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Abstract 

 
Remote Sensing of Larch Disease and Acute Oak 

Decline Outbreaks in Britain  

 

Chloe Barnes 

 In UK forest environments, infection from phytopathogens presents a significant 

risk to tree health and an increasingly pressing concern for forest management. This thesis 

has considered Phytophthora ramorum, the causal agent of larch disease, and the most 

recent episode of acute oak decline (AOD) resulting from multiple bacterial agents. The 

specific focus of the research project concerned the automated isolation of individual tree 

crowns (ITCs) in forests subject to phytopathogen infection, which facilitated an ITC-

scale assessment of tree disease from remotely sensed datasets. The potential applications 

of airborne laser scanning (ALS) and unmanned aerial vehicle (UAV) based multispectral 

imagery were assessed in relation to P. ramorum and AOD outbreaks respectively. The 

ITC segmentation results demonstrated the successful isolation of partially and wholly 

defoliated larch crowns (>70%) from ALS through the application of a pit-free canopy 

height model generation methodology. However, the photogrammetrically-derived 

surface elevation from the UAV-based imagery facilitated a poor overall segmentation of 

individual oak crowns for all severities of crown decline (<30%). The disease detection 

capabilities of the two remote sensing technologies reported significant results in the case 

of both studies. The application of ALS for the assessment of P. ramorum infection 

reported significant isolation (p < 0.01) of moderate and severely infected individual 

trees. Larch disease presence/absence and severity was also classified at the ITC-scale 

with overall accuracies of 72% and 65% respectively. In the application of UAV-based 

multispectral imagery for AOD assessment, significant differences (p < 0.10) were 

observed between all five categories of crown decline. The crown decline severity 

classification at the ITC-scale yielded accuracies of 91% and 55% for the three and five 

severity classes respectively. Overall, the research results demonstrate the capabilities of 

remote sensing in the targeted assessment of phytopathogens, adding value to both 

scientific understanding and the management of forest environments.  
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Chapter 1: Introduction  

 

1.1 Research Context 

Phytopathogens are defined as organisms which cause decline and deterioration in 

plant health and condition (Bigler et al., 2006). Anthropogenic activities have increased 

the threat from both native and exotic phytopathogens in forest environments via climatic 

change, environmental stress and increased movement of plant material (Brasier, 2008). 

In the United Kingdom (UK), forestry has experienced several notable introductions of 

phytopathogens in recent years (Brasier, 2008; Mitchell et al., 2014; Baral et al., 2014). 

These have included the introduction of Phytophthora ramorum (larch disease) (Lane et 

al., 2003), which resulted in significant infections of commercial larch (Larix spp.) in 

forests across Southwest England, South Wales and Southwest Scotland (Brasier and 

Webber, 2010; Harris and Webber, 2016). In addition, mature native oak species 

(Quercus spp.) have been affected by rapid deterioration and mortality as a result of the 

latest acute oak decline (AOD) outbreak (Denman and Webber, 2009; Denman et al., 

2010) caused by bacterial pathogens including Gibbsiella quercinecans and Brenneria 

goodwinii (Brady et al., 2010; Denman et al., 2012; Brady et al., 2016; Denman et al., 

2016). The geographic areas of greatest concern with regard to AOD extend across 

southern and midland England and into Wales (Denman and Webber, 2009). Both larch 

disease (P. ramorum) and AOD present major challenges for forest and woodland 

management in the UK, with additional difficulties resulting from the complexities and 

uncertainties surrounding the specific phytopathogen-host interactions (Brasier and 

Webber, 2010; Denman et al., 2010; Denman et al., 2016; Harris and Webber, 2016).  

The monitoring of forest environments is a key strategic activity for the management 

of phytopathogens and insect pests (Sturrock et al., 2011). Landscape level monitoring of 

areas susceptible to known phytopathogens is traditionally conducted manually via sketch 

maps during aerial surveys (Leckie et al., 2005). This approach is currently employed for 

P. ramorum monitoring in England, Wales, Scotland and Northern Ireland (Medcalf et 

al., 2011; National Assembly for Wales, 2016). However, such surveys are labour 

intensive (Coops et al., 2003) and subject to a range of limitations including reliance on 

human judgement and interpretation (Leckie et al., 2005), coarse spatial scales and low 

positional accuracies (Foster et al., 2017). Informed data regarding the spatial extent and 
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severity of phytopathogen infections is paramount for the management, planning and 

modelling of disease outbreaks in forest environments (Hall et al., 2016). 

Remote sensing technologies present a standardised and objective approach to the 

assessment and characterisation of forest health (Reid et al., 2016). Passive and active 

sensors have previously been documented to successfully assess vegetation condition and 

decline across a variety of platforms including satellite, aircraft, and unmanned aerial 

vehicles (UAVs), providing datasets across a range of spatial scales (Vastaranta et al., 

2013a; Lehmann et al., 2015; Näsi et al., 2015; Wang et al., 2015; Michez et al., 2016). 

Spectral and structural changes in vegetation following phytopathogen infection can be 

identified from remote sensors (Blackburn, 2007; Stone et al., 2008; Coops et al., 2009; 

Kwak et al., 2010). Metrics and indices derived from airborne laser scanning (ALS) and 

optical imagery respectively, have previously been applied in the detection and severity 

categorisation of insect pests and phytopathogens in a range of vegetated environments 

(Vastaranta et al., 2013a; Lehmann et al., 2015; Näsi et al., 2015). However, due to the 

specificity of phytopathogen-host interactions and symptom expression, data collection 

and analysis is required to determine relationships between remotely sensed values and a 

particular phytopathogen infection in a certain host species (Lovett et al., 2006; Barry et 

al., 2008; Mahlein et al., 2010).  

High-resolution datasets associated with airborne and UAV platforms facilitate the 

assessment of forest characteristics and condition at the individual tree crown (ITC) scale 

(Reid et al., 2016; Shendryk et al., 2016). Fine scale segmentations can be utilised to 

group tree crowns or crown sections for analysis, based on the presence of homogenous 

characteristics within the dataset (Ke et al., 2010), alternatively, established segmentation 

algorithms can be applied to surface elevation inputs to automatically delineate ITC 

boundaries (Wang et al., 2004; Chen et al., 2006; Nevalainen et al., 2017). This crown-

based approach combined with high levels of geographic precision presents a range of 

advantages for disease management and phytosanitary interventions including the 

isolation of initial infections (Wulder et al., 2006; Wulder et al., 2012), targeted 

assessment of susceptible tree species (Stone and Coops, 2004; Michez et al., 2016), 

identification of disease resistant individuals (Sniezko, 2006) and the study of 

heterogeneous patterns of infection across forest landscapes (Stone and Coops, 2004). 

Nevertheless, the automated segmentation of ITCs subject to decline can be complicated 
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due to the increased structural variability of diseased tree crowns (Holdenrieder et al., 

2004; Larsen et al., 2011; Näsi et al., 2015; Barnes et al., 2017b).  

In order to consider the practical applications of high resolution remote sensing for 

the assessment of P. ramorum and AOD in ITCs across forest landscapes, several key 

gaps in the scientific literature must firstly be addressed. For example, fundamental 

questions concerning the performance of established methodologies for the segmentation 

of diseased tree crowns in coniferous plantation and deciduous woodland environments 

require consideration. In addition, relationships between remotely sensed metrics and the 

deterioration of individual larch and oak tree crowns affected by P. ramorum and AOD 

respectively, must also be established and quantified. To provide a scientific and 

methodological approach to address these research questions, this thesis has considered 

the performance of two different remote sensing platforms and sensors in two contrasting 

forest environments. In the case of P. ramorum and larch disease, the performance and 

potential contributions of ALS for the isolation and disease assessment of ITCs was tested 

in the context of a coniferous plantation environment. In relation to AOD, the application 

of UAV-based multispectral imagery was considered for the identification of ITCs, in 

addition to the discrimination and classification of crown decline severity categories in 

an oak-dominated mature woodland. Overall, the results from the research project provide 

an array of data and conclusions for more informed decision making regarding the 

applications of remote sensing in the management of phytopathogens in UK forests. 

1.2 Thesis Structure 

The overall structure of the thesis can be considered in three main sections (Figure 

1.1). The first three chapters of the thesis provide an introduction to the research themes, 

outline the principal research questions, present an in-depth review of the current state of 

scientific knowledge in the field of study and provide geographical context regarding the 

selected study areas. The second section of the thesis, which presents the methods, results, 

analyses and initial discussions can be considered in two main work-streams. Chapters 4 

and 5 consider the application of ALS in P. ramorum infected larch stands. In particular, 

Chapter 4 presents the research regarding the automated isolation of ITCs, whilst Chapter 

5 utilises these results to conduct disease assessments at the ITC-scale. The second work-

stream continues the themes of the first but considers the application of UAV-based 

multispectral imagery in an AOD affected woodland. More specifically, Chapter 6 
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documents the research concerning the identification and segmentation of ITCs, whilst 

Chapter 7 presents the applications of the UAV multispectral imagery for the assessment 

of crown decline associated with AOD at the ITC-scale. The final section of the thesis 

comprising of Chapters 8 and 9 provides a synopsis of the research and considers the 

context of the research outcomes for the application of remote sensing in the assessment 

and management of phytopathogens in forestry.  

1.3 Research Questions and Objectives 

In relation to the key themes of the research outlined earlier in the chapter (Section 

1.1) and the research gaps identified in Chapter 2 (Section 2.4.2), a series of research 

Figure 1.1 – Structure of thesis chapters.  

Chapter 1: Introduction 

Chapter 2: Literature Review 

Chapter 3: Study Area 

I. Background Information and Research Context 

Chapter 5: Disease Detection and 

Assessment  

Chapter 4: Tree Crown Segmentation  Chapter 6: Tree Crown Segmentation 

Chapter 7: Disease Detection and 

Assessment  

II. Methods, Results, Analyses and Primary Discussions 

Chapter 8: Overall Discussion 

C. Overarching Discussion and Summary 

Chapter 9: Conclusions, Research Contributions and 

Outlook 

Larch Disease (P. ramorum) and ALS AOD and UAV Multispectral Imagery 
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questions (RQs) were constructed to be addressed within the thesis to fulfil the 

overarching science question (SQ) of the research: 

SQ: How can high resolution remotely sensed datasets be applied to the detection and 

assessment of phytopathogens in UK forests? 

 Chapters 4 to 7 present the methods, results and analyses for the research conducted 

and each is associated with a particular selection of related research questions. Chapter 4 

concerns the segmentation of individual larch tree crowns infected with P. ramorum from 

ALS-derived canopy height models (CHMs). This research addresses a key research gap 

with regard to the isolation of partially (> 20% defoliation) and wholly defoliated ITCs 

in diseased forest environments. In addition, the chapter also considers the application of 

a novel automated method for the assessment of ITC segmentation accuracy. The specific 

emphasis of the chapter concerns the influence of segmentation method, CHM resolution 

and data pit removal on the overall ITC delineation success in larch stands subject to 

varying severities of P. ramorum infection. In particular Chapter 4 address the following 

research questions:  

RQ1: How does the removal of data pits during canopy height model generation 

influence the segmentation of individual tree crowns in P. ramorum infected 

plantation larch stands?  

RQ2: What is the influence of canopy height model pixel size on the performance 

of individual tree crown segmentation in P. ramorum infected plantation larch 

stands? 

RQ3: How do the marker-controlled watershed and region growing algorithms 

compare for individual tree crown segmentation in P. ramorum infected 

plantation larch stands? 

Applying the findings from Chapter 4, Chapter 5 considers the application of ALS 

datasets for the assessment and detection of P. ramorum infection in individual larch 

crowns. In particular, the chapter addresses the application of height-based metrics 

derived from ALS point clouds and fragmentation metrics derived from CHMs for the 

assessment of disease presence and severity at the ITC-scale. This research addresses vital 

gaps within the current extent of scientific research concerning the application of ALS 

point cloud metrics for the assessment of phytopathogens in forestry. In addition, the 
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research also presents the novel application of landscape fragmentation metrics, from the 

field of ecology, to quantify the patchiness of CHMs for ITCs subject to defoliation. The 

key research questions addressed in Chapter 5 include:  

RQ4: Does tree height influence the airborne laser scanning point cloud height 

value metrics and canopy height model fragmentation metrics derived from 

healthy trees in plantation larch forest? 

RQ5: Can airborne laser scanning point cloud height value metrics and canopy 

height model fragmentation metrics extracted from individual larch tree crowns 

discriminate between four P. ramorum disease severity categories? 

RQ6: Can automated individual larch tree crowns be correctly classified into 

disease presence and severity categories using airborne laser scanning point 

cloud height value metrics and canopy height model fragmentation metrics?  

In comparison to the previous two chapters, Chapters 6 and 7 concern a different 

remote sensing approach and another series of bacterial phytopathogens in a contrasting 

forest environment. More specifically, the focus of these two chapters concerns the 

application of multispectral imagery acquired via UAV for the assessment of AOD in a 

mature oak-dominated woodland. Chapter 6 presents the research relating to the 

segmentation of individual oak trees subject to varying severities of crown decline as a 

result of AOD. The analysis conducted in the chapter aims to provide an improved 

understanding of the overall performance of photogrammetrically-derived DSMs from 

UAV imagery for the detection of treetops and the isolation of ITCs in a heterogeneous 

deciduous forest affected by AOD. In particular, the chapter considers the influence of 

treetop extraction method and DSM pixel size on the identification and segmentation of 

oak trees across five stages of crown decline. The specific research questions addressed 

in this chapter include:   

RQ7: Can photogrammetry-derived digital surface models acquired via 

unmanned aerial vehicle be applied to the successful identification of treetops and 

crown boundaries in oak trees at five stages of crown decline?  
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RQ8: How do the local maxima and contour methods of treetop extraction 

compare in a mature oak-dominated deciduous woodland affected by acute oak 

decline?  

RQ9: What is the influence of photogrammetry-derived digital surface model 

pixel size on the performance of treetop detection and individual tree crown 

segmentation in a mature oak-dominated woodland affected by acute oak decline? 

The final research questions addressed in Chapter 7 concern the application of UAV-

based multispectral imagery for the assessment of crown decline associated with AOD in 

a mature oak-dominated woodland environment. In particular, the chapter considers the 

application of six vegetation indices (VIs) (NDVI, NDVI-RE, GRVI, GNDVI, MTCI, 

ARI), utilising bands across the visible and near-infrared (NIR) regions of the 

electromagnetic spectrum, to discriminate at the ITC-scale between five categories of 

crown decline severity. In addition, the chapter also considers the method of VI extraction 

from ITCs and its influence on the discrimination of five crown decline severity 

categories. The three methods tested include the mean of all values in ITCs (Mean_All), 

mean of the brightest 80% of pixels in ITCs (Mean_80) and mean of the brightest 20% 

of pixels in ITCs (Mean_20). The chapter addresses several research gaps with regard to 

the assessment of AOD from UAVs and the influence of VI extraction method on the 

application of very high resolution multispectral imagery for the assessment of tree crown 

decline. The specific research questions addressed by this chapter include:  

RQ10: Can the mean NDVI, NDVI-RE, GRVI, GNDVI, MTCI and ARI values 

extracted from individual oak crowns discriminate between five crown decline 

severity categories in a mature oak-dominated woodland affected by acute oak 

decline? 

RQ11: Does the calculation of mean vegetation indices from all pixels, the 

brightest 80% of pixels and the brightest 20% of pixels in individual tree crowns 

influence the discrimination of five crown decline severity categories in oak tree 

crowns affected by acute oak decline?  
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RQ12: Can oak trees be correctly classified into three and five crown decline 

severity categories using vegetation indices extracted from unmanned aerial 

vehicle-based multispectral imagery? 
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Chapter 2: Literature Review 

 

This chapter presents some of the key challenges for the assessment and 

management of phytopathogens in forest environments, with a particular focus on the 

UK. In addition, the content of the chapter also addresses the fundamental concepts 

concerning the acquisition and processing of remotely sensed data for the evaluation of 

vegetation health. Previous research concerning the application of remote sensing for the 

assessment of diseased and or stressed vegetation will also be considered, drawing on 

examples from the fields of forestry and agronomy. The chapter will also highlight ideas 

and findings from the current scientific literature and identify the challenges and 

knowledge gaps within the field that require further research.  

2.1 Forest Environments and Phytopathogens 

2.1.1 Introduction 

Forests provide a vital function in the earth’s biogeochemical systems, supporting 

a range of terrestrial biodiversity (Sturrock et al., 2011). Within forest environments, 

pathogens such as fungi, oomycetes, bacteria, viruses, nematodes and parasitic higher 

plants, are considered an integral component of the ecosystem (Hansen and Goheen, 

2000; Winder and Shamoun, 2006). When situated within their native ranges, pathogens 

present minimal risk to natural ecosystems, unless vegetation is subject extreme 

environmental stress or disturbance (Hansen and Goheen, 2000; Hyun and Choi, 2014; 

Cobb and Metz, 2017). In contrast, pathogens introduced into exotic environments often 

pose a significant risk to plant health, due to the absence of natural resistance in host 

species (Brasier, 2008).  

The term phytopathogen is used to describe an organism, which causes decline 

and deterioration in plant health and condition (Bigler et al., 2006). Anthropogenic 

activities have increased the threat from both native and exotic phytopathogens via 

climatic change and increased movement of plant material (Brasier, 2008). The 

biosecurity threat posed by invasive phytopathogens to native plants and trees has caused 

international concerns with regard to the health of terrestrial ecosystems (Potter et al., 

2011). In addition to the threats posed by phytopathogens, forest environments can also 

be subject to mortality and dieback events as a result of insect pests, with defoliators and 
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borers typically resulting in the greatest damages (Boyd et al., 2013). In many instances, 

the decline in tree health incurred subsequent to infection from phytopathogens, increases 

the likelihood of colonisation by opportunistic insect pests (Bigler et al., 2006; Boyd et 

al., 2013). Forest environments often sustain the most significant losses when the 

dominant tree species is also the primary host of the introduced phytopathogen or insect 

pest (Loo, 2009). The nature of damage in these environments is also dependent upon the 

symptoms presented by affected vegetation and virulence of the infection (Lovett et al., 

2006). Nevertheless, many phytopathogens have previously caused high levels of tree 

mortality and significant changes to forest function and structure (Needham et al., 2016), 

resulting in enduring socio-economic and environmental consequences (Liebhold et al., 

1995; Condeso and Meentemeyer, 2007; Sheremet et al., 2017). 

2.1.2 Phytopathogens in the Context of UK Forestry  

UK forestry has experienced several notable introductions of phytopathogens in 

recent years including Phytophthora alni (alder dieback), Phytophthora ramorum (larch 

disease), Pseudomonas syringae (horse chestnut bleeding canker) (Brasier, 2008) and 

Hymenoscyphus fraxineus (ash dieback) (Mitchell et al., 2014; Baral et al., 2014). Table 

2.1 highlights the potential threats of these introduced phytopathogens to UK forestry 

based on the DEFRA assessment of the UK Plant Health Risk Register (DEFRA, 2016). 

Across the board for all sectors (agriculture, horticulture and forestry) no significant 

variation in the rate or frequency of phytopathogen introductions into the UK was 

observed in the period between 1970 and 2004, despite notable increases in plant imports.  

This may be as the result of the improved health of plant imports and enhanced biosecurity 

at borders (Jones and Baker, 2007). Nevertheless, with minimal research regarding the 

trends of phytopathogen introductions, there is insufficient evidence to evaluate a causal 

relationship between increased trade of plants and plant products and elevated levels of 

introduction events (Waage and Mumford, 2008; MacLeod et al., 2010). Despite this, the 

expanding global trade of plants and plant products still poses the greatest threat to the 

biosecurity of native UK forests and woodlands (Sutherland et al., 2008; Potter et al., 

2011). 
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Table 2.1 – A selection of phytopathogens threatening UK forestry and the risks 

posed based on the DEFRA assessment for the UK Plant Health Risk Register 

(DEFRA, 2016).  

Phytopathogen Major Tree Host 
Likelihood* Impact* 

Value 

of 

Host* 

Relative Risk 

Rating$ 

U M U M U M 

Phytophthora 

alni 
Alder spp. (Alnus) 4 4 4 4 3 48 48 

Phytophthora 

ramorum  
Larch spp. (Larix) 5 4 5 4 5 125 80 

Pseudomonas 

syringae 

Horse Chestnut 

(Aesculus 

hippocastanum) 

5 5 4 4 2 40 40 

Hymenoscyphus 

fraxineus 

Ash (Fraxinus 

excelsior) 
4 4 5 4 5 100 80 

*Scored between 1 (lowest) and 5 (highest). $Calculated via the multiplication of likelihood, impact 

and value of host. Abbreviations: U – unmitigated; M – mitigated. 

2.1.3 Phytophthora ramorum and Larch Disease 

The oomycete P. ramorum (Werres et al., 2001), considered to have originated 

from the Asian continent (Ivors et al., 2004; Brasier et al., 2010), has been recognised as 

the causal agent of two significant landscape-scale dieback events in exotic forest 

environments including ‘sudden oak death’ on the west coast of the USA (Rizzo et al., 

2002) and larch disease in the UK (Webber et al., 2010; Harris and Webber, 2016). 

Biochemical analysis indicates that the P. ramorum populations in North America and 

Europe are biological distinct (Ivors et al., 2006; Van Poucke et al., 2012), nevertheless 

similarities in the phytopathogens behaviour and dispersal mechanisms have been 

observed. Transmission between hosts primarily results from the dispersal of inoculum 

in moist conditions, via rainsplash and wind driven rain (Davidson et al., 2005; Harris 

and Webber, 2016).  

P. ramorum was first identified in the UK in 2002 on Rhododendron ponticum 

(Lane et al., 2003). The establishment of the exotic phytopathogen is thought to have 

occurred as the result of a single introduction from infected nursery stock imported from 

within the European Union (Webber, 2008). Following its introduction into the UK, P. 

ramorum was subsequently confirmed to have infected a Southern Red Oak (Quercus 

falcata) in the Southeast of England (Brasier et al., 2004). The first indications of the 

phytopathogens potential implications for larch tree species were acknowledged in 2009, 
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following multiple reports of P. ramorum infections on Japanese larch (Larix kaempferi) 

across Southwest England. Infected individuals presented symptoms including resin 

bleeds, gingering foliage and defoliation. This represented a major shift in the 

epidemiological behaviour of P. ramorum and marked the beginning of the first 

landscape-scale disease outbreak from the phytopathogen in commercial conifers (Brasier 

and Webber, 2010; Harris and Webber, 2016). As of 2013, P. ramorum had resulted in 

the felling of 16, 000 ha of larch across the UK, including Japanese (Larix kaempferi), 

European (Larix decidua) and hybrid (Larix x eurolepis) species (Forestry Commission, 

2014). The significant spread of P. ramorum during this period was attributed to the 

cooler and wetter summer conditions experienced in 2012, which favoured the 

sporulation and dispersal of the phytopathogen (King et al., 2015). In addition, the dense 

monoculture planting (2,500- 3000 stems per ha) of commercial larch was also 

acknowledged as a causal factor (Harris and Webber, 2016).  

Current distributions of P. ramorum in natural and nursery environments extend 

across all 68 counties in England and Wales (Chadfield and Pautasso, 2012). However, 

when considered in the context of forest environments the distribution of P. ramorum 

demonstrates a heterogeneous pattern, with infections concentrated in Southwest 

England, South Wales and Southwest Scotland. The concentration of P. ramorum 

outbreaks in these regions has been primality influenced by the geographical location of 

susceptible host species (Conyers et al., 2011). Additionally, precipitation (mean monthly 

rainfall) (Chadfield and Pautasso, 2012) and proximity to garden centres and nurseries 

(Xu et al., 2009) have also been significantly correlated with P. ramorum distribution. 

Present approaches employed to monitor the spread of P. ramorum at the landscape-scale 

in the UK are primarily focused on the application of annual surveys conducted manually 

by tree-health surveyors via helicopter (Medcalf et al., 2011). In the context of the spatial 

extent of forests required for survey, of the 1.54 million ha of productive conifer forest in 

the UK (Ferris et al., 2000), approximately 10% of this is occupied by larch tree species 

(Brasier and Webber, 2010; Webber et al., 2010; Potter and Urquhart, 2017). Due to the 

deciduous nature of larch species (Gower and Richards, 1990), surveys are conducted in 

spring following the flush of larch needles. In circumstances whereby P. ramorum is 

suspected, infections are confirmed through a combination of visual inspections in 

addition to field and laboratory based testing (Tracy, 2009). Following the verification of 

a positive P. ramorum infection, a statutory plant health notice is issued under the Plant 
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Heath Order 2004 (Statutory Instrument 2004 No 3213), requiring infected stock and a 

surrounding buffer zone to be felled (Tracy, 2009; Harris and Webber, 2016). 

2.1.4 Acute Oak Decline 

A series of oak declines have previously been reported in the UK and across 

Europe over the last century. Despite the widespread occurrence and longevity of declines 

in oak tree species, causal factors and symptoms presented by affected individuals have 

varied considerably (Thomas et al., 2002; Denman and Webber, 2009). In the UK 

recurring periods of decline in native oaks including English oak (Quercus robur) and 

Sessile oak (Quercus petraea) have been attributed to a range of biotic and abiotic factors 

such as drought, air quality, high levels of soil nitrogen, root disease and insect defoliation 

following episodes of mildew. Based on the epidemiological characteristics of oak 

declines the resulting deterioration can be separated into two broad categories, acute oak 

decline (AOD) and chronic oak decline (COD). AODs are typically episodic events with 

rapid appearance over a five- to ten-year period, resulting in high levels of tree mortality 

before stabilising and tailing off. In contrast, CODs are characterised by a slower 

progression of symptom development, longer persistence in the environment and lower 

levels of tree mortality (Denman and Webber, 2009). 

In the UK, the latest episode of AOD resulting from bacterial phytopathogens, has 

caused particular concern as a result of the rapid deterioration and high levels of mortality 

in affected oak trees (Denman and Webber, 2009; Denman et al., 2010). The exact 

identity of the casual bacteria has been an area of uncertainty, however it is presently 

understood that AOD has a polymicrobial cause, with bacteria including Gibbsiella 

quercinecans and Brenneria goodwinii exhibiting an important role in symptom 

development (Brady et al., 2010; Denman et al., 2012; Brady et al., 2016; Denman et al., 

2016). AOD has been documented in native oak species including English oak (Q. robur) 

and Sessile oak (Q. petraea) as well as the non-native Turkey Oak (Quercus cerris) 

(Denman et al., 2014). AOD affects mature trees, causing the death of infected individuals 

within as little as 3 years, following the appearance of initial symptoms (Denman and 

Webber, 2009). The most distinctive symptom associated with AOD is the presence of 

dark stem bleeds from lesions or vertical cracks between the bark plates. Crown condition 

also deteriorates as a result of AOD (Brady et al., 2010; Denman et al., 2010), however 

the relationship between stem and foliar symptom severities are still unclear (Denman et 
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al., 2014). Stems in the later stages of AOD may also present D-shaped exit holes caused 

by the opportunistic colonisation by the buprestid beetle Agrilus biguttatus (Denman et 

al., 2010; Brown et al., 2015). 

At present, the geographic distribution of AOD in the UK extends across southern 

and midland England and into Wales (Denman and Webber, 2009). As a result of the 

insufficient scientific evidence regarding the biological causes and spread of AOD, 

management guidelines offer generic advice reflecting conventional practise for 

containing phytopathogens and unspecific recommendations for biosecurity. Felling of 

infected individuals is not currently recommended, unless immediate safety concerns are 

noted. However, landowners are advised to prevent access to affected trees and minimise 

contact with stem bleeds to reduce infection transmission (Denman et al., 2010).  

2.1.5 Management of Phytopathogens in UK Forestry 

 The contrasts present in the two examples highlighted above (larch disease and 

AOD) demonstrate the complexities faced when managing the threats posed by 

phytopathogens to forest and woodland environments in the UK. One of the greatest 

challenges with regard to preparation for new outbreaks, arises from the fact that many 

potential invasive phytopathogens are at present unknown to science, as was the case with 

P. ramorum prior to its introduction to the USA (Potter et al., 2011) and the bacteria 

associated with the latest episode of AOD (Denman et al., 2016). Resultantly, scientific 

understanding regarding phytopathogen-host interactions evolves following a new 

outbreak, via both field observations and laboratory analyses (Potter et al., 2011). The 

example of the AOD outbreak in the UK, illustrates the difficulties in implementing a 

targeted phytosanitary response when scientific understating is limited (Denman et al., 

2010).  

The monitoring of forest environments is a key strategic activity with regard to 

the management of exotic phytopathogens and insect pests (Sturrock et al., 2011). 

However, the identification of new infections within the landscape can be problematic 

given that forests and woodlands account for 13% of total land cover in the UK (Riutta 

et al., 2014). In addition, trees within urban landscapes, which arguable exhibit a greater 

risk to new phytopathogens due to their proximity to anthropogenic activity, also require 

monitoring for new infections (Tubby and Webber, 2010). Present approaches employed 

for the identification of new outbreaks of phytopathogens and insect pests in the UK 
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typically rely on reports from the general public or landowners (Forestry Commission, 

2014), in addition to information captured by an increasingly stretched workforce of tree-

heath surveyors and plant pathologists (Jones and Baker, 2007). Landscape level 

monitoring of areas susceptible to known phytopathogens is traditionally conducted 

manually via sketch maps and photographs collected during aerial surveys (Leckie et al., 

2005). This approach is currently employed with regard to P. ramorum monitoring in 

England, Wales, Scotland and Northern Ireland (Medcalf et al., 2011; National Assembly 

for Wales, 2016). Nevertheless, such surveys are labour intensive (Coops et al., 2003) 

and rely on human judgement and interpretation which can be hindered by a range of 

factors including light conditions, angle of view, topography, surveyor training and 

experience, fragmentation of landscapes, patterns of defoliation and surveyor fatigue 

(Leckie et al., 2005). In addition, surveys are typically of low positional accuracies and 

coarse spatial scales (Foster et al., 2017). Furthermore, in newly affected areas the 

establishment of phytopathogens and symptom expression is often below the threshold 

levels for identification in these landscape-level surveys (Alexander and Lee, 2010; Filipe 

et al., 2012). 

Subsequent to the regional escalation of a new phytopathogen or insect pest 

outbreak in the natural environment, management can become complex with many parties 

and stakeholders required to provide a collective and coherent response (Potter and 

Urquhart, 2017). Particular difficulties can arise with regard to the definition of financial 

and institutional responsibilities (Potter et al., 2011). In the case of P. ramorum, the Welsh 

Government recognised the high financial and resource inputs required for total 

eradication of the phytopathogen. Resultantly the preferred strategy focused on slowing 

the spread of P. ramorum in the disease limitation zone (DLZ) outside of the heavily 

affected core disease zone (CDZ) centred in South Wales (National Assembly for Wales, 

2016). The difficulties implementing and enforcing management strategies for 

phytopathogens can also be highlighted in the case of P. ramorum. For example, in 

relation to the completion rates of felling on time under Statutory Plant Health Notice 

(Table 2.2), the private sector fell below the percentages achieved in the public sector 

(WGWE), especially for the DLZ. Nevertheless, co-operation between stakeholders is 

essential for successful development of effective management strategies for invasive 

phytopathogens (Pautasso et al., 2012).  
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Table 2.2 - Completion of felling on time under Statutory Plant Health 

Notice in Wales up to April 2015 (National Assembly for Wales, 2016). 

Ownership 
Completed (%) 

CDZ DLZ 

WGWE 52 85 

Private 47 39 

Abbreviations: CDZ – Core Disease Zone, DLZ – Disease Limitation Zone, WGWE – 

Welsh Government Woodland Estate. 

 

Non-native species of plant, insect, bacteria and fungi are estimated to result in a 

cost of ~ £2billion year-1 to the UK economy (Tubby and Webber, 2010). Planning for 

the future risk posed by exotic phytopathogens and insect pests is an important component 

of their overall management (Sturrock et al., 2011). Whilst efforts should be focused on 

preventing the introduction of exotic phytopathogens via stricter biosecurity protocols 

and harsher penalties on biosecurity breaches, the introduction of new phytopathogens is 

inevitable (Brasier, 2008). Resultantly, future management of phytopathogens in UK 

forests and woodlands, requires a collaborative approach from all stakeholders (Pautasso 

et al., 2012), utilising technical and organisational innovations to ensure the early 

detection of new outbreaks and the minimisation of economic and ecological 

consequences (Lawrence and Labus, 2003; Boyd et al., 2013).  

2.2 Remote Sensing for Forest Environments  

2.2.1 Principles of Remote Sensing 

In the broadest sense, the term remote sensing denotes the acquisition of data 

regarding objects via sensors, which require no direct contact with the specific target or 

entity (Nutter et al., 2010).  Remote sensing techniques encompass a range of passive and 

active sensors mounted on satellite, aircraft and UAV platforms, which have all 

previously been applied to the assessment and monitoring of vegetation (Huete, 2012). 

Recent developments in the application of remote sensing for the study of forest 

environments have facilitated a shift in the emphasis of research from data preparation to 

the extraction of information (Wulder and Franklin, 2003). Present applications for 

remote sensing in forest environments cover a vast variety of disciplines including forest 

inventory development (Ørka et al., 2013), conservation monitoring (Nagendra et al., 

2013), forest ecology (Lefsky et al., 2002), fire monitoring (Lentile et al., 2006), biomass 
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estimation (Koch, 2010), and forest health assessment (Lausch et al., 2016). The potential 

capabilities of a particular remotely sensed dataset will be dependent on the sensor and 

platform used for data collection, in addition to the datasets temporal and spatial 

resolutions (Turner et al., 2003; Lausch et al., 2016).  

2.2.2 Sensors 

Remote sensors can be categorised as passive or active, based on the nature or 

origin of the radiation measured. Once distinguished in this way, sensors can be further 

characterised by the wavelength interval of the electromagnetic spectrum detected by the 

sensor (Turner et al., 2003). Passive sensors measure reflected radiation, without the 

requirement of an emitted pulse from the sensor itself. Optical sensors are the most 

common example of passive remote sensing, measuring reflected radiation from the 

earth’s surface, across the visible and infrared regions (0.4 – 14 μm) of the 

electromagnetic spectrum (Turner et al., 2003). These sensors have the longest history in 

the field of remote sensing (Song, 2012) and are the most widely used system for the 

assessment of terrestrial ecosystems (Dash and Ogutu, 2016). Optical sensors are often 

distinguished as multispectral or hyperspectral, in reference to the number and bandwidth 

of individual channels (Goetz, 2009).   

In contrast, active sensors emit a pulse of radiation towards a surface and measure 

the energy reflected back to the sensor (Turner et al., 2003). Light detection and ranging 

(LiDAR) is an active sensor, using pulses of laser light to record the distance between 

target and sensor. Additional parameters regarding the position and altitude of the sensor, 

allow the absolute three-dimensional position of the target to be recorded (Lefsky et al., 

2002). Based on the inherent characteristics of the LiDAR, two broad categories of the 

system including discrete-return and full-waveform, are currently in operation from the 

airborne platform. Discrete-return sensors provide vertical information via series of return 

intervals (up to 5), whilst in comparison, full-waveform LiDAR provides sub-metre 

vertical profiles via digitized vertical sampling (Lim et al., 2003). The three-dimensional 

nature of remotely sensed datasets derived from LiDAR, facilitates the extraction of 

structural parameters for forest environments (Popescu et al., 2003). Radio detection and 

ranging (radar) is also another example of an active sensor previously applied to the 

remote assessment of forests (Boyd and Danson, 2005). In this instance, microwave 

radiation is emitted from the sensor, with the timing and character of the backscatter 

received applied in the assessment of forest character and condition (Turner et al., 2003).  
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2.2.3 Platforms 

 Three main platforms can be considered for the remote sensing of forest 

environments, these include satellite, aircraft and UAV (Berni et al., 2009). Whilst space 

and airborne mounted sensors can be considered more traditional platforms (Richards and 

Jia, 2006), recent technical advancements and market-demand have perpetuated the 

application of UAVs for the collection of remotely sensed data (Colomina and Molina, 

2014). In relation to the assessment of forest landscapes, each remote sensing platform 

presents its own advantages and limitations (Wang et al., 2015). 

The expansion and development of satellite remote sensing began following the 

launch of Landsat 1 in 1972 (Schowengerdt, 2007). Subsequently, more than 50 satellites 

have been launched, contributing to the remote monitoring and assessment of terrestrial 

ecosystems (Dash and Ogutu, 2016). The global nature of satellite remote sensing 

facilitates the extraction of information regarding forest areas at regional, national and 

international scales (Hyyppä et al. 2000; Dash and Ogutu, 2016). The repetitive data 

collection provided by satellites also facilitates the acquisition of datasets with 

comparatively high temporal resolution (Dash and Ogutu, 2016). The satellite platform 

for remote sensing at present, offers a range of sensors for monitoring forest landscapes 

including optical (multispectral and hyperspectral) (Schowengerdt, 2007), LiDAR 

(ICEsat/GLAS) (Zwally et al., 2002) and radar (synthetic aperture radar) (Koch, 2010). 

