
 

 

GASEOUS SWELLING AND RELEASE IN NUCLEAR FUELS 

 DURING GRAIN GROWTH 

 

 

 

 

 

 

 

 

 

 

A Thesis 

Presented to 

The Academic Faculty 

 

 

 

By 

 

 

 

Hubert Gibson 

 

 

 

 

In Partial Fulfillment 

Of the Requirements for the Degree 

Master of Science in Nuclear Engineering 

Woodruff School of Mechanical Engineering 

 

 

 

 

 

 

Georgia Institute of Technology 

 

August 2013 

 

 

 

 

 

Copyright © 2013 by Hubert C. Gibson  



 

 

Gaseous Swelling and Release in Nuclear Fuels during Grain Growth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:     

 

 

Dr. Chaitanya Deo    

School of Mechanical Engineering  

Georgia Institute of Technology  

 

 

 Dr. Bojan Petrovic    

School of Mechanical Engineering  

Georgia Institute of Technology  

 

 

Dr. Glenn E. Sjoden    

School of Mechanical Engineering  

Georgia Institute of Technology  

 

 

 

 Date Approved: 6/24/2013     



iii 

 

ACKNOWLEDGEMENTS 

 

 

 

I am grateful to my advisor, Dr. Chaitanya Deo, for his guidance and support. This thesis 

could not exist without his wisdom. 

 

In addition, my thanks go to Dr. Ali Massih. His timely advice spared days of wasted 

effort, and I am indebted to his assistance. 



iv 

 

TABLE OF CONTENTS 

  

 

 Page 

 

Acknowledgements                     iii 

 

List of Tables          v 

 

List of Figures                   vi 

 

Summary                  viii 

 

Chapter 1.  Introduction         1 

 

Chapter 2. Theory          5 

 

Chapter 3. Methodology        18 

 

Chapter 4. Results         30 

 

Chapter 5. Conclusion        44 

      

Appendix A:  Generalized Weight Moment Integrals    47 

 

 

 

REFERENCES         48 



v 

 

LIST OF TABLES 

 

 

 Page  

 

1.  UO2 Gas Diffusion Parameters      25 

 

2. Fuel Power Density and Other Input Parameters of UO2    26 

 

3. Sample Data for Fixed Grain Radius Model for 1900 K   32 

 

4. Sample Data for Grain Growth Gas Diffusion Model for 1900 K.  35 

 

 



vi 

 

LIST OF FIGURES 

 

 

 Page   

 

1. Growth of Intergranular Bubbles on Fuel Grain Crystals    2 

 

2. Spherical Fuel Grain Crystal System       6 

 

3. Spherical Fuel Grain Crystal undergoing Crystal Growth    11 

 

4. Dihedral Angle of Lenticular Intergranular Bubbles    14 

 

5. The Diffusivity (m
2
 s

-1
) of UO2 over inverse temperature (K

-1
)  26 

 

6.  Fuel Grain Size (μm) at 1600 K over Time (hr)    28  

7.  Fuel Grain Size (μm) at 2200 K over Time (hr)    28 

8.  Benchmark of Fixed Grain Radius Model     30 

9.  Intergranular gas density of Fixed Grain Radius Model   31 

10.  Gaseous Swelling of Fixed Grain Radius Model by Temperature  32 

11.  Gaseous Swelling of Fixed Grain Radius Model by Radius   33 

12.  Benchmark of Grain Growth Model      34 

13.  Intergranular Gas Density (mol m
-3

) over time (hr) using 

  Jernkvist’s and Massih’s model of grain growth for UO2   35 

14. Intergranular gas density (mol m
-3

) over time (hr) using Nichols’ 

   fourth power grain growth equation for MOX    36 

15.  Intergranular gas density (mol m
-3

) over time (hr) using Sari’s 

  cubic grain growth equation for MOX.     36 

16.  Gaseous Swelling over time (hr) using Jernkvist’s 

  and Massih’s model of grain growth for UO2    37 

17. Gaseous Swelling over time (hr) using Nichols’ 

   fourth power grain growth equation for MOX    38 

18. Gaseous Swelling over time (hr) using Sari’s 

 cubic grain growth equation for MOX     38 



vii 

 

19. Fractional gas release over time (hr) using Jernkvist’s 

  and Massih’s model of grain growth for UO2 by Temperature  39 

 

20. Fractional gas release using Nichols’ fourth power 

grain growth equation for MOX by Temperature    40 

 

21.  Fractional Gas Release using Sari’s cubic grain 

  growth equation for MOX by Temperature     40 

 

22. Fractional gas release over time (hr) using Jernkvist’s 

  and Massih’s model of grain growth for UO2 by Temperature  41 

 

23. Fractional gas release using Nichols’ fourth power 

grain growth equation for MOX by Temperature    42 

 

24.  Fractional Gas Release using Sari’s cubic grain 

  growth equation for MOX by Temperature     42 

 

25. Fractional Gas Release over time (hr) from UO2 

  at 1900 K for arbitrarily scaled diffusivities     43 

 

26. Gaseous Swelling over time (hr) for UO2 at 1600 K   44 

 

27. Gaseous Swelling over time (hr) for UO2 at 1900 K   45 



viii 

 

SUMMARY 

 

 

 

 The fission chain reaction causes swelling in nuclear fuel pins. A significant 

portion of this swelling is due to the accumulation of fission gas within the boundaries of 

the grain of fuel. Over time, the fuel releases the trapped gas to the interior of the fuel 

rods. High temperature grain growth decreases the total surface area of the fuel grains, 

which decreases the density of intergranular gas required to escape the fuel. This grain 

growth also speeds the migration of gas atoms through the fuel due to grain boundary 

sweeping. This paper presents a model of the generation, migration, and release of fission 

gas, as well as the total swelling over time. It uses an ideal spherical fuel grain with a 

time-dependent radius. 

 UO2 and quasi-homogeneous MOX fuels were simulated with this model. 

