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Abstract 

Detection of vegetation affected by oil spills in oil polluted environments such as mangrove forest 

can be challenging using in-situ measurements and laboratory-based analysis techniques. Satellite 

remote sensing has been shown to be an effective tool to detect and monitor vegetation health and 

status in polluted areas. The application of broadband multispectral vegetation indices (BMVIs) 

derived from remotely sensed satellite data to detect and monitor impacts of oil spills on 

vegetation health has not been fully evaluated through previous research. The study was 

conducted in the mangrove forest South-West of Port Harcourt City in Niger Delta, Nigeria. This 

study first investigated the potential for using BMVIs to detect the impact / the effects of oil 

pollution on vegetation health. A total of 20 BMVIs were evaluated using data acquired at the 

visible, near infrared and shortwave infrared wavelengths. In Chapter 4 a statistical analysis of 

the indices from 37 oil polluted and non-polluted (control) sites show that 12 BMVIs 

demonstrated significant differences (p<0.05) between pre- and post-spill observations. For the 

control sites 11 of the 20 BMVI values did not indicate significant change and remained 

statistically invariant before and after the spill date (p ≥ 0.05). Oil spills are therefore suggested 

to cause a biophysical and biochemical alteration of the vegetation, leading to changes in 

reflectance signature detected by these indices. Five spectral indices (normalized difference 

vegetation index (NDVI), soil-adjusted vegetation index (SAVI), adjusted resistant vegetation 

index (ARVI2), green near infrared (G/NIR) and green shortwave infrared (G/SWIR)) were found 

to be consistently sensitive to the effects of oil pollution on vegetation and hence could be used 

for detection of oil pollution in vegetated areas. This study sought to, secondly, investigate factors 

that have been assumed to be influential on the detection of the impacts on vegetation from oil 

spills such as oil spill volume, time gap (number of days between oil spill events and image 

acquisition date) and spatial distance using the five BMVIs (NDVI, SAVI, ARVI2, G/NIR and 

G/SWIR). Regression analysis, utilised to determine the relative influence of these factors over 

56 oil spill sites, revealed a significant relationship between the volume of the oil spill and 

increased deterioration of vegetation condition (p < 0.05) for four of the indices (NDVI, SAVI, 

ARVI2 and G/NIR). The length of time between image acquisition and oil spill was observed to 

exert an influence on the ability to detect the biophysical effects of oil spills on vegetation. The 

longer the time gap between the date of image acquisition and the oil spill event, the lower the 

detectability of oil spill impacts on vegetation. The influence of spatial variation on the detection 

of vegetation impacts was evaluated using a directional flow model applied over a local 

neighbourhood; the results from which did not show any significant difference between the 

neighbouring pixels (first pixel-P1, second pixel-P2 and third pixel-P3). The study also attempted 

to assess and validate the techniques used in chapter 4 in a different study site (study site 2- SS2) 

with a relative climatic and environmental conditions using new oil spill data in 2014. The 

findings revealed that statistical results from five indices (NDVI, SAVI, ARVI2 and G/NIR) 

derived from Landsat 8 in SS2 are found to show similar results to the ones obtained in SS1 using 

Landsat 5 & 7. In conclusion, it was found that the BMVIs have potential capacity for detection 
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of vegetation affected by oil spills, not only are several factors found to exert a significant 

influence on the detection of oil spill impact on vegetation pollution using BMVIs, but also this 

method has the potential for replication in other over an oil-polluted environment.   
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1.0 Historical evolution of petroleum industry 

The United States Department of Labour, in its Oil and Gas Well Drilling and Servicing 

eTool, defined petroleum as “a substance occurring naturally in the earth in solid, liquid, 

or gaseous state and composed mainly of mixtures of chemical compounds of carbon and 

hydrogen, with or without other non-metallic elements such as sulphur, oxygen, and 

nitrogen”. In Schlumberger’s Oil Field Glossary it is defined as “a complex mixture of 

naturally occurring hydrocarbon compounds found in rock. Petroleum can range from 

solid to gas, but the term is generally used to refer to liquid crude oil. Impurities such as 

sulphur, oxygen and nitrogen are common in petroleum. There is considerable variation 

in colour, gravity, odour, sulphur content and viscosity in petroleum from different areas”. 

Petroleum in an unrefined state has been utilized by humans for over 5000 years. In fact, 

oil in some form has been used since early human history to keep fires ablaze, and also 

for warfare. Its importance in the world economy evolved slowly, though whale oil was 

used for lighting into the 19th century, and wood and coal used for heating and cooking 

well into the 20th century. The industrial revolution generated an increasing need for 

energy which was fielded mainly by coal, with other sources including whale oil. 

However, it was discovered that kerosene could be extracted from crude oil and used as 

light and heating fuel. Petroleum was in great demand, and by the 20th century had 

become the most valuable commodity traded on the world market. With regards to the 

modern history of the petroleum industry, Imperial Russia produced 3500 metric tonnes 

of oil in Baku in 1825 and doubled its output by mid-century (Krylov et al., 1998). After 

oil drilling began in what is now Azerbaijan in 1848, two large pipelines were built in the 

Russian empire; the 833km long pipeline to transport oil from the Caspian to the Black 

Sea Port of Batumi (Baku-Batumi pipeline), completed in 1906, and the 162km long 

pipeline to carry oil from Chechnya to the Caspian. At the turn of the 20th century, 

Russia’s oil output from the Absheron Peninsula accounted for half of the world’s 

production and dominated international markets (Akners, 2004). According to Hardt et 

al., (1995) nearly 200 small refineries operated in the suburbs of Baku by 1884. As a side 

effect of these early developments, the Absheron Peninsula emerged as the world’s first 

example of oil pollution and environmental negligence (Saiko, 2001).  
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In Canada, oil extraction began in 1858 in Oil Springs Ontario. In the USA oil drilling 

began in 1859 (Gordon, 2007), when it was successfully drilled in Titusville, 

Pennsylvania. By the 1920s, oil fields had been established in many countries including 

Canada, Poland, Sweden, the Ukraine, the United States, Peru and Venezuela.  In the first 

quarter of the 20th century, the United States overtook Russia as the world’s largest oil 

producer. In Nigeria, oil was discovered in 1956 (Falola and Heaton, 2008) in the Niger 

Delta region. Exploration of crude oil began in 1958 by the Shell British Petroleum (now 

Royal Dutch Shell) in a village called Oloibiri in the Niger Delta, Southern Nigeria. 

According to the CIA (2011), oil accounts for a large percentage of the world’s energy 

consumption ranging from a low of 32% for Europe and Asia, up to a high of 53% for the 

Middle East, South and Central America 44%, Africa 41% and North America 40%. Also, 

a report by the European Energy Review in Sweden 2010, showed that the use of oil 

doubled in China between 2000-2009 and in 2009 the consumption of oil in the European 

Union (EU) was 1.6 times and North America 2.5 times  that of China. Meanwhile, in 

2009 the world usage of gas was 131% compared to the year 2000. This shows that 66% 

of the growth was outside the EU, North America, Latin America and Russia, the Middle 

East, Asia and Africa. In the same report, the gas supply from 2000-2009 also increased 

in the EU (8.6%) and North America (16.0%).  In the BP  Statistical Report of World 

Energy Report (2011), the world oil consumption rose from 84,714,000 barrels per day 

(bpd) in 2009 to 87,382,000 bpd in 2010 (3.1%) while production stood at 82,278,000 

bpd in 2009 against 82,095,000 bpd in 2010 (2.2%), which did not match the rapid growth 

in consumption during the same period. Statistically, consumption in 1965 was 

30,783,000 bpd less than the production which was slightly higher at 31,806,000 bpd. 

Inversely, consumption in 2010 was higher at 87,382,000 bpd than production at 

82,095,000 bpd (BP, 2011).  This shows consistent increase in both oil consumption and 

production between 1965 - 2010. From these statistics, it is assumed that these increases 

will also increase the development of more production chains and facilities, especially 

expansion in pipeline infrastructural network. At the same time, this will add pressure on 

the natural and human environment, where environmental regulations and standards are 

not adhered to.  
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Oil has become a vital commodity for government as a source of revenue and national 

economic growth (Bridge, 2008). It also serves as a source of energy for the maintenance 

of industrial civilization which has become a critical concern for many countries (Smil, 

2010). Globally, energy consumption in almost all regions of the world has increased 

from 1965-2010,  as has crude oil production (IEA, 2011, BP, 2011). The increase in both 

the oil production and demand has also contributed to the increasing world carbon dioxide 

(CO2) emissions (IEA, 2011). Also, the increasing production and demand for this 

commodity has necessitated an increase in transportation from the producing or supplier 

regions to demanding or consumer regions. Improvements in methods and better 

techniques in pipeline construction and utilization after World War II have revolutionized 

the pipeline industry, especially in the parts of the advanced world where crude oil 

production has been increasing (Smil, 2010). 

1.1.1 Evolution of petroleum industry in Nigeria 

In 1908, the Nigeria Bitumen Company and British Colonial Petroleum were set up to 

search for oil in Nigeria, but the outbreak of World War I in 1914 halted the initiative. 

The search continued after World War I. In 1939 World War II disrupted the activities of 

the oil search until 1947. In 1951, the search was narrowed to an area covering 58,000 

square kilometres in the present Niger Delta of Nigeria. By January 1956 the first 

successful oil well was drilled at a village called Oloibiri. The petroleum industry in 

Nigeria is the most viable industry and main generator of Gross Domestic Product (GDP) 

in the country. Nigeria’s oil and gas exports account for more than 90% of export earnings 

and about 83% of Federal Government Revenue, as well as generating 40% of its GDP 

and 65% of government budgetary revenues. Nearly all of the country’s primary reserves 

are concentrated in and around the Delta of the Niger River, but offshore rigs are also 

prominent in the well-endowed coastal region of the country. Nigeria has a total of 159 

oil fields and 1481 wells in operation according to Nigeria’s Ministry of Petroleum 

Resources. As a result of these numerous oil fields, an extensive and well developed 

pipeline network has been engineered and constructed to transport the crude petroleum 

and related products. The amount of oil extracted from Nigeria expanded from 274,000 

bpd in 1965 to 2,402,000 million bpd in 2010 (BP, 2011). All petroleum production and 

exploration activity is taken under the auspices of joint ventures between foreign 

multinational corporations’ and the Nigerian Federal Government. Six companies are 

operating in Nigeria, namely Shell (UK & Netherlands) Petroleum Development 
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Company of Nigeria Limited (SPDC), Chevron (USA) Nigeria Limited (CNL), Mobil 

(USA) Producing Nigeria Unlimited (MPNU), Nigerian Agip (Italy) Oil Company 

Limited (NAOC) and Total (France) Petroleum Nigeria Limited (TPNL), who all operate 

as a joint venture with the Nigerian National Petroleum Corporation (NNPC). The Shell 

Petroleum Development Company of Nigeria Limited (SPDC) and Nigerian National 

Petroleum Corporation (NNPC) account for fifty percent of Nigeria’s total oil production 

from more than eighty oil fields, operating largely onshore on dry land or in the mangrove 

swamp of the Niger Delta. The company has more than 100 producing oil fields, and a 

network of more than 6,000 kilometres of pipelines flowing through 87 flow stations.   

1.1.2 Petroleum extraction and pipeline transportation 

Pipeline transport is the transportation of materials through a pipe, commonly liquids and 

gases.  Any chemically stable substance can be sent through a pipeline. There are sewage, 

slurry, water, and even beer pipelines, but arguably the most valuable are those 

transporting fuels; oil, natural gas and biofuels. Dmitri Mendeleev first suggested using a 

pipe for transporting petroleum in 1863, though there is no clear evidence on who first 

suggested the use of pipes as a transportation medium. Oil pipelines are generally the 

most economical way to transport large quantities of oil, refined oil products or natural 

gas over land, compared to shipping by railroad and tankers. Pipeline operations under 

the sea are economically and technically challenging. Oil pipelines are made from steel 

or plastic tubes with inner diameters typically from 100 to 1200 mm. Most pipelines are 

buried at a typical depth of about 0.91 to 1.8 m and the rate of flow is from 1 to 6m per 

second. When a pipeline is built, the construction project not only covers the civil work 

to lay the pipeline and build the pump stations, it also covers all the work related to the 

installation of the field devices that will support remote operation. 

The distribution of pipelines worldwide shows that the United States has the largest 

network with about 793,285km of pipeline, while the least is 20km in Liechtenstein. 

Nigeria is ranked 26th in the world with 11,647 km as of 2007 (Xu and Ratha, 2008). The 

construction of these pipelines and extraction of oil plays an important role and is 

responsible for the deforestation, degradation and destruction of land and ecosystems 

across the globe. According to the Organisation of the Petroleum Exporting Countries 

(OPEC, 2011) ,Nigeria has approximately 9,793 kilometres including gas, crude and 

products pipelines. This figure falls short of an earlier CIA report in 2008 which shows 
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that there is about 11, 647 kilometres. There are no statistical figures to show trends in 

the network expansion at the time of presenting these figures, but figures on oil production 

and quantity of oil spills from 1976-2009 (NNPC, 2011) are shown in the table below; 

Table 1.1: Nigeria's Oil Production and Oil Spill from 1976-2009 

Oil Production and Quantity Spilled (Average Barrels/Day) 

 Production Spilled 

1976-1980 2,084,800 68,602 

1981-1985 1,369,800 37,199 

1986-1990 1,514,200 15,302 

1991-1995 1,883,400 52,345 

1996-2000 2,025,600 65,788 

2001-2005 2,309,000 85,143 

2006-2009 2,224,250 54,655 

                              Source: (NNPC, 2011)  

These processes in oil pipeline activities often result in the release of toxic products into 

local rivers. In the case of extraction, oil spills result from persistent pipeline leakages. In 

addition the construction of roads for accessing remote oil sites, opens up wild land to 

settlers and land developers. For example, Nigeria, Colombia, Peru, Ecuador and Bolivia, 

have substantial oil operations in rainforests. As such, oil extraction and transportation 

can be destructive to the natural environment. Spills from burst pipelines and toxic 

drilling by-products may be dumped directly into local channels and rivers (CIA, 2005). 

The multiplier effect of this environmental destruction will result in the deterioration of 

the environment through the depletion of resources such as air, water, vegetation and 

soils, the loss of ecosystems and extinction of wildlife. The adverse effects are the 

reduction of the capacity of the environment to meet social and ecological objectives and 

needs. As such, if the improper use of the natural environment where these oil operations 

are carried out is not curtailed or minimized, short term impacts like loss of water, soil 

quality and biomass will result.  
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1.1.3 The impact of the oil industry on the environment 

The Niger Delta is the major oil producing area in Nigeria comprising 70,000 square 

kilometres of wetlands formed primarily by organic matter deposits. It is home to about 

40 million people from different ethnic groups and the floodplain makes up 7.5% of 

Nigeria’s total landmass (923,768 square kilometres). It is the largest wetland in West 

Africa and maintains the third largest drainage in the African continent. The Delta’s 

environment can be broken down into four ecological zones; coastal barrier islands, 

mangrove swamp forests, freshwater swamps and lowland rainforests. The ecosystem 

supports an abundant flora and fauna, arable terrain that can sustain a wide variety of 

crops, economic trees, and species of freshwater fish. In 1983, the NNPC issued a report 

on the environmental degradation resulting from oil operations in the Niger Delta. On 

p11 it stated; 

 “We witnessed the slow poisoning of the waters of this country and the destruction of 

vegetation and agricultural land by oil spills which occur during petroleum operations. 

But since the inception of the oil industry in Nigeria, more than twenty-five years ago, 

there has been no concerned and effective effort on the part of the government, let alone 

the oil operators, to control environmental problems associated with the industry”.  

The NNPC Report in 1983 was supported by the UNEP, (2011) which reported that 

pollution from over 50 years of oil operations in the Ogoniland, Nigeria, has penetrated 

further and deeper than many may have supposed It is considered to be the world’s most 

wide ranging and long term oil clean up exercise and is estimated to take up to 30 years 

for environmental clean-up and restoration. During their study, The UNEP confirmed that 

lack of satellite images of the study area that show the environmental status of the sites 

before oil industry operations commenced in the Ogoniland in the 1950s, has been one of 

the shortcomings of the study. Thus, baseline comparison dating back to this period was 

not possible.  In the absence of 1950s and 1970s remote sensing data, the 1986 imagery 

was used by the UNEP and serves as baseline data for the Ogoniland environmental 

analysis. UNEP, (2011), reported that land cover between 1960 and 1985 was not 

available which means that the state of vegetation cover, water and soil could not be 

ascertained. 
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Figure 1.1: A Topology of Oil Pipeline and Facilities in the Niger Delta Nigeria                   Source: (NNPC/PetroleumEconomist, 2005) 
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Between these periods (1950 – 1986), oil operations were going on as well as oil spillages 

taking place. It could have been significant if the UNEP assessment was able to show the 

trend and rate of land cover change in the study area as well as provide valuable 

information about the status of land cover before and after oil operations. It is fair to 

conclude that in the absence of reliable baseline information on Ogoniland, the report was 

based on the observed situation compared with a presumed baseline condition. During 

the course of this study, access to topographic maps of the study area to determine the 

vegetation conditions before oil operations in the Nigeria was a great challenge. An 

attempt to obtain these maps from the Nigeria Surveyor General Office and Ordnance 

Survey London has been difficult and proved abortive.  

1.1.4 Monitoring the environmental effects of oil pipelines  

One of the critical global environmental problems is human and ecological exposure to 

hazardous wastes from agriculture, industrial, military and mining activities. These 

wastes often include heavy metals, hydrocarbons and other organic chemicals (Slonecker 

et al., 2010). According to the European Environmental Agency EEA (2007), about 

242,000 contaminated sites in European Economic Area (EEA) countries are in need of 

clean-up. The main source of contamination are municipal and industrial waste disposals, 

mining and military sites no longer in operation, and present and past industrial plants 

such as metallurgical, chemical, oil and wood industries (Agostini et al., 2007). The 

amount of waste has been predicted to increase by up to 50% by 2025. The EEA also 

reported in 2007 that primary pollutants identified heavy metals and mineral oil as the 

cause of soil contamination in 37.3% and 33.7% of cases respectively. The use of remote 

sensing for oil or hydrocarbon leaks monitoring dates back to the 1970s using aerial 

photographs or data (Casciello et al., 2007). In their studies, they concluded that 

ultraviolet (UV), TIR and microwave sensors have the potentials to detect oil, which has 

been supported by a number of studies reporting the use of remote sensing data and 

methodology for this purpose.  Furthermore, recent developments in geospatial sensors, 

data analysis and communication technologies present new opportunities. There are a 

number of commercial satellite images that are potentially applicable to pipeline 

transportation studies, including airborne and satellite radar, LIDAR and hyperspectral 

and multispectral sensors used to enhance monitoring of environmental changes caused 

by anthropogenic processes. The need for regular information on land cover conditions is 

important to policy makers and environmental observers. Satellites repeatedly and 
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simultaneously observe wide areas on the Earth’s surface and continually acquire spatial 

information of ground features and any environmental changes. Satellite sensors detect 

electro-magnetic radiation from features on the Earth’s surface over a wide range of 

spectrum within visible, invisible and infrared wavelengths and record this in digital 

format/images. Since satellite images are analysed or interpreted mostly by computer, this 

gives it the ability to acquire different information simultaneously rather than the manual 

visual method of interpretation.  

There are a number of studies that demonstrate the use of remote sensing for pipeline 

detection, vegetation stress from hazardous liquid leakage, quantification of 

pollution/stress level and monitoring after remediation (van der Werff et al., 2008). These 

have demonstrated the capability of remote sensing in detecting environmental stress 

resulting from oil leaks from pipelines, without direct contact or mounting monitoring 

devices on the pipelines. An increasingly common application of remotely sensed data is 

in change detection. Change detection is the process of identifying differences in the state 

of an object or phenomenon over different periods of time. Change detection is an 

important process in monitoring and managing natural resources and urban development 

(Singh and Lin, 2008). The process of discovering, characterizing and remediating 

polluted sites is typically a long and costly endeavour (Slonecker et al., 2010). In the 

hazardous waste remediation process, one of the key steps is site characterization; the 

determination of the spatial extent, concentrations and nature of the contamination. Site 

characterization traditionally require extensive field sampling and laboratory analysis 

(Slonecker et al., 2010). As a result of the expense and time involved in the traditional 

method of investigating environmental contamination or pollution, remote sensing is a 

new and the most efficient tool which is a time saving, cost effective, and non-destructive 

investigation method. . It is one technology that has been valuable in detection and clean-

up efforts that shows promise in providing alternative sampling methods. Timely and 

accurate monitoring of vegetation dynamics is essential for sustainable management and 

also to improve the effectiveness of vegetation monitoring. The linear trend analysis 

(LRA) method was used to compare degraded vegetation areas from two remotely sensed 

imageries of the same area (Zhang et al., 2011). The effective ‘real time’ imaging is used 

in responding to the spillage of hazardous materials. Such images are used to determine 

the extent and location of visible spillage and release, vegetation damage and threats to 

natural drainage and human welfare (Lillesand et al., 2008). On the other hand, historical 
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images are often used to conduct intensive site analysis of waste sites, augmenting these 

with current images when necessary. 

1.1.5 Understanding the pipeline right-of-way (ROW) 

According to Henry Campbell Black’s (1995) law dictionary, a ROW is a strip of land 

that is granted, through an easement or other mechanism, for transportation purposes such 

as foot rail, driveway, rail line or highway. A ROW is reserved for the purposes of 

maintenance or expansion of existing services within the ROW. In the case of easement, 

it may revert to its original owners if the facility is abandoned. In the United States, rail 

road ROW is considered private property by the respective rail road owners and by 

applicable state laws. In the United Kingdom, rail road companies reserved the right to 

assume land for a ROW by a private Act of Parliament.  Pipelines cross the landscape to 

deliver products over long distances as well as crossing channels, streams, highways and 

roads, farm fields, parks and may be close to homes, businesses or other community 

centres. The initial working space during pipeline construction may be temporarily wider 

but the permanent ROW width varies depending on the easements (in legal terms, this 

means the right held by one property owner to make use of the land of another for a 

limited purpose), the pipeline system, the presence of other nearby utilities and the land 

use along the ROW. Many ROW are 50 feet (15.24 m) wide, but may be wider or narrower 

in specific locations. These rights-of-way are kept clear to allow the pipeline to be 

operated safely, aerially surveyed and properly maintained. According to the Canadian 

National Energy Board (NEB, 2006) pipeline companies are responsible for maintaining 

their ROW to protect the public and environment. The strip of land for the ROW is usually 

between 5.0 m and 46.0 m wide containing the pipeline. In Nigeria, it is 30 m wide. Figure 

1 below is a typical model of a pipeline right-of-way: 

According to a (Breagh, 2010) Project Breagh report , a temporary site is required to 

support the construction and installation of the pipeline which comprise purpose-made 

temporary accommodation units to provide office, facilities, a workshop, storage and 

welfare facilities. After a pipeline is constructed, the right-of-way and temporary work 

areas (see Figure 1) of the pipeline are restored to a condition similar to the surrounding 

environment and consistent with the current land use (NEB, 2006). After a pipeline is 

constructed this area is maintained as a permanent ROW to allow for future maintenance, 

operational safety, aerial surveys of the pipelines and equipment. This area is contained 
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work side during construction and buried pipelines within the area at a specified distance 

are permitted by the regulatory agency or easements.  

 

Figure 1.2: A Typical model of ROW                   Source: (NEB, 2006) Modified (2015) 

Open-cut crossings of tracks and roads, the pipeline trench is excavated to allow the pipe 

to be lowered into the trench and is usually completed in a single day (Breagh, 2010). 

1.1.6 Pipeline routes and potential impacts on ecological systems 

Oil pipeline planning and development considers a number of factors during route 

selection, construction, operational and decommissioning phases of the project. Since the 

impact at every phase varies, the initial planning at these phases will minimise potential 

impacts on the natural and human environment. This section will discuss environmental 

impacts associated with oil pipeline projects, from route selection to decommissioning 

phase. Generally, oil pipelines can have different environmental impacts depending on 

the type and size of the pipeline, causing damage to natural, 

physical and ecologicalresources and to human life. There is a need to incorporate envir

onmental considerations from conceptual planning to various stages in the lifecycle of oil 

pipeline projects. The pipelines are constructed both onshore and offshore which have a 

varying degree of environmental impacts (Cáceres et al., 2007). This section focuses on 
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onshore pipeline route selection, construction, operation and decommissioning impacts 

on the natural and human environment. There is, however, a paucity of scientific research 

on the monitoring of ROW, thus, materials used in the discussion are general literature 

on environmental impact issues related to oil pipeline corridors. The table below 

highlights general environmental impacts of oil pipelines on various environmental 

elements from route selection to the decommissioning phase of the pipeline project. It 

also highlights both ecological and human/socio-economic impacts of the pipeline 

project, though some are supported with various studies while others were not due to 

weak literature in that area. The aim and emphasis of this study is to use remote sensing 

techniques for detecting the impacts of pollution from oil pipelines on these ecological 

systems in the study area highlighted in table 2. 

Pressure Testing under Section 7 of the Canadian National Energy Board, before putting 

a pipeline into service, a company shall develop a program in respect of pressure tests to 

be conducted for pipe and components used in its pipeline and shall submit it to the Board 

when required to do so (NEB, 2006). At this phase there are impacts which might be on 

various scales ranging from small leaks to major leaks or spills which are immediate and 

catastrophic to the environment when compared to the construction phase. When oil spills 

occur, it degrades air quality due to emissions and leads to loss of vegetation and soil 

productivity (Obire and Nwaubeta, 2002). Operations can cause noise pollution to 

humans and wildlife especially seismic surveys, drilling, pumping and processing oil 

facilities and contamination of ground water aquifers (UNEP, 2011). Land surfaces are 

also affected by these activities. In addition, waste generated at the pump and transfer 

stations are major potential contaminants to soil surface and groundwater. In the case of 

ruptures and oil leaks from pipelines, depending on the type and size, they may result in 

significant environmental damage. In this work the right-of-way width distance of 100 m 

may be used instead of the 30 m wide Nigerian standard. This is to allow identification 

of the impact of the oil pipeline beyond the 30 m wide ROW when considering the pixel 

resolution of the satellite for the study. The Canadian National Energy Board (NEB, 2006) 

reported that on the 8 and 28 November 2006, there were incidences of hydrocarbon spills 

of 100 cubic meters and 80 cubic meters respectively within the same oil pipeline right-

of-way, resulting from technical failure. They also reported that a landowner identified a 

leak in August 2006 that stained a patch of soil in his pasture and also affected the soil 

and groundwater confined within the right-of-way. 



14 

 

Oil facilities, including pipelines, are decommissioned if they are no longer in operation. 

In the Department of Petroleum Resources DPR-Nigeria regulations handbook 

(Environmental Guidelines and Standards for the Petroleum Industry in Nigeria – 

EGASPIN [https://dpr.gov.ng/index/egaspin/]), there are a number of factors to be 

considered before a project facility is decommissioned. These include economic, 

ecological, health, fire and safety hazard, socio-cultural and technological impact on 

water, land, air and allied resources that could be a threat to public health. These factors 

determine the decommissioning of a project if it becomes necessary, but there are other 

environmental measures to be taken into account, which include; removal of 

contaminated soils and bottom sediments from contaminated streams and rivers, that 

waste removed should be deposited in an environmentally sound manner, and that 

uncontaminated soil from a clean unpolluted land is used to replace contaminated soil 

removed, while the recovery of the soil is achieved through planting of rapidly growing 

crop varieties, monitored for oil and hazardous substances through laboratory analysis 

(UNEP, 2007). Surface water rehabilitation involves restoration of fish into the water 

bodies and can be monitored through chemical and biological laboratory studies (UNEP, 

2011b). It is also necessary and appropriate to make remediation plans in order to consider 

both positive and negative environmental impacts of the plans during the 

decommissioning of any project. It has been reported by EEA (2007) that European 

countries spent millions of Euros every year for cleaning up hydrocarbon contamination 

while Sweet et al., 2006 reported that in the US about 2 billion Dollars are needed for 

remediating polluted sites. Most of these are preliminary investigations which were 

carried out through traditional methods that are time consuming, expensive and 

destructive during the taking of soil, vegetation and water samples as well as drilling and 

geotechnical analysis (van der Werff et al., 2007). Wasted time, cost and destruction could 

have been spared using remote sensing methods to investigate hydrocarbon contaminated 

or polluted sites (van der Werff et al., 2008). The impact at this phase is highly dependent 

on how the first three stages contained the risks associated with the pipeline project. 

Table 1.2 summarises the inherent impact from oil pipelines on various environmental 

elements (water, soil and vegetation) and some of the traditional methods used for 

monitoring this pollution. There are advantages and disadvantages of both the traditional 

and remote sensing method of monitoring hydrocarbon pollution in a polluted 

environment. Traditionally, monitoring oil pollution in such an environment will provide 
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detailed and accurate laboratory analysis of the affected environmental variables. But it 

is limited in coverage of the area affected, time consuming and costly, since it involved 

labour for field sample collection. It is also destructive to the environment since it entails 

clearing path ways for navigating within the affected areas to access the spill sites, as well 

as taking samples from the affected environmental variables. One other disadvantage of 

this method is the temporary lack of monitoring and analysis of these polluted sites. Oil 

pipelines cover large distances and it may not be possible to cover this distance when it 

must be done by foot patrol or flown aircraft (Van Persie et al., 2004). On the other hand, 

remote sensing (which simply means accessing information on an object without coming 

into contact with it), whilst not as detailed and accurate compared to ground or field 

laboratory analysis, is reliable, saves time and is cost effective. It has the advantage of 

covering kilometres of oil pipelines and can access information on environmental 

variables affected by pollution through their spectral characteristics. Where the oil spill 

sites are in remote areas and difficult to access, remote sensing can be used as the viable 

option. Many studies have demonstrated the application of remote sensing data and 

techniques in addressing environmental problems relating to oil pollution.  

The use of remote sensing for oil or hydrocarbon pollution monitoring dates back to the 

1970s using aerial photographs or data, (Casciello et al., 2007). Infrared sensors such as 

ultraviolet (UV), TIR and microwave sensors (Brekke and Solberg, 2005, Zhao and Li, 

2007) have the potential to detect oil spill and this has been supported by a number of 

studies reporting the use of remote sensing data and methodologies for this purpose. 

