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Abstract 

Forests are the major source of biodiversity and provide natural sources of wood, fodder, 

gums, resins, and medicines. Forests encounter damage by nature and human factors, 

which needs to be monitored for all tree species, whether invasion or intentional damage. 

This study focuses on the classification of an open tall stand coastal surrounding site for 

the mapping and classification of tree species and ground features using airborne imagery. 

So, improving the classification and mapping accuracy of forest in surrounding coastal 

regions is essential for the restoration and management decisions. The first objective of this 

thesis is to use segmented Principal Component (PC) images to classify the ground 

features including different tree species and to improve the classification results. More 

specific goals include (a) Use of hyperspectral images to map and classify the forest region 

using a segmented PC image, (b) Investigating the gain in mapping accuracy with 

segmented PC image as opposed to hyperspectral imagery alone. The second objective is 

to assess and investigate the fusion of airborne hyperspectral imagery and LiDAR derived 

Canopy Height Model for classification and assessing the results. These objectives aim at 

investigating the gain in mapping accuracy with fusion image as opposed to hyperspectral 

imagery alone. 

Thus, overall this study assesses the differences in classification outputs using a data fusion 

technique, segmented PC image and individual hyperspectral images, which differ in 

accuracy, in Mediterranean forest. MLC based supervised image classification method 

provided better accuracy (96.3%) with segmented PC images, (~92.9%) with the fusion of 

CHM and hyperspectral images than with hyperspectral image alone (89.6% with MLC 

and 67.5% with SAM). According to my results, CHM and HSI provide better 

classification and mapping results over extensive areas of forests. 

The overall accuracy of the classified maps ranged from 67.5 to 96.3% and  coefficient 

was found between 0.61 and 0.95. Segmented PC and PC fusion techniques provided a 

significant step to improve the distinction and classification results. Using the above 

methods, tree species and associated features could be classified and mapped, despite the 

problem of spectral mixing of different features. In future, more high spatial and spectral 

resolution images will provide a platform for the incorporation of enhanced characteristics 

for mapping and classification purposes.  
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Chapter 1. Introduction  

 

1.1 Introduction  

Hyperspectral images can provide more information about the earth features than 

multispectral images using different classification techniques. However, as the number 

of spectral bands increases the dimensionality of the data also increases which results in 

an improved classification accuracy (Bellman, 1961, Hughes, 1968). This is also 

limited at certain points from where a further increase in spectral bands results in the 

decrease of the classification accuracy, which is known as the ‘Hughes Phenomenon’. 

High dimensional image requires more number of training samples for a classifier and 

need increases exponentially. Thus, in the classifier design, it leads to ambiguity in the 

classification, where the accuracy increases and declines after that points onwards with 

an increasing number of bands, while keeping the training samples constant (Hughes, 

1968, Scott, 1992). There exist a relationship between the number of training samples, 

band numbers of the images and consequent classification accuracy of the classified 

image (Fukunaga and Hayes, 1989). This phenomenon cannot be prevented unless 

provided with sufficient number of samples. It means that by adding more spectral 

bands to a standard classifier, the classification result eventually becomes less accurate 

(Alonso et al., 2011, Hughes, 1968, Ma et al., 2013, Nishii et al., 1997, Scott, 1992). 

Too many input bands can thus lead to a degradation of the classified map, resulting in 

lower accuracy result for classified hyperspectral image. Thus, in this study segmented 

PCA was applied to reduce the 'Hughes Phenomenon' and enhance the classification 

accuracy. 

There are several studies related to 'Hughes Phenomenon' for either reducing it or 

mitigating it (Shahshahani and Landgrebe, 1994). Band selection (selecting numerous 

bands out of all bands), PCA and MNF based feature transformations were some of the 

techniques evolved to reduce the 'Hughes Phenomenon' in hyperspectral image 

classification. There is also evidence of classification by SVM using feature selection 

for reducing data dimensionality (Pal and Foody, 2010). Initially, optimum band 

selection were used as one of the methods for classification of hyperspectral images 

(Ma and Zhang, 2011, Mausel et al., 1990). Band selection is a method of choosing few 

bands from several bands that may contain the unique information needed for 

classification (Chang et al., 1999, Mausel et al., 1990). Thus, band selection became the 



 

2 
 

famous method of hyperspectral image classification, and sometime it lower the 

implementation of a classifier as some bands may have valuable information in 

discarded bands (Brunzell and Eriksson, 2000). Thus, choosing a better classification 

classifier may also produce lower accuracy results (due to data dimensionality). An 

attempt has been made to classify hyperspectral images using MLC while reducing the 

dimension of the image to generate the desired results.  

This thesis aims to-  

1) Classify forest tree species using hyperspectral images by reducing the ‘Hughes 

Phenomenon’ using segmentation of hyperspectral image.  

2) Extract attributes from LiDAR and integrates with hyperspectral images to harness 

the robustness of image fusion and its classification. 

3) To decide which techniques are suitable or whether additional attributes or properties 

included with the hyperspectral image can enhance its outcomes. 

Researchers have shown the effectiveness of hyperspectral image and LiDAR 

contribution towards the classification purposes in forestry and related fields (discussed 

in detail in Chapter 2).   

1.2 Background and Rationale 

Earth observation is an emerging technology that has many applications in resource 

management, forestry, land use land cover classification and other research areas. 

Remote sensing has established its applicability in a wide range of research fields such 

as forestry, land cover, biomass estimation, mapping and classifications. Optical, 

hyperspectral and LiDAR remote sensing can assist in earth observation technology. 

Recently, researchers concentrated their work to map forest species, estimate biomass 

and measure biophysical parameters of forest using hyperspectral imagery (Treitz and 

Howarth, 1999). In the beginning of remote sensing era, satellite data has provided low 

spatial, spectral and temporal resolutions for research purposes, but nowadays satellite 

and airborne data provides high spatial, spectral resolution data to work and study 

different research fields. The advantage with enhanced remote sensing technology is the 

collection and acquisition of different images in terms of different spectral wavelengths 

(panchromatic, multispectral, hyperspectral) and low to high spatial resolution (Zhang 

et al., 2007).  
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Remote sensors provide information about Earth's features due to reflected/ emitted 

radiation (passive sensors) or returned pulses (Active sensors) (Schott, 2007). This 

information is captured remotely in the form of energy and stored in the image that 

allows researchers to determine their feature composition and their nature (Read and 

Torrado, 2009). Thus, the Earth observation sensor's capability to acquire surface 

radiance values have provided challenging research facilities. These capabilities were in 

terms of increasing spatial resolution, and spectral resolution with more periodic 

capture of earth surface features (Campbell, 2002). The surface features comprise of 

vegetation, soil and surrounding features that need to be identified using a remote 

sensing approach. The remote identification of features is quite difficult due to 

numerous persistent problems during data capturing. These problems are atmospheric 

interference, angle of view, spectral variance of proximity features and water contents 

during real-time measurements by sensors. Although researchers have made their best 

efforts to create spectral libraries of many unique vegetation species, these do not help 

when the same species were to be identified in different regions or places. Researchers 

have noticed that spectral signatures may not be unique (Cochrane, 2000), and thus they 

suggested that similar spectral characteristics may be shown by several species due to 

the variation in the spectral signature of surrounding species (Price, 1994). 

The study site is located in the western coast of Portugal where diverse Mediterranean 

forest exists with forest fire susceptibility, invasion with exotic species and fragile 

environmental nature. The diverse and unique characteristics of the forest make this site 

ideal for the research purposes. Mediterranean forest is one of the most fragile 

environment ecosystems, which needs to be monitored with a species classification that 

faces frequent fires and destruction. These forest species were peculiar in their 

properties and functions. Forest species, accurate distribution and functions should be 

known to forest department so that preventive actions and rescue from disasters like 

fire, which is more, frequent in Mediterranean forests, can take place.  

1.3 Hypothesis 

The underlying hypothesis of the present study is that different tree species, with mixed 

group or spectrally similar features, ultimately affect the reflectance properties, which 

can be classified using hyperspectral images and more appropriate image 

processing/fusion techniques. It is quite difficult to identify forest tree species having 

similar spectral characteristics or mixed spectral characteristics using hyperspectral 
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images. Sometimes two or more species were close enough in proximity to distinguish 

between them. That is why attributes such as elevation (height) and intensity 

information from LiDAR data were incorporated with hyperspectral images for forest 

mapping. The height information from LiDAR will be used to produce the above 

ground height difference of the forest region. LiDAR will contribute towards the 

generation of Digital Terrain Model (DTM) and Digital Surface Model (DSM) from 

return pulse. DTM represents the bare earth surface ground points without the influence 

of vegetation and other structures, whereas DSM represents 3D above ground structures 

along with visible ground (Ma, 2005, Miller, 2004). The DTM and DSM were utilised 

for the generation of Canopy Height Model (CHM) representing the height of the forest 

structure above the ground (Balzter et al., 2007, Popescu et al., 2003, Zimble et al., 

2003). Integration of hyperspectral and LiDAR data for harnessing properties of 

hyperspectral and LiDAR data together (CHM integrated with PCA based techniques, 

selected regions will be taken). The importance of image integration in vegetation 

mapping is to improve image interpretation and enhance image classification. 

The inclusion of height information derived from LiDAR data may be beneficial during 

image classification. Maybe we are using different integration algorithms for more good 

results when compared to current data integration techniques- PC integration technique. 

The next step will involve time series analysis of the forest species spread along the 

coastal forest region for further protection and coastal vegetation management. The use 

of temporal data set for forest extent and tree species wise forest extent mapping or 

change detection. 
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Figure 1.1 General research approach included in the study 
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1.4 Research Approach 

The research approach used in the following study is an assemblage of different steps 

required for selecting the objectives. The general approach used in the research is 

shown in Figure 1.1. 

1.5 Thesis Outline 

This thesis comprises of six chapters. Chapter 2 provides a review of relevant literature, 

and provides a physiographical overview of Mediterranean forest, biological 

importance of the Mediterranean forest, introduction about hyperspectral and LiDAR 

data, data fusion concept and its applications. This chapter includes the description of 

Mediterranean forest, vegetation types, and its importance to forest mapping.  

Chapter 3 gives a description of the study area, materials and the datasets utilised in this 

study. This chapter gives a description of the study site where this research is 

performed. This chapter gives emphasis to the concepts of airborne hyperspectral 

imaging, data specifications and pre-processing techniques applied to them. This 

chapter also includes the concept of airborne LiDAR dataset concepts, its 

specifications, pre-processing steps for further analysis and interpretations. Field work 

and ground samples collected during fieldwork are also discussed.  

Chapter 4 explores the use and importance of segmented Principal Component Analysis 

(PCA) as a robust mapping technique, which reduces the ‘Hughes Phenomenon’ and 

give better results when compared to the original hyperspectral images. This part 

explains the process of SAM, MLC, the ‘Hughes Phenomenon’, and ways to reduce 

them using segmented PCA approach. This chapter exploits the airborne hyperspectral 

data for forest mapping using SAM and MLC techniques. The reference spectra used in 

the SAM technique is collected using a handheld radio-spectrometer. Thus, this chapter 

discussed the ability to exploit vegetation cover for the spectral discrimination and 

mapping of species using two different techniques with reference spectra. This chapter 

also demonstrates the SAM, MLC mapping results and accuracy assessment. 

Segmented PC image enhances the visual interpretation of different features of the 

images when compared to the hyperspectral image. Overall, this chapter describes the 

application of segmented PCA on hyperspectral imagery, as well as classification 

comparison of MLC of segmented PC images over SAM and MLC on hyperspectral 

images. 
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Chapter 5 encounters the fusion approach of hyperspectral images with LiDAR derived 

CHM. It also provides the integrated use of airborne hyperspectral and airborne LiDAR 

data for the classification and mapping of tree species. This chapter also presents 

algorithms for integrating airborne hyperspectral imagery and airborne LiDAR data to 

evaluate whether the classification or mapping can be simultaneously exploited to 

increase vegetation discrimination and enhance the mapping results. Increased 

discrimination of the vegetation (different tree species- Pinus pinea, Pinus pinaster, 

Eucalyptus, Acacia longifolia, shrubs etc) and non-vegetated areas (sandy area and 

ground feature class) is presented with a spectrum of fused images against a spectrum 

of hyperspectral image. Thus, Chapter 5 is concerned with the assessment of fusion 

approach for mapping and classification of different ground features using height 

attributes. 

Chapter 6 moves on to discuss and examines the conclusion from the study. This 

chapter also includes recommendations and issues associated with the study. Finally, 

this chapter attempts to bring together, the summary, conclusion and limitations 

associated with it and future work recommendations.  

This thesis represents a major advance on multi-data approach to explore species 

mapping, other feature identification and the efficacy of airborne hyperspectral data to 

classification and mapping aspects. Spectral segmented PC image analysis and PC 

image fusion techniques have been used to achieve the objectives using hyperspectral 

and LiDAR data. Moreover, this research work contributes towards segmented PCA 

techniques in reducing ‘data dimensionality’ as well as reducing the ‘Hughes 

phenomenon’ significantly, which contributed towards achieving better classification 

accuracy. This work presented the robustness of the multi-data integration technique 

(PC image fusion) for hyperspectral image and LiDAR data bringing them together to 

harness the attribute of both data sets. 
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Chapter 2. Literature Review 

 

2.1 Introduction 

This chapter provides a review of relevant literature. This chapter is divided into four 

main sections. The first section introduces hyperspectral imaging systems and its 

importance in research. The second section describes the characteristics of LiDAR data 

and literature review related to them. The third section looks at an application that 

describes the fusion of data, with reference to hyperspectral image and LiDAR data. 

Finally, the fourth section describes the present status, climatic condition and biological 

importance of Mediterranean forest. 

This review of literature provides some concepts and knowledge about both 

hyperspectral images and LiDAR data. This chapter gives insight of the Mediterranean 

forest in relation to climatic conditions, which favours forest fire, different tree species 

and the importance of diversity aspects. This chapter puts forward the concepts of 

several studies and outlines why this work is important and provides a significant 

contribution towards the hyperspectral and LiDAR fusion community. The most 

important for carrying research is the requirements of data. Thus, the selection of the 

present study to perform research in Mediterranean forest relates to its diversity and the 

available remote sensing data to carry out the research.  

Traditionally, the information on tree species types were gathered using repeated field 

surveys, periodic observations and interpretations of aerial photographs (Martin et al., 

1998). Field activities were rigorous, expensive, time consuming and involve 

manpower to deliver information that may vary upon expertise or experience as well as 

data availability (Cho et al., 2009, Vohland et al., 2007). The use of remote sensing 

techniques can reduce above requirements and offer synoptic, timely and repeatable 

way of gathering information on forest species. Remote sensing techniques provide 

high spatial and spectral resolution with temporal datasets for the large areas that are 

being used in classification or broad utilisation in forestry (Dalponte et al., 2009b). The 

satellite data can be acquired repetitively from the same region therefore field 

investigations become easier and faster. Multi-temporal images (since 1972) provided 

by remote sensing (RS) techniques can be used for forest studies and monitoring 

changes in forests over large areas (Song et al., 2002).. With RS images, large areas can 
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be covered in less time with relatively cheaper than repeated field surveys (Song et al., 

2002). The spatial resolution/ properties of RS techniques provide information about the 

canopy structure that can be used to estimate tree size and tree cover. Since, the spatial 

patterns of a forest regions corresponding to remote sening images are also dependent 

on tree cover (Song and Woodcock, 2002). Thus, the variability in the spatial and 

spectral resolution has a pronounced effect on the tree species classification (Peña et al., 

2013).  Therefore, due to the combined spatial, spectral and temporal properties of 

remote sensing techniques, it can be feasible for forest research effectively as compared 

to field investigation (Song and Woodcock, 2002, Song et al., 2002). 

This chapter will provide concepts on hyperspectral images and advantages over 

multispectral images to differentiate different features, their suitability for the 

vegetation or forest studies and classification. However, identification of different 

vegetation and tree species may be a difficult task due to almost similar spectral 

response pattern (Coleman et al., 1990, Niemann, 1995). Most often hyperspectral 

images alone do not result in good classification results (Coleman et al., 1990). The use 

of additional datasets such as CHM to hyperspectral imagery can enhance the accuracy 

of classified image (Franklin, 1994). 

This chapter also discusses the LiDAR data and its importance in the vegetation 

research. The introduction of LiDAR data along with the hyperspectral imagery may 

prove beneficial to vegetation and tree species classification. For example, Franklin 

(1994) showed that classification results were improved by using topographic data, in 

addition, to multispectral remote sensing data. Franklin (1994) found the role of data 

fusion as an important technique to incorporate and bring the attribute of different 

dataset at a single place. Thus, this chapter presents the literature review related to 

hyperspectral images, LiDAR data and fusion approaches. 

2.2 Hyperspectral Imaging 

2.2.1 Introduction 

The uses of airborne hyperspectral remote sensing data are in fashion nowadays 

because it overcomes the limitation of the poor spatial, spectral and temporal resolution 

of multispectral satellite data. Hyperspectral images have several contiguous bands 

comprising of visible, NIR, SWIR regions of relatively narrow bandwidths at 
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wavelength ranges from 400nm -2500 nm (Nagendra and Rocchini, 2008, Thenkabail, 

2012, Thenkabail and Huete, 2012, Thenkabail et al., 2011, Wang et al., 

2010).Hyperspectral imaging is classified into two groups- space borne satellite 

imaging (Hyperion), and airborne hyperspectral imaging (AVIRIS, AISA).  

Spaceborne hyperspectral images and airborne hyperspectral images include the 

Airborne Visible-Infrared Imaging Spectrometer (AVIRIS), HYPERION, Airborne 

Imaging Spectrometer for Applications (AISA), Compact Airborne Spectrographic 

Imager (CASI) and the Shortwave Infrared Full Spectrum Imager (SFSI). The airborne 

hyperspectral images include the Advanced Solid-State Array Spectro-radiometer 

(ASAS) (Irons et al., 1991, Ranson et al., 1994), Airborne Visible-Infrared Imaging 

Spectrometer (AVIRIS) (Porter and Enmark, 1987, Vane et al., 1993), Compact 

Airborne Spectrographic Imager (CASI) (Anger et al., 1990), Shortwave Infrared Full 

Spectrum Imager (SFSI) (Neville et al., 1995) and  AISA (Makisara et al., 1993). 

Hyperion has 220 spectral bands at a spatial resolution of 30 m (Griffin et al., 2005). 

Hyperion also provides data over a large spatial scale that is accessible to the public for 

regional species mapping (Clark 2011). NASA's AVIRIS is a unique sensor delivering 

spectral radiance images in 224 channels at a spectral resolution of 10 nm and spatial 

resolution of 1.5 m (Green et al. 1998). These hyperspectral sensors have provided a 

high spectral resolution as well as high spatial resolution images, used for different 

purposes according to the user’s need and requirements. 

2.2.2 History 

The first optical multispectral images were acquired by Apollo 9 for use in mapping 

earth features (Rees and Rees, 2012). The spaceborne remote sensing applications were 

started in 1972- when NASA launched the first Earth Resources Technology Satellite 

(ERTS) known as LANDSAT-1 (Elachi and Van Zyl, 2006, Lauer et al., 1997). Thus, 

optical multispectral images were recorded from space for remote sensing applications 

and began an era of advanced remote sensing (Borengasser et al., 2010). This 

achievement marked a milestone in the history of remote sensing earth observations 

(Kirby, 1995). Hyperspectral imaging is one of the developments of remote sensing 

technology much like multispectral and digital aerial photos developed by NASA for 

earth monitoring and observation (Goetz, 2009). 
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Multispectral images (e.g. Landsat, SPOT, AVHRR, World View, LISS) measure the 

reflectance of the features at a broad wavelength range with 5 to 7 discrete bands (Lee 

et al., 2004, Ustin and Xiao, 2001). These 5-7 channels do not cover the full 

electromagnetic range and thus are incapable of providing the information in the 

wavelength region where no measurements are taken or captured. In contrast to this, 

hyperspectral sensors measure reflected radiation in a several narrow and contiguous 

wavelength bands (Shippert, 2004). The continuous spectral profile of the features 

provides the detailed information at each wavelength of the electromagnetic range. This 

began the application of remote sensing in various fields like agriculture, cartography, 

environmental monitoring, forestry, land use planning, coastal waterways (Bowles et 

al., 2005). 

2.2.3 Uses of Hyperspectral Images 

These hyperspectral images are voluminous in dimension and record information in 

highly compressed data with several bands (Stern et al., 2013). As hyperspectral images 

have several bands, imaged simultaneously, it creates n-dimensional hypercubes as 

shown in Figure 2.1 (hypercubes of the airborne data used in this study).Typically, 

hyperspectral cube is a digital array storing spatial information on the x and y axes, 

while containing the spectral wavelength () information on the z-axis (Borengasser et 

al., 2010). The sides of hypercubes are pseudo-colour, ranging from black and purple 

(low response) to red and green (high response) (refer to Figure 2.1). Hyperspectral 

images consist of two spatial dimensions and one spectral dimension unique to each 

feature. 

There is a significant variation in spectral signatures of vegetation in hyperspectral 

remote sensing data than the multispectral data.  Due to its high spectral resolution, 

hyperspectral data can reveal subtle differences in spectral signatures of vegetation or 

features compared with multispectral data (Pearlman et al., 2003). Thus, hyperspectral 

image enables fine discrimination between different vegetation depending upon the 

amount of pigments, leaf structure or density, water content at different wavelength 

ranges when compared to multispectral images. HSI offers practical techniques to 

detect, classify and discriminate objects using the spectral signature of the targeted 

features (Landgrebe, 1999a, Landgrebe, 1999b). The narrow bandwidths of 

hyperspectral sensors are capable of detecting small variations in the reflectance as 
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illustrated in Figure 2.2. Consequently, hyperspectral images have the potential to 

identify and discriminate different vegetation types more accurately than multispectral 

data. Scientists have used hyperspectral imagery in vegetation studies, to identify 

different vegetation species (Cochrane, 2000), invasive species detection (Asner et al., 

2008), precision mapping of agriculture (Cetin et al., 2005), environmental mapping 

(Cetin 2012) and to detect vegetation stress and disease (Kim et al., 2010). The high 

spectral resolution of hyperspectral images enables better identification of the features 

such as vegetation, crops and soils (Gong et al., 1992) as well as land use, and land 

covers (Jusoff, 2009, Petropoulos et al., 2012). Hyperspectral imaging has been used in 

many different applications from the last three decades (Eismann, 2012, Goward et al., 

2009, Manolakis et al., 2003, Warner et al., 2009). 

 

 

Figure 2.1 n-Dimensional hypercube representation of data (generated in ENVI 4.7), 

showing the spectral profile of vegetation (green colour) and sandy soil (red colour). X 

and Y-axis represent the spatial attributes while z-axis represents the spectral content of 

the data (bands). 
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Figure 2.2 Typical spectral reflectance curves for green vegetation, dry vegetation, and 

soil (Source Clark 1999 Fig. 15, Adapted with the kind permission of Wiley and Sons 

inc.) 

Figure 2.2 shows the reflectance curve of different features such as vegetation, soil and 

water, but hyperspectral imagers can also differentiate between the same features with 

different conditions like green vegetation and dry vegetation (Lillesand et al., 2004). 

Each feature has its own unique reflectance pattern that is characteristic to it (Lillesand 

et al., 2004). The shape of the reflectance spectrum can be used for the identification 

and discrimination of vegetation types and different features as shown in Figure 2.2 

(Clark, 1999). The reflectance spectra can differentiate between different species (such 

as Eucalyptus and Pinus pinea) and the same species (such as Pinus pinea and Pinus 

pinaster) in various conditions. Sometimes the same species exhibit different spectral 

reflectance due to dry and green conditions: dry conditions have higher reflectance in 

the visible and NIR regions when compared to wet greener species as shown in Figure 

2.2. In addition, the same vegetation type may express different reflectance spectrum 

profile depending on factors such as the leaf content, number of leaves and healthy 

tissues. The spectral characteristics of vegetation are unique and help in distinguishing 

different species. Spectral signature of vegetation/ tree species can be captured using 

radio-spectrometer, remote sensing images. These captured spectral properties enable to 

monitor vegetation conditions like growing or stressed stage, healthy or diseased. 

Monitoring of vegetation depends upon the studies of the spectral profile at different 

wavelengths providing the information about the pigments, water content and leaves 
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structures. Hyperspectral imagery can distinguish the species type and thus assist in 

mapping different species of forest region due to narrow wavebands. Therefore, 

hyperspectral sensors provide high spectral resolution and have advantages when 

compared to multispectral images. All above properties make hyperspectral images 

more suitable and appropriate to discriminate various features and tree species. Thus, 

hyperspectral imagery can provide users a unique spectral profile of different trees by 

detecting differences that cannot be delivered through multispectral images. 

Minor changes in mapping or classification differences with multispectral remote 

sensing are difficult to attain due to broad wavebands (Koch, 2010) which can be 

achieved with hyperspectral images. Hyperspectral data can reveal subtle differences in 

the spectral signatures of vegetation or ground features when compared to multispectral 

data (Jensen, 2000, Pearlman et al., 2003). Hyperspectral images enhance detailed 

forest species classifications and mapping with detailed spectral discrimination. The 

hyperspectral images aid the researcher by offering an accurate and detailed output of 

the species designation, land use classification, and height information. The robustness 

and usefulness of hyperspectral images can be assessed by the ability to perform a 

distinction between different features over the multispectral images. Thus, due to its 

ability to detect minor details of the ground features, hyperspectral image is selected to 

carry out the present research for species' classification and mapping. 

The increased spatial resolution and spectral resolution of hyperspectral images has 

influenced various types of research like the mapping of reed weeds, coastal mapping 

(Chust et al., 2010, Schmidt et al., 2011), forest mapping and biomass estimation 

(Lefsky et al., 1999, Lim et al., 2003, Lu et al., 2012). Identifying small changes in 

mapping or classification differences with multispectral images can be difficult, while 

hyperspectral images can detect small variations due to its high spectral resolution 

(Koch, 2010). Contiguous spectral signatures allow the detailed analysis of the ground 

features using their biological and chemical properties (Govender et al., 2007). 

Therefore, HSI techniques provide better results for forest biomass classification and 

mapping with detailed species discrimination than multispectral images. 

These properties of hyperspectral images discriminate different vegetation from non-

vegetated features as compared to existing multispectral images (Cochrane, 2000, Ustin 

et al., 2004). Thus, hyperspectral has the capability to detect different features and 

species. Hyperspectral images were used to map and classify different forest regions, as 
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well as discriminate species. Several studies were conducted to map tree species in 

tropical (Carlson et al., 2007, Clark et al., 2005), sub-tropical (Dennison and Roberts, 

2003, Lucas et al., 2008, Yang et al., 2009) and temperate regions , (Boschetti et al., 

2007, Goodwin et al., 2005, Martin et al., 1998, Plourde et al., 2007, Xiao et al., 2004) 

using hyperspectral images. Past studies have shown the use of hyperspectral data in 

different regions Mediterranean forest for invasive species detection (Varga and Asner, 

2008, Carlson et al., 2007, Anderson et al., 2008), sand dune stabilization (Rascher et 

al., 2011a, Rascher et al., 2011b). Further research (Rodríguez-Echeverría et al., 2009, 

Marchante et al., 2003) has shown the detection of species (invasive species) among 

several species in coastal Mediterranean forest region using hyperspectral images.  

Hyperspectral images can provide information about the different ground feature and 

tree species distinctively, and demarcate species and features very well. Researchers 

have demonstrated the future use of hyperspectral images for forest mapping and 

biomass estimation at precise levels when they integrate or fuse with other types of 

remote sensor data (Koch, 2010). Therefore, evident from the above argument, this 

study has included the hyperspectral images in the study of performing the 

identification and differentiation of different ground features including tree species. 

However, hyperspectral images are confronted with several constraints and limitations 

due to spectral mixing. In addition, boundaries between various vegetation/trees lack 

sharp edges and occur as smooth transitions. LiDAR can provide an overlap of 

structural boundaries to the hyperspectral images during the integration. Thus, LiDAR 

can provide support for the classification when HSI is not processed for the data 

redundancy. The present study also utilizes the LiDAR data for the estimation of the 

tree heights in conjunction with an extensive field measured data and hyperspectral 

analysis. 

2.3 LiDAR data 

2.3.1 Introduction 

Light Detection and Ranging (LiDAR) is a remote sensing method that uses light pulse 

to measure ranges or height of the ground features on the Earth surfaces (NOAA, 2014). 

LiDAR is an active remote sensing technique that is used to acquire topographic data 

(ARSL, 2014, Hyyppä et al., 2004, Hyyppä et al., 2009, NOAA, 2014).  
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Figure 2.3 Basic of the LiDAR measurement of the tree heights, where D1 represents a 

first return, and D2 represents the last return. 

 

Although, LiDAR system was introduced over 40 years ago as a fixed ground 

instrument for atmospheric particles and composition mapping (NOAA  Coastal 

Services Center, 2012), but the first commercial airborne LiDAR system was 

introduced in 2001 (Flood, 2001). LiDAR technology is divided into two groups 

terrestrial LiDAR and airborne LiDAR. The airborne LiDAR instrument is a 

combination of different instruments like Laser, on board-sensor or scanner, GPS 

receiver, and platforms such as airplanes or helicopters. LiDAR is based on the simple 

concept of a laser pulse emission from the source towards the ground surface or target 
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materials and back to the source along the orthogonal line to the flight direction (Flood 

and Gutelius, 1997, Chasmer et al., 2006). LiDAR techniques provide vertical and 

horizontal information at high spatial resolutions with high accuracies (Lim et al., 

2003). Space-borne hyperspectral images may be disturbed by clouds, daylight and the 

night time, but LiDAR data can be acquired and operated continuously, and so has 

advantages over solar reflected instruments (Disney et al., 2009). LiDAR has emerged 

as the latest remote sensing technology with promising potential to map, monitor and 

assess forest information. Although expensive, LiDAR systems demonstrate the value 

of technology for measuring tree heights. 

2.3.2 LiDAR- Types, Principle and Technique 

There are two types of the LiDAR system- (a) Discrete or small footprint LiDAR and 

(b) Waveform LiDAR. Discrete return LiDAR records the reflected energy as points in 

time and space. Thus, recorded energy is quantised at amplitude intervals in discrete 

return LiDAR system.  Discrete return LiDAR’s footprint is usually small about 10 cm 

to 30 cm with a small divergence angle of 0.1 m-rad. (Lim et al., 2003, Zimble et al., 

2003). Discrete LiDAR sensors record the times for the first return pulses (D1) and last 

return pulses (D2) that relate to hitting the top of the tree and potentially the ground 

respectively.  As illustrated in Figure 2.3, both return pulses, i.e. first return D1 and last 

return D2, can calculate the tree height. LiDAR use in forestry is due to the ability of 

pulses that are reflected back from the top of the canopy to pass through it to reach the 

ground. Thus, the reflections of pulses from the top of the canopy, under storey 

vegetation, and base of the ground floor provide height information. Therefore, in the 

discrete return, LiDAR can estimate the ground surface as well as tree top surfaces. The 

generation of the ground terrain is processed from LiDAR’s last return with local 

minima while the canopy surface requires local maxima.  

Full waveform LiDAR data records the continuous signal from the energy reflected 

back to the sensor. LiDAR applications are based on the principle of laser ranging 

(Lefsky et al., 1999) and it is a means of measuring distance (height) and determining 

the range from a reflected laser pulse (Baltsavias, 1999, Lillesand et al., 2004). Thus, 

LiDAR instruments measure the total time taken by a laser pulse to travel between the 

sensor and target features (Dubayah and Drake, 2000, Lim et al., 2003). The precise 

time interval between the laser pulse emission and the backscattered pulse from the 

target surface is recorded (Baltsavias, 1999, Hyyppä et al., 2004). This is calculated as 
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the product of the speed of light and the time required for an emitted laser pulse to 

travel. The basic equation used for calculating time using the speed of light is illustrated 

below (Boland et al., 2004, Baltsavias, 1999): 

     t=2
𝑅

𝐶
     Equation 2.1 

Where, c is the speed of light, 3 x10
8
 m s

-1
, t - Round-trip time intervals by light pulse 

and R - Distance between LiDAR sensor and the ground objects i.e. Range. This 

equation can be rearranged to calculate the range between the source and target object 

as follow given by (Baltsavias, 1999).This equation is modified to calculate the range 

and is illustrated below: 

     R=𝑐
𝑡

2
     Equation 2.2 

Where, c is the speed of light, 3 x10
8
 m s

-1
, t - Round-trip time intervals by light pulse 

and R - Distance between LiDAR sensor and the ground objects i.e. Range. 

The laser pulse is converted into travel time (t) using Equation 2.2 to calculate the 

distance between the source and targeted objects i.e. Range (Wehr and Lohr, 1999). The 

aircraft position and orientation at the time of laser emission are determined using 

Differential Global Positioning System (DGPS) and Inertial Navigation System (INS), 

respectively. Thus, position and orientation information was combined with laser ranges 

and the corresponding scan. 

