVM regression accuracy assessment showed improved accuracy for all three 

biophysical parameters, with the highest R2-values for the models based on optical and 

elevation variables alone. A variable subset analysis was carried out for all three 

biophysical parameters to determine optimal variable input for the SVM regressions 

based on all available variables (Figure 43). Even though these regression models were 

not the most accurate, they provided information about the relative contribution of all 

different RS variables. These plots showed the NDVI and DSM variables were generally 

most important for all biophysical parameter SVM regression models, accompanied by 

either a number of X-band SAR variables for vegetation cover, a number of S-band 

variables for vegetation height and a mix of S-band and X-band for vegetation volume.  

The Root Mean Square Error (RMSE) of all three SVM models decreased until an 

optimal number of variables was reached; the optimal number of variables for 

vegetation cover was 18, for vegetation height 11 and for vegetation volume 22. It 

showed that SVM regression can provide improved regression results when a selection 

of key variables was used. These findings correspond to related research, Mountrakis 

et al. (2011) concluded that SVM regression was well suited for ecological applications. 

Meanwhile, Zheng et al. (2008) showed that SVM regression could be used for data 

fusion and Moser and Serpico (2009) deemed it a powerful method for RS analysis.  

The RF regression showed similar results, the highest accuracies were obtained with 

the variable model based on optical and elevation variables alone. The accuracies were 

1 to 3% lower than the SVM regression results on average. Variable importance plots 

of the RF regressions for the three biophysical parameters of the RF regression models 

based on all variables were shown in Figure 44. 

The most important variables for RF regression of vegetation cover were NDVI and 

elevation variables, followed by a number of X-band SAR variables. This was very 

similar to the variable importance analysis of the RF vegetation extent classification 

(Figure 37) and the SVM regression vegetation cover. The variable importance for 

vegetation height showed different variable importance ranking: the most important 
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variable was S-band CP alpha angle, followed by elevation and NDVI variables. To 

refresh the memory: CP alpha angle is a measure of the predominant scattering 

mechanism in an image pixel. With regard to this Tan et al. (2007) and Li et al. (2012) 

have shown in studies involving rice growth that vegetation height or phenological 

state has influence on the dominant scatter mechanism. 

The importance of X-band SAR variables for vegetation height RF regression was low, 

all X-band variables were found in the lower half of the variable importance plot. This 

coincided with findings from the initial SAR variable analysis (Chapter 5), X-band SAR 

was not well suited to distinguish between different vegetation habitats, and especially 

the shrubby Juncus maritimus habitat was poorly identified from the other (grassy) 

habitats. The RF regression variable importance plot of the vegetation volume 

parameter showed that the LiDAR DSM elevation variable was most important, 

followed by S-band HV backscatter intensity and the NDVI variables. The variables 

after these top four most important ones were a combination of S-band and X-band 

SAR polarimetric decomposition and backscatter intensity variables. The variable 

importance plot of the vegetation volume is roughly comparable to the variable 

importance plot of the RF habitat classification (Figure 35).  

7.4.3 Biophysical parameter mapping accuracy 

Even though the variable importance analysis of the RF regression and the variable 

subset analysis of the SVM regression indicated that a mix of SAR, optical and elevation 

variables improves regression results, it was noted that the regression accuracy of the 

variable models based on optical and elevation variables were higher than accuracy of 

the models that included SAR variables. This was valid for both SVM and RF regression 

results, although not for MLS regression. This contradicted the findings from the SVM 

and RF classification results, which showed highest accuracies for a combination of 

SAR, optical and elevation variables. Understanding why this difference occurred is 

crucial for future application of the classification and regression methods. The 

fundamental difference between regression and classification is that classifiers 

attempt to classify pixels on a discrete scale, whereas regression methods use a 

continuous scale. SAR data is inherently noisier than optical data due to the speckle 

effect (Lee and Ainsworth 2010). Whereas classification can deal with some noisy data 
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with outliers, for regression analysis outlying values can decrease the accuracy of the 

model (Breiman 1993). Optical and elevation data shows less variance than SAR data, 

which results in a smooth and consistent regression model, with fewer outliers that 

degrade the regression fit. For habitat mapping (Chapter 6) the best classification 

models are based upon a mix of variables providing consistently different information 

about each class. In the Considerations and recommendations chapter (Chapter 8) 

recommendations are provided for future applications of these classification and 

regression techniques. 

7.5. Summary 

In this chapter it was shown that modelling and mapping of biophysical parameters 

with multivariate regression techniques provided new insight into the behaviour of the 

different RS variables used in this research. SVM and RF regressions were shown to be 

both capable of modelling biophysical parameters, and it is recommended to use these 

algorithms more commonly in ecological studies. However, the ideal variable input 

combinations depended on the modelled biophysical parameter. Analysis of the three 

biophysical parameters considered showed that for each of these parameters different 

regression methods and variable selections yielded the best results. It is therefore 

advised to use variable performance analysis to determine the most suitable variable 

combination for biophysical parameter analysis. 
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8. Considerations and recommendations 

In this chapter a comprehensive discussion of the followed research methodology is 

discussed in terms of made assumptions, validity and limitations. In the second section 

of this chapter the contributions of this research to science and recommendations for 

further research are described. 

8.1. Methodological considerations 

In this section the used methodologies are discussed. Some of the major assumptions 

will be discussed, as well as the validity, limitations and repeatability of the research. 

8.1.1 Pre-processing 

The calibration routine for the Astrium Airborne SAR Demonstrator is described by 

Natale et al. (2011). They described that the SAR instrument was calibrated using the 

Van Zyl calibration technique (van Zyl 1990). This calibration routine correct for inter-

channel imbalances by using returns from natural targets and trihedral corner 

reflectors. Even though this technique does not need an external calibration target, 

and it is capable of correcting for cross-talk effects between polarimetric channels, it 

does not provide coefficients to convert SAR backscatter to commonly used sigma-

nought (δ0) values (Attema 1991). Sigma-nought is a standardised measure of radar 

backscatter per square meter and is used to set one standard backscatter unit for 

backscatter intensity values of different SAR instruments. Unfortunately, these 

coefficients were not available for the airborne SAR data used in this research, so 

therefore no comparison with SAR imagery from other sources could be carried out on 

a quantitative basis. Nonetheless, the Van Zyl calibration allowed qualitative analysis 

of both S-band and X-band for the airborne SAR data.  