Recent developments in geospatial sensors, data analysis and communication 

technologies present new opportunities. Studies have shown that hyperspectral sensors 

e.g. Airborne Visible/Infrared Imaging Spectrometer (AVARIS) and Airborne Imaging 

Spectrometer for Application (AISA) have the capability to detect oil spills (Jha et al., 

2008, Landgrebe, 2005). Active sensors such as Radar operates in a radio wavelength 

which can detect the presence of oil in offshore areas (maritime shores) through the 

reduction of ocean reflectance (Brown and Fingas, 2003). Microwave sensors have been 

studied on how to detect oil spill and their thickness (Jha et al., 2008) and Laser-acoustic 

oil thickness sensors have been used for detecting oil mechanical properties instead of its 

optical and electromagnetic properties (Goodman, 1994). The onshore oil pollution 

monitoring in forest areas with these sensors has been limited due to its lack of availability 

and cost in countries like Nigeria, thus, it is worth considering available, free and 
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assessable data such as Landsat data. The Landsat data compared to sensors previously 

discussed are readily available globally, free and accessible. The sensor can repeatedly 

and simultaneously observe wide areas on the Earth’s surface and continually acquires 

spatial information of ground features and any environmental changes. The sensors can 

also detect electro-magnetic radiation from features on the Earth’s surface over a wide 

range of spectrum within visible, invisible and infrared wavelengths and record this in 

digital format/images. In other parts of the world, successful examples of using remote 

sensing techniques have been reported to be effective in detecting and monitoring 

vegetation affected by oil pollution on the ground (Hörig et al., 2001). In Nigeria, there 

were recent attempts, for example (Anejionu et al., 2015, Anejionu et al., 2014), to 

develop a technique for detecting and estimating gas flaring using MODIS and Landsat 

data in the Niger Delta. However, little or no research has been done on the monitoring 

of oil impact on vegetation from satellite data (e.g. Landsat data) and reliable methods to 

extract vegetation change/stress due to oil pollution. Thus the study used spectral 

vegetation indices (broadband multispectral vegetation indices - BMVIs) derived from 

optical data (Landsat data) to detect changes in vegetation physiological status resulting 

from oil pollution in the Niger Delta mangrove forest. 
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Table 1.2: Environmental impact and monitoring methods of hydrocarbons from pipeline operation 

 

S. No 

 

 

Environmental 

Elements 

 

 

Operational Impact 

 

Hydrocarbon Monitoring Methods 

 

Remote Sensing 

 

Field/Ground 

Investigation 

 

 

1 

 

 

 

 

Water 

 

 

 

 

a) Contamination of surface and 

groundwater due to hydrocarbon 

leaks 

 

b) Where there is large volume of 

leakage may cause oil slick on 

water surface 

 

Through remotely sensed data water anomaly 

can be detected using spectral reflectance. 

Though, the optical remote sensing literatures on 

this are found to be weak compare to soil and 

vegetation. 

 

Field investigation and 

laboratory analysis of the 

water sample (Nduka and 

Orisakwe, 2011) 

 

 

 

 

2 

 

 

 

 

 

 

 

Soil 

 

 

 

 

c) Loss of soil productivity due to 

contamination from hydrocarbon 

leaks 

d) Changes in soil PH and causes 

toxicity to microorganism in soil 

due to hydrocarbon concentration 

 

 

Soil PH/anomaly can be detected through 

spectral reflectance  (Schumacher, 1996, Yang 

et al., 2000, Xu et al., 2008) 

 

Field investigation and 

laboratory analysis of the  

soil sample (Osuji and 

Opiah, 2007) 

 

 

 

3 

 

 

 

 

Vegetation 

 

e) Concentration of hydrocarbons may 

affect vegetation health and vigour 

due to leakage (van der Meer et al., 

2002, van der Werff et al., 2007, 

van der Meijde et al., 2009) 

 

Vegetation health/anomaly can be detected using 

remote sensing techniques (Spectral 

characteristics) (Smith et al., 2005, van der Meer 

et al., 2000, Noomen et al., 2012, van der Meijde 

et al., 2009) 

 

 

Field investigation and 

laboratory analysis of the 

vegetation sample 

(UNEP, 2011b). 
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1.3 Thesis Structure  

The thesis comprises seven (7) chapters: 

Chapter 1: This chapter provided a background that lead to the entire research, the 

rationale and objectives of the study. The evolution, extraction and transportation of 

petroleum were discussed. The chapter also discussed the impact of the petroleum 

industry specifically that of the oil spills arising from the pipeline transportation of these 

products on the natural environment. The historical evolution of the petroleum in Nigeria 

was also highlighted. The aims and objectives were developed based on the problems 

identified for detection and monitoring of oil pollution impacts on vegetation. 

Chapter 2: This chapter discussed the concepts and literature relating to the use of remote 

sensing techniques for monitoring hydrocarbon contaminated sites. The concepts of 

remote sensing and spectral signatures were reviewed relating to oil polluted 

environments and methods adopted in detecting oil spill impacts resulting from pipelines. 

The chapter also assessed related studies that used vegetation spectral reflectance or 

indices for the detection of oil pollution impacts on vegetation. Twenty broadband 

multispectral vegetation indices were examined and reviewed as the main techniques 

employed for the study.  

Chapter 3: The chapter provides details on methods used in addressing the main 

objectives and research questions developed in section 1.2. The description of the study 

area was necessary in order to understand the nature of the environment which will help 

in choosing data and method for addressing the research questions/objectives. The 

satellite and field data sampling, processing and analysis used in the thesis were fully 

described. The chapter also described how the Landsat data were pre-processed and how 

vegetation indices from the polluted and non-polluted sites were extracted for spatial and 

change detection analysis. 

Chapter 4: The chapter investigated and analysed the capacity of the vegetation indices 

used for the detection of oil pollution impacts on vegetation. The vegetation indices 

obtained at the polluted and non-polluted sites were statistically analysed. Also, statistical 

temporal (before and after spill) analysis of these polluted sites were compared with the 

ones from the non-polluted sites. This chapter has shown that some vegetation indices 
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performed better and were capable of detection of oil pollution impact on vegetation in 

polluted areas, while others did poorly. 

Chapter 5: The chapter focused on methods used in the investigation and determined 

factors influencing the detectability of oil pollution in vegetated areas which were not 

addressed in Chapter 4. The chapter used regression analysis to determine the 

relationships between the volume of oil spill, time gap between oil spill and image date, 

and spatial distance with vegetation indices. The chapter aimed at identifying factors 

influencing the detectability of oil pollution impacts on vegetation in an oil polluted 

environment using these vegetation indices. 

Chapter 6: The chapter assessed the validity of the technique used and results obtained 

in order to test the transferability of the method used in chapter 4. The results have shown 

that results obtained in the two study sites were similar, but with small variations which 

could be due to local environmental and sensor characteristics. 

Chapter 7: This chapter summarised results from the individual result chapters which 

were synthesised. Conclusions were derived from the results chapters on the potential and 

capabilities of BMVIs for detection and monitoring of oil pollution impacts on vegetation 

derived from multispectral Landsat data. Factors influencing the detection of oil pollution 

impact on vegetation using vegetation indices are critical areas and some of the challenges 

and implications relating to future studies. 
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Chapter 2 : Literature review 
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2.0 Introduction 

This chapter reviews literature on remote sensing concepts and techniques relating to 

remote sensing of vegetation and hydrocarbon monitoring. Methods for detection and 

monitoring of oil contaminated sites with particular emphasis on the use of vegetation 

spectral techniques from the remotely sensed data are discussed. The aim of this review 

is to identify current research gaps and use them in addressing the research questions and 

objectives stated in chapter 1. The research focuses on the Niger Delta region, dominated 

by tropical mangrove forest, where oil exploration activities are carried out. The region’s 

mangrove forest (described in section 2.9) has been affected through anthropogenic 

induced changes from oil spills and pollution. 

2.1 Hydrocarbon impact on vegetation   

Vegetation health and vigour can be affected by hydrocarbons (van der Meijde et al., 

2009) through spillage onto roots, stems, leaves and soil (UNEP, 2011). Hydrocarbons 

can reach vegetation when dissolved in the groundwater in the root zone and sometimes 

via the air surrounding it. The uptake through roots and direct contact between soil and 

plants’ tissues are also a medium in which organic contaminants enter plants (Lin et al., 

2002). The effects may depend on the type and quantity of chemicals involved and the 

vegetation type. Different vegetation has varying sensitivity to hydrocarbons (UNEP, 

2011). Vegetation can be affected by hydrocarbon-oxidation bacteria resulting from 

hydrocarbon leakages, causing reduction in soil oxygen concentration and at the same 

time increasing the concentration of carbon dioxide (CO2) and organic acids (Yang et al., 

2000) . As a result of these changes plants are affected by lack of solubility of trace 

elements due to the changes in soil pH (i.e a measure of the acidity or basicity in soils) 

and Eh (i.e. soil reduction/oxidation potentials) (Schumacher, 1996). The changes can 

also affect the root structure of the plants or vegetation, which later affects the plants’ 

overall vigour and thus spectral reflectance (Feder and Penfield, 1985). Vegetation 

anomalies can be assessed using remote sensing through morphological changes in plants 

induced by deficiencies in available soil nutrients (Brooks et al., 1996). Crawford (1987), 

reported that poor health of vegetation could be as a result of the presence of methane in 

the root zone, resulting in seepage-induced geochemical changes in soil and groundwater. 

In another study carried out in the San Francisco basin in central Brazil, where spectral 

data were collected over anomalous and non-anomalous vegetation sites, the 
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corresponding bands showed higher reflectance values in chlorophyll absorption bands 

for the sites under hydrocarbon influence compared to sites outside the anomalies. Thus 

the study suggested that the presence of hydrocarbons seems to produce a change in the 

internal structure of the plant, which results in low reflectance values, and gas affected 

areas may also be responsible for low vegetation density in the area (Oliveira et al., 1997). 

Smith et al. (2004) indicated that vegetation growing near leaking gas pipelines revealed 

changes in the geobotany (which is the relationship between specific plant species and 

the substrata from which they receive their nourishment) and reflectance, and a strong 

relation between plant vitality and gas can be assessed using spectral indicators (van der 

Meer et al., 2000).  

The normal spectral signature of healthy vegetation is controlled by chlorophyll in the 

visible (VIS) part of the electromagnetic spectrum (EMS) (at 430nm and 660nm, and 

450nm and 640nm for chlorophyll a and b respectively), by cell wall structure in near-

infrared (NIR) and by water content in shortwave infrared (SWIR) regions (Jensen, 2014). 

Noomen (2007) studied the effect of natural gas, methane and ethane for two different 

species of plants using controlled laboratory and field conditions. The study found, after 

testing several existing vegetation indices that reduced band depths in the water (1370nm 

– 1570nm and 1870 nm – 2170nm) and chlorophyll (550 nm – 750nm) absorption features 

correlates to an increase in the Photochemical Reflectance Index (PRI). The outcome 

proposed that hydrocarbon gases could be responsible for the decrease in photosynthetic 

activity of the plants (Noomen, 2007). Vegetation stress indices such as the Carter Stress 

Indices (Carter, 1994) and Red Edge Position Index (Baret and Guyot, 1991) were applied 

and tested by (van der Meijde et al., 2009) in order to detect vegetation anomalies around 

leaking pipelines. The results showed a lower vegetation index above the pipeline than 

further away indicating leakage had caused stress for the aboveground vegetation. These 

laboratory results were advanced using airborne imagery by  (van der Werff et al., 2008), 

whose novel automated image processing technique applied both spectral information of 

stressed vegetation and knowledge of pipeline route or location in order to detect 

hydrocarbons over large areas. The results of the study were obtained without validation 

data though; the polluted sites were identified in different land cover areas using an 

automated procedure that has been challenged in (Wulder et al., 2007). This study will 

focus on the long term effect of hydrocarbon leaks, since bacterial oxygen depletion is 

likely to take place and effects of high gas concentration may be noticeable on 
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environmental elements (soil and vegetation) (Noomen et al., 2008). This is in contrast to 

the short term, where the effect of bacterial oxygen depletion resulting from hydrocarbon 

leaks might not be noticed. The study of the long term effect of hydrocarbons is suitable 

for the area under investigation, because most of the pollution from leaks is noticed after 

at least several weeks and sometimes after up to a year, and in most cases is reported by 

the local people and the patrol teams when it has become visible or impacted on the site. 

In addition to this, it is suitable in areas where environmental monitoring regulations are 

weak and accessibility to areas of oil pipeline routes are difficult e.g. in developing 

countries like Nigeria. 

2.2 Effects of bidirectional reflectional distribution function (BRDF) 

Surface reflectance, or albedo, is important in many geophysical applications, and is the 

proportion of the incident light or radiation that is reflected by a surface (Henderson-

Sellers et al., 1993). Most retrieval algorithms emphasise only the removal of atmospheric 

attenuation due to molecular and gaseous aerosol scattering and absorption (Trischenko 

et al., 2000). Surface reflective properties can be retrieved from satellite observations and 

the targets may be viewed from different directions leading to diversity of surface 

properties (Li et al., 1996). BRDF can simply be described as how light is reflected when 

it make contacts with surface materials (Lubin and Massom, 2006, Wynn, 2000). BDRF 

is determined by the incoming light direction and outgoing direction in return that forms 

a ratio of reflected lights along the part of incidents on the surface from direction 

(Schaepman-Strub et al., 2006). BRDF properties can determine and correct the 

differences in surface properties recorded in an image by a satellite sensor, to produce a 

better final product (Trischenko et al., 2000). When light interacts with the surface, 

different wavelengths (colours) of light may be absorbed, reflected and transmitted to 

varying degrees, depending on the physical properties of the material itself. This also 

means that BRDF is a function of wavelength and therefore its properties (i.e. positional 

variance) can be noticed or observed in material (Wynn, 2000). 

 

The knowledge of energy interactions with different surfaces helps us in interpreting the 

remotely sensed image. A given feature will have different reflection properties in 

different wavelengths of the energy spectrum. Therefore, a combination of information 

obtained in multispectral regions help in better interpreting an image. Energy interacts 
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with the Earth’s surface, especially with the three major features of vegetation, soil and 

water.  Evans et al. (1999), reported that each spectral signature is unique to the object or 

an object class and is based on the target’s surface structure and molecular composition 

and on the incident radiation. For example when electromagnetic energy is incident on 

any given earth surface feature, three fundamental energy interactions with the features 

are possible. Various fractions of the energy incident on the element are reflected, 

absorbed, and or transmitted, applying the principles of conversion of energy; 

Ei (λ) =Eg (λ) +Ea (λ) +ET (λ) Eq. 1 

Where  Ei = incident energy,  Eg = reflected energy, Ea = absorbed energy, 

ET = transmitted energy, λ = function of wavelength 

Reflectance characteristics of earth surface features are quantified by measuring the 

portion of the incident energy that is reflected. 

Spectral reflectance = Energy of wavelength (l) reflected/ Energy of wavelength (l) 

incident x 100. 

 

Figure 2.1: General reflectance spectra of some earth surface materials    Source: Purkis 

and Klemas (2011) 

Two points about the above given relationship (expressed in the form of an equation) 

should be noted. The proportions of energy reflected, absorbed, and transmitted will vary 

for different earth features, depending upon their material type and conditions. These 
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differences permit us to distinguish different features on an image. The wavelength 

dependency means that, even within a given feature type, the proportion of reflected, 

absorbed, and transmitted energy will vary at different wavelengths.   

2.3 Remote sensing and concept of spectral signatures 

Remote sensing is the acquisition of information about an object or phenomenon without 

making physical contact with the object. Today, the term generally refers to the use of 

aerial sensor techniques to detect and classify objects on the Earth by means of propagated 

signals (electromagnetic radiation emitted from aircraft or satellites (Schowengerdt, 

2007). In another definition (Lillesand et al., 2008), remote sensing is the science of 

obtaining information about an object, area or phenomenon through the analysis of data 

acquired by a device that is not in contact with the object, area or phenomenon under 

investigation. The process involves making observations using sensors mounted on 

platforms which are at varying heights from the Earth’s surface and recording the 

observation on a suitable medium. There are two main types of remote sensing, passive 

remote sensing and active remote sensing (Liu and Mason, 2009). Passive remote sensors 

detect natural radiation that is emitted or reflected by the object or the surrounding area 

being observed (reflected sunlight, film photography, infrared, radiometers). Active 

sensors emit energy in order to scan objects and areas whereupon a sensor then detects 

and measures radiation that is reflected or backscattered from the target. Examples 

include Radio Detection and Ranging (RADAR) and Light Detection and Ranging 

(LIDAR), where time delay between emission and return is also measured, which 

establishes the location, height, speed and direction of an object. Remote sensing works 

by converting observed measurements into information about physical objects or systems 

that we are interested in. It can be used to collect data over dangerous and inaccessible 

areas such as thick forest and glacial areas in Arctic and Antarctic regions.  

Remote sensing is an essential tool for long term documentation of oil pipeline induced 

vegetation cover change that has important implications for efficient remediation, 

restoration and recovery planning (Li et al., 2005). Comparing  traditional multispectral 

and hyperspectral remote sensing is potentially the best approach to assess oil-induced 

environmental problems in inaccessible areas, sites with potentially hazardous 

contamination, and sites where information about the spatial context of such conditions 

is critical to understanding the location, distribution, or spread of adverse conditions. 
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Remote sensing images provide sufficient spectral resolution to describe diagnostic 

absorption signatures (band position, depth, width and symmetry) and allow for 

differentiation between vegetation species, and the separation of vegetation from different 

types of soil minerals. The differentiation of vegetation species from background soils is 

crucial in the assessment of vegetation stress in arid and semi-arid regions where 

vegetation is sparsely distributed. Successful examples of using remote sensing 

techniques have been reported to be efficient in detecting hydrocarbons on the ground 

surface (Hörig et al., 2001). In Nigeria, however, little or no research has been done on 

long term monitoring of oil induced vegetation cover change because of a lack of a 

satellite data time series and reliable methods to extract change/stress information for 

remotely sensed data analysis; this was also acknowledged in a report by the United 

Nations Environment Program (UNEP) on the Environmental Assessment of Ogoniland, 

Nigeria (UNEP, 2011). 

2.4 Reflectance characteristics of vegetation  

Vegetation has a unique spectral signature which enables it to be distinguished readily 

from other types of land cover in an optical/near-infrared image. The reflectance is low 

in both the blue and red regions of the spectrum (Sims, 2002) because of the absorption 

of chlorophyll for photosynthesis. It has a peak at the green region. However, in the near 

infrared region (NIR- is an electromagnetic radiation with longer wavelengths than those 

of visible light, extending from the nominal red edge of the visible spectrum at 740 nm 

to 1300 nm), the reflectance here is much higher than that in the visible band due to the 

cellular structure in the leaves (Purkis and Klemas, 2011, Mather and Koch, 2011). 

Therefore, vegetation can be identified by high NIR but generally low visible reflectance. 

The spectral characteristics of vegetation can be detected in three major electromagnetic 

spectrum (EMS) regions; EMS describes the full range of frequencies, from radio waves 

to gamma rays that characterise light. Figure 2.2 below is a spectral response 

characteristic of green vegetation. Chlorophyll contained in a leaf has strong absorption 

at 450 nm and 670 nm and high reflectance in the NIR (700-1200 nm). In the SIR, 

vegetation displays three absorption features that can be related directly to the absorption 

spectrum of water (blue line) contained within the leaf. 



27 

 

 

Figure 2.2: Dominant factors causing leaf reflectance Source:  Purkis and Klemas 2011 

Figure 2.2 illustrates the dominant factors that cause changes in the leaf reflectance in 

respective spectral wavelength. For leaf reflectance in the visible bands (blue, green and 

red), leaf pigments are the dominant factors, in NIR, the cell structure of the leaf is the 

main factor, and in SWIR bands it is water content. The below text summarises 

characteristics of and response in respective wavelengths (between 400 – 2500nm) on 

vegetation health. 

Visible region (400-700nm) – low reflectance, high absorption, and minimum 

transmittance 

NIR region (700-1350nm) – high reflectance and transmittance, very low absorption 

MIR (1350-2500nm) – as wavelength increases, both reflectance and transmittance 

generally decrease from medium to low while absorption increases from low to high  

There are a number of studies that show the capabilities of remote sensing or 

hyperspectral remote sensing in monitoring the health condition of plants or leaves in 

relation to their environment. Jensen (2014) and (Purkis and Klemas, 2011) demonstrate 

that remote sensing systems can provide valuable spectral information to measure the 

functional health of vegetation. The studies further confirmed that remote sensing is now 

a viable alternative to predict or monitor vegetation’s biophysical and biochemical 

characteristics. The spectral reflectance of curves for healthy green vegetation almost 

always manifests itself at the peak-and-valley. The valleys in the visible portion of the 
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spectrum are dictated by the pigments in plant leaves. For example, chlorophyll strongly 

absorbs energy in the wave length bands centered at about 450 and 650nm, so that when 

the amount of chlorophyll decreases it means the plant is subject to some form of stress 

(Sims, 2002). As a result of less chlorophyll absorption in the blue and red bands, often 

the red reflectance increases to the point that we see the plant turn yellow. In the infrared 

portion of the spectrum at about 700nm, the reflectance of healthy vegetation increases 

dramatically. In the range from about 700 to 1300nm, a plant leaf reflects about 50% of 

the energy incident upon it and the rest of the energy is transmitted since the absorption 

in the spectral region is minimal (Mather and Koch, 2011). Similarly, many plants’ 

stresses alter the reflectance in this region, so sensors operating in this range are often 

used for vegetation stress detection (Purkis and Klemas, 2011). 

 

Figure 2.3: Spectral reflectance of healthy vegetation      Source: (Slonecker et al., 2010)          

Figure 2.3 shows the spectral characteristics of healthy vegetation which has strong 

absorption at 450nm and 670nm due to chlorophyll contents in the leaf with high 

reflectance in the near-infrared (700 -1,200nm). 

2.4.1 Atmospheric effects on the radiation 

Atmospheric effects have several impacts on the radiation at the Earth’s surface, which 

include a reduction in the power of solar radiation due to absorption, scattering and 
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atmospheric reflection, and changes in spectral content of the radiation as a result of 

wavelength absorption or scattering. In addition, atmospheric effects can introduce an 

indirect component into solar radiation and there are also local variations in the 

atmosphere (e.g. water vapour, clouds and pollution). Absorption, scattering and 

atmospheric reflection reduce solar radiation, as when it passes through the atmosphere, 

the gases, dust and aerosols absorb the incident photons (Schneider, 1972). For example, 

ozone (O3), CO2 and water vapour (H2O) have very high absorption of some specific 

photons (Hu and White, 1983). 

 

Figure 2.4: The balance of incoming and outgoing radiation measured by satellites and 

shown in W/m2              Source: (NASA) 
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There are some specific gases in the atmosphere that change the spectral content of the 

terrestrial solar radiation with relatively minor impact. However, the major factor causing 

reduction in solar radiation power is the absorption and scattering of light due to air 

molecules and dust (Sekuler and Blake, 1985). The effects of cloud and local variations 

in the atmosphere are dependent on the type of cloud cover where the incident power is 

reduced (Mack, 1979). These atmospheric effects have an impact on the information 

recorded by satellite sensors and the data obtained by the sensors may contain unwanted 

noise in the images. This is because when solar energy strikes an object there are several 

interactions that are possible; transmission, absorption, reflection, scattering and emission 

of energy. Satellite sensor channels are designed to reflect and emit energy. For example, 

Landsat’s Enhanced Thematic Mapper Plus (ETM+) converts the raw solar energy 

collected by the sensor to absolute units of radiance (Chander et al., 2009). Radiance is 

defined as incidences of energy per solid angle leaving a unit surface area in a given 

direction. To obtain a radiance image from an uncalibrated image, a gain and offset must 

be applied to the pixel values. These gain and offset values are retrieved from image 

metadata from the data provider (Chander et al., 2009). They are used for correction of 

DN (digital numbers) values to radiance. This study uses radiance images as input to the 

Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) module in ENVI 

which converts to an output with units µW/(cm2*sr*nm). To convert calibrated DN 

(Qcal) in a Level (L1) Product of Landsat data back to at-sensor spectral radiance (Lλ), 

knowledge is needed of original scaling factors using the following equation (Chander et 

al., 2009); 

Lλ=”gain”*QCAL+”bias”   Eq. 1 

which is expressed as: 

Lλ = ((LMAXλ - LMINλ)/(QCALMAX-QCALMIN)) * (QCAL-QCALMIN) + LMINλ

     Eq. 2 

where:  

Lλ= Spectral Radiance at the sensor's aperture in watts/(meter squared * ster * µm) 

“gain”= Rescaled gain (the data product "gain" contained in the Level 1 product header 

or ancillary data record) in watts/(meter squared * ster * µm) 
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“bias”= Rescaled bias (the data product "offset" contained in the Level 1 product header 

or ancillary data record ) in watts/(meter squared * ster * µm) 

LMAXλ= the spectral radiance that is scaled to QCALMAX in watts/(meter squared * 

ster * µm) 

LMINλ= the spectral radiance that is scaled to QCALMIN in watts/(meter squared * ster 

* µm) 

QCAL= the quantized calibrated pixel value in DN 

QCALMAX= the maximum quantized calibrated pixel value (corresponding 

 to LMAXλ) in DN  = 255 

QCALMIN= the minimum quantized calibrated pixel value (corresponding to LMINλ) 

in DN  

 = 1 for LPGS products 

 = 1 for NLAPS products processed after 4/4/2004  

 = 0 for NLAPS products processed before 4/5/2004 

Radiance is the radiation reflected from the surface, rebounding from the neighbouring 

pixels and clouds above the area of the pixel. They are also affected by source of radiation 

for optical imagery from the sun. For any quantitative analysis from multispectral and 

hyperspectral image, radiant images are required to be corrected to reflectance images.  

Reflectance is the proportion of radiation which is reflected when it strikes a surface 

material. Reflectance spectra are used in identifying different surface materials, thus it is 

the first task toward identifying features in an image. The reflectance values that include 

contributions from clouds and atmospheric aerosols and gases which are measured by a 

space-based sensor flying higher than the atmosphere, are known as top-of-atmosphere-

reflectance (TOA) (Shippert, 2013). Meanwhile, surface reflectance is the reflectance of 

the surface of the earth. Clouds and other atmospheric components do not affect surface 

reflectance spectre. They are basically derived from calibrated radiance images, using 

example model-based atmospheric corrections in an atmospheric correction module. 

Summarily, radiance corresponds to brightness in a given direction toward the sensor 
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while reflectance is the ratio of reflected versus total power energy. Radiance is measured 

at the sensor and is dependent on reflectance (Shippert, 2013). 

In order to analyse a relatively clear Landsat scene, a reduction in scene variability is 

required, which can be done through a normalisation of solar irradiance by converting the 

spectral radiance (Chander and Markham, 2003) as shown above, to exoatmospheric 

reflectance. The advantages of converting radiance to TOA reflectance from different 

sensors are that the cosine effect of different solar zenith angles due to the time difference 

between the data acquisition can be removed, and that it compensates for different values 

of the exoatmospheric solar irradiances arising from spectral band difference (Chander 

and Markham, 2003). 

 

2.5 Vegetation response to hydrocarbon leaks 

In response to hydrocarbon concentration, the colour of plant leaves changes and 

subsequently lose photosynthesis pigments as colours change from green to pale-green, 

yellowish-green, and yellow. Photosynthesis in plants reduces due to of the restricted 

entry of carbon dioxide CO2 into the leaf when oil is spilled and coated on plants 

(Pezeshki et al., 2000). Leaf spectral reflectance can be measured to determine whether 

leaf reflectance responses to plant stress may differ according to the agent of stress and 

species (Carter, 1993). Visible reflectance is most sensitive to stress in the 535 - 640 nm 

and 685 -700 nm wavelength ranges and sensitivity minimum occurred consistently near 

670 nm. Remote sensing for vegetation stress detection is based upon vegetation response 

to solar radiation (Raghavan, 2000). The spectral response of healthy plants to solar 

radiation is, in general, similar though differences exist between plants due to morphology 

and physiology, background soil types, and the climate. Healthy plants have 

diagnostically high reflectance in the near infrared region of the solar region because of 

strong internal scattering of incident light from cell walls and intercellular spaces 

(Houborg and Boegh, 2008). When plants become senescent or stressed, however, the 

mesophyll tissue begins to desiccate and cell walls collapse, which results in substantially 

reduced intercellular surface area and air space (Mather and Koch, 2011). Thus senescent 

and stressed plants reflect more red light, but much less in the near-infrared region 
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compared to green healthy plants (Delalieux et al., 2008). Greater reflection of red light 

is due to the loss of photosynthetic pigments, resulting in less absorption.  

Detection of hydrocarbon seepage/leakage of both surface and underground gas pipelines 

is an important environmental issue in many countries including Nigeria. The general 

practice of detection of leakage involves drilling and the subsequent geochemical analysis 

of soil and water samples, which is time consuming and expensive (Studer et al., 2007). 

The mineral alteration that occurs in the soil and geobotanical (e.g. abnormal behavior of 

vegetation) has become evidence for detecting hydrocarbon leakage (Noomen and 

Skidmore, 2008). Geobotanical anomalies occur as a result of the effect of light 

hydrocarbons on the growth of the vegetation. Reflectance properties of vegetation in the 

visible part of the spectrum are dominated by the absorption properties of photosynthetic 

pigments including chlorophyll, having absorption at 660 nm and 680 nm (Smith et al., 

2004a). The changes in the chlorophyll concentration produce spectral shifts of the “red 

edge” absorption near 700 nm.  Studer et al. (2007), confirmed that “traditional plant 

phenology provides very accurate information on individual plant species, but with 

limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation 

on a global scale and provides integrative view at the landscape”. Change in leaf colour, 

stems and trunks are very good indication of a plant’s response to oil concentration or 

stress (Guyot et al., 1992, Noomen et al., 2012). The leaves gradually loose 

photosynthetic pigments resulting in colour change from green to pale-green, yellowish-

green, and yellow (Raghavan, 2000). The stems become ash-brown, dark-brown or 

darkened after exposure. The exhibition of chlorosis is due to the loss of chlorophyll 

observed after an oil spill (Ustin et al., 1998). In their experiments they showed the 

adverse effect that oil-contaminated soil has on the plant growth, reducing germination, 

seedling growth and development.  

