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SUMMARY 

One of the most important design issues for phase change materials is to engineer the 

phase transition process. The challenge of accurately predicting a phase transition is estimating 

the true value of transition rate, which is determined by the saddle point with the minimum 

energy barrier between stable states on the potential energy surface (PES). In this thesis, a new 

algorithm for searching the minimum energy path (MEP) is presented. The new algorithm is able 

to locate both the saddle point and local minima simultaneously. Therefore no prior knowledge 

of the precise positions for the reactant and product on the PES is needed. Unlike existing 

pathway search methods, the algorithm is able to search multiple transition paths on the PES 

simultaneously, which gives us a more comprehensive view of the energy landscape than 

searching individual ones. In this method, a Bézier curve is used to represent each transition 

path. During the searching process, the reactant and product states are located by minimizing the 

two end control points of the curve, while the shape of the transition pathway is refined by 

moving the intermediate control points of the curve in the conjugate directions. A curve 

subdivision scheme is developed so that multiple transitions paths can be located. The algorithm 

is demonstrated by examples of LEPS potential, LEPS plus harmonic oscillator potential, and 

PESs defined by Rastrigin function and Schwefel function. 
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CHAPTER 1 

INTRODUCTION  

In order to speed up the revolution of nanotechnology, we should adopt a focus shift from 

the ‘discovery-based’ development approach to a ‘solution-oriented’ approach to create new 

nanomaterials. In the discovery-based approach, new materials are discovered first and then their 

potential applications are explored. In the solution-oriented approach, new materials are designed 

systematically to solve existing problems. Designing new materials with the aim to solve 

engineering problems will be a major mission for engineers in the future. The availability of 

computational design tools is the key to improve the efficiency of the materials design process. 

The research presented in this thesis is to provide such kind of design tools, specifically the ones 

for simulation-based phase change materials design. In the rest of this chapter, the motivation of 

our research and the problem we try to solve are first described. A general description of the 

proposed method to solve the problem is given, followed by a summary of the contributions of 

this thesis. 

1.1 Motivation 

Nanotechnology of today mainly focuses on the discovery of nanoscale materials with 

new properties and applications. So far it heavily relies on trial-and-error laboratory experiments 

to turn them into commercial products for potential applications. This discovery-based 

development approach is a time-consuming process and will not be able to satisfy the increasing 

demand on new materials in the future.  A solution-oriented approach should be adopted instead. 

That is, engineers start with the analysis of the existing needs in solving engineering problems,  

then design and produce new materials that can fulfill those needs in order to solve the specific 

problems. Engineers need enabling technologies to create novel materials by designing the 

microstructure of the materials systematically through a bottom-up approach. In order to achieve 

this goal, computational design tools are essential. For example, modeling and simulation 

software allows engineers to accurately predict the properties and functions of different material 

structures to improve the efficiency of the materials design process.  

Among engineering materials, phase change materials have attracted much attention and 
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have been widely used in engineering products such as in information storage (e.g. hard-disk, 

CD-ROM, memory) and in energy storage (e.g. battery, shape memory alloy). One of the most 

important design issues for these materials is to engineer the phase transition process. Simulation 

that predicts the transition processes efficiently and accurately under desirable conditions is 

critical in the design of phase change materials. The ultimate goal for the research presented in 

this thesis is to provide simulation tools to design phase transition processes.  

Traditionally, a phase transition is described from a top-down viewpoint as the 

transformation of a thermodynamic system from one phase to another. A phase is one of the 

states of matter which has uniform physical properties, and the materials system has a particular 

level of free energy. When external conditions are varied, such as an enough change in 

temperature or pressure, one or more properties of the material change and a phase transition 

occurs. The system shifts from one free energy level to another as a result of these external 

influences. The external conditions and amount of required input energy can be quantitatively 

estimated and are the key to define a phase transition.  For example, water has three phases (gas, 

liquid, and solid) from the thermodynamic viewpoint. A liquid water changes to gas water when 

it is boiled. In other words, a change in temperature can result in a phase transition from liquid to 

gas. In general, a phase transition is accompanied by a series of physical events. There are two 

broad classifications of phase transition, one involved latent heat and the other does not. Also 

there are some other classifications such as the categories of first order, second order, and infinite 

order phase transition. More details about the phase transition in thermodynamic point of view 

can be found in [1] and [2].     

A phase transition process can also be described from a bottom-up viewpoint, which is 

adopted in this thesis. From the material’s microstructure point of view, a phase transition is a 

geometric and topological transformation process of materials from one phase to another, each of 

which has a unique and homogeneous physical property. In this description, we are interested in 

the structure and topology changes for the material at atomistic scale. Understanding and 

controlling the phase transition from the microscopic level is critical to design phase change 

materials. In simulation-based design, the challenge of accurately predicting a phase transition is 

the knowledge of the transition rate, which is determined by the energy barrier that exists 

between the initial and final states. That is, activation energy is required to enable the transition 
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from the initial structure to the final one. Mathematically it is the saddle point on the potential 

energy surface (PES) with the minimum energy barrier that determines the transition rate. The 

general process to simulate the phase transition process is as follows. First, a PES which 

characterizes detailed information about energy landscape is generated. Then a minimum energy 

path (MEP) which is the most probable physical pathway of transition among all possible ones is 

located. Finally the activation energy is obtained by finding the maximum energy on the MEP 

and the transition rate is calculated using the transition state theory [3]. The key of phase 

transition simulation is searching the saddle points on the PES.  

Besides designing phase change materials, phase transition simulation is also important in 

other applications. For example, the diffusion of adatoms on a solid, which is a fundamental 

problem in surface science and has attracted attentions for decades, can be regarded as a phase 

transition process. Chemical reactions and protein folding can also be generally treated as phase 

transitions. Therefore, simulating phase transitions is also essential to design physical and 

chemical processes at atomistic scales. 

Compared to vibrations and other thermal behaviors, phase transitions are rare events. 

Kinetic Monte Carlo (KMC) [4] simulation has been widely used to simulate the rare events, 

which are characterized by occasional transitions from one state to another, with long periods of 

relatively inactivity between these transitions. Traditional molecular dynamics (MD) simulation 

focuses on femto-second trajectory prediction and is not efficient in simulating rare events. KMC 

has been extensively used in physics and chemistry fields, such as the process of surface 

diffusion, vacancy diffusion in alloys, etc. One of the key inputs for KMC simulation is the rate 

for each of the possible events. The process of the surface diffusion in KMC consists of a 

sequence of atom jumping events. The configuration of the system changes after each event. All 

the possible configurations are called the states of the system, each of which corresponds to a 

specific energy level. The transition rate from one state to another is determined by the energy 

barrier between the two states.  

Many numerical methods have been developed to search MEP on the PES, such as the 

nudged elastic band (NEB) method  [5] and the string method [6]. These existing transition 

pathway search methods only search one path locally. The initial or final states have to be known 

a priori. The purpose of this research is to develop a new method to locate multiple saddle points 
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without knowing the reactant and product in advance. It provides a global view of the energy 

landscape. Thus the accuracy and efficiency of prediction can be improved.  

1.2 An Overview of the Proposed Global Saddle-Point Search Method 

A new algorithm for searching the MEP is presented in this thesis. The new algorithm is 

able to locate both the saddle point and local minima simultaneously. Therefore no prior 

knowledge of the precise positions for the reactant and product on the PES is needed. Unlike 

existing pathway search methods, the algorithm is able to search multiple transition paths on the 

PES simultaneously, which can provide a global view of the energy landscape, instead of a local 

one by searching individual paths. 

Here the Bézier curve is used to represent the transition pathway. A Bézier curve is a 

parametric curve defined by control points which can be used to manipulate the shape of the 

curve.  In our global search algorithm, each control point of the curve represents one state, also 

called image, on the transition path. During the searching process, reactant and product states are 

located by minimizing the two end control points of the Bézier curve using the conjugate 

gradient method, while the shape of the transition pathway is refined by moving the intermediate 

control points of the curve in the conjugate directions. In each iteration, a set of conjugate 

directions are determined and then several line minimization steps along those conjugate 

directions are applied to each intermediate control points. As a result, the Bézier curve will 

gradually converge to the MEP.  In order to keep the control points evenly distributed, a modified 

Bézier curve degree elevation and reduction scheme is developed here to redistribute the control 

points in each iteration. Since there could be more than one saddle point with extra local minima 

between the two stable states, one curve could be broken into two to represent two stages of 

transitions recursively. We also developed a curve subdivision scheme to check whether there is 

more than one saddle point with extra local minima between the two end points of the optimized 

curve. If there is, we break this curve into two which are regarded as the initial guess of the 

transition path for the two stages of transitions. Then those two curves are optimized by the same 

procedure as we did to the original curve. This ‘check-and-break’ process continues until each of 

the curves only passes through two adjacent local minimums with their end points located at 

those local minimums. Since in real applications, people are more concerned about the exact 

positions of the saddle points instead of the MEP in most cases, a climbing up scheme is also 
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introduced to locate the saddle points on those curves that are close enough to the MEP.   

1.3 Contributions  

The new algorithm is able to search multiple transition paths on the PES simultaneously, 

which can provide a global view of the energy landscape. The existing methods only search one 

transition path connecting the reactant and product with an implicit assumption of one transition 

stage. For materials with complicated potential energy surfaces, often there are more than one 

transition stages with several metastable states between the two stable configurations. There is a 

possibility that the existing methods miss the saddle point with the highest energy level, which 

could lead to an underestimation of the energy barrier between two states.   For example, for a 

process during which the reactant needs to go through several other stable states (local minima) 

to reach the product, the NEB method may end up with locating some saddle points which are 

not necessary the one with highest energy since the number of images for NEB method is fixed 

during searching process, The proposed method can solve this problem by locating all the 

metastable states as well as the corresponding saddle points along the path between the reactant 

and product. Once all the metastable states and saddle points are located, it is easy to estimate the 

minimum energy barrier between the reactant and product. In addition, it is a more efficient way 

to search multiple transition paths simultaneously than searching individual ones in the situation 

when a comprehensive view of energy landscape is important. For the existing searching 

methods, it is difficult to receive a complete view of the distribution of the local minimums and 

saddle points on the energy surface. It may need a significant number of trials with different 

initial guesses in order to obtain a good sense of the energy landscape. The proposed method can 

locate several local minimums and saddle points for a given range at a time. As a result, it can 

give us a global view of the energy landscape.   

The proposed method shares some similarities with both the NEB and string methods in 

terms of treating the transition process as discretized images, and using several points or nodes to 

represent those images. Different from the NEB and string methods, the proposed method uses a 

Bézier curve to represent the transition path. The control points of the Bézier curve represent the 

discretized images on the transition path. By moving the control points, the curve will gradually 

converge to the MEP. For the NEB method, it employs spring forces to keep the nodes uniformly 

spaced along the path. As a result, it needs to determine the Hooke constants for springs as well 
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as tangent directions onto which the spring forces will project in each iteration. The spline NEB 

and string methods adopts re-parameterization scheme to keep the images on the path relatively 

evenly distributed. Different from them, our method use the degree elevation and reduction 

scheme of the Bézier curve to keep the control points well distributed. Since the degree elevation 

and reduction of the Bézier curve use the simple linear interpolation of the control points, the 

computation cost is much less than NEB and string methods for the redistribution process.  

The rest of the thesis is organized as follows. Chapter 2 provides some background 

knowledge related to the topics of transition pathway search, saddle point search, convergence 

analysis of the conjugate gradient method, and the Bézier curve degree reduction methods.  

Chapter 3 gives a detailed description of our new global search method. Chapter 4 shows the 

implementation of our method and the demonstration with examples. Chapter 5 concludes with a 

brief summary of the accomplishment and discussions about the future extension. 
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CHAPTER 2 

BACKGROUND  

This chapter presents some background knowledge for our global search algorithm. The 

challenge for phase transition simulation is to search the transition rate which is determined by 

the activation energy between two states. An activation energy barrier always exits between two 

states. In 1931, Erying and Polanyi [3, 8] proposed the transition state theory (TST) as a means 

to calculate the transition rates using the activation energy to characterize reactions. Most of the 

simulation methods developed recently are based on the TST and harmonic transition state 

theory (hTST) [9]. Some variants of TST (Variational Transition State Theory [10] and Reaction 

Path Hamiltonian [11]) are also used . The general procedure to simulate a phase transition 

process is as follows. First a PES is generated. Then a MEP which is the most probable physical 

pathway of transition among all possible ones is located. Finally the activation energy is obtained 

by finding the maximum energy on the MEP and the transition rate is calculated using TST. 

Subsequently the phase transition simulation can be done using KMC, Accelerated Molecular 

Dynamics (AMD) [12] or other simulation methods.  

The accuracy of the simulation depends on the accuracy of the rate constants. In other 

words, it depends on the accuracy of the activation energy. The research on transition pathway 

search and saddle point search aims to find the accurate MEP and the saddle point. There are two 

challenges in locating the MEP and the saddle point.  One is the generation of an accurate PES; 

the other is to search the MEP and saddle point on the generated PES. 

Tremendous research has been done on how to generate the PES and many methods were 

developed. Reference [13] presents a review of available methods of generating the PES 

characterizing information regarding the interatomic and intermolecular interactions that 

characterize the reaction is included in reference. [14-19] give some examples of PES generation 

methods.  Libraries and repositories of PES are also available and ready for use [20]. Further 

discussion of these PES generation methods is beyond the scope of this thesis.   

The search process of MEP and saddle points is also intensively studied. Many different 

methods were developed to find the transition path and saddle points. [21-25] are examples of 

the available reviews that give a detailed review or even comparison on some of those methods. 
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In general, there are two types of scheme for the searching process. One is the single-ended 

search and the other is double-ended search. The scheme for the single-ended search methods 

starts at a local minimum on the PES which represents the initial state configuration, then traces 

stepwise sequentially until the MEP and saddle points are located. The activation-relaxation 

method [26] and dimer method [27] are the examples of single-ended search methods. The 

double-ended search methods make use of the two minima on the PES. Those methods require 

the information for both the initial and final stable configurations. Examples includes the DHS 

method [28], the ridge method [29] and the NEB method [5], etc.  Sections 2.1 and 2.2 give a 

detailed review on the existing reaction pathway search and saddle points search methods 

respectively. 

As mentioned in section 1.2, the conjugate gradient method is employed in our method to 

locate the local minimums. A brief introduction and a literature review of the convergence 

analysis on this method are presented in section 2.3. In section2.4, a review of the existing 

methods on the Bézier curve degree reduction is presented.  

2.1 Existing transition pathway search methods 

Since 1970, there have been many methods developed to search the stationary points. The 

methods in Refs. [30-32] are some examples, which are not going to be reviewed in this thesis.  

Instead, we focus on more recent ones which aim to search the MEP on the PES.  

Basically, the transition pathway search methods can be classified either as chain-of-

states methods, including NEB and string methods, or as one of the other methods. Chain-of-

states methods rely on a collection of images that represent intermediate states of the atomic 

structure as it transforms from the initial to the final configuration along the transition path. After 

an optimization on all the intermediate images simultaneously, these discrete states are chained 

to each other when the search converges, usually by interpolating between the states, and the 

transition pathway and saddle point are obtained. They work well in transitions where there may 

be more than one saddle point, i.e. there may be more than one transition state. In situations 

where there may be multiple transition pathways, the methods will converge to the pathway 

which is closest to the initial guess of the transition pathway. 

The early version of the chain of state methods is the plain elastic band (PEB) method 
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[33-39], which represents the transition path by several discrete images normally in a range of 

four to twenty images. These images are subject to the total potential force and spring force. 

After several rounds of optimization, the forces on those images vanish and the transition path 

converges to the MEP. But in practice, the PEB method fails to locate the MEP in most 

situations. The PEB method has two major defects, which are “corner cutting” and “sliding 

down”.  The corner cutting issue is caused by large spring stiffness. The band is too stiff and the 

path cuts the corner which leads to in overestimating the saddle point energy. The sliding down 

issue occurs when the stiffness of the spring is too small. The images slide down when getting 

closer to the saddle point region and avoid the barrier region, thus reducing the resolution of the 

path in the most critical area. These two defects are the motivation for developing the NEB [5] 

method, one of the most commonly used chain-of-state methods. The NEB method represents 

the transition path by a set of images connected by spring in order to ensure the continuity of the 

path. An essential feature of the NEB method, which distinguishes it from other chain of state 

methods, is the projection of the forces which ensures that the spring forces only control the 

distribution of the images, and the true force only controls the convergence of the band to the 

MEP. In each iteration, the tangent direction to the path should be determined to decompose the 

true force and the spring force into parallel and perpendicular components. The perpendicular 

components of the spring force and the parallel components of the true force are eliminated. This 

force projection is referred as nudging. As a result, the spring force can be varied by several 

orders of magnitude without introducing the ‘corner cutting’ or ‘sliding down’ problems. The 

resolution at the region of interest (ROI) and the accuracy of the saddle point energy estimation 

are improved. The force on image i then becomes  

  || ||
ˆ ˆ( ) s

i i iV


   F R F τ τ
   (2.1) 

where iR is the position vector for the thi image;  ( )iV


 R indicates the perpendicular 

component of the potential force; 
s

iF represents the total spring force on the thi image; and ||τ̂ is 

the unit tangent to the path. In each iteration, the tangent vector along the path is defined by 

central finite difference approximation: 
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1 1

1 1

i i i i
i

i i i i

 

 

 
 

 

R R R R
τ

R R R R
 

 (2.2) 

The unit tangent vector ||τ̂  is obtained by normalizing the tangent vector iτ . The NEB method 

requires the knowledge of the initial and final states of the transition, as well as an initial guess 

of the transition path. At each iteration, the forces acting on the intermediate images are 

minimized using an optimization algorithm, e.g. the Broyden-Fletcher-Goldfarb-Shanno (BFGS 

method), keeping the initial and final states fixed. As a result, the images iteratively converge to 

the MEP. To interpret the results, the interpolation between adjacent images should be adopted to 

get the MEP. In the event of multiple MEPs, the algorithm will converge to the MEP which is 

closest to the initial guess of the path. The algorithm works well in most situations. But in the 

systems where the force along the MEP is larger compared to the restoring force perpendicular to 

the path, kinks may develop because no perpendicular spring forces are considered. As a result, it 

prevents the band from converging to the MEP. In addition, in some cases, the actual saddle 

point may not locate at the position at one of the intermediate images. The improved tangent 

NEB [40] and doubly nudged elastic band (DNEB) [41] methods reduce the appearance of kinks 

by generating a better estimatation of the tangent direction of the path and re-introducing a 

perpendicular spring force component, respectively. In the improved tangent method, instead of 

using both the adjacent images 1iR and 1iR , only the image with higher energy and the image 

iR itself are used to estimate the tangent direction. The new definition of the tangent direction is  

  
1 1 1

1 1 1

if

if     

i i i i i

i

i i i i i

V V V

V V V

  

  

  
 

  

R R
τ

R R
  (2.3) 

when the image iR is at a maximum or a minimum in energy, the tangent vector is defined as a 

weighted average of the vectors to the two neighboring images. The weight is determined based 

on the energy. In the DNEB method, a manipulated perpendicular component of the spring force 

is added back to the total force in order to reduce kinks. The total force then becomes 

  
*

||
( ) s s

i i i iV


   F R F F   (2.4) 

where 
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*

ˆ ˆ( )s s s

i i i i i 
  F F F τ τ   (2.5) 

The band is now doubly nudged as a result of inclusion both components of the spring force. 

