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SUMMARY 

 

Uranium (U) exhibits a high temperature body-centered cubic (bcc) allotrope that 

is often stabilized by alloying with transition metals such as Zr, Mo, and Nb for 

technological applications. One such application involves U–Zr as nuclear fuel, where 

radiation damage and diffusion (processes heavily dependent on point defects) are of vital 

importance.  Metallic nuclear fuels swell under fission conditions, creating fission 

product gases such as helium, xenon and krypton.  Several systems of U are examined 

within a density functional theory framework utilizing projector augmented wave 

pseudopotentials. The bulk modulus, the lattice constant, and the Birch–Murnaghan 

equation of state for the defect free bcc uranium allotrope are calculated. Defect 

parameters calculated include energies of formation of vacancies in the α and γ 

allotropes, as well as self-interstitials, Zr, He, Xe and Kr interstitial and substitutional 

defects.  This work is utilized in the construction of modified Embedded-Atom Method 

interatomic potentials for the bcc phase of uranium as well as the binary systems of U-

Xe, U-Kr and U-He.  Using this potential, equilibrium volume and elastic constants are 

calculated at 0 K and found to be in close agreement with previous first principles 

calculations. Further, the melting point, heat capacity, enthalpy of fusion, thermal 

expansion and volume change upon melting are calculated and found to be in reasonable 

agreement with experiment.  Calculations of dilute fission gas defects show reasonable 

agreement with first principles calculations.  Finally, void and xenon bubble energetics 

are analyzed as a function of temperature. 
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CHAPTER 1 

INTRODUCTION 

 Metal alloy fuels have a long history in fast-reactor applications dating back to the 

earliest days of reactor development at the Metallurgical Laboratory of the University of 

Chicago [1-3]. Metallic fuel cores were employed in the sodium-potassium eutectic-

cooled Experimental Breeder Reactor I (EBR-I), the world’s first experimental fast 

neutron breeder reactor, between 1951 and 1963. Its successor, the sodium-cooled 

Experimental Breeder Reactor II (EBR-II), was also powered by a number of metallic 

fuel cores during its operation from 1964 until 1992. The EBR-II was used to study the 

performance of a variety of experimental metal alloy fuels in addition to a myriad of 

other fuel types, including oxides and nitrides. Other fast reactors that have utilized 

metallic fuel cores include the Fermi reactor in the United States and the Dounreay 

reactor in the United Kingdom. 

 Metal alloy fuels have demonstrated superior performance in that they behave in a 

benign manner during core off-normal events, maintain integrity to high burnup, and lend 

themselves to low-loss recycling processes as well as ease of operation and low minor 

actinide (MA) fabrication loss under remote-handling conditions [4]. However, most of 

the fundamental properties and behavior of these materials have not been measured and 

are not well understood. 

 Some of the metallic fuel types used or tested in fast spectrum reactors were high-

enriched uranium (HEU), Pu-Al alloys, U-Mo alloys, U-Pu-Zr alloys, and U-fissium and 

U-Pu-fissium alloys (fissium is a mixture of Zr, Nb, Mo, Ru, Rh, and Pd). In addition, 

many small thermal spectrum research and test reactors employ metallic fuel such as U-
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Mo alloys in Al cladding or dispersion fuel of U-Mo alloy in Al matrix. Recent efforts to 

develop metal alloy fuels for actinide transmutation in either fast-flux reactors or 

accelerator-driven systems of a closed nuclear fuel cycle have included studies on U-Pu-

MA-Zr and Pu-MA-Zr (MA = minor actinides = Np, Am, Cm) alloys.  Most of these 

contain uranium as the base element with varying alloying additions.  The alloying 

additions attempt to stabilize the high temperature body-centered cubic (bcc gamma) 

phase at the expense of the anisotropic face-centered orthorhombic (alpha) phase.  

However, spent metallic fuels usually take the orthorhombic form.  The phase diagram of 

U-Zr is shown in Figure 1 [5]. 

 

Figure 1.  The phase diagram of the uranium-zirconium binary system. 
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One issue encountered with metallic U alloy fuels is swelling.  The dramatic 

swelling of metallic fuels under irradiation is largely due to the incorporation of fission 

product gases in the fuel matrix during burnup.  The specific isotopic yields for fission 

products (FP) vary based on fuel composition and the type of reactor.  Three common 

gases present in the fission environment are helium, xenon and krypton.  Research efforts 

[6] in the past have focused on understanding and predicting the constituent redistribution 

in metallic alloy fuels as this is of importance to the overall interpretation of fuel element 

behavior.  However, unlike UO2 commercial fuels, reliable experimental data on defect 

energies that impact fuel performance during its operation and subsequent long term 

storage are very scarce.  

Uranium, an actinide exhibiting delocalized f-electrons, exists in three solid 

allotropes: α (face-centered orthorhombic), β (body-centered tetragonal) and γ (body-

centered cubic)[7]. At elevated temperatures, uranium transforms from α to β at 

approximately 935 K and β transforms to γ at approximately 1045 K [8].  The α, β and γ 

crystal structures are shown respectively in figures 2-4. 

 
Figure 2.  The α-U crystal structure. 
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Figure 3.  The β-U crystal structure. 

 

 
Figure 4.  The γ-U crystal structure. 
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Detailed knowledge of fundamental processes occurring within these fuels is 

required for the development of understanding of the overall macroscopic processes.  The 

goal of computational fuel research is eventually the development of a predictive 

continuum level software package that incorporates physics and physical processes 

occurring on atomistic and microscopic levels.  Experimental data is also incorporated as 

input parameters.  However, the experimental database is limited and further 

experimental investigations in these systems are inherently limited in scope.  

Computational modeling allows for the investigation of systems beyond the reach of 

experimental tools, exploring atomistic and microscopic properties occurring on minute 

time and length scales.  Utilization of various computational tools on various time and 

length scales is required for the advancement of the total research database on alloy fuels.  

Studies such as this add to the limited framework of computational investigations into 

uranium and uranium based alloys. A brief summary of such previous computational 

studies is presented below. 

Several examinations of U via a first principles methodology have been 

performed on the orthorhombic and body-centered cubic structures of U. Soderlind [9] 

implemented a full-potential linear muffin-tin orbital (FPLMTO) method to calculate 

lattice and elastic constants of α-U. Lattice constants were predicted within 1% of 

experimental values [10], while the bulk modulus was slightly overestimated when 

compared to experiment [8]. Crocombette et al. [11] utilized a norm-conserving 

pseudopotential method with a very high cutoff energy (2448 eV), resulting in a greater 

variance of lattice parameters and a greater overestimation of the bulk modulus. Taylor 

[12] used a projector-augmented wave (PAW) pseudopotential developed for U by 
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Kresse and Fürthmuller [13] with a cutoff energy of 253 eV to calculate the lattice 

constants of α-U and γ-U along with the bulk modulus of both allotropes. Taylor [12] 

also calculated the vacancy formation energy in the α allotrope. The lattice and elastic 

constants are predicted with comparable accuracy to the full-potential methods in the α 

allotrope, but the bulk modulus of the γ allotrope is significantly overestimated when 

compared with experiment [7]. An analysis of bulk properties in the α and γ allotropes, as 

well as an analysis of defects in γ-U, was performed by Xiang et al.[14] utilizing a PAW 

pseudopotential.  Lattice and elastic constants for α-U and γ-U correspond with 

experimental values [7, 10] and the vacancy formation energy is slightly underestimated 

with respect to vacancy formation energies estimated through positron annihilation 

spectroscopy [15].  Recently, PAW pseudopotential calculations have been performed 

analyzing defects in α-U [16].  

 From the preceding literature review, only two studies have attempted to calculate 

point defect properties in U; these have been calculations focused on the vacancy 

formation energy in the α [12, 16] and the γ [14] allotropes. The explanation for such a 

limited scope of analysis on the defects lies partially in the inherent issues associated with 

a density functional theory (DFT) approach to the study of a high temperature allotrope 

and partially in computational limitations.  

 Density functional calculations are typically performed to calculate ground state 

properties, implying that the calculation is taking place at a temperature equal to 0 K. It 

has been shown, via the calculation of elastic constants, that the elastic shear constant 

(C’= (C11 − C12)/2) is negative in the body-centered cubic allotrope of U at 0 K [8]. Thus, 

at low temperatures, bcc U is mechanically unstable. Computationally, this mechanical 
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instability translates into an inability to calculate relaxed structures involving defects, due 

to the inherent localized deformation created by introducing a point defect. Several other 

systems, such as Zr, Ti, and Hf, also exhibit a high temperature body-centered cubic 

allotrope that is mechanically unstable at low temperature [17, 18].  

 Another issue relates to the size of the supercell studied. If a small supercell is 

analyzed, there can be cross-boundary effects due to the inherent periodicity of the 

supercell, creating defect–defect interactions, and thus a different system than the intent 

of the study. Boundary effects have been witnessed in bcc supercells as large as 54 

atoms, and since typical plane wave calculations scale as N
3
 (where N is the number of 

valence electrons), the computational expense increases dramatically for larger systems. 

In addition, the core of the U pseudopotential is large, potentially leading to large overlap 

of the cores as atoms move in response to defect strain fields in certain systems. The 

response may be to discard pseudopotential methods in favor of more accurate 

techniques. However, the use of more accurate methods (FP-LMTO, etc.[19]) leads to a 

limitation on system size through very high computational expense, thus limiting 

applicable first principles methodologies to pseudopotential based density functional 

theory calculations for the investigation of defect properties.  

 Analysis of defect properties at 0 K can provide excellent insight into defect 

mechanisms; however, ground state properties cannot always be extrapolated to high 

temperature.  Unlike most first principles calculations, interatomic potentials based on 

mostly classical descriptions can be used to calculate relevant atomistic properties at 

temperature.  Very few properties of the γ phase have been calculated due to its 

propensity to destabilize at 0 K.  Thus, in order to understand the properties of this phase, 
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it is important to evaluate it when it is stable, i.e., at high temperature.  Such calculations 

are inaccessible to most first principles methods,  however semi-empirical interatomic 

potentials can be fit to both first principles and experimental data and employed to 

simulate high temperature properties.   

Unlike first principles calculations, in classical simulations atoms are represented 

by point-like centers, which interact through many-body interactions defined by a set of 

equations - the interatomic potential. In this manner, the highly complex description of 

electron dynamics is replaced by an effective model whose main features such as the hard 

core of particles and internal degrees of freedom are described by a set of parameters and 

analytical functions, which depend on the mutual positions of the atoms in the 

configuration. These parameters and functions give complete information about the 

system energy, as well as about the forces acting on each particle. 

The best choice of a potential for simulations of metals is a many-body potential. 

Pair-wise potentials, such as the Lennard - Jones (LJ) [20] potentials do not give adequate 

description of all the properties of metals. For example, the LJ potential imposes the 

Cauchy relation C12 = C44 on the elastic constants. For the γ phase of uranium, such 

constraints would give incorrect properties as the structure is mechanically unstable at 0 

K implying a negative shear elastic constant.  Pair-wise potentials fail to estimate the 

structure relaxation and reconstruction around point defects (vacancies and self-

interstitials) in metals. The vacancy formation energy obtained by means of pair - wise 

potentials is overestimated, and is found to be about equal to the bulk cohesive energy 

[20]. 
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A many-body potential includes pair-wise interactions as one component of the 

full potential.  This first component of the many-body potential accounts for the core - 

core interactions (or ion - ion interactions), while the second part incorporates the 

complex nature of metallic cohesion by an additional term-the embedding function-that 

depends on electronic charge density.  This is shown in equation 1: 

 

  
 

 
∑  (   )  ∑      

 
   

 
           (1) 

 

where  (   ) is the pair (two body) interaction and the many body term       depends on 

the electronic charge density    around the atom i.   

Very few interatomic potentials for actinide metals have been developed.  

Itinerant f-electron behavior has proved difficult to describe.  Directional effects of the 

electron cloud need to be considered in the potential description.  Of the actinide metals, 

interatomic descriptions of plutonium atomic interactions are available [21] and are based 

on the modified Embedded-Atom Method [22].  These potentials have been used to 

calculate the stability of Pu phases, the phase diagrams of Pu alloys, defect properties and 

radiation damage effects [23-26] 

Very limited interatomic potential development has been undertaken on uranium 

and consequently its alloys.  This neglect is mainly due to its inherent complexity shared 

with other actinides such as Pu.  A recent attempt at an embedded atom method has been 

reported wherein the thermophysical properties of liquid uranium have been calculated 

[27] whose EAM based potential produces good agreement with experiment as regards 

the structure, density, and potential energy of liquid metal at temperatures up to 5000 K, 
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but is not intended for describing crystalline uranium properties.  Two other recent 

publications[28, 29] report potentials suitable for investigating crystalline uranium in the 

α phase, however, no such potential exists that provides satisfactory results for the γ 

phase of U. 