Once laser pulses are emitted from the LiDAR systems, they return from the target 

features to LiDAR systems many times depending upon the number of features. The 

discrete LiDAR has a reasonably high chance of penetrating the vegetation canopy and 

hit the ground surface to provide ground samples. An energy pulse can be reflected 

from the top of the canopy, tree’s trunk, branches and foliage and it can be reflected 

from the ground surface as illustrated in Figure 2.4. Figure 2.5 illustrates the hit on the 

surface by the LiDAR pulse. Tree height is measured correctly when LiDAR pulses 

intercept the top of the canopy (blue circle) and incorrectly, when other pulses hit the 

side of the tree canopy (black circle). The red circle represents the side hit of the tree by 

LiDAR pulses. Thus, LiDAR has power to provide accurate height of trees with its 

small footprint. However, there are limitation of the small footprint of LiDAR- first it 

may be completely absorbed by the tree top surface before it reaches the ground, and 

secondly it may miss the tree top surfaces as shown in the Figure 2.5 (Zimble et al., 
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2003). This results in an underestimation of tree heights or other ground features. 

Therefore, it is necessary to analyse the point spacing carefully while processing the 

LiDAR data for the DSM and DTM creation. This average post spacing of the points is 

an important part and to achieve the good results, post spacing must be at a density to 

support the level. It has been shown by Zimble et al. (2003) that an accurate estimate of 

tree height is possible with a small post spacing less than 2 m, whereas more than 2 m 

post spacing of the laser points will result in the less accurate estimate of tree height 

dispersion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Number of pulse returns from the surface hitting the targets and the ground 
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Table 2.1 Details of forest structural parameters or characteristics and how they are 

derived from LiDAR data 

Forest structural parameters or 

characteristics 

How it is derived from LiDAR 

Canopy Height Direct retrieval from LiDAR 

Crown cover Direct retrieval from LiDAR 

Forest crown canopy profile Direct retrieval from LiDAR 

3-dimensionalrepresentation Direct retrieval from LiDAR 

Canopy Density Modelling and post processing of LiDAR 

Canopy Cover - Above ground biomass Modelling and post processing of LiDAR 

Canopy Volume Modelling and post processing of LiDAR 

Mean stem Diameter  Modelling and post processing of LiDAR 

Crown dimensions- Foliage cover Modelling and post processing of LiDAR 

Canopy Cover or Leaf Area Index (LAI) In combination with other data 

Life form Diversity In combination with other data 

 

 

 

 

 

 

 

 

Figure 2.5 Illustration shows the discrete return LiDAR pulses sampling issues (Zimble 

et al., 2003) 
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2.3.3 Use of LiDAR and its Importance 

The use of LiDAR technology in forestry research has been reported in the early 1980s 

(Lim et al., 2003, Van Leeuwen and Nieuwenhuis, 2010). From that time, LiDAR 

technology has achieved high importance in the field of remote sensing due to its 

accurate topographic data acquisition and promising resource for three-dimensional 

output (Meng et al., 2009). It is capable of providing horizontal and vertical information 

with accurate elevation data for both topographic surfaces and above-ground objects 

(Yunfei et al., 2008). Scientists used airborne LIDAR to generate more accurate and 

precise digital elevation models as well as terrain modelling (Flood and Gutelius, 1997, 

Hodgson and Bresnahan, 2004, Hodgson et al., 2005, Kraus and Pfeifer, 1998, Raber et 

al., 2002). However, LiDAR has found its place in several other research areas other 

than forestry.  

The advantages of LiDAR data over other remote sensing applications 

(photogrammetric/stereo measurements) are that LiDAR provides relatively direct 

measurements of tree height (Zimble et al., 2003). However, other forms of 

measurements or assessment of physical properties can be inferred from vegetation 

amount or indices which are generated indirectly from the LiDAR data (See Table 2.1). 

As vegetation height acts as a function of species composition, thus vegetation height 

estimation forms the base of other biophysical measurements of vegetation being 

observed (Dubayah et al., 2000, Dubayah and Drake, 2000). Those measurements 

include the types of vegetation (tree, crop, shrubs) and biomass. Thus, the ability of 

LiDAR data to accurately measure tree heights is important because of the strong link 

between vegetation height and other biophysical characteristics (Dubayah and Drake, 

2000). Many forests structural characteristics, which are not directly measured by 

LiDAR can be modelled based on these relationships. 

Hence, the ability of LiDAR data to acquire accurate and high-resolution vertical 

structure or topographic data makes it more powerful and useful when compared to 

conventional topographic data acquisition methods such as photogrammetry  

(Baltsavias, 1999, Kraus and Pfeifer, 1998). LiDAR provides the researcher with an 

advantage as a replacement to in situ field surveying and photogrammetric mapping 

(Maune, 2001). The LiDAR data is used in various forestry measurements and 

applications. The applications of LiDAR in forestry were demonstrated in numerous 

studies for different purposes like terrain elevation determination, mean height and 
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volume estimation, tree species classification, and growth (Brandtberg et al., 2003, 

Dalponte et al., 2014, Kraus and Pfeifer, 1998, Næsset, 1997a, Næsset, 1997b, Næsset 

et al., 2013a, Næsset et al., 2013b, Neigh et al., 2013, Ørka et al., 2007). Researchers 

have used ICESat (space borne LiDAR) for evaluating different forest structures such 

as forest structure and related biophysical parameters, direct measurement of the 3-

dimensional canopies distribution, estimation of forest canopy height and aboveground 

biomass (Lefsky et al., 1998, Lefsky et al., 1999, Lefsky et al., 2002, Lefsky et al., 

2005). 

LiDAR use has become prominent and widespread within forestry research and the 

methods used to extract vegetation heights have improved over time. The ease of 

LiDAR data processing has been able to achieve more accurate results of forest 

structural parameters such as height (Hopkinson et al., 2004, Næsset, 2002). Thus, 

LiDAR data is utilised to derive several forest inventory measurements and information 

either directly or indirectly through modelling (See Table 2.1). Though LiDAR has an 

increasing number of forestry applications such LAI, fcover, biomass, fpar, it is not 

possible to derive information at the species level or the ground feature level using 

LiDAR data alone.  

However, there are limitations of LiDAR datasets over other RS data. LiDAR data is 

expensive to acquire due to a high flight cost, editing and processing can be time-

consuming (Millette et al., 2010) and specific software is required for the processing.  

However, the advantage is that it canbe used in inaccessible terrains like mountains, 

hilly regions, and dense forests (McGlone, 2004) with accurate and timely acquisition. 

In a traditional field survey, measurement of the tree data is tedious and time-

consuming while it is easier with LiDAR data, so LiDAR proves to be beneficial and 

significant in the research. LiDAR can acquire data more quickly and over an extensive 

area when compared to the field survey. In addition, it can deliver results for different 

forest characteristics like canopy height, canopy density, and canopy cover as illustrated 

in Table 2.1) from a single data when compared to the field survey measurements. In a 

field survey, when estimating the different forest characteristics, several parameters are 

required to record and measure the various data like stem width and height for getting 

the desired results. LiDAR data is used to derive or extract information at the tree level, 

but it is not very useful for information at the species' level of the study area. It can help 
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to estimate the height of trees, but is not able to provide information regarding the 

species' classification. Thus, this study uses hyperspectral images along with LiDAR 

data to overcome the above problem at species level that can identify and discriminate 

the tree at a species' level and can identify different ground feature with subtle 

information. 

2.4 Data Fusion 

2.4.1 General Introduction and Concept 

Data fusion is the process of integrating more than one image using different algorithms 

to generate a new composite image which delivers better-enhanced spatial and spectral 

information (Dong et al., 2009, Karathanassi et al., 2007, Pohl and van Genderen, 

1998). Fusion process provides more information and achieves improved results for 

decision-making (Hall and McMullen, 2004). The objective of multi-image fusion is 

aimed to extract more information than can be derived from an individual or a single 

sensor data alone (Pohl and van Genderen, 1998). Fusion of multi-sensor data subject is 

still in its infancy stage, and there is much more to explore fusion steps (Lewis and 

Hancock, 2007). The individual images vary in properties that are spectral, spatial and 

temporal resolution and therefore provide a complete understanding of the target 

features through fused image. Data integration techniques have been applied to RS 

datasets for many reasons according to user need and requirements which include the 

sharpening of images, adding information, adding spectral characteristics and 

enhancing individual information to fused datasets. Thus, most common uses of fusion 

techniques are to enhance the image quality and to sharpen visualisation of the image. 

Therefore, image fusion improves the capabilities and performance of data and 

enhances the image interpretation and evaluation capability better than individual data 

alone. Thus, data integration is nowadays a popular geospatial technique to combine 

data from two different sources with different information. 

With the advancement of RS technologies and the availability of large amounts of RS 

products such as multi-sensor images, multi-temporal datasets, and different types of 

data, there emerge many opportunities and methods which can quickly try to solve the 

purposes of different research areas in the remote sensing field. Researchers (Pohl and 

van Genderen, 1998, Shen, 1990) were interested in developing image integration 

techniques to harness the attributes of complicated multi-source, multi-sensor data to 
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full information.The use of individual data is not preferred nowadays for more accurate 

and precise mapping or image interpretation of the study regions due to spectral mixing 

or due to underlying features. In such cases, data integration or data fusion seems to be 

a boon for mapping or feature interpretation with hyperspectral images and covering 3D 

structure from LiDAR datasets. Authors have worked on the data integration or fusion 

of either multispectral images with LiDAR data or hyperspectral images with LiDAR 

data (Goodenough et al., 2005, Frank et al., 2010, Lach et al., 2009, Rottensteiner et al., 

2007, Sohn and Dowman, 2007). 

Many studies have revealed that the best results were achieved with a fused or 

integrated dataset rather than a single data source (Banskota et al., 2009, Dalponte et al., 

2008, Dees et al., 2006, Maltamo et al., 2006, Moghaddam et al., 2002, Pang et al., 

2009, Straub et al., 2009, Treuhaft et al., 2003, Treuhaft et al., 2004). The best result is 

only due to the information contained in the types of data being used in the studies like 

spectral information from optical data, highly continuous spectral variations from 

hyperspectral and height/intensity information from LiDAR data. Data fusion provides 

an underlying platform for future research or studies with different techniques and 

applications. Synthetic aperture radar used along with hyperspectral images, 

multispectral with LiDAR data, and LiDAR data with hyperspectral images for various 

applications. The applications include forest biomass (Koch, 2010), forest species (Ke 

et al., 2010), woodland species and composition (Hill and Thomson, 2005), 

geomorphology of estuaries (Millette et al., 2010), coastal dune vegetation 

(Kempeneers et al., 2009), tree species in urban region (Sugumaran and Voss, 2007) 

and topographic signature of vegetation development (Bertoldi et al., 2011). Data 

integration of different spatial resolution has been used for various purposes, illustrating 

the benefit of data integration for future studies in any field. 

2.4.1.1 Different levels or Methods of Data Fusion 

Integrating different data is achieved at four different levels: the signal level, the pixel 

level, the feature level and the decision level  (Pohl and van Genderen, 1998). These 

levels are according to the stage at which two datasets are integrated to each others (See 

Figure 2.6). This flowchart is shown with two data- HSI and LiDAR as an example 

here.  
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 Signal level- At this level, both the datasets are integrated during acquisition at 

signal level.  

 Pixel level -The integration of different data sources required to be co-registered 

with each other and geocoded. This data integration is performed on raster data 

where both the datasets are integrated at pixel level merging their measured 

physical parameters. 

 Feature level- As the name suggests, this type of fusion is performed on features 

extracted from both datasets. Features in the form of recognised objects were 

extracted from the data and fused together to perform analysis. Thus, both 

features correspond to the characteristics of the individual datasets. 

 Decision level- At this level of fusion, the results were produced and analysis 

was performed individually. Then the results were analysed and interpreted at a 

common level to emphasize and elucidate added benefit of two different 

interpretations generated from two data sources. Finally, the decisions of the 

study were produced using the standard results of the two datasets.  

 

Table 2.2 Fusion of various types of datasets 

Data sources References 

Multispectral -Multispectral 

data 

Millette et al., 2010 

Multispectral-Hyperspectral 

data 

Xu and Gong, 2007 

Multispectral-LiDAR data García et al., 2011, Tonolli et al., 2011 

Multispectral-Radar data  Moghaddam et al., 2002 

Hyperspectral- radar data Koch, 2010, Treuhaft et al., 2003 

LiDAR –Radar data Bergen et al., 2009, Sun et al., 2011, Treuhaft et al., 

2009, Tsui et al., 2013 

 

Data fusion can follow different approaches, including multi-sensor data fusion and 

multi-temporal data fusion (Gilmore et al., 2008). Multi-sensor data fusion uses 

different datasets for image fusion (See Table 2.2). Data Fusion also includes the 

integration of different datasets differing in spatial, temporal, and spectral resolution. 

These four fusion levels can provide more enhanced results with a selection of 
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appropriate fusion algorithms, when applied to various data sources. Therefore, it can 

be concluded that data integration furnishes better understanding of the results produced 

from two different data sources irrespective of the fusion at any level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Different RS Data Integration Level Flowchart, showing different level of 

image fusion (a) Signal level, (b) Pixel level, (c) Feature level and (d) Decision level 

fusion 
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2.4.1.2 Initiation of Fusion Work 

Initially, the researchers integrated the multispectral images and digital photographs 

with LiDAR for different research applications. The use of LiDAR with multispectral 

and digital photographs was manifested by different work like forest tree information 

extraction (Straub et al., 2009), wood volume estimations (Dees et al., 2006, Maltamo 

et al., 2006), leaf area indices and canopy cover (Dubayah and Drake, 2000, Mundf et 

al., 2006), Biomass and woodland species mapping and classification (Hill and 

Thomson, 2005, Ke et al., 2010, Swatantran et al., 2011), forest canopy fuel (Erdody 

and Moskal, 2010), and wetland vegetation (Elhadi et al., 2009). The fusion approach 

uses LiDAR data and photographs for forest inventory and monitoring purposes (Tickle 

et al., 2001). The uses of LiDAR and multispectral images have been used extensively 

in forestry for locating individual tree, mapping tree height, and species in the 

deciduous forests (Koukoulas and Blackburn, 2005). Pang et al. (2009) showed that 

results based on the integration of LiDAR and hyperspectral image data sources were 

superior when compared to individual data source. 

2.4.1.3 Purposes and Importance of the Data Fusion 

Various researchers have worked with different fusion techniques and algorithms for 

the purpose of enhancing the image quality and collecting more information. Example 

of this research includes Brovey Transformation, Wavelet Transformation, IHS, 

forward- reverse PC component transformation of two datasets. To achieve higher 

accuracy with the increasingly sophisticated satellite or airborne data, data fusion has 

been devised as a relatively new technique to exploit multisource data (Gamba and 

Chanussot, 2008).  

The role of data fusion techniques has been demonstrated for different usage and 

functions. To accomplish a different design of research, certain forms of fusion 

techniques have been used to merge multi-source images. The purpose of data fusion 

includes sharpening of the images, enhance images, and improve classification results. 

The synergistic use of LiDAR and additional data sets (such as reflectance 

measurement of hyperspectral image) can achieve a good and most accurate results  

(Hese et al., 2005). 
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2.4.1.4 Limitations of Optical Data Integration 

However, multispectral images have certain limitations in regards to spectral ranges that 

can be achieved only through the introduction of hyperspectral dataset. Therefore, there 

is the need to postulate the integration of hyperspectral data with LiDAR for various 

remote sensing purposes. The limitations of individual optical remote sensing or 

LiDAR data are overcome by the integration of a dataset with another type of data like 

LiDAR and hyperspectral images. Data integration will result in improvement in 

accuracy assessment and the spatial variation identification along with coastal sand 

dune vegetation mappings. As evident from the limitations and advantages of fusion 

approaches, this study aims to use hyperspectral and LiDAR data for fusion purposes. 

2.4.2 Advances in Data Integration with Hyperspectral and LiDAR Data 

As discussed earlier, fusion of multisource multispectral images proved beneficial for 

the classification assessment, and accurate results compared with individual image. 

Data fusion can provide better results with the introduction of hyperspectral images 

rather than multispectral images (as discussed in section 2.4). This discrimination is 

only due to the ability of hyperspectral images to detect small variations in the spectral 

reflectance in contrast to multispectral data. Targets were also put in place to achieve 

success in different terrestrial applications for which the LiDAR and hyperspectral data 

were fused together (Corp et al., 2009). Effort has been made to fuse multiple datasets 

for the creation of radiometrically accurate scenes for research purposes (Lach et al., 

2009). The radiometrically accurate scene will help in enhancing the quality of research 

work and accuracy of the output. LiDAR and HSI data have been used to map tree 

species in the urban environment using fusion approach (Alonzo et al., 2014). In 

ecosystem studies, data integration techniques have played a pivotal role in ecological 

modelling (Patenaude et al., 2008), characterising forest environment (Niemann et al., 

2007) for invasive species detection (Asner et al., 2008), spatial and structural patterns 

of species in forest (Anderson et al., 2011), temperate forest inventory (Anderson et al., 

2008), canopy chlorophyll concentration estimation (Thomas et al., 2008), and spatial 

modelling for fPAR and photosynthesis of boreal mixed forest (Thomas et al., 2006, 

Thomas et al., 2009). 

Researchers have used the fusion approach mentioned below, to quantify the forest 

structural parameters and its individual parameters at leaf levels like tree species 
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mapping, classification, and stem diameter assessment. Data integration techniques 

were carried out in forestry or vegetation studies for various applications like LAI, 

Clumping Index (CI) and comparison between them (Lange and Solberg, 2008, Pang et 

al., 2009, Thomas et al., 2011), forest biomass mapping (Lucas et al., 2008, Swatantran 

et al., 2011), above ground biomass mapping (Clark et al., 2011), species distribution 

mapping (Jones et al., 2010), tree species classification (Liu et al., 2011, Puttonen et al., 

2010), tree species identification in urban environment (Sugumaran and Voss, 2007), 

tree stem diameter estimation (Dalponte et al., 2009a), and species level assessment in 

savannah ecosystem (Sarrazin et al., 2010). LiDAR and HSI images were fused to 

achieve the profile of morphological attributes (Pedergnana et al., 2011). Even 

landscape level studies used fusion approach to perform landscape studies like forest 

classification, physical habitat classification and forest fuel mapping. This work 

involves complex forest classification (Dalponte et al., 2008), physical habitat 

quantification (Hall et al., 2009), fire fuel mapping (Varga and Asner, 2008) and the 

mapping of reedbed habitats (Onojeghuo and Blackburn, 2011). The fusion techniques 

were also applied in forest fire research with different fields like wildfire characteristic 

prediction (Koulas, 2009), fire fuels in volcanoes (Varga and Asner, 2008), forest 

information and vegetation management (Goodenough et al., 2008), and land cover 

management for fire management (Koetz et al., 2008). In forestry and vegetation, 

chlorophyll plays very significant role in productivity, data fusion technique have been 

used to estimate canopy chlorophyll content (Thomas et al., 2006), tree canopy 

structure (Miller, 2001), and how canopy structure affects the canopy reflectance 

(Niemann et al., 2005). It is confirmed that data integration has been used in different 

parts of forestry  research such as LAI, biomass mapping, above ground biomass, 

canopy structure, tree species identification, species distribution mapping, stem 

diameter estimation, and forest structures. Therefore, fusion approach provides ample 

research opportunities in different fields of the forestry research; it can also be said that 

none of the research fields or their parts are untouched by the data fusion approaches. 

2.4.3 Classification Results with Fused Hyperspectral and LiDAR Data 

Various fusion studies have been carried out using airborne hyperspectral and LiDAR 

data for the classification of tree species. Object-oriented classification techniques with 

fused LiDAR and hyperspectral data were incorporated for tree species identification 

(Sugumaran and Voss, 2007). Puttonen et al. (2010) used the Support Vector Machine 
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(SVM) classifier for tree species classification using LiDAR and hyperspectral data. 

The research proves that the reflectance values range from 550- 580 nm and red-shift 

ranges are suitable for tree species study. Very small samples are taken from the region 

with mixed growth of deciduous and coniferous species. The selection of parameters 

depends on the shape and reflectance of the tree species in the study of the tree species 

classification. About 70% classification accuracy was achieved for individual tree 

species, with four combined-parameters such as shape single as well as paired and 

reflectance single and paired. Samples were taken from young trees, with small 

numbers, this affected result accuracy with mixed wavelengths. Thus, they stressed on 

the utilization of vegetation indices like NDVI, EVI that use reflectance (Myneni et al., 

1995) in the studies. They have decided to include precise wavelength and spectral 

range with field information can be helpful in classifying tree species more accurately 

in future studies (Myneni et al., 1995). 

One of the potential applications of hyperspectral and LiDAR data was demonstrated by 

Kaasalainen et al. (2010) for object classification. They used hyperspectral information 

with topographic attributes for automatic object classification. They proved this as a 

promising method for object classification. Frank et al. (2010) worked on a multi - 

sensor approach for vegetation management to utility corridors. The techniques SVM 

(Support Vector Machine) and SAM (Spectral Angle Mapper) were applied to 

discriminate vegetation species. They used LiDAR for extraction of power line, but no 

attempt has been taken to extract it from hyperspectral imagery. The comparison results 

were shown by calculating overall and kappa coefficient from the techniques mentioned 

above (SAM and SVM). Elaksher (2008) focused on coastal mapping using 

hyperspectral and LiDAR based digital elevation models. The geometric measurements 

were provided by LiDAR data and spectral information (discrimination between 

different features) from hyperspectral imagery during the study of the coastal mapping. 

Here LiDAR data and hyperspectral imagery were integrated to perform coastal 

monitoring. The result gave a 93% average detection rate of coastal line for the study, 

where positional accuracy is data dependent (Elaksher, 2008). 

He et al. (2011) studied the importance of hyperspectral remote sensing to map and 

track the plant invasions. These researchers tried to achieve spatial, spectral and 

classification accuracies with time series analysis of an invasion (He et al., 2011). They 

discussed the future importance of hyperspectral data for promising research in invasive 
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species mapping, spread and invasion risk analysis. It is possible only with the merging 

of hyperspectral and field sampling information. Ground information and hyperspectral 

profiling can provide reliable and accurate information for invasive species monitoring 

and mapping extent. Future work may include spectral profiling of invasive species 

using information integration from field sampling, chemical analysis, and laboratory 

spectrometry. Thus, it can be stated that all these parameters, when combined with 

LiDAR, can bring results that are more fruitful in coming days for different research 

fields.  

One of the studies, where parcel based classification was performed using integrated 

hyperspectral and LiDAR fused data for complex woodland mapping (Hill and 

Thomson, 2005), focuses on the potential of data integration technique. In this study, 

field data has been incorporated with remote sensing data. The incorporated field data 

contained structures and composition of the species that were acquired for performing 

classification using remote sensing data, as well as the interpretation and validation. 

They used spectral information from HyMap imagery and canopy height details from 

LiDAR data for woodland mapping and classification. A segmentation algorithm was 

applied after performing PCA on the HyMap imagery for classification. PC1 and PC2 

were used with LiDAR derived CHM data for the segmentation process that is further 

processed for unsupervised classification. Resultant classes were labelled with field-

collected data for species-structure relationship. LiDAR and hyperspectral integration 

achieved better accuracy in tree species classification (Puttonen et al., 2010) and species 

distribution mapping (Jones et al., 2010) than when using individual data. For this 

reason, the advantages and benefit of the fusion methods can be observed at the stage, 

when one required accurate and reliable results.  

This above argument is the reason for using HSI as well as LiDAR derived CHM in the 

present study of classification and mapping. The hypothesis behind the fusion of 

hyperspectral and LiDAR data is that both data contribute parameters together 

simultaneously. Hyperspectral images provide the spectral characteristics of the 

different tree species and ground features whereas LiDAR data provides the structural 

parameter i.e. tree heights to the fused image. The discussion, about reducing data 

redundancy, can be seen in Chapter 4 while contribution and feasibility of the data 

fusion can be seen in Chapter 5. Therefore, using the hyperspectral images and LiDAR 

data, this thesis aims to classify the reduced dimensionality hyperspectral images and 
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incorporate canopy height with hyperspectral image to look after the improved 

classification accuracy.  

2.5 Mediterranean Forest 

2.5.1 General Overview 

Forests are dynamic in nature and are constantly changing through a series of 

succession stages during which species composition changes within the forest (Binelli 

et al., 2000, Chaturvedi et al., 2011, Lau et al., 2003). Different parts of the world have 

different types of vegetation and forest (Olson et al., 2001). The Mediterranean regions 

are generally located along the west coasts of oceans, the Mediterranean Sea or running 

along the rugged hills (Bolle, 2003, O'Hara, 1994). Thus, the Mediterranean basin is 

characterised by plains, low elevated hills, large topographical variation in coastline, 

and typically represent the Mediterranean forests. The Mediterranean region constitutes 

a unique combination of terrestrial, freshwater and marine ecosystems, due to its 

distinct climatic conditions (Palahi et al., 2008). 

Mediterranean forest zones lie in mid-latitudes at 30º-45º north or south of the equator 

as shown in Figure 2.7 (Hobbs et al., 1995, Scarascia-Mugnozza et al., 2000). Figure 

2.7 represents the climatic potential for the existance of the Mediterranean region in the 

world, and these ecofloristic zones are based on the temperature regime and vegetation 

regime (FAO 2000). Similarly, Figure 2.8 represents the climatic potential for the 

Mediterranean climatic conditions in the European countries. Mediterranean forests 

represent natural, aesthetical resources and are sensitive to disturbances through natural 

and human pressures (Carter, 1988, Hanson and Lindh, 1993, Marchante et al., 2003, 

Swift, 1968). Mediterranean forests are quite fragile and are also very vulnerable to 

numerous problems (Allard et al., 2013) like forest fires (Alexandrian et al., 1999, 

Vélez, 1982, Vélez, 2002), invasive species, water depletion (Forrester et al., 2010), 

deforestation (Allard et al., 2013), degradation, soil erosion and over-exploitation 

(Carter, 1988, Hanson and Lindh, 1993, Palahi et al., 2008, Swift, 1968). 

The Mediterranean basin is sensitive and vulnerable to an invasion of alien species 

(Gassó et al., 2009, Gritti et al., 2006, Gutierres et al., 2011, Marchante et al., 2003, 

Rascher et al., 2011a, Thuiller et al., 2005) particularly along the coastline (Chytrý et 

al., 2009, Marchante et al., 2003). Forest fire is also dominant in Mediterranean forest, 

causing much destruction (Laneve et al., 2006, Naveh, 1974). Pristine ecosystems are 
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becoming rare due to these problems especially along the coastline in Portugal 

(Marchante et al., 2003). Thus, both plant invasion and forest fires interfere with the 

healthy ecosystem affecting its structure and functionality. 

Table 2.3 Different forest characteristics in Mediterranean region and other continental 

regions of the World 

Area Primary 

Forest 

 (1000 ha) 

Modified 

Natural  

(%) 

Semi-natural 

(%) 

Productive 

plantation (%) 

Protective 

plantation 

(%) 

Africa 0.01 66.2 7.5 9.1 17.2 

Asia 8.9 57.8 7.0 17.2 9.2 

Europe 2.0 36.4 52.7 8.1 0.6 

Total 

Mediterranean 

2.8 42.4 41.7 9.5 3.5 

(Source:Scarascia-Mugnozza and Matteucci 2012)  

Table 2.4 Forest area in the some of the Mediterranean countries in 2010 

Country  Forest Other wooded land Total land 

area  

(1000 ha) 

% of total 

forest area in 

Mediterranean 

countries* 

Forest 

area   

(1000 

ha) 

% of the 

land in 

Forest 

cover 

Other 

wooded 

land 

(1000 ha) 

% of the 

land in 

wooded 

land 

Spain 18173 36 9574 19 49919 21 

France 15954 29 1618 3 55010 19 

Turkey* 11334 15 10368 13 76963 13 

Italy 9149 31 1767 6 29411 11 

Morocco* 5131 11 631 1 44630 6 

Bulgaria 3927 36 0 0 10864 4.6 

Greece 3903 30 2636 20 12890 4.6 

Portugal 3456 38 155 2 9068/9221 4 

Croatia 1920 34 554 10 5592 2.2 

Slovenia 1253 62 21 1 2014 1.5 

Albania 776 28 255 9 2740 0.9 

(Source: Allard et al.2013, FAO 2010)  

*Note: Mediterranean countries constitute the above European countries and other 

European countries like Bosnia and Herzegovina, Montenegro, Serbia, Asia -Cyprus, 

Israel, Lebanon, Syrian Arab Republic, Turkey, Africa-Algeria, Egypt, Libya, Morocco, 

Tunisia, and Jordon and others) Morocco and Turkey were included as they contribute 6 

and 13 % of total forest area (to show consistency in the order). 
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Figure 2.7 Extent of Mediterranean eco-floristic zones based on their temperature 

regimes and vegetation types (Source: FAO 2000 adapted from Ruesch, Aaron, and 

Holly K Gibbs 2008) 

 

Figure 2.8 Extent of European Mediterranean eco-floristic zones based on their 

temperature regimes and vegetation types (Source: FAO 2000 adapted from Ruesch, 

Aaron, and Holly K Gibbs 2008)   
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2.5.2 Present Status of the Mediterranean forest 

The Mediterranean region is termed as ‘the Cradle of Europe’ and has spread into parts 

of the Europe including Portugal (FAO, 2001, FAO, 2003). The Mediterranean region 

encompasses only 12 member states of the European Union namely Albania, Bosnia 

and Herzegovina, Croatia, Portugal, France, Spain, Italy, Slovenia, Greece, Malta, 

Cyprus, and Serbia as shown in Figure 2.8 (Data Basin, 2014, Lieutier and Ghaioule, 

2005, Sundseth, 2009). Figure 2.7 represents the extent of Mediterranean forest in the 

world and Figure 2.8 represents the forest in the European Union, Africa and Asian 

countries. 

Forest area 

Mediterranean forests represent 2% of the world forest area as shown in Figure 2.8 

(Fady-Welterlen, 2005), occupying merely 1.5% of the total wooded surface of the 

planet (M'Hirit, 1999). Table 2.4 displays the status of forestry and another land areas in 

2010. It represents the forest area and its percentage, other wooded land, total land area, 

and the percentage of total forest area in Mediterranean countries (FAOStat, 2012). This 

represents 2% of the world’s forest area (4033 million ha) in 2010 (Allard et al., 2013) 

which is distributed unevenly over the Mediterranean basin covering different countries 

in Asia, Africa, and Europe as shown in Table 2.3 (FAO, 2010). Turkey, Spain and 

France covered more than 50% of the total forest area (as shown in Table 2.4 and 

Figure 2.7). Portugal has shared a contribution of almost 4% of Mediterranean forest. 

Table 2.3 illustrates the percentage and the contribution of different Mediterranean 

forests in world continents whereas Table 2.4 represent the share and contribution of 

European countries.  

2.5.3 Climatic Conditions of the Mediterranean Region 

The Mediterranean climate is mainly confined between 30° and 45° north or south mid-

latitudes at the west coast of the continent in the European Mediterranean basin (Bolle, 

2003, O'Hara, 1994, Scarascia-Mugnozza and Matteucci, 2012). The Mediterranean 

region is mostly confined to narrow coastal belts (Bolle, 2003) with frequently parallel 

rugged mountains that influence and modify climatic patterns in Mediterranean forest 

regions (O'Hara, 1994). The climate of the Mediterranean region is characterised by 

rainy winters and dry summer, with a high soil-water deficit condition especially in 

summer (Bolle, 2003, Gildemeister, 2004). 
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Mediterranean climate varies with the regions and is characterised by warm to hot dry 

summers and mild winters. It experiences high sun intensity due to clear and cloudless 

skies; low humidity also contributes to the high rate of evapotranspiration rates. The 

rain occurs in the late autumn, winter and early spring, but the rainfall patterns and 

amounts are variable, precipitation is higher in the Europe and lower in the Africa.  

Annual rainfall varies from 100 mm to 2500 mm and the average temperature ranges 

from 5-20 °C (O'Hara, 1994). The Mediterranean climate in winter has an average 

temperature below 15°C.  There is a significant variation in total rainfall year-to-year 

and, occasionally, violent precipitation events may occur in combination with dry winds 

may favour the spread of forest fires (Vélez, 1982, Vélez, 2002). Precipitation is 

primarily from rainfall though sometimes coastal fog and light snowfall contribute to 

the precipitation of the Mediterranean region. At sea level, winter temperatures 

occasionally go below 0 °C (Scarascia-Mugnozza and Matteucci, 2012). Thus, the 

special characteristics shown by Mediterranean forests are hot-dry summers, mild, rainy 

winters followed by rainfall in winter as well as spring seasons. This region faces a 

violent precipitation and dry winds that favour the occurrence and spread of forest fires. 

2.5.4 Mediterranean Plant Diversity 

Mediterranean forests constitute a unique world natural heritage, as it has high genetic 

and biological diversity (Fady-Welterlen, 2005). Mediterranean forests has high species 

richnes and harbour about 25,000 species of vascular plants. Mediterranean forest has 

201 endemic species out of 290 indigenous tree species and out of 25,000 vascular 

plants, almost 50% are endemic species (Scarascia-Mugnozza and Matteucci, 2012). 

Mediterranean forests have abundant plants and animals, represented by high genetic 

variability, species richness, and species diversity (Cowling et al., 1996, Fady-

Welterlen, 2005). Mediterranean forest has habitat place of about 20% the Earth’s plant 

diversity (Fady-Welterlen, 2005, Packham et al., 2004). 

Mediterranean forests are composed of conifers, particularly Pinus pinea, Pinus 

pinaster Juniperus species and broad leaves, evergreen and deciduous such as Quercus 

suber and Quercus ilex (Scarascia-Mugnozza et al., 2000).  Non-native species have 

been introduced in the forest lands, notably in the last century, such as Eucalyptus 

globulus, Acacia longifolia and various cypresses species (Costa et al., 2000). 

