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SUMMARY 

Excessive fluid-borne noise in hydraulic systems is a problem the fluid power 

industry has long struggled to address. Traditional noise control devices such as 

Helmholtz resonators, tuning coils, and Herschel-Quincke tubes are generally too large 

for fluid power systems unless the speed of sound in the device can be reduced. A 

compliant lining can achieve this effect, but compliance (and lossy compliance) has had 

little attention in noise control in general, and in fluid power in particular. One means to 

achieve compliance in these devices, especially at elevated pressures, is through a liner 

made of syntactic foam, which in this case is a urethane host matrix with embedded 

hollow, polymer microspheres. 

The material properties at elevated pressure are unknown by the liner 

manufacturer, but are known to be pressure- and temperature-dependent. Therefore, the 

effect of hydrostatic pressures from 2.1-21 MPa and temperatures from 20-45 C on the 

liner properties, thus the device performance, are studied. For a Helmholtz resonator, a 

theoretical model is fit to experimentally-measured transmission loss of the device using 

a least-squares routine, which solves the inverse problem for the complex bulk modulus 

of the liner. 

These material properties are used to compare a theoretical model of a tuning coil 

to experimental data, and in a parameter study of a Herschel-Quincke tube. The 

compliance of the liner is found to lower the effective sound speed by an order of 

magnitude and decrease the volume of the cavity of a Helmholtz resonator by up to two 

orders of magnitude. This work is expected to result in more compact noise control 

devices for fluid power systems. 
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CHAPTER 1 

INTRODUCTION 

Excessive levels of fluid-borne noise in hydraulic systems can have detrimental 

effects not limited to unwanted air-borne sound. Noise control devices such as Helmholtz 

resonators, tuning coils, and Herschel-Quincke tubes that are common for systems with 

air are normally unsuitable for fluid power systems, as they scale with the wavelength of 

sound which is four times higher in hydraulic oil than in air. Thus, they tend to be too 

large without some means to reduce the speed of sound, which can be achieved through 

the use of a compliant lining. This dissertation explores the effect of a syntactic foam 

lining for noise control devices for fluid power systems, as a means of raising the 

compliance and lowering the speed of sound. This enables more compact devices for the 

same performance as an unlined device. The properties of the liner are unknown above 

atmospheric pressure from the manufacturer; therefore, the effect of pressure and 

temperature on the properties of the liner, and thus the performance of the devices, is 

investigated. The following sections of this chapter present more detail on the motivation 

for the work, the research objectives, the approach taken to achieve those objectives, and 

an overview of the dissertation which includes a brief statement on the content of each 

chapter. 

1.1 Research Motivation 

The fluid power industry has long struggled with reducing the high levels of flow 

ripple produced by positive-displacement pumps. The acoustic pressure and velocity in 

the fluid may induce such deleterious effects as cavitation and leakage. Fluid-borne noise 
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may also couple with structural vibrations, which can not only increase component 

fatigue and reduce life, but also produce air-borne sound. This sound is at best an 

annoyance, and at worst may be hazardous to human hearing. These effects are a factor in 

existing fluid power products and technologies, but are exacerbated with the push to 

expand the reach of fluid power into non-traditional and noise-sensitive applications such 

as hydraulic hybrid vehicles and devices for the home. New hydraulic system 

architectures such as “digital” pumps and valves and displacement control introduce new 

challenges as well; the former for sharp pressure pulsations and both for varying 

fundamental frequencies. The high energy density of fluid power is attractive to system 

designers, but the noise levels are often a deterrent. 

A major challenge to reducing fluid-borne noise is the long wavelengths of sound 

in the fluid. The speed of sound in hydraulic fluid, approximately 1400 m/s, is much 

higher than in air. In addition, the fundamental frequency of a typical axial piston pump, 

commonly used in the fluid power industry, is approximately 270 Hz. At this frequency 

the wavelength of sound in the fluid is over 5 meters long. Furthermore, traditional noise 

control devices scale in size with the wavelength – therefore, to be effective at these 

frequencies, they would be far too large to implement without some means of lowering 

the speed of sound within the device. A typical means to lowering the speed of sound 

within a device is the use of a pressurized bladder. This is the technology found in 

commercially-available in-line hydraulic silencers, also known as suppressors. It is 

proposed that a solid, compliant liner may have the same physical effect, albeit with 

fewer maintenance requirements and potentially lower manufacturing cost. The material 

proposed for the liner is syntactic foam, which in this case is a urethane host matrix filled 
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with hollow, plastic microspheres. This material has the property of changing compliance 

based on the hydrostatic pressure it is exposed to – at what is called the critical pressure, 

the microspheres undergo a reversible buckling process, at which point the stiffness of 

the material drops sharply. At pressures higher than the critical pressure, the 

microspheres have collapsed and leave air pockets in the host material that continue to 

shrink as hydrostatic pressure is applied. Post-buckling, the material stiffness increases 

with increasing pressure. Thus, there is a range of hydrostatic pressures in which the 

syntactic foam is much more compliant relative to a pure urethane, and more importantly 

much more complaint than hydraulic fluid, and therefore has a much lower speed of 

sound. 

1.2 Research Objectives 

The objective of this research is to characterize the performance of a syntactic 

foam lining in the context of traditional noise control components in a hydraulic system. 

The noise control devices considered are Helmholtz resonators, tuning coils, and 

Herschel-Quincke tubes. The material properties of the liner materials are provided by 

the manufacturer at atmospheric pressure, but the behavior of the material at elevated 

hydrostatic pressures and temperatures is unknown. Thus, this research aims to quantify 

the material properties, notably the bulk modulus, and their effect on the performance of 

the device, at elevated pressures and temperatures for two different sizes of microspheres. 

1.3 Research Approach 

A prototype Helmholtz resonator and tuning coil were constructed for the purpose 

of evaluating the effect of the syntactic foam liner on the transmission loss at various 

temperatures and pressures. Six prototype liners – three unvoided, and three voided, were 
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produced by Goodrich Corporation. The microspheres of the voided liners are plastic and 

have a mean diameter of 80 microns. The voided liners have densities that vary from 540-

633 kg/m
3
. The unvoided, or “neat,” liners have the same host material as the voided 

liners, but are cast without microspheres. The first set of liners were tested at static 

pressures up to 6.9 MPa. One of the host matrix materials was selected and manufactured 

with microspheres with a mean diameter of 20 microns (combined with thicker walls, a 

higher buckling pressure) and tested at pressures up to 20.7 MPa. All liners were tested 

from pressures of 2.1 to 6.8 MPa at three temperatures varying from 25 to 45 C. The 

transmission loss was measured to characterize the acoustic performance using the multi-

point method [1-3]. Analytical models were developed that capture the relevant physics 

and facilitate an inverse solution of the material properties at elevated pressures. The 

models illuminate the effect of the bulk modulus on the speed of sound, and therefore the 

performance of the devices. Knowledge of these properties at elevated hydrostatic 

pressures may then be applied to predictive models to tailor the performance of a given 

device to a specific application. The understanding of the material behavior may then 

inform future design decisions regarding the use of syntactic foam linings in noise control 

devices for fluid power systems. 

1.4 Overview of Dissertation 

Chapter 2 presents a literature review of three devices considered in this work, a 

Helmholtz resonator, tuning coil, and Herschel-Quincke tube, particularly in the context 

of noise control in hydraulic systems. Chapter 3 discusses syntactic foam, its 

composition, the physical mechanism by which syntactic foam is compliant at elevated 

pressure, and its material properties at atmospheric pressure. Chapter 4 presents equations 
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that describe the deformation of a liner as a function of hydrostatic pressure, equations 

that show the compliance of a cavity or waveguide with respect to the elastic modulus of 

a liner in different geometric configurations, and summarizes the role of compliance in 

hydraulic noise control devices. Chapter 5 discusses the theory behind the measurement 

of transmission loss for hydraulic components and experimental test rig used in this 

research. The Helmholtz resonator is discussed in Chapter 6, including a presentation of 

the theoretical model, a brief parameter study to consider the impact of the liner, and the 

results of the material property estimate. The effect of pressure and temperature on 

material modulus, loss factor, and effective speed of sound are described, among others. 

Chapter 7 discusses the theoretical model, and a parameter study of, both the tuning coil 

and Herschel-Quincke tube. Experimental results for the prototype tuning coil are 

presented and discussed in the context of the model and the effect of the syntactic foam 

liner. The effect of a compliant liner on a tuning coil is expected to also hold for the 

Herschel-Quincke tube, thus additional experimental evaluation of the Herschel-Quincke 

tube is not expected to yield unique results. Finally, Chapter 8 presents the conclusions 

and recommendations for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter presents a literature review for the three devices studied in this 

research, the Helmholtz resonator, tuning coil, and Herschel-Quincke tube. Both 

published research and issued patents are considered, with the focus being noise control 

devices for fluid power systems and devices where the compliance of a lining or use of a 

filling in a cavity or waveguide is exploited. To conclude, a discussion of the research 

opportunity available from gaps in the literature is presented. 

2.1 Helmholtz Resonator 

The theory of the cavity resonator was first presented by Helmholtz in 1860, and 

is now referred to as a Helmholtz resonator [4]. Schematically depicted in Figure 2-1, it is 

the acoustic analog of a mechanical spring-mass-damper, and acts as a notch filter in 

acoustic noise control applications. The acoustic equivalent of the mass is the mass of 

fluid in the neck, the spring is the bulk modulus of fluid in the cavity, and damping is 

associated with the viscous motion of the fluid in the neck, acoustic radiation into the 

cavity from the neck opening, and any losses associated with bulk motion in the cavity. 
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Figure 2-1: Schematic of a Helmholtz resonator. 

Helmholtz resonators have been studied extensively for fluid power systems in 

the past few decades. Kojima and Edge [5] and Lau, et al. [6] studied the transmission 

loss of metallic-bellows style Helmholtz resonators. They reported resonance frequencies 

of 300 – 500 Hz, and the devices were quite small, with the volume of the bellows as low 

as 5.03 cm
3
, with neck lengths from 23.0 – 48.2 mm. The gas-filled bellows act as 

compliant elements within the cavity; an increased compliance results in lower resonance 

frequencies for the same size device. Unfortunately, no other information on these 

devices can be found. Kojima and Ichiyanagi [7] studied a Helmholtz resonator filter 

network to generate multiple resonances. Ijas and Virvalo [8] also studied the Helmholtz 

resonator for use in a hydraulic system, in addition to ¼-wave resonators and 

accumulators. Their design demonstrated optimal performance with a 40 cm long neck 

and a cavity that was 80 mm wide and 50 cm long; the authors wrote that “It is difficult 

to install this kind of damper in mobile machines,” referring to its size. Vael, et al. [9] 

designed a Helmholtz resonator to attenuate a resonance within their pump design; the 

device had a resonance frequency of 3490 Hz. This frequency is far higher than typical 

fundamental frequencies of hydraulic pumps, and would thus have little effect on the 

overall noise level. Bügener, et al. [10] studied the use of Helmholtz resonators for 
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cavitation reduction. The fundamental concept is the zero-impedance condition at the 

entrance of the resonator results in phase cancellation – this would reduce the negative-

going pressure pulse at the suction port when the resonator is mounted close to the port. 

However, their device was both large (2 L volume) and its resonance frequency did not 

appear to correlate with the fundamental pumping frequency of the system. As with Vael, 

et al., the authors expressed the sentiment that “…it is too space-consuming and not 

suitable for industrial applications. A significant downsizing is necessary.” Kela [11, 12] 

and Kela and Vähäoja [13] studied the controllability of variable-volume Helmholtz 

resonators. None of the devices found in the literature for hydraulic systems apply a 

compliant lining, and thus are either impractically large or have high resonance 

frequencies. 

Photiadis [14] studied, theoretically, the effect of wall compliance on the 

resonance frequency of a spherical Helmholtz resonator underwater, and concluded that 

the compliance would lower the resonance frequency. A report by the Naval Underwater 

Systems Center, and several related papers, detailed oil-filled Helmholtz resonators for 

underwater sound sources packed with compliant tubes to raise the cavity compliance 

[15-18]; other variations included an air bladder within the cavity. The report by Woollett 

[15] states that for increasing pressure, the tubes must be increasingly thick and thus less 

compliant, and for depths of more than 1000 m (pressures of approximately 10.2 MPa) 

the tubes should be omitted entirely. The relevance to this work is both the high-pressure 

environment and the effort to raise the cavity compliance through a compliant element. 

With the exception of the gas bellows-style devices, for which no theoretical 

development is found in the literature, the physical causes and effects of raising cavity 
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compliance has not been exploited in Helmholtz resonators for hydraulic systems and is 

thus a major thrust of this work. 

For resonators designed for use with air, the use of a fibrous lining has been 

studied to lower the resonance frequency and increase the damping. Selamet, et al. [19] 

studied such a device and found that the resonance frequency shifted down up to 20% 

from the unlined case with increased lining thickness. The frequency shift is attributed to 

the flow resistivity of the lining; increasing its thickness lowered the resonance 

frequency. Resistance, however, impacts only the damping and does not change the 

resonance frequency. An isothermal model for the sound propagation through the fibrous 

material could also account for a lower sound speed in the lining material, as found in 

Pierce [20], thus making the resonator acoustically larger and shift the resonance 

frequency down. However, this phenomenon is not addressed by the authors. Yu, et al. 

[21] also performed a study on resonators with absorbing material in the cavity but with 

T-shaped devices, where similar changes in the resonant frequency and damping were 

observed. 

Lastly, Helmholtz resonators have been used to measure the bulk modulus and 

viscosity of liquids. In a paper by Ehler [22], the authors constructed a resonator that was 

pressurized by nitrogen and used a transducer to excite the resonances of the cavity. The 

bulk modulus was calculated by the frequencies of the resonances and the viscosity was 

calculated by the quality factor of the resonances. The authors report agreement within 

2.5% of the bulk modulus with other techniques available at the time, for liquids such as 

ethanol, benzene, and acetone. 
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2.2 Tuning Coil 

The basic operation of a tuning coil is that of a ¼- or ½-wave resonator, 

depending on the specifics of the construction. For this work, the tuning coil will be 

treated as a concentric ¼-wave resonator, as the ½-wave case will be considered a 

Herschel-Quincke tube. ¼-wave resonators have been traditionally studied as T-branches, 

shown in Figure 2-2a, such as in the recent work for hydraulic systems by Kojima and 

Ichiyanagi [7, 23]. Kojima and Ichiyanagi addressed two versions of their “variable 

resonance-mode type side-branch” device, one with a section of rigid pipe and one with 

the same section made of hose. The device that used hose takes advantage of the slower 

speed of sound through the hose (1090 m/s as opposed to 1410 m/s) to both make the 

device slightly smaller and lower the resonance frequencies. A schematic of their device 

is shown in Figure 2-4. A tuning coil, as originally patented by Klees in 1967 [24], is 

constructed as a concentric resonator instead of a branch, shown in Figure 2-2b. Tuning 

coils were studied in the mid-1990s for automotive power steering systems by a number 

of researchers. Strunk [25] studied a “cross-loop attenuator” that functions as a side-

branch quarter-wave resonator. Hastings and Chen [26], Drew, et al. [27], and Dodson, et 

al. [28] studied concentric-type tuning coils which use small, flexible hose within a larger 

pressure-bearing hose section. The study by Drew included many factors in practical 

tuning coils that are not a factor in this work; for example, the tuner was composed of a 

flexible inner annulus in which leakage must be accounted for. An example of this inner 

annulus, commonly referred to as a hose tuner, is shown in Figure 2-3. The device 

presented in this research has a rigid inner annulus with no leakage. The study by 

Hastings and Chen used a sound speed that was modified due to the compliant wall of the 
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tuning coil, although its value was not stated. The paper by Dodson measured the 

insertion loss of side-branch and concentric resonators. In addition, the authors performed 

a time-of-flight measurement on the speed of sound in hydraulic hose, and found that it 

varied with pressure from “795 m/s at ambient pressure to 1085 m/s at 5 MPa to 1115 

m/s at 10 MPa.” Their 1-dimensional model did not match the measured insertion loss 

data very well, even with the measured wave speeds. Furthermore, their measurements 

were performed using PVDF strips applied to the outside of the hose, and not pressure 

transducers directly exposed to the fluid, so structural vibration of the hose may be 

affecting their measurements. A study of extended-tube expansion-chamber-style devices 

and multi-chamber cable-hose devices was undertaken by Munjal and Thawani [29]. 

Their two-chamber device had chambers of 0.17 and 0.34 m long, but had a maximum 

effectiveness at 5 kHz, which is far too high to be effective for typical hydraulic systems. 

There are many patents for devices of similar construction to Klees’ device, however, one 

that used compliant pressurized bladders in the side-branch path of a concentric tuning 

coil was issued to Knapp in 1997 [30]. One figure from this patent is shown in Figure 

2-5, where the space labeled 27 in the figure is a pocket of air encapsulated by an elastic 

bladder, 26. This construction is most similar to the device studied in this work, except 

here a solid, compliant material is used instead of a pressurized bladder. 

   

Figure 2-2: ¼-wave resonator configurations: a) T-branch b) Concentric. 
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Figure 2-3: Hose tuner. 

 

Figure 2-4: Kojima and Ichiyanagi’s “variable resonance-mode type side-branch resonator.” 
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Figure 2-5: A schematic of the bladder-style tuning coil from a patent assigned to Knapp [30]. 

2.3 Herschel-Quincke Tube 

A Herschel-Quincke (HQ) tube is a ½-wavelength resonator. A schematic of two 

configurations of HQ tube are shown in Figure 2-6, the traditional parallel-branch 

configuration is shown in Figure 2-6a, and the concentric configuration is shown in 

Figure 2-6b. Noise reduction occurs through phase cancellation when the waves in the 

parallel paths are 180 degrees apart in phase at the reconnection point. This phase 

difference can be achieved by one or both of a difference in path length or a change in the 

speed of sound down one path. The Herschel-Quincke tube was first theorized in 1833 

[31] and significant contributions were made by Stewart in 1928 [32]. It has seen recent 

consideration in studies by Selamet, et al. [33] and Selamet and Easwaran [34]; both 

address systems with air. The latter addresses the use of multiple, parallel, identical tubes 

to maximize the effect of the Herschel-Quincke tube. Poirier, et al. [35] developed a 
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higher-order model of a set of parallel HQ tubes around a single duct that accounted for 

the shape of the connection between the circular paths, and achieved good agreement 

with their analytical and numerical models. None of these papers addresses a concentric 

configuration; a concentric ½-wave resonator appears to be generally considered as a 

version of a tuning coil. It is treated as such by Chen and Hastings [36], who perform a 

complete analysis of the concentric Quincke tube as presented by Klees [37] in his patent 

for a tuning coil for a fluid system. 

   

Figure 2-6: Herschel-Quincke tube configuration: a) Traditional b) Concentric. 

A number of patents have been found for ½-wavelength resonators that refer 

specifically to hydraulic systems. One such is a Pulsation Dampener by Burton [38] that 

consists of a long flexible tube with the ends adjacent in the hydraulic line for phase 

cancellation. Two patents have been found that use a perforated or dissipative lining for 

one of the flow paths; a patent by Giordano [39] uses a perforated outer annular cavity for 

muffling an internal combustion engine, and Ingard [40] used a dissipative liner for air 

systems: however, both patents refer to systems with air. No patents or research works 

have been found for devices with compliant linings for hydraulic systems, although it is 

generally known that the compliance of hydraulic hose lowers the sound speed [41]. The 

proposed work seeks to exploit this effect on a larger scale by incorporating a compliant 

liner into the annular path of the device – the slower the sound speed in the annular path, 

the more compact the device can be for a given resonance frequency. 
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2.4 Research Opportunity 

It can be concluded from a review of the literature that compliance has largely not 

been exploited for noise control devices in general, and more specifically for fluid power 

systems. While the lower sound speed within hoses is well-known (and exploited in 

tuning coils), the achievable compliance is material- and construction-limited. The hose 

must be stiff enough to contain the static pressure, while being soft enough to lower the 

sound speed to the desired level. Some means of introducing compliance in Helmholtz 

resonators have been found, namely gas-filled bellows and compliant tubes, but no 

theoretical development of the bellows-style devices has been found and the compliant 

tubes have pressure limitations. In the patent literature, there is some use of elastomeric 

linings but no corresponding theoretical development. 

This work seeks to significantly increase the compliance of a cavity or waveguide 

in noise control devices for fluid power systems through investigation of a solid, 

compliant lining material. The material being investigated, as the means to achieve 

compliance, is syntactic foam, which in this case is comprised of a urethane host matrix 

with embedded hollow, polymer microspheres, and is described in more detail in the next 

chapter. 
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CHAPTER 3 

SYNTACTIC FOAM 

Syntactic foam is a term used to describe both plastic and metal composites 

composed of a uniform host matrix with hollow microspheres. The syntactic foam 

studied in this research is composed of a urethane host matrix with plastic microspheres, 

or microballoons. Most plastic foams are voided chemically, where the voids that 

comprise the foam are produced by gasification. Alternately, syntactic foams are 

mechanically voided by the inclusion of hollow microspheres before the host material 

sets. The advantage of syntactic foam is that it is closed-cell, which makes it relatively 

impermeable, stronger than conventional, open-cell foams, and has a controllable void 

size. The voiding also considerably lowers the density relative to a homogeneous host 

material; as such, syntactic foams have long been used for buoyancy on buoys and 

submersibles. Syntactic foams have also been studied for use as anechoic wall coatings 

for water tanks, some with glass microspheres, and some made of Bakelite, but these 

studies consider mostly ultrasonic frequencies [42-45]. Design of a lining for hydraulic 

silencers is different than anechoic linings for acoustic water test tanks in a number of 

crucial ways: the pressures in hydraulics are significantly higher, the frequencies of 

interest are significantly lower, and in water tanks, the lining is designed to be 

acoustically transparent while very lossy. For hydraulic silencers, an impedance 

mismatch of the liner to the fluid is the objective. 

The physical properties of syntactic foam are dependent on frequency, 

temperature, and static pressure. The urethane host material used in this research exhibits 

viscoelastic behavior, which means the stress and strain are not necessarily in phase. Of 
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particular interest to this work is the behavior of the bulk modulus, which can be broken 

out into two components, represented as a complex function 

 
*K K iK    (2.1) 

where K   is the storage modulus and K   is the loss modulus. The tangent delta is the 

ratio of the loss modulus to the storage modulus, 
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and is a measure of the viscous behavior of the material. A tangent delta of 0 means there 

is no time delay between stress and strain. The frequency-dependent behavior of a 

syntactic foam sample used in this work, provided by the manufacturer, is shown in 

Figure 3-1, in which the bulk modulus and tan delta are shown for three temperatures at 

ambient pressure. The bulk modulus and tangent delta curves shift toward higher 

frequencies with increasing temperature, at the rate of approximately one decade per 10 

degrees Celsius. The bulk modulus governs the speed of sound of compression waves by 

the relationship 

 
K

c


  (2.3) 

where c is the speed of sound, K  is the bulk modulus, and ρ is the density. Since the size 

of resonant noise control components typically scale with the wavelength,  , and 

f c  , designing a compact device requires small wavelengths, hence a low sound 

speed and low bulk modulus of the lining material. Therefore, a low bulk modulus, 

especially at elevated hydrostatic pressure, is necessary for designing compact devices. 

The mechanism by which a polymer-microsphere syntactic foam becomes 

compliant is the buckling of the microspheres at a critical pressure. A study by Trivett, et 



18 

 

al. [46] described the effect of microspheres on the bulk modulus of a Castor oil solution. 

At low pressure, the microspheres are effectively rigid particles and raise the bulk 

modulus of the material. This effect was quantified by Guth [47] using the volumetric 

concentration of the particles in the material,  , by  

 
21 2.5 14.1K K        . (2.4) 

However, the microspheres in the solution buckle as the hydrostatic pressure reaches the 

critical pressure of the microspheres, also called the elastic stability limit, given by [48] 
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where E and ν are the Young’s modulus and Poisson’s ratio of the sphere material, t is the 

thickness of the shell, and r is the mean radius. This formula is valid for thin shells, 

where the ratio of radius to thickness is greater than 10. Two screenshots of a video that 

shows the buckling of a microsphere are shown in Figure 3-2a for the unbuckled state 

and Figure 3-2b for the buckled state [49]. The compliance of the material increases post 

buckling, as the stiffness of the microspheres is now that of a gas bubble. The gas bubble 

is what remains of the void in the urethane that was originally occupied by the fully 

spherical microsphere. The compliance continues to increase as pressure increases, and 

levels off at a value approximating that of the host matrix. In short, it is the buckling 

action of the microspheres that lowers the bulk modulus with increasing hydrostatic 

pressure in the range of pressures just above the critical pressure. More rigorous 

mathematical analysis of spherical shell buckling near the stability limit of microspheres 

in an elastic matrix was presented by Jones [50]: this work assumed linear elasticity, but 
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noted that a more complete analysis of the buckling phenomenon would require nonlinear 

elasticity and finite element analysis. 

 

Figure 3-1: a) Bulk modulus and b) tangent delta for a urethane-host syntactic foam at: ▬ 20 C, ▬ 

35 C, ▬ 45 C. 

 

Figure 3-2: a) Expancel microspheres at atmospheric pressure and b) post-buckling [49]. 

With respect to the prior research into syntactic foams, one patent has been found 

that refers to the use of syntactic foam (or more generally, microvoided elastomers) in a 

hydraulic noise control device. A patent issued to Wheeler [51] refers to an in-line 

hydraulic silencer with syntactic foam-lined flow paths. Wheeler’s syntactic foam used 
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glass microspheres instead of plastic; glass microspheres fracture instead of reversibly 

buckle. Furthermore, it would be undesirable to have glass shards shed into the hydraulic 

oil. Other patents refer to elastomers but not specifically syntactic foam; a patent issued 

to DiRe [52] describes a lined outlet chamber for a pump to reduce pressure pulsations 

where the liner is a closed-cell, chemically voided polyester. Likewise, a patent issued to 

Hansen [53] is a lined in-line silencer where the lining is elastomeric, but makes no 

reference to voids in the elastomer. None of these products are known to be in 

commercial use nor is there published research on such devices. In addition, these 

devices are in-line, single-path flow arrangements – no patents or literature have been 

found that refer to use of syntactic foam in the devices studied in this research. 
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CHAPTER 4 

COMPLIANCE 

This chapter discusses the sources of compliance within a noise control device for 

fluid power systems, such as compliant linings, entrained air, and the compliance of the 

device shell. First, in order to examine the compliance of the structure or lining, the 

equations for deformation of a cylinder or cylindrical shell (originally derived by 

Timoshenko [54]) under hydrostatic pressure with different boundary conditions are 

presented. This is used in two ways: first, the deformation of a liner informs the change in 

volume of the liner within a cavity or the change in outer radius when a waveguide is 

formed between the liner and a rigid shell. Second, the equations for deformation of a 

liner are used to analyze the compliance of different liner geometries, such as whether it 

is free in a cavity or bonded to the inner wall of a cavity.  The compliance of a liner or 

structure wall is calculated according to Manring [55] for each case. At the end of the 

chapter, the effects are totaled into a single metric for compliance. 

