
A GLOBAL SEARCH ALGORITHM FOR PHASE TRANSITION

PATHWAYS IN COMPUTER-AIDED NANO-DESIGN

A thesis

Presented to

The Academic Faculty

by

Lijuan He

In Partial Fulfillment

of the Requirement for the Degree

Master of Science in the

School of Mechanical Engineering

Georgia Institute of Technology

December 2013

COPYRIGHT 2013 BY LIJUAN HE

A GLOBAL SEARCH ALGORITHM FOR PHASE TRANSITION

PATHWAYS IN COMPUTER-AIDED NANO-DESIGN

Approved by

Dr. Yan Wang, Advisor

School of Mechanical Engineering

Georgia Institute of Technology

Dr. Ting Zhu

School of Mechanical Engineering

Georgia Institute of Technology

Dr. Seung Soon Jang

School of Material Science & Engineering

Georgia Institute of Technology

Date Approved: July 19, 2013

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Yan Wang, for his guidance, support and patience

during the past two years study. My research is always inspired by talking with him. It is his

encouragement and feedback in my efforts that make this thesis possible.

I would also like to thank Dr. Ting Zhu and Dr. Seung Soon Jang for serving on my

committee. Taking their courses, greatly benefits the finish of the thesis by giving me substantial

background knowledge grounding this research.

 I am grateful to every other student in Dr. Wang’s research group for their advice and

friendship. Special thanks go to Edin Crnkic, who provided useful advice on my thesis. I would

like to thank my parents for encouraging me whenever I came into frustrated.

I would like to acknowledge the support of the National Science Foundation grant

CMMI-1001040, which provided me with the financial support for the research done in this

thesis.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. II

LIST OF TABLES ... V

LIST OF FIGURES .. VI

SUMMARY .. VII

CHAPTER 1 INTRODUCTION ... 1

1.1 MOTIVATION ... 1

1.2 AN OVERVIEW OF THE PROPOSED GLOBAL SADDLE-POINT SEARCH METHOD .. 4

1.3 CONTRIBUTIONS ... 5

CHAPTER 2 BACKGROUND ... 7

2.1 EXISTING TRANSITION PATHWAY SEARCH METHODS ... 8

2.2 EXISTING SADDLE POINT SEARCH METHODS .. 13

2.3 CONJUGATE GRADIENT METHOD .. 15

2.4 EXISTING METHODS FOR DEGREE REDUCTION OF BÉZIER CURVE ... 17

CHAPTER 3 CONCURRENT MULTI TRANSITION PATHWAY SEARCH ALGORITHM ... 20

3.1 A SINGLE TRANSITION PATHWAY SEARCH ... 21

3.1.1 Searching the Stable Configuration ... 22

3.1.2 Searching the MEP ... 25

3.1.3 Constrained Degree Elevation and Degree Reduction... 26

3.1.4 Local Degree Elevation and Degree Reduction .. 31

3.2 MULTIPLE TRANSITION PATHWAY SEARCH .. 31

3.2.1 Scheme for Selecting Breakpoint ... 34

3.2.2 Discussion on the subdivision scheme ... 42

CHAPTER 4 IMPLEMENTATION AND DEMONSTRATION ... 43

4.1 TEST RESULT FOR LEPS POTENTIAL .. 45

4.2 TEST RESULT FOR LEPS PLUS HARMONIC OSCILLATOR POTENTIAL ... 46

iv

4.3 TEST RESULT FOR RASTRIGIN FUNCTION .. 48

4.4 TEST RESULT FOR SCHWEFEL FUNCTION .. 51

4.5 DISCUSSION .. 54

4.5.1 Convergence analysis ... 54

CHAPTER 5 SUMMARY AND FUTURE WORK ... 56

5.1 SUMMARY AND DISCUSSIONS ... 56

5.2 FUTURE WORK ... 58

APPENDIX ... 61

REFERENCES ... 95

v

LIST OF TABLES

Table 1: Pseudo-code of the algorithm for a single transition pathway search 24

Table 2: Pseudo-code of the algorithm for multiple transition pathway search 33

Table 3: Curve subdivision scheme (five control points) ... 37

Table 4: Curve subdivision scheme (six control points) ... 38

Table 5: Pseudo-code of the curve division scheme (five and six control points) 39

Table 6: Test functions.. 44

Table 7: Test results on Rastrigin function (contour plot refer Figure 7) 49

Table 8: Test results on Rastrigin function (contour plot refer Figure 8) 50

Table 9: Test results on Schwefel function (contour plot refer Fig. 9) .. 53

Table 10: Test results on Schwefel function (contour plot refer Fig. 10) 54

vi

LIST OF FIGURES

Figure 1: Flow chart for the procedure of the algorithm .. 21

Figure 2: Flow chart for the procedure of a single transition path search 23

Fig. 3: Illustration for multiple pathway search (five control points) ... 35

Fig. 4: Illustration for multiple pathway search (six control points) .. 37

Fig. 5: Test results for LEPS potential function ... 47

Fig. 6: Test results for LEPS plus harmonic oscillator potential function 48

Fig. 7: Test result for Rastrigin function with the initial position at (-2.81, 0.50), (-1.43, 2.90),

(0.23, -2.47), (1.57, 2.67), and (2.91, -0.11). .. 50

Fig. 8: Test result for Rastrigin function with the initial position at (-2.81, -1.50), (-1.43, -1.50),

(0.23, -1.50), (1.57, -1.50), and (2.91, -1.50). ... 51

Fig. 9: Test result for Schwefel function with the initial position at (-100.3, 25), (-40.5, -45),

(17.8, 50.3), (69.8, 70.6), and (130.2, 98.7). ... 52

Fig. 10: Test result for Schwefel function with the initial position at (-100.3, 25), (-40.5, 25),

(17.8, 25), (69.8, 25), and (130.2, 25). .. 53

Fig. 11: Illustration for two possible transition paths between two states 59

vii

SUMMARY

One of the most important design issues for phase change materials is to engineer the

phase transition process. The challenge of accurately predicting a phase transition is estimating

the true value of transition rate, which is determined by the saddle point with the minimum

energy barrier between stable states on the potential energy surface (PES). In this thesis, a new

algorithm for searching the minimum energy path (MEP) is presented. The new algorithm is able

to locate both the saddle point and local minima simultaneously. Therefore no prior knowledge

of the precise positions for the reactant and product on the PES is needed. Unlike existing

pathway search methods, the algorithm is able to search multiple transition paths on the PES

simultaneously, which gives us a more comprehensive view of the energy landscape than

searching individual ones. In this method, a Bézier curve is used to represent each transition

path. During the searching process, the reactant and product states are located by minimizing the

two end control points of the curve, while the shape of the transition pathway is refined by

moving the intermediate control points of the curve in the conjugate directions. A curve

subdivision scheme is developed so that multiple transitions paths can be located. The algorithm

is demonstrated by examples of LEPS potential, LEPS plus harmonic oscillator potential, and

PESs defined by Rastrigin function and Schwefel function.

1

CHAPTER 1

INTRODUCTION

In order to speed up the revolution of nanotechnology, we should adopt a focus shift from

the ‘discovery-based’ development approach to a ‘solution-oriented’ approach to create new

nanomaterials. In the discovery-based approach, new materials are discovered first and then their

potential applications are explored. In the solution-oriented approach, new materials are designed

systematically to solve existing problems. Designing new materials with the aim to solve

engineering problems will be a major mission for engineers in the future. The availability of

computational design tools is the key to improve the efficiency of the materials design process.

The research presented in this thesis is to provide such kind of design tools, specifically the ones

for simulation-based phase change materials design. In the rest of this chapter, the motivation of

our research and the problem we try to solve are first described. A general description of the

proposed method to solve the problem is given, followed by a summary of the contributions of

this thesis.

1.1 Motivation

Nanotechnology of today mainly focuses on the discovery of nanoscale materials with

new properties and applications. So far it heavily relies on trial-and-error laboratory experiments

to turn them into commercial products for potential applications. This discovery-based

development approach is a time-consuming process and will not be able to satisfy the increasing

demand on new materials in the future. A solution-oriented approach should be adopted instead.

That is, engineers start with the analysis of the existing needs in solving engineering problems,

then design and produce new materials that can fulfill those needs in order to solve the specific

problems. Engineers need enabling technologies to create novel materials by designing the

microstructure of the materials systematically through a bottom-up approach. In order to achieve

this goal, computational design tools are essential. For example, modeling and simulation

software allows engineers to accurately predict the properties and functions of different material

structures to improve the efficiency of the materials design process.

Among engineering materials, phase change materials have attracted much attention and

2

have been widely used in engineering products such as in information storage (e.g. hard-disk,

CD-ROM, memory) and in energy storage (e.g. battery, shape memory alloy). One of the most

important design issues for these materials is to engineer the phase transition process. Simulation

that predicts the transition processes efficiently and accurately under desirable conditions is

critical in the design of phase change materials. The ultimate goal for the research presented in

this thesis is to provide simulation tools to design phase transition processes.

Traditionally, a phase transition is described from a top-down viewpoint as the

transformation of a thermodynamic system from one phase to another. A phase is one of the

states of matter which has uniform physical properties, and the materials system has a particular

level of free energy. When external conditions are varied, such as an enough change in

temperature or pressure, one or more properties of the material change and a phase transition

occurs. The system shifts from one free energy level to another as a result of these external

influences. The external conditions and amount of required input energy can be quantitatively

estimated and are the key to define a phase transition. For example, water has three phases (gas,

liquid, and solid) from the thermodynamic viewpoint. A liquid water changes to gas water when

it is boiled. In other words, a change in temperature can result in a phase transition from liquid to

gas. In general, a phase transition is accompanied by a series of physical events. There are two

broad classifications of phase transition, one involved latent heat and the other does not. Also

there are some other classifications such as the categories of first order, second order, and infinite

order phase transition. More details about the phase transition in thermodynamic point of view

can be found in [1] and [2].

A phase transition process can also be described from a bottom-up viewpoint, which is

adopted in this thesis. From the material’s microstructure point of view, a phase transition is a

geometric and topological transformation process of materials from one phase to another, each of

which has a unique and homogeneous physical property. In this description, we are interested in

the structure and topology changes for the material at atomistic scale. Understanding and

controlling the phase transition from the microscopic level is critical to design phase change

materials. In simulation-based design, the challenge of accurately predicting a phase transition is

the knowledge of the transition rate, which is determined by the energy barrier that exists

between the initial and final states. That is, activation energy is required to enable the transition

3

from the initial structure to the final one. Mathematically it is the saddle point on the potential

energy surface (PES) with the minimum energy barrier that determines the transition rate. The

general process to simulate the phase transition process is as follows. First, a PES which

characterizes detailed information about energy landscape is generated. Then a minimum energy

path (MEP) which is the most probable physical pathway of transition among all possible ones is

located. Finally the activation energy is obtained by finding the maximum energy on the MEP

and the transition rate is calculated using the transition state theory [3]. The key of phase

transition simulation is searching the saddle points on the PES.

Besides designing phase change materials, phase transition simulation is also important in

other applications. For example, the diffusion of adatoms on a solid, which is a fundamental

problem in surface science and has attracted attentions for decades, can be regarded as a phase

transition process. Chemical reactions and protein folding can also be generally treated as phase

transitions. Therefore, simulating phase transitions is also essential to design physical and

chemical processes at atomistic scales.

Compared to vibrations and other thermal behaviors, phase transitions are rare events.

Kinetic Monte Carlo (KMC) [4] simulation has been widely used to simulate the rare events,

which are characterized by occasional transitions from one state to another, with long periods of

relatively inactivity between these transitions. Traditional molecular dynamics (MD) simulation

focuses on femto-second trajectory prediction and is not efficient in simulating rare events. KMC

has been extensively used in physics and chemistry fields, such as the process of surface

diffusion, vacancy diffusion in alloys, etc. One of the key inputs for KMC simulation is the rate

for each of the possible events. The process of the surface diffusion in KMC consists of a

sequence of atom jumping events. The configuration of the system changes after each event. All

the possible configurations are called the states of the system, each of which corresponds to a

specific energy level. The transition rate from one state to another is determined by the energy

barrier between the two states.

Many numerical methods have been developed to search MEP on the PES, such as the

nudged elastic band (NEB) method [5] and the string method [6]. These existing transition

pathway search methods only search one path locally. The initial or final states have to be known

a priori. The purpose of this research is to develop a new method to locate multiple saddle points

4

without knowing the reactant and product in advance. It provides a global view of the energy

landscape. Thus the accuracy and efficiency of prediction can be improved.

1.2 An Overview of the Proposed Global Saddle-Point Search Method

A new algorithm for searching the MEP is presented in this thesis. The new algorithm is

able to locate both the saddle point and local minima simultaneously. Therefore no prior

knowledge of the precise positions for the reactant and product on the PES is needed. Unlike

existing pathway search methods, the algorithm is able to search multiple transition paths on the

PES simultaneously, which can provide a global view of the energy landscape, instead of a local

one by searching individual paths.

Here the Bézier curve is used to represent the transition pathway. A Bézier curve is a

parametric curve defined by control points which can be used to manipulate the shape of the

curve. In our global search algorithm, each control point of the curve represents one state, also

called image, on the transition path. During the searching process, reactant and product states are

located by minimizing the two end control points of the Bézier curve using the conjugate

gradient method, while the shape of the transition pathway is refined by moving the intermediate

control points of the curve in the conjugate directions. In each iteration, a set of conjugate

directions are determined and then several line minimization steps along those conjugate

directions are applied to each intermediate control points. As a result, the Bézier curve will

gradually converge to the MEP. In order to keep the control points evenly distributed, a modified

Bézier curve degree elevation and reduction scheme is developed here to redistribute the control

points in each iteration. Since there could be more than one saddle point with extra local minima

between the two stable states, one curve could be broken into two to represent two stages of

transitions recursively. We also developed a curve subdivision scheme to check whether there is

more than one saddle point with extra local minima between the two end points of the optimized

curve. If there is, we break this curve into two which are regarded as the initial guess of the

transition path for the two stages of transitions. Then those two curves are optimized by the same

procedure as we did to the original curve. This ‘check-and-break’ process continues until each of

the curves only passes through two adjacent local minimums with their end points located at

those local minimums. Since in real applications, people are more concerned about the exact

positions of the saddle points instead of the MEP in most cases, a climbing up scheme is also

5

introduced to locate the saddle points on those curves that are close enough to the MEP.

1.3 Contributions

The new algorithm is able to search multiple transition paths on the PES simultaneously,

which can provide a global view of the energy landscape. The existing methods only search one

transition path connecting the reactant and product with an implicit assumption of one transition

stage. For materials with complicated potential energy surfaces, often there are more than one

transition stages with several metastable states between the two stable configurations. There is a

possibility that the existing methods miss the saddle point with the highest energy level, which

could lead to an underestimation of the energy barrier between two states. For example, for a

process during which the reactant needs to go through several other stable states (local minima)

to reach the product, the NEB method may end up with locating some saddle points which are

not necessary the one with highest energy since the number of images for NEB method is fixed

during searching process, The proposed method can solve this problem by locating all the

metastable states as well as the corresponding saddle points along the path between the reactant

and product. Once all the metastable states and saddle points are located, it is easy to estimate the

minimum energy barrier between the reactant and product. In addition, it is a more efficient way

to search multiple transition paths simultaneously than searching individual ones in the situation

when a comprehensive view of energy landscape is important. For the existing searching

methods, it is difficult to receive a complete view of the distribution of the local minimums and

saddle points on the energy surface. It may need a significant number of trials with different

initial guesses in order to obtain a good sense of the energy landscape. The proposed method can

locate several local minimums and saddle points for a given range at a time. As a result, it can

give us a global view of the energy landscape.

The proposed method shares some similarities with both the NEB and string methods in

terms of treating the transition process as discretized images, and using several points or nodes to

represent those images. Different from the NEB and string methods, the proposed method uses a

Bézier curve to represent the transition path. The control points of the Bézier curve represent the

discretized images on the transition path. By moving the control points, the curve will gradually

converge to the MEP. For the NEB method, it employs spring forces to keep the nodes uniformly

spaced along the path. As a result, it needs to determine the Hooke constants for springs as well

6

as tangent directions onto which the spring forces will project in each iteration. The spline NEB

and string methods adopts re-parameterization scheme to keep the images on the path relatively

evenly distributed. Different from them, our method use the degree elevation and reduction

scheme of the Bézier curve to keep the control points well distributed. Since the degree elevation

and reduction of the Bézier curve use the simple linear interpolation of the control points, the

computation cost is much less than NEB and string methods for the redistribution process.

The rest of the thesis is organized as follows. Chapter 2 provides some background

knowledge related to the topics of transition pathway search, saddle point search, convergence

analysis of the conjugate gradient method, and the Bézier curve degree reduction methods.

Chapter 3 gives a detailed description of our new global search method. Chapter 4 shows the

implementation of our method and the demonstration with examples. Chapter 5 concludes with a

brief summary of the accomplishment and discussions about the future extension.

7

CHAPTER 2

BACKGROUND

This chapter presents some background knowledge for our global search algorithm. The

challenge for phase transition simulation is to search the transition rate which is determined by

the activation energy between two states. An activation energy barrier always exits between two

states. In 1931, Erying and Polanyi [3, 8] proposed the transition state theory (TST) as a means

to calculate the transition rates using the activation energy to characterize reactions. Most of the

simulation methods developed recently are based on the TST and harmonic transition state

theory (hTST) [9]. Some variants of TST (Variational Transition State Theory [10] and Reaction

Path Hamiltonian [11]) are also used . The general procedure to simulate a phase transition

process is as follows. First a PES is generated. Then a MEP which is the most probable physical

pathway of transition among all possible ones is located. Finally the activation energy is obtained

by finding the maximum energy on the MEP and the transition rate is calculated using TST.

Subsequently the phase transition simulation can be done using KMC, Accelerated Molecular

Dynamics (AMD) [12] or other simulation methods.

The accuracy of the simulation depends on the accuracy of the rate constants. In other

words, it depends on the accuracy of the activation energy. The research on transition pathway

search and saddle point search aims to find the accurate MEP and the saddle point. There are two

challenges in locating the MEP and the saddle point. One is the generation of an accurate PES;

the other is to search the MEP and saddle point on the generated PES.

Tremendous research has been done on how to generate the PES and many methods were

developed. Reference [13] presents a review of available methods of generating the PES

characterizing information regarding the interatomic and intermolecular interactions that

characterize the reaction is included in reference. [14-19] give some examples of PES generation

methods. Libraries and repositories of PES are also available and ready for use [20]. Further

discussion of these PES generation methods is beyond the scope of this thesis.

The search process of MEP and saddle points is also intensively studied. Many different

methods were developed to find the transition path and saddle points. [21-25] are examples of

the available reviews that give a detailed review or even comparison on some of those methods.

8

In general, there are two types of scheme for the searching process. One is the single-ended

search and the other is double-ended search. The scheme for the single-ended search methods

starts at a local minimum on the PES which represents the initial state configuration, then traces

stepwise sequentially until the MEP and saddle points are located. The activation-relaxation

method [26] and dimer method [27] are the examples of single-ended search methods. The

double-ended search methods make use of the two minima on the PES. Those methods require

the information for both the initial and final stable configurations. Examples includes the DHS

method [28], the ridge method [29] and the NEB method [5], etc. Sections 2.1 and 2.2 give a

detailed review on the existing reaction pathway search and saddle points search methods

respectively.

As mentioned in section 1.2, the conjugate gradient method is employed in our method to

locate the local minimums. A brief introduction and a literature review of the convergence

analysis on this method are presented in section 2.3. In section2.4, a review of the existing

methods on the Bézier curve degree reduction is presented.

2.1 Existing transition pathway search methods

Since 1970, there have been many methods developed to search the stationary points. The

methods in Refs. [30-32] are some examples, which are not going to be reviewed in this thesis.

Instead, we focus on more recent ones which aim to search the MEP on the PES.

Basically, the transition pathway search methods can be classified either as chain-of-

states methods, including NEB and string methods, or as one of the other methods. Chain-of-

states methods rely on a collection of images that represent intermediate states of the atomic

structure as it transforms from the initial to the final configuration along the transition path. After

an optimization on all the intermediate images simultaneously, these discrete states are chained

to each other when the search converges, usually by interpolating between the states, and the

transition pathway and saddle point are obtained. They work well in transitions where there may

be more than one saddle point, i.e. there may be more than one transition state. In situations

where there may be multiple transition pathways, the methods will converge to the pathway

which is closest to the initial guess of the transition pathway.

The early version of the chain of state methods is the plain elastic band (PEB) method

9

[33-39], which represents the transition path by several discrete images normally in a range of

four to twenty images. These images are subject to the total potential force and spring force.