The greatest limitation regarding the application of satellite data for the assessment of 

forest environments concerns the spatial resolution of the acquired datasets (Poona and 

Ismail, 2013). For example, limitations are incurred when pixels from course resolution 

optical imagery provide a combined reflectance signature from trees, understorey, leaf 

litter and bare-earth (Wulder, 1998). Additional limitations associated with satellite 

remote sensing also concern the modification of reflectance signatures by the atmosphere 

(Schowengerdt, 2007). For example, cloud cover can be particularly problematic with 

regard to the optical remote sensing of some regions of the world (Turner et al., 2003). 

Airborne remote sensing has been employed since the 1940s, in the form of aerial 

photographs, for the assessment of forests (Carleer and Wolff, 2004). Current airborne 

sensors encompass a range of active and passive remote sensing (Lefsky et al., 2002), 

with typical spatial resolutions of 0.2 to 2 m and fields of view between 2 and 5 km 

(Nebiker et al., 2008). Whilst airborne sensors typically result in the acquisition of higher 
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resolution datasets, in comparison to those acquired via satellite, a trade-off in the area of 

ground covered is resultantly incurred (Wulder et al., 2004). Temporal resolution of 

airborne datasets is achieved by the commission of multiple flights for data acquisition, 

which can prove expensive for many organisations (Suárez et al., 2005). Resultantly, data 

acquisition costs are one of the greatest limitations associated with airborne remotely 

sensed data. Additional limitations associated with the platform also include the effects 

of cloud cover (Suárez et al., 2005) and geometric artefacts in datasets due to sensor optics 

(Wulder et al., 2004). 

In comparison to space and airborne platforms, UAVs provide a low-cost 

alternative for the remote assessment of forests and woodlands. The centimetre 

resolutions associated with UAV datasets, provide the highest spatial resolutions of the 

three platforms (Di Gennaro et al., 2016). These systems can be easily mounted with a 

variety of spectral sensors including multispectral and hyperspectral cameras, in addition 

to light-weight LiDAR units (Torresan et al., 2016). The very high spatial resolutions 

associated with optical datasets gathered from UAVs have also facilitated the expansion 

of photogrammetric point clouds (PPCs) as a means of characterising surface elevation 

(Michez et al., 2016). Furthermore, the low costs associated with data acquisition 

facilitate the opportunity for affordable repeat surveys, providing high temporal 

resolutions (Grenzdörffer et al., 2008). These particular features make UAVs an attractive 

platform for the collection of remotely sensed datasets for forest and woodland 

environments. Nevertheless, the trade-off for very high spatial resolution comes via 

significant reductions in spatial coverage, with data capture confined to local scales 

(Lehmann et al., 2015). Whilst UAVs have become an increasingly utilised remote 

sensing platform in environmental science since the late 2000s (Michez et al., 2016), the 

operational application of UAVs in the forestry sector at present is typically experimental 

(Tang and Shao, 2015; Gambella et al., 2016).   

In many situations the application of a holistic remote sensing approach, which 

combines an array of sensors and or platforms is often preferable for the assessment of 

forest environments (Coops et al., 2006; Wang et al., 2015). Whilst remote sensing offers 

a range of sensors and platforms with potential benefits to forestry, the application of 

these remote sensing resources across the sector requires their operationalisation in forest 

management (Boyd and Danson, 2005). Traditionally, the forestry sector in the UK has 

been slow to make operational use of technological development in remote sensing, 
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largely due to financial costs and lack of specialist staff. Remotely sensed datasets, such 

as optical imagery and LiDAR, are typically acquired via an airborne platform for 

applications in the UK forestry sector (Suárez et al., 2005).  

2.3 Processing Remotely Sensed Data for the Assessment of Phytopathogens in 

Forestry 

This section will consider processing techniques for the utilisation of remotely 

sensed datasets in the assessment of disease in forest environments, with particular focus 

on very high resolution optical datasets and ALS. Processing techniques will be reviewed 

broadly across the discipline of forestry with additional directed emphasis on 

methodologies for the assessment of forest phytopathogens and insect pests. 

2.3.1 Field Data Collection 

Prior to the utilisation of remotely sensed datasets for forest assessment, 

information regarding a series of biophysical forest parameters must firstly be acquired 

from field surveys (Popescu et al., 2003). To determine the relationship between remotely 

sensed data and insect pest or phytopathogen occurrence in vegetation, ground based 

quantification of disease presence and severity must first be undertaken for validation to 

be conducted (Stone and Coops, 2004; Reid et al., 2016; Shendryk et al., 2016). In some 

instances, established standard tree health metrics can be used to characterise the degree 

of damage sustained by diseased vegetation (Reid et al., 2016) such as crown vigour 

(Millers et al., 1991), canopy closure (Reid et al., 2016) and crown condition 

classification guides (Schomaker et al., 2007; Wang et al., 2015). Nevertheless, as a result 

of the variability in symptom expression following infection from a particular 

phytopathogen or insect pest in a certain host tree species (Lovett et al., 2006), specific 

metrics or measures of stem and foliage deterioration may also be collected (Brown et 

al., 2016). Due to the subjective nature of visually determined metrics, consistency can 

be maintained when observations are recorded by the same surveyor (Nutter et al., 2010). 

Locations selected for field-based measurements and observations should also capture the 

tree health variability of the particular study site (Shendryk et al., 2016).  

2.3.2 Spectral Reflectance and Vegetation Indices 

 Optical remotely sensed datasets span the visible and infrared regions of the 

electromagnetic spectrum (Turner et al., 2003). Certain sections or bands of the spectrum 
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in these regions are of particular use for the assessment of vegetation. The selection of 

useful reflectance bands for the study of forest environments is informed by a basic 

understanding of the general spectral reflectance characteristics of vegetation. Figure 2.1 

presents the typical spectral reflectance exhibited by a green leaf, highlighting the slight 

peak in reflectance at 550 nm, in addition to a dominant and rapid rise in reflectance at 

the red-edge region (690-740nm) (Curran et al., 1990; Blackburn, 2007). This red-edge 

phenomenon is the result of contrasting low and high reflectance in the red and NIR 

regions of the electromagnetic spectrum, caused by chlorophyll absorption and internal 

leaf scattering respectively (Nilsson, 1995). As a collective, leaf pigments such as 

chlorophylls, exert a dominant influence on the wavelengths of light that are absorbed 

and reflected, particularly in the visible region (Thomas and Gausman, 1977). However, 

each specific pigment exhibits unique properties of spectral absorption, which manifests 

into the overall spectral reflectance (Figure 2.2) (Blackburn, 2007). With limited pigment 

absorption in the NIR, water content within plant leaves exhibits a dominant control on 

reflectance within this region of the spectrum. Furthermore, the structural composition of 

plant leaves including hairs, waxes, tissue density and airspaces, also influence the 

spectral reflectance signature of vegetation (Jones and Vaughan, 2010). Variability in all 

these influencing factors with regard to genera, species, season and environmental change 

all result in slight variation in the spectral properties of vegetation (Sims and Gamon, 

2002). 

As a result of infection by phytopathogens, the biophysical properties of 

vegetation are altered, influencing spectral characteristics with quantifiable reflectance 

changes (Blackburn, 2007; Pu et al., 2008). When such changes are explicitly understood, 

they can be exploited for the purpose of disease detection (Stone et al., 2008). In some 

instances, such changes can facilitate the detection of phytopathogens or insect pests prior 

to the onset of visible symptoms (Carter et al., 1996; Pontius et al., 2008). In the context 

of spectral reflectance, knowledge regarding the most sensitive wavelengths to a 

particular phytopathogen or insect pest in a specified host can inform disease detection 

via remote sensing (Foster et al., 2017). Nevertheless, optical remote sensing in forestry 

typically involves the assessment of entire canopies rather than individual leaves. As a 

result, consideration has to be given to the dynamics and characteristics of the entire 

vegetated environment (Jones and Vaughan, 2010; Waser et al., 2014). 
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Vegetation indices (VIs) are often employed in the assessment of vegetation to 

isolate reflectance bands of interest in optical datasets (Reid et al., 2016). VIs are 

mathematical combinations of narrow-band optical reflectance (Devadas et al., 2009). 

The most commonly employed vegetation index (VI) for the assessment of vegetation is 

the normalised difference vegetation index (NDVI), which utilises the red and NIR 

wavelengths of the electromagnetic spectrum. In the case of close range optical datasets, 

Figure 2.1 – The characteristic reflectance spectrum of a typical 

green leaf across the visible (400-700nm) and NIR wavelengths 

(700-1000nm) (Blackburn, 2007). 

Figure 2.2 – Absorption spectra of the major pigments of plant tissue 

(Blackburn, 2007). 
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VIs that utilise the visible spectrum have been noted to outperform NDVI for the 

assessment of plant condition (Nijland et al., 2014). 

For the assessment of disease, VIs which use wavelengths of reflectance subject 

to alteration as the result of infection are selected for disease detection (Lévesque and 

King, 2003). Previous studies have noted the particular sensitivity of wavelengths in the 

green, red and NIR regions of the electromagnetic spectrum, to infection by 

phytopathogens and insect pests (Coops et al., 2003; Lawrence and Labus, 2003; Leckie 

et al., 2005; Wulder et al., 2006).  To demonstrate the range of VIs available, Table 2.3 

highlights a selection which have previously been applied for disease detection in 

vegetation. The suitability of a particular VI for the assessment of disease, will be 

dependent upon a range of factors, principally regarding the specific symptoms expressed 

by infected vegetation (Barry et al., 2008; Mirik et al., 2012; Yuan et al., 2014). In 

addition, the availability of specific bands for the calculation of VIs is also a predominant 

influence in the selection of VIs for the study of phytopathogens and insect pests in 

vegetated environments. Bandwidth is also of particular importance, with hyperspectral 

remote sensing providing greater specificity to regions of the electromagnetic spectrum 

in comparison to more traditional multispectral sensors, which are limited to a smaller 

number of broader bands (Pu et al., 2008; Devadas et al., 2009; Adelabu et al., 2014).  

The extraction of unique spectral signatures at the ITC-scale also requires careful 

consideration of spectral variability within ITCs, especially in relation to very high 

resolution optical datasets (Nielsen et al., 2014; Lehmann et al., 2015). For example, in 

the case of UAV-based imagery, thousands of pixels can represent one individual tree 

canopy (Garcia-Ruiz et al., 2013) resulting in serious challenges for the extraction of 

relevant data and the elimination of noise, such as pixels associated with shadow (Näsi et 

al., 2015). Methodologies employed to minimise the extraction of noise related pixels 

from tree crowns have previously included the selection of the brightest pixels within 

ITCs (Näsi et al., 2015), the selection of sunlight portions of the canopy (Leckie et al., 

1992) and a halo approach which ignores the brightest central pixels associated with the 

treetop (Coops et al., 2003). Nevertheless, no methodology has been consistently reported 

to provide the optimal extraction of spectral information and VIs from ITCs, especially 

for the assessment of phytopathogens and insect pests in forest environments.  
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Optical imagery acquired via all remote sensing platforms has previously been 

applied for forest health assessment (Fraser and Latifovic, 2005; de Beurs and Townsend, 

2008; Nielsen et al., 2014; Näsi et al., 2015; Nainanayake et al., 2016; Pasquarella et al., 

2017), however in the context of this thesis, specific emphasis is placed on data acquired 

via aircraft and UAVs. By comparison, aircraft demonstrate a longer history in the 

application of optical remote sensing for phytopathogen and insect pest assessment 

(Everitt et al. 1999; Coops et al., 2003) than UAVs (Näsi et al., 2015). Nevertheless, both 

present feasible options for the acquisition of high resolution optical imagery with the 

selected platform largely influenced by the spatial extent of the study area and available 

financial resources. Operational applications of optical sensors from these two platforms 

for the remote assessment of phytopathogens in forestry require consideration of several 

key factors. Firstly, the date of data acquisition is of particular importance, especially in 

the case of deciduous tree species. For example in the case of oak trees, early immature 

leaves exhibit a depressed reflectance in the NIR even when the tree appears green (Liu 

et al., 2006). In addition, phytopathogen-host interactions may also vary seasonally, as a 

result certain periods of the year will facilitate the optimal spectral distinction between 

healthy and infected vegetation (Stone and Coops, 2004; Liu et al., 2006; Johnson et al., 

2013). Acknowledgment should also be given to potential complications arising in 

situations whereby multiple causes of disease and or stress occur within the same 

landscape (Hatala et al., 2010). These variables ultimately require attention prior to and 

during the acquisition and analysis of optical datasets for the assessment of 

phytopathogens in forest environments. 
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Table 2.3 – Vegetation indices previously applied to the assessment of phytopathogens and insect pests in vegetation (* previously applied in 

forestry).  

Index Equation Index Reference Disease Assessment Examples 

ARI: Anthocyanin 

Reflectance Index* 
(1/R550) – (1/R700) Gitelson et al. (2001) 

Stress in Eucalypts (Eucalyptus globulus, E. grandis, E. pilularis) (Barry et al., 2008); Rust 

infection (Puccinia striiformis, P.  graminis, P.  triticina) in wheat leaves (Triticum aestivum) 

(Devadas et al., 2009); Fungal pathogens (Cercospora beticola, Erysiphe betae, Uromyces 

betae) in sugar beet (Beta vulgaris) (Mahlein et al., 2010). 

DVI: Difference 

Vegetation Index 
NIR - Red Tucker (1979) 

Leaf spot (Cercospora beticola) in sugar beet (Beta vulgaris) (Steddom et al., 2003); 

Verticilium wilt in cotton (Chen et al., 2011). 

ExG: Excess 

Greenness* 
2*Green – (Red + Blue) Nijland et al. (2014) Tree and plot health metrics in Lodgepole pine (Pinus contorta) (Reid et al., 2016). 

GCC: Green Chromatic 

Coordinate* 

Green/(Red + Blue + 

Green) 
Nijland et al. (2014) Tree and plot health metrics in Lodgepole pine (Pinus contorta) (Reid et al., 2016). 

GNDVI: Green 

Normalised Difference 

Vegetation Index* 

(NIR – Green)/(NIR + 

Green) 
Gitelson et al. (1996) 

Russian wheat aphid (Diuraphis noxia) damage (Mirik et al., 2012); Bark beetle (Ips 

typographus) detection in Norway spruce (Picea abies) (Ortiz et al., 2013); Disease 

(Pseudomonas syringae) in kiwifruit (Actinidia spp.) (Taylor et al., 2014). 

GRVI: Green-Red 

Vegetation Index 

(Green - Red)/(Green + 

Red) 
Tucker (1979) Thrips (Thrips tabaci) damage in cotton (Ranjitha et al., 2014). 

GI: Greenness Index  R554/R677 
Zarco-Tejada et al. 

(2005) 

Yellow rust (Puccinia striiformis), powdery mildew (Blumeria graminis) and wheat aphid 

(Sitobion avenae) in wheat (Yuan et al., 2014). 

MTCI: MERIS 

terrestrial chlorophyll 

index 

(NIR - Red-edge)*(Red-

edge - Red) 

Dash and Curran 

(2004) 
Disease (Pseudomonas syringae) in kiwifruit (Actinidia spp.) (Taylor et al., 2014). 

NDVI: Normalized 

Difference Vegetation 

Index* 

(NIR – Red)/(NIR + Red) Rouse et al. (1974) 

Eurasian woodwasp (Sirex noctilio) in pine (Pinus 

patula) (Ismail et al., 2007); Bark beetle (Ips typographus) detection in Norway spruce (Picea 

abies) (Ortiz et al., 2013); Emerald ash borer (Agrilus planipennis) in ash trees (Fraxinus spp.) 

(Murfitt et al., 2016). 

NDVI-RE: Normalized 

Difference Index Red 

Edge* 

(NIR – Red-edge)/(NIR + 

Red-edge) 

Gitelson and 

Merzlyak (1994) 

Bark beetle (Ips typographus) detection in Norway spruce (Picea abies) (Ortiz et al., 2013); 

Insect defoliation (mopane worm) in mopane woodland (Adelabu et al., 2014); Disease 

(Pseudomonas syringae) in kiwifruit (Actinidia spp.) (Taylor et al., 2014). 

Normalised Red* R/(R + G + NIR) Sripada et al. (2006) Health of Black Alder (Alnus glutinosa) (Michez et al., 2016). 

RGI: Red Green Index* Red/Green Coops et al. (2006) 
Stress in Eucalypts (E. grandis, E. pilularis) (Barry et al., 2008); Spruce beetle (Dendroctonus 

rufipennis) in Engelmann spruce (Picea engelmannii) (Foster et al., 2017). 

SR: Simple Ratio R745/R675 
Birth and McVey 

(1968) 

Laurel wilt (Raffaelea lauricola) in avocado trees (Persea americana) (Sankaran et al., 2012); 

Hemlock woolly adelgid (Adelges tsugae) in Hemlock (Tsuga spp.) (Hanavan et al., 2015). 
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2.3.3 Airborne Laser Scanning Point Clouds and Forestry Metrics 

 ALS produces three-dimensional point clouds, which in the case of discrete return 

sensors, exhibit the height values of the first and last return laser pulses across the 

sampling area (Lim et al., 2003). These point clouds are typically subject to a height 

normalisation process, which ensures each point represents the relative height above 

ground (Khosravipour et al., 2014). To extract useful information regarding forest 

structure from these point clouds, metrics utilising various characteristics of laser returns 

can be calculated (Kwak et al., 2010). Broadly speaking, metrics derived from ALS point 

cloud height values for the assessment of forest structure can be separated into three 

overarching categories, these include height-based metrics and percentiles, distributional 

metrics and cover metrics. Height-based metrics and percentiles summarise patterns 

regarding the height of ALS returns. Distributional metrics concern the distribution of 

returns through the canopy profile, whilst cover metrics typically compare two subsets of 

points to produce a variety of indices (Coops et al., 2009; Kantola et al., 2010). In order 

to remove the influence of understorey vegetation, a cut-off height, typically between 1 

and 2 m, is applied during the calculation of metrics (Andersen, 2009; Hopkinson et al., 

2016; Zellweger et al., 2016). ALS point cloud metrics from all three categories have 

previously been applied across a variety of forest environments to establish a range of 

biophysical parameters including tree height, foliage profiles, canopy structure (Coops et 

al., 2007), canopy health and crown defoliation (Coops et al., 2009; Kantola et al., 2010).  

In diseased trees, defoliation and crown dieback are common symptoms of 

infections by phytopathogens and insect pests, which result in structural changes to the 

vegetation (Coops et al., 2009). Sensors such as ALS, which provide high resolution 

information regarding the three-dimensional character of vegetation can be utilised to 

assess structural changes in forest environments (Kwak et al., 2010). In the case of disease 

detection, metrics derived from ALS point cloud height values to assess defoliation and 

dieback utilise the theory that laser pulses will increasingly intercept the forest canopy 

when foliage is lost (Coops et al., 2009; Kwak et al., 2010; Bright et al., 2013). Table 2.4 

summarises the metrics derived from ALS point cloud height values that have previously 

been applied in the assessment of insect pest defoliation in forested environments. 

However, none of the examples were noted in relation to the assessment of 

phytopathogens. 
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A range of challenges and limitations should also be acknowledged with regard 

to the operational applications of ALS for phytopathogen and insect pest assessment in 

forestry. For example, structural variations in canopy architecture as a result of stand age, 

species and composition will all alter the ALS point clouds acquired for healthy tree 

crowns (Ørka et al., 2009). In specific relation to tree height, limited attention in the 

Table 2.4 – Metrics derived from ALS point cloud height values previously applied to 

the assessment of defoliation and decline in forest environments. 

Metric Equation Disease Assessment Examples 

Maximum 

Height 

Maximum height of 

LiDAR returns from the 

crown 

Green and grey attack phases of mountain pine beetle 

(Dendroctonus ponderosae) in Lodgepole pine (Pinus 

contorta) at individual tree level (Coops et al., 2009). 

Mean Height �̅� =  
∑ 𝑥

𝑁
 

Green and red attack phases of mountain pine beetle 

(Dendroctonus ponderosae) in Lodgepole pine (Pinus 

contorta) at individual tree level (Coops et al., 2009). 

Standard 

Deviation of 

Height 
𝜎 = √

1

𝑁
 (𝑥𝑖 − 𝑢)2 

Green and grey attack phases of mountain pine beetle 

(Dendroctonus ponderosae) in Lodgepole pine (Pinus 

contorta) at individual tree level (Coops et al., 2009). 

Percentiles  

Height of the [X]th 

percentile of total tree 

height 

Common pine sawfly (Diprion pini) defoliation in Scots 

pine (Pinus sylvestris) (70th percentile) (Kantola et al., 

2010). 

Bicentiles 

Proportion of returns 

below [X]% of total 

height 

Common pine sawfly (Diprion pini) defoliation in Scots 

pine (Pinus sylvestris) at the plot level (B80 and B90) 

(Vastaranta et al., 2013a) and individual tree level (B10, 

B20, B30, B40, B50, B60) (Kantola et al., 2010). 

Number of 

Canopy Returns 

Number of returns from 

the canopy 

Red and grey attack phases of mountain pine beetle 

(Dendroctonus ponderosae) in Lodgepole pine (Pinus 

contorta) at individual tree level (Coops et al., 2009). 

Ground Return 

Ratio 

Ground returns / Total 

returns 
Damage from forest fire (Kwak et al., 2010). 

Cover 
First returns (<2m) / 

Total returns 

Plot scale assessment of mountain pine beetle 

(Dendroctonus ponderosae) in Lodgepole pine (Pinus 

contorta) (Coops et al., 2009). 

Crown Area 
Crown area as a convex 

hull 

Common pine sawfly (Diprion pini) defoliation in Scots 

pine (Pinus sylvestris) at the individual tree level 

(Kantola et al., 2010). 
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scientific literature has at present, concerned the application of metrics derived from ALS 

point cloud height values for disease detection across a range of stand ages. Additional 

limitations can also be acknowledged in the case of infections which begin in the mid- to 

lower-canopy. In these instances, disease detection may be hindered, especially in the 

case of discrete return ALS, which biases the resulting datasets against foliage located in 

these regions of the crown (Lovell et al., 2003). The identification of dead trees can also 

be complicated due to the minimal interaction of ALS pulses with dead limbs and stems 

(Lovell et al., 2003). Further difficulties have also been noted in circumstances where 

dead individuals are located in clusters or underneath leafy canopies (Lee and Lucas, 

2007). In addition, the potential impacts of ALS point density should also be considered 

(Kantola et al., 2010). However, Vastaranta et al. (2013a) noted little sensitivity to point 

cloud density with regard to the assessment of the common pine sawfly (Diprion pini) 

and the defoliation of Scots pine (Pinus sylvestris).  

2.3.4 Canopy Height Models 

In the remote assessment of forest environments, ALS point clouds are commonly 

interpolated to produce two dimensional raster datasets. Products typically generated 

include digital terrain models (DTMs) and digital surface models (DSMs) calculated 

using the last and first ALS returns respectively (Jakubowski et al., 2013). Subsequently, 

canopy height models (CHMs) representing the relative height of above-ground 

vegetation, can be constructed by the subtraction of the DTM from the DSM (Koch et al., 

2006). The output cell size of ALS-derived raster products is informed by both the point 

density (points/m2) and the proposed application of ALS datasets (Khosravipour et al., 

2014). 

CHMs constructed using the DSM minus DTM methodology (CHMstandard) have 

been widely applied across forest environments (Van Leeuwen et al., 2010; Jakubowski 

et al., 2013). Nevertheless, these products are subject to surface irregularities, often 

referred to as data pits or holes. The presence of these data pits can present difficulties in 

the extraction of forest parameters, especially at the ITC-level (Ben-Arie et al., 2009; Van 

Leeuwen et al., 2010; Khosravipour et al., 2014). Despite the uncertainty surrounding the 

specific origin of these pits, cited causal factors have been acknowledged during the 

acquisition and processing of ALS datasets (Ben-Arie et al., 2009; Véga and Durrieu, 

2011), these include the penetration of laser beams through the canopy, merging of ALS 

flight lines (Leckie et al., 2003), classification of ground and non-ground points (Kraus 
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and Pfeifer, 1998) and interpolation of point clouds to raster datasets (Axelsson, 1999). 

Furthermore, in forest environments subject to defoliation and dieback, the more complex 

canopy structure results in larger elevation irregularities across the canopy surface and an 

increased presence of data pits in CHMs (Holdenrieder et al., 2004; Larsen et al., 2011; 

Barnes et al., 2017b). To address the problem of data pits, many studies have used image 

smoothing techniques such as Gaussian filtering, to remove intra-canopy elevation 

artefacts (Brandtberg et al., 2003; Koch et al., 2006; Jing et al., 2012). More recent 

solutions have introduced the use of pit-filling algorithms (Ben-Arie et al., 2009; Zhao et 

al., 2013) and the application of pit-free CHM generation methodologies (Khosravipour 

et al., 2014). 

Despite the difficulties incurred in CHM feature extraction as a result of data pits, 

the increased irregularities in surface elevation across ITCs can also be applied for disease 

detection purposes (Holdenrieder et al., 2004; Barnes et al., 2017a). As a result of 

increased penetration of ALS pulses through defoliated canopies, crowns subject to 

disease typically exhibit a patchy appearance when viewed as CHMs (Holdenrieder et al., 

2004; Barnes et al., 2017a). Whilst ALS point clouds have been successfully applied to 

disease detection in forest environments (Table 2.4), the value of raster products derived 

from ALS for the assessment of phytopathogens and insect pests has been poorly 

addressed in the current scientific literature. One example presented by Vastaranta et al. 

(2012) highlighted the potential applications of bitemporal CHM contrasts to monitor 

snow-induced damage in pine (Pinus sylvestris) dominated forest in Southern Finland. 

Nevertheless, further research is required to determine the potential contributions of CHM 

datasets for the assessment of disease at the ITC-scale within forest environments.  

2.3.5 Individual Tree Crown Segmentation 

Traditional approaches in forest management have adopted a stand (2 – 20 ha) 

(Reid et al., 2016) and plot scale (Coops et al., 2006) assessment of forest condition. 

These methods typically employ a pixel-based approach to the description and mapping 

of forest health. One benefit of high resolution remotely sensed datasets for the study of 

forested areas is the isolation of ITCs within the forest canopy. By considering single 

crowns, as opposed to single pixels, the overall character of each tree canopy can be 

assessed (Shendryk et al., 2016) and the influence of background noise created by 

understorey vegetation and ground cover minimised (Reid et al., 2016). Object-based 

approaches which define segments of the canopy based on homogenous characteristics in 
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spectral reflectance or structure can also be employed as opposed to isolated ITCs for 

fine-scale assessment of crown condition (Ke et al., 2010). Nevertheless, an ITC-based 

approach allows ground based metrics collected for individual trees in the field to be 

directly analysed in relation to the structural and spectral characteristics of these 

individuals observed from remote sensing (Barry et al., 2008; Wulder et al., 2012). 

 Remotely sensed datasets representing canopy height can be employed as inputs 

for automated ITC segmentation, which exploits structural differences present between 

treetops, canopy boundaries and canopy spaces to isolate ITCs (Wang et al., 2004; Chen 

et al., 2006). In the application of ALS for ITC segmentation, datasets are typically 

provided in a raster format as CHMs (Richardson and Moskal, 2011; Hu et al., 2014). 

Nevertheless, methods utilising ALS point clouds have also been developed and 

successfully applied to the isolation of ITCs (Li et al., 2012). In addition, surface 

elevation derived from very high resolution imagery using photogrammetry techniques 

has also been utilised for ITC delineation (St-Onge et al., 2015). However, these datasets 

have less commonly been applied than ALS to ITC segmentation (Rahlf et al., 2015) and 

typically provide a poorer characterisation of forest canopies due to the inability of optical 

sensors to penetrate through the canopy surface (Tanhuanpää et al., 2016). 

A range of established segmentation algorithms can be applied to the automated 

delineation of ITCs (Table 2.5) (Wang et al., 2004; Chen et al., 2006; Bunting and Lucas, 

2006). Commonly applied algorithms including the region growing (Erikson, 2003; Tiede 

et al., 2005) and watershed segmentations (Soille, 1999; Chen et al., 2006) often require 

the prior identification of treetops as seed inputs. Treetops are typically located via the 

detection and filtering of local maxima (Kwak et al., 2007; Zhen et al., 2014), 

representing points where neighbouring pixels present equal or lower values in height 

(Koch et al., 2006). Alternative approaches have also applied contouring methods to 

extract treetops from forest canopies (Koukoulas and Blackburn, 2005). The marker-

controlled watershed segmentation applies treetops as nodes from which the inverted 

input raster of “valleys” is “flooded”. The respective boundaries for each tree crown are 

then delineated by establishing the “watershed” for each individual “valley” (Wang et al., 

2004). In contrast, the region growing algorithm applies the treetop seed inputs to 

compare and merge neighbouring pixels until a specified threshold criteria are reached 

(Tiede et al., 2005; Böhner et al., 2006; Ke and Quakenbush, 2011). The performance of 

a particular ITC delineation algorithm is dependent on the characteristics of both tree 
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canopies and input datasets, and the subsequent suitability of methods for a specific study 

should be considered (Pouliot et al., 2002; Jing et al., 2012; Kaartinen et al., 2012). 

The pixel size of the surface elevation input is an important factor with regard to 

the overall success rates of ITC segmentations (Pouliot et al., 2002; Chen et al., 2006; 

Ene et al., 2012). In cases where the resolution is too coarse, the ability to distinguish 

between the boundaries of neighbouring tree crowns can be lost where pixels contain 

multiple overlapping tree crowns. Conversely, when spatial resolution is too fine, 

excessive intra-crown height variability may cause an over-segmentation of canopies. 

Pouliot et al. (2002) described the ratio between crown diameter and pixel size in order 

to address this point, suggesting a lower and upper limit of 3:1 and 9:1 respectively. The 

optimum ratio will vary with data inputs and in accordance with the sensitivity of 

segmentation algorithms to intra-crown irregularity and the distinction of crown 

boundaries, but can provide a useful tool in considering the influence of pixel size on ITC 

delineation success (Ke and Quakenbush, 2011; Barnes et al., 2017b). Nevertheless, the 

insufficient availability of data regarding the relationship between pixel size and tree 

crown dimensions makes it difficult to determine specific recommendations for raster 

input resolution (Ke and Quakenbush, 2011).   

In addition to pixel size, the application of smoothing filters can also influence the 

quantity of intra-crown variation in input datasets (Vauhkonen et al., 2012). In the case 

Table 2.5 – The ITC segmentation success rates of previous studies using surface 

elevation inputs with information about the different data inputs, segmentation 

algorithms and forest environments.  

 Input 

Dataset 

Pixel 

Size (m) 

Segmentation 

Algorithm 
Forest Environment 

Success 

(%) 
Reference 

A
L

S
 

CHM 0.2 Watershed Savanna woodland 64 
Chen et al. 

(2006) 

CHM N/S 
Pouring (similar 

to watershed) 

Douglas fir stand 87 
Koch et al. 

(2006) Mixed broadleaved 

forest 
50 

Point 

Cloud 
N/A 

Top-to-bottom 

Region Growing 
Mixed conifer forest 86 

Li et al. 

(2012) 

O
p

ti
ca

l 

CHM 0.2 Watershed Norway spruce 74 
Nasi et al. 

(2015) 

DSI 0.5 Watershed 
Pine dominated stand 97 

Tanhuanpää 

et al. (2016) 
Spruce dominated stand 89 

Abbreviations: DSI = Digital Stereo Imagery; N/A = Not Applicable; N/S = Not Stated. 
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of ALS-derived CHMs the application of these filters can also reduce the influence of 

data pits in tree crown detection (Chapter 2; Section 2.3.4) (Brandtberg et al., 2003; Koch 

et al., 2006; Jing et al., 2012). Gaussian filtering is frequently applied to provide a smooth 

input for ITC delineation and reduce over-segmentation (Ke and Quakenbush, 2011; 

Koch et al., 2006). In this instance the degree of smoothing can be largely controlled by 

the specified kernel size (Dralle and Rudemo, 1996; Chen et al., 2006). Previous studies 

have informed Gaussian filter size using the dimensions of the smallest crown in the 

canopy of interest (Chen et al., 2006). The final smoothing of the raster input is also 

altered by the number of Gaussian runs employed (Solberg et al., 2006). 

Forest structure is an important influencing factor for the success of ITC 

segmentation (Vauhkonen et al., 2012). A large number of ITC delineation studies have 

focused on the isolation of individuals in homogenous coniferous plantation forest (Ke 

and Quakenbush, 2011; Richardson and Moskal, 2011). These environments are more 

favourable to ITC segmentation as a result of the conical shape of conifers and the 

regularity of planting and tree spacing (Ke and Quakenbush, 2011), especially when 

stands consist of single species. Fewer studies have considered the application of ITC 

segmentation in heterogeneous forest environments, especially those comprised of 

deciduous broadleaved tree species (Richardson and Moskal, 2011). ITC segmentation in 

these environments is complicated by a number of factors. Firstly, midstorey layers within 

the canopy shaded by dominant tree crowns may go undetected (van Leeuwen and 

Nieuwenhuis, 2010; Richardson and Moskal, 2011). In addition, the more complex nature 

of the canopy surface makes the identification of a single treetop or peak for each 

individual more difficult (Lucas and Lee, 2007; Richardson and Moskal, 2011). Table 2.5 

provides an overview of some of forest types previously considered for ITC 

segmentation. Those applied in deciduous broadleaved environments (Koch et al., 2006) 

provided poorer ITC segmentation success rates than those reported in coniferous forests.    

The performance of established ITC segmentation methodologies in ALS-derived 

CHMs for tree crowns subject to varying severities of disease and decline has not been 

directly or explicitly analysed in the scientific literature. In forests subject to defoliation 

and dieback as a result of phytopathogens or insect pests, canopy structures are typically 

more complex and exhibit larger elevation irregularities across the canopy surface 

(Holdenrieder et al., 2004; Larsen et al., 2011), causing an increased presence of data pits 

in ALS-derived CHMs (Barnes et al., 2017b). Such characteristics, whilst useful in 
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disease detection (Coops et al., 2009; Bright et al., 2013) provide an added complication 

with regard to the isolation of ITCs for the assessment of crown deterioration. In relation 

to photogrammetry-derived DSMs and CHMs, minimal research has at present been 

directed to assess the performance of ITC segmentation approaches in diseased canopies 

across a range of crown decline severities (Näsi et al., 2015). Consequently, the 

methodologies employed for ITC delineation from surface elevation in canopies affected 

by disease requires consideration of the increased presence of data pits and height 

variability across a range of disease severities, in addition to a robust assessment of their 

implications for segmentation accuracy. 

The assessment of segmentation accuracy is also an important stage in the ITC 

delineation process (Zhen et al., 2016). The rigorous assessment of automated ITC 

boundaries is essential to highlight the strengths and weaknesses of segmentation 

approaches in different forest environments and facilitate robust comparisons between 

previous studies (Chen et al., 2006; Richardson and Moskal, 2011), such as those 

presented in Table 2.5. One approach to accuracy assessment for ITC detection is the 

reporting of omission and commission errors, which has typically been applied with 

regard to treetop detection success (Khosravipour et al., 2014). Commission errors (C) 

are reported when multiple treetops are detected for one ITC, whilst omission errors (O) 

represent instances where no treetop is generated for an ITC. Using both these errors and 

the total number of tree crowns (n) in the study area the overall accuracy (OA) can be 

calculated (Pouliot et al., 2002):  

OA% =  ((𝑛 –  O +  C)/𝑛) ∗ 100  

However, when ITC segmentations aim to represent the entire tree crown for parameter 

extraction, such as diameter and area calculations, a simple detection rate does not provide 

sufficient information regarding the ability of automated polygons to represent actual tree 

crowns. In these circumstances the assessment of segmentation accuracy is based on the 

agreement or overlap between automated and manually delineated reference crowns 

(Koch et al., 2006; Fang et al., 2016). Previous studies have applied a categorical 

assessment (Table 2.6) of overlap to establish detailed information about ITC 

segmentation accuracy. The assignment of these categories has previously been 

conducted via visual inspection of reference and automated crowns (Leckie et al., 2003; 

Koch et al., 2006; Kwak et al., 2007; Jing et al., 2012; Hu et al., 2014; Fang et al., 2016). 
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Nevertheless, to provide a more robust means of establishing the crown delineation 

accuracy categories the assessment of overlap between reference and automated ITCs 

requires an approach less open to individual interpretation.  