4.1 General equations 

A partial presentation of the derivation of the displacement of a cylinder or 

cylindrical shell is shown here for the edification of the reader; a complete derivation 

presented in Timoshenko [54] is shown in Appendix A. For all cases, the general solution 

to the radial displacement is given by 

 2
1 r

C
u C r

r
 (3.1) 

where ur is the radial displacement, r is the radial coordinate, and C1 and C2 are constants. 

Boundary conditions on the displacement can be handled directly in Equation (3.1), in 
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combination with stress boundary conditions which are applied to determine the 

constants. The stresses are given by: 
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where subscripts r and t reflect the radial and tangential coordinates and ν is the Poisson’s 

ratio. The constants C1 and C2 are solved through the boundary conditions of stress and 

displacement at either the inner or outer surface, which then determine the displacement 

by Equation (3.1). Then, Hooke’s law in three dimensions in cylindrical coordinates is 

used to find the displacement in the axial, or z, direction given the stresses in the radial 

plane; 
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4.1.1 Dimensions 

The radii in the following equations, and the rest of this dissertation, adhere to a 

consistent numbering scheme. Since the devices considered are of similar construction, 

this is a convenient representation. The radii are shown graphically in Figure 4-1 and 

numbered according to the description in Table 1. 
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Figure 4-1: Schematic of device cross-section with labeled components and radii. 

Table 1: List of dimensions and their description. 

4.2 Hydrostatic deformation 

A thick cylindrical shell exposed to elevated, uniform hydrostatic pressure has 

equal stresses in all directions, equal to the negative of the external pressure; 

 r t z p      . (3.5) 

The subscripts r, t, and z correspond to the radial, tangential, and axial directions. A 

cylinder or cylindrical shell will deform in all directions symmetrically about both the 

central axis and medial plane. The displacement is decoupled in the radial and axial 

directions, such that the radial displacement is given by 

Dimension Description 

r1 Inner radius of annulus 

r2 Outer radius of annulus 

r3 Inner radius of liner 

r4 Outer radius of liner 

r5 Inner radius of shell 

r6 Outer radius of shell 
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and the axial displacement is given by 
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where z is the axial position along the cylinder and EL is the bulk modulus of the liner. 

These dimensional changes also inform the change in total volume, and if the mass of the 

liner is known the density can also be determined. It is important to note that the sign of 

the displacements in Equations (3.6) and (3.7) are both negative. This implies that, for 

pressures above atmospheric, the liner will shrink in both the axial and radial directions, 

and that this behavior is not dependent on the size or aspect ratio of the liner. 

The condition of uniform hydrostatic stress may be desirable for devices seeking 

to exploit the compliance of syntactic foam. If the stress throughout the syntactic foam is 

uniform, all microspheres through the material would be buckling at the same static 

pressure and the bulk stiffness of the material would be relatively predictable. 

4.3 Cavity Compliance 

The procedure for calculating the compliance of a cavity with a particular 

geometry and material properties is developed below and is found in Manring [55]. A 

correction for the speed of sound in an elastic tube, as opposed to that in a rigid pipe, is a 

static analysis that dates back to the 19
th

 century, and for the specific case of an elastic, 

thin-wall cylindrical tube is referred to as the Korteweg-Lamb correction [56-58], and 

can be found in acoustics texts [59]. The method for calculating the effective bulk 

modulus of a cavity (and later in this chapter, waveguides) involves writing the equation 
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for the fluid volume of a cavity (or for a waveguide, the cross-sectional area) and 

expanding the dimensions of the cavity walls, such as radius or length, with equations for 

deformation as a function of pressure and material properties. Then, higher-order terms 

are eliminated. The resulting expression for volume is separated into the “effective 

volume” and “displaced volume,” which correlate to the original volume and the 

difference between the pressurized, expanded volume and the original volume of the 

cavity. A derivative is taken of the displaced volume with respect to pressure; this term 

and the effective volume are then substituted into an equation for compliance. 

4.3.1 Empty cavity 

The first case under consideration is that of a right cylindrical cavity with thick 

walls, as is the case for the shell of a noise control device for a hydraulic system. As a 

first approximation, only uniform radial expansion of the walls is considered, with axial 

extension of the shell ignored. The boundary conditions for displacement of the shell are 

a stress at the inner radius equal to the negative of the hydrostatic pressure and an outer 

radius at zero gage pressure. The internal pressure is p and the external pressure is zero. 

The displacement of the inner and outer boundaries under these conditions are 
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where ES and νS are the Young’s modulus and Poisson’s ratio of the wall and the 

subscript S refers to the shell (as opposed to the liner). To determine the compliance of 
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the cavity (with volume Vc), the volume is split into the effective (Ve) and displaced 

volumes (Vδ) after an expansion of r5, 

 2

5c SV r L . (3.10) 

The radius is expanded by the displacement, ur, such that the volume becomes 
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where the effective volume and displaced volume are: 

 2

5 ;e SV r L  (3.12) 

 52 .r SV r u L   (3.13) 

Then, the radial displacement from Equation (3.8) is substituted into the displaced 

volume from Equation (3.11), and then a derivative is taken with respect to pressure, 

yielding 
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Finally, these equations are substituted into the equation for compliance, 
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A few insights may be reached from examination of Equation (3.15). The compliance of 

the cavity is independent of hydrostatic pressure – pressure is not a variable in the 

equation, and the dimensions of the inner and outer radius in the equation are those of the 

cavity at atmospheric pressure. Furthermore, by rearranging Equation (3.15) in terms of a 

thickness, 6 5t r r  , and a mean radius,  5 6 2r r r  , and dividing by 2r  yields, 
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The left- and right-hand sides of Equation (3.16) are non-dimensional, and this equation 

implies that for given material properties of the shell, increasing the thickness-to-mean 

radius ratio, t r , will decrease the compliance. This equation is plotted in Figure 4-2 to 

show the behavior of the non-dimensional compliance with respect to the thickness ratio. 

A thickness ratio of 2 is a physical limit: at this point, the inner radius of the shell 

vanishes. 

 

Figure 4-2: Non-dimensional compliance of an empty shell with internal hydrostatic pressure as a 

function of the ratio of the wall thickness to mean radius. 

4.3.2 Solid cylinder 

Similar to the empty cavity, the compliance of a cavity with a solid, elastic 

cylinder inside can be calculated. In this case, the shell of the cavity is assumed to be 

perfectly rigid, but the elastic cylinder inside deforms and changes the effective fluid 
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volume. In this case, including both radial and axial deformation of the cylinder, the 

compliance is 
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where EL is the bulk modulus of the liner and νL is the Poisson’s ratio of the liner. 

Equation (3.17) can be rewritten in terms of volumes by 
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From Equation (3.18), the cavity compliance is directly proportional to liner compliance. 

Furthermore, both increasing the Poisson’s ratio of the liner and increasing the ratio of 

the liner volume to cavity volume increases the compliance. 

4.3.3 Annular cylinder 

Also similar to the empty cavity and the solid cylinder, the compliance of a cavity 

with an elastic liner in the form of a hollow cylinder can be calculated. The compliance is 
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which can also be rewritten in terms of volumes by 
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Since equation (3.20) and (3.18) are identical, the difference in the cavity compliance is 

only a function of the volume of the liner. Thus, a cavity with either a solid or annular 

cylindrical liner of the same volume and the same material properties will have the same 

compliance. 
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4.4 Waveguide compliance 

It is well-known that a waveguide with compliant walls will have a lower speed of 

sound than one with rigid boundaries; such is the case for hydraulic hose as compared to 

rigid pipe [60]. As was the case when considering cavity compliance, the compliance of 

different configurations of a liner within a rigid shell will be presented. Then, a 

comparison is made that evaluates which configuration may be the most advantageous in 

terms of maximizing the compliance of the waveguide formed between the liner and the 

shell, or between the liner and a rigid annulus. The higher the wall compliance, the lower 

the speed of sound and the shorter may be devices such as tuning coils and Herschel-

Quincke tubes. 

4.4.1 Solid/Annular Cylinder 

The procedure used to calculate cavity compliance is similarly applied here, 

except only cross-sectional areas and radial displacements are used, as opposed to 

volumes. Only long pipes are considered here such that axial displacement of the liner is 

ignored. The compliance of the waveguide formed by the annular section between the 

outer radius of the compliant, cylindrical liner and the inner radius of the rigid shell is 
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This equation does not change whether the liner is a solid or annular cylinder. The 

displacement of the outer radius of the liner is only a function of the material properties 

and the non-displaced radius: the geometry of the cylinder (either solid or annular) does 

not impact the compliance of the waveguide. This also assumes that, for example, the 

inner boundary of an annular cylinder is unconstrained. 
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4.4.2 Internal pressure and a fixed outer boundary 

The second configuration of interest is that of a liner that is bonded to the inner 

radius of a rigid shell – this is shown schematically for a tuning coil in Figure 4-3. When 

the liner is exposed to elevated internal pressure, it will deform radially; this deformation 

can be assumed uniform around the circumference of the shell. Two cases are of interest: 

first, the compliance of the waveguide in the entire inner space (that is, without an 

annulus), and second, the compliance of the space between the liner and a rigid annulus. 

The first case is the same as for a lined silencer or a lined pipe or hose with a rigid outer 

boundary, since no annulus is considered. For this case, the compliance of the entire 

waveguide is 
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And for the second case, the compliance of the space between the liner and rigid annulus 

is 
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 (3.23) 

 

Figure 4-3: Schematic of a tuning coil with a waveguide formed between the liner and annulus. 
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4.4.3 External pressure and a fixed inner boundary 

As was discussed in Section 4.2, under hydrostatic pressure when the liner is not 

bonded to the outer shell, both the inner radius and outer radius will shrink. Thus, for the 

case of the tuning coil and Herschel-Quincke tube, the case may arise where the liner 

compresses enough, under increasing pressure, to tighten around the annulus. This 

situation then becomes a similar analysis to where the liner is bonded to the inner annulus 

as opposed to the outer shell. In this case, the boundary condition at the inner radius of 

the liner is zero displacement and only external pressure is applied to the liner. This 

configuration forms a gap between the liner and shell, and is shown schematically in 

Figure 4-4. For this case, the compliance of the waveguide is calculated to be 
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. (3.24) 

 

Figure 4-4: Schematic of a tuning coil with a waveguide formed between the liner and shell. 

4.4.4 Comparison 

For design purposes, it is of interest to understand which geometries may yield the 

highest compliance. Three cases are considered, that of the three previous sections, which 

evaluate the compliance of an annular waveguide in different orientations: first, a 

waveguide oriented between a liner and a rigid shell where the liner has unconstrained 
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boundaries; second, a waveguide between a rigid annulus and a liner where the liner is 

bonded to the inner wall of a rigid shell, and thirdly a waveguide formed between a liner 

and the inner wall of a rigid shell where the liner is bonded to the annulus. 

First, consider a comparison between the two cases where the waveguide is 

formed between the outer radius of the liner and the inner radius of the shell, such as in 

Figure 4-4. The equations that describe the waveguide compliance for this construction 

were presented previously as Equation (3.21) (here denoted 
free , since the liner is not 

considered to be bonded to or constrained by an annulus) and Equation (3.24) (here 

denoted outer  for the constrained case where the waveguide is formed by the outermost 

gap). Consider the dimensions of the liner and shell to be the same for the two cases, 

where the difference is that in the first case, the liner is not bonded or constrained around 

an annulus. The ratio of Equation (3.21) to (3.24), or, comparing the stiffness of the 

waveguides as 
outer free   are rewritten in terms of the cross-sectional area of the 

waveguide, SW, and the total cross-sectional area, ST, which includes the liner. Comparing 

the cases on the basis of cross-sectional area of the waveguide is most appropriate, since 

this keeps the volume velocity of the acoustic propagation in the waveguide the same for 

different constructions. The specific dimensions considered are listed in Table 2, along 

with the value of cavity stiffness at a chosen area ratio as a reference, for all the cases 

considered in this section. The areas of the waveguide and the total area of the cross-

section, including the liner, for this first comparison are given by: 

  2 2

5 4 ;WS r r   (3.25) 

  2 2

5 2 ;TS r r   (3.26) 
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and the ratio 
outer free   can be written in terms of the areas by 
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This waveguide stiffness ratio is plotted for W TS S  from 0 to 1 in Figure 4-5, where 0 

indicates that the liner takes up the entire cross-sectional area and there is thus no 

waveguide, and 1 indicates that the liner thickness approaches zero and W TS S . Thus, it 

can be seen from Figure 4-5 that for all waveguide area ratios the case where the liner is 

constrained or bonded to an annulus is always stiffer, thus has a higher speed of sound, 

than the case where the inner radius is free to deform. Furthermore, as the liner thickness 

decreases, or as the ratio 1W TS S  , the ratio of stiffness between the constrained and 

free case increases dramatically. 

Table 2: Dimensions of two construction cases for an elastic waveguide liner. 

Dimension Free Outer Inner 

r2

 
12.0 mm 12.0 mm 12.0 mm 

r3

 
12.0 mm 12.0 mm 16.0 mm 

r4

 
30.2 mm 30.2 mm 32.0 mm 

r5

 
32.0 mm 32.0 mm 32.0 mm 

βL 1x10
7
 Pa 1x10

7
 Pa 1x10

7
 Pa 

ν 0.45 0.45 0.45 

SW  / ST 0.13 0.13 0.13 

βc 3.35x10
5
 Pa 4.21x10

5
 Pa 1.00x10

6
 Pa 

β / βfree  1.00 1.26 2.99 
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Figure 4-5: Ratio of waveguide stiffness where the waveguide is between the liner and shell. 

The second comparison of interest is that of the 
free  case, discussed previously, 

to the case where a waveguide is formed between a rigid annulus and a compliant liner 

which is bonded to the inner radius of a rigid shell, denoted here as inner . The 

compliance of the latter case was given as Equation (3.23). Between these cases, the 

waveguide is in a different location, thus, as with the previous comparison, the two will 

be compared by the cross-sectional area of the waveguide. For the 
free  case, the area of 

the waveguide was given previously as Equation (3.25). For the inner  case, the area of 

the waveguide is  

  2 2

, 3 2W innerS r r  . (3.28) 

Since it is desired to compare the two cases for the same waveguide cross-sectional area, 

each equation is rearranged in terms of its respective SW. The resulting stiffness ratio for 

the two cases is 
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A plot of the ratio 
inner free   against the cross-sectional area ratio W TS S  is shown in 

Figure 4-6. The case where the waveguide is formed between the annulus and liner, 

where the liner is bonded to the inner radius of the shell, is stiffer than the “free” case for 

all values of W TS S . The stiffness ratio is highest at the extremes, and has a minimum at 

approximately 0.53W TS S   where the ratio is 2.215. 

 

Figure 4-6: Ratio of waveguide stiffness for two cases: a waveguide formed between an 

unconstrained liner and a rigid shell, and between a rigid annulus and a liner. 

Finally, for completeness, consider the ratio of the two cases where the liner is 

bonded either to the annulus or to the shell. As with the last comparison, these two cases 

have inverse construction, so the comparison will be made based on the cross-sectional 

area ratio of the waveguide. The waveguide stiffness ratio for this case, inner outer   is 

given by, 
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This ratio is plotted in Figure 4-7, where it can be observed that the case where the 

waveguide is toward the outside, shown as outer , is more compliant for all values of 

W TS S . Thus, given the choice between adhering a compliant liner to the annulus or 

shell, it is advantageous to adhere it to the annulus. 

 

Figure 4-7: Ratio of waveguide stiffness formed at the outer or inner boundary of a compliant liner 

in a rigid shell. 

4.5 Sources of Compliance 

In addition to the compliance of a cavity or elastic liner, other aspects of a noise 

control device have some degree of compliance. This includes the oil itself and any 

entrained air, along with difficult to quantify factors such as seals and threads. The 

following will discuss the compliance of each relevant aspect of the system, develop an 

equation that encompasses the necessary terms, and present an analysis of significance. 
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4.5.1 Fluid 

The bulk modulus of pure mineral oils (that is, without polymeric thickeners or 

entrained air) is a function of temperature and pressure. This was discussed by Song [61], 

who presented a linear, empirical equation for the secant bulk modulus of non-polymeric 

mineral oils, 

 , 0, ,P T T TK K A p   (3.31) 

where 0,TK  is the isothermal secant bulk modulus of the oil at atmospheric pressure and 

temperature, and itself is correlated to the kinematic viscosity of the fluid 

    
0.3307

0, 0,log 0.3766 log 0.2766T TK      (3.32) 

where 
0,T  is the kinematic viscosity at atmospheric pressure. The kinematic viscosity of 

a hydraulic fluid is readily available on its product spec sheet, usually for 40 and 100 C, 

and can then be extrapolated to other temperatures with an exponentially-fit curve of the 

form 

    0 expT bT   . (3.33) 

where 0  and b are constants. The coefficient AT is the derivative of bulk modulus with 

respect to pressure, TA dK dp , and is linearly correlated with temperature, given by the 

equation 

 0.01382 5.851TA T    (3.34) 

where temperature, T, is in Celsius. It must also be noted that Equation (3.31) is for the 

isothermal secant bulk modulus – the isothermal tangent bulk modulus can be found by 

[62-64] 
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The tangent bulk modulus is more thermodynamically appropriate than the secant bulk 

modulus, since it is the local slope of the function relating pressure to compressibility. 

The adiabatic bulk modulus and the isothermal bulk modulus are related by the heat 

capacity ratio, 

 A TK K  (3.36) 

where subscripts A and T refer to adiabatic and isothermal, and   is the heat capacity 

ratio. However, Pierce states that the difference in the speed of sound using either an 

adiabatic or isothermal bulk modulus for liquids is very small, thus, using either is 

acceptable for the bulk modulus of the hydraulic oil [20]. The isothermal tangent bulk 

modulus for a pure hydraulic oil (that is, with no entrained air) is plotted for temperatures 

between 20 C and 100 C. Each 20 C rise in temperature decreases the bulk modulus by 

approximately 100 MPa, and rises approximately 100 MPa for every 10 MPa increase in 

the static pressure. For a temperature change from 20 C to 45 C at a constant pressure of 

5 MPa, which is a range expected for this work, the bulk modulus would drop by 7.8%. 

Likewise, at 40 C a pressure change from 2 MPa to 20 MPa would see the bulk modulus 

of the fluid rise by 10.7%. Ignoring the change in bulk modulus of the fluid as a function 

of temperature or pressure would result in an estimate of the total system stiffness that is 

in error by the same percentage. 
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Figure 4-8: Isothermal tangent bulk modulus of hydraulic oil at temperatures from 20 C to 100 C. 

4.5.2 Entrained air 

A standard equation for the volumetric fraction of air in hydraulic oil has been 

generally accepted, and is given by 

 0

0 0

0

g

g l

V
X

V V



 (3.37) 

where 0X  is the volumetric fraction of air in the air/liquid mixture, 
0gV and 

0l
V  are the 

volume of air and oil, where subscript 0 indicates standard temperature and pressure [63, 

65]. Additionally, 
0 0f g lV V V   is used to simplify the total fluid volume in later 

equations. While many models of the effective bulk modulus of air-infused hydraulic oil 

have been presented in the literature, Gholizadeh [63] found that three such models are 

effectively the same. The models considered vary slightly with respect to how they 

accounted for the volume fraction of air, or whether they were derived for the secant or 

tangent bulk modulus. When Gholizadeh re-derived the models in the literature using 
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identical assumptions, the same equation resulted for the bulk modulus of an air-oil 

mixture, that is 
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where n is the polytropic constant for air (n = 1 for an isothermal process, n = 1.4 for an 

adiabatic process), p  is the static pressure, 0p  is atmospheric pressure, and oK  is the 

bulk modulus of the pure oil. It should be noted that this equation does not consider the 

means by which the oil and air are mixed, such that it does not matter if the air is a 

bubble or dispersed in the oil, nor does it account for the critical pressure where the air is 

fully dissolved in the oil. Figure 4-9 shows the isothermal tangent bulk modulus for 

hydraulic oil at 20 C for varying levels of entrained air, from 0% to 10%. The softening 

effect of the air is most dramatic at low pressures. For all volumetric fractions of air, as 

pressure increases the bulk modulus converges to that of the pure oil. As a point of 

reference, the static pressures considered this work are primarily from 2.1 MPa to 6.9 

MPa, and for some tests up to 21 MPa. 
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Figure 4-9: Bulk modulus of hydraulic oil at 20 C with volumetric fractions of entrained air from 

0.0% to 10%. 

4.5.3 Structural compliance 

Previously, in Section 4.3.1, an expression for the compliance of a cylindrical shell 

with internal pressure only was derived; 
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It should be noted also that while the deformation of the shell is a function of pressure, 

the shell compliance is not. 

For a cylindrical, carbon steel shell with an inner radius of r4 = 31.75 mm and an 

outer radius of  r5 = 44.45 mm (these are the dimensions of a prototype Helmholtz 

resonator introduced in the next chapter), the bulk modulus of the shell using Equation 

(3.39) would be 31.0 GPa, which is 18 times greater than the bulk modulus of hydraulic 

fluid. For a shell of this inner diameter to have the same bulk modulus as hydraulic fluid, 

the thickness would have to be reduced from 12.7 mm to 0.72 mm. Further discussion of 

the effect of cavity compliance is presented in Section 4.5.4. 
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4.5.4 Net effect 

All sources of compliance in the cavity of a fluid power noise control device 

combine to lower the speed of sound within the device. The bulk modulus of the fluid 

with any entrained air, bulk modulus of the liner (if included), and the shell stiffness add 

as springs in series. The net bulk modulus is treated separately depending on the device. 

For a Helmholtz resonator, the net bulk modulus of the system is 

 
1 1 1 1

e L f SK  
    (3.40) 

where subscript e represents the effective stiffness of the system, f represents the air-oil 

mixture, L refers to the cavity compliance based on the liner (from Equation (3.20)), and 

S refers to the compliance of the shell. 

As an example of the “net effect” of the system compliances, Figure 4-10 shows 

the bulk modulus of the shell, fluid, and total system with no liner present as the wall 

thickness of the shell is increased. The fluid in this example is the bulk modulus of pure 

mineral oil at 20 C and 20.7 MPa, a region where it is expected to be very stiff. For a 

cylindrical steel shell with an inner radius of r4 = 31.75 mm, an outer radius of  r5 = 44.45 

mm, and a length of 97.28 mm long (the dimensions of a prototype Helmholtz resonator 

introduced in the next chapter), filled with hydraulic oil with no entrained air, the 

effective stiffness of the system, e , is that of the fluid and shell acting in series, given by 

 
1 1 1

e f SK 
   (3.41) 

where S  is the shell stiffness from Equation (3.39). For increasingly thin-walled shells, 

the stiffness of the shell is low and thus dominates the effective stiffness, indicated by the 

effective stiffness approaching the shell stiffness curve asymptotically. Likewise, for 
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increasingly thick-walled shells, the effective stiffness approaches that of the fluid, since 

the shell is much stiffer and the fluid is the limiting factor. For the aforementioned case 

of a 12.7 mm thick wall, the fluid stiffness is 5.7% higher than the effective stiffness: 

thus, any estimate of the effective stiffness ignoring the shell stiffness would be in error 

by the same percentage. In any case, the effective stiffness is lower (alternately, the total 

system compliance is higher) than any single stiffness, and would continue to be the case 

as the compliances in the system change. 

 

Figure 4-10: Stiffness of hydraulic oil-filled cylindrical cavity: ▬ ▬ shell ══ fluid ▬ total system. 
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CHAPTER 5 

EXPERIMENT 

This chapter will discuss the experimental measurement of transmission loss of 

the compliant-lined noise control devices for fluid power systems. First, a description of 

the liner materials that were studied is given along with their manufacturer-provided 

material properties. Then, a description of the devices tested along with drawings and 

dimensions follows. The experiment to estimate the deformation of the liner materials 

under pressure is described, along with the theory that is used to determine the 

compressed volume from the deformed inner radius. A brief theoretical background of 

transmission loss and the multi-point method of measurement is presented, followed by a 

detailed description of the equipment used to perform the experiments. Finally, the 

equations used to compute transmission loss and some implications are discussed. 

5.1 Liner Materials 

Both neat urethane compositions and syntactic foam liners were tested. The 

syntactic foams, also described as “voided” since the microspheres are hollow voids in 

the material, have the same host urethane as the neat compositions. The compositions 

were manufactured by Goodrich Inc., using microspheres manufactured by AkzoNobel. 

Four different syntactic foam compositions were tested, one of which has microspheres 

with a higher critical pressure: this liner is expected to be more compliant at pressures 

from 2.1-6.9 MPa. The mass fraction of the microspheres to host material is given by the 

manufacturer as 0.054:1. Additionally, three liners without microspheres with the same 

composition as the host matrix of the syntactic foam liners were tested to provide a 
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reference to the performance without the effect of the microspheres. Table 3 outlines the 

properties of the liners tested; included are values that characterize a viscoelastic 

material, such as the peak value of the tan δ and its frequency. The liner IDs with a 

trailing three-digit number are the voided liners, where the trailing number is the design 

density in g/L. The data provided by the manufacturer for each composition was given at 

three temperatures: 20, 35, and 45 C, all at atmospheric pressure. Material properties at 

elevated pressures are not available from the manufacturer. Likewise, information about 

the Poisson’s ratio of the materials is similarly limited – the Poisson’s ratios provided are 

0.45 for the voided liners and 0.4995 for the unvoided liners. The dimensions of the liners 

tested are provided in Table 4. 

Table 3: Liner properties. 

Table 4: Liner dimensions. 