 In this work, a detailed study of defect formation in α and γ uranium using 

pseudopotential based DFT calculations is performed. First, the equilibrium lattice 

constants and the bulk modulus are calculated in both U allotropes. The vacancy 

formation energy in the orthorhombic α allotrope and the γ allotrope is calculated. 

Several systems involving self-interstitials in α-U and γ-U are investigated for the 

computation of interstitial formation energies. Body-centered cubic systems of U are 

considered with a dilute concentration of Zr in the form of substitutional and interstitial 

atoms, calculating the formation energies of these defects.  Formation and incorporation 

energies of Xe, Kr, and He for various defect positions are investigated for the prediction 

of fission product behavior.  Where mechanical instabilities occur, an approximation 

technique is employed to calculate defect properties.  A semi-empirical modified 

Embedded-Atom Method (MEAM) potential is presented for the description of the high 

temperature body-centered cubic phase of uranium.  Atomistic simulations are performed 

for the calculation of equilibrium and thermodynamic properties.  These include the 

melting point, heat capacity, enthalpy of fusion, thermal expansion and volume change 

on melting.  Defect energies are analyzed as a function of pressure and temperature.  This 

MEAM interatomic potential is utilized for the generation of binary interatomic 

potentials to characterize systems of bcc uranium with inclusions of Xe, Kr and He.  

Molecular statics is used to analyze He, Xe and Kr defects in bcc uranium at 0 K and 
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compare with DFT results.  Finally, voids, xenon dilute defects and xenon bubbles are 

investigated as a function of temperature. 
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CHAPTER 2 

COMPUTATIONAL METHODS 

First Principles Calculations 

 Calculations were performed using the Vienna ab initio Simulation Package 

(VASP) [13, 30, 31].  The Projector-Augmented Wave method [32] is utilized within the 

density functional theory [33, 34] framework.  Calculations are performed using the 

Perdew-Burke-Ernzerhof (PBE) [35] and the Perdew-Wang (PW91) [36] GGA density 

functional implementation for the description of the exchange-correlation.  Methfessel 

and Paxton's smearing method [37] of the first order is used with a width of 0.2 eV to 

determine the partial occupancies for each wave function.  Structural relaxations are 

performed using the conjugate gradient method until a convergence of 1 meV is reached 

for the total energy of the system.  A uranium PAW pseudopotential with the 

6s
2
6p

6
5f

3
6d

1
7s

2
 valence electronic configuration and a [Xe, 5d, 4f] core is utilized.  

Fission product PAW pseudopotentials (PP) used include a helium PP with the valence of 

1s
2
, a xenon PP with the valence of 5s

2
5p

6
 and a [Kr, 4d10] core, and a krypton PP with 

the valence of 4s
2
4p

6
 and a [Ar, 3d10] core.  The cutoff energy is 253 eV for the U-Xe 

and U-Kr systems and 479 eV for the U-He system. 

 The structural relaxation for the γ phase was performed on a 128 atom supercell 

(4x4x4) to find equilibrium lattice constants.  For the α phase, a 96 atom supercell 

(4x2x3) was fully relaxed to calculate bulk equilibrium properties.  In both systems, 

symmetry restrictions were removed, resulting in 36 k-points in the irreducible wedge of 

the Brillouin Zone (BZ).  These calculations were performed for various k-point meshes, 

and the variance is less than 0.05 eV for a more dense mesh.  Boundary effects have been 
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observed in bcc supercells as large as 54 atoms, so supercells in this study were 

sufficiently large to minimize cross boundary effects relating to the inherent periodicity 

of the system, while still remaining computationally feasible. 

 Defects were introduced into a supercell with equilibrium lattice constants and a 

structural relaxation of atomic positions was performed to calculate the formation 

energies.  In the calculation of defect formation energies, only isolated, non-interacting 

defects were considered, and the energy of an isolated atom in a vacuum at its ground 

state is assumed to be zero, providing the reference point for the calculations [14].  The 

formation energy of a single vacancy is defined as 

 

           [
   

 
]            (2) 

 

where E(n−1)U is the total energy of an (n−1)U atom supercell containing one uranium 

vacancy, and EnU is the total energy of an ideal uranium supercell containing n lattice 

sites. The formation energy of a U interstitial is defined as 

 

           [
   

 
]           (3) 

 

where E(n+1)U is the total energy of (n + 1)U atoms, which includes the atoms at lattice 

positions as well as one interstitial. The formation energy of a Zr substitutional is defined 

as 

              [
   

 
]              (4) 
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where E(n−1)U+Zr is the energy of a lattice containing one Zr substitutional and EZr is the 

energy of one Zr atom in the bcc allotrope. The formation energy of a Zr interstitial is 

defined as 

 

                        (5) 

 

where EnU+Zr is the energy of a lattice containing one Zr interstitial. 

 The reference state for the fission gases was assumed to be an equilibrium face-

centered cubic structure (fcc).  The fcc crystal structure was chosen as the reference state 

due to the fact that these calculations are occurring at 0 K, and as these systems approach 

0 K, they will crystallize.  The ground state crystal structure for Xe and Kr is a face-

centered cubic lattice. The ground state crystal structure for He is the hexagonal close-

packed (hcp) lattice.  However, in order to keep a consistent reference state for all 

incorporated external atoms, fcc He is chosen as the ground state.  The variance between 

the hcp and the fcc structures for He is less than 0.01 eV.  The formation energy of a 

single substitutional defect is defined as 

 

              [
   

 
]              (6) 

 

where E(n-1)U+FG is the total energy of a lattice containing one fission gas substitutional 

atom, EnU is the total energy of an ideal uranium supercell containing n lattice sites, and 

EFG is the energy of one fission gas atom in the face-centered cubic phase. 
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The formation energy of an interstitial fission gas defect is defined as 

 

                        (7) 

 

where EnU+FG is the total energy of nU atoms and one fission gas interstitial atom.  The 

incorporation energy of a fission gas atom is calculated according to Nerikar [28] as 

 

                             (8) 

 

where EnU+FG is the total energy of the cell with the fission product at a particular defect 

site, E(n+1)U is the total energy of the cell with a uranium atom at a particular defect site, 

and EFG is the energy of a single fission gas atom in the reference state.  The 

incorporation energy does not account for the formation of the defect site and assumes 

there is always an excess of available defect sites.  A positive value of the incorporation 

energy means energy is required for a fission product to be placed at a particular defect 

site.  

 One issue that arises when calculating defects in U is due to the large cutoff 

radius of the pseudopotential used.  When a defect is present and the atoms are relaxed, 

adjacent pseudopotential cores may overlap. A large enough core overlap can make the 

supercell unstable, yielding unrealistic results for the relaxed structure. Another source of 

anomalous structural lattice relaxation around defects is the inherent mechanical 

instability of the bcc allotrope of U at 0 K.  In order to avoid these instabilities, geometric 

relaxations are not performed for the whole supercell, but for a cluster of atoms that 
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consists of several fully symmetric layers of nearest neighboring atoms around the defect 

of interest. Meanwhile, all atoms in the supercell participate in the electron density 

optimization.  This computational strategy is illustrated in figure 5 for the interstitial in 

the <100> dumbbell configuration. The supercell consists of 129 atoms, all of which 

contribute into the electronic density optimization. The geometric optimization is 

performed for an inner shell of atoms with unconstrained positions that consists of two 

nearest neighboring layers surrounding the interstitial. The energy of the relaxed 

configuration E(n+1)U and the interstitial formation energy are connected by equation 2.  

 

 

Figure 5.  Schematic of the geometry used for calculating the formation energy of a 

<100> oriented dumbbell interstitial for a supercell with 129 atoms.  Unconstrained 

atoms are shown as dark and constrained atoms as light.  The relaxing inner shell consists 

of the two nearest neighbor full atomic layers surrounding the interstitial and is shown 

separately on the right. 
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 This procedure is followed for all defect configurations in bcc U. The choice of 

the shell atomic configuration for each specific defect depends on the nature of the defect 

as well on its symmetry. Typically, two symmetric nearest neighboring atomic layers 

around the defects of interest (interstitial or vacancy) were taken and these atoms were 

considered unconstrained during the geometric optimization.  Such a procedure produces 

uniform, symmetrical relaxation of the defect structure and prevents any spurious 

reorientation of the defect caused by pseudopotential core overlap and supercell 

instabilities. 

Molecular Statics and Dynamics Calculations 

 The Embedded-Atom Method (EAM) [38-40] has been shown to predict the 

properties of alloys and metals quite well. The EAM is the most widely used semi-

empirical potential, with applications including calculations of point defects[41], melting 

[42], grain boundary structure and energy [43], dislocations [44], segregation [45], 

fracture [46] and surface structure [47].  The basis of the EAM is that the cohesive energy 

can be expressed in terms of embedding energies.  In this view, each atom in the metal is 

embedded into the electron gas created by the other atoms.  The EAM provides a robust 

means of calculating structure and energetics; however, it is best suited strictly for purely 

metallic systems with no directional bonding. 

 From the EAM, the total energy of a system of atoms is given by equation 9: 

   ∑ {    ̅  
 

 
∑  (   )   }       (9) 

where i and j are the individual atoms of the model [38, 39].  The pair interaction 

between atoms i and j is given by   [22]and is dependent on the separation between the 

atoms Rij.            
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In equation 10, Z is the number of first neighbors,  ̅     is the background electron 

density and       is the per atom energy of the reference structure as a function of 

nearest-neighbor distance   [21] obtained from the universal equation of state of Rose et 

al. [47] given in equation 11. 
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with 
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         (13) 

where   ,   ,   and   are the cohesive energy, nearest neighbor distance, atomic volume 

and bulk modulus, respectively, evaluated at equilibrium in the reference structure.  In 

this work, the reference structure is taken as face-centered cubic, resulting in: 

 ̅                      (14) 

where       is an atomic electron density discussed below.  The embedding function, F, 

is given in equation 15 and is the energy required to embed atom i into a system with a 

background electron density  ̅ .   

   ̅     
 ̅

 
  

 ̅

 
        (15) 

For this work,        .   The modification to the EAM is a function of how the 

electron density at a certain point,   , is calculated.  In the traditional EAM,    is simply 

the linear supposition of spherically averaged atomic electron densities: 

  
   

 ∑   
    

               (16) 
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whereas the MEAM introduces angularly dependent terms to augment  ̅  as shown in 

equations 17, 18 and 19 [22, 48].   
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Here, the       are the atomic densities which represent the decrease in the contribution 

with distance     and the α, β, γ summations are each over the three coordinate directions 

with    
  being the distance the ratio    

 /Rij with    
  being the α component of the 

distance vector between atoms i and j [22].  Similar to equation 14, equations 15 and 16 

can be put in a form that has a dependence on the angle between atoms i,j and k (θijk), and 

this has been done by Baskes et al. [49].  Atomic electron densities are assumed to 

decrease exponentially,  

  
         

[     (
 

  
  )]

       (20) 

where β
(l)

 are the decay lengths.  To obtain the background electron density from the 

partial electron densities we make the assumption that the angular terms are a small 

correction to the EAM. 

   
   

   ∑   
   

   
   

   
          (21) 

Many body screening is implemented through a screening function,    , that quantifies 

screening between two atoms i and k due to other atoms in the system, j.  The atomic 

electron densities and the pair potential are multiplied by this function.  The screening 

function depends on all other atoms in the system: 

    ∏                  (22) 
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where      is calculated using a simple geometric construction.  The screening factor      

is defined as: 

       [
      

         
]        (23) 

where C is a geometric parameter, and Cmin and Cmax are limiting values of C.  The 

smooth cutoff function is: 

      [
    

[        ]      
    

]     (24) 

A radial cutoff function is also applied to the atomic electron densities and pair potential 

which is given by   [        ] where rc is the cutoff distance of 4.5 Å and λ gives the 

cutoff region and was chosen to be 0.1.  The MEAM has been shown to accurately 

predict the behavior of complex systems such as plutonium [21] and tin [50].   

