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SUMMARY 

 

A new whole-core transport method is described for 3-D hexagonal geometry.  This is an 

extension of a stochastic-deterministic hybrid method which has previously been shown 

highly accurate and efficient for eigenvalue problems.  Via Monte Carlo, it determines 

the solution to the transport equation in sub-regions of reactor cores, such as individual 

fuel elements or sections thereof, and uses those solutions to compose a library of 

response expansion coefficients.  The information acquired allows the deterministic 

solution procedure to arrive at the whole core solution for the eigenvalue and the explicit 

fuel pin fission density distribution more quickly than other transport methods.  Because 

it solves the transport equation stochastically, complicated geometry may be modeled 

exactly and therefore heterogeneity even at the most detailed level does not challenge the 

method. 

 

In this dissertation, the method is evaluated using comparisons with full core Monte 

Carlo reference solutions of benchmark problems based on gas-cooled, graphite-

moderated reactor core designs.  Solutions are given for core eigenvalue problems, the 

calculation of fuel pin fission densities throughout the core, and the determination of 

incremental control rod worth.  Using a single processor, results are found in minutes for 

small cores, and in no more than a few hours for a realistically large core.  Typical 

eigenvalues calculated by the method differ from reference solutions by less than 0.1%, 

and pin fission density calculations have average accuracy of well within 1%, even for 

unrealistically challenging core configuration problems.  This new method enables the 



 xi

accurate determination of core eigenvalues and flux shapes in hexagonal cores with 

efficiency far exceeding that of other transport methods. 

 

 



 

1 

1. INTRODUCTION 

 

In an effort to improve fuel utilization and therefore power plant economics, the current 

trend in reactor core design is one of greater heterogeneity at the core and fuel element 

level.  Furthermore, some of the proposed designs for future reactors—such as the Very 

High Temperature Reactor (VHTR)—are implemented in hexagonal geometry.  With a 

more heterogeneous core and a flux distribution exhibiting strong angular effects, whole 

core diffusion methods are inadequate to accurately resolve the pin-level fission density 

map over the core.  A new method which relies wholly on transport theory and is tailored 

specifically to the hexagonal lattice structure of prismatic block reactors and fast reactors 

is necessary to construct the solution to reactor criticality problems.  One which solves 

the core problems in a matter of minutes rather than days would be a valuable tool. 

 

The coarse mesh transport (COMET) method has previously been demonstrated in 

Cartesian geometry in three dimensions, and in hexagonal geometry for 2-D core 

configurations.  In all cases, it has been proven accurate and determines detailed solutions 

far more quickly than other whole core transport methods.  In this paper, the COMET 

method is extended to 3-D hexagonal geometry.  Chapter 2 summarizes hexagonal 

reactor solution methods and gives background to the COMET method.  Chapter 3 details 

the new features and modifications made for 3-D problems.  Verification of the method is 

conducted using a series of benchmark problems in Chapter 4.  Finally, conclusions are 

drawn and future opportunities using this method are presented and discussed in Chapter 

5. 
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2. BACKGROUND 

 

In this section, some methods used for determining the eigenvalue and pin power 

distribution of reactors are discussed.  First, methods which treat hexagonal geometry in 

reactor cores are examined.  A summary of the existing coarse mesh transport method 

(Ilas and Rahnema, 2003; Mosher and Rahnema, 2006; Zhang and Rahnema, 2012; 

Connolly et al., 2012), which is the basis of the new method described in this paper, 

follows. 

 

2.1. Reactor Analysis in Hexagonal Cores 

 

 

The development of methods specifically tailored to hexagonal reactor core problems is 

not strictly a new or recent initiative.  Historically, whole core eigenvalue problems have 

been solved using diffusion theory.  By dividing the core into homogenized nodes, few-

group cross sections are generated, and the solution to the core problem is found via the 

diffusion equation.  Several methods have been developed to treat three dimensional 

reactor core configurations in hexagonal lattice structure.  One method is the response 

matrix method, where the eigenvalue and node-averaged flux can be determined through 

the core in seconds (Gheorghiu, 1989).  Another uses conformal mapping of the 

hexagonal faces and expands the flux in terms of orthogonal polynomials to solve the 

whole core problem (Zimin and Baturin, 2002).  The HEXPEDITE method (Fitzpatrick 

and Ougouag, 1992) couples nodes by net currents at their interfaces.  One drawback to 

nodal diffusion methods is that while they have calculated the block-averaged flux, they 

do not explicitly calculate the pin power map of the core.  To address this shortcoming, 
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methods have been developed to reconstruct the pin power profile (Singh and Kumar, 

1995).  All of these methods have been shown accurate in solving eigenvalue problems 

when compared to fine mesh diffusion benchmarks. 

 

However, in regions of high flux gradients, strongly absorbing media, a pronounced 

angular distribution of the flux, and asymmetric fuel and control elements, use of the 

diffusion equation will not yield a desired level of accuracy.  Diffusion requires the 

homogenization of regions, which introduces errors due to the necessary erasing of fine 

detail in very heterogeneous systems.  As regions with such attributes are present in the 

prismatic VHTR core, it becomes necessary to look to transport methods to supply a high 

level of accuracy in complex cores.  Nodal transport methods, such as one described by 

Carrico et al. (1992), were first used to address some of the shortcomings associated with 

diffusion methods, but even these lacked fully heterogeneous treatment of the hexagonal 

meshes.  Since computational memory capacity and processing speed have improved 

dramatically in recent years, transport-based methods capable of modeling explicit 

heterogeneity in high fidelity have accordingly become more feasible. 

 

One such transport method developed for solving the VHTR core is DeCART.  It has 

been shown accurate in eigenvalue calculations to within 300 pcm of a whole core Monte 

Carlo solution for both homogenized fuel and heterogeneous fuel compacts (Lee et al., 

2010; Lee and Yang, 2011).  Block-averaged power levels also were found to within 1% 

in most cases and within 2% with all rods in.  Runtime figures were not provided in the 

reference, although two dimensional calculations using this method have previously been 



 4 

published with stated runtimes on the order of a few hours (Cho et al., 2007).  Similar 

accuracy was achieved in modeling the heterogeneity at the VHTR pin level using the 

AGENT neutron transport method (Gert and Jevremovic, 2008), although this study was 

conducted at the block, rather than core, level.  For all of the preceding transport 

references, a method of characteristics approach was taken.   

 

The accuracy of the solutions determined by the transport methods listed was quantified 

by comparing the result with a Monte Carlo benchmark calculation.  Monte Carlo 

solutions are readily determined for any geometry; however, a low level of statistical 

uncertainty requires a great deal of computation time.  The benchmarks used to evaluate 

the method presented in this paper were solved using the Monte Carlo code MCNP5 (X-5 

Monte Carlo Team, 2005), and they generally required many hours on a large cluster of 

parallel computers. 

 

While runtime figures are not often mentioned in the references cited, it is apparent that 

whole core transport calculations modeling fine detailed heterogeneity require prohibitive 

computational time and resources when accuracy comparable to Monte Carlo is desired.  

Clearly, the opportunity exists to make improvements in computational runtime while 

maintaining the accuracy inherent in transport methods.  The development of whole core 

transport methods for 3-D hexagonal lattice structures with a high level of heterogeneity 

is a field in its infancy. 
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2.2. The Hybrid Coarse Mesh Transport Method 

 

 

The purpose of this paper is an extension of a hybrid method which combines the 

geometric flexibility of a Monte Carlo simulation with the speed inherent in coarse mesh 

deterministic processes (Mosher and Rahnema, 2003).  This is an incident flux response 

expansion method, typically referred to as COMET (an acronym for coarse mesh 

transport), which determines the solution to the transport equation throughout the entire 

core.  It is a novel method, representing a significant advancement on the class of 

response matrix solution techniques, where the core problem is solved by combining 

solutions to sections of the core for which solution information is already available.  A 

discussion on traditional high-order response matrix theory, including a survey of 

additional references, can be found in Stamm’ler and Abbate (1983).  COMET advances 

from older response matrix methods in its reliance solely on transport theory, its high 

fidelity modeling of exact core and lattice specifications without any use of 

homogenization techniques, its explicit treatment of pin-level heterogeneity, allowing for 

the solution of the pin fission density profile throughout the core, its arbitrarily high order 

accuracy of mesh boundary conditions, and its adaptability to many different reactor 

types and other physical systems (e.g., Forget, 2006; Blackburn, 2009; Zhang and 

Rahnema, 2012).  It is summarized here in order to give the proper background 

information. 
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The steady state neutron transport equation over an arbitrary volume may be written as 
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rr
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In the preceding equations, Φ represents the angular flux of neutrons, which are defined 

for every point r
v
 within the volume and traveling with energy E in direction Ω̂ .  The 

macroscopic neutron reaction cross sections are represented by σ and specified as the 

total, scattering, and fission cross sections by the subscripts t, s, and f, respectively.  Each 

fission reaction creates an average of ν neutrons from the χ energy spectrum.  The core 

multiplication factor is denoted by k.  In Eq. (1b), br
v
 represents a point along the 

boundary of the volume which has outward normal n̂ .  The boundary operator B is left 

arbitrary; Mosher and Rahnema (2006) have provided example boundary conditions. 