The pre-processing of SAR data involved a correction for antenna pattern. This 

correction adjusts the amplitude of the SAR signal in the slant range according to an 

average across-swath curve for each polarimetric channel (Figure 12). The three 

polarimetric channels showed different attenuation curves along the slant range and 

were corrected with different amplification curves. Even though this can influence 

variables extracted from the three backscatter intensity channels, correction for 

antenna pattern was deemed necessary because it corrected for distortions caused by 

the SAR system layout (Freeman 1992). One side-effect is over-amplification of SAR 
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signal which causes noise in the far slant range. In the data set used for this research 

this is particularly visible in the far slant range part of the X-band SAR image (Figure 

16). 

8.1.2 Data analysis 

A number of arguments could be made regarding the methodology followed for the 

data analysis in this research. 

8.1.2.1 Vegetation classes 

Considering the habitat classification, a point of discussion could be whether the 

vegetation habitat classes used in this research were a good representation of the 

major habitats present in the research area. Table 7 indicated the relationships 

between the vegetation classes used in this research and classes defined by the NVC 

and Habitat Directive Annex 1 classifications. The Annex 1 classification scheme was 

closely followed. An exception was made for the Juncus maritimus class, which is 

grouped with salt marsh meadows under the Annex 1 class ‘Atlantic salt meadow’. The 

Juncus maritimus class (which has a separate NVC class ‘SM18’) is botanically very 

different from the other upper salt marsh meadow habitats, characterised by a 

perennial shrubby appearance. As such, this vegetation habitat appeared clearly in S-

band SAR imagery, although less so on X-band SAR data. It was decided to use this 

class as a different vegetation habitat in order to research to what extent it overlapped 

with other more shrubby habitats, like Spartina anglica. The confusion matrix of the 

most accurate RF habitat classification (Table 19) showed little confusion between the 

Juncus maritimus and Spartina anglica habitats, with only 27 Juncus maritimus 

reference pixels classified as Spartina anglica and no mis-classified pixels in the other 

direction. SAR backscatter intensity (Figure 21) and VZ polarimetric decomposition 

boxplots (Figure 27) showed that the Spartina anglica and Juncus maritimus habitats 

overlapped to some extent, but that for image classification there is enough 

distinction. 

8.1.2.2 Variable importance 

The dominance of both NDVI and elevation variables in both classification and 

regression analyses was another methodological point of discussion. It could be argued 
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that the inclusion of SAR in the research data set complicated the analyses 

unnecessarily. SAR data, especially quad-polarimetric SAR, is not readily available and 

processing tools are not as advanced as those for optical or LiDAR RS data. 

Nonetheless, in the discussion of the results it was shown that the use of multi-sensor 

RS data sets is preferential over data sets composed of a single RS data sensor. The 

complete data set used in this research has shown to be more capable of 

distinguishing different vegetation habitats. Other researchers have tested multi-

sensor RS approaches and concluded that these data sets provide additional 

information, use of multi-sensor data sets is advised (Pohl and Van Genderen 1998; 

Hall and McMullen 2004). Further discussion on this topic is beyond the scope of this 

research. One of the main objectives of this research was to investigate whether SAR 

can provide benefits for habitat mapping and monitoring. This has been confirmed for 

all classification and most regression models. These models were improved by 

inclusion of SAR variables. However, higher accuracies were noted for the SVM and RF 

regression models based on variable combinations excluding SAR variables. Availability 

of quad-polarimetric SAR data is limited; acquisition of quad-polarimetric SAR data is 

infrequent and expensive. Nonetheless, for most common applications quad-

polarimetric data offers unique additional information that is not provided by other 

data types or even single or dual-polarimetric SAR. 

8.1.2.3 Data consistency 

Another point of methodological discussion was the large time gap between the SAR 

data acquisition (July 2010) and the recording of reference field data (July 2013). The 

reason for this time gap is pragmatic: it was decided in November 2012 that the 

airborne SAR data set would form the basis of the research. In late autumn most of the 

annual plants (Salicornia, Spartina anglica) are senescent. Therefore it was decided to 

plan the field work in a period in which the phenological state of the annual plants is 

comparable to the moment of SAR data acquisition, which was the following summer 

in July 2013. In the three years between image acquisition and field survey field work 

was carried out by CCW in summer 2012. They recorded an increase of pioneer salt 

marsh vegetation cover, compared to the CCW habitat survey of 1998 (personal 

communication with Lily Pauls (NRW)). It was less likely that significant vegetation 
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change occurred in the upper parts of the salt marsh in the three years between SAR 

data acquisition and field work. These areas are characterised by stable vegetation 

cover in the past decade. This was confirmed with a visual interpretation of Google 

Earth multi-date aerial photography (imagery ranging from 1999 until 2010). From the 

Google Earth imagery it can also be observed that the pioneer zone of the salt marsh is 

subject to significant vegetation cover dynamics, especially in the western part of the 

pioneer zone of the research area. This observation is confirmed by the vegetation 

extent dynamics map (Figure 39) and the habitat dynamics map (Figure 40). Time-gaps 

between RS image acquisition and recording of reference data often occur in temporal 

RS studies (Singh 1989), although no general consensus what time gap is still 

acceptable exists. This is dependent on the dynamics in the research area, which is 

unfortunately high in the lower parts of this research area. Therefore it has to be 

acknowledged that classification and regression errors occurred related to the time 

gap between RS image acquisition and the recording of field reference data, although 

it could not be quantified how large this error was. 

8.1.3 Environmental and seasonal factors 

It is important to discuss the environmental setting in which this research has taken 

place. These factors influence the RS variables and henceforth the outcomes 

considerably.  