Mediterranean forests are an assemblage of different animal and plant species 
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representing biodiversity with very high genetic variability inhabiting coniferous and 

broadleaf species. In the Mediterranean zones, along with Mediterranean forests, other 

vegetation types such as savannah, shrublands and grasslands show dominant presence. 

These Mediterranean regions are covered with forests, grassland, scrub, sand dunes and 

lagoons. Mediterranean forest is an open type forest structure that allow the growth of 

understory vegetation such as alien species (Acacia longifolia), herbs, shrubs and 

bushes (Rascher et al., 2011a).  

Forests play a significant role in the lifestyle of inhabitant residing in and around the 

Mediterranean peoples. Their livelihood mostly depends on the products and services of 

the forests (Palahi et al., 2008). However, fragile status of the forests and several threats 

to them accelerates degradation and clearance. The main causes of forest deforestation 

and clearance are development pressure, population growth, unorganised land use 

policies. In turn, forest is losing its aesthetic values and risk to its existence in current 

form. To preserve and maintain these resources, World Wildlife Fund has classified the 

Mediterranean forests in the Global 200 categories (Olson and Dinerstein, 1998, Myers 

et al., 2000). The Global 200 have  unique, valuable and endangered  species of the 

world. These resources need to be preserved to maintain the heritage, aesthetics values 

and integrity of the biosphere.  

2.5.5 Biological Importance of the Forest 

Forests play a significant role in controlling global carbon and climatic cycle (Dixon et 

al., 1994, IPCC, 2007). Forests contain about 77% of the total global carbon reserve in 

the form of vegetation biomass (Dixon et al., 1994, IPCC, 2007). Mediterranean forests 

represent a diverse species richness representing high species diversity and genetic 

variability (Specht, 1988). Forests regulate the soil and water resources, which are 

likely to be affected by changes in global climatic conditions and atmospheric 

composition due to deforestation. Mediterranean forests provide several products and 

services to inhabitants (Blondel and Aronson, 1995, Scarascia-Mugnozza and 

Matteucci, 2012). Watershed protection, landscape quality, soil conservation, carbon 

sequestration and recreation resources are some of the services that are hardly 

recognised (Croitoru, 2007, Merlo and Rojas, 2000). Changes in forest system will have 

an impact on socio-economic status, and also influence above services (Winnett, 1998). 

Their conservation and appropriate management have crucial effects on the 
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sustainability of water resources. Mediterranean forest in Portugal is confronted with 

forest fire (Américo and Mendes, 2005), deforestation and degradation (Palahi et al., 

2008). Forest fires are mainly because of the monoculture of highly combustible species 

like Pine and Eucalyptus, the oil of which are highly flammable (Gomes, 2006, Vélez, 

1982, Vélez, 2002). Harsh predictable climatic condition with severe socio-economic 

condition led to over-exploitation of Mediterranean forest (Thirgood, 1981). Forest fires 

alone destroy 1% of the forest per year than any other causes or threats (Pagliani, 2001). 

Thus, forest fire threat and chronic water shortages associated with ground water 

decline are acting as primary factors of destruction of the Mediterranean forest 

resources (Laneve et al., 2006). All these conditions will have an adverse effect on the 

forest tree species and their distributions of the Mediterranean forest.  

Mediterranean forests are under tremendous pressure from humans, due to tourism and 

the need for forest products (Barbero et al., 1990, Davis and Richardson, 1995). These 

forest products include timber, oil, resins, gum, cork, fruits, medicinal plants, honey, 

wild flowers,aromatic plants, edible fungus,agroforestry and tourism planet (M'Hirit, 

1999). In addition, this pressure is followed by problems such as soil erosion and the 

degradation of the valuable habitats (Isik et al., 1997). For this reason, an important step 

should be taken to collect information of forest species, their spatial extents and 

distribution in the region. Different species have different tolerant limits and some 

species help in promoting the forest fire with their supplement oil acting as fire fuels. 

The classification of different species is in need to take significant steps during the fire 

outbreak and approaching the species that act as a fire promoter to stop or prevent a fire 

from further spread. Therefore, due to the above situations, Mediterranean forest can be 

seen as a regional test area for global change study for many research purposes (Palahi 

et al., 2008, Scarascia-Mugnozza et al., 2000). Species and the ground feature 

information in forest research provide environmental parameters that may be significant 

and serves knowledge on climate change such as CO2 level, biomass, and deforestation. 

This information is of particular importance in relation to land -use /land cover, changes 

in land use, and forest activities (Goodenough et al., 2001, Rosenqvist et al., 2000).  

Thus, regional operational forest species and ground features mapping and 

classification is a challenging research theme to enable an understanding and 

monitoring of forest and its environment. 

Thus, the above review of the literature has concentrated mostly on the hyperspectral 

and LiDAR characteristic as well as the advantages of using them in the present 
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research in Mediterranean forests. Some important concepts regarding spectral 

advantages of hyperspectral over multispectral and use of LiDAR for deriving height 

information were discussed, and the problems faced by the Mediterranean forest is also 

argued. Therefore, this chapter puts forward a basis for understanding the forest, its 

problems by knowing the exact status of the forest tree species and ground features. 

Finally, this chapter provided sufficient information on the Mediterranean forests, 

hyperspectral images and LiDAR data that form the base for the present study. The 

appropriate use of high spectral resolution hyperspectral image and LiDAR data for 

forest mapping in diverse coastal region, provide an opportunity to look at the 

classification results and their ability to discriminate the different features. 

 

2.5.6 General Phenology of the Study Site-  

This section describes the general phenology of the species present in the test site with 

emphasis on growth, leaf development, and adaptation to different ecological conditions 

such as counteractions of deleterious effects of the environment (Scarascia-Mugnozza 

et al. 2000). The forest tree species stand structure and their general phenology 

throughout the year is presented in this section.   

The scenario of tall stand and structure of forest species are shown in Figure 2.9. 

Eucalyptus species occupy the highest place in the canopy among all other species with 

open canopy, long stand and are either in group (naturally grown) or fixed spacing 

(plantation). Acacia species occupy the underneath canopy position and can grow 

rapidly in the shade beneath other species without sunlight. Eucalyptus grows straight 

with a condensed canopy structure while Acacia species grow bilaterally with extending 

branches in all directions. Due to the mixed growth of Acacia and Eucalyptus species, 

there is a canopy startification occuring in all level, with Acacia spcies in the lower 

underneath and Eucalyptus in the upper highest canopy stratum. This canopy 

stratification also suggest that Acacia is substantially more shade tolerant than other 

species present in the test site. Pinus species (pinaster and pinea) are associated with 

two types of stand - one with a regular structure and one with an irregular structure 

(Barbeito et al. 2008). Pinus pinea species grow as a broad, flattened round canopy with 

spreading branches in all directions while Pinus pinaster species grow straight with 

elongated branches in a typical coniferous vegetation style. The crown shape of Pinus 

pinea resembles an umbrella shape with a single growth due to primary shoot growth 
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and posterior axis differentiation as a result of secondary growth and down bending of 

the branches (Mutke et al. 2005).   

Early development and quick growth of leaf region marks the phonological adaptation 

of species in Mediterranean forests. Various physiological responses that species are 

adapted to the environment (summer drought and wildfires) include tolerance to tissue 

dehydration, the ability to recover completely after a long summer drought period, 

photosynthetic balance and early spring photosynthesis growth of species (Scarascia-

Mugnozza et al. 2000). To resist and avoid the disaster of fire, different species have 

different mechanisms: broadleaf species have a thick bark and a high sprouting nature 

whereas conifer species have early huge seed production and germination with 

ecological flexibility. In general, the tree species shed their leaves during November 

and start flowing with fresh leaves during spring starting in February and March. 

During fieldwork, all tree species were laden with mature leaves and spreading canopy.  

 

Phenology of the tree species present at the test sites in the Mediterranean forests are 

described in the present paragraph. The test site is dominated by Eucalyptus species and 

overcrowded by invasive Acacia species, whereas other species make it mixed 

proportions. For the presentation of phenology, one has to observe them throughout the 

year for flowering, shoot elongation, leaf number and leaf shedding, branching, 

flowering, and fruiting. The pattern of active growth differs for different species 

regarding the shedding of leaves during new twig and leaf emergence.  The timing of 

the main leaf flush and flowering of different species are determined solely by 

temperature, soil moisture or the photo-period of the Mediterranean study site. New 

leaves were produced intermittently during autumn and winter while the main leaf flush 

occurred in spring and summer. The cambium was intermittently active throughout the 

year with most trees growing in late autumn, winter and spring.  

It has been demonstrated by Kramer et al. (2000), that water availability drives the 

phenology of the Mediterranean forest rather than the phonological timings, and 

controlling the development of leaf area. Drought has an impact on the phenology of 

the species, as it causes water stress that increases plant temperature and accelerates 

phonological development (Spano et al. 2013). Other factors that may affect phenology 

altering the time for shoot elongation, branching patterns and leaf survival are 

temperature, soil condition, genetical differences, age, herbivory, and below ground 
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competitions (Oliveira et al. 1 994). Thus, at the test site, the phenology of Pinus pinea 

and Pinus pinaster was controlled by the water availability, resulting in the leaf area 

index of these two species. The Pinus species phenology passes through three different 

stages- such as formation of the needle, elongation of the needle shaped leaf, and 

ultimately the fall of the needle leaf. The rate of fall of the needle shaped leaf depends 

upon water deficit, wind speed and rain force that may remove a dead leaf from 

branches. Moreover, these species were natural as well as ‘man-made’ plantation 

regions have variable phenology depending upon several factors as discussed above.  

The structure of the species can vary; the Eucalyptus species has tall stand with an 

elongated canopy whereas Pinus pinea has a scattered canopy. All species together 

makes the canopy layer uneven. The Eucalyptus species is natural as well as planted, so 

it has a both spaced canopy gap and a crowded canopy. It has been reported by 

(Rascher et al. 2011a, Rascher et al. 2011b) that Acacia species are almost taller than 

the native understorey shrubs reaching the height up to 3 m (See table 5.1 and 5.2 in 

Chapter 5). Moreover, it inhibits the growth pattern of the native species by affecting 

their seed germination and sprouting conditions.   

Golden Sydney Wattle (Acacia longifolia) is mainly associated with a high growth rate 

in the Mediterranean forest (Marchante et al. 2003). These high growth rate is due to 

high-volume seed production, its longevity in the soil and high dispersal nature as 

compared to other plants’ seed rare due to these problems especially along the coastline 

in Portugal (Cronk and Fuller 1995). Being a leguminous plant, it has the ability to fix 

nitrogen elements in the nutrient poor environment that enable it to cope the nutrient 

deficiency and invade the regions when compared to native species. Different shrub 

species, small grasses and invasive Acacia species form the major part of the 

understorey vegetation at the test site. Different shrubs are mixed with each other with 

no pattern of occupying majority regions. Thus, occupying mid-part of test site, these 

shrubs and herbs are small creepers with small flowering seasons. In summary, the test 

site has large patches of planted Eucalyptus species with patches of scattered conifers 

(Pinus species and Acacia species) and shrubs. The growth pattern of Acacia species is 

much higher when compared to other species in the test site.  
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Figure 2.9 Different spcies structure and canopy presentation in the test site (Taken by 

the author during field survey in 2012).   
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2.5.7 Characteristics and Spectral Behaviour of Tree Species-  

This section discusses the general spectral behaviour of the tree species in terms of their 

chlorophyll contents and intercellular spaces focusing mainly on the species such as 

Pinus pinea, Pinus pinaster, Eucalyptus. Eucalyptus globulus has chlorophyll peak in 

the green region of wavelength due to high amount of chlorophyll as compared to the 

Pinus pinaster. The red and red edge region of the electromagnetic wavelength, where 

vegetation shows a sharp increase in the reflectance due to leaf optical properties and 

act as a transition zone between visible and NIR region for chlorophyll activity and 

cellular structure of leaves. Reflectance in NIR region is dependent on the leaves and 

cellular structure; more the dense canopy or number of leaves, higher is the reflectance. 

Moreover, due to leaf structure and cellular structures, reflectance in NIR region is 

much higher than the blue, green and red regions. Eucalyptus globulus is shows a 

higher reflectance than pinus pinaster, so it is evident that Eucalyotus is having large 

number of leaves and dense canopy as compared to Pinus pinaster, that has needle 

shaped leave and thin canopy. Thus, reflectance of the feature provides their 

characteristics and can be distinguished from other features easily.  

The spectral ranges can differentiate tree species and other ground features based on the 

chlorophyll content, leaf structure (broad leaf or needle shaped leaf). The physiological 

differences between tree species are apparent in the spectral region from 400 nm to 800 

nm (Paap et al. 2008). This difference is within visible range and near red edge region 

of the reflectance spectra. Thus, the variation in this reflectance range can be used 

precisely to discriminate different species using hyperspectral datasets. The 

differentiating properties can be found with differences in green peak, sharp boundaries 

from red-edge to NIR, reflectance in NIR region and thermal regions.  

Therefore, the differences can be observed in the visible range at the chlorophyll 

absorption region and also in the region starting from red edge to NIR ranges within the 

conifer needles of Pinus and broad leaves of Eucalyptus. In comparison, the Pinus 

pinaster’s needle like leaves appear bluish-light green in colour, that may be due to 

lower reflection in green areas of the visible spectrum as compared to Eucalyptus that 

appear dark green (high reflectance in green region). The region for choosing blue 

regions of spectrum stand on the base of  light blue-green leaves colour of Pinus 

pinaster and Pinus pinea species. 



 

44 
 

2.6 Aims and Objectives 

Based on the above literature review, there are several questions which can be 

considered ‘very important’ as they can lead us to a conclusion for performing the 

research. 

1. How accurately can hyperspectral and LiDAR data distinguish tree Species in 

Mediterranean forest? 

2. Whether segmented Principal Component Analysis (PCA) of hyperspectral data 

produces better classification accuracy than other approaches like standard 

Maximum Likelihood Classification (MLC) and Spectral Angle Mapper (SAM) 

of hyperspectral images?  

3. Can data fusion approach of spectral characteristics of hyperspectral data and 

height characteristics of LiDAR data distinguish vegetation more accurately 

than using hyperspectral data alone?  What is the added benefit of using 

hyperspectral and LiDAR data at same platform?  

4. Does incorporating structural parameter distinguish the different features from 

fusion image, and how?  

5. Do the selected classifier techniques prove to be superior among them or does 

fusion of HSI with canopy structure enhance or improve the classification 

results or not?  

This study will examine the identification of tree species in the Mediterranean forest 

region (coastal vegetation) using airborne hyperspectral and LiDAR data. The 

biodiversity makes Mediterranean forest a good platform for forest research work. The 

forest research work can help in the conservation of forest, wild fire prevention and 

information regarding the species inhabiting the forests. Mediterranean forests are 

prone to wild fire that is generally human induced. The invasive nature of alien species 

at the coastal region has stimulated the study that is being carried out with spectral 

identification and data integration techniques. The data integration of RS will allow 

easy forest mapping when compared with individual data and help in the forest 

protection as well as coastal maintenance with ease.  

The main aim of the present research is to identify species with the application of 

airborne hyperspectral and LiDAR data. It will include a generation of classification 

maps, with the primary focus on applying classification algorithms using PCA 

techniques. The two objectives to achieve the overall aim are: 



 

45 
 

1. The classification of hyperspectral images with different techniques, using 

segmentation of images and comparison of different classifiers performed over 

segmented PC images and hyperspectral image in Mediterranean Forest.  

 -This will involve the use of MLC techniques for the classification of 

segmented hyperspectral images and the comparison of SAM and MLC of 

hyperspectral images of the coastal region.  

2. The identification of tree species and surrounding ground features, incorporating 

attributes from both hyperspectral (spectral Information) and LiDAR data 

(Height) 

-This involves the fusion of hyperspectral image and LiDAR data with 

PCA techniques at the same platform for the mapping. This will enable the 

identification and classification of different features incorporating structural 

parameters while preventing spectral mixing (contributing height parameters to 

tree or shrubs and not to ground or sands or shrubs in fusion image).  
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Chapter 3. Study Site, Materials and Methods  

 

3.1 Introduction  

This chapter describes the principal datasets- airborne hyperspectral imagery and 

airborne LiDAR data along with the auxiliary field datasets used to assist processing, 

interpretation and validation of the generated map products. This chapter will outline 

the general pre-processing of airborne data used in the study, and the methodology 

adopted to achieve the objectives. The first section presents the study area and the 

presence of different tree species along with problems like forest fire and exotic 

invasive species like acacia species that has now become a part of the sand dune 

ecosystem.  This section also took pains to discuss about the study area and reasons for 

selection of the site for performing the present research work. There is a section that 

describes the airborne data, software and equipment used throughout the study to 

achieve the outstanding results. RS data and their processing parts are discussed 

individually in detail. The field survey used during the study period was discussed 

regarding the collection of data. Recording and measuring different field data is also 

highlighted appropriately. Finally, the methodological approach used in the study has 

been discussed in the last section of the chapter. The general approach has been 

presented here and it forms the base of the study to carry out the present research. The 

detailed methodologies are mentioned and discussed in Chapter 4 and Chapter 5. 

3.2 The Study Area- Site Location St. Andre, Portugal 

3.2.1 General Overview  

The present study area was chosen for the three principal reasons. The first among them 

is the availability of the datasets. Secondly, the study site has flat terrain that would 

assist an easy extraction of tree heights from the LiDAR data. The third reason is the 

diverse species composition with several species and the sandy areas provide a base to 

compare and contrast the outcomes. The unique and biodiverse forest, with 

susceptibility to forest fire, led to work for identification of species and the choosing of 

the study area. Data availability is also a constraint for choosing and selecting the 

region as study areas for the research work.The study area, Portugal is confined to the 

narrow coastline running parallel to hilly sand dunes. In order to provide an outline and 

knowledge to an understanding of the Mediterranean forests, current research has 
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selected this study site. The site has a high biological diversity of tree species for which 

airborne RS data is available for carrying out the research work. The reason for 

choosing this area is also dependent upon the availability of the airborne RS data, which 

is the most important requirement of the research work. The focus of the present 

research is on a narrow coastal area located at Setúbal, Santiago Do Cacém in the south-

western Portuguese coast as shown in Figure 3.1. Lagoas de Santo is natural reserves in 

Portugal, which was created in 2000. This site is protected by NATURA 2000 habitat 

protection directives (ICN, 2006). This region is of great biological importance, 

especially in ecological terms, ichthyological, botanical and ornithologica (Américo and 

Mendes, 2005).  

A region of interest in the South of the flight area between 8°49'38.79"W and 

8°51'2.14"W and 37°59'12.46"N and 37°59'35.02"N was chosen as the study area (refer 

to Figure 3.1. for the location of the study site). The study area is located between 

between Carvalhal and Sínes. This coastal area has a diverse topography with protected 

forests, freshwater lagoons, and dry sand dune vegetation. Mediterranean forests 

typically have broadleaved trees such as Eucalyptus globulus with the frequent presence 

of conifers like Pinus pinea, Pinus pinaster etc. Alien species like Acacia longifolia 

(also called Sydney Golden Wattle), which was introduced to stabilize the sand dunes, 

can become dominant due to its invasive nature (Rascher et al., 2011a, Rascher et al., 

2011b). This coastal strip has a diverse topography with protected forests, freshwater 

lagoons, and dry sand dune vegetation.  Thus, this area is dominated by chaemophytes, 

xerophytic scrubs; needle leaves tree species, and sand dunes. These forests are 

characteristic of the Mediterranean climate, and they represent high species richness 

and unique native species (Sundseth, 2009). Different tree species present in the study 

site area were presented in Table 3.1.  

Table 3.1 List of important tree species in the study region of the Mediterranean forest, 

Portugal (Source: Costa et al. 2000) 

 Tree species Family  

1. Pinus pinaster (Maritime Pine) Pinaceae 

2. Pinus pinea (Umbrella or stone pine) Pinaceae 

3. Eucalyptus globulus- Exotic species Myrtaceae 

4. Acacia Longifolia (Sydney Golden Wattle) Invasive species Fabacea  
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Figure 3.1 Location map of the study site showing Portugal, and its administrative 

boundaries generated in ArcGIS (Data basin 2014). 
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3.2.2 Physiographical Characteristics and Importance of the Study Site 

Study site characterises the Mediterranean climate which have diverse species richness 

and unique native species (Sundseth, 2009). The study area chosen in the present 

research work is a part of Mediterranean forest located alongside a coastal zone.  It is 

well known that, coastal ecosystems were very much susceptible to changes and 

disturbance and sensitivity to small changes or any biological invasions (Rascher et al., 

2011a). Coastal vegetation is particularly important in respect of its biodiversity and 

natural structure at the study site.  

Mediterranean forest may not be represented by dense forest (as shown in Figure 3.10 

and 3.12) but they play a crucial role in the region. Although dense and vast expanses of 

forest, may not be a typical Mediterranean characteristics, but these forests play a 

significant ecological role in the region in the life of its inhabitants. Forest mapping 

plays a significant role in forest management and tree species protection: it helps to 

identify any changes due to deforestation and helps in tree afforestation and the 

management of the area.  

The sand dunes in this region were not stabilised and thus management decided to 

introduce alien or exotic species for the stabilisation of the sand dunes (Marchante et 

al., 2003). The stability of a sand dune ecosystem depends on plant species diversity, 

roots of which hold soil particles and reduce soil erosion (Van der Putten and Peters, 

1995). These introduced species were successful in stabilising the sand dunes but also 

distribution and dominated the region. Acacia longifolia, the alien species were 

introduced in these forest to stabilise the sand dune is one of the fastest growing 

species, and grows underneath the Eucalyptus globulus (as shown in Figure 3.2 a and 

b). This figure also illustrates that the Eucalyptus globulus are growing closer to each 

other and higher in density (Refer to Figure 3.2 a and b). Thus, these alien species have 

spread very rapidly and achieved substantial control over the region. With its fast 

spreading and dominating nature adjacent to the native (local) tree species inhibits their 

growth. Exotic alien species soon became invasive in the coastal region. Invasive 

species propagate across landscapes with or without facilitation by human or natural 

disturbance (Mooney and Hobbs, 2000). Thus, study site forests are susceptible to 

invasion by exotic species that grow much faster than the native species of the region 

(D'Antonio and Meyerson, 2002). Coastal areas of the study sites are susceptible 
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because native flora species have evolutionary isolation effects, which means they 

cannot grow due to the inhibition effect of invasive species due to shadowing, chemical 

effects or any inhibiting properties expressed by them (Galil, 2000). Study has revealed 

that invasion by Acacia alter water and carbon balance in Mediterranean forest regions 

(Rascher et al., 2011b). The knowledge of tree species and other ground features are a 

necessary part to deal with the water crisis, plantation of more trees that are native and 

removal or clearance of unwanted alien species.  

Therefore, this present research work is focused on tree species classification and 

mapping in the coastal region of Mediterranean forest. The availability of airborne RS 

data allows us to integrate hyperspectral and LiDAR data for forest mapping in the 

coastal region. This research uses different classifiers like the SAM and MLC based on 

supervised classification for segmented PC images for mapping more accurately than 

hyperspectral images. The research is also aimed to integrate hyperspectral images and 

a LiDAR derived Canopy Height Model for mapping using PCA fusion techniques.  

 

  
(a)      (b) 

Figure 3.2 These photographs show the two specific characteristics of the study area (a) 

the growth of Acacia longifolia underneath the Eucalyptus globulus tree (b) sometimes 

Eucalyptus grow closely and some time with fixed distance (plantation), (Taken by the 

author during field survey in 2012). 
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3.3 Materials and Software Used 

The purpose of this section is to provide an information of the materials and different 

software used during the study.  

Table 3.2 Different data, lab software and equipment used in the study 

Materials and software Descriptions 

Airborne Remote Sensing 

data 

 

Airborne AISA- Eagle and Hawk data 

Airborne LiDAR Data 

Digital photographs 

Software used Arc GIS 10 

 ENVI 4.5 (FLAASH) 

 NERC-ARSF -apl software suite (apl trans, apl corr, apl 

map) 

 pt_cloud filtering software 

 Matlab 

 Microsoft office 

 View Spec Pro Version 6.0- for field radio-spectrometer 

Field Equipment Garmin GPS receiver,  

Abney Clinometer,  

Compass, Ordinary measuring tape, and  

ASD radio spectrometer  

 

The NERC-ARSF apl software suite, Arc GIS® 10 from ESRI, Inc. and ENVI 4.5© 

image processing package (Research Systems Inc, 1999) were used as the major pre-

processing and analysis tools in the present research. Apl software suite was used to 

pre-process the raw hyperspectral datasets to level 3b seamless images (ARSF, 2012). 

The ENVI spectral FLAASH function was used to perform atmospheric corrections on 

the hyperspectral image (Adler-Golden et al., 1999, Research Systems Inc, 2009). 

ENVI hyperspectral image analysis functions were used to mosaic, stack datasets and to 

perform PCA on hyperspectral images (Research Systems Inc, 1999). Whereas Arc 

GIS® 10 or higher versions were used to separate LiDAR first and last returns (Davis, 

2012, ESRI White Paper, 2011, NOAA, 2012). Different extensions required for the 
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processing of the LiDAR data in Arc GIS® were 3D analyst, and spatial analyst. Arc 

GIS applications were also used to generate DSM, DTM and CHM using the first and 

last returns of the LiDAR data (ESRI White Paper, 2011, Davis, 2012). The detailed pre 

processing steps are described in individual sections. 

3.4. Airborne Hyperspectral Imagery- Eagle and Hawk Sensors  

3.4.1 Introduction and Background  

The Airborne Imaging Spectrometer for Applications (AISA) instrument is a dual 

passive hyperspectral scanner that measures electromagnetic radiation in the visible, 

near infra red to thermal wavelength region of the spectrum. AISA is dual sensor 

system mounted with Eagle and Hawk sensors. AISA was designed and built in 1992 

by Spectral imaging company whereas the first test flight was performed in 1993 

(Makisara et al., 1993). AISA has dual down dwelling radiation sensors called the 

Fiber-Optic Down dwelling Irradiance Sensor (FODIS). Eagle and Hawk are 

SPECIM’s high-performance airborne Visible Near-Infrared hyperspectral system. The 

AISA Eagle sensor is a push broom airborne hyperspectral system having a 1000 pixel 

swath width which records electromagnetic radiation in 253 wavelength spectral bands 

located in the visible near, short-wave infrared 400 nm-970 nm (Table 3.3) at 2 m 

spatial resolution (Specim, 2013). Eagle covers the visible spectrum as well as the near 

infra-red spectrum range of the electromagnetic radiation. The spectral resolution of the 

Eagle sensor is 2.9 nm of the wavelength.  

The AISA Hawk sensor is also a push broom passive airborne sensor system having 

320 spatial pixels that records at spectral range from 970 nm –2450 nm with 244 

spectral pixels (Specim, 2012). The spectral resolution of the Hawk sensor is 8 nm of 

the wavelength. Thus, Hawk covers the short wave infrared wavelengths of the 

electromagnetic radiation (as shown in Table 3.4). It is suitable for the targets that are 

invisible to the human eye. Thus, it is the ideal sensor for data acquisition on spectral 

signatures characteristic of vegetation or minerals and studies related to them (Specim, 

2012). The AISA Eagle and Hawk sensors are spectrally stable airborne hyperspectral 

sensors that provide high-speed data acquisition at high sensitivity (Specim, 2013). 

AISA Eagle is nowadays becoming very popular among researchers due to its high 

spectral resolution of 3.3 nm with 488 spectral bands that allow detection of the finest 

spectral characteristics of the features (Specim, 2012). 
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Table 3.3 Specification and characteristics of AISA Eagle hyperspectral images 

(Source: Specim, 2012) 

AISA Eagle sensor  Typical specifications  

Numerical Aperture f/2.4 

Maximum number of bands 244 

Spatial pixels Up to 1024, of which 70 - 80 FODIS pixels (optional) 

Spectral resolution 3.3 nm 

Spectral sampling/band 2.3 nm 

Spectral range 400-970 nm 

Frame rate 59 (frame /sec) 

Outputs 12 bits  

 

Table 3.4 Specification and characteristics of AISA Hawk hyperspectral images 

(Source: Specim, 2013) 

AISA Hawk sensor Typical specifications 

Numerical Aperture f/2.0 

Maximum number of bands 254 

Spatial pixels 320 

Spectral resolution 12 nm 

Spectral sampling/band 6.3 nm 

Spectral range 970-2450 nm 

Frame rate 59 (frame /sec) 

Outputs 14 bits  

3.4.2 Airborne Hyperspectral Data Acquisition 

The Airborne hyperspectral imagery was acquired by the NERC-ARSF on 8 April 

2011, concomitant with the airborne LiDAR data. EUFAR funded this project and data 

were provided by André and Prof. Tillmann Buttschardt, University of Münster, 

Germany. Hyperspectral data was captured using AISA on-board sensor having Eagle 

and Hawk sensors. These two sensor systems were enabled in such a way to capture 

simultaneously in 492 narrow spectral bands (Ortenberg, 2011). Twenty-six north-south 

trending flightlines of imagery with an overlap of around 50% between adjacent strips 

were acquired for the 35 km
2
 area. For an average flying height of 411 m (around 1350 

feet) above, each strip has a swath width of 3800 m and an average pixel size 
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approximately 2 m. Four strips were found to contain data for the chosen coastal study 

site (as shown in Figure 3.4 d- representing the full scene). The strips of raw imagery 

were delivered as Level 1b .bil (Band Interleaved by Line) and ENVI header format 

(hdr) files. The bil format of the raster data “allows easy access to both spectral and 

spatial information” (Fanning, 2004). The navigation file information were also 

provided in bil format that helps in correcting the yaw, roll and pitch error. Radiometric 

calibration involved the conversion of the raw hyperspectral imagery data to at-sensor 

radiance units (μW cm
-2

sr
-1

nm
-1

) (Grebby et al., 2012, Hill et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 General Flowchart of the Hyperspectral image processing      

Airborne Hyperspectral Image 

(Level 1b) 

Geometric correction 
Roll, Pitch and yaw and generate file in 

Geographic Lat/Long 

Coordinate transformation  

from Geographic Longitude/Latitude to 

UTM Zone 29 

Mapping data to 
Regular Grid using interpolation Technique 

Data Mosaicking 

Stacking 
Eagle and Hawk data  

Final Seamless Hyperspectral image 

Atmospheric correction 

(Level 2b) 

 

Software used   

FLAASH Module- ENVI  

Apl corr  

Apl trans 

Apl map 

APL GUI 

software suite 

ENVI 

ENVI 
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3.4.3 Airborne Hyperspectral Data Pre-processing 

The hyperspectral imagery was pre-processed using the Apl software suite and ENVI 

4.5. This involved atmospheric correction, geometric corrections, transformation and 

mapping, mosaicking, and stacking of the Eagle and Hawk sensor data, which are 

described in the following subsections and illustrated in Figure 3.3 and Figure 3.4. 

 

 

 

Figure 3.4 Systematic preprocessing of the hyperspectral images - Main pre-processing 

steps for the hyperspectral imagery (a) Level 1b image strips were (b) Atmospherically 

corrected image using FLAASH module, (c) Geo-corrected, mapped and then (d) 

Mosaicked and stacked together to generate a single seamless image of the study area 
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Figure 3.5 Flowchart showing input requirements for atmospheric correction of 

hyperspectral image (radiance image to reflectance image)  

  

Processed Hyperspectral Image (Level 2b)  

Corrected Reflectance (µW cm
-2

 nm
-1

 sr
-1

) 

Flight Date and Flight Time (GMT) 

Sensor Type- Predefined for some sensors 

Latitude and Longitude of scene centre 

Sensor Altitude (in Km) 

Ground Elevation (in Km) 

Modtran Multiscatter Model-Scaled Disort 

Initial Visibility (in Km)  

Aerosol Model 

Atmospheric model 

Modtran Resolution (15 cm 
-1

) 

Output Reflectance Scale Factor 

Water retrieval and Water absorption 

820nm, 940nm, 1135nm 

Zenith Angle (in DD or DMS) 

Azimuth Angle (in DD or DMS) 

Hyperspectral Image (Level 1b) 

Raw radiance 

Image Acquisition - Level 1 Image 

Preparation of FWHM and scale factors for each band 

Input requirements of FLAASH Module 

Removal of Extreme Bands-  

Band 1 (399 nm) and Band 255 (1098nm) 
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Table 3.5 Selected FLAASH parameters (ENVI software) for the atmospheric 

correction of the airborne hyperspectral image data. 

Sensor Parameters Atmospheric parameters 

Scene centre location Atmospheric model- Mid-Latitude summer 

Flight Date- 8 April 2011 Aerosol Model- Maritime 

Flight Time-  Water Retrieval- 

Sensor type- AISA Water absorption features-  

Sensor Altitude (in Km) Initial visibility- 40 Km 

Ground Elevation (in Km) Spectral polishing-yes 

Pixel Size (in m) Width (number of Bands)-9 

 Wavelength recalibration- no 

 

Additional advanced FLAASH setting 

Zenith Angle- (in DD or DMS) 

Azimuth Angle- (in DD or DMS) 

Aerosol Scale height (km
2
) 

CO2 mixing ratio (ppm) 

Use Square Slit function- No 

Use adjacency correction-Yes 

Reuse MODTRAN calculations- no 

Modtran Multiscatter Model- Scaled DISORT 

Number of DISORT streams -8 

Use tiled processing- yes- Tile size -200 Mb 

Output Reflectance Scale factor 

Output Diagnostic File 

 

  

3.4.3.1 Atmospheric Corrections of Hyperspectral Data 

The Level 1b Eagle imagery required geo-correction in order to rectify geometrically 

and geo-locate the imagery to the UTM projection (Zone 29 North) using the WGS-84 

Earth ellipsoid model. The first (399 nm) and the last band (1098 nm) of the Eagle 

sensor needs to be removed before applying the atmospheric corrections to the 

hyperspectral data. The supplied level 1 Eagle imagery (Figure 3.4 a) has 255 bands 
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with wavelength 399 nm to 1098 nm, but the first and last bands (399 nm/1098 nm) 

were removed during processing due to noise and ease in performing atmospheric 

correction techniques. These two bands of raw hyperspectral image (namely first 399 

nm and Last 1098 nm) were severely affected by atmospheric scattering. Thus, the first 

band and the last band were removed from the raw dataset (Copley and Moore, 1993). 