 

The COMET method divides the volume of interest, e. g., a reactor core, into a set of 

discrete sub-volumes, such as fuel elements.  These sub-volumes will herein be referred 

to as coarse meshes.  The transport equation within each coarse mesh i can be written:
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Here the solution to the mesh-level transport equation is represented as ψ; it represents 

the exact solution to Eq. (1a) within mesh i when it is equal to Φ within the particular 

mesh domain.  The term k appearing in Eq. (2a) is fixed; it represents the whole core 

multiplication factor and not an eigenvalue of Eq. (2a).  It is present to scale the fission 

term, as an implicit treatment of the fission source allows coarse meshes to be modeled at 

different values of the core multiplication factor.  An external source may be denoted by 

Qi, however, in solving the mesh-level transport problem presented here, this term is 

equal to no volumetric source.  Instead, an incoming boundary condition on the mesh 

surface is given, so that each individual mesh i is coupled to the neighboring meshes j by 

a particle balance at the mesh interface ijr
v
: 

 

 

 ( ) ( )ErEr jijjiiji ,ˆ,,ˆ, Ω=Ω
rr

ψψ ,       (2b) 

 

 

 

or equivalently, 
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For both boundary conditions, in̂  refers to the outward normal of mesh i, and ji nn ˆˆ −= .  

Most recently, Zhang and Rahnema (2012) used the angular flux boundary condition 

given by Eq. (2b) and Connolly et al. (2012) utilized the angular current boundary 

condition in (2c).   

 

Solutions to the set of fixed-source problems defined by Eq. (2) are found, given some 

specification of an incoming source.  Since both incident angular flux and angular current 

have been shown to be valid and accurate boundary conditions, let β represent the 

boundary condition of choice to maintain the generality of the method description.  The 

incident boundary condition on face f of mesh i may be expanded exactly in terms of a 

complete set of functions Γa
 which are orthogonal over the half-space defined by the 

coarse mesh face, 

 

 

( ) ( )∑
∞

=

± ΩΓ=Ω
1

,ˆ,,ˆ,
a

aa

ifif ErcEr
rr

β .      (3) 

 

 

 

The COMET method determines the outgoing condition at the mesh boundary as a 

response to a given incoming boundary specification, which is chosen to be a unit value 

of the orthogonal distribution of the a
th
 order on one mesh face and vacuum boundary 

conditions on all other sides.  This process is repeated for each face of each unique mesh 

present in the core for every incoming expansion order a.  For the sake of practicality, the 

sum must be truncated at some order A which may be chosen to optimize the accuracy of 

the solution and the computational investment necessary.  Although any transport method 
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may be used to solve the set of fixed-source problems presented by Eq. (2), a Monte 

Carlo method has been shown superior to others which have been implemented, as exact 

geometric and material information can be modeled with no approximation (Mosher and 

Rahnema, 2003).  The result is a library of response expansion coefficients, where the 

outgoing response to every incoming boundary source to a desired maximum order is 

tabulated for every face of every unique mesh in the core.  Also determined are reaction 

rate responses to the incoming sources; these are used in the construction of the core 

solution.  These calculations are conducted at several different values of k, so that a full 

database of response functions and coefficients can be used to solve any core problem 

over a range of eigenvalues without any prior knowledge of the core multiplication 

factor: the response function for a desired value of k can be determined by simply 

interpolating the existing response functions between the values of k which have been 

solved. 

 

The whole core problem is solved via an iterative procedure.  Starting with an initial 

guess for the multiplication factor and the flux or current distribution throughout the core, 

a deterministic sweeping method calculates new outgoing response functions to the 

assumed incoming sources, using the pre-computed library and linear superposition of the 

response functions.  The mesh interface conditions are updated and the process continues 

until a desired convergence criterion is reached, at which point the eigenvalue is 

calculated via the neutron balance method.  The inner iterations on the mesh interfaces 

and outer iterations on the multiplication factor continue until the latter converges, at 
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which point the problem has been solved, and the full solution Φ to Eq. (1) is known over 

the entire core domain. 
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3. METHOD 

 

The coarse mesh transport method for 3-D hexagonal geometry is described in this 

section.  The means of calculating response expansion coefficients is illustrated.  The 

creation of a library of expansion coefficients is then discussed.  A brief overview of the 

deterministic solution process completes the section. 

 

3.1. Response Coefficient Generation 

 

Because the solution to the whole core problem is not initially known, it is necessary to 

pre-compute the set of response expansion coefficients which describe the neutron 

distribution at mesh interfaces.  The fixed source problem over each unique mesh is 

solved, where the governing equation is Eq. (2a), vacuum boundary conditions are given 

on all faces f’ of the mesh except for one face f ≠ f’, and the incoming boundary 

condition β source is written: 

 

 
( ) ( )
( ) 0,ˆ,

,ˆ,,ˆ,

=Ω

ΩΓ=Ω
−

′

−

Er

ErEr

fi

a

if

r

rr

β

β
.       (4) 

 

A fixed-source problem is solved for every unique mesh i and face f, and for all desired 

expansion orders a.  The outgoing response on each of the eight faces f’ is determined as 

β+
, and the response expansion coefficients can be found 
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Two mathematical definitions for the boundary conditions, orthogonal function set, and 

expansion coefficients are addressed in the following subsection. 

 

3.1.1. Mesh Boundary Condition 

 

Some method developers, including the author, have previously used the incident angular 

current as the boundary condition for coarse mesh fixed source problems (Forget, 2006; 

Connolly et al., 2012).  This treatment expanded the angular current as 

 

 ( ) ( )ErJEr ifif ,ˆ,,ˆ, Ω=Ω ±± rr
β .       (6) 

 

The orthogonal set used in this case was the product of the shifted Legendre polynomials 

over position and angle, as given by Eq. (7): 

 

 ( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) ( )gpn

V

m

U

l

a EEPPvPuPEr −=ΩΓ − δϕµ π,01,1,0,0 ~~~~
,ˆ,

v
.  (7) 

 

From this point onward, the position r
v
 will be given in terms of the spatial variables u, 

which is defined along one direction of the mesh face from 0 to U, and v, which 

represents the position in the other dimension of the mesh face between 0 and V.  The 

direction Ω̂  will be given in terms of the cosine µ of the polar angle θ from the mesh 
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face, and the azimuthal angle ϕ.  The delta function is used to specify a multigroup 

(discrete) energy treatment over G groups. 

 

The expansion coefficient for the angular current J
+
 exiting face f’ of mesh i, in group g’, 

with spatial and angular expansion orders l’, m’, n’, and p’, as a response to an incoming 

current on face f in group g being of spatial and angular expansion orders l, m, n, and p, is 

determined as follows: 

 

 =ifglmnp
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However, coincident research in water-moderated reactors has suggested that expanding 

the incident angular flux in a combination of the Legendre polynomials over the spatial 

domain, the Legendre expansion of the cosine of the azimuthal angle, and the Chebyshev 

polynomial of the second kind defined over the cosine of the polar angle yields better 

results, as such an expansion preserves not only the particle balance at the mesh 

interfaces, but also describes an isotropic flux at the boundary when the 0
th
 order is used 

(Zhang and Rahnema, 2012).  As the angular flux has a large isotropic component in 

highly scattering reactors, it has been suggested that expanding the angular flux requires a 

lower order of expansion to achieve similarly accurate results when compared to an 

angular current expansion at the mesh boundary.  The use of angular flux as the physical 

quantity of expansion changes the boundary condition to 
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 ( ) ( )ErEr ifif ,ˆ,,ˆ, Ω=Ω ±± rr
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and the expansion function is defined 
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The coefficients may be found 
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An investigation of these boundary conditions using benchmarks based on the HTTR and 

on a smaller test core is conducted in Section 4.3.  From these results, it may be 

concluded that a response expansion of the angular flux presents the superior boundary 

condition, and it is used for the remainder of the paper. 