The microspheres in each of the voided samples in Table 3 except GR23 461-663 

are AkzoNobel Expancel 091 DE 80 d30 – these are 80 μm diameter microspheres with a 

30 kg/m
3
 density. The microsphere properties are summarized in Table 5. According to 

Equation (2.5), assuming the spheres are polystyrene, they have a critical pressure of 

Liner ID 
Low-Frequency 

Bulk Modulus [Pa] 

Peak tan δ  

[ND] 

Frequency [Hz] of Tg at: 

20 C 35 C 45 C 

GR9 2.49E+09 0.81 6.76E+04 1.00E+07 1.00E+08 

GR9-625 3.49E+07 0.47 9.36E+04 5.97E+05 1.63E+06 

GR23 1.25E+09 1.10 1.97E+02 5.59E+03 3.13E+04 

GR23-633 2.65E+07 0.60 4.09E+02 1.25E+04 7.38E+04 

HRPG15(12) 1.29E+09 1.24 2.20E+00 2.78E+02 2.65E+03 

HRPG15(12)-545 2.46E+07 0.67 1.25E+00 2.15E+02 2.32E+03 

GR23 461-663 3.47E+07 0.58 5.00E+02 2.38E+04 1.97E+05 

      

Liner ID 
Mass 

[g] 

Length 

[m] 

Inner radius 

[mm] 

Outer radius 

[mm] 

Volume 

[cm
3
] 

Density 

[kg/m
3
] 

GR9 263.9 95.60 13.52 31.91 250.9 1051.7 

GR9-625 149.9 95.27 13.48 31.33 239.4 626.3 

GR23 260.8 94.56 13.83 31.40 236.0 1105.0 

GR23-663 152.3 95.13 13.59 31.25 236.6 643.7 

HRPG15(12) 269.1 95.24 13.82 31.35 236.9 1135.8 

HRPG15(12)-545 131.7 95.51 13.55 31.48 242.2 543.7 
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approximately 92 kPa. The liner designed with a higher critical pressure was formed with 

Expancel 461 DET 20 d70 microspheres and the GR23 host matrix. This liner is 

identified as GR23 461-663. Based on a wall thickness estimate from a theoretical 

microsphere expansion worksheet provided by AkzoNobel [66], it has a critical buckling 

pressure of approximately 853 kPa, or an order of magnitude higher than the other three 

voided liners. 

Table 5: Microsphere properties. 

The three syntactic foams with low-critical buckling pressure microspheres are 

designed to explore the effect of the different parameters that characterize the material. 

These parameters are the low-frequency bulk modulus and the peak value and frequency 

of the tan δ for given temperatures. For brevity, herein the term “bulk modulus” will refer 

only to the real part of the complex bulk modulus. The tan δ represents the lossiness of 

the material, and its peak value occurs at the glass transition temperature Tg. This value 

separates the “rubbery” and “glassy” phases of the material, and is temperature and 

frequency dependent, such that it shifts approximately a factor of ten higher in frequency 

for every 10 C increase in temperature. Liner HRPG15(12)-545 has the lowest low-

frequency bulk modulus, but has its Tg at the lowest frequency by more than two orders 

of magnitude. Figure 5-1 shows the bulk modulus for this and two other liners: GR9-625 

and GR23-633, to illustrate the difference in the low-frequency behavior. Additionally, 

Figure 5-2 shows the tan δ value for the same three liners. On both plots, a frequency 

range of interest of approximately 10-1500 Hz is indicated, as both plots span 12 orders 

Microsphere ID 
Mean Diameter 

[μm] 

Est. Wall 

Thickness [μm] 

Density 

[kg/m3] 

Est. Buckling 

Pressure [kPa] 

091 DE 80 d30 80 0.2 30 92.09 

461 DET 20 d70 20 0.14 70 853.0 
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of magnitude in frequency. The low-frequency bulk modulus of liner GR23-633 is 

similar to that of HRPG15(12)-545, only 7% higher, but it has its tan δ at a much higher 

frequency. For example, HRPG15(12)-545 will have a much higher bulk modulus at the 

Tg than GR23-633 near 230 Hz. This frequency is significant as it is the fundamental 

frequency of a typical axial piston pump driven at 1500 RPM. Liner GR9-625 has a 

higher low-frequency bulk modulus, but also has its Tg at even higher frequencies, and 

has the lowest tan δ near 230 Hz. With this liner, the tan δ peak occurs at far higher 

frequencies than the range considered so the losses observed in the system should 

theoretically only come from the motion of the fluid. 

 

Figure 5-1: Bulk modulus of liners at 35 C and atmospheric pressure, ▬ HRPG15(12)-545, ▬ GR23-

633, ▬ GR9-625. 
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Figure 5-2: Tan delta of liners at 35 C and atmospheric pressure, ▬ HRPG15(12)-545, ▬ GR23-633, 

▬ GR9-625. 

5.2  Devices 

This section will present a schematic of each of the two noise control devices 

tested, and list the appropriate dimensions. The listed radii are numbered such to be 

consistent with the numbering scheme presented in Figure 4-1 and Table 1. 

5.2.1 Helmholtz Resonator 

The Helmholtz resonator tested was constructed per the schematic in Figure 5-3, 

and a photograph of the prototype device is shown in Figure 5-4. The relevant 

dimensions, at atmospheric pressure, are listed in Table 6, with all units given in 

millimeters. Since there is no annulus in the resonator, radii r1 and r2 are not given. The 

dimensions of the liner are approximate as each liner varies in size slightly because of 

manufacturing variability. 
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Figure 5-3: Schematic of Helmholtz resonator with dimensions. 

 

Figure 5-4: Photograph of the Helmholtz resonator prototype with the end cap removed. 

Table 6: Helmholtz resonator dimensions. 

Dimension Value [mm] Description 

L 96.52 Length of liner 

Ln 37.34 Length of neck 

r3 13.33 Inner radius of liner 

r4 31.75 Outer radius of liner 

r5 31.75 Inner radius of shell 

r6 44.45 Outer radius of shell 

rn 2.97 Radius of neck 

rp 10.31 Radius of pipe 

t 12.70 Thickness of shell 

   

25 mm 
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5.2.2 Tuning Coil 

The tuning coil tested was constructed per the schematic in Figure 5-5. A 

photograph of the prototype with one endcap removed and the liner and annulus partially 

extracted is shown in Figure 5-6. The relevant dimensions are given in Table 7. The 

washer and spring serve to keep the liner against the upstream face of the shell as it 

shrinks under pressure. The deformation at elevated pressure also forms a larger gap 

between the liner and shell than can be seen here, which forms the branch of the device. 

When the device is assembled at atmospheric pressure, the spring is fully compressed: as 

the pressure increases, the length of the liner shrinks and the spring elongates. The 

annulus is sized such that the outer radius is slightly smaller than the inner radius of the 

liner at 21 MPa. This is to ensure that for all of the pressures considered the liner remains 

in a state of hydrostatic compression and is not constrained on the annulus to maximize 

the waveguide compliance as discussed in Section 4.4.4. 

 

Figure 5-5: Schematic of tuning coil with dimensions 
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Figure 5-6: Photograph of tuning coil prototype with one end cap removed and the liner and annulus 

partially extracted. 

Table 7: Tuning coil dimensions 

5.3 Liner Deformation 

Since the material properties of the liners at elevated pressures are unknown from 

the manufacturer, an estimate of the deformation of the liners at these conditions is 

needed. A test fixture was constructed to estimate the radial compression of each liner as 

a function of pressure, such that the geometry of the liner (inner radius, outer radius, 

length and volume) could be included in a theoretical model for each noise control 

device. The test fixture is composed of a rigid shell, an 18-mm thick, 40-mm diameter 

Dimension Value [mm] Description 

Ll 96.52 Length of liner 

L 104.1 Internal length of shell 

Ltr 4.78 Length of throat 

r1 9.33 Inner radius of annulus 

r2 10.60 Outer radius of annulus 

r3 13.33 Inner radius of liner 

r4 31.75 Outer radius of liner 

r5 31.75 Inner radius of shell 

r6 44.45 Outer radius of shell 

rp 10.31 Radius of pipe 

t 12.70 Thickness of shell 

25 mm 
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Metaglas (borosilicate) sight glass, and a collar to hold the sight glass onto the shell. The 

fixture was installed in a hydraulic circuit as a side-branch, similar to how a Helmholtz 

resonator would be installed, and a digital camera was used to take pictures of the liner 

under compression at different pressures. A photograph of the test fixture is shown as 

Figure 5-7. The photographs of the liners under pressure were analyzed to estimate the 

inner radius of the liner at each pressure. The inner radius decreases as pressure increases 

for all liners except HRPG15(12) – this liner was cast in a different mold than the rest 

and has a slightly larger outer diameter such that it is press-fit into the shell. Thus, 

HRPG15(12) is under internal pressure and not hydrostatic pressure. The rest of the liners 

are slip-fit and exposed to pressure on all sides. Using information about the inner radius 

as a function of pressure, the outer radius and length can be estimated using the equations 

given in Section 4.2. The observed inner radii for each liner at each pressure are listed in 

Table 8, and some examples are shown graphically in Figure 5-8. None of the unvoided 

liners compress appreciably. Of particular interest for the voided liners is the behavior 

from 0 – 2.1 MPa: for all except the high-pressure liner (GR23 461-663), the inner radius 

displaces drastically between 0 and 0.7 MPa, and after 2.1 MPa it is approximately linear 

with pressure. This range encompasses the critical pressure, and demonstrates how 

drastically the volume changes as a result of the microspheres within the material 

collapsing. For the low-pressure liner, this transformation occurs entirely below 0.7 MPa. 

The high-pressure liner, GR23 461-663, uses microspheres with a higher critical pressure 

and thus the displacement of the inner radius does not drastically change until between 

0.7 and 1.4 MPa – consistent with the estimated critical pressure for this liner. 
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Figure 5-7: Test fixture for measuring liner compression. 

Table 8: Inner radius of each liner as a function of pressure (in mm). 

Pressure 

[MPa] GR9 GR9-625 GR23 GR23-633 HRPG15(12) HRPG15(12)-545 GR23 461-663 

0.0 13.7380 13.1318 13.6611 13.0249 12.9449 13.2538 12.8045 

0.7 13.8113 11.9313 13.8242 11.3316 12.9267 11.6228 12.6960 

1.4 13.7929 11.4696 13.8061 11.6294 12.9449 10.8355 12.0449 

2.1 13.7380 11.6912 13.7155 11.4805 12.9449 11.4354 11.7917 

2.8 13.7380 11.5435 13.8061 11.3130 12.9815 11.2666 11.7194 

3.4 13.6098 11.2664 13.7336 11.2200 12.9998 11.3604 11.6109 

4.1 13.7380 11.3772 13.6430 11.0898 12.9632 11.2479 11.5747 

4.8 13.8662 11.2295 13.8242 11.1642 12.9815 11.3791 11.5566 

5.5 13.7380 11.2110 13.7517 11.1270 12.9998 11.3041 11.5204 

6.2 13.7380 11.2110 13.8242 11.0153 12.9998 11.3604 11.5566 

6.9 13.8845 11.1187 13.7155 11.1642 12.9632 11.2666 11.5385 

8.3 13.7929 11.0817 13.7880 11.0153 13.1095 11.2666 11.3577 

9.7 13.7380 11.0632 13.8785 11.1642 12.9815 11.1917 11.5204 

11.0 13.7380 11.0632 13.7155 11.0153 13.0912 11.1917 11.5747 

12.4 13.7380 11.0448 13.6249 11.1642 13.0912 11.1729 11.2672 

13.8 13.7380 11.0448 13.7880 11.0153 13.0912 11.1354 11.5204 
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Figure 5-8: Inner radius of liner as a function of static pressure for three liners: ♦ GR23 (unvoided), 

■ GR23-633 (voided), ▲ GR23 461-663 (voided). 

5.4 Measurement and analysis of transmission loss 

One common means of quantifying the performance of noise control devices is a 

metric called transmission loss (TL). This metric, when calculated properly, is a device-

specific performance metric, in contrast to system-specific metrics such as Insertion Loss 

(IL), and is thus useful for comparing devices independent of a system. The transmission 

loss of a noise control device is defined as the ratio of incident to transmitted acoustic 

power, Wu,i and Wd,t, and is written as 

 
,

10

,

10log
u i

d t

W
TL

W
  (4.1) 

where subscripts u and d refer to the upstream and downstream sides of the device, 

relative to the source of the acoustic power. Since Equation (4.1) refers to incident and 

transmitted power, not simply total power, the wave field up- and downstream of the 

device must be resolved into its forward- and reverse-traveling components in order to 

compute the transmission loss of a device. Consider a noise control component under 
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test, connected to rigid pipes at either end with an unknown termination impedance, as 

shown in Figure 5-9. The termination impedance reflects some of the energy from wave 

D as wave E back toward the device. The two-mic method [5, 67, 68], and an extension 

of which is the three-mic (or multi-point) method [2, 3, 69-71] have been developed in 

the literature to resolve the wave fields in each test section. Each technique utilizes a set 

of microphones or, for hydraulic systems, dynamic pressure sensors, and optionally 

transfer functions, to determine the resolved wave field in the up- and downstream 

sections. Knowledge of the wave field can then determine the transmission loss of the 

device. The test method implemented in this work is the multi-point method, which uses 

three pressure transducers in both sections, located at x3-x1 and y1-y3 in Figure 5-9. The 

advantage of the multi-point method is the elimination of the half-wavelength 

indeterminacy introduced at a frequency where the transducer spacing is equal to half the 

wavelength [3], since a least-squares routine fits the measured transfer functions to a 

theoretical wave propagation model. The resolved wave amplitudes are then used to 

determine the total acoustic pressure and velocity at the ports, and thus the transmission 

loss. 

 

Figure 5-9: Schematic of a noise control device under test. 

The calculation of TL requires decomposing the wave field in each up- and 

downstream section, then solving an over-determined system of equations for the 



56 

 

complex wave amplitudes using experimentally-measured transfer functions. The wave 

field in each section is decomposed into forward- and reverse-traveling waves 
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where A, B, C, and D are complex acoustic pressures, 

 0 2

p

c
Z
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



  (4.3) 

is the acoustic impedance, ρ and c are the density and speed of sound of the fluid, rp is the 

radius of the pipe and 

 j
c


   (4.4) 

is the complex wavenumber, where the viscous effects are given by the approximation [5] 

 
2 2

1
p pj r j r

 


 
    (4.5) 

where υ is the kinematic viscosity of the fluid. Transfer functions Hij are measured among 

the sensors and assembled into a vector 
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where the sensor at location x2 is the reference for all Hij – hence, the transfer function of 

sensor x2 relative to itself is unity. The theoretical propagation of the waves in each 

section are separated into sectors of matrix G and vector X, with respect to the pressure at 

sensor x2, which is the reference sensor for each of the transfer functions: 
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The wave amplitudes are then solved, still with respect to the pressure at sensor x2, by the 

Moore-Penrose pseudoinverse: 

 X G b  (4.9) 

which performs a least-squares fit of the measured transfer functions to the theoretical 

propagation model. At this point, all four wave amplitudes relative to a single complex 

pressure are known: what remains is to compute the transmission loss from these values. 

The transmission loss can be calculated from the elements of the transfer matrix 

for the device. The transfer matrix is a common means of representing the acoustic 

properties of a device, such as the acoustic pressure and velocity at the ports of a two-

port, four-pole system, 
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21 22
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where subscripts u and d again indicate the upstream and downstream ports. The 

elements of the transfer matrix, tij, can be derived from Equation (4.10) as: 
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If the device under consideration can be assumed to be symmetric and reciprocal, the 

determinant of the transfer matrix is unity [20], 

 11 22 12 21 1t t t t   (4.12) 

and 11 22t t . An expression for the transmission loss of a two-port device, given an 

anechoic termination, can be derived from Equations (4.10), assuming an anechoic 

termination, as 

 12
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although an anechoic termination is not required to calculate TL, given that the wave 

fields up- and downstream of the system are fully resolved. If the wave field is 

decomposed per Figure 5-9, the upstream and downstream pressure and velocity can be 

resolved as: 
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Equations (4.14) can be substituted into Equations (4.11) and then into Equation (4.13), 

which after simplification yields 
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Equation (4.15) accounts for the existence of a reverse-traveling wave downstream of the 

system under test (wave E). Due to the long acoustic wavelengths in hydraulic fluid, 
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especially relative to the length of the pipe section immediately downstream of the device 

under test, this term cannot be ignored. However, if there existed an anechoic termination 

(or equivalently, an infinitely long pipe) wave amplitude E would vanish and Equation 

(4.15) would become 

 1020log
A

TL
D

  (4.16) 

which is the more familiar form of the transmission loss equation. 

5.5 Test Rig 

A test rig was constructed per the schematic in Figure 5-10 using the guidelines 

set forth by a set of ISO standards, ISO-15096, parts -1 through -3 [72-74], which have 

been established for the purposes of measuring the speed of sound of fluid in a pipe, the 

impedance of a pump, and the transmission loss of a two-port device. Specifically, the 

pipes that comprise the test sections in the test rig were constructed to the dimensions 

listed in part two of the standard, which describes the measurement of the speed of sound 

in a rigid pipe. The inner radius of the pipes is such that only plane waves may propagate: 

the cut-on frequency for the first radial mode is 43 kHz, which is much higher than the 

frequency range of interest (5 kHz). The pump is a Sauer Danfoss H1 bidirectional 9-

piston axial piston pump, driven by a Siemens 60 HP variable-speed ac motor. A Siemens 

Simovert Masterdrive variable-frequency drive powers the motor. The drive frequency 

and pump displacement are set and controlled using xPC-Target over a CAN-bus 

interface. Six high-bandwidth piezoelectric pressure transducers, PCB model 101A06, are 

connected to two signal conditioners, PCB model 480B21 and 482A16. The analog 

signals from the signal conditioners are then digitized by a 24-bit, 8-channel National 
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Instruments data acquisition board, model 4472. Temperatures are measured with type K 

thermocouples, sensing the oil temperature at the entrance of the rig and at the inner 

radius of the component under test. The thermocouples were calibrated with an Omega 

CL3512A thermocouple calibrator and are read by a National Instruments 9211A 

thermocouple reader. The “termination silencer” is a commercially-available hydraulic 

noise suppressor, manufactured by Wilkes and McLean, model WM-5081. This 

suppressor uses a pressurized nitrogen bladder to introduce compliance within the device, 

and is charged to approximately half the system pressure. 

 

Figure 5-10: Schematic of the hydraulic test rig. 

5.5.1 Calibration 

The piezoelectric transducers do not have perfect amplitude or phase response. 

Therefore, some type of calibration is necessary to correct for this inherent variation. 

Since the error in these transducers varies frequency-by-frequency, it is necessary to 

perform frequency-by-frequency calibration of the measured transfer functions with their 

calibrated values. Transfer functions are used in the calculation of TL, as discussed in 

Section 5.4, so only relative calibration of the sensors is necessary. The calibration values 

are obtained by mounting four sensors at a time in a calibration block, shown in Figure 
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5-11, which is mounted at the end of a side branch off the main flow path of the test rig. 

Since the sensors are mounted circumferentially, and only plane waves may propagate in 

the calibration block, each sensor is exposed to the same acoustic pressure. Transfer 

functions among the sensors are obtained identical to those obtained when installed in the 

test rig. When post-processing the experimental data, the transfer functions are calibrated 

by the method in the standard ISO 15086-2 [73], 

 
ij measured

ij calibrated
ij calibration

H
H

H
 , (4.17) 

where the measured transfer functions, from an experiment, are divided by the calibration 

transfer functions associated with the appropriate pair of sensors to obtain the calibrated 

values. 

 

Figure 5-11: Picture of calibration block with three sensors installed. 

5.5.2 Coherence 

An indicator of a successful transfer function measurement is the coherence. The 

coherence is an indication of the correlation of the signals from two sensors. A coherence 
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value of unity means the power in each signal is linearly related and correlated. Likewise, 

a coherence of zero indicates that the signals are either not linearly related or 

uncorrelated. The coherence is given by  
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G G
  (4.18) 

where xyG is the cross-spectral density between x and y, and xxG  and yyG  are the 

respective autospectral densities. With respect to the measurement of transfer functions in 

the experimental set-up as discussed, a low coherence indicates that noise has entered the 

measurement since the acoustic propagation in hydraulic oil is strongly linear. Typically, 

for the transfer functions to be considered valid, the coherence must be at least 0.9. 

Frequencies where the coherence does not satisfy this requirement would then not be 

included in the transmission loss computation. For the measurement of TL for Helmholtz 

resonators, it has been found experimentally that coherence values as low as 0.6 near the 

resonance frequency are acceptable as long as the measurements are repeatable and the 

data is smooth. In this case, there may be noise or nonlinearities that are contaminating 

the measurement near the resonance that are strong enough to reduce the coherence but 

not strong enough to affect the calculation of TL. This is especially critical for transfer 

functions that relate the pressure on different sides of the device under test – one, because 

the device can reduce the acoustic energy sufficiently to lower the coherence, and two, 

because without isolation of the downstream wave field noise generated downstream of 

the test rig can contaminate the measurement. Such is the reason for inclusion of the 

hydraulic suppressor at the downstream end of the test rig, shown as “termination 

silencer” in Figure 5-10 – preventing noise generated by the restricting needle valve 
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downstream from contaminating the wave field, affecting the transfer functions across the 

device. 
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CHAPTER 6 

HELMHOLTZ RESONATOR 

In this chapter, a theoretical, lumped-element model for a Helmholtz resonator is 

derived, which includes the effect of a solid, compliant liner in the cavity. A brief 

parameter study explores the effect of the liner on the resonance frequency and damping. 

Then, the results from experimental tests of a prototype, compliant-lined Helmholtz 

resonator are discussed. The theoretical model is fit to experimental results within a least-

squares routine to estimate the complex bulk modulus of the liners. The effects of 

temperature and pressure on the performance are explored, and compared to expected 

trends. 

6.1 Modeling 

The Helmholtz resonator can be most simply described as the acoustic analogue 

of a resistor-inductor-capacitor (RLC) circuit. In the long wavelength limit (typically 

where the longest characteristic dimension is less than 1/16
th

 of a wavelength [75]) the 

behavior of the resonator can be broken down into simple lumped elements, as, 

acoustically, the interior acts in bulk. The development of the lumped-element model 

generally follows the derivation given in Kinsler, Frey, et al. [76] Figure 6-1 is a 

schematic of a Helmholtz resonator with a compliant lining, with resolved incident and 

transmitted waves and relevant dimensions. The dimensions of the Helmholtz resonator, 

such as the radii for the liner and shell, follow the same numbering scheme introduced in 

Figure 4-1 and Table 1. Figure 6-2 indicates an analogous electric circuit model. The 

lumped parameter, acoustic impedance of the resonator is given by 
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1

HZ R j L
C




 
   

 
 (5.1) 

where R, L, and C are the equivalent acoustic resistance, inertance, and compliance, and 

ω is the radian frequency. The electrical analogy is depicted in Figure 6-2a) and b). 

Figure 6-2a) depicts the impedance of a resonator in a transmission line (or, in the case of 

hydraulics, a pipeline), where ZL is a load impedance downstream of the device, and V 

and I are the electrical analogy of the acoustic pressure and velocity. Figure 6-2b) is the 

circuit analogy for the resonator itself. 

 

Figure 6-1: Helmholtz resonator with compliant lining. 

a)   b)  

Figure 6-2a): Transmission line analogy with Helmholtz resonator and load impedance b) Circuit 

analogy of Helmholtz resonator. 

The resonance frequency of the Helmholtz resonator occurs when the reactance 

1L C   in Equation (5.1) goes to zero. The compliance of the cavity is the inverse of 

the effective stiffness, which has contributions from the bulk modulus of both the fluid 
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and liner. It is necessary, then, to find the compliance of the resonator considering the 

volume and bulk modulus of both media. Solving for the compliance, C, from Equation 

(5.1), gives 

 2

1

r

C
L

  (5.2) 

where ωr is the resonance frequency and L is the inertance. Rearranging Equation (5.2) 

results in an equation for the resonance frequency of the device given an intertance and 

compliance, 

 
1

r
LC

   (5.3) 

which reveals that higher compliance will result in lower resonance frequencies. The 

compliance, along with how it is modified by a compliant liner, will be treated in more 

detail later in this section. The remaining physical quantities are discussed first, such as 

the inertance, L, which is given by 

 2

nL m S  (5.4) 

where m is the mass of fluid in the neck and Sn is the cross-sectional area of the neck. The 

mass m is a function of the density of the fluid and the cross-sectional area and effective 

length of the neck, 

 
f n nm S L   (5.5) 

where the length of the neck is corrected to include acoustic radiation loading by 

 
1.7 .n n nL L r  

 (5.6) 

At this point in the development of the model, the volume of the resonator is assumed to 

be encapsulated by a rigid shell and filled only with fluid. The bulk modulus of the fluid 

is related to the speed of sound by 
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2.f fK c  (5.7) 

The effective stiffness of a rigid resonator cavity is given in [76], and is expressed as  

 
2 2

n

c

c S
s

V


 . (5.8) 

where Vc is the volume of the cavity. The compliance is the inverse of the stiffness, and 

substituting Equation (5.7) into (5.8) for c
2
 and recasting the volume of the cavity as the 

volume of fluid yields 

 

2

.
fn

f

VS
C

s K
   (5.9) 

In Equation (5.9), 
fK  is the stiffness of the entire system, but at this point in the 

derivation the fluid is the only compliance that has been considered. This term will be 

revisited and expanded when considering other compliances in the system later in this 

section. First, the damping effects of the resonator need to be accounted for. The acoustic 

resistance of the fluid in the neck, including both resistance from viscous effects, Rr, and 

radiation resistances, Rw, is 

   2 .r w nR R R S   (5.10) 

The radiation resistance is given from [76] as 

 

2 2

2

f e e n

r

c k S
R




  (5.11) 

where e e
k c  is the effective wavenumber in the resonator, at the frequency 

considered and the effective sound speed in the resonator is given by 

 .
f

e

f

V
c

C
  (5.12) 
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The derivation of the viscous resistance of the fluid motion in the neck begins with the 

approximation for the complex wavenumber for fluid lines given by [5], 

 
2 2

1 .
n nj r j r

 


 
    (5.13) 

where υ is the kinematic viscosity of the fluid and rn is the radius of the neck. The loss 

factor in the complex wavenumber is determined by the ratio of the imaginary to complex 

part of the complex wavenumber, 

    Im Re .w k k     (5.14) 

Finally, the loss factor is used in the equation for the viscous resistance in the resonator 

neck, as given by [76] 

 2 .w wR m  (5.15) 

 At this point, the compliance of the cavity, previously given as Equation (5.9), is 

expanded to account for the compliance of the shell and the compliance of a liner within 

the cavity. The compliance of the system can be decomposed into the compliances of the 

liner, fluid, and shell acting in series, such that 

 L f SC C C C    (5.16) 

where LC  represents the compliance of the liner, fC  represents the compliance of the 

fluid, and SC  represents the compliance of the shell. Rewriting (5.16) in terms of 

stiffnesses and substituting into Equation (5.9) gives 

 
1 1 1f

f

L f S

V
C V

K  

 
    

  

. (5.17) 
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Note that this compliance will also modify the effective speed of sound, ec , in Equation 

(5.12). The compliance of the shell was derived as Equation (3.15) in Section 4.3.1, 

reprinted here as Equation (5.18) 

 
2 2
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2 2
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 
 (5.18) 

 In Section 4.3.3, Equation (3.20) (shown here as Equation (5.19)) was derived that 

estimates the compliance of the cavity with the presence of an annular, cylindrical 

compliant liner, 

 
 

 
1

3 4L
L

L L c L

V

E V V



 


 (5.19) 

where LV  is the volume of the liner. For the liners discussed in this work, the volume of 

the liner as a function of static pressure is known experimentally, as described in Section 

5.3, and the presence of the liner reduces the fluid volume for a fixed shell size. 