During the force minimization process, the limited-memory quasi-Newton (L-BFGS) [42]   

optimization method is used, which accelerates the convergence of the relaxation process. The 

climbing image NEB (CI-NEB) [43] is a modification to the NEB method. This method not only 

retains the shape information of the MEP but also allows one image converges to the saddle 

point rigorously. After a few iterations of regular NEB, the image maxi with the highest energy is 

identified. Only for maxi , the force is calculated separately as: 

  
max max max max max

ˆ ˆ( ) 2 ( )i i i i iV V    F R R τ τ   (2.6) 

This is the total potential force with the component along the band being inverted. No spring 

force is applied to image maxi , which allows the image maxi actively climbing towards the saddle 

point along the band. The forces on other images are defined in the same way as it does in the 

NEB method. The only difference is that the spring constants are calculated as a function of the 

maximum energy along the band, which leads to a maximum spring constant if the image locates 

at the maximum energy position and a small spring constant if the images are away from its 

maximum energy position.  As a result, there are more images settling around the saddle point 

and thus achieving higher resolution at this critical region.  The free end CINEB [44] method 

achieves an important improvement to the original CI-NEB method by allowing one end state 

swinging freely at a given level of energy. The movable end state is subject to a force defined as 
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In such a way, one can keep the moving end state close to the saddle point region. As a result, 

the number of images along the band can be significantly reduced while retaining a reasonable 

resolution around the saddle point region. The computational cost to locate the saddle point is 

greatly reduced. The spline NEB [45] method has two modifications from the original NEB 

method. One is using a second-order L-BFGS in the relaxation process of each intermediate 

image along the band, which leads to a faster convergence to the MEP. The other one is using a 
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spline interpolation to represent the path while eliminating the spring forces between adjacent 

images along the band, which makes the method more robust.  After the band is converged, the 

Eigenvector Following [46, 47] optimization method can be applied further to locate actual 

saddle points, and the resolution of ROI can be increased by using adaptive spring constants.  

String method [6, 48] is another commonly used chain of state method. The string 

method uses a smooth curve with intrinsic parameterization such as arclength, or energy 

weighted arclength to represent the transition pathway. The string can be discretized into number 

of points called the images on the string. As opposed to NEB, the number of points used in the 

string method can be modified dynamically. The MEP is located by evolving the discretized 

images according to the perpendicular components of the potential force. The improved string 

method [49] evolves the string according to the full potential force instead of perpendicular 

component of the force. That is, the force projection step is eliminated, which makes the method 

more stable and accurate. The algorithm involves two simple steps: evolving the string by 

standard ordinary differential equation (ODE) solvers; and re-parameterization of the string by 

interpolation. The growing string method [50] does not require the initial guess of a complete 

transition path. It grows from the ends of reactant and product until these two end points join 

together and then the joint curve evolves to the MEP as the original string method does. This 

method consists of a two-step procedure: evolution and parameterization. In the evolution step, 

the total forces on the images are minimized. In the parameterization step, the images are 

redistributed along the string with a prescribed density. If the perpendicular force at a frontier 

node is less than a threshold, one more node is added and the node continues grow. The quadratic 

string [51] method is a variation of string method based on multi-objective optimization subject 

to constraints of parameterization and evolving direction. One essential modification made in 

this method is that the integration is done locally on a quadratic PES approximation. A damped 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian update is applied in searching the MEP. 

The integration is performed with an adaptive step-size solver, which is restricted in length to the 

trust radius of the approximate Hessian. The step size in this method can be larger than the 

original string method.    

Methods that are not classified as chain-of-states include the conjugate peak refinement 

(CPR) method [52], the accelerated Langevin dynamics (ALD) method [53], the concerted 
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variational strategy [54],  and Hamilton-Jacobi method [55]. The CPR method iteratively finds a 

series of saddle points that are connected to each other and form a continuous reaction path from 

reactant to product by linear interpolation. It uses the fact that the Hessian matrix (second 

derivative of the energy surface) has exactly one negative eigenvalue and all others are positive 

at the first order saddle point. Based on this fact, the CPR method constructs a set of conjugate 

basis using the Beal’s [56, 57] formula by setting the initial maximum direction as the direction 

along the line connecting the reactant and product.  By using line maximization in one direction 

and line minimization along all other conjugate directions, one saddle point is located. This 

process is repeated to locate all other saddle points.  The ALD method [53] is a stochastic 

transition path sampling method by solving the Langevin equation (LE) describing the stochastic 

dynamics of a thermally activated system. This method starts from the initial state and does not 

require the prior knowledge of the final state and saddle point. For a single transition, the 

pathway is divided into activation path (from initial state to one particular state M) which is 

generated by a deterministic Newtonian equation with negative friction and deactivation path 

(from state M to final state) which is generated by a regular Newtonian equation with positive 

friction. The transition path can be approximated as a weighted average of all the possible paths 

along the activation phase and the deactivation phase. The ALD method requires a priori 

knowledge of the activation time from the initial state to the state M in physical transitions.  The 

concerted variational strategy [54] describes the transition path based on Maupertuis’ and 

Hamilton’s Principles. After obtaining the transition path, the conjugate residual method [58] for 

local search is used to locate the saddle point. The Hamilton-Jacobi method [55] relies on the 

solution of a Hamilton-Jacobi type equation to generate the MEP. The search is based entirely on 

the knowledge of the reactant. No prior knowledge for the product is needed. This method works 

on a cost principle: points with a higher potential energy level have a larger cost than points with 

a lower potential energy. A special cost is defined for the MEP.  

2.2 Existing saddle point search methods 

Instead of searching the complete MEP, saddle point search methods only locate the 

saddle point on the MEP. They are categorized into local and global search methods. One of the 

original local methods is the automated surface walking algorithm [59] which is based on 

eigenvectors of the Hessian matrix with local quadratic approximation of the PES within a trust 
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region. For each iteration, the trust radius and Hessian matrix are updated. The search process 

starts with tracking the eigenvalue of the updated Hessian matrix till the convergence is reached. 

The other one is the partitioned rational function optimization [60] method, which is based on 

local rational function approximation instead of quadratic approximation to the PES with 

augmented Hessian. The more recent ridge method [29] and dimer method [7] use a pair of 

images to search the saddle point without evaluating the Hessian matrix. The ridge method starts 

searching the maximum on the straight line connecting reactant and product. And then two 

images on the line with a small distance from the maximum are created. Those two images are 

then relaxed and a new maximum point along the straight line connecting the two new images is 

found. The process is repeated till the saddle point is located. The dimer method is a minimum-

mode following saddle point search algorithm. It uses a pair of two images of the system, called 

dimer. The saddle point is located by minimizing the energy using rotation and translation at the 

center of the dimer iteratively. The improved dimer method [61] modifies the original dimer 

method by using a different way to calculate curvature, reducing the number of gradient 

calculations, choosing a larger step of rotation, and applying translation to the dimer middle 

instead of one of the two images. Those modifications significantly improve the overall 

performance and robustness of the algorithm on quantum-chemical PES which subjects to 

numerical noises. Reduced Gradient Following (RGF) [62] and Reduced Potential Energy 

Surface Model [63] methods use intersections of zero-gradient curves and surfaces, with saddle 

point search occurring within the subspace of these curves or surfaces. The RGF method 

involves predict and correct steps. It starts from a stationary point and then moves along the 

tangent of reduce gradient curves. The improved RGF method [64] makes the method more 

efficient by using an implied corrector step for each predictor, which reduces the number of calls 

to the computationally expensive corrector step. Finally, the Synchronous Transit method [65] 

locates the saddle point by using a single line minimization of energy along the direction 

orthogonal to the linear synchronous transit path, which is followed by the energy maximization 

along the quadratic synchronous transit path. [66] generalized and improved the method by 

estimating the transition state and refining the saddle point estimation through conjugate gradient 

optimization.  

Local search methods may locate the saddle point which does not have the maximum 

energy on the MEP if there are multiple saddle points. Global search methods have the advantage 



15 

 

that the saddle point with the maximum energy is located if the search converges. The Dewar-

Healy-Stewart method [28] searches for the saddle point by iteratively reducing the distance 

between reactant and product images. The main idea of this method is to pull the lower energy 

image over the potential energy surface towards the higher energy image. The Activation-

Relaxation technique [26] can travel between many saddle points using a two-step process; an 

image first jumps from a local minimum to a saddle point, and then back down to another 

minimum. This method does not require an initial guess. The Step and Slide method [67] uses an 

image from the initial and final states. Energy levels of each are increased gradually, and the 

distance between them is minimized while remaining on the same isoenergy surface. The interval 

Newton’s method [68] is capable of finding all stationary points by solving the equation of 

vanishing gradients. 

2.3 Conjugate gradient method 

Conjugate gradient method is an effective iterative method for solving large, sparse 

systems of linear equations numerically, provided that the coefficient matrix of which is 

symmetric and positive definite. This method is originally proposed by Hestenes and Stiefel [69]. 

In solving the linear equations A x b , the key idea of this method is to minimize the residual 

i iA r b x  along conjugate directions. This method solves the equation in at most n steps 

provided that there is no round-off error. A detailed explanation and development of this method 

could be found in [70, 71]. Later on, this method is extended to solve nonlinear systems of 

equations and unconstrained optimization problems such as potential energy minimization. In 

[72], Fletcher and Reeves developed an algorithm namely Fletcher-Reeves method by using the 

conjugate gradient method to minimize a general function. For a quadratic function, the method 

could locate the minimum in at most n  steps apart from rounding off errors. For non-quadratic 

function, it usually takes more than n iterations to locate the minimum. Later, Polak and Ribière 

[73] modified the Fletcher-Reeves method by changing the way how the conjugate directions are 

calculated. Hestenes and Stiefel [69] also have their own approach to calculate the conjugate 

directions. For all the three methods, the conjugate search directions have a general form of 
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where kg is the gradient; k is a scalar. For the Fletcher-Reeves method, Polak-Ribière method, 

and Hestenes- Stiefel method, the k is defined by Eqns. (2.9), (2.10) and (2.11) respectively.  
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Same as other iterative methods used in minimization problem, convergence is always the key 

issue. When the conjugate gradient is applied to a general function, a local quadratic 

approximation is always involved. In order to determine the step size in each conjugate direction 

for a general function, a line minimization search process is adopted, which could affect the 

convergence properties of the method depending on which convergence criteria is used for the 

line searches. When the method is used to solve unconstrained optimization problems, extensive 

research has been conducted on the convergence properties of this method.  Zoutendijk [74] 

proved that the Fletcher-Reeves method with exact line searches is globally convergent on 

general functions. Al-Baali [75] extended Zoutendijk’s conclusion to inexact line searches, 

particular for a variation of the Wolfe line-search.  Powell [76] demonstrated that the Polak- 

Ribière and Hestenes-Stiefel methods are not globally convergent even with exact line searches. 

Meanwhile, Hu and Storey [77], and Gilbert and Nocedal [78] studied the global convergence of 

the algorithm related to the Fletcher-Reeves method with the strong Wolfe line search which 

indicates that the analysis is under the sufficient decent condition. In [78], Gilbert and Nocedal 

also studied the global convergence for the algorithms related to the Polak-Ribière method by 

considering different choice of k . Liu, Han and Yin [79] demonstrated the global convergence 

of the Fletcher-Reeves method under some conditions that are weaker than those in [75]. Dai and 
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Yuan proved that the Fletcher-Reeves method with the strong Wolfe line search is globally 

convergent provided that for each iteration, the search direction is downhill. Dai, Han, Liu., et al 

[80] demonstrated the global convergence of the Fletcher-Reeves- and Polak-Ribière-type 

methods without assuming the sufficient descent condition. This paper showed that the sufficient 

descent condition is no longer a need in the analysis of the global convergence of the Fletcher-

Reeves and Polak-Ribière method.  

2.4 Existing methods for degree reduction of Bézier curve 

In this research, Bézier curve is used to represent the transition path. Bézier curve is a 

parametric curve which is defined by a set of control points. The number of control points 

determines the degree of the Bernstein polynomial basis functions that describe the shape of the 

curve. The curve interpolates its first and last control points and is tangent to the first and last 

sides of the open polygon defined by these control points [81]. We use degree elevation and 

reduction to maintain the space between control points during MEP search. Degree elevation of 

Bézier curve is exact. In contrast, degree reduction always has approximation involved. Degree 

reduction of Bézier curve is a process that uses a lower order curve to approximate a higher order 

curve. There are two major applications for the degree reduction of Bézier curve. One is to 

generate a piecewise linear approximation to a prescribed curve. The other is to transfer data 

from one geometric modeling system to another. During the process, usually a curve with higher 

degree must be approximated by several lower degree curves due to the limitation on the 

maximum polynomial degree that certain systems can store and work with. Intensive research 

has been conducted on the degree reduction of Bézier curve in order to minimize the error 

between the original and reduced curve. The approximation to the original curve depends heavily 

on the chosen distance or error function to be minimized. There are typically two categories of 

approaches. One is to approximate the shape for the curve. The other is to approximate 

polynomial function that defines the curve. It treats the degree reduction process as the inverse 

process of degree elevation. Hence, the degree reduction problem is shifted to the problem of 

solving an over-determined linear system for the polynomial coefficients that defines the curve. 

Watkins and Worsey [82] developed a degree reduction method which is based on minimax 

approximation techniques. The method looks at the degree reduction from the perspective of the 

curve itself and as a result can achieve a better approximation to the original curve measured in 
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the uniform norm. Eck [83] extended the degree reduction scheme originally proposed by Forrest 

[84] by introducing real weighting factors to blend the two set of coefficients together. It is a 

linear interpolation of the two set of coefficients. This shifts the problem of degree reduction to a 

problem of determining a set of real weighting factors. By minimizing the maximal Euclidean 

distance between the reduced curve and original curve based constrained Chebyshev 

polynomials, the weights could be determined. However, this algorithm requires intensive 

implementation effort because the constrained Chebyshev polynomials are known implicitly in 

general. In [85], Eck improved the algorithm by minimizing the least squares distance function 

using constrained Legendre polynomials. Bogacki and Weinstein [86] developed two algorithms 

(one-degree reduction and multiple degree reduction) that compute a constrained approximation 

of an thn  degree Bézier curve by an ( )thm m n  degree curve. The approximation is performed in 

the uniform norm applied component-wise with endpoint interpolation. Brunnett et al. [87] 

studied the optimal degree reduction (optimal approximation of an thn  degree Bézier curve by an 

( )thm m n  degree curve) with respect to different norms, particularly to pL norms and the 

uniform norm ( p  ). Kim and Moon [88] addressed the degree reduction problem in the 1L

norm with endpoint interpolation. The scheme gives the best one-degree reduction of Bézier 

curve of the degree less than six with endpoint interpolation by using splines. For higher order 

curves, they proposed a scheme which is based on an appropriate transform of the Chebyshev 

polynomials of second kind. Kim and Ahn [89] developed a 1C constrained degree reduction 

method using the constrained Jacobi polynomials, the coefficients of which are represented 

explicitly, as the error function for good degree reduction of Bézier curve. In [90], Ahn extended 

the 1C constrained degree reduction method to ( 2,3)kC k  constrained degree reduction using 

the constrained Jacobi polynomials. 

In recent years, multi-degree reduction has been intensively studied. Instead of 

conducting the multi-degree reduction stepwise, methods are developed to perform multi-degree 

reduction at a time. Chen and Wang [91] developed a method named MDR by 2L  norm, which 

gives an explicit form of the least squares solution of multi-degree solution of Bézier curve with 

constraints of endpoints continuity. Sunwoo [92] generalized Chen and Wang’s work [91] by 

finding an explicit form of the multi-degree reduction matrix for a Bézier curve with constraints 
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of endpoints continuity. The control points of the degree reduced curve can be expressed as a 

product of degree reduction matrix and the vector of original control points. Lu and Wang [93, 

94] developed a multi-degree reduction method with 2G continuity under 2L norm. Later on, 

they developed another multi-degree reduction with respect to the 2t t -weighted square norm 

by using the transformation matrix between Bernstein and Chebyshev basis. Rababah and Lee 

[95]  developed a simple matrix form for r times degree reduction with respect to the weighted 

2L -norm by using the matrices of transformations between Chebyshev and Bernstein basis. 

Woźny and Lewanowicz [96] proposed a multi-degree reduction method under 2L norm by using 

dual Bernstein basis polynomials. A re-parameterization-based multi-degree method is 

developed by Chen and Ma [97] recently, which introduces a piecewise linear function to replace 

the general t in the least square distance.  

In this thesis, the developed algorithm uses the conjugate gradient method in searching 

the local minimums and the degree elevation and reduction in redistribution of the intermediate 

control points. The followed chapter presents the developed algorithm with a detailed 

explanation on how the conjugate gradient method and the degree reduction are used in the 

algorithm.  
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CHAPTER 3 

CONCURRENT MULTI TRANSITION PATHWAY  

SEARCH ALGORITHM  

This chapter gives a detailed description of the proposed new algorithm. The objective of 

the algorithm developed here is to locate both the minimum energy positions and MEP 

simultaneously. So the precise positions of the stable configurations do not need to be known in 

advance. In addition, the algorithm is able to search multiple transition paths on the PES 

simultaneously, which gives us a comprehensive view of the energy landscape on the PES. 

This global search algorithm includes three stages. The first stage involves the 

optimization of a single transition path, during which two local minima and one transition path 

that is close to the MEP will be located. The second stage is searching multiple transition paths 

starting from one single transition path obtained from the first stage. One curve is divided into 

two curves representing two stages of transition, which will be optimized in the same way as in 

the first stage. This stage will output several transition paths that approximate the true MEPs 

with those end points located at local minima. Then at the third stage, we let the control point 

with the maximum energy within each of those transition paths climb up in order to locate the 

actual saddle points. Sections 3.1 and 3.2 give a detailed description about the first two stages 

respectively. The procedure for this algorithm is summarized in Figure 1. An initial guess of the 

transition path is first provided. Then the path is optimized by minimizing the two end control 

points using the conjugate gradient method and meanwhile moving all the intermediate control 

points along the corresponding conjugate gradient directions. When two local minima are located 

by the end control points of the curve, the algorithm determines whether the curve crosses an 

extra local minimum or not. If not, the maximum energy point on the curve climbs up along the 

conjugate gradient directions to locate the true saddle point. If yes, the curve breaks into two new 

curves which represent initial guess for two new transition paths. Those two new curves are 

optimized and then checked following the same procedure as the initial curve. The check-and-

break procedure continues until all the curves are unbreakable with their end control points 

locating at local minimums and one intermediate control point locating at the saddle point. 
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on the curves to climb up to the 

saddle positions

 

Figure 1: Flow chart for the procedure of the algorithm 

 

3.1  A single transition pathway search 

For the initial guess of a transition path which is represented by a single Bézier curve, the 

searching process for the stable configurations and the MEP is carried out in a sequential manner 

within a given iteration. A total of five control points are used for the initial curve. The more 

control points the curve has, the more accurate the search results will be, but with higher 

computational costs. The general process for a single transition pathway search is as follows. 