 

3.1.2. Treatment of Hexagonal Geometry 

 

Previously, the COMET method has been used in 2-D hexagonal geometry and in both 2-

D and 3-D Cartesian geometry.  In these cases, the faces of the coarse meshes are 

represented as either one dimensional line segments (in 2-D problems) or as two 

dimensional rectangular faces (in 3-D Cartesian geometry.  A hexagonal prismatic mesh 
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has six rectangular faces, for which the existing method of expansion in the spatial 

variables u and v is adapted without modification.  However, the top and bottom 

hexagonal faces present a new challenge: a new scheme is necessary in order to describe 

the mesh faces in two spatial dimensions. 

 

x

y

v

u

 

Figure 1. Top mesh face coordinates 

 

The expansion over the two spatial variables is maintained over the hexagonal mesh 

faces.  Figure 1 illustrates the top face of a hexagon, indicating the u and v axes over the 

mesh face.  The u variable continues to indicate the position along the x axis, however, 

the v variable must be transformed from describing simply the y coordinate to describing 

the position in that direction with respect to the edges of the mesh face.  This 

transformation means that the length from 0 to V in the v direction is no longer constant, 

but is a function of position in the u direction; when u is equal to 0.5, V represents a 

length which is double that when u is equal to 0 or 1.  Based on the results presented in 

Chapter 4, this does not appear to result in inaccuracies within the solutions determined 

by the method. 
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3.2. Response Coefficient Library 

 

Upon the solution of the set of fixed-source problems, the response expansion 

coefficients determined either by Eq. (8) or Eq. (11) are collected and placed in a library.  

The library contains coefficients representing each of the desired expansion orders at 

each of the discrete values of the multiplication factor for which fixed-source problems 

were solved.  The number of angular flux response expansion coefficients in the library 

for each mesh is determined by 

 

 ( ) ( )Υ⋅Ξ⋅⋅×Υ⋅Ξ⋅⋅× GFGFK ,      (12) 

 

where K different values of the core eigenvalue have been simulated.  In coarse meshes 

for which there exists no fission source, K is simply equal to one.  For all hexagonal 

meshes, the quantity F which represents the number of mesh faces is equal to eight.   

 

Equations (8) and (11) suggest that coefficients must be found for all values of l, m, n, 

and p from the set of values up to and including the value chosen for truncation of the 

orthogonal set, for example, [ ]Mm ,0∈ .  However, coefficients where the combined sum 

of the spatial or angular expansion orders is greater than the value chosen for truncation 

of either variable have previously been found not to contribute meaningfully to the 

solution (Zhang and Rahnema, 2012).  Therefore, the terms Ξ and Υ have been 

introduced to represent the number of spatial and angular expansion terms, respectively.  

The number of terms such that Ll ≤ , Mm ≤ , and ( ) ( )MLml ,max≤+  is represented by 
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Ξ; the corresponding variable for the angular terms Nn ≤ , Pp ≤ , and 

( ) ( )PNpn ,max≤+  is denoted Υ.  The prohibitive additional memory and computation 

time requirements to compile a library with these extra terms ξ > Ξ and υ > Υ have 

impeded any additional investigation in this paper, although due to the highly accurate 

results presented in the following section, no such investigation was considered 

necessary. 

 

3.2.1. Selection of meshes 

 

It has been stated throughout this work that response expansion coefficients are 

determined for only unique meshes within the core.  The optimal choice of coarse mesh 

has been found to be a fuel block (or assembly); since few different block designs are 

generally present within a core, the number of response expansion coefficients necessary 

for a complete library is kept relatively low.  As operating reactor cores typically consist 

of many blocks which, at beginning of life, are identically constructed and composed, 

building a library of only unique meshes rather than each mesh individually allows this 

method to be efficient without a loss of practicality.  The uniqueness of a coarse mesh 

refers to its block design, but not to its position in the core.  Thus, for a block of a 

particular design, response expansion coefficients need be calculated only once; any 

number of blocks with that same design may then be placed at any position in the core 

without necessitating additional response expansion coefficient calculations.  For 

example, test cores are presented as benchmark problems in section 4.1.2.  The first of 

these test cores is constructed of 185 blocks.  However, each block is identical in design; 
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the same mesh is simply repeated 185 times within the core.  It is foreseen that the 

method will be used for reactor calculations throughout the life cycle of the core.  The 

library will then become a function of reactor state parameters, such that response 

expansion coefficients will be stored for a set of discrete temperatures, burnup steps, and 

so forth, requiring only a simple interpolation scheme to select the proper value between 

coefficients in the library. 

 

3.3. Deterministic Solution Construction 

 

The final step in the method is the deterministic iterative procedure which composes the 

solution to the whole core problem.  Starting with an initial guess for the eigenvalue and 

flux distribution, the outgoing response to the hypothesized incoming current is 

determined for each mesh, proceeding in a given sweep order.  It was previously shown 

(Connolly et al., 2012) that the sweep order did not affect the accuracy of the solution, 

but that sweeping from the center of the core outward yielded results more efficiently 

than other sweeping methods which had been proposed.  The method retains this outward 

sweeping scheme, in which new response expansion coefficients are first determined for 

the angular flux exiting the center mesh, based on an initial guess for the angular flux 

entering that mesh.  The process repeats for each mesh in the core, with the sequence of 

meshes ordered in an outward sweep.  Determination of an optimum sweep order is 

beyond the scope of this paper. 
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3.3.1. Convergence of solution 

 

Once the iterative procedure converges in flux distribution and eigenvalue, the problem is 

considered solved.  While the determination of appropriate convergence criteria is a 

decision for the user of the method, several options are investigated in section 4.4.  

Convergence criteria should be tight enough to ensure a solution is reached; however, 

given the inherent uncertainty in the solutions due to the stochastic nature of response 

expansion coefficient generation and the fact that due to the truncation of the infinite sum 

of orthogonal functions, the solution will not be exact, the convergence criteria should be 

chosen which are not significantly tighter than the expected uncertainty and deviation 

from the exact solution. 
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4. RESULTS 

 

In this section, numerical results are presented in order to evaluate the new method.  A 

series of core configurations is presented, and COMET’s ability to solve these problems 

is compared to a whole core Monte Carlo solution. 

 

4.1. Benchmark Problems 

 

In order to verify the accuracy of COMET, it is tested against several whole core Monte 

Carlo benchmarks.  The first is a benchmark based on Japan’s High Temperature Test 

Reactor (HTTR).  Following are three small cores designed from components of gas-

cooled reactors, but intended to present more difficult problems to a solution method.  

The benchmark problems are described in detail below. 

 

4.1.1. High Temperature Test Reactor 

 

The first benchmark problem presented is a stylized depiction of Japan’s High 

Temperature Test Reactor (HTTR) (Zhang et al., 2011).  It was chosen as a representative 

example of a gas-cooled thermal reactor.  The core exhibits block and core-level 

heterogeneity, it accurately models neutronic behavior characteristic of a graphite 

moderated core, and it is built with a hexagonal lattice structure.  Furthermore, the 2-D 

version of this problem has previously been solved using the COMET method (Connolly 

et al., 2012). 
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The HTTR problem uses a six-group cross section library.  Seven unique fuel 

enrichments, control blocks with rods either inserted or withdrawn, two compositions of 

solid reflector blocks, and reflector blocks with coolant channels running through them 

are present in the core; a total of twelve unique meshes is therefore represented.  A cross-

section of each major block design (fuel, control, solid reflector, and cooled reflector) is 

presented in Figure 2.  Gray represents graphite, yellow represents fuel material, and 

green is boron carbide absorber.  Helium coolant, treated simply as vacuum for the sake 

of neutronic modeling, flows through the white spaces in the figure.  The blocks are 

uniform in the axial direction. 