2.6 Traditional method of monitoring environmental variables 

At present there are various methods for monitoring oil pipelines, which include 

surveillance on foot, by helicopter and flown aircraft (van Persie et al., 2004). These 

methods are expensive and time consuming. Oil and gas pipelines can leak for a long 

period without being noticed (Noomen, 2007). In order to curtail the potential danger of 

long term gas leaks at an early stage, it is ideal to carry out continuous surveillance using 

the remote sensing approach, which is time saving, efficient  and less expensive 
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(Hausamann et al., 2003). However, some pipelines are buried underground to a depth of 

1m and that makes it difficult to detect leaks using foot patrols or aircraft, especially if 

the leak is minor and continuous. Polluted or contaminated sites can be detected using 

remote sensing techniques coupled with ancillary data (pipeline maps, land use maps, 

etc.). The cumulative effect of small leaks are damaging while major leakages or spills 

have both immediate and catastrophic impacts on the environment. TransCanada 

documents ((Zhou et al., 2008)), show a scenario that a slow leak of less than 1.5 percent 

of the pumping rate could go undetected for up to 90 days. Where the pipeline inspection 

is scheduled every few weeks it is likely that the oil leak would reach the surface and be 

detected before the entire 90 days elapsed. In this case, if a pipeline is buried at a depth 

of 10 ft and the 1.5 percent leak (75,802 ft3/d) is on the bottom of the pipe, oil would fill 

the pore spaces in the soil mostly in a downward direction, but it would also be forced 

upward toward the surface. Assuming that the oil initially fills a somewhat conical 

volume that extends twice as far below the pipeline as above it, the oil would emerge at 

the surface within about one day (the volume of a cone 30 feet deep with a base diameter 

of 30 feet is 7,068 ft3). Therefore, the leak would likely be detected in 14 days during the 

next inspection (assuming bi-weekly inspections). A 1.5 percent spill at a pumping rate 

of 900,000 Bbl/d over 14 days would result in a release of 189,000 Bbl (7.9 million 

gallons). (Noomen, 2007) which support the above report indicated that hydrocarbon 

leaks can affect plant health within 14 to 20 days. Therefore, minor leaks can lead to 

longer term damage to the environment than major leaks or spills which are noticeable in 

a short period of time. In this case, use of remote sensing techniques is appropriate 

especially in inaccessible or remote areas with weak regulatory environmental standards. 

In a major leakage or spill, containment is possible if the patrol team can respond quickly 

enough. 

There are two identified ways of gas seepage from pipelines or reservoirs, macro and 

micro seepage. Macro seepage is a visible presence of oil and gas seeping to the surface 

and micro seepage is where gas or hydrocarbons seep probably vertically or near 

vertically from the reservoir to the surface. Micro seepage can be directly monitored using 

a remote sensing approach to detect oil seeping by identifying tonal anomaly (van der 

Meer et al., 2002). Macro seepage meanwhile, can be indirectly detected through 

anomalies in soil mineral composition (Xu et al., 2008), water quality and vegetation 

health (Noomen et al., 2012) as a result of hydrocarbon concentration.    
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2.7 Spectral vegetation indices for detecting impacts of hydrocarbon 

leaks  

Vegetation indices are mathematical combinations of various satellite bands (Jensen, 

2014) and have been used by scientists since 1960s. The indices are derived from satellite 

data as the main source for monitoring vegetation conditions (Teillet et al., 1997) and 

mapping land cover change. Vegetation stress within the oil producing facilities may be 

assumed to be as a result of hydrocarbon leaks. The mineral alteration that occurs in the 

soil and geobotanical anomalies have become evidence for detecting hydrocarbon leakage 

(Noomen and Skidmore, 2008). Several studies have shown the effect of hydrocarbons 

on vegetation health (van der Meijde et al., 2009) when the contaminants enter the plants 

(Liu et al., 2007). It has also been suggested that presence of hydrocarbons seems to 

produce a change in the internal structure of the plant that results in low reflectance 

values, and gas affected areas may also be responsible for low vegetation density in the 

area (Oliveira et al., 1997). Also, vegetation growing near leaking gas pipelines revealed 

changes in geobotany and reflectance and a strong relation between plant vitality and gas 

can be assessed using spectral indicators (van der Meer et al., 2002). Blackburn (2007), 

noted that the reflectance spectra of leaves can vary independently of pigments due to 

differences in cellular structure, surface characteristics, moisture content and other 

biochemicals. 

2.7.1 Broadband Multispectral Spectral Vegetation Indices (BMVIs) 

Vegetation indices are optical vegetation canopy (greenness) which is a composite 

property of leaf chlorophyll, leaf area, canopy cover and architecture (Jiang et al., 2008). 

Satellite vegetation indices products are commonly used in a wide variety of terrestrial 

science applications aimed at monitoring and characterising Earth’s vegetation cover 

from space (Myneni et al., 2002) and (Saleska et al., 2007). Also, combining principal 

components and different vegetation indices (VIs) was used in order to obtain a strong 

contrast between pixels. This is done to create new images to improve image 

classification techniques. Running et al. (1994); Huete et al. (1999b) show how to 

maximise sensitivity to plant biophysical parameters using linear responses of different 

vegetation conditions, validation and calibration of the index. There are many vegetation 

indices and few more widely used  (Jensen 2014)  as those contained in (Running et al., 

1994) and (Lyon et al., 1998) which provided summaries of some indices where the 
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inverse relationship between red and NIR bands reflectance was associated with healthy 

vegetation (Jensen 2014). The vegetation indices such as NDVI have been in use for over 

three decades to assess or monitor vegetation phenological patterns. This is based on 

linearity regressing NDVI values obtained from various satellite imageries, along with in 

situ measurements, though the empirical approach adopted in recent times does not really 

require in situ measurements (Jensen 2014). The empirically derived NDVI products  

seem to be unstable due to soil colour and moisture, and bidirectional reflectance 

distribution function (BRDF) effects on atmospheric conditions (Qi et al., 1995). An 

accurate empirically derived NDVI product needs to be constant without calibration using 

in situ measurements, even when atmospheric and soil conditions change (Jensen, 2014).  

Most of the improved vegetation indices such as NDVI, benefited from adoption of sensor 

calibration and have been useful in estimating vegetation characteristics (Running et al., 

1994). Other improved vegetation indices such as the soil adjusted vegetation index 

(SAVI) (Huete, 1988, Huete et al., 1992), incorporated an adjustment factor of canopy 

background and atmospheric conditions to address noise found in NDVI. In this study 20 

indices will be exploited to find the most appropriate for detecting the impact of oil on 

vegetation. Though NDVI has its shortcomings, such as poor indication of vegetation 

biomass where the ground cover is low, for example in arid regions, (Huete and Jackson, 

1987) as well as saturation and loss of sensitivity in densely vegetated areas (Huete et al., 

2002). This study adopted the use of broadband multispectral vegetation index (BMVI) 

over narrow band hyperspectral data as it has been found to be reliable and valuable in 

the absence of hyperspectral data (Zhu et al., 2013). NDVI obtained from BMVIs is still 

considered to have great potential for applications in environmental monitoring because 

of its low cost compared to hyperspectral data (Broge and Leblanc, 2001). Thus, in this 

study the BMVIs use the following broadbands; blue (450–515 nm), red (630–690 nm) 

and near-infrared (750–900 nm). Twenty vegetation indices used for the study were 

reviewed in Table 2.1. 

2.7.2 Detection of oil pollution using BMVIs 

Hydrocarbons may reach vegetation when dissolved in the groundwater in the root zone 

and sometimes via air surrounding it. The uptake through roots and direct contact between 

soil and plant tissues are also media in which organic contaminants enter plants (Liu et 

al., 2007). The effects may depend on the type and quantity of chemicals involved and 

the vegetation type. Different vegetation types have varying sensitivity to hydrocarbons 
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(UNEP 2011). Simonich and Hites (1995) showed that the settling down of hydrocarbon 

particulates and their gaseous contents on leaves and intake via leaf stomata, may affect 

the health of vegetation. Other researchers have also reported the impacts of oil pollution 

from hydrocarbon leakages on vegetation health and vigour (van der Meer et al., 2002, 

van der Meer et al., 2000, van der Meijde et al., 2009). Remote sensing approaches and 

techniques such as vegetation spectral indices have proven to be effective in detecting 

and monitoring impacts of hydrocarbon leaks on vegetation health (van der Meer et al., 

2000, van der Meer et al., 2002, van der Werff et al., 2007, Noomen et al., 2015). The 

mineral alteration that occurs in the soil and geobotanical anomalies have been used as 

evidence for detecting hydrocarbon leakages (Noomen et al., 2012).   

Table 2.1: VIs evaluated for vegetation stress detection from oil polluted sites in this study  

Indices  Formula Author 

1. ARVI2 -0.18 + 1.17* (NIR – Red/NIR + Red) Kaufman and Tanre (1992) 

2. CIGreen (NIR/Green) -1 Gitelson et al. (2003) 

3. EVI 2.5*[(NIR – Red)/(NIR+6*Red - 7.5*Blue)+1)] Huete et al. (1999a) 

4. EVI2 2.5*((NIR - Red)/(NIR + 2.4*Red+1)) Hunt Jr and Rock (1989), Liu and 

Huete (1995) 

5. GBNDVI NIR- (Green + Blue)/NIR + (Green + Blue) Wang et al. (2007) 

6. GLI 2*(Green – Red-Blue)/2*(Green + Red + Blue) Gobron et al. (2000) 

7. GRN/NIR                       (Green-NIR)/(Green+NIR) Sripada et al. (2005) 

8. GRN/RED Green –Red/Green +Red Motohk et al. (2010) 

9. GRN/SWIR (Green-SWIR)/(Green+SWIR) Karnieli et al. (2001) 

10 GRNDVI [NIR-(Green + Red)/NIR + (Green + Red)] Wang et al. (2007), Main et al. 

(2011) 

11.    MSAVI2 (2*NIR +1–(SQRT (2*NIR+1)2 – 8*(NIR-Red))/2 

 

Qi et al. (1994), Rondeaux et al. 

(1996) 

12.     MSI SWIR/NIR Hunt Jr and Rock (1989) 

13.     MSR705 ((NIR/Red – 1)/(SQRT(NIR/Red)) Wu et al. (2008) 

14.     NBR (NIR-SWIR)/(NIR + SWIR) Key et al. (2002) 

15.     NDVI (NIR – Red)/(NIR +Red) Rouse et al. (1973) 

16.     NIR/RED NIR/Red Birth and McVey (1968) 

17.     PPR (Green− Blue)/(Green+Blue) Metternicht (2003) 

18.     SAVI ((NIR - Red)/(NIR + Red + 0.5))*(1+0.5) Huete (1988) 

19.     SRI NIR / Red Birth and McVey (1968) 

20.     TNDVI SQRT ((NIR – RED)/(NIR + RED)) + 0.5 Tucker (1979) 

 

Traditional field methods for estimating biophysical and biochemical properties of plants 

provide very accurate information on the response of individual plant species to pollution, 

but are limited in spatial coverage. Satellite remote sensing allows for monitoring of the 
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terrestrial vegetation characteristics on a regional, continental and global scale. 

Vegetation affected by oil pollution experiences changes in the biophysical and 

biochemical characteristics, which can be detected in changes in reflectance measured 

using satellite sensors (van der Meer et al., 2002). This is because vegetation spectral 

reflectance is dependent on the chlorophyll and water absorption in the leaves, which are 

altered by oil pollution. The relationship between plant pigments and spectral reflectance 

properties has been demonstrated in (Blackburn, 1999, Blackburn and Steele, 1999).  

Therefore, vegetation indices derived from satellite data can be used to determine the 

health of vegetation in areas affected by hydrocarbon pollution. Several researchers 

(Penuelas et al., 1997, Zarco-Tejada et al., 2005, Li et al., 2005, Khanna et al., 2013) have 

used vegetation indices as their main method for assessing various biophysical and 

biochemical properties of plants such as chlorophyll concentration, water content and 

vegetation structure. Broadband multispectral vegetation indices (BMVIs) are 

mathematical combinations of reflected energy recorded at various wavelengths (Jensen, 

2014, Teillet et al., 1997) and have been used by scientists since the 1960s in terrestrial 

science applications aimed at monitoring and characterising Earth’s vegetation cover 

from space (Myneni et al., 2002, Saleska et al., 2007).    

2.7.3 Factors influencing detection of oil pollution  

The influence of some factors, such as volume of oil spill, time period between the oil 

spill and image date, and spatial distance, on vegetation spectral indices could play a 

major role in detecting oil pollution in vegetated areas. Once an oil spill has occurred, it 

releases hydrocarbons into the natural environment. How these hydrocarbons are 

characterised and weathering (change in composition of hydrocarbons with time) are 

some of the problems at the polluted sites (Osuji et al., 2006). Wang et al. (2013a), 

suggested that oil characteristics and weathering may be influenced by the quantity of oil 

spill in the polluted environment. It is also found that over time hydrocarbon depletion 

may be dependent on their chemical and biological properties as well as the type of 

hydrocarbons (Luis, 1993, Osuji et al., 2006, Noomen et al., 2015). Use of appropriate 

satellite imagery at the earliest date after an oil spill could be very helpful in obtaining 

the vegetation status using spectral indices from remotely sensed data. Yang et al. (2000);  

Noomen (2007) and  Noomen et al. (2012) have shown that the volume of oil spill in 

vegetated areas may result in a shortage of oxygen supply to plants and consequently 

retard their growth. These effects can therefore change the vegetation health of plants and 
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how they respond to it. The effects on vegetation health may also depend on the volume 

of the oil spill (Osuji and Opiah, 2007). It is assumed that larger volume oil spills may 

impact more on the surrounding vegetation and the affected vegetation may also take 

longer to recover as the oil degrades or evaporates. Small volume oil spills may have a 

low impact and the recovery of affected vegetation may not take longer compared to large 

volume spills. However, research and literature on the effect of quantity of spill on 

vegetation health using broadband indices is limited. Though some of the above 

assumptions have been shown that larger volume oil spills can have more impact than 

smaller spills (Masnik et al., 1976, Cushman and Goyert, 1984, Crunkilton and Duchrow, 

1990). It is also documented that oil containing heavy insoluble compounds are more 

persistent compared with light soluble oils that are highly toxic and evaporate faster 

(Blumer and Sass, 1972, Barton and Wallace, 1979, Rosenberg et al., 1980, Crunkilton 

and Duchrow, 1990). Osuji et al. (2006), have shown that it is possible to directly monitor 

the disappearance of hydrocarbon fractions in oil polluted sites. Previous research focused 

more on large spills relating to natural hydrocarbon leaks’ effects on general vegetation 

health, and thus the effects of the quantity of spills on plant health (BMVIs) were not 

investigated or emphasised (Noomen, 2007). This section focuses on determining the 

relationship between the volume of the oil spill and the impact on vegetation health and 

vigour. Other factors such as time of the image acquisition after the oil spill and scale 

(spatial distance) will also be assessed. For example we can assume that the quantity of 

the oil spill can be proportional to the level of impact on vegetation health surrounding 

the spill point (small size of spill, less impact, large size of spill, high impact). Generally, 

the area which is most impacted depends on the size of the oil spill, which may also be 

limited by any form of infiltration and how far it will migrate from the point of source. In 

Canada the average oil spill size from pipelines was found to be in the range of over 200 

barrels and in some extreme cases 2000 barrels (Mackay and Mohtadi, 1975). Based on 

these figures the spill size within and above this range can be hazardous to the immediate 

surrounding vegetation. Hypothetical spill scenarios of crude oil showed that infiltration 

has more influence on spread of oil spill than evaporation (Hussein et al., 2002). 

Therefore, vegetation roots underground near the leaking pipeline will be most affected 

while estimation of surface flow of spill could be used to assess the environmental impact 

(Hussein et al., 2002). BMVIs have shown to be of great potential for the detection of oil 

pollution impact on vegetation (Zhu et al., 2013). 
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2.7.4 Importance of determining the flow direction of an oil spill  

Determining the source and direction of oil spill flow in a polluted environment is 

important as it helps in identifying the likely vegetation that could be affected by oil 

pollution.  Garbrecht and Martz (1997), have shown that desired gradients can be obtained 

by adding an elevation increment without significant alteration to the elevation of the 

digital landscape, while still producing a sufficient identity of flow direction over a flat 

surface. It is also reasonable that flat surfaces must have at least one cell at its edge that 

is at a lower elevation to characterise the downslope drainage off the flat surface. The 

model has been demonstrated in Douglas (1986), Jenson and Domingue (1988) and 

Garbrecht and Martz (1997)  to track the overland path of pollution from a point of source 

into the drainage system or lower surfaces. Adopting this model in an oil pollution 

scenario will help in identifying the flow direction from the point of oil spill towards the 

steepest downslope into the neighbouring pixels.  

 

Based on the flow direction of the oil spill, it is possible to determine pollution impacts 

on the vegetation health at varying distances from the point of source (likely impact areas) 

into the steepest downslope neighbouring areas (less likely impact areas). In a practical 

implementation of the model in (Garbrecht and Martz, 1997) the elevation increment 

using vertical DEM resolution, where a small increment does not change the actual size 

of elevation but numerically is enough to define flow direction, will be used. The analysis 

is based on the application of the deterministic eight-neighbour (D8) method to simulate 

flow across a land surface represented by a raster (grid) digital elevation model. The 

output of the flow direction is defined by the steepest drop, where the direction of the 

flow is to the left within the current cell, the flow direction is coded as illustrated in Figure 

5.1. But where the cell is lower than its eight surrounding neighbours, the value will be 

assigned the values of its lowest neighbours, and the flow direction is defined towards the 

cell. Further explanation can be found in (Greenle, 1987). Jenson and Domingue (1988), 

have demonstrated this approach, which is known as an eight-direction (D8) flow model 

see Figure 5.1.  

2.7.5 Tidal flow model 

A tidal flow model, as described in the multiobjective set covering problem (MOSCP) 

2016 report, is necessary to determine the type, characteristic, quantity and location of a 
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spill and to incorporate a number of environmental factors, in order to determine as 

accurate as possible a prediction on the spill’s movement, including changes in 

characteristics due to weathering, and the prediction of the coastal marine areas 

potentially at risk. In accurately predicting the direction of movement of an oil spill, 

knowledge of tides, currents and wind speed and direction is essential. There are 

processes that influence the spreading of an oil spill on the surface of the land, which are 

dependent on the chemical and physical properties of the oil and the coastal conditions. 

Oil spill spread from pipelines can be influenced by currents and turbulent effects between 

ocean current and the coastal current (Elliott, 1986). A flow model, suitable for modelling 

contaminant dispersion, is a two-dimensional tidal current that may provide a relatively 

simple and economic method for accurate simulation of pollutant dispersion (Holly Jr and 

Usseglio-Polatera, 1984). This model, which has been used for water quality studies in 

coastal areas, often requires detailed simulation of contaminant dispersion based on 

mathematical modelling. The model has been demonstrated in (Glass and Rodi, 1981) for 

determining a finite difference scheme for pollutant transport in river flows. The 

suitability of this model for the oil spill flow direction is important, as it could help in 

determining the flow direction of pollutants. The model has been used by many, proves 

to be reasonable and the results were used to simulate tidal flows around the Portland Bill 

headland (Blunden and Bahaj, 2006). It has been used for evaluating tidal stream energy 

resources at Portland Bill to predict the variation of tidal stream in both time and space 

(Blunden and Bahaj, 2006). Most of the tidal models were applied in a marine 

environment (offshore) with limited emphasis on land (onshore). Thus, this study focuses 

on characterizing overland flow of oil spills in the mangrove forest, where fresh and sea 

water meet to influence the spreading of oil. The period chosen for the study has less 

influence on oil spill by tidal current from the ocean (this has been described in chapter 3 

section 3.4).  

2.7.6 Research gap 

Few studies focus on the use of spectral vegetation indices derived from terrestrial, 

airborne and space hyperspectral data for detecting oil impact on vegetation. This study 

will evaluate and assess the capabilities of vegetation indices derived from broadband 

multispectral data for detecting the oil impact on vegetation in mangrove forests. Also, 

there is limited attention from many studies on certain factors (such as volume of oil spill, 

time gap between oil spill events and image acquisition data and spatial distance) 
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influencing the detection of oil pollution in vegetated areas using vegetation indices. 

Thus, this study will focus on these factors and assess how they influence the detection 

of oil pollution in the vegetated areas using vegetation indices derived from 30m 

broadband multispectral data. At the end, the technique used in the study will be evaluated 

on another polluted study site in order to test the validity and transferability of the 

technique.  

2.8 Aim and objectives  

The main aim of this research was to identify and detect vegetation affected by oil spills 

or pollution in the mangrove forest of the Niger Delta using Landsat multispectral data. 

The study used vegetation indices derived from the Landsat multispectral data for 

detecting vegetation affected by oil pollution through the assessment of leaf spectral 

properties. Thus, the three research objectives and research questions to achieve this aim 

are as follows:  

Research questions 1: 

i) Can remote sensing spectral techniques be used to detect changes in leaf 

pigments of vegetation impacted by oil pollution over the space in 

mangrove forests?  

ii) Can changes in leaf chlorophyll before and after oil spill be detected using 

spectral vegetation indices?  

iii) Does vegetation affected by oil spills at polluted and non-polluted sites 

differ in biochemical and biophysical properties (spectral properties)? 

Objective 1: 

To apply remote sensing techniques such as broadband multispectral vegetation indices 

derived from Landsat data to detect and analyse changes in biochemical and physiological 

properties of vegetation affected by oil pollution.  

 This was carried out using statistical analysis (paired t-test) to compare 

vegetation indices extracted at the polluted and non-polluted sites over 

time and space, and to assess the capabilities of the indices that can detect 

changes in reflectance properties of vegetation affected by oil pollution.   
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Research questions 2: 

i) Can the volume of an oil spill influence the detection of oil spill 

impact on physiological status of vegetation?  

ii) Does the time gap between oil spill and image acquisition date 

influence the detection of the oil pollution impact on the 

biophysical and biochemical changes of vegetation?  

iii) Can the oil pollution impact on vegetation vary with distance 

from the polluted point?  

 

Objective: 2 

To analyse factors influencing the detectability of vegetation affected by oil pollution 

using spectral vegetation indices.  

 This involves determining the relationship between the influential factors 

identified and vegetation indices using statistical regression analysis. 

 

Research questions 3: 

Can the technique adopted in this study be replicated at another study site?  

Objective: 3 

To assess and validate the remote sensing technique at a new study site.  

 This entails identification of new oil spill sites and applying the technique 

in chapter 4 for analysis at this new study site, as well as validating the 

results. 
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Chapter 3 : Study area, data and methodology 
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3.0 Introduction  

To address the research questions developed in chapter one (section 1.2), this chapter 

provides a description of some environmental and climatic factors. This is important 

because they could have an influence on the selection of appropriate data and the method 

of analysis in answering the research questions. The data and methodology sections 

provide a detailed description of the data, sources and methods used for the analysis, 

which focuses on data sampling and processing techniques. The chapter describes the 

general environmental characteristics of the region where the two study sites (SS) are 

located, but only study site 1 (SS1) was included here. For clarity, the data and its sources 

used in chapters 4 and 5 (SS1) are described in this chapter, while for the study site 2 

(SS2) they are specifically discussed in chapter 6. The method and techniques (image 

processing and data analysis) for Chapter 4 and 6 are fully described in this chapter and 

are then validated in chapter 6. 

 

3.1 Study Area  

Nigeria lies between longitudes 2° 49'E and 14° 37'E and latitudes 4° 16'N and 13° 52'N, 

and the Niger Delta consists of 9 states where oil production and transportation activities 

are carried out. The Niger Delta is located in the southern part of Nigeria bordering the 

Gulf of Guinea (in the Atlantic Ocean). The study area falls within longitude 5.05°E and 

7.35°E and latitude 4.15°N and 6.01°N near the town of Degema in Rivers State, Nigeria. 

The region stretches ~240 km from North to South of the country and along the coast for 

about 320 km. The region covers about 70,000 km2 of floodplain out of the 923,768 km2 

of the country’s total land area. The Niger Delta hosts the largest extent of mangroves in 

Africa, the fifth largest in the world, and is the third largest delta in the world. It has the 

most extensive fresh water swamp forest in west and central Africa (Ikwegbu, 2007). The 

uniqueness of the Niger Delta mangroves is a consequence of the geographic pattern of 

the ecosystem, which is shielded from sea water that differentiates it from that of several 

other African countries that are directly exposed to sea water. About sixty per cent of the 

mangroves in Nigeria are found on the coast of the Niger Delta region; Human Rights 

Watch (HRW, 1999). The River Niger is the principal river in West Africa and the third 

largest water course in the continent. Originating from the Futa Jallon highlands in 

Guinea, it flows over 4,184 km, firstly towards the north-east, passing through Mali then 
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bending to the south east and linking Niger before running into Nigeria where it forms its 

largest tributary with the River Benue in Central Nigeria. The river continues towards the 

south of Nigeria for about 400 km to form a fan-shaped delta and finally empties into the 

Gulf of Guinea. 

In Figure 3.0 the Niger Delta is shown in green within the political map of Nigeria. This 

study focuses on one of two areas with a high concentration of oil facilities; the two areas 

(both SS1 and SS2) also fit conveniently in a single satellite data frame (Landsat), a fact 

that is discussed in the subsequent sections of this chapter 3 (SS1) and in chapter six 

(SS2).  

 

Figure 3.1: Oil pipeline and spill sites distribution within the study area (SS1) 

3.1.1 Geology and Soil 

The River Niger forms an intricate network of channels which drain into the Gulf of 

Guinea. It is characterised by rain fed deltaic vegetation in places, with high elevation, 

and the majority of the region is dominated by low lying landforms. The area is formed 

of both fluvial and marine sediments built-up over the past 50 million years (since the 

Upper Cretaceous period). These sediments form a shallow marine and deltaic 
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environment characterised mainly by the River Niger and its tributaries. They form 

multiple geological layers of clay, sand, conglomerate, peat and/or lignite with variable 

thickness and texture covered by soil. The clay beds are discontinuous and groundwater 

is present in hydraulically interconnected aquifers, which characterise deltaic 

environments where erosion and deposition of sediments shift the course of channels and 

tributaries (UNEP, 2011b). The Niger delta coastal mangroves ecosystem is supported by 

saline soil with a pH value of between 0 and 4 for the freshly deposited soft silt at low 

tides and 7 for transitional swamps at high tides. An intermediate peat clay soil type forms 

about 90 per cent of the soil in the ecosystem (Fagbami et al., 1988, Doust, 1990). 

The zone of alluvial soils is found in the flood plains of rivers or in deltas, or along coastal 

flats. This zone extends from the coastal inland and runs along the valleys of the Niger 

and the Benue rivers, cutting across the vegetation zones. The soils found in this zone do 

not depend highly on climate and vegetation for their formation. The underlying parent 

rock is the most important factor in their formation. Soils in this zone are characteristic 

of freshwater soil of grey to white sand, grey clay and sandy clay with humus topsoil. 

Another group consists of brownish to black saline mangrove soils, with a mat of rootlets. 

Additionally, the soils of this region are all of fluviatile origin, except for the coastal areas 

that consist of marine sand overlain with an organic surface layer. The continuous 

movement of the delta's channels has resulted in a mosaic of soil types. Remnants of old 

levees consist mostly of water permeable sand and loam. The soil of the depressions 

behind them (back swamps) consist mostly of water-logged heavy clay covered by peat, 

while higher lying sections consist of silty loam and clay. The formation of the Niger 

Delta is as a result of the deposition of sediments brought down by the River Niger and 

its tributaries along their paths through various countries before reaching the coast 

(Aregheore, 2005). 

3.1.2 Hydrology 

The oil spill sites identified were all located in the mangrove swamp areas (Figure 3.1) 

where there is a presence of both underground and surface water. Therefore, there is a 

need to describe the hydrological characteristics of the area and how it could influence 

detection of oil pollution. The hydrology of Nigeria is dominated by two great river 

systems, the Niger-Benue and the Chad systems. With the exception of a few rivers that 
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empty directly into the Atlantic Ocean, all other flowing waters ultimately find their way 

into the Chad Basin or down the lower Niger to the sea (Aregheore, 2005). 

The aquifers are a crucial resource upon which the region’s entire population depends on 

for drinking water. They are characteristically very shallow with groundwater levels 

found anywhere close to the surface within a depth of 10 meters. The community hand-

dug wells are usually about 60 cm in diameter (UNEP, 2011a), which in some locations 

are affected by localised pollution (such as hydrocarbons) of water closer to the surface, 

though some wells can be up to 50 m deep. In most cases water levels in such areas are 

highly seasonal. Fresh groundwater is also found in shallow, sandy and unconfined 

aquifers of the coastal areas, river bars and islands in the mangrove belt, also at varying 

depth in confined aquifers (Amadi et al., 1989). Most of the drilled wells in the coastal 

areas produce brackish (salty) water that is not fit for drinking and in some areas were 

found 200 meters below ground level, which could be due to oil spill/leaks from oil 

facilities contaminating the groundwater and where fresh and salt water interacts 

(Kostecki, 1991). 

3.1.2.1 Surface Water 

Nigeria’s major rivers, with an estimated catchment site of about 108,124 km², make up 

about 11.5 per cent of the total surface area of Nigeria, which is estimated to be 

approximately 923,768 km² (Scott, 1966). The Niger Delta region is drained by river 

systems which are mostly associated channels and streams.  

The region’s freshwater and deltaic estuaries (an area of interaction between fresh and 

sea water) cover approximately 3,600 km² and 6,170 km² respectively (Scott, 1966). They 

are mostly from the River Niger and other sources of inflow during the rainy season, and 

are also influenced by tidal variations. The width and velocity of freshwater channels 

increase downstream to meandering or braided channels in the delta. As such, 

hydrocarbon leaks can reach water bodies through the effects of wind, rain, surface or 

sub-surface flow. Where there are concentrations of hydrocarbons on the surface, water 

bodies can form a very thin layer as a result of oil slicks that would be distinct enough to 

be detected aerially or from high resolution satellite images (Fingas and Brown, 1997, 

Brekke and Solberg, 2005). The concentration of these hydrocarbons in such a swamp 

area may also influence the detection of oil pollution using vegetation spectral 

reflectances. 
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3.1.3 Vegetation  

The Niger Delta region generally harbours a wide variety of trees and plants including 

mangrove trees of all kinds, grasses, herbs and climbers which are attributed to the 

depositional nature of the shoreline. The Rhizophora racemosa, also known as red 

mangrove, occupies more than 90% of the saline swamps, and dominates the main 

vegetation of the mangrove swamps in the region. The relative nature of the mangrove 

vegetation to soils and salt water has made the soil of the region generally acidic, with a 

pH ranging from 4.6 to 6.7. These soils become more acidic when dried and the pH value 

drops down to as little as 2.2 (Okoro et al., 2011). 