8.1.3.1 Tidal level 

In a salt marsh setting the moment of data acquisition is crucial. During high tidal level 

the lower parts of the salt marsh are generally submerged, adding difficulty to the 

acquisition of good quality RS imagery. According to Lee et al. (2012), tidal variations 

results in large backscatter variations of different vegetation habitats. They argued 

that the best RS imagery is acquired at low tide. For distinction between un-vegetated 

tidal flats and pioneer salt marsh vegetation particularly, data acquired during low tide 

is preferential. According to the tidal recordings in our research area at the moment of 

SAR acquisition (NTSLF 2012), the tidal level was +0.20m OD (see paragraph 4.2), which 

was lower than the lowest point in the research area. The SAR image shows two 

distinctive types of tidal flats, some areas are covered with a remaining thin layer of 

water while other parts of the sand and mudflats are dry. The wetness of tidal flats 
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influences the backscatter signatures (Lee et al. 2011). They concluded that the surface 

wetness of tidal flats is dictated by a complex interaction of inundation, desiccation 

and drainage. In the SAR data used for this research it was observed that in the areas 

covered with a thin layer of water specular reflection occurs; the thin water layer acts 

as a mirror for microwaves, scattering much of the microwave signal away. The 

resulting backscatter signal in these areas have a low signal to noise ratio as there is 

little backscatter recorded. Processing of this weak signal leads to erroneous variables, 

especially polarimetric decomposition variables. On dry tidal flats the dominant scatter 

mechanism is surface scattering. None of the salt marsh vegetation habitats were 

covered with water during SAR acquisition; even the pioneer vegetation habitats 

remain largely dry. It has to be stressed that during neap tides the higher parts of salt 

marshes are not covered. These are covered only a few times per year during the 

spring tides. Timing of tidal level should be a consideration when the research focusses 

on tidal flats and pioneer salt marsh areas, for middle and upper parts of salt marshes 

it is of lesser importance. 

8.1.3.2 Soil moisture 

Soil moisture has a significant effect on radar backscatter, thus research into the use of 

SAR to model soil moisture variations has commonly been carried out (Dubois et al. 

1995; Dabrowska-Zielinska et al. 2009). Kasischke et al. (2003) argued that for 

monitoring of wetlands with SAR, soil moisture is one of the key parameters. It was 

mentioned that seasonal changes in soil moisture can be detected with SAR and can be 

used to monitor these habitats. In this research no particular attention was given to 

soil moisture variations, it was assumed this is constant over the entire research area. 

In case repeated SAR acquisitions are planned, consideration of soil moisture 

variations is advised. 

8.1.3.3 Phenology 

Phenological stage of vegetation under consideration is a significant factor that 

determines the optimal moment of RS data acquisition (Reed et al. 2009). As was 

discussed in Chapter 8.1.2.3, the collection of reference field data was done in the 

same season as the SAR data acquisition. In the temporal analysis of salt marsh 

vegetation habitats carried out by Lee et al. (2012) it was observed that perennial 
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vegetation species have SAR backscatter signatures that are relatively constant 

throughout the year, whereas SAR backscatter signatures from annual plant species 

are more variable. Clint Slatton et al. (2008) argued that both water level and 

phenological stage are important environmental parameters in SAR RS monitoring 

studies in pioneer salt marshes, and to lesser extent in the upper parts of salt marshes. 

In their research they did not use a multi-temporal SAR data set; they assumed that 

environmental parameters are constant throughout the research area. However, if 

multi-polarimetric SAR data is used for vegetation monitoring and repeated SAR 

acquisitions take place, corrections for water level, soil moisture and phenology have 

to be made. 

8.2. Research feasibility and recommendations 

In this section the meaning and validity of the research is discussed in a wider 

perspective. Attention is given to what this research indicated and its repeatability. 

Consequently, recommendations are given for follow-up research based on the results 

of this study. 

8.2.1 Feasibility and repeatability of the research 

This research has shown that detailed salt marsh habitat mapping and modelling can 

be achieved with a combination of RS variables. This has been the first research that 

utilised the full capabilities of quad-polarimetric SAR to map individual salt marsh 

vegetation habitats. Therefore, it is necessary to question the feasibility and 

repeatability of this research to identify room for improvement and for possible 

follow-up research. 

The availability of quad-polarimetric multi-frequency SAR data is currently limited. The 

acquisition of the airborne SAR imagery over the Llanrhidian Marshes was part of a 

survey campaign to test the performance of the AirSAR system over different land 

cover types. Currently, AirSAR is installed on the research airplane of the Natural 

Environment Research Council (NERC) and some further test flights have been carried 

out in the summer of 2014 (NERC 2014) for a UK-based consortium of investigators, 

supported by funding from the Satellite Applications Catapult in Harwell. S-band and X-

band SAR thus have the prospect of being acquired on a more regular basis. 
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Ease of use of polarimetric SAR data can be improved if better pre-processing tools 

would be available. Geo-registration of the SAR data used in this research is done by 

selecting manual GCPs. This can be done very accurately in areas where stable GCPs 

are available, like built-up areas. In natural habitats stable GCPs are more difficult to 

find.  

Considering the polarimetric decomposition variable calculations, the SAR processing 

software tool PolSARpro includes a number of processing templates for other airborne 

SAR systems, as E-SAR, F-SAR, AIRSAR and UAVSAR (ESA 2013). In order to facilitate the 

processing and analysis of AirSAR data it is advised to develop similar processing tools. 

8.2.2 Research contributions 

So far the technical aspects of the use of airborne polarimetric SAR have been 

discussed. In this section the research results contribution in terms of improvement for 

mapping of coastal habitats.  

As discussed in the literature review (Chapter 2.1), research and policy development of 

ecosystem-based habitat management is popular. The results from this research 

demonstrated that advanced RS technologies were able to provide useful synoptic 

tools to improve ecosystem management strategies. RS technologies have undergone 

considerable improvements since the dawn of this industry in the 1970s. The Sentinel 

missions are part of the European Copernicus earth observation programme. This will 

make RS data become more readily available (Attema et al. 2007). These missions will 

monitor the Earth’s surface regularly with both optical and microwave sensors and the 

RS data will be publicly available. Directly related to S-band SAR data, this research has 

successfully shown that this microwave frequency band can be used to map and 

monitor shrubby and grassy vegetation habitats.  

This research looked thoroughly into the use of polarimetric descriptor variables 

extracted from airborne SAR data. Acquisition of quad-polarimetric SAR data is 

relatively rare; most SAR data is acquired in either single or dual polarimetric mode. 