Therefore, any subsequent pre-processing steps were only applied to Eagle bands 2-254 

having wavelengths 400 nm to 998 nm. The Hawk image does not have any such first 

and last bad bands which hinder with atmospheric correction processes. Each strip of 

Eagle data was mosaicked pixel by pixel to generate a final seamless image composite 

as  shown in Figure 3.4 d (Read and Torrado, 2009, Richards and Jia, 1999). Similarly, 

the Hawk data was processed to the same geometry and stacked with the Eagle 

imagery. 

There are various algorithms for atmospheric corrections and retrieving surface 

reflectance from images such as the Fast Line-of-sight Atmospheric Analysis of 

Spectral Hypercubes (FLAASH) (Anderson et al., 2002, Cooley et al., 2002, Matthew 

et al., 2002), the QUAC model (Bernstein et al., 2005), the Atmospheric and 

Topographic Correction (ATCOR) (Richter, 1997, Richter, 1998, Richter and 

Schläpfer, 2002, Richter, 2004), the High-accuracy Atmospheric Correction for 

hyperspectral Data (HATCH) (Gao et al., 2009, Qu et al., 2001, Qu et al., 2003), the 

ATmosphere REMoval (ATREM) (Gao et al., 1996), and the Atmosphere CORrection 

(ACRON) (Miller, 2002).  Kruse (2004) postulated, with a study using a comparison of 

ATREM, ACORN, and FLAASH with MODTRAN options that FLAASH is the most 

flexible and generated enhanced output with adjacency effects with essential enhanced 

corrections for hyperspectral images. Thus, the above discussion concludes that 

FLAASH module is reliable, fast and suitable for hyperspectral images having inbuilt 

AISA sensor specifications in ENVI software. 

The level 1b images were processed using the FLAASH tool of ENVI 4.5 for 

atmospheric correction (as shown in the Figure 3.4 b and Figure 3.5). The FLAASH 

modele utilises different parameters for atmospheric correction including aerosol 

content, sensor altitude, ground elevation, pixel size, field of view, atmospheric model, 

water retrieval, wavelength calibration, zenith angle and azimuth angle (refer to Figure 

3.5 and Table 3.5). FLAASH accurately compensates for atmospheric effects such as 

the amount of water vapour, aerosols, and visibility scene. As direct measurements of 
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these atmospheric effects are rarely available, FLAASH infers them from their imprints 

on the hyperspectral radiance data. The demonstration of input for space borne 

hyperspectral sensor- Hyperion data (Felde et al., 2003) and CASI (Guanter et al., 

2007) during atmospheric correction helped a lot in providing input for the airborne 

hyperspectral sensor. There is a slight variation in the input for airborne hyperspectral 

images as compared to spaceborne images; the input varies in term of ground elevation 

and sensor altitude. FLAASH uses these input properties to estimate correct surface 

reflectance correctly using highly accurate models of atmospheric radiation transfer 

(Adler-Golden et al., 1999). FLAASH uses different input that removes the effects of 

water vapour, aerosols, and atmospheric gases to convert at-sensor radiance values to 

ground-level reflectance. The input data for FLAASH requires its unit to be in µW cm
-2

 

nm
-1

 sr
-1

 and generates the output in percentage (reflectance). The scale factor for this 

conversion is: 

𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑖𝑚𝑎𝑔𝑒

𝑆𝑐𝑎𝑙𝑒 𝐹𝑎𝑐𝑡𝑜𝑟
= 𝐼  (𝜇𝑊 𝑐𝑚−2 𝑛𝑚−1 𝑠𝑟−1)  Equation 3.1 

Where, I= Floating point radiance image.  

The scale factor was loaded in the form of ascii file, with FWHM information and scale 

factors. The scale factor should be constant for all bands. Other factors used as input for 

the atmospheric correction were latitude/longitude, sensor altitude, ground elevation, 

pixel size, flight date, flight time (GMT), aerosol model, water retrieval, atmospheric 

model (based on latitude and seasonal dependence) and initial visibility (refer to Table 

3.5). The aerosol model used in this study was the maritime aerosol model and the 

atmospheric model was mid-latitude summer model. The corrected Reflectance image 

will provide a spectral profile of the different ground features and tree species that are 

unique to each feature. This will help in differentiating features using a spectral profile. 

3.4.3.2 Hyperspectral Geo-correction 

On delivery, the Level 1b .bil Eagle imagery required geo-correction in order to 

geometrically rectify and geo-locate the imagery to match the WGS 84 UTM zone 29-

North coordinate system of the airborne LiDAR data (See Figure 3.3 a). To achieve 

this, all images of the flight line were individually geo-corrected using the Window-

based APLGUI software, which was supplied with the data by the NERC-ARSF, 

Plymouth United Kingdom. Level 2 products (such as atmosphere corrected imagery) 
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were created before geo-correction. These Level 1b (or Level 2) files were geo-

corrected with the Airborne Processing Library (APL) software suite to produce Level 3 

imagery. apl software suite contains aplcorr, apltrans and aplmap to generate level 3 

images from provided data.  

The Level 2 files were geo-corrected for roll, pitch and yaw with the apl corr software 

to produce Level 2b imagery in Geographic Longitude/Latitude (ARSF, 2012). 

Utilising the appended aircraft navigation information from a navigation file and a 4 m 

DSM generated from the LiDAR first returns, the apl trans APLGUI software (ARSF, 

2012) was used to determine the geographic location of each pixel on ground and then 

interpolate these (using the default nearest-neighbour algorithm) to generate a 2 m 

raster image (.bil format) for each flight-line. 

3.4.3.3 Hyperspectral Image Mosaicking and Stacking 

Following the correction of atmospheric effects and geo-corrections, image strips were 

transformed, mapped and then mosaicked to generate a single seamless image (Figure 

3.4 d). Geo-corrections and transformation were performed within AplGUI ARSF 

mapper (Graphical user based software provided by ARSF) and ENVI 4.5. Then each 

file was transformed from Geographic Longitude/Latitude to UTM North zone 29 using 

apl trans. Adjacent flight strips were co-registered through apl ARSF mapper using 

DSM, navigation file and nearest neighbourhood re-sampling within aplmap. Image 

stacking and mosaicking were performed in the ENVI software.  During image 

mosaicking, colour balancing procedure was applied for the purpose of minimising the 

differences between adjacent strips. This method matches the spectral statistics among 

images, by calculating gains and offsets from a reference image. Thereafter, spectral 

matching uses these gains and offsets to adjust the values (DNs) of an overlapping 

image during mosaicking. These steps generate a seamless hyperspectral image for the 

further use or classification. 

 

3.5 Airborne LiDAR data  

3.5.1 Introduction and Data Acquisition 

LiDAR can overcome problems associated with exhaustive field work such as time-

consumption,  lengthy procedures, and requirement of more man power . Though it is 
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expensive, it can acquire data promptly over the all-region, which is processed to 

estimate the different forest characteristics. For the validation purposes of LiDAR 

derived results, the study still requires the field collected or measured data of the tree 

components. Thus, field survey is still valuable for the research purposes. It measures 

the tree height at specified spatial plot locations in the area and correlates the results 

with LiDAR derived canopy heights. In conclusion, LiDAR is offering an improvement 

to existing traditional inventory methods and procedure by providing reliable outcome 

in a quick and speedy manner. Both HSI and LiDAR can be acquired over a large area 

in less time when compared to the traditional field survey and measurements. 

Table 3.6 Information content of Lieca LiDAR system 

Properties Information details 

Time It is the GPS time of week in seconds 

Easting and Northing Depends on the datum and projection of the data, but will 

usually be in metre 

Elevation In metre. 

Intensity Values between 0 and 255 

Classification It follows that of the ASPRS standard LiDAR point classes. 

Return Number It is between 1 and 4, where 4 is the last return. 

Number of returns For the given pulse it will be between 1 and 4. 

 

Leica Geosystems was used to collect LiDAR data for the EUFAR project in April 

2011. Airborne Leica LiDAR data were utilized in the present study was acquired on 

the 8th April, 2011 in the midday by the Natural Environment Research Council 

Airborne Research and Survey Facility (NERC-ARSF) (ARSF, 2012). Airborne Leica 

LiDAR data was collected from the Leica Geosystems-ALS-50 II instrument. The 

LiDAR survey was undertaken at an average flying altitude of 411m (around 1350 feet) 

above the sea level. The entire surveyed area comprises twenty-six north-south 

trending, overlapping strips covering approximately 35 km
2
 and encompassing the 

chosen study area. Three of these strips of LiDAR contained data for the actual study 

area. The data was supplied as ASCII format and LAS 1.0 point cloud in ASPRS format 

(The American Society for Photogrammetry and Remote Sensing) as shown in Table 
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3.7. Before processing the data, it is checked for any anomalies like holes, spikes or any 

irregular minimum bounding shapes in the sampling datasets. The data in the point 

clouds are re-classified to highlight possible noisy points (7) and unclassified points (1) 

by ARSF Data Analysis Node. The processing consists of removal of noise, merging 

the files and then processing this together with the raw laser returns to generate a 

georeferenced point cloud. The processed filter LiDAR data is used to generate a DSM 

and DTM. The information contained by the LiDAR LAS file is illustrated in Table 3.6. 

 

Table 3.7 The ASPRS Standard LIDAR classification (ASPRS, 2005, Graham, 2012). 

Classification Value (bits 0:4)  Meaning  

0 Created, never classified 

1 Unclassified 

2 Ground 

3 Low Vegetation 

4 Medium Vegetation 

5 High Vegetation 

6 Building 

7 Low Point (noise) 

8 Model Key-point (mass point) 

9 Water 

10 Reserved for ASPRS Definition 

11 Reserved for ASPRS Definition 

12 Overlap Points 

13-31 Reserved for ASPRS Definition 

 

 

The LAS format of LiDAR data is first processed by 3D Analyst's Toolbox in the Arc 

GIS platform using the point file information tool. It summarises the file contents of 

millions of points contained in the LiDAR datasets, and more than one data to single 

file. It also reports, statistical information about the raw LiDAR data, which is very 

important before LiDAR data, is handled for processing. This information includes 

minimum rectangle boundary, average point spacing, minimum/ maximum z-values and 
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number of points. Out of this information, average point spacing is very important and 

should be uniform throughout the LiDAR data files because they are used for building 

geodatabase terrains and feature files in Arc GIS software. “The average point spacing 

is the product of the total number of points divided by the area of the LiDAR datasets” 

(ESRI White Paper, 2011) p.5. 

 

Once acquired, the LiDAR data points can be processed to generate a DTM, by 

interpolating the x-y-z coordinates of the appropriate returns to a regularly spaced grid 

(also known as a raster). A DSM generated from the first returns is referred to as a 

Digital Surface Model, whereas a DTM generated from only ground returns is known as 

"a bare-earth" Digital Terrain Model. Although interpolation errors accompany 

rasterisation,  LiDAR topographic data is more efficiently stored in the form of an 

Elevation model than in its raw vector point form (Chan et al., 2007). Moreover, there 

are many algorithms that easily enable qualitative and quantitative analysis of Elevation 

Models.  

3.5.2 LiDAR Pre-processing 

During data delivery, some of the noises were already classified and given values as per 

the American Society of Photogrammetry and Remote Sensing (ASPRS) standard 

LiDAR point classes and given classification value of 7 (ASPRS, 2005, Graham, 2012). 

These classified 7 value is removed using filtration script using point cloud filteration 

software (pt_cloud_filter.exe.) provided by ARSF while delivering data. A script has 

been used to run pt_cloud filter.exe in command prompt to remove the noise (classified 

as 7) provided in Appendix 1.  

This processing produces the noise free (filtered ASCII files) LiDAR data which can be 

used for further processing, similarly, .LAS files can be filtered using LAS tools (Hug 

et al., 2004, Isenburg and Schewchuck, 2007). After this filtering, the LAS file is 

further processed in Arc GIS for generating DSM and DTM using the first and last 

return of the data. The LAS file is used to separate first and last return. 

3.5.2.1 Processing of LAS File in Arc GIS Platform 

The second step in LiDAR data processing involves the conversion of .LAS files to 

multipoint and to load them into the geodatabase using the 3D analyst toolset in Arc 

GIS platform. The LAS file was used to locate information associated with the las data 
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like number of returns, ground spacing. Loading the several million points of LiDAR 

data into the geo-database feature type is known as multipoint. In this process, the 

LiDAR files were loaded in a geo-database that allows a seamless mosaic of the .LAS 

files at single or individual file for further analysis by Arc GIS tools. This generates a 

point density map of the LiDAR data . This conversion requires certain specifications 

for its completion like ground spacing (derived from point file information tool as 

discussed in step 1), coordinate system and the return number. 

The average point spacing (for the processing of LiDAR) used in the current study is 

0.43 to 0.61 meter and the point cloud field generated in the point returns is 

108,203,294 records per row. These are part of storing, mosaicking, and separating data 

in multipoint feature class in a geo-database. Thereafter, raw elevation points of LiDAR 

data are converted into a geo-database terrain and an elevation raster file using a point 

to raster tool (Arc GIS conversion toolbox). The DSM and DTM were generated from 

the multipoint feature class (point to raster tool of ArcGIS) with z-heights of the 

features. For generating a DSM, a cell assignment is set to max values, pixel size is set 

to 2 meter and cell size is set to 4 times according to the average ground spacing of 

LiDAR points. In this case, average ground spacing of the LiDAR data is 0.54, so cell 

size is 2 m that corresponds to the spatial resolution of the hyperspectral images. Thus, 

DTM is derived from the LiDAR ground returns (last return of the LiDAR) using the 

same procedure where cell assignment type is set to minimum, and cell size is set to 2 

m resolution corresponding to AISA hyperspectral images. For generating DSM, the Z-

max option is used as window filtering whereas the Z-min window size filter was used 

for DTM generation.  
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Figure 3.6 An aerial photographs showing the openness of the Mediterranean forest and sand dunes near a coastal region with some plots 

in study sites E- Eucalyptus species, PP- Pinus pinea, PS- Pinus pinaster, A- Acacia Species, S- Sandy region with few shrubs (Note- This 

is a priori knowledge based on field survey taken during September 2012 by the author). 
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Figure 3.7  (A) Field plots showing different tree species, (B) Field photographs and aerial photographs showing upper canopy view and 

terrestrial view (a-L). 
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Figure 3.8 Location of field plot sites used for the training and classification of the images  
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3.5.3 Canopy Height Model Generation  

CHM is generated using the subtraction method from DSM and DTM. The DSM and 

DTM need smoothing to remove the noise during processing but if the surface is not 

very noisy, over smoothing will create noise in the data (Tate et al., 2005). The raster 

DTM were smoothened using window size filter with z-max option and z-min in case of 

DSM smoothing, as some noises were removed during pre-processing of the .LAS files 

using point cloud filtering software (listed in Appendix 1. If the terrain is not relatively 

over flat, there comes the requirement of secondary thinning, otherwise not. This 

processing helps in getting the DSM and DTM, which were used to generate CHM 

using math tools in the Arc GIS platform. The CHM was generated from the difference 

of DSM and DTM generated from the first and last return separated from the LiDAR 

data (Balzter et al., 2007, Popescu et al., 2003, Zimble et al., 2003). 

3.6. Fieldwork Methodology 

Field methods were planned, and in the month of September 2012 and different 

materials such as digital aerial photographs, printed maps, reference materials and 

instruments (Abney Level, Handheld radio-spectrometer) were carried to the field for 

the collection of data (See Figure 3.6, 3.7, 3.8 and 3.9 for field information and 

instruments). The field data were collected in September 2012, by the author, and 

helped by colleagues from University of Leicester and (André Grobe Stoltenburg) 

University of Münster. The printed maps (from digital photographs taken during the 

data acquisition) were used during the field trip to locate and mark the sample points 

corresponding to the ground locations (See Figure 3.8). These shown points were 

collected in the field with GPS, marked on digital aerial photographs and maps. These 

were used as the training and validation points for this study test site. Aerial 

photographs were used to locate the point using the structure or shape of the field 

conditions. These field samples were collected on random sampling, where most of the 

points were selected according to their unique locations and landmark such as corner 

trees, single tree, isolated trees, and groups of two or three trees (triangle shape). The 

leaf samples from mid-canopy of species were collected for recording the spectral 

reflectance and for the low height species, reflectance was collected overhead. As the 

fieldwork was carried out in the month of September, the weather conditions were dry 

and hot with a clear sky. Moreover, the spectral reflectance was recorded at the same 
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time for all species during the same time of the day to avoid any BRDF effect. Thus, 

precautions were taken to collect data in similar climatic conditions. Before the start of 

the fieldwork, the study site experienced rainfall in the previous month, but the 

conditions were favourable for the data capture and recording the spectral reflectance 

during fieldwork.  

The data collected during fieldwork was point locations of the different native species, 

height of the trees, and photographs of the site simultaneously. The Abney level 

instrument was used to collect the height of the tree species in the field that was used to 

validate the LiDAR generated heights. Different tree species were sampled for spectral 

characteristics with a handheld radio spectrometer, including height of the tree using 

Abney level, and spatial location using Garmin Oregon GPS. It is known that “Garmin 

Oregon GPS has an accuracy of less than 36 feet (10 m) which is 95% typical accuracy” 

(Garmin, 2008) p.31. Numerous samples of tree species were collected in order to 

determine the representative spectral characteristics of each prior to use in guiding a 

conventional remote sensing approach to classification and mapping.  The further 

spectral profile of the tree species was taken with a handheld radio spectrometer, with 

white reference and dark reference. About 70 samples of different tree species, 

particularly Pinus pinaster, Pinus pinea, Eucalyptus and Acacia longifolia were 

collected during field sampling. Latitude and longitude locations were recorded using 

Garmin Oregon GPS. Spatial locations of all sampling places were recorded using a 

Garmin Oregon GPS and marked on the digital photographs too.  

Leica GPS was used to record the spatial location of each collected sample for the co-

location of field data with the airborne datasets. The Leica GPS system provides real-

time analysis, and was used to navigate in the forest area to log the position of the tree 

or sample with respect to the sampling points. The Leica GPS system was connected 

with the post processing software that exported the recorded points to the shape file (to 

be used in ArcGIS environment). The shape files were exported over the airborne 

hyperspectral image to locate them. The digital maps and photos were marked 

accordingly while in forest. These points were then, matched with the points marked on 

the digital photos during field work for its co-location. Spatial location of different tree 

species and ground features with forest information for a section of the study area was 

acquired during the field trip in September, 2012. The information gathered in the field 

visit were used to validate the classification results. This involved identifying tree 
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species, recording heights and the spatial location of marked trees in the study area (in 

Figure 3.7 and Figure 3.8). A personal laptop (Arc GIS software) along with digital 

photographs was used to store the field information (e.g., any crossing or specific 

locations) to facilitate preliminary assessments of field samples collected using GPS. 

The marking and identification of places were performed using the digital photographs 

that were printed before the field trip with GIS to be readily accessed which helped in 

the interpretation of those sites while in the field. 

In the field survey we sampled spectral profiles and recorded the height of different tree 

species like Pinus pinaster, Pinus pinea, Eucalyptus species, and Acacia species. 

During the field work, I sampled these vegetation types to identify them and evaluate 

their separability from each other. Field spectral profiles of native tree species were 

recorded using the Analytical Spectral Devices (ASD) FieldSpec-Pro handheld radio 

spectrometer (ASD, 2002) whereas tree height was measured with an instrument called 

an Abney level (Shapiro and Good, 2010). As discussed earlier, the tools used during 

field work includes a compass, measuring tape, GPS, Abney level and a Radio 

spectrometer. 

The Field survey consists of identifying different tree species and ground features in the 

field site and marking them. These various ground features include sand regions, 

ground covered with grasses, shrubs and tree species like Pinus pinea, Pinus Pinaster, 

Eucalyptus globulus, Acacia longifolia. They were marked on digital photographs with 

markers like PP, PS, E, A, E, PP, PS and SD (refer to Figure 3.6). This information is 

based on the field survey undertaken in September 2012. The location of different 

ground features and tree species were marked on the digital photographs during the 

field survey (as shown in Figure 3.6 and Figure 3.7). Some of the field photographs 

taken during the field survey showing different places (spatial points) and marked with 

the letters A, B, C and so on (refer to Figure 3.6 and Figure 3.7). These photographs 

also show that Mediterranean forests are not dense, but open in nature. These studies 

help with image processing and classification purposes (refer Chapter 4 and 5). 

3.6.1 Importance of Field Survey 

A prior knowledge of the different vegetation types or ground features of the study area 

is essential and mandatory in considering the data validation and result assessment.  For 

this reason, field research is required to record the tree height with spatial locations to 
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match it with airborne images. Field survey data helps in relating the canopy height 

calculated from the LiDAR data using regression analysis of both datasets. However, 

conducting a field survey for recording or measuring tree heights is time-consuming 

and often difficult in dense forest due to a large area. Traditional field inventory 

methods are tedious and rigorous, based on the systematic sample plot measurements in 

forest stands. It is also obvious that the measurement using plot of each tree is quite 

impractical in nature. These traditional methods provide generalised results based on 

the measurements of sample plots for the whole forest stands. These generalised results 

may be inaccurate due to variability in the composition of the forest stand and sampling 

bias. In addition, the traditional field data collection is tedious, time-consuming, 

exhausting, lengthy, expensive, and it requires a number of people to cover the forest 

area. In conclusion, it requires both substantial financial and human resources for its 

completion. 

3.6.2 ASD Radio Spectrometer 

The handheld radio spectrometer was used to record the spectra measurements of 

different tree species. The instrument record spectral data over the range of 300 nm -

1000 nm (ASD Inc, 2008). First of all, measurements were taken by baseline using the 

dark current and white reference over a standard white board (provided with the Hand 

Held radio spectrometer). Thereafter, the spectrum were collected from the instrument 

for different tree species. The collected spectrum were pre-processed using HH2 sync 

and view spec pro software provided by ASD Inc™. HH2 sync was used to import the 

spectrum file from the instrument connected to it. Thereafter, the imported spectrum 

files were processed and export the binary files to text file for further analysis or 

comparison (ASD Inc, 2008). The export function available were jpg, bmp, .png, text 

files and export destinations were file, clipboard and printer (ASD Inc, 2008). The 

spectral profile of tree species were shown in Figure 3.9. These spectral profiles 

measured along with the spatial points considered for looking at hyperspectral images 

for locating features with similar profiles. Although some variation in ground based 

spectral profile and hyperspectral profile may be found due to difference in spatial 

resolution, distance of acquisition and canopy density.  
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Figure 3.9 Field measured spectral profile using hand held radio spectrometer, where 

noises are present in initial and later part of the spectrum  

There are some limitations associated with the airborne sensors that may affect the 

image quality.  

-The forest or any land features may be observed by the satellite or airborne data 

from different viewing directions which depend upon the position of the sensors and 

position of the sun’s angle. Thus, the viewing angle of the satellite with respect to the 

sun angle may affect the retrieval of surface reflectance. Thus, BRDF (Bidirectional 

reflectance distribution function) is one of the limitations of the satellite or airborne 

sensors when compared to the handheld spectrometer. In order to avoid BRDF and 

fulfill diffuse hemispherical condition, only direct solar radiation, and spectral data 

recorded in the field is primarily from a direct solar radiation under a clear sky (McCoy 

2005) to measure the irradiance and radiance at all possible sensor positions and 

possible source positions.  

-Aerosol particles or haze can affect the retrieval of the surface reflectance by 

the airborne sensors that may be avoided by the handheld spectrometer.  

-Satellite or airborne sensor can view the features from above the canopy of the 

forest tree while a handheld spectrometer can be used to record the reflectance of 

ground leaf, upper canopy by destructive methods (leaves were plucked from the tree 
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and clustered to record the reflectance). Thus, handheld spectrometer has advantage 

over the satellite or airborne data in terms of above-mentioned limitations.  

 

3.6.3 Abney Level Instruments 

An Abney level is a hand-held instrument used primarily in preliminary surveys to 

collect basic information about the height of the target objects (Keuffel, 1942). It is also 

used to measure degrees, percent of grade and topographic elevation (Keuffel, 1942). 

This tool was invented by Sir William de Wiveleslie Abney (Shapiro and Good, 2010). 

An Abney level is one of the most essential, useful and popular surveying instruments 

in forestry research field (Calkins and Yule, 1927). It provides the angle information 

helpful in calculating the inclination and height using trigonometry equations (Stanley, 

1901). The popularity of this instrument can be assessed due to its stability, simplicity 

of design, its ease and speed of manipulation and relatively high precision results 

(Calkins and Yule, 1927). 

 

 

Figure 3.10. Abney Level used for collecting height information during field work 

(taken by the Author) 



 

74 
 

An Abney level (see Figure 3.10) consists of a sighting tube with a bubble level inside 

and the vernier scale with a movable pointing arm in (Erickson, 1914, wiseGEEK, 

2014). The Abney level scale is “graduated to degrees, and read by vernier to 5 

minutes” (wiseGEEK, 2014).  The top of the target tree is looked through the eyepiece, 

and the protector is moved to fix when the air bubble is at the centre of the line of sight. 

The protector position is fixed with an adjustable lock so that exact position is 

maintained during handling and reading duration. This vernier scale provide the angle 

information required to calculate the height of the trees using trigonometry (Shapiro and 

Good, 2010). An Abney level is used to measure the height of a tree in fields using 

trigonometry methods (as shown in Figure 3.11, Equations 3.2 and Equation 3.3). 

The measurement of tree height requires the calculation of the distance between 

observer and tree (H), the angle between the top of tree and an Abney level (i.e. Eye of 

observer), and height of observer ∆h (See Figure 3.11). The Abney level was carefully 

pointed towards the top of the tree to view through the sight piece. In order to read the 

angle between top of tree and observer’s eye the Abney level was held steadily. Ground 

horizontal distance (i.e. G) was measured using a measuring tape and the H1 is 

calculated using the Equation 3.4. After that, the tree height is calculated by adding the 

∆h to the calculated H1 using Equation 3.4 (See Figure 3.11). Providing equations and 

illustration to find the tree heights are easier to understand and apply (illustrated in the 

Equation 3.2, Equation 3.3 and Figure 3.11). 

H1 = 𝐺𝑟𝑜𝑢𝑛𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐺) × 𝑇𝑎𝑛 (𝑎)    Equation 3.2 

Where, H1= Vertical height (tree height - observer’s Height), = Angle between the top 

of the tree and observers’ eye with Abney level, G= Horizontal distance between tree 

and observer. 

The Equation can be modified if the laser distance-measuring instrument is used in 

place of an Abney level. The laser distance instrument measures the distance of the top 

of the tree from the observer (L).  

  H1 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑜𝑝 𝑜𝑓 𝑡𝑟𝑒𝑒 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟 (𝐿) × 𝑆𝑖𝑛 (𝑎) Equation 3.3 

                                              Tree Height = H1 + ∆h    Equation 3.4 
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Where L= Distance between top of the tree and the observer, H1= Vertical height (tree 

height at observer’s Height), ∆h= Height of the observer, = Angle between the top of the 

tree and observers’ eye with Abney level. 

Tree heights of different species were recorded and measured using the above equations 

in the field site (relatively flat) and used later on to compare with the LiDAR derived 

tree heights (See chapter 5). An Abney level is a small, relatively inexpensive, easy to 

use and portable instrument. 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Illustration of trigonometric methods showing how to measure tree height 

using an Abney level 
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3.7 Methodology of the Remote Sensing Data   

This section presents the general overview of the methodology adopted in the study as 

illustrated in the Figure 3.12. The broad methodology has been presented in this section 

while detailed methodology will be discussed in the respective sections (Chapter 4 and 

Chapter 5). The methodology is divided into two parts  

1. The classification of the segmented PC images.  

2. The synergistic use of the hyperspectral image and LiDAR derived 

Canopy Height Model i.e. fused image.   

Overall, the study includes the acquisition of the airborne HSI and LiDAR data, 

recording and measurement of field samples (spatial locations, tree heights, spectral 

profile) and pre-processing of the raw data using different technique in various steps (as 

described in section pre-processing steps). 

In the first methodology, supervised classifiers like SAM and MLC were used to 

classify hyperspectral images, and their accuracy is then assessed. The hyperspectral 

images were spectrally segmented based on the wavelength and histogram into five 

sections. Later on, the PCA technique was applied to the segmented hyperspectral 

image to reduce data dimensionality that is also known as the 'Hughes Phenomenon' 

that hinders the classification results (see Chapter 4). In the second methodology, PCA 

fusion technique was used to bring hyperspectral and LiDAR derived structural height 

at the same platform, and thus used for classification and mapping. 

3.7.1 Methods for the Segmented PC Image and its Classification 

This methodology presents a general idea about the process of segmentation of 

hyperspectral image, its classification using MLC and the comparison with classified 

original hyperspectral image using MLC and SAM classifier. The supervised 

classification technique of maximum likelihood algorithm is the most commonly and 

widely used method for classification purposes (Richards and Jia, 1999). The 

hyperspectral data is divided into five spectral data ranges based on their histogram 

statistics. The chosen ranges for segmentation are based on statistical properties, not on 

their wavelengths as radiances of a particular wavelength may overlap with 

neighbouring wavelengths (Pandey et al., 2014). Principal Component Analysis (PCA) 

is applied individually to each spectral range. The first three Principal Components 

(PC) of each range are chosen and are fused into a new data segment of reduced 
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dimensionality. These PCs were used for classification using MLC. Spectral signatures 

were also analysed for the hyperspectral data and were validated with ground data 

collected in the field by a handheld spectro-radiometer. Different RGB combinations of 

PC bands of the segmented PC image were richly coloured and provide distinct feature 

identification. A comparison with other classification approaches (SAM and MLC of 

the original hyperspectral imagery) shows that the MLC of the segmented PCA 

achieves the highest accuracy, due to its ability to reduce the 'Hughes Phenomenon' 

(Pandey et al., 2014). The detailed methodology and its description will be discussed in 

Chapter 4. 

3.7.2 Methods for Fusion of Hyperspectral image and LiDAR Derived 

CHM.  

This methodology presents a clear idea about the process of integration of hyperspectral 

image and LiDAR derived CHM and its classification using MLC. The image fusion 

technique used in the present study is a PCA based fusion approach. This method 

employs the forward PC rotation application to the hyperspectral image and produces 

the PC image. Now, the PC1 band is removed from the PC image while integrating the 

CHM derived from LiDAR data. This CHM is numerically rescaled to the numerical 

values of the PC1 band and thus brings it to the same platform of the numerical strength 

of the PC1 band. The integration of the rescaled Canopy Height Model (r-CHM) in 

place of PC images is performed in accordance with the numerical strength of the PC1 

band. Thereafter, this integrated PC image and r-CHM are set in the order of r-CHM, 

PC2, PC3, and so on. The inverse PC rotation technique was then applied to this 

integrated r-CHM and PC bands using the same statistical file generated during the 

forward PC application. Thus, the fused image is generated with this above 

methodology using PCA application. The applicability of the fusion techniques and 

results will be discussed in Chapter 5. Therefore, this chapter discusses about the study 

area, data acquisition and their processing and general methodology adopted in the 

study.  
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Figure 3.12. General methodology flowchart adopted in the study 
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Chapter 4. Segmented PCA Approach for Classification of HSI 

 

4.1 Introduction  

This chapter puts forward the concept of hyperspectral image segmentation and 

classification of hyperspectral images and segmented PC images. This chapter provides 

the segmentation analysis of the hyperspectral images using the PCA techniques that 

results in a new image called segmented PC image. The classification of hyperspectral 

and segmented PC image are performed using SAM and MLC classifiers. As discussed 

in chapter 2, classification or vegetation mapping is difficult with traditional or 

conventional methods. The field methods are time-consuming, difficult, expensive and 

require human or many manual works (Tueller, 1989). Due to these limitations, the 

field methods are not possible for a large region in a short time. Moreover in an 

inaccessible regions, it is quite difficult to acquire field data every time, there comes the 

role of airborne or satellite remote sensing as a valuable tool (Tueller, 1989).  

Due to high dimensionality of hyperspectral images, it provide lower accuracy results 

(Thenkabail and Huete, 2012). Identification and classification of the tree species and 

ground features in the coastal Mediterranean forests are imperative for ensuring 

improved classification results and understanding the classification aspects using 

hyperspectral imaging sensors. It is now obvious that significant advances in the 

identification, classification, and mapping different tree species and ground features can 

be made using ground measurements and high-resolution hyperspectral images. 

However, a complete understanding of the HSI and its consistent applications is 

feasible only by adopting following conditions (Bellman, 1961, Hughes, 1968): (A.) 

performing hyperspectral data processing approaches (e.g., overcoming or reducing 

‘Hughes Phenomenon’ or ‘curse’ of high data dimensionality), (B.) High correlation 

between the several the HSI band reduces and made uncorrelated to each other and (C.) 