After several rounds of optimization, the forces on those images vanish and the transition path

converges to the MEP. But in practice, the PEB method fails to locate the MEP in most

situations. The PEB method has two major defects, which are “corner cutting” and “sliding

down”. The corner cutting issue is caused by large spring stiffness. The band is too stiff and the

path cuts the corner which leads to in overestimating the saddle point energy. The sliding down

issue occurs when the stiffness of the spring is too small. The images slide down when getting

closer to the saddle point region and avoid the barrier region, thus reducing the resolution of the

path in the most critical area. These two defects are the motivation for developing the NEB [5]

method, one of the most commonly used chain-of-state methods. The NEB method represents

the transition path by a set of images connected by spring in order to ensure the continuity of the

path. An essential feature of the NEB method, which distinguishes it from other chain of state

methods, is the projection of the forces which ensures that the spring forces only control the

distribution of the images, and the true force only controls the convergence of the band to the

MEP. In each iteration, the tangent direction to the path should be determined to decompose the

true force and the spring force into parallel and perpendicular components. The perpendicular

components of the spring force and the parallel components of the true force are eliminated. This

force projection is referred as nudging. As a result, the spring force can be varied by several

orders of magnitude without introducing the ‘corner cutting’ or ‘sliding down’ problems. The

resolution at the region of interest (ROI) and the accuracy of the saddle point energy estimation

are improved. The force on image i then becomes

 || ||
ˆ ˆ() s

i i iV


   F R F τ τ
 (2.1)

where iR is the position vector for the thi image; ()iV


 R indicates the perpendicular

component of the potential force;
s

iF represents the total spring force on the thi image; and ||τ̂ is

the unit tangent to the path. In each iteration, the tangent vector along the path is defined by

central finite difference approximation:

10

1 1

1 1

i i i i
i

i i i i

 

 

 
 

 

R R R R
τ

R R R R

 (2.2)

The unit tangent vector ||τ̂ is obtained by normalizing the tangent vector iτ . The NEB method

requires the knowledge of the initial and final states of the transition, as well as an initial guess

of the transition path. At each iteration, the forces acting on the intermediate images are

minimized using an optimization algorithm, e.g. the Broyden-Fletcher-Goldfarb-Shanno (BFGS

method), keeping the initial and final states fixed. As a result, the images iteratively converge to

the MEP. To interpret the results, the interpolation between adjacent images should be adopted to

get the MEP. In the event of multiple MEPs, the algorithm will converge to the MEP which is

closest to the initial guess of the path. The algorithm works well in most situations. But in the

systems where the force along the MEP is larger compared to the restoring force perpendicular to

the path, kinks may develop because no perpendicular spring forces are considered. As a result, it

prevents the band from converging to the MEP. In addition, in some cases, the actual saddle

point may not locate at the position at one of the intermediate images. The improved tangent

NEB [40] and doubly nudged elastic band (DNEB) [41] methods reduce the appearance of kinks

by generating a better estimatation of the tangent direction of the path and re-introducing a

perpendicular spring force component, respectively. In the improved tangent method, instead of

using both the adjacent images 1iR and 1iR , only the image with higher energy and the image

iR itself are used to estimate the tangent direction. The new definition of the tangent direction is

1 1 1

1 1 1

if

if

i i i i i

i

i i i i i

V V V

V V V

  

  

  
 

  

R R
τ

R R
 (2.3)

when the image iR is at a maximum or a minimum in energy, the tangent vector is defined as a

weighted average of the vectors to the two neighboring images. The weight is determined based

on the energy. In the DNEB method, a manipulated perpendicular component of the spring force

is added back to the total force in order to reduce kinks. The total force then becomes

*

||
() s s

i i i iV


   F R F F (2.4)

where

11

*

ˆ ˆ()s s s

i i i i i 
  F F F τ τ (2.5)

The band is now doubly nudged as a result of inclusion both components of the spring force.

During the force minimization process, the limited-memory quasi-Newton (L-BFGS) [42]

optimization method is used, which accelerates the convergence of the relaxation process. The

climbing image NEB (CI-NEB) [43] is a modification to the NEB method. This method not only

retains the shape information of the MEP but also allows one image converges to the saddle

point rigorously. After a few iterations of regular NEB, the image maxi with the highest energy is

identified. Only for maxi , the force is calculated separately as:

max max max max max

ˆ ˆ() 2 ()i i i i iV V    F R R τ τ (2.6)

This is the total potential force with the component along the band being inverted. No spring

force is applied to image maxi , which allows the image maxi actively climbing towards the saddle

point along the band. The forces on other images are defined in the same way as it does in the

NEB method. The only difference is that the spring constants are calculated as a function of the

maximum energy along the band, which leads to a maximum spring constant if the image locates

at the maximum energy position and a small spring constant if the images are away from its

maximum energy position. As a result, there are more images settling around the saddle point

and thus achieving higher resolution at this critical region. The free end CINEB [44] method

achieves an important improvement to the original CI-NEB method by allowing one end state

swinging freely at a given level of energy. The movable end state is subject to a force defined as

 

||

2 ||

() ()

()

S

P P P
S

P P

P

V V

V

 
  



F R R
F F

R
 (2.7)

In such a way, one can keep the moving end state close to the saddle point region. As a result,

the number of images along the band can be significantly reduced while retaining a reasonable

resolution around the saddle point region. The computational cost to locate the saddle point is

greatly reduced. The spline NEB [45] method has two modifications from the original NEB

method. One is using a second-order L-BFGS in the relaxation process of each intermediate

image along the band, which leads to a faster convergence to the MEP. The other one is using a

12

spline interpolation to represent the path while eliminating the spring forces between adjacent

images along the band, which makes the method more robust. After the band is converged, the

Eigenvector Following [46, 47] optimization method can be applied further to locate actual

saddle points, and the resolution of ROI can be increased by using adaptive spring constants.

String method [6, 48] is another commonly used chain of state method. The string

method uses a smooth curve with intrinsic parameterization such as arclength, or energy

weighted arclength to represent the transition pathway. The string can be discretized into number

of points called the images on the string. As opposed to NEB, the number of points used in the

string method can be modified dynamically. The MEP is located by evolving the discretized

images according to the perpendicular components of the potential force. The improved string

method [49] evolves the string according to the full potential force instead of perpendicular

component of the force. That is, the force projection step is eliminated, which makes the method

more stable and accurate. The algorithm involves two simple steps: evolving the string by

standard ordinary differential equation (ODE) solvers; and re-parameterization of the string by

interpolation. The growing string method [50] does not require the initial guess of a complete

transition path. It grows from the ends of reactant and product until these two end points join

together and then the joint curve evolves to the MEP as the original string method does. This

method consists of a two-step procedure: evolution and parameterization. In the evolution step,

the total forces on the images are minimized. In the parameterization step, the images are

redistributed along the string with a prescribed density. If the perpendicular force at a frontier

node is less than a threshold, one more node is added and the node continues grow. The quadratic

string [51] method is a variation of string method based on multi-objective optimization subject

to constraints of parameterization and evolving direction. One essential modification made in

this method is that the integration is done locally on a quadratic PES approximation. A damped

Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian update is applied in searching the MEP.

The integration is performed with an adaptive step-size solver, which is restricted in length to the

trust radius of the approximate Hessian. The step size in this method can be larger than the

original string method.

Methods that are not classified as chain-of-states include the conjugate peak refinement

(CPR) method [52], the accelerated Langevin dynamics (ALD) method [53], the concerted

13

variational strategy [54], and Hamilton-Jacobi method [55]. The CPR method iteratively finds a

series of saddle points that are connected to each other and form a continuous reaction path from

reactant to product by linear interpolation. It uses the fact that the Hessian matrix (second

derivative of the energy surface) has exactly one negative eigenvalue and all others are positive

at the first order saddle point. Based on this fact, the CPR method constructs a set of conjugate

basis using the Beal’s [56, 57] formula by setting the initial maximum direction as the direction

along the line connecting the reactant and product. By using line maximization in one direction

and line minimization along all other conjugate directions, one saddle point is located. This

process is repeated to locate all other saddle points. The ALD method [53] is a stochastic

transition path sampling method by solving the Langevin equation (LE) describing the stochastic

dynamics of a thermally activated system. This method starts from the initial state and does not

require the prior knowledge of the final state and saddle point. For a single transition, the

pathway is divided into activation path (from initial state to one particular state M) which is

generated by a deterministic Newtonian equation with negative friction and deactivation path

(from state M to final state) which is generated by a regular Newtonian equation with positive

friction. The transition path can be approximated as a weighted average of all the possible paths

along the activation phase and the deactivation phase. The ALD method requires a priori

knowledge of the activation time from the initial state to the state M in physical transitions. The

concerted variational strategy [54] describes the transition path based on Maupertuis’ and

Hamilton’s Principles. After obtaining the transition path, the conjugate residual method [58] for

local search is used to locate the saddle point. The Hamilton-Jacobi method [55] relies on the

solution of a Hamilton-Jacobi type equation to generate the MEP. The search is based entirely on

the knowledge of the reactant. No prior knowledge for the product is needed. This method works

on a cost principle: points with a higher potential energy level have a larger cost than points with

a lower potential energy. A special cost is defined for the MEP.

2.2 Existing saddle point search methods

Instead of searching the complete MEP, saddle point search methods only locate the

saddle point on the MEP. They are categorized into local and global search methods. One of the

original local methods is the automated surface walking algorithm [59] which is based on

eigenvectors of the Hessian matrix with local quadratic approximation of the PES within a trust

14

region. For each iteration, the trust radius and Hessian matrix are updated. The search process

starts with tracking the eigenvalue of the updated Hessian matrix till the convergence is reached.

The other one is the partitioned rational function optimization [60] method, which is based on

local rational function approximation instead of quadratic approximation to the PES with

augmented Hessian. The more recent ridge method [29] and dimer method [7] use a pair of

images to search the saddle point without evaluating the Hessian matrix. The ridge method starts

searching the maximum on the straight line connecting reactant and product. And then two

images on the line with a small distance from the maximum are created. Those two images are

then relaxed and a new maximum point along the straight line connecting the two new images is

found. The process is repeated till the saddle point is located. The dimer method is a minimum-

mode following saddle point search algorithm. It uses a pair of two images of the system, called

dimer. The saddle point is located by minimizing the energy using rotation and translation at the

center of the dimer iteratively. The improved dimer method [61] modifies the original dimer

method by using a different way to calculate curvature, reducing the number of gradient

calculations, choosing a larger step of rotation, and applying translation to the dimer middle

instead of one of the two images. Those modifications significantly improve the overall

performance and robustness of the algorithm on quantum-chemical PES which subjects to

numerical noises. Reduced Gradient Following (RGF) [62] and Reduced Potential Energy

Surface Model [63] methods use intersections of zero-gradient curves and surfaces, with saddle

point search occurring within the subspace of these curves or surfaces. The RGF method

involves predict and correct steps. It starts from a stationary point and then moves along the

tangent of reduce gradient curves. The improved RGF method [64] makes the method more

efficient by using an implied corrector step for each predictor, which reduces the number of calls

to the computationally expensive corrector step. Finally, the Synchronous Transit method [65]

locates the saddle point by using a single line minimization of energy along the direction

orthogonal to the linear synchronous transit path, which is followed by the energy maximization

along the quadratic synchronous transit path. [66] generalized and improved the method by

estimating the transition state and refining the saddle point estimation through conjugate gradient

optimization.

Local search methods may locate the saddle point which does not have the maximum

energy on the MEP if there are multiple saddle points. Global search methods have the advantage

15

that the saddle point with the maximum energy is located if the search converges. The Dewar-

Healy-Stewart method [28] searches for the saddle point by iteratively reducing the distance

between reactant and product images. The main idea of this method is to pull the lower energy

image over the potential energy surface towards the higher energy image. The Activation-

Relaxation technique [26] can travel between many saddle points using a two-step process; an

image first jumps from a local minimum to a saddle point, and then back down to another

minimum. This method does not require an initial guess. The Step and Slide method [67] uses an

image from the initial and final states. Energy levels of each are increased gradually, and the

distance between them is minimized while remaining on the same isoenergy surface. The interval

Newton’s method [68] is capable of finding all stationary points by solving the equation of

vanishing gradients.

2.3 Conjugate gradient method

Conjugate gradient method is an effective iterative method for solving large, sparse

systems of linear equations numerically, provided that the coefficient matrix of which is

symmetric and positive definite. This method is originally proposed by Hestenes and Stiefel [69].

In solving the linear equations A x b , the key idea of this method is to minimize the residual

i iA r b x along conjugate directions. This method solves the equation in at most n steps

provided that there is no round-off error. A detailed explanation and development of this method

could be found in [70, 71]. Later on, this method is extended to solve nonlinear systems of

equations and unconstrained optimization problems such as potential energy minimization. In

[72], Fletcher and Reeves developed an algorithm namely Fletcher-Reeves method by using the

conjugate gradient method to minimize a general function. For a quadratic function, the method

could locate the minimum in at most n steps apart from rounding off errors. For non-quadratic

function, it usually takes more than n iterations to locate the minimum. Later, Polak and Ribière

[73] modified the Fletcher-Reeves method by changing the way how the conjugate directions are

calculated. Hestenes and Stiefel [69] also have their own approach to calculate the conjugate

directions. For all the three methods, the conjugate search directions have a general form of

16

 1

1

2

k

k

k k k

k

k 

 
 

  

g
d

g d
 (2.8)

where kg is the gradient; k is a scalar. For the Fletcher-Reeves method, Polak-Ribière method,

and Hestenes- Stiefel method, the k is defined by Eqns. (2.9), (2.10) and (2.11) respectively.

2

2

1

kFR

k

k





g

g
 (2.9)

 1

2

1

()T
PR k k k

k

k

 






g g g

g
 (2.10)

 1

1 1

()

()

T
HS k k k

k T

k k k

 

 






g g g

d g g
 (2.11)

Same as other iterative methods used in minimization problem, convergence is always the key

issue. When the conjugate gradient is applied to a general function, a local quadratic

approximation is always involved. In order to determine the step size in each conjugate direction

for a general function, a line minimization search process is adopted, which could affect the

convergence properties of the method depending on which convergence criteria is used for the

line searches. When the method is used to solve unconstrained optimization problems, extensive

research has been conducted on the convergence properties of this method. Zoutendijk [74]

proved that the Fletcher-Reeves method with exact line searches is globally convergent on

general functions. Al-Baali [75] extended Zoutendijk’s conclusion to inexact line searches,

particular for a variation of the Wolfe line-search. Powell [76] demonstrated that the Polak-

Ribière and Hestenes-Stiefel methods are not globally convergent even with exact line searches.

Meanwhile, Hu and Storey [77], and Gilbert and Nocedal [78] studied the global convergence of

the algorithm related to the Fletcher-Reeves method with the strong Wolfe line search which

indicates that the analysis is under the sufficient decent condition. In [78], Gilbert and Nocedal

also studied the global convergence for the algorithms related to the Polak-Ribière method by

considering different choice of k . Liu, Han and Yin [79] demonstrated the global convergence

of the Fletcher-Reeves method under some conditions that are weaker than those in [75]. Dai and

17

Yuan proved that the Fletcher-Reeves method with the strong Wolfe line search is globally

convergent provided that for each iteration, the search direction is downhill. Dai, Han, Liu., et al

[80] demonstrated the global convergence of the Fletcher-Reeves- and Polak-Ribière-type

methods without assuming the sufficient descent condition. This paper showed that the sufficient

descent condition is no longer a need in the analysis of the global convergence of the Fletcher-

Reeves and Polak-Ribière method.

2.4 Existing methods for degree reduction of Bézier curve

In this research, Bézier curve is used to represent the transition path. Bézier curve is a

parametric curve which is defined by a set of control points. The number of control points

determines the degree of the Bernstein polynomial basis functions that describe the shape of the

curve. The curve interpolates its first and last control points and is tangent to the first and last

sides of the open polygon defined by these control points [81]. We use degree elevation and

reduction to maintain the space between control points during MEP search. Degree elevation of

Bézier curve is exact. In contrast, degree reduction always has approximation involved. Degree

reduction of Bézier curve is a process that uses a lower order curve to approximate a higher order

curve. There are two major applications for the degree reduction of Bézier curve. One is to

generate a piecewise linear approximation to a prescribed curve. The other is to transfer data

from one geometric modeling system to another. During the process, usually a curve with higher

degree must be approximated by several lower degree curves due to the limitation on the

maximum polynomial degree that certain systems can store and work with. Intensive research

has been conducted on the degree reduction of Bézier curve in order to minimize the error

between the original and reduced curve. The approximation to the original curve depends heavily

on the chosen distance or error function to be minimized. There are typically two categories of

approaches. One is to approximate the shape for the curve. The other is to approximate

polynomial function that defines the curve. It treats the degree reduction process as the inverse

process of degree elevation. Hence, the degree reduction problem is shifted to the problem of

solving an over-determined linear system for the polynomial coefficients that defines the curve.

Watkins and Worsey [82] developed a degree reduction method which is based on minimax

approximation techniques. The method looks at the degree reduction from the perspective of the

curve itself and as a result can achieve a better approximation to the original curve measured in

18

the uniform norm. Eck [83] extended the degree reduction scheme originally proposed by Forrest

[84] by introducing real weighting factors to blend the two set of coefficients together. It is a

linear interpolation of the two set of coefficients. This shifts the problem of degree reduction to a

problem of determining a set of real weighting factors. By minimizing the maximal Euclidean

distance between the reduced curve and original curve based constrained Chebyshev

polynomials, the weights could be determined. However, this algorithm requires intensive

implementation effort because the constrained Chebyshev polynomials are known implicitly in

general. In [85], Eck improved the algorithm by minimizing the least squares distance function

using constrained Legendre polynomials. Bogacki and Weinstein [86] developed two algorithms

(one-degree reduction and multiple degree reduction) that compute a constrained approximation

of an thn degree Bézier curve by an ()thm m n degree curve. The approximation is performed in

the uniform norm applied component-wise with endpoint interpolation. Brunnett et al. [87]

studied the optimal degree reduction (optimal approximation of an thn degree Bézier curve by an

()thm m n degree curve) with respect to different norms, particularly to pL norms and the

uniform norm (p ). Kim and Moon [88] addressed the degree reduction problem in the 1L

norm with endpoint interpolation. The scheme gives the best one-degree reduction of Bézier

curve of the degree less than six with endpoint interpolation by using splines. For higher order

curves, they proposed a scheme which is based on an appropriate transform of the Chebyshev

polynomials of second kind. Kim and Ahn [89] developed a 1C constrained degree reduction

method using the constrained Jacobi polynomials, the coefficients of which are represented

explicitly, as the error function for good degree reduction of Bézier curve. In [90], Ahn extended

the 1C constrained degree reduction method to (2,3)kC k  constrained degree reduction using

the constrained Jacobi polynomials.

In recent years, multi-degree reduction has been intensively studied. Instead of

conducting the multi-degree reduction stepwise, methods are developed to perform multi-degree

reduction at a time. Chen and Wang [91] developed a method named MDR by 2L norm, which

gives an explicit form of the least squares solution of multi-degree solution of Bézier curve with

constraints of endpoints continuity. Sunwoo [92] generalized Chen and Wang’s work [91] by

finding an explicit form of the multi-degree reduction matrix for a Bézier curve with constraints

19

of endpoints continuity. The control points of the degree reduced curve can be expressed as a

product of degree reduction matrix and the vector of original control points. Lu and Wang [93,

94] developed a multi-degree reduction method with 2G continuity under 2L norm. Later on,

they developed another multi-degree reduction with respect to the 2t t -weighted square norm

by using the transformation matrix between Bernstein and Chebyshev basis. Rababah and Lee

[95] developed a simple matrix form for r times degree reduction with respect to the weighted

2L -norm by using the matrices of transformations between Chebyshev and Bernstein basis.

Woźny and Lewanowicz [96] proposed a multi-degree reduction method under 2L norm by using

dual Bernstein basis polynomials. A re-parameterization-based multi-degree method is

developed by Chen and Ma [97] recently, which introduces a piecewise linear function to replace

the general t in the least square distance.

In this thesis, the developed algorithm uses the conjugate gradient method in searching

the local minimums and the degree elevation and reduction in redistribution of the intermediate

control points. The followed chapter presents the developed algorithm with a detailed

explanation on how the conjugate gradient method and the degree reduction are used in the

algorithm.

20

CHAPTER 3

CONCURRENT MULTI TRANSITION PATHWAY

SEARCH ALGORITHM

This chapter gives a detailed description of the proposed new algorithm. The objective of

the algorithm developed here is to locate both the minimum energy positions and MEP

simultaneously. So the precise positions of the stable configurations do not need to be known in

advance. In addition, the algorithm is able to search multiple transition paths on the PES

simultaneously, which gives us a comprehensive view of the energy landscape on the PES.