The Avicennia africana, also known as white mangrove, is found sparsely distributed 

amongst the red mangrove and survives in less water-logged areas. The soil under the 

white mangrove is non-fibrous, less acidic, and on drying exhibits less of a decrease in 

pH (Egberongbe et al., 2006). There are other common vegetation types where salt water 

content is not too high, including ferns (e.g. Acrostichum aureum), nympa palm (Nympa 

fruticans), and herbs (e.g. Paspalum vaginatum). In the mangrove swamp in the eastern 

flank of the Niger Delta there is a conspicuous presence of Nympa palm, an invasive 

species. 

 

 



50 

 

 

Figure 3.2: Nigeria vegetation zones     Source: (Oguntunde et al., 2011) 

In the saltwater zone (Rhizophora Mangle) vegetation type is restricted to the coastal 

strip, which varies in width from less than 1.5 km in the west coast areas to over 50 km 

in the Niger Delta area. It is pronounced where the fresh water from the rivers meets and 

mixes with the salt water from the sea, forming brackish swamps. The low-lying nature 

of the Nigerian coastal zone allows for the influx of saline water through tidal movements 

into the lagoons, channels and extensive brackish wetlands. This has encouraged the 

growth of different species of mangrove vegetation, typical in the wetlands of the 

backshore areas. The mangrove vegetation is a hydromorphic forest type, characterised 

by an entangled dense growth of stems and aerial roots behind the stretch of coconut 

palms overlooking the Atlantic Ocean. The freshwater zone vegetation belt and 

freshwater wetlands occur further inland beyond the reach of tidal waters. Here, there is 

an enormous supply of fresh water from the inland rivers and run-off from abundant 

rainfall in the area. The major drainage systems, from west to east, are from neighbouring 

states which deposit vast quantities of silt, mud and sandy materials into this area. It is a 

low-lying region, with hardly any parts rising over 30 m above sea level (a.s.l), thus, it 

facilitates the development of freshwater swamps along the Niger Delta, drowned 

estuaries, lagoons and channels. 
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The network of channels and lagoons results in inaccessible swamps of forest vegetation 

in the southern parts. In the northern part there are floodplains of sandy accumulations, 

colonised by bush thickets and by tall grasses in the cultivated areas. The most common 

species of this vegetation type is the raffia palm (Raffia Hookers) which dominates the 

swamps. The better-drained areas support oil palm trees (Eleais Guineenais) and large 

trees like Iroko (Chlorophora Exceisa). The development of an oil facility in the 

mangrove areas is often preceded by dredging and/or vegetation clearance to create 

navigable accesses. During dredging, the soil, sediment and vegetation along the right of 

way (ROW) of the proposed site are removed and typically disposed overbank, in most 

cases infringing upon mangroves, and then abandoned. The impact of these abandoned 

dredged materials can alter topography and hydrology, and cause acidification and water 

contamination which may lead to vegetation/mangrove areas being converted to either 

bare heaps, grassland or freshwater forest after several years of natural weathering 

(Ohimain, 2004). 

3.1.4 Climate 

Nigeria’s climate is tropical, characterized by high temperatures and humidity as well as 

marked wet and dry seasons, though there are variations from South to North. Total 

rainfall decreases from the coast northwards. The South (below Latitude 8°N) has an 

annual rainfall ranging between 1,500 mm and 4,000 mm and the extreme North between 

500 mm and 1000 mm (Odjugo, 2005). The seasonal pattern of climatic conditions over 

Nigeria gives rise to four seasons in the south and two in the north. This is the result of 

annual total rainfall occurrence and distribution, which is more predominant in the south 

than in the north. Therefore they are very important factors to be considered on the 

suitability and time of the satellite image to be used for the study. These factors can also 

have influence on detecting oil spills on the water surface because it is associated with 

tidal movement and wind action which may affect the actual spill point on the satellite 

imagery.  
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Figure 3.3: Distribution of rainfall in Nigeria (mm/yr) Source: (Oguntunde et al., 2011) 

3.1.4.1 Rainfall and Seasonality  

The seasonality of the study area is critical in deciding which imagery is to be used for 

the analysis. It is important to describe rainfall pattern within the year, which will help in 

identifying appropriate cloud free data. The long wet season starts in March and lasts to 

the end of July, with a peak period in June over most parts of southern Nigeria (Anyadike, 

1993). It is a period of thick clouds and is excessively wet, particularly in the Niger Delta 

and the coastal lowlands. It is marked by humidity with values hardly below 85 per cent 

in most parts of the forested south. The short dry season is experienced in August for 3-4 

weeks. However, the real dry period known as the "August break" is generally observed 

in the last two weeks of August in most parts of southern Nigeria.  The short wet season 

follows the "August break" from early September to mid-October, with a peak period at 

the end of September. The rains are not usually as heavy as those in the long rainy season, 

although the spatial coverage over southern Nigeria is similar. The two periods of rainfall 

intensity give the double maxima phenomenon of the wet season characteristic of 

southern Nigeria. The short dry season in August between these two rainy periods allows 

for harvesting and planting of fast-growing varieties of grains, such as maize (Anyadike, 

1993, Adejuwon, 2012). 



53 

 

 

Figure 3.4: Monthly average values of rainfall in the study area (closest towns) from 

1931-1997                                 Source: (Adejuwon, 2012) 

The long dry season period starts from late October and lasts to early March with peak 

dry conditions between early December and late February (Odjugo, 2005). The period 

witnesses the prevailing influences of the dry and dusty north-east wind conditions. 

Vegetation growth is generally hampered, grasses dry and leaves fall from deciduous 

trees due to reduced moisture. Since cloud cover in the Niger Delta persists for most of 

the year due to the wet season (from March to October/November), it is appropriate to 

obtain cloud free data that falls between the months November/December to 

January/February (long dry season). The preceding assessment or discussion was to 

provide the researcher with information on areas where there is vegetation growth in 

contaminated areas that may affect or influence the detection of hydrocarbon leaks from 

the satellite data. 

3.1.4.2 Temperature, Wind, Humidity and Topography  

This section describes the characteristics of these climatic elements and how they can 

influence the distribution, flow direction and dispersion of oil spills. The annual 

temperature in the Niger Delta ranges between 26 oC and 34oC with the highest during 

the dry season (November - March) and the lowest between 24. 5oC and 26.9 oC in June, 
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July and August. The wind in the region is characterised mainly by south westerlies from 

offshore and generally restricted to azimuths of 215-266 degrees with speeds of 2-5 ms-

1 and a force range of 2-3 on the Beaufort scale (a light and gentle breeze). The effects of 

these winds are curtailed by the effect of local onshore winds from northern Nigeria 

between January and February when the dust haze concentration reaches the coast. The 

region has a high surface humidity along the coast with high values recorded in August 

ranging from 80-100% and low values between 60 to 80% occurring in November and 

March. The period of low humidity is in January to February with the values between 20 

to 40% during the harmattan spell from northern Nigeria (a dry dusty wind that blows 

along the northwest coast of Africa). Wind can affect the flow direction of oil spills on 

open surfaces e.g. surface water and bare land (soil). Similarly, high and low temperature 

or weathering over time could naturally influence the volatility and depletion of spilled 

hydrocarbons (Osuji and Ezebuiro, 2006). 

The topography of the Niger Delta or Nigerian coastal areas is also another factor that 

could influence the analysis of the study. Topography of the region is generally low-lying; 

in the Niger Delta it is about 2m to 4m above sea level (Allen, 1965) as shown in Figure 

3.4. (Ohimain, 2004) reported that physical change in soil topography is linked to the 

chemical and biological changes in the environment. Ohimain et al. (2010) also suggested 

that topographic differences between soils supporting healthy mangroves and dredged 

material heaped within the study area arises from oil exploration, which will help in 

determining the possible flow direction of an oil spill. 

3.2 Data sources 

The following datasets were used in this study: 

 In chapters 4 and 5 eight (8) Landsat TM & ETM scenes were acquired from the 

study area on Path/Row 188/57 in Figure 3.0 from the following dates: 

17/01/1986, 19/12/1986, 21/02/1987, 29/11/1999, 17/12/2000, 08/01/2003, 

26/11/2004 and 19/01/2007. The reasons for the selection of these 8 images for 

the study are fully explained in the data sampling and analysis section 3.3.  

 SRTM data at 30m resolution for the study area was obtained from and was used 

for modelling flow direction (Figure 3.4).  
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 Oil spill data from 1985-2007 (Sample Points (SP) =56), consisting of vector 

layers showing exact location (using GPS) of the 56 sample points (SP) and layers 

showing the location of oil pipelines obtained from (Shell) Nigeria through 

Nigeria’s oil regulatory agency ‘The Department of Petroleum Resources’, (DPR) 

(https://dpr.gov.ng/).  

 In chapter 6 three (3) Landsat 8 data scenes were acquired in January in years 

2013, 2014 and 2015 on Path/Row: 189/57 for the study site 2.  

 The new spill sites (9) which occurred in 2014 were identified and obtained from 

(NOSDRA) [http://nosdra.gov.ng/] achieves at [https://oilspillmonitor.ng/]. The 

oil spill data layers contain information on the type of vegetation where the spill 

occurred, volume of oil spill (barrels) etc.  

 

The accuracy and reliability of these data cannot be independently verified by the 

researcher thus relying on Nigeria’s regulatory laws for oil and gas operations. For the 

purpose of this study, it is assumed and accepted that the information in the database are 

accurate and reliable based on Nigerian law on oil and gas operations.  
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Figure 3.5: SRTM data used for generating flow direction model and oil spill sites 

Topography of the region is generally low-lying, in the Niger Delta it is about a minimum 

of 2m and maximum of 22m (average of 7m) above sea level with average slopes of 0.1% 

and -0.1% (slope values ranges between 0 – 89 degrees) (Allen, 1965).  

3.3 Data sampling and analysis  

This section focuses on the selection of both the image and oil spill data based on 

suitability, which are dependent on some environmental and climatic factors. First, 

sampling of spill sites that may be possible for identification/observation from available 

cloud free images of the study area were carried out. Secondly, the climatic windows 

were taken into account given the persistent cloud cover in the study area, which may 

cause difficulties in identifying and observing the oil spill sites from satellite data. 

Therefore only cloud-free images were suitable for the purpose of this study. For this 

reason the months of November, December, January and February were selected because 

they fall within the dry season (the climate of the study area was fully discussed in chapter 

1). Images acquired during this period are relatively free of cloud cover. Table 3.3 below 

shows the total number (56) of sample spill sites and available cloud-free data which were 

used for observing before and after the oil spill events. The total number of oil spills 



57 

 

recorded in the study area was from 1985 - 2007. The challenges faced during these 

analyses were issues of dense clouds and heavy shadows in images which could not be 

fixed using atmospheric correction. Some of these problems were solved by exclusion 

from the analysis of some affected spill sites that were under the cloud, scan-lines and 

non-vegetated land covers (water, roads, bare surface etc.). 

Table 3.1: Oil spills recorded over the years and available image data in spill sites 1. 

Year of 

Spill 

Sample 

Points 

Acquisition 

Date 

Sensor 

1985 2 17/01/1986 TM5 

1986 9 19/12/1986 - 

1998 7 21/02/1987 ETM 

1999 11 29/11/1999 - 

2000 10 17/12/2000 - 

2002 6 08/01/2003 - 

2004 4 26/11/2004 - 

2006 5 19/01/2007 - 

2007 1  - 

Total 56  Total 

 

In the USGS archives most of the images of the study area between March and November 

are 40 to 100 per cent covered by cloud. So the critical dates for image acquisition are 

November to February as they are characterised by relatively cloud-free 

cover over some spill areas. The number of images were limited by environmental factors 

as mentioned in sections 3.1 and 3.3 (e.g. seasonality), lack of available data from the 

USGS archives for the study area from 1992-1998 (as at the time of 

conducting this research), scan lines on images after April 2003 and available oil spill  d

ata (1985-2007). The data was limited to only the period under study, so the available  s

atellite data from 1986-2007 was used for observation of oil spill events from 1985-2007.    
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  Figure 3.6: Landsat images used for the study site 1 

     

Figure 3.7: (a) Number of spill events recorded over the years and (b) Observable number 

of sample spill sites by year of image. 

Figure 3.6a shows that the highest number of oil spills was recorded in 1999 and the 

lowest in 2003 and 2007. Figure 3.6b shows that the most sample spill sites were observed 
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from 1999 image data and the least in 2004. The spills were observed based on availability 

of data preceding each oil spill event, for example spills that occurred on December 29, 

1985 were observed using  image data acquired in January 1986; spills recorded after 

January 1986 were observed using imagery from December 19, 1986 and so on. 

3.4 Landsat data 

Landsat data have a relatively low temporal resolution, taking 16 days to revisit the last 

location; it is therefore possible that the period of interest may fall in a rainy season when 

there is tendency of heavy cloud to decrease the image quality. Hence, local climate and 

topographical conditions were considered when selecting imagery for the study. The 

advantages of Landsat data is that the repetitive coverage of an area at 30 metre resolution 

allows the monitoring and analysis of an environment over a period of time and can be 

used for mapping at both the local and regional level. There are various factors that 

influence the choice of sample size for both the ancillary and image data. Some of these 

factors include cloud cover in image data, availability of data in USGS archives, climatic 

(e.g. seasonality) and environmental conditions of the study area. The images used in this 

study were restricted to the months of November, December, January and February 

(discussed in section 3.1) because they are relatively free of cloud cover.
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Table 3.2: Oil spill data points used in the study 

 

Table 3.2 summarizes some of the technical specifications of the data and its applications 

to this study including more recently launched (February 13, 2013) Landsat 8 Operational 

Land Imager (OLI), which was used for validation in study site 2. 

  

Sample 

Point
Volume Spill Date

Time Diff 

(Days)

Sample 

Point
Latitude Longitude Volume Spill Date

Time Diff 

(Days)

SP1 2 19/12/2006 32 SP29 4.548372 6.710674 200 09/07/2000 161

SP2 5 12/09/2000 96 SP30 4.556227 6.794154 221 22.07.2004 127

SP3 9 21/08/2000 118 SP31 4.644064 6.643728 232 26.04.1986 237

SP4 10 10/09/1999 363 SP32 4.55289 6.900248 269 27.05.1986 206

SP5 10 22/01/2006 80 SP33 4.538704 6.655578 318 22.10.2004 35

SP6 20 04/01/1985 378 SP34 4.552134 6.699582 346 26.08.2002 135

SP7 27 04/01/1985 378 SP35 4.547682 6.664467 352 18/09/2006 11

SP8 28 17/11/1999 12 SP36 4.534766 6.695854 358 20.09.1998 819

SP9 32 19/08/2004 99 SP37 4.534766 6.695854 379 20/08/1998 46

SP10 39 21/09/1999 69 SP38 4.553049 7.006055 400 01/11/2000 560

SP11 40 04/12/2006 47 SP39 4.550757 6.693101 468 06.06.1999 89

SP12 50 15/11/1999 14 SP40 4.552936 6.965783 500 15/02/2003 650

SP13 54 14/11/2000 33 SP41 4.732953 6.849292 500 19/09/2000 370

SP14 62 08/07/1999 144 SP42 4.549828 6.922278 507 21.12.1998 370

SP15 63 04/11/1986 45 SP43 4.55548 7.002535 558 15/12/2000 300

SP16 63 02/08/2004 116 SP44 4.547457 6.678789 625 21/02/2000 474

SP17 75 13/03/1986 281 SP45 4.530398 6.68668 785 23/07/1998 708

SP18 75 03/10/2000 75 SP46 4.539636 6.692326 807 09.01.1999 3

SP19 96 12/05/1986 221 SP47 4.505723 6.687569 813 16.01.2007 707

SP20 97 18/06/1986 184 SP48 4.539636 6.692326 1000 10.01/1999 158

SP21 117 30/10/2000 48 SP49 4.551067 6.976329 1042 14.08.2006 37

SP22 126 11/05/2006 254 SP50 4.653909 6.642229 1069 02.12.2002 844

SP23 128 16/02/1986 306 SP51 4.532672 6.719641 1505 26.08.1998 163

SP24 150 13/01/2003 169 SP52 4.546667 6.886915 1720 09.07.1986 134

SP25 150 04/08/2006 5 SP53 4.549622 6.677431 1734 07.09.2006 270

SP26 155 11/11/2006 70 SP54 4.561336 6.713058 2578 29.04.1986 234

SP27 180 29/11/2006 52 SP55 4.698156 7.004298 2761 28.12.1985 20

SP28 184 24/08/1999 97 SP56 4.561988 6.906837 3500 24.06.2002 198
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Table 3.3: Landsat data sensor and band specifications   

Satellite Sensor Band No’s Spectral Range 
Scene 

Size 
Pixel Resolution 

            

L 4-5 TM multi-spectral 1,2,3,4,5,7 0.45 - 2.35 µm 

 

 170 

  
X 

185 

 

km 
  
  
  
  

30 meter 

  ETM+ multi-

spectral 

      

L 7 1,2,3,4,5,7 0.450 - 2.35 µm 30 meter 

L 7 ETM+ thermal 6.1, 6.2 10.40 - 12.50 µm 60 meter 

L7 
ETM+ 

Panchromatic 
8 0.52 - 0.90 µm 15 meter 

L8 OLI 1,2,3,4,5,6,7,9 0.43 - 2.29 µm 30 meter 

L8 

Thermal Infrared 

Sensor (TIRS) 

(1&2) 

10, 11 10.60 - 12.51 µm 100 meter 

L8 OLI Panchromatic 8 0.50 - 0.68 µm 15 

 

The Landsat 8, originally titled ‘Landsat Data Continuity Mission’ (LDCM) which has 

10 bands, compared to the 8 bands of ETM+, collects data with the OLI instrument that 

has advanced measurement capabilities, with an “ultra-blue” band (Band 1) for coastal 

and aerosol studies, as well as Band 9, which is useful for cirrus cloud detection. Two 

thermal bands are also present in the Thermal Infrared Sensor (TIRS) and scene size is 

comparable to current Landsat scenes (NASA). Landsat 8 has a slight difference in 

spectral reflectance response and measurements compared with other Landsat data 

(Flood, 2014). It was expected that some vegetation indices (e.g. NDVI) would be 

affected by an average of 5% if the systematic differences between the sensors were not 

adjusted for (Flood, 2014). Thus chapter 4 and 5 in this study utilised only TM and ETM+ 

data for the temporal analysis in SS1 to avoid the difference in indices values with that of 

Landsat 8. 
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3.5 General methodology  

The general methodology used for the overall analysis of the Landsat TM and ETM+ for 

SS1 and OLI data for SS2 for the detection of pollution in oil polluted environments 

(sample points) is outlined in Figure 3.7. The detailed descriptions of different methods 

or techniques used in addressing each of the research objectives are discussed at the start 

of result chapters 4, 5 and 6. Figure 3.7 shows the general methodology employed to 

achieve the research objectives of this study. The methodology is divided into four 

sections; the first section (in red) describes the data pre-processing, processing and 

integration (atmospheric correction, computing flow direction model and spectral 

transformation). The second section (in black) addresses objectives 1 and 2; objective 3 

is separately discussed in chapter 6. Specific methods are fully described in each of the 

respective chapters. 

 

Figure 3.8: General methodology flowchart showing the four stages of analysis used for 

the study 
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3.5.1 Data pre-processing 

To start any scientific analysis on multiple remote sensors, spectral data must have the 

same units for radiance before calculating the reflectance. For the purpose of this study 

necessary information to put Landsat TM and ETM+ into comparable measures of 

radiance and reflectance has been put together from various sources in order to assist in 

adjusting the raw sensor data to a common starting point for data processing.  The term 

image pre-processing in remote sensing means correction of radiometric and geometric 

distortions to improve the quality of the original image. Image data processing and 

analysis is preceded by various pre-processing techniques in order to provide 

desirable/appropriate output or operations that are preliminary to the principal analysis 

(Campbell and Wynne, 2011). In some cases pre-processing is performed by the data 

provider for the end user. As is the case for this study, Landsat data were downloaded as 

Level 1 products, which means some of the pre-processing (radiometric and geometric 

corrections) have been performed by the data provider. Images are characterised by 

variations in dates of acquisition, errors can occur due to solar angle elevation, which may 

require radiometric correction (Goslee, 2011). While some errors relating to position of 

pixels are caused by variation in altitude, attitude and velocity of the sensor platform 

(Bruce and Hilbert, 2006) other factors include panoramic distortions (change in image 

shape caused by geometry of a lens movement), Earth curvature, relief displacement and 

non-linearities in the sweep of a sensor’s Instantaneous Field of View (IFOV) (Lillesand 

et al., 2008).   

3.5.1.1 Atmospheric Correction (FLAASH Module)  

This procedure was carried out to convert the satellite-recorded digital counts to ground 

reflectance (Chavez, 1996). Digital sensors record electromagnetic radiation (ER) from 

each target viewed on the ground surface as digital numbers (DN) for each spectral band; 

for Landsat TM and ETM+, these are raw DN with integer values from 0-255. In some 

cases these raw DN values need not be converted to spectral radiance if the actual spectral 

radiance is not of interest (for example, in the classification of single satellite imagery). 

In the case of this study which involves analysing changes in spectral signatures from 

multitemporal data, it became necessary to convert these raw DN values to spectral 

radiance using parameters provided in image metadata (Duggin, 1990, Goslee, 2011). 

This was done to provide information on the spectral signature to compare from one 
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image to another and make effective use of spectral signatures that contain the list of 

environmental elements and their reflectance. Absolute radiometric correction of multi-

temporal satellite imagery requires atmospheric correction associated with the 

atmospheric properties at the time of the image acquisition. The radiometric correction is 

necessary for the case of tracking land cover changes and vegetation indices over time 

(Yang and Lo, 2000). It is also important in reducing error to estimate the surface 

reflectance in the case of multitemporal datasets and adjust to a common radiometric scale 

(Song et al., 2001). Absolute atmospheric correction was also carried out in order to 

correct the electromagnetic radiation signals collected by satellites in the solar spectrum, 

which are modified by scattering and absorption by gases and aerosols while travelling 

through the atmosphere from the Earth’s surface to the sensor (Song et al., 2001). The 

images for this study were processed by converting top-of-atmosphere radiance values to 

surface reflectance following the method proposed by Chander et al. (2009). In this study, 

the FLAASH routine available on the ENVI software was used to change the digital 

numbers (DN) values to surface reflectance. Information regarding the processing of 

these images was contained in the metadata (.txt) file downloaded from the USGS 

archive.   

3.5.1.2 Geometric correction or Image registration  

Once the radiometric correction or atmospheric correction process has been concluded, 

the data will be ready for geometric correction. Geometric corrections are performed in 

order to avoid geometric distortions from a distorted image, and were achieved by 

establishing the relationship between the image coordinate system and the geographic 

coordinate system using calibration data of the sensor, measured data of position and 

attitude, ground control points and atmospheric condition caused by certain classes of 

internal and external conditions. External distortions result from the attitude of the sensor 

or shape of the object, and internal distortion is caused by the geometry of the sensor. The 

one pre-processing technique that was unavoidable in this work is image registration, 

since the study intends to carry out temporal analysis of the data. This process is aimed 

at geometrical alignment of two or more images to match corresponding pixels 

representing the same object. The 8 year image data used in the study appears to have 

relatively the same geometric relationship when viewed in the GIS and remote sensing 

software.  To ascertain the geometric relationship of the images, automatic image to 

image registration was performed. In order to obtain 25 tie points for further filtering, 50 
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points were chosen to register the images and this process was repeated on all the 

remaining images. All these processes were conducted to ensure that these images are 

geometrically aligned into the same coordinate system, so that the corresponding pixels 

contained the same object. Thus in this study, variability between scenes were normalised 

for temporal analyses.  

3.6 Calculating vegetation indices 

This process is an operation that re-expresses images in a more meaningful way and is 

computed from two or more spectral bands. In this study, the image transformation 

process used was the generation of vegetation indices (VIs) for the purpose of change 

detection or temporal analysis and mapping vegetation status at the oil polluted sites. 

Vegetation indices may provide quantitatively different information on changes that have 

occurred between two or more dates. Also, the ratio of two or more bands in this work 

was used to analyse single-date images for differentiating vegetation health or status at 

the oil polluted and non-polluted sites. The description of vegetation indices used for the 

study was fully discussed in Chapter Two. The vegetation indices in the study were all 

derived from Landsat multispectral images, characterised by wide broadband channels, 

so were termed broadband multispectral vegetation indices (BMVIs) and used in the 

remaining sections. 

The computation of 20 BMVIs in the study was done, using ENVI, on the pre-processed 

and atmospherically corrected data to improve the quality of the images. This was done 

to detect the presence, condition and relative abundance of vegetation, and was also 

dependent on the type of sensor and involved a combination of two or more spectral 

bands. The product of this computation was a single index value corresponding to the 

biophysical parameters that have a particular meaning regarding the vegetation. The 

created vegetation index layers were used to extract values at the polluted (P) and Non-

Polluted (NP) sites. The GPS locations of the spill points were obtained as shape files, 

which are compatible with both GIS and remote sensing software when they are overlaid 

on the BMVIs layers. The oil pipeline map and information on where spills occurred are 

contained in the attribute table of spill points that made it easy to identify which 

vegetation type may have been affected by oil pollution. In the study, land cover types 

such as built up areas, water bodies, and bare land were considered as non-vegetated and 

only spill points that fell within the vegetated areas were used for the analysis. Thus data 
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obtained for this study met the basic requirements because they were already in a digital 

format and compatible with the remotely sensed data for the study. The study had three 

objectives, but had some differences in technical approach and method used for the 

quantitative analysis. The first objective was to perform analysis and temporal evaluation 

of vegetation indices before and after pollution events to discriminate between vegetation 

conditions at the polluted and non-polluted sites. The second objective addresses factors 

that may influence the detectability of oil pollution in vegetated areas using BMVIs in an 

oil polluted environment.  Fifty six (56) oil spill sites were selected based on availability 

of satellite data and some environmental factors. In the first part of the analysis (chapter 

4), 37 sample spill sites were selected for analysis with the satellite data. The samples 

used for this part of analysis included volumes of oil at spill sites with <200 and >200 

bbl. Thus the first part of the analysis was not focused on the volume of oil spill, but 

rather viewed the time period between image acquisition and spill date and spatial 

distance as influential factors in detection of oil polluted sites. The second part analysed 

the 56 sample sites with consideration of the volume of oil spill, the time gap between 

image acquisition and spill date and spatial distance as influential factors in detection of 

oil polluted sites. The volume of oil spill used in the study ranged between 2 (minimum) 

to 3500 (maximum) barrels (bbl) and the time period between the oil spill and image 

acquisition, ranging from 3 to 840 days, was also calculated for analysis (see Table 3.2). 

Table 3.2 shows the 56 sample points extracted for analysis in the study, with the 

thresholds shown containing corresponding information on volume of oil spill (bbl) and 

calculated time gap between the oil spill and image acquisition date (in days). The 

information in Table 5.1 was extracted using data from Table 3.2.   
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Chapter 4 : Investigating BMVIs for detection and analysis of

      vegetation affected by oil spill over time and space  
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The work presented in this chapter has been published as: 

 
Adamu, B., Tansey, K. and Ogutu, B. (2015). "Using vegetation spectral indices 

to detect oil pollution in the Niger Delta." Remote Sensing Letters 6(2): 145-154. 

doi: 10.1080/2150704X.2015.1015656 

4.0  Introduction 

This chapter investigated and assessed vegetation indices that are capable of detecting 

vegetation affected by oil pollution and the features which made them suitable for this 

task. This was done by assessing the temporal changes in the vegetation indices (pre- and 

post-oil spills) at control sites (where there was no oil spill recorded) and at polluted sites 

(where oil spills were recorded). Vegetation conditions at the polluted (P) and non-

polluted (NP) sites were also assessed to determine if their response differed.  

4.1  Data analysis and method 

To determine if there are significant differences between vegetation status at the P and 

NP sites the oil pipeline maps, spill record (1985, 1986, 1998 and 2000) and GPS 

locations of spill points (Table 3.0) were selected for the first part of the analysis for this 

objective. The images before and after each (1986, 1987, 1999, 2000 and 2003) of the oil 

spill events were processed and used for the temporal analysis and comparison of 

vegetation conditions between the polluted and non-polluted sites. Thirty-seven (37) spill 

sites during this period that fall along the pipeline routes were considered. 37 out of 56 

samples were chosen at this stage to explore the capability of the BMVIs for detecting 

biophysical and chemical changes in vegetation affected by oil pollution. They were also 

chosen to identify factors that may influence capability of the BMVIs to detect vegetation 

affected by oil spills. Only images from 1986-2003 were used at this stage to select the 

best performing indices before applying them in Chapter 5.  

Based on the oil spill database, most of the spill sites were located in different types of 

vegetation, thus the study selected those spill sites that fell within the mangrove swamp 

vegetation class as stored in the database. The selection criteria were adopted to ensure 

that similar vegetation types from the polluted and non-polluted sites were compared. 

From the sample polluted points 37 samples were selected and an equivalent number of 

points were also selected in areas which had not experienced any oil spills. These were 
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located further away from oil facilities (non-polluted) and used as control sites, similar to 

the method used in field work by (Getter et al., 1981). Both the polluted and non-polluted 

sites in Figure 4.1 are located in the mangrove swamp vegetated areas, as contained in 

the oil spill database/records and layers. The areas where oil spills occurred are referred 

to as polluted sites (P) and the areas where there were no spills were referred to as non-

polluted/control sites (NP) for the remainder of this work. Figure 4.1 shows the 

distribution of samples from P and NP sites over the mangrove swamp vegetation type. 

 

Figure 4.1: Samples from oil polluted (P) and non-polluted (NP) sites 

Twenty broadband multispectral vegetation indices (BMVIs) were then extracted from 

these two groups of sites (i.e. polluted and non-polluted sites) within the mangrove 

swamp vegetated areas to ensure that the sample sites had the same vegetation properties. 

At each of the oil spill points, a 3 x 3 pixel window was sampled and vegetation indices 

(BMVIs) were extracted using ENVI software. The average/mean was calculated in order 

to have a representation of the surrounding pixels. Because oil spills could migrate 

beyond the polluted pixel, it may be expected that the impact could reach the 

neighbouring pixels. This technique was replicated in the selection of samples at the non-

polluted sites (i.e. vegetation not affected by pollution) further away from oil facilities.  