 

 

 

Figure 2. Fuel, control, solid reflector, and cooled reflector block geometry. 

 

Solutions to two different core configurations were found.  The first problem is the 

simpler one, that being the all-rods-out configuration.  The second core is the partially 

controlled configuration which is near critical operating condition.  As the reference 

presents only the partially controlled core with a corrugated boundary, and as the method 
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developed within this paper is designed to treat only entire blocks and not fractions 

thereof, the benchmark problems were solved again for this paper using corrugated 

boundaries and specifying no incoming flux as a boundary condition for both cores.  This 

is the only deviation from the core definition specified by Zhang et al. (2011).  The new 

benchmarks were solved using standard MCNP5 in parallel. 

 

The first problem represents the core configuration with all rods removed.  The core was 

modeled in one-sixth symmetry.  4,000 active cycles of 250,000 neutron histories were 

simulated after an initial 2,000 cycles were run to converge the fission source.  The 

multiplication factor was found to be 1.09877 with an uncertainty of 0.00002.  Pin fission 

densities for all 4950 pin segments in the core were calculated; the uncertainty in the 

calculations ranged from 0.02-0.06%.  The pin fission density distribution is illustrated in 

Figure 3.  This calculation required 75009 minutes of computing time, divided across 32 

processors in parallel.  This corresponds to 52 days of cpu time, assuming a scaling factor 

of unity.  Computation times are given for comparative purpose within this work, as all 

computations presented herein used 2 GHz processors. 

 

The second problem represents the core configuration with some rods in, to model the 

core as closely as possible to a critical operating state.  Like the previous core, this 

configuration was also modeled in one-sixth symmetry.  Similarly, the same amount of 

active and inactive cycles was simulated with an identical number of particle histories per 

cycle.  The multiplication factor was found to be 0.99740 with an uncertainty of 0.00002.  

The uncertainty in the pin fission density calculations ranged from 0.02-0.08%.  The 
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range of fission density values is presented by Figure 4.  This calculation required 79479 

minutes of computing time, divided across 32 processors in parallel.  This corresponds to 

55 days of cpu time, assuming a scaling factor of unity. 
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Figure 3. ARO HTTR fission density  
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Figure 4. SRI HTTR fission density 
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4.1.2. Heterogeneous Test Cores 

 

Tests of the method have been conducted on a set of test cores which have been designed 

to challenge the capabilities of the method while minimizing the need for a large response 

expansion coefficient library.  Although these smaller cores reduce computation time 

when compared to a realistic operating reactor core, their design is intended to provide a 

greater challenge to the method by introducing unrealistically dramatic heterogeneity at 

the core level, sharp flux peaking and gradients, and high leakage. 

 

The test problems have been inspired by the HTTR benchmark, and have previously 

appeared in an earlier work (Connolly and Rahnema, 2012c).  All three cores use the 

block specifications described in the HTTR benchmark, however, the core geometry is 

quite different.  Only three unique block types appear in the following core 

specifications: the fuel block specified as enrichment type 5 in the reference (Zhang et al., 

2011), the control block with rods inserted, and the permanent reflector block.  All three 

test cores are composed of axial levels consisting of 37 blocks: three rings of blocks 

around a central block; each core is five axial levels in height, for a total of 185 blocks.  

The cores are depicted in Figures 5-7, where white hexagonal lattice elements represent 

fuel blocks, gray is used to symbolize reflector blocks, and blocks featuring control 

material are colored black.  The core illustrations previously appeared in an earlier work 

(Connolly and Rahnema, 2012c). 
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As was done for the HTTR solutions, reference solutions for the test cores have been 

determined using MCNP5.  The solution for Core B required 2,000 active neutron history 

cycles after an initial 500 cycles were skipped to create a converged fission source.  

250,000 neutron histories were simulated in each cycle, for a total of 125 million inactive 

neutron histories and 500 million active histories.  Cores A and C modeled twice as many 

active neutron histories; this was necessary to reduce uncertainty in the pin fission 

density calculations at the core periphery. 

 

Core A is composed solely of fuel blocks; it is presented first as the simplest core design 

to model.  It is, however, a challenge to solve; the configuration leads to high leakage and 

steep flux gradients within the core, a global peaking factor of 3.59, and a minimum pin 

fission density of 0.0285.  The core contains 185 fuel blocks, and 6105 pin regions.  The 

multiplication factor of the core was calculated at 0.95333 ±  0.00002.  The pin fission 

density calculations were determined to an average statistical uncertainty of 0.121%.  

Figure 8 depicts the power map of the core.  The reference solution was calculated over 

nearly eight days using 64 processors in parallel, corresponding to 508 days of total 

computing time assuming a scaling factor of one. 
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Figure 5. Core A, levels 1-5 

 

 

 

Figure 6a. Core B, levels 1 and 5 

 

Figure 6b. Core B, levels 2 and 4 

 

Figure 6c. Core B, level 3  

Figures 5-7: core diagrams. Fuel blocks are white, reflectors gray, and controls black. 
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Figure 7a. Core C, level 5 

 

Figure 7b. Core C, level 4 

 

Figure 7c. Core C, level 3 

 

Figure 7d. Core C, level 2 

 

Figure 7e. Core C, level 1 
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Core B introduces new block types.  The core is now fully enveloped in 128 reflector 

blocks, with 56 fuel blocks surrounding a solitary control block in the center of the core.  

The 1848 fuel pin regions have a flatter flux profile than the previous core, with fission 

density ranging from a peak value of 1.23 to a minimum value of 0.708.  The fission 

density map appears in Figure 9, where the pins are colored accordingly and the black 

circles represent the position of the annular control rods present.  The average uncertainty 

in the pin fission density calculations was 0.074%.  Core B has a multiplication factor of 

0.90757 ±  0.00003.  Using 64 processors running in parallel, the calculations took nearly 

3.5 days; this corresponds to approximately 220 total days of computing time. 

 

Core C is intended to rigorously challenge the method, as it includes strong heterogeneity 

at the core level, extreme asymmetry, and a dramatically irregular flux profile.  The core 

includes 85 fuel blocks, which contain a total of 2805 fuel pin regions, whose fission 

densities have been determined to an average uncertainty of 0.254%, but a maximum of 

4.000% in some very low-power pins.  An additional 76 reflector blocks and 24 control 

blocks are distributed throughout the core in a haphazard and unrealistic manner.  The 

fission density distribution is illustrated in Figure 10; the fission density values vary from 

a peak of 2.75 to a low value of 0.00273.  Computing the pin fission density profile and 

the core multiplication factor of 0.85405 ±  0.00002 required over 8.5 days on 64 

processors in parallel, or 545 days of total computing time. 
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Figure 8. Core A pin fission density map. 
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Figure 9. Core B pin fission density map 
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Figure 10. Core C pin fission density map 
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4.2. Response Expansion Coefficient Library 

 

For the analysis presented herein, three new response expansion coefficient libraries were 

created.  Two libraries were built for the full set of HTTR blocks, one expanding the 

angular flux, and one expanding the angular current.  These libraries used 0.95, 1.05, and 

1.15 as the discrete values of the core multiplication factor to model, and simulated 250 

million incoming surface source neutrons per unique coarse mesh face and expansion 

order.  Each of these libraries represents 22.7 GB in disk space.  As these libraries were 

adequate to demonstrate the superiority of the angular flux expansion over that of the 

angular current in section 4.4, a third library was generated using an angular flux 

expansion only of those unique blocks which appear in the test cores at core 

multiplication factor values 0.8, 0.9, and 1.0.  This final library also simulated 250 

million incoming surface source neutrons, and occupies 7.0 GB of disk space.  A twin 

library based on an angular current expansion was not considered necessary. 

 

Earlier works (Connolly and Rahnema, 2012a, 2012c) had created libraries which had 

modeled only 10 million surface source particles per mesh face and expansion order; 

these used the same amount of disk space, but represented a much lesser time investment.  