Use of appropriate classification classifiers for identification and classification accuracy 

to facilitate accurate classification achieved for the processed HSI. 

The use of segmentation of HSI and performing PCA applications on each segment of 

the HSI reduces the ‘Hughes Phenomenon’ as well as brings high data to low 

dimension. PCA application makes the high correlated bands of HSI to uncorrelated 

band assist the classification approach. In addition, PCA enhances the image and 



 

80 
 

produces better visual display of the image than an original image (Jia and Richards, 

1999) that helps in image interpretation and assists in image analysis along with ground 

measurements. Moreover, PCA generated images help in identification of various 

features easily, significantly differentiating vegetation from non-vegetated features 

(Castro-Esau et al., 2004).  

Data redundancy, presence of noise, a significant variance among dataset makes a 

rigorous process and different application in hyperspectral images. Some authors have 

shown conventional parametric classification approaches i.e. maximum likelihood as 

limiting the ability to classify the high dimensionality data (Benediktsson et al., 1990, 

Jones et al., 2010).  In the concern to these, segmented PCA approach is utilised with 

the incorporation of maximum likelihood classifier using the conventional methods for 

classification and mapping tree species. Due to a reduction in data dimensionality, 

conventional classification algorithm may provide good results. As the segmented PCA 

approach brings high dimensionality data to a reasonable dimension, which is handled 

with ease and hyperspectral imagery can be classified using maximum likelihood 

classification. This chapter discusses the ‘Hughes Phenomenon’, segmentation and 

PCA techniques and classification of resultant segmented PC image.  

4.1.1 Hughes Phenomenon  

Bellman (1961) investigated the relationship between the bands and the training 

samples for image classification. “The rapid increase with dimensionality in training 

sample size required for density estimation has been termed the ‘curse of 

dimensionality’ by Bellman” (Salehi et al., 2008) p.786. Thus, the dimensionality 

depends upon the number of bands, as the band number increases dimensionality of the 

image also increases (Bellman, 1961, Hughes, 1968). High dimensional image requires 

more number of training samples for a classifier and need increases exponentially. 

Thus, in the classifier design, it leads to ambiguity in the classification, where the 

accuracy increases and declines after that points onwards with an increasing number of 

bands, while keeping the training samples constant (Hughes, 1968, Scott, 1992). There 

exist a relationship between the number of training samples, band numbers of the 

images and consequent classification accuracy of the classified image (Fukunaga and 

Hayes, 1989). This phenomenon cannot be prevented unless provided with sufficient 

number of samples. It means that by adding more spectral bands to a standard classifier, 

the classification result eventually becomes less accurate (Alonso et al., 2011, Hughes, 
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1968, Ma et al., 2013, Nishii et al., 1997, Scott, 1992). Too many input bands can thus 

lead to a degradation of the classified map, resulting in lower accuracy result for 

classified hyperspectral image. Thus, segmented PCA was applied to reduce the 

'Hughes Phenomenon' and enhance the classification accuracy. 

There are several studies related to 'Hughes Phenomenon' for either reducing it or 

mitigating it (Shahshahani and Landgrebe, 1994). Band selection (selecting numerous 

bands out of all bands), PCA and MNF based feature transformations were some of the 

techniques evolved to reduce the 'Hughes Phenomenon' in hyperspectral image 

classification. There is also evidence of classification by SVM using feature selection 

for reducing data dimensionality (Pal and Foody, 2010). Initially, optimum band 

selection were used as one of the methods for classification of hyperspectral images 

(Ma and Zhang, 2011, Mausel et al., 1990). Band selection is a method of choosing few 

bands from several bands that may contain the unique information needed for 

classification (Chang et al., 1999, Mausel et al., 1990). Thus, band selection became the 

famous method of hyperspectral image classification, and sometime it lower the 

implementation of a classifier as some bands may have valuable information in 

discarded bands (Brunzell and Eriksson, 2000). Thus, choosing a better classification 

classifier may also produce lower accuracy results (due to data dimensionality). An 

attempt has been made to classify hyperspectral images using MLC while reducing the 

dimension of the image to generate the desired results.  

Alternatively, other methods, mentioned below, were introduced which does not use 

selection of optimum bands but reduces the dimension of the data. These techniques or 

methods use all available images and transform them into a reduced number of 

dimensions without losing any information. Thus, various methods have evolved for 

classification of the hyperspectral images which neither discard any bands nor lose any 

little information. These approaches or techniques are feature based recognition (Miao 

et al., 2007, Mojaradi et al., 2009), K-L transform (Pu and Gong, 2000), segment K-L 

transform (Pu and Gong, 2000), CA transformation (Mallet et al., 1996), morphological 

transformations (Palmason et al., 2003, Pesaresi and Benediktsson, 2001, Plaza et al., 

2002, Plaza et al., 2005), Wavelet transformation (Abibullaev and An, 2012, Bruce et 

al., 2002, Harvey and Porter, 2005, Kaewpijit et al., 2003, Mallet et al., 1997, Sarhan, 

2013), vegetation index (Cho et al., 2008, Ma and Zhang, 2011, Pe'eri et al., 2008, 

Rosso et al., 2005, Smith et al., 2004, Zheng and Wang, 1992), and spectrum waveform 

characteristics in first order derivatives (Liu et al., 2011), second order differential, 
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peaks, valleys (Chen et al., 1992, Demetriades-Shah et al., 1990, Li et al., 1993).  These 

are the various methods to reduce the dimension of the hyperspectral images for 

different research and used according to objectives and aim of the research work. 

4.1.2 PCA Approach  

The PCA technique utilises conversion of inter-correlated bands into a new set of 

uncorrelated sets for spectral image. PCA technique reduces the dimensionality of the 

original image to lower dimension, converting 'n' to 2 or 3 new transformed principal 

component images, which contain majority of valuable information than rest of the 

bands (Chavez and Kwarteng, 1989). Thus, PCA is image transformation technique that 

mathematically transform original inter-correlated data into new uncorrelated bands 

known as components or axes (Chavez and Kwarteng, 1989). PCA technique is applied 

to the hyperspectral data which generates a set of uncorrelated bands  such as PC1, 

PC2, PC3 from inter-correlated bands for spectral image (Chavez and Kwarteng, 1989, 

Karathanassi et al., 2007). 

PCA technique helps in vegetation analysis with hyperspectral image particularly in 

two ways: it helps in data reduction by eliminating redundant bands and choosing top 

quality wavebands for modelling (Thenkabail and Huete, 2012). PCA condenses the 

original information of correlated bands into few uncorrelated variables with 

transformation of original data to new coordinate system. PCA acts as a step in 

reducing large number of wavebands to manageable wavebands without losing any 

valuable information. Thus, it does reduce the number of wavebands but retain most 

information of all wavebands. Other techniques that also reduces data but retain 

information were MNF, ANN, wavelet transformation, UFD (Uniform Feature design).  

PCA is also considered as image enhancement method in remote sensing applications to 

distinguish between vegetated and non-vegetated features (Castro-Esau et al., 2004). It 

also assists in the classification of the vegetated areas especially over large spatial 

coverage. Thus, it also forms the basis of using this technique with segmentation part to 

identify and classification of the Mediterranean forest part. 

PCA techniques reduce the data dimensionality and also produces better image 

visualization (Chavez and Kwarteng, 1989). Spectrum segmentation techniques was 

first used by Jia and Richards (1999) that took all the spectrum into account for 

generating each segment. Those results in fast clustering of spectral channels based on 

perceptions for visualization oriented segmentation. The colour representation of the 
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selected PC component represents better visual colour than hyperspectral images (Du 

and Chang, 2003, Du et al., 2008, Tsagaris et al., 2005, Tyo et al., 2003). Du et al. 

(2008) in their recent research paper found that PCA based transformation produce 

better visualization of the hyperspectral images that are user based on combination of 

bands. In the present study, segmented PC image produced a better and enhanced visual 

image using different band combinations of segmented PC image.   

4.1.3 Classification Approach  

In this present study, SAM and MLC supervised based classification were used to 

analyze the occurrence or removal of 'Hughes Phenomenon' for hyperspectral image 

classification, in the region around St Andre, an important Mediterranean protected 

forest in the south-west of Portugal. The very first attempt to identify the tree species 

were based on the chemical composition of the leaves and performed by Wessman et al. 

(1988). The different remote sensors (optical and hyperspectral images) were 

introduced and used as a practical application to identify and classify the tree species of 

coniferous forest (Gong et al., 1997). Thereafter, to date several studies were carried out 

for mapping and classification of the tree species and ground features using airborne 

hyperspectral images (Clark et al., 2005, Dibley et al., 1997, Zhang et al., 2006). The 

different classifier techniques (like SAM, MLC, LDA, NNA) were used in the study, 

for discrimination of tree species and ground features. Identification of tree species 

were performed and distinguishability of tree species within the same genus were also 

reported for Pinus species by Van Aardt and Wynne (2007). Pu (2009) conducted 

studies using airborne hyperspectral imagery for discriminating tree species and 

mapping forest stands. The author achieved the classification accuracy above 80% 

using LDA and NNA methods.  

Buddenbaum et al. (2005) performed the classification of coniferous tree species using 

a combination of spectral and textural characteristics in Germany. While using 

hyperspectral data only (spectral content), they used, namely SAM and MLC classifier 

techniques and reported an overall accuracy of 66% for that study. They found that 

MLC accuracy outcomes were generally higher than the results of the SAM 

(Buddenbaum et al., 2005). In one case, author reported the overall classification 

accuracy of 48.83% (SAM), 83.61% (ANN), 85.56% (MLC) and 50.67% (Decision 

tree) with random sampling using AISA hyperspectral images (Shafri et al., 2007). 

They demonstrated the performance of different classifier and illustrated that MLC 
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outperforms the most advanced classifier techniques like SAM, ANN. The authors 

concluded that overall classification accuracy was higher for set of selected bands of 

hyperspectral images (85% and appa= 0.77) than using the all spectral channels of 

hyperspectral images (77% and appa= 0.65) (Möckel et al., 2014). This is also 

supported by Peña et al. (2013) that overall classification accuracy of SAM algorithm 

ranges from 60% to almost 80% depending upon the reflectance image, noise reduced 

reflectance images and resampling combinations of the pixel size (0.3 m, 0.6 m, 1.2 m, 

and 2.4 m pixel resolution). The pixel size of higher resolution i.e. 0.3-0.6 m has 

highest overall classification accuracy (almost 80%) as compared to the pixel size of 2.4 

m that has an overall SAM classification accuracy of less than 60%. They found the 

lowest per class classification as low as 30% for the Lythraea caustica and Acacia 

caven (~50%) using SAM algorithms. This illustrates that spatial resolution also plays a 

prominent role in the classification results of the hyperspectral images instead of only 

spectral resolution. They concluded that spatial variation of hyperspectral has 

pronounced impact on the overall and per classification accuracy of the hyperspectral 

image associated with SAM algorithms. They also used Spectral Information 

Divergence (SID) algorithm and concluded the almost similar performance as SAM, but 

differ in that SID is more sensitive to decrease in the classification accuracy with the 

spectral degradation.   

Le Cussan (1991) demonstrated that SAM classification of hyperspectral images 

(CASI-Compact Airborne Spectrographer Imager) resulted in 60.8% accuracy due to 

confusion between the sand dunes and Bruguiera species stands. Author argued about 

the relatively low accuracy with SAM is due to insensitivity to differences in relative 

brightness between pixels and the spectral library (Le Cussan, 1991). But the same area 

when mapped and classified using the MLC and data integration methods results in the 

higher accuracy (Held et al., 2003) as compared to the previous studies performed by 

Le Cussan (1991). Held et al. (2003) provided the better and improved results with the 

MLC algorithm and combined datasets for CASI and NASA AIRSAR images with 

higher accuracy as compared to SAM. Previously the Mahalanobis classifier based on 

supervised classification showed less classification accuracy (Ma et al., 2013). 

Moreover, some authors have shown conventional parametric classification approaches 

i.e. maximum likelihood as limiting in its ability to classify the high dimensionality data 

(Benediktsson et al., 1990, Jones et al., 2010). Although this statement makes MLC 
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unsuitable but it can be used as useful classifier for classification after reducing the 

dimension of the hyperspectral imagery. Thus, the classifier techniques, wavelength and 

methods used to classify one species at one site may not give the desired results at 

another site due to change in data or environment (Clark, 2011). 

In order to avoid the ‘Hughes Phenomenon’, the segmented PCA approach is utilised 

with the incorporation of maximum likelihood classifier for classification and mapping 

tree species. As the segmented PCA approach brings high dimensionality data to a 

lower dimension, which is handled with ease and classified using MLC. In order to 

increase the classification performance, the segmented PCA technique is a pre-

processing for removing the redundant information substantially without losing 

significant information (Du and Chang, 2003, Jia and Richards, 1999). In this manner, 

MLC proved superior to another non-parametric classifier. MLC was chosen as a robust 

classifier in vegetation or forest mapping activities using either multispectral or 

hyperspectral imagery. Thus, MLC was chosen in the present study as a classifier after 

reducing the dimension of the hyperspectral using segmented PCA approach. Finally, 

the method or approach performed in the present study will be helpful for hyperspectral 

analysis by reducing the multidimensional data to a smaller dimension for processing 

while retaining most of the significant information. Therefore, SAM and MLC has been 

used in the study throughout for classification for maintaining consistency in the 

research.  

4.2 Methods of Spectral Segmented PC Technique  

The conceptual framework of the research followed the below mentioned main steps: 

geometric correction, atmospheric correction, image enhancement, image 

transformation [image conversion with PCA techniques (segmented PCA)], 

interpretation, classification, mapping and validation of the results. Most of these steps 

were already described in the pre-processing section of Chapter 3. The detailed 

methodology adopted in this present research are illustrated in Figure 4.1 and Figure 

4.2. Figure 4.1 shows the flowchart of image segmentation and generation of segmented 

PC image (also represent the red block in Figure 4.2). Figure 4.2 illustrates the overall 

steps adopted in the study. Thus, the flowchart of the detailed methodology adopted in 

this study, the red rectangle shown in the flow chart is describing the details of 

segmentation and PC application for generation of segmented PC image illustrated in 

Figure 4.1. 
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Figure 4.1 Flowchart illustration of segmented PC image generation for hyperspectral 

image   

Segmented PC image 

               

  A1 A2 A3        B1 B2 B3    C1 C2 C3        D1 D2 D3  E1 E2 E3  

Selection of First three PCs from each segments and fusion to generate 

segmented PC images  

Here A1, A2, A3 represent PC1 PC2 and PC3 respectively, and so on. 

                                             
  A1 A2 A3 A4 A5 A6 A7 A8 A9…   B1 B2 B3 B4 B5 B6 B7 B8 B9…    C1 C2 C3 C4 C5 C6 C7 C8 C9…    D1 D2 D3 D4 D5 D6 D7 D8 D9…   E1 E2 E3 E4 E5 E6 E7 E8 E9… 

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

Segmentation of the Hyperspectral data 

Seamless Hyperspectral data 

Radiometric corrections 

Atmospheric corrections 

Transformation and mapping 

Mosaicking and stacking 

 

Raw Hyperspectral data 

PCA techniques         application on each        segment 
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Figure 4.2 Methodology Adopted in the study of segmented PC image classification 

  

 

GCP- field data incorporation 

Segmentation of 
Hyperspectral image 

Performing PCA over 5 sets of segments 
Generating 5 segments  

First 3 PCs from each segment fused together 
to generate Segmented PC image  

(See previous figure) 

Removing Hughes 
Phenomenon  

MLC Classification 

Training   Feature selection 

Comparison of Classified images and Accuracy Assessment 

Eagle and Hawk image 
(Level 1b) 

Data Pre-processing 

Spectral Angle Mapper 
(SAM) 

Maximum Likelihood 
Classification (MLC) 

Seamless hyperspectral images 
(Level 3b) n-Dimensional 

Geo-correction, mapping 

Atmospheric correction 

Stacking and mosaicking 

Spectral Signature 
End member 
selection  

Training   Feature selection 
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4.2.1 Segmented PCA Approach  

The segmentation mainly deals with the making segments at particular chosen ranges of 

the wavelength of electromagnetic radiation. Then, PCA techniques are applied to each 

segment of the image. Segmentation of the hyperspectral image is based on spectral and 

histogram information. Spectral criteria are chosen to keep the spectral range which are 

most important for discrimination of the vegetation and other ground features. So, blue, 

green, red, NIR and SWIR wavelength ranges are taken into consideration. Mostly, 

vegetation and other ground features are demarcated from each other in blue, green 

(demarcate different vegetation), red, NIR and thermal range.  Thus, an optimal range is 

chosen such as it can distinguish several features. There is a difference between the 

traditional PCA and PCA application on segments of hyperspectral images. PCA 

applied in the segments of hyperspectral images compress the data thus reducing the 

data dimensionality whereas in Multispectral image PCA is able to find the spectral 

band with most of the variability. The PCA performed on 7 bands of multispectral 

images will results in the 7 PCs, out of which only first 3 or first 4 will contain the 

information (feature recognition ability from the image) and rest will contain noises. 

Therefore, only three PCs are available from multispectral PCA techniques. While for 

hyperspectral images, it can be made several segments (in my case 5), that generates 

corresponding PCs corresponding to the number of bands in the segment (segment is 

the part of hyperspectral with bands). Thus, each segment will contribute to PCs 

images, where first 3 PCs from each segment contain information against others. 

(Information here means- when they are displayed with ENVI software or other 

software, one can able to identify the features easily). So here these useful PCs were 

integrated to generate the segmented PC image which is not possible with the even high 

resolution multispectral image. This integration is the main difference which clearly 

states that it differs significantly as well as innovative difference between hyperspectral 

and multispectral image. 

 

Earlier, Jia and Richards (1999) achieved the overall classification results of 98.6% and 

97.0% for Jasper Ridge and Moffett Field images respectively, and confirmed the 

enhanced visual display of the segmented images than original AVIRIS images. They 

compared the segmentation technique with the traditional PC techniques for the 

classification and display enhancements. presented a segmentation method for Hyperion 
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hyperspectral images for invasive species classification using 4 groups of data, and 

found the appa coefficient ranging from 0.32 to 0.82 (0.32, 0.45, 0.44, 0.5, 0.52, 0.56, 

0.57, 0.55, 0.61, 0.81, 0.64, 0.69) and overall accuracy varies from as low as 42% and  

up to 86% for the classification. These four group consists of visible, NIR, SWIR 1 and 

SWIR 2 for the above research. This present work differs from the above in the 

adoption of five segments and comparison of segmentation techniques with airborne 

AISA hyperspectral images, where blue, green, and red wavelength ranges were 

considered. As these three ranges plays a significant role in tree distinguishing 

capability. Reflectance pattern in different amount in green, and blue region leads to 

different colour of the tree leaves, such as dark green (Eucalyptus globulus), light green 

(Acacia longifolia), bluish green (Pinus pinea).  

This is argued by Cheriyadat and Bruce (2003) that sometimes PCA fails to extract the 

useful information for separating different targets, and this may be possible that higher 

order PCs do not always retain information to distinguish target features. Thus, using 

PC on the full range of wavelengths, particular small spectral segment ranges were 

taken into consideration while making the segmentation of hyperspectral images. The 

segments were selected based on the spectral response, reflectance behaviour and 

patterns shown by tree species and histogram data distribution of the image (See section 

4.3.2, Figure 4.4, Figure 4.5 and Table 4.2).  

Histogram statistics of the image provide information regarding the distribution of the 

image values. Each band of hyperspectral image has values that define ranges and their 

distribution that differ for each single band. This information is used to look at the 

distribution of image value for each single band and generate the histogram statistics. 

The bin values are created to include all ranges (min-max). The frequency is plotted 

using the image value of the each band against the bin values (See Figure 4.4 ). The x-

axis of the figure represents the image values (tonal variations) and the y-axis 

represents the number of pixels (frequency). This information is only used to segment 

the hyperspectral images in the study (Figure 4.5 shows the some bands of 

hyperspectral image).  
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Figure 4.3 Reflectance comparison of two tree species, Eucalyptus globulus and Pinus 

pinaster, for their unique signature  

 

 

Figure 4.3 shows the spectral profile of Eucalyptus globulus and Pinus pinaster for 

comparison of signature unique to them. The tree species are mainly distinguished from 

each other at blue, green, red wavelength region due to absorption by different pigments 

such as chlorophyll, a, b carotenoids, xanthophyll (Blackburn, 2007, Devlin and Baker, 

1971, Zarco-Tejada et al., 2001), red-red edge region due to sharp increase in 

reflectance, and NIR regions as multiple internal reflection takes place in leaves internal 

structures (Tucker and Garratt, 1977). Sometimes at the thermal region absorption are 

caused by water contents as shown by arrows in the Figure 4.3 (Gupta et al., 2001, 

Jacquemoud and Baret, 1990). The thermal region of the wavelength are often used to 

measure the nutrients, surface temperature as well as water stress condition of the tree 

than comparing and differentiating species. Thus, Figure 4.3 illustrates the 

electromagnetic regions related to leaves photosynthetic pigments, structural 

parameters, water content and nutrients present in the different tree species. 

The green box shows that Eucalyptus globulus has chlorophyll peak in the green region 

of wavelength due to high amount of chlorophyll as compared to the Pinus pinaster. 
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The black arrows show the red and red edge region of the electromagnetic wavelength, 

where vegetation shows a sharp increase in the reflectance due to leaf optical properties 

and act as a transition zone between visible and NIR region for chlorophyll activity and 

cellular structure of leaves.  

Reflectance in NIR region is dependent on the leaves and cellular structure; more the 

dense canopy or number of leaves, higher is the reflectance. Moreover, due to leaf 

structure and cellular structures, reflectance in NIR region is much higher than the blue, 

green and red regions. Eucalyptus globulus is showing a higher reflectance than pinus 

pinaster, so it is evident that Eucalyotus is having large number of leaves and dense 

canopy as compared to Pinus pinaster, that has needle shaped leave and thin canopy. 

Thus, reflectance of the feature provides their characteristics and can be distinguished 

from other features easily.  

Now, in accordance with Figure 4.3, the spectral ranges that can differentiate tree 

species and other ground features can be seen with marked arrows and rectangular box. 

The physiological differences between tree species are apparent in the spectral region 

from 400 nm to 800 nm (Paap et al., 2008). This difference is within visible range and 

near red edge region of the reflectance spectra. However, in the present scenario, this 

range is 500 nm to 850 nm in Eagle-Hawk sensor of hyperspectral data (Figure 4.3). 

Thus, the variation in this reflectance range can be used precisely to discriminate 

different species using hyperspectral datasets. The differentiating properties can be 

found with differences in green peak, sharp boundaries from red-edge to NIR, 

reflectance in NIR region and thermal regions.  

Therefore, the differences can be observed in the visible range at the chlorophyll 

absorption region (506.15 nm -623.48 nm- segment 1) and also in the region starting 

from red edge to NIR ranges (728.31 nm -988.37 nm- segment 4) within the conifer 

needles of Pinus and broad leaves of Eucalyptus. In comparison, the Pinus pinaster’s 

needle like leaves appear bluish-light green in colour, that may be due to lower 

reflection in green areas of the visible spectrum as compared to Eucalyptus that appear 

dark green (high reflectance in green region). The region for choosing blue regions of 

spectrum (400 nm to 506.15 nm-segment 2) stand on the base of  light blue green leaves 

colour of Pinus pinaster and Pinus pinea species. Red region (623.48-728.31 nm) is left 

between above three selected ranges, and it is selected as selected as third segment.  

Furthermore, the water absorptions at 1400 nm, 1900 nm and 2400 nm (1002.3–

2238.71 nm) and water content differ in depth and shape among different tree species 
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types. This whole spectrum range is selected as segment 5 to complete the segmentation 

technique (unless study focuses on the water stress or diseased conditions of the 

vegetation). Thus, several factors such as chlorophyll, leaves structure, water content 

and absorption influence reflectance spectra of vegetation at different spectrum of 

wavelength giving unique signature for different tree species. The typical reflectance 

shown by tree species evidently shows the difference at five discussed wavelength 

regions. 

 

 

Figure 4.4 Frequency distribution of the hyperspectral image 
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Figure 4.5 Histogram of band 1 (red), band 49 (black), Band 99 (green), band 142 

(blue) and last band 20 (sky blue) (hawk image) in sequence. 

 

 

Table 4.1 Segmentation approach and retention of information in comparison with data 

dimensionality 

Segmentation of HSI Number of PCs 

from each segment  

Number of 

Integrated PCs 

Conclusions 

4 Segments  3PCs  12 Less dimension with lesser 

information 

5 Segments  3PCs 15 Less dimension and most 

of the information 

6 Segments  3PCs 18 Higher dimension and 

more information 

 

Table 4.1 shows that if four segments were considered it has total 12 bands, for five 

segments it has 15 bands, and for six segments it will result into 18 segments (when 

first 3 PCs were chosen to generate the segmented PC image). According to it, five 

segments is suited better as it has less number of bands as well as more information of 

the data (see Table 4.1). It is assumed on dimensionality basis, to have as much as 

lower dimension and have more and more information. The reason, for choosing the 

five segments, is in fact it covers the spectrum in different range and providing the blue, 

green, red, NIR and thermal range of the spectrum regions as well. This range is not 

possible with the four segments and six segments as they may overlap with one or two 

ranges of the spectrum regions as well as distributing the image values overall (see the 
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proximity of the histograms – initial bands are very close to each other as against the 

later bands in Figure 4.4 and Figure 4.5). Thus, it is assumed that generating the 

segments of HSI brings down dimensionality and provide more information too. Thus, 

the five segments of the HSI are one of the most feasible ways to maintain the most of 

the information while reducing the data dimensionality. It will generate 15 integrated 

PCs from 5 segments of HSI. Thus, it has most of the information as well as reduced 

dimension. Let us consider six segments, it will have 18 integrated PCs with the most 

information, but again, it will have higher dimension than the 15 integrated PCs. While 

considering 12 Integrated PCs – It is assumed that is will be generated from 4 segments, 

which have lower dimension but less information than above cases (See Table 4.1). 

Moreover, it has been shown that higher amount of variance is shown in the short 

wavelength region by hyperspectral images, where visible and NIR ranges dominate the 

PCA techniques (Tsai et al 2006). Therefore, segmentation techniques for PC 

application are extracted from visible and NIR regions. Segmentation of hyperspectral 

images suggests the step to make several small segments of a single image into many 

parts. Five segments of the hyperspectral imagery were generated using the important 

spectral ranges and variation in overall histogram statistics. Thus, segmentation of the 

hyperspectral images is based on the spectral properties as well as histogram properties. 

Segmentation is performed to bring down the high data dimensionality to lower 

dimensions, as well as to maintain the most of the information of the HSI.  

Figure 4.6 (a) represents the covariance matrix generated from the statistic of PCA 

analysis, which provide the information regarding uncorrelated variables and correlated 

variables. In the case of completely unrelated variables in the data, the matrix would be 

uniformly grey except along its diagonal whereas, in case of correlated variables, the 

matrix would not be uniformly grey, where black, grey and white represent to negative, 

none and positive covariance respectively. In the case of a correlation matrix, a black 

portion maps to low correlation whereas white parts map to the high correlation 

between the data dimensions. The graph in Figure 4.6 (b) showing the white part 

represent the diagonal elements of the matrix are variance of each band and the other 

non-diagonal elements are the covariance of the corresponding band in row and 

column. Clearly, this is evident from the both Figure 4.6 (a) and (b) about the 

correlation between variables. Matrix of the hyperspectral data set was representing the 

correlations between the bands hyperspectral image, where black represent no 
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correlation and white to the highest correlation (White= ±1 and Black= 0). The diagonal 

represents the highest correlation value 1 illustrated in white, whereas, the darker tones, 

i.e. grey and black represent the lower absolute value of the correlation.  

  

Figure 4.6 (a) Covariance matrix and (b) Correlation matrix generated from a 

hyperspectral image .  

 

 

Principal component analysis was performed on the each segment of the hyperspectral 

images to get five segmented PC images. Each of the segmented PC image have the 

same number of PC bands as the number of inputs bands (see Table 4.1). Out of those 

PC bands, first 3 PCs were chosen from each segmented PC image and fused together 

to make an integrated segmented PC image. Thus, 3 PCs from 5 segmented PC images 

will constitute 15 integrated segmented PC images (See Table 4.1). PCA produces PC 

images that generate uncorrelated bands having different features at different corners 

that are not possible in original hyperspectral images. In hyperspectral image, different 

features are found to be on the same diagonal line, means they are highly correlated 

with each other. 

The importance of performing PCA analysis in the present research, is illustrated in 

Figure 4.7 and Figure 4.8. Figure 4.6 shows that all bands are highly correlated with 

each other. Thus, Band 1 and Band 2 of the hyperspectral images provide an idea that 

both are highly correlated due to location of feature class on the straight diagonal line 

passing through the origin. The different class features lie on a straight line passing 

through the origin of the two bands. The scatter plot shows that the various features 



 

96 
 

were highly correlated in Figure 4.7. The scatter plot generated from the PC1 and PC2 

shows that the various features were highly uncorrelated in nature, and they are located 

at the extreme corners of the scatter plot (as shown in Figure 4.8). The location points 

of different tree species, sandy regions and other features were related to their 

reflectance properties.  

 

 

 

 

Figure 4.7 Scatter plot between Band 1 and Band 2 of hyperspectral image showing 

high correlation between different bands  
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(a) Segment 1 (b) Segment 2 

 

 

(c) Segment 3 (d) Segment 4 

 

(d) Segment 5 

Figure 4.8 Scatterplot between PC1 and PC2 of PCA images showing uncorrelated 

bands of five segments of hyperspectral images (a-e)  
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These PCA transformation techniques provide uncorrelated output bands (as shown in 

Figure 4.8) from the highly correlated input bands (as shown in Figure 4.7). Thus, PCA 

is needed to generate uncorrelated bands from highly correlated bands where data 

ranges differ significantly between original bands. This technique generates a new set 

of transformed orthogonal axes having an origin at the data mean. To maximize the 

variance among the data, orthogonal axes is rotated along the origin. Figure 4.7 shows 

the correlation between the band 1 and band 2 of original data whereas Figure 4.8 

shows the relationship between PC1 and PC2 of the PCA outputs of five segments (PC 

images of five segments).  

4.2.1.1 Savitzky-Golay FIR spectral smoothing filter 

“Savitzky-Golay smoothing filters (also called digital smoothing polynomial filters or 

least-squares smoothing filters) are typically used to "smooth out" a noisy signal whose 

frequency span (without noise) is large” (MathWorks, 1994). In this filtering, a 

significant amount of noise with high-frequency content from the signals were removed 

as compared to other standard averaging filters (Luo et al., 2005b, Luo et al., 2005a, 

Orfanidis, 1996). For the purposes of removing the noise and smoothing the raw 

spectral reflectance data, Savitzky-Golay least squares filter was used in the present 

study. This filter smoothened the spectra profile while maintaining the position, shape 

and depth of the spectral features that means it does not affect the spectral profile but 

removes the noises. Thus, it has minimal effect on spectral profile curve’s position and 

shape. Therefore, Savitzky-Golay was selected for smoothening spectral profile with 

minimal consequence shape and depth of spectral curves (Press et al., 1996). The 

Savitzky-Golay filter is applied to the spectral profile collected from atmospherically 

corrected hyperspectral data. This filter is mainly applied in the spectra to reduce the 

high and low frequency in the spectral profile of tree species. The relative widths and 

heights of noisy spectral curves are reduced to a visible level by this filter, thus 

providing smoothing without loss of resolution in spectral data. The spectral reflectance 

obtained after applying Savitzky-Golay filter is shown in the result section 4.3.1.  

4.2.2 Use of Classifier Techniques. 

In the present study, two different classifiers SAM and MLC were selected for 

classification of hyperspectral data and their comparison. The selection of two 

classifiers depends upon the previous performance of the classifiers presented in the 
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previous studies as well as user-friendly environment of the classifiers. This study 

utilises the two classifiers for classification of HSI and segmented PC image.  

4.2.2.1 Spectral Angle Mapper 

SAM algorithm is a physically-based spectral classification (Kruse et al., 1993) which 

calculates the spectral similarity between a pixel spectrum and a reference spectrum as 

“the angle between their vectors in a space with dimensionality equal to the number of 

bands” (Kruse et al., 1993). SAM uses the calibrated reflectance data for classification 

and thus relatively insensitive to illumination and albedo effects. End-member reference 

spectra used in SAM were collected from hyperspectral imagery. SAM compares the 

angle between reference spectrum and each pixel of an image in n-D space (Boardman, 

1992).  SAM classification uses reflectance data for classification, not the radiance data. 

However, use of radiance data does not produce significant error because the origin is 

still near zero (Boardman, 1992, Boardman and Kruse, 1994, Boardman, 1995, 

Boardman et al., 2006, Kruse et al., 1993). This ‘spectral angle’ (α) is calculated as:  

∝= cos−1(
𝑡.𝑟

‖𝑡‖ ‖𝑟‖
)     Equation 4.1 

Where, α = Angle formed between reference spectrum and image spectrum, and t = 

Image spectrum, and r = Reference spectrum. 