First, the two end control points of the curve are minimized by using the conjugate gradient 

method. Then, a set of conjugate directions for each intermediate control point is determined 

based on the new positions of the two end control points. Several minimization steps are applied 
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to each intermediate control points along their associated conjugate directions. After several 

iterations, the two end control points of the curve will gradually converge to the minimum 

energy positions and the curve will approach to the MEP. Figure 2 illustrates the procedure of 

searching a single transition path. Table 1 lists the pseudo-code of the algorithm for a single 

transition pathway search. The details are described in the following subsections. 

3.1.1 Searching the Stable Configuration  

As shown in Table 1, the local minimums are located by minimizing the two end control 

points of the curve iteratively.  By definition the minimum energy location *
x  on the PES 

satisfies  

   * 0V x  (3.1)    

where 
*( )V x  is the potential energy function with respect to the position vector *

x  in an n-

dimensional configuration space;   *V x  is the gradient of the potential on the PES at the 

location *
x . The iterative location update during the minimization is given by 

  ( ) ( 1) ( ) ( )i i i i x x d  (3.2) 

where ( )i is the step length, and 
( )i

d is the search direction. The minimization process for the 

end points is carried out using the conjugate gradient method [72]. Detailed description about 

this method can be found in section 2.3. In our algorithm, the Fletcher-Reeves method is 

employed. The conjugate searching direction 
( )i

d in the thi iteration are defined as a linear 

combination of 
( )ig and 

( 1)i
d [72], 
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 The step size 
( )i is determined by using inexact line search along the corresponding conjugate 

directions. Namely, along each conjugate direction, several mini-steps are applied to the end 

points in order to locate the minimums along that direction. The minimum position in one 

conjugate gradient direction is the starting point for the corresponding followed conjugate 
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searching direction. In Table 1, in an n -dimensional search space, the search direction ( )i
D  in thi

iteration can be represented as 

  
( ) ( ) ( ) ( ) ( ) ( )

1 1

i i i i i i

n n    D d d  (3.4) 

For a quadratic potential function with n -dimensional inputs, the local minimum can be 

determined in at most n steps.  For a non-quadratic function, local quadratic approximation is 

involved during the minimization process. For a non-quadratic function with n-dimensional 

inputs, it requires more than n steps to locate a minimum. For those functions, the conjugate 

searching directions which are built based on the Eq. (3.3) will gradually lose conjugacy when 

searching process continues, which could lead to divergence. In our algorithm, we recalculate the 

conjugate directions from one iteration to another, namely after n steps of conjugate search in 

order to avoid the divergence.   

Search the new positions 
for the two end control 

points 

Update the positions of 
the intermediate control 

points along 
corresponding conjugate 

directions

Construct several 
conjugate basis 

corresponding to each 
intermediate control points 

Convergence?

Calculate the change of the 
function value at the end 

control points
|(f(x(i))-f(x(i-1)))/f(x(i-1))|<δ

Yes

Go to the 
second stage

No
Redistribute the 
control points

Input initial positions for 
the control points of a 

Bézier curve

 

Figure 2: Flow chart for the procedure of a single transition path search 
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Table 1: Pseudo-code of the algorithm for a single transition pathway search 

INPUT: Initial guess of a curve with control points of 0 1 2 3 4, , , , .p p p p p  

OUTPUT: A curve with two end points located at two local minimums and the curve itself 

approaches to the MEP. 

TOL= threshold for the percentage of change in potential energy value; 

(#)

*( )V p =potential energy value at points 
(#)

*p ; 

 
( )

0

i
D ,

( )

4

i
D = search direction at 0p and 4p respectively; 

 
( )

0

i ,
( )

4

i =step size for minimizing 0p and 4p respectively;  

 

WHILE True 

       IF 
( ) ( 1) ( 1)

0 0 0( ( ) ( )) / ( )i i iV V V TOL  p p p  and 
( ) ( 1) ( 1)

4 4 4( ( ) ( )) / ( )i i iV V V TOL  p p p  

            
( ) ( 1) ( ) ( )

0 0 0 0

i i i i p p D ; 
( ) ( 1) ( ) ( )

4 4 4 4

i i i i p p D ; 

            Minimize 
( 1) ( 1) ( 1)

1 2 3, ,i i i  
p p p in their associated conjugate directions to get a new set of  

           intermediate control points 
( ) ( ) ( )

1 2 3, ,i i i
p p p  (see section 0). 

            IF There is zigzag along the curve 

                      Do degree elevation or reduction locally (see Section 3.1.3 and 3.1.4). 

            END IF 

    ELSEIF 
( ) ( 1) ( 1)

0 0 0( ( ) ( )) / ( )i i iV V V TOL  p p p  and 
( ) ( 1) ( 1)

4 4 4( ( ) ( )) / ( )i i iV V V TOL  p p p  

             
( ) ( 1) ( ) ( )

4 4 4 4

i i i i p p D ; 

            Minimize 
( 1) ( 1) ( 1)

1 2 3, ,i i i  
p p p in their corresponding conjugate directions to get a new set 

            of intermediate control points 
( ) ( ) ( )

1 2 3, ,i i i
p p p . 

            IF There is zigzag along the curve 

                      Do degree elevation or reduction locally (see Section 3.1.3 and 3.1.4). 

            END IF 

     ELSEIF
( ) ( 1) ( 1)

0 0 0( ( ) ( )) / ( )i i iV V V TOL  p p p  and 
( ) ( 1) ( 1)

4 4 4( ( ) ( )) / ( )i i iV V V TOL  p p p  

             
( ) ( 1) ( ) ( )

0 0 0 0

i i i i p p D ; 

             Minimize 
( 1) ( 1) ( 1)

1 2 3, ,i i i  
p p p in their corresponding conjugate directions to get a new set 
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            of intermediate control points 
( ) ( ) ( )

1 2 3, ,i i i
p p p . 

            IF There is zigzag along the curve 

                      Do degree elevation or reduction locally (see Section 3.1.3 and 3.1.4). 

            END IF 

        ELSE 

                 Stop. 

         END IF 

END WHILE  

IF Two end points converge to the same local minimum 

     Re-input the initial guess of the control points 0 1 2 3 4, , , , .p p p p p  

END 

 

3.1.2 Searching the MEP  

Mathematically, for the n-dimension PES, the Hessian matrix H (the matrix of the second 

derivative of the energy) at the first-order saddle points has one negative eigenvalue and 1n  

positive ones. The eigenvectors is  form a conjugate basis (i.e. 0,T

i j i j  s Hs ) with respect to 

the Hessian matrix. For a set of conjugate direction is ’s, in the vicinity of a first-order saddle 

point, there is one direction 0s along which the potential energy has a local maximum. For each 

of the other 1n  directions, the potential energy has a local minimum. The method presented 

here constructs a set of conjugate directions by making use of the Eq. (3.5) develop by Beale 

[56] which starts with a given arbitrary direction 0s . The rest conjugate directions are defined as 
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
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


    


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s g g

g g g g g
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s g g g g

 (3.5) 

In this algorithm, for each intermediate control points, a set of corresponding conjugate 

directions are constructed by setting the 0s
 
as the tangent direction approximated by the 

backward finite difference for the first half of the intermediate points and by the forward finite 
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difference for the second half respectively. For example, for the thk control point
kp ,  
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0

1

if
2

if
2

k k

k k

N
k

N
k





  
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  
 

       

p p

s

p p

 (3.6) 

where N is the total number of control points and    rounds up to an integer. In order to 

calculate 1s  in Eq.(3.5), we first need to determine 0g  and 1g . Here for the thk  control point 
kp , 

0g  is defined as the gradient at the middle point of the line segment connecting 
kp  and its 

neighbor, namely, 
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g
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 (3.7) 

 1g  is defined as the gradient at the position with maximum energy 
maxp along the direction 0s . 

Several steps of line maximization are applied to the point kp  along 0s  in order to locate maxp . 

Then several steps of line minimization along the conjugate direction 1s  are applied to kp . The 

rest of the conjugate basis set are then built recursively using Eq. (3.5). Simultaneously, each 

time when a new conjugate direction is determined, several steps of line minimization along this 

direction are applied to the associated new positions of maxp .  

3.1.3 Constrained Degree Elevation and Degree Reduction 

After the evolution of the intermediate control points along the conjugate directions, 

those control points may become too close to each other. As a result, the control points only 

capture part of the information along the transition path. The resolution around the saddle region 

may be too low. This could lead to an underestimation of the energy barrier. Similar to the re-

parameterization process in the string method [49], a redistribution process of the control points 

after each evolution step is introduced in order to ensure that these intermediate control points 

are relatively well distributed. The degree elevation and reduction scheme for the Bézier curve 
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are employed to redistribute the intermediate control points in our algorithm.  

Degree elevation increases the flexibility of a curve by introducing more degrees of 

freedom for control. By adding an extra control point to the definition of a Bézier curve, its 

degree is raised by one. The advantage of using the degree elevation technique is that we can 

increase the degree of a Bézier curve without changing its shape. The degree elevation of an thn

order Bézier curve by one produces an ( 1)thn  order Bézier curve with a new set of  vertices 
kq  

defined by [98] 
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1 1

, 1
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 (3.8) 

where 
kp ’s are the original vertices of the thn  order Bézier curve. Eq. (3.8) can be written in a 

matrix form as 

  nTQ P   (3.9) 

where 0 1 1( , , , )n



Q q q q , 0 1( , , , )n

P p p p , and nT is a ( 2)n  by ( 1)n  matrix defined 

as  

n

1 0 0 0 0 0

1 0 0 0 0

0 2 1 0 0 0
1

1
0 0 0 1 2 0

0 0 0 0 1

0 0 0 0 0 1

n

n

n

T
n

n

n

n

 
 
 
 
 

  
 
 
 
    

The Bézier curve can be elevated more than one degree by applying Eq.(3.4) multiple times. In 

our algorithm, the curve is elevated only once within each iteration in order to make control 

points well distributed.  

The purpose of degree elevation in our algorithm is to redistribute the intermediate 

control points. In other words, we are concerned more about how well the procedure makes the 
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control points distributed than about how small the error between the elevated curve and the 

original curve may have, as long as the introduced error is within a tolerance range. Based on 

those two considerations, a constraint is added to the original degree elevation scheme in order to 

better serve our purpose. When two control points become too close to each other after the 

degree elevation by Eq. (3.8), we manually set the new control point to be the arithmetic average 

of the two adjacent control points in the original curve. In other words, for each newly created 

control points of the elevated curve, we calculate the Euclidean distance between this point and 

the middle point of its corresponding adjacent points of the original curve. For the thk control 

points kq of the elevated curve, if it satisfies the condition  

  1
1

2

k k
k k kc




  

p p
q p p  (3.10) 

where (0 1)c c   is a predefined constant, then kq is set as the middle point of the straight line 

1k kp p . Since it is too computationally expensive to keep elevating the curve recursively, degree 

reduction is introduced to keep a balance with degree elevation and maintain a reasonable 

computational cost.   

Degree reduction approximates an thn  order Bézier curve with an ( )thm m n  order 

curve. Different from degree elevation, no exact degree reduction is possible in practice. So 

approximation is inevitable. Similar to some of the existing methods reviewed in section 2.4, we 

treat the degree reduction as an inverse process of the degree elevation. Equation (3.8) shows 

that the control points of an elevated Bézier curve can be exactly determined by the control 

points of the original Bézier curve through linear interpolation of the two adjacent points. For the 

degree reduction, we need to solve the over-determined system in Eq.(3.8) for the unknowns 

 
0

n

k k
p as a linear combination of  

1

0

n

k k




q .  

Many methods are available to solve Eq. (3.8) approximately. Here, we developed a 

reduction scheme similar to Eck’s method [85] which solves the equations by three steps. In 

Eck’s method, the Eq. (3.8) is solved first in the forward direction. That is, for 1, , 1k n  , we 

receive  
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    1

1
1

1

I I

k k kn k
n k

  
 

p q p  (3.11) 

where the superscript I indicates that the control points are obtained from the forward procedure. 

Then the control points  
1

1

n
I

k k




p  can be obtained recursively by setting 1 1

I

k k p q when 1k  , 

which indicates that the two end control points are fixed for the degree reduction. Then Eq.(3.8) 

is solved in the backward direction. That is, for , ,2k n , we receive 

      1

1
1 1II II

k k kn n k
k

     p q p  (3.12) 

where the superscript II indicates the control points is obtained from the backward procedure. 

And the control points  
1

1

n
II

k k




p  can be obtained recursively by setting 1

II

k kp q  when k n . 

Thirdly, the unknown control points  
0

n

k k
p of the reduced Bézier curve are calculated as a linear 

combination of the control points  
1

1

n
I

k k




p  and  
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 (3.13)  

where k is the weights for 
II

kp .  

The degree reduction problem is then converted to the one of determining the weights of 

the corresponding control points. In Eck’s method, k ’s are determined by minimizing the least 

square distance between the original curve and the reduced curve, which is too costly for our 

purpose. Since the degree reduction in our algorithm is to redistribute the control points instead 

of transforming geometric information of curves which requires the error between the reduced 

curve and the original curve should be as small as possible. In order to reduce the computational 

cost, here the weights k are defined as  

  ( 1, , 1)k

k
k n

n
     (3.14) 

The implementation test shows that this simplified degree reduction scheme makes the 
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distribution of the points worse for some cases. Sometimes it introduces loops, which is 

undesirable for our algorithm. Thus we developed a reduction scheme similar to Eck’s [85] but 

with a modified forward and backward procedure. In order to determine the new control points 

for the reduced curve, we make use of the information of three adjacent points instead of one as 

in Eck’s scheme from the original curve. The three-step procedure is described as follows. In the 

forward step, three sets of points are calculated by using  
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and  
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where 1, , 1k n  . Then an average of them 
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forms a new set of points  
1

1

n
I

k k




p . Similarly, in the backward step, a new set of control points 

 
1

1

n
II

k k




p can be obtained by using Eqs. (3.19), (3.20) , (3.22) and (3.22). 
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Finally, the new control points  
0

n

k k
p can be obtained by using Eq.(3.13) and (3.14). 
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3.1.4 Local Degree Elevation and Degree Reduction 

The degree elevation and reduction of a Bézier curve changes the shape of the curve 

globally, which will gradually smooth out the curve. Consequently, this prevents the curve from 

converging to a curved MEP. The remedy for this issue is to introduce a local degree elevation 

and reduction scheme. Within each iteration, we first check whether there is zigzag along the 

curve or not. If there is no zigzag along the curve, we do not do degree elevation and reduction to 

the curve. Otherwise, we do degree elevation and reduction locally based on the distribution of 

the zigzag. For example, for the thk control point 
kp ( 1,..., 1i n  ), if it satisfies the condition  

  1 1

1 1

arccos k k k k

k k k k

p p p p

p p p p
 

 

 
  
 
 

 (3.23) 

where (0 )    is a predefined constant, then it indicates that there is zigzag at the control 

point kp . We check each of the intermediate control points within each iteration. If there is no 

zigzag along the curve, degree elevation or reduction is not needed; otherwise, degree elevation 

or reduction is done locally. If the zigzag only exists within the first half of control points, degree 

elevation or reduction is only performed to the first half of control points. Similarly, it is 

performed only to the second half of control points if the zigzag only exists within the second 

half. If the zigzag exists in both, we do degree elevation or reduction globally. 

3.2  Multiple Transition Pathway Search 

Here, we present how to search multiple transition paths on the PES. Our algorithm starts 

with the initial guess of a single transition path. Once the local minimums are found as described 

in Section 3.1.1, this single path will be divided into two curves if an extra basin is located along 

the path. Both subdivided curves will then be treated individually and the algorithm will be 

applied to them. This subdivision process continues recursively until there is only one possible 

saddle point between any pair of local minimums. As a result, multiple local minimums and 

transition paths can be found within a target search area. Therefore, the initial guess of this single 

path should be set up such that the search area of interest can be covered. 

During the multiple transition path search stage, a curve with two end control points 

located at the two local minimums obtained from the single transition path search will be 
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examined by using the curve subdivision scheme. It determines whether the curve crosses an 

extra basin with another local minimum.  If yes, the curve is divided into two new curves at the 

intermediate control point that is located in the extra basin. Since the number of control points 

for those two newly created curves may be less than five, the degree elevation is applied to the 

two curves recursively until the number of control points for each curve reaches five. Those two 

elevated curves now represent the initial guesses for the two new transition paths. The elevated 

curves are optimized using the procedure listed in Table 1. After their respective local minimums 

are identified, the curve subdivision scheme is applied to them again. The check-and-break 

procedure continues until all of the curves are unbreakable with their end control points located 

at local minimums. By now, those curves are still the approximations of the individual MEPs. In 

order to find the actual energy barrier for each curve, the algorithm selects the control point with 

the maximum energy and makes it climb up to locate the saddle point. During the climbing 

process, a set of conjugate directions corresponding to the identified control point with the 

maximum energy are constructed. Different from the procedure in the single transition path 

search, the point with the maximum energy will be first maximized along 
0s  direction, and then 

minimized along other directions is ’s ( 1i ). The same procedure in the single transition path 

search, i.e. minimization along directions with positive eigenvalues, is applied to the rest of 

intermediate control points during the climbing process. This further makes the curve converge 

to the MEP. Table 2 lists the pseudo-code of the algorithm for multiple transition path search. A 

curve with two end control points locating at two local minima is obtained from the single 

transition pathway search. The curve subdivision scheme is used to determine whether the curve 

crosses an extra local minimum or not.  If not, energy point with maximum energy value on the 

curve climbs up along the conjugate gradient directions to locate the saddle point. If yes, the 

curve breaks into two new curves each of which has a total number of control points less than 

five. The degree elevation is applied to the two curves recursively until the number of control 

points for each curve reaches five.  Those two elevated curves represent initial guess for two new 

transition paths. The elevated curves are optimized and then checked following the same 

procedure as the initial curve. The check-and-break procedure continues until all the curves are 

unbreakable with their end control points locating at local minima and one intermediate control 

point locating at the saddle point.  
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Table 2: Pseudo-code of the algorithm for multiple transition pathway search 

INPUT: A curve ( ) x  with two end control points located at two local minimums.
  

OUTPUT: Multiple curves with their end points connected together locating at multiple local 

minimums. Besides, each curve has one point locating at the saddle point position.  

 

iN =number of newly produced curve for thi  iteration ( 0N  is set to be 1). 