Furthermore, for liner materials that exhibit viscoelastic behavior (the stress and strain 

are not in phase), the elastic moduli, such as the Young’s or bulk modulus, may be 

represented as complex values, where the real part is the storage modulus and the 

imaginary part is the loss modulus as 

 
* .L L LE E iE    (5.20) 

The ratio of the loss modulus to the storage modulus is referred to as the loss tangent or 

tan δ, and is a measure of the viscoelasticity of the material, 

 tan .L

L

E

E






 (5.21) 

Thus, the liner introduces material losses to the system in addition to the acoustic 

radiation and viscous losses. 
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Continuing the discussion of compliance, substituting Equations (5.18) and (5.19) 

into (5.17) yields an equation for the compliance of the resonator given the bulk modulus 

of the fluid and the dimensions and material properties of the shell and liner, 
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 
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 (5.22) 

Given a Young’s modulus and Poisson’s ratio for the liner, the bulk modulus can then be 

calculated by 
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. (5.23) 

The Poisson’s ratio is estimated by the manufacturer to be 0.45 for the syntactic foams 

and 0.4995 for the neat urethanes. From Equation (5.23), the bulk modulus is strictly 

larger than the Young’s modulus for Poisson’s ratios greater than 0.33. Given the higher 

Poisson’s ratio for the neat urethanes, their bulk moduli will be much higher than for the 

syntactic foams even for comparable Young’s modulus. The bulk modulus of the fluid is 

known based on the viscosity, temperature, and pressure of the oil considered, given by 

the model discussed in Section 4.5.1. For the theory, an assumption of no entrained air in 

the fluid is made and is justified in Section 6.3.2 for the experiments. 

Previously, in Section 4.5.4, the relative magnitude of series compliances, such as 

developed for the resonator in Equation (5.17), was explored in terms of the effect of one 

quantity being much larger than the others. The net compliance will be dominated by the 

highest compliance (or lowest stiffness) in the system, whether it is the liner, fluid, or 

shell. Even with two compliances of the same magnitude, the net compliance will be half 

its nominal value. Substituting the first relation in Equation (5.17) into Equation (5.3) 

yields the relationship 
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
   (5.24) 

where   is the total stiffness of the system. To decrease the resonance frequency of a 

device with a constant volume, either the inertance needs to be raised or the stiffness 

needs to be reduced. Since increasing the inertance means a larger neck with more fluid, 

hence a larger device, this contradicts the stated goal of compact devices. Alternately, if a 

compliant liner is introduced to the cavity, the size of the device can remain the same but 

the resonance frequency can be reduced, or the size of the device reduced for the same 

resonance frequency.  

From the computation of the resonator impedance, the transmission loss can be 

calculated from the elements of the transfer matrix for the resonator. The transfer matrix 

for a Helmholtz resonator mounted in a rigid pipe is 

 
1 0

1 1
H
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Z

 
 
 
 

 (5.25) 

where ZH is the impedance of the resonator from Equation (5.1). The transmission loss is 

the input-output acoustic energy balance across a two-port device. The transmission loss 

of the resonator in a system with an infinite downsteam pipe (or anechoic termination 

downstream) can be calculated from the transfer matrix elements by [5] 

 12
10 11 0 21 22

0

1
20log
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TL t Z t t

Z

 
    

 
 (5.26) 

where tij are the transfer matrix elements and Z0 is the acoustic impedance of the test pipe, 

given by 

 0

f f

p

c
Z

S


  (5.27) 
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where Sp is the cross-sectional area of the pipe. From the transfer matrix elements in 

Equation (5.25), Equation (5.26) becomes 

 0
10

1
20log 2 .

2 H

Z
TL

Z

 
  

 
 (5.28) 

6.2 Parameter Study 

A theoretical model for the transmission loss of a Helmholtz resonator has thus 

been developed. From a design perspective, it is of interest to evaluate the theoretical 

performance of the device given assumed material properties for the liner and fluid, and 

the impact of variation of the properties on the performance. First, consider two devices 

of identical neck geometry and resonance frequency. Then, Equation (5.2) is used for 

comparison, such that 

 
1 1 2 2

1 1

L C L C
 . (5.29) 

Since L is a function of the fluid density and neck geometry only, it is the same for both 

devices, thus 1 2L L . Substituting Equation (5.9) for compliance C, generalizing the 

stiffness of the fluid to the stiffness of the system and rearranging yields 

 
,11

2 ,2

f

f

V

V




 . (5.30) 

Therefore, the ratio of fluid volume between otherwise identical devices is directly 

proportional to the ratio of the effective stiffness. Assuming the introduction of the liner 

reduces the effective stiffness from that of the fluid alone, approximately 1560 MPa, to 

4.79 MPa, this leads to a reduction in the fluid volume by a factor of 326. Some 

additional cavity volume is required for the liner to occupy, but in general, the device 
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with the liner would be two orders of magnitude smaller than the unlined device, with all 

other aspects unchanged. 

Likewise, the effect of introducing a liner to the cavity can be explored in terms of 

the transmission loss. Figure 6-3 depicts the transmission loss of a Helmholtz resonator of 

the schematic in Figure 6-3 and the dimensions in Table 9, for three configurations: no 

liner, a liner with a bulk modulus, K  , of 656 MPa, and a liner with a bulk modulus of 

53.8 MPa (these are the bulk moduli of GR9-625 at 21 C, 6.9 and 2.1 MPa). For each 

case the tan δ is zero. The resonance frequencies for each of these configurations are 295 

Hz, 124 Hz, and 36 Hz, respectively – since the resonance frequency is directly related to 

the effective stiffness of the cavity by Equation (5.24), which is dominated by the 

stiffness of the liner. Through comparison of the lined vs. unlined TL predictions, it is 

evident that a significant reduction in the resonance frequency by an order of magnitude 

may be obtained solely by introducing a compliant liner to the cavity. The peak TL 

decreases and quality factor, QF, increases as the resonance frequency increases due to 

the viscous and radiation resistances, both which increase with increasing frequency. The 

quality factor is the ratio of the resonance frequency and the bandwidth of the resonance, 

measured 3 dB down from the peak value, given by 

 rfQF
f




. (5.31) 

Higher quality factors signify less damping. 

The effect of increasing the losses in the liner by increasing the tan δ of the liner 

material can also be explored using the theoretical model. The transmission loss for a 

lined Helmholtz resonator, where the liner has a bulk modulus of 656 MPa, is shown in 

Figure 6-4 for liner tan δ values of 0.0 through 0.6. The implication of Figure 6-4 is that 
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the quality factor of the resonance, along with the maximum of the transmission loss, 

decreases with increasing tan δ, and can be modified independent of the resonator 

geometry through appropriate design or selection of the liner’s material properties. 

 

Figure 6-3: Theoretical model for Helmholtz resonator with a neck 37.34 mm long and a radius of 

2.97 mm, with a cavity volume of 0.31 L: ▬ No liner, ▬ Liner with K’ = 656 MPa, ▬ Liner with K’ = 

53.8 MPa. 

  

Figure 6-4: Theoretical model for lined Helmholtz resonator with a neck 37.34 mm long and a radius 

of 2.97 mm, with a cavity volume of 0.31 L: ▬ Liner tan δ 0.0, ▬ 0.2, ▬ 0.4, ▬ 0.6. 
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Table 9: Dimensions of theoretical Helmholtz resonator. 

6.3 Discussion of Experiment 

Experiments were conducted to test the transmission loss of Helmholtz resonators 

with compliant linings. The remainder of this chapter is dedicated to validating the 

assumption of no entrained air in the cavity, and discussing the fit of the theoretical 

model to the experimental data. Then, the results of the experiments conducted in terms 

of the effects of temperature and pressure on the bulk modulus and tan delta of the liners 

are presented and discussed. In addition, other parameters such as the effective speed of 

sound in the cavity are explored and the neat liners are compared to the syntactic foams 

to highlight the effect of the microspheres on the performance at elevated pressures. 

6.3.1 Method 

The liners tested are those discussed in Section 5.1, and the transmission loss was 

calculated using the method in Section 5.4 using the test rig as described in Section 5.5. 

For each liner, the pump in the test rig was turned on, the static pressure was set initially 

at 2.1 MPa, 30 averages of test data was taken, and the static pressure was set to the next 

highest desired value and the process repeated. After the highest desired pressure, the 

pressure was set to approximately 13.8 MPa and the oil was allowed to heat up. When the 

oil in the cavity reached a desired temperature, the process of acquiring data was repeated 

starting at the lowest pressure. After three temperatures, the oil was allowed to cool for at 

least 24 hours to the ambient temperature. The analytical model, developed in Section 

6.1, was fit to the experimental data using a least-squares routine with the complex 

Young’s modulus of the liner from Equation (5.22) as the fitting parameter; once 

 Inner Radius Outer Radius Length 

Neck - 2.97 mm 37.34 mm 

Lining 13.30 mm 31.75 mm 97.28 mm 
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determined, it is converted to bulk modulus and discussed here. The volume of the shell 

and the liner are compensated for; the liner deformation is estimated as discussed in 

Section 5.3. In the model, no entrained air is assumed to exist in the cavity: justification 

of this assumption is given in the following section. 

6.3.2 Entrained Air 

In Chapter 4, a model was presented for hydraulic fluids that predicted the bulk 

modulus of a fluid based on its viscosity function, accounting for changes in temperature, 

pressure, and volume fraction of entrained air. Since the volume fraction of entrained air 

can have a significant effect on the bulk modulus of the fluid, as observed in Figure 4-9, 

it should be quantified for the experiments where the material properties are estimated. 

However, this value cannot be uniquely determined when solving the inverse problem for 

the liner properties. To study the effect of an entrained air assumption on the calculated 

liner properties, the least-squares fit to the experimental data was solved using four 

different fractions of entrained air, X0, in the theoretical model at 22.8 C: 0%; 0.1%; 

1.0%; and 10%. The bulk modulus of the liner for these four cases is shown in Figure 

6-5, and tabulated in Table 10. Very little error is introduced at values of X0 up to 1.0%, 

with the greatest effect at low pressure, resulting in error in bulk modulus at 2.1 MPa of 

4.60%. Above 1.0% the deviations are higher, however, the model does not fit the data 

well at these levels. Examples of the model fit for the 1.0% and 10% cases at 2.1 MPa are 

shown in Figure 6-6, where it is evident that the least-squares solution is able to find a 

better solution at the 1.0% level of entrained air versus 10%. The conclusion is then that 

the volume fraction of entrained air in the system is likely on the order of 1.0% or lower, 

and, given that the level of error in the material properties at this assumption is generally 
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much less than 5%, then assuming a volume fraction of entrained air of 0% will introduce 

very little error into the results. 

 

Figure 6-5: Bulk modulus of GR9-625 assuming fraction of entrained air: ♦ 0%, ■ 0.1%, ▲ 1.0%, 

and × 10%. 

Table 10: Bulk modulus of GR9-625 at 22.8 C for assumed fractions of entrained air. 

X0: 0.0% 0.1% 1.0% 10% 

Static 

Pressure 

[MPa] 

Bulk 

Modulus 

[MPa] 

Bulk 

Modulus 

[MPa] 

Error from 

0% [%] 

Bulk 

Modulus 

[MPa] 

Error from 

0% [%] 

Bulk 

Modulus 

[MPa] 

Error from 

0% [%] 

2.1 53.8 54.4 1.04 56.3 4.60 57.0 6.05 

2.8 86.2 86.6 0.45 88.4 2.49 90.4 4.87 

3.4 122.5 122.8 0.19 124.0 1.23 127.2 3.78 

4.1 176.5 176.6 0.09 177.7 0.70 182.7 3.54 

4.8 254.4 254.6 0.07 255.9 0.60 265.8 4.48 

5.5 359.5 359.7 0.06 361.5 0.55 378.0 5.16 

6.2 477.1 477.4 0.06 479.8 0.57 505.3 5.91 

6.9 656.5 656.9 0.06 660.7 0.64 703.2 7.11 
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Figure 6-6 Fit of experiment to model for GR9-625 at 2.1 MPa and 22.8 C assuming a) 1.0% 

entrained air b) 10% entrained air: ♦ Experiment ▬ Model. 

6.3.3 Model Fit 

As an example of the transmission loss data and the fit of the theoretical model, 

using the assumption of 0% entrained air, the TL for liner GR23 461-663 is shown in 

Figure 6-7 along with the fit of the theoretical model to the data for pressures of 2.1, 6.9, 

and 21 MPa. The material properties determined for these conditions are listed in Table 

11 for reference. The model fits the data extremely well at 6.9 and 21 MPa, and 

underestimates the peak TL of the experimental data at 2.1 MPa by less than 1 dB. The 

data that drops below 0 dB at low frequencies are the result of artifacts in the experiment, 

along with the troughs near 420 Hz. The artifacts are described in more detail in Section 

7.3 and do not appreciably affect the least-squares fit of the model. Figure 6-7 also shows 

the pressure dependence of the material: the resonance frequency of the prototype 

Helmholtz resonator varies from 42 Hz at 2.1 MPa to 335 Hz at 21 MPa. This wide range 

of resonance frequencies is associated with an even wider range of liner bulk modulus as 

pressure increases: the functional relationship between system stiffness (a function of 

liner bulk modulus) and resonance frequency was shown previously as Equation (5.24). 
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The pressure dependence to the liner bulk modulus will be discussed in more detail for 

each liner material in the next section. 

 

Figure 6-7: Measured transmission loss of liner GR23 461-663, model: ▬ 2.1 MPa, ▬ 6.9 MPa, ▬ 21 

MPa; experiment: ♦ 2.1 MPa, ■ 6.9 MPa, ▲ 21 MPa. 

Table 11: Liner GR23 461-663 calculated bulk modulus and tan delta values at three pressures. 

6.4 Experimental Results 

6.4.1 General Behavior 

To give a general picture of the bulk modulus as a function of temperature and 

pressure, the bulk modulus for liner GR23-633 is shown in Figure 6-8 for temperatures 

from 23 to 33 C. The observed bulk modulus is higher for higher temperatures: this is 

physically consistent with the idea that the post-buckled microspheres are essentially air 

Pressure [MPa] Bulk Modulus [MPa] Tan Delta [ND] 

2.1 82.31 0.66 

6.9 2202 0.26 

20.7 8957 0.09 
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pockets, which then stiffen with increasing pressure. From the properties of viscoelastic 

materials, however, the glass transition shifts 10 C higher for every factor of ten increase 

in frequency. Thus, for the same frequency but higher temperatures, the host material 

should be getting softer in the same frequency range for increasing temperature. The data 

in Figure 6-8 runs counter to this, since the bulk modulus instead increases with 

temperature. A brief study of the literature for the effect of pressure on polymers finds 

some evidence for increasing elastic modulus with increasing pressure, from Sauer [77]. 

It is important to note, however, that this study was for neat polymers where the 

mechanism by which modulus changes with pressure is likely not the same as in the 

syntactic foams studied here. 

  

Figure 6-8: Bulk modulus of liner GR23-633 at ♦ 23 C, ■ 26 C, and ▲ 33 C. 

A pressure-dependent behavior for the neat urethane liners is similarly observed. 

The bulk modulus of liner GR23 over the range 2.1-6.9 MPa is shown in Figure 6-9 for 

temperatures of 23-33 C – note that this pressure range is different than that shown in 

Figure 6-8, as only GR23-633 and GR23 461-663 were tested up to 21 MPa. For the liner 
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HRPG15(12), shown in Figure 6-10, it is interesting to note that the bulk modulus does 

not strictly increase with temperature for this material – the data at 26 C and 33 C are 

effectively the same from 4-6.9 MPa. The bulk modulus of liner GR9 is shown in Figure 

6-11. For both HRPG15(12) and GR9, the bulk modulus above 30 C is not strictly stiffer 

than at lower temperatures. In fact, for HRPG15(12) the bulk modulus at 32 C is less than 

at 23 C for 3.4 MPa, and for GR9 the bulk modulus at 32 C is less than at 23 C from 5.5 

to 6.9 MPa. 

 

Figure 6-9: Bulk modulus of liner GR23 at ♦ 23 C, ■ 26 C, and ▲ 33 C. 
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Figure 6-10: Bulk modulus of liner HRPG15(12) at ♦ 23 C, ■ 25 C, and ▲ 32 C. 

 

Figure 6-11: Bulk modulus of liner GR9 at ♦ 23 C, ■ 25 C, and ▲ 32 C. 

6.4.2 Stiffness Comparison 

To observe the relationship between the total system stiffness and each of the 

constituent stiffness terms in Equation (5.17), these terms were acquired using the least-

squares fit and plotted for 2.1 MPa and approximately 21 C for liner GR9-625 in Figure 

6-12 and for GR9 in Figure 6-13. The total stiffness is lower than any single stiffness, 
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which is expected. The shell stiffness and fluid stiffness are the same for both cases – the 

significant difference, and what most directly impacts the total stiffness, is the stiffness of 

the liner. Note that this liner stiffness is not the bulk modulus of the material, but the 

entire term including the volume terms and the Poisson’s ratio. Between Figure 6-12 and 

Figure 6-13, the total system stiffness including the neat urethane liner is 39 times higher 

at this pressure than when including the syntactic foam. This change in stiffness 

dramatically lowers the resonance frequency of the device. In Figure 6-13, it is observed 

that the stiffness of the neat liner is less than the stiffness of the fluid, which would 

normally imply improved compliance: however, inclusion of the liner also raises the 

volume of fluid in the cavity, and the compliance change is not enough to overcome the 

volume change. For instance, the resonance frequency for the resonator with an empty 

cavity is 295 Hz: for the cavity with a GR9 liner at the conditions listed, the resonance 

frequency is 320 Hz. Thus, even with lower total stiffness, the volume of fluid is reduced 

to the extent that the resonance frequency is increased. 

 

Figure 6-12: Constituent stiffness terms for a Helmholtz resonator with liner GR9-625 at 2.1 MPa 

and 22.8 C: ▲ shell, ♦ fluid, ■ liner, ● total. 
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Figure 6-13: Constituent stiffness terms for a Helmholtz resonator with liner GR9 at 2.1 MPa and 

20.0 C: ▲ shell, ♦ fluid, ■ liner, ● total. 

6.4.3 Voided vs. Neat 

The voiding has a dramatic effect on all compositions. Among all of the neat 

liners, the lowest estimated bulk modulus of 549 GPa is with the GR23 liner at 22.6 C. 

This is in contrast to the lowest estimated bulk modulus with a syntactic foam liner of 

53.8 MPa, which is GR9-625 at 26.3 C. This is a difference of four orders of magnitude 

smaller than the softest neat liner. To show this change graphically, the bulk modulus of 

the GR23 and GR23-633 compositions are graphed on a logarithmic scale in Figure 6-14. 

This difference in the bulk modulus leads to dramatically lower resonance frequencies – 

to the extent that the resonance frequency at 2.1 MPa is 48 Hz for the voided liner and 

308 Hz for the neat liner. This gap shrinks to 192 Hz to 342 Hz at 6.9 MPa, but the 

resonance frequency of the voided liner is still nearly half that of the neat liner at this 

pressure. Similarly, this difference in liner bulk modulus can permit devices that are 

much smaller for the same resonance frequency – Equation (5.30) showed a direct and 

proportional relationship between the effective stiffness of the cavity and the cavity 
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volume for otherwise identical Helmholtz resonators. Thus, using a liner that has a bulk 

modulus of up to four orders of magnitude more compliant than another liner of the same 

size, for a total stiffness up to two orders of magnitude less, will permit devices that are 

up to two orders of magnitude smaller in volume. 

 

Figure 6-14: Bulk modulus of ♦ GR23, neat urethane, at 26 C, ■ GR23-633, syntactic foam, at 29 C. 

6.4.4 Pressure Effects 

As observed in Figure 6-8, there is a significant pressure dependence to the 

material properties. At pressures above the critical pressure of the microspheres, at a state 

where the microspheres have buckled and are effectively air pockets within the material 

which stiffen with increasing pressure. It is then of interest to understand how the 

pressure dependence changes for different compositions of syntactic foams. The bulk 

modulus as a function of pressure and temperature for GR9-625, GR23-633, and 

HRPG15(12)-545 are shown on identical scales in Figure 6-15, Figure 6-16, and Figure 

6-17, respectively. Considering the three materials, GR9-625 has the lowest bulk 

modulus across all pressures and temperatures, especially at 6.9 MPa where it is more 
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than half as stiff as GR23-633 at 29.2 C. From the liner properties at ambient pressure 

listed in Table 3, GR9-625 has its glass transition point at the highest frequency. This 

means that the “rubbery” region, where the bulk modulus is near its low-frequency 

asymptote, extends to higher frequencies for the same temperature than the other 

materials. Moreover, GR9-625 has the lowest bulk modulus from 2.1-6.9 MPa than the 

other materials even though its low-frequency bulk modulus is the highest of the three. 

 

Figure 6-15: Bulk modulus of GR9-625 at ♦ 29.2 C, ■ 37.7 C, ▲ 47.1 C. 
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Figure 6-16: Bulk modulus of GR23-633 at ♦ 29.2 C, ■ 37.7 C, ▲ 47.1 C. 

 

Figure 6-17: Bulk modulus of HRPG15(12)-545 at ♦ 29.2 C, ▲ 47.1 C. 

The calculated properties of the three syntactic foams reveals that GR23-633 has 

the most variability in bulk modulus with changes in temperature. This is a trend that is 

not correlated to properties at ambient pressure. Furthermore, at ambient pressure, it 

would be expected that the syntactic foam soften as temperature increases, when at 

elevated pressures, the inverse is observed. The syntactic foams, most especially GR23-
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633, show stiffer properties for increasing temperatures. One hypothesis for this behavior 

is that at higher temperatures, the bulk modulus of the polymer microspheres falls. If the 

microspheres are softer they have a lower critical pressure, thus will buckle at a lower 

static pressure and syntactic foam will exhibit a higher stiffness at elevated pressures. 

Then, at the same pressure a warmer liner will be further into its pressure-stiffening state 

than a cooler one. A second hypothesis may be that the hysteresis of the buckling 

behavior affects the results, as the liners are not bought back to ambient pressure between 

separate temperature tests. 

In a like vein, HRPG15(12)-545 shows very little change in the bulk modulus 

from 2.1-6.9 MPa, even though its glass transition point occurs at frequencies in the 

range of the resonance frequency of the Helmholtz resonator between 20 C and 35 C. Of 

all the syntactic foams, HRPG15(12)-545 should have the most variation as a function of 

temperature, based on properties at ambient pressure, but experimental results at elevated 

pressures do not follow this expectation. 

6.4.5 Second-Generation Syntactic Foam 

A second generation of syntactic foam was cast for the purpose of developing a 

material with a higher critical pressure, with the expectation that it would be more 

compliant at elevated static pressures. This material was cast using the same host material 

as the GR23-633 liner using smaller, thicker-wall microspheres: AkzoNobel Expancel 

461 DET 20 d70. This syntactic foam liner is listed in Table 3 as GR23 461-663. The 

pressure- and temperature-dependence of the material is shown in Figure 6-18. 

Comparing the high-pressure design to the original shows different material properties. 

The calculated bulk modulus is shown for comparison for GR23 461-663 and GR23-633 



89 

 

at two temperatures, approximately 23 C in Figure 6-19 and approximately 33 C in 

Figure 6-20. At temperatures of about 23 C, the first-generation material, GR23-633, has 

the same or lower bulk modulus at all pressures – however, this trend shifts at both of the 

higher temperatures. The second-generation material is more compliant from 2.1-13.8 

MPa, and at higher pressures is essentially the same stiffness. This is a promising result 

which demonstrates that syntactic foams can be made more compliant at higher static 

pressures by using microspheres with a higher buckling pressure. 

 

Figure 6-18: Bulk modulus of GR23 461-663, ♦ 24.3 C, ■ 27.7 C, ▲ 32.6 C. 
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Figure 6-19: Bulk modulus at 23 C, ♦ GR23-633, ■ GR23 461-663. 

 

Figure 6-20: Bulk modulus at 33 C, ♦ GR23-633, ■ GR23 461-663. 

6.4.6 Tan Delta and Quality Factor 

The least-squares routine uses the complex bulk modulus of the liner as a fitting 

parameter to fit the theoretical model to experimental data. The acoustical losses in the 

resonator, such as radiation resistance and viscous damping in the neck are accounted for 

theoretically in the model, so the remaining losses are captured in the complex bulk 
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modulus and attributed to the liner. Previously in Figure 5-2, the tan δ of three syntactic 

foam compositions at atmospheric pressure and 35 C were compared that showed 

HRPG15(12)-545 as having the highest tan δ, followed by GR23-633 and GR9-625. This 

trend is also observed experimentally at elevated pressures; the tan δ for these three liners 

at approximately 32 C is shown in Figure 6-21. The tan δ for each of the syntactic foams 

decreases with increasing pressure. 

 

Figure 6-21: Tan delta of liners at 32 C, ♦ GR23-633, ■ GR23-633, ▲GR9-625. 

The tan δ is also generally much higher for the syntactic foams than for the neat 

urethane liners. As an example, the tan δ for HRPG15(12) and HRPG15(12)-545 for two 

temperatures is shown in Figure 6-22. The tan δ for the neat liner is less than 0.11 for 

pressures from 2.1-6.9 MPa, while the tan δ for the syntactic foam is no less than 0.25 

and as high as 0.96. From Table 3, the peak tan δ for the neat liners are higher than for 

the syntactic foams, but under elevated pressure this “lossiness” drops considerably. This 

is the case for all neat liners; the highest observed tan δ in a neat liner is for HRPG15(12). 

HRPG15(12)-545 is the only syntactic foam of the three that is observed to have a tan δ 
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that increases with increasing temperature; the other two decrease with increasing 

temperature. This is shown in Figure 6-23 for GR23-633 at three temperatures. At 10.3 

MPa and above, the tan δ changes relatively little: this is also the pressure range in which 

the bulk modulus levels out. There then appears to be a correlation between the 

compliance of the material and its lossiness – the neat liners are very stiff and have very 

low tan δ values, and the syntactic foams have tan δ values that are high at low pressure, 

and level out at low values as the bulk modulus approaches its maximum value at higher 

pressures. 

 

Figure 6-22: The tan δ of liner HRPG15(12) at ♦ 22.9 C, ■ 32.6 C, and of liner HRPG15(12)-545 at ◊ 

24.1 C, □ 32.7 C. 
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Figure 6-23: The tan δ of liner GR23-633 at ♦ 23.3 C, ■ 25.8 C, ▲33.0 C. 

The amount of damping associated with a resonance phenomena can be quantified 

in a term known as the quality factor, QF. This factor was discussed when presenting the 

model in Section 6.2. The QF is calculated from the theoretical model that is fit to the 

experimental data to get more reliable values for resonance frequency and bandwidth. 