Gaseous swelling and fission gas release were calculated for temperatures from 1600 K 

to 2200 K. The grain growth of UO2 was found to decrease the time needed to saturate 

the intergranular boundaries as compared to simple diffusion without grain growth. Small 

temperatures increased the time required for saturation, as did small rates of grain 

growth. Gaseous swelling was within the range of values found by experimental data.  
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CHAPTER 1 

INTRODUCTION 

 

Due to the fission process, nuclear fuels generate both extreme amounts of heat in 

proportion to their mass and atomic byproducts within the fuel over time. This causes 

changes in the size and micro-structure of the fuel. The solid fission products cause 

perceptible swelling of the fuel pellet, and they diffuse within individual fuel grains, but 

they tend not to migrate outside of the fuel [1]. The same occurs at temperatures below 

1300 K for gaseous fission products, such as Krypton, Xenon, Argon, and other noble 

gases. At temperatures above 1300 K, gaseous fission products do not remain in solution 

within UO2 and other fuels. The atoms congregate into intragranular bubbles within the 

fuel. These bubbles grow and shrink due to the effects of irradiation-based re-solution of 

atoms from the bubble to the fuel. The gas atoms migrate over time to the boundaries 

between fuel grains and join the intergranular bubbles [2]. When the gas in these 

intergranular bubbles reaches the saturation gas area density, the bubbles interconnect 

with one another and form a network that extends to the fuel pellet exterior [3]. The 

network allows fission gas to escape the fuel pellet while increasing its total swelling. 

Figure 1 shows a representation of the fuel grains and the intergranular bubbles. 
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Figure 1. Growth of Intergranular Bubbles on Fuel Grain Crystals. Intergranular 

Bubbles are shown in gray. Intragranular Bubbles are not shown. 

 

These fission gases are of intense interest in research, due to their various 

deleterious effects in the nuclear reactor system [1]. The swelling these intergranular 

gases cause exceeds that of solid fission products. The swelling is large enough to cause 

the fuel pellet to contact the cladding and increase its stress. In addition, the increase of 

gases at the fuel boundaries decreases the thermal conductivity of the fuel pin. Due to the 

already radially heterogeneous nature of the fuel temperature, the fuel expands unevenly, 

and cracks form within the pin [31]. Fuel cracks that reach the surface acts as stress 

points when they come in contact with the cladding, due to the effects of friction or 

adhesion as the fuel tears. As the fuel pin swells, the crack openings increase the local 

cladding strain. The reduced thermal conductivity due to the intergranular bubble 
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network exacerbates this phenomenon. In addition, since higher temperatures increases 

the rate of fission gas release, the decrease in thermal conductivity leads these factors to 

create a positive feedback loop. Finally, the effects of reactor power transients further 

modify this swollen system, increasing the risk of fuel cladding failure. 

In addition to issues regarding the changed fuel conductivity due to retained gas, 

the released gas complicates the design process as well. Solid fission products cause 

swelling due to the distortions they cause the oxide matrix, and they possess various rates 

of radioactivity, but they remain within the fuel.  Fission gases tend to be highly 

radioactive and are able to migrate to the atmosphere of the cladding [1]. When the 

cladding fails, the gases enter the primary coolant loop. Removal of these gases from this 

isolated loop requires a dedicated degasification system [32]. Due to the inert nature of 

noble gases, the design of this system is complicated. This system is only used as needed; 

the short half-lives of many of the gases cause decay of the gases to either solid products 

or stable gas isotopes. The storage and release of these gases to the atmosphere requires 

careful planning and execution in order to adhere to the requirements and regulations set 

by the NRC. 

 At high temperatures, a significant amount of grain growth occurs in nuclear 

fuels. Fuel grains of different orientations have a higher energy relative to one another, 

and increased temperatures enable the grains to expand their boundaries to minimize the 

boundary energy [33]. In this process, larger grains consume smaller grains of similar 

angular orientations. The rate of consumption decreases as fewer numbers of larger grains 

with larger differences of orientation develop. The grain growth aids the migration of gas 

atoms and can exceed the rate of diffusion [4]. However, the increased fuel grain size 
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decreases the gaseous swelling, due to the reduced interior surface area of the fuel grains 

[5]. 

 This paper uses the model of gas release during grain growth created by Forsberg 

and Massih [6], combines it with their later work on gaseous swelling, and extends the 

model from UO2 to other fuels. Chapter 2 explains the mathematics underlying two 

models of gas diffusion through the fuel: one with fixed grain sizes and one with grain 

growth. This chapter also explains how the grain boundary gas densities lead to the 

gaseous swelling. Chapter 3 explains the approximations used to solve the models of gas 

diffusion with a computer. It also lists the parameters of UO2 and MOX fuels needed 

during the computer simulation. Chapter 4 discusses the results of the models and of the 

simulated fuels. Chapter 5 concludes the paper by comparing the scientific literature to 

the model results. 
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CHAPTER 2 

THEORY 

 

 Researchers study the problem of gas generation and diffusion by modeling with a 

spherical grain of fuel, as shown in Figure 2. Originally, Booth assumed that the escaped 

gas does not return to the fuel grain [34], which implies a perfect sink condition 

  0=tR,C            (1) 

for a simple diffusion problem [7]. Here, C is the density of gas atoms in m
-3

, R is the 

radius of the crystal in m, and t is the time in s. 

 The diffusion equation, is formulated as a spherical system, 

 
     tβ+tr,CtD=

δt

tr,δC
r

2         (2) 

rr
+

r
=

2r









22
2

         (3) 

where the first term in the equation is the diffusion rate of gas atoms, D is the diffusion 

constant of the gas atoms in m
2 

s
-1

, and β(t) is the gas production rate in m
-3

 s
-1

. Matthews 

and Woods originally solved this equation for time varying temperatures and gas 

generation rates by using a backwards Euler approximation for a two-region sphere [35].  
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Figure 2. Spherical Fuel Grain Crystal system. Intergranular Bubbles are shown in gray.  

 

 In addition, the escaped gas atoms have been shown to rejoin the fuel. This re-

solution of gas into bubbles occurs due to the energy imparted by radiation. Due to this 

re-solution, the fuel retains a portion of the gas within its material. To model this, 

Turnbull changed the perfect sink condition of the problem to an imperfect one [8]. 

 
   

(t)

tNtB
=tR,C

D
          (4) 

Here, B(t) is the re-solution rate from intergranular bubbles in m s
-1

 and N(t) is the gas 

atom area density at the grain boundary in m
-2

 . 