0i   

WHILE There exists newly produced curves in thi  iteration  

      1i i  ; 

     iN =0; 

     FOR 11,2..., ij N   

         IF ( )j x  is breakable (using the scheme listed in Table 5) 

             Break the curve ( )j x  into two curves 
1( )j x  and 

2 ( )j x . 

              2i iN N  ; 

           END IF 

           IF the number of control points for 
1( )j x or 

2 ( )j x  is less than five 

                  Do degree elevation to the curve 
1( )j x  or 

2 ( )j x . 

             END IF 

            Optimize 
1( )j x and 

2 ( )j x  after degree elevation to get two optimized curve ( )k x and 

             1( )k  x  ( 1ik N  ). 

     END FOR 

END WHILE 

FOR 1,2...,j  (total number of non-breakable curves produced during the WHILE loop ) 

     Select the maxi-energy control point of the ( )j x to climb up in order to locate the saddle 

point. 

END FOR 

 

The major step during the multiple transition path search is to determine some criteria of 

whether a curve is breakable and which intermediate control point we should select to break the 
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curve. Here the subdivision scheme for the fourth-order (with five control points) and fifth-order 

(with six control points) curves are used to demonstrate. If we use a curve with a degree lower 

than four, the limited number of control points may miss the detailed curvature information of 

the actual path on the PES. As a result, some of the local minimums will be missed. The 

subdivision scheme can be similarly extended to higher-order curves.  

3.2.1 Scheme for Selecting Breakpoint 

In this section, we present a curve subdivision scheme to determine whether a curve can be 

divided into two curves and which control point to be selected as the breakpoint for this 

breakable curve. This curve subdivision scheme is based on an assumption that the control points 

of a Bézier curve are relatively evenly distributed in a sequential manner. In other words, the 

curve itself has no loop or big curvature. We make use of the information of the gradient and 

potential energy value at each of the intermediate control points as well as their relative positions. 

Figure 3 shows a Bézier polygon on the PES with two end control points located at the minima 

of two separate basins of local minima. 0 1 2 3, , ,p p p p  and 4p  are control points. 1( )V p ,

2( )V p ,and 3( )V p  illustrate the negative gradient directions at the position 1 2, ,p p  and 3p

respectively. 1 2, ,  and 3 are the angles between the negative gradient and the control polygon. 

By examining the three angles as well as the potential energy values at those intermediate control 

points, it is able to determine whether the curve crosses a third basin of local minimums. There 

are a total of eight combinations with the angle distributions. The process of this scheme includes 

three steps. The first step is to check the combination of 1  and 3 . If no conclusion can be 

reached, a second step is to check 2 . If we still cannot decide by the second step, the energy 

values at the intermediate points will be considered as the third step. 

Table 3 summarizes the curve subdivision scheme for a fourth order curve. The details 

about the scheme to determine a breakpoint for a fourth-order curve is described in the remainder 

of this section.  
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Figure 3: Illustration for multiple pathway search (five control points)  

 

The first step of the process is to check the angles 1  and 3 . If both 1  and 3  are larger 

than 2 (i.e. Case 2 and Case 3 in Table 3), not only 0p  and 1p  are in different basins of local 

minimums but also 3p  and 4p , which indicates that the curve crosses at least a third basin of 

local minimum. Any of the three intermediate control points could be a breakpoint. In our 

algorithm, we choose 2p as the breakpoint.  If either 1  or 3  is less than 2  (i.e. Case 1, 4, 5, 6, 

7, and 8 in Table 3), it is not guaranteed that the curve would go through a third basin of local 

minimum by checking 1  and 3  only. For example, when 1  is larger than 2  and 3  is less 

than 2 , there are two sets of possible positions for the control points, i.e. Case 1 and 4. Since 

3  is less than 2 , 3p  and 4p could be located in the same basin. If 2p  is located in a different 

basin from 3p , the curve crosses the third basin. Otherwise, 1p , 2p , 3p , and 4p could be in the 

same basin and the curve crosses only two adjacent basins.  Therefore, we are unable to decide 

whether the curve is breakable or not with the only information that 1  is larger than 2  and 3  

is less than 2 . More information is required.  

As a second step, we take 2p into consideration by checking 2 . Here we use Cases 1 and 

4 to illustrate. When 2  is less than 2  (Case 1 in Table 3), it indicates that 2p  cannot be 

located in the same basin as 3p  and 4p . Also as discussed in the first step, 0p  and 1p are located 

in two different basins as in Case 1. Thus the curve should cross at least a third basin. Either 1p  

or 2p  could be a breakpoint. Here, we select 2p  to break. When 2  is larger than 2  (Case 4 in 
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Table 3), the negative gradients at the position 1p , 2p , and 3p  are in the similar directions. 1p , 

2p , 3p , and 4p  could be in the same basin which means that the curve crosses only two adjacent 

basins of local minima. Thus we need further information to determine if the curve is breakable.  

In the third step, the potential energy values at 1p , 2p , and 3p  are considered. If the 

potential energy values at positions 1p , 2p , and 3p  have the monotonic relationship 

1 2 3( ) ( ) ( )V V V p p p , 1p , 2p , and 3p  are considered as in the same basin, although there is still 

a slight chance that they are not. The curve is defined as unbreakable under this condition; 

otherwise, we break up the curve at the point 1p .  

The above three-step procedure for Cases 1 and 4 can be extended to Cases 5, 6, 7, and 8.  

For Cases 5 and 8, 1  is less than 2  and 3  is larger than 2 . When 2  is larger than 2

(Case 8 in Table 3), the curve is breakable at the points 2p  and 3p . Here we select 2p  as the 

break point. When 2  is less than 2  (Case 8 in Table 3), and 3 2 1( ) ( ) ( )V V V p p p , the curve 

is unbreakable; otherwise, we break it at 3p . When both 1 and 3  are less than 2  (Cases 6 and 

7 in Table 3), the additional information of 2  does not help to determine. Hence we use the 

potential energy value directly. When a curve crosses two adjacent basins and the control points 

are relatively evenly distributed, the energy level at the middle point should be the largest. Based 

on this fact, when 2 1( ) ( )V Vp p  and 2 3( ) ( )V Vp p , the curve is defined as unbreakable in the 

algorithm; otherwise, at the break point is chosen as 2p .    

The above procedure for breaking a fourth order curve can be extended to higher order 

curves. As an example, Table 4 summarizes the curve subdivision scheme for a fifth order curve. 

The discussion of the algorithm in this thesis is based on a fourth order curve. As an example, 

Table 5 lists the pseudo-code for breaking a curve with five and six control points. 
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Figure 4: Illustration for multiple pathway search (six control points) 

 

Table 3: Curve subdivision scheme (five control points) 

Eight Cases 

Greater (>) or smaller 

(<) than 2  
Breakable ? 

1  2  3  

1 
p1 p2 p3p0

θ1 θ2 θ3

-g1 -g2 -g3

p4

 
> < < Break at 2p  

2 θ1 θ2 θ3  > < > Break at 2p  

3 θ1 θ2 θ3

 
> > > Break at 2p  

4 θ1 θ2
θ3  > > < 

If 1 2 3( ) ( ) ( )V V V p p p , the curve is defined as 

unbreakable; Otherwise, break at 1p . 

5 θ1 θ2 θ3  < < > 
If 3 2 1( ) ( ) ( )V V V p p p , the curve is defined as 

unbreakable;Otherwise, break at 3p  

6 θ1 θ2 θ3  < < < 
If 1 2( ) ( )V Vp p and 3 2( ) ( )V Vp p , the curve is 

defined as unbreakable; Otherwise, break at 2p  

7 θ1 θ2 θ3

 
< > < Same as case 6 

8 θ1 θ2 θ3  < > > Break at 2p  
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Table 4: Curve subdivision scheme (six control points) 

Sixteen Cases 

Greater (>) or smaller 

(<) than 2  
Breakable? 

1  2  3  4  

1 
p1 p2 p3

p5p0

θ1 θ2 θ3

-g1 -g2 -g3

θ4
-g4

p4

 
> < < > Break at 2p  

2 θ1 θ2 θ3 θ4  > < > > Break at 2p  

3 θ1 θ2 θ3 θ4  
> > > > Break at 2p  

4 θ1 θ2
θ3 θ4  > > < > Break at 2p  

5 θ1 θ2 θ3 θ4  > < < < Break at 2p  

6 θ1 θ2 θ3 θ4  > < > < Break at 3p  

7 θ1 θ2 θ3 θ4  > > > < Break at 3p  

8 θ1 θ2
θ3 θ4

 
> > < < 

If 1 2 3 4( ) ( ) ( ) ( )V V V V  p p p p , the curve is 

defined as unbreakable; otherwise, break at 2p  

9 θ1 θ2
θ3 θ4  < > < > Break at 3p  

10 θ1 θ2 θ3 θ4  < > > > Break at 3p  

11 θ1 θ2
θ3 θ4  < < < > Break at 3p  

12 θ1 θ2 θ3 θ4  
< < > > 

If 4 3 2 1( ) ( ) ( ) ( )V V V V  p p p p , the curve is 

defined as unbreakable; otherwise, break at 4p  

13 θ1 θ2 θ3 θ4  < < < < 

If 3 4( ) ( )V Vp p  and 2 1( ) ( )V Vp p , the 

curve is defined as unbreakable; otherwise, if 

2 1( ) ( )V Vp p , break at 2p , else break at 3p  

14 θ1 θ2 θ3 θ4  < < > < 
If 3 2 1( ) ( ) ( )V V V p p p , the curve is defined 

as unbreakable; otherwise, break at 3p  

15 θ1 θ2 θ3 θ4  < > > < Break at 2p  

16 θ1 θ2
θ3 θ4

 
< > < < 

If 2 3 4( ) ( ) ( )V V V p p p , the curve is defined 

as unbreakable; otherwise, break at 2p  

  



39 

 

 

Table 5: Pseudo-code of the curve division scheme (five and six control points)  

INPUT: An optimized curve ( ) x  with two end control points located at two local minimums. 

OUTPUT: Two curve sections of ( ) x  

IF ( ) x  has five control points 0 1 2 3 4, , , ,p p p p p (refer to Figure 3)  

    IF 1 2  and 3 2   

         2p is selected as breakpoint 

    ELSEIF 1 2  and 3 2   

            IF 2 2   

                2p is selected as breakpoint 

            ELSE 

                 IF 1 2 3( ) ( ) ( )V V V p p p  

                       ( ) x is non-breakable 

                  ELSE 

                         1p is selected as breakpoint 

                  END IF 

             END IF 

    ELSEIF 1 2  && 3 2   

            IF 2 2   

                2p is selected as breakpoint 

            ELSE 

                 IF 3 2 1( ) ( ) ( )V V V p p p  

                       ( ) x is non-breakable 

                  ELSE 

                         1p is selected as breakpoint 

                  END IF 

             END IF 
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    ELSEIF 1 2  and 3 2   

              IF 2 1( ) ( )V Vp p and 2 3( ) ( )V Vp p  

                     ( ) x is non-breakable 

              ELSE 

                    2p is selected as breakpoint 

              END IF 

    END IF 

ELSEIF ( ) x  has six control points 0 1 2 3 4 5, , , , ,p p p p p p (refer to Figure 4)  
 

    IF 1 2  and 4 2   

         2p is selected as breakpoint 

    ELSEIF 1 2  or 4 2   

            IF Either 2 2  or 3 2   

                2p is selected as breakpoint 

            ELSE 

                 IF 1 2 3 4( ) ( ) ( ) ( )V V V V  p p p p  

                       ( ) x is non-breakable 

                  ELSE 

                         1p is selected as breakpoint 

                  END IF 

             END IF 

    ELSEIF 1 2  and 4 2   

            IF Either 2 2  or 3 2 
 

                3p is selected as breakpoint 

            ELSE 

                 IF 4 3 2 1( ) ( ) ( ) ( )V V V V  p p p p  

                       ( ) x is non-breakable 

                  ELSE 
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                         4p is selected as breakpoint 

                  END IF 

             END IF 

ELSEIF 1 2  and 4 2 
 

          IF 2 2  and 3 2   

                   IF 2 1( ) ( )V Vp p and 3 4( ) ( )V Vp p  

                         ( ) x is non-breakable 

                   ELSE 

                         IF 1 2( ) ( )V Vp p  

                              2p is selected as breakpoint 

                          ELSEIF 4 3( ) ( )V Vp p  

                              3p is selected as breakpoint 

                           END IF 

                   END IF 

              ELSEIF 2 2  and 3 2   

                        IF 3 2 1( ) ( ) ( )V V V p p p  

                            ( ) x is non-breakable 

                        ELSE 

                             3p is selected as breakpoint 

                         END IF 

              ELSEIF 2 2  and 3 2   

                        IF 2 3 4( ) ( ) ( )V V V p p p  

                            ( ) x is non-breakable 

                        ELSE 

                             2p is selected as breakpoint 

                         END IF 

              ELSEIF 2 2  and 3 2   
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                             2p is selected as breakpoint 

              END IF 

     END IF 

END IF 

3.2.2 Discussion on the subdivision scheme 

The proposed curve subdivision scheme for selecting the breakpoint is not perfect. It 

could treat some breakable curves as unbreakable ones. For example, for a curve with five 

control points, when 1 2  , 3 2   and 1 2 3( ) ( ) ( )V V V p p p , we define the curve as 

unbreakable. It is true if the curve only passes through two adjacent basins of local minima. But 

if the curve covers a long range with several extra local minima, there is still a small chance that 

the control points are positioned in the manner which satisfies the unbreakable conditions. The 

scheme will treat both of the two curves as unbreakable. A remedy for missing breakable curves 

is adding an extra step to double check each unbreakable curve for one more time. If a curve is 

identified as unbreakable curve for the first time, the control points of the curve will be 

redistributed by using degree elevation or degree reduction. Then this elevated or reduced curve 

will be checked again to see whether it is breakable. This extra step will increase the accuracy of 

subdivision but also with extra computational cost.   
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CHAPTER 4 

IMPLEMENTATION AND DEMONSTRATION 

 This chapter demonstrates the proposed concurrent search algorithm for multiple phase 

transition pathways. First, we test the algorithm of a single transition pathway on LEPS 

potential and LEPS plus harmonic oscillator potential [5, 99]. These two potential functions 

are two-dimensional benchmark problems which are frequently used to test transition 

pathway search methods. These two potential model mimics a reaction involving three 

atoms. Details will present in Section 4.1 and 4.2. Then we demonstrate the proposed 

multiple transition pathway search algorithm by applying it to search the saddle points and 

local minimums on two different two-dimensional PESs defined by the Rastrigin function 

and Schwefel function respectively. The implementation was done using MATLAB. Source 

codes are included in the Appendix. Table 6 lists the definition and graphic in two-dimension 

for the four test functions. For LEPS potential, the Q  functions illustrate Coulomb 

interactions between the electron clouds and the nuclei. The J functions illustrate the 

quantum mechanical exchange interactions. The parameters for the LEPS potential are 

defined as 0.05,a   00.30, 0.05, 4.746, 4.746, 3.445, 0.742,AB BC ACb c d d d r     

and 1.942  .  For LEPS plus harmonic oscillator potential, the parameters are defined as 

3.742,ACr  0.2025,ck   and 1.154c  . All the other parameters are the same as the ones 

defined for LEPS potential except 0.80b   in LEPS plus harmonic oscillator potential. 

 

 

  



44 

 

Table 6: Test functions 
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4.1 Test result for LEPS potential 

The LEPS potential model mimics a reaction involving three atoms A, B, and C 

constricted to motion along a straight line. There is only one bond formed, either between atoms 

A and B or between B and C [5, 99]. The detailed description and a 3-D graphic of the potential 

function can be found in Table 6. We test the single transition pathway search algorithm on this 

function by using two different initial positions of the transition path. The constant coefficient of 

the step size for minimizing the end control points and moving the intermediate control points is 

set to be 0.01 and 0.025 respectively. The results are illustrated in Figure 5 using contour plot. 

The black line represents the initial path. The red line represents the final path identified by using 

the algorithm listed in Table 1. The purple circle markers indicate the position of local 

minimums, while the purple square marker represents the position of saddle point.  

For different initial positions (refer to (a) and (b) in Figure 5), the algorithm locates the 

same saddle point while it locates different local minimums. The result for locating different 

local minimums is sensitive to the initial positions. This is due to the characteristic of the LEPS 

potential function. The 3-D graphic for LEPS potential function in Table 6 shows that there is a 

long flat valley around the local minimum region. Each point along the valley could be a 

potential local minimum. The algorithm will stop searching local minimums as long as it locates 

one of the potential local minimums. Starting from different initial positions, the algorithm will 

follow different searching path. As a result, it will locate different potential local minimums. 

That explains why the located local minimums are different for different initial positions.  
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For the initial position in Figure 5 (c), the algorithm failed to locate the saddle point. The 

two end control points tend to converge to the same local minimum. This is because that the 

conjugate gradient method is a local search method. The control point will converge to the 

nearest local optimal point. Since in the algorithm developed in this thesis, the two end control 

points are optimized independently based on conjugate gradient method, the two end control 

points will converge to the same local minimums when the initial positions of the two points are 

close to the same local minimum.   

4.2 Test result for LEPS plus harmonic oscillator potential 

Different with the LEPS potential model, the location of the two end atoms A and C in 

this model is fixed. Only atom B is allowed to move. In addition, this model introduces an 

additional degree of freedom which can be interpreted as a fourth atom that is coupled in a 

harmonic way with the atom B [5, 99]. The detailed description and a 3-D graphic of the 

potential function can be found in Table 6. We test the single transition pathway search algorithm 

on this function by using three different initial positions of the transition path. The constant 

coefficient of the step size for minimizing the end control points and moving the intermediate 

control points is set to be 1/35 and 1/45 respectively. The results are illustrated in Figure 6 using 

contour plot. The black line with triangle markers represents the initial path. The red line with 

square markers represents the final path identified by using the algorithm listed in Table 1. The 

purple circle markers indicate the position of local minimums, while the purple square marker 

represents the position of saddle point. The results show that the algorithm is able to locate the 

local minima and saddle points for different initial positions.  
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(a)                                                                       (b) 

 

 

(c) 

 

Figure 5: Test results for LEPS potential function 
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(a)                                                                     (b) 

 

(c) 

 

Figure 6: Test results for LEPS plus harmonic oscillator potential function 

 

4.3 Test result for Rastrigin function 

The Rasrigin function is a non-convex function frequently used to test the 

optimization algorithm. The function has a global minimum at (0, ,0)x  as well as 

several local minima. As discussed in Section 3.2, the initial guess for the transition path 

should be a curve with five control points which are relatively evenly distributed. Here, we 

choose a curve ( ) x  with five control points located at (−2.81, 0.50), (−1.43, 2.90), (0.23, 

−2.47), (1.57, 2.67), and (2.91, −0.11), which are visualized in Figure 7 as ‘initial path’.
 