This global search algorithm includes three stages. The first stage involves the

optimization of a single transition path, during which two local minima and one transition path

that is close to the MEP will be located. The second stage is searching multiple transition paths

starting from one single transition path obtained from the first stage. One curve is divided into

two curves representing two stages of transition, which will be optimized in the same way as in

the first stage. This stage will output several transition paths that approximate the true MEPs

with those end points located at local minima. Then at the third stage, we let the control point

with the maximum energy within each of those transition paths climb up in order to locate the

actual saddle points. Sections 3.1 and 3.2 give a detailed description about the first two stages

respectively. The procedure for this algorithm is summarized in Figure 1. An initial guess of the

transition path is first provided. Then the path is optimized by minimizing the two end control

points using the conjugate gradient method and meanwhile moving all the intermediate control

points along the corresponding conjugate gradient directions. When two local minima are located

by the end control points of the curve, the algorithm determines whether the curve crosses an

extra local minimum or not. If not, the maximum energy point on the curve climbs up along the

conjugate gradient directions to locate the true saddle point. If yes, the curve breaks into two new

curves which represent initial guess for two new transition paths. Those two new curves are

optimized and then checked following the same procedure as the initial curve. The check-and-

break procedure continues until all the curves are unbreakable with their end control points

locating at local minimums and one intermediate control point locating at the saddle point.

21

Optimize the curve using
the procedure discussed

in section3

Breakable?
Yes

Stop

No

Two new curves which
represent initial guess for
two new transition paths

Input initial guess for a
single transition path

represented by a Bézier
curve

Let the points with maximum energy
on the curves to climb up to the

saddle positions

Figure 1: Flow chart for the procedure of the algorithm

3.1 A single transition pathway search

For the initial guess of a transition path which is represented by a single Bézier curve, the

searching process for the stable configurations and the MEP is carried out in a sequential manner

within a given iteration. A total of five control points are used for the initial curve. The more

control points the curve has, the more accurate the search results will be, but with higher

computational costs. The general process for a single transition pathway search is as follows.

First, the two end control points of the curve are minimized by using the conjugate gradient

method. Then, a set of conjugate directions for each intermediate control point is determined

based on the new positions of the two end control points. Several minimization steps are applied

22

to each intermediate control points along their associated conjugate directions. After several

iterations, the two end control points of the curve will gradually converge to the minimum

energy positions and the curve will approach to the MEP. Figure 2 illustrates the procedure of

searching a single transition path. Table 1 lists the pseudo-code of the algorithm for a single

transition pathway search. The details are described in the following subsections.

3.1.1 Searching the Stable Configuration

As shown in Table 1, the local minimums are located by minimizing the two end control

points of the curve iteratively. By definition the minimum energy location *
x on the PES

satisfies

  * 0V x (3.1)

where
*()V x is the potential energy function with respect to the position vector *

x in an n-

dimensional configuration space;  *V x is the gradient of the potential on the PES at the

location *
x . The iterative location update during the minimization is given by

 () (1) () ()i i i i x x d (3.2)

where ()i is the step length, and
()i

d is the search direction. The minimization process for the

end points is carried out using the conjugate gradient method [72]. Detailed description about

this method can be found in section 2.3. In our algorithm, the Fletcher-Reeves method is

employed. The conjugate searching direction
()i

d in the thi iteration are defined as a linear

combination of
()ig and

(1)i
d [72],

()

2
()()

() (1)

2
(1)

for 1

for 2

i

ii

i i

i

i

i



 


 
  


g

gd
g d

g

 (3.3)

 The step size
()i is determined by using inexact line search along the corresponding conjugate

directions. Namely, along each conjugate direction, several mini-steps are applied to the end

points in order to locate the minimums along that direction. The minimum position in one

conjugate gradient direction is the starting point for the corresponding followed conjugate

23

searching direction. In Table 1, in an n -dimensional search space, the search direction ()i
D in thi

iteration can be represented as

() () () () () ()

1 1

i i i i i i

n n    D d d (3.4)

For a quadratic potential function with n -dimensional inputs, the local minimum can be

determined in at most n steps. For a non-quadratic function, local quadratic approximation is

involved during the minimization process. For a non-quadratic function with n-dimensional

inputs, it requires more than n steps to locate a minimum. For those functions, the conjugate

searching directions which are built based on the Eq. (3.3) will gradually lose conjugacy when

searching process continues, which could lead to divergence. In our algorithm, we recalculate the

conjugate directions from one iteration to another, namely after n steps of conjugate search in

order to avoid the divergence.

Search the new positions
for the two end control

points

Update the positions of
the intermediate control

points along
corresponding conjugate

directions

Construct several
conjugate basis

corresponding to each
intermediate control points

Convergence?

Calculate the change of the
function value at the end

control points
|(f(x(i))-f(x(i-1)))/f(x(i-1))|<δ

Yes

Go to the
second stage

No
Redistribute the
control points

Input initial positions for
the control points of a

Bézier curve

Figure 2: Flow chart for the procedure of a single transition path search

24

Table 1: Pseudo-code of the algorithm for a single transition pathway search

INPUT: Initial guess of a curve with control points of 0 1 2 3 4, , , , .p p p p p

OUTPUT: A curve with two end points located at two local minimums and the curve itself

approaches to the MEP.

TOL= threshold for the percentage of change in potential energy value;

(#)

*()V p =potential energy value at points
(#)

*p ;

()

0

i
D ,

()

4

i
D = search direction at 0p and 4p respectively;

()

0

i ,
()

4

i =step size for minimizing 0p and 4p respectively;

WHILE True

 IF
() (1) (1)

0 0 0(() ()) / ()i i iV V V TOL  p p p and
() (1) (1)

4 4 4(() ()) / ()i i iV V V TOL  p p p

() (1) () ()

0 0 0 0

i i i i p p D ;
() (1) () ()

4 4 4 4

i i i i p p D ;

 Minimize
(1) (1) (1)

1 2 3, ,i i i  
p p p in their associated conjugate directions to get a new set of

 intermediate control points
() () ()

1 2 3, ,i i i
p p p (see section 0).

 IF There is zigzag along the curve

 Do degree elevation or reduction locally (see Section 3.1.3 and 3.1.4).

 END IF

 ELSEIF
() (1) (1)

0 0 0(() ()) / ()i i iV V V TOL  p p p and
() (1) (1)

4 4 4(() ()) / ()i i iV V V TOL  p p p

() (1) () ()

4 4 4 4

i i i i p p D ;

 Minimize
(1) (1) (1)

1 2 3, ,i i i  
p p p in their corresponding conjugate directions to get a new set

 of intermediate control points
() () ()

1 2 3, ,i i i
p p p .

 IF There is zigzag along the curve

 Do degree elevation or reduction locally (see Section 3.1.3 and 3.1.4).

 END IF

 ELSEIF
() (1) (1)

0 0 0(() ()) / ()i i iV V V TOL  p p p and
() (1) (1)

4 4 4(() ()) / ()i i iV V V TOL  p p p

() (1) () ()

0 0 0 0

i i i i p p D ;

 Minimize
(1) (1) (1)

1 2 3, ,i i i  
p p p in their corresponding conjugate directions to get a new set

25

 of intermediate control points
() () ()

1 2 3, ,i i i
p p p .

 IF There is zigzag along the curve

 Do degree elevation or reduction locally (see Section 3.1.3 and 3.1.4).

 END IF

 ELSE

 Stop.

 END IF

END WHILE

IF Two end points converge to the same local minimum

 Re-input the initial guess of the control points 0 1 2 3 4, , , , .p p p p p

END

3.1.2 Searching the MEP

Mathematically, for the n-dimension PES, the Hessian matrix H (the matrix of the second

derivative of the energy) at the first-order saddle points has one negative eigenvalue and 1n

positive ones. The eigenvectors is form a conjugate basis (i.e. 0,T

i j i j  s Hs) with respect to

the Hessian matrix. For a set of conjugate direction is ’s, in the vicinity of a first-order saddle

point, there is one direction 0s along which the potential energy has a local maximum. For each

of the other 1n directions, the potential energy has a local minimum. The method presented

here constructs a set of conjugate directions by making use of the Eq. (3.5) develop by Beale

[56] which starts with a given arbitrary direction 0s . The rest conjugate directions are defined as

1 1 0
1 1 0

0 1 0

1 1 0 1 1
1 1 0

0 1 0

()

()

()
, 1

()

T

T

T T

i i i
i i iT T

i i

i  
 


  




    



g g g
s g s

s g g

g g g g g
s g s s

s g g g g

 (3.5)

In this algorithm, for each intermediate control points, a set of corresponding conjugate

directions are constructed by setting the 0s

as the tangent direction approximated by the

backward finite difference for the first half of the intermediate points and by the forward finite

26

difference for the second half respectively. For example, for the thk control point
kp ,

1

0

1

if
2

if
2

k k

k k

N
k

N
k





  
   

  
 

       

p p

s

p p

 (3.6)

where N is the total number of control points and    rounds up to an integer. In order to

calculate 1s in Eq.(3.5), we first need to determine 0g and 1g . Here for the thk control point
kp ,

0g is defined as the gradient at the middle point of the line segment connecting
kp and its

neighbor, namely,

1

0

1

() if
2 2

() if
2 2

k k

k k

N
V k

N
V k





  
   
  

 
       

p p

g
p p

 (3.7)

 1g is defined as the gradient at the position with maximum energy
maxp along the direction 0s .

Several steps of line maximization are applied to the point kp along 0s in order to locate maxp .

Then several steps of line minimization along the conjugate direction 1s are applied to kp . The

rest of the conjugate basis set are then built recursively using Eq. (3.5). Simultaneously, each

time when a new conjugate direction is determined, several steps of line minimization along this

direction are applied to the associated new positions of maxp .

3.1.3 Constrained Degree Elevation and Degree Reduction

After the evolution of the intermediate control points along the conjugate directions,

those control points may become too close to each other. As a result, the control points only

capture part of the information along the transition path. The resolution around the saddle region

may be too low. This could lead to an underestimation of the energy barrier. Similar to the re-

parameterization process in the string method [49], a redistribution process of the control points

after each evolution step is introduced in order to ensure that these intermediate control points

are relatively well distributed. The degree elevation and reduction scheme for the Bézier curve

27

are employed to redistribute the intermediate control points in our algorithm.

Degree elevation increases the flexibility of a curve by introducing more degrees of

freedom for control. By adding an extra control point to the definition of a Bézier curve, its

degree is raised by one. The advantage of using the degree elevation technique is that we can

increase the degree of a Bézier curve without changing its shape. The degree elevation of an thn

order Bézier curve by one produces an (1)thn order Bézier curve with a new set of vertices
kq

defined by [98]

1

1

, 0

1 , 1,...,
1 1

, 1

k k

k k k

k k

k

k k
k n

n n

k n





 

  

     
  

   

q p

q p p

q p

 (3.8)

where
kp ’s are the original vertices of the thn order Bézier curve. Eq. (3.8) can be written in a

matrix form as

 nTQ P (3.9)

where 0 1 1(, , ,)n



Q q q q , 0 1(, , ,)n

P p p p , and nT is a (2)n by (1)n matrix defined

as

n

1 0 0 0 0 0

1 0 0 0 0

0 2 1 0 0 0
1

1
0 0 0 1 2 0

0 0 0 0 1

0 0 0 0 0 1

n

n

n

T
n

n

n

n

 
 
 
 
 

  
 
 
 
  

The Bézier curve can be elevated more than one degree by applying Eq.(3.4) multiple times. In

our algorithm, the curve is elevated only once within each iteration in order to make control

points well distributed.

The purpose of degree elevation in our algorithm is to redistribute the intermediate

control points. In other words, we are concerned more about how well the procedure makes the

28

control points distributed than about how small the error between the elevated curve and the

original curve may have, as long as the introduced error is within a tolerance range. Based on

those two considerations, a constraint is added to the original degree elevation scheme in order to

better serve our purpose. When two control points become too close to each other after the

degree elevation by Eq. (3.8), we manually set the new control point to be the arithmetic average

of the two adjacent control points in the original curve. In other words, for each newly created

control points of the elevated curve, we calculate the Euclidean distance between this point and

the middle point of its corresponding adjacent points of the original curve. For the thk control

points kq of the elevated curve, if it satisfies the condition

 1
1

2

k k
k k kc




  

p p
q p p (3.10)

where (0 1)c c  is a predefined constant, then kq is set as the middle point of the straight line

1k kp p . Since it is too computationally expensive to keep elevating the curve recursively, degree

reduction is introduced to keep a balance with degree elevation and maintain a reasonable

computational cost.

Degree reduction approximates an thn order Bézier curve with an ()thm m n order

curve. Different from degree elevation, no exact degree reduction is possible in practice. So

approximation is inevitable. Similar to some of the existing methods reviewed in section 2.4, we

treat the degree reduction as an inverse process of the degree elevation. Equation (3.8) shows

that the control points of an elevated Bézier curve can be exactly determined by the control

points of the original Bézier curve through linear interpolation of the two adjacent points. For the

degree reduction, we need to solve the over-determined system in Eq.(3.8) for the unknowns

 
0

n

k k
p as a linear combination of  

1

0

n

k k




q .

Many methods are available to solve Eq. (3.8) approximately. Here, we developed a

reduction scheme similar to Eck’s method [85] which solves the equations by three steps. In

Eck’s method, the Eq. (3.8) is solved first in the forward direction. That is, for 1, , 1k n  , we

receive

29

   1

1
1

1

I I

k k kn k
n k

  
 

p q p (3.11)

where the superscript I indicates that the control points are obtained from the forward procedure.

Then the control points  
1

1

n
I

k k




p can be obtained recursively by setting 1 1

I

k k p q when 1k  ,

which indicates that the two end control points are fixed for the degree reduction. Then Eq.(3.8)

is solved in the backward direction. That is, for , ,2k n , we receive

     1

1
1 1II II

k k kn n k
k

     p q p (3.12)

where the superscript II indicates the control points is obtained from the backward procedure.

And the control points  
1

1

n
II

k k




p can be obtained recursively by setting 1

II

k kp q when k n .

Thirdly, the unknown control points  
0

n

k k
p of the reduced Bézier curve are calculated as a linear

combination of the control points  
1

1

n
I

k k




p and  

1

1

n
II

k k




p as

0

(1) 1, , 1

k k

I II

k k k k k

k k

k

k n

k n

 

 


    
  

p q

p p p

p q

 (3.13)

where k is the weights for
II

kp .

The degree reduction problem is then converted to the one of determining the weights of

the corresponding control points. In Eck’s method, k ’s are determined by minimizing the least

square distance between the original curve and the reduced curve, which is too costly for our

purpose. Since the degree reduction in our algorithm is to redistribute the control points instead

of transforming geometric information of curves which requires the error between the reduced

curve and the original curve should be as small as possible. In order to reduce the computational

cost, here the weights k are defined as

 (1, , 1)k

k
k n

n
    (3.14)

The implementation test shows that this simplified degree reduction scheme makes the

30

distribution of the points worse for some cases. Sometimes it introduces loops, which is

undesirable for our algorithm. Thus we developed a reduction scheme similar to Eck’s [85] but

with a modified forward and backward procedure. In order to determine the new control points

for the reduced curve, we make use of the information of three adjacent points instead of one as

in Eck’s scheme from the original curve. The three-step procedure is described as follows. In the

forward step, three sets of points are calculated by using

   ,1 1

1
1

1

I I

k k kn k
n k

  
 

p q p (3.15)

   ,2 1

1
1

1

I

k k kn k
n k

  
 

p q q (3.16)

and

   ,3 2 1

1
1

1

I

k k kn k
n k

   
 

p q q (3.17)

where 1, , 1k n  . Then an average of them

,1 ,2 ,3

3

I I I

k k kI

k

 


p p p
p (3.18)

forms a new set of points  
1

1

n
I

k k




p . Similarly, in the backward step, a new set of control points

 
1

1

n
II

k k




p can be obtained by using Eqs. (3.19), (3.20) , (3.22) and (3.22).

     1,1

1
1 1II II

k k kn n k
k

     p q p (3.19)

     1,2 1

1
1 1II

k k kn n k
k

     p q q (3.20)

    1,3 2 1

1
1 1II

k k kn n k
k

      p q q (3.21)

1,1 1,2 1,3

1
3

II II II

k k kII

k

  



 


p p p
p (3.22)

Finally, the new control points  
0

n

k k
p can be obtained by using Eq.(3.13) and (3.14).

31

3.1.4 Local Degree Elevation and Degree Reduction

The degree elevation and reduction of a Bézier curve changes the shape of the curve

globally, which will gradually smooth out the curve. Consequently, this prevents the curve from

converging to a curved MEP. The remedy for this issue is to introduce a local degree elevation

and reduction scheme. Within each iteration, we first check whether there is zigzag along the

curve or not. If there is no zigzag along the curve, we do not do degree elevation and reduction to

the curve. Otherwise, we do degree elevation and reduction locally based on the distribution of

the zigzag. For example, for the thk control point
kp (1,..., 1i n ), if it satisfies the condition

 1 1

1 1

arccos k k k k

k k k k

p p p p

p p p p
 

 

 
  
 
 

 (3.23)

where (0)    is a predefined constant, then it indicates that there is zigzag at the control

point kp . We check each of the intermediate control points within each iteration. If there is no

zigzag along the curve, degree elevation or reduction is not needed; otherwise, degree elevation

or reduction is done locally. If the zigzag only exists within the first half of control points, degree

elevation or reduction is only performed to the first half of control points. Similarly, it is

performed only to the second half of control points if the zigzag only exists within the second

half. If the zigzag exists in both, we do degree elevation or reduction globally.

3.2 Multiple Transition Pathway Search

Here, we present how to search multiple transition paths on the PES. Our algorithm starts

with the initial guess of a single transition path. Once the local minimums are found as described

in Section 3.1.1, this single path will be divided into two curves if an extra basin is located along

the path. Both subdivided curves will then be treated individually and the algorithm will be

applied to them. This subdivision process continues recursively until there is only one possible

saddle point between any pair of local minimums. As a result, multiple local minimums and

transition paths can be found within a target search area. Therefore, the initial guess of this single

path should be set up such that the search area of interest can be covered.

During the multiple transition path search stage, a curve with two end control points

located at the two local minimums obtained from the single transition path search will be

32

examined by using the curve subdivision scheme. It determines whether the curve crosses an

extra basin with another local minimum. If yes, the curve is divided into two new curves at the

intermediate control point that is located in the extra basin. Since the number of control points

for those two newly created curves may be less than five, the degree elevation is applied to the

two curves recursively until the number of control points for each curve reaches five. Those two

elevated curves now represent the initial guesses for the two new transition paths. The elevated

curves are optimized using the procedure listed in Table 1. After their respective local minimums

are identified, the curve subdivision scheme is applied to them again. The check-and-break

procedure continues until all of the curves are unbreakable with their end control points located

at local minimums. By now, those curves are still the approximations of the individual MEPs. In

order to find the actual energy barrier for each curve, the algorithm selects the control point with

the maximum energy and makes it climb up to locate the saddle point. During the climbing

process, a set of conjugate directions corresponding to the identified control point with the

maximum energy are constructed. Different from the procedure in the single transition path

search, the point with the maximum energy will be first maximized along
0s direction, and then

minimized along other directions is ’s (1i). The same procedure in the single transition path

search, i.e. minimization along directions with positive eigenvalues, is applied to the rest of

intermediate control points during the climbing process. This further makes the curve converge

to the MEP. Table 2 lists the pseudo-code of the algorithm for multiple transition path search. A

curve with two end control points locating at two local minima is obtained from the single

transition pathway search. The curve subdivision scheme is used to determine whether the curve

crosses an extra local minimum or not. If not, energy point with maximum energy value on the

curve climbs up along the conjugate gradient directions to locate the saddle point. If yes, the

curve breaks into two new curves each of which has a total number of control points less than

five. The degree elevation is applied to the two curves recursively until the number of control

points for each curve reaches five. Those two elevated curves represent initial guess for two new

transition paths. The elevated curves are optimized and then checked following the same

procedure as the initial curve. The check-and-break procedure continues until all the curves are

unbreakable with their end control points locating at local minima and one intermediate control

point locating at the saddle point.

33

Table 2: Pseudo-code of the algorithm for multiple transition pathway search

INPUT: A curve () x with two end control points located at two local minimums.

OUTPUT: Multiple curves with their end points connected together locating at multiple local

minimums. Besides, each curve has one point locating at the saddle point position.

iN =number of newly produced curve for thi iteration (0N is set to be 1).

0i 

WHILE There exists newly produced curves in thi iteration

 1i i  ;

 iN =0;

 FOR 11,2..., ij N 

 IF ()j x is breakable (using the scheme listed in Table 5)

 Break the curve ()j x into two curves
1()j x and

2 ()j x .

 2i iN N  ;

 END IF

 IF the number of control points for
1()j x or

2 ()j x is less than five

 Do degree elevation to the curve
1()j x or

2 ()j x .

 END IF

 Optimize
1()j x and

2 ()j x after degree elevation to get two optimized curve ()k x and

 1()k  x (1ik N ).

 END FOR

END WHILE

FOR 1,2...,j  (total number of non-breakable curves produced during the WHILE loop)

 Select the maxi-energy control point of the ()j x to climb up in order to locate the saddle

point.

END FOR

The major step during the multiple transition path search is to determine some criteria of

whether a curve is breakable and which intermediate control point we should select to break the

34

curve. Here the subdivision scheme for the fourth-order (with five control points) and fifth-order

(with six control points) curves are used to demonstrate. If we use a curve with a degree lower

than four, the limited number of control points may miss the detailed curvature information of

the actual path on the PES. As a result, some of the local minimums will be missed. The

subdivision scheme can be similarly extended to higher-order curves.