 Solutions for this set of conditions are difficult, due to the time-dependent values. 
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Elton and Lassmann were able to find a solution to this diffusion equation by modifying a 

solution with a time-constant diffusivity and a time-constant gas generation rate [36]. 

Here, different values of the diffusivity and gas generation rate were used each timestep, 

and a correction factor calculated from a fictitious timestep was included to increase the 

accuracy.  Forsberg and Massih found a solution for this system by transforming the 

diffusion equation into an integral equation. First, the problem is rescaled from t to τa in 

m
2
 [9]. Making use of  

 
t

0a dttD=τ
0

0          (5) 

the problem is written as 

 
   aear

a τβ+τr,C=
δt

τr,δC 2        (6) 

Here, βe(τa) = β(τa) / D(τa) and has units of m
-5

. The boundary condition is similarly 

rewritten as 

 
   

2

1 aa
a

τNτh
=τR,C         (7) 

In this boundary condition, h1 is defined as 

 
 a

a

τD

τB
=h1

          (8) 

and has units of m
-1

. Forsberg and Massih [10] had shown that for a perfect sink 

condition, the total number of gas atoms within the fuel grain can be written as the 

integral of a series of eigenfunctions over τa: 

      
a
τ

a0a0ea0a

R

a

2 dττβττK=drτr,Cπr
00

4       (9) 

The kernel, K(τa-τa0), has units of m
3
 and is defined as 
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  
 

1
2

222
3 /

8R

= n

a
n

a
n

Rτπ
e

π
=τK         (10) 

The total amount of gas atoms on the grain boundary can be found in terms of the gas 

generation and granular gas density. Given the assumption that gas either remains in the 

fuel or within the intergranular bubbles: 

     













  drτr,Crdττβ

πR
=τNπR a

a
τ

a0a0e

3

a

2 2

0

4π
3

4
24     (11) 

This equality accounts for gas generated from adjacent fuel grains which share the 

boundaries by doubling the gas generation and granular gas density. The first term within 

the parenthesis is the amount of gas generated over time, while the other term states the 

total amount of gas within the grain.  Rewriting the diffusion problem in terms of the 

difference of gas density from the grain boundary 

     aaa τR,Cτr,C=τr,C 0         (12) 

allows for the use of equation (9), since this formulation uses a perfect sink condition. 

Thus,  

           















a
τ

a0a0a0

a0

a0ea0a

R

a

2 dττNτh
τ

τβττK=drτr,Cπr
0

1

0

0
2

1
4   (13) 

In this equation, the integral of C0 identifies the difference in the number of gas atoms of 

the interior of the grain from its boundary.  This combines with equation (11) to form the 

grain boundary gas area density over time: 

           















a
τ

a0a0a0

a0

a0ea0aA dττNτh
τ

τβττK=τN
0

12
2

1
2    (14) 

K2 is defined as 
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   







 a

3

2a τK
πR

πR
=τK

3

4

4

1
2        (15) 

 The solution is found by taking a Laplace transform in time of equation (14). This 

transform will replace the rescaled time τa to the term s. 

aa

st dNesN  )()(
0




         (16) 

The term s has units of s
-1

.Assuming βe and h1 are constants allows  

 12

2

1

2β

hKs+s

K
=N e          (17) 

where 2K is the Laplace transform of equation (15):  

 
    















222/32

2/12

2

1coth

sRsR

sR
R =K 3        (18) 

This formulation can be simplified for long and short periods of time. In cases where s is 

large due to short timespans of t, the coth(R
2
s)

1/2 
term reduces to 1, so 2K is simplified to 

21/

2

  sRs=K 23
         (19) 

This leads to 

 
   

 
 
















 a

3

a
a

h

3a
a

h

a
e

a τO+
h+hhh

τherfc
τ

eh+τherfc
τ

eh

hh
+τ

h

β
=τN

232

2/1

2

2
22/1

3

2
3

2

321

1
2  (20) 

2/1

1

2

11
2

42 









R

h
+

h
+

h
=h         (21) 

2/1

1

2

11
3

42 








R

h
+

h
+

h
=h          (22) 
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



y

x dxeyerfc
22

)(


        (23) 

In cases of longer times, the small s allows 2K to simplify to  

 sO+
RR

=K
453s

3

2           (24) 

which integrates to 

 
   

 

  
 











1
22

2

32

3

/
4β

353

2β

=m 11mm

am
μ

e

1

a

1

e
a

h R+Rh+μμ

τR
eR

+
Rh+

R
τ

Rh+

R
=τN    (25) 

with μm defined as 

mπ+
Rh+μ

μRh
=μ

1m

m1
m 










2

arctan         (26) 

 Due to the heating caused by the fission process, the grains of fuel restructure and 

grow over time. The change in grain size can relocate the fission gases much more 

quickly than diffusion, so the diffusion of gas should be reformulated to include the 

sweeping of gas atoms. Figure 3 shows a representation of the changing spherical system. 

Forsberg and Massih rescaled the diffusion equation from r to ρ, the dimensionless ratio 

of r and R [6]. The equation is also rescaled from t to the dimensionless τ. 



11 

 

 

Figure 3. Spherical Fuel Grain Crystal undergoing Crystal Growth. Intergranular Bubbles 

are shown in gray. 

 

The diffusion equation is shown as 

 
 τP+C=

τ

τρ,C
),('2 




       (27) 

where 

ρ
ρ

τ

R
+=



















)(ln 2
'

2

2
2


        (28) 

 
 

 tβ
tD

R
=τP

2

         (29) 
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 
 

t

ds
sR

sD
=τ

0

2
          (30) 

 The diffusivity D is removed from the diffusion term in equation (27) by placing 

it in the definition of τ. P(τ) is the rescaled gas density generation rate, which has units of 

m
-3

. Additionally, solution of the above uses the total amount of gas in the crystal. This 

includes both the gas within the fuel grain and the gas that covers its surface. Before gas 

escapes the fuel, the grain boundary density of gas can be written as 

     













 

R

2

t

2 drtr,Cπrdννβ
R

=tNπR
00

3

4
3

4π24      (31) 

When the imperfect sink boundary condition from equation (4) is used, the total density 

of gas within and on the grain, G(t), is 

 
   

 

 

3

0

23

2

3D

R

drtr,Cr

+
tRB

tR,Ct
=tG

R


       (32) 

The first term in the right hand side represents the effects of gas atom re-solution, while 

the other term is the average gas density of the grain. Rescaling by τ allows for use with 

equation (27), which forms 

 
   
   

 
1

0

23
2R

3D
dxτxR,Cx+

τBτ

τR,Cτ
=τG       (33) 

Solution of equation (27) requires separation into particular and complementary 

solutions. 