Spatial and temporal values of the 20 BMVIs were computed from the two groups of sites 
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(P and NP sites) for pre and post oil spill dates. The period between the spill event and 

image date were considered as the oil spill date for the purpose of this study. Paired t-test 

statistics for the mean BMVIs values were also calculated to determine whether there is 

significant difference in vegetation conditions at the P and NP sites and before and after 

the oil spill. To perform the test, a null (H0: μd = μ0) and alternative (H0: μd ≠ μ0) hypothesis 

were chosen for the purpose. This analysis was done to provide a view on possible oil 

pollution effects on biophysical and biochemical characteristics of vegetation before and 

after the spill at the P sites. A hypothesis was proposed to test (i) whether there is a 

significant difference between BMVIs at the P and NP sites and (ii) whether there is a 

significant difference in BMVIs obtained before and after the spills with the ones at the 

P sites. This was also chosen to determine BMVIs capabilities for detecting oil pollution 

impact on vegetation and identifying best and least performing indices. 

4.2 Results  

Vegetation condition before and after the spill both at the P and NP sites were assessed 

and the potential of BMVIs to detect vegetation affected by oil pollution were also 

evaluated. The analysis focuses on sensitivity of the BMVIs to vegetation conditions in 

the oil polluted environment. It is also expected that some factors may have influence the 

performance of vegetation indices in detection of vegetation stress from oil contamination 

(to be analysed in chapter 5). The variation in vegetation spectra that reflects biochemical 

and biophysical characteristics due to oil spill from those images were carried out to 

assess the vegetation changes. Twenty BMVIs were assessed to determine their capability 

to detect oil pollution in this study and the best and least performing indices were 

identified using the calculated statistics.   
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4.2.1 Analysis of vegetation indices at the (P) and (NP) sites  

(a) Testing hypothesis for BMVIs at the P and NP sites: 

H0 (BMVIP = BMVINP) the mean BMVIs values obtained at P sites are equal to the 

ones at the NP sites. 

H1 (BMVIP ≠ BMVINP) the mean BMVIs values obtained at P sites are not equal to the 

ones at the NP sites. 

The mean calculated statistics from the total of twenty BMVIs, fifteen (ARVI2, ClGreen, 

ARVI2, SAVI, EVI2, G/NIR, SRI, GRNDVI, NDVI, MSAVI2, GBNDVI, MSR705, 

NBR, MSI and GLI) indicate significant difference between the polluted and non-polluted 

sites with p <0.05 (Table 4.1). Based on the results the low p-values suggest that it is 

evident to reject null hypothesis and accept the alternative hypothesis for the fifteen 

BMVIs. The other remaining five VIs (i.e. EVI, G\R, G\SWIR, PPR and TNDVI) show 

low significant differences between the P and NP sites with high              p > 0.05 suggest 

that the null hypothesis be accepted and alternative hypothesis rejected.  

From these results it can be interpreted that statistical mean for BMVIs at P and NP sites 

differs and that these fifteen indices have shown capacity to discriminate vegetation 

affected by oil pollution and the unaffected vegetation. Thus the five BMVIs are 

considered potentially less suited for detecting vegetation affected by oil pollution 

compare to the fifteen BMVIs.  
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Table 4.1: BMVIs statistics at 95% confidence level from P and NP sites 

  Polluted  Non-polluted  Calculated Statistics 

Indices Mean Stdev Std Err Mean Stdev Std Err t-Test Value P-Values 

CIGreen 0.41 0.33 0.02 1.40 0.59 0.10 8.96 p < 0.05 

ARVI2 0.07 0.15 0.01 0.28 0.13 0.02 6.72 p < 0.05 

SAVI 0.31 0.19 0.02 0.59 0.16 0.01 6.72 p < 0.05 

EVI2 0.50 0.30 0.46 0.94 0.26 0.01 6.71 p < 0.05 

GRN NIR 0.14 0.12 0.05 0.31 0.11 0.02 6.35 p < 0.05 

SRI 1.64 0.43 0.02 2.40 0.59 0.10 6.33 p < 0.05 

GRNDVI 0.15 0.12 1.13 0.03 0.12 0.02 6.27 p < 0.05 

NDVI 0.22 0.13 0.07 0.39 0.11 0.02 6.25 p < 0.05 

MSAVI2 0.34 0.19 0.05 0.56 0.12 0.01 5.83 p < 0.05 

GBNDVI 0.21 0.12 0.02 0.02 0.15 0.02 5.83 p < 0.05 

MSR705 0.10 0.13 0.03 0.30 0.17 0.03 5.53 p < 0.05 

NIR RED 1.00 0.10 0.01 1.00 0.00 0.01 4.83 p < 0.05 

NBR 0.47 0.24 0.02 0.65 0.05 0.01 4.55 p < 0.05 

MSI 0.59 0.19 0.03 0.45 0.09 0.01 4.17 p < 0.05 

GLI 3.30 6.86 0.01 0.03 0.03 0.01 2.90 p < 0.05 

  EVI 1.94 2.8 0.01 2.31 1.62 0.27 0.73 p > 0.05 

GRN RED 0.07 0.04 0.05 0.09 0.05 0.01 1.99 p > 0.05 

 GRN 

SWIR 

0.33 0.28 0.04 0.41 0.11 0.02 1.59 p > 0.05 

  PPR 0.05 0.04 0.02 0.01 0.08 0.01 2.25 p > 0.05 

 TNDVI 0.46 0.14 0.04 0.44 0.06 0.01 1.06 p > 0.05 

Note:  t-critical value = 1.99   Degree of Freedom = 36.00    Probability Error (α) = 0.05 

Table 4.1 showing the best performing vegetation indices computed from P and NP sites. 

The calculated statistics with p < 0.05 indicates significant difference between the two 

sites and p > 0.05 not significant. 
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Figure 4.2 : Box plots show the minimum, 25% quartile, median, 75% quartiles and 

maximum values respectively of BMVIs from P and NP sites. The red color stands for P 

sites and green for NP sites. Note that the minimum and maximum for the GLI value is -

11 and 14 respectively. 
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4.2.2 Analysis vegetation indices before (Ppre), spill date (Spill Date) and after (Ppost) at 

the P and NP sites over time 

(i) At the P sites 

H0 (BMVIPpre & Ppost = BMVISpill Date) the mean BMVIs values obtained Ppre and 

Ppost oil pollution are not different from the ones at the Spill Date. 

H1 (BMVIPpre & Ppost ≠ BMVISpill Date) the mean BMVIs values obtained Ppre and 

Ppost oil pollution are different from the ones at the Spill Date. 

Twelve of the twenty BMVIs (NDVI, SAVI, EVI2, G/NIR, G/SWIR, NIR/R, ARVI2, 

EVI, MSR705, TNDVI, GLI and PPR) showed significant difference in vegetation 

condition before and after (p <0.05) (Table 4.2) and 8 less significant (p >0.05). The 

temporal analysis of the spill sites shows indicated significant difference Pre and Post 

spill observation. Since the results show that twelve BMVIs before and after oil spill date 

at the P sites indicated low p-values it suggests that there is evidence to reject the null and 

accept the alternative hypothesis. 

(ii) At the NP sites 

H0 (BMVIPpre & Ppost = BMVISpill Date) the mean BMVIs values obtained Ppre and 

Ppost oil pollution are not different from the ones at the Spill Date. 

H1 (BMVIPpre & Ppost ≠ BMVISpill Date) the mean BMVIs values obtained Ppre and 

Ppost oil pollution are different from the ones at the Spill Date. 

At these control (NP) sites (Table 4.3) eleven of the twenty indices (NDVI, SAVI, EVI2, 

GBNDVI, NBR, G/NIR, G/SWIR, MSAVI2, G/R, ARVI2 and SRI) did not indicate 

significant change in the index values at Pre and Post spill observation with p > 0.05. The 

results here the show that eleven BMVIs indicated high p which suggests that null 

hypothesis can be accepted and reject the alternative hypothesis with low p. The results 

here could be interpreted as statistical means of eleven BMVIs from these NP sites shows 

that vegetation status remains relatively the same over time compare to ones obtained at 

the P sites. 
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Table 4.2: Twelve (12) BMVIs temporal statistics at 95% confidence level from P sites 

  Ppre Spill Date Ppost p-values 

BMVIs Mean Stdev Std Error Mean Stdev Std Error Mean Stdev Std Error Ppre Ppost 

NDVI 0.28 0.18 0.03 0.22 0.12 0.02 0.28 0.17 0.03 p < 0.05 p > 0.05 

SAVI 0.25 0.14 0.02 0.13 0.09 0.01 0.25 0.12 0.02 p < 0.05 p < 0.05 

EVI2 0.41 0.24 0.04 0.13 0.12 0.02 0.4 0.21 0.03 p < 0.05 p < 0.05 

G/NIR 0.71 0.2 0.03 0.14 0.12 0.02 0.73 0.20 0.03 p < 0.05 p < 0.05 

G/SWIR 1.27 0.54 0.09 0.45 0.24 0.04 1.40 0.73 0.12 p < 0.05 p < 0.05 

NIR/R 1.77 0.52 0.09 0.21 0.13 0.02 1.73 0.42 0.07 p < 0.05 p < 0.05 

ARVI2 0.25 0.14 0.02 0.07 0.15 0.02 0.25 0.12 0.02 p < 0.05 p < 0.05 

EVI 1.96 4.07 0.67 1.83 2.82 0.46 0.94 0.66 0.11 p < 0.05 p < 0.05 

MSR705 0.44 0.27 0.04 0.1 0.13 0.02 0.43 0.23 0.04 p < 0.05 p < 0.05 

TNDVI 0.86 0.08 0.01 0.47 0.14 0.02 0.86 0.07 0.01 p < 0.05 p < 0.05 

GLI 5.86 5.50 0.90 3.30 6.86 1.13 1.43 6.69 1.10 p < 0.05 p < 0.05 

PPR 0.11 0.04 0.01 0.05 0.04 0.01 0.15 0.04 0.01 p < 0.05 p < 0.05 
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Table 4.3: BMVIs temporal statistics at 0.95confidence level from control or NP sites 

  Ppre Spill Date Ppost p-values 

BMVIs  Mean Stdev Std Error Mean Stdev Std Error Ppost Stdev Std Error Ppre Ppost 

NDVI 0.28 0.61 0.10 0.4 0.10 0.02 0.37 0.07 0.01 p > 0.05 p > 0.05 

SAVI 0.56 0.12 0.02 0.59 0.16 0.03 0.55 0.11 0.02 p > 0.05 p > 0.05 

EVI2 0.90 0.19 0.03 0.94 0.26 0.04 0.88 0.17 0.03 p > 0.05 p > 0.05 

GRNDVI 0.10 0.08 0.01 0.03 0.12 0.02 0.01 0.08 0.01 p > 0.05 p > 0.05 

NBR 0.62 0.09 0.01 0.65 0.05 0.01 0.61 0.07 0.01 p > 0.05 p > 0.05 

G/NIR 0.29 0.07 0.01 0.31 0.11 0.02 0.28 0.07 0.01 p > 0.05 p > 0.05 

G/SWIR 0.40 0.12 0.02 0.41 0.11 0.02 0.39 0.11 0.02 p > 0.05 p > 0.05 

MSAVI2 0.54 0.09 0.01 0.56 0.12 0.02 0.53 0.08 0.01 p > 0.05 p > 0.05 

G/RED 0.10 0.03 0.01 0.09 0.05 0.01 0.10 0.02 0.01 p > 0.05 p > 0.05 

ARVI2 0.26 0.09 0.02 0.28 0.13 0.02 0.25 0.08 0.01 p > 0.05 p > 0.05 

SRI 2.24 0.37 0.06 2.40 0.59 0.10 2.20 0.34 0.06 p > 0.05 p > 0.05 

Note:    t-critical value = 1.99             Degree of Freedom = 36.00               Probability Error (α) = 0.05 
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4.3 Discussion 

4.3.1 Spatial analysis of vegetation indices at the P and NP sites 

Physiological changes in plants can be related to oil pollution and other environmental 

stress, which may be responsible for their spectral behaviour. Fifteen of the twenty indices 

shown in Table 4.1 (ClGreen, ARVI2, SAVI, EVI2, G/NIR, SRI, GRNDVI, NDVI, 

MSAVI2, GBNDVI, MSR705, NIR/R, NBR, MSI and GLI) indicated significant 

difference between the vegetation conditions at the P and NP sites when a statistical t-test 

was computed. The box plot in Figures 4.1 illustrates differences between BMVIs at the 

P and NP sites. Therefore, these fifteen indices can be said to have the potential of being 

used to detect vegetation affected by oil pollution. The common feature in these indices 

is that they include the red (R) and near infrared (NIR) bands in their calculation. The 

sensitivity shown by these indices to changes in vegetation condition in P areas is likely 

to be due to the R band being sensitive to chlorophyll in the visible spectrum and NIR 

being optimal for characterising vegetation varieties and conditions (Ceccato et al., 2001). 

Thus both the R and NIR band may be capable of indicating changes in chlorophyll 

content related to changes in vegetation health as NIR decrease in reflectance at 800nm 

and 1300nm due to oil pollution (Zhu et al., 2013). Evidence of stress in vegetation and 

changes in plants pigments are commonly noticed in the visual and NIR portions (Rosso 

et al., 2005). However, it is worth noting that two indices which also use the R and the 

NIR wavelengths (i.e. the EVI and TNDVI) did not show any significant difference 

between the polluted and non-polluted sites (p > 0.05). The reason for this could be due 

to the fact that these indices correct explicitly for influence of soil background (Liu and 

Huete, 1995). This may be assumed to be the reason why it is less efficient in detecting 

vegetation affected by pollution in such a swampy environments. An interesting 

observation from this study is that vegetation indices which included wavelengths that 

are rarely used such as the G and B bands also seemed to perform well in detecting the 

differences in vegetation condition in P and NP sites. For example, the GBNDVI which 

is a function of the blue (B) band and NIR showed significant difference between 

vegetation condition in the P and NP areas. Similarly, BMVIs with green bands (e.g. 

ClGreen, G/NIR and GRNDVI), showed significant difference between vegetation in P 

and NP sites.  
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The results from those vegetation indices calculated using all the three visible bands (i.e. 

R, G and B bands) was mixed. These indices include the GLI, G/R and PPR. While the 

GLI detected significant difference between the vegetation condition in the P and NP 

sites, the G/R and the PPR did not detect this difference. The results of indices that 

combined SWIR with NIR band performed well because the NIR reflectance can be 

influenced by water stress due to changes in mesophyll structure (Rosso et al., 2005). The 

reduction in water content is also responsible for changes in SWIR reflectance (Bowman, 

1989). For example, the NBR - which is designed to discriminate burnt areas (López and 

Caselles 1991) - was capable of discriminating between vegetation in P and NP sites. 

However, the indices which combined SWIR band with visible band (G) band (e.g. the 

G/SWIR) did not perform well in detecting the difference between vegetation conditions 

in two sites. Despite the capabilities of ClGreen and G/SWIR in distinguishing between 

P and NP sites, they failed to show significant difference in Ppre and Ppost spill with spill 

event date. In the case of EVI, PPR and TNDVI showed significant differences in Ppre 

and Ppost spill with poor capacity in differentiating between P and NP sites. Interestingly 

one index G/R failed in both the analysis to show any capability of differentiating neither 

P from NP nor Ppre and Ppost spill events. 

 

4.3.2 Temporal analysis of vegetation indices at the P and NP sites 

In sections 4.2.1 20 BMVIs were used to discriminate between vegetation affected by oil 

pollution (P) from unaffected vegetation (NP). This section used the same BMVIs to 

assess the difference in vegetation index values before and after the pollution. The results 

show that vegetation at the sample P sites before and after the pollution appears to be 

unaffected.  In Table 4.2, show that twelve BMVIs indicated significant differences 

between Ppre and Ppost spill events which could be due to their sensitivity in the polluted 

environment. The twelve BMVIs values at the polluted sites before and after the spill are 

relatively higher compared to values obtained during the spill event date. However, at the 

non-polluted control sites, Table 4.3 show that eleven BMVIs values remain relatively 

the same before and after the spill date. Five BMVIs (NDVI, SAVI, ARVI2, G/NIR and 

G/SWIR) indicated significant difference before and after the spill at the P sites, whilst 

showing no significant difference over a similar time period in the control site.   
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The common features in these five BMVIs which are the most consistent and other similar 

ones are that they include the red (R) and near infrared (NIR) bands in their calculation. 

The sensitivity shown by these indices to changes in vegetation condition in polluted 

areas, before and after the spill, is likely to be due to the R band being sensitive to 

chlorophyll in the visible spectrum and NIR being optimal for characterising vegetation 

varieties and conditions. Thus both the R and NIR band may be capable of indicating 

changes in chlorophyll content related to changes in vegetation health due to oil pollution. 

However, a small number of indices which also use the R and the NIR wavelengths did 

not show any significant difference carried study area with (p > 0.05). The reason for this 

could be due to the fact that these indices correct explicitly for influence of soil 

background (Liu and Huete, 1995). This may be assumed to be a reason why it is less 

efficient in detecting vegetation affected by pollution in such a swampy environments. 

An interesting observation from this study is that vegetation indices which included 

wavelengths that are rarely used - such as the G band - also seemed to perform well in 

detecting the temporal vegetation condition at both the P and NP (control) sites. For 

example the BMVIs with green bands (e.g. G/NIR, GRNDVI and G/SWIR), showed that 

vegetation condition before and after spill events at the polluted sites are significantly 

different and relatively the same at the non-polluted control sites. It has also been shown 

that indices using ratios of reflectance from NIR and green regions in both the narrow and 

broad wavelengths correlated well with chlorophyll (Blackburn, 1999). 

Some of these findings support assertions made by other studies such as Yoder and 

Waring (1994) which showed that the green band is well correlated to vegetation 

parameters, Leaf Area Index for example, and could be used as a substitute to bands such 

as the red band. Gitelson et al. (1996), showed that the G band was more sensitive to 

chlorophyll than the R channel. The results from vegetation indices calculated using all 

the mixed three visible bands (i.e. R, G and B bands) which includes the GLI and PPR 

indicated significant difference in vegetation condition before and after the pollution at 

the polluted sites. But they (indices) performed poorly by indicating significant difference 

in temporal changes in vegetation conditions at the non-polluted control sites. The results 

of indices that combined SWIR with NIR band performed well. For example the NBR 

which is designed to discriminate burnt areas.  López and Caselles (1991) was capable of 

showing vegetation conditions before and after the spill are relatively the same at the non-

polluted sites. However, the indices which combined SWIR band with visible band (G) 
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band (e.g. the G/SWIR) performed well in detecting the difference before and after 

pollution at the polluted sites. However, the index did not indicate any temporal changes 

in vegetation conditions at the non-polluted sites (i.e. vegetation condition before and 

after the pollution at these sites remain relative the same). 

4.4 Summary 

The twenty investigated BMVIs showed that the best performing indices in detecting 

vegetation affected by oil pollution were those derived using a combination of reflectance 

from the visible and NIR wavelengths. Fifteen BMVIs were capable of discriminating 

between vegetation at P and NP site. Twelve BMVIs indicated significant temporal 

changes in vegetation at the P sites, but did not indicated significant difference in spectral 

changes in vegetation at the NP sites. Five BMVIs (NDVI, SAVI, ARVI2, G/NIR and 

G/SWIR) appear to be most consistent in indicating significant differences in BMVIs 

before and after pollution and between P and NP sites, and were chosen for further 

analysis in chapter five. As mentioned at the beginning of this chapter, factors such as 

volume of oil, time gap between the oil spill and imagery date, and variation in spatial 

distance may assume to be influential in the performance of BMVIs in detecting impact 

of oil pollution vegetation. Thus, in chapter five the work focuses on determining how 

these factors influence the detectability of oil pollution using the five BMVIs.   
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Chapter 5 : Analysis of factors influencing detectability of oil  

                     pollution using BMVIs 

  



82 

 

The work presented in this chapter has been published as: 

Adamu, B., Tansey, K. and Ogutu, B., (2016). “An investigation into the factors 

influencing the detectability of oil spills using spectral indices in an oil-polluted 

environment”. International Journal of Remote Sensing, 37(10), pp.2166-2185. DOI: 

10.1080/01431161.2016.1176271 

5.0 Introduction  

This chapter focuses on examining factors influencing the detectability of oil pollution 

using BMVIs, including the volume of oil spilt, the time gap between oil spill and image 

acquired date and spatial distance. The first step was to determine the relationship 

between the volume of oil spill and the BMVIs in order to set a threshold using regression 

analysis. In chapter 4 the capability of BMVIs to detect changes in vegetation spectral 

reflectance relating to oil pollution was carried out. Five BMVIs (NDVI, SAVI, ARVI2, 

G/NIR and G/SWIR) show sensitivity in discriminating vegetation affected by oil 

pollution and the unaffected ones. They show potentials in detection of vegetation 

affected by oil pollution before and after oil spills as well as at the control sites. 

5.1 Method 

The second part analysed fifty-six (56) sample sites with consideration of volume of oil 

spill, time gap between image acquisition and spill date and spatial distance as influential 

factors in detection of oil polluted sites. Landsat TM and ETM image data used for the 

second part of this work were acquired in 1986, 1987, 1999, 2000, 2003, 2004 and 2007. 

The oil spill events for the spill sites were obtained in 1985, 1986, 1998, 1999, 2000, 

2004, 2006 and 2007. From the database, the range of spill size that occurred in the study 

is from the minimum of 5 to maximum of 3500 barrels (bbl). 

5.1.1  Volume of oil spill  

From the database, the range of volume of oil spill that occurred in the study is from a 

minimum of 3 to maximum of 3500 bbl and the number of days computed between the 

oil spill event and image acquisition date range from 2 to 844 days. The relationship 

between oil spill volume and the level of impact on the vegetation health has been 

demonstrated in (Mackay and Matsugu, 1973, Mackay and Mohtadi, 1975) in Canada. 

Hypothetically, a small volume of oil spill over land may occupy little space in a pixel of 

30 m resolution. In contrast, the large volume of oil spill could occupy a large space in a 
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30 m pixel over land. Thus, it is expected smaller volumes of oil spill may have little 

impact on vegetation, thereby limiting the detectability of these effects using a 30 m 

spatial resolution sensor such as Landsat.  Factors such as land cover types (where the 

spill occurred), volume of oil spill and time of image acquisition were taken into 

consideration in this study. To determine if the volume of oil spill and number of days 

between oil spill events and image acquisition date can have influence on the detection 

of oil spill over vegetated areas using NDVI and NDWI, a number of assumptions were 

made. We assumed that index (NDVI and NDWI) values could drop as the volume of oil 

spill increases and they may remain relatively unchanged or go up at the affected sites as 

the volume oil spill decreases. Similarly, it is also assumed that as number of days 

increases between the oil spill event and image date there are high chances of vegetation 

recovery and that NDVI and NDWI values will go up. Statistical regression was used to 

determine which volume of oil spill could lead to detectable impacts on vegetation 

through the use of two indices (NDVI and NDWI). This was done by plotting all the 56 

oil spill data at the first stage of analysis to see how a change in volume of oil spill affects 

the two indices. The second stage of analysis involved determining the minimum amount 

of oils spill that can effectively fill a 30m by 30m pixel and hence would lead to detectable 

change in vegetation condition in a single Landsat pixel.  

 

Environmental conditions e.g. water-saturated soil increases the surface pool of oil spill 

and limits penetration of oil into the ground (Grimaz et al., 2008). When oil spill occurs 

on a surface, the force balance between the downward pull of gravity caused by density 

and internal tension of the liquid may allow the oil pool to form a final spill size. A pool 

is considered to be a large drop of oil with defined amount of oil held to a certain 

penetration depth in a surface area (Grimaz et al., 2008, Simmons and Keller, 2003). It 

also depends on the property of the oil (in the case for this study, heavy oils are used as 

no specific oil type is considered) the spilled oil will eventually stand a certain height or 

depth above the surface (Simmons et al., 2004). Simmons et al., (2004) proposed that the 

volume of oil spilled in an area can be calculated using the following equation:  

V = A δ φ + A h  Eq. 1 

Where V is the volume of the oil spill, A is the area under consideration, h is the height 

of liquid standing above the surface, δ is the liquid that has penetrated below a certain 

depth, and φ is the substrate porosity. To calculate height they used the following 

equation:  
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(1 – cos (θ)) ×σ = ρ×g×h2  Eq. 2 

where  h = spill height (cm) 

ρ = density (gm/ml) 

g = gravity acceleration 

σ = surface tension (dyne/cm) 

θ = contact angle 

 

Based on various scenarios (e.g. contact angles, gravity acceleration, surface tension) and 

types of spills (e.g. liquid density and adhesion properties), Simmons et al., (2004) 

calculated that the height of spills on concrete and asphalt to range from 0.01- 0.5cm. 

However, in the present study the oils spills occurred in a natural setting where some oil 

is expected to percolate into the soil. Furthermore, the oil type in the present study is 

heavy oil, which would accumulate at greater heights due to its high surface tension, 

density and viscosity. In a subsequent study, Simmons and Keller (2005) showed that that 

the front heading height of corn syrup (which may be similar to heavy oil in the present 

study) ranged from 1.65 – 5 cm in sandy soil. Therefore, we assumed in the present study 

that the heavy oil heading height would be around 0.04 m (which includes the percolated 

portion). The following calculation was used to predict expected volume of oil spill to fill 

a 30 by 30m pixel: 

1m3 = 1000 litres  

1 barrel of oil = 160 litres 

Volume of oil spill (Vspill) = (l×b) × (h×1000)/160 litres   

Vspill = A × (h×1000)/160       Eq.1  

where: 

Vspill = Volume of oil spill expected to fill a pixel area (m2)?  

A (Pixel area): length = 30m, breadth = 30m [l×b] 

h = Assumed height of oil spill = 0.04m  

Therefore:  

Vspill (bbl) = (30 × 30) × (0.04×1000)/160 litres = 225 bbl.  Eq.2 

 

Consequently, in further analysis, a ‘minimum value’ of approximately 200 barrels was 

used to assess where impacts of oil pollution on vegetation can be detected.   
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5.1.2 Spatial distance  

This part of the analysis was to determine if variation in spatial distance has any influence 

on the vegetation indices; for example, it is expected that polluted point (pixel) may be 

more likely to be affected compared to pixels further away. In this analysis the most likely 

impacted pixel by the oil spill is referred to as “First pixel” denoted by (P1), the immediate 

pixel “Second pixel” (P2) and third pixel further away from the polluted “Third pixel” 

(P3). The vegetation indices were extracted along the oil spill possible-flow direction 

Figure 5.1. The oil spill flow direction is important in assessing how far the neighbouring 

pixels or surrounding vegetation may have been affected by the oil spill. There is an 

assumption that oil spill over land may tend to flow from the point of source, therefore 

determining the flow direction is essential for example if there is a variation in topography 

or terrain. The flow direction model of oil spill for this study area where the terrain is 

relatively flat is adopted from (Garbrechta and Martzb, 1997), where DEM elevations of 

a flat surface was modified with one away from higher terrain and the other towards the 

lower terrain. Even though, this model was used to produce drainage patterns over flat 

surfaces with consistent topographical properties this study will attempt to apply it in the 

area oil spill over vegetated sites. 

A 30 m SRTM was used for the calculation of 8 Flow direction model to determine the 

likely flow direction of the oil spill and how far the oil might have migrated. From Figure 

5.1 the flow direction model can be used to determine the potential flow of the spill from 

the cell value. For example, if the oil sample point occurred on a cell with a value of 128, 

meaning the largest compared to surrounding cells (pixels), it suggests the likely and 

potential cell whose flow passes through the cell. The potential flow direction in Figure 

5.1 will pass through a cell with smaller value of 2 and then to the smallest value (1) 

(down slope). Thus values of the vegetation indices were extracted based on the possible 

flow direction from the source of pollution as illustrated in Figure 5.1, even though the 

flat terrain nature of the study area could make the application of this model less effective. 
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Figure 5.1: Illustrates coding of flow direction 

To determine the steepest direction of descent from each cell the following equation can 

be used to compute the flow direction. 

Maximum Drop = Change in Z-Value / Distance * 100 

Flow grid can be generated using the equation above which could be used to determine 

the flow direction. Here the number of cells contributes to each cell in grid to determine 

which cell whose flow path passes through the cell. A cell with potential flow network is 

assigned with larger value and cells where overland flow dominates will have low value.   

5.1.3 Time gap between spill and image acquisition date 

Time between the oil spill and image acquisition date were also considered as one of the 

factors that could influence the detectability of oil polluted sites over vegetated areas 

using the BMVIs. In theory it can be assumed that the wider the time gap between the oil 

spill and image acquisition may influence the detection of oil pollution over vegetated 

sites using BMVIs. For example, it is possible that during these wider intervals between 

the two events (oil spill and image date), there would be a higher chance of climatic 

conditions favouring the recovery of the vegetation at the P sites. Also it is possible oil 
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spilled concentration may reduce at these P sites thereby providing a likely chance for 

vegetation recovery through natural attenuation over time (Astm, 2003, Wiedemeier, 

1999, Weston and Gibson Jr, 1993). The difference in time gap (days) between the oil 

spill and image date were calculated for each spill sites. Regression statistics between the 

number of days and the vegetation indices extracted at each polluted sites were carried 

out. 

5.2 Results 

Table 5.1 indicates the 5 best-performing vegetation indices (NDVI, SAVI, ARVI2, 

G/NIR and G/SWIR) identified in Chapter 4 against volume of oil spilt. The vegetation 

indices are plotted against volume of oil spill at sample sites with threshold at 1-3500 bbl, 

1- 201 bbl and 201-3500 bbl. This was done in order to choose which threshold would 

have significant relationship between the two variables (volume of oil spill and the 

BMVIs). 