At the time, the uncertainty in the eigenvalue calculation was determined using the 

procedure described by Forget et al. (2004), which underestimated the uncertainty, but 

the magnitude of this was not known.  Zhang and Rahnema (2012) have since derived a 

more accurate means to determine the uncertainty, this has subsequently been 

implemented.  Results using these earlier libraries are included in the appendix to 



 35 

demonstrate the need for additional source sampling and therefore justify the 

corresponding time investment. 

 

It is left to the user of the method to determine an optimum balance of time invested, the 

maximum expansion order investigated, and the inherent statistical uncertainty of the 

stochastically generated library.  The results presented in the remainder of this chapter 

may suggest that the size of the library necessary for a desired high level of accuracy is 

significantly smaller than the sizes of those created for this study. 

 

4.2.1. High order cross terms 

 

Compilation of a library which included high order cross terms to the fourth order in both 

space and angle was attempted, however, as the size of the response expansion 

coefficient library is directly proportional to the square of the number of expansion orders 

of interest present in the problem, space limitations became an issue.  Without high order 

cross terms, 225 response coefficients are determined for each face of each mesh at each 

energy group; when these terms are included, 625 coefficients are calculated.  The 

synthesis of a response library with nearly 8 times as much data for no gain in accuracy is 

obviously an unnecessary exercise, especially considering the high accuracy of the 

solutions at fourth or even second order without these extra terms. 
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4.3. Mesh boundary analysis 

 

The reference solutions used for comparative purposes have been determined by MCNP5.  

Relative differences between solutions generated by the new method and the reference 

solutions will be presented in tables. The relative error of any quantity of interest q will 

be calculated as 

 

 
ref

ref

q
q

qq
RE

−
= .        (13) 

 

The relative error in the eigenvalue determination will be given with the stochastic 

uncertainty in per cent mille (pcm).  As the method calculates the fission density for 

every pin segment in each core explicitly, several average error definitions will be 

presented to establish the accuracy of the method in a concise manner, thus eliminating 

the need to present thousands of data points for pin-level calculations.  The tables will 

display the average absolute relative error of the pin fission density, which will be 

designated AVG and defined by (14), the mean relative error (MRE) given by (15), and 

the maximum absolute error (MAX).  All pin fission density errors will be given in per 

cent.  In Eq. (14) and (15), individual pins or pin segments are designated ζ, they have 

fission density values of fdζ, and the total number of pin segments in the core is given as 

Ζ. 
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 %100×
Ζ

=
∑

ζ
ζRE

AVG        (14) 

 

 %100×
Ζ

×

=
∑

ζ
ζζ fdRE

MRE       (15) 

 

In order to determine the optimal mesh boundary condition, three cores—the partially 

controlled HTTR core, the uncontrolled HTTR core, and the smaller Core A—have been 

solved using both angular current and angular flux as quantities of expansion at the mesh 

boundaries.  Here “tight” convergence (as defined in the following sub-section) has been 

utilized throughout in order to clearly see the effects of the physical quantity of expansion 

on the accuracy of the solution.  Tables 1-3 present the results for these three cores, 

where the first line of the table is the order to which the expansion of the mesh interface 

angular current or flux is carried out: (L, M, N, P) represent the maximum expansion 

order in the two spatial variables, the polar angle, and the azimuthal angle, respectively.  

In these three tables, a column designates the physical quantity of expansion (angular 

current or angular flux) at the mesh interface; the rest of the results tables presented show 

results for which only the interface angular flux is expanded.  The final line on the tables 

is for the computational runtime in minutes required for the calculations. 
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Table 1. HTTR, some rods in (SRI) 

 (2,2,0,0) (2,2,2,2) (4,4,4,4) 

 J ψ J ψ J ψ 

RE k (pcm) 1306 879 138 73 94 80 

σk (pcm) 63 63 63 63 63 63 

AVG % 1.62 0.88 0.42 0.43 0.39 0.42 

MRE % 1.59 0.85 0.39 0.40 0.34 0.36 

MAX % 5.34 2.53 2.26 2.50 0.95 1.06 

runtime 

(min) 
24 24 229 245 924 793 

 

 

 

Table 2. HTTR, all-rods-out (ARO) 

 (2,2,0,0) (2,2,2,2) (4,4,4,4) 

 J ψ J ψ J ψ 

RE k (pcm) 1224 751 97 36 42 24 

σk (pcm) 72 73 72 73 72 73 

AVG % 4.06 2.55 0.76 0.67 0.59 0.56 

MRE % 3.00 1.87 0.59 0.54 0.43 0.41 

MAX % 11.30 6.47 2.44 2.21 1.78 1.66 

runtime 

(min) 
44 37 340 336 630 505 

 

 

 

Table 3. Core A 

 (2,2,0,0) (2,2,2,2) (4,4,4,4) 

 J ψ J ψ J ψ 

RE k (pcm) 2126 1316 50 -37 -18 -32 

σk (pcm) 12 13 12 13 12 13 

AVG % 2.52 0.85 0.48 0.49 0.23 0.23 

MRE % 1.58 0.55 0.34 0.33 0.15 0.14 

MAX % 10.33 4.37 3.81 4.16 3.28 3.28 

runtime 

(min) 
2 2 12 13 42 34 
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The results for Core A previously appeared in (Connolly and Rahnema, 2012b). 

 

From these results, the expansion of the angular flux is found superior to the expansion of 

the angular current at mesh interfaces.  Although by a fourth-level expansion, both 

quantities produce results with high accuracy, the lower order expansion of the flux 

yields results which are, for both the eigenvalue and fission density profile, significantly 

more accurate than results determined from the current expansion.  As the initial guess 

for higher order calculations is synthesized from a low-order calculation, more accurate 

low order calculations lead directly to faster runtimes for higher order calculations.  This 

alone is an adequate reason to select the angular flux expansion. 

 

Since the zeroth expansion moment of the angular flux represents an isotropic flux 

distribution at the mesh boundary (Zhang and Rahnema 2012), the angular flux 

expansion has been expected to yield superior results to the angular current expansion of 

the same order when the core of concern exhibits flux with a strongly isotropic 

component.  Based on that, the core environment of a strongly scattering thermal reactor 

would be expected conducive to the angular flux expansion.  That at least a second order 

expansion in all variables is necessary for accurate results highlights the inadequacy of 

reliance solely on diffusion or low order methods to determine the core flux shape and 

eigenvalue of these heterogeneous reactors.  The improved accuracy inherent in the 

angular flux expansion may also result in part from removing any numerical difficulties 

(near singularities) resulting from an expansion of the angular current at grazing angles. 
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4.4. Convergence and acceleration of solution method 

 

It is clear that the time required to calculate the flux shape and eigenvalue is related to the 

convergence criteria of the iterative procedure and the expansion order specified.  

Computational runtimes will be reduced with greater accuracy of the initial guesses for 

the core eigenvalue and flux distribution.  In order to supply an initial guess which will 

enable faster runtimes, a low order acceleration method has been used in previous works; 

a two-step process using first a (0,0,0) order followed by a (2,2,2) order calculation at 

looser convergence criteria was found superior to others attempted for two-dimensional 

hexagonal problems (Connolly et al., 2012).  This is adapted for the “tight” convergence 

criteria as described in Table 4.  The “tight” convergence/acceleration option used for the 

3-D method differs from the one used in 2-D calculations; due to the relatively poor 

accuracy at the (0,0,0,0) order, an eigenvalue calculation is not performed once an 

estimated flux shape is determined.  The calculation then proceeds using the flux shape 

determined from the low order calculation and the initial eigenvalue guess.  For 

calculations in which the final expansion order is equal to or lower than the intermediate 

(2,2,2,2) step, the expansion order of that step is simply the lesser of (2,2,2,2) and the 

final expansion of interest.  In addition to the “tight” convergence and acceleration 

options, two new acceleration and convergence schemes have been proposed, with 

criteria given in Table 4. 
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Table 4. Convergence and acceleration options 

Order Flux convergence Fission density Eigenvalue 

“Tight” 

(0,0,0,0) 1 x 10
-4
 5 x 10

-4
 n/a 

(2,2,2,2) 1 x 10
-4
 5 x 10

-4
 10 pcm 

Final 5 x 10
-5
 1 x 10

-4
 5 pcm 

“Moderate” 

(2,2,0,0) 1 x 10
-3
 5 x 10

-3
 1.0 % 

(2,2,2,2) 1 x 10
-3
 5 x 10

-3
 25 pcm 

Final 2.5 x 10
-4
 5 x 10

-4
 10 pcm 

“Loose” 

(2,2,0,0) 5 x 10
-3
 5 x 10

-3
 1.0 % 

(2,2,2,2) 5 x 10
-3
 5 x 10

-3
 50 pcm 

Final 5 x 10
-4
 1 x 10

-3
 25 pcm 

 

 

 

Clearly, the HTTR core solutions have the most to gain in efficiency by accelerating the 

iterative solution method.  Furthermore, the uncertainty in the eigenvalue calculations is 

far greater than the 5 pcm convergence criterion used in previous calculations, and the 

magnitude of the pin fission density discrepancies between the method solution and the 

reference solution suggest that the 0.01% figure used to establish convergence of the 

fission density profile in the initial “tight convergence” case is unnecessarily strict.  