This equation can be written in other formulation as shown below and given by 

Boardman in 1992  (Boardman, 1992): 

∝= 𝐜𝐨𝐬−𝟏 (
∑ 𝒕𝒊𝒓𝒊

𝒏𝒃
𝒊=𝟏

(∑ 𝒕𝒊
𝟐𝒏𝒃

𝒊=𝟏 )
𝟏/𝟐

(∑ 𝒓𝒊
𝟏/𝟐𝒏𝒃

𝒊=𝟏 )
𝟏/𝟐)   Equation 4.2 

The SAM value is expressed in radians, where minor angle α, represents the major 

similarity among the curves. The angle α, determined by cos
-1

, presents a variation 

anywhere between 0
o
 and 90

o
 (Equation 4.1 and 4.2). The above equation can also be 

presented as Cos α. In these conditions, the best estimate acquires values close to 1.  

Thus, SAM uses an n-Dimensional angle to match the pixels to reference spectra.  SAM 

assumes reflectance data for the classification. However, if radiance data were used, the 

error was not significant because the origin is still near zero. Hyperspectral image was 

classified using SAM and output was compared with the result of MLC classification.  
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4.2.2.2 Maximum Likelihood Classification  

MLC technique was used to classify both the original hyperspectral images as well as 

segmented PC image. The concept of MLC was understood before proceeding to the 

techniques. According to Richards and Jia, MLC techniques are described as: 

“Maximum likelihood classification assumes that the statistics for each class in each 

band are normally distributed and calculates the probability that a given pixel 

belongs to a particular class. Unless a probability threshold is selected, all pixels are 

classified. Each pixel is assigned to the class that has the highest probability (that is, 

the maximum likelihood). If the highest probability is smaller than a specified 

threshold value, the pixel remains unclassified” (Richard and Jia,1999, p.240).  

MLC is calculated for the discriminant functions for each pixel in hyperspectral image 

by ENVI software and represented in mathematical form mentioned below (Richards 

and Jia, 1999): 

𝒈𝒊(𝒙) −  𝐥𝐧 𝒑 (𝝎𝒊) − 𝟏
𝟐⁄ 𝐥𝐧 | ∑ |𝒊 − 𝟏

𝟐⁄ (𝒙 − 𝒎𝒊)
𝒕 ∑ −𝟏𝒊 (𝒙 − 𝒎𝒊)𝒊 Equation 4.3 

Where, i = class, x = n-dimensional data (where n is the number of bands) 

p(i) = probability that class i occurs in the image and is assumed the same for all 

classes, |i| = determinant of the covariance matrix of the data in class wi,  

i
-1

 = its inverse matrix , mi = mean vector.  

Some authors have shown conventional parametric classification approaches i.e. 

maximum likelihood as limiting in its performance to classify hyperspectral image 

(Benediktsson et al., 1990, Jones et al., 2010). As segmented PCA approach brings high 

dimensionality data to a reasonable dimension, which is handled with ease and 

classified using maximum likelihood classification. In order to increase the 

classification performance, segmented PCA technique is a pre-processing for removing 

the redundant information substantially without losing significant information. After 

that MLC method was used for classification purposes. 

4.2.2.3 Accuracy Assessment   

For the assessment of the classified image, different accuracies were used such as 

overall accuracy, producer accuracy, user accuracy and kappa coefficient. The error 

matrix was calculated using the reference data used for generating error matrix of each 

feature in classified images (Congalton et al., 1983, Stehman et al., 2009). The error 

matrix generated different accuracy parameters like user’s accuracy, producer’s 
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accuracy, mapping accuracy and overall accuracy for comparison purposes of different 

classified images (Congalton, 1991, Congalton and Green, 2008). In addition to these 

accuracies, appa statistics was also calculated for each classified images to test the 

significance of the difference in accuracy of classified images. The equations to 

calculate overall, user, producer accuracy and appa coefficient are given below:  

Overall Accuracy = ∑
𝑛𝑖𝑖

𝑛

𝑘
𝑖=1       Equation 4.4 

User Accuracy = 
𝑛𝑖𝑖

𝑛𝑖+
       Equation 4.5 

Producer Accuracy = 
𝑛𝑖𝑖

𝑛+𝑖
    Equation 4.6 

𝜅 =
𝑁 ∑ 𝑥𝑖𝑖−∑ (𝑥𝑖.𝑥+𝑖)𝑟

𝑖=1
𝑟
𝑖=1

𝑁2−∑ (𝑥𝑖+
𝑟
𝑖=1 .𝑥+𝑖)

    Equation 4.7 

Where, r= is the number of rows in the matrix, 𝑥𝑖+= are the marginal totals of row i, 

𝑥+𝑖= are the marginal totals of column i, 𝑥𝑖𝑖= is the number of observations in row i and 

column i, N= is the total number of observations. 

Generally the appa values (coefficient of agreement) ranges from 0-1, with a positive 

correlation between the classification and reference data for remote sensing images 

(sometime they may range from -1 to 1). Usually, values greater than 0.80 represent a 

strong relationship between the reference data and remote sensing images. Values 

between 0.4-0.8 represent moderate agreement between the two data. Lastly, a appa 

value that is below 0.4 represent a poor agrrement or relationship between the remote 

senisng images and reference data whereas a perfect classification of image would 

produce a appa value of one. (Congalton et al., 1983, Congalton, 1991, Congalton and 

Green, 2008, Story and Congalton, 1986). Therefore, it has been considered that appa 

is one of the better tool for comparing different methods of classified images, because 

overall accuracy does not compensate for the chance agreement whereas appa does it 

better than all (Skidmore, 2002). A appa of 1 illustrates perfect agreement, while a 

appa of 0 value indicates agreement that is close to chance (Carletta, 1996).  

Therefore, studies performed over different features or several observations include 

appa statistics, which sometimes agree or disagree simply by chance (Viera and 

Garrett 2005).  Therefore, the use of appa statistics is better than other statistics such 

as overall accuracy. Thus, these statistics provide a better platform, which is directly 

comparable with each other classification results.  
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4.3 Results  

This section of the chapter discusses the outcomes from classification of HSI and 

segmented PC images. This section also presents the spectral profile of raw 

hyperspectral image, atmospherically corrected hyperspectral image and use of the 

smoothing filter in the spectral profile of the features generated from the original 

atmospherically corrected hyperspectral image. This section mainly deals with the 

results discussion in relation to the classified images (SAM and MLC classification of 

hyperspectral image and Segmented PC image). After that, it presents the accuracy 

assessment of all three classified images generated in the study. 

4.3.1 Spectral Profile of Hyperspectral Image  

The surface reflectance of the tree species and surrounding areas is the foremost 

requirement of hyperspectral image classification using classifier techniques. An 

atmospherically corrected hyperspectral image is required to perform the qualitative 

analysis of the surface reflectance. Surface reflectance is achieved by removing the 

atmospheric effects such as water absorption, scene visibility from the raw 

hyperspectral image, discussed in Chapter 3. Radiance values from the raw 

hyperspectral image (level 1b) and reflectance values extracted from the 

atmospherically corrected HSI (level 2b) of the study scene were presented in Figure 

4.9.  

The result and outcome achieved with airborne hyperspectral imagery were shown and 

discussed in this section. The spectral profile of raw hyperspectral image and 

atmospherically corrected image is shown in Figure 4.9. The raw hyperspectral image 

showed the calibrated radiance (X axis- Band Number and Y axis- DN values) whereas 

atmospherically corrected hyperspectral image showed the surface reflectance (X axis- 

Wavelength and Y-axis- Reflectance values). After application of FLAASH on the 

radiance image, the resultant reflectance image shows an apparent decrease of high 

frequency or noise and actual surface reflectance of the vegetation as shown in Figure 

4.10 b. 

The classification map was generated through the classification of the atmospherically 

processed hyperspectral imagery (Eagle sensors) according to vegetation reference 

spectra in the form of the collected reflectance spectra from hyperspectral imagery 

using ground data and aerial photographs. Thus, endmember spectra used in SAM for 
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classification was generated from ROI average spectra from hyperspectral imagery. 

Spectral classification was performed using the SAM: spectral matching algorithms that 

are popular for vegetation mapping applications and commonly included in remote 

sensing software packages (such as ENVI 4.4 ©). Before going for SAM classification, 

the spectral profile of the different species was recorded from hyperspectral Eagle 

stacked imagery using z-spectral profile application tool of ENVI. The reflectance 

spectra were mixed with different high and low frequency and also associated with 

atmospheric signals (Figure 4.10 a). To remove these high-frequency noises and 

atmospheric signals, Savitzky-Golay smoothening filters were applied to the 

atmospheric processed hyperspectral imagery (See Figure 4.10 b).  

The data in the spectral range of 989.69 nm - 1002.32 nm, 1191.55 nm- 1197.85 nm, 

1349.3 nm to 1462 nm and 1790.8 nm to 1999.0 nm were severely affected by 

atmospheric oxygen and water absorption as illustrated in Figure 4.10 (a). When both 

the reflectance spectra as shown in Figure 4.10 were compared, the filtered reflectance 

showed less noise. Those noise were present prominently at the wavelength range 

989.69 nm - 1002.32 nm, 1191.55 nm- 1197.85 nm, 1349.3 nm to 1462 nm and 1790.8 

nm to 1999.0 nm. 

 

Figure 4.9 Spectral profile of vegetation pixel in a hyperspectral image (a) calibrated 

radiance of the original image (X axis- Band Number and Y axis- DN values) (b) 

surface reflectance of hyperspectral image after atmospheric correction with FLAASH 

(X axis- Wavelength and Y-axis- Reflectance values).  
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Figure 4.10 Typical reflectance spectra of tree species and sand from hyperspectral data 

(a) FLAASH corrected reflectance and (b) reflectance after Savitzky-Golay smoothing 

filter application 
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All noises and high frequency are at the water absorption region of the electromagnetic 

radiation. Out of these four high frequency points, first range (989.69 nm- 1002.32 nm) 

is an overlap between the Eagle and Hawk images, which is an advantage because it 

provide an average of smoothening for that region. Thus, the filtered reflectance has a 

distinct spectral profile and shows an apparent decrease of high frequency or noise from 

FLAASH corrected reflectance. Figure 4.10 (a) (b) and shows the reflectance value of 

tree species (Eucalyptus species, Pinus pinea, Pinus pinaster and Acacia species) at 

wavelength range 400 nm to 2450 nm using eagle and hawk sensor. Reflectance was 

collected using 3 x 3 z-profile average moving window sizes in ENVI from 

hyperspectral image. Focusing on different wavelengths of hyperspectral image, 

distinctions between species were exhibited at different wavelength ranges, at visible 

range, with the maximum spectral difference occurring in NIR and short wave infrared.  

 

 

4.3.2 Segmentation and PCA Approach  

The segmentation of the hyperspectral image was performed using the spectral range of 

the wavelength and histograms of the image. In this, selection of different wavelength 

ranges were performed using spectral characteristics, and histogram image data 

distribution. Previously, some studies demonstrated the segmentation techniques using 

the wavelength range and different number of segments that produced varying results 

with different classifiers. During the segmented PC techniques, selection of different 

combination of band in different channels was attempted in order to obtain the 

enhanced display of the image of the study. The enhanced PC image helps in the 

interpretation and image classification. The result of PCA techniques is the generation 

of the same number of PC bands where first PC component (PC1) contains the highest 

percentage of the data variance, second PC component (PC2) contains the second 

largest data variance, and this feature of data variance continues. The data variance and 

useful information contained by PC bands were determined by the Eigenvalues where at 

a certain point PC bands contain only the noise. Thus, the point where Eigenvalues fall 

to less than 1, PC bands do not provide useful information due to the noise or very less 

information.  It is due to some reason, either they have very little variance or due to 

noise in the original spectral bands.  
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One of the useful applications of PCA is that PC bands combination can produce more 

colourful composite images in comparison to the original spectral bands (see Figure 

4.12). It is due to uncorrelated data of the PC bands as compared to original images. 

Moreover, Figure 4.11 shows the Eigenvalues of the PC bands which represent the 

significant useful bands. This graph shows the percent of the total variance contained in 

the different principal component bands. The Eigenvalues 0-1 those whose values are 

less than 1 is neglected and it happens at the forum where eigenvalues become constant 

is known as Elbow Point. The Elbow point is found to be near PC band three after 

which Eigenvalues falls to 0. The Eigenvalues indicate the amount of variance 

described by each of the new coordinate axes. Eigen values are are used to reduce the 

dimension of large data sets by a significant amount and to find new variables that are 

uncorrelated. Thus, hyperspectral image is optimised to prepare it for achieving higher 

classification accuracy using image interpretation with the help of ROI and field 

samples.  

 

Figure 4.11 (a) Plot of Eigen values against the PC bands showing the elbow points 

from where the Eigenvalues falls below 1 
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Table 4.2 Segmentation of hyperspectral data applying PCA on the five spectral data 

segments 

Hyperspectral 

segment 

Band range 

based on 

spectral and 

histogram 

statistics 

Wavelength range Total 

no of 

PCs 

First Three 

PCs of 

segments 

(named as) 

Cumulative 

Percent of 

Eigenvalues 

No of 

selected 

PCs 

Segment 1 1-48 400.-506.15 nm 48 A1-A2-A3 99.8811 3 

Segment 2 49-98 506.15-623.48 nm 50 B1-B2-B3 99.9805 3 

Segment 3 99-142 623.48-728.31 nm 44 C1-C2-C3 99.9585 3 

Segment 4 142-249 728.31-988.37 nm 107 D1-D2-D3 98.4053 3 

Segment 5 16-252 

(Hawk 

range) 

1002.3–2238.71 

nm 

196 E1-E2-E3 99.4480 3 

Average Cumulative Percent of 15 PCs of 5 Segments together 99.5347 - 

Total PCs selected to generate a segmented PC image- -- 15 

 

 

The segments of the hyperspectral image were assumed on the basis of differentiating 

behaviour of the different features described in section spectral profiles of hyperspectral 

image and histogram distribution. In segment five there are some bands from Hawk 

image were removed as they are either having similar range as to Eagle image or 

affected in the absorption region of the spectrum. The affected bands are present at the 

1900 nm and 2100 nm range of the spectrum. As seen in the Table 4.2, segment 5 is 

having 16-252 band, the reason for removal of the band 1-15 is overlap with Eagle 

image (overlap of wavelengths at the last bands of Eagle and starting bands of the 

Hawk). Thus, some bands are removed from the Hawk data to avoid overlap of 

wavelengths. Segment 1 is lying near the blue wavelength range, segment 2 covering 

the green region, and segment 3 near the red wavelength region of the electromagnetic 

spectrum range. While segment 4 covers and segment 5 cover NIR and SWIR spectrum 

region of the electromagnetic wavelength respectively.  
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Table 4.3 Eigen values for the first three PCs derived from the segmented PCA of the 

hyperspectral image and Eigen values of PCA performed on entire hyperspectral image. 

 Total no of PCs  First Three PCs Variance Cumulative Percent 

of Eigenvalues 

Hyperspectral 

image 

492 PC1 85.140 85.40 

PC2 13.22 98.62 

PC3 0.80 99.42 

Segment 1 48 PC1 99.3637 99.3637 

PC2 0.4657 99.8294 

PC3 0.0517 99.8811 

Segment 2 50 PC1 99.7738 99.7738 

PC2 0.1871 99.9209 

PC3 0.0596 99.9805 

Segment 3 44 PC1 97.3580 97.3580 

PC2 2.5132 99.8712 

PC3 0.0873 99.9585 

Segment 4 107 PC1 94.6019 94.6019 

PC2 3.3843 97.9863 

PC3 0.4190 98.4053 

Segment 5 196 PC1 79.1370 79.1370 

PC2 19.0847 98.2216 

PC3 1.2274 99.4480 

 

As seen from the Table 4.2, the cumulative percent of the variance differ in each 

segment of hyperspectral image. Cumulative variance percentage is maximum in the 

first three segments showing the importance of selected range for the study. Moreover, 

segment 4 and segment 5 too contains the higher information than the individual 

hyperspectral image. The average of cumulative variance of all three PCs from each 

segment is found to be 99.53 % which is greater than the cumulative variance 

percentage of three PCs of hyperspectral image (see Table 4.2 and Table 4.3 ).  

Therefore, spectrum based segmented images were created and PCA techniques were 

performed to produce 15 PC based imagery for better visualization and interpretation of 

imagery. PCA performed on each segment caused the transformation of the bands. This 

maximized the variance of bands of each segment of hyperspectral image. Thus, PCA 

on spectrum segments can produce visualization-oriented spectrum segmentation which 

results in multi-colour image with better interpretation (as shown in Figure 4.12.). 

Moreover, false colour composite is usually used in remote sensing to distinguish the 
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different features. Thus, FCC with red, green and blue channels was used as a tool for 

representing multispectral or hyperspectral data after processing. Thus, here several 

FCC was made using different combinations of PCs of segmented PC image (as shown 

in Figure 4.12). Thus, several colour maps were generated with different RGB 

composition of the 15 PCs of segmented PC image, which also help in collecting 

training data for classification. Therefore, it is also considered as initial process in an 

effort to distinguish different features from the imagery. It is assessed that fusion of the 

structural component of Lidar data can also result in better visualization and 

differentiation of some feature promptly than hyperspectral images alone (to be 

discussed in Chapter 5).  

 

Figure 4.12 R, G, B channel Colour composite image produced using different PC 

bands of 15 integrated PC images (for A1, A2, A3, B1, B2, B3 etc. refer Table 4.2)  
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4.3.3 Classification Results 

The classification results for the hyperspectral dataset and segmented PC image are 

shown in Figure 4.13, Figure 4.14, and Figure 4.15. The statistical accuracy analysis 

results of the classifications are given in Table 4.5, Table 4.6 and Table 4.7. The overall 

accuracy of the MLC of the segmented PC images is significantly higher than the SAM 

and MLC approaches applied to the hyperspectral data (See Table 4.4). The SAM 

classification is reliant on spectral image characteristics which can be influenced by the 

‘Hughes phenomenon’ for high-dimensional data. The MLC performed on the 

segmented PCA bands reduces the ‘Hughes phenomenon’. The MLC and SAM 

classification accuracies for hyperspectral datasets are presented in Table 4.5 and Table 

4.6. User’s and producer’s accuracy for different tree species and feature classes were 

presented in Table 4.5, Table 4.6, and Table 4.7. The accuracy of the MLC based on the 

segmented PCA is 96.38%, which is much higher than for the MLC classification of the 

original hyperspectral data (89.67%) and SAM (67.5%). The κ coefficient confirms the 

superior performance of the MLC on the segmented PC image over the SAM and MLC 

classifications of the hyperspectral data. The κ coefficient for the three classification 

approaches gives the same order of classification performance of the three classifier 

techniques (Table 4.4). The results of the 3 different classification techniques are shown 

in Figure 4.13, Figure 4.14 and Figure 4.15. 

 

Table 4.4 Overall accuracy and Kappa coefficient for MLC, SAM and MLC on 

Segmented PCA classification 

 Classifier techniques Overall Accuracy 

(%) 

κ- Coefficient statistics 

1 SAM on Hyperspectral data  67.5 0.60 

2 MLC on Hyperspectral data 89.67 0.87 

3 MLC on Segmented PCA 96.38 0.95 
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Figure 4.13 SAM Classified map of hyperspectral image 

 

Figure 4.14 MLC classified map of hyperspectral image 
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Figure 4.15 Classified map of the segmented PC image  

 

4.3.3.1 Classification of Hyperspectral Image 

The classification map generated using the SAM classifier is shown in Figure 4.13. End 

member spectra used in SAM techniques come from ASCII files collected and saved 

from hyperspectral imagery (as ROI average spectra) collected during field sampling as 

training data. Training data and aerial photographs (See Figure 3.7) were used to locate 

the various features on imagery to know the locations, during field survey it was 

marked for the features using GPS and Known locations.  

Different tree species and ground features classified in the SAM were Pinus pinaster, 

Pinus pinea, Eucalyptus species, Acacia longifolia, Sandy area, shrubs and ground 

covered with grasses (See Figure 4.13). The black portion illustrated in the SAM 

classified map are unclassified pixels contributed by ground surfaces, sandy area, or 

may be gap between the canopy. These features were kept unclassified in the map; it 

was tried to reduce this pixel as much as possible by significantly collecting vegetation 

spectra from the hyperspectral imagery. 

Similarly, hyperspectral image was classified using the MLC techniques for the same 

study site area using the training and reference sites. The classification map generated 
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using the MLC techniques was shown in Figure 4.14. MLC was performed to check the 

robustness of two classifier techniques in the same study site for the same image.  

 

4.3.3.2 Classification of Segmented PC Image 

The resulting 15 PCs contain approx 99.53 % of the information content when 

combined together as gainst the 99.42% of the information content of the original 

hyperspectral image (See Table 4.2 and Table 4.3). These PCs were used to generated 

the segmented PC image that is classified using maximum likelihood classification 

Figure 4.15. Thus, the 15 PCs of the segmented PC image were uncorrelated containing 

more than 99% of the information of the original hyperspectral image. Different PC 

combinations of the segmented PC image were used for visual display using three 

bands displayed as the red, green and blue channels (RGB channels in Figure 4.12). The 

various RGB combinations of the segmented PC images provide visual distinctions 

between land cover and forest types and other features. This process enhances the 

colour contrast by providing visual clarity for image interpretation, thus helping in 

selecting the training samples used during classification. These distinctive features in 

the RGB images were not visible in different band combinations of the original 

hyperspectral images. A comparison of segmented PC image classification with SAM 

and MLC of the original hyperspectral image classification shows that the MLC of the 

segmented PCA achieves the highest accuracy, due to its ability to reduce the ‘Hughes 

Phenomenon’ (Pandey et al., 2014).  

 

The SAM classification is reliant on the spectral image characteristics which can be 

influenced by the ‘Hughes Phenomenon’ for high-dimensional data. Thus, spectral 

mixing as well as ‘Hughes Phenomenon’ may result in lesser accuracy of the classified 

features. The MLC performed on the segmented PCA bands reduces the ‘Hughes 

Phenomenon’ and thus helpful in getting better accuracy than the SAM classification. 

segmented PC image provides better and higher accuracy than the SAM and MLC of 

hyperspectral image classification. This is attributed to the reduced dimensionality in 

segmented PC image due to segmented PC approaches. 

After classification steps, the classified maps were assessed for accuracy for the three 

techniques (SAM and MLC of hyperspectral image and Segmented PC image). The 

accuracy assessments results were shown in Table 4.5 for SAM, Table 4.6 for MLC 
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maps and table 4.7 for segmented PC image as error matrix. These accuracy assessment 

were generated using the error matrix (also known as confusion matrix). The overall 

accuracy of the MLC map was 89.67% that is higher than the accuracy of SAM 

classified result of 67.5%. κappa coefficient was 0.87 for the MLC classification as 

compared to κappa coefficient of SAM classification (0.60). A discrete multivariate 

technique known as κappa coefficient was used to analyse the accuracy assessment 

(Congalton and Mead, 1983). 

4.3.3.3 Classification Accuracy Assessment   

The error matrix generated during the above SAM; MLC classification of hyperspectral 

images and segmented PC image were shown in Table 4.5, Table 4.6 and Table 4.7. 

The error matrix was calculated using the reference data used for generating error 

matrix of each feature in classified images The error matrix generated different 

accuracy parameters like user’s accuracy, producer’s accuracy, mapping accuracy and 

overall accuracy for comparison purposes of different classified images. The error 

matrix produce overall accuracies and appa statistics to test the significance of the 

difference in accuracy of classified images. 

The classification of hyperspectral image using SAM classifier produced an overall 

accuracy of 67.5 % that showed that the method is not able to well discriminate 

different species and surrounding features. The classification of hyperspectral image 

with MLC gave a better overall accuracy of 89.67% that showed better results than 

SAM, but it has some limitations in respect of discriminating some species and features. 

However, MLC of segmented PC image showed that the differentiation becomes better 

and overall accuracy is increased up to 96.38 % that was about 7% more than MLC on 

original hyperspectral image. 
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Table 4.5 Error matrix for the SAM classification 

 Reference data 

Classified 

data 

Sandy Eucalyptus Ground 

with 

grass 

Pinus 

pinea 

Pinus 

pinaster 

Acacia 

longifolia 

Shrubs Row Total 

         

Unclassified 6 0 6 3 12 2 0 29 

Sandy 216 0 0 0 0 0 0 216 

Eucalyptus 0 354 60 12 150 36 0 612 

Ground 

with grass 

24 12 294 0 100 0 0 430 

Pinus pinea 0 30 0 338 0 0 18 386 

Pinus 

pinaster 

0 114 50 6 282 32 0 484 

Acacia 

longifolia 

0 42 18 49 68 155 6 338 

Shrubs 0 0 10 18 0 0 198 226 

Column 

Total 

246 552 438 426 612 225 222 2721 

         

PA 87.80 64.13 67.12 79.34 46.08 68.89 89.19  

UA 100.00 57.84 67.43 87.56 58.26 45.86 87.61  

Average PA 71.79        

Average 

UA 

72.22        
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Table 4.6 Error matrix for the MLC classification  

 Reference data 

Classified 

data 

Sand Eucalyptus Ground 

with 

grass 

Pinus 

pinea 

Pinus 

pinaster 

Acacia 

longifolia 

Shrubs Row 

Total 

         

Unclassified 0 2 1 0 5 2 4 14 

Sand 234 0 0 0 0 0 1 235 

Eucalyptus 0 502 6 17 2 3 0 530 

Ground with 

grass 

12 7 407 0 27 0 0 453 

Pinus pinea 0 6 18 360 26 22 19 451 

Pinus pinaster 0 35 0 45 547 0 6 633 

Acacia 

longifolia 

0 0 0 4 5 198 0 207 

Shrubs 0 0 6 0 0 0 192 198 

Column Total 246 552 438 426 612 225 222 2721 

         

PA 95.12 90.94 92.92 84.51 89.38 88.00 86.49  

UA 99.57 94.72 89.85 79.82 86.41 95.65 96.97  

Average PA 89.62        

Average UA 91.86        
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Table 4.7 Error matrix for Segmented PC image classification 

 Reference data 

Classified 

data 

Sand Eucalyptus Ground 

with 

grass 

Pinus 

pinea 

Pinus 

pinaster 

Acacia 

longifolia 

Shrubs Row 

Total 

         

Unclassified 0 1 1 0 1 1 0 4 

Sand 234 0 0 0 0 0 0 235 

Eucalyptus 0 521 0 0 15 11 6 553 

Ground with 

grass 

11 0 431 0 0 0 0 442 

Pinus pinea 0 17 0 420 0 0 0 437 

Pinus 

pinaster 

0 13 0 0 587 0 0 600 

Acacia 

longifolia 

0 0 0 6 9 213 0 228 

Shrubs 0 0 6 0 0 0 216 222 

Column 

Total 

246 552 438 426 612 72 222 2721 

         

PA 95.53 94.38 98.40 98.59 95.92 94.67 97.30  

UA 100.00 94.21 97.29 96.11 97.83 93.42 97.30  

Average PA 96.40        

Average UA 96.63        
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Table 4.8 Improvement in terms of increase or decrease in the accuracy of Three classifications – SAM, MLC and MLC of segmented PC image 

 Producer statistics Changes (improvement or decline) User statistics Changes (improvement or decline) 

Species SAM MLC 

Hyperspectral 

image 

MLC 

Segmented 

PC image 

Changes 

from 

SAM to 

MLC 

Changes 

from 

SAM to 

MLC 

segmented 

PC image 

Changes 

from 

MLC to 

MLC 

segmented 

PC image` 

SAM MLC 

Hyperspectral 

image 

MLC 

Segmented 

PC image 

Changes 

from 

SAM to 

MLC 

Changes 

from 

SAM to 

MLC 

segmented 

PC image 

Changes 

from 

MLC to 

MLC 

segmented 

PC image` 

Sand 87.8 95.12 95.53 -7.32 -7.73 -0.41 100 99.57 100 0.43 0 -0.43 

Eucalyptus 64.13 90.94 94.38 -26.81 -30.25 -3.44 57.84 94.72 94.21 -36.88 -36.37 0.51 

Ground 

with grass 67.12 92.92 98.4 -25.8 -31.28 -5.48 67.43 89.85 97.29 -22.42 -29.86 -7.44 

Pinus 

pinea 79.34 84.51 98.59 -5.17 -19.25 -14.08 87.56 79.82 96.11 7.74 -8.55 -16.29 

Pinus 

pinaster 46.08 89.38 95.92 -43.3 -49.84 -6.54 58.26 86.41 97.83 -28.15 -39.57 -11.42 

Acacia 

Longifolia 68.89 88 94.67 -19.11 -25.78 -6.67 45.86 95.65 93.42 -49.79 -47.56 2.23 

Shrubs 89.19 86.49 97.3 2.7 -8.11 -10.81 87.61 96.97 97.3 -9.36 -9.69 -0.33 
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Average PA and average UA for SAM is 71.79% and 72.22%, whereas average PA and 

UA is 89.62% and 91.86% for MLC of hyperspectral image. The average PA and UA 

for the segmented PC image is 96.40 % and 96.63%. The overall accuracy for the SAM, 

MLC and segmented PC classified image were compared to each other to assess the 

performance of each classifier. To better understand the user accuracy and producer’s 

accuracy, an example has been taken from one the classified feature classes. MLC 

classifier algorithm correctly classified 89.38 % Pinus pinaster pixels (in reference 

data) as the Pinus pinaster whereas for user needs about 86.41 % of the pixels classified 

as Pinus pinaster pixels are indeed Pinus species by MLC classifier (see Table 4.6). 

This is based on the individual producer and user’s accuracy of the error matrix. Table 

4.8 demonstrate the assessment of the user and producers statistics for improvement or 

decline from one classification steps to another, such as SAM to MLC hyperspectral, 

SAM to MLC segmented PC image, and MLC hyperspectral to MLC segmented PC 

image. There is little change in the sandy region and shrubs in the producer statistics 

and large improvement in Eucalyptus, ground with grasses and Acacia species, and 

small increase in shrubs. While, there is no significant improvement in the sandy region 

using the user statistics. The improvements are found in the Pinus pinea, Acacia 

longifolia, shrubs, and Eucalyptus species.  

 

The overall accuracy of the SAM classification is 67.5% and appa coefficient is 0.60 

whereas the overall accuracy of the MLC map is 89.67% and appa coefficient was 

found to be 0.87.  The results achieved by segmented PC classified image is higher than 

the other classified results. Overall accuracy for the segmented PC image is 96.38% and 

appa coefficient is 0.95 (See Table 4.5, Table 4.6 and Table 4.7). Moreover from these 

results it is found that segmented PC image have higher appa value than other 

classified results. Thus, higher appa value of segmented PC classified results among 

all shows the advantage of segmentation techniques and use of appropriate classifier in 

enhancing the accuracy rate of classified image. The segmented PC image also provide 

better enhanced visualization as compared to the hyperspectral image, as it provide 

more information in 3 PCs (Refer to Figure 4.12) . The user’s accuracy and producer’s 

accuracy of Pinus pinea, Pinus pinaster, Acacia longifolia, Eucalyptus and shrubs for 

all three classified images were shown in Table 4.5, Table 4.6 and Table 4.7. 



 

120 
 

Thus, it was demonstrated, through classified and accuracy results that the segmented 

PC image achieved higher accuracy for overall as well as some of the individual 

features. These results give a good overlook on the performance of the classifiers and 

the segmented PC approach being used in this Chapter. As segmented PC classification 

has provided high overall accuracy when compared to the individual image 

classification. The following chapter will present the overview regarding the integration 

of hyperspectral Eagle images and LiDAR derived CHM and classification of the 

resultant image. It was consequently shown, both qualitatively and quantitatively that 

the abundant tree species and surrounding ground features can be classified and 

distinguished. 

 

4.4 Conclusion 

The present study reveals that the Segmented PCA approach is a useful technique for 

hyperspectral image classification while reducing ‘Hughes Phenomenon’. ‘Hughes 

Phenomenon’ is mostly described as a curse to hyperspectral classification. The 

classification accuracy increases with Segmented PC image as compared to when entire 

hyperspectral images are used. Before Segmented PC image classification, we separated 

hyperspectral data into five segments, and PCA- based transformations are applied to 

each segment. Among all the obtained PCA bands in each segmented hyperspectral 

image, the first three PCs bands contain maximum information contained in the each 

segmented hyperspectral image. After the first 3 PC bands, virtually all remaining PCs 

bands contain only noises. PC application performed on the hyperspectral segments 

results into respective PCs of each segments. The first three PCs contain most of the 

information about the feature sharpness, delineation and identifiable from the images. 

The number of PC selection such as three PC comes from the cumulative percentage of 

Eigenvalue associated with them (refer to Table 4.1, Table 4.2 and 4.3). After 

application of PC analysis on each segments, the cumulative percentage of Eigenvalues 

were calculated (shown in Table 4.2 and 4.3). Results indicate that first PCs together 

retained more than 99 percent of the information of the image for the identification of 

different features (See Figure 4.12). The first segment provides information about the 

chlorophyll contents of the tree and grasses while other segment provides information 

for the intercellular space, and water content of the tree species. 3 PCs from each 

segment were brought at the same platform and integrated to form Segmented PC 
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image containing 15 best PCs from five different segments of hyperspectral images. 

Thus, the use of the Segmented PCA approach reduces the ‘Hughes Phenomenon’ for 

hyperspectral image classification; and proved beneficial and productive. It 

considerably decreases the amount of data to be handled and achieves practically 

acceptable and accurate classification results with a maximum likelihood classifier. 

This result is comparable with those obtained using the hyperspectral image data using 

SAM and standard MLC. The accuracy of the classification of the hyperspectral image 

and segmented PC images is assessed using the error matrix analysis with reference 

data and classified data. The classification from two datasets i.e. hyperspectral image 

and segmented PC image are compared to estimate whether the additional segmentation 

of the hyperspectral images contributed significantly to the classification accuracy or 

not.   