 Using the above equations, a MEAM semi-empirical potential is developed for 

the high temperature body-centered cubic phase of uranium.  The model parameters are 

fit to various physical properties of uranium metal obtained from experimental as well as 

first principles methods.  The MEAM parameters and their respective sources are given 

in Table 1.  The first column shows the parameter variables, while the second column 

gives the values.  The third column shows the physical quantity that was used to optimize 

the value of the variable.  Since the model parameters are highly correlated with a 

physical property, the parameters are varied one at a time to obtain the best fit to the 

experimental/first principles database (see Table 1).  The fcc structure was chosen as the 

reference state.  Ec, re, and α were initialized using the database and equation 9 for α. The 

parameter A was initialized at unity, the β’s at six, the t’s at zero, and delta at zero.  The 

angular screening parameters were initialized at Cmin=2 and Cmax=2.8.  Each parameter 



 21 

was varied in turn to improve the agreement between the MEAM calculation and the 

relevant database property.  For example, A was varied to establish agreement between 

the calculated energy difference between the relaxed α and γ phases and the database.  

All properties (except thermal expansion) were calculated for each change of parameters 

to ensure that the fit to the entire database did not deteriorate.  Periodically during the 

fitting process δ was varied to match the experimental value of thermal expansion.  Due 

to the weak correlation of the model parameters, this process converges rapidly.  This 

fitting procedure was tailored specifically towards optimizing properties of the γ phase of 

U.  Investigation of α U shows that this structure indeed possesses a lower cohesive 

energy per atom when compared to γ U, but shows large variance in internal coordinates 

and lattice parameters when compared to experiment.   

Table 1.  Parameters of the MEAM potential for γ U, the value of the parameters. 

Parameter Value Source 

Ec (eV) 5.27 Cohesive energy of α/γ*/fcc [27]
 

re (Å) 4.36 Lattice constant of γ [51, 52]
 

α 5.1 Bulk modulus of γ [53]
 

A 1.04 Relative stability of α and γ [54]
 

 0 

 
6.0 Relative stability of fcc and γ [54]

 

 1 

 
6.8 Shear elastic constants of α [12]

 

 2 

 
7.0 Shear elastic constants of α [12] and γ *

 

 3 

 
7.0 Shear elastic constants of γ*

 

 t
1 

 2.5 Vacancy formation energy in γ [15]
 

t
2 

 4 Shear elastic constants of α [12] and γ *
 

t
3 

 3 Atomic volume of α [12]
 

δ 0.1 Thermal expansion of γ [52]
 

Cmin 1 Cohesive energy of α/γ*/fcc [27] 

Cmax 1.9 Cohesive energy of α/γ*/fcc [27] 

*Data from unpublished sources. 
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CHAPTER 3 

BULK PROPERTIES AND INTRINSIC DEFECTS OF URANIUM 

Properties of defect free γ-U 

 First, properties of defect free γ-U are calculated and compared with those in 

literature. By varying the lattice constant and calculating the energy of the system, an 

energy–lattice parameter curve (Birch–Murnaghan curve) [55] is generated, allowing the 

calculation of the equilibrium bulk modulus. The Birch–Murnaghan curve is calculated 

for the PW91 GGA potential and the PBE GGA potential for various k-point meshes, 

starting with 1× 1 × 1 and increasing sequentially to 4×4×4, in a 128 atom supercell with 

periodic boundary conditions for γ -U. The minimum of this curve yields the equilibrium 

lattice parameter and the bulk modulus is calculated from 

    
   

             (25) 

evaluated at the equilibrium lattice constant [56]. The bulk modulus was calculated with a 

Birch–Murnaghan curve fit for the entire total energy data (figure 6). Restricting the data 

set to a few points around the minimum produces changes in the bulk modulus of 

approximately 3%.  The calculated Birch–Murnaghan curves for the PBE and PW91 

functionals are shown in figures 6 and 7, respectively.  Table 2 shows the lattice 

parameter, volume per atom, and bulk modulus calculated using both the PBE and PW91 

functionals for different k-point meshes.  Also shown for comparison are the values 

calculated by Xiang et al. [14] and Taylor [12] as well as the experimental values 

determined by Yoo et al. [7]. The values for the lattice parameter are within 1% of the 

literature values. 
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Figure 6.  The total energy of the perfect bcc uranium lattice as a function of the supercell 

lattice parameter.  Calculations were performed with the PBE exchange correlation 

functional for different k-point meshes (1x1x1, 2x2x2, 3x3x3 and 4x4x4). 

 

Figure 7.  The total energy of the perfect bcc uranium lattice as a function of the supercell 

lattice parameter.  Calculations were performed with the PW91 exchange correlation 

functional for different k-point meshes (1x1x1, 2x2x2, 3x3x3 and 4x4x4). 
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Table 2. The properties of defect free b.c.c U: the lattice constant, volume per atom and 

bulk modulus.  Results for both the PBE and PW91 functionals and different k-point 

meshes (1x1x1, 2x2x2, 3x3x3 and 4x4x4) are shown.  The results are compared with the 

work of Xiang [14], Taylor [12] and the experimental work of Yoo [7]. 

  a0 (Ȧ) V (Ȧ
3
) B (GPa) 

111 
PBE 3.4418 20.39 138.29 

PW91 3.4525 20.58 133.41 

222 
PBE 3.4275 20.13 133.07 

PW91 3.4390 20.34 130.41 

333 
PBE 3.4235 20.06 136.29 

PW91 3.4338 20.24 133.16 

444 
PBE 3.4283 20.15 133.64 

PW91 3.4383 20.32 133.03 

Xiang 3.4313 20.20 122.6 

Taylor 3.43 20.18 176 

Expt 3.419 19.98 113.3 

 

 The bulk modulus values agree better with the calculations by Xiang [14] than 

those by Taylor [12] and slightly overestimate the experimental value of Yoo [7]. There 

is a significant difference between the calculated total energies for different exchange-

correlation functionals, but the values of the equilibrium lattice constant and the bulk 

modulus are similar for the two pseudopotentials. Increasing the density of the k-point 

mesh for each pseudopotential increases the total energies of the lattice, but this effect is 

less pronounced for finer k-point meshes. There is a general trend for the coarser k-point 

mesh to yield a curve that has a slightly larger lattice constant than for finer mesh grids. 

Likewise, the PW91 functional gives a slightly higher equilibrium lattice constant for all 

of the tested k-points. 
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Defect formation energies in γ-U 

 Using the equilibrium lattice parameters calculated from the analysis of defect 

free U, a single atom is removed from the supercell and a structural optimization is 

performed, where fourteen atoms (two shells) are allowed to relax. In table 3, the 

calculated vacancy formation energy for the PBE and PW91 functionals are compared 

with the experiment [15] as well as with the computational results of Xiang et al. [14].  

 

Table 3.  The formation energy of vacancies in bcc U calculated using both the PBE and 

PW91 functionals and a k-point mesh of 4x4x4.  The vacancy formation energies 

estimated from positron annihilation spectroscopy measurements [15] and calculated by 

Xiang [14] are also shown. 

E
v
form (PBE) 1.384 eV 

E
v
form (PW91) 1.323 eV 

E
v
form (Xiang) [14] 1.08 eV 

E
v
form (Matter) [15] 1.2 ± 0.25 eV 

 

 The vacancy formation energy is about 0.3 eV higher than that calculated by 

Xiang using a 54 atom simulation cell and PBE exchange-correlation functionals. 

However, results from this work are in good agreement (within the experimental error) 

with experiments of Matter et al. [15], who measured the positron annihilation 

coincidence count rate as a function of temperature and analyzed the data in terms of the 

trapping model, yielding relatively accurate values for the monovacancy formation 

energy. 

 For the calculation of interstitials, a single U atom is added into the supercell in 

different positions to calculate the formation energy from equation 3. In figure 8, the 

calculated interstitial formation energies for the PBE xc-functional are presented. Figure 
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8 also shows the atomic structure of the relaxed shell of atoms around the defect. First, it 

is interesting to compare the relative magnitudes of the interstitial formation energies. 

The formation energy of the dumbbell interstitial is heavily dependent on the orientation 

of the defect, with the <111> direction having a formation energy nearly three times 

higher than either of the other dumbbell orientations. The <100> dumbbell, <110> 

dumbbell, and octahedral have the lowest formation energies, all below 1 eV.  Thus, 

these configurations are predicted to be the most prevalent self-interstitials. Also 

noteworthy is the order of magnitude of the formation energies for interstitials. Typical 

formation energies for similar interstitial defects in transition metals are of the order of 

several electron volts. The methodology of relaxing symmetric layered shells 

implemented here is not exact, and will typically overestimate the formation energy of 

defects, i.e., the real formation energy should be lower than presented results. However, 

the fact that the formation energy of interstitials is comparable to the formation energy of 

vacancies is significant, since it implies similar equilibrium concentrations for these 

different classes of defects. The difficulty of the extraction of interstitial formation 

energies from experiment restricts verification of these results to previous computational 

work, which consists of calculations of vacancy formation energies only [15]. Of actinide 

metals, point defect properties of Pu have been studied. Using modified embedded-atom 

methods to describe interatomic interactions in plutonium, Berlu et al. [57] and Valone et 

al. [58] have calculated low interstitial formation energies in α- Pu. All calculated Pu 

self-defect dumbbell configurations and the octahedral configuration had formation 

energies of below 1.7 eV. 
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Figure 8.  Self-defect formation energies calculated using the PBE exchange-correlation 

functional and a k-point mesh of 4x4x4.  Also shown are corresponding relaxed atomic 

configurations for different uranium interstitials in the bcc γ-U allotrope. 
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Defect formation energies in α-U 

 The face-centered orthorhombic unit cell of α-U is shown in figure 9.  The α 

phase has a face-centered orthorhombic structure, and its conventional unit cell contains 

four atoms, as in face-centered cubic (fcc) crystals.  However, the atoms at some 

traditional face-centered sites are not face centers although they are on front and back 

faces. Further, there are no atoms on two faces of the cube; instead, one effective atom 

resides inside the unit cell. 

 

Figure 9.  Schematic of the face-centered orthorhombic (A20) crystal structure of α-U.   

 

 For the analysis of α-U, a 4 × 2 × 3 supercell with 96 atoms is used. A relaxation 

is performed for the entire supercell, allowing the atoms themselves to relax, and also 

allowing the volume and shape of the supercell to change, starting with the equilibrium 

lattice parameters calculated by Taylor [12] and utilizing only the PBE description of the 

exchange-correlation functional. In table 4, the calculated equilibrium lattice parameters, 

volume per atom and the vacancy formation energy are compared with the results of 

Taylor [12].  The vacancy formation energy was also calculated to be 1.69 eV by Huang 

[16]. 
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Table 4.  The lattice parameters (a, b, c and y), volume per atom and the vacancy 

formation energy calculated for the orthorhombic α allotrope of uranium using the PBE 

functional and a k-point mesh of 4x4x4.  The calculated vacancy formation is compared 

with the results of Taylor [12]. 

 Taylor [12]  This Work 

a (Ȧ) 2.800 2.793 

b (Ȧ) 5.896 5.845 

c (Ȧ) 4.893 4.896 

y 0.097 0.099 

Volume/atom (Ȧ
3
) 20.19 19.98 

E
v
form (eV) 1.95 1.86 

 

 Four interstitial structures were analyzed in the α phase of uranium: free space, 

and the <100>, <010> and <001> split dumbbell interstitials.  The crystal structure of α-

U has a relatively large open volume, placing an interstitial in this open volume is 

referred to as the free space defect, shown in figure 10.  Split dumbbell interstitials for all 

three orientations are shown in figure 11. 

 

Figure 10.  The free space defect in α-U.  The α phase of U has a large open volume, 

placing a defect in the center of this open volume denotes a free space defect.  Internal 
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coordinates of the free space defect are (0.5, 0.812, 0.8) where the unit cell dimensions 

are (2.8, 5.896, 4.893).  The free space defect is illustrated as the light blue atom. 

 

Figure 11.  Schematic of split dumbbell interstitials in α-U.  Three orientations of split 

dumbbell interstitials were analyzed: <100>, <010>, and <001>.  Due to the anisotropy 

of the A20 structure, these three dumbbells represent very different defect configurations. 