     τρ,C+τρ,C=τρ,C pc
        (34) 

The complementary solution first expands into a sum of basis vectors, separates the time 

dependence from the answer, and is further estimated as a sum of other vectors. 
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   
ik

=k

ki
i

ω

i=

ic eλ
τ

eα=τρ,C ~

01







       (35) 

Here, αi are the basis vector constants, 
 τ

e i
ω

are the ansatz of the principal time 

dependence of the solution, and iλk are the coefficients of the expansion vectors
ik e~ . This 

assumes that iλ0 = 1, that ωi causes τ to satisfy the conditions of the problem, and that all 

ik e~ satisfy the diffusion and total gas amount equations.  This allows
ik e~ to be expressed 

as 

   f
mkm

k
=e m

i

mk
k

m

ik





 









2τ

)!(!

!~

0

       (36) 

where fm

i
satisfies  

f=fω+f m

i

m

ii

m

i 2m)('2          (37) 

The particular solution of the diffusion equation requires expansion as a power series: 

     τρ,nξ+τΛ=τρ,C i

=i

ip 


1

        (38) 

where  

   dssP=τΛ

τ


0

         (39) 

The ni functions satisfy 

kr
k n=
τ

n 2



          (40) 

  2k

k r==τr,n 0          (41) 

 As the intergranular bubble gas density rises, the nuclear fuel undergoes swelling. 

Unlike swelling from solid fission products and intragranular bubbles, swelling from the 

ellipsoidal intergranular bubbles ceases once the gas density reaches saturation at Ns. The 
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swelling can be written as 

b

θ

3

b n
ωπr

=
V

ΔV

3

4
         (42) 

where ΔV /V  is the change in volume of the fuel due to gaseous swelling, rb is the 

intergranular bubble radius in units of m, nb is the intergranular gas bubble density in m
-3

, 

and ωθ is a geometric factor that corrects the error introduced from use of spherical 

bubbles. It is given as ωθ = 1 – 1.5 cos(θ) + 0.5 cos
3
(θ), where θ is the intergranular 

bubble dihedral angle. The gas bubble density is assumed to be constant [4], and it is 

represented in Figure 4. 

 

 

Figure 4. Dihedral Angle of Lenticular Intergranular Bubbles. The angle is used to correct 

the spherical bubble approximation. 

 

 Assuming that the bubble follows the van der Waals Law of gases, the amount of 

gas atoms in each bubble can be found as 

  











2

1

b

2

atom
atomb

b

atom
V

aN
+PbNV

Tk
=N       (43) 
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where P is the bubble pressure, T is the temperature, and Natom is the number of gas 

atoms. In addition, the constants a and b are the van der Waals constants for Xenon, and 

kb is the Boltzmann constant. For this method, the aN
2
 term is assumed negligible for the 

gas and removed. The pressure of the gas is shown by Rowlinson and Widom [11] to be 

ext

b

P+
r

=P
2γ

          (44) 

where Pext is the external pressure and γ is the bubble surface tension. 

 Given that the intergranular gas atom density is C(R,t) = Cb = Natom · nb, and 

assuming that equation (44) replaces the pressure term in equation (43), this allows  

  tk+r+Pb

r+P
nωr=C

bbext

bext
bθbb

/2γ

/2γ

3

4π 3        (45) 

By comparing the value of Cb to the intergranular gas atom saturation density of Cbs, rb 

can be expressed by determining the ratio of rb and its saturation radius, rbs, as shown in 

   

  p

p2

bs

b

νxκ++

νκ++

κ+

κ+x
x=

C

tC

/11

11

1
       (46) 

where x is the ratio of the current to saturated bubble radii, and κ is the ratio of bubble 

surface tension to exterior pressure. 

bs

b

r

r
= x           

 (47) 

extbsPr
= κ

2γ
          (48) 

Tk

bP
=ν

b

ext
p

          (49) 

Once rb has been determined, equations (40) and (43) may be combined to determine the 
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swelling 

  
  R

N

xκ+

νx+T
=

V

ΔV b

ext

pb

/12P

/ κ+ 113k
       (50) 

where 

bb RC=N 








3

2
         (51) 

 Gas release occurs from two different modes: from diffusion out of the grain and 

from grain boundary sweeping. Since one of these two modes tends to dominate, one of 

these modes may be simplified by removing it from consideration. The dominant mode 

can be determined by comparing D/R
2
 and (dR/dt)/R. Situations where D/R

2
 greatly 

exceed (dR/dt)/R simplify to the static grain radius model. In those cases, the problem 

should be solved using only that model. For problems where (dR/dt)/R greatly exceed 

D/R
2
, gas release is derived from equation (32).  It is found by deriving the change in the 

average gas density in the grain from the second term while using equation (4) in place of 

C(R,t). This creates 

 
   tβ+tCN

D

B

R
=

dt

tCd










3
       (52) 

where C (t) is the average gas density within the grain. This value allows for the solution 

of the fractional gas release 

C=F
~

1
~

           (53) 

where F
~

 is the fractional release and  

 

 dννβ

tC
=C

t


0

~
          (54) 
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Before release, all gas is considered to be within the grain boundary and interior, so for 

all times before gas release 

   dνtβ=tC           (55) 

 In addition, there are two schemes of modeling fission gas release: discrete release 

and continuous release. In discrete release, a fraction of the gas in the interconnected 

bubble network escapes the fuel once the bubbles reach saturation value. The remaining 

fraction waits in the bubbles until it reaches the saturation density again. The continuous 

release scheme assumes that the cycle of accumulation and release occurs multiple times 

within a given timestep. Modeling the release from this scheme requires an average 

density of gas, which is determined by the largest and smallest densities for the release 

cycle. For this model, all the gas is assumed to escape the fuel during continuous release, 

so the effective gas surface area density in equation (55) is half the saturation value. 
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CHAPTER 3 