 

5.2.1 Influence of volume of oil spill on the selected BMVIs from 56 sample sites 

The five BMVIs that indicated capability to detect impact of oil pollution on vegetation 

in Chapter 4 were selected to determine if they relate with the volume of oil spill at these 

thresholds in Table 5.2. 
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 Table 5.1: The mean of BMVIs and volume of oil from 56 spill sites 

Sample  

Point  

Volume 

 (bbl) 

Oil Spill Date NDVI SAVI ARVI2 G/NIR G/SWI

R 

Sample 

Point  

Volume  

(bbl) 

Oil Spill 

Date 

NDVI SAVI ARVI2 G/NIR G/SWIR 

SP1 2 19/12/2006 0.18 0.28 0.04 0.16 0.08 SP29 200 09/07/2000 0.33 0.50 0.21 0.23 0.02 

SP2 5 12/09/2000 0.22 0.34 0.08 0.25 0.32 SP30 221 22.07.2004 0.11 0.16 0.05 0.07 0.17 

SP3 9 21/08/2000 0.24 0.36 0.10 0.20 0.12 SP31 232 26.04.1986 0.22 0.33 0.08 0.20 0.04 

SP4 10 10/09/1999 0.06 0.09 0.11 0.06 0.48 SP32 269 27.05.1986 0.04 0.06 0.23 0.14 0.54 

SP5 10 22/01/2006 0.06 0.09 0.11 0.04 0.15 SP33 318 22.10.2004 0.14 0.21 0.01 0.12 0.12 

SP6 20 04/01/1985 0.32 0.48 0.20 0.25 0.20 SP34 346 26.08.2002 0.32 0.47 0.19 0.25 0.08 

SP7 27 04/01/1985 0.42 0.62 0.31 0.32 0.13 SP35 352 18/09/2006 0.18 0.28 0.04 0.15 0.07 

SP8 28 17/11/1999 0.19 0.29 0.04 0.05 0.20 SP36 358 20.09.1998 0.22 0.32 0.07 0.16 0.01 

SP9 32 19/08/2004 0.34 0.51 0.22 0.30 0.35 SP37 400 20/08/1998 0.42 0.63 0.31 0.32 0.08 

SP10 39 21/09/1999 0.20 0.29 0.05 0.18 0.10 SP38 468 01/11/2000 0.45 0.67 0.34 0.33 0.10 

SP11 40 04/12/2006 0.11 0.17 0.05 0.12 0.04 SP39 500 06.06.1999 0.35 0.52 0.23 0.26 0.10 

SP12 50 15/11/1999 0.09 0.14 0.29 0.15 0.46 SP40 500 15/02/2003 0.37 0.56 0.25 0.28 0.06 

SP13 54 14/11/2000 0.17 0.26 0.02 0.10 0.33 SP41 507 19/09/2000 0.37 0.55 0.25 0.26 0.13 

SP14 62 08/07/1999 0.32 0.48 0.19 0.20 0.15 SP42 558 21.12.1998 0.27 0.41 0.14 0.25 0.27 

SP15 63 04/11/1986 0.27 0.4 0.13 0.20 0.17 SP43 625 15/12/2000 0.13 0.20 0.03 0.03 0.42 

SP16 63 02/08/2004 0.15 0.23 0.10 0.12 0.14 SP44 785 21/02/2000 0.23 0.34 0.09 0.20 0.06 

SP17 75 13/03/1986 0.51 0.77 0.42 0.39 0.04 SP45 807 23/07/1998 0.20 0.29 0.05 0.19 0.07 

SP18 75 03/10/2000 0.31 0.46 0.18 0.25 0.03 SP46 813 09.01.1999 0.25 0.37 0.11 0.20 0.06 

SP19 96 12/05/1986 0.32 0.48 0.19 0.23 0.14 SP47 1000 16.01.2007 0.20 0.29 0.05 0.20 0.13 

SP20 97 18/06/1986 0.45 0.68 0.35 0.36 0.04 SP48 1042 10.01/1999 0.27 0.40 0.13 0.21 0.09 

SP21 117 30/10/2000 0.03 0.04 0.15 0.06 0.42 SP49 1069 14.08.2006 0.39 0.58 0.27 0.33 0.22 

SP22 126 11/05/2006 0.06 0.08 0.11 0.03 0.19 SP50 1505 02.12.2002 0.20 0.29 0.05 0.13 0.10 

SP23 128 16/02/1986 0.35 0.52 0.23 0.26 0.10 SP51 1720 26.08.1998 0.15 0.23 0.10 0.19 0.30 

SP24 150 13/01/2003 0.17 0.26 0.02 0.10 0.33 SP52 1734 09.07.1986 0.02 0.03 0.16 0.03 0.28 

SP25 150 04/08/2006 0.09 0.13 0.08 0.06 0.13 SP53 2573 07.09.2006 0.13 0.19 0.03 0.01 0.35 

SP26 155 11/11/2006 0.17 0.25 0.02 0.15 0.04 SP54 2578 29.04.1986 0.29 0.43 0.16 0.18 0.15 

SP27 180 29/11/2006 0.12 0.18 0.04 0.13 0.04 SP55 2761 28.12.1985 0.25 0.38 0.12 0.22 0.06 

SP28 184 24/08/1999 0.37 0.55 0.25 0.30 0.01 SP56 3500 24.06.2002 0.23 0.35 0.09 0.17 0.00 
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Table 5.2: Coefficient of determination (R²) and between BMVIs response and volume of oil spill 

(statistics at 0.95 confidence level with p at 0.05). 

Volume  

of Oil (bbl)  

NDVI SAVI G/NIR ARVI2 G/SWIR 

R² p-value R² p-value R² p-value R² p-value R² p-value 

1 - 3500 0.009 n.s 0.02 n.s 0.001 n.s 0.01 n.s 0.001 n.s 

1 - 200 0.008 n.s 0.008 n.s 0.001 n.s 0.008 n.s 0.1 0.001*** 

201 -  3500 0.230 0.002*** 0.093 n.s 0.224 0.002*** 0.231 0.001*** 0.002 n.s 

 

  ****p-value <0.0001, *** p-value <0.005, ** p-value <0.05, * p-value <0.01, ns p-value ≥ 0.05 

 ****Highly significant, ***Highly significant, **Very significant, *Significant, nsNot significant 

 

As shown in the results within Table 5.2, five BMVIs (NDVI, SAVI, G/NIR, ARVI2 and 

G/SWIR) did not show any significant relationship between the BMVIs and volume of 

oil spill 1 – 3500 bbl from the 56 sample polluted sites. The first part of the analysis is to 

establish relationship between the volume of oil spill and the BMVIs from the 56 sites 

without considering quantity of oil spill and image date (time) at this stage. At the 

threshold 1-200 bbl four BMVIs (NDVI, SAVI, G/NIR and ARVI2) show no significant 

(n.s.) relationship with the volume of oil spill (Table 5.2 and Figure 5.2). The only 

threshold that indicated a weak relationship between the BMVIs (NDVI, SAVI, G/NIR 

and ARVI2) and the volume of oil spill is at threshold 201 – 3500 bbl compared to (<200 

bbl and 1 - 3500 bbl).  The relationship between the BMVIs from oil spill sites with 

volume of oil at threshold < 200 bbl appear not significant. These results may suggest 

that the volume of oil spilt is below that which the sensor (with 30m resolution) may 

resolve, and can be related to detection of changes in vegetation index values as a result 

of oil pollution. 
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(a)                                                                            (c)  

   
                                                   (d)                                                                 (e)  

 
 (f) 

 

Figure 5.2: Regression between BMVIs response and volume of oil spill between 1 – 

3500 bbl 
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(a)                                                                    (b)                                                                             

  

                                                (c)                                                                      (d) 

Figure 5.3: Regression between BMVIs response and volume of oil spill threshold 

between 201 – 3500 bbl 

At this threshold spill sites where the volume of oil > 200 bbl indicated a significant 

relationship between NDVI (R² =0.2), SAVI (R²=0.1), G/NIR (R² = 0.2) and ARVI2 (R² 

=0.2) with volume of oil spill with a p-value 0.05 in Table 5.2 and Figure 5.3. This could 

also suggest that there is a possibility that increase in the volume of oil spill may be related 

to changes in biophysical and biochemical changes of the vegetation. G/SWIR indicated 

a very weak relationship with volume of spill threshold < 200 bbl      p <0.05 and no 

significant relationship at threshold > 200 bbl p> 0.05.  

 

From these analyses there are indications that volume of oil spill <200 bbl may be difficult 

to detect using the BMVIs as there is no any significant relationship found. It may also 

be argued that the scale of impact may be limited by the volume size and the choice of 
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image/sensor resolution could be influential in this case. Thus, the study focuses on the 

analysing the volume of oil spill > 200 bbl which have indicated weak but significant 

relationship with the BMVIs. The relationship indicated between the BMVIs and volume 

of spill from the sample sites threshold between 201 -3500 bbl were further used for 

analysing time gap between the oil spill and imagery date Table 5.4 and Figure 5.5 and 

to determine the oil flow direction Figure 4.  

 

5.2.2 Spatial analysis of oil spill on the BMVIs 

In Figure 5.2 the aim is to establish a relationship between the oil spill direction and 

vegetation indices. A 30m SRTM was used for calculation 8 Flow direction model to 

determine the likely flow direction of the oil spill and how far the oil might migrate and 

the influence on the detection of impact on vegetation using the indices. In Figure 5.3 the 

calculation of potential flow direction of the oil spill from the polluted pixel. For example 

oil sample point occurred on a pixel with value of 128 meaning (the largest) compare to 

surrounding cells (pixels), which means that the likely and potential cell whose flow 

passes through the cell. The potential flow direction in Figure 5.3 will pass through a cell 

with the smallest value 1 (down slope pixel). The 8 flow direction model was used to 

obtain the vegetation indices from the first polluted pixel, to the second and then to the 

third neighbour pixels respectively based on the flow direction calculated. 

 

In Table 5.3, vegetation indices were obtained at the various spill points using the flow 

direction model. The “pixel 1” (P1) denotes polluted pixel, “pixel 2” (P2) and “pixel 3” 

(P3) as neighbouring pixels. The vegetation index values were extracted based on the flow 

direction of oil spill using the model. The volume of oil threshold at spill sites with >200 

bbl were used in establishing the relationship between the vegetation indices with the 

variation spatial distance of pixels from the polluted point. 
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        Figure 5.4: Calculated direction flow model from SRTM data  
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           Table 5.3: BMVIs obtained at spatial distance from polluted and neighbouring pixels  

 

 

Volume Time (Days)P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

SP46 813 3 0.25 0.23 0.29 0.32 0.42 1.5 0.12 0.07 0.77 0.21 0.19 0.25 0.04 0.01 1

SP55 2761 20 0.14 0.17 0.18 0.24 0.28 0.16 0.02 0.02 0.06 0.1 0.12 0.15 0.08 0.09 0.37

SP33 318 35 0.44 0.4 0.45 0.6 0.62 0.53 0.36 0.27 0.45 0.35 0.33 0.36 0.01 0 0.03

SP49 1069 37 0.2 0.12 0.18 0.18 0.27 0.31 0.07 0.05 0.02 0.1 0.03 0.09 0.42 0.24 0.27

SP30 221 127 0.31 0.31 0.5 0.48 0.67 0.72 0.18 0.11 0.42 0.23 0.23 0.39 0.08 0.05 0.08

SP52 1734 134 0.2 0.21 0.18 0.31 0.3 1.5 0.05 0.07 0.35 0.15 0.16 0.15 0.07 0.07 1

SP34 346 135 0.2 0.12 0.32 0.17 0.45 1.36 0.08 0.07 0.13 0.13 0.04 0.23 0.43 0.14 0.79

SP48 1042 158 0.24 0.23 0.18 0.38 0.27 0.28 0.1 0.1 0.03 0.18 0.19 0.14 0.02 0.07 0.07

SP51 1720 163 0.18 0.18 0.15 0.41 0.23 0.31 0.01 0.04 0.02 0.16 0.19 0.14 0.25 0.05 0.3

SP56 3500 198 0.17 0.3 0.15 0.35 0.28 0.35 0 0.23 0.02 0.1 0.15 0.05 0.18 0.31 0.32

SP32 269 206 0.13 0.17 0.11 0.24 0.19 0.44 0.04 0.03 0.08 0.07 0.1 0.05 0.33 0.29 0.17

SP54 2578 234 0.04 0.2 0.46 0.3 0.63 0.26 0.22 0.01 0.63 0.14 0.14 0.39 0.24 0.1 0.27

SP31 232 237 0.34 0.36 0.22 0.59 0.31 0.06 0.19 0.34 0.17 0.26 0.32 0.15 0.01 0.13 0.53

SP41 507 370 0.47 0.36 0.19 0.52 0.27 1.41 0.49 0.35 0.16 0.35 0.23 0.05 0.21 0.41 0.83

SP38 468 560 0.4 0.36 0.41 0.57 0.56 0.7 0.3 0.24 0.25 0.31 0.3 0.31 0.07 0.06 0.03

SP47 1000 707 0.48 0.48 0.46 0.73 0.72 0.55 0.37 0.39 0.45 0.37 0.38 0.38 0.05 0.03 0.13

SP45 807 708 0.48 0.47 0.48 0.72 0.72 1.12 0.38 0.36 1.68 0.36 0.36 0.38 0.06 0.06 0.91

SP36 358 819 0.38 0.21 0.43 0.35 0.57 0.56 0.36 0.02 0.37 0.27 0.12 0.28 0.3 0.11 0.13

SP50 1505 844 0.33 0.35 0.36 0.49 0.54 0.92 0.2 0.22 0.88 0.26 0.24 0.27 0.11 0.13 0.84

G/SWIRSample 

Points

NDVI SAVI ARVI2 G/NIR
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Table 5.4: Coefficient of determination (R²) of BMVIs and spatial distance. 

BMVIs Regression Equation Pixel 1 (P1) Pixel 2 (P2) Pixel 3 (P3) 

R² p-value R² p-value R² p-value 

NDVI y = -0.077ln(x) + 0.7884 0.2268 p < 0.05 n.s. n.s. n.s. n.s. 

ARVI2 y = -0.102ln(x) + 0.8372 0.2401 p < 0.05 n.s. n.s. n.s. n.s. 

G/NIR y = 0.0657ln(x) - 0.6392 0.203 p < 0.05 n.s. n.s. n.s. n.s. 

Probability Error (α) = 0.05 

Table 5.4 Coefficient of determination (R²) and p-values of BMVIs and volume of oil at 

spatial distance (P1, P2 and P3), show no significant relationship at P2 and P3. 

 

       
(a) (b) 

 

 
(c) 

 

Figure 5.5: Regression plot for volume of oil spill on BMVIs based on spatial distance. 
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In Figure 5.4 only 3 out of the 5 BMVIs (NDVI, SAVI and ARVI2) indicated significant 

relationship with the volume of oil spill at pixel (P1) and the remaining 2 did not. The 

result did not indicated any significant relationship found at the P2 and P3 with the 

BMVIs. This result suggests that since only P1 indicated significant relationship with 

volume of oil spill at this point, it can be assumed that oil spill did not migrate from the 

point of spill. It is a possibility that the neighbouring pixel P2 and P3 were not affected 

by the oil spill as shown in Figure 5.4. Thus the implication of the results of this model 

suggest it may only be applicable in a study area which is characterised by relatively flat 

terrain. 

5.2.3 Influence of time gap between spill and observation on BMVIs 

Further analysis include calculating the difference between the time of oil spill event and 

image dates then compared with the volume of oil spill in Table 5.1.  

 

Table 5.5: Coefficient (R²) time gap between oil spill and image date on BMVIs 

BMVIs Regression Line R²  p-value 

NDVI y = 0.0351ln(x) + 0.0994 0.13 p < 0.05 

SAVI y = 0.0545ln(x) + 0.1422 0.21 p < 0.05 

ARVI2 y = 0.0447ln(x) - 0.0697 0.12 p < 0.05 

G/NIR y = -0.024ln(x) - 0.0806 0.07 p < 0.05 

G/SWIR y = 0.0036ln(x) + 0.1025 0.07 n.s. 

            Probability Error (α) = 0.05 

 

In Table 5.5 four BMVIs indicated significant relationship with number of days between 

oil spill event and image acquisition data with p < 0.05 and G/SWIR non-significant. 

Similarly in Figure 5.5 the regression line showed a direct proportion between number of 

days and the BMVIs. 
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Table 5.6: Time gap (days) between oil spill and image date and selected BMVIs. 

Sample 

Points 

Volume 

of Oil 

(bbl) 

Time 

(Days)  

NDVI SAVI ARVI2 G/NIR G/SWIR 

SP46 813 3 0.25 0.32 0.12 0.21 0.04 

SP55 2761 20 0.14 0.24 0.02 0.10 0.08 

SP33 318 35 0.44 0.60 0.36 0.35 0.01 

SP49 1069 37 0.20 0.18 0.07 0.10 0.42 

SP30 221 127 0.31 0.48 0.18 0.23 0.08 

SP52 1734 134 0.20 0.31 0.05 0.15 0.07 

SP34 346 135 0.20 0.17 0.08 0.13 0.43 

SP48 1042 158 0.24 0.38 0.10 0.18 0.02 

SP51 1720 163 0.18 0.41 0.01 0.16 0.25 

SP56 3500 198 0.17 0.35 0.00 0.10 0.18 

SP32 269 206 0.13 0.24 0.04 0.07 0.33 

SP54 2578 234 0.04 0.30 0.22 0.14 0.24 

SP31 232 237 0.34 0.59 0.19 0.26 0.01 

SP41 507 370 0.47 0.52 0.49 0.35 0.21 

SP38 468 560 0.40 0.57 0.30 0.31 0.07 

SP47 1000 707 0.48 0.73 0.37 0.37 0.05 

SP45 807 708 0.48 0.72 0.38 0.36 0.06 

SP36 358 819 0.38 0.35 0.36 0.27 0.30 

SP50 1505 844 0.33 0.49 0.20 0.26 0.11 

 

Table 5.6: the number of days calculated between oil spill and image acquisition date in 

the study area. The average number of days obtained for observing the spill sites is 130 

days (20 weeks) to detect and average volume of oil spill at 1277 bbl. 

 

Table 5.5 and Figures 5.5 shows that the number of days between spill and detection 

indicates a significant relationship with BMVI values. This could be argued that as the 

number of days increases the BMVIs also increases. It may also suggest that oil spill 

impact on vegetation may have reduced allowing possibility for vegetation recovery at 

the spill sites. It is also likely that imagery acquired closed to the spill event were not 

available - or contain cloud cover - so cloud-free images from another year for these sites 

were used, with a consequential increase in temporal separation relating to high BMVI 

values. The BMVIs with low values were influenced by substantially-lesser time 

separation between the spill event and image acquisition free of issues associated with 
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cloud cover. This can be interpreted in terms of increases in volume of oil spill as BMVI 

values decreases. This contrasts with those in Figure 5.3. 

 

    

(a) (b) 

 

    
                                            (c)                                                                   (d) 

 

Figure 5.6: Regression between the time gap between spill and observation date and 

selected BMVIs at the polluted sites. 

Table 5.6 and Figures 5.5 Logarithm plot of time gap (number of days) between oil spill 

and the BMVIs. Four indices (NDVI, SAVI, ARVI2 and G/NIR) have indicated weak 

relationship but showed a significant correlation between number of days and the BMVIs 

with the exception of G/SWIR.  
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5.3  Discussion 

5.3.1 Influence of volume of oil spill on the selected BMVIs 

Changes in vegetation spectral reflectance are associated with leaf chlorophyll content 

and structure that can be detected in visible and NIR wavelengths (Purkis and Klemas, 

2011, Mather and Koch, 2011b). Thus changes in vegetation health in oil polluted sites 

may depend on the volume of a given oil spill (Osuji and Opiah, 2007). It is assumed that 

larger-volume oil spills may have a greater impact on the surrounding vegetation and the 

affected vegetation may then take a longer period to recover as the oil degrades or 

evaporates. In this study it has been shown that volume of oil e.g. above 200 bbl is related 

to vegetation indices obtained at the sample polluted sites. In Noomen (2007), it was 

argued that larger oil spills lower oxygen concentrations in soil due to methanotrophic 

bacteria. These are responsible for methane oxidation and are the main cause of changes 

possibly related to vegetation reflectance at the polluted sites.  It has also been 

documented that soil oxygen shortage leads to reduced root and shoot growth in plants 

(Drew, 1992, Huang et al., 1997). It was also found that there is a strong relationship 

between hydrocarbon gas and oxygen concentration (Noomen, 2007).  

 

The result from the plotted regression line indicates a weak R2 with a significant 

relationship at p < 0.05 between the volume of oil spill and the 4 BMVIs in Table 5.2 and 

Figure 5.3 with the exception of G/SWIR. This can be interpreted as the volume of oil 

spill increases the value of BMVIs decreases. Thus the weak relationship between the 

variables could also be due to some environmental factors that may be responsible, 

although it is not very clear to conclude that oil pollution may be a solitary cause factor. 

It could also be that the impacted vegetation at some spill sites may have recovered due 

to the time gap between the oil spill and image acquisition date, since the spill sites are 

located in swampy, mangrove areas where the climatic condition (e.g. rainy season) may 

influence the vegetation recovery. These factors could also influence the vegetation 

signals as well as the value of vegetation indices, thus could be other reasons for the weak 

relationship between the volume of oil spill and the BMVIs. The influence of sensor 

spectral bands used in the derivation of the BMVIs could be responsible due to their 

characteristics. The 4 BMVIs that indicated vegetation response to oil pollution as seen 

in the Figure 5.2 uses both visible and NIR channels that can characterise chlorophyll 
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contents in leaves and high reflectance of vegetation canopies. Meanwhile the G/SWIR 

is a function of Green and SWIR1 located at 0.550 µm and 1.24µm channels, and used 

for estimating vegetation liquid water from space (Gao, 1996). The suitability of these 4 

BMVIs indicates a significant relationship with the volume of spill in Figures 5.2. 

However, the advantage of G/SWIR is the ability to sense changes in liquid water content 

of vegetation canopies that may be affected by oil pollution. These could be some of the 

reasons why the indices were explored for analysing volume of oil spill impact on 

vegetation health. It should be noted that the satellite sensors used for the study can also 

contribute to the performance of the BMVIs as some of the oil spill sites may not be 

detected through vegetation signals alone due to small-volume oil spill incidences. 

 

5.3.2 Spatial analysis of oil spill on the BMVIs 

The relationship between BMVIs and spatial distance in Table 5.4 and Figure 5.4 is 

represented by “pixel 1” (P1), “pixel 2” (P2) and “pixel 3” (P3). The Pixel 1 (P1) is 

represented by the pixel that is the most likely to be polluted where the spill occurred, the 

second pixel 2 (P2) is the likely to be affected and the third pixel 3 (P3) is the less likely 

affected by oil pollution. In 5.4 and Figure 5.4 the relationship between 3 BMVIs and the 

points of oil spill (polluted pixel) and the neighbouring pixel where migration is expected 

to have been affected by oil spill were only significant at P1. These can also observed in 

the correlation between the first pixel (P1) regression between which has a significant 

relationship with 3 BMVIs, while other two neighbouring pixels with non-significant. For 

example, the relationship between the 3 BMVIs and the volume of oil spill indicated weak 

relationship at polluted pixels with NDVI (R2 = 0.23), SAVI (R2 = 0.010) and ARVI2 

(R2 = 0.24) but significant relationship at p < 0.05. Conversely, the relationship at the 

second (P2) and third (P3) (Table 5.4) pixels indicate a weak relationship, suggesting that 

volume of oil spill has relatively less - or no -  influence on vegetation health further away 

from the polluted pixel. It is a possibility that the oil spill size may have not migrated 

further away from the polluted pixel and it may be the less impacted vegetation recovers 

in between spill event and image acquisition data. Two indices, SAVI and G/SWIR, have 

not shown any significant relationship with the volume of oil spill even at the first point 

of spill P1 in Table 5.4. It is interesting that SAVI and G/SWIR performed relatively well 

in differentiating between the polluted and non-polluted sites and before and after oil spill 

but did not perform well in this study chapter. It is not very clear why SAVI and G/SWIR 
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were not able to show significant relationship with volume of oil spill at these points.  It 

is worth also considering the effect of tidal flow model since the study is located in a 

brackish coastal region. 

 

5.3.3 Influence of time gap between spill and observation on BMVIs 

In Table 5.4 and Figures 5.5 the regression indicates a relatively weak, yet significant, 

positive relationship between number of days and BMVIs with (NDVI, R2 = 0. 0.13, 

SAVI, R2 = 0.21, ARVI2, R2 = 0. 0.12 and G/NIR, R2 = 0.0.07) i.e. as the number of days 

increases, the BMVIs values increases. This is also an indication that affected vegetation 

at oil spill sites may have recovered with time (Luis, 1993, Osuji and Ezebuiro, 2006, 

Noomen et al., 2015). On the average volume of oil spill that may impact on vegetation 

health in this study, the average number of days was calculated and then compare with 

the BMVIs. In Table 5.3 the average volume of oil spill 1277 bbl that could have impact 

on vegetation health within this average number of days 130 days (i.e. about 20 weeks). 

In a study Wang et al. (2013), suggested that oil chemical properties and weathering 

(change in composition of hydrocarbons with time) characteristics may be influenced by 

quantity of oil spill in the polluted environment. This result could also mean that some 

factors such as time between oil spill event and image acquisition date may have 

influential in the detection of vegetation stress related to oil pollution. 

5.4 Summary 

Five BMVIs (NDVI, SAVI, ARVI2, G/NIR and G/SWIR) were used for determining the 

volume of oil spill in the polluted sites. It was found that Four (4) indices (NDVI, SAVI, 

ARVI2 and G/NIR) indicated a correlation that could be term as relatively weak with the 

volume of oil spill but p < 0.05 show a significant relationship between the two variables. 

The result also showed that time between the imagery and spill dates have weak 

correlation but with a significant relationship with the BMVIs. The spatial variation of 

the oil impact on vegetation with the BMVIs from the three pixels did not show any 

significant variation between (P1, P2 and P3) despite applying direction flow model to 

determining the likely flow direction of the oil pollution. In summary, the result indicated 

significant relationship between volume of spill and vegetation indices (BMVIs). This 

study also demonstrated that time gap (between spill and image date) and volume of oil 
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spill are important and could be an influential factor for detecting the impact of oil 

pollution on vegetation.  
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Chapter 6 : Validation of vegetation spectral techniques for    

                     detection of oil pollution on vegetation 
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The work presented in this chapter is in preparation for publication as: 

Adamu, B., Tansey, K. and Ogutu, B., (2016). Remote sensing for detection and 

monitoring of vegetation affected by oil spills. Remote Sensing (Manuscript 

submitted 09.06.2016 under review). 

 

6.1 Introduction 

The objective of any analytical measurement is to obtain consistent, reliable and accurate 

data. Validated analytical methods play a major role in achieving this goal. The validation 

of methods can be used to judge the quality, reliability and consistency of analytical 

results, which is an integral part of any good analytical practice. In chapter 4, vegetation 

indices have shown to be capable of detecting oil pollution impact on vegetation spectral 

signature. The techniques using the indices have also indicated the potential to monitor 

temporal changes in the vegetation affected by oil pollution in a mangrove forest in the 

Niger Delta (study site 1 – SS1 in chapter 4). In SS1 these indices were also used to 

determine factors influencing their capacity in the detection oil spill impact on vegetation. 

The results in the chapter 4 have shown that there are significant relationships between 

these factors (volume of oil spill, time gap between oil spill and image acquisition date) 

in addition to the vegetation indices.  

The objective of this chapter is to assess and validate these techniques in a different study 

area (study site 2- SS2) with similar climatic and environmental conditions using new oil 

spill data from 2014. Thus an assumption that vegetation affected by oil spill at P sites 

will statistically differ in mean index values with the ones obtained at the NP sites (with 

no oil spill). Also that temporal vegetation conditions before (2013) and after (2015) the 

oil spill at the P site may be relatively different with the one at spill sites (2014). The 

analysis will also statistically test if there are temporal variations in vegetation 

biophysical and biochemical properties at the NP sites. 

6.2 Study area  

The study site (SS2) is located in the north-western part of the study site (SS1) in the 

Niger Delta region in Figure 6.1. The SS1 is located within (4°33'27.77"N, 6°52'34.43"

E), in the other part of the Niger Delta region of Nigeria. It shares common environmental 

and climatic conditions with the SS2 that have been described in chapter 3. The part of 
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this region experiences moderate rainfall and moderate humidity for most of the year. The 

study area 1 (SS1) is characterised with features similar to the SS2 area, which is a tropical 

monsoon climate with lengthy and heavy rainy seasons and very short dry seasons. Only 

the months of December and January truly qualify as dry season months in the region. 

The dry and dusty winds, which climatically influences many regions in West Africa, is 

less pronounced in the area. The heaviest precipitation occurs during September with an 

average of 367 mm of rain. The month of December on average is the driest month of the 

year, with an average rainfall of 20 mm. Temperatures throughout the year in the region 

(SS1 and SS2) are relatively constant, showing little variation throughout the course of 

the year. Average temperatures are typically between 25 °C-28 °C in SS2. The relative 

difference between the SS1 and SS2 in terms of climatic elements such as rainfall, 

temperature and seasonality might present some variation in the analysis of results. This 

is because in the vegetation is highly influenced by some climatic conditions which has 

two active months of dry season (December and January) but in SS2 the active dry months 

occur between (November – April). In terms of vegetation cover SS1 is generally 

characterised by swamp mangrove, compared to SS2 which is rainforest with less swamp 

mangrove forest. They two sites also differ locally in terms of significant atmospheric 

haze or dust “harmattan” in the atmosphere. For example SS2 is most affected by 

atmospheric haze than SS1. These characteristics can affect the image quality in the study 

areas, for example in SS1 cloud cover is more persistent because of the long wet season 

(February to November). In SS2 which is characterised by short dry season and less cloud 

cover (December and January) with obvious presence of atmospheric dust and haze.
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                 Figure 6.1: Location of the two study sites on Landsat 5 (SS1) and 8 (SS2) 
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6.3 Sources of data and method 

6.3.1 Source of oil spill data 

Nine new oil spill sites (Table 6.1) were identified which occurred in 2014 obtained from 

the National Oil Spill Detection and Response Agency (NOSDRA) https://oilspillmonit

or.ng/ an agency of Nigeria Government. NOSDRA was established in 2006 by the 

Federal Government of Nigeria as institutional framework to create, nurture and sustain 

a zero tolerance for oil spill incident in the Nigerian Environment. NOSDRA an 

institutional framework to co-ordinate the implementation of the National Oil Spill 

Contingency Plan (NOSCP) for Nigeria in accordance with the International Convention 

on Oil Pollution Preparedness, Response and Cooperation (OPRC 90) to which Nigeria 

is a signatory. The Agency embarks on Joint Investigation Visits, ensures the remediation 

of impacted sites and monitors oil spill drill exercises and facilities inspection. Thus oil 

spill sites reported on their website may be considered valid as mandated by the law of 

Nigeria. Nine oil spill sites in 2014 were obtained from the agency website. Information 

such as date of spill, GPS points, location name, quantity of oil spill and vegetation land 

cover type is shown in Table 6.1. 