Tables 5 and 6 contain results from the three acceleration options; Table 5 for the 

partially controlled HTTR core, and Table 6 for the HTTR with all rods out.  Each case 

uses (4,4,4,4) as the final expansion order.  In all cases, the eigenvalue results are well 

within 2σ, and while the calculated pin fission density core maps do fluctuate, the 

average errors are within 1% of the reference solution in all cases.  Clear reductions in 

the runtimes are obvious with loosening convergence criteria in all cases except that for 

the HTTR with all rods out, the “tight” convergence and the “moderate” convergence 

options solve the core problem in the same amount of time.  The reason for this is 

unclear, although a well-converged intermediate acceleration step with high accuracy is 
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expected to result in a quicker final step, as long as the intermediate step yields a solution 

with accuracy comparable to the final step.  As the (2,2,2,2) calculation for the HTTR all-

rods-out configuration is adequate for a highly accurate solution (according to the results 

presented in Table 8 in the following sub-section), this may be the cause of the low 

runtime for the “tight” convergence case in the uncontrolled core configuration problem. 

 

 

Table 5. Accelerated SRI HTTR core 

 “Tight” “Moderate” “Loose” 

RE k (pcm) 80 66 21 

σk (pcm) 63 63 63 

AVG % 0.42 0.17 0.34 

MRE % 0.36 0.16 0.33 

MAX % 1.06 0.61 1.28 

runtime 

(min) 
793 312 278 

 

 

 

Table 6. Accelerated ARO HTTR core 

 “Tight” “Moderate” “Loose” 

RE k (pcm) 24 45 -18 

σk (pcm) 73 73 73 

AVG % 0.56 0.94 0.93 

MRE % 0.41 0.67 0.69 

MAX % 1.66 2.61 2.41 

runtime 

(min) 
505 505 340 
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4.5. Expansion order analysis 

 

The effects of the expansion order are presented in this section, beginning with results for 

the HTTR core.  For this core, the “loose” convergence and acceleration package is used, 

as it has been shown to best reduce runtimes while maintaining accuracy.  As the 

(2,2,0,0) expansion was given in section 4.3, Tables 7 and 8 begin with the (2,2,2,2) 

order.  It is anticipated that the higher the order at which the infinite sum of orthogonal 

functions is truncated, the greater will be the accuracy of the solution; theoretically, an 

infinite sum will produce the exact solution.  The results from the HTTR suggest that a 

second order expansion in both space and angle is adequate for accurate results in 

eigenvalue and pin fission density distribution.  For this large, well-reflected core, the 

only improvement seen by raising the expansion order beyond this is a small reduction in 

the maximum error of pins in the partially controlled core; the difference between 

average pin fission density figures from one expansion order to another in the 

uncontrolled HTTR core is on the order of the 0.1% fission density convergence 

criterion.  All eigenvalue calculations were within one standard deviation of the reference 

solution.  Runtimes were approximately 500 times faster than the MCNP reference 

solution, however, the fairness of the runtime comparison can be debated as the method 

has significantly higher uncertainty in the eigenvalue results, but at an average 

uncertainty of 0.01%, a far lower expected standard deviation in the pin fission density 

results. 
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Table 7. SRI HTTR 

 (2,2,2,2) (2,2,4,4) (4,4,2,2) (4,4,4,4) 

RE k (pcm) 56 45 22 21 

σk (pcm) 63 63 63 63 

AVG % 0.34 0.37 0.34 0.34 

MRE % 0.32 0.34 0.33 0.33 

MAX % 1.98 1.90 1.28 1.28 

runtime 

(min) 
114 187 147 278 

 

 

 

Table 8. ARO HTTR 

 (2,2,2,2) (2,2,4,4) (4,4,2,2) (4,4,4,4) 

RE k (pcm) -9 -6 -17 -18 

σk (pcm) 72 73 73 73 

AVG % 0.74 0.59 0.94 0.93 

MRE % 0.55 0.46 0.69 0.69 

MAX % 2.74 2.41 2.44 2.41 

runtime 

(min) 
113 212 170 340 

 

 

 

For the partially controlled configuration, pin fission density errors were quite low.  At 

the (2,2,2,2) order, only 74 pins of the 4950 had values differing more than 1% from the 

reference solution.  Only 2 of those 74 pins were at power levels above the average in the 

core.  This means that the method determined the fission density of 98.51% of the pins in 

the core to within 1% of the reference solution.  While the method still performed 

admirably with the all-rods-out configuration, the steeper flux gradient created by the 

removal of the flux-shaping rods may have contributed to somewhat higher pin fission 

density errors when compared to the reference solution.  At the (2,2,2,2) order, 97.43% of 

pins had errors below 2%, but 71.25% of the total were within 1%.  None of the pins 

which deviated by more than 2% from the reference solution had power levels at or 
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above the core average; most of them were in regions where the fission density was 

below 0.5 relative to the core average. 

 

 

  
Figure 11. SRI HTTR errors at (2,2,2,2) 
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Figure 12. SRI HTTR errors at (4,4,4,4) 

 



 47 

  
Figure 13. ARO HTTR errors at (2,2,2,2) 
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Figure 14. ARO HTTR errors at (4,4,4,4) 

 

 

Figures 11 and 12 depict the errors in the pin fission density calculations throughout the 

core for the partially controlled HTTR configuration.  Figures 13 and 14 show the same, 

but for the all-rods-out configuration.  These four figures, and all subsequent graphical 
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error map representations, use the color map given as Figure 21; this enables an easy 

comparison between different core configurations and expansion orders so that the 

positions within the core for which the method gives the strongest results are apparent.  In 

both HTTR cases, expanding the angular flux to the fourth order yields a flatter error map 

than that produced by the second order expansion.  In both cases, maximum pin fission 

density errors are reduced, but average errors are not improved.  For the ARO (4,4,4,4) 

calculation, the lower two levels are underestimated by the method when compared to the 

reference solution, and the upper three levels are overestimated.   

 

Results for cores A, B, and C are presented in Tables 9, 10, and 11, respectively.  In 

solving these cores, the “moderate” convergence and acceleration package was selected, 

as the “loose” convergence would not be sufficient given the lower uncertainty inherent 

in the heterogeneous test core simulations.  These results conclusively demonstrate the 

need for at least a second order expansion in angle for accurate eigenvalue results, 

although the pin fission density maps even assuming an isotropic flux at mesh boundaries 

is only slightly worse than higher angular order calculations in cores devoid of much 

control material.  The simpler cores A and B exhibit high accuracy in the eigenvalue 

calculation for expansions of at least second order in both space and angle, with results 

within 3σ plus the 10 pcm convergence criterion of the reference multiplication factor.  

However, especially in the unreflected Core A with strong flux gradients, the step from 

second to fourth order in space reduces pin fission density errors.  The spatial expansion 

of higher order more accurately resolves pin-level details in this core where flux is 

sharply peaked.  Although creating a response expansion coefficient library of higher 
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order may be necessary to solve the flux map more exactly, the results herein are of such 

high accuracy that a larger library would only be an unnecessary use of computing time 

and resources for marginal gains. 