3.2.1 Scheme for Selecting Breakpoint

In this section, we present a curve subdivision scheme to determine whether a curve can be

divided into two curves and which control point to be selected as the breakpoint for this

breakable curve. This curve subdivision scheme is based on an assumption that the control points

of a Bézier curve are relatively evenly distributed in a sequential manner. In other words, the

curve itself has no loop or big curvature. We make use of the information of the gradient and

potential energy value at each of the intermediate control points as well as their relative positions.

Figure 3 shows a Bézier polygon on the PES with two end control points located at the minima

of two separate basins of local minima. 0 1 2 3, , ,p p p p and 4p are control points. 1()V p ,

2()V p ,and 3()V p illustrate the negative gradient directions at the position 1 2, ,p p and 3p

respectively. 1 2, ,  and 3 are the angles between the negative gradient and the control polygon.

By examining the three angles as well as the potential energy values at those intermediate control

points, it is able to determine whether the curve crosses a third basin of local minimums. There

are a total of eight combinations with the angle distributions. The process of this scheme includes

three steps. The first step is to check the combination of 1 and 3 . If no conclusion can be

reached, a second step is to check 2 . If we still cannot decide by the second step, the energy

values at the intermediate points will be considered as the third step.

Table 3 summarizes the curve subdivision scheme for a fourth order curve. The details

about the scheme to determine a breakpoint for a fourth-order curve is described in the remainder

of this section.

35

p0

p1

p2

p3 p4

θ1

Δ

- V(p1) Δ

- V(p2)

Δ

- V(p3)
θ2

θ3

Figure 3: Illustration for multiple pathway search (five control points)

The first step of the process is to check the angles 1 and 3 . If both 1 and 3 are larger

than 2 (i.e. Case 2 and Case 3 in Table 3), not only 0p and 1p are in different basins of local

minimums but also 3p and 4p , which indicates that the curve crosses at least a third basin of

local minimum. Any of the three intermediate control points could be a breakpoint. In our

algorithm, we choose 2p as the breakpoint. If either 1 or 3 is less than 2 (i.e. Case 1, 4, 5, 6,

7, and 8 in Table 3), it is not guaranteed that the curve would go through a third basin of local

minimum by checking 1 and 3 only. For example, when 1 is larger than 2 and 3 is less

than 2 , there are two sets of possible positions for the control points, i.e. Case 1 and 4. Since

3 is less than 2 , 3p and 4p could be located in the same basin. If 2p is located in a different

basin from 3p , the curve crosses the third basin. Otherwise, 1p , 2p , 3p , and 4p could be in the

same basin and the curve crosses only two adjacent basins. Therefore, we are unable to decide

whether the curve is breakable or not with the only information that 1 is larger than 2 and 3

is less than 2 . More information is required.

As a second step, we take 2p into consideration by checking 2 . Here we use Cases 1 and

4 to illustrate. When 2 is less than 2 (Case 1 in Table 3), it indicates that 2p cannot be

located in the same basin as 3p and 4p . Also as discussed in the first step, 0p and 1p are located

in two different basins as in Case 1. Thus the curve should cross at least a third basin. Either 1p

or 2p could be a breakpoint. Here, we select 2p to break. When 2 is larger than 2 (Case 4 in

36

Table 3), the negative gradients at the position 1p , 2p , and 3p are in the similar directions. 1p ,

2p , 3p , and 4p could be in the same basin which means that the curve crosses only two adjacent

basins of local minima. Thus we need further information to determine if the curve is breakable.

In the third step, the potential energy values at 1p , 2p , and 3p are considered. If the

potential energy values at positions 1p , 2p , and 3p have the monotonic relationship

1 2 3() () ()V V V p p p , 1p , 2p , and 3p are considered as in the same basin, although there is still

a slight chance that they are not. The curve is defined as unbreakable under this condition;

otherwise, we break up the curve at the point 1p .

The above three-step procedure for Cases 1 and 4 can be extended to Cases 5, 6, 7, and 8.

For Cases 5 and 8, 1 is less than 2 and 3 is larger than 2 . When 2 is larger than 2

(Case 8 in Table 3), the curve is breakable at the points 2p and 3p . Here we select 2p as the

break point. When 2 is less than 2 (Case 8 in Table 3), and 3 2 1() () ()V V V p p p , the curve

is unbreakable; otherwise, we break it at 3p . When both 1 and 3 are less than 2 (Cases 6 and

7 in Table 3), the additional information of 2 does not help to determine. Hence we use the

potential energy value directly. When a curve crosses two adjacent basins and the control points

are relatively evenly distributed, the energy level at the middle point should be the largest. Based

on this fact, when 2 1() ()V Vp p and 2 3() ()V Vp p , the curve is defined as unbreakable in the

algorithm; otherwise, at the break point is chosen as 2p .

The above procedure for breaking a fourth order curve can be extended to higher order

curves. As an example, Table 4 summarizes the curve subdivision scheme for a fifth order curve.

The discussion of the algorithm in this thesis is based on a fourth order curve. As an example,

Table 5 lists the pseudo-code for breaking a curve with five and six control points.

37

p0

p4

Δ

- V(p4)

θ4

p1

θ1

Δ

- V(p1)

p2

Δ

- V(p2)

θ2

p3

Δ

- V(p3)

θ3

p5

Figure 4: Illustration for multiple pathway search (six control points)

Table 3: Curve subdivision scheme (five control points)

Eight Cases

Greater (>) or smaller

(<) than 2
Breakable ?

1 2 3

1
p1 p2 p3p0

θ1 θ2 θ3

-g1 -g2 -g3

p4

> < < Break at 2p

2 θ1 θ2 θ3 > < > Break at 2p

3 θ1 θ2 θ3

> > > Break at 2p

4 θ1 θ2
θ3 > > <

If 1 2 3() () ()V V V p p p , the curve is defined as

unbreakable; Otherwise, break at 1p .

5 θ1 θ2 θ3 < < >
If 3 2 1() () ()V V V p p p , the curve is defined as

unbreakable;Otherwise, break at 3p

6 θ1 θ2 θ3 < < <
If 1 2() ()V Vp p and 3 2() ()V Vp p , the curve is

defined as unbreakable; Otherwise, break at 2p

7 θ1 θ2 θ3

< > < Same as case 6

8 θ1 θ2 θ3 < > > Break at 2p

38

Table 4: Curve subdivision scheme (six control points)

Sixteen Cases

Greater (>) or smaller

(<) than 2
Breakable?

1 2 3 4

1
p1 p2 p3

p5p0

θ1 θ2 θ3

-g1 -g2 -g3

θ4
-g4

p4

> < < > Break at 2p

2 θ1 θ2 θ3 θ4 > < > > Break at 2p

3 θ1 θ2 θ3 θ4
> > > > Break at 2p

4 θ1 θ2
θ3 θ4 > > < > Break at 2p

5 θ1 θ2 θ3 θ4 > < < < Break at 2p

6 θ1 θ2 θ3 θ4 > < > < Break at 3p

7 θ1 θ2 θ3 θ4 > > > < Break at 3p

8 θ1 θ2
θ3 θ4

> > < <

If 1 2 3 4() () () ()V V V V  p p p p , the curve is

defined as unbreakable; otherwise, break at 2p

9 θ1 θ2
θ3 θ4 < > < > Break at 3p

10 θ1 θ2 θ3 θ4 < > > > Break at 3p

11 θ1 θ2
θ3 θ4 < < < > Break at 3p

12 θ1 θ2 θ3 θ4
< < > >

If 4 3 2 1() () () ()V V V V  p p p p , the curve is

defined as unbreakable; otherwise, break at 4p

13 θ1 θ2 θ3 θ4 < < < <

If 3 4() ()V Vp p and 2 1() ()V Vp p , the

curve is defined as unbreakable; otherwise, if

2 1() ()V Vp p , break at 2p , else break at 3p

14 θ1 θ2 θ3 θ4 < < > <
If 3 2 1() () ()V V V p p p , the curve is defined

as unbreakable; otherwise, break at 3p

15 θ1 θ2 θ3 θ4 < > > < Break at 2p

16 θ1 θ2
θ3 θ4

< > < <

If 2 3 4() () ()V V V p p p , the curve is defined

as unbreakable; otherwise, break at 2p

39

Table 5: Pseudo-code of the curve division scheme (five and six control points)

INPUT: An optimized curve () x with two end control points located at two local minimums.

OUTPUT: Two curve sections of () x

IF () x has five control points 0 1 2 3 4, , , ,p p p p p (refer to Figure 3)

 IF 1 2  and 3 2 

 2p is selected as breakpoint

 ELSEIF 1 2  and 3 2 

 IF 2 2 

 2p is selected as breakpoint

 ELSE

 IF 1 2 3() () ()V V V p p p

 () x is non-breakable

 ELSE

 1p is selected as breakpoint

 END IF

 END IF

 ELSEIF 1 2  && 3 2 

 IF 2 2 

 2p is selected as breakpoint

 ELSE

 IF 3 2 1() () ()V V V p p p

 () x is non-breakable

 ELSE

 1p is selected as breakpoint

 END IF

 END IF

40

 ELSEIF 1 2  and 3 2 

 IF 2 1() ()V Vp p and 2 3() ()V Vp p

 () x is non-breakable

 ELSE

 2p is selected as breakpoint

 END IF

 END IF

ELSEIF () x has six control points 0 1 2 3 4 5, , , , ,p p p p p p (refer to Figure 4)

 IF 1 2  and 4 2 

 2p is selected as breakpoint

 ELSEIF 1 2  or 4 2 

 IF Either 2 2  or 3 2 

 2p is selected as breakpoint

 ELSE

 IF 1 2 3 4() () () ()V V V V  p p p p

 () x is non-breakable

 ELSE

 1p is selected as breakpoint

 END IF

 END IF

 ELSEIF 1 2  and 4 2 

 IF Either 2 2  or 3 2 

 3p is selected as breakpoint

 ELSE

 IF 4 3 2 1() () () ()V V V V  p p p p

 () x is non-breakable

 ELSE

41

 4p is selected as breakpoint

 END IF

 END IF

ELSEIF 1 2  and 4 2 

 IF 2 2  and 3 2 

 IF 2 1() ()V Vp p and 3 4() ()V Vp p

 () x is non-breakable

 ELSE

 IF 1 2() ()V Vp p

 2p is selected as breakpoint

 ELSEIF 4 3() ()V Vp p

 3p is selected as breakpoint

 END IF

 END IF

 ELSEIF 2 2  and 3 2 

 IF 3 2 1() () ()V V V p p p

 () x is non-breakable

 ELSE

 3p is selected as breakpoint

 END IF

 ELSEIF 2 2  and 3 2 

 IF 2 3 4() () ()V V V p p p

 () x is non-breakable

 ELSE

 2p is selected as breakpoint

 END IF

 ELSEIF 2 2  and 3 2 

42

 2p is selected as breakpoint

 END IF

 END IF

END IF

3.2.2 Discussion on the subdivision scheme

The proposed curve subdivision scheme for selecting the breakpoint is not perfect. It

could treat some breakable curves as unbreakable ones. For example, for a curve with five

control points, when 1 2  , 3 2  and 1 2 3() () ()V V V p p p , we define the curve as

unbreakable. It is true if the curve only passes through two adjacent basins of local minima. But

if the curve covers a long range with several extra local minima, there is still a small chance that

the control points are positioned in the manner which satisfies the unbreakable conditions. The

scheme will treat both of the two curves as unbreakable. A remedy for missing breakable curves

is adding an extra step to double check each unbreakable curve for one more time. If a curve is

identified as unbreakable curve for the first time, the control points of the curve will be

redistributed by using degree elevation or degree reduction. Then this elevated or reduced curve

will be checked again to see whether it is breakable. This extra step will increase the accuracy of

subdivision but also with extra computational cost.

43

CHAPTER 4

IMPLEMENTATION AND DEMONSTRATION

 This chapter demonstrates the proposed concurrent search algorithm for multiple phase

transition pathways. First, we test the algorithm of a single transition pathway on LEPS

potential and LEPS plus harmonic oscillator potential [5, 99]. These two potential functions

are two-dimensional benchmark problems which are frequently used to test transition

pathway search methods. These two potential model mimics a reaction involving three

atoms. Details will present in Section 4.1 and 4.2. Then we demonstrate the proposed

multiple transition pathway search algorithm by applying it to search the saddle points and

local minimums on two different two-dimensional PESs defined by the Rastrigin function

and Schwefel function respectively. The implementation was done using MATLAB. Source

codes are included in the Appendix. Table 6 lists the definition and graphic in two-dimension

for the four test functions. For LEPS potential, the Q functions illustrate Coulomb

interactions between the electron clouds and the nuclei. The J functions illustrate the

quantum mechanical exchange interactions. The parameters for the LEPS potential are

defined as 0.05,a  00.30, 0.05, 4.746, 4.746, 3.445, 0.742,AB BC ACb c d d d r     

and 1.942  . For LEPS plus harmonic oscillator potential, the parameters are defined as

3.742,ACr  0.2025,ck  and 1.154c  . All the other parameters are the same as the ones

defined for LEPS potential except 0.80b  in LEPS plus harmonic oscillator potential.

44

Table 6: Test functions

F
u
n
ctio

n

Definition Graphic in two-dimension

L
E

P
S

 p
o
ten

tial

2 2 2

2 2 2

1/2

(,)

[
1 1 1 (1) (1) (1)

]
(1)(1) (1)(1) (1)(1)

LEPS

AB BC

BC ACAB AB AB AB

AB BC BC AC AB AC

V r r

Q QQ J J J

a b c a a a

J J J J J J

a b b c a c

     
     

  
     

where

0 02 () ()3
()

2 2

r r r rd
Q r e e

     
  

 

 0 02 () ()
() 6

4

r r r rd
J r e e

    
 

L
E

P
S

 +
 H

arm
o
n
ic o

scillato
r p

o
ten

tial

2

(,)

(,) 2 ((/ 2 /))

AB

AB AC AB c AB AC

V r x

VLEPS r r r k r r x c    

R

astrig
in

2

1

() 10 [10cos(2)]
n

i i

i

f n x x


  x

45

S
ch

w
efel

1

() 418.9829 sin
n

i i

i

f n x x


 x

4.1 Test result for LEPS potential

The LEPS potential model mimics a reaction involving three atoms A, B, and C

constricted to motion along a straight line. There is only one bond formed, either between atoms

A and B or between B and C [5, 99]. The detailed description and a 3-D graphic of the potential

function can be found in Table 6. We test the single transition pathway search algorithm on this

function by using two different initial positions of the transition path. The constant coefficient of

the step size for minimizing the end control points and moving the intermediate control points is

set to be 0.01 and 0.025 respectively. The results are illustrated in Figure 5 using contour plot.

The black line represents the initial path. The red line represents the final path identified by using

the algorithm listed in Table 1. The purple circle markers indicate the position of local

minimums, while the purple square marker represents the position of saddle point.

For different initial positions (refer to (a) and (b) in Figure 5), the algorithm locates the

same saddle point while it locates different local minimums. The result for locating different

local minimums is sensitive to the initial positions. This is due to the characteristic of the LEPS

potential function. The 3-D graphic for LEPS potential function in Table 6 shows that there is a

long flat valley around the local minimum region. Each point along the valley could be a

potential local minimum. The algorithm will stop searching local minimums as long as it locates

one of the potential local minimums. Starting from different initial positions, the algorithm will

follow different searching path. As a result, it will locate different potential local minimums.

That explains why the located local minimums are different for different initial positions.

46

For the initial position in Figure 5 (c), the algorithm failed to locate the saddle point. The

two end control points tend to converge to the same local minimum. This is because that the

conjugate gradient method is a local search method. The control point will converge to the

nearest local optimal point. Since in the algorithm developed in this thesis, the two end control

points are optimized independently based on conjugate gradient method, the two end control

points will converge to the same local minimums when the initial positions of the two points are

close to the same local minimum.

4.2 Test result for LEPS plus harmonic oscillator potential

Different with the LEPS potential model, the location of the two end atoms A and C in

this model is fixed. Only atom B is allowed to move. In addition, this model introduces an

additional degree of freedom which can be interpreted as a fourth atom that is coupled in a

harmonic way with the atom B [5, 99]. The detailed description and a 3-D graphic of the

potential function can be found in Table 6. We test the single transition pathway search algorithm

on this function by using three different initial positions of the transition path. The constant

coefficient of the step size for minimizing the end control points and moving the intermediate

control points is set to be 1/35 and 1/45 respectively. The results are illustrated in Figure 6 using

contour plot. The black line with triangle markers represents the initial path. The red line with

square markers represents the final path identified by using the algorithm listed in Table 1. The

purple circle markers indicate the position of local minimums, while the purple square marker

represents the position of saddle point. The results show that the algorithm is able to locate the

local minima and saddle points for different initial positions.

47

(a) (b)

(c)

Figure 5: Test results for LEPS potential function

48

(a) (b)

(c)

Figure 6: Test results for LEPS plus harmonic oscillator potential function

4.3 Test result for Rastrigin function

The Rasrigin function is a non-convex function frequently used to test the

optimization algorithm. The function has a global minimum at (0, ,0)x as well as

several local minima. As discussed in Section 3.2, the initial guess for the transition path

should be a curve with five control points which are relatively evenly distributed. Here, we

choose a curve () x with five control points located at (−2.81, 0.50), (−1.43, 2.90), (0.23,

−2.47), (1.57, 2.67), and (2.91, −0.11), which are visualized in Figure 7 as ‘initial path’.

First,

49

the optimization procedure listed in Table 1 is applied to () x , which produces a curve

'() x with two end control points located at the two local minimums. Then the multi-

transition pathway search algorithm listed in Table 2 is applied to '() x . A total of seven

local minimums and six corresponding saddle points are located by this algorithm. The

positions of those local minimums and the corresponding saddle points are listed in Table 7.

Figure 7 shows the result using contour graphs. In order to test the robust of the algorithm,

we test the algorithm by using a set of different initial positions located at (−2.81, −1.50),

(−1.43, −1.50), (0.23, −1.50), (1.57, −1.50), and (2.91, −1.50), which are shown in Figure 8 as

black dots. The result shows that the algorithm performs well for different initial positions.

For the second set of initial positions, a total of seven local minimums and six corresponding

saddle points are located. The details about the local minimums and corresponding saddle

points are listed in Table 8. The result is also illustrated in Figure 8.

Table 7: Test results on Rastrigin function (contour plot refer Figure 7)

Path No Local minimums Saddle

1 (−2.9849, 0) (−1.9899, 0) (−2.5516, 0.0201)

2 (−1.9899, 0) (−0.9950, 0) (−1.5484, 0.0210)

3 (−0.9950, 0) (0, 0) (−0.5345, −0.0133)

4 (0, 0) (0.9950, 0) (0.4656, −0.0116)

5 (0.9950, 0) (1.9899, 0) (1.4688, −0.0132)

6 (1.9899, 0) (2.9849, 0) (2.4742, 0.0472)

50

Figure 7: Test result for Rastrigin function with the initial position at (−2.81, 0.50), (−1.43, 2.90),

(0.23, −2.47), (1.57, 2.67), and (2.91, −0.11).

Table 8: Test results on Rastrigin function (contour plot refer Figure 8)

Path No Local minimums Saddle

1 (−2.9849, −0.9950) (−1.9899, −0.9950) (−2.5497, −0.9832)

2 (0, −0.9950) (0.9950, −0.9950) (0.4591, −0.9764)

3 (−1.9899, −0.9950) (−0.9950,−0.9950) (−1.5496, −0.9776)

4 (−0.9950, −0.9950) (0, −0.9950) (−0.5441, −0.9738)

5 (0.9950, −0.9950) (1.9899, −0.9950) (1.5399, −0.9666)

6 (1.9899, −0.9950) (2.9849, −0.9950) (2.5491, −0.9816)

51

Figure 8: Test result for Rastrigin function with the initial position at (−2.81, −1.50), (−1.43,

−1.50), (0.23, −1.50), (1.57, −1.50), and (2.91, −1.50).

4.4 Test result for Schwefel function

Section 4.1 shows that the algorithm works very well on the PES defined by Rastrigin

function. But the contour of the Rastrigin function is uniformly distributed as we can see from

the contour plot in Figure 7. In real application, most of the potential energy surfaces are non-

uniform. Thus the Schwefel function which has a relatively non-uniform potential energy

surface is selected to test our algorithm. We test our algorithm on the Schwefel surface following

the same procedure as we did on Rastrigin surface. We also test the algorithm with two set of

initial positions. The first initial positions are located at (−100.3, 25), (−40.5, 40), (17.8, −10),

(69.8, 70.6), and (130.2, 98.7), which are illustrated in Figure 9 with black dots. A total of six

52

local minimums and five corresponding saddle points are located. Details are listed in Table 9.

Also, the results are visualized in Figure 9. The second initial positions are located at (−100.3,

−70), (−40.5, −70), (17.8, −70), (69.8, −70), and (130.2, −70), as shown in Figure 10 with black

dots. A total of five local minimums and four corresponding saddle points are located. Details

are listed in Table 10. The results are visualized in Figure 10.