Table 6.1: Oil spill data for the new study site 2 (SS2) 

 

 

Sample 

Point 

 

 

Latitude 

 

 

Longitude 

 

 

Date of 

Spill 

 

 

Image 

Date 

Time 

Period 

(Days) 

Quantity 

of Oil 

Spill 

(bbl) 

SP1 6.0945278 5.534583 29/12/2014  08/01/2015  10 108 

SP2 5.56325 5.5948056 25/11/2014  23/12/2014  28 5000 

SP3 5.5191111 5.9779444 08/09/2014  23/12/2014  106 na 

SP4 5.5633056 5.5948333 06/09/2014  23/12/2014  108 60 

SP5 5.9433889 5.9090556 01/09/2014  23/12/2014  113 1000 

SP6 5.5009722 5.9501667 20/08/2014  23/12/2014  125 3 

SP7 5.54825 5.8749722 n/a  23/12/2014  na na 

SP8 5.5464722 6.3670833 05/08/2014  23/12/2014  140 7.7 

SP9 5.5908889 5.6496667 18/07/2014  23/12/2014  158 60 

 

6.3.2 Image Data 

Landsat 8 images Level 1 terrain corrected products for 20/12/2013 (pre-spill), 

23/12/2014 (oil spill date) and 08/01/2015 (post spill) were used in the study on path 189 

row 57. The images were collected during dry season (December and January) with a 

https://oilspillmonitor.ng/
https://oilspillmonitor.ng/
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minimal cloud cover <26% at the scenes centre (does not affected study sites). The 9 spill 

sites in 2014 were analysed using pre-spill image from 20/12/2013 and post-spill image 

from 08/01/2015. The image from 23/12/2014 were used as the spill date data to observe 

the oil spill sites in 2014. Landsat 8 differs with other Landsat data e.g. TM and ETM+, 

for example L8 signal to noise ratio (data quality) and radiometric quantization has 12-

bits which is higher than TM and ETM+ with 8-bit. Thus L8 provides significant 

improvement in the ability to detect changes in the earth’s surface. The Landsat 8 

Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) has two additional 

spectral bands band 1 (deep blue visible channel) and band 9 for detection of cirrus 

clouds. Also the OLI has a new Quality Assurance band included in each data product 

which provides information on the presence of features such as clouds, water and snow. 

As expected OLI’s narrower panchromatic band provides better spectral contrast over 

land surfaces. The push-broom sensor’s higher signal-to-noise ratio makes it possible to 

narrow the spectral bands and move them away from atmospheric absorption features, 

thereby reducing the sensitivity of the changes in the atmosphere. The biggest change is 

in the near infrared (band 5 in OLI). That band is substantially narrower and will be less 

sensitive to atmospheric conditions than Landsat 5 and 7. The satellite is required to return 

400 scenes per day to the USGS data archive (150 more than Landsat 7 is required to 

capture). Landsat 8 has been regularly acquiring 725 scenes per day (and Landsat 7 is 

acquiring 438 scenes per day). This increases the probability of capturing cloud-free 

scenes for the global landmass. The spectral response of vegetated areas can present a 

complex mixture of vegetation, soil brightness, environmental effects, shadow, soil 

colour and moisture (Bannari et al., 1995). The images used in the study were 

atmospherically corrected in order to obtain a surface reflectance image free from noise. 

In Figure 6.2 pre-processed L8 data used for the study. 

6.3.3 Landsat 8 image processing  

In chapter 3 image processing were described based on the Landsat data 5 and 7, in the 

case for this study the Landsat 8 sensor used is new and its calibration is not supported 

by some ENVI products such as the FLAASH module for atmospheric correction. 

Nevertheless, in ENVI 5.3 new radiometric calibration can be used to convert any Landsat 

8 data to radiance or TOA reflectance as contained in other ENVI versions. Landsat 8 

spectral radiance data can also be converted to TOA planetary reflectance using 

reflectance rescaling coefficients provided in the Landsat 8 OLI metadata file. The 
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following equation is used to convert DN values to TOA reflectance for OLI image. 

Therefore, since ENVI can convert Landsat data easily from the USGS in the “USGS 

GeoTIFF with metadata” format in a single step, the optical data can be converted to TOA 

reflectance values when opened with “_MTL.TXT”. The method was used to convert the 

data into surface reflectance using the calibration parameters. The first step is the 

conversion of DN to radiance; the image was calibrated using gains and offsets for each 

band which are read from metadata file from the image folder. The radiance values from 

Landsat 8 can be computed from DN values using band math or the built-in function 

within ENVI 5.0 Service Pack 3. Radiance is computed using  

 OffsetPixelvalueGainL  *  Eq. 1 

In ENVI gains and offsets are in the units as (µW/(cm2*sr*nm) and radiance units will 

be in W/(m2 * sr * µm).  

 
sESUNdL   cos*/** 2    Eq. 2 

Where: 

                ρλ = Unitless planetary reflectance 

                Lλ= spectral radiance (from earlier step) 

                d = Earth-Sun distance in astronomical units 

                ESUNλ = mean solar exoatmospheric irradiances 

                θs = solar zenith angle 

The second step is the conversion of TOA to surface reflectance. Surface reflectance, i.e., 

TOA reflectance corrected for atmospheric effects, is needed because atmospheric gases 

and aerosols are variable in space and time and may have significant impacts on Landsat 

data (Roy et al., 2015). The OLI band data can also be converted to TOA planetary 

reflectance using reflectance rescaling coefficients provided in the product metadata file 

(MTL file).  The following equation is used to convert DN values to TOA reflectance for 

OLI data as follows: 

ρλ = MρQcal + Aρ   Eq. 3 

where:                

ρλ   = TOA planetary reflectance, without correction for solar angle.  Note that ρλ does 

not contain a correction for the sun angle.  
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Mρ   = Band-specific multiplicative rescaling factor from the metadata 

(REFLECTANCE_MULT_BAND_x, where x is the band number) 

Aρ    = Band-specific additive rescaling factor from the metadata 

(REFLECTANCE_ADD_BAND_x, where x is the band number) 

Qcal  = Quantized and calibrated standard product pixel values (DN) 

In Figure 6.2 pre-processed L8 data used for the study. 

 

Figure 6.2: Landsat 8 and oil spill data used for the study site 2 

From the reflectance images of 2013, 2014 and 2015 in bands 5, 4 and 3appears have a 

bit visual variation despite applying the atmospheric correction. Images 2014 and 2015 

seem to contain effect of atmospheric dust and haze in some part of the study sites. 

6.3 Method and data analysis 

From Table 6.1 only 9 spill sites in 2014 can be observed using the image obtained on the 

23rd December 2014. Pre-spill data (data before spill event) is taken from the 20/12/2013 

image and post-spill data (data after oil spill) from the 08/01/2015 image. Information on 

the volume of oil spill, vegetation type, date of oil spill, location (GPS) etc is included in 
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the oil spill database. The method of analysis in the new spill sites will replicate the 

techniques used in chapter 4. The reflectance data was used in the calculation of the 5 

vegetation indices from the P and NP in 2013, 2014 and 2015 for statistical analysis. 

NDVI derived from Landsat 8 will be altered by looking at the earth through this “sub-

visible” cirrus band. It has been reported that due to the flat Mie scattering (Otterman and 

Fraser, 1979) from cirrus, cirrus will increase the apparent NDVI for water and decrease 

the apparent NDVI for vegetation. Rajitha et al. (2015), shown that NDVI values obtained 

after cirrus correction is found to be significantly more than that of NDVI values without 

cirrus correction. Empirically derived vegetation indices products seem to be unstable due 

to soil color and moisture, and bidirectional reflectance distribution function (BRDF) 

effects on atmospheric conditions (Qi et al., 1995). For these reason it is expected that 

other values of vegetation indices could be affected by BDRF effects.  In Figure 6.3 

vegetation indices map of 2014 showing sample polluted (P) and non-polluted points 

(NP), oil pipeline and spill point’s data for the analysis. 

 At each of the oil spill point vegetation indices were extracted and NP sample points 

were taken from areas with no oil spill as control points. The NP samples were taken 

where there are no oil facilities and also ensuring that the vegetation is of similar 

characteristics. 

Figure 6.4 illustration few of the sample points on the Google Earth image on how it wa

s conducted. 
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Figure 6.3: Sample P and NP points on vegetation indices maps in 2014. 

 

Figure 6.4: Few sample sites illustrating on Google Earth maps how P and NP points were 

obtained from Landsat data 
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6.4 Results 

The aim of this analysis is to present a result that may be used to validate the techniques 

in chapter 4. It is expected that the results from this study area will provide relatively 

similar results as in chapter 4. 

6.4.1 Impact of oil spill on vegetation in the image of 2014 

To assess whether there is an effect of oil pollution on vegetation at the spill sites, 

vegetation indices at both the polluted sites and non-polluted sites were extracted from 

the SS2. The extracted indices are expected to indicate if there is any statistical significant 

difference in the levels of pollution impact on the vegetation at the P sites and the ones at 

the NP sites. This statistical difference will be used to determine spectral changes in the 

vegetation affected by oil at the two sites. Figure 6.5 is the difference between vegetation 

indices obtained at the polluted and non-polluted sites. 

 

Figure 6.5: Box plot for the calculated mean of the 5 vegetation indices from polluted (P) 

and non-polluted (NP) sites in 2014  

Figure 6.5 is the mean values of the vegetation indices extracted from the P and NP sites, 

the “green” colour indicates non-polluted sites where oil spills were not recorded while 
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the “red” represents P sites with record of oil spills. The box plot shows the 

maximum whiskers, Q3, median, Q1 and minimum whiskers respectively. The vegetatio

n indices from NP sites show high vegetation values and P with low mean values. 

Table 6.2 is the generated statistics for the vegetation indices extracted from 9 oil spill 

sites which occurred during the year 2014. In the table the P sites were extracted where 

the spill occurred and the NP sites where no oil spill was recorded. These were used for 

the analysis of paired t-test at 0.05 for samples from P and NP in Table 3. It is assumed 

that vegetation indices obtained at the P and NP sites differs in response to oil impacts. 

This was done in order to determine if there is any significant differences between 

vegetation affected by oil spill (P) and the unaffected vegetation at the non-spill sites 

(NP).    

Table 6.2: A comparison of p-values from paired t-test analysis for the study sites (P and NP 

sites) in 2014 

 Indices NDVI SAVI ARVI2 G/NIR G/SWIR 

 

P Sites vs NP sites 

 

P-values 

 

0.01 

 

0.02 

 

0.01 

 

0.03 

 

n.s 

n.s. = not significant 

Table 6.3 demonstrates the result of the t-test analysis to determine if there are significant 

differences between the vegetation affected by oil spill (P) and the unaffected at the NP 

sites. The results show 4 vegetation indices (NDVI, SAVI, ARVI2 and G/NIR) with 

significant difference at p <0.05, between vegetation at the P and the NP sites. Similar 

results were also found in Chapter 4, which showed that vegetation affected by oil 

pollution indicated significant differences between the vegetation at the polluted and non-

polluted sites.  

6.4.2 Change detection of vegetation at the oil spill sites  

In chapter 4 results confirmed that vegetation health at P and NP sites before and after oil 

spill remain relatively unchanged but differs at the spill date (year of spill) based on the 

statistical analysis conducted at both the P sites. Thus this section attempt to validate if 

the results obtained in chapter 4. This section will determine if the level of significant 

differences in vegetation biophysical and biochemical properties at the P and NP sites in 

2013 (before spill) and 2015 (after spill) then compared to 2014 (oil spill date). Table 6.4 

is the statistical analysis of change detection between P and NP. 
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Table 6.3: Statistics of extracted vegetation indices from 9 P and NP sample oil spill sites in 2014 

 NDVI SAVI ARVI2 G/NIR G/SWIR 

Sample 

Points 

NP P Change 

(Δ) 

NP P Change 

(Δ) 

NP P Change 

(Δ) 

NP P Change 

(Δ) 

NP P Change 

(Δ) 

SP1 0.46 0.52 0.05 0.26 0.30 0.04 0.36 0.42 0.06 0.38 0.43 0.05 0.24 0.24 0.00 

SP2 0.52 0.25 -0.07 0.29 0.25 -0.04 0.43 0.35 -0.08 0.43 0.37 -0.05 0.32 0.12 -0.20 

SP3 0.49 0.43 -0.06 0.31 0.26 -0.05 0.39 0.32 -0.07 0.41 0.36 -0.05 0.19 0.08 -0.10 

SP4 0.34 0.14 -0.20 0.17 0.06 -0.11 0.22 -0.01 -0.23 0.25 0.06 -0.19 0.35 0.52 0.16 

SP5 0.30 0.16 -0.14 0.14 0.07 -0.07 0.17 0.01 -0.16 0.21 0.09 -0.12 0.47 0.37 -0.09 

SP6 0.41 0.42 0.01 0.22 0.23 0.01 0.30 0.31 0.01 0.32 0.34 0.02 0.22 0.15 -0.07 

SP7 0.42 0.33 -0.09 0.23 0.18 -0.05 0.31 0.20 -0.11 0.34 0.28 -0.06 0.31 0.00 -0.31 

SP8 0.41 0.31 -0.11 0.23 0.18 -0.06 0.30 0.18 -0.12 0.35 0.28 -0.07 0.00 -0.05 -0.06 

SP9 0.44 0.35 -0.09 0.24 0.18 -0.06 0.34 0.23 -0.11 0.36 0.28 -0.07 0.27 0.14 -0.13 

Mean 0.42 0.35 -0.08 0.23 0.19 -0.04 0.31 0.22 -0.09 0.34 0.28 -0.06 0.26 0.17 -0.09 

Std Dev 0.07 0.13 0.06 0.05 0.08 0.03 0.08 0.15 0.07 0.07 0.13 0.06 0.13 0.18 0.05 

Std error 0.02 0.04 0.02 0.02 0.03 0.01 0.03 0.05 0.02 0.02 0.04 0.02 0.04 0.06 0.02 

Max 0.52 0.52 0.00 0.31 0.30 -0.01 0.43 0.42 0.00 0.43 0.43 0.00 0.47 0.52 0.05 

Median 0.42 0.35 -0.07 0.23 0.18 -0.05 0.31 0.23 -0.08 0.35 0.28 -0.06 0.27 0.14 -0.13 

Min 0.30 0.14 -0.15 0.14 0.06 -0.08 0.17 -0.01 -0.18 0.21 0.06 -0.14 0.00 -0.05 -0.06 
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Table 6.4: Statistics of extracted vegetation indices from 9 P and NP sample oil spill sites in 2013 (pre-spill not polluted) 

 NDVI   SAVI   ARVI   G/NIR   G/SWIR   

Sample 

Points 

NP P Change 

(Δ) 

NP P Change 

(Δ) 

NP P Change 

(Δ) 

NP P Change 

(Δ) 

NP P Change 

(Δ) 

SP1 0.56 0.60 0.04 0.29 0.33 0.05 0.47 0.52 0.05 0.46 0.51 0.05 0.23 0.07 -0.16 

SP2 0.62 0.34 -0.08 0.33 0.28 -0.05 0.54 0.45 -0.10 0.51 0.44 -0.06 0.29 0.03 -0.26 

SP3 0.56 0.49 -0.07 0.30 0.25 -0.05 0.48 0.40 -0.08 0.46 0.41 -0.05 0.13 -0.02 -0.15 

SP4 0.46 0.15 -0.31 0.21 0.05 -0.16 0.35 -0.01 -0.36 0.34 0.05 -0.30 0.34 0.57 0.23 

SP5 0.42 0.33 -0.09 0.19 0.13 -0.05 0.31 0.21 -0.10 0.30 0.22 -0.09 0.50 0.45 -0.05 

SP6 0.47 0.46 -0.01 0.22 0.23 0.00 0.37 0.36 -0.01 0.37 0.37 0.01 0.18 0.08 -0.10 

SP7 0.56 0.40 -0.16 0.28 0.20 -0.08 0.48 0.29 -0.19 0.45 0.36 -0.09 0.31 -0.13 -0.43 

SP8 0.50 0.33 -0.17 0.26 0.17 -0.09 0.41 0.21 -0.20 0.41 0.29 -0.12 -0.03 -0.15 -0.12 

SP9 0.52 0.42 -0.10 0.26 0.20 -0.06 0.43 0.31 -0.12 0.42 0.34 -0.08 0.30 0.09 -0.21 

Mean 0.52 0.41 -0.11 0.26 0.20 -0.05 0.43 0.30 -0.12 0.41 0.33 -0.08 0.25 0.11 -0.14 

Std Dev 0.06 0.13 0.07 0.04 0.08 0.04 0.07 0.16 0.08 0.06 0.14 0.07 0.15 0.24 0.10 

Std error 0.02 0.04 0.02 0.01 0.03 0.01 0.02 0.05 0.03 0.02 0.04 0.02 0.05 0.08 0.03 

Max 0.62 0.60 0.04 0.33 0.33 0.05 0.54 0.52 0.05 0.51 0.51 0.05 0.50 0.57 0.23 

Median 0.52 0.42 -0.09 0.26 0.20 -0.05 0.43 0.31 -0.10 0.42 0.36 -0.08 0.29 0.07 -0.15 

Min 0.42 0.15 -0.31 0.19 0.05 -0.16 0.31 -0.01 -0.36 0.30 0.05 -0.30 -0.03 -0.15 -0.43 
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Table 6.5: Statistics of extracted vegetation indices from 9 P and NP sample oil spill sites in 2015 (post-spill not polluted) 

 NDVI SAVI ARVI G/NIR G/SWIR 

Sample 

Points 

NP P Change 

(Δ) 

NP P Change 

(Δ) 

NP P Change 

(Δ) 

NP P Change 

(Δ) 

NP P Change 

(Δ) 

SP1 0.46 0.54 0.07 0.25 0.30 0.05 0.36 0.45 0.09 0.39 0.45 0.06 0.19 0.20 0.01 

SP2 0.55 0.44 -0.11 0.31 0.24 -0.07 0.46 0.34 -0.13 0.46 0.38 -0.08 0.29 0.04 -0.25 

SP3 0.49 0.38 -0.11 0.28 0.20 -0.08 0.40 0.27 -0.13 0.41 0.33 -0.08 0.13 0.00 -0.12 

SP4 0.30 0.12 -0.18 0.14 0.05 -0.09 0.17 -0.04 -0.21 0.22 0.04 -0.17 0.35 0.49 0.14 

SP5 0.23 0.12 -0.11 0.11 0.05 -0.05 0.09 -0.04 -0.13 0.15 0.05 -0.10 0.46 0.36 -0.10 

SP6 0.36 0.34 -0.01 0.18 0.18 0.00 0.24 0.22 -0.01 0.28 0.28 0.00 0.20 0.11 -0.09 

SP7 0.40 0.30 -0.10 0.21 0.15 -0.06 0.29 0.17 -0.12 0.33 0.26 -0.07 0.27 -0.04 -0.31 

SP8 0.35 0.24 -0.11 0.19 0.13 -0.06 0.23 0.10 -0.12 0.30 0.22 -0.08 0.05 -0.09 -0.14 

SP9 0.40 0.32 -0.08 0.21 0.16 -0.05 0.29 0.19 -0.09 0.32 0.26 -0.06 0.25 0.11 -0.14 

Mean 0.39 0.31 -0.08 0.21 0.16 -0.05 0.28 0.18 -0.10 0.32 0.25 -0.06 0.24 0.13 -0.11 

Std Dev 0.10 0.14 0.04 0.06 0.08 0.02 0.12 0.16 0.05 0.10 0.14 0.04 0.12 0.19 0.07 

Std error 0.03 0.04 0.01 0.02 0.03 0.01 0.04 0.05 0.01 0.03 0.04 0.01 0.04 0.06 0.02 

Max 0.55 0.54 0.07 0.31 0.30 0.05 0.46 0.45 0.09 0.46 0.45 0.06 0.46 0.49 0.14 

Median 0.40 0.32 -0.11 0.21 0.16 -0.06 0.29 0.19 -0.12 0.32 0.26 -0.08 0.25 0.11 -0.12 

Min 0.23 0.12 -0.18 0.11 0.05 -0.09 0.09 -0.04 -0.21 0.15 0.04 -0.17 0.05 -0.09 -0.31 
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Tables 6.4 and 6.5 are the statistics of the vegetation indices extracted from P and NP sites 

for temporal analysis. Table 6.2 was used to analyse vegetation condition before the oil spills 

in 2013 and Table 6.5 for post spill analysis in 2015. Changes in vegetation spectral 

characteristics were assessed before and after oil spill for comparisons with the ones in 

23/12/2014 (as spill date). It is assumed that vegetation spectral reflectance before 

(20/12/2013) and after (08/01/2015) the spill may differ with the ones at the P sites in 

23/12/2014, depending on the time and volume of oil spill (discussed in Chapter 5). The time 

gap between oil spill event and image acquisition date could also influence the record of the 

vegetation signals by the sensor (discussed in Chapter 5).  The result of temporal paired t-

test analysis of means of vegetation indices from P and NP sites in 20/12/2013 (pre-spill), 

23/12/2014 (spill date) and 08/01/2015 (post spill) is presented in Table 6.6. 

 

Table 6.6: Analysis of change detection using paired t-test statistics of means of vegetation 

indices at the P and NP in 2013, 2014 and 2015. 

  2013 (Pre-Spill Not 

Polluted) 

2014 (Spill Date -

Polluted) 

2015 (Post-Spill-Not 

Polluted) 

  P Sites vs NP sites P Sites vs NP sites P Sites vs NP sites 

Indices Change (Δ) P-values Change (Δ) P-values Change (Δ) P-values 

NDVI -0.11 * -0.08 *** -0.08 *** 

SAVI -0.05 * -0.04 *** -0.05 ** 

ARVI2 -0.12 * -0.09 *** -0.10 *** 

G/NIR -0.08 * -0.06 ** -0.06 ** 

G/SWIR -0.14 * -0.09 * -0.11 * 

 

****p-value <0.0001, *** p-value <0.005, ** p-value <0.05, * p-value <0.01, ns p-value ≥ 0.05 

Key: ****Highly significant, ***Highly significant, **Very significant, *Significant, nsNot significant 

 

In Table 6.6 vegetation indices extracted from the 20/12/2013 image at the both P and NP 

sites were statistically compared. This was done to determine whether biophysical 

characteristics of vegetation at the P and NP sites before the oil spill differs. The results show 

that the 5 vegetation indices indicated less significant difference in 20/12/2013 at (p <0.05) 

but in 2014 three indices (NDVI, SAVI and ARVI2) indicated highly significant difference 

between the vegetation at P and NP sites with (p <0.005). G/NIR shows a very significant 
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difference in 2014 while G/SWIR remains relatively the same (no change). In post spill image 

in 2015 which has a small time difference with the image 23/12/2014 showed almost the 

same results with the exception of G/NIR and G/SWIR with a significant difference. The 

similarity in the results found in image (23/12/2014) used for the observation of the oil spill 

and the post spill (08/01/2015) have a relative difference in acquisition date (16 days). The 

result suggests that the small difference in the image acquisition date could be that the 

vegetation status between the two dates (images) and may have not changed within this 

period. This could also mean that the changes in biochemical and biophysical properties of 

vegetation due to oil spill at these P sites remain relatively unchanged before the acquisition 

of post spill data. There is also a possibility that few days between the spill date and image 

date the surface changes are less likely to occur within such a short period, although 

atmospheric conditions may change. Thus the satellite sensor may just have recorded a small 

changes that occurred in the vegetation signals though it does not suggest the technique and 

results are not valid. It is will ideal to use an available image with appropriate time difference 

with that of spill date to improve the detection of changes in the vegetation affected by oil 

spill. 

Temporal analysis was done to justify the spatial analysis conducted in section 6.4.1 and 

6.5.1. Table 6.6 showed that in the year 20/12/2013 data before the oil spill events, vegetation 

at the P and NP sites exhibits similar characteristics. The 5 indices indicated less significant 

difference between vegetation at supposed polluted points and the ones at NP sites, this result 

suggests that vegetation biochemical and biophysical properties at these two sites are not 

significantly different with p<0.01. At the same sites in 23/12/2014 (the year of spill events) 

there is a significant difference with p <0.005 for (NDVI, SAVI and ARVI2) and G/NIR and 

G/SWIR with p<0.01. The three indices were capable of providing some evidence of plant 

biochemical alterations in vegetation affected by oil pollution. These 3 indices were capable 

of discriminating changes vegetation biochemical and biophysical properties before spill and 

the spill event data and the remaining two were not in SS2. To also confirm if the vegetation 

indices at these sites in 23/12/2014 vary with the ones obtained after the oil spill in 

08/01/2015, the result in Table 6.6 showed that only two indices (NDVI and ARVI2) 
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indicated highly significant difference between the P and the NP sites with p <0.005, SAVI 

and G/NIR with p <0.05 and only G/SWIR with p <0.01. Based on the results it is proposed 

that there is not much difference in the vegetation conditions in 23/12/2014 (as oil spill events 

year) and 08/01/2015 (post oil spill year) at the P and NP sites. As previously stated, some 

vegetation affected by oil pollution in 23/12/2014 may still be under stress at the post spill 

data date (08/01/2015) as the time difference may be too short for a sensor to record any 

difference in the changes of the affected vegetation but this does not invalidate the result and 

the technique. The post spill data for 08/01/2015 may be appropriate for the assessment of 

oil affected vegetated sites as the sensor may be able to record changes in the vegetation 

signal at these sites. It is also expected that at these affected sites vegetation could also 

recover, but that may depend on the level of impact (volume of oil spill, type of oil etc.) and 

environmental conditions that could influence the vegetation recovery. The results in this 

section for SS2 appear to be slightly different with the ones obtained in SS1 because of the 

post spill data used 08/01/2015. In the analysis of data in SS1 (Chapter 4) significant 

differences in vegetation conditions before and after oil spill at the P and NP sites were 

observed. This is because the images used for analysis of post oil spill have relative time 

difference between the oil spill event and the post spill data. 

6.4.3 Changes in vegetation affected by oil pollution at the P sites (2013, 2014 and 2015) 

Table 6.7: shows the statistical analysis of the mean values for indices of vegetation affected 

by oil spill at the P sites. 

 

Indices 

 

Change (Δ) 2013 vs 2014 

 

Change (Δ) 2014 vs 2015 

p-values p-values 

NDVI *** * 

SAVI ns *** 

ARVI2 *** * 

G/NIR *** ** 

G/SWIR ns **** 

 

****p-value <0.0001, *** p-value <0.005, ** p-value <0.05, * p-value <0.01, ns p-value ≥ 0.05 
Key: ****Highly significant, ***Highly significant, **Very significant, *Significant, nsNot significant 
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Table 6.7 shows the temporal difference in the mean of vegetation indices at the P sites in 

2013 (when there was no oil spill has occurred) and the oil spill date in 2014 (when the oil 

spill has occurred). In 2013 the vegetation at the P sites shows that three indices (NDVI, 

ARVI2 and G/NIR) indicated significant difference with the same vegetation in 2014 and not 

significant (ns) for SAVI and G/SWIR. The post-spill results showed that there are significant 

difference between P sites in 2014 and 2015 (after oil spill has occurred) with at least a p 

<0.01 for NDVI and ARVI2, p <0.05 for G/NIR, p <0.005 for SAVI and p <0.0001 for 

G/SWIR. 

The analysis of vegetation condition before the spill was statistically assessed in relation to 

the ones at the oil spill date (2014). This is to confirm the assumption that vegetation index 

values before (2013) and after (2015) the oil spill impact may differ to the ones at P sites on 

the spill date (2014). The results show that some indices (SAVI and G/SWIR) indicated no 

significant difference between vegetation at the P sites in 2014 and the one before the oil spill 

in 2013. Three indices (NDVI, ARVI2 and G/NIR) indicated significant differences between 

the vegetation at the P sites in 2013 and the ones at the same sites in 2014 with p <0.005. In 

this result 3 (ARVI2, G/NIR and NDVI) indices were able to detect changes in biochemical 

and biophysical characteristics of vegetation affected by oil pollution and the unaffected ones 

and two (SAVI and G/SWIR) did not. As found in chapter 4 the best performing indices are 

ones that combine the elements of red and NIR spectral bands which are capable of detecting 

changes in the chlorophyll contents in plants (leaf) in red channel and leaf structure in NIR 

(Hongliang et al., 2005) but SAVI which also belong this group did not in this SS2. This 

result showed that the 3 BMVI (NDVI, ARVI2 and G/NIR) at the vegetation at the polluted 

sites before the spill significantly differs (p <0.005) as obtained during the spill event date 

and SAVI and G/SWIR not significant (p ≥ 0.05) during 2013 and 2014. While in the post 

spill analysis it appears that the 2 indices (SAVI and G/SWIR) indicated significant 

difference with p-values between (p < 0.0001 to 0.005) compared to NDVI, ARVI2 and 

G/NIR with (p < 0.01 to 0.05). The result suggested that some indices (NDVI, ARVI2 and 

G/NIR) were better in discriminating vegetation affected by oil spill before and during the 
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spill year (2013 and 2014), but not effective during post spill (2014 and 2015) where SAVI 

and G/SWIR were better. It is not clear if the result in this study has been influence by local 

physical environmental variation. It could also be related to characteristics of spectral bands 

combined to derive the indices for the detection of vegetation in oil polluted sites. Although, 

in chapter 4 the indices which combined the SWIR band with the visible (G) band (e.g. the 

G/SWIR band) performed well in detecting the difference before and after pollution at the 

polluted sites. 

6.4.4  Analysis of vegetation condition at the NP sites (2013, 2014 and 2015) 

Table 6.8: Temporal comparison of means of indices using a paired t-test of vegetation 

indices at the NP sites. 

Indices Change (Δ) 2013 vs 2014  Change (Δ) 2014 vs 2015 

p-values p-values 

NDVI **** ** 

SAVI *** *** 

ARVI2 **** * 

G/NIR **** ns 

G/SWIR ns ns 

****p-value <0.0001, *** p-value <0.005, ** p-value <0.05, * p-value <0.01, ns p-value ≥ 0.05 

Key: ****Highly significant, ***Highly significant, **Very significant, *Significant, nsNot significant 

 

Table 6.8 demonstrates the analysis of temporal vegetation condition at the sites to confirm 

whether there are changes in the biochemical and biophysical status of the vegetation at the 

NP sites. This will help to compare with the ones at the P sites. It is expected that the 

vegetation characteristics at NP sites may remain unaffected (as control sites) by oil spill, 

since no spill effects were observed over the sites. It is also assumed that there was no 

influence of climatic and environmental conditions, spatial and temporal variations of the 

atmosphere (Bannari et al., 1995, Baret and Guyot, 1991) at the spill sites. Since the study 

used image data of the same period of the year to avoid changes in vegetation phenology, it 

is assumed that vegetation at the NP sites may not change much over the period of time (i.e. 