First, 
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the optimization procedure listed in Table 1 is applied to ( ) x , which produces a curve 

'( ) x with two end control points located at the two local minimums. Then the multi-

transition pathway search algorithm listed in Table 2 is applied to '( ) x . A total of seven 

local minimums and six corresponding saddle points are located by this algorithm. The 

positions of those local minimums and the corresponding saddle points are listed in Table 7.  

Figure 7 shows the result using contour graphs. In order to test the robust of the algorithm, 

we test the algorithm by using a set of different initial positions located at (−2.81, −1.50), 

(−1.43, −1.50), (0.23, −1.50), (1.57, −1.50), and (2.91, −1.50), which are shown in Figure 8 as 

black dots. The result shows that the algorithm performs well for different initial positions. 

For the second set of initial positions, a total of seven local minimums and six corresponding 

saddle points are located. The details about the local minimums and corresponding saddle 

points are listed in Table 8. The result is also illustrated in Figure 8.    

Table 7: Test results on Rastrigin function (contour plot refer Figure 7) 

Path No Local minimums Saddle 

1 (−2.9849, 0) (−1.9899, 0) (−2.5516, 0.0201) 

2 (−1.9899, 0) (−0.9950, 0) (−1.5484, 0.0210) 

3 (−0.9950, 0) (0, 0) (−0.5345, −0.0133) 

4 (0, 0) (0.9950, 0) (0.4656, −0.0116) 

5 (0.9950, 0) (1.9899, 0) (1.4688, −0.0132) 

6 (1.9899, 0) (2.9849, 0) (2.4742, 0.0472) 
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Figure 7: Test result for Rastrigin function with the initial position at (−2.81, 0.50), (−1.43, 2.90), 

(0.23, −2.47), (1.57, 2.67), and (2.91, −0.11).   

 

Table 8: Test results on Rastrigin function (contour plot refer Figure 8) 

Path No Local minimums Saddle 

1 (−2.9849, −0.9950) (−1.9899, −0.9950) (−2.5497, −0.9832) 

2 (0, −0.9950) (0.9950, −0.9950) (0.4591, −0.9764) 

3 (−1.9899, −0.9950) (−0.9950,−0.9950) (−1.5496, −0.9776) 

4 (−0.9950, −0.9950) (0, −0.9950) (−0.5441, −0.9738) 

5 (0.9950, −0.9950) (1.9899, −0.9950) (1.5399, −0.9666) 

6 (1.9899, −0.9950) (2.9849, −0.9950) (2.5491, −0.9816) 
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Figure 8: Test result for Rastrigin function with the initial position at (−2.81, −1.50), (−1.43, 

−1.50), (0.23, −1.50), (1.57, −1.50), and (2.91, −1.50).  

 

4.4 Test result for Schwefel  function 

Section 4.1 shows that the algorithm works very well on the PES defined by Rastrigin 

function. But the contour of the Rastrigin function is uniformly distributed as we can see from 

the contour plot in Figure 7. In real application, most of the potential energy surfaces are non-

uniform.  Thus the Schwefel function which has a relatively non-uniform potential energy 

surface is selected to test our algorithm. We test our algorithm on the Schwefel surface following 

the same procedure as we did on Rastrigin surface. We also test the algorithm with two set of 

initial positions. The first initial positions are located at (−100.3, 25), (−40.5, 40), (17.8, −10), 

(69.8, 70.6), and (130.2, 98.7), which are illustrated in Figure 9 with black dots. A total of six 
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local minimums and five corresponding saddle points are located. Details are listed in Table 9. 

Also, the results are visualized in Figure 9. The second initial positions are located at (−100.3, 

−70), (−40.5, −70), (17.8, −70), (69.8, −70), and (130.2, −70), as shown in Figure 10 with black 

dots. A total of five local minimums and four corresponding saddle points are located. Details 

are listed in Table 10. The results are visualized in Figure 10.  

 

 

Figure 9: Test result for Schwefel function with the initial position at (−100.3, 25), (−40.5, -45), 

(17.8, 50.3), (69.8, 70.6), and (130.2, 98.7). 
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Table 9: Test results on Schwefel function (contour plot refer Figure 9 ) 

Path No Local minimums Saddle 

1 (−124.8170, 5.2615) (−124.4369, 65.4794) (−124.2794, 25.7779) 

2 (5.2807, 65.4046) (65.5185, 65.2612) (26.0773, 65.3830) 

3 (65.5185, 65.2612) (203.7441, 65.5489) (124.8765, 65.0411) 

4 (−124.6262, 65.5132) (−26.2200, 65.4095) (−66.1930, 65.1174) 

5 (−26.2200, 65.4095) (5.2516, 65.4740) (−3.9133, 65.3002) 

 

 

Figure 10: Test result for Schwefel function with the initial position at (−100.3, 25), (−40.5, 25), 

(17.8, 25), (69.8, 25), and (130.2, 25). 
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Table 10: Test results on Schwefel function (contour plot refer Figure 10) 

Path No Local minimums Saddle 

1 (−124.8274, −124.7472) (−26.1493, −125.1159) (−67.1757, −124.7392) 

2 (−26.1493, −125.1159) (5.2426, −124.6550) (−4.6699, −124.8731) 

3 (5.2402, −124.7391) (65.3225, −124.8080) (25.8758, −124.8290) 

4 (65.4076, −125.0250) (203.7606, −124.8008) (124.7793, −124.8429) 

 

4.5 Discussion 

In sections 2.1 and 2.2, it is demonstrated with two examples that the method can locate 

multiple local minimums and saddle points. Here, we give a brief discussion on the rate of 

convergence of this method. 

4.5.1 Convergence analysis  

The convergence of the algorithm to the local minimum and the MEPs are discussed in 

this section. In this algorithm, the conjugate gradient method is adopted in the searching the local 

minimum. For a quadratic function with n variables, the method can guarantee the local 

minimum will be located in at most n  iterations apart from round-off errors. The searching 

points converge to the local minimum quadratically. For a non-quadratic function with n

variables, the searching process is usually iterative rather than n steps. The approximated 

conjugate directions generated using Eq.(3.3) are the directions corresponding to the local 

quadratic approximation to the non-quadratic function. The rate of convergence for the non-

quadratic function depends on the response to changes in the local quadratic approximation from 

one iteration to another. When the searching point approaches the local minimum, it converges to 

the minimum quadratically. Hence, the choice of the initial position of the end points of the 

Bézier curve is very important. Those initial positions that require the least number of steps to 

converge to the bottom of the valley, where the local quadratic approximation is accurate, are the 

best choices for the initial position of the end control points. In addition, the line search method 

is employed to determine the step size in each conjugate direction. In each conjugate direction, 
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only several limited mini-steps are applied to locate the minimum along that direction in order to 

reduce the computational cost. In other words, the point we locate by the mini-steps search may 

not be the minimum point along that direction. This could expand the approximation error in 

terms of conjugacy.  Ultimately it will lead to more steps for the conjugate gradient method to 

converge. There is a trade-off between the number of functional evaluations during the line 

search process in each conjugate directions and the number of iterations needed for the conjugate 

gradient method to converge to the minimum.  
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CHAPTER 5 

SUMMARY AND FUTURE WORK 

In this thesis, a global search algorithm named a concurrent multi transition pathways 

search algorithm is developed to locate several local minimums as well as saddle points 

simultaneously. No prior knowledge of the reactant and product is needed for our algorithm. 

Different from the current transition pathway and saddle point search methods, our algorithm can 

search multiple transition paths starting from one initial transition path, which can provide a 

better view of the PES than the methods that only search one transition path.  

5.1 Summary and Discussions 

The algorithm presented in this thesis includes two parts. One is the single transition 

pathway search, and the other is the multiple transition pathway search. The former part locates 

the local minimum as well as MEP for a single path. For the single transition pathway search, the 

conjugate gradient method is used to minimize the two end control points, which locates two 

local minimums. The intermediate control points are minimized along the conjugate directions in 

order to push the curve to MEP. A constrained degree elevation and reduction scheme for Bézier 

curve is developed to redistribute the intermediate control points.  The output for the stage of 

single transition pathway search is the input for the stage of multiple transition pathway search. A 

curve subdivision scheme is developed so that multiple transition paths can be located. The 

algorithm is demonstrated by examples of LEPS potential, LEPS plus harmonic oscillator 

potential, and PESs defined by Rastrigin function and Schwefel function. Although the 

demonstration is conducted on two dimensional PESs, the algorithm works for higher 

dimensional systems as well.  

The major advantage of the algorithm is that it is able to dynamically locate all the 

intermediate local minimums and saddle points between the reactant and product along one 

transition path. This provides a comprehensive view of the transition process along this particular 

path.   

In this algorithm, Bézier curve used to represent the transition path can cause undesirable 

loops, especially at the two end positions. Loops should be avoided. The constrained degree 
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elevation and reduction of Bézier curve in Section 3.1.3 is introduced for this purpose. 

Previously, the author developed a degree reduction in the same way as the one described in 

Section 3.1.3 but only using two adjacent control points. The scheme works well if there is no 

abrupt change of potential energy along the path. However, loops can be introduced at the 

position where potential energy changes abruptly. In order to make the algorithm general, the 

author improved the scheme by introducing one more adjacent control point which is the one 

described in Section 3.1.3. It is much better in terms of eliminating loops. Yet, it has its own 

shortcoming. The smoothing scheme introduced in the degree reduction process prevents the 

curve from converging to a curved transition path. In order to solve this problem, the local 

degree elevation and reduction scheme is introduced as described in Section 3.1.4. In addition, 

during the implementation, the step size and the maximum number of steps for minimization 

along each conjugate direction are also adjusted to avoid loops.  The step size for minimization 

of the intermediate control points is adaptive which includes the information of the potential 

energy changes on the surface. The maximum number minimization steps along each conjugate 

direction should not be too large. Otherwise, the loops will be introduced.  

Another implementation issue is related to the stop criteria for searching the saddle point. 

During the climbing process, the control points with maximum energy on each sub curves climb 

up to locate the saddle points. The author first tried to eliminate the process of redistribution of 

control points during the climbing process. Unfortunately, loops can be formed at the positions 

with abrupt potential energy change. Then the redistribution process of control points is 

introduced to the climbing process. The issue of introducing the redistribution process is that the 

position of the control point with the maximum energy changes after redistributing the control 

points. The original control point with the maximum energy may not be the one with the 

maximum energy along the path after the degree elevation and reduction. Therefore, the 

algorithm needs to re-evaluate the energy level for the intermediate control points after 

redistributing the points in order to determine the next climbing point. This inevitably increases 

the computational cost. In addition, it is difficult to determine the stop criteria since the climbing 

points are changing from one iteration to another. It is not efficient to adopt the criteria related to 

the percentage change in potential energy at the point with the maximum energy. Although it will 

converge, it takes more iterations.  
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5.2 Future work 

As mentioned in section 3.2.2, the curve subdivision scheme will treat some breakable 

curves as unbreakable ones in some rare cases. The corresponding remedy is also introduced in 

the same section. However, this remedy is not good enough, and it increases the computational 

cost. A better curve subdivision scheme could be developed as an extension of the current one.  

In addition, for two particular stable states, the algorithm can only locate one transition 

path which consists of multiple curves with their end points connected together locating at 

multiple local minimums. There could be other possible paths between those two states. Figure 

11 illustrates such cases, where A, B, C, D, and E are stable states. From the initial state A to the 

final state B, there are two possible transition paths. One is A-D-E-B, and the other is A-C-B. 

The algorithm can only locate either the transition path A-D-E-B or A-C-B.  It is better to 

identify all the possible transition paths between the two states for the following two reasons. 

Firstly, identification of all the possible transition paths allows us to determine the correct 

activation energy. The algorithm only locates one transition path which could be the one with the 

energy barrier higher than the physical minimum energy barrier. This leads to an overestimation 

of the minimum energy barrier between the states A and B. For example, if the path A-C-B is the 

one with minimum energy barrier between states A and B. The algorithm may locate the path A-

D-E-B instead of the path A-C-B. As a result, the minimum energy barrier between states A and 

B will be overestimated. Secondly, identification of all the possible transition paths provides us a 

better overview of the landscape of the PES. Therefore, the ideal case is to locate all the paths on 

the PES. Once the algorithm identified all the local minima as well as the corresponding saddle 

points, it becomes easy to identify the MEP from the reactant to the product. To locate all the 

transition paths on the PES, the algorithm needs several experiments with different initial 

guesses of the transition path.. The procedure is computationally expensive. Since the algorithm 

can identify multiple transition paths during one experiment, an experiment with different initial 

guesses may locate transition paths which are already identified by the previous experiments. In 

addition, for a big system with multiple atoms, it is difficult to obtain an analytical representation 

of the PES. In other words, we do not know the distribution of the saddle points and local 

minimums. As a result, it is difficult to develop criteria to determine whether all the transition 

paths are located or not for those experiments. To locate all the transition paths, we need a 
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systematic method. In the future, we will develop an algorithm that can locate as many transition 

paths on the PES as possible simultaneously, as an extension of the current method. To locate all 

the possible transition paths on the PES, the proposed method will incorporate a modified 

particle swarm optimization method.. The result of the proposed algorithm could give us a better 

overview of the landscapes of the PES. In addition, the proposed method is more efficient than 

the ones only searching individual ones. 

A

B

C

E

D

 

Figure 11: Illustration for two possible transition paths between two states  

 

The ultimate goal of searching the saddle points is to determine the transition rates which 

are the key inputs for the phase transition simulation method. The accuracy of the KMC 

simulation is closely related to the accuracy of the transition rates and thus the energy value at 

the saddle points. Uncertainties are always involved in estimating the activation energy barrier 

thus the transition rates.  The existing saddle point search methods are based on the information 

of available PESs which are constructed through first principles calculation. During the 

calculation, numerical setup and approximations for computability will inevitably introduce 

uncertainties such as the exchange-correlation treatment in the density functional theory (DFT). 

In addition, the transition rate estimated by transition state theory (TST) is an upper bound of the 

true but unknown rate. It is very important to take those uncertainties into account during 



60 

 

searching the activation energy barrier. Otherwise, the simulation results based on the inaccurate 

information of activation energy could be misleading. Another future work will focus on the 

uncertainty quantification related to the saddle point search.  
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APPENDIX 

MATLAB SOURCE CODE FOR THE ALGORITHM 

%This is the main source code for the algorithm. All the functions are listed in the same section.  

clear all; 

m=5;%m:# control points 

A(1).L(1).p(:,1:m)=... 

    input('initial position in column vector for control points'); 

n=size(A(1).L(1).p,2);%n: PES dimension 

N_N=20; %N_N is the maximum number of iteration 

  

h=0.0001;%h threshold for stop criteria 

th=0.01;%th: threshold to determine if the two end points converges to the same point or not 

N_inter=6;%N_inter: Maxi # of mini steps for intermediate control   

          %points during the minimization process 

N_climb=8;%N_climb: Maxi # of mini steps for intermediate control points  

          %during climbing up process 

N_end=20;%N_end: Maximum # of line mini step for end points during the 

         %conjugate gradient minimization process 

c3=1/95;%step size coefficients 

c3_inter=1/50;%step size coefficients for intermediate control point 

c3_climb=1/150;%step size coefficients during climbing process 

 

c4=1/5;%percentage decreasement in step size 

c_deg=1/(3*m); 

th_deg=c_deg*norm(A(1).L(1).p(:,end)-A(1).L(1).p(:,1));  

%th_deg: threshold to determine whether two points are too close to each  

%other during degree elevation and reduction  

  

%Minimize the two end points to locate two local minimums 

A(2).L(1).p= local_mini( A(1).L(1).p, N_N,N_inter,N_end,h,c3,c3_inter,c4); 

  

j=1;%index for the # of paths we locate. 

NP=5; %Minimum control points for those curves 

i=2;%index for the total number of iterations in main code 
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k=1; 

while 1 

    i=i+1;  

    SA=0; %number of lines in  A(i+1).L 

    for ii=1:size(A(i-1).L,2) 

      b=size(A(i-1).L(ii).p,2);  

      %make the curve to be fourth or fifth order before checking whether 

      %there is extra local minimums 

      if b<5  

          for jj=b:4 

            A(i-1).L(ii).p(:,1:(jj+1))=Be_degelevation(A(i-1).L(ii).p,jj,th_deg); 

          end 

      elseif b>6 

          for jj=7:b 

            A(i-1).L(ii).p(:,1:(jj-1))=Be_degreduction(A(i-1).L(ii).p,jj,th_deg); 

            A(i-1).L(ii).p(:,1:(jj))=[]; 

          end 

      end 

    end 

     

    for jj=1:size(A(i-1).L,2) 

        B(1).L=curve_break(A(i-1).L(jj).p);  

        SB=size(B(1).L,2); %number of newly produced curves in  B(1).L 

        if SB==1 %curve is unbreakable, then do not necessary to minimize  

                 %the end points 

            %Redistribut the points through degelevation or degreduction, 

            %and then recheck if it is breakable or not. 

            if size(B(1).L(1).p,2)==NP  

                D(k).L(1).p(:,1:NP+1)=Be_degelevation(B(1).L(1).p,NP,th_deg);       

            elseif size(B(1).L(1).p,2)==NP+1 

                D(k).L(1).p(:,1:NP)=Be_degreduction(B(1).L(1).p,NP+1,th_deg);                

            end 

  

            E(k).L=curve_break(D(k).L(1).p); 

            SE=size(E(k).L,2);%SE:# of newly produced curves 

            if SE==1 %the curve is still unbreakable 

               C(1).L(j)=B(1).L; % C(1).L: unbreakable curves 
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               j=j+1; 

            else 

               %increase the control points of those new curve sections to 

               %five if there are less then five  

              for ii=1:SE  

                 if size(E(k).L(ii).p,2)<NP  

                   for iii=1:(NP-size(E(k).L(ii).p,2)) 

                       sp=size(E(k).L(ii).p,2); 

                       E(k).L(ii).p(:,1:sp+1)=Be_degelevation(E(k).L(ii).p,sp,th_deg); 

                   end 

                 end 

              end 

              %Minimize the end points for those new curves in order to 

              %locate the new local minimums 

              for kk=1:SE 

                  E(k).L(kk).p=local_mini(E(k).L(kk).p,N_N,N_inter,N_end,h,c3,c3_inter,c4); 

              end  

             %check if there is loop (two end points converges to the  

             %same point).If yes, means the curve is actually not breakable 

              kk=1; 

              while kk<=SE 

                 if norm(E(k).L(kk).p(:,1)-E(k).L(kk).p(:,end))/norm(A(1).L(1).p(:,1)-A(1).L(1).p(:,end))<th  

                    C(1).L(j)=B(1).L; 

                    j=j+1; 

                    break 

                 else 

                     if kk==SE 

                         A(i).L(SA+1:(SA+SE))=E(k).L; 

                         SA=size(A(i).L,2); 

                     end 

                     kk=kk+1; 

                 end 

              end   

            end 

          k=k+1; 

        else 

           %increase the control points of those new curve sections to 
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           %five if there are less then five 

           for ii=1:SB  

            if size(B(1).L(ii).p,2)<NP  

               for iii=1:(NP-size(B(1).L(ii).p,2)) 

                   sp=size(B(1).L(ii).p,2); 