Figure 9: Test result for Schwefel function with the initial position at (−100.3, 25), (−40.5, -45),

(17.8, 50.3), (69.8, 70.6), and (130.2, 98.7).

53

Table 9: Test results on Schwefel function (contour plot refer Figure 9)

Path No Local minimums Saddle

1 (−124.8170, 5.2615) (−124.4369, 65.4794) (−124.2794, 25.7779)

2 (5.2807, 65.4046) (65.5185, 65.2612) (26.0773, 65.3830)

3 (65.5185, 65.2612) (203.7441, 65.5489) (124.8765, 65.0411)

4 (−124.6262, 65.5132) (−26.2200, 65.4095) (−66.1930, 65.1174)

5 (−26.2200, 65.4095) (5.2516, 65.4740) (−3.9133, 65.3002)

Figure 10: Test result for Schwefel function with the initial position at (−100.3, 25), (−40.5, 25),

(17.8, 25), (69.8, 25), and (130.2, 25).

54

Table 10: Test results on Schwefel function (contour plot refer Figure 10)

Path No Local minimums Saddle

1 (−124.8274, −124.7472) (−26.1493, −125.1159) (−67.1757, −124.7392)

2 (−26.1493, −125.1159) (5.2426, −124.6550) (−4.6699, −124.8731)

3 (5.2402, −124.7391) (65.3225, −124.8080) (25.8758, −124.8290)

4 (65.4076, −125.0250) (203.7606, −124.8008) (124.7793, −124.8429)

4.5 Discussion

In sections 2.1 and 2.2, it is demonstrated with two examples that the method can locate

multiple local minimums and saddle points. Here, we give a brief discussion on the rate of

convergence of this method.

4.5.1 Convergence analysis

The convergence of the algorithm to the local minimum and the MEPs are discussed in

this section. In this algorithm, the conjugate gradient method is adopted in the searching the local

minimum. For a quadratic function with n variables, the method can guarantee the local

minimum will be located in at most n iterations apart from round-off errors. The searching

points converge to the local minimum quadratically. For a non-quadratic function with n

variables, the searching process is usually iterative rather than n steps. The approximated

conjugate directions generated using Eq.(3.3) are the directions corresponding to the local

quadratic approximation to the non-quadratic function. The rate of convergence for the non-

quadratic function depends on the response to changes in the local quadratic approximation from

one iteration to another. When the searching point approaches the local minimum, it converges to

the minimum quadratically. Hence, the choice of the initial position of the end points of the

Bézier curve is very important. Those initial positions that require the least number of steps to

converge to the bottom of the valley, where the local quadratic approximation is accurate, are the

best choices for the initial position of the end control points. In addition, the line search method

is employed to determine the step size in each conjugate direction. In each conjugate direction,

55

only several limited mini-steps are applied to locate the minimum along that direction in order to

reduce the computational cost. In other words, the point we locate by the mini-steps search may

not be the minimum point along that direction. This could expand the approximation error in

terms of conjugacy. Ultimately it will lead to more steps for the conjugate gradient method to

converge. There is a trade-off between the number of functional evaluations during the line

search process in each conjugate directions and the number of iterations needed for the conjugate

gradient method to converge to the minimum.

56

CHAPTER 5

SUMMARY AND FUTURE WORK

In this thesis, a global search algorithm named a concurrent multi transition pathways

search algorithm is developed to locate several local minimums as well as saddle points

simultaneously. No prior knowledge of the reactant and product is needed for our algorithm.

Different from the current transition pathway and saddle point search methods, our algorithm can

search multiple transition paths starting from one initial transition path, which can provide a

better view of the PES than the methods that only search one transition path.

5.1 Summary and Discussions

The algorithm presented in this thesis includes two parts. One is the single transition

pathway search, and the other is the multiple transition pathway search. The former part locates

the local minimum as well as MEP for a single path. For the single transition pathway search, the

conjugate gradient method is used to minimize the two end control points, which locates two

local minimums. The intermediate control points are minimized along the conjugate directions in

order to push the curve to MEP. A constrained degree elevation and reduction scheme for Bézier

curve is developed to redistribute the intermediate control points. The output for the stage of

single transition pathway search is the input for the stage of multiple transition pathway search. A

curve subdivision scheme is developed so that multiple transition paths can be located. The

algorithm is demonstrated by examples of LEPS potential, LEPS plus harmonic oscillator

potential, and PESs defined by Rastrigin function and Schwefel function. Although the

demonstration is conducted on two dimensional PESs, the algorithm works for higher

dimensional systems as well.

The major advantage of the algorithm is that it is able to dynamically locate all the

intermediate local minimums and saddle points between the reactant and product along one

transition path. This provides a comprehensive view of the transition process along this particular

path.

In this algorithm, Bézier curve used to represent the transition path can cause undesirable

loops, especially at the two end positions. Loops should be avoided. The constrained degree

57

elevation and reduction of Bézier curve in Section 3.1.3 is introduced for this purpose.

Previously, the author developed a degree reduction in the same way as the one described in

Section 3.1.3 but only using two adjacent control points. The scheme works well if there is no

abrupt change of potential energy along the path. However, loops can be introduced at the

position where potential energy changes abruptly. In order to make the algorithm general, the

author improved the scheme by introducing one more adjacent control point which is the one

described in Section 3.1.3. It is much better in terms of eliminating loops. Yet, it has its own

shortcoming. The smoothing scheme introduced in the degree reduction process prevents the

curve from converging to a curved transition path. In order to solve this problem, the local

degree elevation and reduction scheme is introduced as described in Section 3.1.4. In addition,

during the implementation, the step size and the maximum number of steps for minimization

along each conjugate direction are also adjusted to avoid loops. The step size for minimization

of the intermediate control points is adaptive which includes the information of the potential

energy changes on the surface. The maximum number minimization steps along each conjugate

direction should not be too large. Otherwise, the loops will be introduced.

Another implementation issue is related to the stop criteria for searching the saddle point.

During the climbing process, the control points with maximum energy on each sub curves climb

up to locate the saddle points. The author first tried to eliminate the process of redistribution of

control points during the climbing process. Unfortunately, loops can be formed at the positions

with abrupt potential energy change. Then the redistribution process of control points is

introduced to the climbing process. The issue of introducing the redistribution process is that the

position of the control point with the maximum energy changes after redistributing the control

points. The original control point with the maximum energy may not be the one with the

maximum energy along the path after the degree elevation and reduction. Therefore, the

algorithm needs to re-evaluate the energy level for the intermediate control points after

redistributing the points in order to determine the next climbing point. This inevitably increases

the computational cost. In addition, it is difficult to determine the stop criteria since the climbing

points are changing from one iteration to another. It is not efficient to adopt the criteria related to

the percentage change in potential energy at the point with the maximum energy. Although it will

converge, it takes more iterations.

58

5.2 Future work

As mentioned in section 3.2.2, the curve subdivision scheme will treat some breakable

curves as unbreakable ones in some rare cases. The corresponding remedy is also introduced in

the same section. However, this remedy is not good enough, and it increases the computational

cost. A better curve subdivision scheme could be developed as an extension of the current one.

In addition, for two particular stable states, the algorithm can only locate one transition

path which consists of multiple curves with their end points connected together locating at

multiple local minimums. There could be other possible paths between those two states. Figure

11 illustrates such cases, where A, B, C, D, and E are stable states. From the initial state A to the

final state B, there are two possible transition paths. One is A-D-E-B, and the other is A-C-B.

The algorithm can only locate either the transition path A-D-E-B or A-C-B. It is better to

identify all the possible transition paths between the two states for the following two reasons.

Firstly, identification of all the possible transition paths allows us to determine the correct

activation energy. The algorithm only locates one transition path which could be the one with the

energy barrier higher than the physical minimum energy barrier. This leads to an overestimation

of the minimum energy barrier between the states A and B. For example, if the path A-C-B is the

one with minimum energy barrier between states A and B. The algorithm may locate the path A-

D-E-B instead of the path A-C-B. As a result, the minimum energy barrier between states A and

B will be overestimated. Secondly, identification of all the possible transition paths provides us a

better overview of the landscape of the PES. Therefore, the ideal case is to locate all the paths on

the PES. Once the algorithm identified all the local minima as well as the corresponding saddle

points, it becomes easy to identify the MEP from the reactant to the product. To locate all the

transition paths on the PES, the algorithm needs several experiments with different initial

guesses of the transition path.. The procedure is computationally expensive. Since the algorithm

can identify multiple transition paths during one experiment, an experiment with different initial

guesses may locate transition paths which are already identified by the previous experiments. In

addition, for a big system with multiple atoms, it is difficult to obtain an analytical representation

of the PES. In other words, we do not know the distribution of the saddle points and local

minimums. As a result, it is difficult to develop criteria to determine whether all the transition

paths are located or not for those experiments. To locate all the transition paths, we need a

59

systematic method. In the future, we will develop an algorithm that can locate as many transition

paths on the PES as possible simultaneously, as an extension of the current method. To locate all

the possible transition paths on the PES, the proposed method will incorporate a modified

particle swarm optimization method.. The result of the proposed algorithm could give us a better

overview of the landscapes of the PES. In addition, the proposed method is more efficient than

the ones only searching individual ones.

A

B

C

E

D

Figure 11: Illustration for two possible transition paths between two states

The ultimate goal of searching the saddle points is to determine the transition rates which

are the key inputs for the phase transition simulation method. The accuracy of the KMC

simulation is closely related to the accuracy of the transition rates and thus the energy value at

the saddle points. Uncertainties are always involved in estimating the activation energy barrier

thus the transition rates. The existing saddle point search methods are based on the information

of available PESs which are constructed through first principles calculation. During the

calculation, numerical setup and approximations for computability will inevitably introduce

uncertainties such as the exchange-correlation treatment in the density functional theory (DFT).

In addition, the transition rate estimated by transition state theory (TST) is an upper bound of the

true but unknown rate. It is very important to take those uncertainties into account during

60

searching the activation energy barrier. Otherwise, the simulation results based on the inaccurate

information of activation energy could be misleading. Another future work will focus on the

uncertainty quantification related to the saddle point search.

61

APPENDIX

MATLAB SOURCE CODE FOR THE ALGORITHM

%This is the main source code for the algorithm. All the functions are listed in the same section.

clear all;

m=5;%m:# control points

A(1).L(1).p(:,1:m)=...

 input('initial position in column vector for control points');

n=size(A(1).L(1).p,2);%n: PES dimension

N_N=20; %N_N is the maximum number of iteration

h=0.0001;%h threshold for stop criteria

th=0.01;%th: threshold to determine if the two end points converges to the same point or not

N_inter=6;%N_inter: Maxi # of mini steps for intermediate control

 %points during the minimization process

N_climb=8;%N_climb: Maxi # of mini steps for intermediate control points

 %during climbing up process

N_end=20;%N_end: Maximum # of line mini step for end points during the

 %conjugate gradient minimization process

c3=1/95;%step size coefficients

c3_inter=1/50;%step size coefficients for intermediate control point

c3_climb=1/150;%step size coefficients during climbing process

c4=1/5;%percentage decreasement in step size

c_deg=1/(3*m);

th_deg=c_deg*norm(A(1).L(1).p(:,end)-A(1).L(1).p(:,1));

%th_deg: threshold to determine whether two points are too close to each

%other during degree elevation and reduction

%Minimize the two end points to locate two local minimums

A(2).L(1).p= local_mini(A(1).L(1).p, N_N,N_inter,N_end,h,c3,c3_inter,c4);

j=1;%index for the # of paths we locate.

NP=5; %Minimum control points for those curves

i=2;%index for the total number of iterations in main code

62

k=1;

while 1

 i=i+1;

 SA=0; %number of lines in A(i+1).L

 for ii=1:size(A(i-1).L,2)

 b=size(A(i-1).L(ii).p,2);

 %make the curve to be fourth or fifth order before checking whether

 %there is extra local minimums

 if b<5

 for jj=b:4

 A(i-1).L(ii).p(:,1:(jj+1))=Be_degelevation(A(i-1).L(ii).p,jj,th_deg);

 end

 elseif b>6

 for jj=7:b

 A(i-1).L(ii).p(:,1:(jj-1))=Be_degreduction(A(i-1).L(ii).p,jj,th_deg);

 A(i-1).L(ii).p(:,1:(jj))=[];

 end

 end

 end

 for jj=1:size(A(i-1).L,2)

 B(1).L=curve_break(A(i-1).L(jj).p);

 SB=size(B(1).L,2); %number of newly produced curves in B(1).L

 if SB==1 %curve is unbreakable, then do not necessary to minimize

 %the end points

 %Redistribut the points through degelevation or degreduction,

 %and then recheck if it is breakable or not.

 if size(B(1).L(1).p,2)==NP

 D(k).L(1).p(:,1:NP+1)=Be_degelevation(B(1).L(1).p,NP,th_deg);

 elseif size(B(1).L(1).p,2)==NP+1

 D(k).L(1).p(:,1:NP)=Be_degreduction(B(1).L(1).p,NP+1,th_deg);

 end

 E(k).L=curve_break(D(k).L(1).p);

 SE=size(E(k).L,2);%SE:# of newly produced curves

 if SE==1 %the curve is still unbreakable

 C(1).L(j)=B(1).L; % C(1).L: unbreakable curves

63

 j=j+1;

 else

 %increase the control points of those new curve sections to

 %five if there are less then five

 for ii=1:SE

 if size(E(k).L(ii).p,2)<NP

 for iii=1:(NP-size(E(k).L(ii).p,2))

 sp=size(E(k).L(ii).p,2);

 E(k).L(ii).p(:,1:sp+1)=Be_degelevation(E(k).L(ii).p,sp,th_deg);

 end

 end

 end

 %Minimize the end points for those new curves in order to

 %locate the new local minimums

 for kk=1:SE

 E(k).L(kk).p=local_mini(E(k).L(kk).p,N_N,N_inter,N_end,h,c3,c3_inter,c4);

 end

 %check if there is loop (two end points converges to the

 %same point).If yes, means the curve is actually not breakable

 kk=1;

 while kk<=SE

 if norm(E(k).L(kk).p(:,1)-E(k).L(kk).p(:,end))/norm(A(1).L(1).p(:,1)-A(1).L(1).p(:,end))<th

 C(1).L(j)=B(1).L;

 j=j+1;

 break

 else

 if kk==SE

 A(i).L(SA+1:(SA+SE))=E(k).L;

 SA=size(A(i).L,2);

 end

 kk=kk+1;

 end

 end

 end

 k=k+1;

 else

 %increase the control points of those new curve sections to

64

 %five if there are less then five

 for ii=1:SB

 if size(B(1).L(ii).p,2)<NP

 for iii=1:(NP-size(B(1).L(ii).p,2))

 sp=size(B(1).L(ii).p,2);

 B(1).L(ii).p(:,1:sp+1)=Be_degelevation(B(1).L(ii).p,sp,th_deg);

 end

 end

 end

 %Minimize the end points for those new curves in order to

 %locate the new local minimums

 for kk=1:SB

 B(1).L(kk).p=local_mini(B(1).L(kk).p,N_N,N_inter,N_end,h,c3,c3_inter,c4);

 end

 %check if there is loop (two end points converges to the

 %same point). If yes, means the curve is actually not breakable

 kk=1;

 while kk<=SB

 if norm(B(1).L(kk).p(:,1)-B(1).L(kk).p(:,end))/norm(A(1).L(1).p(:,1)-A(1).L(1).p(:,end))<th

 if kk==1

 C(1).L(j)=B(1).L(SB);

 j=j+1;

 else

 C(1).L(j)=B(1).L(1);

 j=j+1;

 end

 break

 else

 if kk==SB

 A(i).L(SA+1:(SA+SB))=B(1).L;

 SA=size(A(i).L,2);

 end

 kk=kk+1;

 end

 end

 end

65

 end

 if SA==0;%check if there is newly produced curve section

 break

 end

end

%check if two curve are overlapped

k=1;

M=[];

for ii=1:size(C(1).L,2)-1

 for jj=ii+1:size(C(1).L,2)

 if norm(C(1).L(ii).p(:,1)-C(1).L(jj).p(:,1))/norm(A(1).L(1).p(:,1)-A(1).L(1).p(:,end))<th

 if norm(C(1).L(ii).p(:,end)-C(1).L(jj).p(:,end))/norm(A(1).L(1).p(:,1)-A(1).L(1).p(:,end))<th

 M(k)=ii;

 k=k+1;

 end

 elseif norm(C(1).L(ii).p(:,1)-C(1).L(jj).p(:,end))/norm(A(1).L(1).p(:,1)-A(1).L(1).p(:,end))<th

 if norm(C(1).L(ii).p(:,end)-C(1).L(jj).p(:,1))/norm(A(1).L(1).p(:,1)-A(1).L(1).p(:,end))<th

 M(k)=ii;

 k=k+1;

 end

 end

 end

end

 if size(M,2)>0

 for ii=1:size(M,2)

 C(1).L(M(ii)).p=[];

 end

 end

%Locate the saddle points for each curve.

for ii=1:size(C(1).L,2)

 N(1).L(ii).p=C(1).L(ii).p;

 C(1).L(ii).p=saddle_search(C(1).L(ii).p,c3_climb,c4,n,N_climb);

end

%Output all the local minimums.

66

for ii=1:j-1

 disp(C(1).L(ii).p(:,1));

 disp(C(1).L(ii).p(:,end));

end

%This function minimize the two end points in order to locate two local

%minimums. Also the intermediate control points move along the

%conjugate directions which will gradually converge to MEP.

function H = local_mini(p, N_N,N_inter,N_end,h,c3,c3_inter,c4)

%a_a_*: index for the # of degree elevation and reduction

a_a_for=1; %index for first half

a_a_back=1;%index for second half

a_a_tot=1;%index for the whold curve

m_=size(p,2);

c_deg_=1/(3*m_);

th_deg_=c_deg_*norm(p(:,end)-p(:,1));

A_A(1).p=p;%A_A(i_i).p: control points matrix

n_n=size(p,1);%dimension of the PES

A_A(2).p=ones(n_n,size(A_A(1).p,2));

%Minimize the two end points using conjugate gradient method

A_A(2).p(:,1)=conjugate_mini(A_A(1).p(:,1),c3,c4,N_end);

A_A(2).p(:,end)=conjugate_mini(A_A(1).p(:,end),c3,c4,N_end);

%Minimize all the intermediate control points along the conjugate

%directions with positive eigenvalues

 for ii_ii=2:ceil(size(A_A(2).p,2)/2)

 A_A(2).p(:,ii_ii)=inter_mini(A_A(2).p(:,ii_ii-1),A_A(1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);

 end

 ii_ii=size(A_A(2).p,2)-1;

 while ii_ii>ceil(size(A_A(2).p,2)/2)

 A_A(2).p(:,ii_ii)=inter_mini(A_A(2).p(:,ii_ii+1),A_A(1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);

 ii_ii=ii_ii-1;

 end

67

%degree elevation

B_B(2).p=A_A(2).p;

 b_b=size(A_A(2).p,2);

c_c=index_loop(A_A(2).p);

if size(c_c,2)>0

 if max(c_c)<ceil(m_/2)

 C_C(1).p(:,1:ceil(b_b/2)+1)=Be_degelevation(A_A(2).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg_);

 A_A(2).p(:,1:ceil(b_b/2)+1)=C_C(1).p;

 A_A(2).p(:,ceil(b_b/2)+2:b_b+1)=B_B(2).p(:,ceil(b_b/2)+1:end);

 a_a_for=0;

 elseif min(c_c)>ceil(m_/2)

 C_C(1).p(:,1:b_b-ceil(b_b/2)+2)=Be_degelevation(...

 A_A(2).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg_);

 A_A(2).p(:,ceil(b_b/2):b_b+1)=C_C(1).p;

 a_a_back=0;

 else

 A_A(2).p(:,1:(b_b+1))=Be_degelevation(A_A(2).p,b_b,th_deg_);

 a_a_tot=0;

 end

end

i_i=2; %index for the total # of iterations

j_j=2;

while i_i<N_N%N_N Maximum number of iteration to search local minimum

 if abs((fun_value(A_A(i_i).p(:,1))-fun_value(A_A(i_i-1).p(:,1)))/fun_value(A_A(i_i-1).p(:,1)))>h&&...

 abs((fun_value(A_A(i_i).p(:,end))-fun_value(A_A(i_i-1).p(:,end)))/fun_value(A_A(i_i-1).p(:,end)))>h

 i_i=i_i+1;

 A_A(i_i).p=ones(n_n,size(A_A(i_i-1).p,2));

 A_A(i_i).p(:,1)=conjugate_mini(A_A(i_i-1).p(:,1),c3,c4,N_end);

 A_A(i_i).p(:,end)=conjugate_mini(A_A(i_i-1).p(:,end),c3,c4,N_end);

 for ii_ii=2:ceil(size(A_A(i_i).p,2)/2)

 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),...

 A_A(i_i-1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);

68

 end

 ii_ii=size(A_A(i_i).p,2)-1;

 while ii_ii>ceil(size(A_A(i_i).p,2)/2)

 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii+1),...