The highest observed QF is 11.6 for the GR23 liner at 32.5 C and 6.9 MPa and the lowest 

observed QF is 1.1 for the GR23-633 liner at 23.3 C and 2.1 MPa. Given that high QF is 

associated with low damping, the QF is inversely correlated with tan δ. This can be 

observed in Figure 6-24 for GR23 and GR23-633 at 23 C: for both liners, the tan δ 

decreases and the QF increases with increasing pressure. The QF is directly a function of 

the resonance frequency and the bandwidth of the resonance. The bandwidth for the 

Helmholtz resonator varies from 19 Hz for GR9-625 at 2.1 MPa and 35 C, a condition 

associated with a low resonance frequency and a low tan δ, to 118 Hz for HRPG15(12)-

545 at 3.4 MPa and 33 C, which is a condition associated with a high resonance 

frequency and a high tan δ.  
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Figure 6-24: Tan Delta and Quality Factor at 23 C for ■ GR23 ▲ GR23-633. 

6.4.7 Speed of Sound 

A parameter of the Helmholtz resonator that is important to note, as it relates to 

other resonant-style devices, is the effective speed of sound in the cavity. This informs 

the degree to which the compliance of the liner modifies the speed of sound of the fluid, 

for the purpose of understanding how other resonant-style devices may be affected. The 

effective speed of sound in the cavity is calculated by Equation (5.12) in the model, 

which involves the volume of the cavity, the effective density (the density of the fluid and 

liner each times their volume, divided by the total cavity volume) and the cavity 

compliance. The bulk modulus of the liner and the cavity compliance are inversely 

related, so the bulk modulus of the liner and the effective speed of sound should be 

proportional. This relationship is shown in Figure 6-25 for GR9-625 at 22.8 C, which 

exhibits the lowest effective speed of sound at 103 m/s. This is two orders of magnitude 

lower than the bulk speed of sound of hydraulic fluid, which is approximately 1400 m/s. 

To show this relationship at higher pressures, the bulk modulus and effective sound speed 
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are presented for GR23 461-663 from 2.1-21 MPa in Figure 6-26, which also exhibits the 

highest effective speed of sound at 919 m/s. It is clear that the speed of sound reaches a 

maximum value as pressure increases. 

 

Figure 6-25: The bulk modulus and effective speed of sound in the Helmholtz resonator with liner 

GR9-625 at 22.8 C: ■ bulk modulus, ♦ effective speed of sound. 

 

Figure 6-26: The bulk modulus and effective speed of sound in the Helmholtz resonator with liner 

GR23 461-663 at 32.6 C: ■ bulk modulus, ♦ effective speed of sound. 
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CHAPTER 7 

TUNING COIL AND HERSCHEL-QUINCKE TUBE 

In this chapter, a tuning coil and Herschel-Quincke tube are modeled, where a 

compliant liner, made of syntactic foam, forms a compliant inner wall of the annular 

waveguide. The devices studied here are of the concentric side-branch resonator type: 

this is in contrast to tuning coils used in hydraulic power steering systems which use a 

coiled tube (called the “tuner”) within a hydraulic hose to achieve wave interference 

effects and damping through viscous losses and leakage through the tuner. The Herschel-

Quincke tube studied here uses a different sound speed in a parallel path of a similar 

length to achieve phase interference, while other types use two tubes of physically 

different lengths to achieve the same objective. For the tuning coil studied here, the 

effects of liner compliance on the first resonance frequency of the device are explored 

theoretically along with the effect of liner damping. The model is extended to Herschel-

Quincke tubes, where the performance of the device with a compliant liner is explored 

theoretically. For a prototype compliant-lined tuning coil, experimental transmission loss 

is presented and compared to the predictions of the theoretical model. The behavior of 

commercially-available tuning coils is studied and compared to the prototype device 

along with claims in the literature regarding their performance. 

7.1 Modeling – Tuning Coil 

Previous work by Hastings and Chen [26, 36] sought to model tuning coils using 

a solution that encompassed only plane waves in the flow path and annulus of the tuning 

coil, capturing the effects of viscous losses in the fluid. The model used in this work 
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follows the same development: the key addition will be the treatment of a flexible wall, in 

the form of a syntactic foam liner, which significantly modifies the speed of sound in the 

branch. Figure 7-1 shows a schematic of the device with the port numbering used in the 

derivation. 

 

Figure 7-1: Port numbering of tuning coil. 

The acoustic propagation in the main flow path of the tuning coil, from port 1 to 

2, is that of a straight, rigid pipe and is represented in transfer matrix form by D’Souza 

and Oldenburger [78] by 
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where 1r  is the inner diameter of the annulus,  
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is the speed of sound in the flow path where 
fK  and 

f  are the bulk modulus and 

density of the fluid. The component of the propagation constant which models the 

frequency-dependent attenuation per unit distance is the function 
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where J0 and J1 are Bessel’s function of the first kind of order zero and one and   is the 

kinematic viscosity of the fluid. Likewise, the acoustic propagation in the annular path is 

given by the method of Washio and Konishi [79] as the matrix  
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where the impedance 
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and the propagation constant is 
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where G is the component of the propagation that models the attenuation in the fluid, and 

is defined later in this section. The radii, r4 and r5, correspond to the outer radius of the 

liner and the inner radius of the shell. The speed of sound in this section is 
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where   is the effective stiffness of the hydraulic oil in the flow path, given by the 

springs-in-series method described in Section 4.5.4 as 
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where c  is the stiffness of the waveguide. This model uses the mechanical compliance 

of the liner and shell to modify the bulk modulus of the fluid to determine the effective 

stiffness. The compliance of the waveguide formed between the outer radius of a 

compliant liner and the inner radius of a rigid shell, given an unconstrained inner radius 

of the liner, is calculated using Equation (3.21), shown here as Equation (6.11), 
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where *

LE  and L  are the Young’s modulus and Poisson’s ratio of the liner. The use of 

this equation presumes that the liner inside a tuning coil is unconstrained at its inner 

boundary, even at elevated pressures as it shrinks in compression. Should the liner shrink 

to the extent that it becomes constrained on the annulus, Equation (3.24) would then be 

the appropriate function for the waveguide compliance. It is also important to note that 

the Young’s modulus in Equation (6.11) may be a complex value, depending on the tan δ 

of the material, which will introduce additional losses into the acoustic propagation in the 

branch beyond the viscous losses in the fluid. 

Both the speed of sound in the waveguide and viscous losses are modeled for the 

annular waveguide. The loss factor for wave propagation in the annular section is given 

by 
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where  

 
2

5r s



  (6.13) 

 
4

5

r
m

r
  (6.14) 

  np n pJ J ir s   (6.15) 

  np n pY Y ir s   (6.16) 

for [4 5]p   and J and Y are the n-th order Bessel functions of the first and second 

kind. The matrices in Equation (6.12) are ill-conditioned and difficult to compute. 

Washio and Konishi addressed this by presenting an approximation to G for
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For the viscosity of hydraulic oil at 25 C and r4 = 13.30 mm,   is no less than 5.6 at 2.1 

Hz, so the approximation is considered valid over the frequency range of interest.  

 The boundary conditions for the two sections, the main flow path and the annulus, 

are such that the pressure must be equal at the ports, the velocity at the closed end of the 

annular section is zero, and the velocity at the downstream port is the difference between 

the velocity in flow path and the branch: 
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The matrices in Equation (6.1) and Equation (6.6) are then assembled using the boundary 

conditions in Equation (6.18) into  
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Finally, the transmission loss of the tuning coil may be computed from the transfer matrix 

by 
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and Sp is the cross-sectional area of the pipe at either end of the tuning coil. 

7.1.1 Parameter Study 

With a model for the tuning coil developed in the previous section, it is of interest 

to evaluate theoretically how varying different parameters affects the performance of the 

device. The model for a tuning coil incorporates the fluid model, based on temperature 

and pressure, models for viscous losses in both the main flow path and annular section, 

and the effect on the speed of sound of the branch due to the compliance of the wall. The 

material properties of liner GR23 461-633 are used in the model at different pressures to 

show the effect of varying liner stiffness on the behavior of the tuning coil. In the model, 
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the outer radius of the liner, r4, along with the inner radius of the shell, r5, together 

determine the width of the annular waveguide in the tuning coil, which then determines 

the damping based on Equation (6.17), along with the temperature and thus viscosity of 

the oil. As with the Helmholtz resonator, there is assumed to be a small enough level of 

entrained air in the fluid that its effect is negligible. While this is not true of real systems, 

this assumption was justified in Section 6.3.2, where the error in the calculated material 

properties resulting from this assumption was determined to be acceptable. To calculate 

the transmission loss of the tuning coil, the bulk modulus of liner GR23 461-633 and its 

measured radii were used in the model to develop theoretical performance curves, along 

with an assumed Poisson’s ratio of 0.45. From the model, the effective bulk modulus of 

the waveguide, or branch of the tuning coil, and the speed of sound in this path were 

calculated. These results are shown in Table 12 along with the given pressure and bulk 

modulus used in the model. The transmission loss for these three pressures is plotted in 

Figure 7-2. 

Table 12: Properties of a tuning coil using liner GR23 461-633 at 23.3 C. 

Pressure 

[MPa] 

Bulk modulus of 

liner [GPa] 

Tan δ of liner 

[ND] 

Effective bulk 

modulus of 

branch [GPa] 

Speed of sound 

in branch [m/s] 

Frequency of 

first resonance 

[Hz] 

2.1 0.224 0.66 0.016 140 289 

6.9 5.879 0.27 0.365 635 1304 

20.7 24.61 0.09 0.923 1005 2067 
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Figure 7-2: Predicted transmission loss of a tuning coil with GR23 461-633 at 23.3 C at ▬ 2.1 MPa, 

▬ 6.9 MPa, and ▬ 20.7 MPa. 

The stiffness of the liner has a dramatic effect on the performance of the tuning 

coil. The physical mechanism of this effect is the compliance of the waveguide, which is 

a function of the elastic modulus of the liner, the thickness of the liner and the width of 

the annular gap formed between the liner and shell. Increased compliance lowers the 

speed of sound in the branch of the tuning coil. By lowering the speed of sound, the 

wavelength at a given frequency is shorter, thus the device is physically longer relative to 

the wavelength of sound. Therefore, the device has the same behavior as a device that is 

physically larger but does not modify the speed of sound. The effect of lowering the 

speed of sound in an elastic tube is well known, but the extent to which this can be 

achieved for a hydraulic system (which operates at high pressure) using syntactic foam is 

much greater than with conventional materials. From Figure 7-2, the damping observed 

in the transmission loss for the same material at each pressure is different: for instance, 

the damping for the TL at 2.1 MPa is much higher than at 21 MPa. Of particular interest 

from Figure 7-2 is the transmission loss at 2.1 MPa – the device exhibits a nearly 
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constant 20 dB TL above about 250 Hz. This is largely a result of the high damping and 

very low effective sound speed: experimental tests should show whether this effect is 

physical or whether there are limits to the model. There is likely a frequency-dependence 

to the material damping that is not included here: the tan δ of the syntactic foams from 

experiments with the Helmholtz resonator only determined a single tan δ value for each 

pressure based on a narrow band of low frequencies. Thus, the frequency-dependence of 

this value is unknown and extrapolating the known tan δ to higher frequencies is likely 

problematic. With respect to the total losses in the device, there are two factors at play: 

one is the thickness of the gap between the liner and shell, which affects the viscous 

losses and is also a function of the material properties due to hydrostatic compression, 

and the other is the tan δ of the liner.  

To observe the effects of gap width and tan δ individually, Figure 7-3 shows the 

transmission loss for this tuning coil at 6.8 MPa for different values of the outer radius of 

the liner (with the inner radius of the shell fixed) and a liner tan δ of zero. One significant 

aspect of the behavior with varying gap width – which is also implying a thinner liner – is 

that not only do the damping and peak TL change but the compliance of the waveguide 

decreases with a thinner liner. The peak TL increases with an increasing gap width due to 

the higher volume velocity in the branch – more acoustic energy is entering the branch 

for a higher degree of phase cancellation. The effective speed of sound in the branch 

increases with decreasing liner thickness, which is consistent with Equation (6.11). 

The effect of varying the liner thickness, and thus gap width, in a tuning coil with 

a compliant liner presents an interesting design decision, as there is a trade-off between 

taking advantage of additional volume velocity with a thicker gap, while sacrificing 
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waveguide compliance and thus the effective speed of sound in the branch. Alternately, 

the liner thickness could be held constant and the gap thickness increased by increasing 

the inner radius of the shell, which would then result in a larger device. 

 

Figure 7-3: Predicted transmission loss of a tuning coil with GR23 461-633 at 23.3 C at 6.9 MPa, a 

tan δ of zero,  a fixed inner radius of the shell, and an annular gap width of ▬ 0.5 mm, ▬ 1 mm, and 

▬ 2 mm. 

The effect on the transmission loss from the tan δ of the liner can also be 

examined theoretically using the model for the tuning coil. In this case, the same liner 

bulk modulus is used, but the tan δ is varied by modifying the imaginary part of the 

modulus for a fixed gap width. Figure 7-4 shows the transmission loss for GR23 461-663 

at 6.9 MPa for a gap width of 1 mm and tan δ values of 0.0, 0.2, and 0.4. The results here 

are more clear-cut: increasing the damping lowers the peak TL values and raises the 

troughs while the resonant frequencies remain the same. The damping with a tan δ of 0.0 

is still finite due to the viscous effects in the gap, but the effect is exaggerated when liner 

damping is included. From a design perspective, even though the peak TL is diminished, 

there is a higher bandwidth from raising the troughs: for the tan δ value of 0.4 the TL is a 
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minimum of 5 dB above 450 Hz. This value shifts higher with thinner liners due to the 

increase in branch volume velocity at the expense of effective speed of sound. 

 

Figure 7-4: Predicted transmission loss of a tuning coil with GR23 461-633 at 23.3 C at 6.9 MPa, a 

gap width of 1 mm, and a tan δ of ▬ 0.0, ▬ 0.2, and ▬ 0.4. 

7.2 Modeling – Herschel-Quincke Tube 

A theoretical model of a Herschel-Quincke (HQ) tube is developed in a similar 

manner as the tuning coil in the previous section. Furthermore, since a Herschel-Quincke 

tube has its first resonant mode at twice the frequency of a similarly-sized tuning coil, it 

is less useful from the standpoint of constructing compact devices for the reduction of 

fluid-borne noise for fluid power systems. An exception to this may be that it is more 

broad-band than a tuning coil, however, if such is the case an in-line silencer is likely 

more appropriate. Therefore, only a theoretical study of the effect of a compliant liner on 

the performance of a Herschel-Quincke tube is presented, and informed by estimated 

material properties from the Helmholtz resonator experiments. 

A model for a Herschel-Quincke tube was also presented by Hastings and Chen in 

the papers mentioned previously [26, 36]. The development of the model here follows in 
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a like fashion, using the methods of D’Souza and Oldenburger [78] and Washio and 

Konishi [79] to describe the motion of a plane wave in either a pipe or an annular 

cylindrical tube. As with the tuning coil, the effect of a syntactic foam liner is included 

which modifies the compliance, and thus the speed of sound, of the branch. A schematic 

of the device considered is shown in Figure 7-5 which includes the port numbering. 

 

Figure 7-5: Schematic of a Herschel-Quincke tube with a compliant liner. 

Transfer matrices are used to represent the propagation in the main flow path and 

the annulus as in Equation (6.1) and Equation (6.6), but are now subject to a modified set 

of boundary conditions. The condition of velocity identical to zero at the end of the 

annular section is replaced by a superposition of the velocity in the flow path and annulus 

equal to that at the port. The boundary conditions are 

 
1 2 3

1 2 3

P P P

Q Q Q

 

 
 (6.22) 

at the upstream junction and 

 
4 5 6

6 4 5

P P P
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 
 (6.23) 

at the downstream junction. Through the boundary conditions the transfer matrices are 

manipulated to arrive at 

 6 1

6 1

P P

Q Q

   
   

  
T  (6.24) 

where matrix T is 
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and where the variables aij and bij correspond to the appropriate terms in matrices 
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and 
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As before, the speed of sound in the main flow path (c1) is a function of the bulk modulus 

of the fluid and its density, while the speed of sound in the annular section is a function 

of the effective bulk modulus described in Equation (6.10). The attenuation terms, 

propagation constants, and impedances are likewise identical. To compute the 

transmission loss, the transfer matrix T in Equation (6.25) is inverted, and the elements of 

the resulting matrix are substituted into the equation for transmission loss, 

 12
10 11 0 21 22

0

1
20log

2

t
TL t Z t t

Z

 
    

 
. (6.28) 

7.2.1 Parameter Study 

The behavior of a Herschel-Quincke (HQ) tube is more complex than for either 

the Helmholtz resonator, which is a simple second-order system, or a tuning coil, which 

exhibits clear resonances at odd-numbered harmonics. The additional junction permits 

further standing wave effects in both the main flow path and annulus, and the resulting 

TL no longer resembles a simple side-branch resonator. For an initial study of behavior, 
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the TL for a HQ tube is plotted for pressures from 2.1 to 21 MPa in Figure 7-6. The 

performance at low pressures, relative to pressures of 5.5 MPa and above, is clearly 

superior, with at least 20 dB of TL above approximately 350 Hz. The pressure-stiffening 

behavior is evident in the location of the first resonant peak: for 3.4 MPa, this is at 

approximately 715 Hz, at 1215 Hz for 5.5 MPa, and at 1550 Hz for 6.9 MPa. For the 2.1 

MPa case, the effective speed of sound in the branch is 140 m/s. Half-wave resonator 

theory provides two conditions that predict the frequencies of phase interference effects 

[40]: first, when 

  1
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1 2 1
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p b

cfL
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c c
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where L is the length of the path (in this case for simplicity, assumed equal for the branch 

path and main path), cp is the speed of sound in the pipe, cb is the speed of sound in the 

branch, and 1,2,...n  . The second condition is when 
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. (6.30) 

Between these two conditions, the density (in frequency) of the standing wave modes 

within the device can be high, especially for large ratios of 
p bc c . In particular, however, 

from Equation (6.29), when n = 7, the frequency of the interference condition is 2288 Hz, 

which correlates closely with the peak observed in the TL at 2.1 MPa. Since the 

frequency of this peak is a function of the speed of sound ratio, manipulating the 

waveguide compliance can control the frequency of this and other resonances to achieve 

high TL as desired. Figure 7-7 shows the TL for GR23 461-663 for varying gap 
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thicknesses, all at 2.1 MPa. Since both damping and compliance are affected by gap 

thickness, the peak TL values shift both in amplitude and in frequency. 

 

Figure 7-6: Predicted transmission loss of a Herschel-Quincke tube with a GR23 461-663 liner at 

pressures of ▬ 2.1 MPa, ▬ 3.4 MPa, ▬ 5.5 MPa, ▬ 6.9 MPa, and ▬ 21 MPa. 

 

Figure 7-7: Predicted transmission loss of a Herschel-Quincke tube with a GR23 461-663 liner at gap 

thickness of  ▬ 1 mm, ▬ 1.5 mm, ▬ 2 mm, and ▬ 3 mm. 

The preceding figures and discussion regarding the performance of HQ tubes 

using liner GR23 461-663 used the complex Young’s modulus of the liner in the model, 
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which has a tan δ value of 0.66 at this pressure. In Figure 7-7, the liner properties were 

unmodified. Figure 7-8 shows the TL for the HQ tube with varying liner tan δ, using the 

same real value of the Young’s modulus. For the case of no liner damping, or a tan δ of 

0.0, the TL does not return to zero because of the presence of viscous losses in the device. 

At increasing values of tan δ, the low frequency behavior is unaffected up to 350 Hz, 

after which the TL progressively increases. It may also be predicted from Equations (6.3) 

and (6.8) that for high levels of damping, a resonant structure to the TL would not be 

observed: acoustic energy incident on the upstream port (location 3 in Figure 7-5) and 

propagating into the branch would be dissipated before reaching the downstream port 

(location 4 in Figure 7-5). 

 

Figure 7-8: Predicted transmission loss of a Herschel-Quincke tube with a GR23 461-663 liner at tan 

δ of  ▬ 0.0, ▬ 0.1, ▬ 0.2, and ▬ 0.4. 

7.3 Experimental Results  

This section presents experimental results for the prototype tuning coil in 

comparison to the theoretical model. The prototype tuning coil was constructed according 

to the schematic in Figure 5-5 and the dimensions in Table 7, and a photograph of the 
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device was shown in Figure 5-6. The tuning coil was tested in the experimental test rig 

discussed in Section 5.5 at approximately 22 C from 2.1-21 MPa, using liner GR9-625. 

The model uses an interpolated Young’s modulus based on the cavity temperature from 

the experiment for a given pressure, with the real and imaginary parts of the modulus 

interpolated separately. Moreover, the model accounts for the dimensions of the liner at 

the given pressure, along with the temperatures from the experiment, and calculates the 

TL for the tuning coil. This data is then overlaid on the experimentally-obtained TL at the 

same conditions to evaluate the fit and study the behavior. 

7.3.1 Comparison to Model 

The transmission loss simulation of the tuning coil with liner GR9-625 at 2.1, 4.8, 

and 6.9 MPa is shown with experimental data in Figure 7-9, Figure 7-11, and Figure 7-12 

at approximately 23 C for each pressure. The fluctuations in the transmission loss at 

frequencies from 3-4 kHz in each of these cases, along with some features at lower 

frequencies, are non-physical artifacts in the data. While the frequency-dependent nature 

of the TL from 3-4 kHz appears to have the same behavior as might be expected in a 

tuning coil, at least two factors indicate otherwise: the periodicity of these fluctuations 

does not match what would be expected given the size and compliance of the device, and 

the periodicity does not change with pressure, which would be expected given the 

pressure-dependent nature of the material properties. A relationship has been found 

empirically that roughly predicts the frequencies of features identified as artifacts: 

 arctan 0
BD

AC

 
 

 
 (6.31) 
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where A, B, C, and D are the calculated complex wave amplitudes. A plot of the function 

on the left-hand side of Equation (6.31) for the TL of liner GR9-625 at 2.1 MPa and 22.5 

C is shown as Figure 7-10. The frequencies where this function is close to zero may be 

such non-physical artifacts. The data points at the frequencies corresponding to the 30 

smallest local minima in this function in Figure 7-9 and for the TL data in all figures 

following Figure 7-10 are encircled to indicate what features in the TL may not be 

physical. It should be noted that this is a necessary, but not sufficient condition to which 

frequencies may be artifacts. 

In Figure 7-9, the frequency of the first resonant peak in the model underestimates 

the first resonance in the experimental TL by about 25%: the model predicts a peak TL at 

185 Hz compared to approximately 253 Hz in the model. The peak TL of the model, 

however, is within 1 dB of the experiment. Given that the peak TL fits within 1 dB, it is 

most likely the case in Figure 7-9 that the tan δ in the model is accurate. From the 

parameter study in Section 7.1.1, the resonant frequency is a function of both the real part 

of the elastic modulus of the liner and the gap thickness. Since the resonant frequency of 

the model in Figure 7-9 is too low, the model is over-estimating the compliance, thus 

either the bulk modulus of the material is too low or the liner dimensions are inaccurate. 

It is also possible that the model for waveguide compliance is incorrect – the assumption 

made in the design of the annulus and in the model is that the liner does not shrink to the 

extent that it becomes constrained on the annulus at the given pressure. Using Equation 

(3.24) for the waveguide compliance, which represents the case where the liner is 

constrained on the annulus, reflects the experimentally-observed behavior more 

accurately. The model and experiment for this case at 4.8 MPa is shown in Figure 7-13. 
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Figure 7-9: Measured transmission loss of tuning coil with GR9-625 at 2.1 MPa and 22.5 C, ▬ model, 

● experiment, ○ frequencies of possible artifacts. 

 

Figure 7-10: Plot of the phase condition, Equation (6.31), where points near 0 may indicate 

frequencies of artifacts in experimental data. 
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Figure 7-11: Measured transmission loss of tuning coil with GR9-625 at 4.8 MPa and 22.8 C, ▬ 

model, ● experiment, ○ frequencies of possible artifacts. 

 

Figure 7-12: Measured transmission loss of tuning coil with GR9-625 at 6.9 MPa and 23.1 C, ▬ 

model, ● experiment, ○ frequencies of possible artifacts. 
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Figure 7-13: Measured transmission loss of tuning coil with GR9-625 at 4.8 MPa and 23.1 C with a 

modified waveguide compliance, ▬ model, ● experiment, ○ frequencies of possible artifacts. 

For the transmission loss of all three of the pressures considered for GR9-625, the 

simulated TL at frequencies higher than the first resonant peak do not match the 

experimental data. The transmission loss calculated by the model fluctuates about a mean 

value that, for these cases, is between 15 dB and 25 dB. In the model of a tuning coil, this 

finite damping at higher frequencies is a result of acoustic energy incident on the throat 

from the main path coupling well with higher-order modes in the cavity. These higher-

order modes are subject to attenuation from both viscous flow and material damping, thus 

some of the acoustic energy incident on the device is damped, thus not reflected, leading 

to a finite transmission loss. The question is then raised whether a tuning coil model is 

the most appropriate model for the prototype device given the experimental data. The 

next section will explore the fit of the Helmholtz resonator model to the experimental TL 

for the tuning coil prototype. 
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7.3.2 Resonator Model 

The Helmholtz resonator model was modified to reflect the dimensions of the 

prototype tuning coil. Three key changes are made to the model: the length of the shell is 

longer than the prototype Helmholtz resonator, and the length and width of the neck are 

calculated based on the openings in the throat of the tuning coil. Figure 5-6 is a 

photograph of the tuning coil prototype which shows the openings that comprise the 

throat of the tuning coil. The sum of these openings are considered to be the resonator 

neck, where the total cross-sectional area of the openings is used along with the depth of 

the openings to represent the area and length of the neck. The results of the model are 

plotted with the experimental transmission loss for the same three conditions in the 

previous section: the GR9-625 liner at approximately 22 C at 2.1, 4.8, and 6.9 MPa. As in 

the previous section, the Young’s modulus of the material is interpolated for the given 

temperature at each pressure. For all three pressures, both the resonant frequency and the 

peak TL of the model matches almost exactly, but more significantly, the resonator model 

more accurately reflects the behavior at higher frequencies where the experimental TL 

trails off gradually, approaching zero.  
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Figure 7-14: Measured transmission loss of tuning coil with GR9-625 at 2.1 MPa and 22.5 C, ▬ 

Helmholtz resonator model, ● experiment, ○ frequencies of possible artifacts. 

 

Figure 7-15: Measured transmission loss of tuning coil with GR9-625 at 4.8 MPa and 22.8 C, ▬ 

Helmholtz resonator model, ● experiment, ○ frequencies of possible artifacts. 
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Figure 7-16: Measured transmission loss of tuning coil with GR9-625 at 6.9 MPa and 23.1 C, ▬ 

Helmholtz resonator model, ● experiment, ○ frequencies of possible artifacts. 