Tree species classification from hyperspectral imagery is of limited accuracy if the data 

dimensionality is not reduced, because the ‘Hughes phenomenon’ leads to a loss of 

accuracy if too many bands are added. This study explores the classification accuracy 

achievable from hyperspectral data using the segmented PCA approach. It compares 

this approach to the SAM and MLC methods of the original hyperspectral data. The 

classification accuracy and κ coefficient are much higher for the segmented PCA 

(>96%; κ=0.95) than for the other methods when validated with ground control points. 

The conclusions from this study are: 

 Segmented PCA based on data normalization using histogram attributes reduces the 

dimensionality of the hyperspectral imagery while increasing the classification 

accuracy. 

 The MLC of the segmented PCA produces much more accurate tree species maps 

than the MLC and SAM classifiers. 

 15 bands of the first 3 PCs of the 5 segments from the full hyperspectral dataset 

contained >99% of the original spectral variance. 

 Compression techniques like segmented PCA to reduce the hyperspectral image 

dimensionality lead to much improved information content by reducing redundancy 

of very similar spectral bands. 

Some authors have shown conventional parametric classification approaches as good 

classifier. Le Cussan (1991) demonstrated that SAM classification of CASI resulted in 

60.8% accuracy due to confusion between the sand dunes and Bruguiera species stands. 



 

122 
 

Author argued about the relatively low accuracy with SAM is due to insensitivity to 

differences in relative brightness between pixels and the spectral library. But the same 

area when mapped and classified using the MLC and data integration methods results in 

the higher accuracy  (Held et al., 2003) as compared to the previous studies (Le Cussan, 

1991). Held et al. (2003) provided the better and improved results with the MLC 

algorithm and combined datasets for CASI and NASA AIRSAR images with higher 

accuracy as compared to SAM.   

It has been previously demonstrated that MLC as being limited in their ability to 

classify high dimensionality data (Benediktsson et al., 1990, Jones et al., 2010). 

Although this makes MLC unsuitable for raw hyperspectral data, this study shows that 

MLC can be used after reducing the dimensions of the hyperspectral imagery. 

Moreover, MLC proves to be superior to SAM single endmember as it generates higher 

overall accuracy results than using SAM with multiple endmember (Yang et al. 2012).  

The segmented PCA method enhances the contrast of the imagery and provides better 

visual clarity for image interpretation, thus helping in selecting the training samples 

used during MLC. Thus, it provides better training samples and better accuracy 

(Baatuuwie and Van Leeuwen, 2011, Hunter and Power, 2002, Shafri et al., 2007). 

MLC was chosen in the present study as a classifier after reducing the dimensionality of 

the hyperspectral data using the segmented PCA approach as seen from Table 4.2 and 

Table 4.3.  

Finally, the segmented PCA approach used in the present study will be helpful for 

hyperspectral analysis by reducing the multidimensional data to smaller dimensionality 

for image processing while retaining most of the information. This image compression 

technique can be used with other classification algorithms to achieve accurate tree 

species identification results by reducing data dimensionality and data volume. This 

classification approach can be used for other applications like urban mapping, land 

cover mapping, plant stress detection due to its visual enhancement, fire scar mapping 

etc.  

This is also demonstrated by Cho et al. (2010) that conventional SAM produces lower 

accuracy results as compared to the multiple endmember use for SAM approaches, 

which increases the producer’s and user’s accuracies. The range of classification 

accuracy varies from 44.5% to 64.1% (using all spectral bands), 39.9%-62.3% (known 

chemical and physical spectral features) and 47.5%-65.1% (selected band of the 

hyperspectral image). The authors obtained high producer’s accuracy and user’s 
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accuracy with SAM classifier using multiple end members approach generated higher 

overall accuracy classification outcomes (54.5%± 3.2 CI) as compared to mean spectra 

training sets with SAM classifier (20.5% ± 0.94 CI). The outcomes inferred that best 

band selection method also results in an overall accuracy of 64.1% (mean overall 

accuracy= 54.5%) for the multiple endmember SAM classifier approach. Thus, they 

showed that the SAM classification accuracy results varies from 44.5%-65.1%, 

depending upon the end member selection and band selection approaches. 

The two classifier techniques, i.e. SAM and MLC were used in the present study for 

classification of HSI, segmented PC image and PC fusion image (refer to Chapter 5). 

The original reflectance image produced slightly better classification results in case of 

MLC technique. It has produced an overall accuracy result of 89.67 % as compared to 

SAM classifier (67.5%). The use of appropriate method like a segmented PC technique 

has increased the classification accuracy of the images up to 96.38 % as compared to 

original reflectance images. Thus, MLC outperforms the SAM when it has been used 

with segmented PC images than original reflectance image and reported better accuracy 

with segmented PC approaches used in the study. The results of this study, therefore, 

reiterate the fact that the segmentation PC approach and use of appropriate classifier for 

mapping and classification will be more suitable and can be effectively used in other 

research areas such as urban tree mapping, plant stress detection due to its enhanced 

visual capability and higher accuracy results.  

4.5 Summary of Chapter 

This chapter described the classification of segmented PC images and hyperspectral 

images using two different classifier methods namely SAM and MLC based on 

supervised classification. The overall accuracy, producer’s accuracy and user’s 

accuracy of these two methods were assessed using reference data and classified 

datasets. The classification of the segmented PC image using MLC classifier performed 

significantly better (>96%; κ=0.95) than the SAM and MLC methods used for 

performing classification on hyperspectral image (>67%; κ=0.60 and >89%; κ=0.87 

respectively). Tree species classification from hyperspectral imagery is of limited 

accuracy if the data dimensionality is not reduced because the ‘Hughes Phenomenon’ 

leads to a loss of accuracy if too many bands are added. This study explores the 

classification accuracy achievable with hyperspectral data using the segmented PCA 

approach. It compares this approach to the SAM and MLC methods. The classification 
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accuracy and κ coefficient are much higher for the segmented PCA than for the other 

methods (>96%; κ=0. 95) when validated with the ground control points.  

The next chapter 5 describes the process of image fusion of hyperspectral images and 

Canopy height derived from LiDAR data from the same study area. It represents the 

comparison of the field recorded height and LiDAR derived height using a scatter plot 

for different tree species. The fused image is classified using Maximum Likelihood 

Classifier based on supervised classification. Finally, the accuracy of the classified 

fused image is compared with the classification results performed in this section.  
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Chapter 5. Fusion of HSI and LiDAR Data  

  

5.1 Introduction  

This chapter mainly addresses the second important objective about image fusion. This 

chapter focuses on the integration of the Eagle hyperspectral image and LiDAR derived 

CHM using PCA techniques. The hyperspectral and LiDAR fused image is classified, 

and its importance in term of integration is discussed in the research. This chapter also 

provides a comparison of predicted canopy height (CHM) with the measured canopy 

height (field). Thereafter, this chapter provides a detailed step of integration methods of 

hyperspectral and CHM using PCA forward -inverse techniques. The accuracy of the 

classified fused image is assessed using the error matrix analysis with reference data 

and classified data using the same methods as in Chapter 4. The fused image is assessed 

and analysed for its spectrum whether it can delineate different tree species, shrubs, and 

grasses with non-vegetated regions or not. The spectrum of the fused image is 

compared with each different tree species and its associated habitat features namely 

sandy area, ground covered with grasses. It is analysed whether the incorporation of 

height attributes from LiDAR data contribute significantly to the accuracy of the 

classification than hyperspectral image. Thus, this chapter mainly illustrates the 

robustness of the image fusion approach.  

5.1.1 Problems and Solutions  

Recognition of different surface features from hyperspectral data can pose problems 

because of the high data dimensionality (Liu et al., 2011). Reflectance from vegetation 

depends on the absorption that is related to wavelength-specific biophysical properties 

like chlorophyll content, leaf water content and cellular spaces (Blackburn, 2007). 

Hyperspectral imaging systems have been used for successful discrimination of surface 

features and vegetation types. These properties demonstrate their usefulness in forestry, 

hydrology, and geology (Richards and Jia, 1999). Despite the richness of spectral 

information available in HSI datasets, interpretation of these data are still very 

challenging. Sometimes it can be difficult to identify ground features using single data 

acquisitions with fine spectral and spatial resolution (Price, 1994). These problems are 

caused by high correlation and the high data dimensionality, also known as the 'Hughes 

phenomenon' (Hughes, 1968). The classification of tree species and other features 

should have a unique spectral signature that is an assumption made by researchers 
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(Ghiyamat et al., 2013, Jensen, 2000, Lillesand et al., 2004).  Ghiyamat et al. (2013) 

found a problem associated with this assumption, that there are certain conditions when 

species show spectral disparity within-species that is sometimes variable may lead to 

failure of a unique spectral identifier per species.  To come out of these problems, data 

redundancy and hyperspectral indices are used further to perform the classification. 

Several studies have shown the use of hyperspectral indices for vegetation feature 

identification and species classification (Cho et al., 2008). These previous studies 

highlight the fact that spectral mixing creates difficulties for analyzing hyperspectral 

images for species discrimination in mixed-species sites such as inland coastal habitats. 

Although the high data quality of hyperspectral images can provide information on the 

spectral absorption features of vegetation, it is often not possible to classify individual 

tree species using HSI remote sensing techniques alone (Price, 1994).  This is caused by 

several species having similar reflectance spectra, which cannot be distinguished using 

only hyperspectral images (Liu et al., 2011). A single sensor type alone is often 

incapable of providing reliable image classifications (Fauvel et al., 2008). Moreover, 

the integration of additional details like structural information or biochemical properties 

can enhance species level mapping and classification (Ustin and Gamon, 2010). Despite 

several advantages of hyperspectral imaging, classification of the full spectral channels 

provides a lower accuracy for tree species classification and mapping using SAM and 

other algorithms (Buddenbaum et al., 2005, Möckel et al., 2014, Peña et al., 2013, 

Pandey et al., 2014, Shafri et al., 2007). Only when combined with additional structural 

information such as canopy height or canopy volume, HSI can enhance the quality of 

mapping and classification accuracy (Dalponte et al., 2008, Erdody and Moskal, 2010, 

Sarrazin et al., 2010, Tonolli et al., 2011). Although it was proved earlier, that LiDAR 

derived tree height information influences the tree species classification (Ghosh et al., 

2014). 

The term ‘data fusion’ describes the integration of diverse datasets, here hyperspectral 

and LiDAR data, into a new enhanced dataset (see Chapter 2). In the early phase of data 

fusion research, optical multispectral data were fused together with resolution merging 

techniques. In these previous studies, low-resolution multispectral images were merged 

with high-resolution panchromatic images to enhance the spatial resolution of the 

coarse-scale bands while maintaining the high spectral resolution. Several techniques 

have been used for the fusion of spectral and structural parameters. together: at the 

sensor level, pixel level, feature level and decision level as discussed in Chapter 2 (Pohl 
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and van Genderen, 1998). These different techniques were applied in many studies to 

achieve better results than individual datasets would allow. HSI and LiDAR data are 

currently emerging as the most promising remote sensing technologies for data fusion 

for forestry applications. This study aimed to evaluate the synergistic use of HSI and 

Lidar data using a data fusion approach for the classification of a Mediterranean forest 

site and assessment of any improvements in comparison with a classification of only the 

hyperspectral imagery.These data fusion methods are characterized by the stage at 

which both datasets are integrated to each other for analysis. 

Data fusion can follow different approaches, including multi-sensor data fusion and 

multi-temporal data fusion either at pixel level or feature level (Gamba and Chanussot, 

2008, Gilmore et al., 2008). Several recent studies have integrated different datasets to 

improve the classification accuracy. Studies on HSI and LiDAR data fusion have used 

combined supervised and unsupervised classification approaches and these techniques 

enhance the classification accuracy (Debes et al., 2014). A fusion of HSI and a LiDAR-

derived DSM and classification were performed using openness and physical properties 

of the features by Yokova et al (Yokoya et al., 2014). Data fusion techniques have been 

applied to enhance spectral imagery, to increase its spectral resolution, to fill in missing 

values, etc. The detailed use depends on the user needs, type of data and purpose of the 

study. Previous studies have shown the usefulness of adding LiDAR-derived CHM data 

to spectral reflectance channels (Dalponte et al., 2008, Puttonen et al., 2010). 

Asner et al. (2008) worked on airborne imaging spectroscopy and LiDAR for invasive 

species detection in Hawaiian rainforests. They reported that hyperspectral signatures 

are uniques for trees but mapping based on spectral reflectance properties alone is 

confounded by several issues such as canopy senescence, mortality, intra and inter 

canopy gaps, shadowing and terrain variability. Asner et al. (2008) used a combination 

of the carnegie airborne observatory (CAO) and small footprints LiDAR system with 

AVIRIS data to map structural properties of invasaive species. The present study differs 

from the above in term of the use of airborne hyperspecetral Eagle and Hawk data, the 

use of spectral segmented techqniques and the incorporation of CHM with spectral 

properties in the Mediterranean forest. Moreover, they have used in flight data 

integration while pixel based integration is performed in the present study. The selected 

study site was Hawaiian rainforest but this study was performed in the Mediterranean 

forest, Portugal. 
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5.1.2 Need of Additional Information 

The segmented PC approach and classification techniques described in chapter 4 

involve the use of AISA hyperspectral image only. This chapter will mainly deal with 

image fusion of hyperspectral image and LiDAR derived CHM conveying more reliable 

classification results. As seen from the discussion in Chapter 2, hyperspectral imaging 

and LiDAR are the two promising and essential remote sensing technology for species 

mapping and classification. However, hyperspectral images are limited to horizontal 

plane and perform its analysis in 2-dimensional ways. This limitation of HSI provides 

limited insight pertaining to the structural parameters of the forests (tree heights). The 

incorporation of CHM using fusion techniques can enhance and remove this limitation, 

adding some advantages to classification results. 

Ghosh et al. (2014) demonstrated the use of four essential elements required for 

classification of the tree species, they are spatial resolution, spectral resolution, input 

predictors, classifiers and forest characteristics. Out of these, the AISA hyperspectral 

images are very high in spectral and spatial resolution with more than 243 spectral 

bands and 2 m spatial resolution. A high spatial and spectral resolution of AISA 

hyperspectral images provide a better platform for carrying out the research. 

Considering the use of Input predictors, PCA method is included that allow the 

reduction of inputs bands from the original number to best PCs during the processing. 

The use of this type of input predictor helps in reducing data redundancy as well as 

strong correlation between bands. The classifier techniques chosen are SAM and MLC 

that are considered good for classification, when data redundancy is reduced to 

eliminate its effect on classification results. However, forest structural parameters are 

crucial and still found its place in the classification of tree species. LiDAR derived tree 

height information influences the tree species classification (Ghosh et al., 2014), that it 

helps an understanding to use structural parameters for classification using fusion 

approach performed in this study.  

Many studies have revealed better results to achieve with fused or integrated data sets 

rather than single data source (Pang et al., 2009, Moghaddam et al., 2002, Treuhaft et 

al., 2003 & 2004, Banskota et al., 2009, Straub et al., 2009, Dees et al., 2006, Maltamo 

et al., 2006). These better results are only due to the information content on the types of 

the data being used in the work. Due to this high potential, data integration techniques 

are useful and successfully taken into many applications like forestry, coastal region, 
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oceanology, geological exploration, lithological mapping, forest fire, volcanoes, 

estuaries, civil engineering, ecosystem monitoring etc. The fused data contains detailed 

information from both individual data set acquired with different spatial and spectral 

resolutions.  

Data redundancy, presence of noises, a large variance among dataset makes a rigorous 

process and different application in hyperspectral images. Using the spectral properties 

only, it is quite difficult to obtain good results with hyperspectral images for 

classification or distinguishing different features. Thus, classification is enhanced with 

the addition of structural height with spectral properties using LiDAR data. This would 

depend on the attribute of both the data sets like spectral attributes of hyperspectral 

image and height attribute from LiDAR data sets. The data used in the present study are 

AISA Eagle image and the airborne LiDAR discrete returns systems.   
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Figure 5.1 Detailed method of the image fusion technique and classification 
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5.2 Materials and Methodology of Remote Sensing Used in the Study 

The data used in the study includes airborne Eagle hyperspectral image and airborne 

LiDAR data (discussed in Chapter 3). The conceptual framework of the research 

followed main steps: geometric correction, atmospheric correction, image 

transformation (PCA image fusion) and classification. LiDAR processing includes the 

generation of the CHM. The fused image is classified and interpretation of the result is 

discussed. The methodology adopted in this chapter is illustrated in the flowchart as 

represented in Figure 5.1. First of all, it includes the processing of the raw hyperspectral 

data to generate the seamless hyperspectral data ready for further processing and 

application of different techniques (already discussed in Chapter 3, hyperspectral 

section) to achieve the objectives of the study. Secondly, the LiDAR data was 

processed to generate the CHM  used during the integration with hyperspectral images 

(for data pre processing-refer Chapter 3- LiDAR section).  

5.2.1 Hyperspectral Image- Eagle Data processing 

In brief, as discussed in chapter 3, various applications and extensions of different 

software were used to process the data. The NERC-ARSF apl software suite, Arc GIS 

and ENVI © image processing package were used as the major pre-processing and 

analysis tools in the present research. Apl software suite were used to pre-process the 

raw hyperspectral data sets to level 3b seamless images. ENVI spectral FLAASH 

function was used to perform atmospheric corrections on the hyperspectral images 

ENVI hyperspectral image analysis functions were used to mosaic, stack data sets and 

to perform PCA on hyperspectral images. 

5.2.2 LiDAR Derived CHM 

Arc GIS® 10.2 version were used to separate LiDAR first and last returns. ArcGIS 

applications were used to generate DSM from the first return and DTM from the last 

return (see chapter 3). CHM was generated using the math tool of ArcGIS by 

subtracting DTM from DSM as shown in Figure 5.2 (ESRI White Paper, 2011). 

Different extensions required for the processing of the LiDAR data in Arc GIS® were 

3D analyst and spatial analyst. 
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Figure 5.2 CHM generated from the decomposition of DSM and DTM (using the minus 

tool of ArcGIS) 

 

 

Figure 5.3. Flowchart showing PCA data integration technique outline generating PC 

fusion image, where PC1 is replaced with rCHM  (refer to Equation 5.1 and Figure 5.1). 
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5.2.3 PC Image Fusion Technique Method 

The aim of the objective is to merge the spectral information of HSI with the height 

information of the LiDAR derived CHM. Thus, this PC fusion technique is employed to 

retain the spectral information and generates the final PC fused image with the addition 

of the height information from the LiDAR derived CHM. Data integration may either 

be through the integration of raster formats or vector formats. The raster formats fusion 

were performed over PCA at a pixel level ( or MNF based functions) whereas vector 

based integration involve overlay operations in ArcGIS environment. The PCA image 

fusion technique is a raster based methods to integrate the spectral content with the 

height information. The ENVI software is used to perform the fusion step during the 

study. Detailed description of PC fusion technique can be understood with the flowchart 

provided in Figure 5.3.  

PCA techniques were discussed in Chapter 4, as PCA fusion approach utilises PCA 

method it is mentioned here. The major assumption behind using this technique is the 

properties related to scene luminance of the hyperspectral data (Welch and Ehlers, 

1987). The primary aim of the fusion method is to retain the spectral information of all 

bands of the hyperspectral data. Therefore this assumption is considered: First of all, 

PC-1 contains only overall scene luminance of the data and all inter-band variation is 

contained in rest of the PCs, and secondly scene luminance in the SWIR regions are 

identical to Visible band scene luminance. The assumption that PC1 contains only 

scene luminance and whereas all information is stored in other PCs, is used to integrate 

HSI with CHM. Moreover, scene luminance matches with the SWIR scene luminance, 

so PC1 is replaced by rescaled CHM during integration. Thereafter, reverse PCA is 

performed to obtain fused image with both data quality. These all steps are considered 

while performing the fusion so that the mathematics of the reverse PC (Inverse PC 

transform) do not distort the thematic information of the image. 

The equation used to re-scale the CHM to PC1 is based on a minimum and maximum 

values of the PC1 and matching the value of CHM to PC1 using the statistics of PC1. 

The rescaling equation is performed using the Band math tool ENVI is given below:  

𝑅𝑒𝑠𝑐𝑎𝑙𝑖𝑛𝑔 =
𝐶𝐻𝑀 −𝐶𝐻𝑀𝑀𝑖𝑛

𝐶𝐻𝑀𝑚𝑎𝑥−𝐶𝐻𝑀𝑚𝑖𝑛 
∗ (𝑃𝐶1𝑚𝑎𝑥 + 𝑃𝐶1𝑚𝑖𝑛) − 𝑃𝐶1𝑀𝑖𝑛  Equation 5.1 

Whereas, CHM = Canopy Height Model, CHM min = the minimum value of the CHM,   

CHM max= the maximum value of the CHM, PC1 max = the maximum value of the PC1, 
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and PC1 min  = the minimum value of the PC1.   

After processing of hyperspectral image and LiDAR data, PC image fusion step was 

applied. The corresponding subset of the study area for Eagle hyperspectral image and 

the corresponding subset of the CHM were generated, and fusion process of PCA is 

employed on hyperspectral image. The PC images produced were incorporated with 

CHM replacing the PC1 and again inverse PC technique was applied using the statistic 

files of the hyperspectral images. The inverse PC technique generated an image 

containing the same number of original the hyperspectral images. This integrated image 

contains the attributes of the CHM along with the spectral information of the image. 

This integrated image is capable of providing the spectral profile of the ground features 

and tree species.  

With the above hypothesis, the PC techniques have been used on the hyperspectral data, 

forward PC transformation yields PCs bands, and statistic files were generated too. The 

numerical range of the PC1 was determined from the statistics file. The numerical range 

considered is min and max of the histogram of the PC1. Thereafter, CHM was rescaled 

to match the same numerical range as of PC1 and rescaled CHM was generated (see 

Equation 5.1). PC1 was removed from the PC images, and the order of PC images was 

like PC2, PC3, PC4 and so on (PCn). Now this rescaled CHM was integrated into the 

PC images replacing the position of PC1 from the PC images and arranged in the same 

order as PC images were before replacing PC1 like CHM, PC2, PC3, PC4 and so on. 

Now, these organized PC image was applied with reverse PC rotation using the same 

statistics generated during forward PC rotation technique. This overall process using 

hyperspectral image and CHM using forward and inverse PC rotation generate fusion 

image containing both spectral and structural properties of hyperspectral image and 

LiDAR data at the same platform. In parallel to this CHM derived tree heights were 

compared with the field recorded tree heights using regression model. The tree heights 

were compared for each species and their coefficient of determination was calculated 

and results were presented. 
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5.3 Results and Discussion  

The result part discusses the comparison of the field-recorded tree and LiDAR derived 

canopy heights. Thereafter, this section focuses on the fused image, how it is important 

for different ground features and classification results. A significant difference in the 

accuracies of the classification of species and different ground features are due to mixed 

behaviour of the spectrum (acquired from grasses, vegetation, non-vegetated ground 

and height attribute) preventing spectral difference from surroundings.  

5.3.1 Height Comparison- LiDAR derived and Field Recorded 

As discussed in Chapter 3, DSM and DTM were generated from the airborne LiDAR 

data. These DSM and DTM outputs were used to produce the desired CHM for the 

study purpose (see Figure 5.2). Thereafter, height of the different tree species were 

extracted using the point extract feature tool of ArcGIS 10. Then, the extracted height 

values were compared with the tree height recorded in the field using Abney level. Both 

the measured and predicted tree heights were used in regression modelling, and they 

were used to get some information regarding canopy occupancy among all tree species.  

From CHM, it is quite easy to derive the heights of different tree species. The data 

illustrated in Table 5.1 and Table 5.2 represent the mean canopy heights of different 

tree species, the difference in average canopy heights per-species of maximum and 

minimum ranges. According to LiDAR derived canopy height, the height range 

occupied by Pine species were distinct and overlapping with the same group of genus 

(pinaster and pinea) ranging from  5.96 m to 12.88 m (± ≤ 1.90 m) for Pinus pinaster 

and 4.09 m to 12.17 m (± ≤ 2.08 m) for Pinus pinea. Eucalyptus species show canopy 

height range of 10.24 m to 19.15 m (± ≤ 3.25 m), occupying a relatively unique height 

range in the study area. Within all species, Eucalyptus species had an average canopy 

height of 14.17 m occupying the highest strata among all species in the region (See 

Figure 5.4). Average canopy height for all other species like Acacia exhibit overlap and 

ranged from 2.23 m to 3.43 m (Acacia species SD ± ≤ 0.39m).  

While field recoded height of the Pinus pinaster ranged from 6.5 m to 13.5 m (± ≤ 1.95 

m) and ranged from 3.5 m to 10.25 m (± ≤ 2.07 m) for Pinus pinea. Pinus pinea has 

similar SD in both cases. Eucalyptus globulus has an average field height of 14.97 m 

while it ranges from 10 m to 21m (± ≤ 4.03 m). A slight variation in the height may be 

attributed by temporal data collection (Chapter 3), as LiDAR data was collected in 2011 
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and field survey was done in September 2012.  

A regression model was used to compare the field measured tree heights (estimated 

heights) and LiDAR derived CHM (predicted tree heights) (coefficient of determination 

R
2
= 0.9616, r =0.9806) as shown in Figure 5.4. Figure 5.4 illustrates a scatter plot of the 

LiDAR derived tree heights values versus field-measured tree heights values. In situ 

recorded tree height with the LiDAR derived tree heights were compared directly to 

each field point location. As seen from Figure 5.4, this comparison resulted in a 

correlation coefficient of r =0.9806. Figure 5.5 represent the plot of residual versus 

fitted values where residuals are distributed equally around their median value. 

Although, there is a temporal difference in both the data acquisition and collection, but 

it shows a strong correlation which is significant at 99% confidence as it is greater than 

0.8 values (Davis, 1986). The values of R
2
 is 0.9616 that means 95% of total variation 

of LiDAR derived tree heights can be explained by a linear relationship between in-situ 

field measurement and LiDAR derived heights. Figure 5.4 represents the residuals of 

the LiDAR derived tree heights after subtracting the Abney level derived tree height for 

each plot. In Figure 5.4, the dotted line represents a 1: 1 correspondence while the solid 

line is a best-fit linear regression to the data.  It has been calculated that there is an 

average difference of 0.21 m between field measured height and LiDAR derived tree 

heights that account for 2.51% of average height of all tree species. The comparison of 

field height and CHM derived height of different tree species was performed using 

quartiles methods as shown in Figure 5.6. A box-and-whisker plot displays the mean, 

quartiles, minimum and maximum height observations for a LiDAR heights and field 

heights. The horizontal line in the box interior represents the median height, and marker 

represents the average canopy height of tree species, in both the LiDAR and field 

measured values.  

It has been demonstrated by the research in that temporal difference causes some 

variation in the measurement of LiDAR and Field survey data (Streutker and Glenn, 

2006). Authors assessed on the difference of height found while performing research on 

the LiDAR derived heights and field measure height and inferred that there is some 

difference in height if samples were collected over time.  In most of the cases, CHM 

height was found to be lower than field recorded measurements. Seeing the above 

results, it can be assumed that the temporal difference of the data acquisition (both 

LiDAR and Field data) may have a certain extent of influence. It might be either due to 
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some growth in the regions, specially Acacia species grows very fast and spread 

rapidly. This may be the one possible reason that contributes to the results of the 

comparison in case, but it would have caused a minor impact in the present study. 

 

Table 5.1 The tree height statistics generated from CHM 

 Pinus pinaster Pinus pinea Acacia 

longifolia 

Eucalyptus 

globulus 

Mean average 

height 

11.30 7.43 2.69 14.17 

SD 1.90 2.081 0.39 3.25 

Max Value 12.88 12.17 3.43 19.15 

Min Value 5.96 4.09 2.23 10.24 

Range 6.92 8.08 1.2 8.91 

n 15 17 13 15 

 

Table 5.2 The tree heights statistics recorded in field survey 

 Pinus pinaster Pinus pinea Acacia 

longifolia 

Eucalyptus 

globulus 

Mean Average  

height 

11.37 7.28 3.21 14.97 

SD 1.95 2.07 1.06 4.03 

Max Value 13.5 10.25 5.5 21 

Min Value 6.5 3.5 2.25 10 

Range 7 6.75 3.25 11 

n 15 17 13 15 
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Figure 5.4 The correlation coefficient between LiDAR derived tree heights and field 

measured tree heights where, the solid line is intercept line and represents a best-fit 

linear regression to field and LiDAR derived heights, while the dotted line represents a 

1:1 correspondence. 

 

Figure 5.5  Residual plot of the LiDAR derived CHM over the field plot locations after 

subtraction of the field measurements of tree height with an Abney level. Residual plot 

the LiDAR derived tree heights against field measurement height values  
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Figure 5.6 Comparison of (a) Field height and (b) CHM LiDAR derived Height of 

different tree species using Whisker box plot graph with maximum and minimum 

heights, Boxes encompasses the 25% quartile and 75% quartiles, and the solid middle 

line represents the median of all the field height and LiDAR derived heights. The red 

markers represent the average height of the tree species.  
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Taking data, field recorded tree heights and LiDAR derived tree heights, a regression 

model is performed. The linear regression model demonstrates that LiDAR derived 

heights are found to be approximately less than the field recorded tree heights (see 

Figure 5.6). Tree height estimates from the field recorded Abney level instrument 

correlated well with LIDAR-derived height estimates (CHM). The airborne AISA 

Eagle/Hawk hyperspectral data and Leica LIDAR were acquired simultaneously in 

April 2011. The field measurements were collected in September 2012 almost one year 

after airborne LiDAR data which were collected in the year 2011. This temporal 

difference accounted for the slightly poorer prediction of tree heights from LiDAR data. 

Despite this temporal difference, both predicted tree heights and estimated tree heights 

were successful in estimating a good correlation between both of the measurements.   

During the study, it was realized that this method produces predicted values of canopy 

height that is compared with the absolute estimated values of tree height recorded in the 

field. As tree height recording differs and subjective to temporal difference and depend 

upon the time of sampling, the result can be little different due to time variation in data 

acquisition and field sampling. Figure 5.4 shows the correlation between LiDAR 

predicted tree heights with ground expected tree height result. Altogether 60 

measurements were used to calculate the Pearson correlation coefficient of tree heights 

that showed a satisfactory result (R
2
=0.9616).  

 

5.3.2 Fusion of HSI and CHM 

This section provides a comparison between the spectral profile generated from the 

fusion image and compared with the spectral profile of the tree species and ground 

features generated from atmospherically corrected hyperspectral image. The second part 

of this section deals with the classification of the fusion image and its accuracy 

assessment.  

5.3.2.1 Spectrum Comparison of Hyperspectral Images and Fused Image 

The resulting spectrum generated from the fused dataset is shown in Figure 5.8. It 

shows that the distinction between different features is clearer from the fused image 

bands than from the hyperspectral image bands. The spectral signatures of different tree 

species are detectable from the high information content of the hyperspectral imagery, 

but the fused image has the added advantage that it distinguishes very clearly between 

vegetated and non-vegetated areas.  



 

141 
 

Figure 5.7 shows that ground covered with grasses is not clearly visible in the original 

hyperspectral image but stands out in the fused dataset. This class confusion in the 

original hyperspectral data means that any classification with SAM or MLC is likely to 

lead to poor classification accuracies. Spectral reflectance profiles were extracted from 

the original hyperspectral and fused data, using z-profiles with an average window size 

of 3*3 as it was found to be optimal for maintaining the spectral purity. 

The Savitzky-Golay smoothing filter was applied to the mean spectral reflectance 

values of hyperspectral and fused data respectively, for removing noise and peaks of the 

reflectance curves (Luo et al., 2005b, Luo et al., 2005a). This filtering notably reduces 

any high noise in the curves but does not affect the originality of their shape. This 

filtering notably reduces the high noise in the curves with minimal effect of the 

position, shape and depth of the spectral features (Press et al., 1996).The spectral 

profiles of the original datasets and the fused data are illustrated in Figure 5.7 and 

Figure 5.8.  

The mean reflectance profiles of different tree species and ground covered with grasses 

as well as sandy areas are shown in Figure 5.7 and Figure 5.8.  The spectrum of the 

fused data bands shows that the mean spectrum of different tree species, ground 

covered with grasses and sandy regions typically is clearly distinguishable. The spectral 

profile of the fused bands for ground covered with grasses shows a clear improvement 

in the separability in comparison to the original spectral profiles. Feature extraction is 

much more difficult from the original hyperspectral images alone, where other spectral 

profiles resemble that of sandy soil (Figure 5.8). Thus, the data fusion approach 

improves the accuracy of classification based on HSI and LiDAR data for vegetation 

and non-vegetation discrimination.  
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Figure 5.7 Spectral profiles of different features generated from atmospherically 

corrected hyperspectral images (S-Golay filtered) over a subset of the study area. 

 
Figure 5.8 Spectral comparison of different features from the fused bands derived by 

inverted PCA axis rotation with the CHM replacing overall scene luminance (PC1) in 

the HSI data, showing signatures of tree species and non-vegetated features. Shrubs or 

grasses can be discriminated from other features much better than from the HSI spectral 

bands alone shown in Fig. 5.7. 
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5.3.2.2 Classification Results  

MLC of fused data set of hyperspectral with canopy height showed that the 

differentiation becomes better and overall accuracy is increased up to 92.91% that was 

about 3 % more than MLC on original hyperspectral image.  Therefore, a qualitative, as 

well as a quantitative assessment of classified maps, demonstrates that the result of 

fused image is much better than the original counterpart datasets. Table 5.3 illustrates 

the result of quantitative evaluation of different classified images. (OA< PA and appa 

coefficient). The classified fusion image is shown in Figure 5.9. 