 A_A(i_i-1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);

 ii_ii=ii_ii-1;

 end

%%
%redistribute the control points using degree elevation and reduction scheme

 b_b=size(A_A(i_i).p,2);

 B_B(i_i).p=A_A(i_i).p;

 c_c=index_loop(A_A(i_i).p);

 if size(c_c,2)>0

 if max(c_c)<ceil(m_/2)

 if a_a_for==0

 C_C(j_j).p(:,1:ceil(b_b/2)-1)=Be_degreduction(...

 A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg_);

 A_A(i_i).p(:,1:ceil(b_b/2)-1)=C_C(j_j).p;

 A_A(i_i).p(:,ceil(b_b/2):b_b-1)=B_B(i_i).p(:,ceil(b_b/2)+1:end);

 A_A(i_i).p(:,end)=[];

 j_j=j_j+1;

 a_a_for=a_a_for+1;

 else

 C_C(j_j).p(:,1:ceil(b_b/2)+1)=Be_degelevation(...

 A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg_);

 A_A(i_i).p(:,1:ceil(b_b/2)+1)=C_C(j_j).p;

 A_A(i_i).p(:,ceil(b_b/2)+2:b_b+1)=B_B(i_i).p(:,ceil(b_b/2)+1:end);

 j_j=j_j+1;

 a_a_for=0;

 end

 elseif min(c_c)>ceil(m_/2)

 if a_a_back==0

 C_C(j_j).p(:,1:b_b-ceil(b_b/2))=Be_degreduction(...

 A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg_);

 A_A(i_i).p(:,ceil(b_b/2):b_b-1)=C_C(j_j).p;

 A_A(i_i).p(:,end)=[];

69

 j_j=j_j+1;

 a_a_back=a_a_back+1;

 else

 C_C(j_j).p(:,1:b_b-ceil(b_b/2)+2)=Be_degelevation(...

 A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg_);

 A_A(i_i).p(:,ceil(b_b/2):b_b+1)=C_C(j_j).p;

 j_j=j_j+1;

 a_a_back=0;

 end

 else

 if a_a_tot==0

 A_A(i_i).p(:,1:(b_b-1))=Be_degreduction(A_A(i_i).p,b_b,th_deg_);

 A_A(i_i).p(:,end)=[];

 a_a_tot=a_a_tot+1;

 else

 A_A(i_i).p(:,1:(b_b+1))=Be_degelevation(A_A(i_i).p,b_b,th_deg_);

 a_a_tot=0;

 end

 end

 end

 %%

 elseif abs((fun_value(A_A(i_i).p(:,1))-fun_value(A_A(i_i-1).p(:,1)))/fun_value(A_A(i_i-1).p(:,1)))<h&&...

 abs((fun_value(A_A(i_i).p(:,end))-fun_value(A_A(i_i-1).p(:,end)))/fun_value(A_A(i_i-1).p(:,end)))>h

 i_i=i_i+1;

 A_A(i_i).p=ones(n_n,size(A_A(i_i-1).p,2));

 A_A(i_i).p(:,1)=A_A(i_i-1).p(:,1);

 A_A(i_i).p(:,end)=conjugate_mini(A_A(i_i-1).p(:,end),c3,c4,N_end);

 for ii_ii=2:ceil(size(A_A(i_i).p,2)/2)

 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),...

 A_A(i_i-1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);

 end

 ii_ii=size(A_A(i_i).p,2)-1;

 while ii_ii>ceil(size(A_A(i_i).p,2)/2)

 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii+1),...

 A_A(i_i-1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);

70

 ii_ii=ii_ii-1;

 end

 %%%

 b_b=size(A_A(i_i).p,2);

 B_B(i_i).p=A_A(i_i).p;

 c_c=index_loop(A_A(i_i).p);

 if size(c_c,2)>0

 if max(c_c)<ceil(m_/2)

 if a_a_for==0

 C_C(j_j).p(:,1:ceil(b_b/2)-1)=Be_degreduction(...

 A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg_);

 A_A(i_i).p(:,1:ceil(b_b/2)-1)=C_C(j_j).p;

 A_A(i_i).p(:,ceil(b_b/2):b_b-1)=B_B(i_i).p(:,ceil(b_b/2)+1:end);

 A_A(i_i).p(:,end)=[];

 j_j=j_j+1;

 a_a_for=a_a_for+1;

 else

 C_C(j_j).p(:,1:ceil(b_b/2)+1)=Be_degelevation(...

 A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg_);

 A_A(i_i).p(:,1:ceil(b_b/2)+1)=C_C(j_j).p;

 A_A(i_i).p(:,ceil(b_b/2)+2:b_b+1)=B_B(i_i).p(:,ceil(b_b/2)+1:end);

 j_j=j_j+1;

 a_a_for=0;

 end

 elseif min(c_c)>ceil(m_/2)

 if a_a_back==0

 C_C(j_j).p(:,1:b_b-ceil(b_b/2))=Be_degreduction(...

 A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg_);

 A_A(i_i).p(:,ceil(b_b/2):b_b-1)=C_C(j_j).p;

 A_A(i_i).p(:,end)=[];

 j_j=j_j+1;

 a_a_back=a_a_back+1;

 else

 C_C(j_j).p(:,1:b_b-ceil(b_b/2)+2)=Be_degelevation(...

 A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg_);

71

 A_A(i_i).p(:,ceil(b_b/2):b_b+1)=C_C(j_j).p;

 j_j=j_j+1;

 a_a_back=0;

 end

 else

 if a_a_tot==0

 A_A(i_i).p(:,1:(b_b-1))=Be_degreduction(A_A(i_i).p,b_b,th_deg_);

 A_A(i_i).p(:,end)=[];

 a_a_tot=a_a_tot+1;

 else

 A_A(i_i).p(:,1:(b_b+1))=Be_degelevation(A_A(i_i).p,b_b,th_deg_);

 a_a_tot=0;

 end

 end

 end

 %%

 elseif abs((fun_value(A_A(i_i).p(:,1))-fun_value(A_A(i_i-1).p(:,1)))/fun_value(A_A(i_i-1).p(:,1)))>h&&...

 abs((fun_value(A_A(i_i).p(:,end))-fun_value(A_A(i_i-1).p(:,end)))/fun_value(A_A(i_i-
1).p(:,end)))<h

 i_i=i_i+1;

 G(:,2*(i_i-2)+1)=-grad(A_A(i_i-1).p(:,1))';

 A_A(i_i).p=ones(n_n,size(A_A(i_i-1).p,2));

 A_A(i_i).p(:,1)=conjugate_mini(A_A(i_i-1).p(:,1),c3,c4,N_end);

 A_A(i_i).p(:,end)= A_A(i_i-1).p(:,end);

 for ii_ii=2:ceil(size(A_A(i_i).p,2)/2)

 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),...

 A_A(i_i-1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);

 end

 ii_ii=size(A_A(i_i).p,2)-1;

 while ii_ii>ceil(size(A_A(i_i).p,2)/2)

 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii+1),...

 A_A(i_i-1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);

 ii_ii=ii_ii-1;

 end

 %%%

 b_b=size(A_A(i_i).p,2);

72

 B_B(i_i).p=A_A(i_i).p;

 c_c=index_loop(A_A(i_i).p);

 if size(c_c,2)>0

 if max(c_c)<ceil(m_/2)

 if a_a_for==0

 C_C(j_j).p(:,1:ceil(b_b/2)-1)=Be_degreduction(...

 A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg_);

 A_A(i_i).p(:,1:ceil(b_b/2)-1)=C_C(j_j).p;

 A_A(i_i).p(:,ceil(b_b/2):b_b-1)=B_B(i_i).p(:,ceil(b_b/2)+1:end);

 A_A(i_i).p(:,end)=[];

 j_j=j_j+1;

 a_a_for=a_a_for+1;

 else

 C_C(j_j).p(:,1:ceil(b_b/2)+1)=Be_degelevation(...

 A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg_);

 A_A(i_i).p(:,1:ceil(b_b/2)+1)=C_C(j_j).p;

 A_A(i_i).p(:,ceil(b_b/2)+2:b_b+1)=B_B(i_i).p(:,ceil(b_b/2)+1:end);

 j_j=j_j+1;

 a_a_for=0;

 end

 elseif min(c_c)>ceil(m_/2)

 if a_a_back==0

 C_C(j_j).p(:,1:b_b-ceil(b_b/2))=Be_degreduction(...

 A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg_);

 A_A(i_i).p(:,ceil(b_b/2):b_b-1)=C_C(j_j).p;

 A_A(i_i).p(:,end)=[];

 j_j=j_j+1;

 a_a_back=a_a_back+1;

 else

 C_C(j_j).p(:,1:b_b-ceil(b_b/2)+2)=Be_degelevation(...

 A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg_);

 A_A(i_i).p(:,ceil(b_b/2):b_b+1)=C_C(j_j).p;

 j_j=j_j+1;

 a_a_back=0;

 end

 else

 if a_a_tot==0

73

 A_A(i_i).p(:,1:(b_b-1))=Be_degreduction(A_A(i_i).p,b_b,th_deg_);

 A_A(i_i).p(:,end)=[];

 a_a_tot=a_a_tot+1;

 else

 A_A(i_i).p(:,1:(b_b+1))=Be_degelevation(A_A(i_i).p,b_b,th_deg_);

 a_a_tot=0;

 end

 end

 end

 %%

 else

 break

 end

end

H=A_A(i_i).p;

end

%This function minimize the two end points using conjugate gradient method

 function H = conjugate_mini(p ,c3,c4,N_end)

n_n=size(p,1);

p_p=ones(n_n,n_n);

s_s=ones(n_n,n_n); %s_s: conjugate gradient search directions

G=ones(n_n,2); %gradients

G(:,1)=-grad(p)';

s_s(:,1)=G(:,1);

%Minimize the end control points along s_s(:,1) direction (inexact line search)

p_p(:,1)=line_mini(p,s_s(:,1),c3,c4,N_end);

%Minimize the end control points along the conjugate directions iteratively

for i_i=2:n_n

 G(:,i_i)=-grad(p_p(:,i_i-1));

 s_s(:,i_i)=G(:,i_i)+dot(G(:,i_i),G(:,i_i))/dot(G(:,i_i-1),G(:,i_i-1))*s_s(:,i_i-1);

 p_p(:,i_i)=line_mini(p_p(:,i_i-1),s_s(:,i_i),c3,c4,N_end);

end

H=p_p(:,i_i);

74

end

%This function does line minimization to two end points along conjugate

%gradient directions

function H = line_mini(p1,s,c3,c4,N1_N1)

%N1_N1:# of mini steps

h_h=0.000001;%threshold for stop criteria

h_h1=-0.001;%threshold when will decrease the step size

c3_c3=c3;

c4_c4=c4;

n_n=size(p1,1);

p1_p1=ones(n_n,2);

p1_p1(:,1)=p1;

G(:,1)=-grad(p1_p1(:,1))';

ii=1;

while ii<N1_N1&&abs(dot(G(:,1),s)/norm(s))>h_h

 ii=ii+1;

 p1_p1(:,2)=p1_p1(:,1)+c3_c3*dot(G(:,1),s)/norm(s)^2*s;

 G(:,2)=-grad(p1_p1(:,2))';

 %when there is change in direction of the gradient, decrease the step size

 if dot(G(:,1),G(:,2))/norm(G(:,1))/norm(G(:,2))<h_h1

 c3_c3=c4_c4*c3_c3;

 end

 p1_p1(:,1)=p1_p1(:,2);

 G(:,1)=G(:,2);

end

H=p1_p1(:,1);

end

%This function minimize the intermediate control points along the conjugate

%direction with positive eigenvalues

function H = inter_mini(p1,p2,c3,c4,n,MAX_N)

%p2 is the point which will be minimized

%p1 is fixed, only to determine the maximization direction

%MAX_N:#of mini-step in conjugate direction

75

c5_c5=1/2;

b1=0.001;%threshold for convergence criteria

b2=0.000001;%threshold for convergence criteria

h_h1=0;

x1=ones(n,n);%x1: matrix to store the positions of p2 interatively

%g0:gradient at p2, g1 is a n by(n-1)matrix to store the gradient g1,g2...

%in Beal's formula

g1=ones(n,n-1);

s=ones(n,n);

s(:,1)=p2-p1 ;%direction with negative eigenvalue(maximization direction)

%Locate the maximum point along s0=s(:,1) in order to determine g1 in Beal's formula

x1(:,1)=p2;

xmid=1/2*(p1+p2);

g0(:,1)=grad(xmid);

ii=1;

X1(:,1)=1/2*(p1+p2);

G1(:,1)=g0(:,1);

c3_c3=c3;

while ii<MAX_N&&abs(dot(G1(:,ii),s(:,1))/norm(s(:,1)))>b2

 ii=ii+1;

 X1(:,ii)=X1(:,ii-1)+c3_c3*dot(G1(:,ii-1),s(:,1))/norm(s(:,1))^2*s(:,1);

 G1(:,ii)=grad(X1(:,ii));

 if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1

 c3_c3=c4*c3_c3;

 end

end

x1(:,1)=X1(:,ii); %maximum point along the s0

g1(:,1)=grad(x1(:,1));

%calculate s(:,2)represents s1 in Beal's formula (first conjugate direction

%with positive eigenvalue)

if abs(dot(s(:,1),(g1(:,1)-g0(:,1))))>b1

 s(:,2)=-g1(:,1)+dot(g1(:,1),(g1(:,1)-g0(:,1)))/...

 dot(s(:,1),(g1(:,1)-g0(:,1)))*s(:,1);

else

 s(:,2)=-g1(:,1)+dot(g1(:,1),(g1(:,1)-g0(:,1)))*s(:,1);

76

end

%minimize p2 along s(:,2)

ii=1;

X1(:,1)=p2;

G1(:,1)=grad(X1(:,1));

c3_c3=c3;

while ii<MAX_N&&abs(dot(G1(:,ii),s(:,2))/norm(s(:,2))/norm(G1(:,ii))*norm(G1(:,ii)))>b2

 ii=ii+1;

 if abs(dot(G1(:,ii-1),s(:,2))/norm(s(:,2))/norm(G1(:,ii-1)))<0.5

 X1(:,ii)=X1(:,ii-1)+c3_c3*dot(-G1(:,ii-1),s(:,2))/norm(s(:,2))^2*s(:,2);

 G1(:,ii)=grad(X1(:,ii));

 if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1

 c3_c3=c4*c3_c3;

 end

 else

 X1(:,ii)=X1(:,ii-1)+c5_c5*c3_c3*dot(-G1(:,ii-1),s(:,2))/norm(s(:,2))^2*s(:,2);

 G1(:,ii)=grad(X1(:,ii));

 if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1

 c3_c3=c4*c3_c3;

 end

 end

end

x1(:,2)=X1(:,ii);%new position for p2 along s(:,2)

g1(:,2)=grad(x1(:,2));

%if the dimension of the PES is larger than two, then minimize p2 along all the conjugate directions

%with negative eigenvalues iteratively

jj=3;

while jj<=n

 if abs(dot(s(:,1),(g1(:,1)-g0(:,1))))>b1

 s(:,jj)=-g1(:,jj-1)+dot(g1(:,jj-1),(g1(:,1)-g0(:,1)))/...

 dot(s(:,1),(g1(:,1)-g0(:,1)))*s(:,1)+dot(g1(:,jj-1),g1(:,jj-1))/...

 dot(g1(:,jj-2),g1(:,jj-2))*s(:,jj-1);

 else

 s(:,jj)=-g1(:,jj-1)+dot(g1(:,jj-1),g1(:,jj-1))/...

 dot(g1(:,jj-2),g1(:,jj-2))*s(:,jj-1);

77

 end

 %minimize p2 along s(:,jj) direction

 ii=1;

 X1(:,1)=x1(:,jj-1);

 G1(:,1)=g1(:,jj-1);

 c3_c3=c3;

 while ii<MAX_N&&abs(dot(G1(:,ii),s(:,2))/norm(s(:,2))/norm(G1(:,ii))*norm(G1(:,ii)))>b2

 ii=ii+1;

 if abs(dot(G1(:,ii-1),s(:,2))/norm(s(:,2))/norm(G1(:,ii-1)))<0.5

 X1(:,ii)=X1(:,ii-1)+c3_c3*dot(-G1(:,ii-1),s(:,2))/norm(s(:,2))^2*s(:,2);

 G1(:,ii)=grad(X1(:,ii));

 if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1

 c3_c3=c4*c3_c3;

 end

 else

 X1(:,ii)=X1(:,ii-1)+c5_c5*c3_c3*dot(-G1(:,ii-1),s(:,2))/norm(s(:,2))^2*s(:,2);

 G1(:,ii)=grad(X1(:,ii));

 if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1

 c3_c3=c4*c3_c3;

 end

 end

 end

x1(:,jj)=X1(:,ii);

g1(:,jj)=grad(x1(:,jj));

jj=jj+1;

end

H=x1(:,jj-1);

End

 %This function is used to determine if there is zigzag along the path and the position of
the %zigzag

function H = index_loop(p)

jj=0;

for ii=3:size(p,2)

 if dot(p(:,ii)-p(:,ii-1),p(:,ii-1)-p(:,ii-2))/norm(p(:,ii)-p(:,ii-1))/norm(p(:,ii-1)-p(:,ii-2))<0.99

78

 jj=jj+2;

 index(jj-1:jj)=[ii-2, ii];

 end

end

if jj>0

 H=index;

else

 H=[];

end

end

%This function elevates the degree of the curve by one

function H =Be_degelevation(p,m,th_deg)

%m:# of control point before degree elevation

%q: Coordinate matrix for the elevated m+1 control points

%p: Coordinate matrix for the original m control points

%th_deg: threshold to determine if two point are too close

q(:,1)=p(:,1); %the two end points are fixed during elevation process

q(:,m+1)=p(:,m);

h_h=1/3;

%if two points are too close, then the new points is set as the arithmetic

%average

for i=1:m-1

 q(:,i+1)=i/(m)*p(:,i)+(1-i/(m))*p(:,i+1);

 if norm(q(:,i+1)-(p(:,i+1)+p(:,i))/2)>h_h*norm(p(:,i+1)-p(:,i)) ,

 q(:,i+1)=(p(:,i+1)+p(:,i))/2;

 end

end

for i=2:m

 if norm(q(:,i)-q(:,i-1))<th_deg

 q(:,i)=(q(:,i+1)+q(:,i-1))/2;

 end

end

%check the distance between two points, if too close, reset as middle position

if norm(q(:,m+1)-q(:,m))<th_deg

 q(:,m)=(q(:,m+1)+q(:,m-1))/2;

79

end

H=q;

end

%This function reduces the degree of the curve by one

function H =Be_degreduction(p,m,th_deg)

%m:# of control point before degree reduction

%n_n:dimension for the PES

%q: Coordinate matrix for the reduced m-1 control points

%p:Coordinate matrix for the original m control points

%q1&q2: Coordinate matrix for the reduced control points from forward &

%backward procedure respectively.

%th_deg:threshold to determine if two point are too close

n_n=size(p,1);

q1=ones(n_n,m-2);

q2=ones(n_n,m-1);

q(:,1)=p(:,1); %the two end points are fixed for degree reduction

q(:,m-1)=p(:,m);

%points generated by using the information of two adjacent control points

q1_1=ones(n_n,m-3);

q1_2=ones(n_n,m-3);

q1_3=ones(n_n,m-3);

q2_1=ones(n_n,m-3);

q2_2=ones(n_n,m-3);

q2_3=ones(n_n,m-3);

%generate the control points forwardly

q1(:,1)=p(:,1);

for i=2:m-2

 q1_1(:,i-1)=(m*p(:,i)-(i-1)*q1(:,i-1))/(m+1-i);

 q1_2(:,i-1)=(m*p(:,i+1)-(i-1)*p(:,i))/(m+1-i);

 q1_3(:,i-1)=(m*p(:,i+2)-(i-1)*p(:,i+1))/(m+1-i);

 q1(:,i)=(q1_1(:,i-1)+q1_2(:,i-1)+q1_3(:,i-1))/3;

end

%generate the control points backwardly

q2(:,m-1)=p(:,m);

80

i=m-1;

while i>=3

 q2_1(:,i-2)=(m*p(:,i)-(m-i)*q2(:,i))/i;

 q2_2(:,i-2)=(m*p(:,i-1)-(m-i)*p(:,i))/i;

 q2_3(:,i-2)=(m*p(:,i-2)-(m-i)*p(:,i-1))/i;

 q2(:,i-1)=(q2_1(:,i-2)+q2_2(:,i-2)+q2_3(:,i-2))/3;

 i=i-1;

end

%generate he final control points by linearly interpolating the two set of

%control points obtained from the forward and backward procedure.

for i=2:m-2

 w=i/m;

q(:,i)=(1-w)*q1(:,i)+w*q2(:,i);

end

for i=2:m-2

 if norm(q(:,i)-q(:,i-1))<th_deg

 q(:,i)=(q(:,i+1)+q(:,i-1))/2;

 end

end

%check the distance between two points, if too close, reset as middle

%position

if norm(q(:,m-1)-q(:,m-2))<th_deg

 q(:,m-2)=(q(:,m-1)+q(:,m-3))/2;

end

H=q;

end

%This function calculates the function value at position p

function H= fun_value(p)

a=sym('A',[1 size(p,1)]);

z=ObjectiveF(a);

for i=1:size(p,1)

 z=subs(z,{a(i)},{p(i,1)});

end

H=z;

81

end

%This function calculates the gradient at p

function H= grad(p)

a=sym('A',[1 size(p,1)]);

z=ObjectiveF(a);

L =jacobian(z,a);

for i=1:size(p,1)

 L=subs(L,{a(i)},{p(i,1)});

end

H=L;

end

%This function serves as the input of the objective functions

function H = ObjectiveF(p)

%Objective funtion (Rastrigin)

H= 20+p(1).^2-10.*cos(2*pi.*p(1))+p(2).^2-10.*cos(2*pi.*p(2));

%Objective funtion (Schwefel)

H= 418.9829*2-p(1).*sin(sqrt(abs(p(1))))-p(2).*sin(sqrt(abs(p(2))));

end

%This function breaks one curve into two curve sections if the curve is

%breakable. This function works only when the input curve has five or six

%control points. Curves with other number of control points will be treated

%as invalid input

function H = curve_break(p)

h2_h2=-0.05;

NEWCURVE=0;%# of newly produced curves

if size(p,2)==5

 G_G=ones(size(p,1),5);

 for ii_ii=1:3

 G_G(:,ii_ii)=-grad(p(:,ii_ii+1))'; %Calculate the gradient at the

 end %intermediate control points

 if dot(p(:,1)-p(:,2),G_G(:,1))/norm(p(:,1)-p(:,2))/norm(G_G(:,1))...