7.4 Comparison to Commercial Devices 

It is of interest to compare the performance of the prototype tuning coil, in the 

style of a concentric quarter-wave resonator, to the traditional and commercially-

available type of tuning coil, which is a metal coil inserted in a hydraulic hose connected 

at one end. Of the papers that have studied these devices in the past, only a thesis by Way 

[80] has shown the experimental transmission loss of such a device, while others focus on 

the impedance parameters individually. It has been claimed in the literature that the 

viscous effects of leakage through the tuner have a strong effect on the performance, and 

likely outweigh resonance effects related to quarter-wave behavior [27]. 

A tuning coil and a hose, of identical dimensions and made of identical material 

but with no tuner, were acquired and tested in a modified version of the hydraulic test rig. 

Each device is 470 mm long and is made of hose with a 9.5 mm inner diameter. The tuner 

within the tuning coil is the coiled-metal type. The upper pressure and flow limits of the 

tuning coil were too low for the existing test rig to produce significant enough fluid-borne 
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noise to measure the performance of the device with sufficient coherence. Figure 7-17 

shows a schematic of the modified rig, where ball valves have been installed between the 

needle valves at either end of the rig and a block with a piezoelectric stack has been 

installed immediately upstream of the test rig. A thin metal diaphragm keeps oil out of 

the housing that contains the stack, but under pressure remains in contact with the stack 

to maximize force transmission between the stack and fluid. The piezoelectric stack is 

connected to a power supply and a signal generator, and is driven by a sine sweep. The 

termination silencer, which is a commercially-available bladder-style hydraulic noise 

suppressor, is used to pressurize the rig in the following manner: the pump is turned on 

with the ball valves open, and the valve to the bladder in the silencer is opened; the 

hydrostatic pressure is turned up to 3.4 MPa, which is the current pressure limit of the 

piezoelectric stack and diaphragm configuration, at which point the bladder in the 

silencer is compressed against the inner wall of its shell; the valve to the bladder is 

closed, the pump is turned off, and the ball valves are closed; the valve to the bladder is 

then connected to a nitrogen tank, which is opened until the system pressure (measured at 

the static pressure sensors at either end of the component under test) reaches the desired 

value. Once the test rig is pressurized, the piezoelectric stack is excited with a sine sweep 

and transfer functions are captured as usual. 
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Figure 7-17: Schematic of modified test rig using a piezoelectric stack to excite the system. 

The experimental results for the hose with no tuner are shown in Figure 7-18 for 

pressures of 1.4, 2.1 and 3.4 MPa. The diameter of the hose is quite small at 9.5 mm. The 

hose is both narrow diameter and was tested with oil at room temperature, so the fluid 

viscosity is relatively high and thus acoustic damping in the hose is expected to be 

significant. The static pressure loss in these devices is significant as well: testing with the 

pump at a flow rate of 14 L/min resulted in 0.5 MPa in static pressure loss across the 

device. The transmission loss increases steadily with frequency with an observable 

resonant peak at 550 Hz. The hose does show a slight pressure-stiffening behavior over 

this narrow range of pressures, which is consistent with it having an elastomeric liner. 

Likewise, the transmission loss of the hose containing a tuner is shown in Figure 7-19, 

and the performance of the hose with tuner to the hose at 3.4 MPa is shown in Figure 

7-20. The hose with a tuner shows improved low-frequency TL compared to the hose and 

there is some resonant behavior observed: for instance, there are peaks in the TL at 

approximately 168 Hz, 289 Hz, and 384 Hz. Generally, however, the TL is very broad-

band, with at least 20 dB of TL above 260 Hz. This would not be expected in classic 
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quarter-wave behavior, where even-numbered modes in the branch result in low TL. 

Thus, the quarter-wave effect is likely not dominant and the viscous effects of leakage 

through the tuner have a more significant contribution to the TL, validating the claims of 

Drew [27]. Comparing the hose with a tuner to the hose with no tuner, in Figure 7-20, 

shows how the low-frequency performance is improved. The largest improvement in TL 

is at approximately 388 Hz, where the hose with tuner outperforms the hose without a 

tuner by 24.4 dB. The TL of the prototype tuning coil at 4.8 MPa is also shown in Figure 

7-20 for comparison, and reveals that the prototype has equal or higher peak TL and 

similar performance up to 500 Hz, except for the resonant peaks in the commercial 

device at 200 and 400 Hz. The most significant shortcoming of the prototype device is 

the lack of TL above 700 Hz, however, the prototype device has a full-flow diameter port, 

while the hose, with and without the tuner, is of much smaller diameter. 

 

Figure 7-18: Measured transmission loss of hydraulic hose at ♦ 1.4 MPa, ■ 2.1 MPa, and ▲ 3.4 MPa, 

○ frequencies of possible artifacts. 
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Figure 7-19: Measured transmission loss of commercially-available tuning coil at ♦ 1.4 MPa, ■ 2.1 

MPa, and ▲ 3.4 MPa, ○ frequencies of possible artifacts. 

 

Figure 7-20: Measured transmission loss at 3.4 MPa of ♦ tuning coil, ■ hydraulic hose, ● prototype 

tuning coil. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

This section summarizes the findings of this research and presents a path for 

future work in this vein of study. In terms of findings, the material property study of the 

syntactic foam compared to neat urethane liner materials is discussed, as is the change in 

these properties as functions of temperature and pressure. The equations derived for the 

compliance of cavities and waveguides are discussed, as is the development of theoretical 

models for the tuning coil and Herschel-Quincke tube. The conclusions from the 

experimental evaluation of tuning coils, both the prototype and a commercially-available 

device are also presented. For future work, this section discusses both developmental 

issues and research questions. Developmentally, questions related to the 

manufacturability and durability of syntactic foam are posed. In terms of future research 

topics, questions regarding material properties and other embodiments of this material in 

hydraulic systems are discussed. 

8.1 Conclusions 

This work has sought to characterize the performance of a syntactic foam lining in 

the context of traditional noise control components for hydraulic systems. It has been 

demonstrated that syntactic foam has a bulk modulus of up to four orders of magnitude 

less than neat urethane at 2.1 MPa: this leads to an increased compliance of two orders of 

magnitude, and yields the same physical effect of a pressurized bladder. This approach 

has the advantage of eliminating the maintenance requirements of a bladder by using a 

solid, compliant material. This results in a reduction in the volume of a Helmholtz 
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resonator by two orders of magnitude for the same resonance frequency. The bulk 

modulus for six different liner materials at three temperatures and eight pressures has 

been calculated using the transmission loss of a Helmholtz resonator coupled with a 

lumped-element model. In several ways, the liners behave as expected: they stiffen with 

increasing temperature and pressure consistent with the composition of the material post 

buckling of the material’s integral microspheres. It has been found that the behavior of 

the material post-buckling is dominated by the physics of the buckled microspheres, 

essentially gas pockets, and is not consistent with the properties of the elastomer at 

atmospheric pressure. Instead of temperature-softening, the material is temperature-

stiffening. A second-generation syntactic foam liner was developed that showed both 

deformation at a higher pressure and a delayed pressure-stiffening behavior at 33 C with 

respect to the first-generation syntactic foam with the same host material. 

A number of equations have been derived, based on thick shell theory, which 

estimate the compliance of cavities and waveguides using different geometric 

configurations of a cylindrical liner. A liner that is unconstrained within a device has the 

highest compliance as it remains in a hydrostatic stress state: when the liner is 

constrained or bonded to the inside of a shell or outside of an annulus, the stress state is 

no longer hydrostatic and the compliance of the liner decreases. The equations derived 

are used in the theoretical models to calculate and predict the effect of the syntactic foam 

liner on classical noise control devices. 

Theoretical models for a tuning coil and Herschel-Quincke tube have been 

constructed based on existing literature, but are modified to account for the presence of a 

compliant liner and use the equations derived for compliant waveguides. The compliance 
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of the liner has a dramatic effect on the frequency of the first resonance of the device, 

consistent with the reduction in the effective speed of sound in the branch determined by 

the compliance of the liner. The devices behave acoustically larger for the same physical 

size given a syntactic foam liner. Parameter studies for each device have also explored 

the role of the material damping in the transmission loss; increasing the tan δ of the liner 

reduces the peak TL but also raises the minimum TL past the first resonance which 

effectively raises the bandwidth of the device. As expected from the compliant 

waveguide equations derived in Chapter 4, the resonant frequency of the tuning coil or 

Herschel-Quincke tube is affected both by the bulk modulus and thickness of the liner. 

The theoretical model of a tuning coil fits the amplitude of the first resonant peak using 

the material properties determined in the study of Helmholtz resonators, but over-

estimates its compliance. Furthermore, higher-frequency behavior from the experiment 

does not exhibit quarter-wave behavior. However, fitting the Helmholtz resonator model 

to the experimental data better reflects the performance over a wide range of frequencies: 

this implies that the impedance of the throat of the tuning coil is too high relative to the 

impedance of the branch, resulting in poor coupling between higher frequencies in the 

main flow path and higher-order modes in the cavity. Finally, a commercially-available 

tuning coil was tested and compared to plain hose: the device performance was largely 

broad-band and dissipative and did not exhibit quarter-wave behavior. This confirmed 

claims from the literature regarding their performance. 

It has been demonstrated that syntactic foam has very advantageous behavior 

regarding its use as a liner material for noise control devices for fluid power systems. It is 

compliant at elevated pressures relative to hydraulic fluid, thus permitting physically 
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smaller devices for the same performance. The material properties at elevated pressure 

and temperature have been calculated by solving the inverse problem using a Helmholtz 

resonator – these properties, when used in the theoretical model of a tuning coil match the 

experimental data of the prototype tuning coil closely up to the first resonance. It has 

been shown that syntactic foam linings can make classical noise control devices compact 

and effective for use in hydraulic systems. 

8.2 Recommendations for Future Work 

This work has made inroads to the knowledge base necessary for complete 

investigation of syntactic foam linings for noise control devices for fluid power systems. 

Potential topics of future study are broken into four areas: investigation of syntactic foam 

material properties, manufacturing of syntactic foam, mechanical properties and the 

physics of microsphere collapse, and investigation of smart or active materials using 

syntactic foam. 

8.2.1 Material properties 

The material properties of the constituent parts of the syntactic foam – 

polystyrene microspheres and a urethane host matrix – need to be understood in terms of 

several parameters. First, more precise laboratory experiments are necessary to determine 

the material properties at elevated temperatures and pressures, as well as versus 

frequency. While the inverse-solution used here may be sufficient for basic engineering 

purposes, more precise methods are needed for proper design. This work has been limited 

to a single elastic constant – the bulk modulus of the material – while assuming a 

constant Poisson’s ratio at all strains in the material. This is most likely not true, but a 
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second elastic constant is unable to be uniquely determined by the method employed in 

this work and would require a different experimental arrangement to determine. 

Second, the plasticization of each material by mineral oil at elevated pressures 

and temperatures is a concern for the practicality of the approach. Is the effect of 

plasticization significant, and does it enhance or diminish the performance? How does 

extended exposure to elevated temperatures or pressures affect this process? There is also 

the question of whether the mineral oil may penetrate the microsphere wall and fill the 

voids, rendering them incompressible. 

8.2.2 Manufacturing and Development 

One issue encountered this work is the commercial availability of thick-walled 

microspheres. Most microspheres available on the market are relatively large and thin-

walled with critical pressures much lower than what would be ideal from a hydraulics 

standpoint. Thus, some manufacturing questions arise when considering how to raise the 

critical pressure of available microspheres. For one, is it possible to mix unexpanded 

microspheres in with the hot urethane, such that they expand during mixture and curing? 

Knowledge of this process may be a way to get smaller, denser microspheres in the 

syntactic foam. Alternately, is it possible to have microspheres filled with a material 

other than isobutene or isopentane? For example, if they are filled with a highly 

compressible liquid, such as a refrigerant, they may still collapse but at a higher critical 

pressure. 

With respect to the liners themselves, it may be of interest to develop functionally 

graded materials. That is, liners where the material properties change as a function of 

radius or length – this may be achieved by varying the volume fraction of microspheres, 
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the critical pressure of the microspheres, or the properties of the host material through 

one or more dimensions of the liner.  

8.2.3 Mechanical properties 

Many questions remain about the specific behavior of the microspheres in the 

syntactic foam as they collapse. How accurate is the critical buckling condition? Do the 

microspheres adhere to the urethane host, in such a way that their collapse may be 

affected? Is the collapse behavior hysteretic, and is the hysteresis significant enough to 

affect a device’s liner which may be tuned close to this point? Furthermore, there are 

questions regarding the geometry of the liner in the cavity. Can a solid cylinder be used 

in the cavity instead of a hollow one, and how might this affect the acoustic radiation into 

the cavity from the neck? 

8.2.4 Smart/Active Materials 

This work has demonstrated the ability of a material’s microstructure to effect 

large changes in compliance as a function of pressure. Given that a single material may 

have a single compliance-pressure curve, can this curve be modified such that the 

properties change for a given pressure? For example, magneto- and elasto-active or –

rheological materials change properties, particularly stiffness, with exposure to an electric 

or magnetic field. Embedding iron particles within the material as it is cast may both 

increase the material losses and make it sensitive to exposed electric or magnetic fields. 

Thus, the cavity compliance and resonant frequency would change and could be made 

robust to changes in the system. 
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APPENDIX A 

LINER DEFORMATION EQUATIONS 

A.1 Liner Deformation 

This derivation follows from Timoshenko’s equations for a thick-shell cylinder 

under pressure [54]. First, a differential element drawn as an arc-shaped wedge in the 

plane perpendicular to the central axis of the cylinder is considered, as shown in Figure 

8-1. Then, the forces are summed in the radial direction (the other two directions are 

trivial): 
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where subscripts r and t are the radial and circumferential directions,   is the angle of 

the differential element, and rd  is the inner arc length. Equation (A.1) simplifies to 
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Hooke’s Law in three dimensions, in cylindrical coordinates, is written in terms of the 

stresses as 
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Figure 8-1: Differential element in the cross-section of a thick shell. 

Equation (A.5) can also be written inversely as 
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Substituting Equation (A.3) and (A.4) into Equation (A.2) and cancelling terms yields the 

second order differential equation 
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The general solution to the PDE is 
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where C1 and C2 are constants. The stresses are 
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For the boundary conditions 
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corresponding to hydrostatic outer and inner pressure at the inner radius r = a and outer 

radius r = b, the constants of integration are 
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and 
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With the boundary conditions in (A.11) and (A.12), the stresses become 

 
 

 

2 22 2

2 2 2 2 2

i oi o
r

a b p pa p b p

b a r b a



 

 
 (A.15) 
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APPENDIX B 

COMPUTER CODE 

B.1 Speed of Sound 
 

%---------------------------------------------------------------------- 

% User-Defined Function to Determine the speed of sound for a given 
% section of pipe 
%---------------------------------------------------------------------- 

  
function [c] = SOS_func(omega,h01,h21,pipeprops,fluidprops,c0) 

  
% Pipe properties 
I01 = pipeprops.I01; % [m] distance between sensors 0 and 1 
I12 = pipeprops.I12; % [m] distance between sensors 1 and 2 
d = pipeprops.d; % [m] pipe inner diameter 
r0 = pipeprops.r0; % [m] pipe inner radius 
t = pipeprops.t; % [m] Wall thickness of the pipe 
Ew = pipeprops.Ew; % [Pa] Young's modulus of the steel pipe wall 

  
% Fluid properties 
visc = fluidprops.visc; % [m^2/sec] kinematic viscosity 
Df = fluidprops.Df; % [Pa] Bulk modulus of the hydraulic oil 
Rho = fluidprops.Rho; % [kg/m^3] Density of hydraulic oil 

  
% Script settings 
m = 1; % [ND] For loop index 
coher = 0.90; % [ND] value for coherence to be valid 
g = 0; % [ND] 1 = display graphics for SOS, 0 = no graphics 

  
% Determination of the velocity of the wave propagation pulsations 
% speed of sound) in a fluid enclosed by a homogeneous and straight 
% pipe using the three pressure transducer - method 1 - transducer 2 
% between 1 and 3 
%  c       final value speed of sound                           [m/s] 
%  I01     distance between pressure transducers 1 and 2        [m]  
%  I12     distance between pressure transducers 2 and 3        [m] 
%  d       inside diameter of the rigid pipe                    [m] 
%  visc    kinematic viscosity of the fluid at test conditions  [m^2/s] 
%  c0      initial chosen value of the speed of sound           [m/2] 
%  omega   (2*pi*f) vector of individual freq. used in msmts [rad/sec] 
% 
%  h01,h21 
%          2 dimensional matrices containing respectively, the transfer 
%          functions P1/P2 and associated coherence; and P2/P1 and 
%          associated coherence. that is h01(:,1) and h21(:,1) contain 
%          the transfer function in complex number format and h01(:,2) 
%          and h21(:,2) contain corresponding real number choerences. 
%          These matrices are of the same length as the omega vector.  
% 
%  coher   min value for coherence for msmts to be valid (typ. .95) 
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%  g       printing option (text and graphics on screen is g==1) 

  
% Now must input the transfer function data in magnitude and phase form 
% and convert it to complex notation to be passed to the function. Must 
% do this for both workspaces imported into the m-file. 

 
% -------- LOOKING FOR AVALIABLE FREQUENCIES  (coherence > min value) 
nrc = 0; % Initialize the number of available frequencies 

  
for nc = 1:length(omega) 
    if (h01(nc,2) * h21(nc,2) >= coher*coher) 
        nrc = nrc + 1; 
        nv(nc) = 1;  % Index the available frequencies 
    else 
        nv(nc) = 0;  % Index the unavailable frequencies 
    end 
end 

  
%------BEGINING OF THE LOOP ALGORTIHM------ 
a = omega + sqrt(2 * omega * visc) / d; 
b = (4 * visc) / (d * d) + sqrt(2 * omega * visc) / d; 

  
amjb = a - 1i*b; 

  
I01xamjb = I01 * amjb; 
I12xamjb = I12 * amjb; 

  
ik = 1; % Initialize number of iterations of the algorithm 

  
c = c0; 
dc = 10; 

  
while (abs(dc / c) > 0.0001) 
memc(ik) = c; % Memorize num of successive values for opt observations 
I01_ = I01xamjb / c; 
I12_ = I12xamjb / c; 

  
E = nv(:).*(sin(I12_).*h01(:,1)+sin(I01_).*h21(:,1)-sin(I01_+I12_)); 
dEsurdc = nv(:).*amjb/(c*c).*(-I12*cos(I12_).*h01(:,1)-... 
    I01*cos(I01_).*h21(:,1)+(I01+I12)*cos(I01_+I12_)); 

  
dc = -sum(E .* conj(dEsurdc)) / sum(dEsurdc .* conj(dEsurdc)); 
dc = real(dc); % real: force c to be real value 
c = abs(c + dc); % abs: force c to be positive value 

  
%--------TEXT ON SCREEN-------- 
if (g == 1) && (ik == 1) 
    fprintf('\nDetermination of Speed of Sound with '); 
    fprintf('Coherence Imposed. %g\n', coher); 
    fprintf('Number of Available Frequencies: '); 
    fprintf('%g on %g maximum\n', nrc, length(omega)); 
    fprintf('c%g=%6.2f dc=%6.4f\n',ik, c0, dc); 
else 
    fprintf('c%g=%6.2f dc=%6.4f\n', ik, memc(ik), dc); 
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end 

 
%--------WARNING MESSAGE-------- 
if (ik > 50) 
   fprintf('Number of Iteration Values > 50\n'); 
   fprintf('Something is Wrong! Verify the Initial Values\n'); 
   return 
end 

  
ik = ik + 1;   % Increment the Number of Iterations 
end 

  
%---------------------------------------------------------------------- 
%--------------------------- CORRECTION TEST -------------------------- 
%---------------------------------------------------------------------- 

  
% Need to see if the stiffness of the steel wall relative to the bulk 
% modulus of the fluid is a small enough ratio to warrant correction of 
% the bulk modulus of the fluid 

  
Dc = Df / (1 + (d/2) / t * Df / Ew); 

  
% Theoretical SOS: 
ctheo = sqrt(Dc / Rho); 

  
%--------GRAPHICS-------- 
fprintf('\nFinal Value of Speed of Sound = %6.0f m/s',real(c)); 
fprintf('\nTheoretical Value Speed of Sound = %6.0f m/s\n\n',... 
    real(ctheo)); 

  
if (g == 1), 
    np = 1:ik-1; 
    plot(np, memc(np),'*w', np, memc(np)); 
    grid on; 
    xlabel('Number of Iterations'); 
    ylabel('Speed of Sound [m/s]'); 
    title('Progression of the Algorithm'); 
    text(0.5, 0.5, ['Final Value = ', num2str(c)], 'sc'); 
end 

B.2 Transmission Loss 

This script (or used as a function) calculates the transmission loss given transfer 

functions from an experiment. 

%---------------------------------------------------------------------- 
% Program to Determine: 
% - The speed of sound in hydraulic fluid 
% - The reflection coefficient and apparent transmission loss (3-mic) 
% - The transmission loss through transfer matrix parameters 
% - May be ran either as a function or as a script 
%---------------------------------------------------------------------- 
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% function [header Freq phadiff Freq_TL TL] = TL_func(runname) 
function [Freq_TL TL temp] = TL_func(runname,calset) 

  
load(runname) 

  
% clear all 
% close all 
% clc 
%  

% Uncomment the line for the directory with the files to process 

% % newpath = '\2011-11-11 Data - No Lining 20C'; 
% % newpath = '\2011-09-17 Data - GR23-633 20C'; 
% % newpath = '\2011-09-20 Data - HRPG(12)-545 45C'; 
% % newpath = '\2011-09-09 Data - GR23 461-663 45C'; 
% % newpath = '\2012-02-17 Data - HRPG12 461-493 20C'; 
% % newpath = '\2012-04-06 Data - GR23 491-663 20C'; 
% newpath = '\2011-09-21 Data - GR23-633 HP 20C'; 
% % newpath = '\2012-04-06 Data - GR23 491-663 20C metal disc'; 
% path(path,[pwd,newpath]) 
%  
% load run08 
% calset = 2; 
showplots = 0; % 1=Yes 0=No 
coher = 0.95; 

 
% PIPE PROPERTIES 

 
I01 = 0.47; % [m] distance between sensors 0 and 1 
I12 = 0.33; % [m] distance between sensors 1 and 2 
I34 = 0.33; % [m] distance between sensors 3 and 4 
I45 = 0.47; % [m] distance between sensors 4 and 5 
d = 0.0206; % [m] pipe inner diameter 
r0 = d / 2; % [m] pipe inner radius 
t = 0.0087376; % [m] Wall thickness of the pipe 
Ew = 210e9; % [Pa] Young's modulus of the steel pipe wall 

  
pipepropsup=struct('I01',I01,'I12',I12,'d',d,'r0',d/2,'t',t,'Ew',Ew); 
pipepropsdown=struct('I01',I34,'I12',I45,'d',d,'r0',d/2,'t',t,'Ew',Ew); 

  
% FLUID PROPERTIES 
 

temp_pipe = mean(TempArray0C(1:30)); 
temp_cavity = mean(TempArray0F(1:30)); 

 
visc = 164.52e-6*exp(-0.032*temp_pipe); % kinematic viscosity 
c0 = 1400; % [m/s] initial speed of sound guess 
Df = 1724e6; % [Pa] Bulk modulus of the hydraulic oil 
Rho = 868; % [kg/m^3] Density of hydraulic oil 

  
fluidprops = struct('visc',visc,'Df',Df,'Ew',Ew,'Rho',Rho); 
lastrow = length(TF(:,1)); 

  
Freq = transpose(Freq); 
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omega = Freq(:,1)*2*pi; % [rad/sec] radial frequency interval vector 

  
% CALIBRATE TRANSFER FUNCTIONS 
 [h01,h21,h31,h41,h51,h34,h54,ccup,ccacross,ccdown,cc] = ... 
    CAL_func(TF,Power,coher,calset); 

  
% COMPUTE SPEED OF SOUND 
fprintf('Upstream SOS\n') 
cu = SOS_func(omega,h01,h21,pipepropsup,fluidprops,c0); 

  
fprintf('Downstream SOS\n') 
cd = SOS_func(omega,h34,h54,pipepropsdown,fluidprops,c0); 

  

  
% CALCULATE TRANSMISSION LOSS 

  
% ********************************************************************* 
%                            ___________ 
%___________________________|           |______________________________ 
%___________________________             ______________________________ 
%  |       |        |       |___________|       |         |          | 
% 
%  0       1        2                           3         4          5 
%  x0      x1       x2                          y0        y1         y2 
%               x --------->|         |--------> y 
%                          x=0       y=0 
%********************************************************************** 

  
% 0.139 is the distance from the test section to the resonator neck 

  
x2 = -0.275 - 0.139; 
x1 = x2 - 0.33; 
x0  = x1 - 0.47; 

  
y0 = 0.275 + 0.139; 
y1 = y0 + 0.33; 
y2 = y1 + 0.47; 

  
H01(1,1,:) = h01(:,1); 
H11(1,1,1:lastrow) = 1; 
H21(1,1,:) = h21(:,1); 

  
H31(1,1,:) = h31(:,1); 
H41(1,1,:) = h41(:,1); 
H51(1,1,:) = h51(:,1); 

  
zeta = 1 + sqrt(visc./(r0^2*1i*omega)) + visc./(r0^2*1i*omega); 

  
ku(1,1,:) = (omega / cu) .* zeta;   kd(1,1,:) = (omega / cd) .* zeta; 

  
Z0u = (Rho * cu * zeta) / (pi * r0^2); 
Z0d = (Rho * cd * zeta) / (pi * r0^2); 
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z = zeros(1,1,lastrow); 

  
A = [exp(-1i*ku*x2) exp(1i*ku*x2)   z               z; 
     exp(-1i*ku*x1) exp(1i*ku*x1)   z               z; 
     exp(-1i*ku*x0) exp(1i*ku*x0)   z               z; 
     z              z               exp(-1i*kd*y0)  exp(1i*kd*y0); 
     z              z               exp(-1i*kd*y1)  exp(1i*kd*y1); 
     z              z               exp(-1i*kd*y2)  exp(1i*kd*y2)]; 
e = [H21; H11; H01; H31; H41; H51]; 

  
xy = zeros(lastrow,4); % Rows 1:4 are waves A, B, D, and E respectively 
condxy = zeros(lastrow,1); 

  
for p = 1:lastrow 
    xy(p,:) = transpose(pinv(A(:,:,p)) * e(:,:,p)); 
    condxy(p,:) = cond(A(:,:,p)); 
end 

  
% Preallocate matrices 
Freq_R = zeros(sum(ccup),1); R = Freq_R; 
output_us = zeros(sum(ccup),4); 

  
count = 1; 
for ii = 1:lastrow 
    if (ccup(ii) == 0); 
    else 
        Freq_R(count,1) = Freq(ii); 
        % Silencer entrance reflection coefficient 
        R(count) = xy(ii,2) / xy(ii,1); 
        output_us(count,1:4) = [real(xy(ii,1)),imag(xy(ii,1)),... 
            real(xy(ii,2)),imag(xy(ii,2))]; 
        count = count + 1; 
    end 
end 