Nonetheless, outcomes of this research have shown that polarimetric decomposition 

variables provided additional capabilities for the discrimination of salt marsh habitats 

with high detail. As such, this is an important contribution indicating this data type is 

worth using for further land cover mapping studies. 
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This research did not focus on the intricate workings of the chosen classification 

algorithms, instead it has primarily been a study on the application of high-resolution 

polarimetric SAR for habitat mapping and the used classification algorithms were 

tested primarily for their suitability to deal with this data type. However, this research 

has shown that both the SVM and RF classifiers are robust classifiers that provide 

useful information about algorithm performance. It has to be stressed that SVM and 

RF models are based on a randomly selected bootstrapped set of input samples. 

Therefore, each time the classifiers are run the class partitions are slightly different. 

Furthermore, each SVM and RF classification is trained for the specific RS variable data 

set, for each different RS data set the SVM or RF classification model needs to be 

calculated. This limits the transferability of the methodology, the classification models 

are optimised for a specific data set. Other classification methods, like Object-Based 

Image Analysis (OBIA) rule-based classifiers, have shown to be better transferable 

between different RS data sets (Blaschke 2010).  

Additionally, the use of multivariate regression models has shown that these 

techniques are capable of handling multi-source RS data to produce realistic 

approximations of biophysical parameters. Research into the use of SAR variables for 

mapping vegetation biomass (Englhart et al. 2011) has been mostly limited to the 

applications in forests. The results from this research show that these models can also 

be translated to a coastal salt marsh setting. 

8.2.3 Future research 

The results of this research indicate that airborne SAR does provide valuable additional 

information about vegetation cover and structure. Nonetheless, acquisition of airborne 

SAR is limited and applied research into applications for ecological monitoring sparse. 

There has been research into application of airborne SAR in agriculture (Hajnsek et al. 

2006), but there has been limited applied research for product development. Research 

into the application of airborne SAR for mapping and monitoring natural habitats could 

help develop tools for regular monitoring. Some research topics for follow-up research 

could be: 

1. Research of further combination of optical, LiDAR and SAR data. As this 

research has shown, all three RS types offer specific different advantages. 
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Simultaneous acquisition is often not possible and most research focusses on 

the use of one of the data types (Thomson et al. 2003; Lee et al. 2012). The 

inclusion of the AirSAR system on the NERC airborne survey plane (NERC 2014) 

is one of the best opportunities for concurrent acquisition of high resolution 

optical and SAR data. Besides SAR variables alone, derivative variables from 

optical and topographical RS sensors can be used as input variables as well, as 

Hladik and Alber (2014) have shown. They used GIS variables extracted from a 

single LiDAR Digital Elevation Model (DEM) input layer in a salt marsh setting to 

classify salt marsh habitats. Their model based on RS derived variables was 

more accurate than the model based on non-RS GIS variables. Additionally, 

additional data products can be produced from optical RS sensors to support 

vegetation mapping. In this research it was shown that medium-resolution 

NDVI variables based on Landsat imagery are generally more important for 

distinction between vegetation habitats than very high resolution aerial 

photography R, G and B channels. Variables extracted from Landsat and other 

optical RS imagery by biophysical formulations like Tasseled Cap transformation 

or Leaf Area Index (LAI) are also found to provide more useable information 

than reflectance channels alone (Walton 2008). Summarising, further research 

is needed on the addition of additional topographical and optical variables in 

order to determine how these variables can improve aggregate classification.  

2. Research of the ideal spatial resolution for the habitat under consideration. 

Airborne SAR systems can acquire data in sub-metre resolution, but this not 

always necessary and relatively costly (Robinson 2012). The type of habitat 

under consideration dictates the ideal spatial resolution needed for mapping. In 

heterogeneous salt marsh habitats high spatial resolution can provide 

information about subtle changes, but in more homogeneous habitats lower 

spatial resolution might be sufficient.  

3. Investigation of the ideal SAR frequency for mapping natural habitats. Which 

microwave frequency is most suitable depends upon the habitat under 

consideration. Results from this and previous research indicate that each SAR 

frequency domain has its own specific field of application (Schmullius and 

Evans 1997). Forests are generally best mapped with longer SAR wavelengths, 
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whereas for grassy habitats shorter wavelengths are better. This research has 

been one of the first to research the use of S-band SAR. In order to support 

application development for the upcoming NovaSAR-S mission (launch planned 

in 2016), more research is needed to investigate S-band SAR capabilities. The 

results of this research showed that S-band SAR can be a useful frequency for 

mapping grassy and shrubby habitats. It is advised to research the behaviour of 

S-band SAR in land cover types. 

4. Further research into the use of SAR polarimetric decomposition variables for 

habitat mapping. The calculation of polarimetric decomposition variables 

requires acquisition of coherent quad-polarimetric data, which is not 

commonly acquired. As this research has shown, the use of polarimetric 

decomposition variables provides extra discriminative tools for mapping 

habitats than the use of polarimetric backscatter channels alone. Therefore, if 

the data is available, it is advised to research further potential of SAR 

polarimetric decomposition variables for mapping habitats. 

5. Investigation of the most suitable temporal resolution for habitat monitoring. 

For agricultural applications, it is essential to monitor monthly or even weekly 

during the growing season. This frequency can be lower for the monitoring of 

natural habitats, perhaps once or twice per year. Finding the right moment for 

image acquisition is dependent upon the land cover type under consideration; 

some habitats are best mapped in the growing season, some in more senescent 

state. Change analysis of salt marsh (or other) vegetation habitats with multi-

temporal SAR data sets have shown to be able to improve classification results 

(Waske and Braun 2009), and it would be very interesting to apply multi-

temporal SAR analysis in a salt marsh setting to investigate inter-annual 

variability of these specific habitats.  

6. Research of transferability of high-resolution habitat mapping with SAR from 

airborne scale to satellite scale. With the launch of the first of the Sentinel-1 

satellites, the availability of good-quality, freely available C-band SAR will 

increase sharply in the coming years. This provides many opportunities for 

regular monitoring of natural habitats. The Sentinel-1 missions are capable of 

acquiring SAR data in dual-polarimetric mode, which will allow the 
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discrimination of different land cover types (Attema et al. 2007). The Radarsat 

missions have shown that polarimetric C-band SAR data on a spaceborne 

platform can be applied for a number of coastal applications (Moon et al. 