 

In the case of operational phytopathological assessments from remotely sensed 

datasets, the application of an ITC approach presents several advantages for targeting 

specific locations that require phytosanitary interventions (Leckie et al., 2016). For 

example, in the early stages of the disease establishment in forest stands, the isolation of 

ITCs that initially succumb to infection can enable a rapid response to phytopathogens 

and insect pests presenting new risks to forest areas (Wulder et al., 2006; Wulder et al., 

2012). In the study of diseased forest landscapes, ITC-based approaches also facilitate the 

detailed evaluation of heterogeneous patterns of infection (Stone and Coops, 2004). In 

addition, the use of ITC delineation techniques alongside species identification (Persson 

et al., 2004; Li et al., 2013) can facilitate a targeted assessment of susceptible tree species 

(Stone et al., 2004; Michez et al., 2016). This combined approach also presents the 

potential for the identification of disease resistant individuals, which may prove 

particularly useful with regard to the breeding of resistant genotypes and the development 

of resilience in forest stock (Sniezko, 2006). Tree health maps created using an ITC-based 

approach provide a powerful description of forest canopy condition, difficult to replicate 

with field-based studies without significant investments in time and resources (Shendryk 

et al., 2016). 

Table 2.6 – Assessment categories for individual tree crown delineation accuracy 

analysis (Leckie et al., 2003; Hu et al., 2014; Fang et al., 2016). 

Categories Description 

Correct delineation 
Exact match between reference tree crown and automatically 

delineated tree crown 

Satisfactory delineation 
Automatically delineated tree crown corresponds to reference tree 

but boundaries are slightly larger or smaller (at least 50% overlap) 

Merged tree 
More than one reference tree crown lies within automatically 

delineated tree crown 

Split 
More than one automatically delineated tree crown lies within 

reference tree crown 

Not found 

Reference tree crown has no corresponding automatically 

delineated tree crown or overlap with the automatically delineated 

tree crown is less than 50% 
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2.3.6 Classification for Mapping Phytopathogens in Forest Environments 

 Utilising the relationships between remotely sensed and ground based metrics, 

classifications can be undertaken to provide a spatial representation of disease or decline 

across forest environments (Shendryk et al., 2016). In the case of remotely sensed optical 

images, classification provides a means of summarising and consolidating large complex 

datasets (Xie et al., 2008; Blaschke, 2010) and is commonly applied using one of two 

distinct approaches. A traditional pixel-based approach considers the characteristics of 

each image pixel and classifies these individually via a set of pre-defined criteria 

(Blaschke, 2010). Whilst this method has been commonly applied across the field of 

remote sensing, increasing critique has mounted in recent decades with regard to the 

limitations of this approach (Liu et al., 2006; Blaschke, 2010). One of the biggest 

drawbacks, particularly in relation to high resolution datasets, is the speckling or “salt and 

pepper” effect resulting from small sale intra-class variability between individual pixels 

(Castillejo-González et al., 2009).  

In contrast, object-based classifications concern the assessment and categorisation 

of groups of continuous pixels (Yu et al., 2006), where objects possess an intrinsic size 

and shape, and are defined as basic entities of pixel groups comprised of similar digital 

values (Hay et al., 2001). Objects applied to classification can however span across a 

variety of spatial scales such as forest plots (Vastaranta et al., 2013a), ITCs (Näsi et al., 

2015) and intra-crown segments (Michez et al., 2016). The application of an object-based 

approach in forestry can aid the reduction of local variation and overcome heterogeneity 

resulting from shadow, texture and shape (Castillejo-González et al., 2009; Heurich et 

al., 2010). Through the application of an ITC segmentation, individual crowns can be 

employed as objects for disease presence or severity classifications, with the 

characteristics from the whole crown considered for the assignment of a particular 

category or class (Immitzer et al., 2012; Murfitt et al., 2016; Reid et al., 2016; Shendryk 

et al., 2016). For phytopathogen and insect pest assessment in forestry an object-based 

approach to classification is often preferable, especially for high resolution datasets 

(Table 2.7) (Nielsen et al., 2014; Lehmann et al., 2015; Michez et al., 2016).  

A large number of classifiers have been established and documented for the 

categorisation of vegetation characteristics such as structure, health and species (Melgani 

and Bruzzone, 2004; McInerney and Nieuwenhuis, 2009; Kantola et al., 2010; Rumpf et 

al., 2010; Bright et al., 2013; Ortiz et al., 2013; Adelabu et al., 2014; Murfitt et al., 2016). 
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When remotely sensed datasets have been acquired alongside ground surveys, labelled 

training datasets are typically established to facilitate the application of supervised 

classification methods for a particular set of predictor variables (Xie et al., 2008). In the 

case of disease presence and severity assessment in forestry Table 2.7 provides a 

summary of previous classifications, highlighting the variety in classification approaches 

and remotely sensed input variables. 

Support vector machines (SVMs) are one example of an established supervised 

classifier (Rumpf et al., 2010). The basic principle of SVM, isolates classes by 

determining an optimal separating hyperplane, which maximises the distance between the 

hyperplane and the margin (nearest point of both classes). The support vectors represent 

the samples exhibiting the minimal distance to the hyperplane. The resulting separation 

is therefore robust to outliers (Vapnik, 1998; Rumpf et al., 2010). In instances where 

datasets are not linearly separable, kernel functions can be employed. One common kernel 

applied in SVM is the radial basis function (RBF), which is parametrised using a simple 

parameter (σ), determining the decision boundary smoothness. An additional parameter 

(C) handles noise and error caused by the expectation that some training and validation 

samples may be assigned to the wrong class (Rumpf et al., 2010). At present, the scientific 

literature offers minimal guidance regarding the selection of kernel-specific parameters 

(Petropoulos et al., 2012), however, a cross validation grid search of the training dataset 

can be applied to optimise the σ and C input parameters (Hsu et al., 2003).  

 The k-Nearest Neighbour (k-NN) is a non-parametric pattern recognition 

classifier (Collins et al., 2004; Melgani and Bruzzone, 2004) underpinned by the principle 

that instances within a dataset are typically located in close proximity to other instances 

that have similar properties (Cover and Hart, 1967; Kotsiantis, 2007).  Using this theory, 

k-NN identifies the K nearest samples to the query and assigns the category based on the 

most frequent class label (Kotsiantis, 2007). The selection of the number of neighbours 

(K) can be optimised prior to classification via experimental selection and preliminary 

testing (Collins et al., 2004) or using the training dataset to apply a cross validated grid 

search (Melgani and Bruzzone, 2004; Hsu et al., 2003). The overall performance of the 

k-NN can be highly dependable on the selection of the K variable and training data with 

overlapping classes may not be suitable for this type of classification (Samaniego et al., 

2008).  
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The random forest (RF) classification method (Breiman, 2001), is a non-

parametric classification approach which generates a series of classification and 

regression trees (CART). Each tree is generated using a bootstrapped set of training 

samples, with the split at each regression tree governed by a randomised subset of input 

variables for each node (Hudak et al., 2008; Oliveira et al., 2012). The final classification 

result is subsequently determined based of the highest mean probability estimate across 

all trees (Belgiu and Drăguţ, 2016). Two important input parameters for the RF 

classification include the number of regression trees (ntree) and the number of input 

variables at each split in the tree building process (mtry). In relation to tree species 

classification, Immitzer et al. (2012) noted that overall classification accuracy increased 

for increasing ntree values until a plateau was reached at a value of 250. In the case of mtry, 

Immitzer et al. (2012) also reported better classification accuracies for 1 or 2 variables 

per node compared to 3, 4, or 5 variables. The relative insensitivity of RF to small samples 

sizes or “Hughes effect” merits the selection of the classifier in instances where the 

number of training samples per class is limited (Immitzer et al., 2012). 

All of the established classifiers previously employed across the field of remote 

sensing each present a series of advantages and limitations. In many cases, suitability is 

largely dependent on input data characteristics such as the quantity of training data and 

class separability (Huang et al., 2002; Samaniego et al., 2008; Immitzer et al., 2012). The 

selection of an appropriate classifier for a particular dataset is important as the application 

of different methods can yield significantly different classification results (Ortiz et al., 

2013). To review the performance of selected classifiers, overall accuracy percentage 

(OA) and Cohen’s κ coefficient (Cohen, 1960) can be calculated. For a more detailed 

overview, a confusion matrix in addition to user’s (UA) and producer’s accuracies (PA) 

for individual classes can also be computed and analysed (Congalton and Green, 1999).  

The selection of disease severity category boundaries is also particularly 

important for the classification of infection severity (Coops et al., 2003). For instance, 

classifications which make a simple distinction between living and dead trees typically 

exhibit higher overall accuracies (Garrity et al., 2013; Fassnacht et al., 2014), than those 

which distinguish between multiple disease severity categories (Kelly and Liu, 2004; 

Waser et al., 2014) (Table 2.7). The specified category boundaries, range of severities 

within categories and distinction between categories can all influence classification 

performance (Coops et al., 2003; Waser et al., 2014). For example, previous studies have 
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noted difficulties in the differentiation between classes across the spectrum of moderate 

disease severity for forest insect pests using VI input variables (Coops et al., 2003; Leckie 

et al., 2005). Further complications have also been documented with regard to the 

separation of healthy trees and those in the early stages of infection progression (Bater et 

al., 2010; Kantola et al., 2010). As a result, the selection of disease severity categories 

should consider the potential discrimination capabilities of remotely sensed input 

variables and the operational requirements of data regarding disease occurrence and 

severity. 

Routine assessment of phytopathogen and insect pest outbreaks across large areas 

continues to remain a challenge for forest management (Bater et al., 2010). Whilst remote 

sensing can be applied to assess the symptomatic expression of infection by a 

phytopathogen or insect pest, the technology at present has limited capability to 

differentiate or determine the exact cause of decline in crown condition (Liu et al., 2006). 

Nevertheless, the mapping of deterioration in tree health provides forest managers with 

information and precise locations to target ground based management practises and 

testing. The compatibility of remotely sensed mapping products with geographical 

information systems (GIS) also facilitates the combination of information regarding forest 

health with existing datasets such as forest inventories. Thus allowing a more informed 

decision making process and allocation of resources (Lehmann et al., 2015).  

2.3.7 Remote Sensing for Operational Management of Disease in Forestry  

Informed data regarding the spatial extent and severity of phytopathogens is 

paramount for the management, planning and modelling of disease in forest environments 

across the globe (Fassnacht et al., 2014; Hall et al., 2016). Remote sensing approaches 

present a standardised and objective approach to the assessment and characterisation of 

forest health across a range of scales (Lausch et al., 2016; Reid et al., 2016). Nevertheless, 

in many instances manual surveys (field and aerial) still dominate in the operational 

management of phytopathogens and insect pests in the forestry sector (Hall et al., 2016; 

Lausch et al., 2017), as is the case with P. ramorum and larch disease in the UK (Medcalf 

et al., 2011). Commonly cited reasoning for the limited application of remote sensing for 

the assessment of forest health and disease has included the perceived insufficient 

resolution associated with optical data and costs associated with data acquisition and 

processing (Suárez et al., 2005; Rullan-Silva et al., 2013; Hall et al., 2016).  
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Table 2.7 – Previous applications of remote sensing for the classification of disease or decline in forest environments.  

Classification 

Approach 

Classification 

Method 

No. 

Classes 
Platform Input Variables 

Classification 

Accuracy (%) 
Disease Assessment Example Reference 

Pixel-Based 
Gaussian 

Mixture Model 
2 Satellite Imagery (VIs) 97.9 – 98.5 

Tree mortality in piñon-juniper 

(Pinus edulis-Juniperus 

monosperma) woodlands. 

Garrity et al. 

(2013) 

Object-Based SVM 2 Satellite 

Imagery (SFIM 

pansharpened 

imagery) 

96 
Japanese pine wilt disease and 

Japanese oak wilt disease.  

Johnson et al. 

(2013) 

Object-Based RF 2 Aircraft 

ALS (height 

percentiles 80 and 

90) 

84.3 

Common pine sawfly (Diprion pini) 

defoliation in Scots pine (Pinus 

sylvestris). 

Vastaranta et al. 

(2013a) 

Object-Based WICS 2 Aircraft 
Imagery (colour 

infrared) 
88 - 90 

Deadwood areas from the spruce bark 

beetle (Ips typographus) in Norway 

spruce (Picea abies). 

Nielsen et al. 

(2014) 

Object-Based 

Multinomial 

Logistic 

Regression 

4 Satellite 
Imagery (bands and 

VIs) 
73 

Ash (Fraxinus excelsior) dieback 

caused by Hymenoscyphus 

pseudoalbidus. 

Waser et al. 

(2014) 

Object-Based 
Nearest 

Neighbour 
5 UAV 

Imagery (modified 

NDVI) 
82.5 - 85 

Oak splendour beetle (Agrilus 

biguttatus) in oak (Quercus spp.) 

trees. 

Lehmann et al. 

(2015) 

Object-Based k-NN 2$ and 3¥ UAV 

Imagery (NDVI, red-

edge, green and red 

hyperspectral bands) 

90$ and 76¥ 
Spruce bark beetle (Ips typographus) 

in Norway spruce (Picea abies). 
Näsi et al. (2015) 

Pixel-Based MLC 3 Satellite Imagery (texture) 88 - 96 
Health of deciduous Robinia 

pseudoacacia forests. 

Wang et al. 

(2015) 

Object-Based RF 2 UAV 
Imagery (normalised 

red) 
90.6 

Health of Black Alder (Alnus 

glutinosa). 

Michez et al. 

(2016) 

Abbreviations: k-NN = k Nearest-Neighbour; MLC = Maximum Likelihood Classification; RF = Random Forest; SFIM = Smoothing Filter-based Intensity Modulation; 

SVM = Support Vector Machine; WICS = Window Independent Context Segmentation  
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Remote sensing techniques offer the potential to capture symptom expression in 

vegetation at an earlier stage of disease establishment than manual aircraft surveys. In 

addition, the operational adoption of early disease detection via remote sensing could also 

facilitate a shift from reactionary to proactive management of phytopathogens and insect 

pests in forestry (Reid et al., 2016).  Furthermore, a remote sensing approach also presents 

additional advantages such as compatibility with digital forest inventories, automatic 

processing algorithms and greater consistency between different dates and areas of 

acquisition (Fassnacht et al., 2014). In order to highlight the practical and operational 

capabilities of remote sensing for effective disease detection and assessment, clear 

examples of success with reproducible and robust results are required.  

2.4 Literature Review Summary 

2.4.1 Present Extent of Current Knowledge 

The review of the literature presented in this chapter demonstrates at the board 

scale, the presence of a solid foundation of scientific understanding with regard to the 

processing and utilisation of remotely sensed datasets for the assessment of disease in 

forest environments. Numerous examples have demonstrated the capabilities of both 

active and passive sensors across a variety of platforms for the assessment of tree diseases 

in particular forest environments, especially with regard to those resulting from insect 

pests.  Nevertheless, due to the complexities and specificity of phytopathogen-host 

interaction and the range of variables surrounding the acquisition and processing of 

remotely sensed data, at the smaller scale, specific questions and uncertainties still remain 

within the scientific literature.  

2.4.2 Research Gaps 

 One key outcome of the literature review concerns the current absence of remote 

sensing in the operational assessment of phytopathogens in UK forestry. In the case of 

current P. ramorum management, heavy reliance on visual aerial surveys for landscape-

level assessment of outbreaks is subject to a number of limitations. Given the previous 

success of remote sensing for the detection of disease in other coniferous plantation 

environments, research concerning the particular applications of remote sensing in this 

case would facilitate a more informed decision making process for future P. ramorum 

management. With regard to AOD, the absence of a designated campaign for disease 

detection monitoring highlights the potential for remote sensing technologies to be 
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considered in AOD management. Previous studies presented in the scientific literature 

can be applied as analogues for this research, however due to the specificity of 

phytopathogen-host interactions, different types of remotely sensed data require 

assessment for a particular phytopathogen in a specific forest environment.  

 In relation to the remote sensing platforms and sensors, several key research gaps 

were also identified in relation to phytopathogen assessment in forest environments. For 

example, it was noted that a limited number of studies within the literature had previously 

considered the application of ALS to assess structural forest change resulting from insect 

pests, with no reference relating to the use of the technology for phytopathogens. In the 

case of remote sensing platforms, it was acknowledged that the current use of UAVs in 

the forestry sector is considered experimental, with limited reference to the applications 

of this particular platform to phytopathogen assessment. Resultantly, further research 

would provide a more informed conclusion to the significance of ALS and the UAV 

platform for the assessment of phytopathogens in forest environments.  

 With regard to the processing of remotely sensed datasets in preparation for 

disease assessment, several key areas of uncertainty were noted in relation to the 

automated segmentation of ITCs. For example, forest areas subject to defoliation and 

dieback as a result of disease exhibit increased surface elevation irregularities and data 

pits across the canopy, adding potential complications to the segmentation of ITCs. 

Present research has yet to directly address this issue in order to suggest appropriate 

techniques for the application of ALS and photogrammetry-derived DSMs and CHMs in 

diseased forest stands. In addition, further uncertainties were also acknowledged in 

relation to the optimal pixel size of raster surface elevation inputs for ITC segmentation, 

with limited reference or guidance for informed pixel size selection under different forest 

conditions. It was also noted that only a small number of ITC segmentation studies have 

previously been conducted in heterogeneous deciduous forests. Research conducted 

within these environments has also reported limited success, with delineation difficulties 

typically cited as a result of increased surface elevation variability.  

 Whilst previous examples from the literature have highlighted the benefits of an 

ITC-based approach for the assessment of tree disease from optical datasets, uncertainties 

were acknowledged in relation to minimising the influence of noise-related pixels. For 

example, several methodologies have previously been referenced and tested, however no 
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clear or optimal method has at present been determined, especially in relation to very high 

resolution imagery obtained from UAVs. Resultantly, further research is required to 

determine the influence of the method applied to spectral information extraction at the 

ITC-scale on the applications of UAV-based imagery for the assessment of 

phytopathogens.   

 A number of research gaps were also noted in relation to the extraction of 

structural parameters from ALS for the assessment of tree crown condition. For example, 

the disease detection capabilities of CHMs has not previously been considered in the 

scientific literature. Whilst the increased variability of surface elevation in CHMs subject 

to defoliation and decline has been acknowledged, this characteristic has not been tested 

in relation to the detection or severity discrimination of phytopathogen infection in forest 

environments. In addition, ALS point cloud metrics have not previously been applied in 

relation to the assessment of disease resulting from phytopathogen infection. 

Furthermore, the application of these metrics for disease assessment across a range of 

stand ages has also been poorly addressed.  

Overall, this chapter has highlighted several research gaps within the scientific 

literature. The specific research questions constructed to address these in relation to P. 

ramorum and AOD in the UK have previously been outlined in Chapter 1, Section 1.3. It 

is imperative that the research undertaken to address these gaps demonstrates a clear focus 

on challenging these present uncertainties and provides conclusions in a manner that 

facilitates an ease of understanding for decision making and adoption in operational 

forestry management practise.  
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Chapter 3: Study Areas 
 

This chapter provides an overview of the study areas selected for the research 

presented in the thesis. The two environments selected for the research concerning larch 

disease (P. ramorum) and AOD exhibit an array of contrasts including size, species 

composition, planting, and management, providing two juxtaposed examples regarding 

the applications of remote sensing for phytopathogen assessment in UK forests. 

3.1 P. ramorum and Larch Disease in Wales 

 The research concerning P. ramorum in larch forest stands was conducted in 

Wales, UK. The two selected study areas were situated at Ogmore Forest in South Wales 

(51.5954°N, -3.5320°W) and Radnor Forest in Mid Wales (52.2708°N, -3.1503°W) 

(Figure 3.1), both managed by Natural Resources Wales. Ogmore Forest is situated within 

the core P. ramorum disease zone in Wales and has been subject to the infection since 

2011 (Figure 3.2). Due to the spread of the P. ramorum across the Ogmore site, a second 

site, Radnor Forest, comprising of healthy larch stands was also selected outside of the 

core P. ramorum disease zone. Figure 3.3 provides an overview of landscape at the two 

study sites.   

Figure 3.1 – Location of P. ramorum study areas in Wales (grey area). 
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Figure 3.2 – Aerial photography for the Ogmore Forest (2010) provided by the Welsh 

Assembly Government.  

Figure 3.3 – Photographs representing the landscape at A) Ogmore Forest in South Wales 

and B) Radnor Forest in Mid-Wales.  
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The two study sites (Ogmore and Radnor Forests) were both applied in the 

research concerning the segmentation of ITCs (Chapter 4) and the assessment of P. 

ramorum infection from ALS (Chapter 5). However, the location and size of sampling 

areas applied in these two sections of research (Figure 3.4) varied slightly due different 

requirements for plot size and ground sampling. Detailed information regarding the 

characteristics of sample plots is provided in the respective research chapters.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 – Location of sample plots and transects established for the P. ramorum research 

at the Ogmore (A) and Radnor (B) Forests. Sample plots (1 - 8) applied in Chapter 4 are 

displayed in dark grey and labelled in italics. The sample transects and plots (T1 - 16 and 

P3) used in Chapter 5 are displayed as a black dot. The light grey in the figures represents 

forested area.  

A 

B 
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3.2 AOD in Oxfordshire  

 The research undertaken concerning AOD was located at the Stratfield Brake 

woodland, which situated in Kidlington, Oxfordshire in the UK (51.8053°N, -1.2825°W) 

(Figure 3.5) and is managed by the Woodland Trust. The site consists of a mature and 

young woodland as well as a wetland area (Figure 3.6). The mature woodland, which was 

the focus of the research, is dominated by English oak (Quercus robur) interspersed with 

ash (Fraxinus excelsior). AOD has been noted within the mature woodland and 

previously studied in epidemiologically focused research (Sapp et al., 2016). The mature 

woodland, which covers an area of 3 ha, was split into two sections, to provide a training 

and validation dataset for the study (Figure 3.7), comprising of 90 and 99 individual trees 

respectively.  

 

  

Figure 3.5 – Location of the Stratfield Brake study site 

(grey square) in the context of Great Britain. 
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Figure 3.7 – Training and validation areas at the Stratfield Brake mature woodland. 

Figure 3.6 – Stratfield Brake site characteristics and key features. 
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Chapter 4: Individual Tree Crown Delineation from Airborne Laser 

Scanning for Larch Stands Infected by Phytophthora ramorum 

 

 The research presented in this chapter has previously been published as:  

Barnes, C., Balzter, H., Barrett, K., Eddy, J., Milner, S. and Suárez, J. C. (2017) Individual 

tree crown delineation from airborne laser scanning for diseased larch forest stands. 

Remote Sensing. 9, 231.  

4.1 Introduction 

Although the exact area or extent is unclear, current trends suggest that UK forests 

and woodlands are subject to a greater threat from exotic phytopathogens than ever 

previously experienced (Sutherland et al., 2008; Potter et al., 2011). One particular 

invasive phytopathogen, P. ramorum, has caused large-scale infections of larch (Larix 

spp.) trees in UK forestry, particularly across Southwest England, South Wales and 

Southwest Scotland (Forestry Commission, 2016). The nature of the infection and its 

foliar symptoms include discolouration and defoliation (Webber et al., 2010), which are 

currently being used for manual aerial detection by tree-health surveyors during 

helicopter surveys. This highlights the potential application of remotely sensed datasets 

for P. ramorum assessment in larch across the UK (Medcalf et al., 2011).  

In recent decades, ALS has been increasingly applied in forestry (Lefsky et al., 

1999; Lim et al., 2003; Wulder et al., 2006). The three-dimensional nature of ALS data 

provides structural information on topography, canopy height, tree density and crown 

dimensions, which can be used to determine biophysical parameters and inform forest 

inventories (Popescu et al., 2003; Zimble et al., 2003; Balzter et al., 2007). The high 

resolution and accuracy associated with ALS enable the extraction of forest parameters 

associated with ITCs within the forest canopy (Brandtberg et al., 2003). The ability to 

conduct crown-based analysis of remotely sensed data for forest environments provides 

the opportunity for the detailed study of forest condition and dynamics (Reutebuch et al., 

2005).  

A range of algorithms can be applied for ITC delineation from ALS data, which 

typically exploit structural differences present among treetops, canopy boundaries and 

canopy spaces (Chen et al., 2006). These algorithms include the region growing (Erikson, 
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2003; Tiede et al., 2005) and watershed segmentations (Chen et al., 2006) which often 

require the prior identification of treetops as seed inputs. From ALS data, treetops are 

typically located via the detection and filtering of local maxima (Kwak et al., 2007; Zhen 

et al., 2014), in CHMs these represent points where neighbouring pixels present equal or 

lower values in height (Koch et al., 2006). The performance of a particular ITC 

delineation algorithm is dependent on the characteristics of both tree canopies and input 

datasets, and the subsequent suitability of methods for a specific study should be 

considered (Pouliot et al., 2002; Kaartinen et al., 2012). Based on the previous results 

reported in the scientific literature an overall segmentation accuracy of >70% is used to 

define a successful ITC segmentation (Wang et al., 2004; Ke and Quackenbush, 2011; 

Tanhuanpää et al., 2016).  

In the case of ITC delineation, ALS datasets are typically analysed in raster format 

as a CHM (Hu et al., 2014). A CHM represents the canopy surface elevation and is 

computed by the subtraction of the DTM from the DSM (Dubayah and Drake, 2000; Ben-

Arie et al., 2009). The selected pixel size for the CHM, can affect the potential 

performance of the ITC detection (Chen et al., 2006; Khrosravipour et al., 2014). In 

instances where the resolution is too coarse, the ability to distinguish between the 

boundaries of neighbouring tree crowns can be lost where pixels contain multiple 

overlapping tree crowns. Conversely, when spatial resolution is too fine, excessive intra-

crown height variability may cause an over-segmentation of canopies. Pouliot et al. 

(2002) described the ratio between crown diameter and pixel size in order to address this 

point. The optimum ratio will vary in accordance with the sensitivity of segmentation 

algorithms to intra-crown irregularity and the distinction of crown boundaries, but can 

provide a useful tool in considering the influence of pixel size on ITC delineation success. 

Nevertheless, the insufficient availability of data regarding the relationship between pixel 

size and tree crown dimensions makes it difficult to determine specific recommendations 

for selection (Ke and Quackenbush, 2011). In this chapter the implications of varying 

CHM pixel size on the performance of ITC delineation will be considered across a range 

of crown dimensions. 

Canopy height anomalies that are present in CHMs are known as data pits and can 

influence the accuracy of ITC detection (Ben-Arie et al., 2009; Khrosravipour et al., 

2014). Despite the uncertainty surrounding the specific source of these pits, cited causal 

factors have been acknowledged during the acquisition and processing of ALS datasets 
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(Ben-Arie et al., 2009; Vèga and Durrieu, 2011), these include the penetration of laser 

beams through the canopy, merging of ALS flight lines (Leckie et al., 2003), 

classification of ground and non-ground points (Kraus and Pfeifer, 1998) and 

interpolation of point clouds to raster datasets (Axelsson, 1999). To address the problem, 

many studies have used image smoothing techniques such as Gaussian filtering, to 

remove intra-canopy elevation artefacts (Brandtberg et al., 2003; Koch et al., 2006; 

Kaartinen et al., 2012). More recent solutions have introduced the use of pit-filling 

algorithms (Ben-Arie et al., 2009; Zhao et al., 2013) and the application of pit-free CHM 

generation methodologies (Khosravipour et al., 2014). 

In forests subject to defoliation and dieback as a result of phytopathogens and 

insect pests, canopy structures are typically more complex and exhibit larger elevation 

irregularities across the canopy surface (Holdenrieder et al., 2004; Larsen et al., 2011), 

causing an increased presence of data pits. Such characteristics can be useful in disease 

detection (Coops et al., 2009; Bright et al., 2013; Barnes et al., 2017a), but may also 

provide an added complication with regard to the isolation of ITCs for the assessment of 

crown deterioration. Consequently, the methodologies employed for ITC delineation in 

canopies affected by disease require consideration of data pits and their implications for 

segmentation accuracy.  

In the case of phytopathological assessments from remotely sensed datasets, the 

application of an ITC approach presents several advantages for identifying areas that 

require phytosanitary interventions (Leckie et al., 2016). In the early stages of the disease 

establishment in the forest stand, the isolation of ITCs, which initially succumb to 

infection, can enable a rapid response to insect pests and phytopathogens, which present 

new risks to forest areas (Wulder et al., 2006). In studies of diseased forest landscapes, 

crown-based approaches can also facilitate the detailed study of heterogeneous patterns 

of infection (Stone and Coops 2004). In addition, the use of ITC delineation techniques 

alongside species identification (Persson et al., 2004; Li et al., 2013) can facilitate a 

targeted assessment of susceptible tree species (Stone and Coops, 2004). This combined 

approach also presents the potential for the identification of disease resistant individuals, 

which may prove particularly useful with regard to the breeding of resistant genotypes 

and the development of resilience in forest stock (Sniezko, 2006). Resultantly, in the case 

of P. ramorum, the application of an ITC-based approach could therefore facilitate a 

detailed assessment of infected forested areas. 
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4.2 Objectives 

The aim of this research chapter was to: 

Identify the best approach to the isolation of individual larch crowns affected to 

Phytophthora ramorum using airborne laser scanning.  

Several key were set out objectives to address the difficulties in conducting ITC 

segmentation in partially (> 20% defoliation) or wholly defoliated forest canopies and 

determine the best method for the extraction of ITCs within P. ramorum infected larch 

forests using ALS data. The main objectives of this research chapter are: 

1. To determine whether the removal of data pits during CHM generation can 

improve the accuracy of ITC segmentation in larch stands subject to varying 

severities of P. ramorum infection; 

2. To compare the performance of the marker-controlled watershed and region 

growing segmentation algorithms for the delineation of larch stands subject to 

varying severities of P. ramorum infection; and 

3. To assess the performance of CHM pixel size (0.15 m, 0.25 m and 0.5 m) on ITC 

segmentation for larch forest stands with different canopy characteristics.  

4.3 Methods  

4.3.1 Ground Data Collection 

Across the two established study sites (Ogmore and Radnor Forests) in Wales, UK 

(Chapter 3; Section 3.1), eight sample plots were established (Chapter 3; Figure 3.4) 

covering a total area of 0.02 km2 (Table 4.1). The four plots at Ogmore Forest showed a 

range of P. ramorum infection severities, whilst the four plots at Radnor Forest offered 

healthy trees for comparison across a similar range of species compositions and stand 

heights. The rectangular plots were situated along the edge of established forest sub-

compartments to facilitate access and aid in recording the geographical position of 

individual trees. The potential limitation of edge effects associated with this sampling 

strategy was acknowledged, whereby trees situated along sub-compartment boundaries 

may be less representative of those situated in the centre. Small variations in plot size 

(Table 4.1) were incurred as the result of differences in sub-compartment shape and tree 
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crown size. The severity of the P. ramorum infection in each plot was recorded during 

field visits in 2015 using a simple scale:  

 None = no individuals within the plot showed symptoms of P. ramorum; 

 Light = less than 50% of individuals showed P. ramorum symptoms, but these 

were typically confined to a small portion of the canopy; 

 Moderate = more than 50% of individuals demonstrated P. ramorum symptoms, 

a few cases may have resulted in significant discolouration or defoliation of the 

canopy; and 

 Heavy = more than 75% of individuals were infected with P. ramorum and many 

exhibited severe dieback. 

In addition, the position of individual trees situated within the established sample plots, 

which were safely accessible for ground surveying, were also recorded in the field using 

a handheld Garmin Oregon 550t GPS. 

 

4.3.2 Airborne Laser Scanning Data Collection 

ALS data were acquired by Bluesky International for both study sites via a single 

aircraft survey utilising the Orion M300 sensor on the 30 June 2015, with an average 

flight altitude of 1500 m. The scan frequency was 66 Hz, laser pulse repetition frequency 

was 100 kHz, field-of-view was 8°, beam divergence was 0.25 mrad, sensor range 

Table 4.1 – Sample plot characteristics.  (Tree heights have been calculated using the ALS 

data (June 2015) and the size, number of trees and P. ramorum presence were recorded 

during field surveys (June, July and August 2015)). 

Plot 

No. 
Forest 

Species 

Composition 

Max. 

Height 

(m) 

Min. 

Height 

(m) 

Mean 

Height 

(m) 

Plot 

Size 

(m2) 

No. 

Trees* 

P. ramorum 

Infection 

Severity 

1 Ogmore HL, MB, MC 12.6 2.2 8.5 2500 104 Light  

2 Ogmore JL 21.9 8.3 17.4 2500 64 Moderate 

3 Ogmore JL 25.8 8.8 19.7 2500 57 Heavy 

4 Ogmore JL 30.4 19.7 24.6 2500 59 Heavy 

5 Radnor HL, MB, MC 7.1 3.3 5.3 1000 98 None  

6 Radnor  JL, MB 19.8 14.3 16.3 1000 72 None 

7 Radnor  JL, BE 23.4 9.9 17.8 2500 51 None 

8 Radnor  EL, HL, BI, MC 33.8 19.6 29.4 5500 38 None 

*Number of trees with complete crowns located within the plot. Abbreviations: EL, European Larch; HL, Hybrid 

Larch; JL, Japanese Larch; BI, Birch; BE, Beech; MB, Mixed Broadleaves; MC, Mixed Conifers. 
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precision was <8 mm and elevation accuracy was 3–10 cm. Resulting point densities for 

the Ogmore (infected) and Radnor (control) sites were 20.34 points/m2 and 27.39 

points/m2, respectively. Small differences in the resulting point densities across the two 

sites were incurred as a result of slight variations in flight altitude. 

4.3.3 Data Processing Overview 

To provide an overview of the methodology applied, Figure 4.1 provides a 

summary of the data processing tasks performed. 

4.3.4 Canopy Height Models 

CHMs were produced for both study sites using two separate methods. The first 

approach used a standard normalised digital surface model (CHMstandard) to represent the 

relative height of above-ground vegetation (Koch et al., 2006). Height normalised ALS 

points were classified into ground and above-ground returns and following the generation 

of a triangulated irregular network (TIN) were rasterised to produce a DTM (ground 

points only) and DSM (maximum of all points). Subsequently, the CHMstandard was 

produced following the subtraction of the DTM from the DSM (Jakubowski et al., 2013). 

Figure 4. 1 – A summary of the data processing tasks required 

for the implementation of the ITC segmentation methodology. 
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In addition, the pit-free algorithm outlined by Khosravipour et al. (2014) was also used 

to generate CHMs for the study areas (CHMpitfree). The method uses height-normalised 

ALS points for the construction of partial CHMs representing various levels within the 

canopy (2 m, 5 m, 10 m, 15 m and 20 m). A rasterisation threshold is applied during the 

triangulation of partial CHMs, to ensure that only triangles within a single crown are 

rasterised, this threshold was varied based on the pixel size of the CHMs generated (Table 

4.2). Partial CHMs are then stacked in height order and the maximum value for each pixel 

was subsequently extracted for the creation of the pit-free CHM. 

Table 4.2 – Rasterisation thresholds for pit-free CHM generation. 

Pixel Size (m) Rasterisation Threshold (m) 

0.15 0.45 

0.25 0.75 

0.5 1.5 

 

The CHM outputs from both methodologies were generated at three different 

resolutions. Based on the suitable range of crown diameter to pixel size ratios suggested 

by Pouliot et al. (2002) and the CHM resolutions used in previous ITC detection studies 

(Khosravipour et al., 2014; Pitkänen et al., 2004; Roberts et al., 2005; Solberg et al., 

2006), pixel sizes of 0.15 m, 0.25 m and 0.5 m were selected. All the processing for both 

the CHM approaches was implemented using LAStools (LAStools, 2016). 

4.3.5 Manual Individual Tree Crown Delineation 

A manual tree crown delineation was performed for each sample plot in order to 

provide information regarding ITC dimensions and a basis for comparing segmentation 

results (Pouliot et al., 2002). The manual delineation was performed using the ALS-

derived data, in addition to photographs and GPS positions for ITCs recorded during 

ground surveys (Brandtberg and Walter, 1998; Fang et al., 2016). The resulting reference 

polygons enabled the extraction of crown area and diameter. In this case, due to the 

circular nature of coniferous canopies (Fang et al., 2016; Popescu and Wynne, 2004), 

equivalent crown diameter, which represents the diameter of a perfectly circular crown 

of equal area, was extracted using the diameter equation for a circle (Persson et al., 2004; 

Morsdorf et al., 2004). 
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4.3.6 Filtering 

The standard CHMs were smoothed with a Gaussian filter to remove data pits and 

intra-canopy irregularities as shown in Figure 4.2 (Brandtberg et al., 2003; Koch et al., 

2006; Hyyppä et al., 2012; Khosravipour et al., 2014). The standard deviation of the 

Gaussian filter has little impact on the final smoothing of CHMs (Dralle and Rudemo, 

1996; Chen et al., 2006) and the standard deviation value was set to 2, following 

preliminary testing (Koch et al., 2006). The size (spatial diameter) of the filter applied, 

however, can have a significant influence on the resulting CHM. Chen et al. (2006) 

acknowledged that filter size should not exceed that of the smallest crown within the 

canopy of interest. Subsequently, the filter size was varied for each sample plot in 

accordance with pre-defined maximum canopy height thresholds (Table 4.3). These 

categories were determined based on the minimum equivalent crown diameter and 

maximum height for each sample plot. The variation in pixel size was also accounted for, 

with the size of filter in pixels rounded to the closest multiple for each of the three CHM 

resolutions (Monnet et al., 2010). For implementation over larger areas of larch forest, it 

is suggested that filtering and segmentation be employed for individual forest stands using 

the maximum tree height for each stand to define diameter and tailor filtering to stand 

characteristics. 