  

 In table 5, the calculated self-interstitial formation energies in α-U are presented.  

The formation energies in α-U are greater than in γ-U due to α-U being a more closely-

packed structure.  The open volumes to incorporate defects in γ-U are larger than those in 

α-U.  Thus, it is expected to be more difficult to create a defect in α-U, leading to higher 

formation energies of intrinsic and extrinsic defects.  These values are slightly 

underestimated when compared to Huang [16], who calculated the formation energy of 

the free space defect to be 4.42 eV. 

Table 5.  Formation energy (eV) of self-interstitials in orthorhombic α uranium for the 

defect configurations corresponding to those in figures 6 and 7. 

 

 Ef 

Free space 3.53 

<010> 3.87 

<001> 3.62 
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CHAPTER 4 

PROPERTIES OF EXTRINSIC DEFECTS IN URANIUM 

Dilute Zr defect formation energies in γ-U 

 Using the equilibrium lattice parameters calculated from the analysis of defect 

free γ-U, a single Zr atom was added into the supercell as part of a defect configuration 

and a structural optimization was performed. In figure 12, the calculated Zr defect 

formation energies for the PBE functional are presented. It is important to note that the 

formation energy of a substitutional defect is much lower than any configuration with an 

interstitial Zr atom. Thus, the substitutional position is the preferred location of dilute Zr 

atoms in γ-U.  During irradiation, Zr may be knocked off its lattice site and occupy 

interstitial locations in the U–Zr lattice. These calculations show the <110> dumbbell as 

the lowest energy configuration for such a knocked off Zr interstitial. The tetrahedral and 

the <111> dumbbells are the least favorable as they have the highest formation energy. 
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Figure 12.  Zr defect formation energies calculated using the PBE functional and a k-

point mesh of 4x4x4.  Also shown are corresponding atomic figurations for possible Zr 

(white atoms) in the bcc γ-U phase. 
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Fission Gas Defect Formation Energies and Incorporation Energies in γ-U 

 Using the equilibrium lattice parameters calculated from the analysis of defect 

free bcc U, a single fission gas atom is added into the supercell to calculate the formation 

energy using equations 6 and 7.  In table 6, the calculated substitutional and interstitial 

formation energies are presented and plotted graphically in figure 13. 

 

Table 6.  Formation energies (eV) of He, Xe and Kr in body-centered cubic uranium for 

the substitutional, <100>, <110> <111> dumbbells and the octahedral and tetrahedral 

interstitial positions. 

 

 He Xe Kr 

Sub 1.803 5.549 5.926 

<100> 2.234 7.294 6.549 

<110> 2.148 7.037 7.345 

<111> 1.764 10.085 8.420 

Octahedral 2.507 7.024 6.210 

Tetrahedral 2.434 7.730 7.002 
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Figure 13. Formation energies (eV) of He, Xe and Kr in body-centered cubic uranium.  

The six positions considered are the same as the six position shown in figure 4, namely 

substitutional, octahedral, tetrahedral and the <100>, <110> and the <111> dumbbells. 

 

 The incorporation energies are calculated from equation 8 using uranium self-

defect calculations in figure 4.  In table 7, the calculated fission gas defect incorporation 

energies are presented and shown graphically in figure 14.   
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Table 7.  Incorporation energies (eV) of He, Xe and Kr in body-centered cubic uranium 

for the same configurations as in table 6.  Self-defect energies are obtained from table 5 

and equation 8 is used to calculate the incorporation energies. 

 

 He Xe Kr 

Sub 1.803 5.549 5.926 

<100> 11.312 17.752 17.007 

<110> 11.279 17.548 17.855 

<111> 9.986 19.686 18.020 

Octahedral 11.410 17.307 16.492 

Tetrahedral 10.576 17.251 16.523 

 

 

Figure 14.  Incorporation energies (eV) of He, Xe and Kr in body-centered cubic uranium 

for the same configurations as in figure 9. 
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 First, it is interesting to compare the relative magnitudes of the defect formation 

energies for each fission gas atom.  There exists a general size effect with regards to the 

magnitude of formation energies of fission gas atoms.  This is most pronounced when 

comparing helium with the other two species.  Helium is a relatively small atom (atomic 

radius: 31pm[59]) and thus it is expected that the defect formation energies for He are 

much lower than those of Xe and Kr, which are larger atoms (atomic radius: 108pm and 

88pm, respectively[59]).  Also, helium formation energies in the substitutional and 

interstitial positions do not vary much in magnitude.  In the case of the much larger Xe 

and Kr, it is clear that these fission products prefer to reside in the vacant lattice site 

rather than in an interstitial position.   

 This size effect is also seen in most cases while comparing Xe and Kr (Xe having 

the greater size), except in the case of the substitutional defect and the <110> dumbbell 

interstitial.  This is possibly due to the very small difference between the two 

pseudopotential core radii, which is less than 0.11 Ȧ (Xe core radius is 1.323 Ȧ and Kr 

core radius is 1.217 Ȧ).  Also, the shell methodology is an approximation technique and 

there are inherent errors associated with using this technique for an energy minimization. 

 Valuable information can be also gleaned by analyzing the relative magnitudes of 

the different defect configurations.  There is a total variance of approximately 0.75 eV 

from the most energetically favorable defect configuration to the most energetically 

unfavorable configuration for He.  Thus, it is expected that He will be found in a variety 

of defect positions in bcc U. For Xe and Kr, the formation energy of the defect is heavily 

dependent on the orientation, with the <111> dumbbell having the highest formation 

energy and the substitutional site the lowest for both elements.  Thus, the <111> 
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dumbbell configuration is predicted to be the least prevalent defect type and the 

substitutional the most prevalent.  It makes physical sense that a substitutional defect 

would have the lowest formation energy, as a vacant uranium lattice position has a much 

greater volume than any other defect site.  Thus, the overall localized deformation will be 

minimized by Xe or Kr inhabiting a vacancy.  The formation energy of all fission gas 

defects in γ-U is larger than self-defects.  The maximum self-defect formation energy has 

been calculated to be approximately 1.5 eV (figure 4), whereas the minimum He defect 

formation energy is 1.76 eV.  Thus, it is more energetically favorable for bcc U to form a 

self-defect, than to form a fission gas defect.  The shell methodology employed will 

typically overestimate the formation energy of defects, i.e., the formation energy should 

be lower than the values presented here. 

 The octahedral-tetrahedral migration mechanism seems appropriate for fission 

gases based on the energies of these respective defect configurations.  Energy differences 

between these two configurations are below 0.8 eV for all fission product species.  Given 

that an octahedral or tetrahedral defect is present, fission product diffusion is likely to 

occur via this mechanism.  The difficulty of the extraction of interstitial formation 

energies from experiment and the lack of previous computational work on fission gas 

defects in metallic uranium means there is no comparison for benchmarking these values.  

On the basis of these results, it is expected that Xe and Kr would occupy vacant U lattice 

sites rather than interstitial positions.  Also, it is apparent that helium may be found in 

either substitutional or interstitial positions with the difference in energies of these 

configurations being much smaller.  While no calculations of the migration energy were 

performed, it is apparent that helium would be a more mobile species, with transitions 
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from interstitial to substitutional and vice versa resulting in less energy differences.  It 

would be expected that Xe and Kr would migrate by a substitutional vacancy exchange 

mechanism, with relatively high values of the migration barrier for such an exchange.  

Given the computational complexity, it is not yet possible to perform calculations of the 

migration pathway using DFT methods. 

 

Fission Gas Defect Formation Energies and Incorporation Energies in α-U 

In table 8, the calculated substitutional and interstitial formation energies for defects in α-

U are presented and shown in figure 15.  In order to calculate incorporation energies of 

fission gas defects in α-U, self-defect formation energies of defects in α-U are needed.  

Self-defect formation energies are given in table 5.  

 

Table 8. Formation energies (eV) of He, Xe and Kr in orthorhombic uranium for the 

substitutional, free space defect and the <010> and <001> dumbbell configurations. 

 He Xe Kr 

Sub 3.33 6.13 6.03 

Free space 3.63 12.25 10.26 

<010> 3.82 11.58 10.17 

<001> 3.65 10.65 9.63 
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Figure 15.  Formation energies (eV) of He, Xe and Kr in orthorhombic uranium in the 

substitutional, free space defect and <100>, <010> and <001> configurations.  These 

correspond to the configurations shown in figures 6 and 7 (substitutional is not shown). 

  

 

Using the self-defect energies from table 5, the incorporation energies were computed 

and are presented in table 9 and figure 16. 

 

Table 9. Incorporation energies (eV) of He, Xe and Kr in orthorhombic uranium obtained 

from equation 8 using data in tables 8 and 5. 

 He Xe Kr 

Sub 3.33 6.13 6.03 

Free space 9.62 20.00 18.00 

<010> 9.47 18.98 17.57 

<001> 9.55 18.31 17.29 
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Figure 16.  Incorporation energies (eV) of He, Xe and Kr in orthorhombic uranium for 

the configuration as described in figures 6, 7, and 11. 

 

 In α-U, similar trends are observed to those in γ-U for extrinsic gas defects.  

Helium exhibits the lowest formation energy of fission product species analyzed, with a 

variance of less than 0.5 eV between defect positions.  Size effects appear to dominate 

formation energies for the α phase.  Xenon is the largest fission product species analyzed 

and has the highest formation energies, while He is the smallest species investigated and 

has the lowest formation energies.  For Xe and Kr, the substitutional site is the preferred 

defect location.  It is interesting to note that formation energies of fission products in α-U 

are generally higher than those in γ-U.  This results from α-U having a more closely-

packed crystal structure than the γ phase.  The octahedral and tetrahedral volumes in γ-U 

are larger than the free space defect volume in α-U.  Also, α-U is a more rigid structure in 

terms of elastic constants, so it is expected that the formation of dumbbell interstitials 

would be more difficult than in γ-U.  In comparing the formation energies of fission gases 
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to the self-defects, the Xe and Kr defects are less energetically favorable, but He 

formation energies are comparable. 

 The fuel undergoes phase transformations during initial operation as well as when 

it is cooled down.  In addition, during operation, temperatures at the fuel pin periphery 

suggest that the alpha phase is present.  Thus, the fact that formation energies of gas 

atoms are higher in the alpha U structure implies that the phase transformation from 

gamma to alpha may affect the fission gas behavior in the fuel.  Higher formation 

energies imply higher strain fields associated with the defect incorporation leading to 

stress concentrators and incipient crack nucleation sites during reactor cool down and 

also during operation. 

 Comparisons can be made to a previous computational study of fission products 

in UO2 [60].  A DFT based analysis of Xe in UO2 yielded an incorporation energy of 

11.11 eV for Xe interstitials.  The work presented here has found that Xe interstitial 

incorporation energies in pure metallic U range from 17-20 eV, significantly higher than 

that for UO2.  The fluorite structure of UO2 has a large open volume and thus can more 

readily include fission product defects.  Thus, higher incorporation energies for pure 

metallic U are expected. 
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CHAPTER 4 

MEAM INTERATOMIC POTENTIAL FOR γ URANIUM 

Molecular Statics Simulations 

 Using the interatomic potential developed above in chapter 2, calculations are 

performed for both the static ground state properties as well as high temperature 

properties of γ U.  In the ground state, structural and elastic properties are calculated.  

The stability of the γ phase as a function of pressure is determined as well as the 

formation energy of a vacancy as a function of pressure.  The calculations show that 

increasing pressure increases the stability of the γ phase.  Increasing temperature 

increases entropy and also makes the γ phase stable.  Molecular dynamics calculations of 

the γ phase at high temperatures are performed.  Properties calculated include the melting 

point, enthalpy of fusion, heat capacity, thermal expansion and the volume change on 

melting.  Vacancy and interstitial formation energies as a function of temperature are 

calculated to within 100 K of the melting point.  The interatomic potential is shown to 

reproduce most properties satisfactorily.  Details of calculations/simulations are presented 

below. 

Equilibrium lattice constant 

 Calculations were performed on systems of 2000 atoms for the γ (bcc) phase.  

Equilibrium lattice constants were calculated at 0 K by relaxing a defect free system with 

dynamic boundary conditions and a convergence criterion of less than 10
-6

 Å motion of 

any atom in an energy minimization iteration.  In Table 10, the results are presented and 

compared to previous work using pseudopotentials as well as experimental values.  The 

volume per atom and lattice constant are slightly overestimated in relation to previous 
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computational and experimental results.  The experimental value is from Wilson [51] at a 

temperature of 1073 K.  It is extrapolated to 0 K from a thermal expansion fit as shown 

by Basak [52].   