82

 <h2_h2&&dot(p(:,5)-p(:,4),G_G(:,3))/norm(p(:,5)-p(:,4))/...

 norm(G_G(:,3))<h2_h2

 A_A(1).L(1).p=p(:,1:3);

 A_A(1).L(2).p=p(:,3:5);

 NEWCURVE=NEWCURVE+1;

 elseif dot(p(:,1)-p(:,2),G_G(:,1))/norm(p(:,1)-p(:,2))/norm(G_G(:,1))...

 <h2_h2&&dot(p(:,5)-p(:,4),G_G(:,3))/norm(p(:,5)-p(:,4))/...

 norm(G_G(:,3))>h2_h2

 if dot(p(:,3)-p(:,2),G_G(:,2))/norm(p(:,3)-p(:,2))/...

 norm(G_G(:,2))<h2_h2

 A_A(1).L(1).p=p(:,1:3);

 A_A(1).L(2).p=p(:,3:5);

 NEWCURVE=NEWCURVE+1;

 else

 if fun_value(p(:,2))>fun_value(p(:,3))&&fun_value(p(:,3))>...

 fun_value(p(:,4))

 else

 A_A(1).L(1).p=p(:,1:2);

 A_A(1).L(2).p=p(:,2:5);

 NEWCURVE=NEWCURVE+1;

 end

 end

 elseif dot(p(:,1)-p(:,2),G_G(:,1))/norm(p(:,1)-p(:,2))/...

 norm(G_G(:,1))>h2_h2&&dot(p(:,5)-p(:,4),G_G(:,3))/...

 norm(p(:,5)-p(:,4))/norm(G_G(:,3))<h2_h2

 if dot(p(:,3)-p(:,4),G_G(:,2))/norm(p(:,3)-p(:,4))/...

 norm(G_G(:,2))<h2_h2

 A_A(1).L(1).p=p(:,1:3);

 A_A(1).L(2).p=p(:,3:5);

 NEWCURVE=NEWCURVE+1;

 else

 if fun_value(p(:,4))>fun_value(p(:,3))&&fun_value(p(:,3))>...

 fun_value(p(:,2))

 else

 A_A(1).L(1).p=p(:,1:4);

 A_A(1).L(2).p=p(:,4:5);

 NEWCURVE=NEWCURVE+1;

83

 end

 end

 else

 if fun_value(p(:,3))>fun_value(p(:,2))&&fun_value(p(:,3))>...

 fun_value(p(:,4))

 else

 A_A(1).L(1).p=p(:,1:3);

 A_A(1).L(2).p=p(:,3:5);

 NEWCURVE=NEWCURVE+1;

 end

 end

elseif size(p,2)==6

 G_G=ones(size(p,1),6);

 for ii_ii=1:4

 G_G(:,ii_ii)=-grad(p(:,ii_ii+1))';

 end

 if dot(p(:,1)-p(:,2),G_G(:,1))/norm(p(:,1)-p(:,2))/...

 norm(G_G(:,1))<h2_h2&&dot(p(:,6)-p(:,5),G_G(:,4))/...

 norm(p(:,6)-p(:,5))/norm(G_G(:,4))<h2_h2

 A_A(1).L(1).p=p(:,1:3);

 A_A(1).L(2).p=p(:,3:6);

 NEWCURVE=NEWCURVE+1;

 elseif dot(p(:,1)-p(:,2),G_G(:,1))/norm(p(:,1)-p(:,2))/...

 norm(G_G(:,1))<h2_h2&&dot(p(:,6)-p(:,5),G_G(:,4))/...

 norm(p(:,6)-p(:,5))/norm(G_G(:,4))>h2_h2

 if dot(p(:,3)-p(:,2),G_G(:,2))/norm(p(:,3)-p(:,2))/...

 norm(G_G(:,2))<h2_h2||dot(p(:,5)-p(:,4),G_G(:,3))/...

 norm(p(:,5)-p(:,4))/norm(G_G(:,3))<h2_h2

 A_A(1).L(1).p=p(:,1:3);

 A_A(1).L(2).p=p(:,3:6);

 NEWCURVE=NEWCURVE+1;

 else

 if fun_value(p(:,2))>fun_value(p(:,3))&&fun_value(p(:,3))>...

 fun_value(p(:,4))&&fun_value(p(:,4))>fun_value(p(:,5))

 else

 A_A(1).L(1).p=p(:,1:2);

 A_A(1).L(2).p=p(:,2:6);

84

 NEWCURVE=NEWCURVE+1;

 end

 end

 elseif dot(p(:,1)-p(:,2),G_G(:,1))/norm(p(:,1)-p(:,2))/...

 norm(G_G(:,1))>h2_h2&&dot(p(:,6)-p(:,5),G_G(:,4))/...

 norm(p(:,6)-p(:,5))/norm(G_G(:,4))<h2_h2

 if dot(p(:,3)-p(:,2),G_G(:,2))/norm(p(:,3)-p(:,2))/...

 norm(G_G(:,2))>h2_h2||dot(p(:,5)-p(:,4),G_G(:,3))/...

 norm(p(:,5)-p(:,4))/norm(G_G(:,3))>h2_h2

 A_A(1).L(1).p=p(:,1:4);

 A_A(1).L(2).p=p(:,4:6);

 NEWCURVE=NEWCURVE+1;

 else

 if fun_value(p(:,5))>fun_value(p(:,4))&&fun_value(p(:,4))>...

 fun_value(p(:,3))&&fun_value(p(:,3))>fun_value(p(:,2))

 else

 A_A(1).L(1).p=p(:,1:5);

 A_A(1).L(2).p=p(:,5:6);

 NEWCURVE=NEWCURVE+1;

 end

 end

 else

 if dot(p(:,3)-p(:,2),G_G(:,2))/norm(p(:,3)-p(:,2))/...

 norm(G_G(:,2))<h2_h2&&dot(p(:,5)-p(:,4),G_G(:,3))/...

 norm(p(:,5)-p(:,4))/norm(G_G(:,3))>h2_h2

 if fun_value(p(:,3))>fun_value(p(:,2))&&fun_value(p(:,4))>...

 fun_value(p(:,5))

 else

 if fun_value(p(:,3))<fun_value(p(:,2))

 A_A(1).L(1).p=p(:,1:3);

 A_A(1).L(2).p=p(:,3:6);

 NEWCURVE=NEWCURVE+1;

 else

 A_A(1).L(1).p=p(:,1:4);

 A_A(1).L(2).p=p(:,4:6);

 NEWCURVE=NEWCURVE+1;

 end

85

 end

 elseif dot(p(:,3)-p(:,2),G_G(:,2))/norm(p(:,3)-p(:,2))/...

 norm(G_G(:,2))<h2_h2&&dot(p(:,5)-p(:,4),G_G(:,3))/...

 norm(p(:,5)-p(:,4))/norm(G_G(:,3))<h2_h2

 if fun_value(p(:,4))>fun_value(p(:,3))&&fun_value(p(:,3))>...

 fun_value(p(:,2))

 else

 A_A(1).L(1).p=p(:,1:4);

 A_A(1).L(2).p=p(:,4:6);

 NEWCURVE=NEWCURVE+1;

 end

 elseif dot(p(:,3)-p(:,2),G_G(:,2))/norm(p(:,3)-p(:,2))/...

 norm(G_G(:,2))>h2_h2&&dot(p(:,5)-p(:,4),G_G(:,3))/...

 norm(p(:,5)-p(:,4))/norm(G_G(:,3))>h2_h2

 if fun_value(p(:,3))>fun_value(p(:,4))&&fun_value(p(:,4))>...

 fun_value(p(:,5))

 else

 A_A(1).L(1).p=p(:,1:3);

 A_A(1).L(2).p=p(:,3:6);

 NEWCURVE=NEWCURVE+1;

 end

 else

 A_A(1).L(1).p=p(:,1:3);

 A_A(1).L(2).p=p(:,3:6);

 NEWCURVE=NEWCURVE+1;

 end

 end

end

if NEWCURVE==0

 A_A(1).L(1).p=p;

end

H=A_A(1).L;

end

%this function seaches the saddle point on a curve. First, determine the

%control point with maximum energy. Then let this points climb up in order

86

%to coverge to the saddle point. And all other intermediate control points

%are minimized along the conjugate directions with positive eigenvalues.

function H = saddle_search(p,c3_climb,c4,n,N_climb)

N_saddle=40;%maxi # iteration

A_A(1).p=p;

B_B(1).p=p;

i_i=1;

h_=0.1;%stop criteria based on the magnitude of the gradient

h_h=0.000001;%stop criteria based on change of function value

N_max=NMAX(p);%Control point with maxi energy on the curve

if N_max==1 || N_max==size(p,2)

 N_max=2;

end

a_a_for=1;

a_a_back=1;

a_a_tot=1;

m=size(p,2);

c_deg=1/(3*m);

th_deg=c_deg*norm(p(:,end)-p(:,1));

j_j=1;

while i_i<N_saddle

 i_i=i_i+1;

 A_A(i_i).p=ones(size(A_A(i_i-1).p));

 A_A(i_i).p(:,1)=A_A(i_i-1).p(:,1);

 A_A(i_i).p(:,end)=A_A(i_i-1).p(:,end);

 b_b=size(A_A(i_i).p,2);

 if N_max==b_b

 N_max=N_max+NMAX(A_A(i_i-1).p(:,N_max-2:N_max))-3;

 elseif N_max==1

 N_max=N_max+NMAX(A_A(i_i-1).p(:,N_max:N_max+2))-1;

 else

 N_max=N_max+NMAX(A_A(i_i-1).p(:,N_max-1:N_max+1))-2;

 end

 if N_max<ceil(size(A_A(i_i-1).p,2)/2)

 for ii_ii=2:N_max-1

87

 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),...

 A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);

 end

 A_A(i_i).p(:,N_max)=climb_saddle(A_A(i_i-1).p(:,N_max-1),...

 A_A(i_i-1).p(:,N_max),c3_climb,c4,n,N_climb);

 for ii_ii=N_max+1:ceil(size(A_A(i_i-1).p,2)/2)

 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),...

 A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);

 end

 for ii_ii=(ceil(size(A_A(i_i-1).p,2)/2)+1):(size(A_A(i_i-1).p,2)-1)

 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii+1),...

 A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);

 end

%%

% Redistribute the control points using degree elevation and reduction scheme

 B_B(i_i).p=A_A(i_i).p;

 c_c=index_loop(A_A(i_i).p);

 if size(c_c,2)>0

 if max(c_c)<ceil(m/2)

 if a_a_for==0

 C_C(j_j).p(:,1:ceil(b_b/2)-1)=Be_degreduction(A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg);

 A_A(i_i).p(:,1:ceil(b_b/2)-1)=C_C(j_j).p;

 A_A(i_i).p(:,ceil(b_b/2):b_b-1)=B_B(i_i).p(:,ceil(b_b/2)+1:end);

 A_A(i_i).p(:,end)=[];

 j_j=j_j+1;

 a_a_for=a_a_for+1;

 else

 C_C(j_j).p(:,1:ceil(b_b/2)+1)=Be_degelevation(A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg);

 A_A(i_i).p(:,1:ceil(b_b/2)+1)=C_C(j_j).p;

 A_A(i_i).p(:,ceil(b_b/2)+2:b_b+1)=B_B(i_i).p(:,ceil(b_b/2)+1:end);

 j_j=j_j+1;

 a_a_for=0;

 end

 elseif min(c_c)>ceil(m/2)

 if a_a_back==0

88

 C_C(j_j).p(:,1:b_b-ceil(b_b/2))=Be_degreduction(…

 A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg);

 A_A(i_i).p(:,ceil(b_b/2):b_b-1)=C_C(j_j).p;

 A_A(i_i).p(:,end)=[];

 j_j=j_j+1;

 a_a_back=a_a_back+1;

 else

 C_C(j_j).p(:,1:b_b-ceil(b_b/2)+2)=Be_degelevation(…

 A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg);

 A_A(i_i).p(:,ceil(b_b/2):b_b+1)=C_C(j_j).p;

 j_j=j_j+1;

 a_a_back=0;

 end

 else

 if a_a_tot==0

 A_A(i_i).p(:,1:(b_b-1))=Be_degreduction(A_A(i_i).p,b_b,th_deg);

 A_A(i_i).p(:,end)=[];

 a_a_tot=a_a_tot+1;

 else

 A_A(i_i).p(:,1:(b_b+1))=Be_degelevation(A_A(i_i).p,b_b,th_deg);

 a_a_tot=0;

 end

 end

 end

 %%%

 elseif N_max>ceil(size(A_A(i_i-1).p,2)/2)

 for ii_ii=2:ceil(size(A_A(i_i-1).p,2)/2)

 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),...

 A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);

 end

 for ii_ii=(ceil(size(A_A(i_i-1).p,2)/2)+1):N_max-1

 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),...

 A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);

 end

 A_A(i_i).p(:,N_max)=climb_saddle(A_A(i_i-1).p(:,N_max+1),...

 A_A(i_i-1).p(:,N_max),c3_climb,c4,n,N_climb);

 for ii_ii=N_max+1:(size(A_A(i_i-1).p,2)-1)

89

 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii+1),...

 A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);

 end

%%

% redistribute the control points using degree elevation and reduction scheme

 B_B(i_i).p=A_A(i_i).p;

 c_c=index_loop(A_A(i_i).p);

 if size(c_c,2)>0

 if max(c_c)<ceil(m/2)

 if a_a_for==0

 C_C(j_j).p(:,1:ceil(b_b/2)-1)=Be_degreduction(A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg);

 A_A(i_i).p(:,1:ceil(b_b/2)-1)=C_C(j_j).p;

 A_A(i_i).p(:,ceil(b_b/2):b_b-1)=B_B(i_i).p(:,ceil(b_b/2)+1:end);

 A_A(i_i).p(:,end)=[];

 j_j=j_j+1;

 a_a_for=a_a_for+1;

 else

 C_C(j_j).p(:,1:ceil(b_b/2)+1)=Be_degelevation(A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg);

 A_A(i_i).p(:,1:ceil(b_b/2)+1)=C_C(j_j).p;

 A_A(i_i).p(:,ceil(b_b/2)+2:b_b+1)=B_B(i_i).p(:,ceil(b_b/2)+1:end);

 j_j=j_j+1;

 a_a_for=0;

 end

 elseif min(c_c)>ceil(m/2)

 if a_a_back==0

 C_C(j_j).p(:,1:b_b-ceil(b_b/2))=Be_degreduction(…

 A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg);

 A_A(i_i).p(:,ceil(b_b/2):b_b-1)=C_C(j_j).p;

 A_A(i_i).p(:,end)=[];

 j_j=j_j+1;

 a_a_back=a_a_back+1;

 else

 C_C(j_j).p(:,1:b_b-ceil(b_b/2)+2)=Be_degelevation(…

 A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg);

 A_A(i_i).p(:,ceil(b_b/2):b_b+1)=C_C(j_j).p;

 j_j=j_j+1;

 a_a_back=0;

90

 end

 else

 if a_a_tot==0

 A_A(i_i).p(:,1:(b_b-1))=Be_degreduction(A_A(i_i).p,b_b,th_deg);

 A_A(i_i).p(:,end)=[];

 a_a_tot=a_a_tot+1;

 else

 A_A(i_i).p(:,1:(b_b+1))=Be_degelevation(A_A(i_i).p,b_b,th_deg);

 a_a_tot=0;

 end

 end

 end

 %%%

 else

 for ii_ii=2:ceil(size(A_A(i_i-1).p,2)/2)-1

 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),...

 A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);

 end

 A_A(i_i).p(:,N_max)=climb_saddle(A_A(i_i-1).p(:,N_max-1),...

 A_A(i_i-1).p(:,N_max),c3_climb,c4,n,N_climb);

 for ii_ii=(ceil(size(A_A(i_i-1).p,2)/2)+1):(size(A_A(i_i-1).p,2)-1)

 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii+1),...

 A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);

 end

%%

% redistribute the control points using degree elevation and reduction scheme

 B_B(i_i).p=A_A(i_i).p;

 c_c=index_loop(A_A(i_i).p);

 if size(c_c,2)>0

 if max(c_c)<ceil(m/2)

 if a_a_for==0

 C_C(j_j).p(:,1:ceil(b_b/2)-1)=Be_degreduction(A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg);

 A_A(i_i).p(:,1:ceil(b_b/2)-1)=C_C(j_j).p;

 A_A(i_i).p(:,ceil(b_b/2):b_b-1)=B_B(i_i).p(:,ceil(b_b/2)+1:end);

 A_A(i_i).p(:,end)=[];

 j_j=j_j+1;

91

 a_a_for=a_a_for+1;

 else

 C_C(j_j).p(:,1:ceil(b_b/2)+1)=Be_degelevation(A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg);

 A_A(i_i).p(:,1:ceil(b_b/2)+1)=C_C(j_j).p;

 A_A(i_i).p(:,ceil(b_b/2)+2:b_b+1)=B_B(i_i).p(:,ceil(b_b/2)+1:end);

 j_j=j_j+1;

 a_a_for=0;

 end

 elseif min(c_c)>ceil(m/2)

 if a_a_back==0

 C_C(j_j).p(:,1:b_b-ceil(b_b/2))=Be_degreduction(…

 A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg);

 A_A(i_i).p(:,ceil(b_b/2):b_b-1)=C_C(j_j).p;

 A_A(i_i).p(:,end)=[];

 j_j=j_j+1;

 a_a_back=a_a_back+1;

 else

 C_C(j_j).p(:,1:b_b-ceil(b_b/2)+2)=Be_degelevation(…

 A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg);

 A_A(i_i).p(:,ceil(b_b/2):b_b+1)=C_C(j_j).p;

 j_j=j_j+1;

 a_a_back=0;

 end

 else

 if a_a_tot==0

 A_A(i_i).p(:,1:(b_b-1))=Be_degreduction(A_A(i_i).p,b_b,th_deg);

 A_A(i_i).p(:,end)=[];

 a_a_tot=a_a_tot+1;

 else

 A_A(i_i).p(:,1:(b_b+1))=Be_degelevation(A_A(i_i).p,b_b,th_deg);

 a_a_tot=0;

 end

 end

 end

 %%%

 end

92

 if i_i>2

 if abs((fun_value(B_B(i_i).p(:,N_max))-fun_value...