Table 4.3 – Gaussian and local maxima filter size.   

Maximum 

Tree Height 

(m) 

Filter 

Diameter 

(m) 

Filter Size in Pixels Based on CHM Resolution (m) 

0.15 0.25 0.5 

≥15 1 7 × 7 5 × 5 3 × 3 

>15 and <30 2 13 × 13 9 × 9 5 × 5 

≥30 3 21 × 21 13 × 13 7 × 7 

 

In the case of the pit-free CHMs, a low-pass smoothing filter was applied (Figure 

4.2). Preliminary testing was carried out to consider the performance of the pit-free CHMs 

without smoothing as suggested by Khosravipour et al. (2014), however in the majority 

of plots (Table 4.1) the reduction in intra-canopy variation as a result of the filter 

prevented the over-segmentation of ITCs. Due to the removal of data pits via the CHM 

generation methodology, a lower level of filtering was required to smooth the canopy 

surface in preparation for segmentation. In this case a simple low-pass smoothing filter 

was selected with a square search mode (Pouliot et al., 2002; Kaartinen et al., 2012). The 

filter size was also adjusted in accordance with maximum tree height (Table 4.4), however 
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it was smaller than that applied for the CHMstandard, which over-smoothed the data. All 

filtering undertaken for both CHM generation methodologies was undertaken using 

SAGA GIS (SAGA GIS, 2016). 

 

 

 

Figure 4.2 – CHMs with 0.25 m resolution for Plot 4 (Ogmore Forest) 

heavily infected with P. ramorum. (a) standard CHM no filter; (b) pit-free 

CHM no filter; (c) standard CHM with Gaussian filter; and (d) pit-free CHM 

with simple filter. Legend presents the height (m) for each of the CHM. 
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4.3.7 Local Maxima 

Prior to the application of the selected segmentation methods (marker-controlled 

watershed and region growing algorithms), seed points representing treetops within the 

canopy need to be identified (Wang et al., 2004; Tiede et al., 2005). Treetops can be 

located via the identification of local maxima (Palenichka et al., 2013), which are detected 

when neighbouring pixels on the CHM exhibit equal or lower height values (Koch et al., 

2006). In order to avoid identifying multiple seed points within ITCs, local maxima were 

extracted from the smoothed standard and pit-free CHMs for each of the three resolutions 

(Chen et al., 2006) using the parameters identified in Table 4.3. Resulting local maxima 

were then subject to height filtering, removing points with a tree height of less than 2 m, 

to avoid the detection of understorey vegetation as tree crowns (Hyyppä et al., 2012; 

Duncanson et al., 2014).   

In addition, minimum distance filters can also be applied to local maxima to 

reduce the over-estimation of the number of treetops. The size of these filters can be fixed 

or variable; however, their dimensions are typically informed by the diameter of tree 

crowns within the forest area of study. Variable filters are typically applied with regard 

to the relationship between tree height and crown diameter (Chen et al., 2006), which in 

this instance exhibits high levels of variation (Figure 4.3). This is likely to have resulted 

from the mixture in larch species and the difference in the location of individual trees. A 

weak relationship between crown diameter and tree height can result in poor estimates of 

tree crown diameter (Falkowski et al., 2006). To detect treetops with smaller crowns, 

filter size thresholds were used (Koch et al., 2006). As with the Gaussian smoothing, filter 

diameter represented the minimum equivalent crown diameter in relation to the maximum 

tree height for the sample plots (Table 4.3). This minimal distance point filtering was 

applied to local maxima points for each sample plot following height filtering, and all 

Table 4.4 – Simple low-pass filter sizes for pit-free CHMs. 

Max Tree 

Height (m) 

Size of Simple Filter in Pixels Based on CHM Resolution (m) 

0.15 0.25 0.5 

≥15 5 × 5 3 × 3 3 × 3 

>15 and <30 7 × 7 5 × 5 3 × 3 

≥30 9 × 9 7 × 7 5 × 5 
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processing was performed in SAGA GIS (SAGA GIS, 2016). Figure 4.4 provides an 

example of the filtered local maxima generated for Plot 2. 
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Figure 4.3 – The relationship between equivalent crown diameter and tree height for all individual 

trees across the eight sample plots. The dashed red line is the exponential regression curve. 

R² = 0.4636 

 

Figure 4.4 – The filtered local maxima points generated for Plot 2 using the Gaussian filtered 

CHMstandard. 
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4.3.8 Segmentation 

For CHMs, the marker-controlled watershed and region growing segmentation 

algorithms have both previously been acknowledged as effective approaches for the 

delineation of ITCs (Maltamo et al., 2004; Chen et al., 2006). The marker-controlled 

watershed algorithm treats the inverted CHM as “valleys”, “flooding” each system from 

points of local minima (markers or seeds) representing treetops within the canopy. 

Respective boundaries for each tree crown are subsequently delineated by determining 

the “watershed” for each individual “valley” (Wang et al., 2004) (Figure 4.5). The region 

growing algorithm also requires a seed input to denote the location of treetops, from 

which neighbouring pixels are compared and merged until some specified threshold 

criteria is reached (Tiede et al., 2005; Böhner et al., 2006; Ke and Quackenbush, 2011). 

In the case of both segmentation methods, filtered local maxima were used as seed inputs 

and processing was undertaken in SAGA GIS (Böhner et al., 2006; Levick and Asner, 

2013; Tao et al., 2014; Levick et al., 2015; Zawawi et al., 2015). Additional input 

parameters for the two segmentation algorithms in SAGA GIS (SAGA GIS, 2016) were 

subject to preliminary testing, these included a joining threshold for the watershed 

segmentation and a similarity threshold for the region growing segmentation. 

Subsequently the marker-controlled watershed segmentation was subject to no additional 

threshold for joining segments. For the region growing segmentation, the similarity 

threshold was set to 0.01 and an 8-pixel neighbourhood was applied. 

4.3.9 Post-processing 

Following the ITC delineations, output segments from both segmentation 

approaches were labelled with a unique ID (Schardt et al., 2002), converted to polygons 

and joined with tree heights extracted from seed outputs (Koukoulas and Blackburn, 

2005). To avoid over-segmentation, polygons with an area below that of the minimum 

threshold area (Table 4.5), derived as the circular area from the Gaussian and local 

maxima filter size diameters, were merged with the neighbouring segment exhibiting the 

longest common border (Weinacker et al., 2004; Koch et al., 2006).  
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Table 4.5 – Minimum area thresholds for automatically delineated tree crowns. 

Maximum Tree Height Category (m) Minimum Area Threshold (m2) 

≥15 0.5 

>15 and <30 3 

≥30 7 

 

4.3.10 Accuracy Assessment 

To assess the accuracy of the automated ITC delineations, resulting segments 

were compared to manual tree crown delineations (reference crowns) via an automated 

overlap analysis, which determined the percentage of overlap for corresponding 

polygons. For each reference crown in the plot, the percentage overlap with automated 

polygons was computed. Subsequently, the two highest percentage overlap values for 

individual reference crowns were recorded as R1 and R2. In addition, the percentage of 

the automated polygons which overlapped with the corresponding reference crown were 

Figure 4.5 – The filtered local maxima points and watershed segments generated for Plot 2 using 

the Gaussian filtered CHMstandard. 
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also determined, the two highest values were reported as A1 and A2. Using these values 

for each reference tree, percentage overlap criteria were subsequently applied to 

previously established accuracy assessment categories (Table 4.6) (Leckie et al., 2003; 

Koch et al., 2006; Kwak et al., 2007; Jing et al., 2012; Hu et al., 2014; Fang et al., 2016). 

The term successfully delineated segments was used to collectively refer to ITC 

segmentations classified as correct or satisfactory which were deemed acceptable for the 

purpose of the study (Kwak et al., 2007; Jing et al., 2012). Overall accuracy percentages 

were also calculated using the ratio of successful delineations to the total number of 

reference tree crowns for each plot (Hu et al., 2014). 

Table 4.6 – Assessment categories for the tree crown delineation accuracy analysis.  

Category Description 
Percentage overlap (%) 

R1  R2  A1  A2  

Correct Reference crown dominated by one automated crown  ≥ 50 < 2 ≥ 50 N/C 

Satisfactory 
Reference crown largely associated with one 

automated crown 
≥50 < 50 ≥ 50 < 50 

Oversized 
Reference crown only accounts for small portion of 

automated crown 
≥ 50 N/C <50 N/C 

Split 
Reference crown dominated by more than one 

automated crown 
N/C N/C N/C ≥50 

Missed 
Reference crown has no or poor overlap with 

automated crowns 
<50  N/C N/C <50 

Abbreviations: N/C = No conditions; R1 = Highest percentage overlap value for reference crown;  

R2 = Second highest percentage overlap value for reference crown; A1 = Highest percentage overlap value for 

corresponding automated crown; A2 = Second highest percentage overlap value for corresponding automated crown. 

 

4.3.11 Data Analysis 

To evaluate the influence of CHM generation method on delineation accuracy, the 

non-parametric Wilcoxon signed rank test was used to analyse the difference in the 

segmentation accuracy percentages produced by the standard and pit-free CHMs for each 

of the pixel size/segmentation algorithm combinations. The same testing was also applied 

in the comparison of the two segmentation algorithms (marker-controlled watershed and 

region growing), for each of the CHM generation method/pixel size combinations. The 

equivalent parametric paired t-test was not selected in this instance as several datasets did 

not meet the assumptions of normality (Shapiro–Wilk test p < 0.05). To address the 

additional type 1 error incurred via multiple testing, the Bonferroni-Holm sequential 

correction was also applied to the results of the statistical testing. 

To consider the influence of CHM pixel size on delineation accuracy, the mean 

and standard deviation values for segmentation accuracy percentages across all study 

plots were calculated for each CHM generation method/segmentation algorithm 
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combination. In addition, to assess the relationship between CHM pixel size and tree 

height, a linear regression model was fitted to the maximum plot tree height (m) and the 

percentage of successful delineations, for all segmentation algorithms and CHMs tested. 

4.4 Results 

4.4.1 Overall Segmentation Performance 

The ITC delineation results from the marker-controlled watershed and region 

growing segmentations for all CHMs are displayed in Table 4.7, with the highest 

percentages for each of the plots in bold. In cases where the highest percentage is tied, 

those producing the greater percentage of correct delineations (Table 4.6) were selected. 

Successful delineations exceeding 70% were achieved for all of the sample areas, 

however no single method or CHM presented optimal results across all sample plots. The 

most successful delineation method recorded for each of the sample plots is summarised 

in Table 4.8. 

Table 4.7 - Successful delineation percentages for all segmentation algorithm, CHM 

generation method and CHM pixel size combinations tested for all sample plots. 

  
0.15 m 0.25 m 0.5 m 

Standard Pit-free Standard Pit-free Standard  Pit-free 

Plot Method 
Successful 

(%) 

Successful 

(%) 

Successful 

(%) 

Successful 

(%) 

Successful 

(%) 

Successful 

(%) 

1 
WS 77.88 74.04 77.88 65.38 60.58 53.85 

RG 48.08 44.23 66.35 57.69 36.54 44.23 

2 
WS 89.06 71.88 82.81 92.19 67.19 71.88 

RG 20.31 15.63 54.69 50.00 67.19 78.13 

3 
WS 63.16 50.88 57.89 70.18 61.40 66.67 

RG 10.53 7.02 35.09 33.33 33.33 49.12 

4 
WS 40.35 37.29 62.71 81.36 76.27 83.05 

RG 15.25 5.08 27.12 35.59 57.63 74.58 

5 
WS 79.59 76.53 79.59 78.57 45.92 20.41 

RG 80.61 74.49 73.47 68.37 41.84 11.22 

6 
WS 88.89 84.72 69.44 79.17 50.00 51.39 

RG 61.11 62.50 65.28 79.17 41.67 51.39 

7 
WS 84.31 78.43 68.63 78.43 64.71 64.71 

RG 29.41 23.53 39.22 33.34 43.14 39.22 

8 
WS 36.84 21.05 71.05 65.79 81.58 84.21 

RG 0.00 0.00 2.63 2.63 7.89 78.95 

Abbreviations: WS = marker-controlled watershed; RG = region growing. 
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4.4.2 Canopy Height Model Generation Method 

Table 4.8 shows which CHM generation method produced the most successful 

delineation accuracies. The standard and pit-free methodologies both performed best in 

four of the eight sample plots. Interestingly, for Plots 2, 3 and 4, which exhibited moderate 

and heavy severities of P. ramorum infection, the pit-free CHM generated the best 

delineation accuracies. Figure 4.6 displays the difference in successful delineation 

percentages for the standard and pit-free CHMs, across the three different pixel sizes 

tested. In the case of the 0.15 m pixel size, the standard CHM produced the best accuracies 

for all segmentations across the eight sample plots, except one (Plot 6, region growing, 

0.15 m). Conversely, for the 0.5 m pixel size, the pit-free CHM generation method 

resulted in a more successful delineation for the majority of segmentations. At the 0.25 

m pixel size however, the CHM generation methods performed similarly. The 

segmentation algorithms did not influence the success of the two CHM generation 

methods. The results from the statistical analysis (Table 4.9) demonstrate no significant 

difference between the delineation accuracy of the two different CHM generation 

methods, except in the case of the marker-controlled watershed segmentation at the 0.15 

m pixel size (p < 0.10). 

 

 

Table 4.8 - Best performing segmentation algorithm, CHM generation method and 

pixel size for the individual tree crown segmentation in each of the sample plots. 

Plot 

P. 

ramorum 

Infection 

Severity 

Max. 

Tree 

Height 

No. 

Trees 

Best Delineation Performance 

Successful 

Delineation 

(%) 

Segmentation 

Algorithm 

CHM 

Generation 

Method 

Pixel 

Size (m) 

1 Light 12.6 104 77.88 WS Standard 0.25 

2 Moderate 21.9 64 92.19 WS Pit-free 0.25 

3 Heavy 25.8 57 70.18 WS Pit-free 0.25 

4 Heavy 30.4 59 83.05 WS Pit-free 0.50 

5 None 7.1 98 80.61 RG Standard 0.15 

6 None 19.8 72 88.89 WS Standard 0.15 

7 None 23.4 51 84.31 WS Standard 0.15 

8 None 33.8 38 84.21 WS Pit-free 0.50 

Abbreviations: WS = marker-controlled watershed; RG = region growing. 
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Table 4. 9 - p values from the Wilcoxon signed rank test after Bonferroni-Holm 

correction comparing results from the two CHM generation methods (standard 

and pit-free). * Denotes values significant at the 90% confidence level (p < 0.10). 

CHM Pixel Size (m) 
Segmentation Algorithm 

Marker-Controlled Watershed Region Growing 

0.15 0.072* 0.140 

0.25 0.789 1.000 

0.5 1.000 0.644 

 

4.4.3 Segmentation Algorithm  

The marker-controlled watershed approach produced higher delineation 

accuracies across the sample plots, than the region growing method (Figure 4.7). This 

result was consistent across the two CHM generation methodologies and three pixel sizes 

tested. The greatest difference (73.69%) was observed in the case of the CHMstandard at 

the 0.5 m pixel size. In this instance 71% of tree crowns segmented with the region 

growing algorithm were categorised as missed (Table 4.6). The results from the Wilcoxon 

signed rank test (Table 4.10) indicated a significant difference, at the 90% confidence 

level (p < 0.10) between the segmentation algorithms across all CHM generation 

method/pixel size combinations tested.   

Table 4.10 - p values from the Wilcoxon signed rank test after Bonferroni-Holm 

correction, comparing results from the two segmentation algorithms (marker-

controlled watershed and region growing).  

CHM Pixel Size (m) 
CHM Generation Method 

Standard Pit-free 

0.15 0.068 * 0.072 * 

0.25 0.072 * 0.054 * 

0.5 0.054 * 0.043 *,$ 

*Denotes values significant at the 90% confidence level (p < 0.10). $The p value is not significant 

at the 95% confidence limit because it follows a not significant result in the Bonferroni-Holm 

sequential correction for a p value < 0.05. 
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 4.4.4 Canopy Height Model Pixel Size 

 In relation to CHM pixel size, no single resolution consistently yielded the most 

successful delineations (Table 4.8). To consider the overall performance of each pixel 

size, Table 4.11 provides the mean and standard deviation values for the successful 

delineation percentages from all eight sample plots, for each of the segmentation 

algorithm and CHM generation methodology combinations tested. The 0.25 m resolution 

provided the highest mean value in three of the four instances. Additionally, the 0.25 m 

pixel size also exhibited comparatively low standard deviation values in the case of the 

two marker-controlled watershed segmentations. The higher standard deviations across 

all combinations at the 0.15 m and 0.5 m resolutions, in addition to the 0.25 m region 

growing segmentations, reflect the large disparities in successful delineation percentages 

across the eight sample plots. To illustrate the influence of CHM pixel size on the 

Figure 4.6 – The difference between the CHMstandard and CHMpitfree delineation accuracy 

(DA) percentages for each of the segmentation methods across the (a) 0.15 m; (b) 0.25 m; 

and (c) 0.5 m pixel sizes. 
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sgementation outputs, Figure 4.8 presents the automated ITC delineations across all three 

pixel sizes (0.15 m, 0.25m and 0.5 m).  

Table 4.11 - The mean and standard deviation (𝜎) values for the successful 

delineation percentages produced from all sample plots at the three CHM pixel sizes, 

for each of the segmentation algorithm and CHM generation method combinations. 

Segmentation 

Algorithm 

CHM Generation 

Method 

CHM Pixel Size (m) 

0.15 0.25 0.5 

Mean 𝝈 Mean 𝝈 Mean 𝝈 

WS Standard 70.01 21.06 71.25 8.53 63.46 12.01 

WS Pit-free 61.85 22.84 76.38 8.97 62.02 20.60 

RG Standard 33.16 27.69 45.48 23.95 41.15 17.50 

RG Pit-free 29.06 28.10 45.02 24.07 53.36 23.30 

Abbreviations: WS = marker-controlled watershed; RG = region growing. 

   

  

Figure 4.7 – The difference between the marker-controlled watershed (WS) and region growing 

(RG) segmentation delineation accuracy (DA) percentages for each of the CHM generation 

methods (standard and pit-free) across the (a) 0.15 m; (b) 0.25 m; and (c) 0.5 m pixel sizes. 

 

CHM
standard

 CHM
pit-free
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The segmentation results suggest that the suitability of CHM pixel size for ITC 

delineation may be governed by crown size and tree height, two correlated variables 

regarding the structural character of individual trees. Figure 4.9 presents the relationship 

between tree height and segmentation accuracy for all of the segmentation algorithms and 

CHMs tested. The linear regressions suggest that the high-resolution CHMs (0.15 m) 

performed best for plots with a low maximum tree height (<20 m). Conversely, the lowest 

resolution CHM (0.5 m) was best suited for plots that exhibited a high maximum tree 

height (>30 m). In the case of the 0.25 m pixel size, the relationship between maximum 

tree height and successful delineation percentage is less clear, although a negative trend 

was typically observed. 

Each of the scatterplots in Figure 4.9 displays the R2 values for the fit of the linear 

regression model between plot maximum tree height per (m) and successful delineation 

(%), at the three CHM pixel sizes (0.15 m, 0.25 m and 0.5 m) for the different 

segmentation algorithms and CHM generation methods. For the 0.15 m pixel size, 

negative trends were consistent across the two segmentation algorithms and CHM 

generation methods, though more significant in the case of the region growing 

segmentations (0.82 (CHMstandard) and 0.78 (CHMpit-free)). At the 0.25 m pixel size, trends 

were predominantly negative and stronger for segmentations with the region growing 

algorithm (0.86 (CHMstandard) and 0.64 (CHMpit-free)). In contrast, segmentations at the 0.5 

m pixel size typically exhibited a positive relationship between plot maximum tree height 

Figure 4.8 – Marker-controlled watershed segmentation outputs for Plot 4 from the CHMstandard. 

A) CHM pixel size 0.15 m; B) CHM pixel size 0.25m; C) CHM pixel size 0.5 m. 

A) B) C) 
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and delineation success percentage, with stronger correlations produced by the marker-

controlled watershed segmentations (0.73 (CHMstandard) and 0.86 (CHMpit-free). 

An additional approach to examine the relationship between pixel size and 

successful ITC delineation considered the crown diameter to pixel size ratio put forward 

by Pouliot et al. (2002). For each sample plot, the mean equivalent crown diameter was 

determined in order to produce the crown diameter to pixel ratios for each of the eight 

sample plots (Table 4.12). The ratios that contributed to the best performance for each of 

the plots ranged between 10:1 and 35:1. To consider the influence of these ratios on the 

performance of ITC segmentations, the relationship between the mean equivalent crown 

diameter to pixel size ratio and the percentage of successful ITC delineations across all 

sample plots, segmentation approaches and CHMs is shown in Figure 4.10. 

Segmentations that exceeded 80% success rate exhibited a crown diameter to pixel ratio 

from 11:1 to 35:1. 
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Figure 4.9 – Scatterplots demonstrating the linear regression model fitted between successful 

tree crown delineations and plot maximum tree height in relation to CHM pixel size (0.15 m, 

0.25 m and 0.5 m) and the four segmentation algorithm and CHM generation method 

combinations (marker-controlled watershed (WS) segmentation for CHMstandard, marker-

controlled watershed segmentation for CHMpit-free, region growing (RG) segmentation for 

CHMstandard and region growing segmentation for CHMpit-free). 
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Table 4.12 - The mean equivalent crown diameter to pixel ratios for each plot across 

the three different CHM pixel sizes. The values highlighted in bold demonstrate 

those associated with the highest successful delineation percentage for the sample 

plot. 

Plot 
Study 

Area 

P. ramorum 

Infection 

Severity 

Max. Tree 

Height 

(m) 

Mean Crown Diameter to Pixel Ratio 

0.15 m 0.25 m 0.5 m 

1 Ogmore Light 12.6 23:1 14:1 7:1 

2 Ogmore Moderate 21.9 31:1 19:1 9:1 

3 Ogmore Heavy 25.8 32:1 19:1 10:1 

4 Ogmore Heavy 30.4 38:1 23:1 11:1 

5 Radnor None 7.1 17:1 10:1 5:1 

6 Radnor None 19.8 21:1 13:1 6:1 

7 Radnor None 23.4 35:1 21:1 11:1 

8 Radnor None 33.8 64:1 38:1 19:1 

 

Figure 4.10 – The relationship between mean equivalent crown diameter to pixel size ratio and 

successful tree crown delineation (%) for all segmentation algorithms (marker-controlled 

watershed and region growing), CHM generation methods (standard and pit-free) and CHM 

pixel sizes (0.15 m, 0.25 m, and 0.5 m). The solid black line represents the successful 

delineations at 80%. 
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4.5 Discussion 

The absence of an optimal method or input CHM for ITC delineation across the 

study plots highlights the difficulties of utilising a single algorithm and input dataset to 

segment ITCs in forest environments comprising of mixed stand ages and species 

(Brandtberg et al., 2003; Solberg et al., 2006). Nevertheless, the results shown here allow 

us to infer several key points informing the selection of the most appropriate segmentation 

approach and CHM input for canopies subject to P. ramorum infection. 

Neither CHM generation method (standard/pit-free) exhibited a consistently 

stronger performance, with each outperforming the other for four of the eight sample 

plots. This is different from the results observed by Khosravipour et al. (2014), who 

documented consistently improved treetop detection accuracy for all pit-free CHM inputs 

at pixel sizes of 0.15 m and 0.5 m. In our case, it is likely that the weaker performance of 

the pit-free CHMs in four of the sample plots may stem from the low-pass filtering used 

to smooth the canopy surface for improved local maxima detection. This was not applied 

in the study by Khosravipour et al. (2014), who instead extracted local maxima with an 

established variable window for coniferous forests (Popescu and Wynne, 2004). In 

addition, Khosravipour et al. (2014) assessed the accuracy of treetop detection, rather 

than the segmentation on ITCs. Nevertheless, in the case of the Plots 2, 3 and 4 which 

were subject to moderate and heavy P. ramorum infection, the pit-free CHMs 

outperformed those generated using the standard CHM. This improved performance is 

likely to be a result of the data pit filling during the CHM generation, providing a more 

complete canopy for image segmentation (Figure 4.2). 

Between the two segmentation algorithms, the marker-controlled watershed 

demonstrated a superior performance (p < 0.10) compared to the region growing 

segmentation, for both CHM generation methods and all CHM pixel sizes tested. Since 

both algorithms were provided with the same input seed points, the difference in 

performance is due to their ability to delineate crown boundaries in the CHMs. In the case 

of the region growing segmentation, boundaries are delineated when a specified threshold 

value is reached. The poor overall performance of this particular segmentation algorithm 

is likely to have resulted from the inability of the region growing threshold to 

accommodate the variation in crown size and characteristics across the canopy, as a result 

of mixed species and tree ages (Fang et al., 2016). Although the region growing algorithm 
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has previously produced satisfactory ITC delineations (Erikson, 2004; Erikson and 

Olofsson, 2005; Bunting and Lucas, 2006; Ke and Quackenbush, 2011), studies have also 

noted difficulties and poor performance associated with the algorithm when applied in 

forest stands comprising of mixed species, multiple canopy layers and high tree densities 

(Erikson and Olofsson, 2005; Bunting and Lucas, 2006; Ke and Quackenbush, 2011). In 

comparison, the delineation of crown boundaries by the marker-controlled watershed 

segmentation directly utilises the height information from the CHMs when delineating 

watershed boundaries, providing a more informed segmentation (Wang et al., 2004). 

Studies from an array of forest types have noted successful isolation or segmentation of 

ITCs resulting from the marker-controlled watershed segmentation, examples include 

commercially thinned conifer forest (75.6%) (Wang et al., 2004), savanna woodland 

(64.1%) (Chen et al., 2006) and eucalypts forest (Ali et al., 2008). Nevertheless, the 

delineation accuracies achieved by segmentation algorithms can vary due to a 

combination of factors including the effectiveness of the algorithm, forest characteristics, 

and ALS data acquisition and properties (Tao et al., 2014). Consequently, the difference 

between the performance of the marker-controlled watershed and region growing 

algorithms may change for segmentations performed for other forest environments and 

ALS datasets.  

The results from the study also highlighted that CHM resolution used in the ITC 

segmentation strongly influences segmentation accuracy. Relationships between the 

maximum canopy height and optimum CHM pixel size were not unexpected given the 

strong influence of tree height on crown diameter (Chen et al., 2006). The suitability of 

certain pixel sizes for particular forest canopies has previously been explored in the 

scientific literature (Pouliot et al., 2002). For example, with regard to crown diameter to 

pixel ratios, Pouliot et al. (2002) suggested a lower and upper limit of 3:1 and 19:1 

respectively. In comparison, the ratios (mean equivalent crown diameter) that produced 

the best tree crown delineations across the sample plots were slightly higher, between 

10:1 and 35:1. This may be as a result of reduced intra-canopy variation within the CHMs 

caused by the image smoothing filters applied (Brandtberg et al., 2003; Koch et al., 2006). 

In addition, the examples presented by Pouliot et al. (2002) were also suggested for 

optical imagery rather than CHMs produced from ALS. Previous studies have also 

considered the impact of CHM resolution on segmentation accuracy, Stereńczak et al. 

(2008) for example, noted no significant difference between the ITC segmentation results 
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from the 0.25 m and 0.5 m resolution CHMs, however a significant reduction in the 

percentage of recognised ITCs was noted for the 1.0 m CHM. The results from previous 

research, in addition to those obtained in this study highlight the importance of selecting 

a suitable CHM pixel size for ITC segmentation. Nevertheless, in many cases the selected 

resolution of the CHMs utilised for ITC segmentations is governed by ALS point density 

(Khosravipour et al., 2014). 

In relation to each of the CHM resolutions, several observed relationships require 

further discussion. Firstly, the 0.25 m CHM resolution performed consistently well across 

all sample plots, especially for the marker-controlled watershed segmentations, 

suggesting that this pixel size may be most suitable for the two study areas as a whole. 

This implies that at the 0.25 m resolution, enough detail is provided for the majority of 

ITCs to delineate boundaries without high levels intra-canopy variation resulting in over 

segmentations. However, in plots which exhibited a large maximum tree height (>30 m), 

the application of a lower resolution CHM (0.5 m) typically facilitated a greater 

percentage of successful ITC delineations. Again, the level of intra-crown variation 

provided in the CHM is likely to be the causal factor for this observation. With regard to 

the higher resolution CHMs (0.15 m) tested, a relationship between pixel size suitability 

and maximum tree height was also evident. In this instance, plots characterised by a small 

maximum tree height (<20 m) in general produced higher percentages of successful ITC 

delineations. 

Nevertheless, it is important to note, that while these criteria explain the 

characteristic relationship between pixel size, maximum tree height and successful ITC 

delineation across the sample plots, variability in the observed trend was also evident in 

the dataset. This suggests that other plot characteristics such as variation in tree size and 

tree density may also influence the suitability of a particular CHM pixel size for ITC 

segmentation (Fang et al., 2016). Hence, it should be acknowledged that, while crown 

diameter should be recognised as a dominant variable influencing the suitability of pixel 

sizes for ITC delineation, consideration should also be given to other forest 

characteristics. In addition, it should also be recognised that the level of intra-canopy 

variation is also controlled by the filtering of the CHMs before segmentation (Chen et al., 

2006). Consequently, relationships between the ITC delineation performance of CHMs 

at different resolutions and canopy height may be altered for CHMs subject to varying 

degrees of smoothing. 
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The research demonstrates that ITCs within larch stands affected by P. ramorum 

can be successfully delineated (>70%) using a pit-free CHM generation methodology, a 

marker-controlled watershed segmentation and the selection of an appropriate CHM pixel 

size. Nevertheless, whilst these methods provide successful results at the selected study 

sites, further testing would be required to consider the performance of these methods for 

defoliated canopies of other tree species in different forest environments. In addition, 

preliminary testing was used to identify the most suitable parameters in the filtering and 

segmentation processes, however such parameters can significantly influence final 

segmentation results and may not be best suited for other forest environments and ALS 

datasets (Erikson, 2004; Chen et al., 2006). Furthermore, an additional limitation to the 

study can also be noted with regard to the use of two separate study areas for the 

comparison between healthy and infected stands. Although larch dominated plots were 

selected to best match with regard to tree height parameters, variations in tree density and 

species composition may have also influenced the performance of ITC segmentations 

across the two sites. 

4.6 Conclusions 

The results presented in the study highlight that larch canopies partially or wholly 

defoliated as a result of P. ramorum infection can be successfully segmented (>70%). In 

addition, the research also demonstrates that the selection of segmentation algorithm, 

CHM generation method and CHM resolution can all impact on the performance of ITC 

delineations from ALS for larch forests in the UK. The marker-controlled watershed 

algorithm may provide better successful delineation percentages in comparison to the 

region growing method in mixed age plantation forests (p < 0.10), where the selected 

threshold value may limit the optimal application of the segmentation across all crowns. 

In the case of forests subject to moderate and severe defoliation due to P. ramorum 

infection, the application of a pit-free CHM generation method facilitated a greater ITC 

delineation percentage than segmentations using a standard CHM. With regard to CHM 

resolution, the results from the research suggest that a 0.25 m pixel size was most suitable 

for the larch dominated plots of all ages. In the case of the plots which exhibited large 

(>30 m) or small (<20 m) maximum tree heights, the selection of a lower (0.5 m) or higher 

(0.15 m) resolution CHM respectively, provided a more successful delineation. Overall, 

the results demonstrate that despite the increased presence of data pits in defoliated 

canopies, ITCs subject to infection from phytopathogens can be successfully identified 
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(> 70%). Whilst the presented methods provide a benchmark for the segmentation of ITCs 

subject to decline from phytopathogens, in order to consider the performance of this 

approach in other defoliated tree species and environments further research would be 

required. 
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Chapter 5: Airborne Laser Scanning and Tree Crown Fragmentation 

Metrics for the Assessment of Phytophthora ramorum Infected Larch Forest 

Stands 

 

 The research presented in this chapter has previously been published as:  

Barnes, C., Balzter, H., Barrett, K., Eddy, J., Milner, S. and Suárez, J. C. (2017) Airborne 

Laser Scanning and Tree Crown Fragmentation Metrics for the Assessment of 

Phytophthora ramorum infected Larch Forest Stands. Forest Ecology and Management. 

404, 294-305. 

5.1 Introduction 

UK forestry has experienced notable introductions of several significant 

phytopathogens in recent decades (Brown et al., 2003; Brasier, 2008; Webber et al., 2008; 

Mitchell et al., 2014). Subsequent to its identification in the UK in 2002 (Lane et al., 

2003), P. ramorum has caused extensive infection of larch (Larix spp.) trees, particularly 

across forests situated in Southwest England, South Wales and Southwest Scotland 

(Forestry Commission, 2016). The infection which can present both stem and foliar 

symptoms in affected larch, such as stem bleeds, foliage discolouration and defoliation 

(Webber et al., 2010) has resulted in the felling of over 16,000 ha of larch across the UK, 

including Japanese (Larix kaempferi), European (Larix decidua) and hybrid species 

(Larix x eurolepis) (Forestry Commission, 2014).  

Current efforts to assess landscape-level patterns of P. ramorum infection and 

identify new outbreaks rely on visual aerial assessment conducted by tree-health 

surveyors during helicopter surveys. In this instance, foliar symptoms presented by 

infected larch aid the identification of P. ramorum. Figure 5.1 illustrates the foliar 

changes associated with the progression of P. ramorum infection in larch. The use of 

manual aerial detection highlights an opportunity for the application of remote sensing to 

detect and assess P. ramorum outbreaks in larch stands (Medcalf et al., 2011). Despite 

the increased recognition of remote sensing as a tool for the assessment of forest health 

and disease, visual surveys continue to dominate in the operational management of insect 

pests and phytopathogens in the forestry sector (Hall et al., 2016; Lausch et al., 2017). 

Commonly cited concerns and barriers to the application of remote sensing techniques 

for the assessment of forest condition include the perceived insufficient resolution 
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associated with optical satellite data and the costs associated with data acquisition and 

processing (Suárez et al., 2005; Rullan-Silva et al., 2013; Hall et al., 2016). Recognising 

the concerns of end-users is important for implementation of the results from scientific 

research into forestry management practise (Wulder et al., 2006).  

In forest research, remote sensing methodologies utilising ALS have been 

extensively applied to provide information regarding the structural character of vegetation 

in these landscapes (Lim et al., 2003; Wulder et al., 2013; Sheridan et al., 2015). ALS 

provides three-dimensional data that have previously been employed to examine 

biophysical forest parameters (Zimble et al., 2003; Balzter et al., 2007; Yoga et al., 2017). 

In addition, ALS datasets facilitate the segmentation of individual tree crowns (ITCs) 

(Brandtberg et al., 2003; Barnes et al., 2017b), which can subsequently be applied to 

determine ITC-based metrics such as tree height, crown diameter, canopy cover and 

species (Popescu et al., 2003; Holmgren and Persson, 2004; Reutebuch et al., 2005; 

Breidenbach et al., 2010). 

One application of ALS for the assessment of crown condition utilises parameters 

derived from point clouds to assess the three-dimensional structure of trees and their 

canopies (Kwak et al., 2010). Previous studies have utilised height related metrics from 

ALS point clouds to characterise tree structure and identify crown decline for an array of 

applications including habitat suitability mapping (Martinuzzi et al., 2009; Casas et al., 

Figure 5.1 – P. ramorum disease progression in larch and its implications of ALS 

characteristics.  

Dieback and defoliation 

limited to a single branch 

(point of infection). 

Larger section of the canopy 

affected by dieback and 

defoliation. 

All foliage is lost. 

P. ramorum infection progression 

Increasing number of ALS returns penetrate the forest canopy 
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2016) and assessment of insect pest outbreaks (Bright et al., 2013). These metrics can be 

categorised into three broad categories including height-based metrics and percentiles, 

distributional metrics and cover metrics. Height-based metrics and percentiles summarise 

patterns regarding the height of ALS returns. Distributional metrics concern the 

distribution of returns through the canopy profile, whilst cover metrics typically compare 

two subsets of points to produce a variety of indices (Coops et al., 2009). In addition, 

ALS point cloud intensity characteristics, which concern the strength of pulse 

backscattering, have also been applied to the assessment of crown decline, largely with 

regards to the identification of dead trees (Kim et al., 2009; Wing et al., 2015; Casas et 

al., 2016).   