                   B(1).L(ii).p(:,1:sp+1)=Be_degelevation(B(1).L(ii).p,sp,th_deg); 

               end 

            end 

           end 

           %Minimize the end points for those new curves in order to 

           %locate the new local minimums           

           for kk=1:SB 

               B(1).L(kk).p=local_mini(B(1).L(kk).p,N_N,N_inter,N_end,h,c3,c3_inter,c4); 

           end  

          %check if there is loop (two end points converges to the 

          %same point). If yes, means the curve is actually not breakable 

           kk=1; 

           while kk<=SB 

              if norm(B(1).L(kk).p(:,1)-B(1).L(kk).p(:,end))/norm(A(1).L(1).p(:,1)-A(1).L(1).p(:,end))<th  

                  if kk==1 

                     C(1).L(j)=B(1).L(SB);  

                     j=j+1; 

                  else 

                     C(1).L(j)=B(1).L(1);  

                     j=j+1; 

                  end 

                 break 

              else 

                  if kk==SB 

                      A(i).L(SA+1:(SA+SB))=B(1).L; 

                      SA=size(A(i).L,2); 

                  end 

                  kk=kk+1; 

              end 

           end 

        end 
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    end 

  

    if SA==0;%check if there is newly produced curve section     

       break 

    end 

end 

  

%check if two curve are overlapped 

k=1; 

M=[]; 

for ii=1:size(C(1).L,2)-1 

    for jj=ii+1:size(C(1).L,2) 

        if norm(C(1).L(ii).p(:,1)-C(1).L(jj).p(:,1))/norm(A(1).L(1).p(:,1)-A(1).L(1).p(:,end))<th 

          if norm(C(1).L(ii).p(:,end)-C(1).L(jj).p(:,end))/norm(A(1).L(1).p(:,1)-A(1).L(1).p(:,end))<th 

              M(k)=ii; 

              k=k+1; 

          end  

        elseif norm(C(1).L(ii).p(:,1)-C(1).L(jj).p(:,end))/norm(A(1).L(1).p(:,1)-A(1).L(1).p(:,end))<th 

           if norm(C(1).L(ii).p(:,end)-C(1).L(jj).p(:,1))/norm(A(1).L(1).p(:,1)-A(1).L(1).p(:,end))<th 

              M(k)=ii; 

              k=k+1; 

           end 

        end 

    end 

end 

 if size(M,2)>0 

    for ii=1:size(M,2) 

        C(1).L(M(ii)).p=[]; 

    end 

 end 

            

%Locate the saddle points for each curve. 

for ii=1:size(C(1).L,2) 

    N(1).L(ii).p=C(1).L(ii).p; 

    C(1).L(ii).p=saddle_search(C(1).L(ii).p,c3_climb,c4,n,N_climb); 

end 

%Output all the local minimums. 
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for ii=1:j-1 

    disp(C(1).L(ii).p(:,1)); 

    disp(C(1).L(ii).p(:,end)); 

end 

 

%This function minimize the two end points in order to locate two local 

%minimums. Also the intermediate control points move along the 

%conjugate directions which will gradually converge to MEP. 

 

function H = local_mini( p, N_N,N_inter,N_end,h,c3,c3_inter,c4) 

%a_a_*: index for the # of degree elevation and reduction 

a_a_for=1; %index for first half 

a_a_back=1;%index for second half 

a_a_tot=1;%index for the whold curve 

m_=size(p,2); 

c_deg_=1/(3*m_); 

th_deg_=c_deg_*norm(p(:,end)-p(:,1)); 

  

A_A(1).p=p;%A_A(i_i).p: control points matrix 

n_n=size(p,1);%dimension of the PES 

A_A(2).p=ones(n_n,size(A_A(1).p,2));  

  

%Minimize the two end points using conjugate gradient method 

A_A(2).p(:,1)=conjugate_mini(A_A(1).p(:,1),c3,c4,N_end); 

A_A(2).p(:,end)=conjugate_mini(A_A(1).p(:,end),c3,c4,N_end);  

  

%Minimize all the intermediate control points along the conjugate 

%directions with positive eigenvalues 

  for ii_ii=2:ceil(size(A_A(2).p,2)/2) 

      A_A(2).p(:,ii_ii)=inter_mini(A_A(2).p(:,ii_ii-1),A_A(1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);   

  end 

  ii_ii=size(A_A(2).p,2)-1; 

 while ii_ii>ceil(size(A_A(2).p,2)/2) 

     A_A(2).p(:,ii_ii)=inter_mini(A_A(2).p(:,ii_ii+1),A_A(1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);  

     ii_ii=ii_ii-1; 

 end 
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%degree elevation  

B_B(2).p=A_A(2).p; 

 b_b=size(A_A(2).p,2); 

c_c=index_loop(A_A(2).p); 

if size(c_c,2)>0 

   if max(c_c)<ceil(m_/2) 

      C_C(1).p(:,1:ceil(b_b/2)+1)=Be_degelevation(A_A(2).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg_); 

      A_A(2).p(:,1:ceil(b_b/2)+1)=C_C(1).p; 

      A_A(2).p(:,ceil(b_b/2)+2:b_b+1)=B_B(2).p(:,ceil(b_b/2)+1:end); 

      a_a_for=0; 

   elseif min(c_c)>ceil(m_/2) 

     C_C(1).p(:,1:b_b-ceil(b_b/2)+2)=Be_degelevation(... 

         A_A(2).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg_); 

     A_A(2).p(:,ceil(b_b/2):b_b+1)=C_C(1).p; 

     a_a_back=0; 

   else 

     A_A(2).p(:,1:(b_b+1))=Be_degelevation(A_A(2).p,b_b,th_deg_); 

     a_a_tot=0; 

   end 

end 

i_i=2; %index for the total # of iterations 

j_j=2; 

while i_i<N_N%N_N Maximum number of iteration to search local minimum 

       if abs((fun_value(A_A(i_i).p(:,1))-fun_value(A_A(i_i-1).p(:,1)))/fun_value(A_A(i_i-1).p(:,1)))>h&&... 

        abs((fun_value(A_A(i_i).p(:,end))-fun_value(A_A(i_i-1).p(:,end)))/fun_value(A_A(i_i-1).p(:,end)))>h 

            

           i_i=i_i+1; 

           A_A(i_i).p=ones(n_n,size(A_A(i_i-1).p,2));  

            

           A_A(i_i).p(:,1)=conjugate_mini(A_A(i_i-1).p(:,1),c3,c4,N_end); 

           A_A(i_i).p(:,end)=conjugate_mini(A_A(i_i-1).p(:,end),c3,c4,N_end); 

  

           for ii_ii=2:ceil(size(A_A(i_i).p,2)/2) 

               A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),... 

                   A_A(i_i-1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);   
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           end 

           ii_ii=size(A_A(i_i).p,2)-1; 

           while ii_ii>ceil(size(A_A(i_i).p,2)/2) 

                 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii+1),... 

                     A_A(i_i-1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);  

                 ii_ii=ii_ii-1; 

           end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%redistribute the control points using degree elevation and reduction scheme 

           b_b=size(A_A(i_i).p,2); 

           B_B(i_i).p=A_A(i_i).p; 

           c_c=index_loop(A_A(i_i).p); 

           if size(c_c,2)>0 

               if max(c_c)<ceil(m_/2) 

                   if a_a_for==0 

                       C_C(j_j).p(:,1:ceil(b_b/2)-1)=Be_degreduction(... 

                           A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg_); 

                       A_A(i_i).p(:,1:ceil(b_b/2)-1)=C_C(j_j).p; 

                       A_A(i_i).p(:,ceil(b_b/2):b_b-1)=B_B(i_i).p(:,ceil(b_b/2)+1:end); 

                       A_A(i_i).p(:,end)=[]; 

                      j_j=j_j+1; 

                      a_a_for=a_a_for+1; 

                   else 

                      C_C(j_j).p(:,1:ceil(b_b/2)+1)=Be_degelevation(... 

                          A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg_); 

                      A_A(i_i).p(:,1:ceil(b_b/2)+1)=C_C(j_j).p; 

                      A_A(i_i).p(:,ceil(b_b/2)+2:b_b+1)=B_B(i_i).p(:,ceil(b_b/2)+1:end); 

                      j_j=j_j+1; 

                      a_a_for=0; 

                   end 

               elseif min(c_c)>ceil(m_/2) 

                   if a_a_back==0 

                      C_C(j_j).p(:,1:b_b-ceil(b_b/2))=Be_degreduction(... 

                          A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg_); 

                      A_A(i_i).p(:,ceil(b_b/2):b_b-1)=C_C(j_j).p; 

                      A_A(i_i).p(:,end)=[]; 
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                      j_j=j_j+1;  

                      a_a_back=a_a_back+1; 

                   else  

                      C_C(j_j).p(:,1:b_b-ceil(b_b/2)+2)=Be_degelevation(... 

                          A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg_); 

                      A_A(i_i).p(:,ceil(b_b/2):b_b+1)=C_C(j_j).p; 

                       j_j=j_j+1;  

                       a_a_back=0; 

                   end 

               else 

                   if a_a_tot==0 

                      A_A(i_i).p(:,1:(b_b-1))=Be_degreduction(A_A(i_i).p,b_b,th_deg_); 

                      A_A(i_i).p(:,end)=[];  

                      a_a_tot=a_a_tot+1; 

                   else 

                     A_A(i_i).p(:,1:(b_b+1))=Be_degelevation(A_A(i_i).p,b_b,th_deg_);  

                     a_a_tot=0; 

                   end 

               end 

           end 

  

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

       elseif abs((fun_value(A_A(i_i).p(:,1))-fun_value(A_A(i_i-1).p(:,1)))/fun_value(A_A(i_i-1).p(:,1)))<h&&... 

            abs((fun_value(A_A(i_i).p(:,end))-fun_value(A_A(i_i-1).p(:,end)))/fun_value(A_A(i_i-1).p(:,end)))>h 

           i_i=i_i+1;         

           A_A(i_i).p=ones(n_n,size(A_A(i_i-1).p,2)); 

           A_A(i_i).p(:,1)=A_A(i_i-1).p(:,1); 

           A_A(i_i).p(:,end)=conjugate_mini(A_A(i_i-1).p(:,end),c3,c4,N_end); 

  

           for ii_ii=2:ceil(size(A_A(i_i).p,2)/2) 

               A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),... 

                   A_A(i_i-1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);   

           end 

           ii_ii=size(A_A(i_i).p,2)-1; 

           while ii_ii>ceil(size(A_A(i_i).p,2)/2) 

                 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii+1),... 

                     A_A(i_i-1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);  
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                 ii_ii=ii_ii-1; 

           end 

  

           %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

           b_b=size(A_A(i_i).p,2); 

           B_B(i_i).p=A_A(i_i).p; 

           c_c=index_loop(A_A(i_i).p); 

           if size(c_c,2)>0 

               if max(c_c)<ceil(m_/2) 

                   if a_a_for==0 

                       C_C(j_j).p(:,1:ceil(b_b/2)-1)=Be_degreduction(... 

                           A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg_); 

                       A_A(i_i).p(:,1:ceil(b_b/2)-1)=C_C(j_j).p; 

                       A_A(i_i).p(:,ceil(b_b/2):b_b-1)=B_B(i_i).p(:,ceil(b_b/2)+1:end); 

                       A_A(i_i).p(:,end)=[]; 

                      j_j=j_j+1; 

                      a_a_for=a_a_for+1; 

                   else 

                      C_C(j_j).p(:,1:ceil(b_b/2)+1)=Be_degelevation(... 

                          A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg_); 

                      A_A(i_i).p(:,1:ceil(b_b/2)+1)=C_C(j_j).p; 

                      A_A(i_i).p(:,ceil(b_b/2)+2:b_b+1)=B_B(i_i).p(:,ceil(b_b/2)+1:end); 

                      j_j=j_j+1; 

                      a_a_for=0; 

                   end 

               elseif min(c_c)>ceil(m_/2) 

                   if a_a_back==0 

                      C_C(j_j).p(:,1:b_b-ceil(b_b/2))=Be_degreduction(... 

                          A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg_); 

                      A_A(i_i).p(:,ceil(b_b/2):b_b-1)=C_C(j_j).p; 

                      A_A(i_i).p(:,end)=[]; 

                      j_j=j_j+1;  

                      a_a_back=a_a_back+1; 

                   else  

                      C_C(j_j).p(:,1:b_b-ceil(b_b/2)+2)=Be_degelevation(... 

                          A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg_); 
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                      A_A(i_i).p(:,ceil(b_b/2):b_b+1)=C_C(j_j).p; 

                       j_j=j_j+1;  

                       a_a_back=0; 

                   end 

               else 

                   if a_a_tot==0 

                      A_A(i_i).p(:,1:(b_b-1))=Be_degreduction(A_A(i_i).p,b_b,th_deg_); 

                      A_A(i_i).p(:,end)=[];  

                      a_a_tot=a_a_tot+1; 

                   else 

                     A_A(i_i).p(:,1:(b_b+1))=Be_degelevation(A_A(i_i).p,b_b,th_deg_);  

                     a_a_tot=0; 

                   end 

               end 

           end        

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

       elseif abs((fun_value(A_A(i_i).p(:,1))-fun_value(A_A(i_i-1).p(:,1)))/fun_value(A_A(i_i-1).p(:,1)))>h&&... 

             abs((fun_value(A_A(i_i).p(:,end))-fun_value(A_A(i_i-1).p(:,end)))/fun_value(A_A(i_i-
1).p(:,end)))<h 

           i_i=i_i+1;  

           G(:,2*(i_i-2)+1)=-grad(A_A(i_i-1).p(:,1))';          

           A_A(i_i).p=ones(n_n,size(A_A(i_i-1).p,2)); 

           A_A(i_i).p(:,1)=conjugate_mini(A_A(i_i-1).p(:,1),c3,c4,N_end);   

           A_A(i_i).p(:,end)= A_A(i_i-1).p(:,end); 

  

           for ii_ii=2:ceil(size(A_A(i_i).p,2)/2) 

               A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),... 

                   A_A(i_i-1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);   

           end 

           ii_ii=size(A_A(i_i).p,2)-1; 

           while ii_ii>ceil(size(A_A(i_i).p,2)/2) 

                 A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii+1),... 

                     A_A(i_i-1).p(:,ii_ii),c3_inter,c4,n_n,N_inter);  

                 ii_ii=ii_ii-1; 

           end 

          %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

           b_b=size(A_A(i_i).p,2); 
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           B_B(i_i).p=A_A(i_i).p; 

           c_c=index_loop(A_A(i_i).p); 

           if size(c_c,2)>0 

               if max(c_c)<ceil(m_/2) 

                   if a_a_for==0 

                       C_C(j_j).p(:,1:ceil(b_b/2)-1)=Be_degreduction(... 

                           A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg_); 

                       A_A(i_i).p(:,1:ceil(b_b/2)-1)=C_C(j_j).p; 

                       A_A(i_i).p(:,ceil(b_b/2):b_b-1)=B_B(i_i).p(:,ceil(b_b/2)+1:end); 

                       A_A(i_i).p(:,end)=[]; 

                      j_j=j_j+1; 

                      a_a_for=a_a_for+1; 

                   else 

                      C_C(j_j).p(:,1:ceil(b_b/2)+1)=Be_degelevation(... 

                          A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg_); 

                      A_A(i_i).p(:,1:ceil(b_b/2)+1)=C_C(j_j).p; 

                      A_A(i_i).p(:,ceil(b_b/2)+2:b_b+1)=B_B(i_i).p(:,ceil(b_b/2)+1:end); 

                      j_j=j_j+1; 

                      a_a_for=0; 

                   end 

               elseif min(c_c)>ceil(m_/2) 

                   if a_a_back==0 

                      C_C(j_j).p(:,1:b_b-ceil(b_b/2))=Be_degreduction(... 

                          A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg_); 

                      A_A(i_i).p(:,ceil(b_b/2):b_b-1)=C_C(j_j).p; 

                      A_A(i_i).p(:,end)=[]; 

                      j_j=j_j+1;  

                      a_a_back=a_a_back+1; 

                   else  

                      C_C(j_j).p(:,1:b_b-ceil(b_b/2)+2)=Be_degelevation(... 

                          A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg_); 

                      A_A(i_i).p(:,ceil(b_b/2):b_b+1)=C_C(j_j).p; 

                       j_j=j_j+1;  

                       a_a_back=0; 

                   end 

               else 

                   if a_a_tot==0 
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                      A_A(i_i).p(:,1:(b_b-1))=Be_degreduction(A_A(i_i).p,b_b,th_deg_); 

                      A_A(i_i).p(:,end)=[];  

                      a_a_tot=a_a_tot+1; 

                   else 

                     A_A(i_i).p(:,1:(b_b+1))=Be_degelevation(A_A(i_i).p,b_b,th_deg_);  

                     a_a_tot=0; 

                   end 

               end 

           end           

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

       else 

          break             

       end 

end 

H=A_A(i_i).p; 

end 

  

 

%This function minimize the two end points using conjugate gradient method 

 

 function H = conjugate_mini( p ,c3,c4,N_end) 

n_n=size(p,1); 

p_p=ones(n_n,n_n); 

s_s=ones(n_n,n_n); %s_s: conjugate gradient search directions 

G=ones(n_n,2); %gradients 

G(:,1)=-grad(p)'; 

s_s(:,1)=G(:,1); 

%Minimize the end control points along s_s(:,1) direction (inexact line search) 

p_p(:,1)=line_mini(p,s_s(:,1),c3,c4,N_end);  

%Minimize the end control points along the conjugate directions iteratively  

for i_i=2:n_n 

    G(:,i_i)=-grad(p_p(:,i_i-1)); 

    s_s(:,i_i)=G(:,i_i)+dot(G(:,i_i),G(:,i_i))/dot(G(:,i_i-1),G(:,i_i-1))*s_s(:,i_i-1); 

    p_p(:,i_i)=line_mini(p_p(:,i_i-1),s_s(:,i_i),c3,c4,N_end); 

end 

H=p_p(:,i_i); 
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end 

  

%This function does line minimization to two end points along conjugate 

%gradient directions 

 

function H = line_mini( p1,s,c3,c4,N1_N1 ) 

%N1_N1:# of mini steps 

h_h=0.000001;%threshold for stop criteria 

h_h1=-0.001;%threshold when will decrease the step size 

c3_c3=c3; 

c4_c4=c4; 

n_n=size(p1,1); 

p1_p1=ones(n_n,2); 

p1_p1(:,1)=p1; 

G(:,1)=-grad(p1_p1(:,1))'; 

ii=1; 

while ii<N1_N1&&abs(dot(G(:,1),s)/norm(s))>h_h 

    ii=ii+1; 

    p1_p1(:,2)=p1_p1(:,1)+c3_c3*dot(G(:,1),s)/norm(s)^2*s; 

    G(:,2)=-grad(p1_p1(:,2))'; 

    %when there is change in direction of the gradient, decrease the step size 

    if dot(G(:,1),G(:,2))/norm(G(:,1))/norm(G(:,2))<h_h1 

        c3_c3=c4_c4*c3_c3; 

    end 

    p1_p1(:,1)=p1_p1(:,2); 

    G(:,1)=G(:,2); 

end 

H=p1_p1(:,1); 

end 

  

%This function minimize the intermediate control points along the conjugate 

%direction with positive eigenvalues 

 

function H = inter_mini( p1,p2,c3,c4,n,MAX_N )  

%p2 is the point which will be minimized 

%p1 is fixed, only to determine the maximization direction 

%MAX_N:#of mini-step in conjugate direction 
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c5_c5=1/2; 

b1=0.001;%threshold for convergence criteria 

b2=0.000001;%threshold for convergence criteria 

h_h1=0; 

x1=ones(n,n);%x1: matrix to store the positions of p2 interatively 

%g0:gradient at p2, g1 is a n by(n-1)matrix to store the gradient g1,g2... 