2010). These satellites are capable of acquiring SAR data in quad-polarimetric 

mode; research based on quad-polarimetric Radarsat data has shown that 

products derived from this satellite has good potential for mapping land cover. 

Additionally, the quad-polarimetric ALOS PALSAR mission has shown to be very 

useful for mapping coastal areas (Lucas et al. 2007; Wang and Allen 2008). With 

the planned ALOS-2 mission (JAXA 2012) quad-polarimetric spaceborne SAR will 

continue to be acquired. It is proposed to carry out research similar as this 

research on the use derived polarimetric decomposition from these satellites. 
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9. Conclusions 

In this thesis a number of research experiment results were carried out to investigate 

the potential of RS data for the mapping and modelling of salt marsh habitats. A clear 

focus has been put on the exploitation of airborne quad-polarimetric SAR data. The 

results from the different analyses show that inclusion of quad-polarimetric SAR for 

mapping and modelling of vegetation habitats with RS technologies adds valuable 

information, although the different research experiments showed that this data type 

has practical and technical limitations. 

A review of literature on coastal zone management policies and practices and the 

potential use of novel RS sensors (i.e. polarimetric SAR) for mapping and monitoring of 

natural coastal habitats (Chapter 2.1.1) showed that there is a move towards 

ecosystem-based management of coastal areas. Specifically, ecosystem-based and 

monitoring of low-lying coastal areas, like salt marshes, was deemed essential to 

mitigate for the expected effects of climate change. It has been acknowledged that RS 

technologies offer unique capabilities to monitor and map coastal areas with relative 

ease. A significant amount of research has been carried out to research the 

applicability of optical and LiDAR RS sensors for coastal management purposes, a 

limited amount of research focussed on the combined use of optical, LiDAR and 

polarimetric SAR. 

 

At the end of the Literature Review chapter a number of research questions were 

stated. In the following section each research question will be re-stated and the key 

findings are discussed and conclusions drawn. 

 

1. How are polarimetric SAR backscatter signatures affected by salt marsh 

characteristics, like specific environmental parameters (sea level, soil moisture 

or soil salinity) or botanical structure? 

The S-band and X-band SAR data sets used in this research represent medium-long and 

shortest wavelength frequencies commonly used for SAR RS applications, respectively. 

S-band has rarely been used in SAR RS, but is proposed as the frequency band for an 

upcoming SAR satellite (NovaSAR-S). Analyses of SAR backscatter signatures showed 

variations in the responses of the S-band and X-band SAR data, depending on botanical 
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structure and environmental parameters. In each of the five habitats considered for 

this analysis, the sand and mudflat habitat showed the highest variability in 

backscatter intensity for both frequencies for the HH and VV polarimetric channels. 

This has been ascribed to variations in soil moisture, expressed as a thin film of surface 

water in certain areas, contrasting with dry sand and mudflats in others. In the areas 

where a thin film of water is present, some SAR signal was reflected specular, resulting 

in low returned backscatter. For the four salt marsh vegetation habitats considered, 

the most discriminative polarimetric SAR backscatter channel was the HV polarisation. 

The Spartina anglica and Juncus maritimus habitats showed higher backscatter in this 

polarisation than the Salicornia spp. and salt marsh meadows. This difference was 

ascribed to the higher volume of above-ground vegetation in the former habitats. It 

was found out that X-band was more sensitive in detecting subtle differences in 

surface roughness in the pioneer zone, with lower standard deviation of in HV 

polarisation than S-band for the Salicornia spp. habitat. This indicated that X-band SAR 

was better at identifying subtle changes in surface roughness associated with pioneer 

vegetation than S-band. Therefore X-band has been regarded as the most suitable 

frequency to map and discriminate sparsely vegetated pioneer salt marsh areas. 

Analysis of the differences between S-band and X-band SAR variables showed that the 

average variance of backscatter intensity variables for the salt marsh habitats in S-

band was 3.68 and 2.27 for X-band. This indicated that S-band shows more variability 

between the salt marsh habitats and was better suited for discrimination between 

them. 

Polarimetric decomposition variables offered additional discriminative information for 

the considered salt marsh habitats. It was shown that the average standard deviation 

for the different habitats for all backscatter intensity variables (both S-band and X-

band) was 3.59 and the mean standard deviation from VZ polarimetric decomposition 

variables was 3.26. This showed that polarimetric decomposition variables provided 

slightly additional discrimination between salt marsh habitats compared to backscatter 

intensity channels. However, the limited availability of quad-polarimetric SAR data 

hampers a more generic uptake of polarimetric decomposition variables. Dual-

polarimetric SAR data, with at least one cross-polarimetric channel has shown to be 

almost as useful and is recommended to be used for similar future research.  
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2. Does the inclusion of SAR in a RS data set based on optical and LiDAR data 

improve mapping of both salt marsh extent and individual salt marsh habitats? 

Mapping of salt marsh habitats was carried out with unsupervised and supervised 

classifiers. Unsupervised classification with the K-means Wishart classifier, utilising CP 

polarimetric decomposition variables showed that habitat classification based on SAR 

variables alone resulted in marginal results. Especially the habitat map based on X-

band variables showed extensive mis-classifications of the salt marsh habitats. Two 

major factors influencing the low accuracy of the habitat classification with the K-

means Wishart classifier were the presence of speckle in the SAR images and the low 

data quality in the far slant range of the SAR image. 

The supervised classifications, carried out with the SVM and RF classifiers showed that 

the combined use of optical, LiDAR and SAR variables resulted in significantly better 

habitat maps than any of the maps based on any of these variables alone. The highest 

RF classification accuracy achieved with optical and LiDAR or SAR variables alone were 

60.41 % and 62.86%. Combining the optical, LiDAR and SAR variables improved the RF 

habitat classification accuracy to 78.20%. The SVM classification accuracies were 

58.25%, 59.24% and 72.09% for optical and LiDAR, SAR or all variables combined, 

respectively. This showed that combined use of multi-source RS variables increased 

accuracy significantly for the two classifiers.  