METHODOLOGY 

 

The volume swelling is calculated from equation (42) and utilizes equations (43), 

(45), and (46). As Cbs = (3/2)(Nbs/R), Nbs is determined as 

 
  κ+ν+θT

κ+Pfω
=N

pb

extbθbs
bs

11sin3k

14r
2

       (56) 

where fb is the fractional coverage of bubbles over grain surfaces. In their 1985 paper, 

Forsberg and Massih assumed a constant grain radius to determine the gas surface area 

density [9]. Replacement with the model created in their 2007 paper allows for modeling 

of the gas release and the swelling as the fuel reshapes [6]. These methods can be used by 

limiting the infinite series in equation (35) to  

   
ik

=k

ki
i

ω

=i

ic eλ
τ

eα=τρ,C ~
2

0

3

1




       (57) 

as well as limiting the last term i in the sum in equation (38) to 2. These approximations 

enable MATLAB to run a script that numerically solves these equations, and the 

equations are written as 

     τρ,eα+e=τρ,e=τρ,C i

=i

i0 
3

1

       (58) 

 For this equation, e0 is the particular solution, and the sum of ei is the 

complementary solution. The intergranular gas density C(ρ = 1,τ) = Cb is determined by 

finding both the complementary and particular solutions. First, for the complementary 

solution, the terms fm

i  
in equation (36) are solved from equation (37). The solution takes 

the form of spherical Bessel functions of the first kind. 
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)()()( 2 rjrRf im

m

i

m

i

m

i          (59) 

In this equation, jm is the Spherical Bessel function, and μiR = (ωi)
1/2

 [37]. These 

functions are solutions to the Helmholtz equation in spherical coordinates.  

0))1((2 2

2

2
2 









wmmx

x

w
x

x

w
x       (60) 

Here, x is the independent variable, w is the dependent variable, and m is the order of the 

Bessel function. Spherical Bessel functions are defined in terms of cylindrical Bessel 

functions Jm, as shown below. 

)(
2

)( 2/1 xJ
x

xj mm 


        (61) 

The cylindrical Bessel functions are defined as follows: 













0

2)
2

(
)1(!

)1(
)(

n

nm
n

m

x

nmn
xJ        (62) 





0

1)( dxexn xn          (63) 

μiR are determined for values of i up to 3 at two different times. In the case of 

discrete gas release, the values are determined by the integral equation condition in 

equation (33) for the functions
ie~0
instead of the density C. For values of i greater than 0, 

the equation transforms into 

   
   

 
1

0

0

20 ~

2R

~D
0 dxτxR,ex+

τBτ

τR,eτ
= i

i        (64) 

Since ),(~
0 rei

= j0(µir), the solution for μiR is found by integration of equation (64). 
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 
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D
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i
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












1
2

arctan
2

       (65) 

As this is a transcendental equation, a numerical solution is necessary. 

 In the case of continuous gas release, the complementary solution satisfies the 

boundary equation 

0),( ie            (66) 

for all nonzero i. Thus, determination of μiR is performed by setting 
ie~0
 = 0. This leads 

to the solution shown below. 

i=Rμi           (67) 

Next, 0ei , 1ei, and 2ei are found from each μiR. Given that iλ0 = 1 and that iλk are constant 

over the run time of the script, and utilizing the following: 

  0ˆ

2

0

=τ1,eλ ik
=k

ki           (68) 

iλ1 and iλ2 can be found by setting a system of equations. 

 For the particular solution, the conditions of equation (38) are rewritten as 

       
2

0

0

=k

kk0p τρ,eτΛτρ,e=τρ,C        (69) 

 dssP=Λ

τ

0 
0

0          (70) 

where ke0 all satisfy the following conditions. 

 τρ,e=e
τ

okk

2

0 



         (71) 

  2k

k ρ==τρ,e 00
         (72) 
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The solution of ke0 for these conditions is a power series expansion of 

      τ+τρ+ρ=τρ,e  τ,+ρ=τρ,e=τρ,e 42 60206  1, 2

020100
   (73) 

Λ1 and Λ2 are determined by setting a system of equations similar to equation (68) for 

  0~
0

2

0

=τ1,eΛ k

=k

k           (74) 

The values of αi are determined [12] from the equation 

      i

=i

mki

k

i

=k

kioml

=i

im αRMRμλ+RMΛ=w 







 

3

1

00

2

0

3

1

    (75) 

where wm is the generalized moment of the particular and complementary solutions, and 

where  

   dxxmjxR=RM +2i

0mi 0

1

0

22i

0         (76) 

     
1

0

00

2

0 dxxRμjxmjx=RM ik

+k

mki        (77) 

The generalized moment is given by 

  
 

 

 
 dρτρ,e

τR

xm
jρ

τR
=τRw

τR

m 










0

0

21
      (78) 

and its values for the complementary and particular solutions are given in Appendix A. 

 When equation (75) is rewritten in the form of 

mi

=i

im β=αA
3

1

          (79) 

then it allows for solution by means of matrix division 

vv βA=α 1           (80) 

Here, Av is the matrix form of Aim, βv is the vector form of βm, and Aim and βm are the 
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rearranged terms of equation (75). 

   00

2

0

RMRμλ=A mki

k

i

=k

kimi



        (81) 

 0

3

1

RMΛ w=β im

=i

imm          (82) 

 With all the values listed, the grain boundary gas density Cb is defined as 

   τR,eλ
τ

eα+τR,eΛ=C ik

=k

ki
i

ω

=i

ik

=k

kb
~~

2

0

3

1

0

2

0




     (83) 

Once Cb is found, equation (46) may be used in the form of  

 
    bs

b

C

C

νκ++

κ+
=

νκ+x+x

κ+xx

11

13

        (84) 

Solving this transcendental equation for x allows equation (50) to yield the volumetric 

swelling over time. 

 Gas release is determined in the case where (dR/dt)/R exceeds D/R
2
. First, the 

value of equation (52) is determined for a given time. This value is multiplied by the 

simulation timestep and added to C (t) . Then, C (t) is divided by the total density of 

generated gas. This determines �̃�, which allows for solution of the fractional and total gas 

release. 