 (B_B(i_i-2).p(:,N_max)))/fun_value(B_B(i_i-2).p(:,N_max)))<h_h &&...

 norm(grad(B_B(i_i).p(:,N_max)))<h_

 break

 end

 end

end

H=B_B(i_i).p;

end

%this function determines the index of the point with maxi function value

%in p

function H = NMAX(p)

for ii_ii=1:size(p,2)

 FV(ii_ii)=fun_value(p(:,ii_ii));

end

MAX=max(FV);

H=find(FV==MAX);

end

%this function determines the maxi function value point in p

function H = NMAX_VALUE(p)

for ii_ii=1:size(p,2)

 FV(ii_ii)=fun_value(p(:,ii_ii));

end

MAX=max(FV);

a_a=find(FV==MAX);

H=p(:,a_a);

end

%this function maximize p2 in one conjugate direction with negative

93

%eigenvalues and then minimize p2 in all other conjugate directions.

function H = climb_saddle(p1,p2,c3,c4,n,N_climb)

% N_climb: #of mini-step in conjugate direction

b1=0.001;%threshold for convergence criteria

b2=0.000001;%threshold for convergence criteria

h_h1=-0.001;

x1=ones(n,n);%x1: matrix to store the positions of p2 interatively

%g1 is a n by(n-1)matrix to store the gradient g1,g2...in Beal's formula

g1=ones(n,n-1);

s=ones(n,n);

s(:,1)=p2-p1; %direction with negative eigenvalue(maximization direction)

%Locate the maximum point along s0=s(:,1) in order to determine g1

%in Beal's formula

x1(:,1)=p2;

xmid=1/2*(p1+p2);

g0(:,1)=grad(xmid);

ii=1;

X1(:,1)=p2;

G1(:,1)=grad(p2);

c3_c3=c3;

while ii<N_climb&&abs(dot(G1(:,ii),s(:,1))/dot(s(:,1),s(:,1)))>b2

 ii=ii+1;

 X1(:,ii)=X1(:,ii-1)+c3_c3*dot(G1(:,ii-1),s(:,1))/norm(s(:,1))^2*s(:,1);

 G1(:,ii)=grad(X1(:,ii));

 if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1

 c3_c3=c4*c3_c3;

 end

end

x1(:,1)=X1(:,ii); %maximum point along the s0

g1(:,1)=grad(x1(:,1));

%calculate s(:,2)represents s1 in Beal's formula (first conjugate direction

%with positive eigenvalue)

if abs(dot(s(:,1),(g1(:,1)-g0(:,1))))>b1

 s(:,2)=-g1(:,1)+dot(g1(:,1),(g1(:,1)-g0(:,1)))/...

 dot(s(:,1),(g1(:,1)-g0(:,1)))*s(:,1);

else

94

 s(:,2)=-g1(:,1);

end

%Line minimization in direction s(:,2) for the maximum point along s(:,1)

ii=1;

X1(:,1)=x1(:,1);

G1(:,1)=g1(:,1);

c3_c3=c3;

while ii<N_climb&&abs(dot(G1(:,ii),s(:,2))/dot(s(:,2),s(:,2)))>b2

 ii=ii+1;

 X1(:,ii)=X1(:,ii-1)+c3_c3*dot(-G1(:,ii-1),s(:,2))/norm(s(:,2))^2*s(:,2);

 G1(:,ii)=grad(X1(:,ii));

 if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1

 c3_c3=c4*c3_c3;

 end

end

x1(:,2)=X1(:,ii);

g1(:,2)=grad(x1(:,2));

%if the dimension of the PES is larger than two, then minimize

%p2 along all the conjugate directions with negative eigenvalues

%iteratively.

jj=3;

while jj<=n

 if abs(dot(s(:,1),(g1(:,1)-g0(:,1))))>b1

 s(:,jj)=-g1(:,jj-1)+dot(g1(:,jj-1),(g1(:,1)-g0(:,1)))/...

 dot(s(:,1),(g1(:,1)-g0(:,1)))*s(:,1)+dot(g1(:,jj-1),...

 g1(:,jj-1))/dot(g1(:,jj-2),g1(:,jj-2))*s(:,jj-1);

 else

 s(:,jj)=-g1(:,jj-1)+dot(g1(:,jj-1),g1(:,jj-1))/...

 dot(g1(:,jj-2),g1(:,jj-2))*s(:,jj-1);

 end

%minimize p2 along s(:,jj) direction

95

 ii=1;

 X1(:,1)=x1(:,jj-1);

 G1(:,1)=g1(:,jj-1);

 c3_c3=c3;

 while ii<N_climb&&abs(dot(G1(:,ii),s(:,jj))/dot(s(:,jj),s(:,jj)))>b2

 ii=ii+1;

 X1(:,ii)=X1(:,ii-1)+c3_c3*dot(-G1(:,ii-1),s(:,jj))/...

 norm(s(:,jj))^2*s(:,jj);

 G1(:,ii)=grad(X1(:,ii));

 if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1

 c3_c3=c4*c3_c3;

 end

 end

 x1(:,jj)=X1(:,ii);

 g1(:,jj)=grad(x1(:,jj));

 jj=jj+1;

end

H=x1(:,jj-1);

end

REFERENCES

[1] J.M. Yeomans, Statistical mechanics of phase transitions, Oxford University Press, New

York, 2002.

[2] P. Papon, J. Leblond, P.H.E. Meijer, The physics of phase transitions: concepts and

applications, Springer-Verlag, Berlin, 2006.

[3] K.J. Laidler, M.C. King, Development of transition-state theory, The Journal of Physical

Chemistry, 87 (1983) 2657-2664.

[4] A.F. Voter, Radiation Effects in Solids, Springer, NATO Publishing Unit, Dordrecht, The

Netherlands, 2005.

[5] H. Jonsson, G. Mills, K. Jacobsen, Classical and Quantum Dynamics in Condensed Phase

Simulations, in, World Scientific, Hackensack, NJ, 1998, pp. 385-404.

[6] E. W., W. Ren, E. Vanden-Eijnden, String method for the study of rare events, Physical

Review B, 66 (2002) 052301(052301-052304).

96

[7] G. Henkelman, H. Jónsson, A dimer method for finding saddle points on high dimensional

potential surfaces using only first derivatives, The Journal of chemical physics, 111 (1999) 7010-

7022.

[8] H. Eyring, M. Polanyi, Uber einfache Gasreaktionen, Zeitschrift für physikalische Chemie B,

12 (1931) 279.

[9] G.H. Vineyard, Frequency factors and isotope effects in solid state rate processes, Journal of

Physics and Chemistry of Solids, 3 (1957) 121-127.

[10] D.G. Truhlar, B.C. Garrett, Variational transition-state theory, Accounts of Chemical

Research, 13 (1980) 440-448.

[11] W.H. Miller, N.C. Handy, J.E. Adams, Reaction path Hamiltonian for polyatomic molecules,

The Journal of chemical physics, 72 (1980) 99.

[12] L. Chen, S. Ying, T. Ala-Nissila, Finding transition paths and rate coefficients through

accelerated Langevin dynamics, Physical Review E, 65 (2002) 042101.

[13] G.A. Mansoori, Principles of nanotechnology: molecular-based study of condensed matter

in small systems, World Scientific Pub Co Inc, MA, USA, 2005.

[14] D.W. Brenner, C. Bean, Empirical potential for hydrocarbons for use in simulating the

chemical vapor deposition of diamond films, Physical Review B, 42 (1990) 9458-9471.

[15] M.G. Burke, S.N. Yaliraki, Exploring model energy and geometry surfaces using sum of

squares decompositions, Journal of Chemical Theory and Computation, 2 (2006) 575-587.

[16] T. Hollebeek, T.S. Ho, H. Rabitz, Constructing multidimensional molecular potential energy

surfaces from ab initio data, Annual review of physical chemistry, 50 (1999) 537-570.

[17] S. Sato, On a new method of drawing the potential energy surface, The Journal of chemical

physics, 23 (1955) 592-593.

[18] K.C. Thompson, M.J.T. Jordan, M.A. Collins, Molecular potential energy surfaces by

interpolation in Cartesian coordinates, The Journal of chemical physics, 108 (1998) 564-578.

[19] D.G. Truhlar, R. Steckler, M.S. Gordon, Potential energy surfaces for polyatomic reaction

dynamics, Chemical Reviews, 87 (1987) 217-236.

[20] R.J. Duchovic, Y.L. Volobuev, G.C. Lynch, D.G. Truhlar, T.C. Allison, A.F. Wagner, B.C.

Garrett, J.C. Corchado, POTLIB 2001: A potential energy surface library for chemical systems,

Computer physics communications, 144 (2002) 169-187.

[21] D. Alhat, V. Lasrado, Y. Wang, A Review of Recent Phase Transition Simulation Methods:

Saddle Point Search, in, ASME, 2008.

[22] G. Henkelman, G. Johannesson, H. Jónsson, Theoretical methods in condensed phase

chemistry, Progress in theoretical chemistry and physics, 5 (2000).

[23] V. Lasrado, D. Alhat, Y. Wang, A Review of Recent Phase Transition Simulation Methods:

Transition Path Search, in, ASME, 2008.

[24] R. Olsen, G. Kroes, G. Henkelman, A. Arnaldsson, H. Jónsson, Comparison of methods for

finding saddle points without knowledge of the final states, The Journal of chemical physics, 121

(2004) 9776.

97

[25] H.B. Schlegel, Exploring potential energy surfaces for chemical reactions: an overview of

some practical methods, Journal of Computational Chemistry, 24 (2003) 1514-1527.

[26] N. Mousseau, G. Barkema, Traveling through potential energy landscapes of disordered

materials: The activation-relaxation technique, Physical Review E, 57 (1998) 2419.

[27] G. Henkelman, H. Jónsson, A dimer method for finding saddle points on high dimensional

potential surfaces using only first derivatives, The Journal of chemical physics, 111 (1999) 7010.

[28] M.J.S. Dewar, E.F. Healy, J.J.P. Stewart, Location of transition states in reaction

mechanisms, J. Chem. Soc., Faraday Trans. 2, 80 (1984) 227-233.

[29] I.V. Ionova, E.A. Carter, Ridge method for finding saddle points on potential energy

surfaces, The Journal of chemical physics, 98 (1993) 6377.

[30] C.J. Cerjana, W.H. Miller, On finding transition states, The Journal of chemical physics, 75

(1981) 2800-2806.

[31] K. Fukui, S. Kato, H. Fujimoto, Constituent analysis of the potential gradient along a

reaction coordinate. Method and an application to methane+ tritium reaction, Journal of the

American Chemical Society, 97 (1975) 1-7.

[32] K. Müller, Reaction paths on multidimensional energy hypersurfaces, Angewandte Chemie

International Edition in English, 19 (1980) 1-13.

[33] C. Choi, R. Elber, Reaction path study of helix formation in tetrapeptides: Effect of side

chains, The Journal of chemical physics, 94 (1991) 751.

[34] R. Czerminski, R. Elber, Self‐avoiding walk between two fixed points as a tool to

calculate reaction paths in large molecular systems, International Journal of Quantum Chemistry,

38 (1990) 167-185.

[35] R. Elber, M. Karplus, A method for determining reaction paths in large molecules:

application to myoglobin, Chemical physics letters, 139 (1987) 375-380.

[36] R.E. Gillilan, K.R. Wilson, Shadowing, rare events, and rubber bands. A variational Verlet

algorithm for molecular dynamics, The Journal of chemical physics, 97 (1992) 1757.

[37] L.R. Pratt, A statistical method for identifying transition states in high dimensional

problems, The Journal of chemical physics, 85 (1986) 5045.

[38] E. Sevick, A. Bell, D. Theodorou, A chain of states method for investigating infrequent

event processes occurring in multistate, multidimensional systems, The Journal of chemical

physics, 98 (1993) 3196.

[39] A. Ulitsky, R. Elber, A new technique to calculate steepest descent paths in flexible

polyatomic systems, The Journal of chemical physics, 92 (1990) 1510-1511.

[40] G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method

for finding minimum energy paths and saddle points, The Journal of chemical physics, 113(22)

(2000) 9978-9985.

[41] S.A. Trygubenko, D.J. Wales, A doubly nudged elastic band method for finding transition

states, The Journal of chemical physics, 120(5) (2004) 2082-2094.

98

[42] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization,

Mathematical programming, 45 (1989) 503-528.

[43] G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method

for finding saddle points and minimum energy paths, The Journal of chemical physics, 113(22)

(2000) 9901-9904.

[44] T. Zhu, J. Li, A. Samanta, H.G. Kim, S. Suresh, Interfacial plasticity governs strain rate

sensitivity and ductility in nanostructured metals, Proceedings of the National Academy of

Sciences, 104 (2007) 3031-3036.

[45] I.F. Galván, M.J. Field, Improving the efficiency of the NEB reaction path finding algorithm,

Journal of Computational Chemistry, 29 (2008) 139-143.

[46] Y. Kumeda, D.J. Wales, L.J. Munro, Transition states and rearrangement mechanisms from

hybrid eigenvector-following and density functional theory.: Application to C10H10 and defect

migration in crystalline silicon, Chemical physics letters, 341 (2001) 185-194.

[47] L.J. Munro, D.J. Wales, Defect migration in crystalline silicon, Physical Review B, 59

(1999) 3969-3980.

[48] W. Ren, Higher order string method for finding minimum energy paths, Communications in

Mathematical Sciences, 1 (2003) 377-384.

[49] W. E, W. Ren, E. Vanden-Eijnden, Simplified and improved string method for computing

the minimum energy paths in barrier-crossing events, Journal of Chemical Physics, 126 (2007)

164103(164101) -164103(164108).

[50] B. Peters, A. Heyden, A.T. Bell, A. Chakraborty, A growing string method for determining

transition states: Comparison to the nudged elastic band and string methods, The Journal of

chemical physics, 120 (2004) 7877-7886.

[51] S.K. Burger, W. Yang, Quadratic string method for determining the minimum-energy path

based on multiobjective optimization, The Journal of chemical physics, 124 (2006)

054109(054101)- 054109(054112).

[52] S. Fischer, M. Karplus, Conjugate peak refinement: an algorithm for finding reaction paths

and accurate transition states in systems with many degrees of freedom, Chemical physics letters,

194 (1992) 252-261.

[53] L. Chen, S. Ying, T. Ala-Nissila, Finding transition paths and rate coefficients through

accelerated Langevin dynamics, Physical Review E, 65 (2002) 042101(042101-042104).

[54] D. Passerone, M. Ceccarelli, M. Parrinello, A concerted variational strategy for

investigating rare events, The Journal of chemical physics, 118 (2003) 2025.

[55] B.K. Dey, P.W. Ayers, A Hamilton–Jacobi type equation for computing minimum potential

energy paths, Molecular Physics, 104 (2006) 541-558.

[56] E.M.L. Beale, Numerical methods for non-linear optimization Academic Press, London,

1972.

[57] J. Sinclair, R. Fletcher, A new method of saddle-point location for the calculation of defect

migration energies, Journal of Physics C: Solid State Physics, 7 (1974) 864.

99

[58] Y. Saad, Y. Saad, Iterative methods for sparse linear systems, PWS publishing company

Boston, 1996.

[59] J. Simons, P. Joergensen, H. Taylor, J. Ozment, Walking on Potential Energy Surfaces, The

Journal of Physical Chemistry, 87 (1983) 2745-2753.

[60] A. Banerjee, N. Adams, J. Simons, R. Shepard, Search for Stationary Points on Surfaces,

The Journal of Physical Chemistry, 89 (1985) 52-57.

[61] A. Heyden, A.T. Bell, F.J. Keil, Efficient methods for finding transition states in chemical

reactions: Comparison of improved dimer method and partitioned rational function optimization

method, The Journal of chemical physics, 123 (2005) 224101-224114.

[62] W. Quapp, M. Hirsch, O. Imig, D. Heidrich, Searching for saddle points of potential energy

surfaces by following a reduced gradient, Journal of Computational Chemistry, 19 (1998) 1087-

1100.

[63] J.M. Anglada, E. Besalú, J.M. Bofill, R. Crehuet, On the quadratic reaction path evaluated

in a reduced potential energy surface model and the problem to locate transition states*, Journal

of Computational Chemistry, 22 (2001) 387-406.

[64] M. Hirsch, W. Quapp, Improved RGF method to find saddle points, Journal of

computational chemistry, 23 (2002) 887-894.

[65] T.A. Halgren, W.N. Lipscomb, The synchronous-transit method for determining reaction

pathways and locating molecular transition states, Chemical Physics Letters, 49 (1977) 225-232.

[66] N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm, A generalized

synchronous transit method for transition state location, Computational materials science, 28

(2003) 250-258.

[67] R.A. Miron, K.A. Fichthorn, The Step and Slide method for finding saddle points on

multidimensional potential surfaces, The Journal of chemical physics, 115 (2001) 8742.

[68] Y. Lin, M.A. Stadtherr, Locating stationary points of sorbate-zeolite potential energy

surfaces using interval analysis, The Journal of chemical physics, 121 (2004) 10159.

[69] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, in,

NBS, 1952.

[70] J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing

pain, in, Carnegie Mellon University, Pittsburgh, PA, 1994.

[71] G.H. Golub, D.P. O'Leary, Some history of the conjugate gradient and Lanczos algorithms:

1948-1976, SIAM review, 31 (1989) 50-102.

[72] R. Fletcher, C. Reeves, Function minimization by conjugate gradients, The computer

journal, 7 (1964) 149-154.

[73] E. POLA, G. Ribiere, Note sur la convergence de methodes de directions conjugées, Rev

Française Informat Recherche Operationelle, 3e Année, 16 (1969) 35-43.

[74] G. Zoutendijk, Nonlinear programming, computational methods, Integer and nonlinear

programming, 143 (1970) 37-86.

100

[75] M. Al-Baali, Descent property and global convergence of the Fletcher—Reeves method

with inexact line search, IMA Journal of Numerical Analysis, 5 (1985) 121-124.

[76] M. Powell, Nonconvex minimization calculations and the conjugate gradient method,

Numerical Analysis, (1984) 122-141.

[77] Y. Hu, C. Storey, Global convergence result for conjugate gradient methods, Journal of

Optimization Theory and Applications, 71 (1991) 399-405.

[78] J.C. Gilbert, J. Nocedal, Global convergence properties of conjugate gradient methods for

optimization, SIAM Journal on Optimization, 2 (1992) 21-42.

[79] L. Guanghui, H. Jiye, Y. Hongxia, Global convergence of the Fletcher-Reeves algorithm

with inexact linesearch, Applied Mathematics-A Journal of Chinese Universities, 10 (1995) 75-

82.

[80] Y. Dai, J. Han, G. Liu, D. Sun, H. Yin, Y.X. Yuan, Convergence properties of nonlinear

conjugate gradient methods, SIAM Journal on Optimization, 10 (2000) 345-358.

[81] M.E. Mortenson, Geometrie modeling, John Wiley, New York, 1985.

[82] M.A. Watkins, A.J. Worsey, Degree reduction of Bézier curves, Computer-Aided Design,

20 (1988) 398-405.

[83] M. Eck, Degree reduction of Bézier curves, Computer Aided Geometric Design, 10 (1993)

237-251.

[84] A.R. Forrest, Interactive interpolation and approximation by Bézier polynomials, The

Computer Journal, 15 (1972) 71-79.

[85] M. Eck, Least squares degree reduction of Bézier curves, Computer-Aided Design, 27 (1995)

845-851.

[86] P. Bogacki, S.E. Weinstein, Y. Xu, Degree reduction of Bézier curves by uniform

approximation with endpoint interpolation, Computer-Aided Design, 27 (1995) 651-661.

[87] G. Brunnett, T. Schreiber, J. Braun, The geometry of optimal degree reduction of Bézier

curves, Computer Aided Geometric Design, 13 (1996) 773-788.

[88] H. Kim, S. Moon, Degree reduction of Bézier curves by< i> L</i>< sup> 1</sup>-

Approximation with endpoint interpolation, Computers & Mathematics with Applications, 33

(1997) 67-77.

[89] H. Kim, Y. Ahn, Good degree reduction of Bézier curves using Jacobi polynomials,

Computers & Mathematics with Applications, 40 (2000) 1205-1215.

[90] Y.J. Ahn, Using Jacobi polynomials for degree reduction of Bézier curves with< i> C</i><

sup> k</sup>-constraints, Computer Aided Geometric Design, 20 (2003) 423-434.

[91] G.D. Chen, G.J. Wang, Optimal multi-degree reduction of Bézier curves with constraints of

endpoints continuity, Computer Aided Geometric Design, 19 (2002) 365-377.

[92] H. Sunwoo, Matrix representation for multi-degree reduction of Bézier curves, Computer

Aided Geometric Design, 22 (2005) 261-273.

101

[93] L. Lu, G. Wang, Application of Chebyshev II–Bernstein basis transformations to degree

reduction of Bézier curves, Journal of Computational and Applied Mathematics, 221 (2008) 52-

65.

[94] L. Lu, G. Wang, Optimal multi-degree reduction of Bézier curves with G2-continuity,

Computer Aided Geometric Design, 23 (2006) 673-683.

[95] A. Rababah, B.G. Lee, J. Yoo, A simple matrix form for degree reduction of Bézier curves

using Chebyshev–Bernstein basis transformations, Applied mathematics and computation, 181

(2006) 310-318.

[96] P. Woźny, S. Lewanowicz, Multi-degree reduction of Bézier curves with constraints, using

dual Bernstein basis polynomials, Computer Aided Geometric Design, 26 (2009) 566-579.

[97] X.D. Chen, W. Ma, J.C. Paul, Multi-degree reduction of Bézier curves using

reparameterization, Computer-Aided Design, 43 (2011) 161-169.

[98] G.E. Farin, Curves and Surfaces for Computer-Aided Geometric Design, Academic Press,

Boston, 1993.

[99] J. Polanyi, W. Wong, Location of energy barriers. I. Effect on the dynamics of reactions A+

BC, The Journal of Chemical Physics, 51 (1969) 1439.