Analysis of the importance of different variables for SVM and RF classification 

indicated that particularly NDVI optical and LiDAR variables were most important 

variables for habitat mapping, followed by a combination of S-band and X-band SAR 

variables. This indicated that the NDVI and LiDAR variables provided the least 

ambiguous information about salt marsh habitats. NDVI provides information about 

photosynthetic activity of vegetation, which appeared to differ between salt marsh 

habitats, while the high importance of LiDAR showed that salt marsh zonations are 

largely dictated by elevation and related inundation frequency. However, SAR did 

provide strong additional information, primarily related to the botanical structure of 

salt marsh habitats that complements the previously mentioned data types well.  

Of the two supervised classifiers used in this study (SVM and RF), the RF classifier 

showed to be generating the best results. The overall accuracies of both SVM and RF 

classifications were very comparable, with slightly higher accuracies for the RF 
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classification results. The resulting habitat maps showed that the RF classifier provided 

very detailed habitat discrimination. Simultaneously it suppressed SAR speckle to a 

large extent, visually more than the SVM classifier.  

Analysis of temporal change of salt marsh habitats and extent in the research area was 

carried with the salt marsh habitat and a general salt marsh vegetation extent map 

generated with the RF classifier. These were compared with two older vegetation 

extent maps from different sources, one habitat map based on data from 1998 and a 

salt marsh extent map from 2007. Even though the data types used and methodologies 

of the three extent maps were different, changed analysis based on these maps has 

revealed consistent trends in vegetation cover dynamics. In specific areas vegetation 

cover retreat has been observed throughout the entire time span, whereas in other 

areas it has been expanding. Habitat extents have changed considerably in the pioneer 

zone of the research area, whereas it remained less changed in the upper parts of the 

salt marsh. 

 

3. Is a combined RS data set from optical, LiDAR and SAR sensors better suited for 

regression modelling of biophysical parameters (vegetation cover, height and 

volume) than regression models based on a data set based on a single RS 

sensor? 

Several regression methods have been used to analyse correlations between the three 

biophysical parameters considered in this research and the SAR, optical and elevation 

variables. Univariate linear regression results indicated that NDVI variables correlate 

strongest with vegetation cover, whereas S-band SAR variables showed the strongest 

correlation with vegetation height and cover. This pattern was also observed with 

multivariate regressions (MLS, SVM and RF). Vegetation cover was best modelled with 

NDVI and elevation variables, with a maximum R2-value of 0.90 for the SVM regression 

based on optical and elevation variables alone. The highest R2-values for both 

vegetation height and volume are lower; the highest are both 0.68, based on the 

optical and elevation variables alone with SVM regression. It can be concluded that 

biophysical parameters can be modelled with SAR, optical and elevation data in 

multivariate regression models to great extent. Vegetation cover correlates strongly 
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with optical and elevation variables, for vegetation height and volume SAR variables 

provide a complementary information to optical and elevation parameters. 

 

The research results indicate that SAR provides excellent additional tools for ecological 

mapping. Even though repeatability of this research is questioned, the acquisition of 

quad-polarimetric SAR data is sparse; the research results indicate that the 

methodologies in this research are well translatable to other SAR platforms. Dual-

polarimetric and quad-polarimetric satellite SAR data could be used in conjunction 

with optical and elevation data sets to improve mapping of natural habitats. 

 

From the conclusions stated above a single key message from this research can be 

distilled: 

Salt marsh habitats, or indeed any natural (coastal) habitat need to be mapped for 

purposes of monitoring or management. Some of the most promising technologies to 

do so are provided by Remote Sensing technologies. Synthetic Aperture Radar 

provides novel ways to map natural habitats with different frequency and 

polarimetric capabilities. This research has shown that SAR is an excellent tool to 

provide additional data besides more established optical and LiDAR RS systems. As 

such, it is advised to use SAR complementary with other RS data sources for 

ecological mapping. 
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Appendix A – Ecological field survey (July 2013) data sheets 

Appendix B – Pictures for selected sample locations 

Appendix C – Flowchart of analysis steps  

Appendix D – Flowchart of SAR data pre-processing steps  

Appendix E – Publications 
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1 5940 802 51.620187 -4.203378 244419 194539 4 5 
 