%in Beal's formula  

g1=ones(n,n-1); 

s=ones(n,n); 

s(:,1)=p2-p1 ;%direction with negative eigenvalue(maximization direction)  

%Locate the maximum point along s0=s(:,1) in order to determine g1 in Beal's formula 

x1(:,1)=p2; 

xmid=1/2*(p1+p2); 

g0(:,1)=grad(xmid); 

ii=1; 

X1(:,1)=1/2*(p1+p2); 

G1(:,1)=g0(:,1); 

c3_c3=c3; 

  

while ii<MAX_N&&abs(dot(G1(:,ii),s(:,1))/norm(s(:,1)))>b2 

    ii=ii+1; 

    X1(:,ii)=X1(:,ii-1)+c3_c3*dot(G1(:,ii-1),s(:,1))/norm(s(:,1))^2*s(:,1); 

    G1(:,ii)=grad(X1(:,ii)); 

    if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1 

        c3_c3=c4*c3_c3; 

    end 

end 

x1(:,1)=X1(:,ii); %maximum point along the s0 

g1(:,1)=grad(x1(:,1)); 

  

%calculate s(:,2)represents s1 in Beal's formula (first conjugate direction 

%with positive eigenvalue) 

if abs(dot(s(:,1),(g1(:,1)-g0(:,1))))>b1 

   s(:,2)=-g1(:,1)+dot(g1(:,1),(g1(:,1)-g0(:,1)))/... 

       dot(s(:,1),(g1(:,1)-g0(:,1)))*s(:,1); 

else 

 s(:,2)=-g1(:,1)+dot(g1(:,1),(g1(:,1)-g0(:,1)))*s(:,1); 
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end 

  

%minimize p2 along s(:,2) 

ii=1; 

X1(:,1)=p2; 

G1(:,1)=grad(X1(:,1)); 

c3_c3=c3;  

while ii<MAX_N&&abs(dot(G1(:,ii),s(:,2))/norm(s(:,2))/norm(G1(:,ii))*norm(G1(:,ii)))>b2 

   ii=ii+1; 

   if abs(dot(G1(:,ii-1),s(:,2))/norm(s(:,2))/norm(G1(:,ii-1)))<0.5 

      X1(:,ii)=X1(:,ii-1)+c3_c3*dot(-G1(:,ii-1),s(:,2))/norm(s(:,2))^2*s(:,2); 

      G1(:,ii)=grad(X1(:,ii)); 

      if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1 

         c3_c3=c4*c3_c3; 

      end 

   else 

      X1(:,ii)=X1(:,ii-1)+c5_c5*c3_c3*dot(-G1(:,ii-1),s(:,2))/norm(s(:,2))^2*s(:,2); 

      G1(:,ii)=grad(X1(:,ii)); 

      if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1 

         c3_c3=c4*c3_c3; 

      end 

   end 

end 

  

x1(:,2)=X1(:,ii);%new position for p2 along s(:,2) 

g1(:,2)=grad(x1(:,2));  

%if the dimension of the PES is larger than two, then minimize p2 along all the conjugate directions  

%with negative eigenvalues iteratively 

jj=3; 

while jj<=n 

    if abs(dot(s(:,1),(g1(:,1)-g0(:,1))))>b1 

       s(:,jj)=-g1(:,jj-1)+dot(g1(:,jj-1),(g1(:,1)-g0(:,1)))/... 

        dot(s(:,1),(g1(:,1)-g0(:,1)))*s(:,1)+dot(g1(:,jj-1),g1(:,jj-1))/... 

        dot(g1(:,jj-2),g1(:,jj-2))*s(:,jj-1); 

    else 

       s(:,jj)=-g1(:,jj-1)+dot(g1(:,jj-1),g1(:,jj-1))/... 

           dot(g1(:,jj-2),g1(:,jj-2))*s(:,jj-1); 
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    end 

  

   %minimize p2 along s(:,jj) direction 

   ii=1; 

   X1(:,1)=x1(:,jj-1); 

   G1(:,1)=g1(:,jj-1); 

   c3_c3=c3; 

   while ii<MAX_N&&abs(dot(G1(:,ii),s(:,2))/norm(s(:,2))/norm(G1(:,ii))*norm(G1(:,ii)))>b2 

      ii=ii+1; 

      if abs(dot(G1(:,ii-1),s(:,2))/norm(s(:,2))/norm(G1(:,ii-1)))<0.5 

         X1(:,ii)=X1(:,ii-1)+c3_c3*dot(-G1(:,ii-1),s(:,2))/norm(s(:,2))^2*s(:,2); 

         G1(:,ii)=grad(X1(:,ii)); 

         if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1 

            c3_c3=c4*c3_c3; 

         end 

      else 

         X1(:,ii)=X1(:,ii-1)+c5_c5*c3_c3*dot(-G1(:,ii-1),s(:,2))/norm(s(:,2))^2*s(:,2); 

         G1(:,ii)=grad(X1(:,ii)); 

         if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1 

            c3_c3=c4*c3_c3; 

         end 

      end 

   end 

x1(:,jj)=X1(:,ii); 

g1(:,jj)=grad(x1(:,jj)); 

jj=jj+1; 

end 

H=x1(:,jj-1); 

End 

 

 %This function is used to determine if there is zigzag along the path and the position of 
the %zigzag 

  

function H = index_loop( p ) 

jj=0; 

for ii=3:size(p,2) 

   if dot(p(:,ii)-p(:,ii-1),p(:,ii-1)-p(:,ii-2))/norm(p(:,ii)-p(:,ii-1))/norm(p(:,ii-1)-p(:,ii-2))<0.99 
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       jj=jj+2; 

      index(jj-1:jj)=[ii-2, ii]; 

   end  

end 

if jj>0 

  H=index; 

else 

    H=[]; 

end 

end 

 

%This function elevates the degree of the curve by one 

function H =Be_degelevation( p,m,th_deg) 

%m:# of control point before degree elevation 

%q: Coordinate matrix for the elevated m+1 control points 

%p: Coordinate matrix for the original m control points 

%th_deg: threshold to determine if two point are too close 

q(:,1)=p(:,1); %the two end points are fixed during elevation process  

q(:,m+1)=p(:,m); 

h_h=1/3; 

%if two points are too close, then the new points is set as the arithmetic 

%average   

for i=1:m-1 

    q(:,i+1)=i/(m)*p(:,i)+(1-i/(m))*p(:,i+1); 

    if norm(q(:,i+1)-(p(:,i+1)+p(:,i))/2)>h_h*norm(p(:,i+1)-p(:,i)) , 

        q(:,i+1)=(p(:,i+1)+p(:,i))/2;                                                           

    end                                                                

end 

for i=2:m 

    if norm(q(:,i)-q(:,i-1))<th_deg 

        q(:,i)=(q(:,i+1)+q(:,i-1))/2; 

    end 

end 

%check the distance between two points, if too close, reset as middle position 

if norm(q(:,m+1)-q(:,m))<th_deg 

   q(:,m)=(q(:,m+1)+q(:,m-1))/2; 
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end 

H=q; 

end 

 

%This function reduces the degree of the curve by one 

 

function H =Be_degreduction( p,m,th_deg ) 

%m:# of control point before degree reduction 

%n_n:dimension for the PES 

%q: Coordinate matrix for the reduced m-1 control points 

%p:Coordinate matrix for the original m control points 

%q1&q2: Coordinate matrix for the reduced control points from forward & 

%backward procedure respectively. 

%th_deg:threshold to determine if two point are too close 

n_n=size(p,1); 

q1=ones(n_n,m-2); 

q2=ones(n_n,m-1); 

q(:,1)=p(:,1); %the two end points are fixed for degree reduction 

q(:,m-1)=p(:,m); 

  

%points generated by using the information of two adjacent control points 

q1_1=ones(n_n,m-3);  

q1_2=ones(n_n,m-3); 

q1_3=ones(n_n,m-3); 

q2_1=ones(n_n,m-3); 

q2_2=ones(n_n,m-3); 

q2_3=ones(n_n,m-3); 

%generate the control points forwardly 

q1(:,1)=p(:,1); 

for i=2:m-2 

    q1_1(:,i-1)=(m*p(:,i)-(i-1)*q1(:,i-1))/(m+1-i); 

    q1_2(:,i-1)=(m*p(:,i+1)-(i-1)*p(:,i))/(m+1-i); 

    q1_3(:,i-1)=(m*p(:,i+2)-(i-1)*p(:,i+1))/(m+1-i); 

    q1(:,i)=(q1_1(:,i-1)+q1_2(:,i-1)+q1_3(:,i-1))/3; 

end 

%generate the control points backwardly 

q2(:,m-1)=p(:,m); 
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i=m-1; 

while i>=3 

    q2_1(:,i-2)=(m*p(:,i)-(m-i)*q2(:,i))/i; 

    q2_2(:,i-2)=(m*p(:,i-1)-(m-i)*p(:,i))/i; 

    q2_3(:,i-2)=(m*p(:,i-2)-(m-i)*p(:,i-1))/i; 

    q2(:,i-1)=(q2_1(:,i-2)+q2_2(:,i-2)+q2_3(:,i-2))/3; 

    i=i-1; 

end 

%generate he final control points by linearly interpolating the two set of 

%control points obtained from the forward and backward procedure. 

for i=2:m-2 

    w=i/m; 

q(:,i)=(1-w)*q1(:,i)+w*q2(:,i); 

end 

  

for i=2:m-2 

    if norm(q(:,i)-q(:,i-1))<th_deg 

        q(:,i)=(q(:,i+1)+q(:,i-1))/2; 

    end 

end 

%check the distance between two points, if too close, reset as middle 

%position 

if norm(q(:,m-1)-q(:,m-2))<th_deg 

   q(:,m-2)=(q(:,m-1)+q(:,m-3))/2; 

end         

H=q; 

end 

  

%This function calculates the function value at position p 

 

function H= fun_value(p) 

a=sym('A',[1 size(p,1)]); 

z=ObjectiveF(a); 

for i=1:size(p,1) 

   z=subs(z,{a(i)},{p(i,1)}); 

end 

H=z; 
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end 

 

%This function calculates the gradient at p 

 

function H= grad(p) 

a=sym('A',[1 size(p,1)]); 

z=ObjectiveF(a); 

L =jacobian(z,a); 

for i=1:size(p,1) 

   L=subs(L,{a(i)},{p(i,1)}); 

end 

H=L; 

end 

 

%This function serves as the input of the objective functions 

 

function H = ObjectiveF( p ) 

%Objective funtion (Rastrigin) 

H= 20+p(1).^2-10.*cos(2*pi.*p(1))+p(2).^2-10.*cos(2*pi.*p(2)); 

%Objective funtion (Schwefel) 

H= 418.9829*2-p(1).*sin(sqrt(abs(p(1))))-p(2).*sin(sqrt(abs(p(2)))); 

end 

  

%This function breaks one curve into two curve sections if the curve is 

%breakable. This function works only when the input curve has five or six  

%control points. Curves with other number of control points will be treated  

%as invalid input 

 

function H = curve_break( p ) 

h2_h2=-0.05; 

NEWCURVE=0;%# of newly produced curves 

if size(p,2)==5 

   G_G=ones(size(p,1),5); 

   for ii_ii=1:3 

       G_G(:,ii_ii)=-grad(p(:,ii_ii+1))'; %Calculate the gradient at the  

   end                                    %intermediate control points 

   if dot(p(:,1)-p(:,2),G_G(:,1))/norm(p(:,1)-p(:,2))/norm(G_G(:,1))... 
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           <h2_h2&&dot(p(:,5)-p(:,4),G_G(:,3))/norm(p(:,5)-p(:,4))/... 

           norm(G_G(:,3))<h2_h2  

        A_A(1).L(1).p=p(:,1:3); 

        A_A(1).L(2).p=p(:,3:5); 

        NEWCURVE=NEWCURVE+1; 

   elseif dot(p(:,1)-p(:,2),G_G(:,1))/norm(p(:,1)-p(:,2))/norm(G_G(:,1))... 

           <h2_h2&&dot(p(:,5)-p(:,4),G_G(:,3))/norm(p(:,5)-p(:,4))/... 

           norm(G_G(:,3))>h2_h2 

        if dot(p(:,3)-p(:,2),G_G(:,2))/norm(p(:,3)-p(:,2))/... 

                norm(G_G(:,2))<h2_h2 

           A_A(1).L(1).p=p(:,1:3); 

           A_A(1).L(2).p=p(:,3:5); 

           NEWCURVE=NEWCURVE+1; 

        else 

            if fun_value(p(:,2))>fun_value(p(:,3))&&fun_value(p(:,3))>... 

                    fun_value(p(:,4)) 

            else 

               A_A(1).L(1).p=p(:,1:2); 

               A_A(1).L(2).p=p(:,2:5); 

               NEWCURVE=NEWCURVE+1; 

            end 

        end 

   elseif dot(p(:,1)-p(:,2),G_G(:,1))/norm(p(:,1)-p(:,2))/... 

           norm(G_G(:,1))>h2_h2&&dot(p(:,5)-p(:,4),G_G(:,3))/... 

           norm(p(:,5)-p(:,4))/norm(G_G(:,3))<h2_h2 

        if dot(p(:,3)-p(:,4),G_G(:,2))/norm(p(:,3)-p(:,4))/... 

                norm(G_G(:,2))<h2_h2 

           A_A(1).L(1).p=p(:,1:3); 

           A_A(1).L(2).p=p(:,3:5); 

           NEWCURVE=NEWCURVE+1; 

        else 

            if fun_value(p(:,4))>fun_value(p(:,3))&&fun_value(p(:,3))>... 

                    fun_value(p(:,2)) 

            else 

               A_A(1).L(1).p=p(:,1:4); 

               A_A(1).L(2).p=p(:,4:5); 

               NEWCURVE=NEWCURVE+1; 
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            end  

        end 

   else 

       if fun_value(p(:,3))>fun_value(p(:,2))&&fun_value(p(:,3))>... 

               fun_value(p(:,4))  

       else 

           A_A(1).L(1).p=p(:,1:3); 

           A_A(1).L(2).p=p(:,3:5); 

           NEWCURVE=NEWCURVE+1;  

       end 

   end  

elseif size(p,2)==6 

    G_G=ones(size(p,1),6); 

    for ii_ii=1:4 

       G_G(:,ii_ii)=-grad(p(:,ii_ii+1))'; 

    end 

    if dot(p(:,1)-p(:,2),G_G(:,1))/norm(p(:,1)-p(:,2))/... 

            norm(G_G(:,1))<h2_h2&&dot(p(:,6)-p(:,5),G_G(:,4))/... 

            norm(p(:,6)-p(:,5))/norm(G_G(:,4))<h2_h2 

        A_A(1).L(1).p=p(:,1:3); 

        A_A(1).L(2).p=p(:,3:6); 

        NEWCURVE=NEWCURVE+1; 

    elseif dot(p(:,1)-p(:,2),G_G(:,1))/norm(p(:,1)-p(:,2))/... 

            norm(G_G(:,1))<h2_h2&&dot(p(:,6)-p(:,5),G_G(:,4))/... 

            norm(p(:,6)-p(:,5))/norm(G_G(:,4))>h2_h2  

        if dot(p(:,3)-p(:,2),G_G(:,2))/norm(p(:,3)-p(:,2))/... 

                norm(G_G(:,2))<h2_h2||dot(p(:,5)-p(:,4),G_G(:,3))/... 

                norm(p(:,5)-p(:,4))/norm(G_G(:,3))<h2_h2 

           A_A(1).L(1).p=p(:,1:3); 

           A_A(1).L(2).p=p(:,3:6); 

           NEWCURVE=NEWCURVE+1; 

        else 

            if fun_value(p(:,2))>fun_value(p(:,3))&&fun_value(p(:,3))>... 

                    fun_value(p(:,4))&&fun_value(p(:,4))>fun_value(p(:,5)) 

            else 

              A_A(1).L(1).p=p(:,1:2); 

              A_A(1).L(2).p=p(:,2:6); 
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              NEWCURVE=NEWCURVE+1;  

            end 

        end 

    elseif dot(p(:,1)-p(:,2),G_G(:,1))/norm(p(:,1)-p(:,2))/... 

            norm(G_G(:,1))>h2_h2&&dot(p(:,6)-p(:,5),G_G(:,4))/... 

            norm(p(:,6)-p(:,5))/norm(G_G(:,4))<h2_h2 

        if dot(p(:,3)-p(:,2),G_G(:,2))/norm(p(:,3)-p(:,2))/... 

                norm(G_G(:,2))>h2_h2||dot(p(:,5)-p(:,4),G_G(:,3))/... 

                norm(p(:,5)-p(:,4))/norm(G_G(:,3))>h2_h2 

           A_A(1).L(1).p=p(:,1:4); 

           A_A(1).L(2).p=p(:,4:6); 

           NEWCURVE=NEWCURVE+1; 

        else 

            if fun_value(p(:,5))>fun_value(p(:,4))&&fun_value(p(:,4))>... 

                    fun_value(p(:,3))&&fun_value(p(:,3))>fun_value(p(:,2)) 

            else 

              A_A(1).L(1).p=p(:,1:5); 

              A_A(1).L(2).p=p(:,5:6); 

              NEWCURVE=NEWCURVE+1;  

            end 

        end 

    else 

       if dot(p(:,3)-p(:,2),G_G(:,2))/norm(p(:,3)-p(:,2))/... 

               norm(G_G(:,2))<h2_h2&&dot(p(:,5)-p(:,4),G_G(:,3))/... 

               norm(p(:,5)-p(:,4))/norm(G_G(:,3))>h2_h2  

           if fun_value(p(:,3))>fun_value(p(:,2))&&fun_value(p(:,4))>... 

                   fun_value(p(:,5)) 

           else 

               if fun_value(p(:,3))<fun_value(p(:,2)) 

                 A_A(1).L(1).p=p(:,1:3); 

                 A_A(1).L(2).p=p(:,3:6); 

                 NEWCURVE=NEWCURVE+1; 

               else  

                 A_A(1).L(1).p=p(:,1:4); 

                 A_A(1).L(2).p=p(:,4:6); 

                 NEWCURVE=NEWCURVE+1; 

               end 
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           end 

       elseif dot(p(:,3)-p(:,2),G_G(:,2))/norm(p(:,3)-p(:,2))/... 

               norm(G_G(:,2))<h2_h2&&dot(p(:,5)-p(:,4),G_G(:,3))/... 

               norm(p(:,5)-p(:,4))/norm(G_G(:,3))<h2_h2 

           if fun_value(p(:,4))>fun_value(p(:,3))&&fun_value(p(:,3))>... 

                   fun_value(p(:,2)) 

           else 

              A_A(1).L(1).p=p(:,1:4); 

              A_A(1).L(2).p=p(:,4:6); 

              NEWCURVE=NEWCURVE+1;  

           end 

       elseif dot(p(:,3)-p(:,2),G_G(:,2))/norm(p(:,3)-p(:,2))/... 

               norm(G_G(:,2))>h2_h2&&dot(p(:,5)-p(:,4),G_G(:,3))/... 

               norm(p(:,5)-p(:,4))/norm(G_G(:,3))>h2_h2  

           if fun_value(p(:,3))>fun_value(p(:,4))&&fun_value(p(:,4))>... 

                   fun_value(p(:,5)) 

           else 

              A_A(1).L(1).p=p(:,1:3); 

              A_A(1).L(2).p=p(:,3:6); 

              NEWCURVE=NEWCURVE+1;  

           end 

       else 

           A_A(1).L(1).p=p(:,1:3); 

           A_A(1).L(2).p=p(:,3:6); 

           NEWCURVE=NEWCURVE+1;  

       end 

    end 

end 

  

if NEWCURVE==0 

   A_A(1).L(1).p=p; 

end 

H=A_A(1).L; 

end 

  

%this function seaches the saddle point on a curve. First, determine the 

%control point with maximum energy. Then let this points climb up in order 
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%to coverge to the saddle point. And all other intermediate control points  

%are minimized along the conjugate directions with positive eigenvalues. 