In the specific context of disease outbreaks in forestry, a series of height related 

ALS-metrics including the number of canopy returns, maximum height, standard 

deviation of height, percentage of returns below 10%, 50%, 80% and 90% of total height 

and gap fraction have all previously been applied to the assessment tree crown condition 

(Solberg et al., 2006; Coops et al., 2009; Kantola et al., 2010; Vastaranta et al., 2013a). 

In particular, Kantola et al. (2010) and Vastaranta et al. (2013a) reported accuracies of 

80.7% and 84.3% for the respective tree- and plot-level classifications of healthy and 

defoliated Scots pine (Pinus sylvestris) affected by the common pine sawfly (Diprion 

pini). The success of ALS height metrics for the assessment of insect pest defoliation can 

be attributed to the increased penetration of laser pulses into the forest canopy when 

foliage is lost (Coops et al., 2009; Kantola et al., 2010; Vastaranta et al., 2013a), as 

illustrated in Figure 5.1. Nevertheless, the potential use of these ALS-derived height 

metrics has not previously been considered for disease outbreaks resulting from 

phytopathogens such as P. ramorum.  

In addition to the three-dimensional analysis of ALS point clouds, the impacts of 

dieback and defoliation of tree crowns are also evident in ALS-derived CHMs as 

increased irregularities in surface elevation across individual crowns (Holdenrieder et al., 

2004). CHMs are a common raster product derived from ALS datasets to represent the 

canopy surface, typically computed via the subtraction of the DTM from the DSM which 

represent the rasterised last and first ALS returns respectively (Dubayah and Drake, 2000; 

Ben-Arie et al., 2009). As a result of increased penetration of ALS pulses through 

defoliated canopies, crowns subject to disease typically exhibit a patchy appearance when 

viewed as CHMs (Holdenrieder et al., 2004; Barnes et al., 2017b). Landscape metrics 
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traditionally applied to assess habitat fragmentation in the field of landscape ecology 

provide a means of quantifying the characteristics and spatial distribution of patches 

(Hargis et al., 1998; Kupfer, 2012). Resultantly, this chapter applies this series of metrics 

to assess the increased patchiness of CHMs for ITCs subject to disease.  

Relationships between remotely sensed and ground-based metrics facilitate 

classifications of tree crown condition, providing a spatial representation of disease or 

decline throughout forest environments and hence a useful tool for disease management 

(Shendryk et al., 2016). The selection of disease severity category boundaries is 

particularly important, with difficulties previously noted in the differentiation between 

classes across the spectrum of moderate disease severity for forest insect pests (Coops et 

al., 2003; Leckie et al., 2005). A range of established classifiers including k-nearest 

neighbour (k-NN) and random forest (RF) have previously been applied to the 

classification of disease and vegetation structure (McInerney and Nieuwenhuis, 2009; 

Kantola et al., 2010; Bright et al., 2013; Ortiz et al., 2013), each presenting advantages 

and limitations, with suitability largely dependent on input data characteristics such as 

the quantity of training data and class separability (Huang et al., 2002; Samaniego et al., 

2008).  

5.2 Objectives 

The aim of this research chapter was to: 

Determine the capability of airborne laser scanning to identify Phytophthora 

ramorum infection in larch trees.  

To evaluate the applications of ALS point clouds and CHMs for the assessment of P. 

ramorum infection in plantation larch forest several key objectives were constructed. The 

main objectives for this research chapter are:  

1. To evaluate the influence of tree height on ALS point cloud height metrics and 

CHM fragmentation metrics in healthy larch trees in plantation forest;  

2. To assess the ability of ALS point cloud height metrics and CHM 

fragmentation metrics to discriminate between four categories of P. ramorum 

disease severity in plantation larch trees; and  
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3. To determine whether automatically segmented larch tree crowns can be 

correctly classified into P. ramorum presence and severity categories using 

ALS point cloud height metrics and CHM fragmentation metrics.  

5.3 Methods  

5.3.1 Ground Data Collection  

Within the two established study sites, Ogmore Forest and Radnor Forest in 

Wales, UK outlined in Chapter 3, sixteen sample transects and plots were established 

(Chapter 3; Figure 3.4). To aid accessibility for ground surveying, a combination of plots 

and transects were established along sub-compartment edges. Table 5.1 provides a 

summary of the sample transects from both study sites, variation in transect lengths was 

incurred due to differences in sub-compartment dimensions. Training and validation 

datasets were subsequently identified by dividing each sampling area in half. This 

facilitated an equal spread of tree ages and disease severities across the training and 

validation datasets.  

The 258 trees, 158 at Ogmore Forest and 100 at Radnor Forest, located within 

selected sampling areas at the two study sites were individually tagged, photographed and 

surveyed for species and diameter breast height (DBH). The position of each individual 

was recorded using a handheld Garmin Oregon 550t GPS. In circumstances of poor GPS 

positional accuracy (>2 m), the distance and bearing of individuals was also noted from 

a reference point situated outside the forest. Larch species, which formed the majority of 

surveyed individuals (84%), were subject to additional visual surveying of both the stem 

and crown to ascertain the overall tree health and the occurrence and severity of P. 

ramorum infection. The presence or absence of cankers, bark stripping and foliage colour 

change were noted, as well as percentage classes (10% intervals) of deadwood, 

defoliation, discolouration, wilting and canopy cover. Visual assessments were conducted 

by the same surveyor throughout the data collection to ensure consistency in recorded 

observations (Kantola et al., 2010; Nutter et al., 2010). Surveys were conducted in June, 

July and August 2015 coinciding with the acquisition of ALS data for both study sites by 

Bluesky International. At the infected study site, larch trees which exhibited characteristic 

cankers associated with P. ramorum were presumed infected. In circumstances where the 

presence of P. ramorum infection was not definitive from presented symptoms, a lateral 

flow device (LFD) was used to ascertain the presence of Phytophthora spp. in suspect 
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plant material (Kox et al., 2007). A total of three LFD tests were undertaken before a tree 

was classified as not infected, in order to reduce false negatives. 

 To evaluate the severity of P. ramorum infections the scoring system presented in 

Table 5.2 was used to separately categorise the foliar and stem symptoms for each tree. 

The overall severity of P. ramorum infection was subsequently determined based on the 

highest value for the foliage and stem scores. In cases where a reliable survey could not 

be conducted or there were difficulties sampling suspected plant material, the individual 

was left uncategorised and removed from the analysis (total of 21 individuals). The 

selected number and boundaries of disease severity classes used in the scoring system for 

the study, reflects the previously poor performance of remote sensing in the 

differentiation between classes within the spectrum of moderate disease severity for forest 

insect pests (Coops et al., 2003; Leckie et al., 2005). In addition, the management 

requirements for disease severity data for P. ramorum cover two main areas of concern. 

Firstly, the identification of new infections (category 1) for the issuing of a statutory plant 

Table 5.1 – Characteristics of the sample transects and plots. Tree heights have been 

calculated using the ALS data (June 2015) and the size, number of trees and P. ramorum 

presence were recorded during field surveys (June, July and August 2015). 

No. Forest Species  

Max 

Height 

(m) 

Min 

Height 

(m) 

Mean 

Height 

(m) 

Transect 

Length 

(m)* / 

Plot Size 

(m2) $ 

No. 

Trees 

P. 

ramorum 

Infection  

Proportion 

of Larch 

Trees with 

P. ramorum 

Infection 

(%) 

T1 Ogmore HL, MB 8.41 4.03 6.01 100* 22 Yes 44 

T2 Ogmore HL, MB 11.54 4.98 8.82 100* 24 Yes 75 

P3 Ogmore JL 18.84 10.90 16.44 900$ 22 Yes 75 

T4 Ogmore JL, SS 14.48 6.87 10.00 130* 30 Yes 95 

T5 Ogmore JL 16.64 9.09 13.80 30* 5 Yes 100 

T6 Ogmore JL 20.30 10.18 15.82 130* 9 Yes 100 

T7 Ogmore JL 21.52 11.90 18.87 50* 10 Yes 100 

P8 Ogmore JL 24.59 15.55 21.73 1000$ 36 Yes 100 

T9 Radnor JL, MB 21.19 14.61 19.15 60* 11 No N/A 

T10 Radnor 

HL, 

MB, 

MC 

6.88 4.69 5.44 60* 15 No N/A 

T11 Radnor JL, MB 19.58 13.14 15.65 60* 20 No N/A 

T12 Radnor JL 32.78 22.69 29.33 60* 7 No N/A 

T13 Radnor EL, HL 33.04 26.95 30.46 100* 12 No N/A 

T14 Radnor SS 25.49 21.09 23.84 60* 5 No N/A 

T15 Radnor JL 18.15 14.67 16.34 100* 9 No N/A 

T16 Radnor JL 26.79 11.67 21.21 100* 21 No N/A 

Abbreviations: EL, European Larch; HL, Hybrid Larch; JL, Japanese Larch; SS, Sitka Spruce; MB, 

Mixed Broadleaves; MC, Mixed Conifers; N/A, Not Applicable. 
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health notice (Tracy, 2009) and secondly, concerns of public safety regarding trees 

subject to severe decline (category 3) and the associated reductions in structural integrity 

(Mistretta, 2002; Forestry Commission, 2014). 

 

5.3.2 Airborne Laser Scanning Data Collection 

The ALS data applied for the study is the same as that described in Chapter 4, 

Section 4.3.2. 

5.3.3 Manual Individual Tree Crown Delineation 

 To produce reference polygons for each individual tree, ITCs were manually 

delineated. The manual delineation was performed using the ALS-derived data, in 

addition to photographs and GPS positions for individual trees recorded during ground 

surveys (Brandtberg and Walter, 1998; Fang et al., 2016). The polygons were applied to 

the extraction of ALS point cloud and CHM fragmentation metrics from training crowns 

and used as a basis for determining automated tree crown segmentation accuracy (Pouliot 

et al., 2002).  

5.3.4 Metrics from Airborne Laser Scanning Point Cloud Height Values 

ALS point clouds for individual trees in the training dataset were isolated using 

the manually delineated polygons. Subsequently, the lascanopy module within LAStools 

(LAStools, 2016) was used to derive several metrics based on the properties of ALS return 

pulses (Table 5.3) from normalised point clouds for each tree (Hopkinson et al., 2016; 

Nevalainen et al., 2017). For example, the bicentiles calculated for individual trees 

represent the proportion of ALS returns located below a specified percent of tree height 

Table 5.2 – The scoring system applied to classify P. ramorum infections. 

Score Foliage Condition Stem and Branch Condition 

NI: Not 

Infected 
No defoliation, discolouration or wilting. 

No evidence of cankers, resin bleeds or 

deadwood.  

1: Light  Defoliation, discolouration or wilting in 

<20% of the crown. 

Cankers may be visible at one or two points 

on the stem/branches, but a large portion 

(>80%) of the stem and branches appear 

healthy. 

2: Moderate  Defoliation, discolouration or wilting in 

20% to 80% of the crown. 

Cankers present and dead branches/portions 

of the stem may be noted. Between 20% to 

80% of the stem/branches affected. 

3: Heavy  Defoliation, discolouration or wilting in 

>80% of the crown. 

Significant proportions of the main 

stem/branches visibly affected by infection 

(cankers, resin bleeds and deadwood) >80% 

of the stem and branches affected. 
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(Nevalainen et al., 2017). In order to remove the influence of understorey vegetation, 

height cut-off values, typically between 1 m and 2 m (Andersen, 2009; Hopkinson et al., 

2016; Zellweger et al., 2016), are specified prior to metric calculation. In this study, a 

static cut-off of 1 m was employed due to the low levels of understorey vegetation across 

the two study sites. In addition, ALS point cloud metrics were also calculated using a 

variable cut-off height, set at 50% of tree height, to consider just the characteristics of the 

upper canopy (Vastaranta et al., 2013a). This top portion of the tree canopy is of particular 

interest for disease detection in the context of the study sites due to the higher vertical 

position of the live canopy in coniferous plantation environments with limited thinning 

management (Macdonald et al., 2009). 

 

5.3.5 Canopy Height Model Fragmentation Metrics  

ALS normalised point clouds were used to construct a DTM (ground points) and 

DSM (maximum of all points) for the two study sites. CHMs were subsequently 

constructed by the subtraction of the DTM from the DSM (Jakubowski et al., 2013) with 

a pixel size of 0.15 m. This processing was undertaken in LAStools (LAStools, 2016). 

For the calculation of fragmentation metrics, CHMs for each individual tree were 

reclassified based on height. In the two-class reclassification ground and non-ground 

pixels were distinguished using a threshold value of 0.5 m, this value was selected to 

minimise the misclassification of ground related pixels. In addition, a three-class 

Table 5.3 – Metrics derived from ALS point cloud height values extracted from 

individual trees in the training dataset. 

Metric Definition 

Max Height Maximum tree height (m). 

Skewness 
The skewness of ALS returns above the cut-off 

height. 

Bicentiles (B), where N = 10, 20, 

30, 40, 50, 60, 70, 80 and 90) 

The percentage of ALS returns whose heights are 

below N% of maximum tree height, after the 

subtraction of the height cut-off value. 

Canopy Cover (CC) 

The number of first ALS returns above the cut-off 

height divided by the total number of first ALS 

returns. 

Canopy Density (CD) 
The number of all ALS returns above the cut-off 

height divided by the total number of ALS returns. 
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reclassification was also performed to provide more specific consideration to changes in 

the lower and upper canopy. In this instance the reclassification applied the 1 m static cut-

off value to remove understorey vegetation and considered the maximum tree height 

value extracted from the CHM using the criteria: ≤1 m, >1 m and ≤50% tree height, and 

> 0% tree height. Following the reclassification of the CHMs, landscape fragmentation 

metrics were calculated using FRAGSTATS (version 4.2) (McGarigal et al., 2012) for 

each individual tree within the training dataset. This approach defined the individual tree 

crown as the landscape and the height value categories as classes. Table 5.4 lists all 

landscape metrics calculated which concern a range of landscape fragmentation measures 

such as the area-edge relationships, the integrity of core area and the aggregation and 

diversity of patches within the landscape. Additional information regarding the 

calculation of metrics can be located in the FRAGSTATS users guide (McGarigal, 2015). 

An 8-pixel neighbourhood was applied to consider diagonal adjacencies in the definition 

of patches and in the case of metrics relating to core area a threshold of 1 m was applied. 
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Table 5.4 – Landscape fragmentation metrics extracted from individual tree crowns in the 

training dataset. 

Metric Abbrev. Description 

Number of Patches NP Number of patches in the landscape. 

Patch Density PD Number of patches in the landscape divided by total landscape area. 

Largest Patch Index LPI The percentage of the landscape covered by the largest patch. 

Landscape Shape Index LSI 
Standardised measure for the total edge adjusted for the size of 

landscape. 

Total Core Area  TCA Total core area across the landscape. 

Disjunct Core Area Density DCAD The number of disjunct core areas divided by total landscape area. 

Core Area (Area Weighted 

Mean)  
CORE_AM 

Core area for the entire landscape as a percentage of total landscape 

area. 

Euclidean Nearest 

Neighbour (Area Weighted 

Mean) 

ENN_AM 
Measure of patch isolation, area weighted mean of the shortest 

straight line distance between patches.   

Percentage of Like 

Adjacencies  
PLADJ 

Sum of like adjacencies divided by the total number of cell 

adjacencies in the landscape. 

Patch Cohesion Index COHESION 
Measure of physical connectedness, using patch perimeter and patch 

area.  

Landscape Division Index DIVISION 
The probability that two randomly selected pixels are not situated in 

the same patch.  

Patch Richness Density PRD 
Number of different patch types in the landscape divided by the total 

area of the landscape.  

Shannon’s Diversity Index SHDI 
From the field of ecology, is of indicator or patch diversity in the 

landscape. More sensitive to rare patch types than Simpson’s Index.  

Simpson’s Diversity Index SIDI 
From the field of ecology, is of indicator or patch diversity in the 

landscape. More intuitive than the Shannon’s Index. 

Aggregation Index  AI 

The number of like adjacencies with corresponding class divided by 

maximum possible number of like adjacencies with corresponding 

class. 

 

5.3.6 Disease Severity Discrimination  

Structural variability in ALS point clouds can also arise as a result of differences 

in stand age (Ørka et al., 2009). Prior to the disease severity discrimination assessment, a 

linear regression analysis was conducted to determine any relationships present between 

the metrics (ALS point cloud and CHM fragmentation) and maximum tree height for 

individuals from the training dataset at the healthy Radnor Forest. Metrics which reported 
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a significant relationship with tree height were subsequently removed from further 

analysis and not considered as input variables for the disease severity classification.  

To determine the disease severity discrimination potential of the ALS point cloud 

and CHM fragmentation metrics the Kruskal-Wallis test was applied with Mann-Whitney 

post hoc tests. The results of the Mann-Whitney post hoc testing were subject to a 

Bonferroni-Holm correction to limit the overall type I error for multiple testing (Ismail et 

al., 2007). In this instance, the application of the parametric analysis of variance 

(ANOVA) followed by Tukey’s HSD tests (Coops et al., 2003; Ismail et al., 2007) was 

not appropriate as several datasets failed to meet the assumptions of normality (Shapiro-

Wilk test p < 0.05) or homogeneity of variances (Levene’s test p < 0.05). For the purpose 

of data analysis all individual trees, from both study sites, without P. ramorum have been 

grouped together to form the not infected (NI) category to be compared with the three 

disease severity categories (1, 2, and 3) (Table 5.2).   

5.3.7 Automated Tree Crown Segmentation  

The selected methodology for the automated ITC segmentation of validation 

crowns at the study sites for the disease presence/absence and severity classifications was 

based on the finding of Barnes et al. (2017b) presented in Chapter 4. A pit-free CHM was 

generated using the method specified by Khosravipour et al., 2014, which requires the 

construction of partial CHMs (2 m, 5 m, 10 m, 15 m and 20 m) which are then stacked in 

height order and the maximum value for each pixel is used for the generation of the CHM. 

CHMs were generated at three pixel sizes (0.15 m, 0.25 m and 0.5 m), with the most 

suitable pixel size for each plot selected on the basis of maximum tree height (Table 5.5). 

CHMs were subsequently subject to a low pass smoothing filter followed by the 

extraction of local maxima (>2 m in height) which were subject to a minimum distance 

filter, the sizing of both filters was also adjusted in accordance with the maximum tree 

height of the plot (Table 5.5). Finally, a marker-controlled watershed segmentation 

(Wang et al., 2004) was applied using the smoothed pit-free CHM and the previously 

extracted local maxima. Segments which failed to meet the minimum area threshold 

(Table 5.5) were merged with the neighbour of the longest common border (Koch et al., 

2006). To determine the accuracy of the crown outlines resulting from the ITC 

segmentation, an automated assessment (Chapter 4; Table 4.6) was conducted to 

determine the percentage overlap of automated ITCs with the manually delineated 

reference crowns for the study areas (Barnes et al., 2017b) (Chapter 4; Section 4.3.10). 
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Segments classified in either the correct or satisfactory categories (Chapter 4; Table 4.6) 

were deemed successful for the purpose of the study and overall accuracy percentages 

were calculated using the ratio of successfully delineated validation crowns to the total 

number of validation individuals in sample transects/plots (Hu et al., 2014). 

Table 5.5 – Parameters for filtering and smoothing prior to ITC segmentation.  

Max Tree 

Height (m) 

Local Maxima 

Distance Filter 

(m) 

Smoothing 

Filter (Pixels) 
Pixel Size (m) 

Min Area 

Threshold 

(m2) 

≥15 1 5 x 5 0.15 0.5 

>15 and <30 2 5 x 5 0.25 3 

≥30 3 5 x 5 0.5 7 

 

5.3.8 Classification  

Successfully delineated automated ITC polygons for validation trees at the study 

site were subject to classification. Two sets of classification criteria were tested including 

presence (not infected and infected) and severity (categories 1, 2, 3 and NI), using ALS 

point cloud and CHM fragmentation metrics individually. A combination of ALS point 

cloud and CHM fragmentation metrics as input variables was also considered but this did 

not yield any improvement in classification. Two distinct classification approaches were 

used k-nearest neighbour (k-NN) and random forest (RF). For the implementation of the 

non-parametric pattern recognition classifier k-NN, the K value, which represents the 

number of samples considered for the classification of each feature (Collins et al., 2004; 

Melgani and Bruzzone, 2004; Yu et al., 2006), was established using a grid search cross 

validation of the training sample testing K values ranging from 1 to 30 (Melgani and 

Bruzzone, 2004; Hsu et al., 2003). In the implementation of this classifier input data 

values were not normalised prior to classification.  

The second classification method random forest (RF) (Breiman, 2001), is a non-

parametric approach which generates a series of classification trees. Each tree is generated 

using a bootstrapped set of training samples, with the split at each tree governed by a 

randomised subset of input variables for each node (Hudak et al., 2008; Oliveira et al., 

2012). The final classification result is subsequently determined based of the highest 

mean probability estimate across all trees (Belgiu and Drăguţ, 2016). Two important input 

parameters for the RF classification include the number of regression trees (ntree) and the 

number of input variables at each split in the tree building process (mtry). Following a 
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preliminary grid search cross validation of the training dataset, the ntree and mtry were set 

to 500 and 2 respectively, similar to the values applied in previous studies (Immitzer et 

al., 2012; Ortiz et al., 2013; Shendryk et al., 2016). All processing for the two 

classification methods was undertaken in Python using Scikit-learn (Pedregosa et al., 

2011). An SVM classifier was also considered, but yielded poor results in preliminary 

testing.  

Classification input variables were selected based on the results of the disease 

severity discrimination analysis and classification performance was reviewed using the 

overall accuracy percentage (OA) and Cohen’s κ coefficient (Cohen, 1960). Interpretation 

of κ was based on the following categories: ≤0.20 is poor; >0.20 to ≤0.40 is fair; >0.40 to 

≤0.60 is moderate; >0.60 to ≤0.80 is good; and >0.80 to ≤1 is very good (Landis and 

Koch, 1977). Confusion matrices were also employed to provide a more detailed 

evaluation of the most successful classifications (Congalton and Green, 1999).  

5.4 Results 

5.4.1 Tree Height  

In the case of the ALS point cloud metrics, significant relationships (p < 0.05) 

were evident between the bicentiles B20, B30 and B50 (1 m cut-off height) and tree height 

(Table 5.6). As a result, B20, B30 and B50 were therefore removed from further analysis, 

in addition to B40 which was significant at the 90% confidence level. With regard to the 

CHM fragmentation metrics (Table 5.7) significant relationships (p < 0.05) with tree 

height were reported for all two-class metrics, excluding ENN_AM. For the three-class 

approach, seven metrics (NP, LSI, TCA, CORE_AM, ENN_AM, COHESION and PRD) 

exhibited a significant relationship (p < 0.05) with tree height. In light of these results all 

two-class metrics were removed from the disease severity analysis in addition to the seven 

significant three-class metrics, to reduce the potential influence of tree height on the 

disease severity analysis.  
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Table 5.6 – Coefficient of determination (R2) and p values for the linear regression 

analysis between the ALS point cloud metrics and tree height (m) for training data from 

the healthy Radnor Forest. (* = significant p < 0.05). 

ALS Metric 
R2 value p value 

1 m CoH 50% CoH 1 m CoH 50% CoH 

Skewness 0.07 0.05 0.107 0.167 

Canopy Cover <0.01 <0.01 0.938 0.847 

Canopy Density 0.05 0.02 0.174 0.361 

B10 0.01 0.03 0.647 0.314 

B20 0.11* 0.03 0.040* 0.320 

B30 0.15* <0.01 0.015* 0.747 

B40 0.09 <0.01 0.058 0.847 

B50 0.11* 0.01 0.043* 0.470 

B60 0.06 0.03 0.144 0.280 

B70 0.06 0.01 0.120 0.545 

B80 0.06 <0.01 0.144 0.701 

B90 <0.01 0.02 0.597 0.441 

Abbreviations: CoH – Cut-off height  

 

 

 

Table 5.7 – Coefficient of determination (R2) and p values for the linear regression 

analysis between the CHM fragmentation metrics and tree height (m) for training data 

from the healthy Radnor Forest (* = significant p < 0.05). 

Fragmentation Metric 
R2 value p value 

2 Class 3 Class 2 Class 3 Class 

NP 0.27* 0.45* 0.001* 0.000* 

PD 0.27* 0.10 0.001* 0.058 

LPI 0.13* 0.10 0.023* 0.058 

LSI 0.20* 0.41* 0.005* 0.000* 

TCA 0.37* 0.20* 0.000* 0.004* 

DCAD 0.18* 0.04 0.007* 0.236 

CORE_AM 0.37* 0.16* 0.000* 0.012* 

ENN_AM 0.07 0.20* 0.098 0.005* 

PLADJ 0.51* 0.09 0.000* 0.064 

COHESION 0.22* 0.42* 0.003* 0.000* 

DIVISION 0.13* 0.08 0.025* 0.087 

PRD 0.54* 0.59* 0.000* 0.000* 

SHDI 0.11* 0.02 0.042* 0.380 

SIDI 0.14* 0.06 0.021* 0.150 

AI 0.17* 0.01 0.009* 0.535 
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5.4.2 Disease Severity Discrimination  

Figure 5.2 shows the ALS point cloud height profiles and three-class reclassified 

CHMs for four individual trees across the disease severity categories. The ALS point 

cloud height profiles demonstrate a larger number of ground or near ground returns for 

the moderate and heavily infected individuals. In the case of the heavily infected 

individual, the ALS point cloud profile also demonstrates a greater spread of returns 

across the height of the tree. In addition, the reclassified (three-class) CHMs from 

diseased trees exhibit a patchier appearance, with an increased presence of low height 

values towards the centre of the crown for greater levels of infection. The height related 

Figure 5.2 – The top four point clouds demonstrate the ALS point cloud vertical profiles for 

the four disease severity categories. The bottom four images show the horizontal CHM 

classified into three height categories (<1m; <50% tree height; >50% tree height) for 

individual trees across the four disease severity categories. 
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ALS point cloud and CHM fragmentation metrics calculated provide a quantification of 

these observations across all individual trees within the training dataset.  

Tables 5.8 and 5.9 present the p values from the Krustal-Wallis test for the disease 

severity category discrimination for the ALS point cloud metrics and CHM fragmentation 

metrics respectively. The results from the analysis regarding ALS point cloud metrics 

demonstrated significant differences in the case of all point cloud metrics at the 50% cut-

off height, with the same for the 1m cut-off height except for in the case of B10. In 

addition, all CHM fragmentation metrics tested also yielded significant differences 

between disease severity categories.  

Table 5.8 - Krustal-Wallis test p values for disease severity discrimination from 

the ALS point cloud metrics (* = significant p < 0.05). 

ALS Point Cloud Metric 1 m CoH  50% CoH  

Skewness 0.002* 0.001* 

Canopy Cover <0.001* 0.002* 

Canopy Density <0.001* 0.006* 

B10 0.487 0.005* 

B60 0.014* <0.001* 

B70 0.002* <0.001* 

B80 0.001* <0.001* 

B90 <0.001* <0.001* 

Abbreviations: CoH – Cut-off height 

 

Table 5.9 – Krustal-Wallis test p values for disease severity discrimination from the 

three-class CHM fragmentation metrics (* = significant p < 0.05). 

Fragmentation Metric p value  

PD <0.001* 

LPI 0.001* 

DCAD 0.001* 

PLADJ <0.001* 

DIVISION 0.001* 

SHDI <0.001* 

SIDI 0.001* 

AI <0.001* 
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To assess the difference in ALS point cloud and CHM fragmentation metrics for 

the four disease severity categories (NI, 1, 2 and 3) in more detail, Mann-Whitney post 

hoc tests with the Bonferroni-Holm correction for multiple comparisons were conducted. 

Table 5.10 presents the post hoc test results for the ALS point cloud (1m and 50% cut-off 

height) and CHM fragmentation metrics. In the case of the ALS point cloud metrics 

calculated using the static (1 m) and variable (50% of tree height) cut-off heights, 

significant differences were collectively observed between all disease severity categories 

excluding not infected (NI) and light infection (1). All ALS point cloud metrics 

demonstrated a significant difference between at least one set of disease severity 

categories except for B10 at the 1 m cut-off height. All of the CHM fragmentation metrics 

demonstrated significant differences between the disease severity category 3 (heavy 

infection) and all other severity categories (NI, 1 and 2), except for Disjunct Core Area 

Density (DCAD) which exhibited significant differences between categories 2 and NI, 

categories 3 and NI, and categories 2 and 3.  

5.4.3 Automated Tree Crown Segmentation  

The results depicted in Table 5.11 demonstrate the percentage of validation 

crowns successfully delineated via the automated tree crown segmentation. The large 

variation in successful delineation percentages across the sample areas is caused by the 

small number of validation crowns in some of the plots. Figure 5.3 demonstrates the 

segmentation results for P3 at the Ogmore Forest.  
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Table 5.10 – Mann-Whitney post hoc test results (with Bonferroni-Holm correction) for the 

ALS point cloud metrics at the static 1 m cut-off height and variable 50% cut-off height and 

CHM fragmentation metrics calculated with the three-class reclassification.  

  1m CoH 50% CoH  Fragmentation 3 Class 
 1 2 3 NI 1 2 3 NI 1 2 3 NI 

1 

Skew 

 **** * -  **** * - 

PD 

 - ** - 

2 ****  - * ****  - * -  **  

3 * -  - * -  * ** **  **** 

NI - * -  - * *  - - ****  

1 

CC 

 - **** -  - * - 

LPI 

 - *** - 

2 -  *** - -  **** * -  **** - 

3 **** ***  **** * ****  ** *** ****  **** 

NI - - ****  - * **  - - ****  

1 

CD 

 - **** -  - - - 

DCAD 

 - - - 

2 -  *** - -  **** - -  **** * 

3 **** ***  **** - ****  ** - ****  ** 

NI - - ****  - - **  - * **  

1 

B10 

 - - -  - * - 

PLADJ 

 - **** - 

2 -  - - -  - * -  *** - 

3 - -  - * -  ** **** ***  **** 

NI - - -  - * **  - - ****  

1 

B60 

 * - -  *** *** - 

DIV. 

 - *** - 

2 *  - ** ***  - *** -  **** - 

3 - -  - *** -  *** *** ****  **** 

NI - ** -  - *** ***  - - ****  

1 

B70 

 *** - -  *** **** - 

SHDI 

 - *** - 

2 ***  - ** ***  - *** -  **** - 

3 - -  - **** -  *** *** ****  **** 

NI - ** -  - *** ***  - - ****  

1 

B80 

 *** ** -  *** *** - 

SIDI 

 - ** - 

2 ***  - *** ***  - *** -  **** - 

3 ** -  *** *** -  **** ** ****  **** 

NI - *** ***  - *** ****  - - ****  

1 

B90 

 ** ** -  - ** - 

AI 

 - **** - 

2 **  - **** -  - *** -  *** - 

3 ** -  ** ** -  **** **** ***  **** 

NI - **** **  - *** ****  - - ****  

* p < 0.10; ** p < 0.05; *** p < 0.01; **** p < 0.001; - no significant difference.  Abbreviations: CoH – 

Cut-off height; Skew – Skewness; CC – Canopy Cover; CD – Canopy Density; DIV- DIVISION.  
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Table 5.11 – Percentage of successfully delineated validation tree crowns for 

each of the sample plots and transects. 

No. Forest Max Height (m) 
Percentage of Test Crowns 

Successfully Delineated (%) 

T1 Ogmore 8.41 63.64 

T2 Ogmore 11.54 54.56 

P3 Ogmore 18.84 90.91  

T4 Ogmore 14.48 42.86 

T5 Ogmore 16.64 100 

T6 Ogmore 20.30 60 

T7 Ogmore 21.52 60 

P8 Ogmore 24.59 44.44 

T9 Radnor 21.19 80 

T10 Radnor 6.88 75 

T11 Radnor 19.58 70 

T12 Radnor 32.78 100 

T13 Radnor 33.04 100 

T14 Radnor 25.49 100 

T15 Radnor 18.15 25 

T16 Radnor 26.79 50 

 

 

 

 

Figure 5.3 – Automated and manual tree crown segmentations for P3, Ogmore Forest 
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5.4.4 Disease Severity Classification  

ALS Point Cloud Metrics  

Table 5.12 presents the results from the best k-NN and RF classification of disease 

presence (infected and not infected) from the ALS point cloud metrics. Overall the best 

classification was achieved by the k-NN classification of the B80 and B90 (1 m cut-off 

height).  Whilst the resulting κ of 0.32 can be interpreted as a fair classification (Landis 

and Koch, 1977), the high producer’s accuracy (97.78%) for the not infected (NI) class 

and low number of false positives (1) suggest the classification performs well for healthy 

individuals, with most confusion resulting from the classification of infected individuals. 

The classification results from the k-NN and RF classifiers for disease severity 

using the ALS point cloud metrics are displayed in Table 5.13. Both performed best using 

the same input variables (50% cut-off height: skewness, canopy cover, B60, B70 and 

B80), with the k-NN classifier producing the highest overall accuracy (65.28%) and κ 

(0.27), which indicates a fair classification (Landis and Koch, 1977). Assessment of the 

confusion matrix demonstrated that particular difficulties were encountered with the 

classification of disease categories 1 and 2 which yielded poor user’s (28.57%, 40%) and 

producer’s (14.29%, 28.57%) accuracies. To illustrate the difference between the disease 

presence (2 class) and severity (3 class) classifications conducted, Figure 5.4 presents the 

classification results for P3 at the Ogmore site.   

Table 5.12 - Confusion matrices for best performing k-NN and RF classification of 

disease presence (infected/not infected) using ALS point cloud metrics. 

  k-NN RF 

  Inputs: 1m cut-off height B80 and B90 

Inputs (Feature Importance): 50 % cut-

off height Skewness (0.18), CC (0.17), 

B60 (0.21), B70 (0.23), B80 (0.21) 

  Classified Classified 

  NI IN PA NI IN PA 

R
ef

er
en

ce
 NI 44 1 97.78 26 19 57.78 

IN 19 8 29.63 10 17 62.96 

UA 69.84 88.88  72.22 47.22  

OA (%)  72.22  59.72 

κ  0.32  0.21 

Abbreviations: IN – Infected; NI – Not Infected. 
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Table 5.13 - Confusion matrices for k-NN and RF classifications of disease severity 

categories (1: Light; 2: Moderate; 3: Heavy; NI: Not Infected) using ALS point cloud 

metrics. 

 k-NN RF 

 Inputs:  50% cut-off height Skewness, 

Canopy Cover, B60, B70, B80 

Inputs (Feature Importance): 50% cut-

off height Skewness (0.18), CC (0.23), 

B60 (0.18), B70 (0.23), B80 (0.19).  

  Classified Classified 

  1 2 3 NI PA 1 2 3 NI PA 

R
ef

er
en

ce
 

1 2 0 0 12 14.29 5 0 2 7 35.71 

2 1 2 0 4 28.57 2 1 1 3 14.29 

3 0 2 3 1 50 0 0 5 1 83.33 

NI 4 1 0 40 88.89 6 2 10 27 60 

UA 28.57 40 100 70.18  38.46 33.33 27.78 71.05  

OA (%)  65.28  52.78 

κ  0.27  0.23 

 

  

 

CHM Fragmentation Metrics  

The classification results in Tables 5.14 and 5.15 were achieved using all eight 

three-class CHM fragmentation metrics as input variables. In the case of the disease 

presence classification (Table 5.14), the k-NN classifier resulted in greatest overall 

accuracy (65.28%), whilst the RF classifier produced the highest κ at 0.21. The RF 

confusion matrix exhibited a low number of false negatives, with the majority of 

B) A) 

Figure 5.4 – Random Forest classification of A) Disease Presence and B) Disease Severity for 

P3 at the Ogmore Field Site.   
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confusion resulting from false positives. In the case of the disease severity classification 

(Table 5.15), the k-NN classifier was responsible for the best classification (OA = 68.06% 

and κ = 0.24). Difficulties in identifying categories 1 and 2 were clearly apparent with 

producer’s and user’s accuracies for both classes report as 0%. Consideration was given 

to combing the ALS point cloud and CHM fragmentation metrics but this did not improve 

the classification accuracies of disease presence or severity. 

Table 5.14 – Confusion matrices for k-NN and RF classifications of disease 

presence (infected/not infected) using all three-class CHM fragmentation metrics. 

  k-NN RF 

  Classified Classified 

  NI IN PA NI IN PA 

R
ef

er
en

ce
 NI 40 5 88.89 19 26 42.22 

IN 20 7 25.93 5 22 81.48 

UA 66.67 58.33  79.17 45.83  

OA (%)  65.28  56.94 

κ  0.17 0.21 

RF feature importance: PD (0.15), LPI (0.09), DCAD (0.13), PLADJ (0.16), DIV (0.11), SHDI (0.12), SIDI 

(0.10), AI (0.13); Abbreviations: IN – Infected; NI – Not Infected. 