January and December months). Though, it is expected that some local physical and 

environmental factors may cause changes in the vegetation cover that could be related to 



123 

 

 

vegetation stress. Another change that may result in the variation of the vegetation signals is 

the image data with noise such as haze, dust, cloud etc. may affect the quality of the image 

and subsequently the output of the results. From the Table 6.2.6 NDVI, SAVI, ARVI2 and 

G/NIR indicated a highly significant difference in vegetation characteristics between before 

the spill in 2013 and the oil spill date in 2014 with p <0.0001 to 0.005. These results suggest 

there are differences between vegetation at the NP site before and on the spill date even 

though no spill impact on vegetation is expected at these sites as they are further away from 

oil facilities. Therefore it may be assumed that the difference in the vegetation status at the 

sites could not be related to only oil pollution. Also there is a possibility that image quality 

(such as effect of haze, dust etc.) and environmental factors, vegetation phenology of the area 

might have contributed to these differences. The only index (G/SWIR) with no difference 

between in the vegetation in 2013 and 2014 suggests that vegetation during the period 

remained relatively the same over time. The result of this index may have been influenced 

by the function of SWIR which has the potential to detect changes in water contents in leaves 

(plants). In the post spill analysis the G/SWIR remain consistent by indicating no significant 

difference in vegetation at spill date (2014) and post spill (2015) and G/NIR showing similar 

result. NDVI, SAVI and ARVI2 indicated significant difference with p<0.005 and <0.01 for 

vegetation condition in 2014 and 2015. The performance of these indices for example NDVI 

and SAVI may have been affected by the effects of background as demonstrated in (Díaz and 

Blackburn, 2003) in this study site. In the overall performance of vegetation indices in this 

study NDVI and ARVI2 are found to be effective and consistent in the results. The 

performance of these two indices could be related to their combination spectral wavelength 

bands (NIR and red channels) in their calculation.  

6.4.5  Mapping likely stressed vegetation affected by oil pollution 

In the previous sections NDVI demonstrated as the most useful in discriminating between 

vegetation at P and NP sites, and before and after oil spills and that was also discussed in 

chapter 4. The index has shown consistent sensitivity in terms of discriminating vegetation 

affected by oil spill and the non-affected ones. The index has shown the ability to separate or 

distinguish between vegetation affected by oil pollution from NP. The NDVI has also 
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exhibited clearly the capability to detect a change in vegetation pigments before and after oil 

spills are the reason that was selected to map the likely polluted sample points in 2014. 

Table 6.9: NDVI values and oil spill data used for mapping likely SP in 2013 and 2014 

 

Sample 

Point 

Time 

Period 

(Days) 

Quantity 

of Oil Spill 

(bbl) 

 

NDVI 

2014 

 

NDVI 

2013 

 

NDVI (Δ) 

(2014 -2013) 

SP1 10 108 0.52 0.60 -0.08 

SP2 28 5000 0.25 0.34 -0.09 

SP3 106 na 0.43 0.49 -0.06 

SP4 108 60 0.14 0.15 -0.01 

SP5 113 1000 0.16 0.33 -0.17 

SP6 125 3 0.42 0.46 -0.04 

SP7 na na 0.33 0.4 -0.07 

SP8 140 7.7 0.31 0.33 -0.02 

SP9 158 60 0.35 0.42 -0.07 

 

From Table 6.9 shows the changes in NDVI between 2013 and 2014 has indicated a dropped 

at some polluted sites. The minimum drop in the NDVI between the two periods is recorded 

at SP4 (-0.1) and maximum at SP5 (-0.17). As observed in the NDVI map in Figure 6.5 the 

SP4 appears to show a sign of more stress compared to SP5. It cannot be conclusive to suggest 

that the stress could only be related to oil pollution as the NDVI for the both years did not 

show much difference. The average values of NDVI were calculated for the likely polluted 

sites and used for mapping the likely polluted areas. The average NDVI value computed is 

0.32 and the standard deviation of 0.12 and the minimum is 0.14 thus the likely polluted areas 

map ranges between NDVI values 0.12 to 0.32, the 0.14 used as minimum and 0.32 as the 

maximum likely polluted areas from the sample spill sites. 
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Figure 6a: Areas identified as likely vegetation stress based on the NDVI in 2014 
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Figure 6b: Areas identified as likely vegetation stress based on the NDVI in 2014 
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Figure 6c: Areas identified as likely vegetation stress based on the NDVI in 2014 

6.5 Discussion  

The main objective of this analysis is to test the applicability of techniques from Chapter 4 

in a different study sites with relatively similar physical environmental conditions. The 

technique was replicated in this study site and appears to present a relatively similar result to 

the ones obtained in chapter 4. The variations in some of the results may have been influenced 

by relative differences in the physical environmental conditions, satellite sensor 

characteristics, volume of oil spill, and time gap between oil spill event and image acquisition 

date etc. Notwithstanding, the best performed indices used in Chapter 4 were applied in the 

SS2 and showed a potential of replication in this study site (SS2). For example in Figure 6.4 

the box plot show that the five indices (NDVI, SAVI, ARVI2, G/NIR and G/SWIR) were 

capable of detection of changes in vegetation chlorophyll content, leaf internal structure and 
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water contents in leaf that relates stress. In the box plot the indices show potential in 

discriminating between stress in vegetation resulting in vegetation biochemical alterations at 

the P sites and the ones at the NP sites. Researches have attributed these biochemical 

alterations in forest areas (Arellano et al., 2015, van der Meer et al., 2000, Zhu et al., 2013, 

Noomen et al., 2012) to oil pollution. This analysis aimed to assess the capacity of these 

indices to detect changes in the vegetation affected by oil spill and the unaffected ones. The 

assumptions that were stated at the beginning of the chapter include the statistical testing of 

these indices to differentiate between vegetation affected by oil at the P and NP sites in 2014. 

The results from Table 6.2.1 showed that there are significant difference between vegetation 

at the P and NP sites with p <0.01 (NDVI, SAVI, ARVI2 and G/NIR) while G/SWIR with 

no significance difference. It is not clear if the lack of sensitivity at these sites could be as a 

result of the new sensor (Landsat 8) which has relatively narrow spectral bands compared to 

the previous sensors (Landsat 5 and 7) used in chapter 4. In the case of G/SWIR index for 

example in Landsat 8 data the spectral wavelengths is between (0.53 - 0.59 mn) for green 

band and (1.57 - 1.65 mn) for SWIR 1 compared to L7 with (0.52-0.60 nm) for green and 

(1.55-1.75 nm) for SWIR 1 respectively. Though, it is expected that specific band 

designations will differ from Landsat 1-3 to Landsat 4-5, Landsat 7 to Landsat 8. In Chapter 

4 (SS1) the 5 best performing indices were the ones derived from red and NIR channels 

which appear to be sensitive in this analysis of vegetation at P and NP sites in SS2 with the 

exception of G/SWIR and G/NIR. The consistency of the indices derived from red and NIR 

channels could be because of their sensitivity to changes in leaf chlorophyll content and 

internal structure. These features make them capable of detecting stress symptoms of 

vegetation resulting from oil pollution since the effect of the oil spill can cause biochemical 

changes that is recorded in the red and NIR channels. Stress levels may vary dependent on 

the volume of oil spill, vegetation type, oil type, other environmental conditions (e.g. soil 

type and soil organic matter) (Pezeshki et al., 2000), sensitivity of the index derived from 

broadband channels, and sensor resolution etc. In this study site (SS2) the three indices 

(NDVI, SAVI and ARVI2) were able to detect changes in pigment concentration and leaf 

structure from red and NIR channels respectively of vegetation affected by oil pollution at 

the P sites. The low levels of chlorophyll recorded can result in vegetation stress as it may 
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reduce photosynthetic activity in vegetation affected by oil pollution at the investigated sites. 

At the NP sites the indices were not able to detect much of the change in vegetation 

biochemical and biophysical properties where no oil spills were recorded. It is expected that 

the observations in the vegetation biochemical and biophysical properties at these sites could 

be used to affirm that vegetation at P sites may have been exhibiting symptoms of stress due 

to oil pollution compare to the ones at NP sites.  

It also worth assessing the general vegetation conditions in the study area before and after oil 

spill to justify if they differ with ones found at the P and NP sites over time. The results in 

Table 6.2.4 show that vegetation condition in 2013 between the P and the NP sites were 

significant with p <0.01 for all the 5 indices. Similar approach was applied for 2014 (year of 

oil spill) the results indicated 3 indices (NDVI, SAVI and ARVI2) with a highly significant 

difference of p <0.005 between vegetation conditions at the P and NP sites. G/NIR and 

G/SWIR indicated significance of p <0.01 between the vegetation at P and NP sites. In 2015, 

which was used as the post spill year, significant difference was observed between vegetation 

at the P and NP and only G/SWIR maintaining consistency over the period (2013, 2014 and 

2015). Green (G) band in Landsat 8 emphasizes on peak of vegetation, which is useful for 

assessing plant vigour. This result may suggest that vegetation biochemical status in 2013 

between N and NP sites was relatively similar, though there could be alterations but these 

may be relative between the two sites. In 2014 vegetation status at the P and NP sites appears 

to differ which could be as a result of changes in vegetation affected by oil pollution with the 

ones at the NP sites. The post spill analysis which did not presented much difference with 

the ones in 2014 could suggest that vegetation conditions in 2015 are similar with no 

significant changes. The assumption that the vegetation condition at the same polluted point 

in 2013 (pre-spill) and 2014 (spill date) could differ was also statistically tested. The results 

show that only two indices SAVI and G/SWIR did not detect any significant difference 

between vegetation at the P sites in 2013 and 2014. For example, SAVI which is a 

modification of NDVI to adjust the influence of soil has been found to be less sensitive to 

changes in vegetation but more sensitive to atmospheric differences (Huete, 1988). But 

NDVI, ARVI2 and G/NIR indicated a significant difference during the same period and 
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sample points. In the post spill there are highly significant differences between vegetation 

condition in 2014 and 2015 indicated by SAVI (p <0.005), NDVI (p <0.05) and ARVI2 (p 

<0.01) while the G/NIR and G/SWIR with no significance difference. It can be argued that 

the significant difference indicated by SAVI, NDVI and ARVI2 were poor and inconsistent 

in their sensitivity in the post spill vegetation at the NP sites. The only consistent index is the 

G/SWIR at pre (2013 vs 2014) and post (2014 vs 2015) spill at the NP sites indicating no 

significance difference  in this study sites compare to the results in chapter 4 where all the 5 

indices were consistent. The performance of this index could be influenced by spectral band 

combination (from Landsat 8) for example G (green) at 0.53 - 0.59 nm which is capable of 

sensing peak vegetation and useful for assessing plant vigour. Also SWIR at 1.57 - 1.65 nm 

has capacity to discriminate moisture content of soil and vegetation and penetrates thin 

clouds. These wavelength bands in L8 are narrower compare to the ones obtained in L5 and 

7 (e.g. Green - L8: 0.53 - 0.59 nm and L7 - 0.52 - 0.60 nm while SWIR L8: 1.57 - 1.65 nm 

and L7 - 1.55 - 1.75). It has been shown that spectral narrow bands are sensitive to distinct 

biophysical and biochemical characteristics of vegetation (Marshall et al., 2016) though with 

reference to hyperspectral data. 

From the NDVI map of likely polluted sites there was no certainty that the alterations in 

vegetation biochemical and biophysical properties could be as a result of either oil pollution 

or other local environmental conditions with a drop in NDVI value from 0.33 in 20013 to 

0.16 in 2014. However, for example location of SP5 near built up areas, there are possibilities 

that built up land cover signals mixed up with the vegetated polluted pixels as appear in the 

map Figure 6.6. There are also noticeable drop in NDVI at SP2 (-0.09) and SP1 (-0.08), but 

despite the drop in the index value did not really match with the one in the image e.g. SP1 

show that vegetation at this site may have not been impacted by the oil pollution. Although, 

at SP2 the volume of oil spill (5000 bbl.) involved and time (28 days) the image was acquired 

after oil spill may have influenced the detection of spectral changes in vegetation in Figure 

6.5. It can also be argued that the vegetation near the oil pipelines could be stressed vegetation 

related to oil pollution.  
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6.6  Summary 

In conclusion, the findings revealed that the SS2 with shows statistical results from 

vegetation indices are not significant compared to the one in SS1. The performance of these 

indices in both SS1 and SS2 could be influenced by variation between different vegetation 

types and between individual pigments between the same vegetation type (Blackburn, 2007). 

These variations could also be attributed to some factors such as difference in physical 

environment, climatic conditions, volume of oil spill, image and spill date etc. The data used 

in the two study sites are of the same sensor type but with relative differences in their 

characteristics for example in SS1 used (Landsat 5 and 7) and SS2 Landsat 8. The difference 

in spectral band properties may influence the output of reflectance image for example aerosol 

band (band1) in most cases the model uses radiance values for this band which is not found 

in other Landsat data. Thus techniques in Chapter 4 can be successfully replicated or used in 

another environment with a relatively similar climatic condition and physical environmental 

characteristics using vegetation indices derived from other sensors e.g. Landsat 8 these has 

been demonstrated in (Rajitha et al., 2015). Other factors not fully assessed and validated in 

SS2 are volume of oil spill and time gap between oil spill and image acquisition dates. 

However, time gap between oil spill and image date in SS2 could be influential in detection 

of impact of oil pollution on vegetation. For example number of days between the oil spill 

and image is 1 day minimum and the maximum is 6 months. Thus, in SS2 it might be possible 

that sensor may have not recorded spectral changes in vegetation properties due to low 

volume of oil spill at some spill sites. Further study will require considering other factors 

such as variations in local physical environment, climatic conditions, satellite sensor 

characteristics (spectral bands) etc.  
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Chapter 7 : Discussion, conclusion and future work 
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7.1 Discussion 

The aim of this thesis was to contribute knowledge towards the identification and detection 

of the impact of oil pollution on vegetation health from oil pipelines using BMVIs derived 

from satellite data in the Niger Delta. The three results chapters (4, 5 and 6) addressed the 

following research questions as follows: 

 

7.1.1 Are the BMVIs capable of detecting changes in the leaf pigments of vegetation affected 

by oil pollution in mangrove forests? 

In recent times there have been developments in the monitoring of vegetation stress in an oil 

polluted environment. Remote sensing has been demonstrated to be a capable and effective 

technique for detection, monitoring and quantification of vegetation stress levels impacted 

by oil spills from pipelines (van der Werff et al., 2008, Li et al., 2005).  Changes in vegetation 

health can be related to different environmental stressors, thus detecting the causes of stress 

in vegetation can be challenging. This study intended to detect vegetation stress relating to 

oil pollution impact from oil pipelines in a mangrove forest where oil operations are carried 

out. Stress in vegetation could be as a result of alterations in biochemical and biophysical 

properties (Noomen et al., 2008). For example a gradual loss of photosynthetic pigments in 

plants and collapse in a cell wall structure of a leaf, are good influential factors and indicators 

for assessing vegetation health (Jensen, 2014, Mather and Koch, 2011a). These alterations or 

changes in vegetation pigments can reflect in spectral reflectance in visible and NIR 

wavelengths from the satellite data (Sims, 2002). Guyot et al., (1992), Noomen et al., (2012) 

have also shown that change in the colour of leaves, stems and trunks are very good 

indications of a plant’s response to oil concentration or stress. Studies have focused on using 

handheld to satellite borne hyperspectral data to detect vegetation affected by oil pollution in 

a pipeline environment (van der Meer et al., 2000, Noomen et al., 2015). Thus, this study 

focused on assessing the capabilities of BMVIs derived from multispectral data from Landsat 

for the detection of oil impact on vegetation in the Niger Delta mangrove forest.  
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Twenty vegetation indices, derived from multispectral satellite data (Landsat), were used to 

test their capabilities and see what made them unique for detecting the impact of oil pollution 

on the biochemical and biophysical characteristics of vegetation. Statistical tests were carried 

out on the entire sample of polluted and non-polluted sites, in order to assess the indices that 

are sensitive to changes in vegetation at the two sites. Statistical analysis was used to 

determine whether vegetation status has changed before and after oil pollution due to 

pollution impact. The best performing indices in detecting the impact of pollution on 

vegetation affected by oil spills were those derived from a combination of spectral reflectance 

from the visible and NIR wavelengths. Both the visible and NIR band were found to be 

capable of indicating changes in chlorophyll content and leaf structure related to changes in 

vegetation health, as NIR decreases in reflectance at 800 nm and 1300 nm due to oil pollution 

(Zhu et al., 2013). It has also been shown that evidence of stress in vegetation and changes 

in plant pigments are commonly noticed in the visual and NIR portions (Rosso et al., 2005). 

It is known that the reflectance signatures of vegetation in these bands are sensitive to any 

changes in vegetation condition. Therefore, any changes in vegetation’s biophysical and 

biochemical characteristics induced by oil pollution would affect the reflectance signature of 

vegetation. In this study the indices derived using these bands (visual and NIR) have the 

potential to detect alterations in chlorophyll content and leaf structure of vegetation due to 

oil pollution, similar to findings in (Arellano et al., 2015). The vegetation indices which 

included all the three bands in the visible spectra (i.e. B, G and R bands) showed mixed 

results in their ability to detect changes in vegetation induced by oil pollution. Only the GLI 

(Green Leaf Index), which combines all the visible bands, has indicated significant difference 

between the vegetation condition in the P and NP sites, whilst the G/R and the PPR indices 

did not detect any difference between the two sites. The indices which combined the SWIR 

band with the NIR performed well in discriminating vegetation affected by pollution, while 

the index where the SWIR was combined with the green band did not. Vegetation indices 

which included bands  not often used in deriving indices (i.e. blue and the green bands), were 

found to be relatively effective in detecting vegetation affected by oil pollution. These indices 

include the GBNDVI, ClGreen, GRNDVI and G/NIR. The ability of these existing indices 

to differentiate between the P and NP sites could be influenced by the spectral band 



135 

 

 

combination, characteristics, sensitivity or suitability of the index to vegetation and the nature 

of land cover at the affected sites. The temporal evaluation carried out on the 20 BMVIs 

revealed the differences in vegetation index values before and after pollution (with higher 

values) compared to the spill event date (with lower values). Twelve BMVI values showed 

significant temporal changes at the polluted sites, which were not detected in the non-polluted 

sites (Table 4.2). The temporal changes of the BMVIs at the spill sites could be attributed to 

biophysical and biochemical alteration in the vegetation due to the effects of oil pollution. 

Five BMVIs; NDVI, SAVI, ARVI2, G/NIR and G/SWIR were found to be consistently 

sensitive to oil pollution effects as shown by their significant temporal changes between pre 

and post spill events.  

From the evaluation carried out on the 20 BMVIs, this study showed that some indices have 

shown capabilities. However, the best performing indices capable of detecting vegetation 

affected by oil pollution were those derived using a combination of reflectance from the 

visible and NIR wavelengths. Based on the results from this study, it can be concluded that 

these indices have demonstrated the capacity to detect changes in vegetation (chlorophyll 

contents, leaf structure, water contents etc) affected by oil pollution and can be used to 

monitor pollution in forest areas. However, results from this study can be improved upon 

significantly if high resolution data (of at least less than 5m) is available, since 30 m 

resolution may not be able to accurately capture vegetation signals affected by small volumes 

of oil spill. 

7.1.2 How do the identified factors influence detectability of vegetation affected by oil spills 

using spectral vegetation indices? 

A number of factors were identified that were assumed to be influential in the detection of 

oil pollution using spectral vegetation indices. This objective is aimed at determining the 

statistical relationship between these factors and the five selected vegetation indices. Below 

are summaries of the factors (volume of oil spill, variation in spatial distance from spill point 

and time gap between oil spill and image acquisition date).   
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How can the volume of oil spill influence detection of vegetation affected by oil pollution? 

When hydrocarbons are release in to the natural environment, characterising how the 

environment is affected could depend on the weathering processes of the sites (Osuji and 

Ezebuiro, 2006). It has been shown that oil characteristics and weathering (i.e. change in 

composition of the oil) can reduce the quantity of oil released into the environment (Wang et 

al., 2013b). It is well understood that the volume of oil spilled into the environment can 

deplete over time and reduce the quantity spilled, depending on the chemical and biological 

properties as well as type of oil involved (Luis, 1993, Osuji and Ezebuiro, 2006, Noomen et 

al., 2012). Thus, the impact of oil pollution on vegetation can be influenced by the quantity 

of oil released into the environment. Studies on the effect of time on the influence of volume 

of spill on detectability of oil impact on vegetation using BMVIs is limited. Thus, this study 

had assumed and tested how the volume of oil spill could impact on vegetation health and be 

related to a drop in the values of vegetation indices. 

In order to establish whether the volume of oil spill could influence detectability of oil impact 

on vegetation health, the assumption that a certain volume of oil spill would impact 

vegetation was statistically tested. This was done to determine what quantity of oil spill 

would indicate a relationship with a change in the vegetation indices. Based on the 

performance of the 5 BMVIs (NDVI, SAVI, ARVI2, G/NIR and G/SWIR) that were chosen 

and used to test the effect of volume of oil spill on impact on vegetation. It has been shown 

that the impact of pollution on vegetation health and vigour depends on the oil spilled in the 

environment, and it is assumed that a larger volume may impact more severely on vegetation 

compared to a smaller volume. It has been suggested that a larger oil spill lowers oxygen 

concentration in soil, which may affect plant health in a polluted environment. These effects 

can be attributed to changes in vegetation chemical contents and structure as well as spectral 

reflectance.  Noomen (2007), found that there are strong relationships between hydrocarbon 

and oxygen concentration that may be responsible for changes in the biochemical and 

biophysical status of vegetation. In this study it was found that four (4) indices (NDVI, SAVI, 

ARVI2 and G/NIR) indicated a relationship with volume of oil, that could be termed as 
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relatively negative because the regression line tends to approach 0 (downward slope). Though 

the BMVIs relationship with the volume of oil spill is not strong enough to justify their 

performances, they show the potential for further study. Where there is a weak relationship, 

it could be as result of factors such as the time gap between the oil spill event and imagery 

date, local physical environmental factors, sensor resolution etc. Thus, the relationship 

between volume of oil and the vegetation indices was improved by further refining the time 

gap between oil spill and imagery date. Refining the number of days to less than 365 days 

(in Table 5.3) has improved the relationship between the volume of oil spill and the BMVIs. 

This result is similar to (Zhu et al., 2013) where BMVIs were used in estimating Total 

Petroleum Hydrocarbon (TPH), but for the case of this study, volume of oil spill was used 

instead of TPH. This result showed that volume of oil spill is related to changes in BMVI 

values and could be one of the influential factors in the detection of oil pollution impact on 

vegetation in the study area.  

  

Can variation in spatial distance from the polluted point influence detection of oil pollution? 

 

The variation in spatial distance was assessed to determine the impact of oil pollution on 

values of vegetation indices. The result showed that the relationship between the BMVIs 

from the three neighbouring pixels “pixel 1” (P1), “pixel 2” (P2) and “pixel 3” (P3) did not 

show significant variation in index values. This analysis was carried out after applying flow 

direction modelling to determine the likely flow direction of the oil pollution. The result 

found here could be linked to factors such as volume of oil spill and the extent of area 

coverage. Therefore, this factor is dependent on the volume of oil and ability of the oil spilled 

to migrate from the point of source.     

 

Can the time gap between oil spill and image acquisition date have an influence on the detection 

of vegetation affected by oil spills? 

It is assumed that oil characteristics change in composition and that over time, the spilled oil 

may deplete depending on the chemical and biological properties of the oil. This study 

assumed that the time gap between the oil spill date and image acquisition date can be an 
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influential factor in detecting oil pollution over vegetated areas. For example, as the number 

of days increases, there is a chance that the oil concentration may deplete and it may be 

difficult to detect the pollution as the vegetation at the sites may have recovered. The result 

here showed that there is a relatively better correlation between the number of days and the 

BMVIs, signifying that as the number of days increase, the BMVIs increase. Thus, it shows 

that time between the imagery and spill dates is crucial in detecting oil pollution and could 

be appropriate as from 20 to 237 days, but could also be dependent on the volume of oil spill. 

This may be interpreted as the vegetation at these sites recovering (as indicated by an increase 

in the values of BMVIs). This result may also be dependent on the volume of oil spilled, as 

the impact of larger spills may last longer at the polluted sites and there is a greater possibility 

of detecting the vegetation stress relating to the spill from satellite data. Sensor 

characteristics, such as temporal and spatial resolution, can improve the detectability of oil 

impact on vegetation, for example, the revisit time of satellite sensors with high resolution in 

order to capture possible cloud-free areas in the polluted environment. This can be helpful in 

capturing early symptoms in vegetation stress resulting from oil spills. Spatial resolution of 

sensors is also an important factor, as highlighted earlier that a 30m pixel may not be capable 

of detecting a small volume of oil spill that did not occupy a 30m pixel.  Other local and 

physical environmental factors can also be considered when embarking on research of this 

nature. 

7.1.3 Can the method developed be implemented in a different part of the wider study area? 

The main aim of this chapter is to present an extension and replication of the method used in 

this part of the study site 1 (SS1) to test its potential replication in study site 2 (SS2). 

Replication of analytical techniques is carried out to judge the quality, reliability and 

consistency of results, and can be considered as good practice in analytical research. In 

chapter 4, vegetation indices were used to determine their capability for detecting oil 

pollution impact on vegetation health. The indices have shown the potential to detect and 

monitor changes in biochemical and biophysical properties of vegetation affected by oil 

pollution. The findings revealed that the statistical results in SS2 show that differences in the 

results are not very significant with to the ones found in SS1. The likely variations in the 
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results could be as a result of the influence in the variations in local physical environment 

between the two study sites (SS1 and SS2). Also, the sensors (Landsat 5, 7 and 8) have small 

variations in wavelength properties that could influence the calculation of vegetation indices 

used for the analysis (Rajitha et al., 2015). 

7.2 Conclusion 

All the vegetation indices derived from the multispectral data (Landsat 30m resolution) have 

demonstrated certain levels of capabilities and potential for detecting and monitoring oil 

pollution in a vegetated environment of this nature (mangrove forest). The results also 

showed that some BMVIs did not perform well in the detection of oil pollution. Their 

performance could be related to the size of oil spill and time factors analysed in chapter five. 

Characteristics of the spectral bands used for deriving these BMVIs can also influence their 

sensitivity to vegetation impacted by oil spills.  

Two factors (i.e. volume of oil spill and time gap between spill event and image acquisition 

date) were identified to be influential factors in detecting vegetation affected by oil pollution 

using vegetation indices. These factors should be considered when carrying out similar 

studies. The variation in spatial distance on the detection of impact of oil polluted sites can 

be influential in areas with high topography, as the large oil spill can tend to migrate from 

the source. Thus, this factor can be applied in such areas with high topography, using the 

flow direction model to determine the flow direction of the oil spill. The variation in spatial 

distance of oil spill in this study did not indicate much influence on the detectability of oil 

spill using vegetation indices, due to the low topography of the area studied. However, this 

factor can also be dependent on the first two factors (volume and time) highlighted above. 

From the validation of the technique in chapter six, there is the potential of replicating the 

technique in wider study areas with similar physical environmental characteristics. It is 

possible to conclude that the technique can be replicated in other study sites, whilst 

considering variations in environmental factors between study sites and data to be used. 
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7.3 Future work 

 Most of the uncertainties and shortcomings of this study have already been 

highlighted in previous chapters. The proposals for direction of future work are based 

on the results, uncertainties and challenges from this research. 

 

 The opportunity to consider the development of a hybrid vegetation index that 

combines the elements of the best vegetation indices evaluated in this study to 

optimize the method for detecting vegetation affected by oil pollution, could be 

explored. This can be done by evaluating the combination of spectral bands used in 

the calculation of the indices, in order to develop an improved algorithm from these 

BMVIs for oil pollution impact on vegetation. 

 

 Some of the challenges the study had to deal with included the non-accessibility and 

cost implication of airborne and high resolution satellite data. Thus the study resorted 

to using vegetation indices derived from satellite sensors with medium resolution 

(Landsat data 30m resolution) for detecting oil pollution. This means that it was not 

possible to detect and map the volume of oil spill at some polluted sites using a 30m 

pixel resolution. But it has shown the capability of detecting a large volume of spill 

beyond a 30m pixel. This problem can further be addressed using vegetation indices 

derived from high resolution or airborne sensors for the detection of relatively small 

to large volumes of spill. Notwithstanding this, the Landsat 30m resolution has 

proven to a capability for monitoring vegetation affected by oil pollution at spill sites 

at a wider and temporal scale, where the size of oil spill is large e.g. at least above 

300 bbl.  

 

 Seasonality can also be a factor influencing the detection of pollution in mangrove 

forests like that of the Niger Delta. Oil spills that occur during the rainy season are 

difficult to detect due to persistent cloud cover in optical sensors. In some cases 

during the rainy season, vegetation at the oil polluted sites may recover, thereby 
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hindering the detection of oil impact on the vegetation using optical sensors. Using 

sensors operating at microwave wavelengths can penetrate the thick cloud cover, 

providing a viable option for detecting oil pollution during the wet season. 
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Ch. 4 – Investigating BMVIs for detection and analysis of vegetation stress over time and 

space in polluted areas. 

 

Parts of the work presented in this chapter have been published as: 

 
Adamu, B., Tansey, K. and Ogutu, B. (2015). "Using vegetation spectral indices to 

detect oil pollution in the Niger Delta." Remote Sensing Letters 6(2): 145-154. doi: 
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Respective co-author contributions: Appendix I. Contributions of co-authors 

Adamu, B. (University of Leicester): Carried out the research planning with advice of co-
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analysis, production of tables and figures, chapter and publication writing and revisions from 

co-authors. 

Tansey, K. (University of Leicester) provided supervision, advice and feedbacks throughout 

the initial planning process to completion of this work. 

Ogutu, B. (University of Leicester 2013-2015; University of Southampton 2015 - date) 
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