 

Table 10.  The equilibrium lattice constant at 0 K and the volume per atom at 0 K.  

Values are compared with the pseudopotential studies of Taylor[12], Crocombette et al. 

[11] and results presented above, full-potential (FP) calculations from Söderlind [9], as 

well as with an experimental value extrapolated to 0 K [51, 52]. 

 MEAM Taylor Beeler FP Crocombette Experiment 

Method of 
estimation 

Interatomic 
Potential 

PAW 
Pseudopotential 

PAW 
Pseudopotential 

Linear 
Muffin 

Tin 
Orbital 

Norm-conserving 
Pseudopotential 

X-ray 
Diffraction 

Lattice 
constant (Å) 

3.503 3.430 3.428 3.46 3.37 3.418 

Volume/Atom 
(Å3) 

21.488 20.074 19.982 20.71 19.14 19.966 

 

Elastic constants 

 Elastic constants were calculated at 0 K via analysis of the changes in internal 

energy due to small strains enforced on the lattice.  The internal energy of a crystal 

system under strain was expanded in a Taylor series in powers of the strain tensor with 

respect to the initial energy of the unstrained crystal.  Each elastic constant was computed 

from the application of a unique strain on the crystal, and the resulting change in internal 

energy.  This methodology is outlined fully by Söderlind [9].  In this manner, the elastic 

constants C11, C12 and C44 are obtained.  The bulk modulus is calculated based on an 

elastic constant relationship for the body-centered cubic system (B= (C11+2C12)/3).  In 

Table 11, the elastic constants are presented and compared with previous computational 

studies utilizing pseudopotentials and full potential calculations, as well as a singular 
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experimental value.  The bulk modulus compares very well to the experimental value.  It 

is seen that the shear constant is less than zero at the ground state.  This result implies 

mechanical instability at the ground state.  This agrees with first principles calculations of 

Taylor [12], Eriksson [61] and Söderlind [54], all of whom predicted such instability.  

However, our value of C’ (-3 GPa) is significantly less negative than that of Eriksson [61] 

(-60 GPa) but closer to Taylor [5] (-11 GPa). 

Table 11.  Elastic constants for γ uranium at 0 K.  Values are compared with that of a 

pseudopotential study by Taylor[12], Full-Potential calculations by Eriksson[61] and 

experimental work by Yoo, et. al [53].  Units are in GPa. 

 MEAM Taylor Eriksson Experiment 

C11 111 161 - - 

C12 117 184 - - 

C’ -3 -11 -60 - 

C44 15 56 - - 

B 115 176 125 113 

 

Elastic constants under hydrostatic pressure 

 The application of pressure can stabilize γ uranium at low temperatures.  The 

stability is analyzed through the elastic shear constant (C’ = (C11-C12)/2): if C’ < 0, the 

system is unstable.  In this methodology, the volume of a pure system is decreased 

incrementally, analogous to incrementally increasing pressure.  At each pressure 

increment, the elastic constants are determined, allowing for the calculation of the shear 

constant.  The elastic shear constant versus pressure at 0 K is displayed in Figure 17.  The 

elastic shear constant becomes positive at 17.2 GPa, indicating the minimum pressure 

required to stabilize bcc U at 0 K.  The stabilization of the γ phase with increasing 

pressure can be described as a function of the f-electron states.  This behavior agrees well 
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with Eriksson’s explanation of actinide metals [61, 62].  The crystal structures of 

actinides can be understood as a Peierls distortion, from the narrow f states situated close 

to the Fermi level.  If the volume is reduced, the bandwidth is increased, and this effect 

becomes less important whereas the Madelung contribution to the energy will become 

increasingly important.  This latter term stabilizes close-packed symmetric structures 

[62].  Also, Soderlind and co-workers [7, 10] investigated the generalized gradient 

approximation in combination with a full potential linear muffin-tin orbital technique to 

obtain the total energy differences for the b.c.t., fcc, bcc and hcp (ideal c /a) structures 

relative to the α U structure as functions of volume for U.  At larger volumes, close to the 

equilibrium volume, they predict α U to be stable with the b.c.t. phase being very close in 

energy. However, when the metal is compressed, the bcc structure becomes stable over 

the hcp structure and finally over the α and b.c.t. structures as well.  We show 

qualitatively similar results with the γ phase of uranium being stable at high pressures. 

 

Figure 17. Shear constant of γ U as a function of hydrostatic pressure at 0 K.  The shear 

constant is positive at a pressure higher than 17.2 GPa indicating a stable structure at 0 K. 

-4

-2

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80

Sh
e

ar
 C

o
n

st
an

t 
(G

P
a)

 

Pressure (GPa) 



 46 

Vacancy formation energy as a function of pressure 

 Introduction of a defect in the ground state at 0 K exacerbates the mechanical 

instability of γ U, creating changes in crystal structure and negative formation energies.  

Analysis of the vacancy formation energy versus pressure can serve to illustrate behavior 

and stability of γ uranium as well as providing relevant data regarding defect energetics.  

The vacancy formation energy was calculated from equation 2.  The vacancy formation 

energy versus pressure is shown in Figure 18 for pressures where γ uranium is stable.  

The vacancy formation energy shows a linear trend versus pressure.  Extrapolating to 

zero pressure generates an estimate for the equilibrium vacancy formation energy at 0 K.  

The extrapolation produces a vacancy formation energy of 1.61 eV.  This compares very 

well to previous computational results presented above and experimental results from 

Matter [15] (1.2±0.25 eV). 

 

Figure 18. Vacancy formation energy versus hydrostatic pressure (eV vs. GPa). 

Calculations are performed for pressures greater than 17.2 GPa where the shear constant 

is positive indicating a stable γ phase. 
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Molecular Dynamics Simulations 

 While above calculations illustrate that pressure stabilizes γ U at 0 K, the γ phase 

is the stable, highest temperature solid modification of uranium, as it is for a majority of 

the simple metals [63]. Bcc metals tend to have lower phonon energies and, thus, higher 

vibrational entropy than their fcc counterparts.  Thus, γ U is the stable phase in 

equilibrium with the liquid.  Calculations are performed on γ U at temperatures where the 

bcc structure is stable at ambient pressures, i.e., at 800 K and higher.   

 Molecular dynamics calculations are performed with a standard velocity Verlet 

integrator with a time step of 2 fs.  The temperature was fixed using a Hoover drag with 

an approximate equilibration time of 0.1 ps.  The energy, temperature and pressure of the 

system were output every 0.1 ps. 

Cohesive energy as a function of temperature 

 Dynamics calculations were performed on systems of 2000 atoms for the γ (bcc) 

phase.  Equilibrium lattice constants were calculated by relaxing a defect free system 

with dynamic boundary conditions in an NPT ensemble for 50 ps, averaging over the 

final 20 ps of the simulation.  Simulations were performed in increments of 100 K, from 

100 K to 1500 K.  The γ phase of U is stable from 800 K to the melting point.  The 

cohesive energy as a function of temperature is shown in Figure 19.  The cohesive energy 

was determined experimentally in the melting phase [27].  Cohesive energies in the solid 

phase were calculated using the experimental enthalpy of fusion and heat capacity [64].  

In the body-centered cubic region, the cohesive energy is within 0.1 eV/atom of 

experiment, and displays approximately the same slope versus temperature as 
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experiment.  For the liquid structure, the cohesive energy remains within 0.25 eV/atom of 

the experiment up to 2000 K. 

Melting temperature 

 The melting temperature was calculated via an NPT ensemble with a solid/liquid 

interface and analyzing the evolution of the interface.  Initially, a 20x5x5 supercell of γ U 

was equilibrated at 1200 K in an NPT ensemble to generate a crystal system at high 

temperature. Half the supercell was held at 1200 K and half was equilibrated at 2000 K in 

an NPT ensemble, restricting supercell shape change to the x-direction. This creates an 

interface of a crystal system and a liquid system.  This interfacial structure can be 

equilibrated at various temperatures and through the analysis of the propagation of the 

interface, the melting temperature can be calculated.  The interfacial structure is shown in 

Figure 20a.  This structure is equilibrated for 1 ns at 1400 K to create Figure 20b, where 

the crystal structure has propagated throughout the entire supercell.  The interfacial 

structure is equilibrated for 1ns at 1420 K to produce the system in Figure 20c, where the 

liquid structure has propagated throughout the entire supercell.  The calculated melting 

temperature is 1410 K.  The melting temperature is overestimated by only 2 K.   
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Figure 19. Cohesive energy of γ and liquid uranium in the temperature range 800-2000 K.  

The cohesive energy per atom is calculated in a 2000 atom supercell.  Experimental 

curves are obtained from experimental enthalpy of fusion and heat capacity[64]. 

 

a) Half body-centered cubic, half liquid structure. 
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b) System (a) equilibrated for 1ns at 1400 K. 

 

c) System (a) equilibrated for 1ns at 1420 K. 

Figure 20. The γ-liquid interface, the γ phase at 1400 K and the liquid structure at 1420 

K.  Figure 20a is a half crystal-half liquid structure.  Melting point is determined after 

equilibrating this system at the given temperature and analyzing the evolution of the 

crystal/liquid interface.  Figure 20b was equilibrated at 1400 K (below melting point).  

Figure 20c was equilibrated at 1420 K (above melting point). 

Enthalpy of fusion 

 The enthalpy of fusion was calculated as the energy difference between the 

crystalline and liquid systems.  Initially, a defect free system was equilibrated in an NPT 

ensemble at 2000 K, well above the melting point, effectively melting the lattice.  This 

liquid system was then equilibrated at 1410 K for 50ps, with energy and volume averages 

over the final 20ps.  The results from these simulations were compared with crystalline γ 

U equilibrated at 1410 K for 50ps, with energy and volume averages over the final 20ps.  

The change in energy between the liquid system and the crystalline system, both 

equilibrated at 1410 K, is taken as the enthalpy of fusion.  For the liquid and crystalline 

systems, eight simulations were performed to obtain statistical accuracy.  The enthalpy of 

fusion for γ U is 8.66 ± 0.08 kJ/mol.  This is in excellent agreement with the experimental 
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value of 8.5 kJ/mol.  These same simulations are used to determine the volume change on 

melting.  The volume change on melting is 2.17±0.78%.  A literature review found there 

is no experimental value of the volume change on melting for comparison. 

Heat capacity at constant pressure 

 In order to calculate the heat capacity, an NPT ensemble with 2000 atoms in the γ 

phase is equilibrated.  The heat capacity is calculated as the change in total energy 

(potential + kinetic) divided by the change in temperature.  The heat capacity varies 

slightly over the temperature range of stability, from 0.102 J/g-K (at 800 K) to 0.118 J/g-

K (at 1400 K) increasing with increasing temperature.  This range of values compares 

very favorably to the experimental value of 0.12 J/g-K [64].   

 

 

Thermal expansion 

 The equilibrium volume was calculated as a function of temperature and is shown 

in Figure 21.  Comparing with the experimental value from [51] at 1073 K, the calculated 

equilibrium volume is within 3%.  Analyzing the slope of the volume versus temperature 

curve for the γ phase provides a volume coefficient of thermal expansion.  A volume 

coefficient of thermal expansion is used as a comparison because this value is 

independent of the reference state chosen.  The volume coefficient of thermal expansion 

of 0.19% per 100 K compares very well to the experimental value of 0.22% per 100 K 

[15].   
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Figure 21. The equilibrium volume per atom (Å
3
/at) as a function of temperature (K). 

 

A summary of the melting temperature, enthalpy of fusion, volume change on melting, 

heat capacity and rate of thermal expansion is given in Table 12. 

Table 12.  The melting temperature, enthalpy of fusion, volume change on melting, 

specific heat capacity and thermal expansion are calculated and compared to 

experimental values [15, 64]. 

 MEAM Expt. 