 

Figure 5.9 Classification map of PC fusion image 

 

The overall accuracy as well as appa coefficient was found to be much higher in case 

of fused HSI-canopy height image. The overall accuracy of original HSI was 89% and 

appa coefficient 0.87 whereas it was 92.9% and 0.91 in case of fused HSI-canopy 

height image. As the main objective of the results was discrimination of different 

species, the feature accuracy was also calculated for each species and other features of 

study area. Therefore, the qualitative as well as a quantitative assessment of classified 

maps demonstrates that the result of fused image is much better than its original 

counterpart datasets. Table 5.4 illustrates the result of quantitative evaluation of 
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different classified features (OA, PA of feature classes).  Moreover, higher kappa (0.91) 

shows the advantage of fusion technique to discriminate and separate different features 

easily and effectively than individual image (0.6 and 0.87) as shown in Chapter 4. 

 

Table 5.3 Overall accuracy and Kappa coefficient for PC fusion image classification  

Classifier techniques Overall Accuracy (%) κ- Coefficient statistics 

MLC on Fused image 92.91 0.91 

 

Table 5.4 Error matrix for fused image classification 

 Reference data 

Classified data Sand Eucalyptus Pinus 

pinea 

Ground 

with 

grass 

Pinus 

pinaster 

Acacia 

longifolia 

Shrubs Row 

Total 

         
Unclassified 0 2 0 2 2 0 1 7 

Sand 242 0 0 0 0 0 0 242 

Eucalyptus 0 473 6 6 23 14 5 527 

Ground with 

grass 

4 0 420 0 1 0 0 425 

Pinus pinea 0 29 0 401 16 0 0 446 

Pinus pinaster 0 30 8 1 570 5 0 614 

Acacia 

longifolia 

0 18 4 6 0 206 0 234 

Shrubs 0 0 0 10 0 0 216 226 

Column Total 246 552 438 426 612 225 222 2721 

         

PA 98.37 85.69 95.89 94.13 93.14 91.56 97.30  

UA 100.00 89.75 98.82 89.91 92.83 88.03 95.58  

Average PA 93.72        

Average UA 92.56        
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5.3.2.3 Classification Accuracy Assessment 

The error matrix generated during the classification of PC fused image was shown in 

Table 5.4.  The error matrix was calculated using the reference data used for generating 

error matrix of each feature in classified images (Congalton et al., 1983, Stehman et al., 

2009). The error matrix generated different accuracy parameters like user’s accuracy, 

producer’s accuracy, mapping accuracy and overall accuracy for comparison purposes 

of different classified images (Congalton, 1991, Congalton and Green, 2008). In 

addition to these accuracies, appa statistic was also calculated for each classified 

images to test the significance of the difference in accuracy of classified images. It has 

been considered that appa is one of the better tools for comparing different methods of 

classified images (Skidmore, 2002). Thus, these statistics provide a better platform, 

which is directly comparable with each other classification results. 

The classification of hyperspectral image using SAM classifier produced an overall 

accuracy of 67.7 % which showed that the method is not able to well discriminate 

different species (see chapter 4). The change map is generated for the Figure 5.9 with 

classified image from hyperspectral image (See Figure 5.10). This map demonstrate 

three classes illustrating the changes, No change in class, unclassified, and changes 

from one class to other class. Unclassified refers to pixels, which are not classified in 

both images, and change refers to classed which are different in both classified images. 

The average producer accuracy and user accuracy for the features were 93.72% and 

92.56% respectively as shown in Table 5.4. The classification of hyperspectral image 

with MLC gave a better overall accuracy of 89.67%, which showed better results than 

SAM, but it has some limitations in respect of discriminating some species and feature. 

However, MLC of fused data set of hyperspectral with canopy height showed that the 

differentiation becomes better and overall accuracy is increased up to 92.91 % which 

was about 3.24 % more than MLC on original hyperspectral image.  Though it is able to 

classify different feature but its overall accuracy (92.91 <96.38), overall producer 

accuracy (93.72 <96.40) and overall user’s accuracy (92.56 < 96.63) remains below the 

segmented PC classification results. One of the probable cause of these differences may 

be attributed to non-removal of data dimensionality (as fusion image has same number 

of bands as the original hyperspectral Eagle image).  
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Figure 5.10 Change map for figure 5.9 with the previous image in classified image from 

hyperspectral image. 

 

5.4 Conclusion 

As seen from the above results, it can be concluded that LiDAR data have provided the 

significant results when compared to field data. While LiDAR data was shown helpful 

in the forest eco-system, it can be used in terrain regions for deriving the height 

features. The fusion image showed better results than individual hyperspectral image in 

overall accuracy. Fusion image was able to differentiate some ground features, which 

were not significantly observable in the hyperspectral images. Thus, incorporation of 

the spectral with structural attribute may provide better results than individual data 

assessment.  

Moreover, in Eucalyptus globulus dominated area, the mean LiDAR derived canopy 

height was found to be 14.17 m and it ranges from 10.24 m to as high as 19.15 m. The 

average Eucalyptus tree height recorded in the field was 14.97 m, while some of 

eucalyptus tree height ranged as high as 21 m (minimum height recorded as 10m). This 

illustrates that Eucalyptus globulus occupy the privilege of the upper canopy in the 

study region. Similarly, Acacia longifolia LiDAR derived height was found to be in the 
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range 2.23m to 3.43 m, while the individual average height of the species ranged to as 

high as 2.69 m. The field-measured height of Acacia longifolia was found to be 2.25 to 

5.5 m and mean height was 3.21 m. This gives a light on the fast growing nature of the 

invasive species in the region that are spreading understorey Eucalyptus globulus tree. 

This height measurement was found to be a valuable information regarding the tree 

height variation in the study region of the Mediterranean forest and better distinguished 

tree species level. Moreover, the fusion of HSI and LiDAR derived CHM has shown the 

applicability of the technique to distinguish the shrubs, ground with grass as against 

other features and tree species.  

Streutker and Glenn, (2006) tried to classify the sagebrush vegetation using the LiDAR 

data and validated with ground measurements. They put forward a question, ‘whether 

LiDAR can effectively identify or distinguish grasses from open bare ground surfaces 

or not?’ (Streutker and Glenn, 2006). The present study, thus, provides a platform for 

distinguishing the grasses/shrubs from bare sandy ground and other tree species using a 

fusion image of HSI and LiDAR derived CHM. A solution to this can be seen in this 

chapter using the PC image fusion techniques.  

Kempeneers (2009) tried to merge airborne digital photo with LiDAR data to map 

coastal vegetation with the help of ground reference points. They measured tree heights 

in the field and compared them with that predicted height from the LiDAR data in the 

laboratory for its accuracy. They found good correlation (R
2
 = 0.99, RMSE=0. 34) 

between measured and predicted heights in the research work. That was high results 

with LiDAR and field recorded data. In the present study, temporal variation in data 

may have some impact on lower accuracy rate, but this has not affected the fusion 

classification result.  

While hyperspectral images have been used widely in forestry research, this present 

study shows that additional information along with hyperspectral image can be 

significant for use in forestry and another research area with height differences. 

Possible future use includes assessing and finding disturbance in croplands or forestry, 

rangelands or other low canopy areas. The applicability of proposed fusion method can 

be applied in rugged terrain with several features and its necessity can be addressed in 

future. The success of fusion method lies in the distinction of different species and 

feature with good user and producer accuracy results, and it indicates the robustness of 

the proposed methodology. The results of this study have shown that data fusion of 
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LiDAR and HSI can improve the classification accuracy of tree species and other 

features. 

1) Fusion of spectral information content and vegetation structural parameters 

enhances the capability to distinguish features. This causes improved classification 

outcomes from the fused data, which are superior to the original individual images.  

2) Data fusion enables the distinguishing capability of vegetation from non-

vegetation much more accurately than hyperspectral images alone, as it has been 

confirmed that PCA helps in the discrimination of vegetated from non-vegetated 

features. Grounds partially covered with grasses were easily demarcated from shrub 

areas and other features. Thus, the PCA data fusion approach improves the accuracy 

achievable with HSI and LiDAR data for vegetation mapping. 

3) Data fusion results in better classification accuracy than the individual HSI 

dataset. 

The identification of various features was straightforward for some tree species and 

ground feature classes, but the distinction between some specific features was enhanced 

by data fusion with the CHM derived from LiDAR data. This type of fused data is 

beneficial for regions with a larger number of features like water, mixed vegetation, 

ground, shrubs, etc. This technique differentiates features from each other based on 

their canopy or surface height as well as spectral absorption properties. The importance 

of the present study lies in its quantitative assessment of the achievable accuracy 

improvements from data fusion of LiDAR and HSI. Given the highly accurate feature 

discrimination between shrubs, grasses and trees, the data fusion approach can be 

extended to other mapping applications such as burned area mapping and others. In 

future studies, different fusion processes should be compared to diverse research areas 

in order to test the spatial transferability of the methods. In future studies, different 

fusion processes should be compared for diverse study areas in order to test the spatial 

transferability of the methods. 

5.5 Summary of Chapter 

This chapter presented the PC fusion techniques for hyperspectral image and LiDAR 

derived CHM. Thus, it brought the two different attribute of dataset together and 

enhanced the capability of image classification. The classification of the PC fusion 

image using MLC classifier performed significantly better (>92.91 %; κ=0.91) than 

original hyperspectral image. The lower accuracy of PC fusion classified image than 
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segmented PC results may be the presence of the data dimensionality as we have 

performed inverse PCA technique for generation of fusion image. This study explores 

the classification accuracy achievable with synergistic use of the two datasets: airborne 

hyperspectral and LiDAR data. The classification accuracy and κ coefficient increased 

above the hyperspectral images as expected from the assumption, CHM contributed 

towards an increase in the results. Thus, PC image fusion may be able to provide 

increased classification results than hyperspectral image alone. This confirms that 

additional attributes from other data source if incorporated in another increase the 

results as compared to individual image result.  

The next chapter discusses the contribution of the present research, limitations were 

faced, and recommendations and future works. Finally, the chapter concludes the 

research with the outcomes, and some future assumptions or techniques to include in 

coming time. 
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Chapter 6. Conclusion

 

6.1 Introduction 

This thesis explores the two main novel objectives- spectral segmented PC image 

classification and fusion techniques incorporating LiDAR generated CHM and spectral 

characteristics of hyperspectral image for the mapping and classification of 

Mediterranean forest in Portugal. Overall it has been demonstrated that both airborne 

hyperspectral imagery and airborne LiDAR data can be synergistically utilised to 

overcome data redundancy and spectral mixing which is unidentified by multispectral 

imagery that critically limit the conventional use of multispectral remote sensing to 

essentially identify different species precisely. To summarise, the main contribution, 

some limitations faced during the study period, recommendations, possible techniques 

and future scope are presented in this chapter. Thus, this chapter presents an overview 

of the present research conducted in the Mediterranean forest.  

 

As discussed earlier, there are four elements, which are essential, and a foremost 

requirement, for the classification of tree species and surrounding ground features. The 

present study utilises 2 m high spatial resolution, very high spectral resolution, 

additional input of height attributes and appropriate classifiers.  The segmented PC and 

PCA fusion methods adopted in the study have incorporated all the required parameters 

necessary for the classification of the tree species and surrounding regions. As seen 

from the present research, species can be identified and mapped through spectral 

profiling with their unique and distinct characteristics, but the inclusion of additional 

properties of the feature (such as height attributes from LiDAR) can improve the 

results. The results can be improved by reducing the data dimension of the images as 

well. Techniques like PCA demonstrated in the present study, are capable of identifying 

tree species and ground features for mapping with more detail and accuracy, with the 

help of priori knowledge and collected data from the study site. A possible alternative 

to PCA approach is the MNF transformation that has not been used and examined in 

this study, but it can be used later on.  

In future studies, airborne hyperspectral imagery and airborne LiDAR data can be used 

to map detailed and accurate species trees and forest attributes that are consistent with 
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field-based data. Overall, the innovative application of airborne hyperspectral imagery 

and airborne LiDAR data have the significant potential to aid information regarding 

integration and helps in more accurate mapping campaigns over large forest areas, 

agricultural and non-vegetated regions.  

6.2 Importance of the Present Research 

This thesis presented a method of segmented image generation and classification based 

on standard maximum likelihood classifier. It also used the integration of hyperspectral 

and LIDAR derived CHM to classify and assess the accuracy of the resultant image. 

The aims of the present study were  

1) To classify hyperspectral images with different techniques, using segmentation 

of images and comparison of different classifiers performed over segmented PC 

images and hyperspectral images in Mediterranean forest.  

2) To identify tree species, incorporating attributes from both hyperspectral 

(spectral information) and LiDAR data (height).  

The aim of the thesis is achieved with good accuracy results, with segmented PC 

techniques and PC image integration method as discussed earlier in chapter 4 and 

chapter 5. The importance of the research stands with the improved results while 

providing processing methods of airborne Eagle and hawk data. The objective of the 

thesis mainly focuses on the classification results generated using the segmented PC 

image techniques which is particularly novel in itself. This technique is novel as it has 

used segmentation of the hyperspectral image, and application of PCA on those 

segments resulting in same corresponding PC image as segments bands. Finally those 

informative PC images from segments were integrated together to generate a segmented 

PC image. Thus, this segmented PC image is a new in itself and the study is performed 

in the Mediterranean region, which suggests the first use of this presented techniques. 

Similary, PC image integration techniques presented in the present work is novel and 

incorporated first time using airborne hyperspectral image and LiDAR data for the 

forest mapping in the Mediterranean test site. Moreover, both the techniques are applied 

for the Mediterranean forest, is one of the first to use the above methods. The main 

strength of the thesis is that the present methods can delineate the species and structure 

corresponding to open tall stand in simple heterogeneous conditions as compared to the 

close dense forest species such as Amazon rain forests.  
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Different classes were considered for classification of the hyperspectral and segmented 

PC image- Pinus pinea, Pinus pinaster, Eucalyptus, Acacia longifolia, grasses covering 

ground, shrubs, and sandy region. These different classes form the coastal habitat and 

its surrounding regions. Two different classifier techniques were analysed for their 

potential use in classification as well as comparison among them. These two different 

classifier techniques: SAM and MLC based on supervised classification were 

incorporated for classification of different images. Different images like original 

reflectance hyperspectral image, segmented PC image and fused image were classified 

accordingly using these two classifier techniques. Three different classification results 

were compared with each other for better classification, namely SAM classification of 

hyperspectral image, MLC of hyperspectral image and segmented PC image.    

As expected, the classification outcome from fusion data was found to be better than the 

classification of the original dataset. These have produced better results in term of  the 

user’s accuracy, the producer’s accuracy, overall accuracy and appa statistics. Efficacy 

of fusion of HSI and LIDAR can be shown with significantly better results in terms of 

overall accuracy and class mapping accuracy of different species and feature classes. A 

very obvious benefit of the fusion of HSI and LiDAR derived CHM is temporal 

consistency of both data, as both images are acquired at the same time.  

It is obvious from the study that the high resolution of HSI and the addition of some 

structural components to the fused image is the main reason for higher accuracy 

compared with the original HSI image. Spectral mixing of two tree species and feature 

classes can be avoided by adding some additional parameters like structural properties, 

as the height will be providing the other response than the low height feature classes 

that help in distinguishing the different feature classes and tree species.  

This can be evident from the results that shrubs, different tree species, ground with 

grasses were prominently distinguished in segmented PC image and fusion image as 

compared to other classified results. It may be the probable reason that structural 

variation in the fusion images has created its distinguishing capabilities. Thus, it may be 

able to produce better results due to variation in the different classes enhanced by 

adding structural parameters, ultimately producing better classification results and 

separation capabilities. The distinguishing capabilities of fusion image are due to 

avoiding the spectral mixing of two classes due to structural components which might 
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have created more variation between species and different feature classes, and 

producing anticipated results. 

This study presented a method of image fusion for hyperspectral images and LiDAR 

canopy height based on Principal Component Analysis.  These techniques also helped 

to differentiate the tree species from a non-vegetation region very accurately. It also 

looked at the segmentation of hyperspectral images and applying PCA to segments of 

hyperspectral images to get the corresponding PCs, and integration of the first 3 PCs 

from each segment results in segmented PC images. Based on this method, segmented 

PC image was classified by the standard maximum likelihood classifier and compared 

with classification results of SAM and MLC of hyperspectral images. This also 

presented a method of classification and comparison between different classifier 

techniques for hyperspectral images and segmented PC image. Based on the image 

fusion, it is also investigating how tree species can be differentiated from each other 

and associated habitat features like sandy region, shrubs and ground covered with 

grasses.  

6.3 Contribution of Present Research 

The major contribution of this research was the tree species and surrounding features 

identification using image fusion technique and image classification technique for 

segmented PC image. This study suggests the robustness of image fusion for the 

classification and differentiation of tree species to each other and from non-vegetated 

features. PCA image fusion could have the potential for better discrimination and 

classification results than using hyperspectral image individually, and it has not yet 

been used or presented in earlier published studies. The range of classification results 

obtained for the hyperspectral image (also CHM inclusion in fusion) varies from 67% 

to 96% depending upon the classifier used and techniques applied on the image. 

Classification performed on hyperspectral images (SAM, MLC) and classification 

results of segmented PC and fusion images provide different results in the study. Here, 

the study aims at the synergistic use of the hyperspectral image and LiDAR derived 

CHM as well as segmented PC, so more stress is aimed at them.  

As anticipated, the research questions of the present study were explained with 

reasonable results and justification. They are concluded in summary here: 
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1. Hyperspectral images have capabilities to distinguish tree species and other 

features provided that they are processed with some more reliable and better 

techniques. The MLC classification of HSI and segmented PC images provided 

>89 % and > 96% overall accuracy respectively. CHM generated from LiDAR 

is compared with field recorded height, which produced coefficient r
2
= 0.9616; 

an indication of good correlation. Thus, it can be assessed that hyperspectral 

images and LiDAR data have the ability to distinguish different tree species and 

other features in parallel with other techniques.  

2. Segmented PCA of hyperspectral data uses better classification accuracy than 

other approaches like standard MLC and SAM of original images. It has given 

about >96% overall accuracy and -0.95, which is clearly indicating better 

classification results (see Chapter 4 results).   

3. The fusion of HSI and CHM, generated images with both spectral contents as 

well as structural parameters which help in distinguishing the feature more 

effectively than using original images. As concluded from the results, grounds 

with grasses were easily and effectively separated from other features. 

Particularly, this feature has been the most distinguishing results in MLC 

classification of fusion image (producer accuracy and user’s accuracy is higher 

than other classification results, see Chapter 5 results).   

4. The results are indicating that structural parameters incorporation help in 

distinguishing different features more effectively than MLC classification and 

segmented classification of HSI. It does this work with different features with 

the ability to provide spectral as well as structural parameters, which is not in 

the case of individual hyperspectral image.  

5. SAM, MLC and fusion approaches were able to present some different results in 

all cases, but they have different advantages over classifying different features. 

As expected, they proved to be able to classify the tree species and other ground 

features effectively as expected.  

6. As discussed earlier, MLC classifier is an effective algorithm and additional 

techniques like segmentation and fusion approaches enhance the images and 

thus improve the classification results.  

This thesis aims to provide a base for the use of data dimensionality reduction as well as 

integration techniques to harness most of the information content of the datasets. One 
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can use the spectral range to determine the noise or bad band using the PCA techniques. 

Moreover, MNF method can work as an alternative to data dimensionality reduction 

depending upon the type of data- satellite borne or airborne data. Above discussion 

conclude that the aims were achieved with desired results.  

 

6.4 Limitations 

As expected, the aim and objective of the research was provided with reasonable 

justification and outputs. However, time limitations should be taken into consideration 

as data was acquired in April 2011 and the field survey was performed during 

September 2012. Further, some more work could have been included in the present 

study, but the high cost of data resulted in failure to acquire temporal data for the study 

area.  

Though more than enough points have been collected for training data and accuracy 

assessment, a second field survey could have added some more ground data to study, 

which might have provided more reliable results. The outcomes of the research could 

have been more effective, if there was a second fieldwork with more collected ground 

points and samples.  

The other limitations or hurdles faced during the research includes-  

1. Gaps in the data collection or acquisition: it may be one of the reasons for 

accuracy disparity (airborne data in 2011 and field data in 2012).  

2. Data processing with apl-suite software, due to a bug issue during geometric 

correction and mapping that required a very large amount of cache memory and 

disk space (due to large file size during processing). This is a big hurdle while 

working with the massive size data such as airborne hyperspectral and LiDAR 

data. 

3. Non-availability of temporal airborne datasets. Due to high cost and 

expenditure, it was not possible to check the vitality of the techniques for two 

time periods. 

4. In technical aspects, PCA performed in ENVI software is unable to generate 

correlation and covariance reports for the hyperspectral data due to a large 

number of variables. This is processed and read in Matlab software. Matlab has 

a problem in that it cannot displays summaries of the variables with more than 
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524288 elements (in case of image values for generation of histograms) and 

therefore they were analysed separately. 

5. During transportation while returning from the field work, the radio 

spectrometer broke down. Most of the spectra recorded were not recovered with 

reference line, but some of them were recovered successfully. If all those spectra 

would have been recovered it that may have added a comparable spectra from 

hyperspectral imagery. The field-recorded spectral files are good in quality and 

differ substantially from different tree species and corresponds to image spectra. 

6. No further technical problems or limitations were observed in the study.  

 

 

6.5 Recommendations and Future Works 

In particular, the method proposed in this research work will be helpful for image 

classification that reduces hyperspectral data dimensionality. This will also contribute 

towards data fusion aspect where both hyperspectral and LiDAR data contribute their 

image properties that aid in the image and generate distinct features spectrum. 

Considering results, it may be possible to resample the AISA images at a higher spatial 

resolution, like 1 m for future studies. Thus, it will provide much higher spectral as well 

as spatial enhancement with additional properties of the LiDAR data. This will try to 

counter the possibilities of spacing between two trees and can assess much more 

information on canopy gap feature identification. In the study site, the trees are planted 

with a spacing by the forest conservation management and they clear Acacia longifolia 

from the region frequently.  The current scenario of the study site is illustrated in 

Error! Reference source not found., the forest department cleared the forest to inhibit 

cacia longifolia’s growth and thus paved the way for native tree species to grow and 

flourish in the region. Most of the region is seen barren and empty, this illustrates that 

Acacia were cleared from those regions along with shrubs and some Pinus species, 

while keeping only Eucalyptus species for growth and conservation. Recently, the 

forest management to avoid the invasions of the Acacia longifolia and to conserve the 

other tree species cleared the study area. So it may not be possible to address the issue 

related to the distribution of the different features in the present time. But it may lead us 

to indulge in other studies related to change detection and analysis. 
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Figure 6.1 The current scenario of the study site as in mid of year 2014. 

 

6.5.1 Cost per square km Estimation 

The present research can be performed with the high resolution multispectral images 

such as World-View 1 or World-View 2 images (8 bands in the image), on the basis 

that they can be used for performing segmentation steps. The segment part of the 

present technique cannot apply to multispectral images; the limitation is due to a fewer 

number of bands over the complete electromagnetic spectral ranges and one band in 

each spectral range chosen to carry out the spectral segmentation. 

Table 6.1 General overview of cost per km for different datasets 

 Type of Data Factors Cost per Square Km 

1 Airborne Hyperspectral 

and 

Airborne LiDAR data 

Cost depend upon the time of 

flight, distance from airport of 

sponsors. 

Very expensive and data 

availability is very rare, 

 

 

2 Satellite borne Hyperspectral 

(Hyperion or Enmap German 

Hyperspectral data) and 

LiDAR data 

Limited availability of data for 

the desired test sites. 

LiDAR Data acquired upon 

request 

Comparatively less 

expensive 

 

3 Very high spatial resolution 

multispectral data 

and 

LiDAR data 

Available for most sites Cheaper than above two data 

types 

4 High spatial resolution 

multispectral image, and 

hyperspectral image 

Available for most sites Cheaper than all above  
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The cost per square km depend upon the type of data used for the new study area, it also 

depends upon the user’s needs and their requirement for high resolution images such as 

2 m, 1 m, or less. It will also depend upon the selected field site for which data will be 

used such as airborne data or satellite based images. The satellite data will provide a 

cheaper cost when compared to the airborne data, a Hyperion image will be of limited 

use due to low spatial resolution (30 m spatial resolution of Hyperion, 7.75 m swath 

width, spectral bandwidth 10 nm). AVIRIS data with 10 m spatial resolution may prove 

relevant for use with fusion technique.  

Therefore, the cost per square km depends upon many factors, which should be 

considered before the selection of data [data types, study regions for field sampling, 

software requirements such as ENVI, Arc GIS or free ware software for data processing 

(geometric, atmospheric correction, mapping, and classifications)]. It may vary 

depending upon the use of airborne or Hyperion images. The approximate cost per 

square km estimation is based on the price of the images being considered for the study 

site, expenses to the field trip, software cost, processing instruments such as GPS, 

Computers facility (the EUFAR Project acquired and provided the datasets for test site, 

Portugal). 

 

6.5.2 Adaptation to Different Conditions and Use of Open Source Software  

Homogenous standalone test sites are studied by the present methods, these techniques 

can be applied in the other forests such as tropical forest. This also depends upon the 

types of the tree species or their structure. When the types and structure differ in the 

different complex sites, the segment part may be considered in respect to chlorophyll 

content, cellular structures and water content. It can be adapted to different species 

depending upon their leaf structures and the colour combination of all tree species 

present in the field site (for leaf structure and colour please refer to the text in segment 

part). There is potential for the adaptation of hyperion images in certain cases where it 

will be dealt with higher spatial resolution than AISA eagle images in the open tropical 

or Mediterranean region.  

Thus, the applicability of the approaches used in the study can be applied in different 

forest regions (tropical or temperate forest), though the denser canopy must also be 

addressed, as well as the possibility of including data containing temporal resolution. 

This study can prove to be beneficial in other research fields and hilly terrains. The 

inclusion of other parameters with HSI, such as Intensity may provide a similar or even 
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better result. Intensity value may provide some more valuable information regarding 

tree species and ground features, the use of different fusion methods for integrating the 

LiDAR and hyperspectral properties. It may be challenging to use different techniques 

to combine hyperspectral and LiDAR data. In the future, one can include other 

classifier techniques to see the robustness and applicability of the techniques presented 

in the study. We can try to use class separability with the fusion image, as this also 

provides a similar spectrum for all features with different patterns. This may further 

include techniques like transformed divergence (TD) and Jeffries Matusita distance 

(JM) techniques for the feature identification in the fusion image. Further, I would 

recommend the use of first derivatives and second derivatives of the spectral profile for 

differentiating and the identification of tree species and surrounding features, as it 

would provide more separation capabilities than spectral profile alone. Moreover, 

differences between the first and second derivative may be beneficial to assess species 

variation at different ranges. 

 

Identification of tree species and mapping different tree species is a major concern of 

RS communities using space borne satellite or airborne images, which continues to be 

the subject of major research all around the world. Despite the fact that there is a 

difference in the spectral reflectance recording of handheld radio-spectrometer and 

airborne hyperspectral images, due to the BRDF effect, reflectance from the airborne 

AISA provides useful information in the identification of species related to their 

pigments, intercellular spaces and water content of different species in the study site. 

Therefore, as discussed in Chapter 3 and 4, different conditions of tree species (such as 

leaf pigments, cellular structures, water content or stress) and homogenous conditions 

for the field measurements (type of species, structure of leaf, sky condition) should be 

taken into account. Spectral reflectance of tree species (either at leaf level using radio-

spectrometer or at canopy level using hyperspectral image) and classification results 

may show a discrepancy if any of the listed factors differ in the context of the 

classification. In the context of species identification and classification using the 

spectral segmented PC and fusion data, it may provide a better platform to the above 

issue in simple, open, tall stand communities.  

RS communities can use the methods and can break free from expensive software by 

utilising different open source software. Open source software can be an alternative for 

the expensive commercial software. The open source tools such as LAS tools, Fusion 
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software, Canupo software and Spectral Python will be helpful for processing the data, 

but airborne hyperspectral data is processed by the apl Software suite that is specific for 

the processing of the airborne hyperspectral data. It is somewhat limited to the apl 

software suite for various corrections, and ENVI FLAASH module for atmospheric 

corrections. The lesson for the design of the new hyperspectral sensor may involve 

decreasing the atmospheric effects such as BRDF, Haze, and aerosol effect. The noisy 

bands present in the electromagnetic region such as 1349-1462 nm and 1790-1999.0 nm 

may be taken extra care for either improving the windows for collection of surface 

reflectance or dropped it from the sensor. The exact nature of the design can be seen 

after the experimental setup with such suggestions. For the development of HSI sensors, 

one needs to know the spectral ranges, as well as purposes and the use of hyperspectral 

data. Most of the noises in the hyperspectral data are found in the spectral range such as 

1191.55-1197.85 nm, 1349.3-1462 nm and 1790.8-1999.0 nm (based on the information 

from Airborne Eagle and Hawk data- refer to Figure 4.10). These regions are severely 

affected due to atmospheric oxygen and water absorption. In most cases, these bands 

were either removed or dropped to achieve the desired results. All bands are not useful 

for each study and depends upon the type of research such as spectral characteristics 

(visible range), structural behaviour (NIR range), water stress, tree surface temperature, 

and carbon content (thermal range). Thus, the present study is beneficial to the RS 

forest communities in terms of classification results specifically to open and sparse 

vegetation conditions.  

 

The main part of the work has been the use of spectral PC segmentation and PC image 

fusion of airborne hyperspectral and LIDAR data in Mediterranean forest associated 

with the classification of different tree species and associated ground features in an 

open, tall, simple community. Finally, different classification maps were generated with 

accuracy results derived from segmentation and fusion techniques using both 

hyperspectral and LiDAR data. The fused hyperspectral and LiDAR image has 

generated overall accuracy (≤ 3% than segmented pc image) hence it is concluded that 

the CHM does not contribute in enhancing the classification results when compared to 

the segmented PC technique. Perhaps one can think of other parameters from the 

LiDAR data such as intensity or texture that may assist in enhancing the information 

and provide a better platform for classification. Therefore, the selection of the spectral 

ranges such as blue, green, red, NIR, and SWIR from the high spatial resolution 
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hyperspectral image can provide precise information on different tree species and 

associated ground features for enhanced mapping. These can provide knowledge in the 

open, tall stand with accurate and precise results, however not be suitable or capable in 

the Amazon rain forest or complex forest stands. It can be conferred from the study that 

the AISA and LiDAR are capable of identifying, discriminating and classifying 

different tree species and ground features with appropriate classifier. It is obvious from 

the study that the classification algorithm with segmented PC image and PC fusion 

image helped to improve classification accuracy either in overall accuracy or κappa 

coefficient. Thus, airborne HSI and LiDAR data, together are potential remote sensors 

for identification of different tree species and ground features, because the integration 

of two data at single platform offers distinguishing capabilities of different feature, and 

can provide better and improved classification results than individual images. The aim 

of the study is to employ the synergistic use of hyperspectral and LiDAR dataset and 

uses hyperspectral image. The two different approaches (segmented PC technique and 

PC fusion) were employed to achieve the objectives resulting in new images, 

segmented PC image and PC fusion image. It proved to be an important finding for 

identification and classification of different tree species and ground features in 

Mediterranean forest. 
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Appendix-1 

Script for removing the noises from the LiDAR las file 

 

(a) Script to remove noises from the Las file (lidar data) using software pt_cloud 

filter.exe provided by NERC-ARSF in command prompt 

-pt_cloud_filter.exe [Input file]  [classification number to remove] >  [filtered output 

name]  

for example:  

-pt_cloud_filter.exe LDR-EUFAR_201109809.txt  7  >  filtered_strip9.txt  
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Appendix-2 

Script for the smoothening of spectral profile 

Savitzky-Golay filter- Script for removing noises from spectral profile of different features. 

% Load data  

load input.txt 

%plot(1:400, input (1:400)) 

output =sgolayfilt(input,2,21); 

% Apply 3rd-order filter 

%plot(1:250, output (1:250)) 

 %axis([0 980 0 2000]), 

title( 'S-Golayfilter') 

wave = output1(:,1);   % to separate the first column 

data = output(:,2);  % to separate the 2nd column 

data2 =output(:,3); 

plot (wave,data,'k', wave,data2,'g') 

%plot (wave,data2,'g', ':') 

title( 'title') 

 

The original script can be found on matlab site:  

{ 

load mtlb    % Load data 

smtlb = sgolayfilt(mtlb,2,51);   % Apply 2nd-order filter  

subplot (2,1,1) 

plot([1:2000],mtlb(350:2600)); 

title('       '); 

subplot (2,1,2) % if want to plot other wise not necessary- 

plot([1:2000],smtlb(1:2000)); axis([0 2000 -4 4]); 

title('        '); grid;} 

 

Note: in syntax - smtlb = sgolayfilt(mtlb,2,51);}, Third number must be odd number like 51, 53, 99.  It 

can be used according to user need and applications. The initial odd numbers such as 1, 3, 5 when used 

removes some of the noises, when 111, 121, 131 are used it makes the line much flatter, so this number is 

checked by putting numbers in a sequence so that to find the best smoothening curve. 
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