 

Classification Limitations  

In the case of the disease classifications performed using both the ALS point cloud 

and CHM fragmentation metrics, several key limitations require acknowledgement. 

Firstly, the small number of samples from each of the categories, especially in the case of 

the categories 2 (moderate) and 3 (heavy), fell below the recommended minimum 

Table 5.15 - Confusion matrices for k-NN and RF classifications of disease 

severity categories (1: Light; 2: Moderate; 3: Heavy; NI: Not Infected) using all 

three-class CHM fragmentation metrics. 

 k-NN RF 

  Classified Classified 

  1 2 3 NI PA 1 2 3 NI PA 

R
ef

er
en

ce
 

1 0 0 0 14 0 8 1 2 3 57.14 

2 0 0 0 7 0 2 0 2 3 0 

3 0 0 5 1 83.33 1 0 5 0 83.33 

NI 1 0 0 44 97.78 20 0 2 23 51.11 

UA 0 0 100 66.67  25.81 0 45.45 79.31  

OA (%)  68.06  50 

κ  0.24  0.23 

RF feature importance: PD (0.14), LPI (0.09), DCAD (0.11), PLADJ (0.16), DIV (0.12), SHDI (0.12), 

SIDI (0.11), AI (0.15). 
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threshold for a statistically valid assessment (Van Genderen and Lock, 1977; Congalton, 

1991), influencing the predictive capabilities of the classifiers (Melgani and Bruzzone, 

2004; Belgiu and Drăguţ, 2016). In addition, the number of samples in each of the disease 

presence and severity categories was also unbalanced, providing potential difficulties in 

the ability of the classifiers to accurately separate individual classes (Muñoz-Marí et al., 

2007; Belgiu and Drăguţ, 2016). Furthermore, the use of un-normalised data values in the 

implementation of the k-NN classifier may have also limited the performance of this 

particular classifier. 

5.5 Discussion 

The results highlighted the presence of a linear relationship between some of the 

ALS point cloud and CHM fragmentation metrics and tree height, demonstrating the 

influence of tree growth and canopy development on the structure and character of healthy 

larch crowns. For example, contrasts between crown height and density of foliage in 

younger and older stands can provide a different signal in metrics calculated from ALS 

for healthy individuals. The influence of tree height relationships for disease detection 

purposes in larch can be avoided for the ALS point cloud metrics when a variable cut-off 

height (50%) based on maximum tree height is applied. However, significant 

relationships between CHM fragmentation metrics and tree height were evident for both 

the two- and three-class approaches, although less fragmentation metrics exhibited a 

significant relationship in the case of the three-class methodology, which was selected for 

disease discrimination analysis. Resultantly, tree height demonstrates a dominant 

influence controlling the height-based ALS point cloud and CHM fragmentation metrics 

produced for individual trees and requires consideration in analysis regarding disease 

detection and assessment.  

The disease severity discrimination analysis revealed that collectively, height-

based ALS point cloud metrics exhibited significantly different values for all disease 

severity categories, except in the case of the not infected (NI) and light infection (1) 

categories. This highlights that structural canopy changes as the result of P. ramorum 

infection in the later stages of disease progression (categories 2 and 3) can be detected 

via the application of ALS point cloud metrics at the ITC-scale. This supports the findings 

of previous research regarding insect pests of coniferous tree species, which noted an 

increased penetration of ALS pulses through the canopy and a greater portion of ground 
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returns for canopies subject to defoliation as a result of insect attack (Coops et al., 2009; 

Bright et al., 2013). The difficulties noted with regard to the separation of not infected 

individuals and those in the early stages of infection has also been previously recognised 

within the scientific literature (Bater et al., 2010; Kantola et al., 2010). The results from 

this study indicate that even with high ALS point densities, metrics derived from ALS 

point clouds are unable to detect the very slight changes in canopy structure which are 

encountered in the early onset of the P. ramorum infection. In addition, discrete return 

ALS biases the resulting datasets against foliage located in the middle of the tree crown 

(Lovell et al., 2003). As a result, when early stages of infection are not present in the top 

of the canopy, detection via the application of discrete ALS point cloud metrics may also 

be more difficult.  

The results from the disease severity discrimination analysis for the CHM 

fragmentation metrics demonstrate the potential applications of this group of metrics for 

the assessment of severe decline in ITC condition. Whilst significant differences were 

only consistently noted to provide separation of heavily infected individuals (category 3) 

with all other severity categories, this is likely to result from the CHMs representation of 

the canopy surface and the requirement of upper canopy fragmentation for disease 

detection. Nevertheless, the results indicate the previously untested value of CHM raster 

data for disease assessment in the absence of the original point cloud. Such results are 

also of particular interest from the perspective of deadwood mapping in forest 

environments (Martinuzzi et al., 2009; Pasher and King, 2009). The presence of 

significant results from a range of fragmentation metrics suggests in heavily infected larch 

trees (category 3) changes in ALS penetration across the upper canopy (Coops et al., 

2009; Bright et al., 2013) can alter resulting height values in CHMs to a large enough 

extent to increase the fragmentation of height value classes in tree crowns. This effect 

changes the characteristics of core areas as well as increasing the complexity of height 

value patches in the tree crown landscape. The contrast in the mosaic of height class 

patches between heavily infected and healthy tree crowns is sufficient to provide a means 

of separating these individuals (Du-ning and Xiu-zhen, 1999). Nevertheless, the high 

point density of the ALS (24 points/m2) facilitated the generation of the high resolution 

CHM (0.15 m) applied in this study. Further investigation is subsequently required to 

determine whether the same level of discrimination can be achieved for CHMs of a lower 

resolution (>0.15 m).  
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The results of the disease presence (not infected/infected) classification provided 

a straightforward indication of the value of ALS datasets for the detection of P. ramorum 

in larch species. The results indicated that the application of a k-NN classifier to ALS 

point cloud metrics (B80 and B90 1m cut-off height) could provide a fair classification 

(κ = 0.32), with an acceptable overall accuracy (72.22%). The greatest limitation of this 

classification is the poor performance of the infected classification (producer’s accuracy 

29.63%). Given the results of the disease severity discrimination with the Mann-Whitney 

post hoc analysis, it is likely that discriminating individuals within the not infected (NI) 

and light infection (category 1) categories are causing the greatest confusion. Kantola et 

al. (2010) set a defoliation level of 20% or more for their classification of Scots pine 

(Pinus sylvestris) defoliated by the common pine sawfly (Diprion pini). Acknowledging 

the limitations of the approach for the detection of individuals in the early stages of P. 

ramorum infection, a higher threshold of defoliation could be employed for operational 

use during disease detection. A defoliation threshold was not applied in this study as it 

was important to assess the overall success of ALS across the spectrum of P. ramorum 

disease severities. With regard to the superior performance of the k-NN in comparison 

the RF classifier, the less complex application of two input variables (B80 and B90 1m 

cut-off height) with a cross validated K value (Latifi et al., 2010) provided a better binary 

classification of P. ramorum infection than the more complex RF (McInerney and 

Nieuwenhuis, 2009).  

The results from the disease severity classification yielded a fair classification (κ 

= 0.23 to 0.27), however no classifier or input metrics (ALS point cloud or CHM 

fragmentation) demonstrated a superior performance over the other. Assessment of the 

confusion matrices revealed that classification of the infected disease severity classes 1 

and 2 were often the most problematic. Whilst classes applied in this study represented 

key areas of interest during the disease progression, each class exhibits a spectrum of 

crown conditions, causing difficulty in separating disease severity at specified threshold 

levels (Coops et al., 2003). The use of automated polygons representing tree crowns also 

results in further complications with regard to the extraction ALS point cloud and CHM 

fragmentation metrics from the validation crowns for classification. For example, whilst 

some automated crowns overlap perfectly with reference ITCs, those categorised as 

satisfactory may incorporate returns from neighbouring vegetation, potentially 

influencing the calculation of metrics employed as input variables. This effect could be 
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managed with more restrictive criteria, such as 60% or 70% minimum overlap, for 

determining successfully delineated automated crowns (Shendryk et al., 2016). 

 The overall classification accuracy of ALS point cloud metrics for discrimination 

of healthy and P. ramorum infected individuals was slightly below the 80.7% achieved 

for Scots pine (Pinus sylvestris) infected by the insect pest the common pine sawfly 

(Diprion pini) (Kantola et al., 2010). Nevertheless, the research presents the detection 

capabilities of ALS across the full spectrum of P. ramorum infection, including 

consideration for individuals in the early stage of infection. In addition, the characteristic 

impacts of each insect pest and phytopathogen on canopy structure is not uniform and 

direct comparison does not consider variations in pest- or phytopathogen-host 

interactions, symptom expression and species crown architecture (Lovett et al., 2006).  

These results highlight the application of previously untested fragmentation 

metrics for the quantification the increased patchiness of tree crown CHMs subject to 

heavy P. ramorum infection. Whilst the results indicate the preferable application of ALS 

point cloud datasets for the assessment of P. ramorum, the availability of original 

datasets, expertise and resources for processing may present barriers in the operational 

applications of ALS in forestry. Therefore, a range of approaches to the application of 

ALS to disease assessment provides flexibility for forest management (Suárez et al., 

2005; Hall et al., 2016).  

Further consideration for the application of ALS to the detection and assessment 

of P. ramorum infection in larch should take into account the point density of ALS 

datasets. Whilst point density applied in this instance (24 points/m2) can be considered 

high, low density datasets cannot be presumed to provide the same results (Kantola et al., 

2010). Furthermore, as suggested by Coops et al., (2009), further understanding of the 

impact of disease on ALS point cloud metrics could be established with the application 

of pre- and post-infection ALS datasets. Such assessment can also be applied in the case 

of CHMs (Vastaranta et al., 2012). To fully assess the potential benefits of an approach 

based on remote sensing data in comparison to those presently achieved manually by 

visual assessment, a comparison between the two approaches would also be valuable to 

provide additional merit to a remote sensing-based method (Pasquarella et al., 2017).  
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5.6 Conclusions 

 The research demonstrates the successful application of ALS point cloud metrics 

to isolate ITCs of larch subject to moderate (category 2) and severe (category 3) P. 

ramorum infection based on the impacts of the disease on individual tree crown canopy 

structure. The results also highlight the merits of CHMs alone for isolating heavily 

infected individuals (category 3) via the first assessment of fragmentation metrics to 

quantify the patchiness exhibited by diseased tree crowns. Overall classification of 

disease presence and severity were best achieved using a k-NN classifier with percentages 

of 72.22% and 65.28% respectively. κ values for disease presence and severity of 0.32 

and 0.27 respectively indicated a fair classification, with low values as a result of poor 

classification for infected individuals, particularly those within the early stages of 

infection (category 1). Whilst higher accuracies could be achieved by raising the 

threshold of symptomatic material for infected individuals, it was important to highlight 

the performance of ALS across the whole spectrum of P. ramorum infection levels. For 

operational applications regarding disease assessment in larch forests, the limitations of 

the technique in identifying ITCs subject to the early stages of disease establishment 

requires acknowledgment.  
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Chapter 6: Segmentation of Individual Tree Crowns in a Woodland 

Affected by Acute Oak Decline using an UAV-based Photogrammetric 

Digital Surface Model  

6.1 Introduction 

In the UK, the latest episodic incidence of AOD resulting from bacterial 

phytopathogens, has caused particular concern in recent years due to the rapid 

deterioration and high levels of mortality in affected individuals (Denman and Webber, 

2009; Denman et al., 2010). AOD has been documented in native oak species including 

English oak (Quercus robur) and Sessile oak (Quercus petraea) as well as the non-native 

Turkey oak (Quercus cerris) (Denman et al., 2014). At present the geographic 

distribution of AOD in the UK extends across southern and midland England and into 

Wales. AOD affects mature oaks, causing the death of affected trees within as little as 4 

years, following the appearance of initial symptoms. The most distinctive symptom 

associated with AOD is the presence of dark stem bleeds from lesions or vertical cracks 

between the bark plates. Crown condition also deteriorates as a result of AOD (Brady et 

al., 2010; Denman et al., 2010) (Figure 6.1), however the process of infection and 

Figure 6.1 – Typical progression of crown decline in mature oak trees at Stratfield Brake 

and the expected changes in the spectral characteristics of tree crowns. 

Crown decline progression typical of AOD at the Stratfield Brake 

site 

All foliage is lost. Major branches lose foliage Crown occupies a smaller 

area and begins to thin 

Spectral characteristics of crowns increasingly includes non-vegetated surfaces and understorey 
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relationship between stem and foliar symptom severities are still unclear (Denman et al., 

2014). Stems in the later stages of the decline may also present D-shaped exit holes caused 

by the opportunistic colonisation of the buprestid beetle (Agrilus biguttatus) (Denman et 

al., 2010; Brown et al., 2015). 

UAVs have been increasingly utilised in applications concerning environmental 

monitoring and assessment (Michez et al., 2016; Nevalainen et al., 2017). Remotely 

sensed data can be acquired using UAVs via both passive and active sensors and typically 

provides datasets of higher spatial resolutions than those obtained by other remote sensing 

platforms, such as aircraft and satellites (Salami et al. 2014). This advantage of UAVs, 

alongside their increased availability and relatively low cost of data acquisition, make the 

platform an attractive choice for remote sensing studies (Wallace, 2013; Getzin et al., 

2014), especially for environments of limited spatial extent (Lehmann et al., 2015). 

With regard to forestry, UAVs also provide a useful platform for the remote 

sensing of forest environments (Dunford et al., 2009; Nex and Remondino, 2014; Salami 

et al., 2014), although the present application of UAVs in this sector is typically 

experimental (Tang and Shao, 2015; Gambella et al., 2016).  Key remote sensing products 

for the management of forests including orthophotographs, DSMs (Aicardi et al., 2016), 

and CHMs (Lisein et al., 2013) have all been generated via UAV platforms. These 

datasets acquired from UAVs have previously been applied to derive information 

regarding canopy structure (Wallace, 2013), forest gaps (Getzin et al., 2014), forest 

inventories (Wallace et al., 2012), forest fire monitoring (Ollero et al., 2006) and tree 

crown detection (Hung et al., 2012). The fine resolutions associated with UAV data 

capture, enables the extraction of biophysical parameters associated with ITCs within the 

forest canopy. In addition, low operational costs facilitate feasible monitoring 

programmes consisting of temporal datasets from repeat acquisitions (Aicardi et al., 

2016). 

ITCs can be automatically segmented from remotely sensed datasets representing 

canopy surface height. For example, ALS-derived CHMs, representing canopy surface 

elevation have commonly been applied to the segmentation of ITCs (Chen et al., 2006; 

Khosravipour et al., 2014). Surface elevation can also be extracted from remotely sensed 

images via the derivation of photogrammetry point clouds (PPCs). The production of 

three-dimensional models via photogrammetry requires the presence of illuminated 
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features in two or more overlapping images. The acquisition of imagery via UAVs can 

aid in the reduction of errors encountered in photogrammetry from airborne imagery due 

to increased distance from features, poor image overlap, and obstruction by surrounding 

features (Lindberg and Holmgren, 2017). PPCs have less commonly been applied than 

ALS-derived datasets to ITC segmentation (Rahlf et al., 2015) and typically provide a 

poorer characterisation of forest canopies due to the inability of optical sensors to 

penetrate through the canopy surface (Tanhuanpää et al., 2016). Previous research 

comparing the ITC success of ALS and PPCs has reported comparable or slightly poorer 

performance of PPCs for coniferous forests (St-Onge et al., 2015).  

In the application of surface elevation (CHMs and DSMs) for the isolation of 

ITCs, the pixel size of input raster data influences the intra-crown variability and the 

performance of the overall segmentation. Resultantly, raster inputs to ITC segmentations 

can be resampled to provide the most suitable resolution (Ke and Quakenbush, 2011). 

Previous studies have considered the influence of pixel size on overall segmentation 

accuracy (Ene et al., 2012), acknowledging the influence of crown dimensions on pixel 

size suitability (Barnes et al., 2017b). To account for this, optimal crown diameter to pixel 

ratios ranging from 3:1 to 19:1 (Pouliot et al., 2002) and 10:1 to 35:1 (Barnes et al., 

2017b) have previously been reported for optical inputs and ALS-derived CHMs 

respectively. Nevertheless, in the case of deciduous broadleaved crowns the calculation 

of crown diameter can be complicated by the increased irregularity of crown shape and 

overlap with surrounding tree crowns (Ke and Quackenbush, 2011; Chang et al., 2013).  

A range of algorithms can be applied to the segmentation of ITC boundaries, these 

typically exploit structural differences exhibited by treetops, crown boundaries and 

canopy spaces (Wang et al., 2004; Chen et al., 2006). Many methods including the 

watershed algorithm require the prior identification of treetops within the canopy of 

interest to act as seed points for segmentation (Wang et al., 2004). Treetops are typically 

identified via the detection of local maxima across surfaces. Local maxima represent 

pixels in the input raster dataset where neighbouring pixels exhibit equal or lower values 

in height (Wang et al., 2004; Koch et al., 2006). Other studies have also applied 

contouring methods, which create contours at various levels of the forest canopy, to 

extract treetops from raster datasets of surface elevation (Koukoulas and Blackburn, 

2005). The marker-controlled watershed segmentation applies the identified treetops as 

nodes from which the inverted input raster of “valleys” is “flooded”. The respective 
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boundaries for each tree crown are then delineated by establishing the “watershed” for 

each individual “valley” (Wang et al., 2004). Previous studies have successfully applied 

the marker-controlled watershed algorithm to the segmentation of ITCs in a range of 

forest environments including oak (Quercus spp.) savanna woodland (Chen et al., 2006), 

Korean pine (Pinus koraiensis), Japanese larch (Larix leptolepis) and oak (Quercus spp.) 

forest (Kwak et al., 2007), and diseased larch (Larix spp.) forest (Barnes et al., 2017b).  

Forest structure is an important influencing factor for the success of ITC 

segmentation (Vauhkonen et al., 2012). A large number of ITC delineation studies have 

focused on coniferous plantation forest, with less emphasis on woodland environments 

comprising of deciduous broadleaved tree species. For some methods of ITC delineation, 

the conical shape of conifers makes them more suitable for isolation than deciduous 

canopies (Ke and Quakenbush, 2011). Additional difficulties in the detection and 

isolation of ITCs have also been noted with regard to forest environments subject to 

variable conditions (Tanhuanpää et al., 2016). For example, the extraction of local 

maxima has previously been less successful in forests characterised by high tree density, 

large variation in crown size and high degrees of tree crown overlap (Mei and Durrieu, 

2004). 

Further difficulties can be incurred in the segmentation of diseased trees due to 

the increased presences of canopy surface irregularities caused by defoliation and decline 

of crowns (Larsen et al., 2011; Barnes et al., 2017b). Previous research has successfully 

segmented diseased coniferous forest from ALS-derived CHMs (Barnes et al., 2017b) 

and image-based DSMs (Näsi et al., 2015), in addition to the identification of standing 

deadwood and snags with both ALS and optical datasets (Bütler and Schlaepfer, 2004; 

Kim et al., 2009; Pasher and King, 2009). However, preceding studies have not directly 

considered the application of photogrammetry-derived surface elevation the for the 

delineation of defoliated deciduous broadleaved canopies.  

6.2 Objectives 

 The research conducted as part of this chapter aims to:  

Consider the most appropriate method for the detection of treetops and 

segmentation ITCs using a photogrammetry-derived DSM acquired via UAV, for 

a mature oak-dominated woodland affected by AOD.  
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The key research objectives for the chapter are:  

1. To evaluate the use of photogrammetry-derived DSMs acquired via UAV for 

the identification of treetops and crown boundaries in mature oak trees at five 

stages of crown decline;  

2. To examine the performance of the local maxima and contour methods for the 

extraction of individual treetops in a mature oak-dominated woodland affected 

by AOD; and  

3.  To determine the influence of DSM pixel size on the performance of treetop 

detection and crown boundary segmentation in a mature oak-dominated 

woodland affected by AOD.  

6.3 Methods  

6.3.1 Ground Data Collection  

 Within the established field site at Stratfield Brake, Oxfordshire (Chapter 3; 

Section 3.2) a total of 189 individual trees across the training and validation areas were 

included in the ground surveys conducted in June 2016. All trees within the sampling 

areas which exceeded 15 cm in DBH and presented dominance or sub-dominance within 

the forest canopy were surveyed. Each individual was tagged with a unique ID number 

and the species and number of stems were noted. The location of each tree was also 

determined using a handheld Garmin Oregon 550t GPS. In circumstances of poor GPS 

positional accuracy (>2 m), the distance and bearing of individuals was also noted from 

a reference point situated outside the forest. The potential limitations of excluding smaller 

individuals on ITC delineation success and disease assessment was acknowledged, 

however this could not be achieved with a high degree of accuracy for the study site 

Oak trees accounted for 84% of trees in the study area and were also assessed for 

the severity of crown decline. Crown decline, defined as the percentage of recent 

mortality within the live crown (Zarnoch et al., 2004), was recorded using a categorical 

scale of crown condition (Table 6.1) (Innes, 1990), previously applied to AOD 

assessment (Brown et al., 2016). The use of this particular categorisation provides a 

degree of consistency with regard to research conducted for this particular pathogen in 

oak species. The presence of stem bleeding was recorded, however high temperatures and 

heavy rainfall during fieldwork both reduced the likelihood of these being visible during 
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surveys (Denman et al., 2010). The occurrence of D-shaped A. biguttatus exit holes were 

also noted when present (Brown et al., 2016).   

Table 6.1 – Crown decline severity categories (adapted from Innes, 1990). 

No. Category Criteria 

1 Dead Standing dead tree 

2 Severe Decline Between 80 - 95% canopy missing 

3 Moderate Decline 
Canopy thinning between 30 - 80% and minor 

deadwood 

4 Minor Decline Between 10 - 30% of the crown missing 

5 Healthy No decline or deadwood 

 

6.3.2 UAV Data Collection  

Multispectral imagery was acquired for the mature woodland at Stratfield Brake 

on the 13 June 2016 via UAV. The Height Tech HT-8 C180 was used to carry the 150 g 

MicaSense RedEdge multispectral sensor which obtained imagery consisting of five 

spectral bands (blue: 465-485nm, green: 550-570nm, red: 663-673nm, red-edge: 712-

722nm, near-infrared: 800-880nm). The flight was conducted at a height of 100 m, 

producing images with a pixel size of 0.06 m. Ground control points (GCPs) located using 

a real-time kinetic (RTK) GPS (Satlab SL300) were subsequently used to spatially 

reference the imagery.  Pre- and post-flight calibration images were acquired for each of 

the five bands using a white reference reflectance panel, in order to account for changing 

light conditions during the flight (Albetis et al., 2017) which lasted approximately 15 

minutes.  
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6.3.3 Data Processing  

A georeferenced orthoimage was generated using the Pix4D software (Pix4D, 

2016), which has been commonly applied for UAV image processing and 

photogrammetry (Feng et al., 2015; Rasmussen et al., 2016; Zhang et al., 2016; Albetis 

et al., 2017). The three GCPs obtained during data collection were located at the most 

open areas of the site and used to georeference the images with a spatial accuracy of 0.025 

m. The resulting images were mosaicked and cropped to remove distortions present at 

image edges which occurred as a result of minimal image overlap (Figure 6.2). The 

orthomosaic was subsequently utilised to generate a photogrammetric point cloud (PPC) 

(25.2 point/m2) and DSM with the Pix4D software, using the standard photogrammetry 

methodology and workflow described in McGlone (2013) which has previously been 

applied to UAV acquired imagery (Zhang et al., 2016). 

6.3.4 Digital Surface Model 

In many previous examples of ITC segmentation, the DSM is normalised via the 

subtraction of a DTM to create a CHM (Jakubowski et al., 2013). As the DSM in this 

instance was obtained from photogrammetry, as opposed to LiDAR, a DTM cannot be 

acquired from the UAV dataset (Nevalainen et al., 2017). Nevertheless, the ground 

elevation at the site was considered using an ALS-derived DTM (0.5 m pixel size) from 

the Environment Agency (UK Government Data, 2016). This demonstrated a ground 

level variation of 0.004 m. Even with the cited absolute height error of ± 0.15 m 

(Environment Agency, 2016) and potential overestimates of ground height (0.23 – 0.31 

Figure 6.2 – Number of overlapping images from the UAV data collection.  
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m mean signed error) incurred due to forest cover (Reutebuch et al., 2005; Su and Bork, 

2006) the site exhibits very low variation in ground elevation. Subsequently it was 

determined that the DSM alone provided an accurate documentation of the canopy surface 

for the purpose of the study. The DSM was also resampled using a bilinear interpolation 

(Brandtberg and Walter, 1998) to pixel sixes of 0.15 m, 0.25 m and 0.5 m. These 

resolutions were selected based on their previous successful application in ITC studies 

(Pitkänen et al., 2004; Roberts et al., 2005; Solberg et al., 2006; Khosravipour et al., 

2014; Barnes et al., 2017b) and the PPC point density.  

6.3.5 Manual Individual Tree Crown Delineation 

  ITCs within the study area were manually delineated to provide a means of 

comparing automated segmentation results and to facilitate the extraction of information 

regarding tree character (Pouliot et al., 2002). In this instance the manual delineation was 

conducted using the multispectral imagery and DSM, in addition to the GPS positions 

and photographs recorded during field surveys (Figure 6.3) (Brandtberg and Walter, 

1998; Fang et al., 2016). Whilst crowns of coniferous trees can be considered relatively 

circular in nature (Popescu and Wynne, 2004; Fang et al., 2016), deciduous broadleaved 

crowns typically exhibit more complex spatial dimensions (Chang et al., 2013). 

Consequently, inferring the diameter of oak crowns from the area of the crown as a circle 

(as previously applied for larch trees in Chapter 4; Section 4.3.5), would provide a poor 

diameter estimate (Ke and Quackenbush, 2011). To provide an indication of ITC spacing 

in the study area, a proximity analysis was conducted using the manually delineated 

polygons. Following the conversion of the manually delineated crowns to points located 

at the central location of each polygon, a proximity analysis was conducted to determine 

the distance to the closet neighbouring point. Whilst this approach has some limitations, 

largely the assumption that treetops are located at the centre of manually delineated 

crowns (Wang et al., 2004), it provides an indication of the spacing between treetops 

within the study area (Table 6.2), which can inform filtering and segmentation parameters 

(Chen et al., 2006; Koch et al., 2006). In addition, the area of each of the manually 

delineated tree crowns was also extracted to identify the minimum crown area for the 

study site as 2.43m2. This can inform the threshold specified for merging small automated 

crowns during the post-processing of segmentation outputs.  
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Table 6.2 – Proximity analysis results for the distance between the central point of 

manually delineated tree crowns and the closest neighbour. All values are presented in 

meters.  

Min  P05  P20  Max.  Mean  Median  LQ  UQ  

1.77 2.91 5.11 12.73 6.94 7.07 5.58 8.42 

Abbreviations: P05 = 5th percentile; P20 = 20th percentile; LQ = Lower Quartile; UQ = Upper Quartile.  

 

6.3.6 Pre-processing  

 To reduce intra-canopy irregularities across the DSMs, a Gaussian filter was 

applied to each of the three pixel sizes (0.15 m, 0.25 m and 0.5 m) (Brandtberg et al., 

2003; Koch et al., 2006; Hyyppä et al., 2012; Khosravipour et al., 2014). The window 

size of the Gaussian filter (d x d) has previously been informed via the dimensions of the 

smallest crown (Wang et al., 2004). In this instances the smallest distance between 

treetops was 1.77 m. However, 95% (P05) and 80% (P20) of treetops were >2.91 m and 

>5.11 m from the closest neighbour respectively (Table 6.2). Preliminary testing was 

conducted to consider the potential difference in segmentation results when selecting the 

minimum, P05 and P20 to inform the Gaussian filter size. Resultantly the Gaussian filter 

size for the study was informed by the P05 (2.91 m) and adjusted in accordance with the 

three pixel sizes (Monnet et al., 2010) (Table 6.3). The standard deviation (σ), which has 

previously been noted to have minimal impact on the final smoothing produced by the 

filter (Dralle and Rudemo, 1996; Chen et al., 2006), was set at 0.2d pixels (Jing et al., 

2012). In this instance the Gaussian filter was executed using SAGA GIS (SAGA GIS, 

2016). Figure 6.4 provides a visual illustration of the impacts of the Gaussian filtering on 

the DSM.  

Figure 6.3 – The application of RGB (Left), DSM (Middle) and NDVI (Right) images as 

well as GPS position (blue point) to manually delineate crown boundaries (red polygon).  
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Table 6.3 – Gaussian filter size (informed by P05 of treetop spacing) in pixels 

for the DSMs at the three different pixel sizes. 

Size of Filter in Pixels Based on DSM Input Resolution (m) 

0.15 0.25 0.5 

19 x 19 11 x 11 5 x 5 

 

6.3.7 Local Maxima  

 One method applied to generate seed inputs for ITC segmentation was to extract 

point of local maxima from the filtered images. In order to prevent the over-segmentation 

of tree crowns local maxima are typically selected with minimal distance thresholds 

informed by crown spacing. As with the Gaussian filter sizes, preliminary tests were 

conducted to determine the overall performance of local maxima minimal distance 

thresholds informed by the minimum, P05 and P20 of treetop spacing. Resultantly the 

minimal distance threshold for the local maxima extraction was informed by the 

minimum distance (1.77 m) between treetops and rounded to the closest multiple for each 

of the three pixel sizes (Table 6.4) (Monnet et al., 2010). The local maxima extraction 

was executed in Python using Scikit Image (Van der Walt et al., 2014). Figure 6.5 

illustrates the filtered local maxima produced for Stratfield Brake. 

  

Figure 6.4 – Left: DSM (0.25 m) without filtering. Right: DSM (2.25) with Gaussian filter. 
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Table 6.4 – Minimal distance threshold (informed by minimum distance of 

treetop spacing) in pixels for the DSMs at the three different pixel sizes. 

Size of Minimal Distance in Pixels Based on DSM Input Resolution (m). 

0.15 0.25 0.5 

13  7  3  

 

6.3.8 Contour Method  

 The contour method outlined by Koukoulas and Blackburn (2005) has also 

previously been applied to the extraction of deciduous treetops in UK forests. In this 

instance, individual trees are isolated as single polygons through the construction, 

filtering and dissolving of contours created at various height intervals in the forest canopy 

(Figure 6.6). Resulting treetops are extracted as the central point from each of the final 

polygons. Figure 6.7 provides a detailed workflow of each step undertaken in this 

approach to treetop identification. All processing for the method was undertaken in 

ArcMap (version 10.5).  

Figure 6.5 – The filtered local maxima points for Stratfield Brake displayed 

alongside the DSM and the manually delineated tree crowns.  
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A) 

B) 

C) 

D) 

E) 

Figure 6.6 – Illustration of the contour method for treetop extraction. A) Reclassify 

DSM. B) Contour generation. C) Contour length filter. D) Dissolve Polygons. E) 

Generate treetops at centre of polygon.  
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6.3.9 Individual Tree Crown Segmentation  

DSMs across the three pixel sizes were inverted and applied alongside the 

treetops, from the best overall performing extraction method (local maxima or contour), 

as inputs for the marker-controlled watershed segmentation, executed in Python using 

Scikit Image (Van der Walt et al., 2014). Resulting segments were subsequently 

converted to polygons, those which fell below the minimum area threshold of 2.43 m2, 

determined from the manual polygons, were merged with the neighbour of the longest 

common border (Koch et al., 2006). The application of a region growing algorithm 

(Chapter 4; Section 4.3.8) was also considered, however preliminary testing yielded poor 

results for a range of specified threshold values. Figure 6.8 provides an illustration of the 

automated tree crowns produced for the Stratfield Brake site.   

6.3.10 Accuracy Assessment  

 To provide a comprehensive assessment of the accuracy of the segmentation, 

treetop points and automated ITC segments were both subject to accuracy assessment. In 

the case of the treetops, successful detection was determined in instances where a single 

Step 1: Reclassify 

(0.5 m Intervals from 8 m) 

Step 2: Set Null 

(Value <8 m) 

Step 3: Contour 

(Interval = 0.5 m; Base = 8 m) 

 

Step 4: Contour Length Filter 

(Length <70 m) 

Step 5: Feature to Polygon 

Step 6: Dissolve Polygons 

Step 7: Polygon Length Filter 

(Polygon Length > 6.5 m) 

Step 8: Generate Treetop Point at 

Polygon Centre 

Figure 6.7 – Workflow for the contour approach methodology to treetop extraction. 
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treetop was associated with one manually delineated tree crown (Ke and Quakenbush, 

2011; Khosravipour et al., 2014). The overall accuracy for the treetop detection was 

subsequently calculated using the ratio of successful detected treetops to the total number 

of trees (Ke and Quackenbush, 2011). In the case of the ITC boundaries, the segmentation 

performance was determined using the automated accuracy assessment described in 

Chapter 4, Section 4.3.10. As with the treetops, accuracy percentages were calculated 

using ratio of successful delineations (Chapter 4; Table 4.6) to the total number of 

reference tree crowns (Chen et al., 2006; Hu et al., 2014). 

6.3.11 Data Analysis  

To evaluate the influence of generation method on treetop detection success, the 

non-parametric Wilcoxon signed rank test was used to analyse the difference in treetop 

detection accuracy produced for each of the three DSM pixel sizes.  The equivalent 

parametric paired t-test was not selected as several datasets produced from the contour 

method did not meet the assumption of normality (Shapiro-Wilk test p < 0.05). To address 

the additional type 1 error incurred via multiple testing, the Bonferroni-Holm sequential 

correction was also applied to the results of the statistical testing. 

Figure 6.8 – The automated individual tree crowns for Stratfield Brake displayed alongside the 

local maxima points and DSM. 
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6.4 Results 

6.4.1 Treetop Generation Method  

 Table 6.5 presents the treetop detection success percentages for the local maxima 

and contour methodologies. Overall the local maxima method for treetop generation 

performed best (59.21 - 63.16%) across all three pixel sizes (0.15m, 0.25m and 0.5m). 

Nevertheless, the contour method of treetop extraction did perform favourably in the case 

of categories 1 and 2. The Wilcoxon signed rank test results reported no significant 

differences between the performance of the two treetop generation methods (Table 6.6). 

Resultantly, the local maxima treetops were selected as the inputs for the marker-

controlled watershed segmentation.   

Table 6.5 – Treetop detection results for the local maxima (LM) and contour 

methods for all five crown decline categories and DSM pixel sizes.  

 
0.15 m 0.25 m 0.5 m 

LM Contour LM Contour LM Contour 

Cat 1 23.81 33.33 28.57 33.33 23.81 28.57 

Cat 2 50.00 50.00 43.75 56.25 43.75 56.25 

Cat 3 75.00 62.50 75.00 61.11 72.22 56.94 

Cat 4 71.88 59.38 71.88 59.38 65.63 56.25 

Cat 5 54.55 54.55 54.55 54.55 45.45 45.45 

Total 63.16 55.92 63.16 55.92 59.21 51.97 

 

Table 6.6 – p values for Wilcoxon signed rank test, after Bonferroni-Holm 

correction, comparing results from the two treetop generation methods (local 

maxima and contour) across the three DSM pixel sizes. 

0.15 m 0.25 m 0.5 m 

0.828 1.000 1.000 

 

6.4.2 Crown Decline Severity Category 

 Differences in treetop detection (Table 6.5) and ITC segmentation (Table 6.7) 

accuracy percentages were observed across the five crown decline severity categories. 

Large variability was observed between the reported results for across the five categories 

for both treetop detection (28.37 – 51.19%) and ITC segmentation (39.10 – 48.02%), with 



 

118 

 

categories 1 and 3 consistently yielding the lowest and highest overall accuracy 

percentages respectively. Figure 6.9 presents the percentage of ITCs classified in each of 

the five accuracy assessment categories (correct, satisfactory, over-sized, split and 

missed) (Chapter 4; Table 4.6) for each of the three DSM pixel sizes tested. In the case 

of all three pixel sizes, the greatest proportion of trees were typically categorised as 

oversized.   
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Figure 6.9 – The percentage of trees in each of the five crown decline severity 

categories classified in the five accuracy assessment categories for ITC 

segmentations conducted for the 0.15 m (a), 0.25 m (b) and 0.5 m (c) pixel sizes. 
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Table 6.7 – ITC segmentation results for all five crown decline categories and all 

three DSM pixel sizes.  