 

function H = saddle_search( p,c3_climb,c4,n,N_climb) 

N_saddle=40;%maxi # iteration 

A_A(1).p=p; 

B_B(1).p=p; 

i_i=1; 

h_=0.1;%stop criteria based on the magnitude of the gradient 

h_h=0.000001;%stop criteria based on change of function value 

N_max=NMAX(p);%Control point with maxi energy on the curve 

if N_max==1 || N_max==size(p,2) 

    N_max=2; 

end 

a_a_for=1; 

a_a_back=1; 

a_a_tot=1; 

m=size(p,2); 

c_deg=1/(3*m); 

th_deg=c_deg*norm(p(:,end)-p(:,1)); 

j_j=1; 

while i_i<N_saddle 

    i_i=i_i+1; 

    A_A(i_i).p=ones(size(A_A(i_i-1).p)); 

    A_A(i_i).p(:,1)=A_A(i_i-1).p(:,1); 

    A_A(i_i).p(:,end)=A_A(i_i-1).p(:,end); 

    b_b=size(A_A(i_i).p,2); 

    if N_max==b_b 

        N_max=N_max+NMAX(A_A(i_i-1).p(:,N_max-2:N_max))-3; 

    elseif N_max==1 

        N_max=N_max+NMAX(A_A(i_i-1).p(:,N_max:N_max+2))-1; 

    else 

        N_max=N_max+NMAX(A_A(i_i-1).p(:,N_max-1:N_max+1))-2; 

    end 

     

    if N_max<ceil(size(A_A(i_i-1).p,2)/2) 

       for ii_ii=2:N_max-1 
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         A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),... 

             A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);  

       end 

         

       A_A(i_i).p(:,N_max)=climb_saddle(A_A(i_i-1).p(:,N_max-1),... 

           A_A(i_i-1).p(:,N_max),c3_climb,c4,n,N_climb); 

       for ii_ii=N_max+1:ceil(size(A_A(i_i-1).p,2)/2) 

         A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),... 

             A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);  

  

       end 

       for ii_ii=(ceil(size(A_A(i_i-1).p,2)/2)+1):(size(A_A(i_i-1).p,2)-1) 

         A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii+1),... 

             A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);   

       end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Redistribute the control points using degree elevation and reduction scheme          

           B_B(i_i).p=A_A(i_i).p; 

           c_c=index_loop(A_A(i_i).p); 

           if size(c_c,2)>0 

               if max(c_c)<ceil(m/2) 

                   if a_a_for==0 

                       C_C(j_j).p(:,1:ceil(b_b/2)-1)=Be_degreduction(A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg); 

                       A_A(i_i).p(:,1:ceil(b_b/2)-1)=C_C(j_j).p; 

                       A_A(i_i).p(:,ceil(b_b/2):b_b-1)=B_B(i_i).p(:,ceil(b_b/2)+1:end); 

                       A_A(i_i).p(:,end)=[]; 

                      j_j=j_j+1; 

                      a_a_for=a_a_for+1; 

                   else 

                      C_C(j_j).p(:,1:ceil(b_b/2)+1)=Be_degelevation(A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg); 

                      A_A(i_i).p(:,1:ceil(b_b/2)+1)=C_C(j_j).p; 

                      A_A(i_i).p(:,ceil(b_b/2)+2:b_b+1)=B_B(i_i).p(:,ceil(b_b/2)+1:end); 

                      j_j=j_j+1; 

                      a_a_for=0; 

                   end 

               elseif min(c_c)>ceil(m/2) 

                   if a_a_back==0 
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                      C_C(j_j).p(:,1:b_b-ceil(b_b/2))=Be_degreduction(… 

                               A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg); 

                      A_A(i_i).p(:,ceil(b_b/2):b_b-1)=C_C(j_j).p; 

                      A_A(i_i).p(:,end)=[]; 

                      j_j=j_j+1;  

                      a_a_back=a_a_back+1; 

                   else  

                      C_C(j_j).p(:,1:b_b-ceil(b_b/2)+2)=Be_degelevation(… 

                          A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg); 

                      A_A(i_i).p(:,ceil(b_b/2):b_b+1)=C_C(j_j).p; 

                       j_j=j_j+1;  

                       a_a_back=0; 

                   end 

               else 

                   if a_a_tot==0 

                      A_A(i_i).p(:,1:(b_b-1))=Be_degreduction(A_A(i_i).p,b_b,th_deg); 

                      A_A(i_i).p(:,end)=[];  

                      a_a_tot=a_a_tot+1; 

                   else 

                     A_A(i_i).p(:,1:(b_b+1))=Be_degelevation(A_A(i_i).p,b_b,th_deg);  

                     a_a_tot=0; 

                   end 

               end 

           end            

     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

    elseif N_max>ceil(size(A_A(i_i-1).p,2)/2)  

       for ii_ii=2:ceil(size(A_A(i_i-1).p,2)/2) 

          A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),... 

              A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);  

       end 

       for ii_ii=(ceil(size(A_A(i_i-1).p,2)/2)+1):N_max-1 

          A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),... 

              A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);  

       end 

          A_A(i_i).p(:,N_max)=climb_saddle(A_A(i_i-1).p(:,N_max+1),... 

              A_A(i_i-1).p(:,N_max),c3_climb,c4,n,N_climb);  

       for ii_ii=N_max+1:(size(A_A(i_i-1).p,2)-1) 
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          A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii+1),... 

              A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);   

       end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%            redistribute the control points using degree elevation and reduction scheme 

           B_B(i_i).p=A_A(i_i).p; 

           c_c=index_loop(A_A(i_i).p); 

           if size(c_c,2)>0 

               if max(c_c)<ceil(m/2) 

                   if a_a_for==0 

                       C_C(j_j).p(:,1:ceil(b_b/2)-1)=Be_degreduction(A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg); 

                       A_A(i_i).p(:,1:ceil(b_b/2)-1)=C_C(j_j).p; 

                       A_A(i_i).p(:,ceil(b_b/2):b_b-1)=B_B(i_i).p(:,ceil(b_b/2)+1:end); 

                       A_A(i_i).p(:,end)=[]; 

                      j_j=j_j+1; 

                      a_a_for=a_a_for+1; 

                   else 

                      C_C(j_j).p(:,1:ceil(b_b/2)+1)=Be_degelevation(A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg); 

                      A_A(i_i).p(:,1:ceil(b_b/2)+1)=C_C(j_j).p; 

                      A_A(i_i).p(:,ceil(b_b/2)+2:b_b+1)=B_B(i_i).p(:,ceil(b_b/2)+1:end); 

                      j_j=j_j+1; 

                      a_a_for=0; 

                   end 

               elseif min(c_c)>ceil(m/2) 

                   if a_a_back==0 

                      C_C(j_j).p(:,1:b_b-ceil(b_b/2))=Be_degreduction(… 

                          A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg); 

                      A_A(i_i).p(:,ceil(b_b/2):b_b-1)=C_C(j_j).p; 

                      A_A(i_i).p(:,end)=[]; 

                      j_j=j_j+1;  

                      a_a_back=a_a_back+1; 

                   else  

                     C_C(j_j).p(:,1:b_b-ceil(b_b/2)+2)=Be_degelevation(… 

                          A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg); 

                      A_A(i_i).p(:,ceil(b_b/2):b_b+1)=C_C(j_j).p; 

                       j_j=j_j+1;  

                       a_a_back=0; 
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                   end 

               else 

                   if a_a_tot==0 

                      A_A(i_i).p(:,1:(b_b-1))=Be_degreduction(A_A(i_i).p,b_b,th_deg); 

                      A_A(i_i).p(:,end)=[];  

                      a_a_tot=a_a_tot+1; 

                   else 

                     A_A(i_i).p(:,1:(b_b+1))=Be_degelevation(A_A(i_i).p,b_b,th_deg);  

                     a_a_tot=0; 

                   end 

               end 

           end 

            

     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

    else 

       for ii_ii=2:ceil(size(A_A(i_i-1).p,2)/2)-1 

        A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii-1),... 

            A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);  

       end 

        A_A(i_i).p(:,N_max)=climb_saddle(A_A(i_i-1).p(:,N_max-1),... 

            A_A(i_i-1).p(:,N_max),c3_climb,c4,n,N_climb);  

       for ii_ii=(ceil(size(A_A(i_i-1).p,2)/2)+1):(size(A_A(i_i-1).p,2)-1) 

          A_A(i_i).p(:,ii_ii)=inter_mini(A_A(i_i-1).p(:,ii_ii+1),... 

              A_A(i_i-1).p(:,ii_ii),c3_climb,c4,n,N_climb);   

       end  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%            redistribute the control points using degree elevation and reduction scheme 

           B_B(i_i).p=A_A(i_i).p; 

           c_c=index_loop(A_A(i_i).p); 

           if size(c_c,2)>0 

               if max(c_c)<ceil(m/2) 

                   if a_a_for==0 

                       C_C(j_j).p(:,1:ceil(b_b/2)-1)=Be_degreduction(A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg); 

                       A_A(i_i).p(:,1:ceil(b_b/2)-1)=C_C(j_j).p; 

                       A_A(i_i).p(:,ceil(b_b/2):b_b-1)=B_B(i_i).p(:,ceil(b_b/2)+1:end); 

                       A_A(i_i).p(:,end)=[]; 

                      j_j=j_j+1; 
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                      a_a_for=a_a_for+1; 

                   else 

                      C_C(j_j).p(:,1:ceil(b_b/2)+1)=Be_degelevation(A_A(i_i).p(:,1:ceil(b_b/2)),ceil(b_b/2),th_deg); 

                      A_A(i_i).p(:,1:ceil(b_b/2)+1)=C_C(j_j).p; 

                      A_A(i_i).p(:,ceil(b_b/2)+2:b_b+1)=B_B(i_i).p(:,ceil(b_b/2)+1:end); 

                      j_j=j_j+1; 

                      a_a_for=0; 

                   end 

               elseif min(c_c)>ceil(m/2) 

                   if a_a_back==0 

                      C_C(j_j).p(:,1:b_b-ceil(b_b/2))=Be_degreduction(… 

                           A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg); 

                      A_A(i_i).p(:,ceil(b_b/2):b_b-1)=C_C(j_j).p; 

                      A_A(i_i).p(:,end)=[]; 

                      j_j=j_j+1;  

                      a_a_back=a_a_back+1; 

                   else  

                      C_C(j_j).p(:,1:b_b-ceil(b_b/2)+2)=Be_degelevation(… 

                             A_A(i_i).p(:,ceil(b_b/2):end),b_b-ceil(b_b/2)+1,th_deg); 

                      A_A(i_i).p(:,ceil(b_b/2):b_b+1)=C_C(j_j).p; 

                       j_j=j_j+1;  

                       a_a_back=0; 

                   end 

               else 

                   if a_a_tot==0 

                      A_A(i_i).p(:,1:(b_b-1))=Be_degreduction(A_A(i_i).p,b_b,th_deg); 

                      A_A(i_i).p(:,end)=[];  

                      a_a_tot=a_a_tot+1; 

                   else 

                     A_A(i_i).p(:,1:(b_b+1))=Be_degelevation(A_A(i_i).p,b_b,th_deg);  

                     a_a_tot=0; 

                   end 

               end 

           end 

            

     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

    end 
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    if i_i>2 

       if abs((fun_value(B_B(i_i).p(:,N_max))-fun_value... 

            (B_B(i_i-2).p(:,N_max)))/fun_value(B_B(i_i-2).p(:,N_max)))<h_h &&... 

            norm(grad(B_B(i_i).p(:,N_max)))<h_ 

          break 

       end 

    end 

end 

H=B_B(i_i).p; 

end 

  

 

  

%this function determines the index of the point with maxi function value  

%in p 

 

function H = NMAX( p ) 

for ii_ii=1:size(p,2) 

    FV(ii_ii)=fun_value(p(:,ii_ii)); 

end 

MAX=max(FV); 

H=find(FV==MAX); 

end 

  

%this function determines the maxi function value point in p 

 

function H = NMAX_VALUE( p ) 

for ii_ii=1:size(p,2) 

    FV(ii_ii)=fun_value(p(:,ii_ii)); 

end 

MAX=max(FV); 

a_a=find(FV==MAX); 

H=p(:,a_a); 

end 

  

%this function maximize p2 in one conjugate direction with negative 
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%eigenvalues and then minimize p2 in all other conjugate directions. 

 

function H = climb_saddle( p1,p2,c3,c4,n,N_climb )  

% N_climb: #of mini-step in conjugate direction 

b1=0.001;%threshold for convergence criteria 

b2=0.000001;%threshold for convergence criteria 

h_h1=-0.001; 

x1=ones(n,n);%x1: matrix to store the positions of p2 interatively 

%g1 is a n by(n-1)matrix to store the gradient g1,g2...in Beal's formula   

g1=ones(n,n-1); 

s=ones(n,n); 

s(:,1)=p2-p1; %direction with negative eigenvalue(maximization direction) 

%Locate the maximum point along s0=s(:,1) in order to determine g1  

%in Beal's formula 

x1(:,1)=p2; 

xmid=1/2*(p1+p2); 

g0(:,1)=grad(xmid); 

ii=1; 

X1(:,1)=p2; 

G1(:,1)=grad(p2); 

c3_c3=c3; 

while ii<N_climb&&abs(dot(G1(:,ii),s(:,1))/dot(s(:,1),s(:,1)))>b2 

   ii=ii+1; 

   X1(:,ii)=X1(:,ii-1)+c3_c3*dot(G1(:,ii-1),s(:,1))/norm(s(:,1))^2*s(:,1); 

   G1(:,ii)=grad(X1(:,ii)); 

    if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1 

      c3_c3=c4*c3_c3; 

   end 

end 

x1(:,1)=X1(:,ii); %maximum point along the s0 

g1(:,1)=grad(x1(:,1)); 

%calculate s(:,2)represents s1 in Beal's formula (first conjugate direction 

%with positive eigenvalue) 

if abs(dot(s(:,1),(g1(:,1)-g0(:,1))))>b1 

   s(:,2)=-g1(:,1)+dot(g1(:,1),(g1(:,1)-g0(:,1)))/... 

       dot(s(:,1),(g1(:,1)-g0(:,1)))*s(:,1); 

else 
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    s(:,2)=-g1(:,1); 

end 

  

%Line minimization in direction s(:,2) for the maximum point along s(:,1) 

ii=1; 

X1(:,1)=x1(:,1);  

G1(:,1)=g1(:,1); 

c3_c3=c3;  

  

while ii<N_climb&&abs(dot(G1(:,ii),s(:,2))/dot(s(:,2),s(:,2)))>b2 

   ii=ii+1; 

   X1(:,ii)=X1(:,ii-1)+c3_c3*dot(-G1(:,ii-1),s(:,2))/norm(s(:,2))^2*s(:,2); 

   G1(:,ii)=grad(X1(:,ii)); 

   if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1 

     c3_c3=c4*c3_c3; 

   end 

end 

  

x1(:,2)=X1(:,ii); 

g1(:,2)=grad(x1(:,2));  

  

%if the dimension of the PES is larger than two, then minimize 

%p2 along all the conjugate directions with negative eigenvalues 

%iteratively. 

jj=3; 

while jj<=n 

     

    if abs(dot(s(:,1),(g1(:,1)-g0(:,1))))>b1 

       s(:,jj)=-g1(:,jj-1)+dot(g1(:,jj-1),(g1(:,1)-g0(:,1)))/... 

           dot(s(:,1),(g1(:,1)-g0(:,1)))*s(:,1)+dot(g1(:,jj-1),... 

           g1(:,jj-1))/dot(g1(:,jj-2),g1(:,jj-2))*s(:,jj-1); 

    else 

       s(:,jj)=-g1(:,jj-1)+dot(g1(:,jj-1),g1(:,jj-1))/... 

           dot(g1(:,jj-2),g1(:,jj-2))*s(:,jj-1); 

    end 

  

%minimize p2 along s(:,jj) direction 



95 

 

   ii=1; 

   X1(:,1)=x1(:,jj-1); 

   G1(:,1)=g1(:,jj-1); 

   c3_c3=c3; 

    while ii<N_climb&&abs(dot(G1(:,ii),s(:,jj))/dot(s(:,jj),s(:,jj)))>b2 

          ii=ii+1; 

          X1(:,ii)=X1(:,ii-1)+c3_c3*dot(-G1(:,ii-1),s(:,jj))/... 

              norm(s(:,jj))^2*s(:,jj); 

          G1(:,ii)=grad(X1(:,ii)); 

          if dot(G1(:,ii-1),s(:,1))*dot(G1(:,ii),s(:,1))/norm(s(:,1))^2<h_h1 

             c3_c3=c4*c3_c3; 

          end 

    end 

   x1(:,jj)=X1(:,ii); 

   g1(:,jj)=grad(x1(:,jj)); 

   jj=jj+1; 

end 

  

H=x1(:,jj-1); 

end 
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