Tmelt (K) 1410 1408[64] 

ΔHfusion (kJ/mol) 8.66 8.5[64] 

ΔVmelt (%) 2.17 - 

Cp(J/g-K) 0.11 0.12[64] 

Volume Coefficient of Thermal Expansion 

(per 100 K) 
0.19% 0.22% [15] 

 

Self-Defect formation energy as a function of temperature 

 In order to determine the defect formation energy in γ U, a single defect (vacancy 

or self-interstitial) was introduced into a relaxed 250 atom supercell and equilibrated for 
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10 ns (NVT).  Average energies were computed over the final 5 ns.  The vacancy 

formation energy was calculated from equation 2.  The vacancy formation energy as a 

function of temperature is shown in Figure 22.  The self-interstitial formation energy was 

calculated from equation 3.  The self-interstitial is introduced as a <100> dumbbell.  In 

the process of the simulation, the defect propagates throughout the system, changing 

orientations.  Thus, the self-interstitial formation energy is an average over a variety of 

specific defect configurations.  The self-interstitial formation energy as a function of 

temperature is shown in Figure 23. 

 

Figure 22. The vacancy formation energy in γ U as a function of temperature.  Error bars 

represent a positive and negative standard error of the mean. 
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Figure 23. The self-interstitial formation energy in γ U as a function of temperature.  

Error bars represent a positive and negative standard error of the mean. 

Figure 22 and Figure 23 show a strong dependence of the defect formation energy on 

temperature.  From 800 K to 1400 K, the formation energy for a vacancy and a self-

interstitial increases with increasing temperature, consistent with previous calculations in 

other systems [65-67] .  Similar defect formation energy behavior has been seen in bcc Zr 

[67].  The magnitude of the vacancy formation energy at temperature is higher than as 

predicted at 0 K.  The magnitude of the self-interstitial formation energy corresponds 

very well to previous computational work [68]. 
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CHAPTER 6 

BINARY MEAM INTERATOMIC  

POTENTIALS FOR γ U-HE, U-XE AND U-KR 

Molecular Statics Simulations 

To perform molecular dynamics simulations on systems of uranium with a fission 

gas inclusion, a MEAM interaction description needs to be generated.  The uranium-

fission gas description implemented in this work was derived from first principles 

calculations.  Point defects of He, Xe, and Kr in bcc uranium were calculated above, and 

theoretical intermetallic structures (B1, B2, and L12) were also investigated via DFT to 

develop cohesive energy relations between the two species.  The equilibrium lattice 

parameter of each intermetallic, along with the energy of formation is presented in Table 

13.  The L12 crystal structure was stoichiometrically U3FG.  The energy of formation, Ef, 

is given by 

                    (     )     (26) 

where E(U-FG) is the energy of an intermetallic unit cell, n is the number of uranium atoms 

present in the unit cell of the intermetallic, E(Uα) is the energy of a single uranium atom 

in the α phase, m is the number of fission gas atoms present in the unit cell of the 

intermetallic and E(FGfcc) is the energy of a fission gas atom in the fcc phase. 

Table 13.  Equilibrium lattice parameters and formation energies for U-Xe, U-Kr and U-

He theoretical intermetallic phases calculated with first principles DFT methods.   

 B1 B2 L12 

 a0 (Å) Ef (eV) a0 (Å) Ef (eV) a0 (Å) Ef (eV) 

UXe 6.271 5.285 3.967 5.088 4.497 6.630 

UKr 6.065 5.397 4.158 5.176 4.437 6.757 

UHe 5.191 3.355 3.148 3.624 4.133 4.459 
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Table 14.  MEAM parameters for a bcc uranium-fission gas potential.  Sources for the 

parameters are from experiment and from density functional theory calculations.   

For the binary systems the screening parameters for screening of  

two uranium atoms by the fission gas atom is given.   

All other screening parameters were taken as Cmin=2.8 and Cmin=2.0. 

Parameter U He Xe Kr U-He U-Xe U-Kr 

Reference 

Structure 
fcc diatomic fcc fcc diatomic B1 B1 

Ec (eV) 5.27 0.0005 0.032 0.035 0.005 1.0 0.1 

re (Å) 3.083 2.96 4.90 4.384 3.7 3.042 3.025 

αi 5.1 7.6 7.8 8.7 7.0 8.0 13.1 

δ 0.1 0 0 0 0 0.2 0.2 

Ai 1.04 0.15 0 1 - - - 

 0   6.0 9.1 7 8.7 - - - 

 1 
 6.8 - - - - - - 

 2   7.0 - - - - - - 

 3   7.0 - - - - - - 

t
(0) 

1 1 1 1 - - - 

t
1  2.5 0 0 0 - - - 

t
2   4 0 0 0 - - - 

t
3   3 0 0 0 - - - 

ρ0 1 0.022 0.045 0.162 - - - 

Cmax 1.7 2.8 2.8 2.8 0.4 1.8 2.8 

Cmin 1.2 2.0 2.0 2.0 0.1 0.2 0.2 

 

 This work using density functional theory provides an adequate basis for the 

development of uranium-fission gas MEAM models.  The fission gas MEAM potential 

parameters are given in Table 14 for the three fission gases studied.  Using these 

calculated interatomic potentials for u-fission gas systems, the formation energy of 

fission gas point defects is calculated via inserting a fission gas defect into an ideal 

system with equilibrium lattice constants [60].  The defect formation energies were 

calculated from equations 6 and 7.  The formation energies of point defects in bcc 
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uranium of He, Xe, and Kr are displayed in figures 24-26, respectively, and presented in 

tables 15-17.   

 

Table 15.  Formation energies (eV) of helium point defects in bcc uranium calculated via 

density functional theory and using a MEAM potential.   

 
MEAM DFT 

substitutional 1.842 1.803 

<100> 3.026 2.234 

<110> 3.120 2.148 

<111> 3.901 1.764 

tetrahedral 3.051 2.434 

 

Table 16.  Formation energies (eV) of xenon point defects in bcc uranium calculated via 

density functional theory and using a MEAM potential.   

 
MEAM DFT 

substitutional 5.376 5.549 

<100> 9.482 7.294 

<110> 11.988 7.037 

<111> 18.153 10.085 

 

Table 17.  Formation energies (eV) of krypton point defects in bcc uranium calculated via 

density functional theory and using a MEAM potential.   

 
MEAM DFT 

substitutional 5.116 5.926 

<100> 6.049 6.549 

<110> 8.067 7.345 

<111> 15.227 8.420 
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Figure 24.  Formation energies (eV) of helium point defects in bcc uranium calculated via 

density functional theory and using a MEAM potential.  During the molecular statics 

energy minimization, the octahedral interstitial relaxed to an <100> dumbbell interstitial.  
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Figure 25.  Formation energies (eV) of xenon point defects in bcc uranium calculated via 

density functional theory and using a MEAM potential.  During the molecular statics 

energy minimization, the octahedral and tetrahedral interstitials relaxed to an <100> 

dumbbell interstitial. 
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Figure 26.  Formation energies (eV) of krypton point defects in bcc uranium calculated 

via density functional theory and using a MEAM potential.  During the molecular statics 

energy minimization, the octahedral and tetrahedral interstitials relaxed to an <100> 

dumbbell interstitial. 

 

Excellent agreement is seen between the MEAM potentials and the DFT results.  

There exists a size effect, in that the species with the smallest atomic radius (He) has the 

lowest formation energies and Xe and Kr with much larger atomic radii have 

approximately equal formation energies.   This is in agreement with DFT work above.  

Helium is likely to be found in a wide variety of defect configurations, while Xe and Kr 

are likely to be present as substitutionals.  It is interesting to note that some defects 

undergo a reconfiguration during the molecular statics energy minimization.  For He, the 



 61 

octahedral interstitial becomes a <100> dumbbell interstitial.  For Xe, the octahedral and 

tetrahedral interstitials become a <100> dumbbell.  For Kr, the octahedral and tetrahedral 

interstitials become a <100> dumbbell.  For all reconfiguration of defects, DFT results 

show less than a 0.3 eV variance between the formation energies of the initial and final 

defect configurations.  For some systems of defects, particularly the <111> dumbbell, 

there is a relatively large overestimation of the defect formation energy.  This is due to 

inherent short interatomic distances incurred in the calculation of point defects and the 

differences between the short-range potential description for the pseudopotentials utilized 

in DFT work above and the MEAM interatomic potentials utilized in this work.  If a 

larger shell was implemented in these calculations, allowing further relaxation and 

typically larger interatomic spacing within a defect, the converged formation energy 

would approach that calculated via DFT.  In general, the results from molecular statics 

agree very well with the DFT calculations.   

 

Molecular Dynamics Simulations 

In this dissertation, molecular dynamics investigations will only be presented for 

pure uranium and the binary uranium-xenon systems.   

Void Energetics 

In nuclear reactor fuels, fission gases most often exist as bubbles [1], the 

formation of which is aided by vacancy diffusion and clustering.  Thus, in order to begin 

understanding how fission gases interact within a system of uranium, the properties of 

multiple vacancy systems and vacancy clusters must be investigated.  To study the 

energetics of vacancy clustering, a 16000 atom supercell was equilibrated at a given 
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temperature.  A sphere of atoms was then removed in the center of the supercell and this 

system was allowed to relax.  This was performed from 800 K to 1200 K in increments of 

100 K.  The results of these calculations at 800 K are shown in Figure 27 and compared 

with an extrapolated monovacancy formation energy.  The data is shown for a system 

with up to twenty vacancies.  The data points for clustered vacancies exhibit lower 

formation energies than isolated vacancies.  A lower formation energy for a clustered 

vacancy system shows evidence of vacancy binding and preferential clustering, as it is 

more energetically favorable for vacancies to be nearest neighbors.  It is interesting to 

note that below a cluster of 12 vacancies, the single spherical void introduced into the 

system dissociates into multiple vacancy clusters.  The clusters remain bound to one 

another; however, the presence of a single void is less energetically favorable than 

multiple small clusters of vacancies.  Above 12 vacancies, a singular void is more 

energetically favorable than multiple vacancy clusters due to contributions from the 

surface energy of the void(s). 
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Figure 27.  Formation energy of a multiple vacancy systems as a function of the number 

of vacancies within that system at 800 K.  Red squares are extrapolated monovacancy 

formation energy.  Blue diamonds are the energy of clustered vacancies.  Lower 

formation energies for clustered vacancies shows evidence of vacancy binding and 

preferential clustering. 

Analyzing larger clusters of vacancies can yield a more general picture of vacancy 

behavior.  In Figure 28, the formation energy is displayed for vacancy clusters up to 

approximately 650 vacancies, equivalent to a void with a diameter of 3 nm.  This 

information is displayed for temperatures from 800 K to 1200 K.  It is seen that for all 

temperatures a power law is exhibited for the formation energy of a void as a function of 

the number of vacancies composing that void.  The slope slightly decreases as the 

temperature increases.  This leads to stronger binding of vacancies as the temperature 

increases.  The binding energy of the n
th 

vacancy in a void of n vacancies is defined by : 
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                                (27) 

where BE is the binding energy, Ef(n-1) is the formation energy of a void comprised of 

(n-1) vacancies, Ef(1) is the monovacancy formation energy and Ef(n) is the formation 

energy of a void comprised of n vacancies.  Given that the behavior of the formation 

energy of a void as a function of the number of vacancies within that void displays a 

power law relationship, it is clear that as the void size increases, the n
th

 vacancy becomes 

progressively more tightly bound.  An examination of the n
th 

vacancy for a void smaller 

than 100 vacancies reveals the binding energy is approximately 1 eV.  For voids of size 

100 vacancies to 650 vacancies, the binding energy of the n
th

 vacancy is approximately 

1.2 eV.  As a point of note, these relationships are not intended to describe void behavior 

outside of the ranges of void sizes investigated. 
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Figure 28. Formation energy of a multiple vacancy systems as a function of the number 

of vacancies within that system from 800 K to 1200 K.  A power law relationship is 

observed for the formation energy of a void as a function of the number of vacancies.  

Formation energy slightly decreases with increasing temperature, indicating stronger 

vacancy binding as temperature increases.  Fits to data are only shown for 800 K and 

1200 K, with solid and dashed lines respectively. 

  

Finally, the amount of swelling as a function of the void size is calculated from: 

  

  
 

                   

  
       (28) 

where Vsystem is the volume of the system with n vacancies, nvac is the number of 

vacancies in the system, Vatom is the volume per atom in an pure equilibrated system and 

V0 is the volume of the pure system with no vacancies.  This equation for swelling makes 

the assumption that atoms removed to create vacancies are moved to the bulk, with an 

associated equilibrium volume per atom.  The results for swelling calculations are 

displayed for 800 K in Figure 29.  The swelling percent is linear as a function of the 

number of vacancies in a void.  This linear behavior holds for all temperatures analyzed. 
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Figure 29.  Swelling percent as a function of the number of vacancies comprising a single 

void at 800 K.  A linear relationship is observed for the entire range of void sizes 

analyzed.  This linear behavior holds for all temperatures. 