 Forsberg and Massih designed these models of diffusion, swelling, and gas release 

from the properties of UO2. The models they constructed require input parameters for the 

diffusion of gas through fuel and the growth of fuel grains. Fission gas diffusion for UO2 

is given in the form of 

g +v

v D'
=D

g

g
          (85) 
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where vg and other parameters are given in given in Table 1. The fission density and other 

properties of UO2 are given in Table 2. Both tables are assembled from the combined 

research of Speight, Turnbull et al, White and Tucker, and Matzke [13] [14] [15] [16].  

The diffusivity of UO2 in a trap-free medium in Table 1 is given as three terms: a 

high temperature thermal term taken from Davis and Long [38], and two irradiation terms 

taken from Turnbull [14]. The combined thermal and irradiation term relates to the 

irradiation induced cation vacancies in the fuel, while the third term does not have a set 

mechanism. The trap-like nature of intragranular bubbles reduces the effective diffusivity 

of the nuclear fuel. This diffusivity is determined from intragranular gas bubble re-

solution rate, νg, and the fission gas capture rate from intragranular bubbles, g. Given the 

fission density and temperature range simulated, these competing interactions reduced the 

effective gas diffusivity by an order of magnitude. 

The fission gas production rate, β, appears in equation (121) of White’s 1983 [15] 

paper. This production rate was originally created by Schilling [39], and the rate used by 

Forsberg and Massih appears to be a simplification for fission densities on the order of 

10
19

 m
-3 

s
-1

. 

The formulation of grain growth chosen from this model originates from 

Jernkvist’s and Massih’s [17] work, and is given in the form of 
















2
UOm,

g

D

k
=

dt

dR 1

2R

1

2
        (86) 

   








 T
eATTH+TTHD=D m

Q

mgg0
2
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/
     (87) 

T
eA=k g

Q

g
2

UOg,

/

         (88) 
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Here, Dm,UO2 is the maximum grain diameter, D0 is the initial grain diameter,  Tg is 1550 

K, Am is 615.59, Qm is 9955 K, Ag is 4.11× 10
-9

 m s
-1

, and Qg is 32114.51 K. The H 

function shown here is the Heaviside step function. This function is used to restrict grain 

growth to temperatures above 1550 K, since H(x) = 0 for all x less than zero. Values of x 

greater than zero cause H(x) = 1. The formula for grain growth is taken from the model 

used by Turnbull [40]. 
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Table 1. UO2 gas diffusion parameters. Values are taken from [13], [14], [15], and [16]. 

   
FC+

Tk
eFC+

Tk
eC=D' 3

bQ

2
bQ

1
 //

21


 m
2
 s

-1 Diffusivity in trap-free 

media 

 23.03 δ+RF πl=v bg
  s

-1 Intragranular gas bubble re-

solution rate 

Te=Rb

3101.02310101.453
   m Intragranular bubble radius 

D'CRg t

bb4  s
-1 Fission gas capture rate by 

intragranular gas bubbles 

2327 103.3/101.52  T=C t

b
 m

-3 
Total bubble density 

6106 =l  m Fission fragment range 

910=δ  m 
Damage radius of fission 

fragment 

maFN=F   m
-3

 s
-1 

Fission density 

vm q=F 14105.189   mol m
-3

 s
-1 

Molar fission density 

qv W m
-3 

Power density 

mF=β 0.3  mol m
-3

 s
-1 Molar fission gas production 

rate 

Na = 6.022 × 10
23

 mol
-1 

Avogadro constant 

Q1/kb = 35247 K Activation energy / kb 

Q2/kb = 13800 K Activation energy / kb 

C1 = 7.6 × 10
-10

 - - 

C2 = 4.5 × 10
-35

 - - 

C3 = 2.0 × 10
-40

 - - 
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Table 2. Fuel power density and other input parameters of UO2. Values are taken from 

[13], [14], [15], and [16]. 

9.00=d pellet
 mm Fuel pellet diameter 

0.950=ρT  - Fraction of fuel density 

10=DO  μm Initial fuel grain size 

100,000=Pext  Pa External pressure 

8

2
107.25

3sin

4r =
θ

fω bθbs  m 
Composite gas bubble 

parameter 

 
 

8105.7
2B =

tβ

t
 m

4
 mol

-1 Ratio of re-solution rate to 

gas production rate 

5105.16 =b  m
3
 mol

-1 van der Waals constant for 

Xenon 

35=ql  kW m
-1 

Linear power density 

 

 

Figure 5. The diffusivity (m
2
 s

-1
) of UO2 over inverse temperature (10

4
 / K

-1
).  
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Nuclear fuel which behaves in a similar fashion to UO2 may be used in this model 

as well. Fisher et al report that some MOX fuels act in a similar fashion to UO2 [18].  In 

these fuels, the intergranular bubble network is disrupted by areas of concentrated Pu.  

Fuels with maximum diameter areas of 200 μm do not form a bubble network in the 

operation conditions of Pressurized Water Reactors [19]. However, quasi-homogenous 

SBR fuels form a perturbed network. In this style of fuel, the areas of concentrated Pu 

have diameters of up to 35 μm.  Fisher et al quantitatively determined that this perturbed 

network is within the ranges seen in UO2 [18]. The rate of fission gas generation is 

comparable [20]. Irradiation re-solution of gas atoms is reported to occur [21]. The 

diffusion parameter for MOX fuels is currently unstudied, but it is assumed to be the 

same. This assumption is supported by comparing the release of fission products and 

stable gases. Uffelen et al [22] found that the composition of the MOX fuel mattered far 

less for grain growth than the fabrication process. Porosity due to the manufacturing 

process was shown to be inversely proportional to grain growth rates. They created a set 

of equations from the work of Nichols [23] that describe the grain growth of MOX as 

364R

k
=

dt

dR NMOX,g,
 , if 2R < Dm        (89) 

0=
dt

dR
, if 2R > Dm             

   T

MOX,Nm,

T

MOX,Ng, e=De=k /7620-3/46524-14 10345.3,108.7075       

Here, kg is in units of m
4
 s

-1
. Another equation he uses to describe the growth is given as  

224R

k
=

dt

dR SMOX,g,
          (90) 

        
 T

NMOX,g, e=k /83963-111025.4 
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and it is derived from the work of Sari [24]. Here, kg uses units of m
3
 s

-1
. Figures 6 and 7 

show the growth of the fuel grains over time. 