 

Successful ITC Segmentation (%) 

DSM Pixel Size (m) 

0.15  0.25  0.5  

Cat 1 9.52 4.76 9.52 

Cat 2 25.00 18.75 18.75 

Cat 3 48.62 52.78 54.17 

Cat 4 31.25 40.63 40.63 

Cat 5 36.36 36.36 27.27 

Total 36.18 38.82 39.47 

 

6.4.3 Pixel Size  

 The variability in total overall accuracies across the three pixel sizes was 3.95% 

for treetop detection (local maxima method) and 3.29% for ITC segmentation. In the case 

of treetop detection (local maxima method) the 0.15 m and 0.25 m resolutions performed 

best (66.16%). However, in contrast, the 0.5 m pixel size yielded the highest total overall 

accuracy (39.47%) for the ITC segmentation. Figure 6.10 displays the variability in the 
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Crown Decline Category

Treetop Detection ITC Segmentation

Figure 6.10 – Difference between the highest and lowest overall accuracy values for 

treetop detection and ITC segmentation reported across the three DSM pixel sizes 

(0.15 m, 0.25 m and 0.5 m) for each of the crown decline severity classes (1 to 5). 
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treetop detection and ITC segmentation accuracies across the three DSM pixel sizes for 

the five crown decline severity classes. Whilst all classes demonstrated low levels of 

variability (<10%), the highest variation was typically noted in the healthiest trees.    

6.5 Discussion 

 The overall treetop detection accuracies reported for both the local maxima and 

contour methods (51.97% - 63.16%) yielded inadequate results for operational treetop 

identification in forest environments. The consistently poorer overall performance of the 

contour method across the three pixel sizes tested, could be explained by the inability of 

the user-defined thresholds in the methodology (contour interval and base height, contour 

length filter, and polygon length filter) (Koukoulas and Blackburn, 2005) to 

accommodate the variety in crown size and shape experienced across the structurally 

heterogeneous Stratfield Brake field site. This influencing factor can also be considered 

in the explanation of the limited performance of the local maxima method (Katoh and 

Gougeon, 2012), however only one user-defined parameter, minimum distance, is 

required for this particular approach (Ke and Quackenbush, 2011). In the case of local 

maxima extraction, previous studies have applied variable minimum distance filters 

utilising the relationship between crown dimensions and tree height (Chen et al., 2006). 

However, weak relationships between crown diameter and tree height can result in poor 

estimates of tree crown diameter and the application of inappropriate filter sizes 

(Falkowski et al., 2006). Further difficulties for local maxima extraction in deciduous tree 

species have also noted with complications as a result of ITCs which are associated with 

multiple points of local maxima (Koukoulas and Blackburn, 2005).  

The total overall accuracies produced by the ITC segmentation (36.18% - 39.47%) 

can be considered too low to provide a useful method of ITC isolation for forest 

management. The poor performance of the marker-controlled watershed segmentation 

was expected given the treetop detection results (59.21% - 63.16%) reported for the input 

seeds (Wang et al., 2004). ITCs not meeting the automated overlap criteria for a 

successful segmentation were largely classified as oversized, suggesting that automated 

tree crowns typically overestimated the spatial extent of ITCs at the site. In complex 

broadleaved forests automated ITC segmentations typically favour individuals 

dominating the canopy (Lähivaara et al., 2014). When coupled with the added difficulty 

in distinguishing the individual boundaries of overlapping crowns (Poutliot et al., 2002; 
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Koukoulas and Blackburn, 2005) and a complex vertical canopy structure (Wang et al., 

2016), automated crown boundaries overestimate size and coverage of the existing tree 

crowns through the merging of subdominant individuals with adjacent dominant tree 

crowns (Koch et al., 2006).  Furthermore, the impact of canopy gaps, created from fallen 

deadwood, across the woodland could also be attributed as a potential causal factor to this 

oversizing of automated ITCs (Leckie et al., 2003).  

It was noted that individuals classified as category 1 (dead), presented the greatest 

treetop detection (23.81% - 28.57%) and segmentation (4.76% - 9.52%) difficulties. 

These individuals can be shadowed by surrounding canopies and occupy a significantly 

smaller extent in the canopy due to the loss of foliage and branches (Bater et al., 2009). 

Furthermore, in relation to the photogrammetric process, Nevalainen et al. (2017) noted 

that whilst shorter trees were evident in orthomosaic images, these could not be detected 

from the resulting point clouds. This affect can be attributed to the limited canopy 

penetration of passive sensors and the requirement of an xyz location to be visible from 

at least two viewpoints for the generation of a photogrammetric point (St-Onge et al., 

2005). It is therefore plausible that detection difficulties noted for category 1 individuals 

may also be incurred due to the reduced prominence of dead stands in DSMs generated 

via photogrammetry.  

 Trees recorded as category 3 (moderate decline) consistently yielded the highest 

treetop detection and ITC segmentation accuracies. Dispersive broadleaves, such as oak 

species (Quercus spp.), are prone to over-segmentation due to the irregularity of crown 

shape (Strîmbu and Strîmbu, 2015; Deng et al., 2016). It is therefore plausible that the 

partial dieback of the crowns designated as category 3 (moderate decline) reduced the co-

dominance of multiple branches and created a greater distinction of the crown boundary. 

However, in comparison to trees suffering major decline (category 2), the individuals still 

exhibited a prominent treetop and sufficient quantities of live foliage to be identified and 

segmented.  

 In the case of pixel size, whilst variability was evident between the three tested 

DSM resolutions, the differences between treetop detection and ITC segmentation 

accuracies were much smaller than the disparity between crown decline severity 

categories. Identifying any particular relationship between optimum pixel size and crown 

characteristics was hindered by difficulties in the calculation of crown diameter for ITCs 
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in the study area (Ke and Quackenbush, 2011; Chang et al., 2013). The 0.5 m DSM 

exhibited the best performance in the ITC segmentation, despite the poorest treetop 

detection results, suggesting the reduced intra-crown variability may have resulted in a 

slight improvement in the delineation of crown boundaries.  Given the mature nature of 

the dominant tree canopy, this would align with the results reported in Barnes et al. 

(2017b) and Chapter 4 which suggested that plantation forest plots with larger maximum 

tree heights (>30 m) were best segmented from the coarser 0.5 m CHM. Nevertheless, 

insufficient evidence from this study, along with limited variability between the 

performance of DSM pixel sizes, prevents the acknowledgment of any conclusions 

concerning the influence of pixel size on the detection and delineation of ITCs.  

Previous studies that have applied photogrammetry-derived surface elevation 

from UAV imagery for the isolation of individual trees have reported treetop detection 

success rates of 64 – 95% for boreal stands dominated by pine (Pinus sylvestris), spruce 

(Picea abies), birch (Betula pendula) and larch (Larix sibirica) (Nevalainen et al., 2017) 

and an ITC segmentation success of 74.7% for urban boreal forest dominated by spruce 

(Picea abies) (Näsi et al., 2015). By comparison the treetop detection (59.21 - 63.16%) 

and ITC segmentation results (36.18 – 39.47%) achieved from this study fall below these 

previously reported accuracies. Nevertheless, contrasts between the studies cause direct 

comparisons of ITC isolation accuracies to be misleading. For example, variations present 

in the accuracy assessment methods may result in disparities between reported results 

(Chen et al., 2006; Ke and Quackenbush, 2011; Richardson and Moskal, 2011; Zhen et 

al., 2016). With regard to the Nevalainen et al. (2017) study for example, a 2 m radius 

extending from reference tree crowns was applied for the evaluation of successfully 

automated treetops. Furthermore, in reference to the Näsi et al. (2015) research, only 

individuals with a DBH exceeding 25 cm were included in the reported accuracy 

percentage and the exact method of ITC segmentation success assessment was not 

explicitly specified. Resultantly an objective approach is required for the comparison of 

accuracy percentages reported for the detection and segmentation of ITCs. 

In addition, differences in forest type and character also present further challenges 

in the comparison of ITC isolation accuracy results (Solberg et al., 2006; Zhen et al., 

2016). In particular, the difficulties in identifying crowns of deciduous tree species has 

been widely recognised in the scientific literature (Koch et al., 2006; Ke and 

Quackenbush, 2011; Larsen et al., 2011), especially in the case of mixed heterogeneous 
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forest stands (Solberg et al., 2006). Cited reasons for the complications in ITC 

identification in deciduous forest have included the increased irregularity of crown shape 

(Strîmbu and Strîmbu, 2015), lack of conical crown shape (Ke and Quackenbush, 2011), 

poor consistency in human interpretation of reference and automated crowns and large 

discrepancies in segmentation algorithm performance (Larsen et al., 2011). The 

increasing acknowledgement of poor ITC delineation success in deciduous forest from 

conventional segmentation methods highlights the requirement for further research in this 

particular forest type (Zhen et al., 2016).  

Whilst is was not possible to acquire UAV imagery and PPCs for the larch forests 

applied in the previous chapters (4 and 5). Based on the findings of this research and the 

results reported by other studies in the literature, the potential performance of the 

methodology in these environments could be hypothesised. In the case of the healthy larch 

stands at Radnor forest (Chapter 3; Section 3.1), given the successful results (> 64%) 

previously reported by Näsi et al. (2015) and Nevalainen et al. (2017) for boreal forests 

dominated by conifers, it could be suggested that ITC segmentation accuracies 

comparable or just below those reported for the ALS in chapter 4 could be achieved (St-

Onge et al., 2015). Nevertheless, in light of the difficulties reported for the identification 

of individual oak trees subject to crown decline in this study and the importance of the 

pit-free CHM generation method for diseased larch segmentation in chapter 4, the 

performance of photogrammetry-derived DSMs for segmentation of P. ramorum affected 

larch at Ogmore forest is also likely to be poor. However, the conical shape of crowns, 

regular spacing and presence of one dominate peak in height for commercial plantation 

larch, may facilitate a slight increase in the ITC segmentation accuracies reported for oak 

in the mature woodland at Stratfield Brake.  

6.6 Conclusions 

 The results presented in the study highlight the poor performance of treetop 

detection (59.21 - 63.16%) and ITC segmentation (36.18 – 39.47%) in the AOD affected 

oak-dominated woodland at Stratfield Brake. Whilst the local maxima approach to treetop 

extraction outperformed the contour method overall, no significant differences were 

observed between the results reported by the two techniques. Large variability was 

observed with regard to the performance of treetop detection and ITC segmentation across 

the five crown decline severity categories, with categories 1 (dead) and 3 (moderate 
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decline) consistently producing the lowest and highest accuracy percentages. The selected 

pixel size of the DSM (0.15 m, 0.25 m and 0.5 m) was noted to result in some small 

variations in the reported accuracies of treetop detection and ITC segmentation, however 

no substantial conclusions could be reached with regard to an optimal DSM resolution. 

The key causal factors for the poor detection and segmentation of ITCs was the 

irregularity of crown shape and structural canopy complexities caused by the dominance 

of deciduous trees in the canopy and the variation in crown condition.  

  

 

 

  



 

126 

 

Chapter 7: Assessment of Crown Decline in a Woodland Affected by Acute 

Oak Decline with UAV-based Multispectral Imagery 

7.1 Introduction 

UAVs have been increasingly utilised in applications concerning environmental 

monitoring and assessment (Michez et al., 2016; Nevalainen et al., 2017). Whilst the 

operational applications of UAVs in the forestry sector are currently experimental (Tang 

and Shao, 2015; Gambella et al., 2016), previous studies have demonstrated the 

capabilities of the platform for a range of purposes including the assessment of tree 

species (Michez et al., 2016), tree height (Wallace et al., 2012), forest fires (Ollero et al., 

2006) and insect pest damage (Näsi et al., 2005). Nevertheless, examples regarding the 

potential applications of UAVs for the assessment of tree disease is limited (Näsi et al., 

2015), especially in relation to dieback and mortality events resulting from 

phytopathogens, such as the current AOD outbreak in the UK (Chapter 6; Section 6.1).  

In the case of tree disease assessment, airborne and spaceborne datasets acquired 

via passive and active sensors have previously been applied in the detection of insect pests 

and phytopathogens in forest environments (Stone and Coops, 2004; Fraser and Latifovic, 

2005; Wulder et al., 2006; Coops et al., 2009; Barnes et al., 2017a). UAVs offer an 

additional platform for the remote assessment of disease within forests and woodlands 

(Wallace et al., 2012), especially with regard to the recognition of subtle changes in 

branches and ITCs associated with the early stages of infection (Lehmann et al., 2015). 

Nevertheless, baseline datasets providing information regarding the characteristic 

structure and spectral signature of a particular tree species are required for healthy 

canopies (Sims and Gamon, 2002; Turner et al., 2003) and those subject to various levels 

of deterioration as a result of a specific insect pest, phytopathogen or environmental stress 

(Näsi et al. 2015). This information, coupled with an understanding regarding the 

performance of UAV supported sensors in forest environments, is imperative to the 

application of this remote sensing platform in the field of forest pathology (Nilsson, 1995; 

Tang and Shao, 2015). 

With regard to the remote assessment trees at the ITC-scale, airborne acquired 

optical imagery typically provides several pixels of spectral information per ITC (Näsi et 

al., 2015). However, in the case of UAV-based imagery, thousands of pixels can represent 

one ITC (Garcia-Ruiz et al., 2013). The increased data availability improves the potential 
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application of the imagery for the assessment and monitoring of forest characteristics. 

Nevertheless, serious challenges are also incurred with regard to the extraction of 

informative data and the elimination noise, such as pixels associated with shadow. 

Methodologies previously employed to minimise the extraction of noise affected pixels 

from tree crowns have included the selection of the brightest pixels within ITCs (Näsi et 

al., 2015), the selection of sunlit portions of the canopy (Leckie and Yuan, 1992) and a 

halo approach which ignores the brightest central pixels associated with the treetop 

(Coops et al., 2003). Nevertheless, no methodology has been consistently reported to 

provide the optimal extraction of spectral information from ITCs. Resultantly, further 

consideration regarding feature extraction for ITCs from UAV-based imagery is still 

required.  

The application of remotely sensed imagery to the assessment of forest health 

utilises changes in spectral signatures resulting from structural and physiological 

responses of vegetation subject to stress and disease (Lévesque and King, 2003). Previous 

studies have noted the particular sensitivity of wavelengths in the green, red and near-

infrared regions of the electromagnetic spectrum to infection by insect pests and 

phytopathogens (Coops et al., 2003; Lawrence and Labus, 2003; Leckie et al., 2005; 

Wulder et al., 2006). Subsequently, VIs which utilise these sensitive regions of the 

electromagnetic spectrum, such as NDVI (Rouse et al., 1974), NDVI-RE (Gitelson and 

Merzlyak, 1994; Sims and Gamon, 2002), GNDVI (Gitelson et al., 1996) and ARI 

(Gitelson et al., 2001) have also proven effective in the remote assessment of insect pests, 

phytopathogens and stress in trees and forest environments (Ismail et al., 2007; Barry et 

al., 2008; Ortiz et al., 2013; Adelabu et al., 2014; Murfitt et al., 2016).   

The classification of tree crown condition from remotely sensed datasets provides 

a spatial representation of decline across forest areas and provides a useful tool in the 

management of these of environments (Shendryk et al., 2016). Understanding 

relationships between spectral reflectance and crown condition changes is, however, key 

to facilitating successful classification outputs (Adelabu et al., 2014). A series of 

established classifiers including support vector machine (SVM) and random forest (RF) 

have previously been employed for the classification of vegetation condition (Melgani 

and Bruzzone, 2004; Kantola et al., 2010; Rumpf et al., 2010; Ortiz et al., 2013; Adelabu 

et al., 2014). Each classification approach presents a series of advantages and limitations, 
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with suitability largely dependent on input data characteristics such as the quantity of 

training data and class separability (Huang et al., 2002; Immitzer et al., 2012).  

7.2 Objectives 

The aim of this research chapter was to: 

Identify the capability of UAV multispectral imagery in the detection of crown 

dieback associated with Acute Oak Decline in mature oak trees. 

To consider the applications of UAV-based multispectral imagery for the assessment of 

crown decline in an AOD affected woodland, a series of specific objectives were 

constructed. This research chapters’ main objectives are: 

1. To assess the ability of six vegetation indices (NDVI, NDVI-RE, GRVI, GNDVI, 

MTCI and ARI) to discriminate between five categories of crown decline, at the 

ITC-scale, in a woodland environment affected by AOD;  

2. To establish whether the calculation of mean vegetation indices for individual oak 

tree crowns from all pixels, the brightest 80% of pixels or the brightest 20% of 

pixels influences the discrimination of five crown decline severity classes; and 

3. To determine whether oak tree crowns in an AOD affected woodland can be 

correctly classified into three and five crown decline severity classes based on the 

mean vegetation index values extracted from UAV-based multispectral imagery.  

7.3 Methods  

7.3.1 Ground Data Collection  

 Ground data collection at the Stratfield Brake field site (Chapter 3; Section 3.2) 

for this research chapter has already been described in Chapter 6, Section 6.3.1.  

7.3.2 UAV Data Collection  

The methodology for the UAV data collection has already been described in 

Chapter 6, Section 6.3.2.  

7.3.3 Data Processing  

The data processing methodology applied in the production of the orthomosaic 

has already been outlined in Chapter 6, Section 6.3.3.   
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7.3.4 Manual Individual Tree Crown Delineation  

The methodology employed for the manual delineation of ITCs at the Stratfield 

Brake site has previously been documented in Chapter 6, Section 6.3.5. An automated 

tree crown segmentation was considered using the DSM acquired via photogrammetry 

(Chapter 6; Section 6.3.4). However, due to the poor overall accuracies reported for the 

segmentation of ITCs in the study area in the previous chapter (Chapter 6; Section 6.4.2; 

Table 6.7), the manually delineated polygons were applied to represent the ITC 

boundaries.  

7.3.5 Vegetation Indices  

Six established VIs (NDVI, NDVI-RE, GRVI, GNDVI, MTCI and ARI) were 

extracted from ITCs (Table 7.1). In the case of the ARI, the green and red-edge bands 

were selected to represent R550 and R700 (Table 7.1), as these most closely matched the 

specified reflectance wavelengths. Across the individual trees within the training area, 

the average number of pixels associated with each tree crown was 15,974. Three different 

methods were applied to the extraction of VI values from ITCs, these included the overall 

mean value from all pixels (Mean_All) (Leckie and Yuan, 1992; Ismail et al., 2007), 

mean value of the brightest 80% of pixels (Mean_80) and mean value of the brightest 

20% of pixels (Mean_20). In this particular context, brightness is used to describe the 

highest VI values. For this selection of VIs, high values are typically associated with 

dense vegetation. The selection of the brightest pixels aims to remove values of low 

spectral reflectance associated with shadow (Leckie and Yuan, 1992; Näsi et al., 2015).  

Table 7.1 – Vegetation indices (VIs) calculated and equations applied. 

VIs Equation Reference 

NDVI (NIR – Red)/(NIR + Red) Rouse et al. (1974) 

NDVI-RE (NIR – Red-edge)/(NIR + Red-edge) 
Gitelson and Merzlyak 

(1994) 

GRVI (Green – Red)/(Green + Red) Tucker (1979) 

GNDVI (NIR – Green)/(NIR + Green) Gitelson et al. (1996) 

MTCI (NIR - Red-edge)*(Red-edge - Red) Dash and Curran (2004) 

ARI (1/R550) – (1/R700) Gitelson et al. (2001) 

Abbreviations: ARI = Anthocyanin Reflectance Index; GNDVI = Green Normalised Difference 

Vegetation Index; GRVI = Green Red Vegetation Index; MTCI = MERIS Terrestrial Chlorophyll Index; 
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NDVI = Normalised Difference Vegetation Index; NDVI-RE = Normalised Difference Vegetation Index 

Red-edge; R = Reflectance. 

  

7.3.6 Crown Decline Category Discrimination  

Using the ITCs from the training dataset, the capability of VIs to discriminate 

between the five crown decline severity classes (Chapter 6; Section 6.3.1; Table 6.1) was 

analysed. The non-parametric Kruskal-Wallis test was applied with Mann-Whitney post 

hoc tests, subject to a Bonferroni-Holm correction to account for the type 1 error incurred 

via multiple testing (Ismail et al., 2007). The parametric ANOVA with Tukey’s HSD post 

hoc test (Coops et al., 2003) was not appropriate as some datasets failed to meet the 

assumptions of normality (Shapiro-Wilk test p < 0.05) or homogeneity of variances 

(Levene’s test p < 0.05).  

7.3.7 Classification  

Two classification approaches, a SVM and RF, were tested for the classification 

of oak ITCs into five and three crown decline severity classes using the training and 

validation areas (Section 3.2; Figure 3.7). The five-class classification reflects the crown 

decline severity classes (Chapter 6; Section 6.3.1; Table 6.1) applied in the previous 

discrimination analysis, whilst the three-class approach (Table 7.2) simplifies the classes 

into healthy, decline and severe decline, three key areas of interest for the management 

of decline in woodland environments. The SVM classifier (Vapnik, 1998) was employed 

using a radial basis function (RBF), a kernel commonly employed in cases where datasets 

are not linearly separable (Fauvel et al., 2006; Petropoulos et al., 2012). The RBF is 

parametrised using a simple parameter (σ), determining the decision boundary 

smoothness. An additional parameter (C) controls the penalisation of error caused by the 

expectation that some training and validation samples may be assigned the wrong class 

(Rumpf et al., 2010). In the case of this multi-class classification, the one-vs-one decision 

function was applied (Knerr et al., 1990; Pal and Mather, 2005). As minimal guidance 

regarding kernel-specific parameters is present within the scientific literature 

(Petropoulos et al., 2012), cross-validation of the training sample was used to optimise σ 

and C prior to classification using a grid search across a range of exponential growing 

sequences for the two parameters (Hsu et al., 2003).  
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Table 7.2 – Description of classes applied in the three-class classification. 

Category Criteria 

Severe Decline Canopy thinning exceeds 80% and major deadwood present 

Decline  Canopy thinning between 10 - 80% and minor deadwood present  

Healthy No decline or deadwood is present  

 

The second classification method is a RF (Breiman, 2001), a non-parametric 

approach which generates a series of classification trees. Each tree is generated using a 

bootstrapped set of training samples, with the split at each classification tree governed by 

a randomised subset of input variables for each node (Hudak et al., 2008; Oliveira et al., 

2012). The final classification result is subsequently determined based of the highest 

mean probability estimate across all trees (Belgiu and Drăguţ, 2016). Input parameters 

including the number of regression trees (ntree) and the number of input variables at each 

split in the tree building process (mtry) were set to 500 and 2 respectively, following a 

preliminary grid search cross-validation of the training dataset (Immitzer et al., 2012; 

Ortiz et al., 2013; Shendryk et al., 2016). All processing for the two classification 

methods was undertaken in Python using Scikit-learn (Pedregosa et al., 2011). It should 

be acknowledged that in this instance VI values were not normalised prior to 

classification.  

Classification input variables were selected based on the results of the crown 

decline severity discrimination analysis and classification performance was reviewed 

using the overall accuracy percentage (OA) and Cohen’s κ coefficient (Cohen, 1960). 

Interpretation of κ was based on the following categories: ≤0.2 is poor; >0.2 to ≤0.4 is 

fair; >0.4 to ≤0.6 is moderate; >0.6 to ≤0.8 is good; and >0.8 to ≤1 is very good (Landis 

and Koch, 1977). Confusion matrices were employed to provide a more detailed 

evaluation of the most successful classifications (Congalton and Green, 1999).  

7.4 Results 

7.4.1 Crown Decline Severity Discrimination  

Following Kruskal-Wallis tests, all VIs (NDVI, NDVI-RE, GRVI, GNDVI, 

MTCI and ARI) exhibited significant differences between the five crown decline severity 
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categories for all three of the extraction methods (Mean_All, Mean_80 and Mean_20) at 

the 99% confidence level. The results in Table 7.3 demonstrate the outcomes of the Mann-

Whitney a posteriori tests for ITC decline severity categories. GNDVI (Mean_80) 

resulted in significant differences (90% confidence) between all crown decline severity 

categories. NDVI (Mean_All, Mean_80, Mean_20) and GNDVI (Mean_All, Mean_20) 

produced significant differences (95% confidence) between all categories except 4 and 5, 

as did NDVI-RE (Mean_20) at the 90% confidence level. Overall, minimal differences 

were observed between the discrimination performances of the three extraction methods. 

However, in the case of GNDVI, Mean_80 provided the best performance, whilst for 

NDVI-RE and MTCI, Mean_20 also improved crown decline severity discrimination. 

Figure 7.1 provide a visual illustration of the three best performing VIs (NDVI, NDBI-

RE and GNDVI) across the five severity categories.  
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Figure 7.1 – An illustration of the three best performing VIs for the 

discrimination of crown decline severity categories at the Stratfield Brake site 

alongside the RGB imagery. 
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Table 7.3 - Mann-Whitney post hoc test significance results subject to Bonferroni-Holm 

correction for mean vegetation indices extracted from all pixels (Mean_All), brightest 80% of 

pixels (Mean_80) and brightest 20% of pixels (Mean_20).  

  Mean_All Mean_80 Mean_20 
 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1 

N
D

V
I 

 **** **** **** ****  **** **** **** ****  **** **** **** **** 

2 ****  *** **** *** ****  *** **** *** ****  ** **** ** 

3 **** ***  ** ** **** ***  ** ** **** **  ** ** 

4 **** **** **  - **** **** **  - **** **** **  - 

5 **** *** ** -  **** ** *** -  **** ** ** -  

1 

N
D

V
I-

R
E

  - **** **** ****  ** **** **** ****  ** **** **** **** 

2 -  - **** *** **  - **** *** **  * **** *** 

3 **** -  **** **** **** -  **** **** **** *  **** **** 

4 **** **** ****  - **** **** ****  - **** **** ****  - 

5 **** *** **** -  **** *** **** -  **** *** **** -  

1 

G
R

V
I 

 *** **** **** ****  **** **** **** ****  *** **** **** ** 

2 ***  *** ** - ****  *** ** - ***  * - - 

3 **** ***  - - **** ***  - - **** *  - - 

4 **** ** -  - **** ** -  - **** - -  - 

5 **** - - -  **** - - -  ** - - -  

1 

G
N

D
V

I 

 **** **** **** ****  *** **** **** ****  *** **** **** **** 

2 ****  *** **** *** ***  ** **** *** ***  ** **** *** 

3 **** ***  **** **** **** **  **** **** **** **  *** **** 

4 **** **** ****  - **** **** ****  * **** **** ***  - 

5 **** *** **** -  **** *** **** *  **** *** **** -  

1 

M
T

C
I 

 **** **** **** ****  **** **** **** ****  **** **** **** **** 

2 ****  ** - - ****  ** - - ****  *** * - 

3 **** **  - - **** **  - - **** ***  - - 

4 **** - -  - **** - -  - **** * -  - 

5 **** - - -  **** - - -  **** - - -  

1 

A
R

I 

 **** **** **** ****  **** **** **** ****  **** **** **** **** 

2 ****  **** **** *** ****  **** **** *** ****  **** **** *** 

3 **** ****  - - **** ****  - - **** ****  - - 

4 **** **** -  - **** **** -  - **** **** -  - 

5 **** *** - -  **** *** - -  **** *** - -  

* p < 0.10; ** p < 0.05; *** p < 0.01; **** p < 0.001; - no significant difference.   
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 7.4.2 Classification  

 Table 7.4 presents the best results for the five-class (Chapter 6; Section 6.3.1; 

Table 6.1) classification of crown decline severity for the SVM and RF classifiers. Both 

classifiers performed best using the NDVI-RE, NDVI and GNDVI inputs calculated using 

the mean value from the brightest 80% of pixels (Mean_80). The RF classifier produced 

a fair classification (Landis and Koch, 1977) and the highest OA = 55.26% and κ = 0.37 

values. Assessment of the confusion matrix demonstrated significant difficulties in the 

classification of healthy trees (category 5), which yielded UA = 20% and PA = 16.67%. 

Table 7.5 presents the results of the three-class (Table 7.2) classification of crown decline 

severity. The SVM classifier performed best, resulting in a good classification with OA 

Table 7.4 - Confusion matrices for SVM and RF classifications of the validation area 

for the five crown decline severity categories.  

 SVM RF 

 Inputs:  NDVI-RE (Mean_80), 

NDVI(Mean_80), GNDVI (Mean_80) 

Inputs (Feature Importance):  NDVI-RE 

(Mean_80) (0.241), NDVI (Mean_80) 

(0.476), GNDVI (Mean_80) (0.283) 

  Classified Classified  

  1 2 3 4 5 PA 1 2 3 4 5 PA 

R
ef

er
en

ce
 

1 10 5 0 0 0 66.67 15 0 0 0 0 100 

2 2 1 3 0 0 16.67 1 1 3 1 0 16.67 

3 0 0 28 0 0 100 1 1 19 6 1 67.86 

4 0 0 21 0 0 100 0 0 12 6 3 57.14 

5 0 0 5 0 1 16.67 0 0 5 0 1 16.67 

UA 83.33 16.67 49.12 0 100  88.24 50 48.72 46.15 20  

OA (%)  52.63  55.26 

κ  0.31  0.37 

 

Table 7.5 - Confusion matrices for SVM and RF classifications of the validation area 

for the three crown decline severity categories. 

 SVM RF 

 Inputs:   NDVI-RE (Mean_80), 

NDVI(Mean_80), GNDVI 

(Mean_80) 

Inputs (Feature Importance):  

NDVI-RE (Mean_80) (0.179), NDVI 

(Mean_80) (0.531), GNDVI 

(Mean_80) (0.290) 

  Classified Classified 

 
 

Severe 

Decline 
Decline Healthy UA 

Severe 

Decline 
Decline Healthy UA 

R
ef

er
en

ce
 Severe Decline 19 2 0 90.48 17 4 0 80.95 

Decline 0 49 0 100 2 44 3 89.78 

Healthy 0 5 1 16.67 0 6 0 0 

PA 100 87.5 100  89.47 81.48 0  

OA (%) 
 

90.79 
 

80.26 

κ 0.78 0.58 
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= 90.79% and κ value = 0.78. Nevertheless, the classification reported a poor performance 

in the classification of class 3 (healthy) with a UA = 16.67%.  

In the case of the three- and five-class decline severity classification, several key 

limitations require acknowledgement. Firstly, the small number of samples from each of 

the severity categories, especially in the case of the categories 2 (major decline) and 5 

(healthy), fell below the recommended minimum threshold for a statistically valid 

assessment (Van Genderen and Lock, 1977; Congalton, 1991), influencing the predictive 

capabilities of the classifiers (Melgani and Bruzzone, 2004; Belgiu and Drăguţ, 2016). In 

addition, the number of samples in each of the three- and five-class classifications was 

also unbalanced, providing potential difficulties in the ability of the classifiers to 

accurately separate individual classes (Muñoz-Marí et al., 2007; Belgiu and Drăguţ, 

2016). The VI values were not normalised prior to classification, as a result this could 

have limited the classification performance epically in the case of k_NN.  

7.5 Discussion 

The VIs which exhibited significant distinctions between four or five of the crown 

decline severity categories were the GNDVI, NDVI and NDVI-RE, all having in common 

the use of the NIR band in the VI calculation. Previous studies have noted the particular 

sensitivity of the NIR region of the electromagnetic spectrum to changes in both leaf and 

canopy structure (Barry et al., 2008; Reynolds et al., 2012; Michez et al., 2016). This 

suggests that the NIR band is particularly important with regard to the assessment of 

crown decline associated with AOD. The GNDVI (Mean_80) outperformed the NDVI 

and NDVI-RE in the discrimination of categories 4 (minor decline) and 5 (healthy). This 

implies that using the green band in VI calculation may provide a better distinction 

between ITCs subject to early stages of crown decline, especially when compared to the 

red (NDVI) and red-edge (NDVI-RE). The application of green-based VIs for disease 

severity discrimination has also previously been acknowledged in the scientific literature 

(Waser et al., 2014). In particular, Fassnacht et al. (2014) noted the contribution of the 

green peak (approx. 560 nm) to high classification accuracies of vegetation damage 

associated with the European bark beetle (Ips typographus). In the case of this study, the 

green peak falls within green band (550-570 nm) applied for GNDVI calculation. In 

addition, Everritt et al. (1999) also reported variation in green band reflectance between 

dead branches, healthy foliage and diseased foliage in relation to oak wilt disease 
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(Ceratocystis fagacearum) in live oak (Quercus fusiformis). An important point to note 

with regard to operational use of VIs and UAVs is the outperformance of the NDVI-RE 

by the GNDVI, as it suggests that a multispectral sensor with red-edge capabilities is not 

an essential requirement for the assessment of oak crown condition. 

Overall, the selected extraction method (Mean_All, Mean_80 and Mean_20) 

exhibited little influence on the crown decline severity discrimination potential of the six 

VIs. This suggests that whilst the selection of a certain percentage of the brightest pixels 

may improve the performance of some VIs, the influence of noise pixels on the overall 

mean value is minimal with regard to crown decline analysis. Nevertheless, the 

application of the Mean_80 method for the extraction of GNDVI facilitated a significant 

separation of categories 4 (minor decline) and 5 (healthy), not achieved by the other two 

extraction methods. This suggests that removing the darkest 20% of pixels can aid the 

distinction between these two classes, by enhancing subtle differences in spectral 

reflectance. In relation to disease assessment, Stone and Coops (2004) noted that the 

presence of shadow increased in forest stands subject to defoliation, resultantly this 

suggests that the inclusion of noise related pixels may also be of benefit to disease severity 

discrimination. 

The number of classes selected for crown condition classification can impact on 

the overall accuracies reported (Coops et al., 2003; Waser et al., 2014; Näsi et al., 2015) 

and this was evident when comparing the classification performance of the five- and 

three-class classifications. By condensing the classes from five to three, OA and κ both 

improved to provide a good overall classification (Landis and Koch, 1977) of crown 

decline. Considering the application of classification output is particularly important for 

informing the selection of class boundaries. In this instance, woodland management 

decisions typically require knowledge of the number and location of individual trees 

affected by decline (Shendryk et al., 2016) and information about trees with significant 

loads of deadwood, which is important for managing structural integrity and public safety 

(Mistretta, 2002). Resultantly, the broader categories in the three-class classifications 

provide enough information about crown condition across the woodland environment to 

fulfil these management objectives.  

 The performance of the three-class classification reported in this study is 

comparable with that previously reported from UAV-acquired imagery for insect pests 
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(Lehman et al., 2015; Näsi et al., 2015). In this instance the classification was weakest 

for the classification of healthy ITCs and those subject to decline. Näsi et al. (2015) also 

noted difficulties with the misclassification of healthy and infested classes in the case of 

a three-class classification (healthy, infested and dead) for the European spruce bark 

beetle (Ips typographus) in Norway spruce (Picea abies). In relation to this study, it 

should also be acknowledged that the disproportionately low number of individuals in the 

healthy category may have also impacted on the classification performance. In the case 

of operational forest management, higher decline thresholds for the healthy and declining 

class boundary could be applied to improve classification accuracy and avoid the 

misclassification of healthy individuals (Kantola et al., 2010).  

 The limitations associated with the research require consideration prior to the 

operational application of UAV-based imagery for oak crown decline assessment. For 

example, whilst surveyed individuals presented a dominant or sub-dominant position in 

the woodland canopy, no further consideration was given to the potential influence of tree 

age on the spectral reflectance of oak tree crowns (Waser et al., 2014). Whilst AOD 

typically affects mature oak stands (Denman et al., 2010), the potential variability of 

crown spectral signature with tree age requires further investigation.  In addition, due to 

the deciduous nature of oaks, seasonal variation in crown reflectance may also have 

significant influences on the assessment of crown condition and requires consideration 

with regard to both data acquisition and processing (Liu et al., 2006).  

Whilst the results from the study highlight the disease discrimination potential of 

UAV-based multispectral imagery for the assessment and management of AOD, a 

number of additional factors also require attention prior to operational application. For 

example, the spectral characteristics of other UK oak species such as Sessile (Q. petraea) 

and Turkey (Q. cerris) oak require quantification and comparison with the results for 

English oak (Q. robur) presented here. Tree species classification techniques would also 

be required to provide a comprehensive and targeted assessment of crown decline in 

heterogeneous mixed woodland environments (Michez et al., 2016). In addition, the 

implementation of an ITC segmentation methodology would also facilitate an entirely 

automated approach to the assessment of decline in ITCs (Näsi et al., 2015). In relation 

to multiple data acquisitions, consideration should also be given to the implications of 

illumination conditions on the separability of crown decline severity classes (Näsi et al., 

2015).  
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7.6 Conclusions 

 The research demonstrates that UAV-based multispectral imagery can be used for 

the separation of five classes of crown decline in oak tress within a woodland affected by 

AOD. The GNDVI performed best and demonstrated significant differences between all 

five crown decline classes at the 90% confidence level, when extracted from ITCs using 

the mean value for the brightest 80% of pixels (Mean_80). The NDVI and NDVI-RE also 

performed well providing discrimination between all classes except in the case of 4 

(minor decline) and 5 (healthy). Across the six VIs tested, none of the extraction methods 

applied (Mean_All, Mean_80 and Mean_20) consistently outperformed the others.  