Xenon Bubble Energetics 

 Given void energetics, the effects of fission gases on system energy and on 

swelling can be analyzed.  Initially, Xe behavior as a dilute substitutional defect should 

be investigated, to gain information on general point defect behavior related to 

temperature.  In Figure 30, the substitutional defect formation is displayed as a function 

of temperature.  Slightly positive linear behavior is observed as a function of temperature.  

Thus, very little change in substitutional formation energy is observed for the entire range 

of temperatures analyzed.  Error bars are standard error of the mean, averaged over eight 

simulations of a pure system and summed with an average over eight simulations of a 

system including a defect.   
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Figure 30.  Xenon substitutional formation energy as a function of temperature.  Slightly 

positive linear slope is observed with respect to temperature.  Error bars are standard 

error of the mean. 

 Xenon bubbles can be investigated by utilizing the study of voids completed 

above.  Starting with a relaxed void of a given number of vacancies, xenon atoms are 

incrementally added into the void, creating a bubble.  The formation energy and volume 

are determined after each incremental addition of xenon atoms.  Xenon atoms are 

continually introduced until the inclusion of one additional xenon atom within the bubble 

produces a self-interstitial within the bulk.  The results for the formation energy as a 

function of the number of Xe atoms within a void comprised of 90 vacancies are 

displayed in Figure 31.  It is observed that initially, as Xe atoms are introduced into the 

bubble, minimal changes are observed in the formation energy.  Thus, addition of xenon 

atoms yields no appreciable increase in the formation energy of the bubble, stating that it 
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is very energetically favorable for Xe atoms to reside in a bubble, as opposed to Xe atoms 

residing as substitutionals in the bulk.  In Figure 31, this behavior is exhibited up to 

approximately 40 Xe atoms.  In this region, the slope of the formation energy as a 

function of Xe atoms is linear and zero.  As progressively more Xe atoms are added into 

the bubble, the formation energy displays an exponential growth relationship with regards 

to the number of Xe atoms.  Thus, although it is still energetically favorable for Xe atoms 

to reside in a bubble, there is a non-negligible increase in the energy of the system.   

 

Figure 31.  Formation energy of a xenon bubble as a function of the number of xenon 

atoms present within the bubble.  The bubble is comprised of 90 vacancies. 

 

Volume was also analyzed as a function of the number of Xe atoms added into a 

void of 90 vacancies.  The results from these calculations are displayed in Figure 32.  
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volume as a function of the number of Xe atoms.  Again, behavior changes above 

approximately 40 Xe atoms, and swelling displays exponential growth behavior as a 

function of the number of Xe atoms within the bubble.   

 

Figure 32.  Bubble volume as a function of the number of Xe atoms within the bubble.  

The bubble is comprised of 90 vacancies. 

 

Atoms of Xe are incrementally added into the bubble until a self-interstitial is 

created and ejected into the bulk lattice.  The maximum number of Xe atoms that can be 

inserted into a bubble before creation of self-interstitials is displayed in Figure 33.  This 

was calculated for voids consisting of fewer than 100 vacancies, analogous to voids with 

a diameter less than 1.5 nm.  There exists a general linear dependence for the maximum 

number of Xe atoms that can be inserted into a void of a given size.  The slope of this 

linear dependence is 0.8857, as displayed in Figure 33.  Thus, given a void size, the 
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maximum number of Xe atoms that can be inserted into a void before a self-interstitial is 

ejected is approximately 90% of the number of vacancies comprising the particular void 

of interest.   

 

Figure 33.  The maximum number of xenon atoms that can be inserted in a void of a 

given size without the creation of a self-interstitial atom.  Regardless of void size, the 

maximum number of Xe atoms that can be inserted in a void is approximately 90% of the 

number of vacancies that constitute a given void. 

 

Xenon effect on vacancy self-diffusion 

Xenon also impacts the bulk system of uranium with regards to diffusion of point 

defects.  The primary means of self-diffusion in uranium is theorized to be mediated by 

vacancies [15], and there exists a non-zero attractive force between xenon substitutional 

atoms and vacancies.  A xenon substitutional atom existing as a nearest neighbor to a 

vacancy reduces the overall lattice strain produced by the two defects.  Lattice strain is 
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higher in systems where vacancies and xenon atoms are isolated, thus, the energy of the 

system is higher.  To demonstrate this effect, DFT calculations were performed on 54 

atom bcc supercells containing a vacancy and a xenon substitutional, following 

computational procedures outlined previously.  The energy of the two defects isolated in 

the bulk is calculated and compared with the energy of the system when the vacancy and 

xenon substitutional are neighbors.  The energy difference of nearest neighbor (NN) 

configurations with respect to isolated bulk defects is presented in Figure 34.  It is seen 

that as first nearest neighbors (1NN), the energy of the system is reduced by 

approximately 1 eV, compared with isolated bulk defects.  The energy difference 

decreases with increasing distance between the xenon substitutional and the vacancy.  For 

a distance of fourth nearest neighbors (4NN), the energy difference compared to the 

isolated bulk defects is zero.  Thus, there is a short range attractive interaction between 

vacancies and xenon substitutionals with a maximum attractive energy of approximately 

1 eV.   
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Figure 34.  The energy difference of nearest neighbor configurations of a vacancy and a 

Xe substitutional with respect to defects isolated in the bulk.  The maximum energy 

difference occurs for first nearest neighbors (1NN), with a magnitude of approximately 1 

eV. The energy of the system is reduced when a Xe substitutional and a vacancy are 

neighbors. 

 

 The attractive effect is not as simple to calculate at temperature, due to diffusion 

of vacancies.  Thus, the attractive effect can be interpreted via the impact of xenon 

substitutionals on the self-diffusion of uranium via a vacancy mechanism.  Two systems 

of 250 atoms were equilibrated and initialized.  One system contained a vacancy and a Xe 

substitutional atom randomly inserted into the lattice.  One system contained only a 

vacancy randomly inserted into the lattice.  The system was allowed to evolve for 50 ns, 

allowing diffusion of vacancies and ensuring that random walk diffusion would result in 

interaction of a vacancy with a Xe substitutional.  The average mean square displacement 
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(msd) over all uranium atoms is calculated as a function of time.  The msd for the Xe 

substitutional is also calculated and determined to be zero in all simulations.  Thus, on the 

time scale analyzed, Xe substitutionals are immobile. This work was performed for 

temperatures from 800 K to 1400 K, in increments of 100 K.  Selected results are 

displayed in figures 35-38.   

 Figure 35 displays the msd as a function of time at 800 K for a system containing 

a single vacancy, and a system containing a single vacancy with a Xe substitutional.  For 

a monovacancy, general linear behavior as a function of time is observed, as would be 

expected.  For the system containing a Xe substitutional, linear behavior as a function of 

time is NOT observed.  Instead, the msd displays a plateauing behavior as a function of 

time.  This is evidence that the vacancy is diffusing through the bulk, interacts with the 

Xe atom, and experiences a pseudo-pinning effect, limiting further diffusion of the 

vacancy.  This is confirmed on visual examination of the systems, which shows the 

vacancy and Xe substitutional in close proximity at the end of the simulation and 

throughout the plateaued region. 
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Figure 35.  Mean squared displacement of monovacancy systems as a function of time at 

800 K.  Blue diamonds denote mean square displacement of uranium atoms with a single 

vacancy.  Green triangles denote mean square displacement of uranium atoms with a 

single vacancy and xenon substitutional. 

Figure 36 displays the msd as a function of time at 900 K for a system containing 

a single vacancy, and a system containing a single vacancy with a Xe substitutional.  For 

a monovacancy, general linear behavior as a function of time is observed, as would be 

expected.  For the system containing a Xe substitutional, linear behavior as a function of 

time is again NOT observed.  Instead, the msd displays a plateauing behavior as a 

function of time.  The plateauing region begins at approximately 25 ns, much later than is 

observed at 800 K.  This can be explained as partially random, due to the random walk of 

the vacancy, and partially due to thermal fluctuations being strong enough to overcome 

the vacancy-Xe attraction.   
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Figure 36.  Mean squared displacement of monovacancy systems as a function of time at 

900 K.  Blue diamonds denote mean square displacement of uranium atoms with a single 

vacancy.  Green triangles denote mean square displacement of uranium atoms with a 

single vacancy and a xenon substitutional. 

  

Figure 37 displays the msd as a function of time at 1100 K for a system containing a 

single vacancy, and a system containing a single vacancy with a Xe substitutional.  For a 

monovacancy, general linear behavior as a function of time is observed, as would be 

expected.  For the system containing a Xe substitutional, linear behavior as a function of 

time is also observed.  At this higher temperature, thermal fluctuations are strong enough 

to overcome any attractive forces between the vacancy and the Xe substitutional.  Thus, a 

Xe substitutional produces no measurable effect on the diffusion of vacancies at 1100 K.   
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Figure 37.  Mean squared displacement of monovacancy systems as a function of time at 

1100 K.  Blue diamonds denote mean square displacement of uranium atoms with a 

single vacancy.  Green triangles denote mean square displacement of uranium atoms with 

a single vacancy and a xenon substitutional. 

  

Figure 38 displays the msd as a function of time at 1300 K for a system 

containing a single vacancy, and a system containing a single vacancy with a Xe 

substitutional.  For a both systems, general linear behavior as a function of time is 

observed.  Similar to behavior at 1100 K, the presence of a Xe substitutional atom 

engenders no significant impact on the vacancy diffusion.  Thus, thermal fluctuations are 

strong enough to overcome attractive forces between the vacancy and the Xe 

substitutional. 
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Figure 38.  Mean squared displacement of monovacancy systems as a function of time at 

1300 K.  Blue diamonds denote mean square displacement of uranium atoms with a 

single vacancy.  Green triangles denote mean square displacement of uranium atoms with 

a single vacancy and a xenon substitutional. 

 

 In addition to investigating the effect of Xe on diffusion of a single vacancy, it is 

of interest to examine Xe effects on systems containing multiple vacancies.  Two systems 

of 250 atoms were equilibrated and initialized.  One system contained four vacancies and 

a Xe substitutional atom randomly inserted into the lattice.  One system contained only 

four vacancies randomly inserted into the lattice.  The system was allowed to evolve for 

50 ns, allowing diffusion of vacancies and ensuring that random walk diffusion would 

result in the interaction of vacancies with each other as well as vacancy interaction with 

the Xe substitutional.  The average mean square displacement (msd) over all uranium 

atoms is calculated as a function of time [66].  The msd for the Xe substitutional is also 

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

M
e

an
 S

q
u

ar
e

d
 D

is
p

la
ce

m
en

t 

Time (ns) 

1300 K 

Vacancy

Xe Vac



 78 

calculated and determined to be zero in all simulations.  Thus, on the time scale analyzed, 

Xe substitutionals are immobile. This work was performed for temperatures from 800 K 

to 1400 K, in increments of 100 K.  Selected results are displayed in figures 39-42.   

Figure 39 displays the msd as a function of time at 800 K for a system containing 

four vacancies, and a system containing four vacancies with a Xe substitutional.  For the 

system with only four vacancies, general linear behavior as a function of time is observed 

initially.  After approximately 20 ns, the msd exhibits a plateauing behavior.  This data is 

an expression of vacancy clustering, and the vacancy cluster acting as a pinning site for 

vacancies.  Vacancies are clustering, and the energetic attraction between the vacancies 

themselves is strong enough such that diffusion is inhibited.  For the system containing a 

Xe substitutional, the plateauing behavior occurs much earlier and results in a much 

lower value of the msd.  Thus, vacancies are diffusing through the bulk, finding the Xe 

substitutional, clustering and experiencing a pseudo-pinning effect, limiting further 

diffusion of the vacancy.  The presence of a Xe substitutional exacerbates the inherent 

tendency of vacancies to cluster and thus exacerbates the suppression of vacancy 

diffusion via vacancy pinning. 
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Figure 39.  Mean squared displacement of a four vacancy system as a function of time at 

800 K.  Red squares denote mean square displacement of uranium atoms with four 

vacancies.  Purple asterisks denote mean square displacement of uranium atoms with four 

vacancies and a xenon substitutional. 