 

 

Figure 6. Fuel Grain Size (μm) at 1600 K over Time (hr). 

 

Figure 7. Fuel Grain Size (μm) at 2200 K over Time (hr). 
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 Thorium oxide fuel appears to act as a candidate as well. While it is an 

understudied fuel, its similarity to UO2 allows for reasonable approximations to be made 

of its diffusion parameter [25]. Gas re-solution and release are expected to behave 

similarly. However, the grain growth rate of ThO2 has been noted [26] as  

224R

N
k

=
dt

dR 2,
ThOg,

         (91) 

  T

2
ThOg,

e=
N,

k 8.3144/43500013102.22         (92) 

Due to this growth rate, D/R
2
 exceeds (dR/dt)/R for conventional grain sizes (5×10

-6
 m). 

Since diffusion far exceeds gas atom relocation by grain boundary sweeping, ThO2 

should be treated using Forsberg and Massih’s static grain radius model.  

 Some Uranium-based metallic fuels also are fit for this model. U-Pu-Zr in the α 

phase does not form an intergranular bubble network [27]. It forms a dense cluster of 

pores. However, the high temperature γ phase allows the network to form [28]. The re-

solution of gas atoms from bubbles is well noted [29]. However, grain growth for 

Uranium alloys in the γ phase is currently unstudied. Without this information, gas 

release and swelling of metallic fuels cannot be determined. 
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CHAPTER 4 

RESULTS 

 

 Benchmark data for the fixed grain radius are shown in Figure 8. The reproduced 

data is generated from a MATLAB script and compared to Figure 1 from their 2008 paper 

[5]. For these runs, the grain radius was 7.5×10
-6

 m; all other values are taken from 

Tables 1 and 2. The slight difference in the 1900 K and 1700 K runs appears to be due to 

rounding errors from the solution of equation (46).  

 

Figure 8. Benchmark of Gaseous Swelling over Time (hr) of Fixed Grain Radius Model 

with Forsberg and Massih’s data [5]. 
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1600 to 2200 K are shown below.  Figure 9 shows the intergranular gas density over time, 

while Figure 10 shows the gaseous swelling over time. These simulation runs used the 

analytical solution presented in [9] for gas diffusion while utilizing the parameters shown 

in Tables 1 and 2. These runs assume that the gas density and gaseous swelling are 

constant after reaching saturation. Table 3 shows sample data from the MATLAB script 

which generated the values. Note that gas release is not calculated with this analytic 

solution, as no inventory of gas within the grain is kept. Also, SBR MOX fuel is not 

included in these figures, as it is assumed to share the same gas atom diffusivity. 

 

 

Figure 9. Intergranular gas density (mol m
-3

) over time (hr) of UO2 for various 

temperatures (K) and for a fixed grain radius of 5 µm. 
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Table 3. Sample data of Forsberg and Massih’s fixed grain radius gas diffusion model for 

1900 K. 

Time (hr) x (rb/rbs) 

Intergranular Gas 

Volumetric Density 

(mol m
-3

) 

Gaseous Swelling 

20 0.14369 0.0602 0.0001 

40 0.2294 0.1614 0.0002 

60 0.29982 0.2848 0.0005 

80 0.36128 0.4243 0.0009 

100 0.41655 0.5764 0.0013 

120 0.46716 0.7389 0.0018 

140 0.51409 0.9102 0.0025 

160 0.55801 1.0892 0.0031 

180 0.5994 1.2749 0.0039 

200 0.63862 1.4667 0.0047 

 

 

 

Figure 10. Gaseous Volumetric Swelling of UO2 over time (hr) for various 

 temperatures (K) at a fixed grain radius of 5×10
-6

 m. 
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 Figure 11 demonstrates the effects of grain radius on the swelling kinetics. The 

figure shows an inverse relationship between grain radius and both the total swelling and 

the time needed to reach intergranular saturation. Since the rate of gas generation is 

related to the amount of mass within the grain, a decreased grain volume and mass would 

increase the time needed to saturate the surrounding intergranular bubbles. Also, smaller 

grain volumes increase the total grain boundary area within the fuel, which increases the 

number of places where intergranular bubbles occur.  

 

 

Figure 11. Gaseous Volumetric Swelling of UO2 over time (hr) for various Grain Radii 

(m) at a fixed temperature of 1900 K. 

 

Simulations were also run for the numerically solved grain growth models. 
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Massih for UO2 and from Nichols and Sari and MOX. Diffusion and fuel parameters 

were taken from Tables 1 and 2 with the exception of the composite gas bubble 

parameter. In the MOX fuel simulations, that parameter was recalculated with a bubble 

dihedral angle of 56°. Gas release was calculated in the continuous scheme, which makes 

use of equation (66). Sample values generated from the MATLAB script are shown in 

Table 4. Figure 12 compares some data from UO2 runs to benchmark data from Forsberg 

and Massih [6].  The generated data does not conform to the benchmark data for 

temperatures at 1700 K. The generated data provides a closer match for other 

temperatures. The reason for the divergence appears to be due to the unstated fission gas 

release scheme used to generate the benchmark data in their paper. 

 

 

Figure 12. Benchmark of Gaseous Swelling over Time (hr) of Grain Growth Model with 

Forsberg and Massih’s data [6]. 
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of grain growth over time. These figures excise gas density data after saturation is 

achieved. The intergranular gas density reaches its maximum values much more quickly 

for larger temperatures, but the resulting larger grains reduce the gas volumetric density 

required for saturation and interlinkage. 

 

Table 4. Sample data of Forsberg and Massih’s grain growth model for 1900 K. 

Time (hr) x (rb/rbs) 

Fractional 

Fission Gas 

Release 

Intergranular 

Gas Volumetric 

Density 

 (mol m
-3

) 

Gaseous 

Swelling 

30 0.14398 0 0.05835 0.000055 

60 0.31785 0 0.27885 0.00053 

90 0.50854 0 0.70633 0.001988 

120 0.70828 0 1.3708 0.005006 

150 0.91245 0 2.29272 0.010096 

180 1 0.40859 2.69182 0.012647 

210 1 0.41994 2.57864 0.012116 

 

 

Figure 13. Intergranular gas density (mol m
-3

) over time (hr) for various temperatures (K) 

using Jernkvist and Massih’s model of grain growth for UO2 [17]. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 200 400 600 800 1000 1200 1400

G
as

 D
e

n
si

ty
 (

m
o

l m
-3

) 

Time (hr) 

1600 K

1700 K

1800 K

1900 K

2000 K

2100 K

2200 K



36 

 

 

 Figure 14. Intergranular gas density (mol m
-3

) over time (hr) for various temperatures 

(K) using Nichols’ fourth power grain growth equation for hour [23]. 