Classification of oak crown decline into three categories (severe decline, decline and 

healthy) was best achieved with an SVM classifier producing an OA = 90.79% and κ = 

0.78. For the operational applications of UAV-based multispectral imagery for the 

assessment of crown decline associated with AOD further consideration should be given 

to spectral variations resulting from different species, stand age, time of year and 

illumination conditions during data acquisition.    
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Chapter 8: Overall Discussion 

8.1 Introduction 

 This thesis has examined the applications of two contrasting remote sensing 

approaches for the ITC-scale assessment of phytopathogens in forest environments. The 

results presented in Chapters 4 and 6 demonstrate conflicting finding regarding the 

success of automated ITC segmentation across two differing forest environments. 

However, in the case of phytopathogen detection, ALS (Chapter 5) and UAV-based 

multispectral imagery (Chapter 7) both demonstrated successful applications in the 

assessment of crown dieback associated with P. ramorum and AOD infections 

respectively. This chapter will provide an over-arching discussion of all the research 

findings from the thesis.  

 In relation to the main scientific question of the research project “How can high 

resolution remotely sensed datasets be applied to the detection and assessment of 

phytopathogens in UK forests?” several key conclusions have been highlighted which 

will be addressed across key areas of this discussion. Firstly, it has been highlighted that 

when individual tree crowns can be accurately located within the canopy optical and 

LiDAR data acquired at high resolution can be applied to the detection of disease through 

spectral and structural changes to the canopy respectively (discussed further in Section 

8.2). Nevertheless, the automated identification of ITCs within forest canopies remains a 

challenging task even with the application of high resolution data (discussed further in 

Section 8.5.1). In addition, this research only considered two of the pathogens currently 

impacting UK forestry. Whilst the conclusions from the research concerning P. ramorum 

and AOD can inform the detection of other pests and pathogens they do not provide the 

detailed understanding of the applications of remote sensing to identify a specific 

collection of symptoms in particular host species (discussed further in Section 8.5.2).  

8.2 Sensor 

 The type of sensor applied to the acquisition of remotely sensed datasets 

significantly impacts the dataset characteristics influencing its applications for ITC 

segmentation (Zhen et al., 2016) and the assessment of forest condition (Lausch et al., 

2016; Lausch et al., 2017). The active and passive sensors used to acquire the ALS and 

multispectral imagery have provided two datasets with contrasting properties. The 
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suitability of these structural and spectral datasets for ITC segmentation and 

phytopathogen assessment is discussed in Section 8.2.1.  

8.2.1 Individual Tree Crown Segmentation  

The ITC segmentations presented in Chapters 4 and 6 both utilised a raster-based 

input of surface elevation for the isolation of ITCs. However, the CHMs utilised in the 

larch-dominated forest stands in Chapter 4 were acquired with ALS, whereas the DSMs 

applied in the case of the oak-dominated forest in Chapter 6 were produced from multi-

spectral imagery via the process of photogrammetry. Whilst direct comparison of the 

results from the two chapters is hindered by differences in forest type (Solberg et al., 

2006; Larsen et al., 2011; Zhen et al., 2016), several key differences were observed in the 

application of surface elevation products for ITC segmentation. Firstly, due to the 

inability of the passive optical sensor to penetrate the forest canopy (Reitberger et al., 

2009; Lausch et al., 2017), the pit-free CHM generation method (Khosravipour et al., 

2014) which resulted in an improved segmentation performance of diseased canopies in 

Chapter 4, was not applicable for the oak-dominated Stratfield Brake site in Chapter 6. 

As a result, the increased irregularity of canopy surface elevation caused by crown decline 

(Holdenrieder et al., 2004; Larsen et al., 2011; Barnes et al., 2017b) could only be 

addressed through the application of a smoothing filter (Khosravipour et al., 2014). An 

area of interest for further study would be to consider the potential improvements in 

segmentation accuracy at the Stratfield Brake study site (Chapter 6) with the application 

of a high-density ALS dataset and pit-free CHM generation methodology.  

The suitability of a particular ITC segmentation method can also be influenced by 

input dataset characteristics (Zhen et al., 2016). Approaches to treetop detection and ITC 

segmentation exploit characteristics of the canopy surface topography to identify 

individual trees (Chen et al., 2006). The examples presented in Chapters 4 and 6 both 

provided surface elevation inputs for ITC segmentation, however these were derived via 

different remote sensing methods, resulting in slight differences in the representation of 

the real canopy surface. Whilst previous studies have reported successful applications of 

photogrammetry-derived DSMs for the delineation of ITCs (Nevalainen et al., 2017), the 

visibility of ITCs can be reduced by view obliquity, especially with regard to closed 

canopies (St-Onge et al., 2015; Wallace et al., 2016). To provide an accurate comparison 

of photogrammetry- and ALS-derived surface elevation inputs for the purpose of ITC 
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segmentation, both datasets would have to be compared for the same study area 

(Vastaranta et al., 2013b; St-Onge et al., 2015), with additional consideration of the 

performance of different segmentation algorithms (Zhen et al., 2016).  

8.2.2 Assessment of Phytopathogens  

 The structural and spectral metrics calculated from the ALS and multispectral 

imagery both demonstrated disease assessment success in the case of P. ramorum 

(Chapter 5) and AOD (Chapter 7), with both approaches utilising the symptom expression 

of the infection in the foliage to differentiate between crown decline severity classes. 

Nevertheless, the VIs applied in the case of AOD provided a significant separation 

between healthy trees and those subject to minor crown decline, a distinction not evident 

in the case of the ALS metrics applied for P. ramorum assessment. One possible 

explanation for this contrast could result from the ability of the sensor to identify small-

scale changes in the canopy present during the initial stages of infection. For example, if 

foliage discolouration precedes foliage loss, spectral sensors may exhibit a potential 

advantage in the detection of disease in the early stages of infection progression. 

However, to provide a direct comparison of the sensor performance in disease assessment, 

datasets should be acquired for the same forest environment and phytopathogen outbreak 

at comparable resolutions (Kantola et al., 2010; Lausch et al., 2017). Previous research 

which applied this approach in relation to the common pine sawfly (Diprion pini) 

infestation of Scots pine (Pinus sylvestris), noted a slightly improved classification 

accuracy from image features (87.4%) compared to ALS (80.7%), with the best overall 

classification of defoliation level (88.1%) achieved through the combination of metrics 

derived from both sensors (Kantola et al., 2010).  

  Another contrast between ALS and optical sensors which could have potential 

implications for the assessment of phytopathogens is the section or level of the canopy 

from which data is acquired. Passive optical sensors only capture information reflected 

from the canopy surface (Turner et al., 2003), in contrast, the capability of ALS to 

penetrate the forest canopy provides an extra dimension to forest condition assessment, 

especially with regard to full-waveform ALS sensors (Lausch et al., 2017). In certain 

phytopathogen-host interactions, such as Dothistroma needle blight (Dothistroma 

septospora) in pine species (Pinus spp.), early symptoms typically manifest in the lower 

canopy (Coops et al., 2003). As a result, the ability of sensors to penetrate the canopy 
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surface may provide an additional benefit when disease symptoms cannot be viewed from 

the nadir. Nevertheless, even discrete return ALS applied in Chapter 5, produces a bias 

against foliage located in the lower- and mid-canopy (Lovell et al., 2003). Resultantly the 

location of phytopathogen infection establishment and symptom development is an 

important parameter to consider in the selection of remote sensors for disease assessment 

in forest environments.     

8.3 Platform 

 The greatest contrasts exhibited between remote sensing platforms are typically 

the spatial extent and resolution of data acquired (Lefsky et al., 2002; Boyd and Danson, 

2005; Michez et al., 2016). The examples presented in the research chapters of this thesis 

provide a contrast between the airborne and UAV platforms for the segmentation of ITCs 

and the assessment of phytopathogens.   

8.3.1 Individual Tree Crown Segmentation  

 Despite the expected spatial resolution contrasts in datasets acquired from 

different platforms (Lefsky et al., 2002; Michez et al., 2016), the surface elevation inputs 

applied for the ITC segmentations from the ALS (24 points/m2) and UAV PPC (25 

points/m2) in chapters 4 and 6 respectively presented a minimal difference in resulting 

point densities. This facilitated the interpolation of raster-based surface elevation inputs 

with matching resolutions (0.15 m, 0.25 m and 0.5 m). Resultantly, comparisons 

concerning spatial resolution differences from the two platforms cannot be conducted in 

this instance. However, it should be acknowledged that LiDAR systems for the UAV 

platform can produce point densities up to 62 points/m2 (Wallace et al., 2012) and the 

increased likelihood of sampling treetops at these resolutions has been noted to improve 

the detection of ITCs (Wallace et al., 2012; Wallace et al., 2014). One further 

consideration, whilst not relevant in the examples presented in the thesis, is the 

accessibility presented by the UAV platform which presents an opportunity for the 

assessment of ITCs in forest environments not ordinarily surveyed by more traditional 

remote sensing approaches (Zhen et al., 2016).  

8.3.2 Assessment of Phytopathogens  

Direct comparison of the two platforms for the assessment of phytopathogens in 

forest environments is complicated by the difference in sensor used for data acquisition 

(Lausch et al., 2017). Nevertheless, contrasts in spatial resolution and the quantity of data 
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extracted from ITCs for the assessment of crown condition were evident in the case of 

Chapter 5 (ALS; 24 points/m2) and Chapter 7 (6 cm; multispectral-imagery). Spatial 

resolution differences could be considered as an additional causal factor for the superior 

performance of the multispectral-imagery in the identification of ITCs subject to the early 

stages of crown decline (Lehmann et al., 2015). In this particular instance the elimination 

of noise-related pixels was also an important factor for the discrimination of ITCs with 

minor crown decline from those classified as healthy. Despite the improved disease 

discrimination performance achieved via the removal of the darkest pixels in mean VI 

calculation for ITCs, no specific percentage yielded consistently improved results 

(Chapter 7; Section 7.4.1). As a result, further research is still required to provide an 

informed recommendation for dealing with noise related pixels in very high resolution 

imagery for the assessment of crown decline.   

Typical spectral datasets collected from the airborne platform are coarser in 

resolution (0.2 – 2 m) than those acquired via UAV (0.01 – 0.2 m) (Nebiker et al., 2008; 

Matese et al., 2015). To facilitate informed decision making with regard to the platform 

of data acquisition for the assessment of phytopathogens in forestry, spatial resolution 

thresholds for particular datasets could be determined for the identification of a particular 

disease or symptom severity in certain forest environments. Further considerations 

required prior to the acquisition of data should also include the spatial extent of the area 

of interest. For example, in the case of the 3 ha mature woodland at Stratfield Brake, the 

application of the UAV platform would provide a more cost-effective approach to data 

acquisition than airborne remote sensing. Conversely, if the data collection was 

commissioned as part of a regional scale assessment of AOD, then an airborne platform 

may present a more financially viable choice (Matese et al., 2015).  

8.4 Forest Environment 

 A significant degree of variability is present with regard to forest structure across 

different forest types. For example, forests can range from structurally simple, such as 

those present in extensively managed softwood plantations, to very complex, such as 

those in naturally regenerated mixed deciduous forest environments (Larsen et al., 2011; 

Zhen et al., 2016). The examples presented as part of this research, Ogmore and Radnor 

Forests (Chapter 4) and Stratified Brake (Chapter 6), present a juxtaposition of forest 
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structure types that facilitate a comparison of ITC-scale phytopathological assessment 

under differing forest environments.   

8.4.1 Individual Tree Crown Segmentation  

In the case of heterogeneous forest environments, such as the mature oak-

dominated woodland at Stratfield Brake (Chapter 6), tree crowns exhibit greater 

variability in structural characteristics than those of more homogenous planation 

environments, such as the Ogmore and Radnor Forests (Chapter 4). The variation present 

in tree crown size is particularly influential with regard to ITC segmentation success 

(Brandtberg et al., 2003; Larsen et al., 2011; Vauhkonen et al., 2012; Strîmbu and 

Strîmbu, 2015). For example, larger trees occupy more space within the canopy 

shadowing smaller individuals (Brandtberg et al., 2003). In addition, clumps of tree 

crowns exhibiting differing crown shapes and heights can be particularly challenging to 

separate (Strîmbu and Strîmbu, 2015), especially in circumstances of frequent crown 

overlap (Zhen et al., 2016). Furthermore, the structural characteristics of individual tree 

species within the forest is also important for the performance of ITC segmentation (Zhen 

et al., 2016). For instance, the irregularity of oak tree crowns and co-dominance of 

multiple major branches make them more prone to over-segmentation (Strîmbu and 

Strîmbu, 2015), whilst the conical crown architecture of coniferous tree species results in 

a single dominant treetop which can improve compatibility with many established 

segmentation algorithms (Ke and Quackenbush, 2011). The results from the thesis 

(Chapters 4 and 6), in addition to the findings from previous research (Brandtberg et al., 

2003; Ke and Quackenbush, 2011; Strîmbu and Strîmbu, 2015; Zhen et al., 2016), 

indicate the significant influence of crown structural characteristics on ITC segmentation 

success.   

In relation to the selection of segmentation parameters such as filter window sizes, 

difficulties arise in specifying values which capture real tree crowns within the 

environment whilst filtering out false ones (Wang et al., 2004). Defining filter size 

parameters, including the Gaussian filter for image smoothing and minimal distance filter 

for treetop detection is also more challenging when large discrepancies are present in 

crown size (Ke and Quackenbush, 2011). When parameters are too small, large crowns 

can be misclassified as a crown clusters. Conversely, if defined parameters are too large, 

smaller crowns will be missed and merged with surrounding trees (Katoh and Gougeon, 

2012). In the case of plantation forest, filtering parameters can be adjusted in accordance 
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with sub-compartment height (Koch et al., 2006), as applied in Chapter 4 (Section 4.3.6). 

Nevertheless, this approach is unfeasible in more irregular forest environments without 

organised stand planting and management. Previous studies have also applied high 

resolution imagery to isolate homogenous forest cover types prior to filtering, however 

this method has only been reported effective in coniferous plantations (Katoh and 

Gougeon, 2012). 

The ITC segmentation at Stratfield Brake (Chapter 6) was further complicated by 

the crown decline associated with the AOD infection. The pit-free CHM generation 

method, successfully applied in the case of P. ramorum (Chapter 4), was not suitable for 

the Stratfield Brake woodland as the DSM was derived via photogrammetry not LiDAR. 

As a result, contrasting levels of crown decline across the site also increased the 

differences in ITC size, shape and coverage. In the particular instance of Stratfield Brake, 

trees classified as dead or in major decline provided the greatest segmentation challenges 

(Chapter 6: Section 6.4.2). To determine whether the pit-free CHM generation method 

could assist in the improvement of segmentation in diseased deciduous environments 

further testing and evaluation using LiDAR would be required.     

Forest structure attributes can also influence the suitability of the selected pixel 

size of raster-based surface elevation inputs for ITC segmentation (Ke and Quackenbush, 

2011; Barnes et al., 2017b). The results presented in Chapter 4 (Section 4.4.4) 

demonstrated in the case of larch-dominated plantation forest, that ITC success could be 

improved when an optimal CHM resolution was selected based on the maximum tree 

height. Whilst this stratified approach can be applied in systematic plantation 

environments with clearly defined sub-compartment blocks of homogenous forest, such 

distinct separation is not present in less managed environments, such as the mature oak-

dominated woodland at Stratfield Brake (Chapter 3; Section 3.2). In this instance the 

resolution of DSM inputs could not be optimised via tree height to improve the 

segmentation of ITCs, due to the disordered nature of ITCs in the forest canopy. Further 

consideration is subsequently required to provide informed guidance on the selection of 

pixel size for raster-based surface elevation inputs in heterogeneous deciduous woodland 

environments.  

Previous ITC research has been largely dominated by studies focused on closed 

softwood stands (40.6%) (Zhen et al., 2016). The dominance of these environments in 
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the scientific literature was explained by Ke and Quackenbush (2011) by the large number 

of studies conducted at high latitudes and the abundance of conifer forest in this 

geographical region, in addition to the suitability of the conical shape of conifer tree 

species to the majority of ITC segmentation algorithms. Zhen et al. (2016) acknowledged 

the limited availability of research concerning the isolation of deciduous tree crowns, in 

addition to poorer segmentation accuracies associated with mixed deciduous forest and 

the overall difficulties associated with ITC delineation in these environments. These 

concerns are supported by the results of this thesis and demonstrate a clear requirement 

for further research.  

8.4.2 Assessment of Phytopathogens 

 The most direct influence of forest environment on phytopathogen establishment 

is the occurrence of host species (Holdenrieder et al., 2004; Brasier, 2008). In studies 

concerned with the identification of a particular phytopathogen, the prior identification 

of recognised susceptible host species has been common practise (Näsi et al., 2015). In 

the case of the disease detection examples presented for P. ramorum (Chapter 5) and 

AOD (Chapter 7) the respective host species of larch and oak were manually 

differentiated and isolated from other tree species in the forest environments. Previous 

studies however, have automated this process and applied species identification 

techniques prior to disease assessment (Michez et al., 2016). Nevertheless, difficulties 

can arise when structural and spectral properties applied to discriminate between tree 

species are subsequently altered by the deterioration of crown condition as a result of 

disease outbreaks (Michez et al., 2016).   

8.5 Operational Application of Remote Sensing for Phytopathogen 

Assessment in Forestry   

 The outputs from the four research chapters have yielded a series of conclusions 

with interesting implications for the management of P. ramorum, AOD, and other 

phytopathogens. It is therefore important to consider the results of the thesis with regard 

to the operational management of phytopathogens in forest environments (Wulder et al., 

2006). 

8.5.1 Individual Tree Crown Segmentation  

The results presented in Chapter 4 demonstrate a successful methodology for the 

isolation of individual larch crowns in a plantation forest environment. The presented 
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approach could be applied alongside the National Forest Inventory to tailor ITC 

segmentation in sub-compartments of publically managed commercial larch forest. From 

this perspective, ITCs in plantation environments could be individually segmented and 

resulting polygons employed as part of operational forest management and monitoring. 

In contrast, the poor results achieved in Chapter 6 for the mature oak-dominated 

woodland at Stratfield Brake demonstrate the potential difficulties in automating the 

isolation of ITCs in less structured forest environments.  From this viewpoint, operational 

segmentation of ITCs for ITC-based assessment from remote sensing cannot be achieved 

without further research, development and refinement of methodologies. This 

requirement has previously been identified by Lausch et al. (2017) who acknowledged 

that ITC detection research is still in development.  

The novel automated overlap approach to ITC segmentation evaluation outlined 

and applied in Chapters 4 and 6, demonstrates the opportunity for objective comparison 

between reported segmentation accuracy percentages (Barnes et al., 2017b). This presents 

a useful tool in the development of ITC segmentation methodologies for particular 

datasets and forest environments as it provides a quantitative approach to produce overall 

accuracies and facilitates the robust comparison of results (Zhen et al., 2016). In addition, 

the numerically defined overlap criteria can be altered in order to increase or reduce the 

quantity of overlap required between automated and manual ITCs for successful 

delineation. This may be of particular importance in disease detection or classification 

when a high level of overlap is required to ensure extracted metrics represent the 

condition of the real tree crown (Shendryk et al., 2016).  

8.5.2 Assessment of Phytopathogens  

The phytopathogen-host interaction is a complex and unique relationship which 

influences the physical expression and virulence of symptoms following infection (Lovett 

et al., 2006). Whilst the broad symptoms of discolouration, defoliation and death of 

canopies can be common across disease outbreaks (Innes, 1990), the specificity of 

symptom development and the variability in crown architecture and spectral properties 

across tree species requires the evaluation of remote sensing applicability for individual 

phytopathogen outbreaks (Lovett et al., 2006). As a result, prior to the operational 

deployment of a remote sensing approach for phytopathogen assessment, preliminary 

studies concerning the ability of sensors to detect a particular disease outbreak is 
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imperative. This research project has provided the baseline understanding for the remote 

assessment of crown decline and dieback associated with P. ramorum and AOD.   

With regard to symptom expression, crown condition is often just one symptom 

of phytopathogen infection in trees. In the case of both P. ramorum in larch and AOD, 

stem symptoms such as resin bleeds can be additional confirmation that deterioration in 

tree health has resulted from a specific phytopathogen infection (Brasier and Webber, 

2010; Denman et al., 2014). Such symptoms cannot be observed from remotely sensed 

datasets acquired from above the forest canopy. Furthermore, with reference to AOD, the 

relationship between crown decline and stem symptom severity is still unclear, with no 

clear observable trend presently acknowledged (Denman et al., 2014). In addition, 

biological testing in the field or laboratory is often required to determine the presence of 

a specific phytopathogen in new disease outbreaks (Potter et al., 2011). For example, in 

the case of P. ramorum and larch disease in the UK, confirmation of the phytopathogen 

is essential for the issue of a statutory plant health notice (Tracy, 2009). As a result, from 

an operational perspective, remote sensing cannot provide a diagnostic tool for the 

confirmation of specific infections in forest environments (Lehman et al., 2015). 

Nevertheless, the technology provides an objective means to monitor known disease 

outbreaks and identify, with great precision, the locations of ITCs subject to a 

deterioration in crown condition for further investigation (Fassnacht et al., 2014).  

The operational requirements for the quantity of information required regarding 

the severity of crown decline is also an important consideration (Coops et al., 2003; 

Wulder et al., 2006). The results from both the P. ramorum (Chapter 5; Section 5.4.4) 

and AOD (Chapter 7; Section 7.4.2) classifications demonstrate the higher overall 

accuracies obtained in instances of lower class numbers, corresponding with previous 

findings from the scientific literature (Coops et al., 2003; Näsi et al., 2015). In addition 

to the number of categories, the specified class boundaries are also important with regard 

to classification success. For example, in the application of ALS point cloud metrics for 

the detection of P. ramorum (Chapter 5; Section 5.4.2), no statistically significant 

difference was observed between individuals classified as healthy and those with light 

levels of infection (<20 % of crown or stem affected). If this limitation of the approach is 

recognised prior to operational implementation, then class boundaries can be adjusted and 

classification and mapping accuracies improved (Kantola et al., 2010). Alternatively, if 

detection of individuals in the early stages of disease progression is an essential 
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requirement for forest management, other platforms and sensors could subsequently be 

explored (Wulder et al., 2006).  

Small-scale site specific studies have clearly presented the assessment and 

detection capabilities of spectral and structural indicators derived from remote sensing in 

the case of insect pests and phytopathogens (Coops et al., 2009; Kantola et al., 2010; 

Vastaranta et al., 2013a; Nielsen et al., 2014; Waser et al., 2014; Näsi et al., 2015) 

(Chapters 5 and 7). However, the capabilities of remote sensing techniques to assist 

national programmes of phytopathogen and insect pest monitoring requires further 

research and development for the technology to provide a more significant large-scale 

operational role (Lausch et al., 2017). Furthermore, whilst a remote sensing approach 

offers an array of advantages in the objective detection and precise location of crown 

decline (Fassnacht et al., 2014; Reid et al., 2016), the technology presents one input into 

a multi-disciplinary approach in the overall management of phytopathogens in forest 

environments (Pautasso et al., 2012).   
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Chapter 9: Conclusions, Research Contributions and Outlook  

9.1 Thesis Conclusions 

 To present the overall findings of the research conducted for the thesis, the 

conclusions have been presented for each research chapter in relation the original research 

questions outlined in Chapter 1, Section 1.3. Several key conclusions were also reached 

with regard to the overarching science questions for the research: 

SQ: The research demonstrated that high resolution ALS and imagery can be 

applied to the detection of larch disease and AOD in ITCs. However, the 

automated segmentation of ITCs remains challenging, especially in mixed 

deciduous forest.  

In Chapter 4, the segmentation results for the delineation of individual larch crowns 

infected with P. ramorum from ALS-derived CHMs are reported. Several key findings 

were acknowledged in response to the initial research questions (RQs 1-3): 

RQ1: Compared to the standard CHM, the application of a pit-free CHM 

generation method improved the segmentation of ITCs in forest stands subject to 

moderate and severe defoliation resulting from P. ramorum infection. However, 

with regard to segmentation performance in plots comprised of healthy larch 

forest or light P. ramorum infection, the standard approach to CHM generation 

typically reported higher segmentation accuracies. 

RQ2: The selected CHM pixel size was acknowledged to influence the overall 

ITC segmentation accuracy. The application of a 0.25 m CHM pixel size was 

reported to be most suitable for the larch dominated plots of all ages. However, in 

instances where the reported maximum plot height was large (>30 m) or small 

(<20 m), the selection of a coarser (0.5 m) or finer (0.15 m) CHM respectively 

improved the overall segmentation accuracy. 

RQ3: The segmentation algorithm applied to the delineation of ITCs was also 

acknowledged to influence the overall accuracies reported for the larch dominated 

plots. In particular, the marker-controlled watershed algorithm provided a more 

successful segmentation of ITCs than the region growing algorithm (p < 0.10) in 

a mixed age planation larch forest. This conclusion was irrespective of P. 

ramorum infection severities.   
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In Chapter 5, the evaluation of ALS for the detection and assessment of P. ramorum 

infection in individual larch trees yielded several informative conclusions with regard to 

the application of the active sensor for disease assessment. The specific results 

acknowledged in relation to the initial research questions (RQs 4-6) are outlined below: 

RQ4: In the case of the ALS point clouds metrics tested, no significant 

relationships were evident between maximum tree height and metrics derived 

using a variable cut-off height (50% of tree height). However, bicentiles B20, 

B30, B40 and B50 demonstrated a significant linear regression (p < 0.10) with 

maximum tree height when calculated using the static (1 m) cut-off height. 

Significant relationships with maximum tree height were also evident for CHM 

fragmentation metrics. For the two-class CHM reclassification (ground/non-

ground), all tested fragmentation metrics, excluding ENN_AM, demonstrated a 

statistically significant linear regression (p < 0.05) with maximum tree height. 

When CHMs were subject to the three-class reclassification, separating the lower 

and upper canopy, seven of the fifteen fragmentation metrics produced a 

significant linear regression (p < 0.05) with tree height. The analysis demonstrated 

the requirement to consider the influence of maximum tree height on metric 

variability prior to their application for disease assessment.  

RQ5: In the case of the ALS point cloud and CHM fragmentation metrics, all 

metrics, excluding the B10 static (1 m) cut-off, demonstrated significant 

differences (p < 0.05) between four P. ramorum infection severity categories (not 

infected, light infection, moderate infection, and heavy infection). However, the 

more specific post-hoc evaluation of class differences yielded more contrasting 

results between the ALS point cloud and CHM fragmentation metrics. 

Collectively, the ALS height point cloud metrics presented significant 

discrimination between all four disease severity categories, except in the case of 

the not infected and light infection classes. Conversely, CHM fragmentation 

metrics only provided consistently significant discrimination between heavily 

infected larch trees and all other categories.     

RQ6: The classification of automated individual tree crowns was conducted for 

disease presence (infected/not infected) and severity (not infected, light infection, 

moderate infection, and heavy infection). In both cases, the ALS point cloud 
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metrics produced the best classifications, with the k-NN classifier yielding overall 

accuracies of 72.22% (presence) and 65.28% (severity). The k-NN classification 

performed using the CHM fragmentation metrics resulted in overall accuracies of 

65.28% (presence) and 68.06% (severity), with particular difficulties noted in the 

classification of light and moderate infection levels.  

 

In Chapter 6, the automated segmentation of ITCs in a mature oak-dominated woodland 

environment was assessed with the application of a photogrammetry-derived DSM 

acquired via UAV. The concluding remarks for this particular study are addressed below 

in relation to the initial research questions (RQs 7-9) for the chapter:   

RQ7: With regard to the impact of crown decline on ITC detection and 

segmentation, accuracy percentages were calculated for each of the five severity 

categories (dead, severe decline, moderate decline, minor decline, and healthy). It 

was noted that the poorest results for treetop detection (23.81% – 28.57%) and 

ITC segmentation (4.76% – 9.52%) were consistently reported for the individuals 

classified as dead. In contrast, ITCs classified as moderate decline consistently 

reported the highest accuracies for treetop detection (72.22% - 75.00%) and 

segmentation (48.62% – 54.17%). Nevertheless, total accuracies for treetop 

detection (59.21% - 63.16%) and ITC segmentation (36.18% - 39.47%) 

demonstrated a poor overall performance for the isolation of ITCs at the Stratfield 

Brake study site.  

RQ8: The extraction of treetops from the study areas was best achieved overall 

with the application of the local maxima approach (59.21% - 63.16%). The 

contour methodology also trialled as part of the research, produced improved 

detection of treetops belonging to individuals classified as dead or in major 

decline, but overall produced a poorer performance (51.97% - 55.92%). 

Nevertheless, statistical comparison of results reported for the two treetop 

extraction methodologies concluded no significant differences in the reported 

accuracy percentages.    

RQ9: The selected pixel size for the photogrammetry-derived DSM inputs was 

noted to result in minimal variation in accuracy percentages for both treetop 

detection (3.95%) and ITC segmentation (3.29%). Contrasting resolutions were 

noted to produce the highest overall accuracies for treetop detection (0.15 m and 
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0.25 m = 66.16%) and ITC segmentation (0.5 m = 39.47%). Resultantly, no 

specific conclusions or recommendations could be produced with regard to the 

optimal DSM pixel size for the isolation of ITCs at the Stratfield Brake site. 

 

In Chapter 7, the application of VIs derived for ITCs from UAV-based multispectral 

imagery was evaluated for the assessment of crown decline associated with AOD in a 

mature oak-dominated woodland. The outputs from the conducted research are concluded 

below with specific relation to the initial research questions (RQs 10-12): 

RQ10: All five disease severity categories demonstrated significant differences 

between all other categories (p < 0.10) in the GNDVI values extracted from ITCs 

using the mean value of the brightest 80% of pixels (Mean_80). The VIs NDVI 

and NDVI-RE were also noted to provide significant distinction (p < 0.05) 

between all disease severity classes, except in the case of individuals classified as 

healthy or in minor decline. The other VIs tested GRVI, MTCI and ARI exhibited 

significant differences (p < 0.01) between categories, however the specific 

distinction between individual categories were reported in fewer cases.   

RQ11: The evaluation of VI extraction methods, which considered the percentage 

of the brightest pixels applied in mean VI extraction (Mean_All, Mean_80 and 

Mean_20) demonstrated no optimum or superior approach to VI calculation. The 

performance of each approach varied slightly between the six VIs, however no 

single method could be selectively recommended for further studies.  

RQ12: The classifications of crown decline severity for manually delineated 

individual oak crowns demonstrated improved overall accuracies when the five 

severity classes (dead, severe decline, moderate decline, minor decline, and 

healthy) (52.63% - 55.26%) were condensed into three (severe decline, decline, 

and healthy) (80.26% - 90.79%).  

9.2 Research Contributions 

 The research conducted as part of this thesis has provided several notable 

contributions to the field of ITC segmentation. Firstly, the research has provided the first 

direct assessment of ITC segmentation performance in defoliated forest canopies 

(Chapter 4) (Barnes et al., 2017b). The results also demonstrated the successful 

segmentation (> 70%) of partially and wholly defoliated larch ITCs via the application of 
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a pit-free CHM generation methodology, an approach previously untested for diseased 

forest. Furthermore, the automated overlap assessment developed and applied as part of 

the research (Chapters 4; Section 4.3.10 and Chapter 6; Section 6.3.10), presents a more 

objective approach to the evaluation of ITC segmentation success. The method combines 

the established overlap categories previously applied in visual assessments, but provides 

quantified class boundaries for a robust comparison of automated and manually 

delineated ITCs. Resultantly, the ITC segmentation success accuracies reported from 

different study sites and plots can be reviewed without the influence of interpreter’s error 

on the assignment of overlap categories.  

 With regard to phytopathogen assessment in forest environments the work 

conducted as part of this thesis also presents a selection of research contributions. In the 

case of Chapter 5, which concerned the phytopathogen P. ramorum and larch disease, 

two key research contributions can be identified. Firstly, the disease detection capabilities 

of ALS point cloud metrics for the assessment of P. ramorum infection in larch trees has 

been established. The research findings demonstrated the application of height-based 

ALS point cloud metrics for the discrimination of ITCs subject to moderate and heavy 

defoliation. In addition, the research also presents the first assessment of landscape 

fragmentation metrics from the field of ecology, for the quantification of upper crown 

fragmentation in CHMs of diseased trees. The results highlight the applications of these 

metrics in the assessment of individual larch tree crowns subject to severe defoliation as 

a result of P. ramorum infection. Overall, this research has presented the first example 

for the application of ALS in the assessment of phytopathogens in forested environments.  

 In the case of crown decline associated with AOD, the research presented in 

Chapter 7 provides another notable contribution to the assessment of this particular 

disease.  The results from the research have demonstrated the first successful application 

of UAV-based multispectral imagery for the discrimination of decline severity categories 

in mature oak trees affected by AOD (p < 0.10). Furthermore, the research stands 

alongside a limited number of previous studies concerned with insect pests to present the 

potential applications of the UAV remote sensing platform for disease assessment in 

forest environments.  
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9.3 Outlook and Opportunities for Further Research 

 As a result of the research outputs and analysis of the current scientific literature, 

several themes and avenues for further research have been identified. In the field of ITC 

segmentation, a number of unanswered scientific questions were acknowledged. Firstly, 

the limited success of the ITC segmentation for the mature oak-dominated woodland 

presented in Chapter 6, in addition to low previously reported segmentation accuracies 

for deciduous forest, has demonstrated the requirement for further research into the 

performance of established segmentation methodologies in these environments. This 

further work may also entail the development of new approaches to identify ITCs within 

these heterogeneous forest canopies. In the case of raster-based segmentation methods, 

consideration is also required to provide pixel size recommendations for deciduous forest 

of varying characteristics. For forests subject to dieback and decline, further research is 

required to determine whether the pit-free CHM generation methodology, which 

facilitated the successful segmentation (>70%) of partially and wholly defoliated larch 

canopies, could also improve the isolation of deciduous oak canopies subject to varying 

severities of crown decline. This research would require the application of LiDAR to a 

study area such as Stratfield Brake, as opposed to the photogrammetry-derived DSM 

applied in Chapter 6. Comparing the performance of LiDAR acquired via aircraft and 

UAV and the performance of LiDAR and photogrammetry-derived surface elevation for 

the segmentation of diseased ITCs in varying forest environments would also be of benefit 

to inform operational forestry decisions.  

 Whilst the ALS utilised in Chapter 5 provided successful detection of ITCs subject 

to moderate and severe P. ramorum infection, the average point density of 24 points/m2 

demonstrates a high resolution dataset. In many cases ALS surveys commissioned for 

operational forestry applications may exhibit a much lower density of ALS points. 

Resultantly, in order to provide clear recommendations with regard to ALS data 

acquisition requirements and spatial resolution thresholds for disease detection, further 

research is required to determine the disease discrimination potential of ALS across a 

range of point densities. As an initial starting point for this investigation, point thinning 

could be applied to the existing ALS datasets for the Ogmore and Radnor Forests.   

 With regard to the application of very high resolution UAV-based imagery, the 

results presented in Chapter 7 demonstrated an inconclusive result in relation to the best 
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practise for eliminating noise related pixels. Whilst calculating VIs from only the 

brightest percent of pixels (80% and 20%) improved crown decline category 

discrimination in some cases, performance was not consistent. Subsequently, further 

research is required to evaluate methods for the elimination of noise related pixels in very 

high resolution UAV imagery for decline and disease detection conducted at the ITC-

level. Such information is of particular importance for providing clear recommendations 

for the operational applications of UAVs in the assessment of phytopathogens in forest 

environments.  

 Whilst the research presented in Chapters 5 and 7 presents the successful 

assessment of P. ramorum in larch and AOD, these studies are confined to specific 

locations where the presence of the respective phytopathogen infections had previously 

been identified. The results from these chapters demonstrate the proof of concept for the 

application of ALS and UAV-based multispectral imagery for the assessment of these 

specific phytopathogens in the particular forest environments. However, further research 

is required to consider the applications of remote sensing technologies for the detection 

of new outbreaks at regional and national scales. To consider the remote sensing 

applications for phytopathogen assessment across larger geographical extents research is 

required over larger spatial scales. With regard to the isolation of ITCs at the national 

scale, UK based remote sensing company Bluesky International, who acquired the ALS 

for the research, have previously produced a National Tree Map for England and Wales 

employing a range of segmentation techniques to identify ITCs (Bluesky, 2017). Such 

type of product could be employed to provide the basis for conducting larger-scale 

assessment of tree disease. In addition, with regard to publically managed commercial 

forestry in the UK, the National Forest Inventory (Forestry Commission, 2017) which 

provides detailed information of tree species and ages within designated sub-

compartments, could be applied to facilitate a targeted assessment of phytopathogens and 

their known hosts. Furthermore, in the case of P. ramorum in larch species, conducting a 

regional scale trial alongside the current approach of performing visual inspections via 

helicopter survey would also facilitate an informative comparison of the two approaches 

for disease detection.  
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