  
% Preallocate matrices 
Freq_ds = zeros(sum(ccdown),1); 
output_ds = zeros(sum(ccdown),4); 

  
count3 = 1; 
for ii = 1:lastrow 
    if (ccdown(ii) == 0); 
    else 
        Freq_ds(count3,1) = Freq(ii); 
        output_ds(count3,1:4) = [real(xy(ii,3)),imag(xy(ii,3)),... 
            real(xy(ii,4)),imag(xy(ii,4))]; 
        count3 = count3 + 1; 
    end 
end 

  
realR(:,1) = real(R); 
imagR(:,1) = imag(R); 
R2(:,1) = abs(R).^2; % Power reflection coefficient 

  
Z = Rho*cu*((1 + R) ./ (1 - R)); % Silencer entrance impedance 
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% Generate the Transfer Matrix 
p0 = xy(:,1) + xy(:,2); % Pressure at silencer entrance 
q0 = (xy(:,1) - xy(:,2)) ./ Z0u; % Velocity at silencer entrance 

  
pd = xy(:,3) + xy(:,4); % Pressure at silencer exit 
qd = (xy(:,3) - xy(:,4)) ./ Z0d; % Velocity at silencer exit 
% Velocity at silencer exit, different convention 
% qd2 = (-y(:,1) + y(:,2)) ./ Z0d;  

  
% pd = y(:,1); 
% qd = y(:,1) ./ Z0d; 

  
% Transfer matrix parameters 
T11 = (pd .* qd + p0 .* q0) ./ (p0 .* qd + pd .* q0); 
T12 = (p0.^2 - pd.^2) ./ (p0 .* qd + pd .* q0); 
T21 = (q0.^2 - qd.^2) ./ (p0 .* qd + pd .* q0); 
T22 = T11; 

  
% T11 = (p0 .* qd + pd .* q0) ./ (pd .* qd + p0 .* q0); 
% T12 = (p0 .* qd + pd .* q0) ./ (p0.^2 - pd.^2); 
% T21 = (p0 .* qd + pd .* q0) ./ (q0.^2 - qd.^2); 
% T22 = T11; 

  
z11 = (pd.*qd - p0.*q0)./(qd.^2 - q0.^2); % = z22 
z12 = (p0.*qd - pd.*q0)./(qd.^2 - q0.^2); % = z21 

  
z11amp = abs(z11); 
z11pha = angle(z11)*180/pi; 
z12amp = abs(z12); 
z12pha = angle(z12)*180/pi; 

  
% Reflection coefficient at entrance of downstream pipe 
Rd = xy(:,4) ./ xy(:,3);  
% kd2 = (omega / cd) .* zeta; 
% Termination silencer reflection coefficient 
% Rt(:,1) = (y(:,2).*exp(-1i*kd2*Lp)) ./ (y(:,1).*exp(1i*kd2*Lp));  
% Zt = Rho*cd*((1 + Rt) ./ (1 - Rt)); % Silencer entrance impedance 
% Relationship btw C and D at downstream face of silencer under test 
% Y(:,1) = abs(Rt .* exp(-2*1i*kd2*Lp)); 
% Y(:,1) = y(:,2) ./ y(:,1); 

  
% Relative to amplitude of wave A 
waveA = log10(abs(xy(:,1))./abs(xy(:,1))); 
waveB = log10(abs(xy(:,2))./abs(xy(:,1))); 
waveD = log10(abs(xy(:,3))./abs(xy(:,1))); 
waveE = log10(abs(xy(:,4))./abs(xy(:,1))); 

  
phaBA = angle(xy(:,2)./xy(:,1)); 
phaDC = angle(xy(:,4)./xy(:,3)); 
% diff = phaDC + phaBA; 
waveratio = (xy(:,2).*xy(:,4))./(xy(:,1).*xy(:,3)); 
phadiff = abs(angle(waveratio)); 
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ccpha = ones(1,2560);%(phadiff < -.6) | (phadiff > .6); 

  
Traveling_up = abs(xy(:,1) - xy(:,2).*exp(1i*phaBA)); 
Standing_up = abs(2*xy(:,2).*exp(1i*phaBA)); 

  
Traveling_down = abs(xy(:,3) - xy(:,4).*exp(1i*phaDC)); 
Standing_down = abs(2*xy(:,4).*exp(1i*phaDC)); 

  
% Preallocate matrices 
Freq_TL = zeros(sum(cc),1); TL = Freq_TL; TL1 = Freq_TL; TL2 = Freq_TL; 
TL3 = Freq_TL; TL4 = Freq_TL; TL_sd = Freq_TL; 

  
count2 = 1; 
for ii = 1:lastrow 
    if (cc(ii) == 0) || (ccpha(ii) == 0) 
    else 
        Freq_TL(count2,1) = Freq(ii); 

         
        T11(ii) = T11(ii) .* cc(ii); 
        T12(ii) = T12(ii) .* cc(ii); 
        T21(ii) = T21(ii) .* cc(ii); 
        T22(ii) = T22(ii) .* cc(ii); 

         
        t1 = sqrt(Z0d(ii)/Z0u(ii))*T11(ii); 
        t2 = T12(ii)/sqrt(Z0u(ii)*Z0d(ii)); 
        t3 = sqrt(Z0u(ii)*Z0d(ii))*T21(ii); 
        t4 = sqrt(Z0u(ii)/Z0d(ii))*T22(ii); 

         
        % System-independent TL 
        TL(count2,1) = 20*(log10((1/2)*abs(t1 + t2 + t3 + t4))); 

         
        TL1(count2,1) = 20*log10((1/2)*abs(t1)); 
        TL2(count2,1) = 20*log10((1/2)*abs(t2)); 
        TL3(count2,1) = 20*log10((1/2)*abs(t3)); 
        TL4(count2,1) = 20*log10((1/2)*abs(t4)); 

         
        % System-dependent TL 
        TL_sd(count2,1) = 20*log10((1/2)*abs(t1 + t2 + t3 + t4 + ... 
            Rd(ii).*(t1 - t2 + t3 - t4))); 

         
        count2 = count2 + 1; 
    end 
end 

  
% 

figure(6);subplot(3,1,1);plot(Freq_TL,TL1,Freq_TL,TL);subplot(3,1,2);..

. 
%     

plot(Freq_TL,TL2,Freq_TL,TL);subplot(3,1,3);plot(Freq_TL,TL3,Freq_TL,TL

) 

  
% Transmission loss using impedance parameters 
% TL_imped = 20*log10(0.5*abs(z11./z21 + z22./z21 + ... 
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%     (z11.*z22)./(z21.*Z0) + Z0./z21 - z12./Z0));%.* cc'; 

  
%% Typically Necessary Plot Commands 

  
if showplots == 1; 

  
    % Plot Power Spectra, Upstream Transfer Functions 
    figure 
    subplot(2,2,1) 
    semilogy(Freq,Power1,Freq,Power2,Freq,Power3) 
    grid on 
    title('Power Vrms^2') 
    legend('Power1','Power2','Power3') 

  
    subplot(2,2,2) 
    semilogy(Freq,Power4,Freq,Power5,Freq,Power6) 
    grid on 
    title('Power Vrms^2') 
    legend('Power4','Power5','Power6') 

  
    subplot(2,2,3) 
    plot(Freq,TF(:,2),Freq,TF(:,3)) 
    grid on 
    title('TF 0/1') 
    legend('Real','Imag') 

  
    subplot(2,2,4) 
    plot(Freq,TF(:,5),Freq,TF(:,6)) 
    grid on 
    title('TF 2/1') 
    legend('Real','Imag') 

  

  
    % Plot Coherence Vectors 
    figure 
    subplot(3,2,1) 
    plot(Freq,coher1) 
    grid on 
    title('Coherence of TF 0/1') 

  
    subplot(3,2,2) 
    plot(Freq,coher2) 
    title('Coherence of TF 2/1') 
    grid on 

  
    subplot(3,2,3) 
    plot(Freq,coher3) 
    title('Coherence of TF 3/1') 
    grid on 

  
    subplot(3,2,4) 
    plot(Freq,coher4) 
    title('Coherence of TF 4/1') 
    grid on 
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    subplot(3,2,5) 
    plot(Freq,coher5) 
    title('Coherence of TF 5/1') 
    grid on 

  
    subplot(3,2,6) 
    plot(Freq,coher6,Freq,coher7) 
    title('Coherence of TF 3/4, 5/4') 
    grid on 

  

  
    % Plot Reflection Coefficient 
    figure 
    plot(Freq_R,real(R),'.-',Freq_R,imag(R),'.-',Freq_R,abs(R),'.-') 
    grid on 
    xlabel('Frequency [Hz]') 
    title('Reflection Coefficient of Silencer Entrance') 
    legend('Real','Imag','Magnitude') 

  
    figure 
    plot(Freq_TL,TL,'.-') 
    grid on 
    xlabel('Frequency [Hz]') 
    ylabel('TL [dB]') 
    title('Transmission Loss') 

     
    figure 
    subplot(2,2,1) 
    plot(Freq,real(T11),Freq,imag(T11)) 
    legend('Real','Imag') 
    title('T11') 

     
    subplot(2,2,2) 
    plot(Freq,real(T12),Freq,imag(T12)) 
    legend('Real','Imag') 
    title('T12') 

     
    subplot(2,2,3) 
    plot(Freq,real(T21),Freq,imag(T21)) 
    legend('Real','Imag') 
    title('T21') 

     
    subplot(2,2,4) 
    plot(Freq,real(T22),Freq,imag(T22)) 
    legend('Real','Imag') 
    title('T22') 

  
    figure 
    plot(Freq,phadiff,Freq,zeros(1,length(Freq))) 
end 

  
%% Extraneous plot commands 
% figure(5) 
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% subplot(2,2,1) 
% plot(Freq,real(T11),Freq,imag(T11)) 
% title('T11') 
% xlabel('Frequency [Hz]') 
%  
% subplot(2,2,2) 
% plot(Freq,real(T12),Freq,imag(T12)) 
% title('T12') 
% xlabel('Frequency [Hz]') 
%  
% subplot(2,2,3) 
% plot(Freq,real(T21),Freq,imag(T21)) 
% title('T21') 
% xlabel('Frequency [Hz]') 
%  
% subplot(2,2,4) 
% plot(Freq,real(T22),Freq,imag(T22)) 
% title('T22') 
% xlabel('Frequency [Hz]') 
%  
% figure(6) 
% subplot(2,2,1) 
% plot(Freq,real(z11),Freq,imag(z11)) 
% title('Z11') 
% xlabel('Frequency [Hz]') 
%  
% subplot(2,2,2) 
% plot(Freq,real(z12),Freq,imag(z12)) 
% title('Z12') 
% xlabel('Frequency [Hz]') 
%  
% subplot(2,2,3) 
% plot(Freq,real(z21),Freq,imag(z21)) 
% title('Z21') 
% xlabel('Frequency [Hz]') 
%  
% subplot(2,2,4) 
% plot(Freq,real(z22),Freq,imag(z22)) 
% title('Z22') 
% xlabel('Frequency [Hz]') 

  
% Clear unwanted variables 

  
% clear coher1 coher2 coher3 coher4 coher5 coher6 coher 7 
% clear Power1 Power2 Power3 Power4 Power5 Power6 
% clear re1 re2 re3 re4 re5 re6 re7 im1 im2 im3 im4 im5 im6 im7 
% clear Rate index loopindex 

  
% Output Data 
% output1 = [Freq2 realR imagR R2 real(ATL)]; 
% output3 = [real(T11) imag(T11) real(T12) imag(T12) real(T21)... 
%     imag(T21) real(T22) imag(T22)]; 

  
% header = [Oil_Temp Liner_Temp]; 
temp = [temp_pipe temp_cavity]; 
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% rmpath([pwd,newpath]) 

B.3 Calibration 

This function calibrates the transfer functions given the calibration data. 

% Calibration function 

  
function [h01,h21,h31,h41,h51,h34,h54,ccup,ccacross,ccdown,cc] = ... 
    CAL_func(TF,Power,coher,calset) 

  
switch calset 
    case 1 
        load calibration_final_rms 
    case 2 
        load calibration_final_rms2 
    case 3 
        load calibration_final_rms3 
end 

  
% cal_TF (5994/5947, 5944/5947, 5966/5947, 5946/5947, 6537/5947, 

5966/5946, 6537/5946) 
% 0/1  2/1  3/1  4/1  5/1  3/4  5/4 

  
load calibration_noise_rms 
% cal_noise_power 

 
cal01(:,1) = cal_TF(:,2) + 1i*cal_TF(:,3); 
cal01(:,2) = cal_TF(:,4); 
cal21(:,1) = cal_TF(:,5) + 1i*cal_TF(:,6); 
cal21(:,2) = cal_TF(:,7); 
cal31(:,1) = cal_TF(:,8) + 1i*cal_TF(:,9); 
cal31(:,2) = cal_TF(:,10); 
cal41(:,1) = cal_TF(:,11) + 1i*cal_TF(:,12); 
cal41(:,2) = cal_TF(:,13); 
cal51(:,1) = cal_TF(:,14) + 1i*cal_TF(:,15); 
cal51(:,2) = cal_TF(:,16); 
cal34(:,1) = cal_TF(:,17) + 1i*cal_TF(:,18); 
cal34(:,2) = cal_TF(:,19); 
cal54(:,1) = cal_TF(:,20) + 1i*cal_TF(:,21); 
cal54(:,2) = cal_TF(:,22); 

 
SNR_cal(:,1) = 10*log10(Power(:,1) ./ cal_noise_power(:,1)); 
SNR_cal(:,2) = 10*log10(Power(:,2) ./ cal_noise_power(:,2)); 
SNR_cal(:,3) = 10*log10(Power(:,3) ./ cal_noise_power(:,3)); 
SNR_cal(:,4) = 10*log10(Power(:,4) ./ cal_noise_power(:,4)); 
SNR_cal(:,5) = 10*log10(Power(:,5) ./ cal_noise_power(:,5)); 
SNR_cal(:,6) = 10*log10(Power(:,6) ./ cal_noise_power(:,6)); 
SNR_cal(:,6) = 10*log10(Power(:,7) ./ cal_noise_power(:,7)); 

 
SNR(:,1) = 10*log10(Power(:,1) ./ cal_noise_power(:,1)); 
SNR(:,2) = 10*log10(Power(:,2) ./ cal_noise_power(:,2)); 
SNR(:,3) = 10*log10(Power(:,3) ./ cal_noise_power(:,3)); 
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SNR(:,4) = 10*log10(Power(:,4) ./ cal_noise_power(:,4)); 
SNR(:,5) = 10*log10(Power(:,5) ./ cal_noise_power(:,5)); 
SNR(:,6) = 10*log10(Power(:,6) ./ cal_noise_power(:,6)); 
SNR(:,7) = 10*log10(Power(:,7) ./ cal_noise_power(:,7)); 

 
% Assign matrices with the complex notation 
h01(:,1) = TF(:,2) + 1i*TF(:,3); % 5994/5947 
h01(:,2) = TF(:,4); 
h21(:,1) = TF(:,5) + 1i*TF(:,6); % 5944/5947 
h21(:,2) = TF(:,7); 

 
h31(:,1) = TF(:,8) + 1i*TF(:,9); 
h31(:,2) = TF(:,10); 
h41(:,1) = TF(:,11) + 1i*TF(:,12); 
h41(:,2) = TF(:,13); 
h51(:,1) = TF(:,14) + 1i*TF(:,15); 
h51(:,2) = TF(:,16); 

 
h34(:,1) = TF(:,17) + 1i*TF(:,18); 
h34(:,2) = TF(:,19); 
h54(:,1) = TF(:,20) + 1i*TF(:,21); 
h54(:,2) = TF(:,22); 

 
% Calibrate 
h01(:,1) = h01(:,1) ./ cal01(:,1); 
h21(:,1) = h21(:,1) ./ cal21(:,1); 
h31(:,1) = h31(:,1) ./ cal31(:,1); 
h41(:,1) = h41(:,1) ./ cal41(:,1); 
h51(:,1) = h51(:,1) ./ cal51(:,1); 
h34(:,1) = h34(:,1) ./ cal34(:,1); 
h54(:,1) = h54(:,1) ./ cal54(:,1); 

 
lastrow = length(cal_TF(:,1)); 

 
for m = 1:lastrow 
% Establish a matrix with the coherence info 
    if (TF(m,4) < coher) || (TF(m,7) < coher) || (cal_TF(m,4) < 

coher)... 
            || (cal_TF(m,7) < coher) 
        ccup(m,1) = 0; 
    else 
        ccup(m,1) = 1; 
    end 

  
    if (TF(m,10) < coher) || (TF(m,13) < coher) || (TF(m,16) < coher) 

||... 
            (cal_TF(m,10) < coher) || (cal_TF(m,13) < coher) ||... 
            (cal_TF(m,16) < coher) 
        ccacross(m,1) = 0; 
    else 
        ccacross(m,1) = 1; 
    end 

  
    if (TF(m,19) < coher) || (TF(m,22) < coher) 
        ccdown(m,1) = 0; 
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    else 
        ccdown(m,1) = 1; 
    end 
end 

  
cc = ccup .* ccacross; 

B.4 Helmholtz Resonator 

B.4.1 Modeling Function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Code written to model hydraulic Helmholtz resonators 

% Can be run as a function or as a script 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function [TL] = resonator_func(El0,w) 

  
global n Pm temp_cavity linernum ce wr nul Bf Bs Bl 

  
% clear all 
% close all 
% clc 
%  
% % newpath = '\2011-09-15 Data - GR9 20C'; 
% newpath = '\2011-09-14 Data - GR9-625 20C'; 
% % newpath = '\2011-09-16 Data - GR23 45C'; 
% % newpath = '\2011-09-21 Data - GR23-633 HP 45C'; 
% % newpath = '\2011-09-09 Data - GR23 461-663 45C'; 
% % newpath = '\2011-09-19 Data - HRPG(12) 45C'; 
% % newpath = '\2011-09-20 Data - HRPG(12)-545 45C'; 
% % newpath = '\2012-02-17 Data - HRPG12 461-493 45C'; 
% path(path,[pwd,newpath]) 
%  
% % % Liner_Order = 
% % linernum = 1; nul = 0.4995;% - GR9 
% linernum = 2; nul = 0.45;% - GR9-625 
% % linernum = 3; nul = 0.4995;% - GR23 
% % linernum = 4; nul = 0.45;% - GR23-633 
% % linernum = 5; nul = 0.4995;% - HRPG(12) 
% % linernum = 6; nul = 0.45;% - HRPG(12)-545 
% % linernum = 7; nul = 0.45;% - GR23 461-663 
% % linernum = 8; nul = 0.45;% - HRPG(12) 461-493 
%  
% n = 8; 
%  
% if n < 10 
%     runnum = strcat('run0',num2str(n)); 
% else 
%     runnum = strcat('run',num2str(n)); 
% end 
%  
% calset = 2; 
% [Freq_TL, TL_exp(:,n), temp] = TL_func(runnum,calset); 
% Freq = Freq_TL; 
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% temp_cavity(n) = temp(1); % [C] 
% temp_pipe(n) = temp(2); % [C] 
%  
% rowmin = 1;%6; % Rows corresponding to frequencies of interest 
% rowmax = 284; 
% w = Freq*2*pi; % [rad/sec] 
% w = w(rowmin:rowmax); 
% Freq = w/2/pi; 
% Pm = [300:100:1000 1500:500:3000]*6894.76; % [Pa] 
%  
% % Liner Young's modulus 
% % El0 = [2e9 1e8]; % [Pa] 
% [Elr,Eli] = interp(temp_cavity(n),n,linernum); 
% % Eli = 0.6*Elr; 

  
load Liner_Volume_Resonator.mat 

  
% SHELL 
Lr = 97.28 /1000; % [m] Inside length of shell 
% r3 = 13.30 /1000; % [m] Inner radius of liner 
r50 = 31.75 /1000; % [m] Inner radius of shell 
r60 = 44.45 /1000; % [m] Outer diameter of cavity wall 
Es = 210e9; % [Pa] Young's modulus of cavity wall (steel) 
nus = 0.3; % [ND] Poisson's ratio of cavity wall (steel) 

  
% Calculate r5 and r6 as functions of pressure 
r5 = r50 + (Pm(n)*r50/Es)*((r60^2 + r50^2)/(r60^2 - r50^2) + nus); 
r6 = r60 + (2*Pm(n)*r50^2*r60)/(Es*(r60^2 - r50^2)); 

  
Vc = Lr*pi*r5^2; % [m^3] Volume of cavity 

  
% LINER 
% El = Elr + 1i*Eli; % [Pa] Given bulk modulus estimate 
El = El0(1) + 1i*El0(2); 
Vl = Liner_Volume(n+3,linernum+2); % [m^3] 
% ml = Liner_Mass(linernum)/1000; % [kg] Mass of liner 

  
% FLUID 
% Total volume of fluid 
Vf = Vc - Vl; 

  
% AIR 
% ma = 1e-7; % kg 
K = 1.4; % Specific heat ratio for air 
% Ko = T_liner(n) + 273.15; % Temperature of air in Kelvin 
% R = 287.04; % [J/kg*K] Specific gas constant for dry air 
% Va = ma*R*Ko/Pm(n); % [m^3] Volume of air 
% Ba = K*Pm(n); % [Pa] Bulk modulus of air 
X0 = 0.00; % e.g.: .001 = 0.1%, .01 = 1%, .1 = 10% 
P0 = 0.1e6; % [Pa] Atmospheric pressure 
rhoa0 = 1.2; % [kg/m^3] Density of air at standard conditions 
Va0 = Vf*X0; % [m^3] Volume of air at standard conditions 
Va = Va0*(Pm(n)/P0)^(-1/K); % [m^3] Volume of air at pressure/temp 
if Va ~=0 
    rhoa = rhoa0*Va0/Va; % [kg/m^3] Density of air 



148 

 

elseif Va == 0 
    rhoa = 0; 
end 

  
ma = rhoa*Va; 

  
% OIL 
visc_cavity = 178.4176*exp(-0.0344*temp_cavity(n)); % [cSt] 
visc_cavity_si = visc_cavity*10^-6; % [Pa-s] 
B0t = 10^(0.3766*(log10(visc_cavity))^(0.3307) - 0.2766); % [GPa] 
At = -0.01382*temp_cavity(n) + 5.851; % [GPa/GPa] 
Bpt = (B0t + At*(Pm(n)/1e9))*1e9; % [Pa] 

  
Bf = (1 - X0 + X0.*(P0/Pm(n)).^(1/K))./... 
    ((X0/(K*Pm(n)))*(P0/Pm(n))^(1/K) + (1 - X0)/Bpt); 

  
rhoo = 915; % [kg/m^3] Density of hydraulic fluid  
Vo = Vf - Va; % [m^3] Volume of oil 
mo = Vo*rhoo; % [kg] Mass of oil 
rhof = (mo + ma)/Vf; % [kg/m^3] Density of fluid 
c = sqrt(Bf/rhof); % [m/s] Speed of sound in rigid pipe 

  
% TEST PIPE 
d = 0.0206; % [m] Diameter of pipe 
rp = d/2; % [m] Radius of pipe 
Sp = pi*rp^2; % [m^2] Area of pipe 

  
% NECK 
rn = 2.97 /1000; % [m] Radius of resonator neck 
Ln = 37.34 /1000; % [m] Length of resonator neck 
Sn = pi*rn^2; % [m^2] Area of resonator neck 
Lneff = Ln + 1.7*rn; % [m] Effective length of neck 
m = rhoo*Sn*Lneff; % [kg] Mass of fluid in neck 

  
% The mass is fixed regardless of fr 
L = m/Sn^2; 

  
% Compute mechanical compliance of shell [Pa] 
Bs = 1/((2/Es)*((r6^2 + r5^2)/(r6^2 - r5^2) + nus)); % [Pa] 

  
% Compute compliance of cavity with compliant liner [Pa] 
Bl = 1/((Vl*(3-4*nul))/(El*(Vc-Vl))); 

  
% Net compliance of cavity (springs in series) C=V/B 
C = Vf*(1/Bf + 1/Bl + 1/Bs); 

  
ce = sqrt(Vf/(rhof*C)); % [m/s] Effective speed of sound in cavity 
k = w/c; % [1/m] Wavenumber in fluid in neck 
ke = w/ce; % [1/m] Effective wavenumber in cavity 

  
% Calculate damping terms 
% zeta is complex wavenumber in fluid in neck 
zeta = k.*(1+sqrt(visc_cavity_si./(rn^2*1i*w))+... 
    visc_cavity_si./(rn^2*1i*w)); 



149 

 

  
% damping is the loss factor of the complex wavenumber of fluid in neck 
alphaw = abs(imag(zeta) ./ real(zeta)); 

  
Rw = 2*m*w.*alphaw; % Viscous resistance 
Rr = (rhoo*ce*ke.^2*Sn^2)/(2*pi); % Radiation resistance 

  
% Calculate impedance of resonator 
Rh = (Rw+Rr)/Sn^2; 
Xh = w*L - 1./(w*C); 
Zh = Rh + 1i*Xh; 

  
[~, minind1] = min(abs(imag(Zh))); 
wr = w(minind1); 

  
% Calculate T-matrix terms 
T11 = 1; T12 = 0; T21 = 1./Zh; T22 = 1; 

  
% Impedance of connecting pipe 
Z0 = (rhoo*c) / Sp; 

  
% Calculate the transmission loss 
TL = 20*log10(0.5*abs(T11 + T12/Z0 + Z0*T21 + T22)); 

  
% figure(n) 
% plot(Freq,TL,Freq,TL_exp(rowmin:rowmax,n),'o') 
% xlabel('Frequency [Hz]') 
% ylabel('Transmission Loss [Hz]') 
% legend('Model','Experiment') 
%  
% rmpath([pwd,newpath]) 

B.4.2 Least-Squares Code 

% Script to perform nonlinear least squares on Helmholtz Resonator 
% model to find the complex bulk modulus of the liner 

  
clear all 
close all 
clc 

  
% newpath = '\2011-09-15 Data - GR9 45C'; 
% newpath = '\2011-09-14 Data - GR9-625 45C'; 
% newpath = '\2011-09-16 Data - GR23 20C'; 
% newpath = '\2011-09-21 Data - GR23-633 HP 20C'; 
% newpath = '\2011-09-09 Data - GR23 461-663 20C'; 
newpath = '\2011-09-19 Data - HRPG(12) 20C'; 
% newpath = '\2011-09-20 Data - HRPG(12)-545 20C'; 
% newpath = '\2012-02-17 Data - HRPG12 461-493 20C'; 

  
path(path,[pwd,newpath]) 

  
global n Pm temp_cavity linernum ce wr nul Bf Bs Bl 
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calset = 2; 

  
% % Liner_Order = 
% linernum = 1; nul = 0.4995;% - GR9 
% linernum = 2; nul = 0.45;% - GR9-625 
% linernum = 3; nul = 0.4995;% - GR23 
% linernum = 4; nul = 0.45;% - GR23-633 
linernum = 5; nul = 0.4995;% - HRPG(12) 
% linernum = 6; nul = 0.45;% - HRPG(12)-545 
% linernum = 7; nul = 0.45;% - GR23 461-663 
% linernum = 8; nul = 0.45;% - HRPG(12) 461-493 

  
set(0, 'DefaultFigureWindowStyle', 'docked') 

  
cd([pwd,newpath]) 
numfiles = length(dir('run**.mat')); % Number of data files 
cd .. 