 

The more challenging Core C suggests a need for modeling a fourth order expansion in 

the spatial distribution of the flux at mesh interface for accurate calculation of the 

eigenvalue; when this expansion is used, the core multiplication factor is found within 3σ 

plus the convergence criterion.  The fourth order spatial expansion again further enhances 

the accurate resolution of the pin fission density map over a second order expansion.  As 

was the case for the other cores, a fourth order expansion of the angular distribution of 

the flux at mesh faces produces no difference in the solution.  That the method has 

produced solutions of such accuracy even in the dramatically unrealistic Core C is a true 

testament to its value as a fast and accurate transport method. 

 

Table 9. Core A 

 (2,2,0,0) (2,2,2,2) (2,2,4,4) (4,4,0,0) (4,4,2,2) (4,4,4,4) 

RE k (pcm) 1294 -43 -45 1303 -36 -39 

σk (pcm) 13 13 13 13 13 13 

AVG % 0.80 0.50 0.50 0.78 0.24 0.24 

MRE % 0.52 0.34 0.34 0.42 0.15 0.15 

MAX % 4.09 4.33 4.33 5.74 3.28 3.28 

runtime 

(min) 
2 8 11 2 13 25 
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Table 10. Core B 

 (2,2,0,0) (2,2,2,2) (2,2,4,4) (4,4,0,0) (4,4,2,2) (4,4,4,4) 

RE k (pcm) 1506 -9 -8 1467 -29 -33 

σk (pcm) 19 19 19 19 19 19 

AVG % 0.76 0.72 0.72 0.71 0.70 0.70 

MRE % 0.76 0.71 0.71 0.71 0.69 0.69 

MAX % 1.94 1.88 1.88 1.52 1.42 1.42 

runtime 

(min) 
3 8 13 3 15 30 

 

 

 

Table 11. Core C 

 (2,2,0,0) (2,2,2,2) (2,2,4,4) (4,4,0,0) (4,4,2,2) (4,4,4,4) 

RE k (pcm) 1734 -99 -101 1776 -55 -59 

σk (pcm) 19 19 19 19 19 19 

AVG % 1.40 0.64 0.64 1.31 0.34 0.34 

MRE % 0.69 0.41 0.41 0.55 0.21 0.21 

MAX % 11.13 6.56 6.56 10.78 5.87 5.87 

runtime 

(min) 
3 12 17 3 21 42 

 

 

 

In Core A, the maximum pin fission density errors were located in very low-power 

regions of the core.  Again, using the (2,2,2,2) order, the method determines 89.07% of 

the 6105 pins in the core to within 1% of the reference solution.  Of the 36 pins (or 0.59% 

of the pins) with errors over 3%, that with the highest fission density was operating at a 

power level of 0.19 times the core average.  Two pins had errors over 4%; these had 

fission densities of 0.04 and 0.06.  As seen in Figures 15 and 16, core calculations at the 

(4,4,4,4) order improve the pin fission density calculation accuracy, reducing the errors in 

the pins at the periphery while also reducing the errors in the center of the core. 
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Figure 15. Core A errors at (2,2,2,2) 
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Figure 16. Core A errors at (4,4,4,4) 

 

 

At the (2,2,2,2) expansion order, the method determined 75.92% of the pins within Core 

B to within 1% of the reference solution.  Unlike the other cores solved, this core does 

not have large flux gradients, and so the pin fission density results with errors over 1% 

are not distributed preferentially among low-power regions.  However, since the average 
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error in pin fission density calculations is below 1% and the maximum error is below 2%, 

the method performance for eight minutes of runtime compared to the reference 

solution’s runtime requirement of over four orders of magnitude greater is nothing short 

of outstanding.  As shown in Figures 17 and 18, raising the expansion order from 

(2,2,2,2) to (4,4,4,4) flattens the error map throughout the core in a similar manner to that 

seen in the ARO HTTR configuration. 

 

 

 

 

 

 

 
Figure 17. Core B errors at (2,2,2,2) 
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Figure 18. Core B errors at (4,4,4,4) 

 

 

Core C, due to its unrealistic core configuration of fuel blocks interspersed with control 

material and reflector blocks specifically designed to cause a drastically irregular flux 

shape, is expected to challenge a new method beyond what is necessary to establish 

reliable accuracy in cores resembling operating reactors.  At the (2,2,2,2) expansion 

order, 82.89% of the pins are still found to within 1% of the reference solution.  There are 

60 pins at greater than 3% error, with the highest-powered pin at 0.4 times the core 

average, but the rest at below 0.2.  Five pins were found with errors over 6% from the 

reference solution, but all of these had fission density levels of 0.05.  These results are 

improved further with the use of the (4,4,4,4) expansion order—specifically, the number 

of pins over 3% error is reduced from 60 to 9—but the (2,2,2,2) order has been chosen 

here to describe the method’s performance at the lowest expansion order and therefore 
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runtime adequate to accurately resolve both the core eigenvalue and the flux shape 

throughout.  However, the results for both of these orders are illustrated in Figures 19 and 

20; it is clear that the largest errors are seen at low-flux periphery regions which are 

removed from much of the central part of the core and not adjacent to other fuel pins. 
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Figure 19. Core C errors at (2,2,2,2) 
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Figure 20. Core C errors at (4,4,4,4) 
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Figure 21. Color map for all error figures 

 

The method results presented in this section have been chosen to show the strengths and 

limitations of this new method.  It has been shown that eigenvalues determined by the 

method have accuracy comparable to their inherent statistical uncertainty, and that pin 

fission density values are generally highly accurate as well; the limitations of the method 

in determining fission density figures are typically in those regions which contribute least 

to the overall power of the core. 

 

4.6. Control rod worth analysis 

 

As a final test, the method will be used to demonstrate its ability to determine the 

incremental reactivity worth of control rods.  The core selected will be a modified version 

of Core B; the central column of this core will be changed into a single control column as 
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shown in Fig. 22.  It is assumed that the three control rods may move independently of 

each other for the sake of this exercise.  Thus, there will be 16 different configurations of 

the core modeled: the core with all rods out followed by the first rod being inserted 

incrementally.  Once the first rod is all the way in, the second rod will be inserted one 

block level at a time (assuming each block level represents a single notch), and finally the 

third.  At each core position, the core eigenvalue is determined and the pin fission density 

map is constructed.  From the eigenvalue calculations, the incremental rod worth ρiw is 

determined via Eq. (16), as given by Lamarsh and Baratta (2001). 

 

k

k
iw

∆
=ρ .         (16) 

 

 

 

   
(a)     (b) 

Figure 22. Rod worth test core: (a) levels 1 and 5; (b) levels 2-4. 

 

 

This test of the method first appeared in a preliminary work (Connolly and Rahnema, 

2012a), which expanded the angular current rather than the angular flux at the mesh 

boundary, and also estimated the uncertainty inadequately.  These earlier tests had used 
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the response library which had sampled 10 million surface source particles per unique 

mesh face, and the uncertainty had been estimated at or around 6 pcm for each eigenvalue 

calculation.  Using the improved method, the true uncertainty was found to be closer to 

approximately 60 pcm.  Clearly, additional precision was necessary for these 

calculations; the library which used 250 million surface source particles was therefore 

compiled.  The results using this library are presented in Table 12, with runtime and 

uncertainty figures.  These calculations were performed at the (4,4,2,2) order and used 

the “moderate” convergence criteria. 

 

At first glance, the calculated incremental worth of each rod segment appears as 

expected: as each rod is inserted, the change in reactivity behaves approximately 

sinusoidally, with the first rod having the greatest worth.  As each additional rod is 

inserted, it is found to have lower worth, as the flux has already been depressed by the 

insertion of the first rod.  However, COMET’s multiplication factor is lower by more 

than three standard deviations from the reference value in some cases clustered near keff = 

0.9.  Additional investigation is being undertaken at present to mitigate these errors. 
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Table 12. Eigenvalue results for rod worth exercise 

Rod 

pos. 