60 
   

1 30 4 
     

90 8 6.51 10 

2 5941 804 51.620386 -4.202948 244456 194527 4 
  

40 
    

40 
  

5 
   

80 10 6.02 10 

3 5942 807 51.621400 -4.202720 244499 194518 5 10 40 40 
           

60 5 7.67 6 

4 5944 810 51.622405 -4.202099 244564 194532 4 5 10 60 
    

10 
 

5 
    

90 10 7.00 10 

5 5945 817 51.622798 -4.201514 244533 194566 4 20 10 60 
           

70 5 6.22 10 

6 5947 828 51.623620 -4.201689 244539 194617 4 3 
 

70 
    

15 5 
     

95 5 5.98 10 

7 5948 
 

51.624257 -4.201485 244526 194682 4 3 30 60 
   

5 15 2 
     

80 5 8.29 10 

8 5949 
 

51.624630 -4.201200 244556 194717 3 
 

40 5 
  

40 
        

60 30 28.41 18 

9 5950 
 

51.625147 -4.200433 244550 194746 2 
 

3 
  

80 
 

10 
       

70 50 37.78 18 

10 5951 
 

51.626120 -4.200863 244539 194798 1 
   

5 70 
 

15 
       

100 100 80.67 16 

11 5952 
 

51.626450 -4.200969 244571 194878 1 
    

80 
         

95 80 57.00 16 

12 5953 846 51.626711 -4.201112 244617 194868 5 
 

10 80 
       

5 
   

70 10 4.72 13 

13 5954 848 51.627135 -4.200917 244672 194862 4 
 

10 70 
    

10 5 
     

30 5 2.18 10 

14 5955 849 51.627540 -4.201123 244719 194854 4 10 10 70 
           

75 5 5.83 10 

15 5956 
 

51.627868 -4.201414 244777 194842 2 10 10 
      

40 30 
    

70 10 6.38 9 

16 5957 
 

51.628460 -4.201052 244829 194907 3 30 5 40 
        

20 
  

80 5 8.84 13 

17 5958 
 

51.628820 -4.201236 244911 194956 3 5 60 
 

30 
          

60 10 8.81 6 
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18 5959 
 

51.629193 -4.201070 244967 194987 3 25 
  

70 
    

10 
     

85 5 5.95 10 

19 5960 
 

51.629684 -4.200629 245056 195014 3 35 5 50 
     

5 
     

75 10 7.22 10 

20 5961 
 

51.630251 -4.199974 244985 195018 3 15 75 
 

5 
          

75 15 13.78 6 

21 5962 862 51.631927 -4.198860 244966 195035 4 10 80 
            

60 10 11.67 6 

22 5963 
 

51.632680 -4.198121 244957 195069 2 
 

90 
            

70 15 14.00 6 

23 5964 
 

51.633211 -4.198400 244925 195091 3 40 
  

20 
       

15 
  

80 8 9.65 7 

24 5965 
 

51.633025 -4.200841 244907 195129 3 15 
  

70 
   

5 
      

90 5 5.55 10 

25 5966 
 

51.629879 -4.208100 244882 195155 3 10 10 50 
     

5 
     

60 8 5.12 10 

26 5967 
 

51.630297 -4.209041 244877 195186 4 10 10 70 
    

5 
      

80 4 6.32 10 

27 5968 
 

51.629788 -4.209785 244881 195223 4 10 65 20 
           

60 8 9.79 6 

28 5969 
 

51.629348 -4.209535 244859 195288 3 50 20 20 
           

50 8 6.94 10 

29 5970 
 

51.629058 -4.210020 244805 195321 5 10 25 30 
    

20 
      

60 8 7.06 10 

30 5971 
 

51.628783 -4.210564 244773 195341 2 
     

80 
 

5 
      

85 50 64.50 18 

31 5972 
 

51.628062 -4.210039 244783 195298 3 5 20 
   

60 
        

65 40 40.34 18 

32 5973 872 51.626947 -4.209027 244772 195277 3 10 90 
            

60 30 11.70 6 

33 5974 
 

51.625710 -4.208421 244746 195261 1 
    

90 
         

95 80 57.00 18 

34 5980 884 51.624146 -4.206667 247483 193614 5 
   

75 
  

5 
 

5 5 
    

100 3 4.94 16 

35 5981 886 51.615184 -4.169825 247514 193636 3 
     

70 5 
 

5 
     

95 40 67.93 18 

36 5982 
 

51.615724 -4.170034 247533 193748 5 
   

75 
  

5 
 

5 
 

5 
   

100 4 5.11 16 
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37 5983 895 51.615817 -4.170668 247579 193858 4 
   

65 
  

20 
  

10 5 
   

95 4 6.37 16 

38 5984 896 51.616395 -4.171111 247621 193901 4 
   

65 
          

95 4 3.80 16 

39 5985 898 51.616963 -4.170824 247612 193992 4 
   

70 
  

5 
 

5 
 

5 
   

100 5 5.18 16 

40 5986 900 51.617754 -4.171292 247628 194063 4 
 

10 
 

70 
  

10 
       

85 5 6.04 16 

41 5987 
 

51.618630 -4.170521 247649 194104 4 
   

70 
  

20 
  

5 5 
   

100 2 6.65 16 

42 5989 910 51.618209 -4.169460 247704 194160 4 
   

70 
  

10 
   

10 
   

95 3 5.49 16 

43 5990 
 

51.619267 -4.171579 247677 194269 5 
   

70 
    

10 10 
    

97 5 4.42 16 

44 5991 
 

51.619823 -4.172328 247671 194306 3 10 
 

40 
   

10 
   

10 
 

20 
 

70 8 6.14 10 

45 5992 
 

51.620228 -4.172975 247662 194335 4 
  

30 1 
    

10 
 

30 
 

15 
 

75 5 5.44 10 

46 5995 
 

51.620463 -4.173843 247677 194382 2 
  

10 15 
    

5 
 

10 
 

50 
 

50 3 4.06 7 

47 5996 916 51.621531 -4.173645 247664 194427 1 5 
 

80 
        

10 
  

35 5 2.30 10 

48 5997 
 

51.622905 -4.173748 247645 194464 1 5 
 

80 
     

5 
     

30 5 1.72 10 

49 5998 921 51.623523 -4.173925 247672 194529 1 50 
       

50 
     

5 5 0.58 8 

50 5999 
 

51.624131 -4.173971 247661 194570 1 70 
 

10 
     

10 
     

7 5 0.92 8 

51 6000 
 

51.625039 -4.174113 247673 194611 2 10 20 60 
           

35 5 3.31 10 

52 6001 
 

51.625984 -4.174011 247705 194665 1 15 5 70 
        

3 
  

75 5 5.81 10 

53 6003 
 

51.627446 -4.173834 247753 194726 1 40 60 
            

2 10 0.36 8 

54 6004 
 

51.628411 -4.173842 247835 194910 1 85 15 
            

9 10 1.42 8 

55 6005 930 51.629377 -4.173720 247889 194992 1 90 
 

5 
           

35 8 5.07 8 
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56 6006 932 51.629888 -4.173580 247871 195052 1 60 30 5 
           