  
Pm = [300:100:1000 1500:500:3000]*6894.76; % [Pa] 
% Pm = [300:100:1000]*6894.76; % [Pa] 

  
for n = 1:numfiles 
    if n < 10 
        runnum = strcat('run0',num2str(n)); 
    else 
        runnum = strcat('run',num2str(n)); 
    end 

     
    if n < 8 
        El0 = [1e10 0.5e10]; % Bulk modulus of liner initial guess [Pa] 
    else 
        El0 = [1e10 0.5e10]; % Bulk modulus of liner initial guess [Pa] 
    end 

     
    % Call the TL function to get the experimental data 
    [Freq_exp, TL_exp(:,n), temp] = TL_func(runnum,calset); 

     
    temp_cavity(n,1) = temp(1); % [C] Oil Temperature 
    temp_pipe(n,1) = temp(2); % [C] Outside of liner temperature 

     
    Linertemp = mean(temp_cavity); 

     
    rowmin = 6; % Rows corresponding to frequencies of interest 
    rowmax = 284; 

  
    w = Freq_exp*2*pi; % [rad/sec] 
    w_fit = w(rowmin:rowmax); 

  
    % Run optimization function to find values of the bulk modulus that 
    % will best fit the model to the experiment 
    optns = optimset('TolFun',1e-9); 
    [young(n,1:2),resnorm,residual,exitflag,output,lambda,jacobian]=... 
        lsqcurvefit(@resonator_func,El0,w_fit,... 
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        TL_exp(rowmin:rowmax,n),[.01 .01],[1e15 1e15],optns); 

  
    bulk(n,1) = real((young(n,1) + 1i*young(n,2))/(3*(1-2*nul))); 
    bulk(n,2) = imag((young(n,1) + 1i*young(n,2))/(3*(1-2*nul))); 

  
    TL_model(:,n) = resonator_func(young(n,1:2),w); 

  
    % Calculate the peak value of TL, and the location of this value 
    [peak_TL(n,1), index] = max(TL_model(:,n)); 

     
    % Calculate the frequency at which the TL peaks 
    peak_Freq(n,1) = Freq_exp(index); 

     
    % Calculate the locations of the bandwidth points 
    [~, minind1] = min(abs(TL_model(1:index,n) + 3 - peak_TL(n,1))); 
    [~, minind2] = min(abs(TL_model(index:length(TL_model(:,n)),n)... 
        + 3 - peak_TL(n,1))); 
    minind2 = minind2 + length(TL_model(1:index)); 

     
    % Calculate the bandwidth from those frequency locations 
    Bandwidth(n,1) = Freq_exp(minind2) - Freq_exp(minind1); 

     
    % Calculate the quality factor 
    Q_Factor(n,1) = peak_Freq(n,1) / Bandwidth(n,1); 

     
    % Save the effective speed of sound 
    c_eff(n,1) = real(ce); 

     
    % Save the resonance frequency 
    fr(n,1) = transpose(wr/2/pi); 

     
    Bf_(n,1:2) = [real(Bf) imag(Bf)]; 
    Bs_(n,1:2) = [real(Bs) imag(Bs)]; 
    Bl_(n,1:2) = [real(Bl) imag(Bl)]; 

      

     
    % Plot each data set and its model fit 
    figure(n) 
    plot(w/2/pi,TL_model(:,n),Freq_exp(rowmin:rowmax),... 
        TL_exp(rowmin:rowmax,n),'o') 
    xlabel('Frequency [Hz]') 
    ylabel('Transmission Loss [Hz]') 
    legend('Model','Experiment') 
    axis([0 ceil(Freq_exp(rowmax)) 0 16]) 
end 

  
% Create a matrix to output the data to Excel 
dataoutput = [temp_pipe temp_cavity fr peak_Freq peak_TL Bandwidth... 
    Q_Factor c_eff bulk(:,1)/1e9 bulk(:,2)/1e9 bulk(:,2)./bulk(:,1)]; 

  
% Plot the bulk modulus and tan delta 
figure 
plotyy(Pm(1:numfiles),bulk(:,1),Pm(1:numfiles),... 
    atan(bulk(:,2)./bulk(:,1))) 
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xlabel('Static Pressure [Pa]') 
ylabel('Storage Modulus [Pa]') 

  
rmpath([pwd,newpath]) 

B.5 Tuning coil 

The code use to model the tuning coil is given in the following section. The code 

calls the function that calculates transmission loss (shown in Section B.2) for the purpose 

of comparing the model to experimental data. 

B.5.1 Modeling Function 

%---------------------------------------------------------------------- 
% Code written to model hydraulic tuning coils. This code is written   

% such that it can be run as a script or called as a function 
%---------------------------------------------------------------------- 

  
% function [TL_model] = tuningcoil_func(vars,w) 
%  
% global n Pm T_oil nul 

  
clear all 
close all 
clc 

  
% newpath = '\2012-04-20 Data - GR9-625 New Termination'; 
% newpath = '\2012-09-22 Data - Empty Blocked-In'; 
newpath = '\2012-10-12 Data - GR23 461-663 Pump'; 
% newpath = '\2012-10-12 Data - GR9-625 Pump'; 
path(path,[pwd,newpath]) 

  
% % Liner_Order = 
% linernum = 1; nul = 0.4995;% - GR9 
% linernum = 2; nul = 0.45;% - GR9-625 
% linernum = 3; nul = 0.4995;% - GR23 
% linernum = 4; nul = 0.45;% - GR23-633 
% linernum = 5; nul = 0.4995;% - HRPG(12) 
% linernum = 6; nul = 0.45;% - HRPG(12)-545 
linernum = 7; nul = 0.45;% - GR23 461-663 
% linernum = 8; nul = 0.45;% - HRPG(12) 461-493 

  
n = 8; 

  
if n < 10 
    runname = strcat('run0',num2str(n)); 
else 
    runname = strcat('run',num2str(n)); 
end 
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calset = 3; 
% Calculate transmission loss of experimental data for comparison 
[Freq_TL, TL_exp, temp(n,:), phadiff] = TL_func(runname,calset); 
Freq = Freq_TL; % [Hz] 
temp_cavity(n) = temp(n,2); % [C] 
temp_pipe(n) = temp(n,1); % [C] 
Pm = [300:100:1000 1500:500:3000]*6894.76; % [Pa] 

  
[ELr,Eli] = interp(temp_cavity(n),n,linernum); 
EL = ELr + 1i*Eli; 

  
w = Freq*2*pi; % [rad/sec] 
s = 1i*w; % [rad/sec] 

  
% Port 1 is input from pipe 
% Port 2 is output from tuner into junction 
% Port 3 is base of annulus 
% Port 4 is output of annulus at junction 

  
% Transfer matrix [P4 Q4]' = [T34]*[P3 Q3]' 

  
load Liner_Volume_Resonator.mat 

  
% SHELL 
Es = 210e9; % [Pa] Young's modulus of shell (steel) 
nus = 0.3; % [ND] Poisson's ratio of shell (steel) 
Ls = 104.14 /1000; %[m] Length of annulus 
L = Liner_L(n+3,linernum+2) /1000; % [m] Length of annulus 
rp = 10.30 /1000; % [m] Inner radius of connecting pipe 
Sp = pi*rp^2; % [m^2] Area of pipe 
r1 = 9.33 /1000; % [m] Inner radius of annulus 
r2 = 10.62 /1000; % [m] Outer radius of annulus 
r3 = Liner_r3(n+3,linernum+2)/1000; % [m] Inner radius of liner 
r4 = Liner_r4(n+3,linernum+2)/1000; % [m] Outer radius of liner 
r50 = 31.75 /1000; % [m] Inner radius of shell 
r60 = 44.45 /1000; % [m] Outer radius of shell 

  
% Calculate r5 and r6 at elevated pressure 
r5 = r50 + (Pm(n)*r50/Es)*((r60^2 + r50^2)/(r60^2 - r50^2) + nus); 
r6 = r60 + (2*Pm(n)*r50^2*r60)/(Es*(r60^2 - r50^2)); 

  
Vs = Ls*pi*(r5^2 - r2^2); % [m^3] Volume inside shell 

  
% LINER 
% El = Bl0(1) + 1i*Bl0(2); % [Pa] Given bulk modulus estimate 
Vl = Liner_Volume(n+3,linernum+2); % [m^3] 
ml = Liner_Mass(linernum)/1000; % [kg] Mass of liner 
if Vl == 0 
    rhol = 0; 
else 
    rhol = ml/Vl; % [kg/m^3] Density of liner 
end 

  
% FLUID 
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% Total volume of fluid 
Vf = Vs - Vl; 

  
% AIR 
% ma = 1e-7; % kg 
K = 1.4; % Specific heat ratio for air 
% Ko = T_liner(n) + 273.15; % Temperature of air in Kelvin 
% R = 287.04; % [J/kg*K] Specific gas constant for dry air 
% Va = ma*R*Ko/Pm(n); % [m^3] Volume of air 
% Ba = K*Pm(n); % [Pa] Bulk modulus of air 
X0 = 0; 
P0 = 0.1e6; % [Pa] Atmospheric pressure 
rhoa0 = 1.2; % [kg/m^3] Density of air at standard conditions 
Va0 = Vf*X0; % [m^3] Volume of air at standard conditions 
Va = Va0*(Pm(n)/P0)^(-1/K); % [m^3] Volume of air at pressure/temp 
if Va ~=0 
    rhoa = rhoa0*Va0/Va; % [kg/m^3] Density of air 
elseif Va == 0 
    rhoa = 0; 
end 

  
ma = rhoa*Va; 

  
% OIL IN WAVEGUIDE 
visc_cavity = 178.4176*exp(-0.0344*temp_cavity(n)); % [cSt] 
visc_cavity_si = visc_cavity*10^-6; % [Pa-s] 

  
B0t_w = 10^(0.3766*(log10(visc_cavity))^(0.3307) - 0.2766); % [GPa] 
At_w = -0.01382*temp_cavity(n) + 5.851; % [GPa/GPa] 
Bpt_w = (B0t_w + At_w*(Pm(n)/1e9))*1e9; % [Pa] 

  
Bf_w = (1 - X0 + X0.*(P0/Pm(n)).^(1/K))./... 
    ((X0/(K*Pm(n)))*(P0/Pm(n))^(1/K) + (1 - X0)/Bpt_w); 

  
% OIL IN PIPE 
visc_pipe = 178.4176*exp(-0.0344*temp_pipe(n)); % [cSt] 
visc_pipe_si = visc_pipe*10^-6; % [Pa-s] 
B0t_p = 10^(0.3766*(log10(visc_cavity))^(0.3307) - 0.2766); % [GPa] 
At_p = -0.01382*temp_cavity(n) + 5.851; % [GPa/GPa] 
Bpt_p = (B0t_p + At_p*(Pm(n)/1e9))*1e9; % [Pa] 

  
Bf_p = (1 - X0 + X0.*(P0/Pm(n)).^(1/K))./... 
    ((X0/(K*Pm(n)))*(P0/Pm(n))^(1/K) + (1 - X0)/Bpt_p); 

  
rhoo = 915; %  [kg/m^3] Density of hydraulic fluid 

  
% Stiffness of outer flow path of annular cylinder in a rigid shell 
Bc = inv((2*r4^2*(1-nul))/(EL(n)*(r5^2-r4^2))); 

  
% Calculate the effective bulk modulus of the fluid in the waveguide 
Be = inv(1/Bf_w + 1/Bc); 

  
c1 = sqrt(Bf_p/rhoo); % [m/s] Speed of sound within annulus 
cu = c1; cd = c1; % [m/s] Speed of sound in connecting pipes 
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c2 = sqrt(Be/rhoo); % [m/s] Speed of sound in waveguide 

  
% Loss factor for acoustic propagation in pipe 
arg = 1i*r1*sqrt(s/visc_pipe_si); 
alpha = (1 - 2*besselj(1,arg)./(arg.*besselj(0,arg))).^(-0.5); % [ND] 
% alpha = 1 + sqrt(visc_pipe_si ./ (s*r1^2)) + visc_pipe_si ./(s*r1^2); 

  
% Loss factor for acoustic propagation in waveguide 
x = sqrt(s*r5^2/visc_cavity_si); 
m = r4/r5; % [ND] 

  
% Method of Washio and Konishi for attenuation in annular pipe 
G = 1 + 1./((1-m)*x) + 3./(2*(1-m)^2*x.^2) - ... 
    (1-22*m+m^2)./(8*m*(1-m)^3*x.^3); 

  
gamma1 = s.*alpha/c1; % [1/m] Wavenumber in pipe 
gamma2 = s.*G/c2; % [1/m] Wavenumber in oil (annulus) 

  
Zc1 = rhoo*c1*alpha; % [] Specific impedance of oil in pipe 
Zc2 = rhoo*c2*G; % [] Specific impedance of oil in annulus 

  
Z0u(:,1) = (rhoo*cu*alpha)/(pi*rp^2); % [] Specific impedance of pipe 
Z0d(:,1) = (rhoo*cd*alpha)/(pi*rp^2); % [] Specific impedance of pipe 

  
T12_11(1,1,:) = cosh(gamma1*L); 
T12_12(1,1,:) = Zc1.*sinh(gamma1*L)/(pi*r1^2); 
T12_21(1,1,:) = pi*r1^2*sinh(gamma1*L)./Zc1; 
T12_22(1,1,:) = cosh(gamma1*L); 

  
T12 = [T12_11 T12_12; T12_21 T12_22]; 

  
T34_11(1,1,1:length(w)) = 1; 
T34_12(1,1,1:length(w)) = 0; 
T34_21(1,1,:) = pi*(r5^2-r4^2)*tanh(gamma2*L)./Zc2; 
T34_22(1,1,1:length(w)) = 1; 

  
T34 = [T34_11 T34_12; T34_21 T34_22]; 

  
% Preallocate matrix 
T15 = zeros(2,2,length(Freq)); 

  
for p = 1:length(w) 
    T15(:,:,p) = T34(:,:,p) * T12(:,:,p); 
end 

  
t1 = sqrt(Z0d./Z0u).*squeeze(T15(1,1,:)); 
t2 = squeeze(T15(1,2,:))./sqrt(Z0u.*Z0d); 
t3 = sqrt(Z0u.*Z0d).*squeeze(T15(2,1,:)); 
t4 = sqrt(Z0u./Z0d).*squeeze(T15(2,2,:)); 

  
% System-independent TL 
TL_model(:,1) = 20*log10((1/2)*abs(t1 + t2 + t3 + t4)); 
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% plot(f,TL_model,'-') 
% xlabel('Frequency [Hz]') 
% ylabel('Transmission Loss [dB]') 
% legend('Model') 
% titlestring = strcat('Liner outer radius ',num2str(r4*1000),' mm'); 
% title(titlestring) 
% xlim([0 5000]) 
% hold on 

  
figure 
subplot(2,2,1) 
plot(Freq,real(t1),Freq,imag(t1)) 
subplot(2,2,2) 
plot(Freq,real(t2),Freq,imag(t2)) 
subplot(2,2,3) 
plot(Freq,real(t3),Freq,imag(t3)) 
subplot(2,2,4) 
plot(Freq,real(t4),Freq,imag(t4)) 

  
figure 
subplot(2,1,1) 
plot(Freq,TL_model,'-',Freq_TL,TL_exp,'.') 
xlabel('Frequency [Hz]') 
ylabel('Transmission Loss [dB]') 
legend('Model','Experiment') 

  
subplot(2,1,2) 
plot(Freq,phadiff) 
xlabel('Frequency [Hz]') 
ylabel('Phase condition') 

  
rmpath([pwd,newpath]) 

B.5.2 Modulus Interpolation 

The output of the material property investigation is stored in a 4-D matrix named 

“Liner_Properties.” This script interpolates between values in this matrix. 

function [ELr, ELi] = interp(temp_cavity,n,linernum) 

  
load Liner_Properties 

  
ELr1 = E_L(n,1,linernum,1); 
ELr2 = E_L(n,1,linernum,2); 

  
ELi1 = E_L(n,2,linernum,1); 
ELi2 = E_L(n,2,linernum,2); 

  
TLc1 = T_L(n,2,linernum,1); 
TLc2 = T_L(n,2,linernum,2); 

  
ELr = ELr1 + (ELr2-ELr1)*(temp_cavity - TLc1)/(TLc2 - TLc1); 
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ELi = ELi1 + (ELi2-ELi1)*(temp_cavity - TLc1)/(TLc2 - TLc1); 

  
end 

B.6 Herschel-Quincke Tube 

For the Herschel-Quincke tube, its performance was studied theoretically – the 

code used to model the device is given in the section following. 

B.6.1 Modeling Code 

% Model the Herschel-Quincke tube per the method in Hastings and Chen 
% including a function to determine the waveguide compliance due to the 
% presence of a compliant, lossy liner. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
% function [TL_model] = hq_function(vars,w) 
%  
% global n Pm T_oil nul 

 
clear all 
close all 
clc 

 
% % Liner_Order = 
% linernum = 1; nul = 0.4995;% - GR9 
% linernum = 2; nul = 0.45;% - GR9-625 
% linernum = 3; nul = 0.4995;% - GR23 
% linernum = 4; nul = 0.45;% - GR23-633 
% linernum = 5; nul = 0.4995;% - HRPG(12) 
% linernum = 6; nul = 0.45;% - HRPG(12)-545 
linernum = 7; nul = 0.45;% - GR23 461-663 
% linernum = 8; nul = 0.45;% - HRPG(12) 461-493 

  
n = 1; 
t = 1; 

 
temp_cavity = 25; % [C] 
temp_pipe = 45; % [C] 

 
load Liner_Volume_Resonator 
load Liner_Properties 

 
El = E_L(:,1,linernum,t) + 0.4*1i*E_L(:,1,linernum,t); 
Bl = El/(3*(1-2*nul)); 

 
Pm = [300:100:1000 1500:500:3000]*6894.76; % [Pa] 

 
Ns = 5120; % Number of samples 
Fs = 10800; % [Hz] Sampling rate 
f = (Fs/Ns):(Fs/Ns):(Fs/2); 
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w = f*2*pi; 
s = 1i*w; 

 
% Port 1 is input from pipe 
% Port 2 is output from tuner into junction 
% Port 3 is base of annulus 
% Port 4 is output of annulus at junction 

 
% SHELL 
Es = 210e9; % [Pa] Young's modulus of shell (steel) 
nus = 0.3; % [ND] Poisson's ratio of shell (steel) 
Ls = 104.1 /1000; % [m] Internal length of shell 
L =  Liner_L(n+3,linernum+2)/1000; % [m] Length of pipe/annulus 
rp = 10.30 /1000; % [m] Inner radius of connecting pipe 
r1 =  9.33 /1000; % [m] Inner radius of annulus 
r2 = 10.60 /1000; % [m] Outer radius of annulus 
r3 = Liner_r3(n+3,linernum+2)/1000; % [m] Inner radius of liner 
r4 = Liner_r4(n+3,linernum+2)/1000; % [m] Outer radius of liner 
r50 = 31.75 /1000; % [m] Inner radius of shell 
r60 = 44.45 /1000; % [m] Outer radius of shell 

 
% Calculate r5 and r6 at elevated pressure 
r5 = r50 + (Pm(n)*r50/Es)*((r60^2 + r50^2)/(r60^2 - r50^2) + nus); 
r6 = r60 + (2*Pm(n)*r50^2*r60)/(Es*(r60^2 - r50^2)); 

  
Vs = Ls*pi*(r5^2 - r2^2); % [m^3]  

  
% LINER 
Vl = Liner_Volume(n+3,linernum+2); % [m^3] 
ml = Liner_Mass(linernum)/1000; % [kg] Mass of liner 
if Vl == 0 
    rhol = 0; 
else 
    rhol = ml/Vl; % [kg/m^3] Density of liner 
end 

  
% FLUID 
% Total volume of fluid 
Vf = Vs - Vl; 

  
% AIR 
% ma = 1e-7; % kg 
K = 1.4; % Specific heat ratio for air 
% Ko = T_liner(n) + 273.15; % Temperature of air in Kelvin 
% R = 287.04; % [J/kg*K] Specific gas constant for dry air 
% Va = ma*R*Ko/Pm(n); % [m^3] Volume of air 
% Ba = K*Pm(n); % [Pa] Bulk modulus of air 
X0 = 0; 
P0 = 0.1e6; % [Pa] Atmospheric pressure 
rhoa0 = 1.2; % [kg/m^3] Density of air at standard conditions 
Va0 = Vf*X0; % [m^3] Volume of air at standard conditions 
Va = Va0*(Pm(n)/P0)^(-1/K); % [m^3] Volume of air at pressure/temp 
if Va ~=0 
    rhoa = rhoa0*Va0/Va; % [kg/m^3] Density of air 
elseif Va == 0 
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    rhoa = 0; 
end 

  
ma = rhoa*Va; 

  
% OIL IN WAVEGUIDE 
visc_cavity = 178.4176*exp(-0.0344*temp_cavity); % [cSt] 
visc_cavity_si = visc_cavity*10^-6; % [Pa-s] 

  
B0t_w = 10^(0.3766*(log10(visc_cavity))^(0.3307) - 0.2766); % [GPa] 
At_w = -0.01382*temp_cavity + 5.851; % [GPa/GPa] 
Bpt_w = (B0t_w + At_w*(Pm(n)/1e9))*1e9; % [Pa] 

  
Bf_w = (1 - X0 + X0.*(P0/Pm(n)).^(1/K))./... 
    ((X0/(K*Pm(n)))*(P0/Pm(n))^(1/K) + (1 - X0)/Bpt_w); 

  
% OIL IN PIPE 
visc_pipe = 178.4176*exp(-0.0344*temp_pipe); % [cSt] 
visc_pipe_si = visc_pipe*10^-6; % [Pa-s] 
B0t_p = 10^(0.3766*(log10(visc_cavity))^(0.3307) - 0.2766); % [GPa] 
At_p = -0.01382*temp_cavity + 5.851; % [GPa/GPa] 
Bpt_p = (B0t_p + At_p*(Pm(n)/1e9))*1e9; % [Pa] 

  
Bf_p = (1 - X0 + X0.*(P0/Pm(n)).^(1/K))./... 
    ((X0/(K*Pm(n)))*(P0/Pm(n))^(1/K) + (1 - X0)/Bpt_p); 

  
rhoo = 915; %  [kg/m^3] Density of hydraulic fluid 

  
% Stiffness of outer flow path of annular cylinder in a rigid shell 
Bc = inv(2*r4^2*(1-nul)./(El(n)*(r5^2-r4^2))); 

  
% Calculate the effective bulk modulus of the fluid in the waveguide 
Be = inv(1/Bf_w + 1/Bc); 

  
c1 = sqrt(Bf_p/rhoo); % [m/s] Speed of sound within annulus 
cu = c1; cd = c1; % [m/s] Speed of sound in connecting pipes 
c2 = sqrt(Be/rhoo); % [m/s] Speed of sound in waveguide 

  
% Loss factor for acoustic propagation in pipe 
arg = 1i*r1*sqrt(s/visc_pipe_si); 
alpha = (1 - 2*besselj(1,arg)./(arg.*besselj(0,arg))).^(-0.5); 

  
% Loss factor for acoustic propagation in waveguide 
x = sqrt(r5^2*s/visc_cavity_si); 
m = r4/r5; 

  
% Method of Washio and Konishi for attenuation in annular pipe 
G = 1 + 1./((1-m)*x) + 3./(2*(1-m)^2*x.^2) - ... 
    (1-22*m+m^2)./(8*m*(1-m)^3*x.^3); 

  
gamma1 = s.*alpha/c1; % [1/m] Wavenumber in pipe 
gamma2 = s.*G/c2; % [1/m] Wavenumber in oil (annulus) 
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Zc1 = rhoo*c1*alpha; % [Pa-s/m^3] Impedance of oil in pipe 
Zc2 = rhoo*c2*G; % [Pa-s/m^3] Impedance of oil in annulus 

  
Z0u(:,1) = (rhoo*cu*alpha)/(pi*rp^2); % [Pa-s/m^3] Impedance of pipe 
Z0d(:,1) = (rhoo*cd*alpha)/(pi*rp^2); % [Pa-s/m^3] Impedance of pipe 

  
a11 = cosh(gamma1*L); 
a12 = -Zc1.*sinh(gamma1*L)/(pi*r1^2); 
a21 = -pi*r1^2*sinh(gamma1*L)./Zc1; 
a22 = a11; 

  
b11 = cosh(gamma2*L); 
b12 = -Zc2.*sinh(gamma2*L)/(pi*(r5^2-r4^2)); 
b21 = -pi*(r5^2-r4^2)*sinh(gamma2*L)./Zc2; 
b22 = b11; 

  
% Exactly from Hastings & Chen 
T16_11 = a11.*b12 + a12.*b11; 
T16_12 = a12.*b12; 
T16_21 = (a21 + b21).*(a12 + b12) + (b22 - a22).*(a11 - b11); 
T16_22 = a22.*b12 + a12.*b22; 
Pre = 1./(a12+b12); 

  
% Preallocate matrix 
T16 = zeros(2,2,length(f)); 

  
for p = 1:length(f) 
    T16(:,:,p) = inv(Pre(p).*[T16_11(p) T16_12(p); T16_21(p) 

T16_22(p)]); 
end 

  
t1 = sqrt(Z0d./Z0u).*squeeze(T16(1,1,:)); 
t2 = squeeze(T16(1,2,:))./sqrt(Z0u.*Z0d); 
t3 = sqrt(Z0u.*Z0d).*squeeze(T16(2,1,:)); 
t4 = sqrt(Z0u./Z0d).*squeeze(T16(2,2,:)); 

  
TL_model(:,1) = 20*log10((1/2)*abs(t1 + t2 + t3 + t4)); 

  
plot(f,TL_model,'-') 
xlabel('Frequency [Hz]') 
ylabel('Transmission Loss [dB]') 
grid on 

  
% plot(f,TL_model,'-',f_exp,TL_exp,'o') 
% xlabel('Frequency [Hz]') 
% ylabel('Transmission Loss [dB]') 
% legend('Model','Experiment') 
% titlestring = strcat('Liner inner radius  ',num2str(r2*1000),'  mm'); 
% title(titlestring) 
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