 

Figure 15. Intergranular gas density (mol m
-3

) over time (hr) for various temperatures (K) 

using Sari’s cubic grain growth equation for MOX [24]. 

  

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400

G
as

 D
e

n
si

ty
 (

m
o

l m
-3

) 

Time (hr) 

1600 K

1700 K

1800 K

1900 K

2000 K

2100 K

2200 K

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400

G
as

 D
e

n
si

ty
 (

m
o

l m
-3

) 

Time (hr) 

1600 K

1700 K

1800 K

1900 K

2000 K

2100 K

2200 K



37 

 

 Figures 16, 17, and 18 show the gaseous fuel swelling over time for the simulated 

fuels. The swelling here is calculated for an intergranular gas bubble saturation radius of 

1 μm. As with the intergranular gas density of the fuels, the fuel swelling is greater with 

lower temperatures, but it requires longer times to achieve the maximum swelling. The 

swelling peaks and declines as the fuel grains grow and the intergranular gas density 

shrinks. 

 

 

Figure 16. Gaseous Volumetric Swelling over time (hr) for various temperatures (K) 

using Jernkvist and Massih’s model of grain growth for UO2 [17]. 
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Figure 17. Gaseous Volumetric Swelling over time (hr) for various temperatures (K) 

using Nichols’ fourth power grain growth equation for MOX [23]. 

 

Figure 18. Gaseous Volumetric Swelling over time (hr) for various temperatures (K) 

using Sari’s cubic grain growth equation for MOX [24]. 
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The fractional gas release of UO2 and SBR MOX for a constant initial grain radius 

of 5×10
-6

 m is shown in figures 19, 21, and 22. At low temperatures, once the 

intergranular density reaches saturation and the gas escapes the fuel, the fractional release 

continues to climb.  At intermediate temperatures in UO2, the fractional release grows, 

peaks, and decreases. High temperatures in UO2 have large initial fractional releases 

which decrease over time. This behavior is due to both the retarding influence of average 

granular gas density and the increasing fuel radius in equation (52). The fractional 

releases in MOX appear to converge to a single temperature-independent value, due to 

the lack of temperature dependent maximum grain size for the simulation parameters. 

 

 

Figure 19. Fractional gas release over time (hr) for various temperatures (K) using 

Jernkvist and Massih’s model of grain growth for UO2 [17]. 
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Figure 20. Fractional gas release over time (hr) for various temperatures (K) using 

Nichols’ fourth power grain growth equation for MOX [23].  

 

Figure 21. Fractional Gas Release over time (hr) for various temperatures (K) using Sari’s 

cubic grain growth equation for MOX [24]. 
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 Figures 22, 23, and 24 show the fractional gas release of UO2 and SBR MOX for 

a constant temperature of 1900 K and for varying initial grain radii. The gas release from 

UO2 appears to behave in two different modes. In the declining mode, the gas release 

decreases from its peak once saturation occurs. In the rising mode, the gas release 

increases after saturation and appear to converge over time. The MOX fuel figures show 

the rising mode, except for the 9×10
-6

 m run with Nichols’s grain growth model. 

 

 

Figure 22. Fractional Gas Release over time (hr) for various Initial Grain Radii (m) using 

Jernkvist and Massih’s model of grain growth for UO2 [17]. 
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Figure 23. Fractional Gas Release over time (hr) for various Initial Grain Radii (m) using 

Nichols’ fourth power grain growth equation for MOX [23]. 

 

 

Figure 24. Fractional Gas Release over time (hr) for various Initial Grain Radii (m) using 

Sari’s cubic grain growth equation for MOX [24]. 
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only differ by temperature and rates of grain growth. Figure 25 shows the gas release of 

UO2 for increased and decreased diffusivities D. Since the data was simulated with the 

model of continuous gas release, the complementary solution is set to zero, as seen in 

equation (66). Because of this, changing the diffusivity directly changes the magnitude of 

τ. An increase in τ leads to an increase in 1e0 and 2e0 as well as a decrease in Λ1 and Λ2. 

There is no observable net change to the intergranular gas density, gaseous swelling, or 

fractional gas release. 

 

 

Figure 25. Fractional Gas Release over time (hr) from UO2 at 1900 K for arbitrarily 

scaled diffusivities. 
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CHAPTER 5 

CONCLUSION 

 

 In this work, the volumetric density of gas in intergranular bubbles is found from 

the diffusion of fission gas through fixed size and growing nuclear fuel grains. The values 

of this density are used to calculate the fractional gas release and the gaseous swelling of 

UO2 fuel. It was shown that the swelling decreased at higher temperatures, which is 

related to the decreased total boundary surface area for larger grains of fuel. Figures 26 

and 27 show that the gaseous swelling reaches its peak far faster than the fixed grain 

radius diffusion model, due to the grain boundary sweeping. 

 

 

Figure 26. Gaseous Swelling over time (hr) for UO2 at 1600 K. Fixed radius model 

simulated for the initial and final fuel grain radii (m) of the Grain Growth Model. 

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0 200 400 600 800 1000 1200 1400

G
as

e
o

u
s 

Sw
e

lli
n

g 
(Δ

V
/V

) 

Time (hr) 

Fixed, 1.63e-5 m

Fixed, 5e-6 m

J&M Grain Growth



45 

 

 

Figure 27. Gaseous Swelling over time (hr) for UO2 at 1900 K. Fixed radius model 

simulated for the initial and final fuel grain radii of the Grain Growth Model. 
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that directly relates fission gas release to grain growth would be very beneficial. 
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Appendix A: Generalized Moment Weight Integrals 

  

 

  

 For the complementary solution, the generalized moment is as follows: 
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 The generalized moment of the particular solution is given as 
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