40 15 6.42 8 

57 6007 
 

51.628216 -4.172852 247702 195036 1 
 

90 
            

15 8 3.00 4 

58 6008 
 

51.626602 -4.171852 247189 194702 3 
  

70 
   

10 
       

60 4 3.83 16 

59 6009 945 51.625624 -4.171477 247125 194750 2 
  

50 30 
        

5 
 

60 3 2.96 10 

60 6010 
 

51.624746 -4.171244 247072 194695 3 
   

40 
     

30 
    

80 2 3.54 16 

61 6011 
 

51.624029 -4.171119 247088 194646 3 
 

15 
 

40 
    

5 30 5 
   

85 3 6.17 16 

62 6012 
 

51.623058 -4.170999 247053 194615 4 10 
  

70 
  

10 
 

5 
     

75 4 4.97 16 

63 6013 
 

51.622323 -4.172411 247015 194585 4 10 
  

70 
          

60 3 3.23 16 

64 6014 9563 51.620122 -4.171918 247049 194504 4 10 
  

70 
    

15 
     

85 3 4.92 16 

65 6015 
 

51.618930 -4.170551 247115 194378 5 5 
  

70 
     

5 10 
   

95 4 4.86 16 

66 6016 
 

51.618457 -4.169620 247153 194239 5 5 
  

70 
  

5 
  

5 10 
   

75 3 4.26 16 

67 6017 
 

51.617317 -4.169042 247269 194061 5 
   

70 
  

5 
  

10 5 
   

100 3 5.00 16 

68 6022 
 

51.615184 -4.169825 249789 192989 2 
     

80 
       

20 100 60 74.00 18 

69 6023 970 51.615724 -4.170034 249776 193049 3 
   

40 
 

30 
        

90 40 32.91 18 

70 6024 
 

51.615817 -4.170668 249733 193061 2 
   

30 
 

40 
       

20 100 30 48.00 18 

71 6026 
 

51.616395 -4.171111 249704 193126 2 
     

80 
       

10 100 60 76.67 18 

72 6030 
 

51.616963 -4.170824 249726 193188 2 
   

5 
 

70 
       

15 100 50 70.78 18 

73 6031 977 51.617754 -4.171292 249696 193277 2 
   

70 
  

5 
  

20 
    

100 8 4.84 16 

74 6032 
 

51.618630 -4.170521 249752 193373 3 
   

70 
  

5 
  

20 
    

100 5 4.84 16 
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75 6033 
 

51.618209 -4.169460 249824 193324 3 
   

20 
 

40 
       

40 100 55 52.80 18 

76 6034 
 

51.619267 -4.171579 249681 193446 2 
     

90 
       

10 100 70 77.00 18 

77 6035 
 

51.619823 -4.172328 249631 193509 2 
     

80 
       

5 100 70 78.24 18 

78 6036 982 51.620228 -4.172975 249588 193556 3 
   

30 
  

40 
       

100 5 10.86 16 

79 6037 
 

51.620463 -4.173843 249528 193584 2 
     

70 5 
      

15 100 80 71.44 18 

80 6038 985 51.621531 -4.173645 249546 193702 4 
   

50 
  

10 
 

5 5 20 10 
  

70 5 5.15 16 

81 6039 
 

51.622905 -4.173748 249543 193855 4 
   

50 
   

5 
 

20 
    

95 5 4.43 16 

82 6040 
 

51.623523 -4.173925 249533 193924 5 
   

30 
          

100 3 4.00 16 

83 6041 988 51.624131 -4.173971 249532 193992 4 10 20 50 
     

5 
     

70 3 6.92 10 

84 6042 
 

51.625039 -4.174113 249525 194093 3 30 10 50 
           

90 5 9.00 10 

85 6043 994 51.625984 -4.174011 249535 194198 3 20 10 50 
     

20 
     

70 4 6.37 10 

86 6044 
 

51.627446 -4.173834 249552 194360 4 30 30 20 
     

10 
     

50 8 6.83 10 

87 6045 998 51.628411 -4.173842 249555 194467 4 5 75 20 
           

45 10 7.54 6 

88 6046 
 

51.629377 -4.173720 249566 194575 3 5 80 15 
           

30 10 5.25 6 

89 6047 1000 51.629888 -4.173580 249578 194631 2 10 85 
      

5 
     

55 15 10.40 6 

90 6049 1005 51.628216 -4.172852 249623 194444 3 20 
 

40 
     

40 
     

90 5 7.38 10 

91 6050 1006 51.626602 -4.171852 249687 194262 3 30 10 40 
     

5 
     

70 8 7.33 10 

92 6051 1007 51.625624 -4.171477 249709 194153 3 20 
 

50 
     

10 
     

90 5 7.09 10 

93 6052 
 

51.624746 -4.171244 249722 194055 4 10 30 40 
     

10 
     

50 10 5.72 10 
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 – Pictures from selected sample locations  Appendix B

Location map 

 

  



Appendices 

167 

Sample location pictures 

Bare sand and mudflats 

Location 110 Location 104 Location 101 

   
Salicornia spp. 

Location 15 Location 50 Location 55 

   
Spartina anglica 

Location 20 Location 57 Location 89 

   
Salt marsh meadow 

Location 10 Location 43 Location 93 

   
Juncus maritimus 

Location 9 Location 70 Location 77 

   

Sample location 



Appendices 

168 

 – Flowchart of analysis steps Appendix C

 



Appendices 

169 

 – Flowchart of SAR data pre-processing steps  Appendix D
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van Beijma, S.J., Comber, A., & Lamb, A. (in press). SAR-Based EO of Salt Marsh 

Habitats in Support of Integrated Coastal Zone Management. In H. Balzter (Ed.), 

Earth Observation for Land and Emergency Monitoring; Innovative concepts for  

van Beijma, S.J., Comber, A., & Lamb, A. (2014). Random forest classification of salt 

marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and 

optical RS data. Remote Sensing of Environment, 149, 118-129 

van Beijma, S.J., Comber, A., & Lamb, A. (2013). Classification and monitoring of salt 

marsh habitats with multi‐polarimetric airborne SAR. In ESA (Ed.), Living 

Planet Symposium 2013. Edinburgh 

van Beijma, S.J., Comber, A., & Lamb, A. (2013). Classification of Salt Marsh Habitats 

with Multi-Polarimetric and Multi-Frequency Airborne SAR. In, 6th EARSeL 

Workshop on Remote Sensing of the Coastal Zone (p. 7). Matera, Italy 

van Beijma, S.J., Comber, A., Lamb, A., & Brown, S. (2013). Classification and 

monitoring of salt marsh habitats with multi-polarimetric and multi-frequency 

SAR. In, POLinSAR 2013 (p. 6). ESRIN, ESA, Frascati, Italy 

van Beijma, S.J., Comber, A., & Lamb, A. (2012). Temporal analysis of optical and SAR 

remote sensing for monitoring of intertidal salt marshes. In, 1st EARSeL 

Workshop on Temporal Analysis of Satellite Images. Mykonos, Greece 
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