COMET keff 

(σ) 

COMET 

runtime 

(min) 

MCNP keff 

(σ) 

MCNP 

runtime* 

(min) 

COMET 

ρiw in pcm 

(σ) 

keff error 
in pcm 

(σ) 

0 
0.95741 

(0.00030) 
17 

0.95745 

(0.00003) 
12739  

-4 

(30) 

1 
0.95332 

(0.00029) 
17 

0.95324 

(0.00003) 
12799 

429 

(42) 

8 

(29) 

2 
0.93659 

(0.00026) 
17 

0.93677 

(0.00003) 
12643 

1786 

(39) 

-18 

(26) 

3 
0.91035 

(0.00025) 
16 

0.91119 

(0.00003) 
12307 

2882 

(36) 

-84 

(25) 

4 
0.89395 

(0.00025) 
16 

0.89549 

(0.00003) 
12137 

1835 

(35) 

-154 

(25) 

5 
0.89222 

(0.00019) 
16 

0.89383 

(0.00003) 
12280 

194 

(31) 

-161 

(19) 

6 
0.89054 

(0.00024) 
17 

0.89201 

(0.00003) 
12169 

189 

(31) 

-147 

(24) 

7 
0.88218 

(0.00024) 
19 

0.88335 

(0.00003) 
11915 

948 

(34) 

-117 

(24) 

8 
0.86927 

(0.00023) 
19 

0.87016 

(0.00003) 
11871 

1485 

(33) 

-89 

(23) 

9 
0.86173 

(0.00025) 
19 

0.86245 

(0.00003) 
11875 

875 

(34) 

-72 

(25) 

10 
0.86099 

(0.00018) 
19 

0.86179 

(0.00003) 
11770 

86 

(31) 

-80 

(18) 

11 
0.86011 

(0.00024) 
18 

0.86079 

(0.00003) 
11782 

102 

(30) 

-68 

(24) 

12 
0.85515 

(0.00023) 
19 

0.85564 

(0.00003) 
11655 

580 

(33) 

-49 

(23) 

13 
0.84748 

(0.00022) 
18 

0.84780 

(0.00003) 
11746 

905 

(32) 

-32 

(22) 

14 
0.84314 

(0.00022) 
17 

0.84345 

(0.00003) 
11582 

515 

(31) 

-31 

(22) 

15 
0.84273 

(0.00017) 
16 

0.84308 

(0.00003) 
11565 

49 

(28) 

-35 

(17) 

*MCNP runtimes are total cpu time for only eigenvalue calculation. COMET runtimes 

are for both eigenvalue and pin fission density map determination. 

 

 

The runtimes stated in Table 12 for the MCNP reference solution were for an eigenvalue 

calculation without the construction of the pin fission density profile.  However, in the 

listed time, COMET completed not only the eigenvalue calculation, but also a complete 
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pin fission density profile.  These fission density maps are illustrated in Figures 24-39, 

with Figure 23 giving the color key for all of the following core depictions.  The presence 

of control rods is indicated by a black sphere.  The flux depression in pins near control 

material is clear; the utility of a method which is quickly able to determine the behavior 

of every fuel pin segment in a core in response to major or minor changes in the core 

environment is obvious. 

 

 

 
Figure 23. Color key to pin fission density results illustrated in Figures 24-39. 
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Figure 24. Rod worth test core, rod position 0. 
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Figure 25. Rod worth test core, rod position 1. 
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Figure 26. Rod worth test core, rod position 2. 
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Figure 27. Rod worth test core, rod position 3. 
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Figure 28. Rod worth test core, rod position 4. 
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Figure 29. Rod worth test core, rod position 5. 
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Figure 30. Rod worth test core, rod position 6. 
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Figure 31. Rod worth test core, rod position 7. 
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Figure 32. Rod worth test core, rod position 8. 
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Figure 33. Rod worth test core, rod position 9. 
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Figure 34. Rod worth test core, rod position 10. 

 



 75 

 
Figure 35. Rod worth test core, rod position 11. 
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Figure 36. Rod worth test core, rod position 12. 
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Figure 37. Rod worth test core, rod position 13. 
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Figure 38. Rod worth test core, rod position 14. 
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Figure 39. Rod worth test core, rod position 15. 
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5. CONCLUSIONS 

 

A new transport method has been developed for solving whole reactor core eigenvalue 

and fission density distribution problems in three-dimensional hexagonal geometry.  It 

has accuracy comparable to whole core Monte Carlo calculations, but requires mere 

thousandths of the computational runtime to produce the results.  It is well suited for 

solving problems in new gas-cooled reactor core designs, as it is not subject to 

inaccuracies resulting from homogenization of regions within the core or the use of low-

order approximations such as diffusion.  The problems solved within this paper have 

illustrated that the method is robust with respect to the core geometry; the cores solved 

here have ranged from realistic core configurations in the style of an operating gas-cooled 

reactor to an unrealistic core with reflectors, fuel, and control material arranged 

seemingly at random throughout.  In all cases, the pin fission densities were found on 

average to be within 1% of the reference solution, and eigenvalue solutions were within 

0.1%. 

 

The method’s speed advantages over other whole-core transport methods are apparent.  

Its rapid determination of the explicit pin fission density profile of whole cores makes it 

extremely well-suited as a neutronics method to couple with thermal hydraulics 

calculations; this would enable a more thorough understanding of the neutronic and 

thermal fluid behavior of these reactors.  Time-dependent calculations may also be 

foreseen, allowing future capability to handle transient analysis.  Further work is needed 

to establish the feasibility of coupling the method to a burnup module for fuel cycle 
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calculations.  Additional acceleration is possible in the near future by adapting it for 

parallel computer architecture.  Due to the method’s generality and ability to handle 

arbitrary material and geometry specifications within hexagonal lattice elements, it is 

expected that it will perform to equally high standards when tested with other reactor 

designs, such as fast breeder reactors.  The method as currently presented balances a 

desire for the accuracy inherent in transport calculations with runtimes in minutes rather 

than days; as such, it represents a valuable contribution to advancing the performance and 

safety of a new generation of nuclear power plants. 
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APPENDIX A 

 

These results for the three heterogeneous test cores were published using the eigenvalue 

uncertainty definition of Forget et al. (2004).  A line has been added to the tables below 

[new σk-eff (pcm)] to indicate the uncertainty as determined by the method of Zhang and 

Rahnema (2012). 

 

All solutions used the same “tight” convergence criteria as defined in Section 4.4. 

 

Table A.1 presents the COMET results for Core A.  Analysis of the results which was 

presented at the time of their initial publication has not been given here.  Results for Core 

B are given in Table A.2, and for Core C in Table A.3. 

 

Table 13. Core A results 

 2,2,2,2 4,4,2,2 2,2,4,4 4,4,4,4 

k-eff (pcm) 10 16 47 38 

old σk-eff (pcm) 4 4 4 4 

new σk-eff (pcm) 32 33 33 35 

AVG RE (%) 0.646 0.499 0.633 0.471 

RMS RE (%) 0.839 0.643 0.844 0.609 

MRE (%) 0.475 0.370 0.457 0.362 

MAX RE (%) 4.342 3.672 4.561 3.672 

AVG σpin (%) 0.108 0.111 0.111 0.116 

Time (min) 34 46 46 69 
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Table 14. Core B results 

 2,2,2,2 4,4,2,2 2,2,4,4 4,4,4,4 

k-eff (pcm) 77 57 16 10 

old σk-eff (pcm) 6 6 6 6 

new σk-eff (pcm) 41 42 42 44 

AVG RE (%) 0.778 0.731 0.768 0.727 

RMS RE (%) 0.933 0.853 0.923 0.845 

MRE (%) 0.765 0.722 0.753 0.717 

MAX RE (%) 2.712 2.080 2.759 2.092 

AVG σpin (%) 0.057 0.058 0.058 0.062 

Time (min) 36 44 50 80 

 

 

 

Table 15. Core C results 

 2,2,2,2 4,4,2,2 2,2,4,4 4,4,4,4 

k-eff (pcm) 42 0 106 67 

old σk-eff (pcm) 5 6 6 6 

new σk-eff (pcm) 45 46 47 49 

AVG RE (%) 0.888 0.602 0.871 0.580 

RMS RE (%) 1.177 0.781 1.181 0.761 

MRE (%) 0.649 0.474 0.611 0.437 

MAX RE (%) 5.928 5.142 6.193 5.142 

AVG σpin (%) 0.102 0.106 0.105 0.112 

Time (min) 50 71 69 107 

 

 

In all three cases, improvements made to the method between the publication of these 

results and the writing of this dissertation led to improved accuracy of the results in a 

shorter runtime.  
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