 

Figure 40 displays the msd as a function of time at 900 K for a system containing 

four vacancies, and a system containing four vacancies with a Xe substitutional.  For a 

system with four vacancies, general linear behavior as a function of time is observed.  

Opposed to behavior at 800 K, vacancy clustering is not serving to pin vacancies.  

Clustering is still occurring, however, thermal fluctuations are strong enough to 

overcome barriers to vacancy diffusion.  For the system containing a Xe substitutional, 

the msd exhibits a plateauing behavior.  Thus, vacancies are diffusing through the bulk, 

finding the Xe atom, clustering and experiencing a pinning effect, limiting further 

diffusion of the vacancy.  Thermal fluctuations are strong enough to overcome vacancy-
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vacancy clustering.  However, introduction of a Xe substitutional creates a much stronger 

attractive force and thus a stronger pinning force, inhibiting the diffusion of vacancies.   

 

 

Figure 40.  Mean squared displacement of a four vacancy system as a function of time at 

900 K.  Red squares denote mean square displacement of uranium atoms with four 

vacancies.  Purple asterisks denote mean square displacement of uranium atoms with four 

vacancies and a xenon substitutional. 

 

Figure 41 displays the msd as a function of time at 1100 K for a system 

containing four vacancies, and a system containing four vacancies with a Xe 

substitutional.  For a system with four vacancies, general linear behavior as a function of 

time is observed.  Vacancy clustering is still occurring, however, thermal fluctuations are 

strong enough to overcome barriers to vacancy diffusion, and converged vacancy cluster 

diffusion is observed.  For the system containing a Xe substitutional, the msd exhibits a 
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plateauing behavior.  Thus, vacancies are clustering near the Xe substitutional and 

experiencing a pinning effect, limiting further diffusion of the vacancy.  Thermal 

fluctuations are strong enough to overcome vacancy-vacancy clustering, but unable to 

overcome Xe-vacancy binding.  Introduction of a Xe substitutional strongly inhibits the 

diffusion of vacancies.  There is in fact a positive slope of the msd as a function of time 

for the system containing a Xe substitutional.  Thus, vacancy diffusion is in fact still 

occurring and the pinning of vacancies is imperfect.  Although vacancy diffusion is in 

fact still occurring, the amount of diffusion is strongly suppressed due to the presence of 

a Xe substitutional.  

 

 

Figure 41.  Mean squared displacement of a four vacancy system as a function of time at 

1100 K.  Red squares denote mean square displacement of uranium atoms with four 

vacancies.  Purple asterisks denote mean square displacement of uranium atoms with four 

vacancies and a xenon substitutional. 
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Figure 42 displays the msd as a function of time at 1300 K for a system 

containing four vacancies, and a system containing four vacancies with a Xe 

substitutional.  For a system with four vacancies, general linear behavior as a function of 

time is observed.  Vacancy clustering is still occurring, and converged vacancy cluster 

diffusion is observed.  For the system containing a Xe substitutional, the msd exhibits a 

behavior identical to that observed at 1100 K in Figure 41.  Limited vacancy diffusion is 

occurring, and the suppression is due to the presence of a Xe substitutional.  In 

comparison to Figure 41, the msd data points at 1300 K exhibit a more positive slope.  

Thus, the rate of vacancy diffusion is higher, and thermal fluctuations are more readily 

able to overcome attractive forces between the Xe substitutional and the vacancies.  

However, significant depression of diffusion is still occurring due to pinning around the 

Xe substitutional.  
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Figure 42.  Mean squared displacement of a four vacancy system as a function of time at 

1300 K.  Red squares denote mean square displacement of uranium atoms with four 

vacancies.  Purple asterisks denote mean square displacement of uranium atoms with four 

vacancies and a xenon substitutional. 

 

 Utilizing the information from mean squared displacement data points as a 

function of time, diffusion coefficients can be constructed via Einstein’s equation: 

         
〈  〉

  
         (29) 

where D is the diffusion coefficient, <r
2
> is the average mean squared displacement and t 

is the time.  This can present us with an estimate of the simulation diffusion coefficient 

(Dsim).  To account for the inherent bias associated with simulation defect concentrations, 

Dsim can be multiplied by the simulation defect concentration to yield an effective 

diffusion coefficient: 

                     (30) 

where cv is the vacancy concentration in the simulation.  The effective diffusion 

coefficient can then be determined as a function of temperature and fit to an Arrhenius 

equation.  The Arrhenius equation has the form of: 

      
(

  

   
)
         (31) 

where D0 is the pre-exponential factor which accounts for geometrical factors and defect 

concentrations, kB is the Boltzmann constant and T is temperature.  The Q value is an 

activation energy.  For the diffusion of a single isolated defect in the bulk, Q is analogous 

to the migration barrier.  For systems with multiple defects interacting with each other or 

for systems where a defect interacts with interfaces or other non-bulk entities, the value 
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of Q incorporates information such as binding and energetic attraction.  With this in 

mind, the effective diffusion coefficient for a system with a monovacancy and a system 

with four vacancies is displayed in Figure 43.   

In theory, if all four vacancies were diffusing individually and behaving as 

monovacancies, the two effective diffusion coefficient curves would be identical.  Upon 

first examination, it is evident that the effective diffusion coefficient for a system with 

four vacancies is higher than the effective diffusion coefficient for a monovacancy.  Also, 

the migration energy is lower for a four vacancy system (0.7 eV for a four vacancy 

system, 0.911 eV for a monovacancy).  It was mentioned previously that vacancy 

clustering is in fact occurring in these systems.  Given this information, combined with 

the fact that a multiple vacancy system exhibits a lower migration energy, it becomes 

clear that vacancy cluster diffusion occurs more rapidly than monovacancy diffusion.  

Also, whereas it was previously theorized that the majority of self-diffusion in bcc 

uranium occurs via a monovacancy mechanism, it seems entirely possible that self-

diffusion is instead occurring via vacancy clusters.   
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Figure 43.  Effective diffusion coefficient as a function of temperature.  The 

monovacancy diffusion coefficient is denoted by blue diamonds.  The effective diffusion 

coefficient for a system with four vacancies is denoted by red squares. 

 

 In Figure 44, the effective diffusion coefficient for a system with four vacancies 

and a system with a Xe substitutional and four vacancies is displayed as a function of 

temperature.  For all temperatures, the effective diffusion coefficient for a system without 

a Xe substitutional is higher.  Thus, it is clearly shown that it is easier for vacancies and 

vacancy clusters to diffuse in systems with no Xe substitutionals.  Also, there is an 

increase in the Q value from 0.7 eV to 1.298 eV corresponding to the introduction of a 

Xe substitutional in the system.  This increase in activation energy is due to the attractive 

force between Xe substitutionals and vacancies.  This attractive force provides an 

increase in the effective migration barrier for vacancies, and thus an increase in the Q 

value.  It is seen that as temperature increases, the difference in the effective diffusion 
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coefficient between the systems with and without a Xe substitutional is decreased.  Thus, 

the effect of Xe substitutionals acting as pinning sites for vacancies decreases as the 

temperature increases.  However, for all temperatures analyzed, the diffusion of 

vacancies is suppressed via the presence of a Xe substitutional and vacancy clustering 

around the Xe substitutional is indeed occurring.  Thus, it can be theorized that Xe 

substitutionals can act as potential nucleation sites for void and bubble formation, due to 

the inherent attractive forces between the two species. 

 

 

Figure 44.  Effective diffusion coefficient of four vacancy systems as a function of 

temperature.  The effective diffusion coefficient for a system with four vacancies is 

denoted by red squares.  The effective diffusion coefficient for a system with a Xe 

substitutional and four vacancies is denoted by green triangles. 
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 The effective diffusion coefficient for monovacancy systems with and without a 

Xe substitutional is not graphed within this dissertation.  This is due to the fact that in 

systems above 900 K, the diffusion coefficients of these two systems are identical, and 

there is no effect on the vacancy mediated self-diffusion from Xe substitutionals, as 

previously stated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 88 

CHAPTER 7 

CONCLUSIONS 

Previously, there has been a limited amount of research into the calculation of 

fundamental properties of metallic uranium, particularly related to point defects.  In this 

work DFT calculations were performed using VASP with PAW pseudopotentials.   

Several important bulk material properties for γ-U are reproduced that agree well with 

other published results.  Calculation of the formation energy for a vacancy was performed 

in the γ and α allotropes of U. The vacancy formation energy in the α allotrope compares 

very well with previously published computational work. The vacancy formation energy 

in the γ allotrope agrees well with previously published computational and experimental 

work. Formation energies for various interstitial configurations were also calculated, for 

which there is no experimental data or other calculations to serve as a benchmark. The 

most likely positions for self-interstitial U atoms in γ-U are the <110> dumbbell, <100> 

dumbbell, and octahedral interstitials. Self-interstitial atoms are likely to be found in a 

variety of configurations in α-U.  The first comprehensive study for dilute Zr defects in 

the bcc allotrope of U shows that the substitutional defect is expected to be the prevalent 

occupation site.  The formation energies were calculated for He, Xe, and Kr in various 

defect configurations in the α and γ phases, for which there is no experimental or 

computational data to serve as a benchmark. The most likely position for dilute Xe and 

Kr atoms in γ-U is the substitutional site. Dilute He atoms in γ-U are likely to be found in 

a wide variety of defect positions due to the comparable formation energies of all defect 

configurations analyzed.  In α-U, He atoms are likely to be found in several different 

defect locations, while Kr and Xe are likely to be found as substitutionals.  In both the α 
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and γ phases, size effects of fission products appear to dominate, as smaller fission 

product species generally have lower formation energies.  This work was utilized in the 

construction of modified Embedded-Atom Method interatomic potentials for the bcc 

phase of uranium as well as the binary systems of U-Xe, U-Kr and U-He.  Using this 

potential, equilibrium volume and elastic constants were calculated at 0 K and found to 

be in close agreement with previous first principles calculations. Further, the melting 

point, heat capacity, enthalpy of fusion, thermal expansion and volume change upon 

melting were calculated and found to be in reasonable agreement with experiment.  

Calculations of dilute fission gas defects showed reasonable agreement with first 

principles calculations.  Finally, void and xenon bubble energetics were analyzed as a 

function of temperature.  The void formation energy exhibits a power law relationship 

with respect to the number of vacancies that comprise a given void.  The maximum 

number of xenon atoms that can be incorporated within a bubble before the ejection of a 

self-interstitial atom is approximately 90% of the number of vacancies constituting the 

bubble.  The effect of Xe substitutionals on vacancy diffusion was analyzed.  The 

presence of Xe substitutionals generally suppresses vacancy diffusion.  Increased thermal 

motion decreases the effect of Xe substitutionals on vacancy diffusion.  In multiple 

vacancy systems, it was seen that Xe substitutionals can serve as potential void and 

bubble nucleation sites, due to attraction between vacancies and Xe substitutionals.  It 

was shown that vacancy cluster diffusion occurs more rapidly than monovacancy 

diffusion.   
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APPENDIX A: FUTURE WORK  

 The results presented above represent a significant step towards understanding 

atomistic processes within metallic nuclear fuel.  The results outline numerous basic, but 

important, material properties that can be utilized in experiments or in other 

computational methodologies.  This work has provided the tools and the framework for 

further investigations on a wide variety of systems.  Further work should include, but not 

be limited to, molecular dynamics-density functional theory investigations, a study of 

entropic effects of self-defects and extrinsic defects, organization of vacancy and 

interstitial clusters, void surface energies, void/bubble-fission gas radius of interaction, 

fission gas diffusion mechanisms, grain boundary energies and much more.  There is a 

need for experimental investigations for the validation and comparison of this work.  

Experiments that could be performed include, but are not limited to, resistivity 

measurements to determine interstitial formation energies, fission gas implantation 

studies, and tracer diffusion investigations. 
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APPENDIX B: SOFTWARE PACKAGES 

It should be noted that different software implementations generate different magnitudes 

for the defect formation energy, while qualitative behavior is consistent.  Molecular 

dynamics investigations of defects, voids and bubbles were performed with LAMMPS 

[69].  Molecular statics investigations on defects were performed using DYNAMO, a 

software precursor to LAMMPS.
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